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Appendix 1 

Notion of Probability 

Whether it is experiments carried out in reverberation chambers or theoretical 
simulations of these tools, the data such as the electric field or the power collected in 
the room behave like random variables. The developments related in Chapter 3 
frequently use the main results of the theory of probabilities. Some notions about 
this theory will be recalled in this appendix [BAS 67]. 

A1.1. The random variable concept 

A random variable is represented by a number, whose quite unpredictable 
behavior can be attached to a probability distribution. In the context of the book, the 
random variables will follow a continuous description. These variables, often 
denoted by a small letter, will belong to the set of real numbers. However, their 
domain can be bounded and restricted in the positive real numbers or extended to all 
real numbers, as illustrated below: 

     mini maxi or 0 orx X X x x       [A1.1] 

A1.2. Probability concept from intuition 

Let us consider an experiment, whose aim is to take a variable x staggered on N 
discrete values, which are defined by the following conventions: 

1 2( , )i Nx X X X X    [A1.2] 
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During tN experiments, the Xi value appears ti times. An estimate of the Pi 
probability, of instance Xi, will thus be given by the ti/tN ratio, i.e.: 

 ˆ ˆP where P Probi
i i i

N

t
x X

t
    [A1.3] 

Intuitively, we realize that by indefinitely increasing the tN number of 
experiments, the estimate of Pi must converge on the rigorous Pi probability.  

Knowing that the sum of the ti tests corresponds to all tN number of experiments, 
the sum of the N probabilities is necessarily equal to the unit, hence: 

ˆlim P P
Nt i i      [A1.4] 

1 1

P̂ 1
N N

i N i
i i

t t
 

     [A1.5] 

This expression is called the normalized condition of the probability.  

A1.3. Probability density function (pdf) 

In case of random variables with continuous spread, the definition of the 
probability attached to the x variable will be transposed to the differential element 
dp. Regarding the probability for a quantity α belonging to the [x x+dx] interval, i.e.:  

 p Probd x x dx     [A1.6] 

This relation and the properties of the differential calculation result in the 
function p(x), called the probability density function noted with the abbreviation pdf: 

p p( )d x dx  [A1.7] 

The normalized condition [A1.5] can be extended to the pdf, by solving the 
integral below: 

p( ) 1x dx




  [A1.8] 
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If the domain to which the x variable belongs is bounded, the calculation of the 
integral will be bounded as well.  

A1.4. Computation of moments 

From the probability concept introduced in section A1.2, we find that an estimate 
of the mean value of the variable x, taking the notation < x >, can be expressed as 
follows: 

1

1

N

i i N
i i

i
N Ni

X t
t

x X
t t




  


  [A1.9] 

For an infinite number of experiments, the estimate of the mean value tends 
towards the rigorous mean value established by expression [A1.10], where Pi 
represents the rigorous probability: 

 
1

E P
N

i i
i

x x X


   [A1.10] 

This calculation is then called the expected value or moment computation of the 
x variable.  

A1.4.1. Computation of the moment of the x random variable 

Calculation of the moment formulated in equation [A1.10] can be extended to 
the random continuous variables, by forming integral [A1.11]: 

 
1

E p( )xm x x x dx




    [A1.11] 

The moment of the x variable merged with its rigorous mean value is denoted 
here by the mx notation. The index 1 recalls that it concerns the x variable 
calculation. 
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A1.4.2. Computation of the moment of the x squared random variable 

Calculation of the moment can be extended to the x2 variable, the so-called x 
squared random variable. 

2

2 2 2E p( )xm x x x x dx




       [A1.12] 

The result of this integral is then strictly similar to the mean value of the square 
of x, sometimes denoted by the x2 notation topped by a stroke.  

A1.5. Centered and normalized variables 

For the convenience of some calculations, we carry out the transformation of the 
random variables, then presented under centered or normalized variables answering 
to the following definitions.  

A1.5.1. Centered variables 

The centered variable is designated here by the x0 notation. It represents the 
random function of the x variable at both side of the average amplitude. x0 takes the 
definition:  

 
10 0E 0xx x m x     [A1.13] 

Calculation of the moment of x0 necessarily gives zero.  

