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Transmission-Line Analysis

9.1 Introduction

Transmission-line analysis is an important topic in many electrical engineering areas that
range from power line systems to telecommunications, including computer networks.

The simplest examples of a transmission line are the two-wire line and the coaxial cable.
In both cases we are dealing with a system made of two conductors separated by a dielectric
medium where waves propagate from one end to the other guided by the geometrical
configuration of the line conductors.

Since typical transmission-line systems have longitudinal dimensions of the order of the
working wavelength � (or above), the standard approximations of quasi-stationary regimes
no longer apply – lumped-parameters circuit approaches simply cannot be used. Some
examples follow:

• Transmission power lines: length 1000 km; frequency 60 Hz; wavelength 5000 km.
• Telephone lines: length 100 km; frequency 3 kHz; wavelength 100 km.
• Transmitter–antenna line links: length 100 m; frequency 10 MHz; wavelength 30 m.
• Computer boards: length 20 cm; frequency 1 GHz; wavelength 30 cm.

Nonetheless, we will assume in our analysis that the transversal system dimensions are
negligibly small compared to �, that is transversal wave phenomena are absent.

Besides the simple cases of the two-wire line and the coaxial cable, transmission-line
analysis is also of crucial importance in the study of multiconductor transmission-line
structures; however, such a topic will only be tackled superficially due to the introductory
nature of this textbook. Likewise, the topic of non-uniform lines – those where the transverse
profile of the line changes along the line length – will only be briefly referred to.

Before we get into the mathematical details of the equations that govern transmission-line
phenomena, let us introduce the subject from a qualitative point of view.

Consider a transmission line of length l connecting a generator to a load (Figure 9.1),
where, for simplification purposes, the line conductors are assumed to be perfect conductors.
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Figure 9.1 (a) Generator and load voltages are not the same, due to magnetic field distributed effects
along the line. (b) Generator and load currents are not the same, due to electric field distributed
effects along the line

You may recall that in the introductory matter to Part III we emphasized that the equalities
uG�t�= uL�t� and iG�t�= iL�t� would not be valid for rapid time-varying field phenomena.
Let us see why this happens.

As shown in Figure 9.1(a), conductor currents give rise to a distributed time-varying
magnetic field along the line. By application of the induction law (Chapter 5) you find

−uG�t�+uL�t�= − d

dt
�l�t�= −

∫
Ss

�B
�t

·nS dS (9.1)

where �l�t� denotes the flux linked with the rectangular path of longitudinal length l.
Therefore you can see that the presence of distributed inductive effects is ultimately
responsible for the inequality uG�t� �= uL�t�.

Also, as shown in Figure 9.1(b), conductor voltages give rise to a distributed time-varying
electric field along the line (displacement currents between conductors). By application of
the charge continuity equation in integral form (Chapter 6) you find

−iG�t�+ iL�t�= − d

dt
ql�t�= −

∫
SV

�D
�t

·no dS (9.2)

where ql�t� denotes the total electric charge distributed along the top conductor of length
l. Therefore you can see that the presence of distributed capacitive effects is ultimately
responsible for the inequality iG�t� �= iL�t�.

For slow time-varying regimes, where both the inductive and capacitive distributed effects
are negligibly small, we have uG�t�= uL�t� and iG�t�= iL�t�. For rapid time-varying regimes,
the voltages and currents at the generator and load terminals do not coincide; nevertheless,
a simple identity between their time integrals still exists.

Assume that the driving voltage is a natural time-limited function; that is, assume the line
is inactive for t = ±�. Try a time integration of (9.1) and (9.2) from t = −� to t = �.

When you do that, you will find, from (9.1),

−
�∫

−�
uG�t� dt+

�∫
−�

uL�t� dt = �l�−��︸ ︷︷ ︸
0

−�l���︸ ︷︷ ︸
0
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Hence,

�∫
−�

uG�t� dt =
�∫

−�
uL�t� dt (9.3)

Likewise, from (9.2),

−
�∫

−�
iG�t� dt+

�∫
−�

iL�t� dt = ql�−��︸ ︷︷ ︸
0

−ql���︸ ︷︷ ︸
0

Hence,

�∫
−�

iG�t� dt =
�∫

−�
iL�t� dt (9.4)

The conclusions in (9.3) and (9.4) are not just theoretical curiosities; they can be very helpful
for checking how correct your results are when solving a given problem, whether you do it
by hand or employ dedicated software tools.

The fact that voltages and currents at the accessible ends of the line are different,
uG�t� �= uL�t�, iG�t� �= iL�t�, is a clear indication that line voltages and line currents
will undergo a continuous evolution along the line’s longitudinal coordinate, u = u�z� t�,
i= i�z� t�. In the next section we will obtain the laws that govern such an evolution.

9.2 Time-Domain Transmission-Line Equations for Lossless Lines

Consider a two-conductor line immersed in a non-magnetic linear homogeneous dielectric
medium, whose conductors run parallel to the longitudinal z axis.

If you assume that the current-carrying conductors are perfect, the electric field component
Ez will be absent. This means that outside the conductors, the field lines of E and H exist
in planes transversal to the z axis; in this case we say that we are dealing with transverse
electromagnetic waves (TEM),

E = Ex�z� t��ex+Ey�z� t��ey� H =Hx�z� t��ex+Hy�z� t��ey
In these circumstances we can unambiguously define line voltages and line currents as

u�z� t�=
∫
−→
ba

E�z� t� ·ds

i�z� t�=
∫
S1

J1�z� t� · �ez dS =
∫
S2

J2�z� t� · �−�ez� dS =
∫

�

S

H�z� t� ·ds

where, as shown in Figure 9.2, the arbitrary open path
−→
ba, the arbitrary closed path s and

the conductor cross-sections S1 and S2 all belong to the same transversal plane z= constant.
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Figure 9.2 Line voltages and line currents are unambiguously defined in the transverse plane of the
transmission line. E-field integration along an arbitrary open path from b to a yields the same result
for the voltage u. Similarly, H-field integration along an arbitrary closed path encircling the upper
conductor yields the same result for the current i

However, as you move from a z plane to another z plane both u and i will change. Our
next goal is to determine the equations that govern those changes.

Consider the application of the induction law to a very small line section of length �z→ 0
(Figure 9.3).

Figure 9.3 Application of the induction law to a very small line section of length �z→ 0

The rectangular circulation path s = −−−→
abcda includes four contributions: one on the plane

z, another on the plane z+�z and two others along the conductors’ surfaces (where Ez = 0).
The magnetic flux ��z linked to the circulation path originated by the line currents can be
evaluated by taking into account the per-unit-length external inductance Le of the line⎧⎪⎪⎨

⎪⎪⎩
∫

�

S

E ·ds = ∫
−→
ab

E ·ds+ ∫
−→
bc

E ·ds+ ∫
−→
cd

E ·ds+ ∫
−→
da

E ·ds = −u�z� t�+0+u�z+�z� t�+0

− d

dt

∫
Ss

B ·nS dS = − d

dt
��z = −Le�z

�

�t
i�z� t�

Equating the results above, dividing by �z and taking the limit as �z→ 0 we obtain

lim
�z→0

u�z+�z� t�−u�z� t�
�z

= �

�z
u�z� t�= −Le

�

�t
i�z� t�



Transmission-Line Analysis 339

Next, consider the application of the integral form of the charge continuity equation to a
very small line section of length �z→ 0; conductor 1 is enclosed by the integration surface
SV (Figure 9.4).

Figure 9.4 Application of the integral form of the charge continuity equation to a very small line
section of length �z→ 0

The current intensities through SV are −i�z� t� and i�z+�z� t�, on the left and right
cross-sections, respectively. The electric charge q�z inside SV (originating the electric
field between line conductors) can be evaluated by taking into account the per-unit-length
capacitance C of the line⎧⎪⎨

⎪⎩
∫
SV

J ·no dS = ∫
Sz

J · �−�ez� dS+ ∫
Sz+�z

J · �ez dS = −i�z� t�+ i�z+�z� t�
− ∫
V

	dV = −q�z= −C�z u�z� t�

Equating the results above, dividing by �z and taking the limit as �z→ 0 we obtain

lim
�z→0

i�z+�z� t�− i�z� t�
�z

= �

�z
i�z� t�= −C �

�t
u�z� t�

Summarizing, the time-domain transmission-line equations for lossless lines are

�

�z
u�z� t�= −Le

�

�t
i�z� t� (9.5)

�

�z
i�z� t�= −C �

�t
u�z� t� (9.6)

The line voltage rate of change in space is proportional to the line current rate of change
in time; the link between those two rates is established via the per-unit-length inductance
of the line. The line current rate of change in space is proportional to the line voltage rate
of change in time; the link between those two rates is established via the per-unit-length
capacitance of the line.
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9.2.1 Wave Parameters, Propagation Velocity, Characteristic Wave
Resistance

If you take the z derivative of (9.5) and then use (9.6) or, the other way around, if you take the
z derivative of (9.6) and then use (9.5), you will obtain the already familiar one-dimensional
wave equation, which applies indistinctly to line voltages and line currents

�2

�z2

{
u�z� t�
i�z� t�

}
−LeC

�2

�t2

{
u�z� t�
i�z� t�

}
= 0 (9.7)

where the product LeC is the inverse of the squared wave propagation velocity, that is

v2 = 1
LeC

(9.8)

from which two solutions can be found, v = ±1/
√
LeC. While one solution describes a

propagating wave along the positive z direction (the so-called incident wave), the other
solution describes a propagating wave along the negative z direction (the so-called reflected
wave). This means that, in general, the line voltage and line current solutions are a
superposition of two counter-propagating waves, with velocity v = 1/

√
LeC, which we can

write in the form

u�z� t�= ui�z−vt�+ur�z+vt� (9.9a)

i�z� t�= ii�z−vt�+ ir�z+vt�= ui�z−vt�
�Rw�i

+ ur�z+vt�
�Rw�r

(9.9b)

where subscripts i and r are remainders for the incident and reflected wave solutions,
respectively.

From (9.7), you can see that voltage and current waves are similar except for a scale
factor with the physical dimensions of a resistance. For the incident wave, the scaling factor
�Rw�i = ui/ii is the so-called characteristic resistance of the incident wave. The same thing
applies, identically, to the reflected wave, with �Rw�r = ur/ir .

Let us now determine the characteristic resistances concerning both waves.
By making 
 = z−vt, � = z+vt, and taking into account that

�u

�z
= ��ui+ur�

�z
=

u′
i︷ ︸︸ ︷(

dui
d


)
�


�z
+

u′
r︷ ︸︸ ︷(

dur
d�

)
��

�z
= u′

i+u′
r

�i

�t
= ��ii+ ir�

�t
= dii
d


�


�t
+ dir
d�

��

�z
= u′

i

�Rw�i
�−v�+ u′

r

�Rw�r
�v�

substituting (9.9) into (9.5) we find

u′
i+u′

r = Lev

�Rw�i
u′
i+

−Lev
�Rw�r

u′
r

from which you see that the characteristic wave resistances are

�Rw�i = − �Rw�r = Rw = Lev= 1
Cv

=
√
Le
C

(9.10)
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In the same way that two counter-propagating waves have reciprocal velocities �±v�, the
same thing happens with their characteristic resistances �±Rw�.

