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Preface 

The idea for this book was conceived as the result of a meeting on this 
fascinating topic. We did not feel like the most legitimate people to discuss this 
question; some aspects of it could be detailed in a very learned way by many of our 
colleagues who are experts in this domain. We have here a unique opportunity to 
praise the many engineers and researchers who efficiently contribute in France, in 
Europe and in the entire world to enriching the knowledge and know-how on 
reverberation chambers. 

This book has greatly benefited from the contributions of Daniël De Zutter, 
Professor at Ghent University (Belgium), and Alain Reineix, CNRS (French 
National Center for Scientific Research) Research Director at the Xlim laboratory. 
They had the significant responsibility of carefully proofreading the manuscript. 
Their remarks have helped us to shed light on and clarified numerous questions that 
arose during reading, for the benefit of all readers. We thank them deeply for their 
help.  

We would also like to thank M. Paolo Corona, Professor at Parthenope 
University of Naples (Italy), for honoring us by writing the foreword of this book 
and for providing some unknown testimonies of the history of reverberation 
chambers. 



Foreword 

The authors of this book have done me the honor of entrusting me with this 
foreword, and above all of mentioning my activities in the field of the mode-stirred 
chambers at the Academic Naval Institute of Naples (currently Parthenope 
University of Naples). Somehow, I have on this matter the benefit of age, which 
allows me to give some little-known indications about a period of time when there 
were very few people studying reverberation chambers. It is particularly pleasant to 
see that nowadays this subject finds a place in numerous sessions, during 
conferences and other international meetings.  

As is so often the case, activity comes from a very specific and almost always 
anecdotal motivation. This was the case for reverberation chambers. At the 
beginning of the 1970s, microwaves started to spread in Italy and there were some 
worries about them. In 1974-1975, we were consulted about the methods of 
measuring electromagnetic radiation. At this time, we were working on the 
extraction principle of the signals drowned out by noise, as well as on the possibility 
of using this technique in the field of electromagnetic waves. The idea to make 
electromagnetic radiation become incoherent via agitation of the walls or, more 
easily, with the rotation of the metal surfaces was then almost natural. 

At the same time, in the United States, we were studying the inefficiency of the 
MIL-STD norms, for the evaluation of shielding effectiveness. The method used a 
compact resonant cavity, where it was possible to make the tuning frequency vary, 
thanks to the use of metal inserts, diving more or less strongly in the cavity. The 
technique consisting of using the same method, in order to no longer obtain the 
resonance but to carry out an average evaluation on several positions of these metal 
inserts, was also natural. The idea then was to no longer use a cavity, but a shielded 
chamber instead. The team was formed of McDonnel Douglas (Saint-Louis), the US 
Navy Dahlgren Laboratory, and Boulder NBS (currently NIST). 
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The first article with an international impact (1976) brought American and 
English researchers to visit us in Naples, and at a meeting of information exchange 
(1977) at Litton, Minneapolis, officiated by D. Robertson (GeorgiaTech). We 
confronted the two points of view, that differ on the mode stirring question, whether 
it was done step-by-step or continuously. This debate is still relevant nowadays, 
because mode stirring requires a specific sampling of the measurements. I will not 
dwell on this question as it is well discussed in this book. Let us thus come back to 
the development of the first works on this subject.  

In 1979, I installed the first mode-stirred chamber at NBS/NIST, by modifying 
an old shielded chamber. But we should not forget that some chambers were already 
in operation in the United States at McDonnel, US Navy Dahlgren, Litton and in 
some other places. The basic principles were all already determined, but we had to 
convince the experts of the strong potential of this method. At the beginning of the 
1980s, NBS/NIST made a big effort and M. Crawford developed a systematic 
experimental activity, covering a wide range of frequencies. The results of these 
experiments were published in the Technical Notes of NBS, and nowadays mark the 
transit from a pioneer activity to a real emergence of the subject. The first already 
considered statistic formulations will improve, the practical use will spread, and the 
international standards will take it into account. At the same time, the subject was 
being developed in Europe. After the pioneer work done in Italy, we could find the 
study of reverberation chambers in France, the United Kingdom, the Netherlands 
and then in Germany. Continuing this description would certainly be beyond the 
scope of this foreword, because this book by B. Démoulin and P. Besnier does not 
limit itself to the study of the current state of the matter, but also presents the main 
episodes of its development. 

