
Chapter 8 

Mode Stirring Reverberation  
Chamber: A Research Tool 

8.1. Introduction 

The previous chapters of this book have been devoted to the introduction of the 
physical phenomena controlling the behavior of reverberation chambers in Chapter 1 
through to Chapter 4 and to the implementation of reverberation chambers for 
radiated immunity tests in Chapter 5 or radiated emissivity tests in Chapter 6 in 
electromagnetic compatibility, as well as of shielding effectiveness tests in Chapter 
7.  

The studies developed by many experts throughout the world in the last 20 years 
have gathered without a doubt a solid knowledge base today. This results in a 
henceforth intensive use of reverberation chambers for electromagnetic 
compatibility tests, throughout the world. Nevertheless, there are still to this day 
many lines of research on this subject. The discussions concluding the previous 
chapters present us with some open questions. The physical interpretation of the 
phenomena involved and the associated theoretical models are still largely 
discussed. On a very different level, the scope of reverberation chambers also tends 
to extend itself to different types of electromagnetic compatibility measurements or 
to other electromagnetic characterizations. The study of reverberation chambers is 
the object of increasing interest from a growing community of researchers and 
engineers of various fields. It is thus without a doubt that new reverberation chamber 
results and approaches will appear in the near future.  
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The description of the current research studies that deal with reverberation 
chambers largely exceeds the objectives of this book. We will however take a more 
particular look at the observation of the non-ideally random field distribution, as it is 
observed in practice. The ideal random field is indeed the primary assumption of this 
book and it seems quite important to compare it to the results of the experiment, so 
that we manage to detect a possible departure from the ideal statistical behavior, and 
above all to evaluate the impact on the statistical uncertainty margins.  

Continuing on from the previous reasoning, we will come back to the question of 
stirring effectiveness, which is transposed in the observation of the correlation of the 
random data collected during an experiment. The capture of non-correlated data is 
not necessarily synonymous with their statistical independence. It is well established 
from statistical theory that a sample of uncorrelated data, according to the definition 
of a correlation function, may be composed of dependent data in some way. This 
chapter will cover this matter in greater depth. This chapter will then conclude with 
the subject of measuring the fraction of the coherent wave, resulting from a direct 
excessive coupling with the transmission antenna or from an insufficiently efficient 
stirring.  

These illustrations evidently represent only a small part of the research studies 
currently carried out on the subject of reverberation chambers. Indeed, some points 
barely touched upon in this book have been and still are the subject of careful 
studies. Such is the case for the calculation of the field distribution in a chamber 
addressed by time domain simulation in 3D, for instance with the help of the finite 
differences method. Some of these calculation techniques have also been recounted 
in some works written in the past decade [HOE 01, PET 02] and are still an 
important research matter [PRI 09]. Finite element techniques in steady state have 
also been investigated [BUN 02]. Control of the calculation of the field distribution 
in a chamber can significantly help designers and practitioners to understand the 
impact of the most fundamental parameters. We need to point out on this subject 
that determination of the dimensions and of the geometrical form of a mode stirrer 
can come within the field of a simulation process, where hybrid calculations are 
involved. Convincing results have been recently obtained on this question [LAL 06]. 
Improvements of the numerical simulation can also lead to a comparison of the 
calculated and measured field distributions.  

Evidently, these calculations can only be suitably developed after the 
introduction of the main parameters controlling the functioning of the chamber, such 
as the composite quality factor of the propagation modes. An alternative approach to 
the exact calculation consists of solving Maxwell’s equations with the introduction 
of random behavior parameters. The stochastic collocation method (which is a 
spectral method aiming at minimizing the number of simulations required by the 
conventional Monte Carlo process) has been used quite successfully by allocating 
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the role of the virtual random variable to the conductivity of the walls. The 
probability density function of this virtual variable is then linked to the random 
variable under investigation, which is attached to the evolution of the electric field in 
the chamber [DIO 08]. This same process can be used in order to evaluate the 
radiation of an electrically conducting wire placed in a reverberation chamber. The 
Green functions accounting for the radiation of the wire are then connected to the 
evolution of the electric field [DIO 07]. Other approaches aim at building the plane 
wave spectrum, which is allocated to a field distribution calculated beforehand by a 
numerical method [NAF 09]. Here we can measure the impact of these studies and 
their powerful connection with the assumptions formulated on the generation of an 
ideal random field, as depicted in the previous chapters of this book.  

To conclude this introduction, let us briefly come back to the aspects developed 
in this chapter. In the current state of theoretical studies carried out on the question 
of the operation of reverberation chambers, the model of the random plane wave 
spectrum satisfactorily explains the observed behavior in a well oversized cavity, 
despite the simplicity of the initial assumptions. The random plane wave spectrum 
relies on the hypothesis of the successive generation of a high number of modes 
provided by the action of the mode stirring. If the geometrical shape of the cavity is 
assumed to be a sphere, polarization and angle of incidence of incoming plane 
waves are therefore uniformly spread. As justified by some recently fulfilled studies, 
this representation described in Hill’s model has its own limits [FIA 05].  

On the other hand, some departure with regard to the ideal random field 
distribution can also be revealed using experimental procedures and statistical 
analysis tools, always better adapted to the context of the reverberation chambers 
[ARN 02, LEM 07, ORJ 06]. Consequently, this imposes new approaches, enabling 
us to examine the behavior of reverberation chambers in the frequency ranges, 
where they are supposed to move away from the model of the ideal random field.  

The question of the number of independent realizations collected during the 
stirring process is also discussed in section 8.3. Indeed, collection of the complete 
sample must be in principle made up of individual data that are all independent from 
each other. In practice, we detect a possible dependence with the help of a linear 
correlation operator. If we estimate this linear correlation close to zero, it is not 
sufficient to demonstrate the independence of the measurement data. In fact, other 
correlation forms are possible. On the contrary, the observation of linear correlation 
authorizes us to state that the sample is not a set of fully independent data. An 
analysis of the efficiency of this stirring process may therefore be carried out. In 
particular, this analysis provides an interesting observation to evaluate the 
consequences on the statistical uncertainty budget of the measurement.  



324    Electromagnetic Reverberation Chambers 

In addition, as we have already pointed out in this book, the use of reverberation 
chambers is no longer limited to the EMC applications. We could not conclude this 
book without illustrating some recent studies on the application of the reverberation 
chambers. We will focus on their ability to measure antenna characteristics in 
specific situations. In particular, we examine the simulation of a controlled electric 
field distribution, other than a Rayleigh distribution, in order to evaluate the 
performance of combined multiple antennas.  

This chapter is only an introduction to several research studies showing on the 
one hand that the questions relative to the theoretical or behavioral analysis of the 
reverberation chambers are not all solved and on the other hand that the domain of 
the investigations and applications does not stop increasing.  

8.2. A non-ideal random electromagnetic field  

The assumption of the ideal random field amounts to considering that the angle 
of arrival and the polarization of the incident field at the observation point are 
uniformly distributed. This is only possible when a sufficient number of resonant 
modes are excitable during the rotation of the mode stirrer.  

In an equivalent way, in the assumption of small wavelengths compared to the 
dimension of the cavity, the almost optical hypothesis enables us to give an account 
of a propagation model, in the form of plane waves with multiple routes in the 
chamber. These routes are strongly altered by the rotation of the stirrer. A perfectly 
balanced distribution of incidence angle and polarization, in the meaning presented 
above, is only strictly possible if the cavity has symmetry properties. This is the case 
for a cavity of spherical form. 

