
Chapter 3 

Statistical Behavior of Stirred  
Waves in an Oversized Cavity  

3.1. Introduction 

Chapter 2 reached the conclusion that the field distribution observed in an 
electromagnetic cavity was hard to predict when its dimensions were much higher 
than the wavelength. The theoretical difficulty mainly comes from the presence of 
scattering devices. We can add to these geometrical details the energy losses. Their 
contribution manifests itself in the appearance of groups of modes, whose relative 
intensity depends on the lesser displacement of the transmitting antenna immersed in 
the chamber. If the calculation of the field remains possible using theoretical 
simulations adapted to the context of the MSRC, the use of these numerical models 
is extremely costly in computer resources. All of these reasons have thus encouraged 
scientists to compare the electric or magnetic fields with random variables. We will 
try to add to these variables probability density functions and statistical properties, 
all examined in this chapter [KOS 91, SER 09]. 

Section 3.2 is devoted to the statement of the postulate specifying that the 
distributed field in a perfect MSRC answers to the largest random behavior. This 
means that under continuous sinusoidal excitation, the complex components of 
electric (or magnetic) field variable appropriate the conditions of maximum entropy 
and minimum energy. This reasoning leads to the normal probability density 
function (pdf), while assuming an isotropic field distribution. Thus, the complex 

components of the electric field vector E


(or of the magnetic field vector H


) give 
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six centered random variables, which are assumed to be independent and to possess 
the same standard deviation. Knowing that the sensors or receiving antennas 
generally only measure the absolute amplitudes of these field components or a 
power proportional to their square amplitudes, the Rayleigh probability distribution 
and the exponential distribution result from these properties. The calculations of the 
moments of these variables will be undertaken and presented with specific notation 
conventions. 

Section 3.3 is entirely devoted to the simulation of an ideal random field. This is 
not about exactly reproducing the field distribution found in an actual reverberation 
chamber, but about supplying amplitude data respecting the previously stated 
Rayleigh or exponential distributions. The process consists of using the properties of 
the plane wave spectra developed in Chapter 2. With the help of pseudo-random 
generation of these random variables draws, we will show that the field coming from 
such a simulation is wreathed with uncertainties. These uncertainties can be 
quantified thanks to the joint applications of the large numbers law and of the central 
limit theorem (CLT).  

Section 3.4 goes into depth on the subject of the statistical concepts previously 
stated. It is about comparing the experimental data to the probability density 
distributions resulting from the ideal random field. We then use the estimate of the 
mean amplitudes and the variances. They will be the subject of some theoretical 
considerations. The analysis will then turn to the use of the statistical Kolmogorov-
Smirnov test (or KS test). The application of this test seems quite appropriate to the 
context of the reverberation chambers. Theoretical simulations and comparisons to 
experimental data will conclude this section. 

Section 3.5 is more particularly devoted to the use of statistical properties, in 
order to determine the balance of the powers observed between a transmitting 
antenna and a receiving antenna, both installed in the room. These features will be 
used to define a measurement procedure of the transmitting power of a device, as 
well as to determine the composite quality factor of the chamber.  

3.2. Descriptions of the ideal random electromagnetic field  

3.2.1. The electromagnetic field assumed as a random variable  

Let us consider a reverberation chamber containing a mode stirrer and a 
transmitting antenna connected to a source of sinusoidal signals of angular 
frequency ω0. This angular frequency is assumed to be much higher than the 
minimum angular frequency ωs. The latter marks the boundary of the expected 
functioning of the chamber. By the expression “expected functioning”, we mean the 
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physical feature of the field distribution corresponds f to the behavior of random 
variables with regards to the powers and voltages collected by a device. Generally, 
the angular frequency or the lowest frequency represents five or six times the 
angular frequency or the first eigenmode frequency of the chamber. For the 
illustration adopted in this chamber, the first eigenmode angular frequency will be 
designated by the symbol ω011. Readers interested in knowing the definition of the 
angular frequencies or the first eigenmode frequencies of a rectangular shaped cavity 
can refer to section 2.3.3 of Chapter 2. The position of the ω0 angular frequency of 
the expected functioning consequently meets the criteria below: 

011 011 0 05 at 6 and i.e : 10s s s          [3.1] 

Since the electromagnetic field is established in a chamber with high but finite 
conductivity walls after an initial transient response, we reach the continuous sine 
wave of the fields under the ω0 angular frequency. If we first take a look at the 
electric field, using the complex numbers, the function identified with the lower case 
e will depend on three space variables, x, y, z and on the time variable t. The electric 
field can be polarized according to one of the three directions of the Cartesian graph. 
We will thus use the convention of ex,y,z indices. The electric field complex function 
in any point of the chamber, will thus be presented by equation [3.2], where the use 
of the capital letter in Ex,y,z is aimed at the complex amplitude function reduced to 
just the space variables: 

0
, , , ,( , , , ) ( , , ) j t

x y z x y ze x y z t E x y z e   [3.2] 

Let us recall that under these notations, the physical signal corresponds to the 
real part of the complex function in equation [3.2]. 

The Ex,y,z function can also be projected under a Cartesian form where the real 
and imaginary component, will be associated with r and j superscripts: 

r j r j
, , , , , , , , , ,, and 1x y z x y z x y z x y z x y zE E j E E E j     R  [3.3] 

To avoid overloading equation [3.3], the x, y and z space variables have not been 
recalled. The functions that represent the real and imaginary components of each 
Cartesian projection of the field Ex,y,z are therefore real random numbers. The latter 
are quantities that we will be merged into the random dummy variable designated by 
ν. This means that we establish between ν and the previous functions, the 
correspondence rules shown below: 

r j
, , , ,orx y z x y zE E    [3.4] 
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From the physical point of view, the v variable describes the rms amplitude of 
one of the two components of the Ex,y,z(x, y, z) function; this is for an observer 
located at any point inside the chamber. In practice, this data will be supplied by 
measurement sensors of the electric field or by numerical simulations. We can thus 
have very large samples of the v amplitudes and v will be assumed to be a random 
variable. We propose to add to this variable a probability density function (pdf) 
taking the usual p(ν) notation. This pdf obviously fulfills the normalized integral 
[3.5]: 

p( ) 1d 




  [3.5] 

This unbounded integral assumes that ν occupies an infinite set of values. This is 
obviously incorrect, since the fields amplitude is naturally limited by the finite 
amplitude of the standing wave that results, from energy losses. We will come back 
to this matter in other parts of this section. We make the assumption that the random 
behavior of the amplitude of the real or imaginary component of the field does not 
favor any polarity and that the linear functioning gives to ν (i.e. to the field 
components) a balanced distribution around the null mean value. Consequently, the 
computation of the moment of ν leads to a centered variable. This feature translated 
in the usual notations of the probability theory recalled in Appendix 1 is expressed 
by relationship [3.6]: 

 
1

E 0m    [3.6] 

We add to this first property, the postulate meaning that the distribution of the v 
variable is independent from the field polarization. In other words, the variances of 

the v variables are all identical to a same value designated by the conventional 2
  

symbol. This postulate transposed in equation [3.7] features the isotropy of the field 
distribution: 

 2 2 2 2 2 2 2E ( ) E ( ) E ( ) E ( ) E ( ) E ( ) E ²r r r i i i
x y z x y zE E E E E E                              

 [3.7] 

It thus remains to seek a probability distribution p(ν), known to be compatible 
with the experimental facts or in agreement on idealized physical properties. The 
first process consists of gathering data collections, in order to build histograms that 
we will compare to theoretical distributions. The second method is based on the 
statement of a hypothesis aimed at idealizing the statistical features of the expected 
experimental pieces of data. These properties will be compared to tests, in order to 
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check the agreement with the experiment. In section 3.2.2 we will use the second 
method and recall its theoretical foundations.  

3.2.2. Statement of the postulate of an ideal random field  

The postulate was initially formulated in an article from D.A. Hill published in 
1998. It states that the amplitudes of a very large sample of v variables collected in a 
reverberation chamber are distributed in a perfect random manner [HIL 98]. 
According to the principle of Boltzmann’s statistics, the ideal statistical properties of 
the variable v satisfy the state of minimum u energy and of maximum S entropy. The 
energy is linked to the square amplitude of ν weighted by the a physical unit 
coefficient U0. The entropy is defined by the product of Boltzmann’s constant kB and 
of the natural logarithm of the p(ν) probability density function attached to the v 
variable, i.e.: 

 2
0 and ln p( )Bu U S k    [3.8] 

Equation [3.8] enables us to formulate the criteria of minimum energy and 
maximum entropy by calculating the first derivatives: 

0
p

0 2 0 and 0 0
p( )

Bkdu dS dU
d d d


   
       [3.9] 

After using Lagrange multipliers, we reach the differential equation presented 
below: 

p
0 p( ) 0

du dS d K
d d d

   
  
      [3.10] 

In this equation, the K coefficient includes all the previously introduced 
constants.  

The solution of equation [3.10] is an exponential decreasing function in which 
the square of the variable v appears: 

21

2p( )
K

Ae





  [3.11] 

After the calculations of the moment of ν2 and of the normalized integral of p(ν) 
given in [3.5], we easily manage to connect the A and K unknown constants to the 
standard deviation and to the variance of the v variable. The p(ν) function then takes 
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the definitive form of the normal probability density distribution. To designate pdf 
of the normal distribution, we use the pn symbol – the letter n recalls that we aim for 
a normal distribution: 

2

2

1

21
p ( )

2
n e 







 


  [3.12] 

The standard deviation σν that is the square root of the variance features the 
scattering of the v variable around zero. This scattering will depend on the physical 
properties of the chamber, notably on the quality factor and on the direct couplings 
exerted by antennas or devices. We will see in Chapter 8 that the contribution of 
direct couplings leads to the collected field data in the room tends to move away 
from the normal distribution formulated by equation [3.12]. 