According to this conclusion, we rewrite the transmission-line wave equation solutions in
the final form

u�z� t�= ui�z−vt�+ur�z+vt� (9.11a)

i�z� t�= ii�z−vt�+ ir�z+vt�= ui�z−vt�
Rw

+ ur�z+vt�
−Rw

(9.11b)

In Chapter 8 we saw that the velocity of electromagnetic waves in a lossless homogeneous
medium was determined solely by the intrinsic properties of the medium, that is by the
parameters � and . For non-magnetic media we have found

v= 1√
�

= 1√
�00r

= c√
r

(9.12)

We can check that this result still applies to waves guided by lossless homogeneous
transmission lines. In fact, if you make use of the per-unit-length capacitance and inductance
parameters established in Chapters 2 and 4, concerning the coaxial cable and the two-thin-
wire line configuration, you will obtain v as given in (9.12) – see Table 9.1.

Table 9.1 Transmission-line parameters

Coaxial cable Two-thin-wire line

Per-unit-length capacitance C (F/m)
2�

ln�r2/r1�

�

ln�2d/r�

Per-unit-length inductance Le (H/m)
�0

2�
ln�r2/r1�

�0

�
ln�2d/r�

Propagation velocity v = 1√
LeC

(m/s)
1√
�0

1√
�0

Characteristic resistance Rw =
√
Le
C
���

√
�0



ln�r2/r1�

2�

√
�0



ln�2d/r�
�

However, the transmission-line characteristic wave resistance Rw is not to be confused
with the free-space characteristic resistance we spoke about in Chapter 8; while the latter is
a relationship between electric and magnetic field intensities, the former relates the voltage
and the current of a given wave. Transmission-line characteristic wave resistances depend
not only on the dielectric medium properties, but also on the transverse profile of the line
itself – see Table 9.1.

When reading Table 9.1, you should bear in mind that, for the coaxial cable configuration,
r1 and r2 denote the radius of the inner conductor and the inner radius of the outer conductor,
respectively. For the two-thin-wire line, r denotes the radius of both conductors, and 2d
denotes the axial separation between them.
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9.2.2 Pulse Propagation, Pulse Reflection

Consider a transmission line of length l, and assume that at the input end of the line
(z = 0) a triangular pulse voltage of short duration �T is provided by an ideal generator
(Figure 9.5(a)).

Figure 9.5 (a) Generator voltage shape. (a) Load voltage shape for the particular case of a matched
line; the delay time � is defined as � = l/v

The time delay between the emission of the pulse and its arrival at the load terminal is
� = l/v (with �T< �). If you take a photo of the line voltage and line current along the line
length at an instant t < � you will only observe the propagating incident wave (Figure 9.6).

Figure 9.6 Snapshot, at instant t (t < �), of the line voltage and line current (incident wave) observed
along z

A parenthetical remark: at this point some of you may be thinking that there is a mistake
in the line drawing shown in Figure 9.6, for the shape of the triangular voltage pulse is the
reverse of the triangular pulse shape in Figure 9.5(a). Well, you are thinking wrong; there
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is no mistake in Figure 9.6. The thing is that Figure 9.5(a) and Figure 9.6 are different
representations of the pulse; while the first is a representation in time, the second is a
representation in space. From Figure 9.5(a) you can see that the wavefront (t= 0) starts with
zero voltage and only later in time (t = �T ) is the peak value U reached; as a consequence,
when the wave travels in space, the pulse tail is the peak value.

As the incident wave reaches z= l part of its energy is absorbed by the load and another
part is reflected back towards the generator (reflected wave).

You may be wondering whether the reflection process can be prevented in some way.
The answer is yes. If the load is properly chosen it can happen that the incident pulse is
totally absorbed by the load; in such a case we say that the line is perfectly matched. In this
case the voltage at the load terminals is simply a delayed image of the generator voltage
(Figure 9.5(b)).

Let us see how you should choose the load RL in order to get a matched line.
If you enforce the goal condition ur = 0 in (9.11), and particularize the result to z = l,

you will find

u�l� t�= ui�l−vt�� i�l� t�= ui�l−vt�
Rw

Noting that RL = u�l� t�/i�l� t�, you readily conclude

Matched line � RL = Rw (9.13)

Whenever a lossless line is terminated by a resistor whose resistance is equal to the
characteristic resistance of the line, reflected waves will be absent. This result provides you
with a physical interpretation for the concept of characteristic wave resistance.

Take for instance a 50� coaxial cable. Such a specification has nothing to do with the
resistance of the cable conductors; the 50� information concerns the cable’s characteristic
resistance, and tells you that if you want to avoid reflected waves inside the cable then you
must terminate it with a 50� resistor.

Next, let us examine the reflection processes that take place in a transmission line when
the line is a mismatched one. For exemplification purposes, we keep considering that at
z= 0 the voltage pulse is the one shown in Figure 9.5(a), but now we assume that the load
terminals are left open, that is i�l� t�= 0.

As before in Figure 9.6, if you take a photo of the line voltage and line current along the
line length at an instant t < � you will observe only the propagating incident wave.

Since the load is an open circuit, it cannot absorb energy and a reflected wave is produced
such that, at z= l,

i= 0 = ii+ ir → ir = −ii and ur = −Rwir = +Rwii = ui (9.14)

Now, if you take a photo of the line voltage and line current along the line length at an
instant � < t < 2� you will observe only the propagating reflected wave where the current
pulse has changed its polarity – see Figure 9.7.

When the wave reaches the generator terminal, the generator voltage is zero (remember
that the pulse duration �T is smaller than �); put another way, the incoming wave sees a
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Figure 9.7 Snapshot, at instant t (� < t < 2�), of the line voltage and line current (reflected wave)
observed along z

short circuit at z= 0. A new reflection phenomenon takes place and a new incident wave is
originated, such that

u= 0 = ui+ur → ui = −ur and ii = ui/Rw (9.15)

Again, if you take a photo of the line voltage and line current along the line length at an
instant 2� < t < 3� you will observe only the propagating incident wave, where the voltage
pulse has changed its polarity – see Figure 9.8.

Figure 9.8 Snapshot, at instant t (2� < t < 3�), of the line voltage and line current (incident wave)
observed along z
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Since the line is lossless and its terminals do not include any dissipative components,
reflection phenomena at both ends will occur in succession, and indefinitely.

Before ending this section, an important remark is in order. You have seen in the preceding
analysis that current pulse waves travel along the line at a velocity v = 1/

√
�0, which

typically is of the order of 108 m/s. Does this mean that the conductors’ free electrons are
moving at that same speed?

Absolutely not! Electron speeds inside good conductors are of the order of 1 m/s
(Chapter 3). So, where is the catch?

Have you ever witnessed the so-called Mexican wave that fans usually perform in football
stadiums? They get up and sit down sector after sector in a synchronized way producing
a revolving wave around the stadium. Football fans are not running at the wave velocity,
indeed they barely move. Well, the same thing happens with the conductor charges. They
barely move. When the guided electromagnetic wave travels along the line, the free charges
are pulled from their rest position to the conductor surface. After the wave has passed, the
free charges return to their rest position.

9.3 Application Example (Parallel-Plate Transmission Line)

Consider a transmission line consisting of two parallel-plate perfect conductors of length l
and width w. The space between the plates is filled with a non-magnetic dielectric material
of very small thickness � and permittivity = r0.

As shown in Figure 9.9, the line is fed at z= 0 by a voltage source described by its internal
resistance RG plus an ideal generator. The latter produces a single rectangular voltage pulse
of amplitude U and duration �T . At the opposite end, z = l, the line is terminated by a
resistor RL.

Data: l= 20 cm, w = 25�13 mm, �= 1 mm, r = 2�25, U = 4 V, �T = 1 ns, RL = 30�.

Figure 9.9 Parallel-plate transmission line driven by a pulse generator. (a) Perspective view of the
transmission line. (b) Generator voltage plotted against time

Questions

Q1 Determine the propagation velocity of the TEM waves inside the dielectric medium, v.

Q2 Determine the per-unit-length capacitance and inductance of the line, C and Le.

Q3 Determine the characteristic wave resistance of the line, Rw.
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Q4 Assume that RG = Rw.
Obtain the time shape of the voltages u0�t� and uL�t�.
Check that

�∫
−�

u0�t� dt =
�∫

−�
uL�t� dt

Evaluate the energy brought into play by the generator as well as the total energy
dissipated in the system.

Q5 Repeat the calculations in Q4, but considering that RG = 0.

Solutions

Q1 v = 1/
√
�0= c/

√
r = 2×108 m/s.

Q2 The electrostatic capacitance of the configuration of length l is Cl = wl/�. The per-
unit-length capacitance of the line is C = Cl/l= w/�= 500 pF/m.

v2 = 1
LeC

→ Le = 1
v2C

= �0�

w
= 50 nH/m

Q3

Rw =
√
Le
C

=
√
�0


× �

w
= 10�

Q4 We start by noting that the time delay coincides with the pulse duration

� = l

v
= 1ns = �T

When the process begins, only the incident wave is present, u= ui, i= ii = ui/Rw.
At z= 0 we have

u0 = uG−RGi0 or ui = uG−RG
ui
Rw

Since RG = Rw, we find u0 = ui = uG/2 = 2 V and i0 = ii = uG/�2Rw�= 200 mA.
At t = �, when the incident wave reaches the load, reflection occurs. The reflected

wave is determined using the boundary condition at z= l, that is

uL = ui+ur� iL = ui−ur
Rw

� uL = RLiL (9.16)

from which we find

ur = �ui =
(
RL−Rw
RL+Rw

)
︸ ︷︷ ︸

�

ui� � = 0�5 (9.17)
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where the dimensionless factor � is the so-called load reflection coefficient. The reflected
wave voltage is a positive pulse with half the magnitude of the incident one, ur = 1 V.
The reflected wave current is a negative pulse, ir = −ur/Rw = −100 mA.

From (9.16) and (9.17), we obtain the load voltage,

uL = �1+� � ui = �1+� �uG
2

= 3 V

The reflected wave travels along the line towards the generator (� < t < 2�) and when it
gets there it finds a matched load and the process ceases (note that the generator voltage
is zero for t > �). The voltage at z = 0 is simply determined by the arriving wave ur ,
that is u0 = 1 V, the corresponding current is i0 = −100 mA.

