
7
Lumped Parameters Circuit
Analysis

7.1 Introduction

This chapter is probably the easiest one for you. Vector calculus, differential operators, the
Stokes and Gauss theorems, all of which have been harsh tools in previous chapters, will
be almost absent here. Nonetheless, new, but softer, difficulties may now arise with the
handling of complex algebra (see Appendix C).

In this new chapter we will make extensive use of the results derived in Chapters 5
and 6 concerning slow time-varying field phenomena (quasi-stationary regimes), which is
the standard framework for circuit analysis. Magnetic induction phenomena and electric
induction phenomena are considered separately; while the former are taken into account when
lumped inductors are analyzed, the latter are taken into account when lumped capacitors are
analyzed. In the case of lumped resistors, neither induction phenomena are considered.

Again, bear in mind that this lumped parameters approach is only valid when the length of
the circuit structure under analysis is much shorter than the lowest wavelength characterizing
the time evolution of the field.

To make things clearer, consider the typical RLC series circuit in Figure 7.1.

Figure 7.1 RLC series circuit

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-72709-6



250 Electromagnetic Foundations of Electrical Engineering

Assuming that the term �B/�t created by the time-varying currents in the connecting wires
is negligibly small, the application of the induction law gives∫

�

S

E ·ds = −
∫
ss

�B
�t

·ns dS ≈ 0 → u�t� = uR�t�+uL�t�+uC�t� (7.1)

Assuming that the displacement currents �D/�t created by the time-varying voltages between
the connecting wires is negligibly small, application of the generalized Ampère’s law gives∫

SV

J · no dS = −
∫
SV

�D
�t

· no dS ≈ 0 → i�t� = iR�t� = iL�t� = iC�t� (7.2)

Assuming that both terms �B/�t and �D/�t are negligible for the resistor analysis, we have
from Ohm’s law (Chapter 3)

uR�t� = R iR�t� (7.3)

Neglecting �D/�t, but taking into account the important magnetic induction phenomena in
the inductor, we have, from the induction law (Chapter 5),

uL = L
diL�t�

dt
(7.4)

Finally, neglecting �B/�t, but taking into account the important electric induction phenomena
in the capacitor, we have, from the generalized Ampère’s law (Chapter 6),

iC = C
duC�t�

dt
→ uC�t� = 1

C

∫
iC�t� dt (7.5)

By using the results from (7.1) to (7.5), valid for quasi-stationary regimes, we find the
time-domain equation that governs the lumped parameters circuit in Figure 7.1:

u�t� = Ri�t�+L
di�t�

dt
+ 1

C

∫
i�t� dt (7.6)

7.2 Steady-State Harmonic Regimes

In this section we particularize circuit analysis for the special case of steady-state harmonic
regimes, where fields, voltages, magnetic fluxes, electric charges and current intensities are
described by time-varying sinusoidal functions. Moreover, it is assumed that the generator
driving the circuit under analysis was turned on a long time ago (transient phenomena
discarded).

In order to ensure that all the quantities referred to above have a sinusoidal description,
an additional condition ought to be fulfilled: all the lumped components of the circuit must
exhibit linear behavior. Note for instance that if you apply a sinusoidal voltage to a diode
(nonlinear component) its current will be non-sinusoidal.

Before we proceed to the analysis of harmonic regimes a necessary comment is in order
to justify the need for this type of analysis. Why are sinusoidal functions so important?

First of all, the transmission and distribution of electric power is made using AC
(Alternating Current) – that is, using sinusoidal currents. In residential applications, the
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accessible voltage at the sockets that you use every day at home to plug in your appliances
is a sinusoidal voltage (its frequency can be 50 Hz or 60 Hz depending on the country you
live in).

At this stage you may be wondering about communication signals. They are certainly not
sinusoidal functions!

Well, you are right. But you are missing the point.
Any regular well-behaved time-varying signal s�t� can be expanded into a discrete or

continuous sum of sinusoids of different frequencies, which constitute the so-called signal
spectrum as follows:

Periodic signals of period T � s�t� = sav +
�∑

k=1

Sk cos��kt −�k�� with �k = 2	k/T

Non-periodic signals � s�t� =
�∫

0

S��� cos ��t −�����d�

(See the results on Fourier series and transforms, in Appendix D.)
So, what you have to do is to analyze the time response of the circuit to each and every

sinusoidal component of the signal spectrum and, at the end, superpose the results obtained.
We emphasize again that this procedure with sinusoidal functions is only valid for linear
circuits!

7.2.1 Characterization of Sinusoidal Quantities

In this subsection we introduce the standard terminology used to deal with sinusoidal
functions.

Let u1�t� be a sinusoidal voltage given by

u1�t� = U1 cos ��t +
1�︸ ︷︷ ︸
�

1
�t�

(7.7)

where U1 denotes the maximum value of the voltage or amplitude, �1�t� denotes the time-
varying phase, 
1 denotes the initial phase (for t = 0) and � denotes the angular frequency
� = 2	f , where f is the frequency in hertz.

If �1�t� is plotted against time you will obtain a tilted straight line (Figure 7.2). Since the
cosine function repeats itself upon an angle shift of 2	, you can see that the sinusoidal time
period is such that T = 2	/� = 1/f .

If two sinusoidal functions of the same frequency are compared, u1�t� given above and
u2�t� given by

u2�t� = U2 cos ��t +
2�︸ ︷︷ ︸
�

2
�t�

we will say that they are out of phase, because � = �1�t�−�2�t� = 
1 −
2 �= 0.
Note that, in the specification of phase shifts, the interval −	 < � < +	 is commonly used.
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Figure 7.2 Phase against time; 
1 denotes the initial phase and � denotes the angular frequency

Let us analyze a few particular cases:

• If � = 0 the sinusoidal functions are said to be in phase.
• If � > 0 we say that u1 leads u2; on the contrary, if � < 0 we say that u1 lags u2.
• If � = ±	 the sinusoidal functions are said to be in phase opposition, which is equivalent

to a T/2 time shift.
• If � = ±	/2 the sinusoidal functions are said to be in phase quadrature, which is equivalent

to a T/4 time shift.

Figure 7.3 illustrates the above particular cases for you.
The specification of the average value of sinusoidal functions is absolutely useless. In

fact, from (7.7) you can immediately recognize that any sinusoidal function has zero as its
average value. A really important piece of information related to the amplitude of a sinusoidal
function is its root-mean-square (rms) value. In general, for a time-periodic function u�t�,
its rms value is defined as

Urms =√
�u2�t��av (7.8)

The importance of this concept is linked to the evaluation of the average value of time-
varying energetic quantities, like power and energy, as illustrated in the following cases.

Joule power losses in a resistor:

pJ�t� = Ri2�t� → PJ = �pJ �t��av = R
(
i2�t�

)
av

= RI2
rms (7.9a)

Magnetic energy in an inductor:

Wm�t� = 1
2 Li2�t� → �Wm�av = 1

2 L
(
i2�t�

)
av

= 1
2 LI2

rms (7.9b)

Electric energy in a capacitor:

We�t� = 1
2 Cu2�t� → �We�av = 1

2 C
(
u2�t�

)
av

= 1
2 CU 2

rms (7.9c)

In the particular situation of sinusoidal quantities, where
(
cos2���t��

)
av

= 1/2, the result in
(7.8) simplifies to

Urms =√
�u2�t��av = U/

√
2 (7.10)

where U is the maximum value of u�t�.
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Figure 7.3 (a) Voltages u1 and u2 are in phase. (b) Voltages u1 and u2 are in phase opposition.
(c) Voltages u1 and u2 are in phase quadrature with u1 leading u2. (d) Voltages u1 and u2 are in phase
quadrature with u1 lagging u2
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7.2.2 Complex Amplitudes or Phasors

Time-varying sinusoidal quantities of a given frequency can be represented by complex
constants conveying information not only on the amplitude, but also on the initial phase of
the sinusoid. These complex constants are termed complex amplitudes or phasors.

Consider, for instance, the voltage u1�t� in (7.7),

u1�t� = U1 cos ��t +
1�︸ ︷︷ ︸
�

1
�t�

By using the Euler identity

ej�1�t� = cos ��1�t��+ j sin ��1�t�� → � (ej�1�t�
)= cos ��1�t��

we immediately recognize that u1�t� can be rewritten in the form

u1�t� = ��
(
U1e

j
1
)
ej�t� = ��U 1 ej�t� (7.11)

The time-invariant quantity U 1 = U1e
j
1 is the complex amplitude of the sinusoidal

voltage u1�t�.
The simplicity of the preceding formulation should certainly not pose any doubt. However,

some of you may be thinking what the purpose of this is. What is the usefulness of substituting
complex amplitudes by the time functions they represent?

This a simple question, with a simple answer. First of all, you should note that, by this
means, we are using a time-invariant quantity to represent a time-varying function. Secondly,
as will show next, operations (like sum, differentiation and integration) involving sinusoidal
functions can be much more easily performed in the complex domain than in the time domain.

Consider the following example.
You want to determine the sum, u3 = u1 +u2, of two sinusoidal voltages with the same

frequency, u1�t� = U1 cos��t+
1� and u2�t� = U2 cos��t+
2�. You can do that by resorting
to standard trigonometry but you will waste a lot a time. One thing that you should know
is that the sum of two sinusoids of the same frequency will yield a resultant sinusoid with
the same frequency – that is, you are expecting a result in the form u3�t� = U3 cos��t+
3�.
So, let us then use the phasor technique to find U3 and 
3:

U3 cos��t +
3� = U1 cos��t +
1�+U2 cos��t +
2�

� (U 3 ej�t
)= � (U 1 ej�t

)+� (U 2 ej�t
)= � ( (U 1 +U 2

)
ej�t
)

From the above result you immediately obtain U 3 = U3 ej
3 = U 1 + U 2 (see Figure 7.4).
Now that’s simple, isn’t it?

Consider another example.
Let q�t� be a given sinusoidal function, q�t� = Q cos��t +
q�. We wish to determine its

time derivative, i�t� = dq/dt = I cos��t +
i�. Let us then use the phasor technique to find
I and 
i:

i�t� = � ( I ej�t
)= d

dt
q�t� = d

dt
� (Q ej�t

)= � ((j�Q
)

ej�t
)

from which you can see that I = j�Q or, equivalently, I ej
i = �Q ej�
q+	/2�.
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Figure 7.4 Illustration of the sum operation involving complex amplitudes

Results for time integration can be obtained from the above:

q�t� =
∫

i�t� dt → Q = 1
j�

I

Table 7.1 summarizes the principal conclusions concerning the equivalence between time-
domain operations and their corresponding phasor-domain operations.

Table 7.1 Time- and phasor-domain operations

Time domain Phasor domain

u3�t� = u1�t�+u2�t� U 3 = U 1 +U 2

i�t� = d

dt
q�t� I = j�Q

q�t� = ∫
i�t� dt Q = 1

j�
I

7.2.3 Application Example (RLC Circuit)

Consider the time-domain equations for the RLC circuit obtained in (7.1)–(7.6). Assume that
all voltages and currents are sinusoidal functions of angular frequency �.

Questions

Q1 Obtain the phasor-domain equations for this circuit (Figure 7.1).

Q2 Comment on the phase relationships between voltages and currents at the resistor,
inductor and capacitor terminals.

Q3 Draw an illustrative phasor diagram showing the phasor’s positions in the complex
plane. Consider the following data: i�t� = I cos ��t� � I = 1 A� � = 1 krad/s.

Take R = 100 �� L = 0
2 H� C = 0
1 �F.

Q4 Several voltmeters are connected to the circuit as shown in Figure 7.5; voltmeter readings
are rms values. Determine the readings of V1� V2� V3� V4 and V5. Comment on the
results.