In practice however, most of the chosen Faraday cages are rectangular shaped. 
This geometry can lead to the non-uniformity of the angular distribution of the plane 
wave spectrum, which is created in particular if the parallelepiped cavity is very 
asymmetric. On the other end, in the frequency spectrum close to the lowest 
functioning frequency, the mode density is not so high as to require an ideal 
behavior. In this context, the number of degrees of freedom allowed by the stirrer is 
limited. Therefore, these factors may invalidate the assumption of uniform 
probability of the angles of arrival and/or of the polarization of the incident fields.  

On an experimental level, it is possible to highlight the departure from the ideal 
behavior, even when it is weak, in comparison to the Rayleigh process, which is 
attached to the electric field modulus, by using a specific analysis of the statistics of 
the data recorded during a mode stirring process. This analysis can be carried out 
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with the help of a statistical goodness-of-fit test, relying on the well-established 
statistical theories, as introduced in Chapter 3 of this book.  

8.2.1. An estimate of the statistics of a rectangular component of an electric field 
in an effective reverberation chamber  

8.2.1.1. Estimate of the Rayleigh distribution parameter 

We saw in Chapter 3 that in the context of the production of an ideal random 
field distribution, on any field projection, measured with the help of an electric field 
probe, a rectangular component follows a Rayleigh distribution. We recall here its 
probability density function:  
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The expression used here conforms to the Rayleigh process given for a 
normalized variable of type /R vu E   (expression [3.28] of Chapter 3), where v  

is the standard deviation of the normal distribution. The latter underlies the behavior 
of the complex real and imaginary components of the random field.  

We recall that the mean and standard deviation of this random variable are 
respectively given by: 
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The Rayleigh distribution function is a random process, more frequently 
described by the statisticians in a form adapted to its analysis, via the introduction of 
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Hence:  
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The Rayleigh distribution written in this form thus depends on the single 
parameter , whose value need to be estimated beforehand. This estimate is done 
with the help of a series of measurements, each corresponding to an individual 

realization of the random variable. This estimator which we note ̂  is also a random 
variable. Consequently, the quality of this estimate depends on appropriate choice 
for the estimate function, whose objective must be to minimize the probability of the 
estimate error. Generally the maximum likelihood method [PAP 02] is used to 
determine this function. Its application to the normal distribution is illustrated in 
Chapter 3. This estimate function closely depends on the underlying probability 
density distribution of the random variable. In this case it is the Rayleigh 
distribution. The maximum likelihood is expressed as the maximization of the 
likelihood function, as it is presented in section 3.4.3 of Chapter 3. From a sample of 
the random X variable composed of N individual measurements 1 2( , ,..., )Nx x x , we 

seek the best possible estimate ̂ . In other words, we try to find ̂  such that its 
probability density function is the highest possible around the reference (true) 
parameter  . This amounts to maximizing the PN probability density function, 
which corresponds to the accumulation of N trials of the random variable given by:  
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Similarly to the approach presented in Chapter 3 for the normal distribution, we 
look for the solution in the form of vanishing the derivative of the natural logarithm 
of the probability density PN. We thus show that the estimator with the maximum 
likelihood for the Rayleigh distribution is governed by:  
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We thus easily deduce the following result for the sought after estimator: 
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The ̂  estimator with the maximum likelihood for a Rayleigh distribution thus 
represents the mean square of N realizations of the analyzed random variable. 

8.2.1.2. The goodness of-fit test for a Rayleigh distribution with an a priori unknown 
parameter 

We saw in Chapter 3 and more particularly in section 3.4.4 that we frequently 
used the Kolmogorov-Smirnov test, in order to evaluate the distribution of a 
collection of data resulting from a random process with continuous values. The 
analysis of the data resulting from the mode stirring in reverberation chambers is 
very often carried out with the help of this test. The result of this statistical 
adjustment test is generally compared to the Massey table (see Chapter 3 and 
[MAS 51]). As also highlighted in section 3.4.4, the selection of the critical values 
of the Massey table is only appropriate if we consider that the parameter of the 
distribution to be tested is known beforehand and does not need to be estimated.  

This is evidently not the case for samples of measurements in reverberation 
chambers, for which we need to previously estimate the parameter(s) of the 
supposed underlying distribution of the random variable. We have seen above in 
particular how to estimate the   parameter of the Rayleigh distribution for a 
rectangular component of the electric field.  

Statisticians have provided sets of critical values or other test methods enabling 
us to check the fit of various statistical distributions, specifically in the case where 
this preliminary estimate of the parameters is necessary.  

In the case of the Kolmogorov-Smirnov test, Lilliefors [LIL 67] and Stephens 
[STE 74] have developed new tables according to a process similar to the one used 
by Massey, for an exponential distribution and also valid for a Rayleigh distribution. 
The process of establishing these tables can for example be based on the simulation 
of a large number of samples of N values of the considered probability distribution 
function. For each one of these samples, the estimate of the most likely value of the 
parameter(s) is carried out. The large number of samples leads to the convergence 
(Monte-Carlo method) on the distribution of the deviations D, between the 
theoretical distribution function and the empirical distribution function. The chosen 
confidence interval then gives the critical value.  
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Thus, the table developed according to this process by Stephens for the test of an 
exponential distribution or a Rayleigh distribution, is very useful for the analysis of 
the measurements of power and electric field components which are carried out in 
reverberation chambers. We seek to precisely evaluate if the power is of exponential 
type and if an electric field projection follows a Rayleigh distribution. 

We give in Table 8.1 the Stephens table, whose values are compared to the 
Massey table, for different values of N. 

We recall that the statistical gauge of the Kolmogorov-Smirnov test is given by: 

max ( ) ( )m N thS x F x    [8.8] 

where SN(x) is the empirical distribution function of the 1 2( , ,..., )Nx x x  elementary 

measurements, and Fth(x) is the theoretical cumulative distribution function to be 

tested. The critical distance c indicated in Table 8.1, are the values that the 
statistics m must not overcome for a given significance level . The assumption of 
adjustment to the distribution is considered as accepted, for m<c() with an 
significance level that corresponds to %. In the opposite case, the distribution is 
considered to be rejected. Let us recall that would correspond to the probability of 
overcoming the critical value, assuming the random variable strictly complies with 
the tested distribution function. 

Number of realizations 
(N) 

Critical distance (c) of the 
table of Massey  

Critical distance (c) of 
the table of Stephens 

 = 5% = 10% = 5% = 10% 

25 0.270 0.240 0.212 0.193 

50 0.192 0.173 0.152 0.138 

75 0.157 0.141 0.125 0.113 

100 0.136 0.122 0.108 0.098 

125 0.122 0.109 0.097 0.088 

150 0.111 0.100 0.089 0.080 

Table 8.1. Massey and Stephens critical distance values  
for different values of N 
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Observation of Table 8.1 leads to two conclusions. On the one hand, the critical 
values given by Stephens are lower than the critical values of Massey, whatever the 
size of the considered sample. Concretely, this means that the Kolmogorov-Smirnov 
test is, according to the Stephens criterion, stricter than the test according to the 
Massey criterion. This is not surprising considering the bias systematically 
introduced by the initial assumption by Massey, related to the preservation of the 
distribution parameter from one sample to another. On the other hand, the difference 
between these critical values may seem to be weak. 

Consequently, this means that the Massey table, although wrongly used, 
indicates if the Rayleigh assumption (or the exponential one) is a reasonable 
assumption. Let us note that the result of the test does not mean at all that the 
process follows the tested distribution with certainty, but that it is acceptable. 
However, the Stephens table is a stricter test, likely to move away from the Rayleigh 
assumption (or the exponential one) more easily, if the collection of the data to be 
tested drifts even slightly from the expected distribution.  

