
Chapter 2 

Hyperbolic Systems of Conservation Laws in 
One Dimension of Space 

2.1. Definitions 

2.1.1. Hyperbolic systems of conservation laws 

A system of conservation laws is a system of partial differential equations 
(PDEs) that can be written in conservation form as 
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where the variables U1, U2, …, Um are the m conserved variables, the quantities 
F1, F2, …, Fm are the corresponding fluxes and S1, S2, …, Sm are the corresponding 
source terms. System [2.1] of m equations for m unknowns is often referred to as an 
“m × m system”. In most publications dealing with systems of conservation laws, the 
following vector notation is used: 
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where U, F and S are vectors of size m defined as: 
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The components of the vectors F and S are functions of the components of U 
and, possibly, of t and x. The following notation may also be used: 
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where T denotes the transposition operator. The notations [2.1] and [2.2] and [2.3] 
are equivalent in that the derivative of a vector is the vector formed by the 
derivatives of its individual components. Any reader who is not familiar with the 
notation of linear algebra should refer to Appendix A, which summarizes the basic 
notation and principles of linear algebra. 

Equation [2.2] is called the conservation form of the system by analogy with the 
scalar conservation form [1.1] introduced in Chapter 1. The conservation form [2.2] 
can be rewritten in conservation form as: 
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where A is an m × m matrix and S' is a source term, not necessarily equal to S. The 
non-conservation form [2.5] is equivalent to the conservation form [2.2] provided 
that A and S' are defined as follows: 
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By definition, A is the Jacobian matrix of F with respect to U. A is calculated by 
differentiating the components of F with respect to the components of U: 
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It can be checked easily that definition [2.7] verifies the first equation [2.6]. The 
vector S' contains the components of the vector S and the derivatives of F that do not 
depend on U. S' and S are not identical in the general case. 

2.1.2. Hyperbolic systems of conservation laws – examples 

A hyperbolic system of conservation laws is a conservation law system with the 
following properties: 

– the components of F and S are functions of the components of U and possibly 
of x and t, but F does not contain any derivative of U with respect to x or t; 

– the Jacobian matrix A has m real, distinct eigenvalues. 

Example 1: consider a river reach, the cross-section of which is rectangular, 
where the cross-sectional area A and the liquid discharge Q verify the kinematic 
wave equation [1.84] seen in section 1.5. A contaminant with a concentration C is 
subjected to pure advection, as described by equation [1.39] (see section 1.3). This 
2 × 2 system can be rewritten in the vector conservation form [2.2] by defining U, F 
and S as follows: 
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Equation [2.8] can be rewritten in the form [2.3] by defining the components of 
U and F as: 
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The Jacobian matrix A of F with respect to U is given by: 
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It is easy to check that A has the following eigenvalues: 
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Note that the first eigenvalue is the flow velocity u (see equation [1.103]) and the 
second eigenvalue is the wave speed λ of the kinematic wave (see equation [1.106]). 
The eigenvalues λ (1) and λ (2) are real and distinct, therefore the system is a 2 × 2 
system of hyperbolic conservation laws. 

Example 2: consider the system formed by the continuity equation [1.62] and the 
momentum equation [1.63]. Remember that these equations form the basis for the 
derivation of the inviscid Burgers equation in section 1.4.1. System [1.62–63] can be 
rewritten in the form [2.2] by defining the components of U and F as: 
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The Jacobian matrix of F with respect to U is given by: 
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This matrix has the following double eigenvalue: 

u== )2()1( λλ  [2.14] 
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System [1.62–63] is a system of conservation laws but it is not hyperbolic 
because its two eigenvalues are not distinct. Such a system is said to be “linearly 
degenerate”. 

2.1.3. Characteristic form – Riemann invariants 

The purpose is to find trajectories (called the characteristics) along which some 
quantities (the Riemann invariants) are constant. The present section outlines a 
general method for the derivation of the invariants from the Jacobian matrix A. 