Figure 9.10 summarizes the preceding results, showing the time shape of both u0�t�
and uL�t�:

Figure 9.10 Voltages observed at the input and output ends of the line when RG = Rw. (a) Input
voltage u0�t�. (b) Output voltage uL�t�

�∫
−�

u0�t� dt =
�∫

0

u0�t� dt+
3�∫

2�

u0�t� dt = 3 nWb�

�∫
−�

uL�t� dt =
2�∫
�

uL�t� dt = 3 nWb

WRG
=

�∫
−�

RGi
2
0 dt =

�∫
0

RGi
2
0 dt+

3�∫
2�

RGi
2
0 dt = 0�5 nJ

WRL
=

�∫
−�

u2
L

RL
dt =

2�∫
�

u2
L

RL
dt = 0�3 nJ

WG =
�∫

−�
uGi0 dt =

�∫
0

uGi0 dt = 0�8 nJ

Note that WG =WRG
+WRL

.

Q5 With RG = 0 we have u0�t�= uG�t�.
The initially launched incident wave is ui = uG = U = 4 V, ii = ui/Rw = 400 mA.
When the incident wave reaches the load at t = �, reflection occurs dictated by the

same equations as in (9.16) and (9.17), from which we obtain ur = �ui = �U = 2 V and
uL = �1+� �U = 6 V.
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The reflected wave travels along the line towards the generator (� < t < 2�) and when
it gets there it finds a short-circuit condition, u= 0, hence

u= 0 = ui+ur → ui = −ur
A new reflection occurs, and a new incident voltage wave consisting of a negative pulse
is produced, ui = −ur = −�U = −2 V.

For t = 3�, the negative pulse arrives at the load, where it is reflected back. The new
reflected voltage wave is obtained from (9.17), ur = �ui = −�2U = −1 V. The load
voltage is determined from uL = �1+� �ui = −�1+� ��U = −3 V.

The reflected wave travels along the line towards the generator (3� < t < 4�) and
when it gets there it again finds a short-circuit condition; consequently, a new incident
wave is produced such that ui = −ur = �2U = 1 V.

This wave reaches the load at t = 5�, and produces a new reflection, the load voltage
being given by uL = �1+� �ui = �1+� ��2U = 1�5 V.

The process of successive reflections at both ends of the line lasts indefinitely with
uL tending to zero as time passes.

For clarity, we summarize next the results obtained for the load voltage:

For � < t < 2�: uL = �1+� �U = 6 V.
For 3� < t < 4�: uL = −��1+� �U = −3 V.
For 5� < t < 6�: uL = �2�1+� �U = 1�5 V.

In general: For �2n−1�� < t < 2n�: uL = �−� �n−1�1+��U , with n≥ 1.

Figure 9.11 shows the time shape of both u0�t� and uL�t�:

Figure 9.11 Voltages observed at the input and output ends of the line when RG = 0. (a) Input
voltage u0�t�. (b) Output voltage uL�t�
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�∫
−�

u0�t� dt =
�∫

0

U dt = U� = 4 nWb

�∫
−�

uL�t� dt =
�∑
n=1

2n�∫
�2n−1��

uL dt = �1+� �U�×
�∑
n=1

�−� �n−1

Taking into account that the geometric series
∑�

n=1 �−� �n−1 converges to 1/�1+� �, we
conclude that

∫ �
−� uL�t�dt = U�, as expected:

WG =
�∫

−�
uGi0 dt =

�∫
0

uGi0 dt =
U 2

Rw
� = 1�6 nJ

WRL
=

�∫
−�

u2
L

RL
dt = 1

RL

�∑
n=1

2n�∫
�2n−1��

u2
L dt =

�1+� �2U 2

RL
�×

�∑
n=1

�2�n−1�

Taking into account that the geometric series
∑�

n=1 �
2�n−1� converges to 1/�1−�2�, and

noting, from (9.17), that

RL = Rw
1+�
1−�

we conclude

WRL
= �1+� �2U 2

�1−�2�RL
� = U 2

Rw
� =WG

9.4 Frequency-Domain Transmission-Line Equations for Lossy Lines

Actual transmission-line structures are made of imperfect conductors and imperfect dielectric
media, which are a cause of undesirable losses. Regrettably, the perturbations introduced
by loss mechanisms cannot be easily taken into account directly in the time-domain
transmission-line equations. To help you understand the difficulty, it may suffice to recall
what you learnt in Section 8.7 and Problem 8.8.5 about the skin-effect phenomenon in
imperfect conductors. In Section 8.7 we established, in the frequency domain, an equation for
the per-unit-length impedance of a circular cylindrical conductor, Z���= R���+ j�Li���.
Nonetheless, in Problem 8.8.5, we showed that such an equation does not translate into
the time domain as u = Ri+Li di/dt (that would only be possible if R and Li were
frequency-independent parameters, which, clearly, is not the case).

Therefore, our approach to the analysis of lossy lines is conducted entirely in the frequency
domain, where line voltages and line currents are sinusoidal functions described by the
corresponding phasors U�z� and I�z�, that is

u�z� t�= 	 (
U�z� ej�t

)
� i�z� t�= 	 (

I�z� ej�t
)

A word of advice: since the assumption of perfect conductors has been dropped, a longitudinal
component for the electric field does now exist. The electromagnetic field structure is no
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longer of the TEM type, and some ambiguity arises in the definition of line voltages.
However, for good conductors, the longitudinal component of the E field is, in general, much
smaller than the transverse component. This allows us to keep using the same formalism we
established for lossless lines. But, in any case, you must realize that this approach is in fact
an approximation (quasi-TEM approach).

9.4.1 Per-Unit-Length Longitudinal Impedance, Per-Unit-Length
Transverse Admittance

Let us return to the (lossless) transmission-line equation in (9.5), which was obtained
considering the application of the induction law: �u/�z = −Le�i/�t. The corresponding
frequency-domain equation is

d

dz
U�z�= −j�LeI�z� (9.18)

In order to take into account the skin-effect phenomena in the two imperfect conductors of
the line, two additional contributions should be added to the right-hand side of this equation.
Those contributions are associated with the longitudinal voltage drops along line conductors
1 and 2, ∫

−→
bc

E ·ds and
∫
−→
da

E ·ds

which were null in the case of perfect conductors (see again Figure 9.3).
Therefore, if we add the per-unit-length conductor impedances Z1���=R1���+j�L1���

and Z2���= R2���+ j�L2��� as perturbations to the main term j�Le in (9.18), we obtain
the generalized equation

d

dz
U�z�= −��R1���+R2����︸ ︷︷ ︸

R

+j��L1���+L2���+Le�︸ ︷︷ ︸
L

�I�z� (9.19)

This result can be written compactly if we introduce, as is usual, the so-called longitudinal
impedance per unit length of the line Zl (units: �/m)

Zl = R���+ j�L���= Zl e
j��/2−�Z� (9.20)

where �Z is the longitudinal loss angle.
Now, let us return to the (lossless) transmission-line equation in (9.6), which was

obtained considering the application of the charge continuity equation: �i/�z = −C�u/�t.
The corresponding frequency-domain equation is

d

dz
I�z�= −j�C U�z� (9.21)

Dielectric losses can occur because of two distinct mechanisms: one is the presence of
transverse conduction currents across the imperfect insulation medium (�dielectric �= 0), the
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other is the periodic polarization of the dielectric material – a phenomenon that can be
accounted for by replacing the permittivity  by a complex permittivity = ′���− j′′���;
see Section 8.4.

The first contribution can be included in the right-hand side of (9.21) by adding a
perturbation termG�U . The second contribution can be incorporated into (9.21) by replacing
C by a complex per-unit-length capacitance C = C ′ − jC ′′, where, typically, C ′′ 
 C ′ and
C ′ � C. On doing this we obtain the generalized equation

d

dz
I�z�= −��G� +�C ′′��︸ ︷︷ ︸

G

+j�C�U�z� (9.22)

This result can be written compactly if we introduce, as is usual, the so-called transverse
admittance per unit length of the line Y t (units: S/m)

Y t =G���+ j�C = Yt e
j��/2−�Y � (9.23)

where �Y is the transversal loss angle.
In short, the frequency-domain transmission-line equations for the steady-state harmonic

analysis of lossy lines read as

d

dz
U�z�= −Zl���I�z� (9.24)

d

dz
I�z�= −Y t���U�z� (9.25)

9.4.2 Propagation Constant, Phase Velocity, Characteristic Wave
Impedance

Let us seek the solutions to the pair of equations in (9.24) and (9.25).
Taking the z derivative of (9.24) and substituting −Y t���U�z� for dI/dz yields

d2U�z�

dz2
−ZlY tU�z�= 0 (9.26)

This is a homogeneous linear differential equation with constant coefficients of order 2.
Note that we have already dealt with equations of this type in the analysis of transient

regimes (Chapter 7); the only difference is that, now, the equation is on z (not on t�. Since
this a familiar subject we can skip some details, and at once write

Characteristic equation � s2 −ZlY t = 0

Characteristic roots � s1�2 = ±�� � =
√
ZlY t (9.27)

Line voltage solution � U�z�= Uie
−�z +Ure

+�z (9.28)

In (9.27) the complex constant � is designated a propagation constant

����=
√
ZlY t =

√
ZlYt e

j��−�Z−�Y �/2 = �+ j� (9.29)
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Since both the loss angles �Z and �Y are confined to the range [0, �/2], the propagation
constant must necessarily belong to the first quadrant of the complex plane and, consequently,
� and � are positive numbers; � is the so-called attenuation constant (units: Np/m), and �
is the so-called phase constant (units: rad/m).

As shown in (9.28), the voltage solution is made up of two contributions, the first
associated to the incident wave and the second to the reflected wave. The constants Ui and
Ur are to be determined upon imposition of the pertinent boundary conditions at the ends
of the line.

The solution for the line current I�z� is determined from (9.24),

I�z�= − 1

Zl

dU�z�

dz
yielding

Line current solution: I�z�= Uie
−�z−Ure

+�z

Zw
(9.30)

where Zw is the characteristic wave impedance of the line (units: �) – a concept that, in the
frequency domain, can be viewed as the generalization of the characteristic wave resistance
introduced in Section 9.2.1 for lossless line analysis,

Zw���=
√
Zl

Y t
= Zw e

j�w � Zw =
√
Zl
Yt
� �w = �Y −�Z

2
(9.31)

Since both the loss angles �Z and �Y are confined to the range [0, �/2], the characteristic
wave impedance must belong to the first or eighth octant of the complex plane, that is
�w ∈ �−�/4��/4� and 	 (

Zw
)
> 0.

As in our prior discussion on lossless lines, here too we can state that in order to avoid
the presence of the reflected wave, Ur = 0 (matched line case), all you have to do is to
terminate the line by a load impedance equal to the characteristic wave impedance, ZL =Zw.
Nevertheless, you should bear in mind that Zw is, now, a frequency-dependent parameter
and, therefore, if the working frequency changes you will most likely fail with perfect
matching (unless you properly readjust the load impedance value).