Q5 Write the expression for u�t� and plot it against time.
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Figure 7.5 RLC series circuit provided with a set of voltmeters for measuring voltage rms values

Solutions

Q1

u�t� = uR�t�+uL�t�+uC�t� → U = UR +UL +UC (7.12)

i�t� = iR�t� = iL�t� = iC�t� → I = IR = IL = IC

uR�t� = R iR�t� → UR = R IR (7.13)

uL = L
diL�t�

dt
→ UL = j�L IL (7.14)

uC�t� = 1
C

∫
iC�t� dt → UC = 1

j�C
IC (7.15)

u�t� = Ri�t�+L
di�t�

dt
+ 1

C

∫
i�t� dt → U =

(
R+ j�L+ 1

j�C

)
I (7.16)

Q2 From (7.13) you can see that, in the complex plane, the phasors UR and IR are parallel
vectors. This means that uR�t� and iR�t� are in phase.

From (7.14) you can see that the phasors UL and IL are orthogonal vectors. This
means that uL�t� and iL�t� are in phase quadrature, with uL leading iL.

From (7.15) you can see that the phasors UC and IC are again orthogonal. This means
that uC�t� and iC�t� are in phase quadrature, with uC lagging iC .

Q3 I = 1 A� UR = 100 V� UL = 200 ej	/2 V� UC = 100 e−j	/2 V� U = √
2 100 ej	/4 V.

See the corresponding phasor diagram in Figure 7.6.
You may be commenting to yourself that the phasor diagram is not correct, because

the size of the phasor I appears to be bigger than the size of the voltage phasors. Well,
you are wrong!

In the same way that you cannot compare kg to km/s, you cannot compare ampere
with volt. In no case at all can you establish inequality relations between quantities of
different nature. This means that, in order to draw the phasor diagram in Figure 7.6,
different scales have to be adopted, one for currents and another for voltages!
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Figure 7.6 Illustrative phasor diagram for the RLC series circuit

Q4

V1 ≡ ∣∣U ∣∣/√2 = 100
0 V

V2 ≡ ∣∣UR

∣∣/√2 = 70
7 V� V3 ≡ ∣∣UL

∣∣/√2 = 141
4 V� V4 ≡ ∣∣UC

∣∣/√2 = 70
7 V

V5 ≡ ∣∣UL +UL

∣∣/√2 = 70
7 V

It should be emphatically noted that V1 �= V2 +V3 +V4!
Although the sum of the voltage phasors concerning the R� L and C circuit components
is equal to the generator voltage phasor, see (7.12), the same is not true for the sum of
the corresponding amplitudes or for the sum of the corresponding rms values, that is

U = UR +UL +UC� but

{
U �= UR +UL +UC

Urms �= URrms
+ULrms

+UCrms

Summing vectors is not the same thing as summing scalars. Take care with this issue
because it is a source of frequent mistakes.

Q5 u�t� = � (U ej�t
)= � (�U ej	/4� ej�t

)= U cos��t +	/4�.
u�t� = √

2 100 cos��t +	/4� V. See Figure 7.7.
A word of caution: you might be tempted to write u�t� as u�t� = U cos��t + 45	�,

but don’t do it! That too is a common mistake. The problem is that the units for �t are
radians, and as you should know, radians and degrees cannot be mixed.

7.2.4 Instantaneous Power, Active Power, Power Balance Equation

As shown in Figure 7.8, a sinusoidal voltage u�t� = U cos��t +
u� is applied across the
terminals of a given linear passive circuit, that is a circuit containing resistors, inductors,
capacitors, but no energy sources. Since the circuit behaves linearly, the generator current
is also sinusoidal, i�t� = I cos��t +
i�.

The instantaneous power delivered by the generator, p�t� = u�t�i�t�, can be evaluated as

p�t� = u�t�i�t� = UI cos��t +
u� cos��t +
i�
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Figure 7.7 Graphical plot of generator voltage against time

Figure 7.8 In a linear passive circuit, if u�t� is sinusoidal then i�t� will also be sinusoidal

From trigonometry we find

p�t� = UI

2
cos�
u −
i�+ UI

2
cos�2�t +
u +
i� (7.17a)

As an alternative, using the rms definition in (7.10), we can write

p�t� = UrmsIrms cos �
u −
i�︸ ︷︷ ︸
�

+UrmsIrms cos�2�t +
u +
i� (7.17b)

where � = 
u −
i denotes the phase shift between the sinusoidal voltage and current.
A typical plot of the instantaneous power p�t� is depicted in Figure 7.9.
From (7.17) and from Figure 7.9 we observe that the instantaneous power is not a

sinusoidal function of time. Further, we see that p�t� contains a time-invariant term plus a
sinusoidal function of angular frequency 2�. The constant term, representing the averaged
power over time, is the so-called active power (units: W, watt)

Active power � P = �p�t��av = UrmsIrms cos � (7.18)

From Figure 7.9 you can also see that when u and i are out of phase �� �= 0� the
power delivered by the generator is negative during certain time intervals. The physical
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Figure 7.9 Typical plot of the instantaneous power against time. The time average of the
instantaneous power, denoted by P, is the so-called active power. The angle � indicates the difference
between the phases of the voltage and current

interpretation for p < 0 is rather simple: during those intervals, inductors and/or capacitors
discharge their stored energy towards the generator, thus reversing the normal flow of energy.

Moreover, if the circuit contains no resistors at all, the time intervals during which p < 0
will have the same duration as the time intervals during which p > 0. In this case u and i
are in phase quadrature, � = ±	/2, and the active power is zero.

The preceding remarks, together with the result in (7.18), allows you to reach an important
conclusion concerning the phase shift � between u�t� and i�t�. Since the average power
delivered to a passive circuit cannot be negative, you must always have cos� ≥ 0. This is
tantamount to saying that, for passive circuits, you can only find values for � in the range
−	/2 ≤ � ≤ 	/2.

Next we introduce, in an intuitive way, the power balance equation in the time domain.
Using the energy conservation principle we write

W�t� = WJ�t�+Wm�t�+We�t� (7.19)

where W� WJ� Wm and We respectively represent the energy brought into by the generator,
the energy dissipated by the Joule effect in resistors, the magnetic energy stored in inductors,
and the electric energy stored in capacitors. Taking the time derivative of (7.19), we obtain
the corresponding powers

p�t� = pJ�t�+pm�t�+pe�t� ↔ p�t� = pJ�t�+ d

dt
�Wm�t�+We�t�� (7.20)

This last result is called the Poynting theorem. A rigorous proof of this theorem, based
directly on Maxwell’s equations, will be given later in Chapter 8.

The Poynting theorem can be immediately used to show that, for time-harmonic regimes,
the active power is to be physically identified with Joule losses averaged over time. In fact,
from (7.20), you can obtain �p�t��av = �pJ �t��av + �pm�t��av + �pe�t��av. Since the powers
pm�t� and pe�t� associated to inductors and capacitors are purely sinusoidal functions, their
average values are zero (do not forget that voltages and currents across inductors and
capacitors are in phase quadrature), hence

P = �pJ �t��av = PJ (7.21)
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7.2.5 Complex Power, Complex Poynting Theorem

In the framework of time-harmonic regimes, we introduced in Section 7.2.2 the phasor
representation of sinusoidal voltages and sinusoidal currents. Can we do the same with the
instantaneous power p�t�? The answer is no! Writing p�t� = � (P ej�t

)
would be complete

nonsense.
Phasors are only defined for sinusoidally varying quantities and, as you can see in

Figure 7.9, the instantaneous power p�t� is not in general a sinusoid. However, at this stage,
it is customary to introduce a helpful auxiliary entity, the so-called complex power, whose
definition is

P = U I
∗

2
= P + jPQ = PS ej� (7.22a)

which (we emphasize) it is not a phasor. In (7.22a), the asterisk on I denotes complex
conjugation.

One of the main advantages of introducing this new entity is that the evaluation of its real
part directly yields the active power, P = � (P). Another advantage is that the angle of P
provides information on the existing phase shift between u and i:

<� P = � = 
u −
i


To see that this is true let us substitute the expressions for U and I into (7.22a):

P =
(√

2Urmse
j
u

)(√
2Irmse

−j
i

)
2

= UrmsIrms ej�
u−
i� = PS ej� (7.22b)

P = UrmsIrms cos �︸ ︷︷ ︸
P

+j UrmsIrms sin �︸ ︷︷ ︸
PQ

(7.22c)

By doing this, two new auxiliary quantities show up, the apparent power and the reactive
power:

Apparent power � PS = �P� = UrmsIrms �units: VA, volt ampere�

Reactive power � PQ = � (P )= PS sin � �units: VAr, volt ampere reactive� (7.23)

Several physical interpretations for the apparent power can be given. From (7.17b) you will
see that PS represents the amplitude of the sinusoidal term of frequency 2� belonging to
p�t�. In addition, PS represents the averaged power over time for circuits that behave as pure
resistors �� = 0�.

The relationship among the diverse powers P� P� PS and PQ is illustrated through the
triangle representation shown in Figure 7.10.

The best way to learn about the physical significance of the reactive power PQ is through
the complex Poynting theorem. This theorem is an absolutely general theorem that can be
deduced directly from Maxwell’s equations for time-harmonic regimes. Here, we will skip
a general demonstration of the theorem, and limit ourselves to arriving to it with the help of
a particular example.
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Im 

Re

0

PQ
P

P

P = PS

ϕ

Figure 7.10 Triangle representation of powers

Take the phasor equation governing the RLC circuit obtained in (7.16):

U =
(

R+ j�L− j
1

�C

)
I

Let us multiply both sides of the above equation by I
∗
/2. This yields on the left-hand side

the complex power P introduced in (7.22). On the other hand, we have

I I
∗

2
= I2

rms = (
i2�t�

)
av

(7.24)

Therefore we find

P = R I2
rms + j�LI2

rms − j
1

�C
I2
rms (7.25)

Further, from (7.15), at the capacitor terminals we have Irms = �CUCrms
.

By taking this into account, the third term on the right hand side of (7.25) can be rewritten
as I2

rms/��C� = �CU 2
Crms

. Hence, we get

P = RI2
rms + j2�

(
1
2 LI2

rms − 1
2 CU 2

C rms

)
The term RI2

rms = (R i2�t�
)

av
= PJ is interpreted as the time-averaged power losses due to

the Joule effect in the resistor.
The term 1

2 LI2
rms = 1

2 L
(
i2�t�

)
av

= �Wm�av is interpreted as the time-averaged magnetic
energy stored in the inductor.

Likewise, the term 1
2 CU 2

Crms
= 1

2 C
(
u2

C�t�
)

av
= �We�av is interpreted as the time-averaged

electric energy stored in the capacitor.
Finally we obtain

P = PJ + j2���Wm�av − �We�av� (7.26)

The general result shown in (7.26) is the complex Poynting theorem, which is of key
importance in many electrical engineering applications, including rapid time-varying field
phenomena.

Since the complex power, on the left-hand side of (7.26), is given by

P = U I
∗

2
= P + jPQ
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we see that the active power P can be interpreted as the time-averaged power losses at the
resistors �P = PJ ≥ 0�. This conclusion is not new, and confirms the analysis result in (7.21).

Also – and this is new – the reactive power, PQ, can now be interpreted as a measure
of the balance between the time-averaged magnetic and electric energies stored in inductors
and capacitors. If magnetic energy predominates, you will have PQ > 0; otherwise, if electric
energy predominates, you will have PQ < 0.

If, at a given frequency, the generator voltage and current are in phase, � = 0, the reactive
power is null, PQ = 0, and consequently, the time-averaged values of the magnetic and
electric energies stored must necessarily compensate each other, �Wm�av = �We�av.

At this point a few remarks are in order:

• The complex Poynting theorem in (7.26) is not to be confused with the former Poynting
theorem in (7.20). These theorems are independent of each other.