The starting point is the non-conservation form [2.5], recalled here: 
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Since the system is hyperbolic, the matrix A has m real, distinct eigenvalues with 
the corresponding m eigenvectors. The pth eigenvector (i.e. the eigenvector 
associated with the pth eigenvalue λ(p) of A) is denoted by K(p) hereafter. The 
eigenvectors K(1), K(2), …, K(m) can be seen as the columns of the m × m matrix of 
eigenvectors of A. This matrix is denoted by K. 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==
)()1(

)(
1

)1(
1

)()2()1( K,,K,KK
m

mm

m

m

KK

KK

"
##

"
…  [2.15] 

where )( p
iK  is the ith component of the pth eigenvector of A. An interesting 

property of K is that it allows A to be transformed into a diagonal matrix using the 
following matrix product 

Λ=− AKK 1  [2.16] 

where K–1 is the inverse of K and Λ is the diagonal matrix, the elements of which are 
the eigenvalues of A: 
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The Riemann invariants are introduced by left-multiplying the non-conservation 
form [2.5] by K–1: 
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Noting that K K–1 is equal to the identity matrix, equation [2.18] can be rewritten 
as: 
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Substituting equation [2.16] into equation [2.19] leads to: 
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The vectors W and S" are defined as:  
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The definitions [2.21] allow equation [2.20] to be rewritten as: 
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an alternative writing for which is: 
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where Wp is the pth component of the vector W. Equation [2.23] is equivalent to the 
following system of independent equations in non-conservation form: 
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As shown in section 1.1.4, equation [2.24] is equivalent to the following ordinary 
differential equation 
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The m equations [2.25] form the characteristic form of equation [2.2]. When 
S" = 0, system [2.25] simplifies into: 
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The quantity Wp is called the pth Riemann invariant. Note that if U is known at a 
given point (x, t) in the phase space, the m Riemann invariants can be calculated by 
integrating the first equation [2.21]. Conversely, if the m Riemann invariants are 
known, U can be determined by integrating the reciprocal relationship: 
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Equation [2.27] can also be rewritten as: 
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where )(
,

p
kkp KK =  denotes the element on the pth row and the kth column of K, 

that is, the pth component of the kth eigenvector of A. The set of equivalent 
relationships [2.21] and [2.27–28] indicate that the variation dW is nothing but the 
expression of the variation dU in the base of eigenvectors of A. 

2.2. Determination of the solution 

2.2.1. Domain of influence, domain of dependence 

The characteristic relationships [2.25] naturally lead to the notions of domain of 
influence and domain of dependence. Consider a point A (x0, t0) in the phase space 
at which U is known. Along each of the m characteristic lines that pass through A, a 
relationship [2.25] is verified (Figure 2.1). U being known at A, each of the 
invariants Wp, defined as in equation [2.21], are also known at A. If the ordinary 
differential equation [2.25] can be solved for a given p, the value of Wp can be 
determined at any time t1 > t0 along the pth characteristic. 
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Figure 2.1. Domain of influence (bold line). Representation in the phase space 

In what follows, M(p) denotes the intersection between the pth characteristic and 
the line t = t1 in the phase space (Figure 2.1). The wave speeds λ(p) being ranked in 
ascending order, the points M(1) and M(m) are respectively the leftmost and rightmost 
points on the line t = t1. The following reasoning is made: 

– The values of all the invariants Wp at the point A are determined directly from 
the value of U at A because the variations in U and W obey equation [2.21]. 
Therefore the value of W1 stems directly from that of U. 

– The value of Wp at the point M(1) is a direct function of its value at A via 
equation [2.25]. 

– The value of Wp at M(1) influences that of U via equation [2.27]. 

Consequently, the value of U at the point A influences the value of U at the point 
M(1) via the first Riemann invariant. Reproducing this reasoning for any 
characteristic dx/dt = λ(p) leads to the conclusion that the value of U at A influences 
the value of U at all the points M(p).  

Consider now a point B located on the first characteristic passing at A. The point 
B is located at a time between t0 and t1. m characteristics can be drawn from B. The 
pth characteristic issued from B intersects the line t = t1 at the point C. Reproducing 
the reasoning above along (AB) and (BC) successively leads to the conclusion that 
the value of U at A influences the value of U at C. This reasoning can be generalized 
to all the points B located on all the characteristics issued from A and to all the 
points C located on all the characteristics issued from all the possible locations of B. 
Since the possible locations of C span the segment [M(1)M(m)], the point A influences 
the value of U over this segment. The segment [M(1)M(m)] is called the domain of 
influence of point A. 
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In most analytical and numerical solution methods, the important issue is to 
determine the region of space over which U should be known at a given time t0 in 
order to be computable at a later time t1. The set of points that influence point A is 
called the domain of dependence (Figure 2.2). 
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Figure 2.2. Domain of dependence (bold line). Representation in the phase space 

The domain of dependence is determined in the same way as the domain of 
influence, except that the characteristics are followed backward in time. Let F(p) be 
the point at the intersection between the pth characteristic that passes through A and 
the line t = t0. The point F(p) is called the foot of the pth characteristic. Using the 
same reasoning as in the previous two sections leads to the conclusion that the value 
of U at point A is influenced by the value of U at all the points between F(1) and F(m). 
The segment [F(m)F(1)] is called the domain of dependence of A. 