A1.5.2. Normalized variables 

In order to avoid the physical dimension of the random variables, we use 
normalized variables given by the ratio of x over the mean value of x given by the 
computation of the moment of x as found in equation [A1.11]. The normalized 
variable is designed by the notation x with a bottom index r. 

1

r
x

xx
m

  [A1.14] 
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A1.6. Computation of the variance and standard deviation 

The variance and the standard deviation of an x variable enable us to put a figure 
on the amplitude of the random behavior of x around its mean value.  

A1.6.1. Definition of the variance 

The variance is defined by the calculation of the moment of the square amplitude 
of the x0 centered variable brought back to x. The variance takes the notation of the 
square of the σx symbol, i.e.: 

1

2 2 2
0E E ( )x xx x m           [A1.15] 

From the development of this expression, we can show that the variance is the 
difference between the moment of the square of x and the squared moment of x:  

    
2 1

2 22 2E Ex x xm m x x        [A1.16] 

A1.6.2. Definition of the standard deviation 

The standard deviation corresponds to the σx notation. It represents the square 
root of the variance: 

1

2 2( )x x xE x m        [A1.17] 

Compared to the variance, the standard deviation leads to a result expressed with 
a similar physical dimension to the one of the random variable x.  

Let us specify that the normalized variable of a centered variable is the ratio of 
this variable with its standard deviation.  

A1.7. Probability distributions 

Under some physical and mathematical considerations, we manage to develop 
probability distributions, to which we can attach functions either expressed in terms 
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of Xi discrete random variables or x continuous random variables. In the second 
case, they are the pdf, which are defined above with the p(x) notation. 

Only the knowledge of the probability distribution enables us to calculate the 
moments, as well as the variance and the standard deviation. As an example, we 
mention two distributions, which are frequently used in this book: the uniform 
probability distribution and the normal distribution, also called the Gaussian 
distribution. 

A1.7.1. Uniform probability distribution 

Let us consider a random variable x, whose behavior is uniformly distributed in 
the [0 2π] interval. Under this assumption, the pdf attached to x takes a p0 invariant 
value, i.e.: 

  00 2 p( ) px x    [A1.18] 

Knowing that, for the considered interval, the p(x) function must meet the 
normalized condition [A1.8], we immediately find the value of p0: 

2

0

0

1
p( ) 1 p

2
x dx




    [A1.19] 

The generation of random numbers using the uniform distribution law is 
frequently used in order to produce other random numbers, which are developed 
according to the Monte Carlo trials. 

A1.7.2. Normal probability distribution 

The normal distribution aims at random variables, whose amplitude distribution 
around the mean value is carried out with the ideal random distribution. We will see 
in Chapter 3, that the conditions of maximum entropy and minimum energy of the x 
variable enable us to find the analytical form of the p(x) pdf. 

If this is a centered normalized variable xr which is defined according to the left 
side of equation [A1.20], p(x) takes the expression: 
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2

1

1

21
p( )

2

rxx
r r

x

x m
x x e

 


    [A1.20] 

Section A1.12 includes the summary of the main probability distributions found 
in this book. 

A1.8. The cumulative distribution function (cdf) 

The cumulative distribution function, designated with the cdf abbreviation, is 
denoted by the F(X0) function and represents the probability of locating the x 
random variable below an arbitrary X0 value. Coming back to section A1.3 shows 
that the distribution function is the integral of the p(x) pdf, which is established 
between the lower bound of the variation domain of x and X0. If the x variable 
belongs to the positive real numbers, F(X0) takes the expression: 

 
0

0 0

0

F( ) Prob p( )

X

x X x X x dx     R  [A1.21] 

We will see later on that the cdf is efficient for the construction of histograms 
established on experimental data.  

A1.9. The ergodism notion 

We will carry out the intuitive definition of the ergodic property, which is then 
applied to the calculation of the autocorrelation function.  

A1.9.1. Intuitive definition of the ergodic property  

Let us consider a x(t) function depending on a non-random variable t, which can 
be the time or a spatial location brought back to any coordinate system. If the 
variations of x(t) as a function of t behave in such an unpredictable way, this is a 
random function. During a process of data collection, x(t) can be evaluated at 
periodic intervals Te, called sampling periods.  