• The result in (7.26) cannot be deduced from (7.20).
• The Poynting theorem applies to any kind of time regime, harmonic or non-harmonic.
• The complex Poynting theorem applies only to harmonic regimes.

7.2.6 Impedance and Admittance Operators

The concept of impedance is very simple, but very important and useful. Look again at
Figure 7.8 where a linear passive circuit is driven by a generator whose sinusoidal voltage
and current are given by u�t� = U cos��t +
u� and i�t� = I cos��t +
i�. The phase shift
between u and i is � = 
u −
i.

The impedance of the circuit Z (units: �, ohm) is the complex operator that transforms
the complex amplitude of i�t� into the complex amplitude of u�t�

U = Z I

In other words,

Z = Z ej� = U

I
= U ej
u

I ej
i
→ Z = � Z � = U

I
= Urms

Irms

� <� Z = � = 
u −
i (7.27)

The following are important notes that you should never forget:

• The impedance operator is only defined in the context of time-harmonic regimes.
• The impedance is an operator acting over complex amplitudes; it does not operate on

time-varying quantities. Writing u�t� = Z i�t� is complete nonsense!
• The impedance operator cannot be defined for nonlinear circuits.
• For linear passive circuits the impedance angle � is limited to the range −	/2 to 	/2.
• In general, the impedance operator is frequency dependent, Z = Z���.

For exemplification purposes consider the RLC circuit in Figure 7.1 and recall the phasor-
domain equation in (7.16):

U =
(

R+ j�L+ 1
j�C

)
I



Lumped Parameters Circuit Analysis 263

The term in parentheses is the impedance operator for the RLC circuit

Z = R+ j

(
�L− 1

�C

)
=
√

R2 +
(

�L− 1
�C

)2

exp
[
j arctan

(
�L

R
− 1

�RC

)]

Z��� =
√

R2 +
(

�L− 1
�C

)2

���� = arctan
(

�L

R
− 1

�RC

)
(7.28)

The admittance operator Y (units: S, siemens), which can also be useful, is the inverse of
the impedance operator

Y = Z
−1 = I

U
(7.29)

In general, both Z and Y can be broken down into their constituent real and imaginary parts,
that is Z = R+ jX and Y = G+ jS.

R, G, X and S are usually named resistance, conductance, reactance and susceptance,
respectively. For passive circuits, where the impedance angle � is limited to the range −	/2
to 	/2, you must always find R ≥ 0 and G ≥ 0, whereas both X and S can be positive,
negative or zero.

7.2.7 Resonance

For time-harmonic regimes, a circuit including resistors, inductors and capacitors is said
to be a resonant circuit when its impedance (or admittance) is purely real. Whenever this
situation occurs, the magnitude of the driving voltage or current is at a stationary point, at
a maximum or at a minimum.

Despite the presence of inductors and capacitors, the generator feeding the circuit interprets
the latter as a pure resistor; the phase shift between the voltage and current at the generator
terminals is zero, � = 0.

Resonance conditions are critically dependent on the working frequency.
Just to give you a simple example, if the impedance angle of the RLC circuit in (7.28)

is analyzed, and � = 0 is enforced, you will at once conclude that the resonance condition
for such a particular circuit is �L = 1/��C�, which implies that

∣∣Z∣∣ = Zmin = R and∣∣I∣∣= ∣∣I∣∣
max

= U/R. In addition, you may note that the capacitor and inductor voltages of
the RLC resonant circuit are in phase opposition but have identical amplitudes: UL = −UC .
This common amplitude, depending on the circuit parameters, may become much higher
than the resistor voltage amplitude; their ratio Q is ordinarily termed the quality factor of
the circuit at resonance

Q = UL

UR

= UC

UR

= �resL

R
= 1

�resCR
=

√
L/C

R

The fact that resonant circuits behave as pure resistors, � = 0, signifies that the inductor and
capacitor effects must cancel each other in some way. According to the complex Poynting
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theorem in (7.26), the reactive power is zero, and the time-averaged values of the magnetic
and electric energies stored compensate for each other, �Wm�av = �We�av.

The concept of quality factor for an RLC resonant circuit was introduced above as a means
to quantify circuit overvoltages. However, a more general definition of the quality factor,
which applies to any resonant circuit, is usually given in the form

Q = �res

�Wm�av + �We�av

�pJ �av

= �res

�Wem�av

�pJ �av

where Wem denotes the total electromagnetic energy stored.

7.2.8 Application Example (RL � C Circuit)

The RL series circuit with a capacitor C in parallel finds applications in several areas. It is
used in power systems to illustrate the so-called power factor compensation problem; in signal
processing it is used as an example of a band reject filter; in instrumentation and measurement
it also permits the illustration of the basic functioning principle of a spectrum analyzer.

Here we focus attention on the power factor compensation problem. Later, in Section 7.5,
we will deal with the other applications.

Consider the circuit representation in Figure 7.11 where the RL branch simulates an
electrical installation. The generator voltage is given by u�t� = U cos��t�, with � = 2	f�
and f = 50 Hz. The capacitor of capacitance C can be switched on or off.

Data: U = √
2 230 V� R = 5 �� L = 59
4 mH.

Figure 7.11 Power factor compensation problem (RL series circuit with a parallel-connected
capacitor)

Questions

Q1 Consider that the capacitor is switched off.

Write the time-domain and phasor-domain equations of the circuit.
Determine i�t�� uR�t� and uL�t�. Determine the active and reactive powers.

Q2 Consider that the capacitor is switched on.

Write the time-domain and phasor-domain equations of the circuit.
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Write an expression for the admittance operator Y = I/U and, from it, determine C

such that resonance takes place.
Determine uR�t�� uL�t�� iL�t�� iC�t� and i�t�. Draw the corresponding phasor diagram.
Three ammeters A1� A2 and A3 are placed in the generator, capacitor and installation

branches. What are their rms readings?
Determine the active and reactive powers. Confirm the results obtained by application

of the complex Poynting theorem.

Solutions

Q1

i = iL → I = IL

u = uR +uL → U = UR +UL

uR = RiL → UR = RIL

uL = L
diL
dt

→ UL = j�LIL

u = RiL +L
diL
dt

→ U = �R+ j�L� IL

Now, evaluate the impedance ZRL of the electrical installation:

ZRL = R+ j�L = ZRL ej� = 5
0+ j18
7 = 19
32 ej75o

�

The current in the installation provided by the generator is found next:

I = IL = U

ZRL

= √
2 11
9 e−j75o

A → i�t� = √
2 11
9 cos��t −5	/12� A

The voltages across R and L are

UR = √
2 59
5 e−j75o

V → uR�t� = √
2 59
5 cos��t −5	/12� V

UL = √
2 222
1 ej15o

V → uL�t� = √
2 222
1 cos��t +	/12� V

Taking into account that the phase shift � between u and i is 75	, the active power is
evaluated as

P = UrmsIrms︸ ︷︷ ︸
PS

cos � = 230×11
9×0
259 = 0
71 kW

(Note: the power ratio P/PS = cos � is called the ‘power factor’.)
The reactive power is PQ = UrmsIrms sin � = 230×11
9×0
966 = 2
65 kVAr.



266 Electromagnetic Foundations of Electrical Engineering

Q2 Now the capacitor C is switched on and, therefore, i �= iL.
All the time-domain and phasor-domain equations obtained in Q1 remain valid here,

with the exception of the first one, i = iL → I = IL, which clearly does not apply and
must be replaced by

i = iL + iC → I = IL + IC and iC = C
du

dt
→ IC = j�CU

At this stage you must realize that the functioning of the RL branch is not minimally
affected by the presence of the parallel-connected capacitor. The latter will simply affect
the current that the generator must provide.

Because I = IL + IC you are probably guessing that the generator current is going to
increase compared to the situation analyzed in Q1. Well, your intuition is failing you!
To your surprise the current is indeed going to decrease (that is exactly the goal of
inserting the capacitor in this circuit� � � ). The point is – we repeat – summing vectors
and summing scalars are different things.

Let us evaluate the admittance of the global circuit:

Y = I

U
= IC + IL

U
= j�C + 1

R+ j�L

= j�C + 1
R+ j�L

× R− j�L

R− j�L
= R

Z2
RL

+ j�

(
C − L

Z2
RL

)

where Z2
RL = R2 + ��L�2.

Resonance occurs when the angle of Y goes through zero or, which is the same, when
the imaginary part of the admittance is zero, � (Y ) = 0. Consequently, the resonance
condition for this circuit is

C = L

Z2
RL

= L

R2 + ��L�2
(7.30)

Numerically, you obtain C = 159
1 �F.
With this value for the capacitance you find IC = j�CU = √

2 11
5 ej90	
A, from

which you get iC�t� = √
2 11
5 cos��t +	/2� A.

The quantities uR�t�� uL�t� and iL�t�, remain unchanged.
Finally – and this is the most important point – the new current in the generator is

I = IC + IL = Y U = RU

Z2
RL

= √
2 3
08 A → i�t� = √

2 3
08 cos��t� A

which is almost four times smaller in magnitude than the one calculated in Q1 when the
capacitor was disconnected.

Figure 7.12 shows the phasor diagram for this problem, illustrating the existing
relations among the voltages and currents in the resonant circuit.

The ammeters A1� A2 and A3, placed in the generator, capacitor and installation
branches, read 3.08 A, 11.5 A and 11.9 A respectively.

Evaluation of the complex power P = U I
∗
/2 = P + jPQ gives P = 0
71 kW and

PQ = 0.
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Figure 7.12 Illustrative phasor diagram for the RL�C circuit. When C is chosen appropriately
(perfect power factor compensation), not only are the generator voltage and current in phase, but also
the current magnitude is minimal

The active power P remains invariant because the Joule losses in the RL branch remain
the same, PJ = RI2

Lrms
= 0
71 kW.

The reactive power dropped to zero because the power factor has been compensated
�� = 0 → cos � = 1� sin � = 0�. In other words, the time-averaged electric energy in
the capacitor is equal to the time-averaged magnetic energy in the inductor:

�Wm�av = 1
2 LI2

L rms
= 4
2 J� �We�av = 1

2 CU 2
rms = 4
2 J

7.3 Transformer Analysis

So far we have been dealing with circuit examples where magnetic coupling is absent. Now
it is time to turn our attention to transformer circuits where magnetic coupling is a key issue.
Due to space limitations, here we will only examine two-winding transformers with a linear
core, such as the one shown in Figure 7.13 (remember that linearity is a prerequisite for the
usage of inductance coefficients).

Figure 7.13 Single-core transformer representation, showing the convention for reference signs of
the voltages and currents in the primary and secondary windings
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Two windings are present: the primary winding is the one connected to the generator;
the secondary winding is the one connected to the load (the latter is assumed to be a
linear passive device). The transformer windings, with N1 and N2 turns, are characterized
respectively by their internal resistances r1 and r2.

Before we proceed to the analysis of the transformer equations, a point worth emphasizing
is that the writing of the equations is critically dependent on the arbitrary conventional
reference directions assigned to the currents and voltages in play. Here, we adhere to the
following convention. Primary and secondary currents are oriented so as to create concordant
magnetic fields in the core �LM > 0�. Primary and secondary voltages are oriented so as to
produce positive power flows from the generator to the transformer and from the transformer
to the load.