2.2.2. Existence and uniqueness of solutions – initial and boundary conditions 

This section deals with the existence and uniqueness of the solutions of 
hyperbolic systems of conservation laws. Assume that U is to be determined at the 
point A(x0, t1) in Figure 2.2. To do so, the m components U1, U2, …, Um must be 
determined uniquely. Therefore, m independent equations in the form [2.25] must be 
written for these m components.  

Most practical applications deal with a finite domain of length L, called the 
computational domain. For the sake of clarity, the point x = 0 is located at the left-
hand boundary of the domain, the right-hand boundary of which is located at x = L 
(Figure 2.3). Two configurations may occur: 
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Figure 2.3. Determination of the solutions when the domain of dependence is included 
entirely in the computational domain (a) and when the domain of dependence includes the 

domain boundary (b) 

– The computational domain [0, L] contains entirely the domain of dependence 
of A (Figure 2.3a). In this case, the knowledge of U over the domain of dependence 
at t = 0 allows the value of U to be determined uniquely at A by writing the m 
characteristic equations [2.25] between the feet F(p) and A. The m equations [2.25] 
allow the m Riemann invariants to be determined at A. The knowledge of the m 
Riemann invariants leads to that of U via relationships [2.27]. 

– There exists points (in particular near the boundaries of the computational 
domain), the domain of dependence of which is not entirely included in the segment 
[0, L] (see Figure 2.3b). In such a case, knowing the value of U over the segment 
[0, L] is insufficient because there is at least one (and possibly more than one) 
characteristic entering the domain across a boundary. In Figure 2.3, the mth 
invariant can be determined at A only if its value is known at the left-hand 
boundary. The value of the invariant is known at F(m) provided that U is known at 
F(m). U is known at F(m) only if the m Riemann invariants are known. Let ne denote 
the number of Riemann invariants that enter the domain at the boundary. In order to 
determine U uniquely at the boundary, ne conditions must be supplied on the 
components of U, the remaining m – ne conditions being supplied by the invariants 
that travel to F(m) from within the domain. 

To summarize, the following conditions must be prescribed for the existence and 
uniqueness of the solution to be guaranteed over the domain: 

– the initial condition U (x, 0) (that is, all the components Up of U) must be 
known over the entire domain [0, L] at t = 0; 

– boundary conditions must be prescribed at the boundaries of the computational 
domain. The number of boundary conditions needed at a given boundary is equal to 
the number of characteristics that enter the domain.  
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2.3. A particular case: compressible flows 

2.3.1. Definition 

Compressible flows represent a vast majority of the flows that can be described 
using hyperbolic systems of conservation laws. The term “compressible flow” refers 
to flows with the following characteristics: 

– the governing equations contain at least the continuity and the momentum 
equations (there may be additional equations in the system); 

– the momentum equation includes a term that accounts for the pressure forces 
within the fluid; 

 – the pressure in the fluid is a function of at least the fluid density (or the mass 
of fluid per unit length of volume if a one-dimensional configuration is dealt with; 
the mass per unit surface if a two-dimensional configuration is dealt with). The law 
that relates the pressure to the density (and possibly to other variables) is called an 
equation of state; 

– the system of conservation laws is hyperbolic. 

2.3.2. Conservation form 

The simplest possible system for compressible flows is a 2×2 system, that is, a 
system with two equations (the continuity equation and the momentum equation) in 
two independent variables. The equations for such a system are written by defining a 
control volume between the abscissas x0 and x0 + δx and carrying out a mass and 
momentum balance between the times t0 and t0 + δt (Figure 2.4). 

x

x0 x0 + δx A = 1

F1 = uU1 
F2 = uU2 + P 

U1  
U2 = uU1

 

Figure 2.4. Mass and momentum balance over a control volume 
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The continuity equation is derived as in Chapter 1 by noting that the mass per 
unit length of domain (denoted by U1 hereafter) is transported at the flow velocity u, 
yielding a momentum flux F1: 

11 uUF =  [2.29] 

