
Appendix A 

Linear Algebra 

A.1. Definitions 

A vector v is an ordered set of m numbers v1, …, vm, called the components of 
the vector. The components of the vector are arranged in a single column. The 
following notation is used: 
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where vi is the ith component of v and T is the transposition operator.  

An m×n matrix A is formed by a set of numbers ai,j arranged in m rows and n 
columns. i and j are respectively the indices for the row and the column of the 
matrix. The following notation is used: 
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An m×n matrix may be viewed as a set of n vectors of size m arranged in a single 
line. The matrix A in equation [A.3] may be defined as: 
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where the vectors a(j), j = 1, …, n, are defined as: 
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Note that a vector is a single-columned matrix. 

Also note the following, particular cases: 

– A square matrix has the same number of rows and columns, m = n. 

– A symmetric matrix is a matrix that is left invariant by transposition (a 
symmetric matrix is necessarily a square matrix): 
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– The identity matrix is a symmetric matrix, the elements of which are all zero, 
except the diagonal terms that are equal to one: 

⎪
⎭

⎪
⎬

⎫

⎩
⎨
⎧

≠
=

=

=

ji
ji

ji

ji

 if0
 if1

][I

,

,

δ

δ
 [A.6] 

where δi,j is known as Kronecker’s operator. 

A.2. Operations on matrices and vectors 

A.2.1. Addition 

Let A = [ai,j] and B = [bi,j] be two m×n matrices. Adding A and B yields the 
matrix C = [ci,j] defined as follows: 
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The sum of two vectors is defined exactly in the same way: 
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Note that matrices or vectors may be added only if they have the same size. 

A.2.2. Multiplication by a scalar 

Let A = [ai,j] and β be a matrix and a scalar respectively. Multiplying A by β 
yields the matrix B = [bi,j] defined as: 
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The product of a scalar and a vector is defined in the same way: 
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A.2.3. Matrix product 

Let A = [ai,j] be an m×l matrix and B = [bi,j] be an l×n matrix. The product of A 
and B is an m×n matrix C defined as: 
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A vector being nothing else than a matrix with only one column, the product 
between the matrix A and the vector u is defined as: 
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NOTE.− In contrast with scalar multiplication, the matrix product is not 
commutative. The product AB is not equal to the product BA in the general case. 

A.2.4. Determinant of a matrix 

Let A be a square matrix of size m×m. The determinant of A, denoted by Det(A), 
or |A|, is defined using the following recurrence relationship: 
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where the matrix Ai,q is the (m – 1)×(m – 1) square matrix obtained from A by 
removing the row q and the column i. The final result is the same, regardless of the 
row q and the column i chosen in the sum [A.13].  

The determinant verifies the following properties: 
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A.2.5. Inverse of a matrix 

Let A be an m×m square matrix. The inverse A–1 of A is an m×m matrix defined 
as: 

IAAAA 11 == −−  [A.15] 

The first relationship [A.14] indicates that a matrix has an inverse only if its 
determinant is non-zero. The third relationship implies that the determinant of the 
inverse of A is the inverse of the determinant of A.  
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A.3. Differential operations using matrices and vectors 

A.3.1. Differentiation 

Let A = [ai,j] be an m×n matrix. A is differentiated with respect to a given 
parameter or variable t by differentiating all its components individually: 
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This definition also applies to the particular case of a vector that can be seen as a 
single-columned matrix: 
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A.3.2. Jacobian matrix 

Let u = [ui] be a vector of size m and v = [vi] be a vector of size n. The Jacobian 
matrix A of u with respect to v is an m×n matrix defined as: 
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A.4. Eigenvalues, eigenvectors 

A.4.1. Definitions 

The scalar λ is an eigenvalue of the matrix A if there is a non-zero vector v, 
called and eigenvector, such that: 

vΑv λ=  [A.19] 

The characteristic polynomial of A is defined as: 

IA)( λλ −=P  [A.20] 
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The eigenvalues of A are the roots of the characteristic polynomial: 

0)( =λP  [A.21] 

The eigenvector v associated with a given eigenvalue λ is obtained by 
substituting the (known) value of λ into equation [A.19]. A linear algebraic system 
is obtained. Since at least one of the components of u is non-zero, it can be set to any 
arbitrary value, e.g. one, that serves as a basis in the computation of the remaining 
components of v. 

A.4.2. Example 

Consider the matrix A obtained for the Saint Venant equations (see 
section 2.5.3.1): 
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The eigenvalues of A verify equations [A.20–21]: 

0
2

1
22 =

−−
−

λ
λ

uuc
 [A.22] 

which leads to: 

0)()2( 22 =−−−− ucu λλ  [A.23] 

Equation [A.23] can be rewritten as: 
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which leads to the following two solutions: 
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The eigenvector K(1) associated with the first eigenvalue λ(1) verifies: 
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that is: 
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These two conditions can easily be checked to be equivalent. The first 
eigenvector is therefore: 
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The vector K(1) verifies equation [A.19] for any non-zero value of )1(
1K . Using 

the obvious choice )1(
1K = 1 leads to: 
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It is easy to check that the second eigenvector is given by: 
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