We will see in the following of this section that we use normalized variables as 
well as variables other than v. Section 3.2.3 is devoted to the conventions adopted 
for the definitions of these new variables. 

3.2.3. Presentation conventions of the random variables 

3.2.3.1. Absolute amplitude of the electric field 

Most of the electric field probes used in test chambers give a voltage 
proportional to the absolute amplitude of the complex electric field Ex,y,z. 

Consequently, this variable modulus will be defined and presented with the 
writing conventions of equation [3.13]: 

   2 2r j
, , , , , ,x y z x y z x y zE E E   [3.13] 

Generally, the output data of the field sensors is a voltage proportional to the 
amplitude of one of the x, y, z projections of the field vector.  

3.2.3.2. Power collected on an antenna 

If we admit that the antennas are polarized according to one of the three electric 
field projections, the power variable designated by the p symbol is linked to the 
square of the electric field amplitude times a physical unit factor A0. To avoid the 
mix-up with the probability density symbol, the p power variable will be written in 
italics:  
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2
0 , ,x y zp A E  [3.14] 

We will note that this formula can also concern the power detected at the output 
of a field probe connected on a load resistance. 

3.2.3.3. Normalized field and power variable 

To ease some demonstrations or to lighten the presentation of some results, we 
frequently use the normalized variable concept. We successively distinguish the 
normalized variable υr attached to the components of the complex electric field, the 
normalized power pr collected by an antenna and the normalized variable of the 
absolute electric field amplitude er. The υr variable will be made up of the ratio linking 
the v variable to its standard deviation σν: 

r





  [3.15] 

Using the transformation suggested below, we easily move from the normal 
distribution attached to the v variable to its equivalent distribution associated wtih 
the normalized variable υr: 

p p ( ) p p ( )n n n n rd d d d        [3.16] 

We easily take from this equation the expression of pn(υr), hence: 

21

21
p ( )

2

r

n r e






  [3.17] 

The normalized variable pr comes from the ratio linking p to its mean value pmv, 
i.e.: 

mvp
ppr   [3.18] 

This mean value is the first moment of p: 

 pp Emv   [3.19] 
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However, calculation of the expected value assumes prior knowledge of the pdf 
of the p variable. This question will be resolved in the next section. 

3.2.3.4. The χ2 variable 

The square electric field amplitude appears in the definition of the power 
variable given in [3.14]. This amplitude can be written with the normalized form of 
the v variable taken from relationship [3.15]. The result will be presented in equation 
[3.20], where we can find the υ1 and υ2 auxiliary variables. They are respectively 
linked to the real and imaginary components of Ex, y, z formulated below: 

     2 22 r j 2 2 2
, , , , , , 1 2x y z x y z x y zE E E        [3.20] 

The χ2 normalized variable will thus be defined by the sum of the square 
amplitudes of υ1 and υ2, i.e.: 

2
, ,2 2 2

1 2 2

x y zE


  


    [3.21] 

3.2.3.5. Normalized absolute amplitude of the electric field  

The normalized absolute amplitude of the electric field is given by the square 
root of the χ2 variable, which is the ratio of the field modulus expressed in [3.13] and 
of the standard deviation of the v variable. This absolute amplitude will be 
designated by the lower case e with the index r: 

, ,2 2 2
1 2

x y z
r

E
e


  


     [3.22] 

3.2.4. χ2 probability distribution 

Let us consider a set of n centered and normalized random variables xi, each 
attached to a normal probability distribution. This sample forms a χ2 variable with n 
degrees of freedom, expressed as follows: 
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2 2

1

n

i
i

x 


   [3.23] 

We can show that under these conditions, the α variable designated in the 
previous equation leads to the χ2 distribution formulated below [BAS 67, PAP 91]: 

1
2 2

2

1
p( , )

2 Γ( / 2)

n

nn e

n


 

 
  [3.24] 

In this formula the Eulerian function Г(s) is described by the integral: 

1

0

Γ( ) s vs v e dv


    [3.25] 

The pdf of the χ2 distribution will be used in the next sections, in order to find 
probability distributions of the absolute electric field amplitude and of the power 
variable.  

3.2.5. Probability density function of the absolute field amplitude  

According to equation [3.22], the normalized absolute amplitude of a field 
projection is the square root of the χ2 variable with two degrees of freedom. 
Consequently, the corresponding probability density function can be determined by 
the χ2 distribution [3.24], for n = 2, i.e.: 

2
2

1
p ( ) p(2, )

2
e


 


   [3.26] 

The index 2 at the bottom of the p symbol recalls that we aim for two degrees of 
freedom. We then go from the dummy variable α to the normalized variable er of the 
absolute field amplitude with the help of the following transformation: 

2 2 2p p ( ) p( ) 2p ( )r r r rd d e de e de      [3.27] 
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We easily take from this relationship the er probability density function: 

21

2p ( )
re

R r re e e


  [3.28] 

The R index at the bottom of the p symbol indicates that it is Rayleigh’s 
distribution. The definitions introduced in appendix 1 easily lead to the moments 
computation of the er variable, i.e.: 

– first moment: 

 
21

2 2

0

E 1.25
2

re
r r re e e de 

 
     [3.29] 

– second moment: 

21
2 3 2

0

E 2
re

r r re e e de
 

       [3.30] 

After insertion of the absolute field value coming from relationship [3.22], the 
pdf of the absolute amplitude of Ex,y,z becomes: 

 
2

, ,

2, , 2
, , 2

p

x y zE
x y z

R x y z
E

E e 




  [3.31] 

By combining relationships [3.22] and [3.29], we reach the mean value of the 
absolute amplitude of one of the electric field projection, i.e.: 

  25.1
2mv,, zyxE  [3.32] 

The mean value (i.e. the first moment of the underlying distribution) amplitude 
term is adopted, contrary to the estimated mean amplitude (over a finite sample of 
measured data) widely used in other parts of the book. 

3.2.6. Probability density function of the power variable 

The probability density function of the p power variable comes from equation 
[3.26] that we seek to formulate in the writing of [3.33]: 
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2
2 2 0 , ,p p ( ) with x y zd p dp p A E   [3.33] 

After some algebraic calculations, we reach relationship [3.34] in which we link 
the pmv parameter to the coefficient of the A0 physical scale, and to the variance of 
the ν variable: 

2
0mv

mv
2 4with

1
)(p mv

Ape
p

p p
p




 [3.34] 

We find the exponential probability distribution. The index 2 at the bottom of the 
p symbol recalls that the function comes from the χ2 variable with two degrees of 
freedom. We will see in Appendix 3 that pdfs [3.31] and [3.34] can be extended to 
the total electric field vector, as well as to the total power coming from the isotropic 
composition of the three projections of the complex components of the electric field 
vector.  

Let us specify that pmv is the first moment of the p variable, i.e. the expected 
value of the p variable given by:  

  



0

mv2 )(pE pdpppp  [3.35] 

We easily deduce from expression p2(p), the pdf of the pr normalized power 
variable, i.e.: 

2p ( ) rp
rp e  [3.36] 

It is important to note that the variables entering the Rayleigh and exponential 
formulas are all positive real numbers and that, as such, the formulas should contain 
the step function. This function has not been mentioned, in order to simplify the 
writing of the equations.  

3.3. Simulation of the properties of an ideal random field 

The research of an ideally random field distribution is the required condition for 
the normal use of a reverberation chamber. Indeed, if we justify by adequate 
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calibration processes that the pdfs remain stationary, we can reach the conditions 
leading to reproducible experiments.  

The evaluation of the stationary state can only be carried out with the help of the 
statistical estimators stated in section 3.4 of this chapter. Therefore, we first take a 
look at the implementation of the simulations of resulting field interference with 
ideal statistical properties.  

The last part of section 3.3 will thus be entirely devoted to this task, based on the 
use of plane wave interferences randomly distributed in the space. We will see that 
the development of these waves gives access to the main statistical parameters 
enabling us to observe the stationary state criteria.  

3.3.1. Construction of the plane wave spectrum 

Let us briefly come back to the plane wave spectrum introduced in section 2.3.6 
and more especially to Figure 2.14, in which we find the positions of the wave 
numbers attached to the excitation of the TM333 mode. 

Considering this is based around an empty cavity, it appeared that the electric 
field transformation in the space of the wave numbers led to a cluster of eight points 
symmetrically positioned at the corners of a parallelepiped. The latter is centered at 
the origin of the wave numbers graph. 

It is thus easy to conclude from the geometrical representation that the TM333 
mode amounts to the interference of eight plane waves, whose incidence angles are 
indeed specified by the coordinates of each of these eight points. In accordance with 
the electric field configuration found on the TM333 mode, the calculation only 
concerns the Ez polarization. A point of the diagram of the wave numbers can thus 
be reproduced by a plane wave to which we add a representation borrowed from the 
algebra of the complex numbers.  

To go into more details, let us consider the oxyz coordinate system presented in 

Figure 3.1, i.e. an o’ point to which we attach the wave number vector k


. This 
vector belongs to a plane wave of any incidence brought back to the solid angle Ω 

and to an amplitude Ew attached to the wE


vector.  