To be more exhaustive, the Stephens critical values applied to the Kolmogorov-
Smirnov test for any number N are given for several significance levels within Table 
8.2, where the critical value V is given in the form of an analytical function of the N 
number of realizations and the statistical gauge m, which is always calculated 
according to expression [8.8]: 

0.2 0.5
( ) 0.26mV N

N N
      

 
 [8.9] 

Significance level  0.15 0.10 0.05 0.025 0.01 

Critical value V 0.926 0.990 1.094 1.190 1.308 

Table 8.2. Stephens critical values for any sample size N for the goodness-of-fit-test of an 
exponential distribution also applicable to a Rayleigh distribution 

In the following, we will introduce a comparison of these two tests (Massey and 
Stephens) on the same series of measurements in reverberation chambers.  

8.2.1.3. Example of the Kolmogorov-Smirnov test according to the Massey and 
Stephens criteria from measurements carried out in a reverberation chamber  

The measurements presented here are carried out in a reverberation chamber, 
whose approximate dimensions are 8.7 m in length, 3.7 m in width and 2.9 m in 
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height. The experiment is carried out with the help of a log-periodical-type 
transmission antenna, which is directed towards the stirrer of the chamber, in the 
frequency band of 200 MHz to 1,100 MHz. The field probe used is a tri-axial probe, 
enabling us to simultaneously measure the three orthogonal projections of the field. 
Its dimension is much lower than the lowest working wavelength.  

In order to evaluate the rejection rate of the Kolmogorov-Smirnov test, we 
cannot reach a conclusion with the help of only one sample of N realizations. 
According to the choice of the significance level, we must indeed have at our 
disposal a significant number of these samples. This is naturally a difficulty, 
because, on the one hand, we need to multiply the measurements in reverberation 
chambers, and on the other hand, we need to ensure the non-correlation of the 
measurement conditions. The study of the correlation is an important preliminary 
checking stage. We will admit in the following that all the necessary precautions 
have been taken in order to ensure the absence of correlation of the collected 
observations. This is indeed a difficult matter that we will come back to in section 
8.3 of this chapter. The experiment relies here on a set of measurements in various 
arbitrary positions of the probe, which are sufficiently spaced from one another in 
order to minimize spatial correlation of fields. Moreover the large mechanical stirrer 
is rotated in several positions with a rotating step angle big enough to reconfigure 
the standing wave pattern in the chamber. Preliminary tests confirm that the set of 
data thus collected exhibit a weak linear correlation. In total, we have at our disposal 
a minimum of 18 samples of size N = 150 up to the frequency of 400 MHz, and 30 
samples above 400 MHz. This limitation of the number of samples in the low 
frequency range of measurements is explained by having at our disposal a more 
limited number of stirrer positions, leading to a correlation of the measurements, 
which are estimated as negligible. The goodness-of-fit test of the Rayleigh 
distribution is carried out on all the 18 or 30 collected samples, for which the 
statistical margin m is evaluated. The rejection rate corresponds to those samples 
for which a statistical margin exceeds the Massey or Stephens limit values and gives 
quite a good idea of the acceptability degree of the distribution. It remains to 
naturally fix the level of significance  enabling us to select the corresponding limit 
values. We set, in a conventional but arbitrary way,  = 0.05. 

Figure 8.1 gives the rejection rates associated with the Kolmogorov-Smirnov 
test, according to Massey and Stephens. For every frequency of this test (200 to 
1,100 MHz per step of 100 MHz), the two values are compared with the help of two 
histograms. These histograms highlight the strictness difference of the two tests. At 
200 MHz, the two tests massively reject the Rayleigh distribution. The 
electromagnetic cavity seems to be insufficiently oversized. Beyond 700 MHz, the 
two tests seem to greatly accept the assumption of the Rayleigh distribution. There is 
between 200 and 700 MHz a transition zone, for which it seems that the test 
according to Stephens rejects the assumption of Rayleigh distribution, whereas the 
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test according to Massey is far more positive. It is important here to indicate that a 
conventional standardized test, such as those presented in Chapter 5 of this book, 
gives a lower usable frequency of about 250 MHz for this chamber. Stephens’ test 
clearly indicates that despite the fact that the conditions are met so that the chamber 
may possibly satisfy the requirements of statistical uniformity level; the process 
does not quite faithfully follow a Rayleigh process which is only reached in reality 
in a very significant oversizing regime.  

To confirm this assumption, we then need to seek an underlying distribution, 
which could be a better candidate than the Rayleigh distribution for the data 
experimentally observed. Ideally, such a hypothetical distribution would have a less 
stringent condition in order to fit with the data set. A possible solution is to seek a 
multi-parametric solution. The family of the Weibull distributions owns this 
characteristic, as well as the advantage of integrating the Rayleigh distribution 
(this means the   distribution with two degrees of freedom) and the exponential 
distribution (this means the 2  distribution with two degrees of freedom). 

 

Figure 8.1. Histograms of the rejection rates in % for the Kolmogorov-Smirnov test of a 
Rayleigh distribution for an electric field projection. The two columns per 
 frequency correspond to the calculation of the rejection rate according  

to the application of the Massey criterion (black hatched)  
or of the Stephens criterion (gray border) 
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8.2.2. Resorting to a replacement distribution: the Weibull distribution 

8.2.2.1. The Weibull distribution with two parameters  

Resorting to a Weibull distribution with two parameters [JOH 94, WEI 51] is 
considered here in order to describe the behavior of the reverberation chambers in 
the regime of a non-ideal random field. The probability density function of this 
distribution is given by: 

1( ) exp( )b b
wf x abx ax   [8.10] 

In this equation, a and b are real parameters. The a parameter is called the scale 
parameter, and b is the shape parameter.  

By identifying the Rayleigh distribution given in the form of [8.2] with 
probability density function [8.10], we easily show that the Weibull distribution is 
similar to the Rayleigh distribution, for the following values of a and b: 

1
, 2a b


    [8.11] 

If the measurements have been normalized beforehand, that is to say brought 
back to their mean value, we can show that / 4a  . 

8.2.2.2. Estimate of the parameters of the Weibull distribution  

In order to compare our set of measurements to the Weibull distribution, we also 
need to optimally estimate the parameters of this distribution. For this, we also resort 
to the method of the maximum likelihood. The PN,Weibull probability function for N 
trials of a Weibull random variable is written in the form:  

  1
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  [8.12] 

By taking the logarithm of expression [8.12] and by calculating the partial 
derivatives with respect to both a and b parameters, and then by seeking the values 
of a and b, for which these partial derivatives are cancelled, we then obtain the 
following system of equations:  
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The pair of estimated parameters (a,b) is thus the solution of this system of 
equations, which are formed from the 1 2( , ,..., )Nx x x  sample of measured values. 

From this estimate of the parameters of the Weibull distribution, we classically carry 
out a statistical goodness-of-fit test. 

8.2.2.3. Goodness-of-fit test of the Weibull distribution and associated critical 
values  

The test of a Weibull distribution can also be carried out with the help of the 
Kolmogorov-Smirnov method. 

However, critical values of Table 8.2 are not valid in the specific framework of 
the Weibull distribution. The critical values of the Weibull distribution have been 
otherwise determined [EVA 89] and we directly transpose the result in Table 8.3. 

Significance level c critical distance 

0.10 0.8265 / 0.1991/N N  

0.05 0.8982 / 0.2216 /N N  

0.01 1.0455 / 0.2826 /N N  

Table 8.3. Critical distance for the Kolmogorov-Smirnov test of  
a Weibull distribution with two parameters 

8.2.2.4. The Weibull distribution applied to measurement data in reverberation 
chambers  

We have noticed above that the behavior of the measured data (in this case an 
electric field projection along any axis in reverberation chamber) did not perfectly 
answer the assumption of a Rayleigh distribution on the entire frequency band under 
investigation. The objective of the analysis proposed in this section is to evaluate if 
the Weibull distribution would be suitable for the description of this behavior.  
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This is thus the same set of data as in section 8.2.1.3, which will be subjected to 
this new statistical goodness-of-fit test.  