In any case, we can find two lines of study: electromagnetic field statistics, often 
limited to an analysis evaluation without support of physical modeling, and the 
practical use, above all in reference to the international standards. Despite the fact 
that it is an activity that started more than 30 years ago, we find very few things 
about it in the literature. We can find chapters in the general texts of 
electromagnetism and of electromagnetic compatibility, and, to my knowledge, only 
one book recently and exclusively devoted to the subject, but its remains quite 
abstract. Evidently, we can try to summarize a quite voluminous bibliography. 
However, this is a difficult exercise, especially because of the progressive nature of 
the research results accumulated over time. This book by B. Démoulin and P. 
Besnier is the perfect aid to help us, being very complete from the theoretical point 
of view, as well as from the practical point of view. Above all, it aims at extracting 
from the numerous bibliographical entries, the essential principles necessary for the 
use of reverberation chambers. The measurement methods resulting from 
reverberation chambers are indeed simple in principle, and the use of reverberation 
chambers is not difficult. This book manages to convince us of that fact, without 
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however forgetting to give the reader the basic operating principles and the 
restrictions of use. The authors did not yield to the temptation of exploiting their 
scientific activity in the field, although it is ample and of a high level. They position 
themselves with readers who have a basic knowledge in electromagnetism, in order 
to give complete knowledge of what underlies the functioning of reverberation 
chambers. Consequently, readers are progressively brought to the level of the state 
of the art: this is a very difficult exercise that the authors have achieved perfectly, 
thanks to their knowledge and their activity in the domain. 

I have mostly talked about the use of the book, and not its qualities. There are 
good reasons for that fact. First, this book is perfect and complete, but I particularly 
appreciated it from the point of view of the mission it has taken upon itself. This 
book satisfies the need for a single reference, at a homogeneous level, that could be 
used by anybody who does not have the chance to follow the development of the 
exploitation method of mode stirred chambers. This will encourage more frequent 
use of this test system and the development of new applications, a subject that the 
book will also discusses. We have to be grateful to the authors for wanting to write a 
book that aids understanding and better situates the subject in the literature, without 
flaunting their knowledge or the originality of their activity, which is spread 
throughout the book. This is a sacrifice for the researcher, especially if we consider 
that the research groups of Lille and Rennes have given and still give the important 
contribution of burning issues to the theoretical and experimental exploitation of 
mode stirred chambers. 

Professor Paolo CORONA 
Parthenope University of Naples 

July 2011 



Introduction 

Before introducing the motivation and the content of this book, we will carry out 
a brief retrospective of the advent of reverberation chambers in electromagnetism. 

The first experiments recounting the confinement of electromagnetic waves in a 
reverberation chamber probably date back to 1976. We will find the details of these 
experiments in a publication by P. Corona from the Naval Academic Institute of 
Naples (Italy). The objective of these precursory works was above all the 
measurement of the radio source emissions. It was then demonstrated that the wave 
confinement led to a direct evaluation of the total power radiated by the object. At 
this moment there are two competing theories: one considers that the 
electromagnetic power in the chamber is mainly governed by the resonance 
mechanisms and the second considers the emission as the radiation of the 
blackbody, imported from the statistic thermodynamics [COR 76a, COR 76b, COR 
02].  

Together with the research led and carried out by P. Corona, reverberation 
chambers were already being developed in the United States. Around 1980, we may 
mention the building of a chamber at the National Institute of Standard and 
Technologies (formerly called the National Bureau of Standards), where the theory 
of the stirred modes was founded, borrowed from the statistical analyses. We find 
this approach in many publications, notably written by M. Crawford, G. Koepke, 
T. Lehman. The physical-statistical analysis was then continued by works published 
20 years later by D.A. Hill, J. Ladbury, L. Arnaut, L. Jansson, M. Bäkström and by 
many other scientists working on and increasingly discussing this subject [ARN 02, 
CRA 74, CRA 86, HIL 94, JAN 99, LEH 91, LEH 97]. 

Reverberation chambers have been designed in this context and devoted to the 
measurements of the electromagnetic compatibility. Indeed, as of this time, the 
demand turns first to the measurements of the attenuation of the connectors and 
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cable shields. The concerned frequencies are then extended from hundreds of MHz 
to tens of GHz. Knowing that the reduction of the wavelength comes with a decrease 
in the antenna size, it was decided to favor the confinement techniques in the 
reverberant environment. We could add the advantage of producing oversized 
cavities compared to the wavelength to these primary properties. We thus managed 
to generate fields of random amplitude, amplitudes coordinated by a mode stirring. 
Contrary to measurements in free space, the method gave, to the objects under test, 
insensitivity to the criteria of directivity and wave polarization. These factors, 
combined with the emergence of high amplitude fields, stimulated by resonances, 
will immediately extend the reverberation chambers to immunity and susceptibility 
tests [WAR 96]. 

At the same time and with the efforts of M. Hatfield of the Naval Surface 
Warfare Center in the United States, test methods using a reverberation chamber 
enter the international standards with texts currently recognized by the International 
Electrotechnical Commission (IEC) and the aeronautics standardization [HAT 00]. 