By taking into account the conventions adopted in this figure, the wave number 
vector has three projections designated by the kx, ky, kz symbols that we easily link to 
the unit vectors, shown on the graph by equation [3.37]: 
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x x y y y yk k u k u k u  
   

 [3.37] 
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Figure 3.1. Plane wave of any incidence written in the appropriate graphs  

Knowing that it is more convenient to project the Ω incidence angle of the wave 
in a spherical graph, the θ polar coordinate and the φ azimuthal coordinate have been 

added to this diagram. It is clear that each of these three projections of the k


 vector 
can be expressed by the formulas in [3.38], in which the θ and φ variables appear: 

cos

sin cos

sin sin

x

y

z

k k

k k

k k

 

 

 









 

 

 [3.38] 

The polarization plane of the wave is perpendicular to the o’o propagation 

direction, maintained by the wave number vector k


. Thus this property reduces the 

wE


 vector to two components projected on the o’θ and o’φ axes recalled on the left 
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of Figure 3.1. The polarization angle of the wave defined by the η symbol is thus 

linked to the Ewθ and Ewφ components of wE


 by the following expressions: 

cos

sin

w w w

w w

w w

E E u E u

E E

E E

 





  





 





 





 [3.39] 

Let us consider an observer marked at any point of the space by the r vector 
defined below: 

x y zr xu y u z u     
 [3.40] 

We propose building the complex expression of the plane wave by adopting, as a 
phase reference, the position that the wave will have at the origin of the oxyz 
coordinate system. Under this condition and taking into account the structure of the 

wave number vector k


found in the equations in [3.39], the electric field vector will 
be a function of the position vector r formulated in expression [3.41]. The 
constitution of this formula calls upon the presentation conventions of the plane 
wave described in section 1.1 of Chapter 1: 

 . .( ) (0)
x y z

j k r j k r
w w w x w y w zE r E e E u E u E u e    

      
 [3.41] 

Under these notations, the (0)wE


 vector projected on the coordinates x, y, z, thus 

directly expresses the amplitude and the polarization of the wave at the origin o of 
the graph. Let us specify that by a combination of axes’ rotations, we go from the 

spherical projections of wE


 established by [3.39] to the three Cartesian projections.  

For example, the Ewz component projected on the oz axis is expressed by 
relationship [3.42] below: 

cos sin
zw wE E     [3.42] 

The reasoning can easily be extended to the magnetic field vector wH


 contained 

in the polarization plane of the wave, orthogonal to wE


. 

From examining the diagram of the wave numbers and of the plane wave 
described by [3.41], we can formulate some hypotheses on the way to stimulate an 
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ideal random field. Figure 2.14 from Chapter 2 shows that the stationary wave 
attached to the TM333 mode produces in the space perfectly ordered eight point wave 

numbers where the o graph origin of the k


vectors is a center of symmetry.  

Transposed to the context of Figure 3.1, the stationary wave results from the 
interference of the eight plane waves with strictly similar amplitudes, whose 
incidence angles are rigorously symmetrical. The resulting wave then brings about 
an electric field polarized according to the oz axis of this figure. 

Reproducing a completely perfect random field can consist of breaking off the 

diagram symmetry in the space of the k


vectors. This comes down to distributing 
the points by following a random cluster within two concentric spheres, which are 

infinitely close together. Their radius is the k norm of the k


vector.  

This norm is thus imposed by the f0 excitation frequency of the chamber, i.e.: 

0with 2r
f

k k u k
c

 
 

 [3.43] 

According to this assumption, the ru unit vector carries the radial direction of the 

waves, whereas the Δk spacing of the radii of the infinitely close together spheres 
comes from the Δf0 bandwidth. The latter is generated by the quality factor of the 
chamber.  

If we return to equations [3.38] and [3.39], we can notice that we have four 
degrees of freedom in order to build an ideal random field from the interferences of 
Nth plane waves. We successively count the Ω solid incidence angle including the θ 
and φ variables, the η polarization angle and the Ew amplitude of the wave. Even if 
this parameter has not yet already been mentioned, we must add the phase angle  of 
the continuous sinewave brought back to the transmitting antenna.  

The Ω, η and  variables are respectively bounded in the limits [0 4π] for Ω, 
[0 2π] for η and [0 2π] for . Thus, these restricted domains lend themselves quite 
well to the practice of random realizations carried out on a uniform distribution of 
random numbers. The Ew amplitude term does not offer this convenience. We 
propose to maintain it as an invariant. This hypothesis thus amounts to transferring 
the random behavior of Ew on the Ω incidence angle of the theoretically ordered 
wave. 

We will indeed show in the next section that the complex field resulting from the 
interference of a large number of plane waves – with invariant amplitudes, and with 
incidence angle Ω, polarization angle η and phase angle , all randomly drawn – 
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produces a resulting field with an ideal random distribution according to the normal 
probability distribution.  

3.3.2. Construction of the interferences by random trials  

The construction of interferences described in the previous section amounts 
performing Monte Carlo simulations draws, generated by a random variable u, 
uniformly distributed in the [0 +1] interval [LAD 99, MUS 03]. 

The index i, found on the variables with incidence angle Ωi, polarization angle ηi 
and phase angle  i, designates the wave of row i of the set N. The link with the u 
variable is made using the equations in [3.44] below: 

4 ( )

( )

( )

i i

i i

i i

u
u
u












 
 
 

 [3.44] 

Let us specify that in the notation conventions of the right members of equation 
[3.44], the indices added to the u independent variables determine the physical 
reference parameter and the i index at the bottom of the brackets designates the row 
of the trial.  

From the diagram in Figure 3.1, we know that the solid angle is projected on the 
φ and θ coordinates of the spherical graph. Thus, the polar angle θi and the azimuth 
angle φi must correspond to the trial of the u variable found in relationship [3.44] 
brought back to the solid angle Ωi. Knowing that the projection of o’ on the polar 
axis is the cosine of the θi variable, this criterion means that the numerical values of 
u necessarily enter within the bounds of the cosine function, i.e. the [-1 +1] interval. 
Formula [3.45] consequently establishes the link between the random values of u 
and cos θi: 

( ) 0.5
cos

0.5
i

i
u 

  [3.45] 

Determination of the value allocated to the φi variable describing the azimuthal 
projection of the solid angle is easier, because it is reduced to the product of u by 2π, 
hence: 

 Arccos 2( ) 1 and 2 ( )i i i i iu u u          [3.46] 
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The random variable of phase  i is inserted according to the polar notation of 
the complex amplitude of Ew, i.e.: 

r j i

z i z i z i z i

j
w w w wE E j E E e     [3.47] 

After insertion of the polar angle and the polarization angle mentioned in 
equation [3.42], the Ewz field carried by the wave of row i will be presented as 
follows: 

 r j cos sin cos sin
z i z i z iw w w w i i i iE E j E E j         [3.48] 

The simulation consists of calculating the resulting field determined by the 
algebraic sum of the set of N amplitude terms mentioned in [3.49]: 

jr

1 1

(0)
z z i z i

N N

w w w
i i

E E j E
 

    [3.49] 

Let us recall that the r and j indices set in superscript indicate that we aim for real 
and imaginary components of the field. Continuing the demonstration consists of 
calculating the first moment and the variance of the two terms of series [3.49]. We 
produce the calculation of the imaginary component, because the reader can easily 
extend it for the real one.  

Each term of the imaginary component of the series can be represented by the 
product of the absolute field amplitude wE and of three random variables 

designated by the υ, υη, υθ symbols. These auxiliary variables will be connected to 
the geometrical variables of the plane wave θi, ηi and i with the following:  

j sin cos sin
z iw w i i iE E                     [3.50] 

Knowing that the sinus and cosine functions evolve symmetrically compared to 
the zero value, this is about random centered variables. This property can thus be 
extended to the υ, υη, υθ auxiliary variables.  

The random trials carried out to determine the numerical values of the polar 
angle and the phase and polarization angles are independent. We thus reach the 
conclusion that υ, υη, υθ are also independent variables. 
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It results from these considerations that the mean value of the amplitude of the 
imaginary field component is deduced from the product of the variances of the three 
υ, υη, υθ variables. The calculation of the expected value will thus require the 
research of three probability density functions taking as respective symbols: p (υ), 
pθ(υθ) and pη(υη). We will carry out the demonstration leading to the p (υ) and 
pθ(υθ) functions. We can easily extend it to pη(υη). 

The inversion of the previously established functions, followed by the 
combination with the initial formulas [3.46] gives three expressions of u. Later on 
we will look for the first derivatives of u: 

 1 1 1
Arcsin Arccos 1 cos (Arcsin )

2 2 2
u u u    

 
      [3.51] 

By carrying out the calculation of the differential du, we manage to identify this 
variable with the elementary probability density dpi. The i index at the bottom of the 
p symbol will correspond to the index found at the bottom of the υ variables, 
attached to each one of the three equations in [3.51]. For example, for the first 
equation containing the υ variable, the calculation of du leads to dp, This rule 
applies to functions [3.52], [3.53] and [3.54] as follows: 

2
p p ( )

2 1

d
d du d 

   



 
 

  


 [3.52] 

2
p p ( )

2 1

d
d du d 

   



 

 
  


 [3.53] 

2

1
p p ( )

2 1

d
d du d  

   


  


  


 [3.54] 

The developments produced in Appendix 4 give the following values to the 
variances: 

2 2 2 2 2 21 1 2
E E E

2 2 3
                             [3.55] 
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It is easy to find from expression [3.50] the average square amplitude of the 
imaginary component of Ewz: 

  j

22
j 2E

6z i z

w
w E

E
E 

 
  

 
 [3.56] 

The following calculation shows that the variance of the real component of Ewz is 
strictly similar to the previous one: 

  r

22
r 2E

6z i z

w
w E

E
E 

 
  

 
 [3.57] 

The simulation of the ideal random field will thus concern the algebraic sum of 
N plane waves generated according to the process that we have just described. 
Under these conditions, we can add to the previous field variable, an estimation of 
its mean value given by the arithmetic mean relationship [3.58]: 

j j

1

1
z z i

N

w w
i

E E
N 

    [3.58] 

We will see in the next section that the properties of the central limit theorem 
naturally justify the construction of the perfect random field resulting from these N 
interferences. 