To better grasp the significance of the wave parameters � and Zw introduced in this
section, we are going to obtain space–time descriptions of u�z� t� and i�z� t�. To simplify
matters we assume that the working frequency and the line termination are such that the line
is perfectly matched, that is

U�z�= Ui e
−��+j��z� with Ui = U ej u

I�z�= Ui e
−��+j��z

Zw e
j�w

Taking into account that u�z� t�= 	 (
U�z� ej�t

)
and i�z� t�= 	 (

I�z� ej�t
)
, we get

u�z� t�= U e−�z cos��t−�z+ u� (9.32a)

i�z� t�= I e−�z cos��t−�z+ i� (9.32b)

where I = U/Zw and  i =  u−�w.
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Since the preceding expressions are very similar, let us pay attention to only one of them,
for example the line voltage u�z� t�.

The phase under the cosine function depends on z and t,  �z� t�=�t−�z+ u. At which
speed v should you run along the line in order to always observe the same phase value?

By making z= z0 +vt you find the condition

�t−�vt−�z0 + u = time-invariant constant

from which you readily get

v= �

�
(9.33)

The velocity defined in (9.33) is the so-called phase velocity. It coincides with the propagation
velocity defined in (9.8) and (9.12) in the case of lossless lines.

Next, consider that, at a given instant t0, you take a photo of the voltage distribution
along the line. You will observe an oscillating function on z with decaying amplitude – see
Figure 9.12.

Figure 9.12 Snapshot, taken at t = t0, of the line voltage distribution along the axial coordinate z,
for the case of a lossy line submitted to a sinusoidal steady-state regime

The rate of decay is determined by the attenuation constant �. On the other hand, the
periodicity of the oscillating function is determined by the phase constant �. In fact, the
space period � (wavelength) is such that the product �� must equal 2�, that is

�= 2�
�

= 2�v
�

= v

f

which, manifestly, is no surprise.
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To end this section, imagine that you place an oscilloscope at z= z0 to observe the time
evolution of u�z0� t�. The image you will obtain on the screen is shown in Figure 9.13; it is
a pure sinusoidal function with a time period T = �/�2��= 1/f , which displays no decay
at all. Pay attention to the fact that, according to (9.32), the attenuation constant affects
the function evolution on z, but not on t. However, if you place another oscilloscope at
z1 > z0 you will observe another sinusoidal time function with smaller magnitude (see again
Figure 9.13).

Figure 9.13 Oscilloscope readings of the time evolution of the line voltage at two different places
z= z0 and z= z1 = z0 +�z

9.4.3 Transfer Matrix, Non-Uniform Line Analysis

In many applications a detailed knowledge of the voltage and current distributions along
the line is of little concern. Quite often the line is simply treated as a black box, a two-port
network, where only the voltages and currents at the accessible ends really matter – see
Figure 9.14.

Figure 9.14 A two-port, black box representation of a transmission line of length l

Consider a transmission-line section of length l where U 0 and I0 are the input quantities,
and Ul and Il are the output quantities. Our next goal is to establish a matrix relationship
among those quantities, that is
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[
U 0

I0

]
= �T �

[
Ul

Il

]
(9.34)

where [T ] is the transfer matrix (also termed the chain matrix).
Making use of (9.28) and (9.30) we get

z= l �

{
Ul = Uie

−�l+Ure
+�l

ZwIl = Uie
−�l−Ure

+�l →
{
Ui = 1

2 �U l+ZwI�e+�l

U r = 1
2 �U l+ZwI�e−�l

z= 0:

⎧⎨
⎩
U 0 = Ui+Ur = cosh��l�U l+ sinh��l�ZwIl

ZwI0 = Ui−Ur = sinh��l�U l+ cosh��l�ZwIl

from which the transfer matrix is determined

�T �=
[

cosh��l� sinh��l�Zw
Z

−1
w sinh��l� cosh��l�

]
(9.35)

The transfer matrix is a precious tool for handling non-uniform line analysis. Imagine that
you have a transmission-line structure whose transverse profile changes along z (see the
example in Figure 9.15). You may, conceptually, break down the structure into a chain of N
small line sections, of appropriate lengths, so that each and every section can be considered
a uniform line.

Figure 9.15 Segmentation technique ordinarily used for the analysis of non-uniform lines

Once you have evaluated the transfer matrices �T1� � ! ! ! � �Tk� � ! ! ! � �TN � pertaining to
the individual line sections, you can finally determine the global transfer matrix [T ] of the
non-uniform structure through[

U 0

I0

]
= �T1� �T2� �T3� ! ! ! �TN �︸ ︷︷ ︸

�T �

[
Ul

Il

]

The accuracy of this method obviously depends on the number of line sections you have
utilized. The thinner the segmentation, the better the results.
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9.5 Frequency-Domain Transmission-Line Equations for Lossless
Lines

In a lossy line, the attenuation and phase constants increase with the frequency, but while
�∝ √

f , we have �∝ f . This means that the loss angles

�Z +�Y = 2 arctan��/��

ordinarily tend to zero as the frequency increases. Therefore, for very high-frequency regimes,
it makes sense to consider the approximations Zl → j�Le and Y t → j�C, which in turn
imply

����=
√
ZlY t = j�

√
LeC = 0+ j�

Zw =
√
Zl

Y t
=

√
Le
C

= Rw + j0

This means that we are back again to the framework of lossless-line analysis. Consequently,
the transmission-line solutions established in (9.28) and (9.30) greatly simplify:

U�z�= Uie
−j�z+Ure

+j�z (9.36a)

I�z�= Uie
−j�z−Ure

+j�z

Rw
(9.36b)

where Ui and Ur denote, respectively, the complex amplitudes of the incident and reflected
voltage waves at the line sending end, z= 0.

9.5.1 Terminated Line, Load Reflection Coefficient, Line Input
Impedance

Consider a transmission line of length l driven by a sinusoidal voltage generator at one end
and terminated at the opposite end by a passive load impedance ZL.

For the analysis of terminated lines it is frequent, and convenient, to introduce a
longitudinal y axis with origin at the load, antiparallel to z – see Figure 9.16.

Figure 9.16 Terminated transmission line showing the longitudinal y axis starting at the load
terminals



Transmission-Line Analysis 357

Taking into account the change of variable, y = l− z, the solution in (9.36) reads as

U�y�= U
′
i e

+j�y +U ′
r e

−j�y (9.37a)

I�y�= U
′
i e

+j�y −U ′
r e

−j�y

Rw
(9.37b)

where U
′
i = Ui e

−j�l and U
′
r = Ur e

+j�l respectively denote the incident wave voltage and
reflected wave voltage phasors, measured at the load terminals. A complex dimensionless
number, the load reflection coefficient � , is defined as the ratio of those wave phasors, that is

� = U
′
r

U
′
i

(9.38)

Taking into account the definition of � , we can rewrite (9.37) as

U�y�= U
′
i e

+j�y × �
VU︷ ︸︸ ︷

1+� e−j2�y� (9.39a)

I�y�= U
′
i e

+j�y

Rw
× �1−� e−j2�y︸ ︷︷ ︸

V I

� (9.39b)

On the right-hand side of (9.39) the leading factor is to be interpreted as the incident wave
contribution; the factors on the right, VU and V I , are complex vectors where the influence
of the terminating load is included via � . Those two auxiliary vectors are such that

�VU�V I = � U� I = "�y��
VU +V I

2
= 1 (9.40)

If the equations in (9.39) are particularized to the load terminals, y = 0, we get

UL = U
′
i�1+��� IL = U

′
i

Rw
�1−��

Dividing the two equations above, we find

ZL = Rw
1+�
1−� (9.41)

Solving (9.41) for � , we obtain

� = � ej� = ZL−Rw
ZL+Rw

(9.42)

For passive loads (consisting of R, L, C arrangements), where 	 (
ZL

) ≥ 0, we have � ≤ 1
and 0 ≤ � ≤ 2�. The physical reason behind the fact that � cannot exceed unity is that the
energy reflected by the load cannot exceed the energy carried by the incident wave.
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Total reflection (� = 1) can only occur in the case of non-dissipative loads, that is

Short circuit � ZL = 0 → � = 1 ej�

Open circuit � ZL = � → � = 1

Reactive load � ZL = jXL → � = 1 ej��−2 arctan�XL/Rw��

Total absorption (� = 0) happens when the line is perfectly matched, ZL = Rw.
The line input impedance Zin, defined as the ratio U/I at y= l, depends on the frequency,

on the line length and on the line load. If the equations in (9.39) are particularized to the
input end, we get

Uin = U
′
ie
j�l�1+� e−j2�l� and Iin =

[
U

′
i e

j�l�1−� e−j2�l�
]
/Rw

Hence

Zin = Uin

Iin
= Rw

1+� e−j2�l

1−� e−j2�l (9.43)

9.5.2 Matched Line, Open Line, Short-Circuited Line

We now particularize the results from Section 9.5.1 to three particularly important cases.

9.5.2.1 Matched Line (ZL = Rw� � = 0)

In the frequency domain: {
U�y�= U

′
ie
j�y

I�y�= U
′
ie
j�y/Rw

(9.44)

where U
′
i = U ′ ej ′

u .
The input impedance is

Zin = Uy=l
Iy=l

= Rw

In the time domain: ⎧⎨
⎩
u�y� t�= U ′ cos��t+�y+ ′

u�

i�y� t�= U ′

Rw
cos��t+�y+ ′

u�
(9.45)

In a matched line, the input impedance Zin is equal to the characteristic wave resistance;
it depends neither on the frequency nor on the line length. Since the reflected wave is
absent, the propagation phenomena along the line are entirely described by the incident wave
component. In this case we say we are dealing with a purely traveling wave. If you take two
photos of u�y�, at t = t1 and t = t2 > t1, you will observe two sinusoidal functions of the
same magnitude but shifted by a distance �y = v�t2 − t1� – see Figure 9.17.
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Figure 9.17 Snapshots, taken at t= t1 and t= t2 > t1, of the line voltage distribution along the axial
coordinate y, for the case of a matched lossless line (traveling wave). �y = v�t2 − t1�

9.5.2.2 Open Line (ZL = �� � = 1)

In the frequency domain: ⎧⎪⎨
⎪⎩
U�y�= U

′
i

(
e+j�y + e−j�y)

I�y�= U
′
i

Rw

(
e+j�y − e−j�y) (9.46a)

or, which is the same thing, ⎧⎪⎨
⎪⎩
U�y�= 2U

′
i cos ��y�

I�y�= 2jU
′
i

Rw
sin ��y�

(9.46b)

where U
′
i = U ′ ej ′

u .
The input impedance is

Zin = Uy=l
Iy=l

= −jRw
tan ��l�

(9.47)

In the time domain: ⎧⎨
⎩
u�y� t�= 2U ′ cos��t+ ′

u� cos ��y�

i�y� t�= 2
U ′

Rw
cos��t+ ′

u+�/2� sin ��y�
(9.48)

In an open-line situation the input impedance is purely reactive, its sign depending on the
value of the product �l = 2�l/�. For instance, if l = �/4 you will find �l = �/2 and the
input impedance is zero; the generator at the sending end of an open line faces a short-
circuit situation at its own terminals! On the contrary, if l= �/2 the generator will face an
open-circuit situation. See Figure 9.18.