A series of N samples of x(t) then takes the form of a series in which appears the 
Dirac function δ(t). This means that δ(t) vanishes at any point, except for t = 0, i.e.: 
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1

0

( ) ( )
N

k e
k

x t x t kT



   [A1.22] 

The ~ notation shows that it is a sampled function. If we indefinitely increase the 
size N of the statistical sample thus constituted, the xk terms found in [A1.22] form a 
series of random variables, to which we can attach a pdf p(x). If we manage to 
determine p(x), calculation of the moment of x will give the rigorous mean value of 
x denoted by the x notation topped with a stroke: 

 
1

E p( )xx m x x x dx   
D

 [A1.23] 

Calculation of the integral is extended within the D domain, covered by the x 
variable. 

An alternative way to this previous integral calculation consists of the 
computation of the mean value of x(t) versus the t variable. If we restrict the domain 
to the positive real numbers, the xmvaverage value thus obtained, takes the 
expression: 

mv

0

1
lim ( )

T

Tx x t dt
T   [A1.24] 

To say that the random variable x satisfies the ergodic principle, means that 
[A1.23] and [A1.24] tend to similar mean values, i.e.: 

mvErgodism x x   [A1.25] 

The insertion of the sampled function [A1.22] into integral [A1.24], results in the 
estimate of the mean value of x, i.e.:  

1

0

1
N

k
k

x x
N




    [A1.26] 

A1.9.2. Use of ergodism to the calculation of the autocorrelation function  

Let us allocate to the random function x(t), two values, x1 and x2. One comes 
from a determination, when we allocate the t1 value on t, and the other for t2. The 



Appendix 1     371 

following step of the calculation will be eased by the use of the shift τ mentioned 
below: 

1 1 2 2 2 1( ) ( ) withx x t x x t t t      [A1.27] 

When t is the time variable, a negative shift τ means that x2 corresponds to a 
value of x(t) occurring before x1. Conversely, it is an advanced value when τ is 
positive. 

If the statistical properties of x1 and x2 remain invariant regardless of t (what we 
will call in the next section stationary state), x1 and x2 are two random variables, to 
which we can attach a joint probability density function which is designated by the 
p12(x1,x2) notation. We can say that the joint pdf feature in an analytical way, the 
degree of dependence of the random behavior of the x1 and x2 variables. If they are 
independent variables, p12(x1,x2) is reduced to the product of the own pdf of x1 or 
x2: 

12 1 2 1 2Independent variables p ( , ) p( ) p( )x x x x   [A1.28] 

Given the stationary state assumptions of the variables, the pdf appearing in 
equation [A1.28] must be independent from the t variable. 

The autocorrelation function taking the symbol Cxx(τ) is defined by the moment 
computation of the product x1x2: 

 1 2 1 2 12 1 2 1 2( ) E p ( , )xxC x x x x x x dx dx   
D

 [A1.29] 

The value and the shape of the autocorrelation function are directly related to the 
degree of dependence of the random behavior of the variables x1, x2. This means that 
any usual random variable produces a decreasing Cxx(τ) function, when the shift τ 
increases.  

Except for some specific conditions the computation of the joint pdf cannot be 
processed analytically. To determine the autocorrelation, it is then more convenient 
to use the ergodism principle, i.e. adopting the integral [A1.30] brought back to the t 
variable, i.e.: 
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/2

/2

1
( ) lim ( ) ( )

T

xx T
T

C x t x t dt
T

 





   [A1.30] 

This expression assumes that the domain of the variable t of the random function 
x(t) is contained in the domain of positive real numbers. 

From this relation, we find that the value of the autocorrelation function in τ = 0 
is the mean of the x squared variable. Conversely, for the infinitely large shifts IτI, 
the x1 and x2 variables become necessarily independent. In this case, the 
combination of [A1.28] and [A1.29] shows that Cxx(τ) is the square of the average 
value of x. 

Inserting a finite size sampled function in equation [A1.30], we obtain the 
estimate of Cxx(τ) given by the series mentioned below. We then talk about the 
estimate of Cxx(τ), which is designated by the suitable convention, i.e.: 

( 1)/2

/2

1ˆ ( )
N

xx e k k r
N

C rT x x
N






   [A1.31] 

The estimate of the autocorrelation function is used in Chapter 4 and 8, in order 
to characterize the efficiency of a mode stirrer.  