Nowadays, the use of reverberation chambers, in France as well as in other 
European countries, intensifies with the need for the tests, but also in order to extend 
their scope in a very significant scientific research effort. In France, we can count 
several chambers distributed in some universities and other installations devoted to 
military activities, the automobile industry and aeronautics, without forgetting their 
interest for the study of the expected biological effects of radio waves. The use of 
reverberation chambers also concerns applications other than electromagnetic 
compatibility, since they simulate the propagation environments generating multiple 
reflections and, because of that fact, are very disruptive for modern 
telecommunication techniques [LIE 04]. 

To this day, there are many articles produced by the scientific community on the 
subject of reverberation chamber, and thus this book does not have the objective 
being added as a contribution to these high level works. The authors preferred a 
conventional physical approach, hoping it will help engineers, technicians or 
beginner students to understand the basics. 

The eight chapters of this book, by a gradual description, bring the reader from 
the analysis of the mode stirring and the properties of field distribution, to the 
applications illustrated by measurement examples found in various installations.  

The book is made up of three topics that we will briefly summarize.  

Chapters 1, 2, 3 and 4 discuss the physics of the chamber’s operation. From the 
analysis of other test means, we can show that a test in reverberation chamber 
integrates measurement errors. We will try to quantize their amplitude and stationary 
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behavior. Resorting to the 1D model will facilitate an understanding of the 
generation of eigenmodes, whose identity will then be specified for a rectangular 
chamber. The concepts of the modal cells and of the plane wave spectrum will be 
used to introduce the principle of mode stirring, and then indirectly (Chapter 3) the 
link that we can establish between the disordered distribution of the fields and the 
estimate of the error margins of their average amplitudes. This part will largely use 
the results and demonstrations from the articles published by D.A. Hill [HIL 94]. 
The statistical tests concluding Chapter 3 will supply the tools able to confront the 
experiment on idealized field or power distributions stated by the probability density 
function of Rayleigh distribution or exponential distribution, respectively. Chapter 4 
is mainly devoted to the characterization of the chambers, tackling the evaluation of 
the mode stirring procedures, as well as a few demonstrations relative to the 
application of statistical theories, in preparation for the calibration of the field’s 
amplitude. 

Chapters 5, 6 and 7 discuss the questions of the chambers’ use. Their aim is not 
to do a detailed description of the standard documents. On the contrary, the authors 
wanted to extract from the official methodology the protocols forming the strongest 
links with the physical and theoretical analyses undertaken in the previous chapters. 
These in-depth explanations of the phenomena will be followed by results of 
experiments carried out on electronic equipments or on components tested in several 
reverberation chambers installed in France. This is how we will find, in Chapter 5, 
immunity and susceptibility tests performed on electronic on-board car equipment. 
Chapter 6, devoted to the emission measurements, will be illustrated by an 
experiment coming from a radiation constituted of spectrum lines spreading on more 
than 1 GHz. The analysis will insist on the confrontation of measurements done on 
chambers of different volumes. Chapter 7 exclusively turned on the shield 
effectiveness, discusses the problem of the evaluation of the attenuations brought by 
shielded cables or connectors, by shielded enclosures, and then by materials offering 
a certain opacity to the radio waves. This chapter will be illustrated by results of 
experiments successively practiced on a coaxial test tube, comprising a small 
aperture on a shielded box, with a slit and on a polymer conductor material, 
deposited against a plane substratum in fiberglass.  

To conclude this book, Chapter 8 begins the link with some recent research 
works accomplished on the reverberation chamber. This part is not exhaustive and 
the authors propose a discussion on the physical limits of some approaches 
described in the previous chapters. It is obvious that for purely didactic reasons, the 
phenomena have often been reduced to ideal situations. Such is the case for field 
distribution, whose reality is found between the purely periodic model of the 
standing waves and the perfect disorder established on the hypothesis of the 
maximal entropy. We will find in this last chapter the results of the measurements, 
proving that a reverberation chamber does not rigorously follow the model of the 
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disordered field, notably when we get close to the minimal frequency of use of the 
chamber. This analysis will lead to the probability density function of Weibull. In 
this part of the book, the subject of the capture of statistically independent field or 
power data, will also be taken and improved by the search for a correlation estimator 
more appropriate to the context of the reverberation chamber. 

In the presentation of the text, the authors have deliberately repeated formulas 
that they judge important, or in other cases, some demonstrations. We notably find 
this process at the end of Chapter 3, where we have the calculations leading to the 
determination of the radiated power by an object tested in reverberation chamber. 
This reasoning will partially be repeated, and then detailed in Chapter 6, which is 
entirely devoted to the emission measurements. We think that this practice limits the 
constant returns to the zones anterior to the text and that it facilitates in the same 
time the merger of the different chapters. 

Knowing that the reverberation chambers are still prone to in-depth studies, the 
authors have replaced the conventional conclusions of Chapter 8 with open 
discussions on questions mainly related to the physical functioning.  

To complete the main text, five appendices detail physical concepts or auxiliary 
calculations. Moreover, after each chapter, the reader will find bibliographical 
references.  
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