Appendix A

Linear Algebra

A.1. Definitions

A vector v is an ordered set of m numbers v_{1}, \ldots, v_{m}, called the components of the vector. The components of the vector are arranged in a single column. The following notation is used:

$$
\mathrm{v}=\left[\begin{array}{c}
v_{1} \tag{A.1}\\
\vdots \\
v_{i} \\
\vdots \\
v_{m}
\end{array}\right]=\left[\begin{array}{lllll}
v_{1} & \cdots & v_{i} & \cdots & v_{m}
\end{array}\right]^{T}=\left[v_{i}\right]
$$

where v_{i} is the i th component of v and T is the transposition operator.
An $m \times n$ matrix A is formed by a set of numbers $a_{i, j}$ arranged in m rows and n columns. i and j are respectively the indices for the row and the column of the matrix. The following notation is used:

$$
\mathrm{A}=\left[\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, j} & \cdots & a_{1, n} \tag{A.2}\\
\vdots & & \vdots & & \vdots \\
a_{i, 1} & \cdots & a_{i, j} & \cdots & a_{i, n} \\
\vdots & & \vdots & & \vdots \\
a_{m, 1} & \cdots & a_{m, j} & \cdots & a_{m, n}
\end{array}\right]=\left[a_{i, j}\right]
$$

An $m \times n$ matrix may be viewed as a set of n vectors of size m arranged in a single line. The matrix A in equation [A.3] may be defined as:

$$
\begin{equation*}
\mathrm{A}=\left[\mathrm{a}^{(1)} \cdots \mathrm{a}^{(j)} \cdots \mathrm{a}^{(n)}\right] \tag{A.3}
\end{equation*}
$$

where the vectors $\mathrm{a}^{(j)}, j=1, \ldots, n$, are defined as:

$$
\begin{equation*}
\mathbf{a}^{(j)}=\left[a_{1, j} \cdots a_{i, j} \cdots a_{m, j}\right]^{T} \tag{A.4}
\end{equation*}
$$

Note that a vector is a single-columned matrix.
Also note the following, particular cases:

- A square matrix has the same number of rows and columns, $m=n$.
- A symmetric matrix is a matrix that is left invariant by transposition (a symmetric matrix is necessarily a square matrix):

$$
a_{i, j}=a_{j, i} \quad \forall\left\{\begin{array}{l}
i=1, \ldots, m \tag{A.5}\\
j=1, \ldots, m
\end{array}\right.
$$

- The identity matrix is a symmetric matrix, the elements of which are all zero, except the diagonal terms that are equal to one:

$$
\begin{align*}
\mathrm{I} & =\left[\delta_{i, j}\right] \tag{A.6}\\
\delta_{i, j} & =\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}\right\}
\end{align*}
$$

where $\delta_{i, j}$ is known as Kronecker's operator.

A.2. Operations on matrices and vectors

A.2.1. Addition

Let $\mathrm{A}=\left[a_{i, j}\right]$ and $\mathrm{B}=\left[b_{i, j}\right]$ be two $m \times n$ matrices. Adding A and B yields the matrix $\mathrm{C}=\left[c_{i, j}\right]$ defined as follows:

$$
\left.\begin{array}{rl}
\mathrm{C} & =\mathrm{A}+\mathrm{B} \tag{A.7}\\
c_{i, j} & =a_{i, j}+b_{i, j} \quad \forall(i=1, \ldots, m ; j=1, \ldots, n)
\end{array}\right\}
$$

The sum of two vectors is defined exactly in the same way:

$$
\left.\begin{array}{rl}
\mathrm{w} & =\mathrm{u}+\mathrm{v} \tag{A.8}\\
w_{i} & =u_{i}+v_{i} \quad \forall i=1, \ldots, m
\end{array}\right\}
$$

Note that matrices or vectors may be added only if they have the same size.