A1.10. Features of the random stationary variables 

The stationary state of a variable mentioned in the previous section assumes that 
the statistical features of the variable remains unchanged at anytime and anywhere. 
Let us take a look at the example of a x variable, which is assumed to follow a 
normal probability distribution introduced in [A1.20]. If it is proven that disjoined 
samples of the normalized form of this variable remains in agreement with the same 
normal distribution, we can conclude from this experiment that xr responds to a 
stationary state. However, if the standard deviation of x significantly varies from one 
sample to another, x loses the stationary state.  

We will see in Chapters 3 and 4 that only a fine statistical analysis of the 
behavior of the variables enables us to decide the stationary state criterion. The 
characterization and calibration of the reverberation chambers are mostly based on 
the stationary state feature of the data collected during the measurements.  
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A1.11. The characteristic function 

Although the characteristic function is not explicitly used in this book, we can 
find it in the definition of some probability distributions. The characteristic function 
is also involved in the central limit theorem.  

Let us consider a random real and continuous variable x, which is linked to the 
p(x) pdf. We introduce the real variable t, in order to form the complex variable z, 
which is defined as follows: 

j xtz e  [A1.32] 

The characteristic function usually designated by the φ(t) notation, corresponds 
to the moment computation of the complex random z variable, i.e.: 

( ) E[ ] p( )t z z x dx




    [A1.33] 

The form of this expression shows that the characteristic function is the Fourier 
integral of the p(x) pdf: 

( ) p( ) j xtt x e dx




   [A1.34] 

Consequently, if we manage to determine the characteristic function attached to 
a random variable x, the calculation of the inverse Fourier integral leads to p(x): 

1
p( ) ( )

2
j xtx t e dt








   [A1.35] 

According to the demonstration of the central limit theorem as proposed in the 
book by Papoulis [PAP 91], let us consider a continuous random variable xs made up 
of the sum of N variables x. Each of these N variables obey the same p(x) pdf; the 
new xs variable is then expressed: 
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1

N

s i
i

x x


  [A1.36] 

Assuming that the xi variables are all independent, the ps(xs) pdf attached to xs 

will be made up of the product: 

 
1

p ( ) p( ) p( )
N

N
s s i

i
x x x



   [A1.37] 

The characteristic φs(t) function attached to the xs variable can thus be written: 

( ) p ( ) sj x t
s s s st x e dx





   [A1.38] 

After insertion of equations [A1.36] and [A1.37] within the integral and after the 
calculation of the inverse Fourier integral of φs(t), we reach the expression made up 
of N convolution products of the p(x) functions, hence: 

1 2p ( ) p( ) p( ) p( ) p( )s s i Nx x x x x      [A1.39] 

It is then shown when the size N of the sample forming the xs variable 
indefinitely increases, the resulting ps(xs) pdf tends to the normal distribution 
[PAP 91]: 

1

2

( )1

21
p ( )

2

s xs

xs

s

x m

s s
x

N x e 

 




     [A1.40] 

We find in this formula the moment and the variance of xs, which are presented 
with the suitable notation conventions. We easily deduce from the properties 
formulated previously in this appendix, the following expressions: 

   1 1 1E where E
sx s x xm x N m m x    [A1.41] 
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  22 2 2E ( ) E
s

s s xx x x N       [A1.42] 

Thus, the sum of N independent random variables following the same probability 
distribution, is scattered at both sides of its mean value with an ideal random fashion 
expressed in terms of the normal distribution. 

A1.12. Summary of the main probability distributions 

Readers can only find in this summary the probability distributions found in the 
book.  

A1.12.1. Uniform distribution  

Let x be a continuous variable. Uniform distribution means that the p(x) 
probability density function is invariant, whatever the value of x, which belongs to 
its variation domain. 

The uniform probability distribution can thus correspond to relation [A1.43] 
below: 

0p( ) px   [A1.43] 

A1.12.2. Normal distribution 

A continuous x variable follows a normal distribution or a Gaussian distribution, 
when the p(x) pdf appropriates the following general form: 

2
1

2

( )1

21
p( )

2

x

x

x m

x
x e 

 


  [A1.44] 

The variation domain of x is assumed to be infinitely extended. We can find in 
this relation the moment mx1, as well as the σx standard deviation. 