As shown in Chapter 1, the continuity equation is written in conservation form 
as: 
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The momentum U2 per unit length in the domain is defined as: 
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Consequently the total amount of momentum in the control volume at time t is 
given by: 
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Between the times t0 and t0 + δx an amount δFM(x0) of momentum enters the 
control volume at the left-hand boundary: 
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During the same time interval, an amount δFM(x0 + δx) of momentum leaves the 
control volume at the right-hand boundary: 
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Denoting by P(x0) the pressure force exerted on the left-hand boundary (x = x0), 
the pressure force exerted on the right-hand boundary (x = x0 + δx) is – P(x0 + δx). 
The fundamental principle of dynamics can be written as: 
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where S2 is a source term due to external forces such as volume or wall forces. When 
δt and δx tend to zero the following equivalences hold:  
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Substituting equations [2.36] into equation [2.35] and simplifying by δt and δx 
yields: 
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The flux F2 (also known as the “specific force” [CHO 73]) is defined as: 

PuUPFF +=+= 2QdM2  [2.38] 

Equation [2.38] allows equation [2.37] to be written in conservation form as: 
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Equations [2.30] and [2.39] can be written in the vector form [2.1], recalled here: 
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by defining U, F and S as:  
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with the additional relationship [2.29], that can be rewritten as: 

u
U
U

=
1

2  [2.41] 

2.3.3. Characteristic form 

The characteristic form is derived as follows. In a first step the expression of the 
Jacobian matrix of F with respect to U is determined. To do this, the components of 
F must be rewritten as functions of the components of U. Substituting 
equation [2.41] into definition [2.40] leads to the following expression: 
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Under the assumption of a compressible flow, the pressure force P is a function 
of U1. The equation of state P = P(U) is assumed to be known. The conservation 
form [2.2] is equivalent to the non-conservation form [2.5], recalled here: 
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provided that A is the Jacobian matrix of F with respect to U. The expression of A 
stems directly from equation [2.42]: 
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The quantity c is defined as: 
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Substituting equations [2.41] and [2.44] into equation [2.43] leads to: 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
uuc 2
10

A 22  [2.45] 



Hyperbolic Systems of Conservation Laws      67 
 

The eigenvalues of A are: 
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with corresponding eigenvectors K(1) and K(2) given by: 
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Therefore the matrix K and its inverse are:  
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The Riemann invariants are given by the first relationship [2.21]: 
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2.3.4. Physical interpretation 

Consider a fluid initially at rest (u = 0). Due to some reason (for example, a 
transient originating from an external forcing), a perturbation ΔU1 appears in the 
fluid at the abscissa x0. This perturbation triggers a perturbation in the Riemann 
invariants W1 and W2. The perturbation in W1 propagates at a speed λ(1), while the 
perturbation in W2 propagates at a speed λ(2). If ΔU1 is small, u remains negligible 
compared to c, and λ(1) and λ(2) are approximately equal to – c and + c respectively. 
Consequently, the initial perturbation in U1 triggers two perturbations that propagate 
at the same speed in opposite directions (Figure 2.5). Since the pressure is a function 
of P, c is also called the speed of the pressure waves. In the case of a compressible 
gas or liquid, c is referred to as the speed of sound. 



68     Wave Propagation in Fluids 
 

dx/dt = − c 

x

U1 

x

t 

dx/dt = + c 

x0 

+ c− c 
Initial
Final 

 
Figure 2.5. Compressible flow. Wave propagation in a fluid initially at rest 

2.4. A linear 2×2 system: the water hammer equations 

2.4.1. Physical context – assumptions 

The water hammer equations are the simplest existing equations for 
compressible systems. Indeed, these equations are linear and the momentum 
equation is simplified by neglecting inertia. Although the first version of the 
complete equations is usually attributed to Joukowski [JOU 98], they are best known 
as the Allievi equations [ALL 03]. The derivation of these equations has been 
widely addressed in the literature [JAE 33, JAE 77, WYL 77]. 