Time-domain equations for the transformer circuit are obtained using the induction law
from Chapter 5. Using a circulation path s1 oriented along i1, going through the primary
winding conductor and closing at the generator terminals, we obtain

∫

�

S1

E ·ds1

︸ ︷︷ ︸
r1i1−u1

= −d�1

dt
→ u1�t� = r1 i1�t�+ d�1�t�

dt
(7.31)

where the primary linkage flux depends on both currents �1 = �1�i1� i2�.
Using a circulation path s2 oriented along i2, going through the secondary winding

conductor and closing at the load terminals, we obtain

∫

�

S1

E ·ds2

︸ ︷︷ ︸
r2i2+u2

= −d�2

dt
→ −u2�t� = r2 i2�t�+ d�2�t�

dt
(7.32)

where the secondary linkage flux depends on both currents �2 = �2�i1� i2�.
The load equation, which at this stage cannot be written explicitly (because the load has

not yet been specified), can be put in the form

u2 = u2�i2� (7.33)

For time-harmonic regimes, the above time-domain equations transform to the phasor
domain as

U 1 = r1I1 + j��1� −U 2 = r2I2 + j��2� U 2 = Z2I2 (7.34)

where Z2 is the impedance operator characterizing the load placed at secondary winding
terminals.

Assuming, as before, that the transformer core displays a linear behavior, then the magnetic
linkage fluxes can be written as linear combinations of the currents in play (Chapter 4):{

�1�t� = L11i1�t�+LMi2�t�

�2�t� = LMi1�t�+L22i2�t�
→
{

�1 = L11I1 +LMI2

�2 = LMI1 +L22I2

(7.35)
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By substituting (7.35) into (7.34) we get the phasor-domain equations governing the
transformer:

U 1 = �r1 + j�L11�I1 + j�LMI2 (7.36a)

−U 2 = �r2 + j�L22�I2 + j�LMI1 (7.36b)

U 2 = Z2I2 (7.36c)

Note that, according to the conventions adopted, all the inductance coefficients L11� L22 and
LM are positive quantities.

7.3.1 The Ideal Transformer

The ideal transformer does not exist. It is a fictitious device whose properties listed below
cannot be fulfilled in nature. Nonetheless, some practical engineers may make use of it as a
zeroth-order model to get coarse estimations of the transformer behavior.

The properties of a single-core ideal transformer are:

• Primary and secondary windings are made of perfect conductors with � → �.
• The transformer core is made of a perfect magnetic material with � → �.

The first simplifying condition implies r1 = r2 = 0. The second simplifying condition ensures
that the core is a perfect tube for the flux of B lines, that is dispersion is absent,

�1 = N1�� �2 = N2�

and magnetic coupling is perfect �k = 1�. Moreover, since � → �, the magnetic field H in
the transformer core is zero, H = B/� = 0.

By using the above properties in (7.31) and (7.32) we obtain{
u1 = N1 d�/dt

−u2 = N2 d�/dt
→ u1�t�

u2�t�
= −N1

N2

(7.37)

On the other hand, the application of Ampère’s law to a closed circulation path inside the
transformer core (Chapter 4) yields

0 =
∫

�

S

H︸︷︷︸
0

·ds =
∫
Ss

J ·ns dS = N1 i1 +N2 i2 → i1�t�

i2�t�
= −N2

N1

(7.38)

In short, apart from a minus sign, the ratio of the transformer voltages is equal to the
corresponding winding turns ratio, whereas the ratio of the transformer currents is the reverse
of the winding turns ratio.

The time-domain equations in (7.37) and (7.38) have a corresponding phasor-domain
counterpart that reads as

U 1

U 2

= −N1

N2

�
I1

I2

= −N2

N1

(7.39)
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By using (7.39) you can readily conclude that the input impedance Z1 of the ideal transformer
(measured at the primary winding terminals) is equal to the load impedance Z2 multiplied
by the factor �N1/N2�

2:

Z1 = U 1

I1

=
(

N1

N2

)2
U 2

I2

=
(

N1

N2

)2

Z2 (7.40)

7.3.2 Transformer Impedance, Pseudo Lenz’s Law

The zeroth-order result in (7.40) is not a very reliable one as far as actual transformers are
concerned, since their properties hardly match those of ideal transformers. Therefore, we
need to find Z1 based on (7.36).

To start with, we determine the relationship between I2 and I1. Eliminating U 2 using
(7.36b) and (7.36c) yields

I2 = − j�LM

r2 + j�L22 +Z2

I1 (7.41)

Substituting (7.41) into (7.36a) you get

Z1 = �r1 + j�L11�+
(

��LM�2

r2 + j�L22 +Z2

)
(7.42)

The first term on the right-hand side of this equation is to be interpreted as the primary
winding self-impedance, that is the one that is observed when the secondary winding is left
open �I2 = 0� Z2 → ��. The second term on the right-hand side, resulting from magnetic
coupling, is to be interpreted as the influence of the secondary winding (load included) on
the input impedance of the transformer.

It is appropriate at this stage to go back to the pseudo Lenz’s law to which we referred
earlier in Problem 5.13.2.

From (7.42) you can see that when the transformer load is disconnected, the inductance
observed at the generator terminals coincides with L11 = �1/��� (Z1

)
Z2=�.

According to common sense (based on Lenz’s law), when the load is plugged in,
the transformer core is expected to demagnetize (due to the alleged counteraction of the
secondary current) and, consequently, the equivalent inductance L′

11 = �1/��� (Z1

)
Z2 �=�

measured at the generator terminals is expected to be smaller than L11 itself.
We are going to show that this is not always true.
Let us write the load impedance as Z2 = R2 + jX2, where X2 < 0 for capacitive loads.

From (7.42) we have

Z1 = �r1 + j�L11�+
(

��LM�2

�r2 +R2�+ j��L22 +X2�

)
After simple algebraic manipulation we get

Z1 = �r1 + j�L11�+
(

��LM�2

�r2 +R2�
2 + ��L22 +X2�

2

)
︸ ︷︷ ︸

K ≥ 0

× ��r2 +R2�− j��L22 +X2��
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Then we conclude that � (Z1

) = r1 +K�r2 +R2� ≥ r1; that is, the effect of the secondary
winding is always to increase the equivalent input resistance of the transformer.

As for the equivalent input inductance of the transformer, we find

L′
11 = 1

�
��Z1� = L11 −K

(
L22 + X2

�

)
(7.43)

If the transformer load Z2 includes a capacitor with reactance X2 = −1/��C2�, such that
C2 < 1/��2L22�, then the term K�L22 +X2/�� in (7.43) becomes negative, and consequently,
we see that the equivalent inductance at the primary terminals increases in magnitude,
L′

11 > L11, which is in clear contradiction with the ordinary postulate of Lenz’s law.

7.3.3 Equivalent Circuits

Some computer programs devoted to circuit analysis do not handle easily problems where
magnetic coupling among inductors is present, as in the case of real transformers. Fortunately,
you can circumvent such a problem by making use of equivalent circuits where magnetic
coupling issues are absent.

This subsection addresses the topic of transformer equivalent circuits.
Consider the ‘T’ circuit shown in Figure 7.14, consisting of three unknown uncoupled

impedances, Z
� Z� and Z0, which is cascaded with an ideal transformer characterized by
a transformation ratio � = n1/n2.

Figure 7.14 Equivalent circuit representation of the transformer

An important note to bear in mind is that the turns ratio n1/n2 of the ideal transformer
is an arbitrary parameter of your choice that does not have to coincide with the turns ratio
N1/N2 of the real transformer that you want to simulate.

Taking into account the results in Section 7.3.1 concerning the ideal transformer, you
have here

U
′
2 = −� U 2 and I

′
2 = − 1

�
I2 (7.44)

The phasor-domain equations for the ‘T’ circuit are

U 1 = Z
I1 +Z0�I1 − I
′
2�

U
′
2 = Z0�I1 − I

′
2�−Z�I

′
2
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By substituting (7.44) into the above results, and rearranging terms, you get

U 1 = �Z
 +Z0�I1 + Z0

�
I2 (7.45a)

−U 2 = Z� +Z0

�2
I2 + Z0

�
I1 (7.45b)

Next, all you have to do is to establish a term-by-term comparison between the preceding
circuit equations and those describing the real transformer in (7.36a) and (7.36b). Then you
will find

Z0 = j��LM︸︷︷︸
l0

� Z
 = r1 + j��L11 −�LM�︸ ︷︷ ︸
l1

� Z� = �2r2 + j��2 �L22 −LM/��︸ ︷︷ ︸
l2

(7.46)

The element described by Z0 is a pure inductor whose inductance is l0 = �LM . The element
described by Z
 is the series connection of a resistor and an inductor, whose resistance and
inductance are, respectively, r1 and l1. Similarly, the element described by Z� is the series
connection of a resistor and an inductor, whose resistance and inductance are, respectively,
r� = �2r2 and l� = �2l2. These results are summarized in Figure 7.15.

Figure 7.15 Detailed representation of the transformer equivalent circuit

At this point a few remarks are in order.

• Although the transformer’s equivalent scheme in Figure 7.15 has been deduced using
phasor-domain equations, it is also valid for time-domain analysis, provided that � is
chosen to be real. This is so because its internal components are described by frequency-
independent parameters under the assumption of slow time-varying phenomena.

• Given the fact that � is an arbitrary parameter, you really do not have one equivalent
circuit, but an infinite number of equivalent circuits at your choice. If, for instance, you
make � = L11/LM then the impedance Z
 will turn into a pure resistor Z
 = r1; likewise,
if you decide to make � = LM/L22 then the impedance Z� will turn into a pure resistor
Z� = �2r2.

• The real transformer in Figure 7.13 and the circuit in Figure 7.15 are formally equivalent
from the viewpoint of their accessible voltages �u1� u2� and currents �i1� i2�. However,
from an internal perspective there is no sort of correspondence between the real transformer
and the equivalent circuit – it suffices to say that the internal circuit components are quite
arbitrary since they depend on your own particular choice of �.
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Suppose now that your goal is to materialize an equivalent circuit so that you can run some
laboratory tests on it as a way of predicting the primary and secondary voltages and currents
of the real transformer. This presents you with the problem of the physical realizability
of the circuit; in other words, you are going to need to buy the actual components of
the circuit (resistors with positive resistances, inductors with positive inductances). This
objective naturally puts some constraints on your choices regarding �, namely:

l0 > 0 → � ∈ �� � > 0{
l1 = L11 −�LM ≥ 0

l2 = L22 −LM/� ≥ 0
→ LM

L22

≤ � ≤ L11

LM

(7.47)

As a parenthetical remark, you should note that the interval defined for � is a closed interval.
In fact, the condition defined in (7.47) is compatible with the inequality L2

M ≤ L11L22, which
is always true and is nothing more than a restatement that the magnetic coupling factor
between any two inductors cannot exceed unity (4.42).

If you have an inquisitive mind, you must now have an additional question drumming in
your head. Where are you going to buy the ideal transformer in Figure 7.15?

Nowhere is the answer. But we may add that you do not need to. In fact, all you have
to do is to replace the ideal transformer and its load by the corresponding input impedance
measured at the terminals where u′

2 and i′2 are defined, that is, from (7.40)

Z
′
2 = �2Z2 (7.48)

Finally you get the physically realizable circuit shown in Figure 7.16(a).

Figure 7.16 Transformer equivalent circuit with the ideal transformer removed. (a) The influence
of the load impedance is taken into account through Z

′
2 = �2Z2. (b) Simplification arising from the

choice � = 1.
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Of course you can now argue that you have lost direct access to the secondary winding
quantities u2 and i2. You are right. But the thing is that this detail is unimportant, because
from (7.44) you can always retrieve such information from u′

2 and i′2:

u2 = −u′
2/�� i2 = −� i′2

However, if your transformer happens to be such that L11 ≥ LM and L22 ≥ LM , then, according
to (7.47), you will be allowed to choose � = 1, a choice that gives you direct access to the
secondary winding quantities themselves (Figure 7.16(b)).

7.3.4 Application Example (Capacitively Loaded Transformer)

Consider a given transformer whose winding resistances are negligibly small �r1 = r2 = 0�.
In order to evaluate the transformer induction coefficients, two laboratory experiments were
conducted – see Figure 7.17.