A.2.2. Multiplication by a scalar

Let $\mathrm{A}=\left[a_{i, j}\right]$ and β be a matrix and a scalar respectively. Multiplying A by β yields the matrix $\mathrm{B}=\left[b_{i, j}\right]$ defined as:

$$
\left.\begin{array}{rl}
\mathrm{B} & =\beta \mathrm{A} \tag{A.9}\\
b_{i, j} & =\beta a_{i, j} \quad \forall(i=1, \ldots, m ; j=1, \ldots, n)
\end{array}\right\}
$$

The product of a scalar and a vector is defined in the same way:

$$
\left.\begin{array}{rl}
\mathrm{v} & =\beta \mathrm{u} \tag{A.10}\\
v_{i} & =\beta u_{i} \quad \forall i=1, \ldots, m
\end{array}\right\}
$$

A.2.3. Matrix product

Let $\mathrm{A}=\left[a_{i, j}\right]$ be an $m \times l$ matrix and $\mathrm{B}=\left[b_{i, j}\right]$ be an $l \times n$ matrix. The product of A and B is an $m \times n$ matrix C defined as:

$$
\left.\begin{array}{rl}
\mathrm{C} & =\mathrm{AB} \\
c_{i, j} & =\sum_{k=1}^{l} a_{i, k} b_{k, j} \quad \forall(i=1, \ldots, m ; j=1, \ldots, n) \tag{A.11}
\end{array}\right\}
$$

A vector being nothing else than a matrix with only one column, the product between the matrix A and the vector u is defined as:

$$
\left.\begin{array}{rl}
\mathrm{v} & =\mathrm{Au} \tag{A.12}\\
v_{i} & =\sum_{k=1}^{n} a_{i, k} u_{k} \quad \forall i=1, \ldots, m
\end{array}\right\}
$$

Note.- In contrast with scalar multiplication, the matrix product is not commutative. The product AB is not equal to the product BA in the general case.

A.2.4. Determinant of a matrix

Let A be a square matrix of size $m \times m$. The determinant of A , denoted by $\operatorname{Det}(\mathrm{A})$, or $|\mathrm{A}|$, is defined using the following recurrence relationship:

$$
\begin{array}{rlr}
|\mathrm{A}| & =\sum_{i=1}^{m}(-1)^{i+q} a_{i, q}\left|\mathrm{~A}_{i, q}\right| & \forall q=1, \ldots, m \tag{A.13}\\
& =\sum_{j=1}^{m}(-1)^{j+p} a_{p, j}\left|\mathrm{~A}_{p, j}\right| & \forall p=1, \ldots, m
\end{array}
$$

where the matrix $\mathrm{A}_{i, q}$ is the $(m-1) \times(m-1)$ square matrix obtained from A by removing the row q and the column i. The final result is the same, regardless of the row q and the column i chosen in the sum [A.13].

The determinant verifies the following properties:

$$
\left.\begin{array}{rl}
|\mathrm{AB}| & =|\mathrm{BA}|=|\mathrm{A}||\mathrm{B}| \tag{A.14}\\
\left|\mathrm{A}^{T}\right| & =|\mathrm{A}| \\
|\mathrm{I}| & =1
\end{array}\right\}
$$

A.2.5. Inverse of a matrix

Let A be an $m \times m$ square matrix. The inverse A^{-1} of A is an $m \times m$ matrix defined as:

$$
\begin{equation*}
\mathrm{A}^{-1} \mathrm{~A}=\mathrm{AA}^{-1}=\mathrm{I} \tag{A.15}
\end{equation*}
$$

The first relationship [A.14] indicates that a matrix has an inverse only if its determinant is non-zero. The third relationship implies that the determinant of the inverse of A is the inverse of the determinant of A.

A.3. Differential operations using matrices and vectors

A.3.1. Differentiation

Let $\mathrm{A}=\left[a_{i, j}\right]$ be an $m \times n$ matrix. A is differentiated with respect to a given parameter or variable t by differentiating all its components individually:

$$
\begin{equation*}
\frac{\partial \mathrm{A}}{\partial t}=\left[\frac{\partial a_{i, j}}{\partial t}\right] \tag{A.16}
\end{equation*}
$$

This definition also applies to the particular case of a vector that can be seen as a single-columned matrix:

$$
\begin{equation*}
\frac{\partial \mathrm{u}}{\partial t}=\left[\frac{\partial u_{i}}{\partial t}\right] \tag{A.17}
\end{equation*}
$$