3.3.3. Use of the central limit theorem 

We immediately deduce from expression [3.58] that the resulting field of the 
sum of Nth plane waves comes down to the product of the mean estimator and of the 
size N of the statistical sample thus carried out: 

j jj

1

(0)
z i z

N

w w w
i

E E N E


     [3.59] 

We assume that the polar angle θ, the polarization angle η and thephase angle  
are variables randomly distributed with the same probability. Coming back to 
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equation [3.50] shows that the calculation of the moment of the variable found in the 
sum [3.59] is necessarily zero since this variable is centered: 

jE 0
zwE    

 [3.60] 

 As a consequence, the interference of an infinite number of plane waves 
randomly distributed and following the previous criteria, leads to an average null 
amplitude. If this is a sample of plane waves of finite size N, the resulting amplitude 
is not strictly null, but is similar to the product of N by the uncertainty of the average 
estimator expressed in equation [3.59]. 

We will see in section 3.4.3 that the arithmetic mean estimator is not biased. This 
currently means that the resulting field amplitude is directly similar to the 
uncertainty of the average estimation.  

Consequently, we can apply to this estimator the Bienaymé-Chebyshev equation 
recalled below: 

j
2

j j
2

Pr ob E z

z z

E
w wE E h

N h


          

 [3.61] 

This formula expresses the probability of locating the absolute deviation between 
the mean estimation and the mean value above a given departure h. As justified by 
the second member of [3.61], the probability will be lower than a value expressed by 
a quantity inversely proportional to the size N of the sample and dependent on the 
ratio linking the variance of the field variable to h2. 

If we link this to section 3.2.1 and more especially to equation [3.4], this 
property can be extended to the ν variable, i.e.: 

 
2

2
Pr ob E h

N h
         [3.62] 

In that case, the < ν > estimator is exactly similar to the calculation of the 
arithmetic mean carried out on a sample of N random ν data, collected in a 
reverberation chamber.  
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Whether it is equation [3.61] or [3.62], the mean estimate found in the left 
member has the sum of N random variables, all following the same probability 
distribution. We can show that such a process satisfies the Central Limit Theorem 
(CLT) stating that the probability density attached to the sum of these N variables 
strives for a normal distribution, when N gets close to infinity. Readers interested in 
knowing more about the justification of the CLT can refer to [PAP 91] and to 
section A1.11 of Appendix 1 in this book. 

Consequently, we can add to the mean estimate [3.58] the property formulated 
below: 

 
 2j

2

1

j 21
p

2

wz

E

z

E

n w
E

N E e 
 

 

 


 
       [3.63] 

The σ<E> parameter found in this expression represents the standard deviation of 
the mean estimator. 

For a large number of N plane waves, we can thus consider that the probability 

density function of the j (0)wE resulting field gets close to the normal distribution, in 

which the standard deviation σ<E> defined above will appear: 

 
 2j

2 2

(0)1

2j 1
1 p (0)

2

w

E

E

N
n w

E
N E e

N


 
 



 
    [3.64] 

The properties of the CLT applied to interferences of plane waves as previously 

described consequently enable us to compare j (0)wE  to the ν variable associated 

with the ideal random field.  

This feature can be extended to the standard deviations, i.e.: 

j
j

(0)1 (0),
ww EEN E N          [3.65] 

Knowing that the variance of the field variable is connected to the Ew amplitude 
of the plane waves by equation [3.56], we reach the expression: 

6
wE

   [3.66] 
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Before concluding this section, it is useful to recall that the Bienaymé-
Chebyshev equation, as well as the use of the CLT, are dependent on the law of 
large numbers. Indeed, this is about statistical features meaning that the size N of the 
samples must be sufficient to carry out the comparison of the plane wave 
interferences with the ideal random field expected in reverberation chambers. We 
will see in the next chapter that the physical properties of the cavities necessarily 
involve the size of the plane wave samples for the simulation of the perfect random 
fields installed in a reverberation cavity.  

3.4. Contribution of the statistical tests 

The characterization of the reverberation chambers with the help of statistical 
tools will be discussed in the next chapter. A few features of these statistical tools 
will be recalled in this section. On the basis of examples borrowed from the 
simulation of plane wave interferences, we will see the role given to the size of the 
sample of data which corresponds to the number N of the random trial.  

We will then take a more physical approach to the matter, aiming at comparing 
the experimental data to the probability density distributions examined at the 
beginning of this chapter. Section 3.4.3 will be devoted to the estimates of the mean 
and of the variance formulated by the application of the concepts of maximum 
likelihood and of bias error. To conclude this section, we will take a more particular 
look at the statistical Kolmogorov-Smirnov test. Its use for the applications planned 
in the context of the reverberation chambers seems quite appropriate.  

3.4.1. Role given to the size N of the statistical sampling 

Let us consider an experiment carried out in a reverberation chamber in which 
we collect N perfect randomly distributed electric field data. We first assume that 
the data are expressed in the form of normalized absolute amplitude of the electric 
field er recalled in er equation [3.22].  

If we have a sufficient sample size N of this data, the law of large numbers will 
be applied. The uncertainty occurring during the estimate of the mean amplitude of 
er may be calculated from the Bienaymé-Chebyshev formula, stated by equation 
[3.61] and currently presented in the form of [3.67]: 

 
2

2
Prob E re

r re e h
N h


        [3.67] 
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Let us specify that the estimator < er > is related to the complex components of 
the field and takes the following developed expression: 

22 jr

1 1

1 z i z i
N Nw w

r
i i

E E
e

N    

  
             

   [3.68] 

The “true” mean value determined by the moment of er has been previously 
calculated in [3.29]. We recall the result: 

 E 1.25
2re     [3.69] 

The variance er is found on the right of [3.67]. We determine this variance by a 
calculation, whose main steps will be provided in detail. The variance of er comes 
from the definition introduced in Appendix 1 and reproduced below: 

  22 2E E
r

r re e e      [3.70] 

The moment of the square of er appears in this formula. It is calculated in [3.30] 
and can also be found below: 

21
2 3 2

0

E 2
re

r r re e e de
 

       [3.71] 

We finally reach the numerical value of 0.429… for the variance. 

2 2 0.429
2re
      [3.72] 

For the other steps of the calculation, it is interesting to introduce the variance of 
the mean estimator < er > defined as follows: 

 
2

2
Prob E wherer r

r

e e
r r ee e h

Nh

 
 
          [3.73] 
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This relationship confirms an intuitive property, since the probability found in 
the left of [3.73] can only be lower than the unit. The assumed departure h is 
necessarily higher than the standard deviation of < er >. To illustrate this, it is 
preferable to convert the gap h using the relative margin ε formed by the ratio of h 
on the mean value (or expected value) of er, i.e.: 

 E r

h
e

   [3.74] 

If we set the relative margin at 10%, the departure h deduced from [3.74] will be 
0.125. For a sample size of N=100, given the variance in equation [3.72], we find 
that the probability of < er > coming out of the [-h +h] gap will be 0.27, i.e. a 
probability to estimate < er > within the gap of 73%. Of course, if we go to a sample 
of a size ten times larger, these values are 0.027 and a bit more than 97%! These 
results are explained by the fact that the calculation according to the Bienaymé-
Chebyshev formula has a tendency to overestimate the probability of estimating 
< er > out of the uncertainty gap [-h +h]. In fact, we know that the mean estimator 
obeys the CLT. This means that the probability density can be settled to the normal 
distribution presented under its normalized form [3.17]. However, the use of this 
formula requires an additional transformation determined by the entrance of the 
centered variable zr in respect of the mean value of er and normalized in respect of 
the standard deviation of < er >, i.e.: 

 E

r

r r
r

e

e e
z

 

  
  [3.75] 

Under this form, the application of the CLT allocates to zr the normal pdf 
recalled below: 

21

21
p ( )

2

rz
n rz e




  [3.76] 

Under these considerations, the probability of finding the absolute value of the zr 

variable out side to the [-ζ +ζ] interval is expressed by the integral: 

21

2Prob 2 p ( ) 2
rz

r n r r rz z dz e dz
 


  

         [3.77] 



Statistical Behavior of Stirred Waves     107 

So that this equation is in accordance with the previous calculation, we must 
establish the link between the h and ζ quantities, which are easily deduced from 
equations [3.73] and [3.75], i.e.: 

r re e

h h N
  

   [3.78] 

During the previous numerical example, h took the value of 0.125. Thus, for a 
sample size of 100, the gap ζ calculated from [3.78] is worth 1.90.  

Integral [3.77] does not have an analytical solution. Thus, the calculation will be 
carried out by consulting Table A1.2 in Appendix 1 or with the help of specific 
software. The table gives a number close to 0.05, i.e. a 95% probability of entering 
the gap, but a 73% probability from the direct application of the Bienaymé-
Chebyshev equation.  

The test obtained by the application of the CLT thus enters the gap more easily, 
and this estimation uncertainty is generally called by the statisticians the confidence 
interval. 

This example has also shown the important role played by the size N of the 
statistical sample. The latter however has a different meaning, depending on whether 
we aim at the analysis of measurement results or the simulation of perfect random 
field by the interference of plane waves.  