Figure 7.17 Experimental determination of the transformer inductances. (a) Secondary open.
(b) Secondary short-circuited

Firstly, with the transformer left open �i2 = 0�, rms values for i1� u1 and u2 were measured.
The results obtained are, respectively, A1 ≡ 1 A� V1 ≡ 157
1 V and V2 ≡ 62
8 V. Secondly,
with the transformer short-circuited �u2 = 0�, rms values for i1 and i2 were measured. The
results obtained are, respectively, A1 ≡ 1 A and A2 ≡ 1
6 A.

At normal functioning the transformer’s secondary winding is loaded with a capacitor of
capacitance C2 = 63
66 �F. The voltage across the load is given by u2�t� = 200 cos��t� V.

Assume f = 50 Hz in all your calculations.

Questions

Q1 Find the inductance coefficients L11� LM and L22 of the transformer windings.

Q2 Draw an equivalent circuit for the transformer using the choice � = 2 (check if this
choice is a permissible one from the viewpoint of the physical realizability of the
circuit).

Q3 Determine the phasor-domain voltages and currents of the secondary and primary
windings of the transformer (employ the equivalent circuit).
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Q4 Determine the input impedance of the loaded transformer and compare the equivalent
self-inductance at the primary terminals to the measured one when the transformer was
left open �i2 = 0�.

Solutions

Q1 When the transformer is left open you obtain, from (7.36), U 1 = j�L11I1� and
U 2 = −j�LMI1. Therefore you find:

L11 = U1rms

�I1rms

= 0
5 H and LM = U2rms

�I1rms

= 0
2 H

When the transformer is short-circuited �Z2 = 0� you obtain, from (7.41),

I2 = −LM

L22

I1

Therefore you find L22 = LM I1rms
/I2rms

= 0
125 H.

Q2

LM

L22

≤ � ≤ L11

LM

→ 1
6 ≤ � ≤ 2
5

So you see that � = 2 is a permissible choice.
Parameter evaluation, from (7.46):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
l
 = l1 = L11 −�LM = 0
1 H

l� = �2l2 = �2 �L22 −LM/�� = 0
1 H

l0 = �LM = 0
4 H

As for the input impedance of the ideal transformer, you have

Z
′
2 = 1

j�C ′
2

= �2 1
j�C2

→ C ′
2 = C2

�2
= 15
92 �F

Figure 7.18 shows the particular equivalent circuit for this application example.

i2′

u2′

0.1 H 0.1 H

0.4 H 15.92 μF

uα
i0

i1

u1 u0

Figure 7.18 One possible equivalent circuit for the transformer examined in Section 7.3.4
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Q3

U 2 = 200 V → U
′
2 = −�U 2 = 400 ej	 V

I2 = j�C2U 2 = 4 ej	/2 A → I
′
2 = −I2/� = 2 e−j	/2 A

U 0 = j�l�I
′
2 +U

′
2 = 337
2 ej	 V

I0 = U 0

j�l0

= 2
68 ej	/2 A

I1 = I0 + I
′
2 = 0
68 ej	/2 A

U
 = j�l
I1 = 21
4 ej	 V

U 1 = U
 +U 0 = 358
6 ej	 V

You may note that the primary and secondary currents are in phase, which means that
they do give rise to concordant magnetizing effects.

Q4 Z1 = U 1/I1 = j�L′
11 = j527
4 � → L′

11 = 1
68 H (remember that L11 = 0
5 H).
When the transformer is capacitively loaded, the generator at the primary winding

observes an increased inductance (contrary to expectations based on Lenz’s law.)

7.4 Transient Regimes

Sections 7.2 and 7.3 have been dedicated to steady-state harmonic regimes. Now, the time
has come to shift our attention to the analysis of transient phenomena, that is the phenomena
subsequent to switching operations which, as time elapses, should tend to stabilize in a
steady-state solution.

7.4.1 Free-Regime and Steady-State Solutions

As depicted in Figure 7.19, a generator is switched on, at t = 0, in a linear passive circuit
containing a number of resistors, inductors and capacitors.

Figure 7.19 A voltage generator switched on to a linear passive circuit
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By application of the time-domain fundamental laws governing both magnetic and electric
induction phenomena, you will obtain a description of the generator current i�t� in the typical
form of a linear differential equation with constant coefficients of order n:

For t > 0 � an

dni

dtn
+· · ·+ak

dki

dtk
+· · ·+a1

di

dt
+a0i = f �u�t�� (7.49)

where the ak coefficients (with k = 0 to n) are real, and the function f�u� on the right-
hand side of the equation depends on the generator voltage. The order n of the equation –
depending on the complexity of the circuit – has an upper limit determined by the total
number of inductors and capacitors pertaining to the circuit.

The solution to (7.49) is obtained by breaking it down into two sub-solutions, the steady-
state solution iS�t� and the free-regime solution iF �t�.

The steady-state solution is a particular solution of the complete equation in (7.49). The
steady-state solution is the one which the current i�t� converges to as time goes on

lim
t→� i�t� → iS�t�

For example, when the driving voltage u�t� is time harmonic, the solution for iS�t� is also
time harmonic, and you can determine it by using the phasor-domain technique developed
in Sections 7.2 and 7.3.

The free-regime solution is the general solution of the homogeneous equation
corresponding to the one in (7.49); that is, when you make f�u� = 0,

an

dni

dtn
+· · ·+ak

dki

dtk
+· · ·+a1

di

dt
+a0i = 0 (7.50)

The free-regime solution derives its name from the fact that the solution of (7.50) is free
from the influence of the generator.

Since the generator’s influence has been removed, the solution of (7.50) must tend to zero
as time elapses:

lim
t→� iF �t� → 0

Equations of the type shown in (7.50) are known to have solutions in the form of linear
combinations of exponential time-decaying functions. As a matter of fact, if in (7.50)
you substitute Iest for i�t� you will get an algebraic polynomial equation (the so-called
characteristic equation)

ans
n +· · ·+aks

k +· · ·+a1s = 0 (7.51)

whose roots s1� � � � � sk� � � � � sn will enable you to write the free-regime solution as a sum of
n independent exponentials (we are assuming that multiple roots are absent)

iF �t� =
n∑

k=1

Ike
skt (7.52)

The roots of the characteristic equation, s1� � � � � sk� � � � � sn, can be real or complex but, in
either case, their real parts cannot be positive, otherwise the amplitude of the free-regime
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solution will increase with time, which is a physically impossible situation with generators
removed.

As a parenthetical note, and for completion purposes, it should be added that in some
(rare) circumstances multiple roots can occur in (7.51). When that is the case, the solution
for iF �t� is more complicated. For instance, if a root sk with multiplicity m �m ≤ n� is found
to exist then its contribution to (7.52) will take the form(

Ik�1 + Ik�2t +· · ·+ Ik�mtm−1
)
eskt (7.53)

7.4.2 Initial Conditions

In (7.52) a total of n unknown amplitudes Ik need to be determined. For that purpose you
have to take into account a set of n initial conditions that should be enforced on the so-called
state variables of the problem.

Independently of the switching operations (closing or opening) that take place in a given
circuit, certain quantities (state variables) can never change suddenly, namely capacitor
voltages uC and inductor currents iL.

Time discontinuities in uC�t� would mean that the electric energy stored in the capacitor
would change instantaneously; likewise, time discontinuities in iL�t� would mean that the
magnetic energy stored in the inductor would change instantaneously. These energy jumps
would require infinite amounts of power at those components

pC = d

dt
We�t� → �� pL = d

dt
Wm�t� → �

but since this is a physical impossibility, you cannot avoid the obvious conclusion that uC

and iL ought to remain unchanged immediately before and after the switching operation at
t = 0,

uC�0+� = uC�0−�� iL�0+� = iL�0−� (7.54)

The consideration of n initial conditions, as in (7.54), allows you finally to solve the original
problem stated in (7.49).

7.4.3 Analysis of the Capacitor Charging Process

In order to illustrate the above theoretical considerations, we are now going to examine the
very simple transient phenomena resulting from the switching on of a DC generator in an RC
circuit as described in Figure 7.20, where the capacitor is initially discharged, uC�0−� = 0.

For t > 0, application of the induction law to the clockwise-oriented closed path s yields

∫

�

S

E ·ds = −d�Ss

dt
→ −U +Ri�t�+uC�t� ≈ 0 (7.55)

where the time derivative of the linkage magnetic flux across Ss has been neglected.
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Figure 7.20 A DC voltage generator switched on in an RC series circuit. Ordinarily, the magnetic
flux linkage across the shaded surface Ss is negligibly small

Since the state variable of the circuit under analysis is the capacitor voltage, we should
use (6.7) to replace i�t� by its expression in terms of uC�t�, that is i = C duC/dt. On doing
this we find a first-order differential equation in the variable uC�t�

RC
duC�t�

dt
+uC�t� = U (7.56)

A particular solution of the preceding equation is uC�t� = U , where U is a constant (the DC
voltage of the generator). Therefore, the steady-state solution for the problem is

�uC�S = U (7.57)

The free-regime solution �uC�F is obtained upon examination of the homogeneous equation

RC
duC�t�

dt
+uC�t� = 0

Since the corresponding characteristic equation is RCs +1 = 0, with a root

s = −1
�

= − 1
RC

(7.58)

where � = RC is the so-called time constant of the circuit, we find that the free-regime
solution takes the form of a time-decaying exponential function

�uC�t��F = U ′ est = U ′ e−t/� (7.59)

By summing the steady-state solution in (7.57) with the free-regime solution in (7.59) we get

uC�t� = U +U ′ e−t/�

The unknown U ′ is determined by enforcing the initial condition uC�0+� = uC�0−� = 0, that
is 0 = U +U ′ e0, from which U ′ = −U is obtained. Hence

For t > 0 � uC�t� = U�1− e−t/�� (7.60)

If you wish to know the transient current in the circuit you merely have to find the time
derivative of the above result,

i�t� = C
duC

dt
= CU

(
e−t/�

�

)
= U

R
e−t/� (7.61)
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Figure 7.21 Transient response of the RC series circuit. The characteristic duration of transient
phenomena is determined by the time constant � = RC. (a) Plot of the capacitor voltage against time.
(b) Plot of the generator current against time

Graphical plots illustrating the results in (7.60) and (7.61) are shown in Figure 7.21.
An interesting point connected with the preceding results is the energy balance. As you

already know, the final energy stored in the capacitor is We = 1
2 CU 2. Let us now evaluate

the energy W expended by the generator as well as the energy WJ dissipated in the resistor
during the charging process:

W =
�∫

0

p�t�dt = U

�∫
0

i�t�dt = CU 2� WJ = R

�∫
0

i2�t�dt = 1
2 CU 2 (7.62)

The amazing conclusion is that, irrespective of the resistance value, the DC generator always
has to expend an amount of energy that is twice the value of the final energy stored in the
capacitor, meaning that the yield factor of the charging process is exactly 50 %.

Suppose now that the resistor is removed from the circuit. You face a paradox, don’t you?
Where has the missing energy gone?

Some people will answer that it has been radiated away. But if you insist and ask for the
calculation of the radiated power, you will most probably have no reply.