For those of you who are studying transmission lines for the first time, the preceding
results must be shocking and unexpected. However, you must realize that transmission-line
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Figure 9.18 Lossless transmission line terminated by an open circuit. (a) The input impedance is
zero when l= �/4. (b) The input impedance is infinite when l= �/2

behavior is completely inexplicable if you insist on using the ordinary tools and concepts
from circuit analysis (which pertain to slow time-varying field phenomena, and are not valid
here).

As you can see from (9.46a), the line voltage and line current solutions are the result of
two counter-propagating waves, both of the same magnitude. These two waves interact with
each other giving rise to constructive or destructive interference at certain critical points
along the y axis. If you compare the time-domain solutions in (9.48) and (9.45) you will see
that in the latter the space and time variables are linearly combined under the cosine function
(which is typical of traveling waves); however, in (9.48) the space and time variables appear
separated under different trigonometric functions. When two counter-propagating traveling
waves of the same magnitude add together they give rise to a purely stationary wave, that
is a wave that pulses but does not move. In fact, if you take a series of photos of i�y� at
different time instants you will observe the result shown in Figure 9.19.

Figure 9.19 Successive snapshots, taken at different time instants, of the line current distribution
along the axial coordinate y, for the case of an open lossless line (stationary wave)

In addition you may note, from (9.48), that at certain instants of time the line current is
zero everywhere along the line length, the same thing happening to the line voltage, but at
other instants: ⎧⎨

⎩i�y� t�= 0� for �t = �k−1�
�

2
− ′

u

u�y� t�= 0� for �t = k
�

2
− ′

u

with k an odd integer.
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9.5.2.3 Short-Circuited Line (ZL = 0� � = −1)

This case can be considered the dual of the preceding situation, where the roles of u and i
are interchanged.

In the frequency domain: ⎧⎪⎨
⎪⎩
U�y�= U

′
i

(
e+j�y − e−j�y)

I�y�= U
′
i

Rw

(
e+j�y + e−j�y) (9.49a)

or, which is the same thing, ⎧⎪⎨
⎪⎩
U�z�= 2jU

′
i sin ��y�

I�y�= 2U
′
i

Rw
cos ��y�

(9.49b)

where U
′
i = U ′ ej ′

u .
The input impedance is

Zin = Uy=l
Iy=l

= jRw tan ��l� (9.50)

In the time domain: ⎧⎨
⎩
u�y� t�= 2U ′ cos��t+ ′

u+�/2� sin ��y�

i�y� t�= 2
U ′

Rw
cos��t+ ′

u� cos ��y�
(9.51)

In a short-circuited line the input impedance is purely reactive, its sign depending on the
value of the product �l = 2�l/�. For instance, if l = �/4 you will find �l = �/2 and the
input impedance goes to �; the generator at the sending end of a short-circuited line faces
an open-circuit situation at its own terminals! On the contrary, if l= �/2 the generator will
face a short-circuit situation. See Figure 9.20.

Figure 9.20 Lossless transmission line terminated by a short circuit. (a) The input impedance is
infinite when l= �/4. (b) The input impedance is zero when l= �/2

Again, as in the case of an open line, here too the line voltage and line current are
described by purely stationary waves. Apart from a vertical scale factor, the graph for i�y�
in Figure 9.19 could be used here to reproduce the evolution u�y� at several instants of time.
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9.5.3 Standing Wave Pattern, Standing Wave Ratio, Active Power

In the case of a matched line, if you record the rms values of the line voltage and line
current distributions along the length of the line you will obtain constant readings. In fact,
from (9.44), you have⎧⎪⎪⎨

⎪⎪⎩
Urms�y�=

∣∣U�y�∣∣√
2

= Ui√
2

= �Ui�rms = constant

Irms�y�=
∣∣I�y�∣∣√

2
= �Ui�rms

Rw
= constant

However, when the line is mismatched, the superposition of the incident and reflected waves
gives rise to more or less pronounced fluctuations in both Urms�y� and Irms�y�. The larger
the magnitude of the reflection coefficient � , the more important the fluctuation. In fact, the
complex vectors VU and V I introduced in (9.39), which vary with y, have their minimum
and maximum magnitudes given by 1 − � and 1 + � , the overall fluctuation being 2� . In
addition, note that when �VU � is at a maximum, �V I � is at a minimum, and vice versa – see
Figure 9.21.

Figure 9.21 Complex plane vector diagram used for analyzing the evolution of VU and V I as one
moves away from the load terminals (increasing y)

The evolution of Urms�y� and Irms�y� can be retrieved from the geometrical vector diagram
in Figure 9.21 where, as you move away from the load towards the generator terminals, the
tips of VU�y� and V I�y� move clockwise, synchronously, along a circumference of radius � .

An analytical alternative for obtaining the evolution of Urms�y� and Irms�y� is also available.
Go back to the general equations in (9.39), take their absolute value and divide by

√
2. This

enables you to write Urms and Irms as follows:

Urms�y�= �Ui�rms
∣∣1+� ej��−2�y�

∣∣ = �Ui�rms
√

1+�2 +2� cos�2�y−�� (9.52a)

Irms�y�= �Ui�rms
Rw

∣∣1−� ej��−2�y�
∣∣ = �Ui�rms

Rw

√
1+�2 −2� cos�2�y−�� (9.52b)

where � = �� .
Typical standing wave patterns representative of Urms�y� and Irms�y� are depicted in

Figure 9.22.
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Figure 9.22 Standing wave patterns representative of Urms�y� and Irms�y�

The main features of the standing wave patterns are summarized next:

• The patterns are periodic, with period �/2.
• Consecutive maxima and minima are separated by a distance equal to �/4.
• A point of maximum voltage is a point of minimum current, and vice versa.
• Voltage maxima and minima are given by

�Urms�max = �Ui�rms × �1+��� �Urms�min = �Ui�rms × �1−� � (9.53)

• Current maxima and minima are given by

�Irms�max = �Ui�rms
Rw

× �1+� �� �Irms�min = �Ui�rms
Rw

× �1−� � (9.54)

• The abscissas yk where the line voltage is at a maximum are given by

yk = �

2�
+k�

2
�with k= 0�1�2� ! ! ! (9.55)

• From (9.53) and (9.54) you have

�Urms�max

�Irms�max

= �Urms�min

�Irms�min

= Rw (9.56)

• The voltage and current standing wave patterns are essentially identical. They just differ
in two details: a translation of �/4 in the horizontal axis, and a scale factor of Rw in the
vertical axis.
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In order to quantify the magnitude of the fluctuations observed in the standing wave patterns,
one usually defines the so-called standing wave ratio, SWR, a dimensionless parameter that
can vary from 1 to �:

SWR = �Urms�max

�Urms�min

= �Irms�max

�Irms�min

= 1+�
1−� (9.57)

For matched loads, where � = 0, you have an SWR of 1 (fluctuations do not exist). For
loads where total reflection occurs, � = 1, you have an SWR of � (fluctuations are as large
as possible, and �Urms�min = �Irms�min = 0�.

Note especially that, in (9.57), the absolute value of � is used, not the complex � itself.
The active power delivered by a lossless line is constant along y because, by definition,

loss mechanisms along the line are absent. You may remember that the active power was
defined in Chapter 7 through P = �p�t��av = UrmsIrms cos". However, in a mismatched line,
the quantities Urms, Irms and " – all of them – vary with y. So, the obvious question is how
can you evaluate P in as simple a manner as possible?

The key for this question can be found in (9.40).
Whenever VU�y� and V I�y� happen to be parallel vectors you have " = 0. But, from

Figure 9.21, you will see that such a situation corresponds exactly to extremal points in the
standing wave patterns. Therefore, the answer you are looking for is

P = �Urms�max �Irms�min = �Urms�min �Irms�max = �1−�2�
�Ui�

2
rms

Rw

9.5.4 The Low-Frequency Limit Case, Short Lines

The transmission-line results developed in the foregoing sections should agree with the
familiar results from circuit analysis when low frequencies are considered. To confirm that
this statement is true, let us examine two illustrative situations.

For an open-line situation (ZL = �) we saw in (9.47) that the input impedance observed
at the generator terminals was given by Zin = −jRw/ tan ��l�. For low-frequency regimes we
have �l
 1, and consequently tan��l�� �l. Therefore, taking into account the definitions
of Rw and �, we find

Zin = −jRw
tan ��l�

� −jRw
�l

= −j
√
Le/C

�
√
LeCl

= 1
j��Cl�

from which you can see that the input impedance of an insulated two-conductor system of
length l immersed in a dielectric medium is nothing but the impedance of a capacitor whose
capacitance is Cl, as expected from a circuit theory approach.

Likewise, for a short-circuited line (ZL = 0) we saw in (9.50) that the input impedance
observed at the generator terminals was given by Zin = jRw tan ��l�. For low-frequency
regimes we have �l
 1, and tan��l�� �l. Therefore, taking into account the definitions of
Rw and �, we find

Zin = jRw tan ��l�� jRw �l= j

√
Le
C
�
√
LeCl= j��Lel�
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from which you can see that the input impedance of a two-conductor system of length l
short-circuited at one end is nothing but the impedance of a rectangular single-loop inductor
whose inductance is Lel, as expected from a circuit theory approach.

9.6 Application Example (Line-Matching Techniques)

The problem of mismatched loads can be handled by using several techniques. Here we
address two commonly used solutions, the quarter-wave transformer and the single matching
stub.

Consider an aerial lossless transmission line characterized by Rw = 150 �. The line,
of length l = 3 m, is terminated by a resistive load RL = 50�. The line is driven by
an ideal generator whose voltage is uG�t� = √

2 �UG�rms cos��t�, where �UG�rms = 200 V,
f = 100 MHz.

Questions

Q1 Determine the following parameters: v, �, � and SWR. Determine the complex amplitude
U

′
i of the incident wave voltage at the load terminals. Obtain the load voltage UL. Draw

the standing wave pattern of the rms voltage along the line. Find the active power
delivered to the load.

Q2 Consider that the aerial line of length l is made of two distinct sections (Figure 9.23),
the first of length l− d with Rw = 150�, and the second of length d = �/4 with
characteristic resistance Rw0

(this second section is called a quarter-wave transformer).

Figure 9.23 Line-matching technique using a quarter-wave line transformer

The purpose of the quarter-wave transformer is to ensure that at the transverse plane
y = d the line impedance is equal to Rw, therefore ensuring that the first line section is
perfectly matched.

Regarding the second line section, determine d, Rw0
, �0 and SWR0. Obtain Ud and

UL. Draw the standing wave pattern of the rms voltage along the line. Find the active
power delivered to the load.