If it is a normalized and centered variable xr, this expression takes the simplified 
form: 
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2( )

21
p( )

2

rx

rx e



  [A1.45] 

A1.12.3. Chi-squared distribution 

Let us consider a χ2 variable made up of the sum of N terms, themselves made up 
of the square amplitude of the normalized and centered xi variables, according to all 
the normal and stationary distributions: 

2 2

1

N

i
i

x 


   [A1.46] 

It can be shown that any value α of the χ2 variable is characterized by a pdf, 
which is expressed in the following form: 

1
2 2

2

1
p( , )

2 Γ( / 2)

N

NN e

N


 

 
  [A1.47] 

In this formula, the integer N parameter indicates the degree of freedom of the 
p(N,α) function, which is called a chi-squared distribution. In formula [A1.47], 
Г(N/2) requires the calculation of an Euler integral taking the general form: 

1
2

0

Γ( / 2)
N

vN v e dv
     [A1.48] 

A1.12.4. Weibull distribution 

The Weibull distribution aims at the continuous random positive x variable and 
two parameters, k and λ, which belong to the positive real numbers. The Weibull 
distribution takes the general expression: 

1

p( , , ) with , ,

kxkk xx k e x k 
 

        
 

R  [A1.49] 

In this formula, k is a shape parameter, and λ is a scale parameter. 
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A1.12.5. Exponential distribution 

The exponential distribution aims at random positive variables x. The 
exponential distribution tends to the Weibull distribution, when we allocate the 
value 1 to the shape parameter k, i.e.: 

1
p( , )

x

x e 



  [A1.50] 

In this case, the λ scale parameter is reduced to the moment of the x variable: 

 1 Exm x    [A1.51] 

The exponential distribution is also a specific case of the chi-square distribution.  

A1.12.6. Rayleigh distribution 

The Rayleigh distribution aims at random continuous variables x. This is the 
Weibull distribution with shape parameter k = 2: 

2

2

2
p( , ) 2

x
xx e 



  [A1.52] 

The λ scale parameter is related to the variance by the equation: 

2 22 x   [A1.53] 

As shown in Chapter 3, the Rayleigh distribution is also a particular case of the 
chi-square distribution with two degrees of freedom.  

With the prospect of comparing random data collected during experiments with 
known probabilities distributions, the contribution of the two independent 
parameters found in the Weilbull distribution, simplifies the adjustment tests.  
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A1.13. Tables of numerical values of the normal distribution integrals 

Knowing that the pdf expressing the normal distributions [A1.44] and [A1.45] 
includes the Gaussian function, the computation of the cdf can only be carried out 
by using a numerical calculation. It is to this purpose that the data of Table A1.1 
correspond to the calculation of the integral of the normal distribution [A1.54] when 
the reduced xr variable belongs to the      domain for lower λ bounds ranging 

between 0 and 4.5. 

A1.13.1. Calculation of the integral 

2( )

22
I

2

rx

re dx




 
   [A1.54] 

λ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 

100 I 1 84.148 68.916 54.851 42.371 31.731 23.014 16.151 

 

λ 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

100 I 10.960 7.186 4.550 2.781 1.640 0.932 0.511 0.270 

 
λ 3.2 3.4 3.6 3.8 4 4.5 

100 I 0.137 0.067 0.032 0.014 0.006 0.0006 

Table A1.1. Numerical values taken from the book by Bass [BAS 67] 

Conversely, in some statistical problems using the central limit theorem, the 
integral equation [A1.55] needs to be solved.  

A1.13.2. Solution to the integral equation 

2( )

22
I

2

rx

re dx




 
   [A1.55] 

Table A1.2 has the λ solutions corresponding to the values of the I integral 
ranging between 10-4 and 1. 
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100 I 100 95 90 85 80 75 70 65 

λ 0.0000 0.0627 0.1257 0.1891 0.2533 0.3186 0.3853 0.4538 

 
100 I 60 55 50 45 40 35 30 25 

λ 0.5244 0.5978 0.6745 0.7554 0.8416 0.9346 1.0364 1.1503 

Table A1.2. Numerical values taken from the book by Bass [BAS 67] 
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