The result corresponding to this analysis is represented in Figure 8.2. We show 
the rejection rate of the Weibull distribution by comparing it to the rejection rate 
previously calculated for the Rayleigh distribution. 

Two tendencies are clearly emerging when consulting histograms. Beyond 
700 MHz, the rejection rates are comparable for the two distributions. This result 
corresponds with one’s expectation. Indeed, the Rayleigh distribution is a Weibull 
distribution of parameters a = 1/ and b = 2. The Weibull test only confirms the 
result of the preliminary test about the Rayleigh distribution. The values of the a and 
b parameters, estimated with the help of relation [8.13], give us information about 
the shape of the probability density of the distribution and notably about its 
deviation with regard to a Rayleigh distribution. 

 

Figure 8.2. Histograms of the rejection rates in % of a)the Kolmogorov-Smirnov test 
according to Stephens criterion for a Rayleigh distribution (gray hatched); b) the 

Kolmogorov-Smirnov test of a Weibull distribution (black hatched).  
Data are measured amplitudes of an electric field projection 
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The second observed tendency corresponds to a very clear discrimination of the 
result of the two tests, for frequencies lower than 700 MHz. Indeed, we notice that 
while the Rayleigh distribution is massively rejected, the Weibull distribution is on 
the contrary widely accepted. We can thus conclude that the Weibull distribution 
more suitably describes (than the Rayleigh distribution) the behavior of this 
reverberation chamber, when we analyze the measurement results in terms of the 
rectangular component of the electric field measured with the help of a field probe. 
This does not mean that any other distribution can be an even better candidate. 
Failing to determine a better prospect, the aforementioned at least fits the measured 
data better than the Rayleigh distribution. 

The a and b parameters of the Weibull distribution are estimated for each 
frequency multiple of 100 MHz, for which the measurements have been carried out. 
The corresponding layout appears in Figure 8.3. We notice that by progressively 
increasing the frequency, we get closer to the Rayleigh distribution. This tends to 
show that the chamber is progressively idealized with the rise in frequency, as 
predicted by the theoretical analysis of the reverberation chambers presented in 
Chapter 4 of this book. We are referring here to the limited mode density found in a 
not much oversized chamber in its lowest frequency band of operation. This 
probably, as consequence, moves us a little away from the model of the perfectly 
uniform plane wave spectrum. This represents however an assumption to be 
confirmed, either on a theoretical basis or on a modeling method.  

 

 

Figure 8.3. Estimate of the a and b parameters of the Weibull distribution, corresponding to 
the measurements of an electric field projection in reverberation chamber 
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In practice, more precisely recognizing the random behavior of a reverberation 
chamber can enable us to better control the uncertainty of measurements carried out 
during the estimate of any physical parameter in a reverberation chamber. This 
estimate represents either a moment of the underlying distribution or a function of 
moments of this distribution. The standards of electromagnetic compatibility in 
radiated immunity (see Chapter 5 of this book) relies for example on the calibration 
of the electric field measured with the help of a probe. 

There is however another important criterion in terms of the analysis of the 
stochastic behavior of a reverberation chamber: the non-correlation of the important 
collected observations, which form the analysis sample suitable for the study of the 
goodness-of-fit tests. However, in practice, this matter deserves our attention, 
because deciding or not on the correlation of a series of measurements is in reality 
difficult.  

8.3. Studying the correlation of a set of measurements 

Up until now, we have deliberately set ourselves in the case where the 
measurements could be considered to be non-correlated in the meaning of the 
correlation operator used in section 8.3.2 below. This correlation measurement is in 
fact the most frequently used by the standard documents. It is indeed planned that 
the stirring process used is previously the subject of a check of the absence of 
correlation. We take a more particular look at this (seemingly) simple evaluation 
process, but as illustrated below, it leads to an impact on the quality of the 
measurements carried out. 

8.3.1. Outline of the link between correlation and statistical uncertainty  

The question of statistical tests is useful to check which theoretical distribution 
best fits the data. Nevertheless, whatever the underlying distribution concerned, the 
possible correlation between the different observations concretely manifests itself as 
an increase in the measurement uncertainty. Any electromagnetic test indeed in 
reverberation chamber requires a collection of data, through a stirring process, and 
these are possibly, at least partially, correlated. Precisely evaluating its impact must 
go through an evolved statistical analysis, whose outlines will be given here. To 
understand the nature of the relation between correlation and measurement 
uncertainty, let us observe two different situations.  

First, let us assume that we collect N non-correlated and independent 
measurements. If we seek to estimate the moment of this series, this estimate is a 
random variable, which asymptomatically strives (i.e. N is high enough to apply the 



Mode Stirring Reverberation Chamber     337 

law of large numbers) for a normal distribution centered around the true mean value 

noted ( , / )Norm N  , where  and  respectively represent the true mean value 

and the rigorous standard deviation of the underlying probability distribution 
[PAP 02]. The result is that the committed uncertainty is directly linked to the 

1/ N  factor, if the resulting measurement observation is the mean estimate of the 
measurements.  

Secondly, we admit that our stirring process is very much imperfect and that it 
leads us to collect measurements that are pairwise correlated. In other words, the 
recorded sequence 1 2( , ,..., )Nx x x  is such that the correlation between the ith 

element is total with the i+1 element and non-existent with the i+2 element, 
whatever the value of i. In an extreme situation, the initial sequence could become 
very close to the double collection of N/2 data. In that case, the first moment strives 

for a normal distribution centered on the true mean noted ( , / / 2)Norm N  . This 

estimate naturally includes a more significant uncertainty.  

In reality, these extreme situations are not found in practice and the correlation 
between successive observations is partial, for example in the meaning of the 
neighboring positions of the mode stirrer. We thus need to determine if this 
correlation is sufficiently low so that we reasonably consider that the series 

1 2( , ,..., )Nx x x  of measurements really gives N non-correlated data. We need to 

specify here that the non-existence of a correlation is a necessary, but insufficient, 
condition to prove independence between sample data. We will thus only be able to 
postulate that the measurement independence is then a possible assumption in a case 
of non-correlation.  

8.3.2. Measurement of the correlation 

The correlation is in reality a statistic carried out from the study of two series of 
observations X 1 2( , ,..., )Nx x x  and Y 1 2( , ,..., )Ny y y . The most frequently used 

operator relies on the detection of a linear correlation. Although there are many 
possible formulations of such an operator, the Pearson statistic is used for the 
measurement of the linear correlation, given by: 
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In this expression, the denominator is in reality a normalization coefficient. Let b 
be a real and constant parameter. Thus, if the 1 2( , ,..., )Nx x x  and 

1 2( , ,..., )Ny y y series co-vary in an identical way ( )i iy x b   or in an opposite way 

( )i iy x b   , then the coefficient will be respectively equal to 1 or -1. It will take 

an intermediate value for any other situation. This statistics enables us in fact to 
detect the existence of a relationship between the parameters of the Y series and the 
X series, in the form of the linear function: 

Y aX b   [8.15] 

The a parameter indicates the direction of a regression line which we determine 
from all of the covariances of the pairs ( , )i ix y . Without any tendency, no regression 

line can adapt itself to this set of points which in this case is randomly spread in the 
x-y plane. For two samples of infinite size not linearly correlated, the correlation 
coefficient is null. This is the result of the absence of linear correlation, but does not 
presume of any other form of non-linear correlation. 