Q3 As shown in Figure 9.24, the aerial line of length l includes a stub positioned at y = d.
The stub consists of a short-circuited line section of adjustable length h (with the
same characteristics of the original line). Parameters d and h are the unknowns of the
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problem. The minimal distance d is chosen so that the line admittance to the right of
y = d is of the type Y y=d+ = R−1

w + jS. The minimal distance h is chosen so that the
input admittance of the auxiliary stub is Y st = −jS. The parallel association of these
two admittances results in an equivalent impedance Zy=d = � Y y=d+ + Y st�−1 equal to
Rw, thus ensuring that the line section fed by the generator is perfectly matched.

Determine d, S and h. Obtain Ud and UL. Draw the standing wave pattern of the
rms voltage along the line. Find the active power delivered to the load.

Figure 9.24 Line-matching technique using a parallel-connected stub

Solutions

Q1 v = 1/
√
�00 = 3×108 m/s; �= v/f = 3 m;

� = RL−Rw
RL+Rw

= 0�5 ej�� SWR = 1+�
1−� = 3

From UG = U
′
ie
j�l�1+�e−j2�l�, noting that �l= 2�, we get

U
′
i =

UG

1+� = √
2 400 V

From UL = U
′
i�1+��, we get UL = UG (note that the line is one wavelength long).

From �Urms�max = �U ′
i �rms �1+� �, we get �Urms�max = 600 V.

From �Urms�min = �U ′
i �rms �1−� �, we get �Urms�min = 200 V.

From P = �1−�2� �U ′
i �

2
rms /Rw, we get P = 800 W.

See the sketch of the voltage standing wave pattern in Figure 9.25(a).

Q2 d = �/4 = 75 cm. Taking into account that for a quarter-wave line �d = �/2, we can
write, from (9.39),

Ud = jU
′
i�1−�0� and Id = jU

′
i�1+�0�/Rw0

Dividing both equations and enforcing Ud/Id = Rw, we obtain

Rw = Rw0

1−�0

1+�0
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Making use of

�0 = RL−Rw0

RL+Rw0

we finally conclude

Rw = Rw0

Rw0

RL
→ Rw0

= √
RLRw = 86�6 �

from which we evaluate

�0 = 0�268 ej� and SWR0 = 1+�0

1−�0

= 1�73

Since the first line section is matched, the voltage Ud is equal to UG apart from a phase
delay ��l−d�= 3�/2, that is

Ud = √
2 200 e−j3�/2 = j

√
2 200 V�

Knowledge of Ud permits the determination of

U
′
i =

Ud

j�1−�0�
= √

2 157�73 V

which finally allows for the evaluation of the load voltage,

UL = U
′
i�1+�0�= √

2 115�47 V�

You may note that

�Ud�rms
�UL�rms

= SWR0

The active power can be determined via

P = �UG�
2
rms

Rw
or P = �UL�

2
rms

RL

yielding P = 266�7 W.
See the sketch of the voltage standing wave pattern in Figure 9.25(b).

Q3 The input admittance of the end section of length d is obtained from (9.43) as

Y y=d+ = R−1
w

1−� e−j2�d

1+� e−j2�d

Taking into account, from Q1, that � = −0�5, we can write

R−1
w + jS = Y y=d+ = R−1

w

2+ e−jx

2− e−jx � where x = 2�d = 4�d
�
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After some algebraic manipulation we find

1+ jSRw = 3− j4 sin x
5−4 cosx

→

⎧⎪⎪⎨
⎪⎪⎩

1 = 3
5−4 cosx

SRw = −4 sin x
5−4 cosx

→
{
x = �/3

SRw = −1�155

In conclusion, d = �/12 = 25 cm and S = −7�7 mS.
The input admittance of the stub is determined from (9.50),

Y st = −jS = −j
Rw tan ��h�

from which we get tan��h� = �SRw�
−1 = −0�866, yielding h = 116 cm (in your

calculations do not forget that the angle �h is expressed in radians, not degrees!).
Since the first line section is matched, the voltage Ud is equal to UG apart from a

phase delay ��l−d�= 11�/6, that is Ud = √
2 200 e+j�/6 V.

For the end line section to the right of the stub insertion we utilize

U�y�= U
′
ie

+j�y (1+�e−j2�y)

Figure 9.25 Standing wave voltage patterns. (a) Without the use of mitigation matching techniques.
(b) Using a quarter-wave line transformer. (c) Using a parallel-connected stub



Transmission-Line Analysis 369

with the boundary condition Uy=d = √
2 200 e+j�/6 V, from which we find

U
′
i =

√
2 200 ej�/6

ej�/6 �1−0�5 e−j�/3�
= √

2 230�95 e−j�/6 V

Finally, at the load terminals, we obtain UL = U
′
i

(
1+�) = √

2 115�47 e−j�/6 V.
The active power can be determined via

P = �UG�
2
rms

Rw
or P = �UL�

2
rms

RL

yielding P = 266�7 W.
See the sketch of the voltage standing wave pattern in Figure 9.25(c).

9.7 Multiconductor Transmission Lines

In the foregoing sections we paid attention to the analysis of two-conductor transmission
lines; however, many transmission-line structures include more than just two conductors. As
a subject of the utmost interest to electrical engineers, multiconductor transmission lines can
be found almost everywhere, with applications in overhead power lines, railway systems,
printed circuit boards, flatpack or ribbon cables for electronic systems interconnection, as
well as several microwave structures, to name just a few.

In this section we address the topic of multiconductor transmission lines (MTLs) at an
introductory level.

Consider a uniform transmission-line system made of N + 1 conductors parallel to the
longitudinal z axis, where conductor (0) is taken as the reference conductor – see Figure 9.26.

Figure 9.26 Multiconductor transmission-line structure with N +1 coupled conductors

For N > 1, the generalization of the frequency-domain two-conductor line equations in
(9.24) and (9.25) take the matrix form

d

dz

[
U�z�

] = − [
Zl

] [
I�z�

]
�

d

dz

[
I�z�

] = − [
Y t

] [
U�z�

]
(9.58)
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where
[
U�z�

]
and

[
I�z�

]
are complex column vectors, of size N , gathering the complex

amplitudes of the line voltages and line currents

[
U�z�

] =

⎡
⎢⎢⎢⎣
U 1�z�

U 2�z�
���

UN �z�

⎤
⎥⎥⎥⎦ � [

I�z�
] =

⎡
⎢⎢⎢⎣
I1�z�

I2�z�
���

IN �z�

⎤
⎥⎥⎥⎦

and
[
Zl

]
and

[
Y t

]
respectively denote the longitudinal impedance and transverse admittance

matrices per unit length of the line.
The coupled differential equations in (9.58) can be decoupled by introducing an appropriate

change of variables

[
U

] = �T �
[
Um

]
�

[
I
] = �W�

[
Im

]
(9.59)

where
[
Um

]
and

[
Im

]
are arrays for the so-called modal voltages and modal currents,

respectively. Substituting (9.59) into (9.58), we find

d

dz

[
Um�z�

] = − (
�T �−1 [Zl] �W�)︸ ︷︷ ︸

�Zm�

[
Im�z�

]
(9.60a)

d

dz

[
Im�z�

] = − (
�W�−1 [Y t] �T �)︸ ︷︷ ︸

�Ym�

[
Um�z�

]
(9.60b)

where
[
Zm

]
and

[
Ym

]
are the per-unit-length longitudinal impedance and transverse

admittance matrices in modal coordinates, respectively.
In order to ensure that the equations in (9.60) define a decoupled set, both

[
Zm

]
and

[
Ym

]
must be diagonal matrices, that is

d

dz

⎡
⎢⎢⎢⎢⎢⎢⎣

U 1m
���

Ukm
���

UNm

⎤
⎥⎥⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎢⎢⎣

Z1m
� � �

Zkm
� � �

ZNm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

I1m
���

Ikm
���

INm

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.61a)

d

dz

⎡
⎢⎢⎢⎢⎢⎢⎣

I1m
���

Ikm
���

INm

⎤
⎥⎥⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎢⎢⎣

Y 1m
� � �

Y km
� � �

Y Nm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

U 1m
���

Ukm
���

UNm

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.61b)
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or, which is the same,

For k= 1 to N �

⎧⎪⎨
⎪⎩
d

dz
Ukm

= −Zkm Ikm
d

dz
Ikm = −Y km Ukm

(9.61c)

The equations in (9.61c) are the familiar two-conductor transmission-line equations, whose
solution we have already established in (9.28) and (9.30)

Ukm
�z�= (

Ui

)
k
e−�kz+ (

Ur

)
k
e+�kz� Ikm�z�=

(
Ui

)
k
e−�kz− (

Ur

)
k
e+�kz

Zwk

where �k =
√
ZkmY km and Zwk =

√
Zkm/Y km respectively denote the propagation constant,

and the characteristic wave impedance for the kth mode.
Once the modal voltages and currents

[
Um

]
and

[
Im

]
have been found, we reuse (9.59)

to determine the natural voltages and currents in the multiconductor line.
So far, the procedure described above is straightforward. However, we still have to deal

with the problem of the determination of the transformation matrices [T ] and [W ] – a major
point in this formalism.

Taking into account the definition of the diagonal matrices
[
Zm

]
and

[
Ym

]
in (9.60), and

bearing in mind that diagonal matrices always commute, we find

[
Zm

] [
Ym

] = [
�2] = � T �−1 [Zl Y t] �T � (9.62a)[

Ym
] [
Zm

] = [
�2] = �W�−1 [Y tZl] �W� (9.62b)

where
[
�2] is a diagonal matrix that gathers the squared propagation constants of the N

independent propagation modes.
From (9.62a) you can see that the transformation matrix [T ] is determined by solving an

eigenvalue/eigenvector problem concerning the
[
Zl Y t

]
matrix product; that is,

[
Zl Y t

]
�T �= �T �

[
�2] or

([
Zl Y t

]−�2
k �1�

)
�tk�= 0 (9.63)

where �tk�, the column k of [T ], represents the kth eigenvector of
[
Zl Y t

]
associated to the

eigenvalue �2
k. Matrix [1] is the identity matrix.

The numerical task involved in solving (9.63) is a heavy one, particularly if N is large.
Fortunately, standard software packages exist for finding the eigenvalues and eigenvectors
of general complex matrices. Note that the procedure in (9.63) allows you not only you to
find [T ] but also to obtain the modal propagation constants.

For the determination of the transformation matrix [W ] we may adopt diverse strategies.
For example, we may start by arbitrarily defining

[
Zm

]
as a non-singular diagonal
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matrix. Then we determine
[
Ym

]
by using

[
Ym

] = [
Zm

]−1 [
�2]. Finally, from (9.60), we

obtain, indifferently,

�W�=
⎧⎨
⎩

[
Zl

]−1
�T �

[
Zm

]
[
Y t

]
�T �

[
Ym

]−1
(9.64)

Alternatively, let us take the transpose of the matrix equation in (9.62b):

[
Zm

] [
Ym

] = [
�2] = �W�T

[
ZlY t

]
�W�−1T (9.65)

where account is taken of the symmetry of
[
Zl

]
and

[
Y t

]
. The comparison between (9.65)

and (9.62a) indicates one possible choice:

�W�T = �T �−1 (9.66)

Final remarks are as follows:

• For lossy lines, extraordinary cases exist where the problem posed in (9.63) of
transforming

[
Zl Y t

]
into diagonal form cannot be solved at all. However, for typical

MTL configurations, those abnormal situations are extremely rare.
• The solution of (9.63) does not uniquely define [T ]. If you find one solution for [T ] and

multiply it on the right by an arbitrary non-singular diagonal matrix, the resulting new
matrix will also be a solution of (9.63).