During a simulation, the choice of the size N must be guided by the physical 
properties of the reverberation chamber. We have shown that the construction of one 
mode requires the interference of eight plane waves. Furthermore, the contribution 
of the quality factor of the cavity is added to this, which imposes the bandwidth Δf0 
as soon as the cavity is excited at the frequency f0. This narrow band will thus select 
Nw other modes that we can approximate by forming the product of Δf0 with the 
density functions of the modes D(f0) taken from the Weyl formula, i.e.: 

2
0 0

0 0 0 03
( ) f with ( ) 8 and Δfw

f f
N D f D f V

Qc
      [3.79] 

We will see in section 4.2.3 of Chapter 4 that the advantage of this simulation is 
to calculate the power collected by the transmission lines of the printed circuits 
contained in most electronic equipment submitted to electromagnetic tests.  
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3.4.2. Assessment of the experimental data to the probability distributions  

An important stage in the analysis of the physical behavior of the reverberation 
chambers consists of checking if the data recorded during the collection of powers 
captured by an antenna or of field values supplied by a probe follow a known 
probability distribution. The most elementary tests consist of evaluating a chamber 
compared to the hypothesis of the ideal random field distribution: i.e. whether we 
can compare it to an exponential function for power data or to a Rayleigh’s 
distribution for absolute amplitude of field data. These data can come from 
measurements carried out in the chamber or from numerical simulations carried out 
with the help of full-wave Maxwell solvers. Several methods are commonly used to 
perform this type of calculation, such as the finite element method, the finite 
difference time domain method or the method of moments.  

3.4.2.1. Power data collected on a receiver  

Let us consider the normalized power pr defined in section 3.2.3 and recalled 
below: 

mvp
ppr   [3.80] 

It was shown in section 3.2.4 that under the hypothesis of the ideal random field, 
the pr random variable is attached to the exponential probability density function, 
i.e.: 

2p ( ) rp
rp e  [3.81] 

The assessment consists of drawing function [3.81] and of comparing it to a 
histogram built on the basis of N data of normalized power collected during an 
experiment. As shown with more detail in section 4.4 of Chapter 4, these data can 
come from sampling carried out during a revolution of the mode stirrer. 

However, practice shows that it is generally inconvenient to extract the curve 
from the histogram of the probability density function, thanks to several erratic 
fluctuations that are due to the necessarily limited size of the statistical sample. For 
this reason, we will adopt the histogram built on the integral of the cdf (cumulative 
distribution function) defined in Appendix 1. 

The cdf designated by the F2(p0) symbol is recalled in equation [3.82]. This 
function sets the probability of finding the pr variable, equal to or lower than a p0 
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threshold continuously evolving between the null minimum value and the pr maxi 
maximum value set by the upper limit of the sample: 

 
0

2 0 0 2 0 maxi

0

F ( ) Prob p ( ) with 0

p

r r r rp p p p dp p p        [3.82] 

With the resolution of the integral being immediate, we reach the analytical 
function [3.83]: 

0
2 0F ( ) 1 pp e   [3.83] 

The layout deduced from this formula will thus constitute the reference curve 
adopted for the comparison of the histogram. The histogram comes from the batch 
of N pieces of data contained in the (Pr)

t vector reproduced below: 

1 2 ( 1) ( 1)(P ) ( , , , )t
r r r r k r k r k r Np p p p p p     [3.84] 

The components of these vectors are spread by increasing values in accordance 
with the rule established in equation [3.85]: 

1 2 ( 1) ( 1)r r r k r k r k r Np p p p p p          [3.85] 

The SN(p0) histogram deduced from this classification will thus allocate to the 
piece of data pr, the probability calculated by the ratio linking the row k to the size 
of the sample N, i.e.: 

0 0S ( ) ProbN r k
kp p p
N

      [3.86] 

If we find two identical components of the (Pr)
t vector, one of the values will be 

slightly modified to come out of the singularity. The probability of such an event is 
generally very low. 

The graph in Figure 3.2 reproduces the histogram of the data of powers collected 
on a receiving antenna during a revolution of the mode stirrer. The size of the 
sample is close to 100. Some data are probably correlated, but this does not alter in 
any way the reproduction of the histogram. The horizontal axis of the graph carries 
the normalized values pr calculated on the basis of the physical data of power p (in 
Watts) gathered during the experiment. Relationship [3.80] recalled above, shows 
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that the determination of pr requires the evaluation of the pmv mean value of the 
power rigorously defined by the moment of the p variable.  

 

    

 

 

 

 

 

 

 

 

  

  

 

Figure 3.2. Distribution function and histogram extracted from an experiment  

The latter being a priori unknown, pr can only be calculated by forming the ratio 
of p and of the mean estimate carried out on the concerned statistical sample, i.e.: 

1

1
with

N
i

r i i
i

p
p p p

p N 
  
    [3.87] 

The reference curve designated by the continuous line in Figure 3.2 corresponds 
to the cdf F2(p0) deduced from analytical function [3.83], where the reduced variable 
p0 is expressed under the convention: 

0
0 0 Watt

P
p P

p
  
 

 [3.88] 

The comparison of the histogram and of the reference layout shows that there is 
no rigorous agreement. These deviations are thus the sign of a shift compared to the 
expected cdf. In this case, the cdf results from the exponential probability density 
function. 
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We will see in the last part of this section that the statistical tests evaluate the 
tuning probability of the SN(p0) histogram brought back to the reference distribution 
function F2(p0). 

3.4.2.2. Voltage data collected on an electric field probe  

Most of the electric field probes used in the measurement chains give voltages 

proportional to the amplitude of the electric field vector E


, polarized in parallel with 
the sensitive elements of the probe. Figure 3.3 shows the example of a symmetric 
electric dipole directed according to the oz axis of the oxyz coordinate system. 

  

 
  

 

 

Figure 3.3. Typical configuration of a dipolar probe 

The probe produces the Vc voltage proportional to the absolute amplitude of the 
electric field directed according to oz, i.e.: 

0c zV K E  [3.89] 

The K0 coefficient is thus a conversion factor of physical scale. In expression 
[3.22] established in section 3.2.3, the normalized variable er of the absolute 
amplitude of the electric field was introduced. We will recall below the definition 
applied to the probe in Figure 3.3: 

z
r

v

E
e


  [3.90] 

There is in this formula standard deviation of the ν variable attached to the real 
and imaginary components of the complex Ez variables, i.e.: 

   2 2r jE Ez zE E
       
   

 [3.91] 



112     Electromagnetic Reverberation Chambers 

According to the hypothesis of the ideal random field distribution, it was shown 
in section 3.2.5 that the pdf attached to er was Rayleigh’s distribution recalled 
below: 

21

2p ( )
re

R r re e e


  [3.92] 

If we introduce the normalized voltage variable under the vr symbol, which is 
more precisely defined by equation [3.93]: 
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      [3.93] 

we realize that vr is immediately related to er. We can thus attach to the normalized 
voltage the Rayleigh’s pdf found in [3.92].  

As previously practiced for the power, we can attach to the normalized voltage 
the pdf FR(v0) resulting from the integral of the pdf, i.e.: 

 
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0

F ( ) Prob p ( ) 1

v
v

R r R r rv v v v dv e


      [3.94] 

The transfer in normalized variables will require the determination of the 
standard deviation of Vc. This parameter will be taken from an estimate carried out 
according to the features exposed in the next section. 

3.4.3. Estimate of the variances and means  

The question of the estimate of the variances and means is closely linked to the 
research of criteria of the likelihood maximum and of the bias factor. We will limit 
the demonstration to the case of normal distribution. This theoretical approach could 
however be easily extended to other probability distributions.  

Let us consider a continuous random x variable governed by the complete 
normal distribution recalled below: 
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  [3.95] 
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There is in this formula the moment and the variance of x taking as definitions: 

 
1

Exm x  [3.96] 

 
1

22 Ex xx m     
 [3.97] 

We will first carry out the formulation of the estimators. 

3.4.3.1. Search for the estimator giving the likelihood maximum  

The normal pdf [3.95] can be expressed in the form of a P(a,b,x) function of the 
x variable, where a and b are parameters respectively designating the first moment 
and the standard deviation of the random x variable: 
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    [3.98] 

Let us consider a set X containing N variables x all assumed to be independent 
and stationary: 

1 2( , )i Nx x x xX    [3.99] 

The PN probability of carrying out the set X is thus determined by the product of 
N functions [3.98], i.e.: 

1

P P( , , )
N

N i
i

a b x


  [3.100] 

Under these hypotheses, research on the estimators of the a and b parameters 
giving the most significant likelihood must necessarily converge on a maximal PN 
probability. 

This condition can be easily formulated by setting that the partial derivatives of 
PN with respect to the a and b parameters will be null, i.e.: 

0 and 0N NP P
a b

 
 

 
 [3.101] 
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Knowing that the calculation will be simplified when going through the 
logarithmic derivatives, equation [3.101] becomes: 

   2
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The calculation of the derivatives mentioned above leads to equations [3.103] 
and [3.104]: 
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We take from the first equation the estimator of the mean of x presented with the 
appropriate notation < x >: 
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    [3.105] 

We take from the second equation the variance estimator, i.e.: 
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The demonstration leads to formulas in good accordance with the intuitive 
choices. 

3.4.3.2. Evaluation of the bias error 

Without bias errors, the average of an infinite quantity of estimators [3.105] and 
[3.106] must necessarily converge on mean and variance values, as given by the 
moments definition. This means that calculation of the expected value applied to the 
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second members of the previous equations must be identified with the moment and 
with the variance of the x variable. 

For the mean estimator, the calculation gives the expected agreement: 

   
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1 1
E E
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x x Nm m
N N

      [3.107] 

We can thus conclude that the mean estimator deduced from [3.105] is not 
affected by the bias error. 

If we carry out a similar calculation for the variance after using the expression 
located on the right of [3.106], we reach the following result: 
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2 21
E x x
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      
 [3.108] 

The right side of this expression proves that the variance estimator is biased by a 
coefficient determined by the (N-1)/N ratio. Nevertheless, for an infinite size of the 
sample X, calculation [3.108] converges on the true value of the variance. 