The literature points out other correlation statistics, which are adapted to various 
forms of non-linear correlation. However, in the context of application to the 
reverberation chambers, the linear correlation operator has proven to be an efficient 
correlation detector for a series of observations corresponding to consecutive 
positions of a mechanical stirrer or to step by step modifications of the RF source 
frequency in the chamber. Nevertheless, caution is advised concerning the ability of 
such simple statistics to detect more complex correlation forms. From an estimate of 
the correlation coefficient, it remains nevertheless to detect a decision criterion 
likely to confirm the assumption of non-correlation of the collected measurements.  

8.3.3. Study of the linear correlation during experimental estimates  

In order to detect possible correlations within a single series of measurement X 

1 2( , ,..., )Nx x x , we can replace Y in expression [8.14] by the same series of values, 

which are translated or permuted at the p order, where p is a natural integer to form 
the sample ,...),...,,( 1 pNpp xxx  . The translation corresponds to an acquisition 

carried out during the time or during a movement in the space. We then study the p 
order autocorrelation of the sample X. 

The first order autocorrelation coefficient is calculated from the virtual Y 
sample, so that: 

2 3 2 3 1( , ,..., ,0)  or ( , ,..., , )N NY x x x Y x x x x   [8.16] 
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The second version of expression of Y on the right side of [8.16] can be 
meaningful when it is for example a uniform rotation step of a mode stirrer on a 
complete rotation. In that case, the angular incrementation of the stirrer is indeed 
identical between the xN and x1 measurements on one side, and between the x1 and 
x2 measurements, on the other side. 

We will note later 1( , )X X   the first order autocorrelation coefficient, which is 

obtained by a shift or rotation of one row of the series of measurements. However, 
the 1( , )X X   correlation coefficient thus determined, must enable us, possibly 

from only one sample, to diagnose the absence or the presence of the correlation. At 
this stage, two difficulties occur. On the one hand, the first order correlation 
coefficient is evidently a random variable, from which we can only hope at best for 
an estimate, whose precision will be limited by the sample size N. On the other 
hand, we also need to set a reasonable critical threshold of 1( , )X X  , below which 

we can reasonably formulate the assumption of the absence of correlation.  

In the context of the existing standards [IEC 02, RTC 07] on the reverberation 
chambers, the chosen convention consists of fixing, whatever the value of N, the 
critical threshold below which we admit the linear non-correlation at: 

0.37t   [8.17] 

This value corresponds to the approximate value of the result of the exponential 
function of -1. This threshold is very frequently used. We cannot however 
particularly justify this choice in the analysis of the correlation of the measurements 
in reverberation chambers.  

In reality, we should not pay too much attention to it. Section 8.3.4 highlights 
this, studying the statistical behavior of the estimate of 1( , )X X   from an 

experimental measurement.  

8.3.4. Statistical distribution of the coefficient of linear correlation 

Indeed, let us assume that a sample of size N subjected to our correlation 
analysis is not correlated. In this case, we can expect that the evaluation of 

1( , )X X   is such that this value would be close to 0. If we have at our disposal an 

infinite sample of uncorrelated data, then the expected value given by expression 
[8.14] will indeed be null. It is particularly useful to know the properties of the 

1( , )X X   estimate as a function of the number N and of the true value of the 

correlation of the collected sample. 
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Let us assume that the moment of the autocorrelation function of the random 
process observed is such that 1( ( , ))E X X   . If we had at our disposal an 

infinite sample of correlated realizations, this function would tend to this value. Let 
r be the estimate of the first order autocorrelation function, carried out from a 
sample of limited size N. We can show that the ( )N r probability density function 

of the correlation coefficient of a process, for which the expected value of the 
correlation is such that 1( ( , ))E X X    for a sample of size N, is put into the 

form [KRA 05]: 
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with 
1

( ) 1
4(2 1)

rA r
N
 


. 

An almost perfect estimate would give an almost certain probability of finding 
r  . In practice evidently, a particular estimate of r may be more or less distant 

from the true value , according to pdf [8.18]. In reality, the larger is the sample size 
N, the higher is the probability that the estimate will be closer to the true value. It 
results that the 0.37 set threshold must be interpreted differently according to the 
sample size under investigation [KRA 05, LUN 00].  

To convince ourselves, we draw in Figure 8.5, the curves of probability density 
function [8.18], with N = 30 and N = 300, for a series of measurements entirely non-
correlated ( = 0). It is easy to calculate from these curves the probability of 
obtaining specific ranges of values for r. Thus, we take a look at the )( tN rP   

probability; which corresponds to the probability of estimating an absolute value of r 
greater than t, although the sample is not correlated at all. This probability is given 
by: 
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     [8.19] 

A quick observation of the two probability density curves in Figure 8.5 very 
clearly shows that this probability for t =0.37 is extremely low for N = 300. Indeed, 
the area under the curve sections corresponding to values of autocorrelation 
coefficient lower than -0.37 and higher than 0.37 is very small. In reality, for 
N = 300, the probability to extract a correlation coefficient of about 0.37 from a 
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series of null correlation measurements is minimal. This means a contrario that if 
the calculation of the first order autocorrelation function yields a higher absolute 
value than 0.37, it is then almost certain that the measured series is at least partially 
correlated. 

For N = 30, this probability of obtaining a correlation estimate higher than 0.37 
is much more significant. Indeed, this probability is about of 5%. The correlation 
estimate on a sample of small size, although made up of non-correlated 
implementations, is indeed less reliable. In this specific context, the threshold of 
0.37 specifically corresponds to the 5% significance level of making an 
interpretation error. This significance level is commonly adopted as a trade-off 
between strictness of evaluation and possible misinterpretation of results for very 
small values of significance level, Therefore, the 0.37 limit may sound reasonable 
for N=30. 

The example carried out for two sizes of samples shows very simply that testing 
the 0.37 threshold does not have any general meaning and that it cannot in reality 
lead to an evaluation of a specific correlation level. It is thus interesting to seek an 
alternative for this estimate. 

 

 

Figure 8.4. Probability density function of the autocorrelation function estimate for a sample 
whose true correlation value is null. This probability density is given for two 

 sample sizes representing a series of N = 30 or N = 300 realizations  
of the considered random variable 
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8.3.5. Approximation of a normal distribution for the estimate of the first order 
correlation function  

Observation of the curves in Figure 8.4 lets us think that function [8.18] could be 
approximated by a simple function. In reality, we can show that for values of  
lower than about 0.5, the pdf of the autocorrelation function is comparable to a 
normal distribution of type ( , )Norm   , with  , the standard deviation of this 

normal distribution and its expected value. We can show that: 

1( , )( ) ( , ) 0.5N x xr Norm     
      [8.20a] 

with:  
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This approximation, even valid for correlation values lower than 0.5, turns out to 
be useful in the context of the analysis of measurements in a reverberation chamber, 
which most of the time have correlation values smaller than this threshold. Beyond 
this threshold, the approximation of the normal distribution is less reasonable. This 
approximation is useful for trying to determine the correlation coefficient of a series 
of measurement with a reasonable estimate uncertainty.  

In the following, we will assume that correlation coefficient is always positive, 
without loss of generality of the result. We estimate ˆ Nr r  according to expression 

[8.14] from N measurements, which are collected during the rotation of the stirrer. 
The angular position of the stirrer is thus the subject of the analysis of the 
probability distribution of the field in the chamber, or in other words it is the 
probability space under investigation. We set as a target the determination of the 

probable interval inf sup,    of the estimate of the correlation coefficient.  