Well, things are simpler than they look, at first glance.
Observe again the results depicted in Figure 7.21. As you make R go to zero, the derivative

di/dt increases greatly, the same thing happening to the derivative d�Ss
/dt. The real problem

with the limit case R = 0 is that (7.56), the equation that we have used to model the problem,
is no longer valid. You have to go back to (7.55) and drop the approximation d�Ss

/dt ≈ 0.
Although the inductance L of the closed loop describing the circuit is only small, L must

be taken into account when i�t� undergoes rapid changes. In conclusion, for the analysis of
the capacitor charging process, with R = 0, the governing equation to be employed is

∫

�

S

E ·ds = −d�Ss

dt
→ −U +uC�t� = −L

di�t�

dt
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or, which is the same (using i = C duC/dt),

LC
d2uC�t�

dt2
+uC�t� = U (7.63)

As before, the steady-state solution is given by (7.57), �uC�S = U . The crucial difference
resides with the free-regime solution, whose characteristic equation now reads LCs2 +1 = 0,
and whose two roots are purely imaginary numbers

s1�2 = ±j�0� with �0 = 1/
√

LC (7.64)

Consequently, the free-regime solution is now described by

�uC�t��F = U1e
j�0t +U2e

−j�0t (7.65)

At this stage you should note that the left-hand side of (7.65) is a real-valued function, and,
of course, the same thing should happen to the right-hand side of (7.65). For this to be
possible the unknown constants U1 and U2 must be complex conjugates of each other

U1 = U 0 = U0e
j�� U2 = U

∗
0 = U0e

−j�

Substituting the preceding results into (7.65) we obtain

�uC�t��F = U0

(
ej��0t+�� + e−j��0t+��

)= 2U0 cos��0t +��

Finally, the transient solution for uC , that is the sum of the steady-state and free-regime
solutions, is written as

uC�t� = U +2U0 cos��0t +�� (7.66)

The corresponding current i = C duC/dt is evaluated as

i�t� = −2CU0�0 sin ��0t +�� (7.67)

The constants U0 and � are to be determined using two initial conditions. One has already
been stated above, uC�0� = 0. The second, new, one is i�0� = 0, because the current in a
loop containing an inductance L cannot have time discontinuities.

The latter condition, together with (7.67), leads to � = 0. The first initial condition,
combined with (7.66), leads to U0 = −U/2.

In conclusion, in the limit case R = 0, the capacitor charging process turns out to be
an undamped periodic oscillation, whose periodicity is critically dependent on the self-
inductance of the loop described by the circuit; the capacitor voltage and current being
given by

uC�t� = U �1− cos��0t�� � i�t� = CU�0 sin ��0t� (7.68)

See the corresponding graphical plots in Figure 7.22.
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Figure 7.22 Transient response of the RC series circuit, with R = 0, but taking into account the
small inductance L of the circuit’s closed loop. The oscillation characterizing the transient phenomena
is determined by the angular frequency �0 = 1/

√
LC. (a) Capacitor voltage. (b) Generator current

At any given instant t′ the energy W brought into play by the generator is the sum of the
magnetic energy stored in the magnetic field of the loop plus the electric energy stored in
the capacitor:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

W�t′� =
t′∫

0

p�t�dt = CU 2 �1− cos��0t
′��

Wm�t′� = CU 2

2
sin2��0t

′�

We�t
′� = CU 2

2
�1− cos��0t

′��2

→ W�t′� = Wm�t′�+We�t
′�

where, from (7.64), �0 = 1/
√

LC.

7.4.4 Connecting an Inductive Load to an AC Generator

Next, let us examine the transient regime occurring when an AC generator is switched in
an RL circuit – see Figure 7.23. As you will see, studying this case brings out novel aspects
that we have not yet treated, providing you with further insights into transient phenomena.

As you should know already, application of the induction law to the circuit in Figure 7.23
yields the following governing equation:

For t > 0 � L
di�t�

dt
+Ri�t� = u�t�� with u�t� = U cos��t +
u� (7.69)
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Figure 7.23 Connecting an RL series circuit to an AC generator

The steady-state solution is determined by resorting to the phasor-domain technique described
earlier in Section 7.2. The impedance of the circuit is

Z = R+ j�L = Z ej�� Z =√
R2 + ��L�2� � = arctan��L/R�

The phasor associated with the sinusoidal current is obtained from

I = U

Z
= I ej
i →

{
I = U/Z


i = 
u −�
(7.70)

From (7.70), the steady-state solution for the circuit current is written in the time domain as

�i�t��S = I cos��t +
i� (7.71)

The analysis of the free-regime starts with the homogeneous equation associated with (7.69)

L
di�t�

dt
+Ri�t� = 0

The corresponding characteristic equation is Ls +R = 0, and its negative root is

s = −1
�

= −R

L
(7.72)

where the time constant of the circuit is � = L/R. The free-regime solution is a time-decaying
exponential function

�i�t��F = I ′ est = I ′ e−t/� (7.73)

The transient current is obtained by summing the sub-solutions in (7.71) and (7.73):

For t > 0 � i�t� = I cos��t +
i�+ I ′ e−t/� (7.74)

The unknown amplitude I ′ of the free-regime solution is found by consideration of the initial
condition pertaining to this problem, which is i�0+� = i�0−� = 0. Consequently, from (7.74),
we have: 0 = I cos�
i�+ I ′. Hence

I ′ = −I cos�
i� = −I cos�
u −�� (7.75)

Combining (7.74) and (7.75), we get the final solution:

For t > 0 � i�t� = I
[
cos��t +
i�− cos�
i� e−t/�

]
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Noting, from (7.75), that the initial amplitude I ′ of the free-regime depends on the initial
phase 
u of the generator voltage, several interesting points arise and deserve to be
pointed out.

If 
u = � ± 	/2 then the free regime will be absent. You switch on the circuit and a
purely sinusoidal current establishes itself immediately, i�t� = I cos��t±	/2�. Clearly, this
is the most desirable situation.

On the contrary, if 
u = � or 
u = � + 	 then the free regime will have a maximum
initial amplitude. For 
u = � you get

i�t� = I
(
cos��t�− e−t/�

)
(7.76a)

For 
u = �+	 you get

i�t� = I
(
e−t/� − cos��t�

)
(7.76b)

The cases described by (7.76) are the least desirable situations, because after the closing
of the switch, the circuit current displays a distorted asymmetrical shape. Furthermore, if
the time constant � happens to be much longer than the sinusoid period T , then several
repetitive overcurrent peaks will occur for quite a long time. To better understand what we
are talking about, look for example at (7.76b) and assume that the exponential decay is
extremely slow – that is, consider the approximation exp�−t/�� ≈ 1. At instants of time such
that t = tm = mT/2, with m an odd number, you will get i�tm� ≈ 2I , which signifies that the
transient current may reach an intensity that is twice the predicted one for the steady-state
regime (this can not only blow protective fuses, but even endanger the equipment itself).

7.4.5 Disconnecting an Inductive Load

Have you ever tried to unplug a running inductive appliance (like a washing machine or
an electric fan) from its wall socket? What did you notice? Most probably you saw an arc
discharge (sparks) occurring. Do you know why that happened? If not, you will learn about
it now.

Take the same circuit we analyzed earlier (see Figure 7.23), and consider that enough time
has elapsed after the switching-on operation, so that the final steady state has been reached

i�t� = �i�t��S = I cos��t +
i� (7.77)

At t = t0 you decide to open the switch, disconnecting the load. If you are very lucky, that is
if by chance �t0 +
i = ±	/2, then you will be interrupting a null current, i�t+

0 � = i�t−
0 � = 0.

The initial condition for inductor currents is not violated and nothing unusual happens.
However, most likely the opening of the switch will occur when i�t−

0 � �= 0. In this case,
although the switch is open, the circuit current refuses to go to zero immediately (inductor
currents can never have time discontinuities).

By analyzing the circuit in Figure 7.24, you find for the voltage uS�t� at the switch
terminals

For t > t0 � uS = u−Ri−L
di

dt
(7.78)
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iRS

uS

Lu

(t = t0)

Figure 7.24 Disconnecting an inductive load

Subsequent to the switching operation, and since you are trying to interrupt i�t�
abruptly, the derivative di/dt increases dramatically. This has several consequences related
to overvoltage problems. The first is that the inductor itself can be damaged (the winding
insulation may fail). Secondly, a sudden overvoltage appears in uS leading to a very intense
electric field E�t� between the switch contacts, which in turn gives rise to breakdown
phenomena in the air, originating an arc discharge channel through which conduction currents
are allowed to flow until i�t� reaches zero and the phenomenon ceases naturally.

A technical solution to avoid arc discharges consists of inserting the switch inside a vacuum
enclosure (by definition a vacuum cannot be ionized, and therefore dielectric breakdown
cannot occur). The question, for the most curious among you, is how does the electric current
manage to flow in a vacuum?

Do you have any idea? Maybe you can find the answer in Chapter 6� � �
If it helps, you may imagine that a small capacitance exists between the terminals of

the open switch. In fact, the current flow is ensured in the form of a displacement current,
�0 �E/�t, across the open switch.

We have learnt that inductor currents cannot be interrupted without harmful consequences.
Having said that, let us analyze a simple protection scheme that can be used to prevent the
problems mentioned above.

As shown in Figure 7.25, a protective resistor R0 is placed in parallel with the RL circuit.
When the switch is open, the current i�t� suffers no interruption, since it can still flow in
the closed loop formed by R0� R and L.

Figure 7.25 Disconnecting an inductive load protected by a parallel-connected resistor R0

The governing equations of the new circuit for t > t0 are

L
di�t�

dt
+ �R+R0� i�t� = 0 (7.79)

uS�t� = u�t�+R0i�t� (7.80)
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Since (7.79) is itself a homogeneous differential equation, the steady-state solution for i�t�
is zero. In other words, the transient regime is completely described by the free-regime
solution, that is

For t > t0 � i�t� = I0 e−�t−t0�/�0� with �0 = L/�R+R0� (7.81)

The unknown constant I0 is determined from (7.81) and (7.77), by enforcing the initial
condition at t = t0 � I0 = i�t+

0 � = i�t−
0 � = I cos��t0 +
i�. Finally we find

i�t� = I cos��t0 +
i� e−�t−t0�/�0

uS�t� = U cos��t +
u�+R0I cos��t0 +
i� e−�t−t0�/�0 (7.82)

As t → �, the load current goes exponentially to zero, whereas the switch voltage tends to
follow the generator’s sinusoidal voltage.

If the protective resistor R0 in Figure 7.25 is removed, R0 → �, you will see from (7.82)
that uS increases to infinity, leading to breakdown phenomena at the switch terminals, as we
discussed at the beginning of this subsection.

7.4.6 Application Example (Switching Off a Transformer Protected
by a Capacitor)

A transformer, characterized by its intrinsic parameters r1� r2� L11� L22 and LM , has its
secondary winding open �i2 = 0�. A protective capacitor of capacitance C is connected in
parallel with the primary winding – see Figure 7.26.

Figure 7.26 Switching off a transformer protected by a parallel-connected capacitor

The generator’s applied voltage is uG�t� = UG cos��Gt +	/2�.
Data: r1 = r2 = 10 �� L11 = L22 = 17
32 mH� LM = 10 mH� C = 46
41 �F� UG = 10 V,

�G = 1 krad/s.

Questions

Q1 Assume that the switch S is closed for a long time. Determine the phasors associated
with the voltages and currents marked in Figure 7.26.

Q2 Analyze the transient regime resulting from opening the switch at t = 0; in particular,
determine the time evolution of i1�t�� u1�t� and u2�t�.
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Solutions

Q1 UG = U 1 = 10 ej90	
V.

I1 = U 1

r1 + j�GL11

= 500 ej30	
mA� IC = −j�GCU 1 = 464
1 mA�

IG = I1 − IC = 252 ej97	
mA� U 2 = −j�GLMI1 = 5 e−j60	

V.