Water hammer is a wave propagation phenomenon that occurs in systems of 
pressurized conduits (e.g. a drinking water supply network, pipes in hydropower 
plants) under rapid changes in the flow conditions. Such changes may result from 
the sudden opening (or closing) of a valve, pipe failure, etc., that leads to rapid 
variations in the discharge or pressure (or both) at a given point in the network. 
When the flow conditions are modified almost instantaneously, dynamical 
equilibrium is no longer ensured. The fluid is subjected to strong accelerations 
within a few hundredths or tenths of a second. Such accelerations result in local 
mass accumulation or deficit, depending on the case. Owing to the small 
compressibility of the fluid and the rigidity of the pipe material, the locally 
accumulating water is subjected to a local compression, while deficit regions are 
characterized by a pressure drop. The pressure fluctuations propagate in the pipe to 
yield pressure waves. The pressure variations may easily reach several atmospheres 
or tens of atmospheres, which may damage the pipe network severely. The 
simulation of water hammer episodes resulting from pipe, pump or valve failure is 
an important task in the design of protection devices for pressurized pipe networks. 
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The following example illustrates the water hammer phenomenon in a schematic 
way. Consider steady state water flow in a pipe at a uniform pressure p0 and a 
constant discharge Q0. The water is pumped into the pipe at the left-hand end and 
leaves the pipe at the right-hand end (Figure 2.6a). At t = 0 the right-hand side of the 
pipe is closed instantaneously. The water is still being pumped at a discharge Q0 at 
the left-hand end of the pipe and the discharge is still equal to Q0 everywhere in the 
pipe, including immediately upstream of the downstream valve. Continuity imposes 
that the water that reaches the valve accumulates in the pipe next to the valve, thus 
creating a local pressure rise and the inflation of the conduit (Figure 2.6b). The 
pressure in the inflated zone is higher than the initial pressure p0, while continuity 
with the downstream section of the pipe imposes that the discharge be zero. Since 
the water keeps flowing to the upstream end of the inflated zone, it accumulates at 
its boundary. The boundary of the inflated zone where the water is immobile moves 
to the left to accommodate the incoming water (Figure 2.6b). The inflated zone 
eventually reaches the left-hand end of the pipe (Figure 2.6c). The pressure wave 
propagates at the speed – c, the typical order of magnitude of which is a kilometer 
per second. 

Q0 Q0

p0, Q0 

(a) 

Q0 

Q = 0

(c) 

p > p0 
Q = 0 

Q0 

Q = 0

p0, Q0 

(b) 

p > p0 
Q = 0 

− c

 

Figure 2.6. Sudden closure of a valve at the downstream end of a pipe and resulting water 
hammer phenomenon. Initial state (a), next to the closure of the valve (b), after the wave 

reaches the upstream end of the pipe (c). The dashed line indicates the initial size of the pipe 
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The governing assumptions of the water hammer phenomenon are the following: 

– Assumption (A1). The pressure variations in a pipe may reach several millions 
of Pa, while the typical variations in the flow speed may be 1 m/s. An order of 
magnitude analysis indicates that the inertial term is negligible compared to the 
pressure term in the momentum equation [2.37].  

– Assumption (A2). The fluid is (slightly) compressible and the conduit is 
(slightly) elastic. This yields a linear dependence between the pressure and the mass 
of fluid per unit length. The corresponding relationship, expressed as in 
equation [2.44], leads to the conclusion that the speed of sound c is a constant. Note 
that a typical order of magnitude for c is 1 km/s. 

– Assumption (A3). Owing to high rigidity, the conduit is only slightly 
deformable, even under sever transients. The variations in the pressure force P are 
mainly due to the variations in the pressure, not to the variations in the cross-
sectional area of the pipe. 

– Assumption (A4). Owing to the weak compressibility of the fluid, the relative 
variations in the fluid density are very small. Consequently, the variations in the 
mass discharge are mainly due to the variations in the flow speed. 

2.4.2. Conservation form 

2.4.2.1. Notation 

The water hammer phenomenon can be described using the continuity and 
momentum equations in one dimension of space. The assumption of a one-
dimensional flow is valid because of the high contrast between the length (typically, 
tens to hundreds of meters, sometimes kilometers) and the diameter of the pipes 
(typically a few centimeters to a meter). The equations are derived in conservation 
form for pipes of arbitrary shape, with a variable cross-section and a non-horizontal 
axis. Figure 2.7 illustrates the notation and the coordinate system used. 

xx0

x0 + δx

p(x)

p(x0) p(x0 + δx)
θ 

ϖ(t)

 

Figure 2.7. Derivation of the water hammer equations. Definition sketch for the geometry 
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The x-axis is that of the pipe. The angle between the x-axis and the horizontal is 
denoted by θ, with the convention that θ is positive when the elevation increases 
with x. The cross-section of the pipe is denoted by A. A mass and momentum 
balance is carried out between the times t0 and t0 + δt over a slice of pipe delineated 
by x = x0 and x = x0 + δx. 