• The degrees of freedom contained in the construction of [T ] and [W ] imply some sort of
arbitrariness in the definition of

[
Zm

]
,
[
Ym

]
and

[
Zwm

]
; this remark should put you on

your guard as far as the physical significance of those matrices is concerned.
• For lossy lines, the transformation [T ] is in general a complex frequency-dependent matrix.
• For lossless lines, where

[
Zl

] = j� �L� and
[
Y t

] = j� �C�, a real frequency-independent
transformation matrix [T ] can always be found.

• For lossless homogeneous lines, where the dielectric medium around the conductors is
characterized by  and �, the eigenvalues of the product matrix

[
Zl Y t

]
are all equal, that

is �k = j�
√
�, for k= 1 to N .

9.8 Application Example (Even and Odd Modes)

Consider a lossless inhomogeneous MTL structure consisting of two identical dielectric-
coated cylindrical conductors in close contact seated on a reference conducting plane. The
structure is operating at �= 1 Grad/s. The ratio of the radii r/r0 is 0.8. The insulation coating
material is characterized by  = 40, � = �0. As shown in Figure 9.27, the system under
analysis displays a vertical plane of symmetry; the corresponding per-unit-length capacitance
and inductance matrices have been evaluated as

�C�=
[

225�62 −69�80
−69�80 225�62

]
pF/m� �L�=

[
126�51 35�26
35�26 126�51

]
nH/m
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Figure 9.27 Cross-sectional view of an MTL structure consisting of two identical dielectric-coated
cylindrical conductors in close contact seated on a reference ground plane

Questions

Q1 Determine the matrix products �ZlY t� and � Y tZl�.

Q2 Determine the eigenvectors (transformation matrices) and eigenvalues of both matrices.
Evaluate the phase velocities of the two propagation modes.

Q3 Determine the modal matrices
[
Zm

]
and

[
Ym

]
, and then evaluate the characteristic

wave impedances of the two propagation modes.

Q4 Assume that the receiving end of the structure is terminated in a matched load. Determine
the solution for the complex amplitudes of the line voltages and currents along the
line.

Q5 Determine the characteristic impedance matrix describing the matched load.

Solutions

Q1

�ZlY t�= � Y tZl�= �j��2 �L� �C�= �j��2 �C� �L�=
[−26�08 0�875

0�875 −26�08

]
m−2

Q2

�T �= �W�= 1√
2

[
1 1
1 −1

]

The eigenvector

�t1�= �w1�=
1√
2

[
1
1

]

defines the excitation of mode 1, the so-called even mode (or common mode), where
U 1 = U 2 and I1 = I2.
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The eigenvector

�t2�= �w2�=
1√
2

[
1

−1

]

defines the excitation of mode 2, the so-called odd mode (or differential mode), where
U 1 = −U 2 and I1 = −I2.

Regarding the eigenvalues, we find

[
�2] =

[−25�21 0
0 −26�96

]
m−2

From �k = j�k we obtain �1 = 5�021 rad/m and �2 = 5�192 rad/m.
From �k = �/vk we obtain v1 = 1�992×108 m/s and v2 = 1�926×108 m/s.

Note that the normalization factor 1/
√

2 which appears in both [T ] and [W ] is
arbitrary; it has been chosen with the single purpose of getting unit norm eigenvectors.

Q3

[
Zm

] = j� �T�−1 �L� �W�=
[

161�8 0
0 91�25

]
�/m

[
Ym

] = j� �W�−1 �C� �T�=
[

155�8 0
0 295�4

]
mS/m

From Zwk =
√
Zkm/Y km we obtain Zw1

= Rw1
= 32�22� and Zw2

= Rw2
= 17�58�.

Q4 Voltage solution:

[
U

] = �T �

[(
Ui

)
1
e−j�1z(

Ui

)
2
e−j�2z

]
→

⎧⎨
⎩
U 1�z�= 1√

2

((
Ui

)
1
e−j�1z+ (

Ui

)
2
e−j�2z

)
U 2�z�= 1√

2

((
Ui

)
1
e−j�1z− (

Ui

)
2
e−j�2z

)
Current solution:

[
I
] = �W�

⎡
⎢⎢⎢⎣

(
Ui

)
1

Rw1

e−j�1z(
Ui

)
2

Rw2

e−j�2z

⎤
⎥⎥⎥⎦ →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
I1�z�= 1√

2

((
Ui

)
1

Rw1

e−j�1z+
(
Ui

)
2

Rw2

e−j�2z

)

I2�z�= 1√
2

((
Ui

)
1

Rw1

e−j�1z−
(
Ui

)
2

Rw2

e−j�2z

)

Q5 When a transmission-line structure is terminated in a matched load (as we have assumed
in Q4�, the relationship between

[
U�z�

]
and

[
I�z�

]
is independent of z. Therefore, we

can use the results derived in Q4, particularized to z= 0, to get⎧⎨
⎩

√
2 U 1�0�= (

Ui

)
1
+ (

Ui

)
2√

2 U 2�0�= (
Ui

)
1
− (

Ui

)
2

and

⎧⎨
⎩

√
2 I1�0�= (

Ui

)
1
/Rw1

+ (
Ui

)
2
/Rw2√

2 I2�0�= (
Ui

)
1
/Rw1

− (
Ui

)
2
/Rw2
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Eliminating
(
Ui

)
1

and
(
Ui

)
2
, we find[

U 1

U 2

]
= [

Zw
][I1

I2

]

where

[
Zw

] = 1
2

[
�Rw1

+Rw2
� �Rw1

−Rw2
�

�Rw1
−Rw2

� �Rw1
+Rw2

�

]
=

[
24�90 7�32
7�32 24�90

]
�

You can check that this impedance matrix corresponds to the line termination shown in
Figure 9.28.

Figure 9.28 Matched termination for the MTL structure depicted in Figure 9.27

9.9 Proposed Homework Problems

Problem 9.9.1

Consider a lossless transmission line, 300 m long, characterized by v = 3 × 108 m/s and
Rw = 60�. As shown in Figure 9.29, the line is excited at z= 0 by a step voltage U0 = 120 V.
A resistor R terminates the line at z= l.

Figure 9.29 A step voltage is applied to the input end of a transmission line loaded by a resistor
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Q1 Determine the per-unit-length L and C parameters of the line. Determine the time delay
� between the two ends of the line.

Q2 Assuming that R= 0, find the evolution of iL�t�.

Q3 Assuming that R= �, find the evolution of uL�t�.

Q4 Assuming that R= 20�, find the evolution of uL�t�.

Answers

Q1

L= Rw
v

= 200�0 nH/m� C = 1
vRw

= 55�55 pF/m� � = l/v= 1#s

Q2

iL�t�=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 � for 0< t < �
4 A � for � < t < 3�
8 A � for 3� < t < 5�
���

���
2k A � for �k−1�� < t < �k+1��

(with k an even number). See Figure 9.30(a).

Q3

uL�t�=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 � for 0< t < �
240 V � for � < t < 3�

0 � for 3� < t < 5�
240 V � for 5� < t < 7�

0 � for 7� < t < 9�
���

���

See Figure 9.30(b).

Q4

uL�t�=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 � for 0< t < �
60 V � for � < t < 3�
90 V � for 3� < t < 5�
105 V � for 5� < t < 7�
���

���
120 V t = �

See Figure 9.30(c).
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Figure 9.30 Load analysis. (a) Plot of the load current against time for the case R = 0. (b) Plot of
the load voltage against time for the case R = �. (b) Plot of the load voltage against time for the
case R= 20�

Problem 9.9.2

Consider a coaxial cable of length l = 1 m, whose per-unit-length parameters are known,
Le = 0�25#H/m and C = 100 pF/m. The operating frequency is f = 100 MHz. The
dielectric medium is assumed to be lossless, but the line conductors not. Assume that
the perturbation arising from skin effect phenomena on the line conductors is such that
the corresponding per-unit-length impedance correction is Z1 +Z2 = Zcond = 10 ej40�

�/m.
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Q1 Determine the per-unit-length longitudinal impedance and transverse admittance of the
line, Zl and Y t.

Q2 Determine the phase velocity v and the attenuation constant �.

Q3 Determine the load impedance ZL necessary for perfect matching. For this case determine
the relationship between the active powers at the generator and load terminals; that is,
find $= PL/PG.

Answers

Q1 Zl = j�Le+Zcond = 163�6 ej87�32�
�/m; Y t = j�C = j62�83 mS/m.

Q2 � = �+ j�=
√
ZlY t = 3�206 ej88�66� = 0�075+ j3�205 m−1.

�= 75 mNp/m� v= �/�= 1�96×108 m/s�
Q3

ZL = Zw = Zw e
j�w =

√
Zl

Y t
= 51�03 e−j1�34� = 51− j1�2�

⎧⎪⎨
⎪⎩
U�z�= UG e

−��+j��z

I�z�= UG

Zw e
j�w
e−��+j��z → P�z�= Urms�z� Irms�z� cos ��w�= �UG�

2
rms

Zw
cos ���� e

−2�z

$= PL
PG

= Pz=l
Pz=0

= e−2�l = 0�86

Problem 9.9.3

A transfer matrix representation of a two-conductor lossy line of length l was obtained in
(9.35) in Section 9.4.3:

[
U 0

I0

]
=

[
cosh��l� sinh��l� Zw

Z
−1
w sinh��l� cosh��l�

]
︸ ︷︷ ︸

�T �

[
Ul

Il

]

Consider the equivalent ‘T’ circuit shown in Figure 9.31, whose component blocks are two
identical impedances Zx and one admittance Y x.

Q1 Determine the transfer matrix of the equivalent circuit.

Q2 By comparing the result obtained above with the transfer matrix of the line section,
determine both Zx and Y x.

Q3 Assume that the transmission line is operated at a low-frequency regime; that is, assume
that l 
 �. Find the corresponding approximations for Zx and Y x, and redraw the
equivalent circuit.
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Figure 9.31 An equivalent model, with the shape of a ‘T’ circuit, aimed at representing a lossy line
section of length l

Answers

Q1

�T �=
[

1+ZxY x Zx�2+ZxY x�
Y x 1+ZxY x

]

Q2

Y x = Z
−1
w sinh��l�� Zx = Zw tanh

�l

2

Q3 For ��l� 
 1 we have

sinh��l�� �l=
√
ZlY t l and tanh

�l

2
� �l

2
=

√
ZlY t

l

2

Y x = Z
−1
w sinh��l��

√
Y t

Zl
×

√
ZlY t l= Y tl=Gl+ j��Cl�

Zx = Zw tanh
�l

2
�

√
Zl

Y t
×

√
ZlY t

l

2
= Zll

2
= Rl

2
+ j�

(
Ll

2

)

The corresponding simplified equivalent circuit is shown in Figure 9.32.