Q2 By opening the switch you make iG = 0.
Because of the initial conditions that we will need to employ later, it is recommended

that you first find the initial values of the state variables of the problem, that is the
voltage u1 across the capacitor and the current i1 in the primary winding:

u1�0� = U10 = � (U 1

)= 0� i1�0� = I10 = � ( I1

)= 500 cos�30o� = 433 mA (7.83)

The capacitor current iC (which is not a state variable) coincides with i1, for t > 0.
By application of the induction law to the primary winding you find

u1�t� = r1i1�t�+L11

di1�t�

dt
(7.84)

Further, for t > 0, at the capacitor terminals you have

i1�t� = −C
du1�t�

dt
(7.85)

By combining the two preceding equations you immediately obtain a second-order
homogeneous differential equation in the state variable u1�t�:

d2

dt2
u1�t�+ r1

L11

d

dt
u1�t�+ 1

L11C
u1�t� = 0

This result can be rewritten in the canonical form

d2

dt2
u1�t�+2�

d

dt
u1�t�+�2

0u1�t� = 0 (7.86)

where

� = r1

2L11

� �0 = 1√
L11C

(7.87)

The constant � is called the damping factor (units: Np/s), and �0 is called the undamped
angular frequency (units: rad/s). The reason for this terminology will become clear
very soon.

The characteristic equation corresponding to (7.86), as well as its roots s1 and s2, is

s2 +2�s +�2
0 = 0� with roots � s1�2 = −�±

√
�2 −�2

0 (7.88)
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Three distinct situations can now happen:

1. Two negative real roots are found when � > �0. The solution, which is said to be
overdamped, takes the form: u1�t� = U ′ e−t/�1 + U ′′ e−t/�2 , where �1 = −1/s1 and
�2 = −1/s2.

2. One double real root is found when � = �0. The solution, which is said to be
critically damped, takes the form u1�t� = �U ′ + tU ′′� e−�t.

3. Two complex conjugate roots are found when � < �0. The solution, which is said
to be underdamped, takes the oscillatory form

u1�t� = U e−�t cos��t +�� (7.89)

In our problem we have, from (7.87), � = 288
7 Np/s and �0 = 1115
4 rad/s. Two
complex conjugate characteristic roots with negative real part are encountered:

s = −�+ j� = �0 ej� and s∗ = −�− j� = �0 e−j�

where � =√�2
0 −�2, the so-called damped angular frequency, is � = 1077
4 rad/s and

� = 105	 = 7	/12.
The transient regime for u1�t�, which is a purely free regime, can then be written as

u1�t� = U ′ est + U ′′ es∗t, where U ′ and U ′′ must necessarily be complex conjugate
numbers (otherwise u1�t� would not be a real-valued function).

By making U ′ = �U ′′�∗ = 1
2 U , with U = Uej�, we obtain

u1�t� =
(

U

2
est

)
+
(

U

2
est

)∗
= � (U est

)

Substituting �−�+ j�� for s, and substituting Uej� for U , we find

� (U est
)= U e−�t cos��t +��

which confirms the expression in (7.89). In conclusion, we can write the transient
oscillatory solution for u1�t� as

u1�t� =
{

� (U est
)

U e−�t cos��t +��
(7.90)

The result on the top, with complex quantities, is more compact and more useful for
calculations (since the variable t appears a single time). The result on the bottom,
involving real functions, is, however, more appealing from a physical point of view, as
it permits a straightforward interpretation of the phenomenon – an oscillation of angular
frequency � whose amplitude decreases with time according to the damping factor �.

Going back to the problem under analysis, the initial condition u1�0� = 0 applied to
(7.90) leads to � = 	/2. For the determination of the unknown U we have to resort
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to the second initial condition in (7.83), i1�0� = I10 = 433 mA, which leads us to an
examination of i1�t� in (7.85):

i1�t� = −C
du1�t�

dt
= −C �

(
d

dt
Uej	/2est

)
= −CU � �jsest� (7.91a)

Taking into account that s = −�+ j� = �0 ej�, we may rewrite (7.91a) as

i1�t� = �0CU � (e−�t ej��t+�−	/2�
)= �0CU e−�t cos��t +�−	/2� (7.91b)

For t = 0, we get

I10 = −CU � �js� = �0CU sin �

from which the constant U is evaluated,

U =
√

L11

C

I10

sin �
= 8
66 V

The voltage across the secondary winding is finally obtained from u2 = −LM di1/dt.
By using (7.91a) we obtain, for t > 0,

u2�t� = LMCU �
(

js
d

dt
est

)
= LMCU � (js2est

)= �2
0LMCU � (e−�tej��t+2�+	/2�

)

u2�t� = LM

L11

U e−�t cos
(
�t +2�+ 	

2

)
Let us summarize the results obtained for the transient regime subsequent to the opening
of the switch:

For t > 0 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1�t� = U1 e−�t cos��t +	/2�� with U1 = 8
66 V

i1�t� = I1 e−�t cos��t +	/12�� with I1 = 448
3 mA

u2�t� = U2 e−�t cos��t −	/3�� with U2 = 5
00 V

where � = 288
7 Np/s and � = 1077
4 rad/s.
The nature of the oscillatory regime is explained by the flowing back and forth of the

energy between the capacitor and the transformer. At t = 0 the system’s energy resides
entirely in the transformer core (magnetic energy). After a few instants have elapsed, at
�t = 5	/12, the energy stored in the transformer vanishes; most of the initial energy
is now found to be stored in the capacitor (electric energy). During the transfer process
some energy is transformed into heat due to Joule losses in the resistor (damping).
The interchange of energy between the two reactive components of the circuit repeats
itself periodically, lasting until no more electromagnetic energy exists. This idea is
schematically represented in Figure 7.27.

A final remark: although the voltage u2 at the transformer’s secondary winding is not
a state variable, you can check that u2�0+� = u2�0−� = 2
5 V. Can you figure out why
this must indeed happen in our circuit (Figure 7.26)?

(Hint: Analyze the continuity of the function di1/dt.)
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Figure 7.27 The oscillatory nature of the transient regime can be interpreted as the result of the
periodic interchange of electromagnetic energy between the transformer and the capacitor, the resistor
being responsible for the damping effect (Joule losses)

7.5 Proposed Homework Problems

Problem 7.5.1

Figure 7.28(a) shows the basic idea of a radio receiver tuning circuit, which essentially
consists of two coupled inductors and a variable capacitor. The primary inductor current
ia�t� is fed from a receiving antenna. The mutual inductance between inductors is LM . The
secondary inductor is characterized by its self-inductance L and by its internal resistance R.

Figure 7.28 Radio receiver tuning circuit. (a) Schematic diagram. (b) Equivalent RLC series circuit,
where the applied voltage is given by u�t� = −LM dia/dt

The antenna current includes contributions from distinct broadcasting stations, ia =∑k ik,
but we are interested in tuning only to the station operating at f1 = 1 MHz (medium-frequency
band). The 1 MHz component of ia�t� is given by i1�t� = I1 cos��1t�, with I1 = 2
25 �A.

Assume that the amplification block is ideal �Zamp → ��.

Data: LM = 40 �H� L = 84
4 �H� R = 10 �.
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Q1 Show that the RLC circuit in Figure 7.28(b) is equivalent to the tuning circuit in
Figure 7.28(a). In particular, determine the equivalent generator voltage u�t�.

Q2 For f = f1, determine the tuning capacitance of the circuit which maximizes the
amplitude of the voltage uC .

Q3 For f = f1, determine the resonance capacitance of the circuit which maximizes the
amplitude of the current i.

Q4 Show that the situations in Q2 and Q3 converge to each other when R � �L.

Q5 For the situation in Q3, considering ia�t� = i1�t� = I1 cos��1t�, determine the phasors,
U� I and UC .

Answers

Q1

u�t� = −LM

dia�t�

dt

Q2

Ctuning = L

R2 + ��1L�2
= 300
01 pF

Q3

Cres = 1

�2
1L

= 300
12 pF

Q4

Cres = lim
R→0

Ctuning

Q5

U = 0
566 e−j	/2 mV� I = 56
6 e−j	/2 �A� UC = 30 ej	 mV


Problem 7.5.2

As shown in Figure 7.29, an L � C circuit is inserted between an AC voltage generator and
a resistive load R. Data: L = 10 mH� C = 100 pF.

Q1 Determine analytically the transfer function T��� = U 2/U 1.

Q2 Find the frequency f0 for which i = 0, and therefore T��� = 0.
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Figure 7.29 Notch filter made of an L�C circuit

Q3 Draw a sketch of T���, for � ∈ �0���, showing that the circuit under analysis behaves
as a notch filter (a notch filter passes all frequencies except those in a stopband centered
at �0).

Answers

Q1

T��� = 1

1+ j
�L/R

1−�2LC

Q2

�0 = 1/
√

LC = 1 Mrad/s� f0 = �0/�2	� = 159
15 kHz
 (7.92)

Q3

T�0� = T��� = 1� T��0� = 0
 See sketch in Figure 7.30. (7.93)

Figure 7.30 Magnitude plot of the filter transfer function, showing the center frequency �0 = 1/
√

LC

Problem 7.5.3

Consider the circuit shown in Figure 7.31, which illustrates the basic principle of a spectrum
analyzer. The input voltage signal is defined as
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u�t� =
5∑

k=1

uk�t� =
5∑

k=1

Uk cos�k�t +
k�

where � = 10 krad/s.

Figure 7.31 Basic principle of a spectrum analyzer

Q1 Taking into account the results from Problem 7.5.2, show that the voltage components
u1� u2� u3� u4 and u5 appear separately across each L � C block, provided that each
block respectively resonates at �1 = �� �2 = 2�� �3 = 3�� �4 = 4� and �5 = 5�.

Q2 Assuming that the uncoupled inductors are equal, with L = 10 mH, determine the
required values for C1� C2� C3� C4 and C5.

Answers

Q1 By using the superposition principle (valid for linear circuits) each frequency component
can be analyzed separately. For �k the resonant L � Ck block behaves as an open circuit
�i = 0�, but the other blocks, having a finite impedance, will show zero voltage across
them. Consequently, the voltage across the resonant L � Ck block is uk��k�.

Q2 Ck = 1/��2
kL�� C1 = 1000 nF� C2 = 250 nF� C3 = 111
1 nF� C4 = 62
5 nF� C5 = 40 nF.

Problem 7.5.4

Consider the circuit depicted in Figure 7.32, where the ideal ammeters AR� AC� AL and A0

read rms values. The applied voltage is u�t� = √
2 Urms cos��t�.

Data: Urms = 5 V� � = 10 krad/s� R = 50 � and L = 5 mH.

Q1 Write the time-domain and phasor-domain equations that govern the steady-state
harmonic regime of the circuit.

Q2 Determine the capacitor’s capacitance C = Cres that brings the circuit to a resonant
situation.
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Figure 7.32 An RLC parallel circuit with ideal ammeters placed for measuring rms current intensities

Q3 Assume C = Cres.

Determine numerically the phasor representation of u� iR� iC� iL and i.
Indicate the readings of all the ammeters included in the circuit.
Determine the active and reactive powers at the generator terminals. Check the results
using the complex Poynting theorem.

Answers

Q1 iR = u/R → IR = U/R� iC = C du/dt → IC = j�CU� u = L diL/dt → IL = U/�j�L�.

i = iR + iC + iL → I = IR + IC + IL = U

(
1
R

+ j�C + 1
j�L

)

Q2 C = Cres = 2 �F.

Q3 U = √
2 5 V� IR = √

2 0
1 A� IL = √
2 0
1 e−j	/2 A� IC = √

2 0
1 e+j	/2 A� I = √
2 0
1 A

AR = AC = AL = 100 mA� A0 ≡ 0 (note that iC�t�+ iL�t� = 0).

P = 5 W� PQ = 0� PJ = RI2
Rrms

= 5 W� �Wm�av = �We�av = 25 �J.

Problem 7.5.5

A residential four-wire installation is fed by a three-phase voltage generator (see Problem
5.13.6). As shown in Figure 7.33, both the generator and the load are star connected. The
generator phase-to-neutral voltages are defined as uk�t� = √

2 Urms cos��t − 
k�, where
Urms = 230 V, and 
k = �k−1�2	/3, for k = 1, 2, 3. The frequency is f = 50 Hz.

Q1 Determine the phase-to-phase generator voltages.