To eliminate the bias error, we just need to invert relationship [3.108] from 
which we find the unbiased variance estimator, i.e.: 
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Let us specify that for relatively vast X sets, formulas [3.108] and [3.109] of the 
variance estimator lead to very close numerical values.  

3.4.4. Kolmogorov–Smirnov test 

3.4.4.1. Introduction to the KS test approach 

Let us consider a set of N random data. Its histogram of amplitude distribution 
will be compared to a known theoretical distribution function. If this is about the 
power collected on a receiving antenna installed in a reverberation chamber, the N 
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data makes up the SN(p0) histogram built in [3.86], whereas the theoretical 
cumulative distribution function F2(p0) is taken from the analytical formula [3.83] 
[LEM 08, MAS 51, PAP 91]. 

To evaluate the probability of SN(p0) belonging to the F2(p0) layout, we can 
practice the χ2 test, which is profusely described in most of the books discussing 
statistics. However, we know that the optimal use of this test can only be carried out 
on samples with generally lower size. For higher populations, this test is only 
available when we make groupings of data which cause inaccuracies in the final use 
of the result. 

Knowing that the populations collected during measurements in a reverberation 
chamber will have a size much higher than 10, the experiment shows that it was 
better to adopt the Kolmogorov–Smirnov test. We propose recalling the principle of 
this test according to the works published by F.J. Massey [MAS 51]. 

The KS test can be applied to various probability distributions. The variable will 
be designated by the x symbol, the reference cdf by F(x) and the experimental 
histogram by SN(x).  

We adopt a statistical distance made up of the absolute value of the maximum Δm 
deviation collected between the experimental histogram and the theoretical 
distribution function of reference F(x), i.e.: 

Δ maxi S ( ) F( )m N x x   [3.110] 

To confirm the agreement with the expected probability distribution, the Δm 
gauge is compared to a Δc critical value found within a table of numerical data. This 
critical value is governed by two parameters: the level of significance α so called 
risk threshold and the sample size N. 

Table 3.1 replicates the table of the critical values published in the work of 
Massey [MAS 51]. The statistical parameters have the risk threshold evolving from 
the minimum value 0.01 to the maximum value 0.20 under a step of 0.05 and for 
sample sizes ranging between 1 and 35. 

Thus, by setting the risk threshold at 0.05 and for a sample size of 15, the critical 
value Δc is worth 0.338. This means that if we have a Δm distance lower than 0.338, 
the experimental histogram has the 1-α probability of belonging to the selected 
theoretical cdf, i.e. currently a confidence probability of 95%. In the opposite case, 
i.e. Δm is higher than 0.338, the test is rejected.  
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N size of 
the sample  

α = 0.20 α = 0.15 α = 0.10 α = 0.05 α = 0.01 

1 0.900 0.925 0.950 0.975 0.995 

2 0.684 0.726 0.776 0.842 0.929 

3 0.565 0.597 0.642 0.708 0.828 

4 0.494 0.525 0.564 0.624 0.733 

5 0.446 0.474 0.510 0.565 0.669 

6 0.410 0.436 0.470 0.521 0.618 

7 0.381 0.405 0.438 0.486 0.577 

8 0.358 0.381 0.411 0.457 0.543 

9 0.339 0.360 0.388 0.432 0.514 

10 0.322 0.342 0.368 0.410 0.490 

11 0.307 0.326 0.352 0.391 0.468 

12 0.295 0.313 0.338 0.375 0.450 

13 0.284 0.302 0.325 0.361 0.433 

14 0.274 0.292 0.314 0.349 0.418 

15 0.266 0.283 0.304 0.338 0.404 

16 0.258 0.274 0.295 0.328 0.392 

17 0.250 0.266 0.286 0.318 0.381 

18 0.244 0.259 0.278 0.309 0.371 

19 0.237 0.252 0.272 0.301 0.363 

20 0.231 0.246 0.264 0.294 0.356 

25 0.21_ 0.22_ 0.24_ 0.27_ 0.32_ 

30 0.19_ 0.20_ 0.22_ 0.24_ 0.29_ 

35 0.18_ 0.19_ 0.21_ 0.23_ 0.27_ 

N > 35 1.07 / N  1.14 / N  1.22 / N  1.36 / N  1.63 / N  

Table 3.1. Table of the critical values established by Massey: N represents the sample size of 
random data, α the risk threshold. For sample sizes higher than 35, the critical values will be 

calculated by the formulas found at the bottom of each column  

For the sample sizes higher than 35, Δc can be approximated by an analytical 
expression. For example, for a risk threshold of 0.05 and a sample of size 50, the use 
of the formula located at the bottom of Massey’s table recommends the critical value 
0.192 calculated below: 
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c
1.36

0.05 and 50 Δ 0.192N
N

       [3.111] 

This example shows what intuition was predicting: that any growth of the sample 
size comes down to a reduction of the critical value and consecutively to a more 
stringent test. 

3.4.4.2. Construction of Massey’s table 

Before carrying on with the investigation concerning the use of the KS test, it is 
essential to specify some details on the method adopted to build Massey’s table. The 
author has chosen the normal distribution as a reference. We will recall here its 
probability density function for an centered variable x: 
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In this function, the standard deviation σx is the only essential parameter for the 
formulation of the probability distribution. In the presence of a sample of N 
experimental data, this parameter is unknown. σx will thus be estimated by the 
processes examined in the previous section. To summarize, this means that each 
sample corresponds to a reference distribution that is its own. To free ourselves from 
this practical difficulty, Massey’s table has been created by using an invariant 
standard deviation or by taking, as a base, normalized variables θ without physical 
dimension. This amounts to strictly the same as the first method.  

The normal distribution then takes as an expression function [3.17] which was 
introduced in section 3.2.3 and transcribed under the current notations: 
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We can easily deduce from this expression the cdf designated by the Fn(θ0) 
symbol, where the n index means that we aim at the normal cdf: 
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This integral containing the Gaussian function does not have an analytical 
solution. Thus, we use a numerical computation of [3.114] as found in Table A1.1 in 
Appendix 1. 

The calculations of the critical values have thus been practiced on the basis of 
collections of samples of growing size N, coming from Monte Carlo trials. In order 
to meet the criteria required by the large numbers law, the experiments should have 
concerned collections greater than 1,000 batches of N data. This guarantee thus 
allows us to produce a reliable estimate of the risk factor α. 

3.4.4.3. Simulation of the KS test 

Simulation of the KS test can be carried out for the generation of N data by the 
Monte Carlo trials. Let generate such a sample of the random normalized variable vr, 
whose probability distribution is given by the exponential cdf from equation [3.83]. 
With the current notations, this equation is expressed: 

2F ( ) 1 rv
rv e   [3.115] 

We know that F2(vr) represents a probability whose numerical value u is 
naturally in the interval [0 1]. 

With this condition, equation [3.115] will be inverted, in order to make available 
one trial of the x variable: 

 2F ( ) ln(1 ) with 0 1u x x u u        [3.116] 

This equation leads to the generation of a sample of N variables of x trials from 
the N values of u, produced by a set of numbers with uniform random distribution.  

The layout of the SN(X0) histogram, displayed by the empty circles in Figure 3.4, 
has been made in accordance with the simple computation given in equation [3.86]. 

Concerning the theoretical reference curve, the calculation comes from the cdf of 
the exponential distribution presented under the following form: 

 2F ( ) 1 with 1
ix

xix e i N

     [3.117] 
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The full circles in Figure 3.4 correspond to the product of this calculation. The 
curve linking the points is a straight-line interpolation. In formula [3.117], the < x > 
estimator of the mean value of the x variable is found: 

1

1
N

i
i

x x
N 

    [3.118] 

The maximum distance recorded between the histogram and the reference, which 
has been defined according to the prescriptions of relationship [3.110], is currently 
located at Δm = 0.201. 

We practice 10,000 trials with random data which are renewed each time. The 
obtained result shows that 2% of the experiments overcome the standard deviation 
of 0.201. Massey’s table indicates, on the line N = 30, that a critical value of 0.200 
should give a rejection rate located between 10% and 15%. 

SN(X0) 

F2(X0) 
N=30 

X0 

Prob[x ≤ X0] 

Δm= 0.201 

 

Figure 3.4. Numerical experiment of the Kolmogorov–Smirnov test 

The experiment is thus more tolerant than the indication of the table. The origin 
of this behavior probably lies in the construction of Massey’s table, based on the 
normal distribution. We will see in Chapter 8 that the strictness of the test can be 
increased by the adoption of Lilliefors’ table, which is established using the 
exponential probability distribution. However, the international standard relative to 
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the tests performed in reverberation chambers recommend for now the Massey 
tables. This choice thus justifies the maintaining of this statistical reference.  

3.5. Balance of power in a reverberation chamber  

This section summarizes the main antenna properties, their theoretical bases will 
be detailed in Chapter 6. Regarding the hypothesis of a continuous sine wave 
excitation, antenna parameters such as efficiency, directivity and gain will be 
recalled. This introduction will facilitate the reading of section 3.5.2 devoted to the 
behavior of a receiving antenna installed in a reverberation chamber. It will then be 
shown that the power collected at the output of an antenna illuminated by an ideal 
random field is impervious to the directivity. These theoretical notions will help to 
make the link with the power radiated by an object immersed in a reverberation 
chamber and to define measurement procedures.  

3.5.1. Review of the main features of antennas 

The electromagnetic sources essential for the calibration of the reverberation 
chambers or for radiated emission tests will be made up of antennas or devices, 
whose main electromagnetic properties are summarized in this section.  

Figure 3.5 shows a transmission antenna attached to a spherical coordinate 
system orθφi.  