Figure 9.32 Identification of the constituent components of the ‘T’ circuit in Figure 9.31, for the
special case of low-frequency regimes
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Problem 9.9.4

A power distribution line of length l= 100 km is fed by an AC generator whose voltage is
given by uG�t�= √

2 �UG�rms cos�t, where �UG�rms = 20 kV, and f = 50 Hz.
The per-unit-length parameters of the line are known: R = 0�15�/km, L = 2 mH/km,

G= 0, C = 6 nF/km.

Q1 Determine the propagation constant � and the wavelength �. Check that l
 �.

Q2 Taking into account the results obtained in Problem 9.9.3, show that
∣∣∣Y−1

x

∣∣∣ � ∣∣Zx∣∣.
Q3 Assume that the receiving end of the line is short-circuited. Determine IG.

Q4 Assume that the receiving end is left open. Determine IG.

Answers

Q1 � = �+ j�= √
�R+ j�L��j�C�= �0�129+ j1�096�×10−6 m−1.

�= 2�/�= 5733 km � l�

Q2 Y
−1
x = −j5�3 k�; Zx = 7�5+ j31�4 = 32�3 ej76�57o

�.∣∣∣Y−1
x

∣∣∣ � ∣∣Zx∣∣ �
Q3 By making use of the equivalent ‘T’ circuit in Figure 9.32 you get

IG ≈ UG

2Zx
= UG

�R+ j�L� l = √
2 310 e−j76�57o

A

Q4 By making use of the equivalent ‘T’ circuit in Figure 9.32 you get

IG ≈ Y xUG = j�ClUG = √
2 3�77 ej90o

A

Problem 9.9.5

Consider a homogeneous lossless line, 50 cm long, whose dielectric medium is characterized
by � = �0 and  = 2�250. An ideal generator is positioned at y = l, the corresponding
voltage being given by uG�t�=

√
2 �UG�rms cos�t, where �UG�rms = 60 V, and f = 0�1 GHz.

The characteristic wave resistance of the line is Rw = 60�. As shown in Figure 9.33, the
line is terminated by a load impedance ZL.
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Figure 9.33 A homogeneous uniform lossless line terminated by a load impedance ZL

Q1 Determine the propagation velocity v as well as the associated wavelength �. Evaluate
the per-unit-length L and C parameters.

Q2 The load reflection coefficient is � = −1/3. Determine the load impedance.

Q3 Find the complex amplitude of the incident wave voltage at the load terminals, and
determine the representative phasors for the voltage and current at y = 0 and y = l.

Q4 Draw the standing wave patterns of Urms�y� and Irms�y� and, based on them, find SWR
and the active power P transmitted along the line.

Q5 Assume that the dielectric permittivity quadruples its original value. How would the
parameters L, C, Rw, v and � change? How would the new standing wave patterns look?
Does the active power change?

Answers

Q1 v = 1/
√
�0= 2×108 m/s; �= v/f = 2 m (note that l= �/4).

L= Rw
v

= 300 nH/m� C = 1
vRw

= 83�33 pF/m

Q2

ZL = Rw
1+�
1−� = RL = 30�

Q3 ⎧⎪⎨
⎪⎩
UG = U

′
i e
j�l�1+� e−j2�l�

IG = U
′
i

Rw
ej�l�1−� e−j2�l�

where � = −1
3
� �l= 2�l

�
= �

2
� UG = √

2 60 V

U
′
i = −j 3

4UG = −j√2 45 V� IG = √
2 0�5 A�

⎧⎪⎨
⎪⎩
UL = U

′
i �1+��= −j√2 30 V

IL = U
′
i

Rw
�1−��= −j√2 1 A



382 Electromagnetic Foundations of Electrical Engineering

Q4 The standing wave patterns are depicted in Figure 9.34.

Figure 9.34 Voltage and current standing wave patterns (note that l= �/4)

The SWR is 2; P = �UG�rms �IG�rms = �UL�rms �IL�rms = 30 W.

Q5 L remains unaltered. C quadruples.
Rw, v and � reduce to half of their original values (note that the new Rw = 30�=RL).

Now the line is perfectly matched. The new standing wave patterns are horizontal lines,
Urms�y�= 60 V and Irms�y�= 2 A.

The active power quadruples, P = 120 W.

Problem 9.9.6

Consider a lossless transmission line of length l subjected to a time-harmonic regime. The
line is left open at both ends. The generator that drives the line is positioned at an arbitrary
location y = yG – see Figure 9.35.

Figure 9.35 A two-conductor transmission line, left open at both ends, is excited by an ideal voltage
generator placed at y = yG
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Q1 Determine the complex amplitude of the generator current IG as a function of its position.

Q2 Consider the particular situation where the line length is an integer multiple of one
half-wavelength, l= n�/2. Find IG.

Answers

Q1 Input admittance to the right of the generator:

(
Y in

)
R

= j
tan��yG�
Rw

Input admittance to the left of the generator:

(
Y in

)
L

= j
tan ���l−yG��

Rw

IG = UG

( (
Y in

)
R
+ (

Y in
)
L

) = jUG

Rw
�tan��yG�+ tan���l−yG���

Q2 From trigonometry: tan��y�+ tan���l−y��= tan��l�× �1− tan��y�× tan���l−y���.
Therefore

IG = jUG

Rw
tan��l�× �1− tan��yG�× tan���l−yG���

For l= n�/2 you have �l= n�, tan��l�= 0, IG = 0.

Problem 9.9.7

Consider a non-uniform transmission-line structure consisting of a chain connection of two
uniform lossless coaxial cable sections, as shown in Figure 9.36. The first cable section, of
length l1 = 10 m, is characterized by Rw1

= 75� and v1 = 2 × 108 m/s. The second cable
section, of length l2 = 7�5 m, is characterized by Rw2

= 50� and v2 = 1 × 108 m/s. The
working frequency is f = 10 MHz. The load is an antenna that radiates 400 W and whose
input impedance is RL = 100�.

Figure 9.36 An antenna fed by the chain connection of two distinct coaxial cables
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Q1 Determine the transfer matrices describing both cable sections.

Q2 Determine the transfer matrix of the global non-uniform transmission-line structure.

Q3 Assuming that UL = UL e
j0, determine UG and IG.

Answers

Q1 �1 = v1/f = 20 m; �1 = 2�/�1 = �/10 rad/m; �1l1 = �.
�2 = v2/f = 10 m; �2 = 2�/�2 = �/5 rad/m; �2l2 = 3�/2.

�T1�=
[

cos��1l1� jRw1
sin��1l1�

jR−1
w1

sin��1l1� cos��1l1�

]
=

[
−1 0

0 −1

]

�T2�=
[

cos��2l2� jRw2
sin��2l2�

jR−1
w2

sin��2l2� cos��2l2�

]
=

[
0 −j50 �

−j0�02 S 0

]

Q2

�T �= �T1� �T2�=
[

0 j50�
j0�02 S 0

]

Q3 UL = √
2 200 V� IL = √

2 2 A�[
UG

IG

]
= �T �

[
UL

IL

]
= j

√
2
[

100 V
4 A

]

Problem 9.9.8

Consider the connections shown in Figure 9.37, where a 100 MHz voltage generator
simultaneously drives two lossless coaxial cables of length l = 75 cm. The cables are
geometrically identical, but they differ in their dielectric media properties, 1 = 40

and 2 = 90, �1 = �2 = �0. The generator voltage is uG�t� = √
2 �UG�rms cos��t�, with

�UG�rms = 48 V.

Q1 For each cable, determine the propagation velocities v1 and v2 as well as the
corresponding values of the wavelength �1 and �2.

Q2 The per-unit-length inductance common to both cables is L = 400 nH/m. Find the
per-unit-length capacitances C1 and C2 of the cables, as well as the corresponding
characteristic wave resistances Rw1

and Rw2
.

Q3 Cable 1 is matched to its load. Cable 2 is short-circuited at y = 0. Determine R.
Determine the load reflection coefficients �1 and �2 for both cables.
Find the complex amplitudes of all of the voltages and currents marked in Figure 9.37.
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Figure 9.37 A voltage generator drives two lossless coaxial cables of length l. While one of the
cables is matched, the other is short-circuited

Answers

Q1 vk = c/
√
r → v1 = 1�5×108 m/s� v2 = 1�0×108 m/s�

�1 = 1�5 m��2 = 1�0 m�

Q2

Ck = 1
vkL

→ C1 = 111 pF/m� C2 = 250 pF/m�

Rwk =
√
L

Ck
→ Rw1

= 60�� Rw2
= 40�

Q3 R= Rw1
= 60�� �1 = 0� �2 = −1�

UG = √
2 48 ej0 V� UR = √

2 48 ej� V� I1 = √
2 0�8 ej0 A� IR = √

2 0�8 ej� A�
I2 = 0� Icc = √

2 1�2 ej�/2 A�

Problem 9.9.9

Consider an aerial (�= �0, = 0) lossless transmission line, of length l= 1 m, subjected
to a time-harmonic regime. The generator voltage is uG�t� = √

2 �UG�rms cos��t�, with
�UG�rms = 100 V. The resistors included in the load circuit are characterized by R = 1 k�.
As shown in Figure 9.38, two standing wave patterns were recorded, one with the switch S
open, the other with the switch closed.

Q1 Why can you say that the line is matched when S is closed? Determine Rw and v.

Q2 Consider the situation with S open. By analyzing the standing wave pattern, determine
the wavelength �, the operating frequency f and the phase constant �. Evaluate � and
SWR, and obtain �Urms�min.
Find the complex amplitudes UG� IG�UL and IL.
Determine the standing wave pattern concerning the evolution of Irms�y�.
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Figure 9.38 A transmission line is terminated by a load configuration that depends on the status of
the switch. The corresponding voltage standing wave patterns are shown for S closed and open

Answers

Q1 With S closed (RL = R/2 = 500�) the line is matched because Urms�y�= constant.
Rw = RL = 500�� v= 1/

√
�00 = 3×108 m/s�

Q2 From �/4 = l/2, you get �= 2 m. f = v/�= 150 MHz. �= 2�/�= � rad/m.

� = � = R−Rw
R+Rw

= 1
3
� SWR = 1+�

1−� = 2� �Urms�min = �Urms�max

SWR
= 50 V

UG = √
2 100 V� UL = −√

2 100 V� IG = √
2 100 mA� IL = −√

2 100 mA.

The standing wave pattern concerning the evolution of Irms�y� is characterized by
two minima �Irms�min = 100 mA at the line ends, y = 0 and y = l, and by a maximum
�Irms�max = 200 mA occurring at y = l/2.