2.4.2.2. Continuity equation 

The mass balance can be written as follows: 

)()()()( 01010101 xxFxFtUttU δδδδδδ +−=−+  [2.50] 

where δU1(t) is the mass of fluid contained in the control volume at the time t and 
δF1(x) is the mass of fluid that passes at the abscissa x over the time interval δt. 
Equation [2.50] expresses that the variation in the mass of the control volume is due 
to the difference between the mass that enters and the mass that leaves the control 
volume. By definition, δU1(t) and δF1(x) are given by: 
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where u is the fluid velocity and ρ is the fluid density. Substituting equation [2.51] 
into equation [2.50], introducing the derivatives with respect to time and space 
leads, in the limit of vanishing δt and δx, to the so-called continuity equation (see 
equations [1.12–16] for details of the proof): 
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Defining the first component U1 of the conserved variable as U1 = ρA, 
equation [2.52] can be rewritten as 
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2.4.2.3. Momentum equation 

The momentum balance is given by the fundamental principle of dynamics: 

PV FFxxPxP
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00

02020202  [2.54] 

where δU2(t) is the total momentum of the fluid over the control volume at the time t 
and δF2(x) is the momentum of the volume of fluid that passes at x over the time 
interval δt. δP(x) is the integral of the pressure force exerted on the pipe cross-
section at x over the time interval δt. δFV and δFW are respectively the integrals of 
the volume forces and the forces exerted by the walls on the control volume over the 
time interval δt. By definition, δU2 and δF2 are given by: 
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The pressure force P(x) being defined as the product of the pipe cross-section 
and the average pressure over the cross-section (Figure 2.7), δP is given by: 
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The only volume force is the weight of the control volume: 
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The weight of the control volume is a vector collinear with the vertical. Since the 
momentum balance [2.54] is written in the x-direction, δFV is the projection of the 
integral of ϖ(t) between t0 and t0 + δt onto the x–axis: 

∫ ∫∫
+ ++

−=−=
tt

t

xx

x

tt

t
V txtxAgtttF

δ δδ
ρθθϖδ

0

0

0

0

0

0

dd),)((sindsin)()(  [2.58] 



Hyperbolic Systems of Conservation Laws      73 
 

The integral of the forces exerted by the walls can be broken into two terms: 
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where Rf and Rp are respectively the forces due to friction against the pipe wall and 
the projection of the reaction of the wall onto the x-axis. Under the assumption of 
turbulent flow, Rf is classically assumed to be proportional to the square of the flow 
velocity. The friction force is exerted in the opposite direction to that of the flow, 
which leads to an expression in the form: 

uukR f −=  [2.60] 

The term Rp is equal to the projection of the reaction of the wall to the pressure 
force onto the x-axis. The reaction of the wall stems from the pressure exerted by the 
fluid in the direction of the normal unit vector to the wall. According to the theorem 
of action and reaction, the reaction exerted by the wall on the fluid is the opposite of 
the force exerted by the fluid on the wall (Figure 2.8). 

x

x0

x0 + δx

p(x)

A(x − dx/2)

ϕ 

A(x + dx/2)

dx 

 

Figure 2.8. Pressure force exerted by the fluid on the wall (dashed arrow) and reaction  
of the wall on the fluid (solid arrow) 

The projection of Rp onto the x-axis is determined by multiplying its norm by the 
cosine of the angle ϕ between the wall and the x-axis (Figure 2.8). The expression of 
the integral of the projected vector over the wall of the entire control volume may 
become rather complex when the shape of the pipe is complex. However, the 
developments are kept simple by noting that the only quantity of interest is the 
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projection of the reaction onto the x-axis. The x-component of the pressure force 
exerted on a slice of pipe of infinitesimal length dx centered around the abscissa x is 
the product of the pressure p(x) over an infinitesimal area dA in the plane normal to 
the x-axis. dA is the variation of the cross-sectional area between x and x + dx: 
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Integrating the pressure force over the control volume leads to: 
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Substituting equations [2.60] and [2.62] into equation [2.59] leads to: 
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Substituting equations [2.55], [2.56], [2.58] and [2.53] into [2.54] and reasoning 
as in equations [1.12–16], the momentum equation is written as: 
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where the pressure force P is equal to the product Ap. Recalling definition [2.53], 
the expression of the second component of the conserved variable becomes: 
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2.4.2.4. Simplification – vector form 