First, we take a look at the determination of inf ,  as representing the lower 

bound of the correlation coefficient. Let inf  be the expected value or the true value 

of the autocorrelation function. According to assumption [8.20a], we can write that 
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the estimate of inf  follows a normal distribution, noted 
infinf( , )Norm   , whose 

mean value is inf  and standard deviation is 
inf . Thereupon, we can seek inf , 

so that the two following conditions are respected: 

inf 
infinf( , )Norm    [8.21a] 

inf %Pr ( )Nob r q    [8.21b] 

Relation [8.21a] expresses the estimate of the correlation function when its 
expected value is indeed inf . Expression [8.21b] conveys the research for a 

probability threshold infPr ( )Nob r   beyond which it is quite unlikely to estimate 

Nr , knowing that the expected value is inf . This threshold corresponds to the term 

q%, which represents a quantile of the normal distribution [8.21a], otherwise 
perfectly determined. By choosing the quantile to be situated at 2.5%, we find: 

infinf 1.96Nr     [8.22a] 

inf  is, in this case, the estimate of the lower bound of the correlation 

coefficient, which is determined from the ˆ Nr r  empirical observation carried out 

from a sample of size N, with a probability of 97.5%. 

To find the upper bound, the reasoning is perfectly similar and the symmetry of 
the normal distribution enables us to reach the following conclusion: 

supsup 1.96Nr     [8.22b] 

We can thus deduce that the inf sup,     confidence interval at 95% for the true 

value of the correlation coefficient is given by: 

inf
1.96Nr    

sup
1.96Nr   [8.23] 

By replacing the standard deviations with their expressions given in [8.20a], we 
obtain: 

 2
inf2

1
1.96 1N

Nr
N

      2
sup2

1
1.96 1N

Nr
N

   [8.24] 
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Assuming N is high enough, the sought after inf sup,     interval tends to 

decrease, and two new approximations can be made: 

NN
N 11

2


  [8.25a] 

     2 2 2
sup inf1 1 1        [8.25b] 

We thus obtain a final approximate expression of the uncertainty of estimation of 
the autocorrelation function, mainly as a function of the sample size N whose 
moment of the first order correlation function is : 

 21
1.96Nr N





  

 21
1.96Nr N


  [8.26] 

Although valid for correlation values lower than 0.5, this confidence interval 
gives a higher uncertainty margin for strong correlation values. It may therefore also 
be applied in such cases.  

Table 8.4 gives a few examples of the confidence interval for a few values of the 
pair (,N) as calculated from [8.26]. 

Exact value of the 
correlation ( 

Size (N) of 
the sample 

Lower bound of the 
estimate (rN) 

Upper bound of  
the estimate (rN) 

0 100 -0.20 0.20 

0 1,000 -0.06 0.06 

0.3 100 0.11 0.49 

0.3 1,000 0.24 0.36 

0.5 100 0.33 0.67 

0.5 1,000 0.45 0.55 

Table 8.4. A few values of the confidence interval for the estimation of correlation coefficient 
 calculated from [8.26] for several known values of and of the sample size N  
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It is thus quite possible in principle to reduce the confidence interval by 
increasing the size of the sample. However, if we study the rotation of a mode 
stirrer, this increase automatically leads to an increasing correlation between 
measurements. Reducing the confidence interval can require several successive 
evaluations of the correlation estimate, in different positions of the field probe for 
example. 

We empirically show that this method enables us indeed to converge on 
confidence intervals which are determined by N = MP, where M is the number of 
stirrer positions, and P is the number of field probe positions. From a theoretical 
point of view, we then introduce a modification of the object of study, i.e. of the 
probability space, since randomness comes at the same time from the stirrer position 
and from the receiving position. However, because of the limited number of P 
positions, this is the correlation feature of the measurements carried out during the 
stirrer rotation which is estimated. This uncertainty estimate of the correlation 
function has been established under the assumption of the law of large numbers of 
realizations. 

8.3.6. Residual correlation and impact on the reproducibility of the measurements 
in reverberation chambers 

We illustrate here with a measurement result the method proposed in the 
previous section. The reverberation chamber used for these measurements is 
identical to that of section 8.2. The frequency range under investigation is located 
between 600 MHz and 1,300 MHz. The stirrer, made up of several metal blades in 
rotation on a vertical axis located at one end of the chamber, is operated by a step-
by-step motor. The complete rotation is carried out by a step of 1.2° and leads to the 
acquisition of an ordered series of 300 electric field measurements in one arbitrary 
location of the field probe in the working volume. The elementary rotation angle 
here is voluntarily small. 

To obtain a relatively restricted uncertainty, five measurements of the same type 
are carried out in five different and arbitrary positions of the field probe. This is thus 
a succession of 5 x 300 measurements (N = 1,500), which will enable us to refine 
the correlation estimate. The estimate results of the autocorrelation coefficient 
usually calculated according to [8.14] appear in Figure 8.5.  

Observation of the correlation curve as a function of the frequency clearly shows 
that beyond 1,200 MHz, the 300 positions of the stirrer have a linear correlation 
which tends to become low. This curve has a mainly monotonous shape. The 
moving by 1.2° of the mode stirrer tends to alter – with increasing strength – the 
field distribution, while the frequency increases. The relatively strong correlation 
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recorded at 600 MHz, indicates that the chosen rotation step is insufficient. At this 
frequency, the stirrer does not enable us to carry out the implementation of such a 
large number of independent observations. 

 

 

Figure 8.5. Empirical determination of the autocorrelation coefficient out of 1,500 
measurements collected during a complete rotation of the stirrer and for several  

working frequencies symbolized by gray dots 

This correlation implies a decrease in the number of independent realizations. In 
other words, the sample is far to be entirely random. When the correlation is null, 
the maximum possible number of independent implementations reaches 300. The 
maximum term is important here, since nothing authorizes us to say that all these 
measurements are independent. Independence involves non-correlation, but the 
reciprocal of this proposition is wrong. However, when the correlation is non-null, 
this results in the systematic decrease in the number of independent measurements. 
This decrease is more significant when this correlation is high. 

It is possible to quantify this diminution by resorting to the calculation of the 
effective sample size. This is a question of seeking an equivalent sample of data Z 

1 2( , ,..., )Neqz z z , of size Neq, whose statistical properties will be identical to the 

original sample X 1 2( , ,..., )Nx x x . This theoretical sample follows the underlying 

distribution previously identified with the help of a goodness-of-fit test, according to 
the method presented in section 8.2 of this chapter. The estimate of the mean of this 
theoretical sample must follow the same behavior, which can be expressed in the 
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form of the equality of the standard deviation to the mean ratio of the collected 
sample X with the standard deviation to the mean ratio of the theoretical sample Z:  

ˆ ˆ
xz

z x

 
 

  [8.27] 

In this equation, z  and x  respectively designate the moment of the samples Z 

and X. 
z and 

x respectively are the standard deviation of the estimate of this 

mean, linked to the central limit theorem. Thus, for the theoretical sample of Neq 
size, we find quite naturally for the term located on the left of the equality [8.27]: 

ˆ 1
ˆ ˆ

z z

z z eqN
 
 

  [8.28] 

The term located on the right of this equality is much more difficult to determine. 
We will not give the development of this calculation here, focusing only at 
introducing the main steps of the reasoning. The complete details of this 
demonstration are notably given in [LEM 08a, LEM 08b]. To evaluate the behavior 
of 

x , it is necessary to resort to an autoregressive model, which enables us to 

more precisely link the xi realization to the previous realizations. In the case of 
mechanical stirring in a reverberation chamber, those realizations correspond to the 
consecutive angular positions of the stirrer. The order of the autoregressive model is 
equal to the number of the previous correlated realizations of the model. An 
autoregressive model of the first order is sufficient to describe the behavior of a 
correlated series, for which the first order autocorrelation coefficient is lower or of 
about 0.5. We can then show that the equality on the right side of equation [8.27] is 
given by: 
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By replacing [8.27] with expressions [8.28] and [8.29], we reach the expression 
of Neq, as a function of N and of the estimate of the autocorrelation function 
[LEM 08b]: 
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 [8.30] 

In this expression the ˆz  and ˆz estimates have been replaced with the 

corresponding expected values of the underlying probability density function. 
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However, the corresponding parameters for the initially measured series X 

1 2( , ,..., )Nx x x  must be estimated from this sample. We can admit that these 

estimates are close to the theoretical parameters, notably if N is sufficiently high. 
With this assumption, an approximated evaluation of [8.30] is established and it has 
a very simple form:  
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eq
N

r
N N

r





 [8.31] 

From this approximated formula, it is possible to estimate the impact of a linear 
correlation, even a residual one, on a series of measurement. Table 8.5 indicates the 
actual size in percentage of the initial sample size, for a few estimate values of the 
correlation according to expression [8.31]. 