3.5.1.1. Antenna efficiency 

The Pi parameter represents the power injected by the RF generator, Pρ is the 
power reflected by the antenna and Ptr the power transmitted and radiated outside 
the AA’ plane constituting the physical boundary of the antenna and currently open in 
free space.  

If the propagation of the spherical wave is carried out in a non-lossy media and 
without any obstacle, Ptr is related to the flux of the Poynting vector, calculated 
through the sphere of radius r centered on the origin of the graph, i.e.: 

*

Sphere

.trP E H ds 
  

 [3.119] 

The E


and H


vectors in this integral are thus attached to the wave radiated at any 

point of the space. The star on the H


symbols means that this is the conjugate 
complex amplitude. 
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Generally, the radiated power is a complex number, whose real component is 
preserved with the distance r. The electric and magnetic field vectors follow the 
scattering law, inversely proportional to the r distance. However, the imaginary 
component of the power is vanishing. Concretely, this means that the fields attached 
to the vanishing wave take a weak amplitude as soon as the r distance overcomes the 
wavelength. 
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Transmitting 
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z  

 

Figure 3.5. Illustration of the power transfer in a transmission antenna  

An essential parameter for the physical understanding of the measurements 
practiced in reverberation chambers is the antenna efficiency. In the BB’ input plane 
where the source is located, the Pta transmitted power will be represented by the 
difference between the Pi injected power and the Pρ, i.e.: 

ta iP P P   [3.120] 

For various physical reasons, mainly due to thermal losses in the antenna, the Ptr 
power radiated outside the AA’ plane will be lower than the Pta transmitted power in 
the BB’ plane. This property is expressed in relationship [3.121] where the η 
coefficient, so-called antenna efficiency, represents the efficiency of the antenna: 

with 1tr taP P    [3.121] 
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If these antennas are designed to carry out electromagnetic immunity tests, the η 
efficiency is close to one unit. For biconical or log periodical antennas, this factor is 
located close to 0.75. In other cases, it can also be lower than one unit. Efficiencies 
very much lower than unity may be found during the measurement of the radiation 
leakages produced by devices such as cables or shielded connectors. The 
measurement procedures require that the terminations of cables or connectors are 
connected at one end to a RF generator and with the other end matched to their 
characteristic impedance. This configuration typically represents a device whose η 
antenna efficiency is much lower than one unit. This property is easily explained 
since the leaky radiated power Ptr through the shields only represents a tiny part of 
the transmitted power Pta in the terminal load.  

3.5.1.2. Directivity of an antenna 

The directivity of the antenna or of the device is determined by the radiation 
pattern often displayed with curves in spherical coordinates. Depending on the case, 
the angular coordinate illustrates the elevation angle θ and the azimuth angle φ. The 
layout is the locus of the radial distances, on which the field amplitude remains 
invariant as a function of the θ variable or of the φ variable. The directivity is 
generally defined for the far-field. It is normalized compared to the peak field 
magnitude collected on the ranges covered by θ and φ. In some cases, the directivity 
can be expressed in terms of a normalized analytical function without physical 
dimension versus the θ and φ variables, which can be merged under the solid angle 
Ω. 

3.5.1.3. Gain of an antenna 

The gain of an antenna is associated with the peak field amplitude collected on 
the radiation pattern, but with respect to a reference antenna, whose radiated power 
would be strictly similar to the one produced by the antenna involved. The gain is 
usually expressed on a dB scale. The physical reference is generally constituted by 
an antenna with a perfect isotropic radiation or sometimes by an electric dipole.  

There is a more detailed description recalling the physical basis of the 
functioning of antennas in section 6.2 of Chapter 6. 

3.5.2. Receiving antenna immersed in an ideal random field  

In the BB’ input plane of the transmitting antenna illustrated in Figure 3.5, we 
can add the equivalent circuit E shown on the left in Figure 3.6. The E0 and Z0 
parameters respectively designate the emf and the internal impedance of the HF 
source connected on the antenna. The Za antenna located on the right of the BB’ 
plane amounts to the input impedance of the antenna. For a properly constituted 
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antenna, Za is similar to a resistance, in which the energy losses would be composed 
of the thermal power lost in the antenna and the power radiated under the 
electromagnetic form. Let us specify that the optimal energy transfer assumes that 

the inner impedance of the Z0 source is strictly equal to the *
aZ  conjugate input 

impedance of the antenna. When these conditions of adaptation are met, we must cancel 
out the reflected power Pρ by connecting a transmission line between the output of the 
generator and the input of the antenna whose characteristic impedance is as close as 
possible to Za, if it is real. 

Under the configuration R of the diagram on the right in Figure 3.6, the 
receiving antenna is connected to the load impedance ZL. There are, in the right part 
of the BB’ plane, the Ea emf induced by the surrounding electromagnetic field and 
the internal inner impedance of the receiving antenna. By application of the 
reciprocity principle, the inner impedance of the receiving antenna is the input 
impedance of the transmitting antenna. This comparison is however subordinated to 
the conditions of linear behavior [GOE 03]. 

  
 

  

 

 
  

 

 

 

  

 

 
 

Figure 3.6. Equivalent circuits of the antennas in transmission or reception  

The theoretical problem set by the immersion of a receiving antenna in a 
reverberation chamber thus consists of calculating the power collected by the 
antenna subjected to an ideal random field. The hypothesis of an perfectly matched 
antenna is added to this prior condition, i.e. connected on a load impedance that is 
strictly similar to its inner impedance. To do this calculation, we will adopt the work 
of D.A. Hill published in 1998 [HIL 98]. 

In this original approach, the field surrounding the antenna is made up of the 
interference of the ideal random plane waves. We will only mention the main stages 
of the computation, based on the use of the plane wave spectra introduced in section 
2.3.8. 
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Let us consider the plane wave spectrum. We extend the definition of formula 

[2.88] to the case of the electric field vector E


 as a function of three x, y, z variables 
of a Cartesian graph: 
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E  [3.122] 

This expression can be inverted to the advantage of equation [3.123]: 
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This relationship means that any linear transformation applied to the electric 

field vector ( , , )E x y z


 will also be applied to the plane wave spectrum 

( , , )x y zk k k

E . Let us specify that the D-1 symbol at the bottom of the integral 

corresponds to the space of the wave numbers, which corresponds to the space D 
initially found in [3.122]. In section 3.3.1, it was shown that a reverberation cavity 
excited on its eigenmodes is equivalent to describe a spherical surface with the 

extremity of the wave number vector k


. Consequently, the transformation of equation 
[3.123] in the coordinate system in Figure 3.5 gives the double integral shown 
below: 

2 .

4

1
( , , ) ( , , ) sin ' ' '

4
j k r

x y zE r k k k k e d d


    


 
 

E  [3.124] 

In this equation, we go to the Cartesian projections of the k


vector, in return for 
the use of the transformation relations set out in [3.38]. The θ’ and φ’ integration 

variables must be in the k


vector, whereas the θ and φ space variables remain in the 
expression of the r vector. 

For a given excitation frequency of the cavity, the absolute value of the k


vector 
is an invariant that we can include in the spectral density function. Moreover, if we 
introduce the solid angle Ω, integral [3.124] takes the more simple form [3.125]: 

.

4

( , , ) ( ) j k rE r e d


    
 

F  [3.125] 
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The ( )

F spectral function will be used in the following. This function includes 

the 1/4π factor found in the previous relations.  

Under the assumption of an ideal random field, the values of the functions 

( , , )E r  


 and ( )

F  behave like centered random variables; this is in accordance 

with the hypotheses stated in section 3.2.1. We know that the mean amplitude value 
of these variables according to the moment calculation of the expected value leads to 
zero: 

.

4

E ( , , ) E ( ) 0j k rE r e d


          
 

F  [3.126] 

However, the developments detailed by Hill show that the moment of the square 
of the field amplitude leads to integral [3.127] which may be solved immediately.  

1 2
2 ( ).

1 2 1 2

4 4

E ( , , ) 4 ( ) 16j k k r
E EE r C e d d C

 

               
  

 [3.127] 

In this equation, the CE parameter represents a physical scale coefficient with 
unit in (V/m)2. In the context of relationship [3.127], the result of the calculation is 
thus strictly similar to the square of the constituents of the uniform amplitude Ewof 
the plane waves entering in the spectrum. 

2 2E ( , , ) wE r E     


 [3.128] 

Then, carrying out the determination of the moment of the electromagnetic 
energy stored in the reverberation cavity, Hill manages to relate the amplitude of the 
plane wave spectrum to several parameters among which we find: Ptr the power 
radiated by the transmitting antenna, ω0 the excitation angular frequency, Q the 
quality factor of the reverberation cavity, V the volume of the chamber, as well as ε0 
the absolute electric permittivity: 

2

0 0

tr
w

Q P
E

V 
  [3.129] 

Knowledge of Ew finally enables us to undertake the calculation of the Pcr power 
collected on the ZL load, itself connected on the receiving antenna. This stage is to 
be linked with the R configuration of the diagram in Figure 3.6 and for the perfectly 
matched antenna. The first hypothesis means that the inner impedance of the Za 
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antenna is strictly equal to the Rr radiation resistance and that the load impedance is 
also similar to Rr. In other words, the η antenna factor of the receiving antenna is 
strictly one. Under these conditions, Hill reaches the calculation of the moment of 
Pcr Its value is then expressed in terms of the integral [3.130]: 

 
2 2

4

1 1
E ( )

2 4 4
w

cr
w

E
P D d

Z


  
 

   [3.130] 

This equation contains the impedance of the plane wave Zw, the wavelength of 
the exciting field λ, as well as D(Ω) the directivity of the receiving antenna. 
Knowing that we practice the integral computation on the full domain covered by 
the solid angle Ω, this integral takes the value 4π. Consequently, the mean value of 
the amplitude of the power collected on the perfect matched receiving antenna 
without losses is then expressed by: 