The expression of the second component F2 of the flux vector can be simplified 
by recalling Assumption (A1) stated in section 2.4.1. Neglecting the momentum flux 
ρQ2/A with respect to the pressure terms in the momentum equation leads to: 
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and equation [2.64] is simplified into: 
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Equations [2.52] and [2.67] can be written in the vector form [2.2], recalled here: 
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2.4.3. Characteristic form – Riemann invariants 

System [2.2] can be rewritten in the non-conservation form [2.5], recalled here: 

'S
U

A
U

=
∂
∂

+
∂
∂

xt
 

where A is the Jacobian matrix of F with respect to U and S' = S. The definitions 
[2.68] lead to the following expression for A:  
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where c is defined as in equation [2.44], recalled here: 
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From Assumption (A2) stated in section 2.4.1, the variations in the pressure 
force Ap are proportional to those in the mass per unit length ρA. Consequently, c 
does not depend on the flow variables, it is a constant that depends only on the local 
properties of the pipe, such as its diameter, thickness and material.  
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The matrix A has the following eigenvalues and eigenvectors: 
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The eigenvalues being real and distinct, system [2.2, 2.68] is hyperbolic. The 
variations in the pressure force being related to those of the mass per unit length, the 
system is compressible. 

The characteristic form is obtained by multiplying equation [2.5] by the matrix 
K–1 and noting that A is transformed into the diagonal matrix Λ in the base formed 
by its eigenvectors (see equations [2.18–22] in section 2.1.3). This leads to 
equation [2.22], recalled here: 
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where the vector dW is defined as in the first equation [2.21], recalled here:  
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Substituting equations [2.68] and [2.70] into equation [2.21] and multiplying by 
2c, the following expression is obtained for dW and S":  
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Equation [2.22] can be rewritten as: 
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The mass per unit length and the pressure force are not directly measurable in 
practice. Engineers usually deal with the pressure and the liquid discharge that can 
be easily measured using manometers and flow meters. The Riemann invariants are 
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rewritten so as to involve p and Q. Equations [2.44] allow the following 
relationships to be written: 
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From Assumption (A3), the variations in the pressure force (Ap) are mainly due 
to the variations in p. Equation [2.73] simplifies into: 
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Assumption (A4) allows the following expression to be derived for the 
derivatives of the mass discharge: 
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Substituting equations [2.74] and [2.75] into equations [2.71] and [2.71], 
introducing equation [2.70] yields the following expressions: 
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Note that the terms xAp ∂∂ /  on both sides of the equal sign are canceled out. 
Simplifying by A/c leads to the following equations: 
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that can be rewritten as: 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−
∂
∂

−
∂
∂

θρρ

θρρ

sin

sin

gcuuk
A
c

x
Q

c
t
Q

A
c

x
p

c
t
p

gcuuk
A
c

x
Q

c
t
Q

A
c

x
p

c
t
p

 [2.78] 

The following characteristic equations are obtained: 
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In the particular case where the cross-sectional area and the wave speed are 
constant in space, 0/ =∂∂ xA  and c can be taken out of the derivative. This remark 
also holds for A and ρ because of Assumption (A4) that allows the following 
approximation to be made: 
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Introducing the above simplifications, equation [2.79] can be rewritten as: 
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Noting that u = Q/A, equation [2.81] becomes: 
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Consequently, the vector of Riemann invariants and the source term S" are 
defined as: 
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For the sake of clarity (or to make the derivation of analytical solutions easier), 
the slope of the pipe and the friction term are sometimes assumed to be zero. In this 
case the source term S" becomes zero. Note that equation [2.83] leads to a very 
simple relationship between W and the state vector (p, u): 
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NOTE.− The assumption of a constant area and speed of sound is essential in the 
derivation of the Riemann invariants [2.83]. When A and c are not constant in space 
(that is, when the properties of the pipe are not homogeneous), an analytical 
expression must be provided for their variations for equation [2.79] to be integrated. 