This table very clearly shows the limitation of the effective sample size induced 
by the correlation within the collected sample. Thus, an estimate of the first order 
correlation function of about 0.3 approximately induces a reduction of half of the 
sample thus collected. As already mentioned in this book, measurements in 
reverberation chambers relies on mean value statistics whose uncertainty is inversely 
proportional to the square root of the number of independent realizations. This 
number of independent realizations cannot be higher than the effective sample size, 
such as determined according to [8.31]. Let us note that this result has been 
illustrated through experiments [LEM 08b]. 

Estimated value (r) of the 
autocorrelation function of a  

sample of size N  

Estimate of the effective sample size 
expressed in % of N 

0.1 82% 

0.2 67% 

0.3 54% 

0.4 43% 

0.5 33% 

Table 8.5. Estimate of the effective size of the sample in proportion to its initial size N 
expressed as a function of the estimated value of its first order autocorrelation function  
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8.4. Quantization of the scattered and coherent fields in a reverberation 
chamber 

In the following, we take a look at another imperfection of reverberation 
chambers and at its characterization: the non-stirred component of the 
electromagnetic field captured by a receiving probe or antenna. On the contrary, this 
non-stirred component can be voluntarily reinforced in order to create the Rice 
statistics, which are used very frequently in the context of modeling a propagation 
channel. 

8.4.1. Coherent residual field in a reverberation chamber and the Rice statistics 

We have mentioned in section 8.2 the use of high power statistical tests, in order 
to detect the even small departure from the assumption of an ideal random field. 
This non-ideal statistics can be linked to the slightly non-uniform distribution of the 
incidence angles and of the field polarization.  

To these considerations is also added the fact that the model of the ideal random 
field proposed by Hill, neglects any direct coupling phenomenon between the 
transmission antenna and the receiving antenna. In other words, this amounts to 
considering that the coupling between the antennas does not include any coherent 
component, i.e. whose amplitude and phase is predictable and do not vary while 
stirring the chamber. The mode stirrer used is then perfectly efficient, since its 
rotation makes the set of the waves collected by the receiving antenna appear as 
incoherently combined. 

In reality, the experiment shows that there is, at the reception level, a fraction of 
coherent energy which is unaltered by the mode stirrer rotation. Thus, in order to 
optimize the efficiency of the mode stirring, it is interesting to seek configurations 
enabling us to reduce this fraction of coherent energy as much as possible. The 
standards recommend choosing antenna positions minimizing the direct coupling 
between antennas, without specifying however the methods enabling us to control 
the efficiency of the procedure.  

For this, let us designate by S(f,) the complex amplitude of the sine wave 
generated in the chamber in steady state as a function of the frequency variable f and 
of the position variable θ of the mode stirrer. This function can be represented in the 
following form: 

),()(),(  fSfSfS dc   [8.32] 
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This is an expression in which Sc(f) represents the coherent fraction of the wave 
and Sd(f,θ) represents the scattered component which results from the mechanical 
stirring. In reality, the previous functions can have the complex forms expressed as 
follows: 

( ) ( ) ( ) cos ( )sincj
c c c c c cS f s f e s f js f      [8.33] 

),(),(),(  fjsfsfS didrd   [8.34] 

where sc(f) and c are the amplitude and phase of the coherent signal, both 

independent from the action of the stirrer. sdr(f,θ) and sdi(f,θ) represent the real and 
imaginary component of the scattered wave. 

Let us specify that as a function of the angular variable θ, the real and imaginary 

part of the scattered wave captured by the receiver, which for example collect an 
electric field component, follow a normal distribution centered according to the 
hypothesis of an ideal random field. Consequently, in the absence of a coherent 
signal, the absolute amplitude of S(f,) = Sd(f,) would follow a Rayleigh process. 

However, the presence of the coherent wave has the consequence of modifying 
the moment of the initial normal distribution of each of the real and imaginary 
components of S(f,).  

Finally, the total S(f) = X(f) + jY(f) signal is the additive combination of two non-
centered normal distribution, such as: 

( ( ) cos , ( ))

( ( )sin , ( ))
c c d

c c d

X Norm S f f
Y Norm S f f

 
 




 [8.35] 

where d  is the standard deviation of the scattered wave, generated in the chamber.  

We can show that the random variable defined by 2 2Z X Y   follows a Rice 
distribution of ( ( ), ( ))c dS f f  parameters. The f(z) probability density function of 

the Rice distribution of (v,) parameters is recalled below: 
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2 2
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   [8.36] 

The I0 function represents the modified Bessel function of the first type and of 0 
order, which is given by the following integral form: 
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Very often, notably in the context of the channel characterization or of the 
definition of a propagation channel model, we refer to the Rice K factor, recounting 
the existing ratio of the coherent and scattered power at the level of the receiver. The 
power carried by the coherent wave is given by:  

2

)(2 fsP c
C   [8.38] 

whereas the power carried by the scattered wave is given by: 

2 ( )d dP f  [8.39] 

We deduce from it the K factor in logarithmic scale: 
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 [8.40] 

8.4.2. Goodness-of-fit test of a Rice distribution in a reverberation chamber 

In order to quantify the K factor previously expressed, it is necessary to have at 
our disposal a method of testing the hypothesis that a Rice distribution may fit a 

sample of the random variable 22)( YXfS  .  
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As we a priori should have at our disposal measurements of complex 
amplitudes, it is suitable to use a vector network analyzer to perform the 
measurement of the complex transfer function between two ports, one of them being 
connected to a transmitting antenna and the other one to a receiving antenna. The 
studied signal will thus be the S21 transfer function, whose behavior is comparable to 

the S(f,) signal of expression [8.32]. As the rectangular projection of the electric 
field, the S21 parameter is homogeneous to a square root of power and also follows a 
Rayleigh distribution in the absence of reception of a coherent wave.  

The test for a Rice distribution will be indirectly done by carrying out a 
goodness-of-fit test for the normal distribution, and for both the real component and 
for the imaginary component of the S21 parameter. 

The estimates of the first and second moments of a ( , )r rNorm    distribution 

(having the maximum likelihood) for the real component of the transfer function 

21( )e S  are: 
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Similarly, we estimate the parameters of the normal distribution ( , )i iNorm    

for the parameters of the imaginary component of the transfer function 21( )mag S . 

The goodness-of-fit test for the normal distributions is carried out for the two 
empirical distributions 21( )e S  and 21( )mag S . In the case of acceptance of the 

assumption, the modulus of the transmission parameter follows a Rice distribution, 
whose estimators will be given by:  
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 [8.43] 

From there, we then directly estimate the K factor according to expression [8.40]. 
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8.4.3. Example of evaluation of a Rice channel in a reverberation chamber 

The test of a Rice distribution is carried out on a series of measurements in a 
reverberation chamber for a quite particular configuration of transmitting and 
receiving horn antennas. This situation is drawn in a diagram in Figure 8.6. 