Q2 Assume an unbalanced load whose impedances are Z1 = 20 �� Z2 = 30 ej	/3 � and
Z3 = 40 ej	/6 �. Determine the phasors characterizing the installation currents, including
the neutral, that is I1� I2� I3 and IN .
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Figure 7.33 Four-wire, three-phase installation. The generator and the unbalanced load are star
connected

Q3 Keep considering the unbalanced load described in Q2 but suppose that, by accident,
the neutral wire is interrupted, IN = 0. Find the new voltages U

′
1� U

′
2 and U

′
3 applied to

the load impedances. Show that the load voltage u′
2 exceeds its nominal value (230 V)

by about 30 %.

Q4 Assume that the protective circuit breaker associated with load Z2 opens, a situation
that from the generator’s point of view is equivalent to making Z2 = �. Recompute the
new voltage phasors U

′
1� U

′
2 and U

′
3. Check that a subsequent new overvoltage appears

across Z3.

Answers

Q1 U 12 = U 1 −U 2 = √
2
(√

3 230
)

ej	/6 V → u12�t� = √
2 398
4 cos��t +	/6� V.

U 23 = U 2 −U 3 = √
2
(√

3 230
)

e−j	/2 V → u23�t� = √
2 398
4 cos��t −	/2� V.

U 31 = U 3 −U 1 = √
2
(√

3 230
)

ej5	/6 V → u31�t� = √
2 398
4 cos��t +5	/6� V.

Q2 With the neutral wire present we have U
′
1 = U 1� U

′
2 = U 2� U

′
3 = U 3.

Ik = U
′
k

Zk

=
⎧⎨
⎩

I1 = √
2 11
50 A

I2 = √
2 7
67 ej180o

A �

I3 = √
2 5
75 ej90o

A
IN = I1 + I2 + I3 = √

2 6
91 ej56
3o

A

Q3 ⎡
⎣Z1 −Z2 0

0 Z2 −Z3

1 1 1

⎤
⎦
⎡
⎣ I1

I2

I3

⎤
⎦=

⎡
⎣U 12

U 23

0

⎤
⎦→

⎡
⎣ I1

I2

I3

⎤
⎦=

⎡
⎣Z1 −Z2 0

0 Z2 −Z3

1 1 1

⎤
⎦

−1⎡
⎣U 12

U 23

0

⎤
⎦
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U
′
1 = Z1I1 = √

2 230
3 e−j17
7o

V� U
′
2 = Z2I2 = √

2 297
1 e−j115
0o

V�

U
′
3 = Z3I3 = √

2 180
1 ej134
2o

V

Q4

U
′
1 = √

2 136
9 e−j50
1	
V� U

′
2 = √

2 398
4 e−j130
2	
V� U

′
3 = √

2 273
9 ej159
9	
V


Problem 7.5.6

A three-phase generator feeds a perfectly balanced load Z1 = Z2 = Z3 = Z = Z ej�. The
load is star connected – see Figure 7.34(a).

Figure 7.34 (a) Four-wire, three-phase installation with a star-connected balanced load (the neutral
current is zero). (b) Equivalence between a star-connected balanced load and a delta-connected balanced
load, Z� = 3Z
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Q1 Check that the neutral wire is not needed, by showing that IN = 0.

Q2 Show that the instantaneous three-phase power p�t� = p1�t� + p2�t� + p3�t� is time
invariant.

Q3 The star load connection can be replaced by an equivalent delta connection as
shown in Figure 7.34(b). Show that the relationship between Z� and Z is given by
Z� = 3Z.

Answers

Q1

IN = U 1 +U 2 +U 3

Z
= 0

Q2

p�t� =
3∑

k=1

uk�t�ik�t� = 2
U 2

rms

Z

3∑
k=1

cos��t −
k� cos��t −
k −��

p�t� = U 2
rms

Z

⎛
⎜⎜⎜⎝

3∑
k=1

cos �+
3∑

k=1

cos�2�t −2
k −��︸ ︷︷ ︸
0

⎞
⎟⎟⎟⎠= 3

U 2
rms

Z
cos �

Q3 At node 1′:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Star connection � I1 = U 1

Z

Delta connection � I1 = U 12 −U 31

Z�

→ Z� = Z × U 12 −U 31

U 1

= 3Z

At the remaining nodes the same result is obtained, Z� = 3Z.

Problem 7.5.7

The transformer shown in Figure 7.35 is subjected to a steady-state harmonic regime with
f = 50 Hz.

In order to determine its constitutive parameters two experiments were conducted. Firstly,
in Figure 7.36(a), the secondary winding was left open �i2 = 0�. Secondly, in Figure 7.36(b),
the primary and secondary windings were connected in series �i1 = i2�.
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Figure 7.35 Two-windings transformer

Figure 7.36 Two experiments for the characterization of the transformer parameters. (a) Secondary
open. (b) Primary and secondary windings connected in series

In both experiments, rms readings of the generator voltage, generator current and secondary
voltage were recorded; the generator active power P was also measured in both situations:

first experiment: Urms = 230 V� Irms = 6
976 A� U2rms = 109
6 V� P = 486
7 W;

second experiment: Urms = 230 V� Irms = 2
838 A� P = 161
1 W.

Q1 Write the phasor-domain equations concerning the first experiment. Determine the
parameters r1� L11 and LM .

Q2 Write the phasor-domain equations concerning the second experiment. Determine the
parameters r2 and L22.

Q3 For the second experiment, obtain U2rms
.

Answers

Q1 U = U 1� I = I1� I2 = 0 → U = �r1 + j�L11�I� −U 2 = j�LMI .

P = r1I
2
rms → r1 = P

I2
rms

= 10 ��
Urms

Irms

=
√

r2
1 + ��L11�

2 → L11 = 100 mH

U2rms
= �LMIrms → LM = U2rms

/��Irms� = 50 mH
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Q2 U = U 1 −U 2� I = I1 = I2 → U = ��r1 + r2�+ j��L11 +2LM +L22�� I .

P = �r1 + r2�I
2
rms → r2 = P

I2
rms

− r1 = 10 �

Urms

Irms

=√
�r1 + r2�

2 +�2�L11 +2LM +L22�
2 → L22 = 50 mH

Q3 −U 2 = �r2 + j�L22�I + j�LMI → U2rms
= �r2 + j��LM +L22�� Irms = 93
6 V.

Problem 7.5.8

The transformer shown in Figure 7.37(a) is driven by a 50 Hz voltage u1. The load connected
to the secondary winding is a capacitor of capacitance C2 = 55
36 �F, across which a voltage
u2, given by u2�t� = √

2 115 cos��t� V, is found to exist.
Figure 7.37(b) shows an equivalent circuit of the real transformer, where the following

parameters are defined R = 5 �� L = 732 mH and C ′
2 = 13
84 �F.

Figure 7.37 A capacitively loaded transformer. (a) Schematic diagram. (b) Equivalent circuit

Q1 Obtain the value of the turns ratio � of the ideal transformer associated with the
equivalent circuit. Next, determine the constitutive parameters of the real transformer,
r1� r2� L11� LM and L22.

Q2 Determine the primary and secondary voltages and currents in the phasor domain. In
addition, determine the auxiliary quantities U

′
2 and I

′
2.

Q3 Compute the active and reactive powers brought into play by the generator. Verify the
results obtained using the complex Poynting theorem.

Answers

Q1 C2/C ′
2 = �2 → � = 2.

r1 = 5 �� r2 = 0� L11 = 732 mH� LM = 366 mH� L22 = 183 mH


Q2 U 2 = √
2 115 V� U

′
2 = √

2 230 ej	 V� I2 = √
2 2 ej	/2 A� I

′
2 = √

2 e−j	/2 A.

I1 = 0� U 1 = √
2 230 ej	 V
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Q3 P = PQ = 0.

P = PJ = 0� PQ = 2���Wm�av − �We�av�� �Wm�av = �We�av = 366 mJ


Problem 7.5.9

The circuit in Figure 7.38 refers to the transient phenomena of discharging a capacitor over
an RL circuit. The switch S is closed at t = 0 when u�0� = U0 = 86
6 V.

Data: R = 10 �� L = 1 mH� C = 10 �F.

Figure 7.38 A charged capacitor is discharged over an RL circuit

Q1 Determine the differential equation that governs u�t� for t > 0.

Q2 Making use of the initial conditions pertaining to this problem, find u�0+� and(
du

dt

)
t=0+

Q3 Show that the transient regime solution for u�t� is a damped periodic oscillation, that is
u�t� = Ue−�t cos��t +��. Obtain �� �� � and U .

Answers

Q1

d2u

dt2
+2�

du

dt
+�2

0u = 0� � = R

2L
� �0 = 1√

LC

Q2

u�0+� = U0 = 86
6 V� i�0−� = i�0+� = 0 →
(

du

dt

)
t=0+

= 0

Q3 � = 5000 Np/s� �0 = 10 krad/s. � < �0 → damped periodic oscillation.
� = 8
66 krad/s� � = −	/6� U = 100 V
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Problem 7.5.10

Consider the circuit represented in Figure 7.39, whose parameters R� L and C are known.
The DC generator voltage is UG = 12 V. The circuit, which is operating for a long time, is
interrupted at t = 0.

Data: R = 120 �� L = 1 H� C = 10 nF.

Figure 7.39 The opening of the switch S gives rise to a high-voltage harmonic regime

Q1 Determine the differential equation that governs u�t� for t > 0.

Q2 Making use of the initial conditions pertaining to this problem, find u�0+� and(
du

dt

)
t=0+

Q3 Show that the transient regime solution for u�t� is a purely periodic oscillation, that is
u�t� = U cos��0t +��. Obtain �0� � and U .

Q4 Check the result obtained for U using energy balance considerations.

Answers

Q1

d2u

dt2
+ 1

LC
u = 0� �� = 0�

Q2

u�0+� = u�0−� = 0� iC�0+� = iL�0+� = iL�0−� = 0
1A →
(

du

dt

)
t=0+

= −107 V/s

Q3

u�t� = U cos��0t +��� �0 = 1/
√

LC = 10 krad/s� � = 	/2� U = 1 kV
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Q4

�We�max = 1
2 CU 2 = �Wm�max = 5 mJ → U =

√
2 �Wm�max

C
= 1 kV

Problem 7.5.11

Take the transformer in Figure 7.40(a) whose constitutive parameters are known:

r1 = r2 = 25 �� L11 = L22 = 300 mH and LM = 50 mH

Now consider the transformer connections shown in Figure 7.40(b), where U = 100 V and
C = 50 �F. The capacitor is initially discharged. The switch S closes at t = 0.

Figure 7.40 (a) Transformer characterized by r1� r2� L11� L22 and LM . (b) Switching on a DC
voltage generator over a circuit containing a capacitor and a transformer whose windings are connected
in series

Q1 Bearing in mind the time-domain equations of the transformer, and taking into account
that i1 = −i2 = i, determine the differential equation that governs i�t� for t > 0.

Q2 Define the initial conditions of the problem.

Q3 Show that the transient regime solution for i�t� is a damped periodic oscillation, that is
i�t� = I e−�t cos��t −��. Obtain �� �� � and I .

Answers

Q1

U = Ri+L
di

dt
+ 1

C

∫
idt → L

d2i

dt2
+R

di

dt
+ i

C
= 0

where R = r1 + r2 = 50 � and L = L11 +L22 −2LM = 0
5 H.
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Q2

i�0� = 0� uC�0� = 0 →
(

di

dt

)
t=0+

= U

L
= 200 A/s

Q3

� = R

2L
= 50 Np/s� �0 = 1√

LC
= 200 rad/s

� < �0 → damped periodic oscillation.
� = 193
7 rad/s� � = 	/2� I = 1
033 A.