A.3.2. Jacobian matrix

Let $\mathbf{u}=\left[u_{i}\right]$ be a vector of size m and $\mathrm{v}=\left[v_{i}\right]$ be a vector of size n. The Jacobian matrix A of u with respect to v is an $m \times n$ matrix defined as:

$$
\left.\begin{array}{rl}
\mathrm{A} & =\frac{\partial \mathrm{u}}{\partial \mathrm{v}} \tag{A.18}\\
a_{i, j} & =\frac{\partial u_{i}}{\partial v_{j}}
\end{array} \quad \forall(i=1, \ldots, m ; j=1, \ldots, n)\right\}
$$

A.4. Eigenvalues, eigenvectors

A.4.1. Definitions

The scalar λ is an eigenvalue of the matrix A if there is a non-zero vector v , called and eigenvector, such that:

$$
\begin{equation*}
A v=\lambda v \tag{A.19}
\end{equation*}
$$

The characteristic polynomial of A is defined as:

$$
\begin{equation*}
P(\lambda)=|\mathrm{A}-\lambda \mathrm{I}| \tag{A.20}
\end{equation*}
$$

The eigenvalues of A are the roots of the characteristic polynomial:

$$
\begin{equation*}
P(\lambda)=0 \tag{A.21}
\end{equation*}
$$

The eigenvector v associated with a given eigenvalue λ is obtained by substituting the (known) value of λ into equation [A.19]. A linear algebraic system is obtained. Since at least one of the components of u is non-zero, it can be set to any arbitrary value, e.g. one, that serves as a basis in the computation of the remaining components of v .

A.4.2. Example

Consider the matrix A obtained for the Saint Venant equations (see section 2.5.3.1):

$$
\mathrm{A}=\left[\begin{array}{cc}
0 & 1 \\
c^{2}-u^{2} & 2 u
\end{array}\right]
$$

The eigenvalues of A verify equations [A.20-21]:

$$
\left|\begin{array}{cc}
-\lambda & 1 \tag{A.22}\\
c^{2}-u^{2} & 2 u-\lambda
\end{array}\right|=0
$$

which leads to:

$$
\begin{equation*}
-(2 u-\lambda) \lambda-\left(c^{2}-u^{2}\right)=0 \tag{A.23}
\end{equation*}
$$

Equation [A.23] can be rewritten as:

$$
\begin{equation*}
(\lambda-u)^{2}=c^{2} \tag{A.24}
\end{equation*}
$$

which leads to the following two solutions:

$$
\left.\begin{array}{l}
\lambda^{(1)}=u-c \tag{A.25}\\
\lambda^{(2)}=u+c
\end{array}\right\}
$$

The eigenvector $K^{(1)}$ associated with the first eigenvalue $\lambda^{(1)}$ verifies:

$$
\left[\begin{array}{cc}
0 & 1 \tag{A.26}\\
c^{2}-u^{2} & 2 u
\end{array}\right]\left[\begin{array}{l}
K_{1}^{(1)} \\
K_{2}^{(1)}
\end{array}\right]=(u-c)\left[\begin{array}{l}
K_{1}^{(1)} \\
K_{2}^{(1)}
\end{array}\right]
$$

that is:

$$
\left.\begin{array}{rl}
K_{2}^{(1)} & =(u-c) K_{1}^{(1)} \tag{A.27}\\
\left(c^{2}-u^{2}\right) K_{1}^{(1)}+2 u K_{2}^{(1)} & =(u-c) K_{2}^{(1)}
\end{array}\right\}
$$

These two conditions can easily be checked to be equivalent. The first eigenvector is therefore:

$$
\mathrm{K}^{(1)}=\left[\begin{array}{c}
K_{1}^{(1)} \tag{A.28}\\
(u-c) K_{1}^{(1)}
\end{array}\right]
$$

The vector $\mathrm{K}^{(1)}$ verifies equation [A.19] for any non-zero value of $K_{1}^{(1)}$. Using the obvious choice $K_{1}^{(1)}=1$ leads to:

$$
\mathrm{K}^{(1)}=\left[\begin{array}{c}
1 \tag{A.29}\\
u-c
\end{array}\right]
$$

It is easy to check that the second eigenvector is given by:

$$
\mathrm{K}^{(2)}=\left[\begin{array}{c}
1 \tag{A.30}\\
u+c
\end{array}\right]
$$