 

Network computer

Stirrer 

Vector network
analyzer 

 

Figure 8.6. Measurement configuration of the S21 parameter between two horn  
antennas in the line of sight for a Rice channel test. The distance is  

adjusted at 1 m and then at 3 m  

This configuration is not conventional in a reverberation chamber. Most of the 
time, we seek to avoid it, because it evidently favors the direct coupling between 
antennas. Moreover, horn antennas are rather directive antennas and an important 
fraction of the power may reach the receiving antenna, without the propagation 
environment offered by the reverberation chamber being involved. This 
recommendation to avoid direct coupling is constantly recommended in the 
standardization documents for EMC tests in reverberation chambers. It does not 
guarantee however the inexistence of a coherent (non-stirred) signal [COR 00]. 
Beyond the illustrative vocation of this measurement configuration, it has in reality 
two complementary interests.  

On the one hand, the evaluation of the K coefficient of a Rice channel in these 
conditions can enable us to evaluate if this configuration is really detrimental from 
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the point of view of the production of an ideal random field. From this point of view, 
the distance d separating the two antennas is an interesting variable, because we 
naturally expect that the fraction of coherent power received by the reception 
antenna decreases with the increase of this distance. 

On the other hand, the implementation of a Rice channel is interesting in the 
context of emulating a realistic propagation channel for the test of multi-antenna 
communication systems [DEL 08, HOL 06, LIE 04, VAL 08]. This is a new 
prospect for reverberation chambers to which we will briefly return in the 
conclusion of this chapter.  

The measurement is carried out in the following conditions. The working 
frequency is located between 3.45 GHz and 3.55 GHz, and the measurement is 
carried out for 1,001 frequencies per step of 100 kHz on the whole bandwidth. For 
each working frequency, we record the S21 parameter in amplitude and in phase, for 
30 different stirrer positions. It is then possible to evaluate a K(f) coefficient 
associated with each of these 1,001 frequencies, from a sample of 30 values of 
complex S21 parameters.  

The method used to determine K(f) follows the method quoted in the previous 
section 8.4.2. The sample of 30 values of S21 is broken down into two samples 
gathering the real and imaginary components of S21. The goodness-of-fit test for the 
normal distribution is then carried out for these two samples, whose parameters 
would have been estimated previously according to [8.41] and [8.42]. These 
expressions are given for the real component.  

In reality, all the tests show that the assumption of a normal law is perfectly 
acceptable, whatever the frequency in the considered bandwidth. This validates the 
postulate of a Rice distribution, whose parameters are estimated according to [8.43]. 
We easily deduce the K(f) parameter according to [8.40]. Figure 8.7 features the 
results of the numerous estimated K(f) values versus frequency for two arbitrarily 
chosen distances of 1 and 3 m separating the horn antennas. 

Indeed, we notice that the observed K coefficient is of a different order of 
magnitude between the two measurement distances. It is clearly lower for a 
separation distance of 3 m between the two antennas. If we should evaluate the 
decrease of the coherent power similar to the decrease of the transmission balance 
between two antennas in free space, according to the Friis formula [FRI 46], the 
aforementioned would be proportional to the ratio of the square distances, i.e. almost 
about 10 dB in logarithmic unit. This represents the order of magnitude of the 
differences observed on the K factor quite well, which, according to Figure 8.7, is 
located around 10 dB for a distance of 1 m and at 0 dB for a distance of 3 m. 
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Figure 8.7. Evaluation results of the K(f) factor from a series of 30 measurements of S21 
parameters, corresponding to 30 mode stirrer positions. This evaluation is produced for 

distances between antennas of 1 m and 3 m 

Fluctuations of the K factor are very significant. In reality, we find two types of 
fluctuations. The very fast oscillations with the change of frequency are of about 
5 dB. They convey in reality the very strong statistical uncertainty of the evaluation, 
concerning in practice only a very limited (30) sample of measurements. We also 
distinguish a slower fluctuation of a smaller amplitude, which is probably linked to 
the evolution of the composite quality factor of the set of propagation modes 
successively excited at the different frequencies. If the coherent energy comes from 
wave interference, may be due to specular reflections on chamber walls, the latter 
can also contribute to the fluctuation of the K factor as a function of the frequency. 
The higher the distance, the more likely it may contribute to these fluctuations. 

Fluctuation of the statistics of K can be reduced in several ways. The size of the 
sample can naturally be increased via the increase of a large number of stirrer 
positions.  

We can also consider that the variations of K are slow as a function of the 
frequency and we can formulate the assumption that K remains constant in a 
reasonably chosen frequency bandwidth. The choice of an interval of 10 MHz is 
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adapted here, as shown by Figure 8.8. It then leads to the production of a mean of 
100 estimates of K. 

 

 

Figure 8.8. Evaluation results of the K(f) factor from a series of 30 measurements of S21 
coefficients corresponding to the 30 positions of the mode stirrer. Estimate in sliding average 

of K(f) on a set of 100 consecutive frequencies  

The mean estimate curves are carried out in moving average on 100 estimates 
carried out on consecutive frequencies. The observation of the mean estimate curves 
shows that the residual fluctuations are relatively low and that it can be reasonable to 
consider K as almost constant on the entire considered frequency band. 

8.5. Discussion  

We have mentioned in this chapter a few lines about recent studies of 
reverberation chambers. Some are about the fine understanding of its functioning or 
else on the statistical analysis of the observed measurement series, but many other 
lines of study could have been tackled in this book.  

Electromagnetic reverberation chambers have been, for example, the subject of 
the first experiments of time reversal of electromagnetic signals [LER 06]. Some 
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studies have also shown its possible use for different potential applications in the 
domain of radio-frequencies. These applications concern for example the 
measurements of antenna efficiency, of diversity gain in a Rayleigh channel, of 
sensibility analysis of receivers, etc. 

Recently, a new line of research has appeared, in the form of precursory works, 
for which we plan to artificially recreate propagation channels, which are controlled 
and perfectly reproducible for the test of multi-antenna terminals. The first 
investigations on this question show that to the cost of some adaptations, it is quite 
easy to reproduce some characteristic parameters of propagation channels, which are 
used as a reference for the development of standardized communication systems.  

However, many questions remain to be studied and new developments will 
probably see the light.  

There are also other domains within which reverberation chambers still have 
some mysteries. The functioning in transient regime of these chambers is a crucial 
matter, notably for understanding the nature of the immunity test in reverberation 
chambers, especially in pulsed regime. 

The quest for an almost deterministic model, or on the contrary, of the specific 
statistical nature of the reverberation chambers potentially enables us to detect or 
evidence some properties. They may help to either confirm some experimental 
results or suggest other applications of reverberation chambers. We can also imagine 
that a reliable model, whatever its nature, could help for the optimization of these 
chambers in the future.  

Studies seeking to decrease the lowest operating frequency of the chambers 
without growth of their volume also seem interesting for the users and providers of 
such testing systems.  

Finally, recent research studies (and the upcoming studies) have been carried out 
throughout the world by an increasing number of teams during the last decade. This 
lets us imagine new potential contributions to knowledge and certainly a wider range 
of applications.  

This introductory book on the complex subject of reverberation chambers was 
limited to the basic physical and statistical concepts, for obvious didactic reasons.  

Nevertheless, as shown by this last chapter, in-depth analysis of the phenomena 
encountered in these chambers inevitably leads to the use of very sophisticated 
theoretical developments, that the reader can find in many theses, articles and 
scientific reports, which are produced at a national and international level. In the 
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near future this context will stimulate the writing of other books, which will offer a 
more specialized look at the physics and the applications of these chambers, but it 
will also stimulate a likely opening towards new theoretical concepts. 
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