 
2 21

E
2 4

w
cr

w

E
P

Z



  [3.131] 

The obtained formula is thus very consistent with respect to the physical features 
of the receiving antenna induced under a perfect random field. The ½ factor takes 
into account the balanced probability of the polarization of the plane wave spectrum. 
Let us imagine that the antenna is only sensitive to the polarized electric field 
following the oz direction merged with the polar axis of Figure 3.5. The antenna will 
thus be sensitive to any plane wave projecting the electric field Ez in the BB’ plane, 
but it will not be affected by the waves projecting the magnetic field Hz. 
Consequently, only half of the waves randomly polarized in the spectrum can excite 
the receiving antenna. The second ratio found in [3.131] expresses the power density 
of the plane wave spectrum, whereas the third ratio represents a surface that 
determines the mean effective area of the perfectly matched and lossless receiving 
antenna, [ELL 81]. When the antenna is partially mismatched and subject to thermal 
losses, we substitute in [3.131] the mean effective area eS . This parameter includes 

the ½ factor accounting for the balanced polarization of the waves, a mismatch 
factor m and then the antenna efficiency η resulting from a calculation or a 
measurement: 

2

8eS m 


  [3.132] 
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We finally reach the final form [3.133] of the mean power collected by the 
receiving antenna: 

  e
w

w
cr S

Z
EP

2

E   [3.133] 

3.5.3. Measurement of the power radiated by a device in a reverberation chamber  

The power radiated by a device immersed in a reverberation chamber can be 
evaluated thanks to the determination of the power collected from a receiving 
antenna. By combining relations [3.129] and [3.133], we obtain a single expression 
where we can deduce the radiated power Ptr from the device, i.e.: 

 0 0 Ew
tr cr

e

Z VP P
Q S
 

  [3.134] 

However, measurements in that case consist in collecting a finite sample of 
power data in the reverberation chamber Therefore, this relationship must be 
immediately transformed into an estimate of the mean amplitude, using the 
dedicated notations: 

0 0w
tr cr

e

Z VP P
Q S
 

     [3.135] 

This formula shows that the determination of the radiated power is strongly 
dependent on knowledge of several physical parameters of the reverberation cavity, 
such as the quality factor Q and the volume V. Other parameters are also concerned. 
They relate to the receiving antenna and are gathered in the average effective area 

eS . Uncertainties are assigned to all these data. These are more or less able to affect the 

reproducibility of the measurements. To decrease its impact, we carry out a calibration 
with the help of a transmitting antenna with a known antenna efficiency ηe. Knowing 
that we inject into this antenna the power Pi, the determination of the reflection 
coefficient ρe observed in the BB’ plane, as is illustrated in Figure 3.5, immediately 
gives access to the transmitted power by using equation [3.136]: 

 21ta e iP P   [3.136] 
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Determination of Ptr0 the power radiated by this calibration antenna thus involves 
the ηe factor in expression [3.137]: 

0tr ta eP P   [3.137] 

The transmission of the Ptr0 so-called reference power will correspond to the 
power collected on the receiving antenna, expressed in terms of the < Pcr0 > 
estimator. Relationship [3.135] established above will thus form the link between 
transmitting and receiving powers, within the reverberation chamber. Converted in 
equation [3.138], this formula gathers into the A coefficient the physical parameters of 
the chamber and of the receiving antenna. It is no longer essential to know these 
parameters: 

0 0tr crP A P     [3.138] 

Indeed, by following the measurements procedure, we replace the transmitting 
antenna with the device radiating the unknown power PtrX. Under this new 
configuration, the receiving antenna collects the power < PcrX > that we relate to PtrX 
with an expression similar to [3.138]. The new formula [3.139], mentions the A’ 
coefficient which is a priori different from A: 

'trX crXP A P     [3.139] 

Let us not forget that the substitution of the device for the reference antenna 
more or less alters the value of the quality factor, as well as the volume of the 
chamber and consecutively the coefficient A. 

If we take care to maintain the device and the transmitting antenna in the 
chamber for all phases of the experiment, the energy losses will be almost 
unchanged. The impact on the coefficient A will thus be negligible and we will be 
able to find < PtrX > by using the simple equation formulated below: 

0
0

crX
trX tr

cr

P
P P

P
 

   
 

 [3.140] 

We must specify that the calibration power Ptr0 appearing in [3.140] is not 
necessarily an estimated variable, since it involves quantities that are assumed to be 
invariant, i.e. the Pi injected power and the reflection coefficient of the antenna ρe 
found in expression [3.137]. 

However, we must consider that this reflection coefficient can somewhat change 
with the angular position of the mode stirrer. The cause of this physical mechanism 
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is the backscattered power in the transmitting antenna. This backscattered power 
depends on the conditions involved by the modal excitation of the room. For this 
reason, it seems more accurate to make the calibration with the estimated value of 
< ρe >. 

3.6. Discussion 

3.6.1. On the hypothesis of the ideal random field  

The perfect reverberation chamber is mainly based on the postulate that the field 
data collected in the chamber gets away from any deterministic process. Indeed, this 
assumes that the field, produced by a transmitting antenna installed in the chamber, 
is entirely converted in the form of standing waves distributed according to a 
stochastic process. Under these conditions, the data collected would be statistically 
independent. In fact, these hypotheses are partially questionable! 

If the first is indeed verified in acoustics where we have compact sources 
transmitting little scattered beams, the transmission of the Hertzian waves is often 
carried out with limited directivity, whose consequences are damaging for the 
production of ideal random fields.  

Let us take two examples: in a first experiment, we carry out the emission inside 
the room with the help of a horn antenna pointed at the opposite side to the 
measurement location of the field. In a second experiment, the antenna used gives an 
almost isotropic radiation. It is certain that in the first case, the resulting field 
intercepted at the measurement location will be richly composed of standing waves 
formed by the interference of the successively reflected beams coming from the horn 
antenna. The conditions are thus highly favorable for the installation of an ideal 
statistical distribution of the field. Conversely, the direct radiation from the isotropic 
antenna used in the second experiment will more or less influence the resulting field 
at the measurement location. Two scenarios may occur, depending on the value of 
the quality factor of the chamber. 

In the case of a very high quality factor, the direct field produced by the antenna 
will be masked by the very strong amplitude of the standing waves due to the 
resonances. However, we know that high quality factors reduce dramatically the 
modal bandwidth. So does the number of standing waves involved in the 
interference process leading to the random behavior of the field. This scenario thus 
goes against a perfect random field. 

 Fall of the quality factor will favor the contribution of the direct field, whose 
amplitude can then overcome the resulting field due to the standing wave 
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interferences, though it is much more numerous than previously. The over-
significant contribution of the direct field thus has the effect of moving the field 
distribution away from perfect random process  

The expected behavior of the field should thus satisfy a compromise between 
two previously illustrated conditions. As is very well justified by the previous works 
of C.L. Holloway, the field distribution in a reverberation chamber, which is 
expressed in terms of the probability density function of an absolute amplitude, 
should be located between the ideal random field represented by Rayleigh’s 
distribution and Rice’s distribution, where a significant contribution of the direct 
couplings is involved [COR 00, HOL 06]. 

The second postulate requiring statistically independent data is more subjective, 
because the fields results from standing waves. Their amplitudes are locally 
correlated in the space. This matter will be covered in more detail in Chapter 4.. 

3.6.2. On the simulation of the disordered field by plane waves trials  

We showed in section 3.3.3 and after the application of the central limit theorem, 
that N plane waves of uniform amplitude having an incidence angle, polarization 
angle and a phase drawn at random, produced an ideal random resulting field. It was 
also proven with the help of basic statistical theories that the standard deviation of 
the resulting field evolves inversely from the square root of the sample size N 
involved.  

The simulation nevertheless relies on the application of the ergodism principle, 
where we replaced the physical variations of the random amplitude of the waves 
with the random variations of their incidence angle. It is possible that under the 
hypothesis of large numbers, the two methods converge.  

In practice, the simulation will require the assistance of the trials and tests. The 
tests will correspond to the angular positions of the mode stirrer giving independent 
data. The trials consist of restituting the ideal random field renewed on each test. If 
one test has N trials, a revolution of the mode stirrer generates NB tests. The criterion 
chosen for determining N comes from the physical properties of the plane wave 
spectra, which are presented in section 2.3.8, and from the N0 amount of the sine 
functions entering in the Δf0 selection band. Let us recall that the modal bandwidth, 
also called the modal selection band, is dependent on the quality factor of the 
chamber excited under the emission frequency f0. Knowing that each function is 
similar to eight plane waves, each test should thus have 8N0 trials. Concerning the 
criterion chosen for the number of tests, NB will be set by the shape of the 
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autocorrelation function of the mode stirrer as is described in section 4.4.2 of 
Chapter 4.  

Simulations by plane waves trials designed for the calculation of the power 
induced on a line parallel to a ground plane similar to the device, in Figure 4.1, 
section 4.2.3 of Chapter 4, have been successfully carried out by L. Musso 
[MUS 03]. The curves recorded from the simulations corresponded to measurements 
showing that the experimental and theoretical margins were quite in accordance with 
one another.  

However, respecting the random trials assumes the statistical independence of 
the incidence, polarization and phase angles. This hypothesis can be questionable as 
soon as the amount of the modes entering Δf0 dramatically grows as the excitation 
frequency increases. We can thus fear that adjacent modes may become significantly 
correlated in polarization and phase amplitude. These imperfections probably have 
an impact on the calculations carried out for a chamber that is hyper-sized compared 
to the wavelength; i.e. during experiments practiced above 10 GHz and for chambers 
of “volume” at least higher than 10 m3 [COZ 09]. 
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