Appendix 4

Calculation of the Variances of $v_{\varphi}, v_{\eta}, v_{\theta}$

A4.1. Variance of the v_{φ} and v_{η} variables

From relationship [3.50] in section 3.3.2 of Chapter 3 we know that the azimuth angle φ_{i} of the waves with random trials is linked to the v_{φ} variable by the following expression:

$$
\begin{equation*}
v_{\varphi}=\sin \varphi_{i} \tag{A4.1}
\end{equation*}
$$

The computation of the pdf established in [3.52] enables us to formulate the sought after variance, i.e.:

$$
\begin{equation*}
\sigma_{v_{\varphi}}^{2}=\mathrm{E}\left[v_{\varphi}^{2}\right]=\int_{\mathrm{D}} v_{\varphi}^{2} \mathrm{p}_{\varphi}\left(v_{\varphi}\right) d v_{\varphi} \tag{A4.2}
\end{equation*}
$$

is the equation in which D is the variation domain of v_{\varnothing}, i.e. the interval $[-1+1]$. Integral [A4.2] can then take the detailed form below:

$$
\begin{equation*}
\sigma_{v_{\varphi}}^{2}=\frac{1}{2 \pi} \int_{-1}^{+1} \frac{v_{\varphi}^{2}}{\sqrt{1-v_{\varphi}^{2}}} d v_{\varphi} \tag{A4.3}
\end{equation*}
$$

By using expression [A4.1], we carry out the change of variable leading to integral [A4.4]:

$$
\begin{equation*}
\sigma_{v_{\varphi}}^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{2} \varphi_{i} d \varphi_{i} \tag{A4.4}
\end{equation*}
$$

Analytical solution of this integral allocate the value $1 / 2$ to the variance:

$$
\begin{equation*}
\sigma_{v_{\varphi}}^{2}=\frac{1}{2} \tag{A4.5}
\end{equation*}
$$

Regarding v_{η}, a similar calculation leads to the determination of the integral [A4.6]:

$$
\begin{equation*}
\sigma_{v_{\eta}}^{2}=-\frac{1}{2 \pi} \int_{-1}^{+1} \frac{v_{\eta}^{2}}{\sqrt{1-v_{\eta}^{2}}} d v_{\eta}=\frac{1}{2} \tag{A4.6}
\end{equation*}
$$

A4.2. Variance of the v_{θ} variable

We recall that the definition of the v_{θ} variable as found in equation [3.50]:

$$
\begin{equation*}
v_{\theta}=-\sin \theta_{i} \tag{A4.7}
\end{equation*}
$$

Knowing that θ_{i} covers the $[0+\pi]$ interval, amounts to saying that we can divide the domain to conform to the partition suggested in [A4.8]:

$$
\theta_{i} \in[0+\pi / 2] \Rightarrow v_{\theta} \in\left[\begin{array}{ll}
-1 & 0
\end{array}\right] \text { and } \pi-\theta_{i} \in[0+\pi / 2] \Rightarrow v_{\theta} \in\left[\begin{array}{ll}
-1 & 0 \tag{A4.8}
\end{array}\right]
$$

The calculation of the moment of the square of v_{θ} is consequently similar to the integral of v_{θ} on the two joined intervals [-10], i.e.:

$$
\begin{equation*}
\sigma_{v_{\theta}}^{2}=\mathrm{E}\left[v_{\theta}^{2}\right]=2 \int_{0}^{-1}\left(v_{\theta}\right)^{2} \mathrm{p}_{\theta}\left(v_{\theta}\right) d v_{\theta} \tag{A4.9}
\end{equation*}
$$

After insertion of the pdf found in [3.54], the variance can be calculated by the integral below:

$$
\begin{equation*}
\sigma_{v_{\theta}}^{2}=\int_{0}^{-1} \frac{v_{\theta}^{3}}{\sqrt{1-v_{\theta}^{2}}} d v_{\theta} \tag{A4.10}
\end{equation*}
$$

Solving this integral analytically leads to the following results:

$$
\begin{equation*}
\int_{0}^{-1} \frac{v_{\theta}^{3}}{\sqrt{1-v_{\theta}^{2}}} d v_{\theta}=2 \int_{0}^{-1} v_{\theta}\left(1-v_{\theta}^{2}\right)^{\frac{1}{2}} d v_{\theta}=\left[-\frac{2}{3}\left(1-v_{\theta}^{2}\right)^{\frac{3}{2}}\right]_{0}^{-1}=\frac{2}{3} \tag{A4.11}
\end{equation*}
$$

Coming back to equation [A4.10] finally gives the value of the variance:

$$
\begin{equation*}
\sigma_{v_{\theta}}^{2}=\frac{2}{3} \tag{A4.12}
\end{equation*}
$$