2.4.4. Calculation of the solution 

2.4.4.1. Treatment of internal points 

For the sake of simplicity, the pipe is assumed to be horizontal and friction is 
assumed to be negligible. The properties of the material and the cross-sectional area 
are assumed to be constant in space. The pipe extends from x = 0 to x = L. The 
present section focuses on the calculation of the flow variables p and u at any 
internal point M of the domain, to the exclusion of the boundaries (Figure 2.9). The 
issue of boundaries is discussed in the next section. Denoting by A and B the feet of 
the characteristics dx/dt = – c and dx/dt = + c passing at M respectively, the 
knowledge of the invariant W1 at B and that of the invariant W2 at A allows the 
solution to be determined uniquely at M. Indeed, using equation [2.82] along the 
characteristics (AM) and (BM) under the assumption of zero friction and slope 
(k = 0, θ = 0) leads to: 
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If p and u are known at A and B, equation [2.83] allows W1(B) and W2(A) to be 
determined. W1(M) and W2(M) are derived using equation [2.85]. The pressure pM 
and the velocity uM at the point M are determined using relationships [2.84]. 

x

t 

x 

t

L L

M M

0 0 
A

A
B B 

dx/dt = −c

dx/dt = c 

dx/dt = −c

dx/dt = c 

(a) (b)

 

Figure 2.9. Determination of the solution at internal points when the domain  
of dependence is included entirely in the computational domain (a)  

and the domain of dependence contains a boundary (b) 
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Note that if uA is larger than uB, the water accumulates between A and B, which 
causes an increase in the pressure at the intermediate point M, hence the term (uA –
 uB) in the first equation [2.86]. Conversely, it pA is larger than pB, the points located 
between A and B are subjected to a positive acceleration and uM increases, hence the 
term (pA – pB) in the second equation [2.86]. 

The coordinates of points A and B do not need to be identical for relationships 
[2.86] to be applicable. Two cases may be encountered depending on the value of tM: 

– if the domain of dependence of the point M is included in the segment [0, L] 
(Figure 2.9a), the knowledge of the initial condition is sufficient for the 
determination of pM and uM;  

– if the domain of dependence of M contains a boundary (Figure 2.9b), only one 
invariant (here, the invariant W1) reaches the point M from inside the computational 
domain. The second invariant (here W2) travels along the characteristic (AM) issued 
from the left-hand boundary and requires that a boundary condition be prescribed at 
x = 0 for the solution to be determined uniquely. Boundary conditions are dealt with 
in section 2.4.4.2. 
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2.4.4.2. Treatment of boundary conditions 

As shown in the previous section, only one Riemann invariant is known at the 
boundary of the domain because there is only one characteristic coming from the 
domain. For the solution to be unique at the boundary, additional information should 
be supplied in the form of a boundary condition. 

Consider first the left-hand boundary (Figure 2.10a). The pressure pA and the 
flow velocity uA are determined uniquely at A provided that the invariants W1 and 
W2 are known at A. Then, equation [2.84] can be applied. W1(A) can be determined 
from the initial condition at the internal point A', that is the foot of the characteristic 
dx/dt = – c that passes at A. The following equality holds: 

)A'()A( 11 WW =  [2.87] 
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x

t

L0 0 

A B 
dx/dt = −c

dx/dt = c dx/dt = −c

dx/dt = c 

(a) (b)

A' B'  

Figure 2.10. Determination of the solution at the boundaries:  
left-hand boundary (a); right-hand boundary (b) 

However, W2(A) cannot be computed from the initial condition because the 
characteristic dx/dt = + c does not reach point A from inside the domain. The 
missing information must be supplied in the form of an additional boundary 
condition. The general expression for such a condition is: 

0),,( AA =tupf  [2.88] 

where the function f is known a priori. Equations [2.87–88] form a 2×2 system, the 
solution of which is unique. 

The main three types of boundary condition met in engineering practice are the 
following: 

– prescribed pressure pb at the left-hand boundary. System [2.87–88] can be 
rewritten as: 
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The pressure pA is known and the flow velocity uA is obtained from the first 
equation [2.89]: 
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– prescribed velocity ub at the left-hand boundary (this condition is equivalent to 
prescribing a discharge because the cross-sectional area A of the pipe is known). 
System [2.87–88] can be rewritten as: 
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which leads to the following expression for pA: 

cutupp b ρ])([ A'A'A −+=  [2.92] 

– known relationship between the flow velocity ub (or the discharge Qb) and the 
pressure pb. Such a relationship may express the head loss across singularities such 
as valves, bends, sudden changes in the cross-sectional area, as well as head gains 
across pumps, etc. In most cases, the function f is nonlinear and system [2.87–88] 
must be solved using iterative methods. 

Reasoning by symmetry, the following formulations are obtained for a right-
hand boundary condition: 

– prescribed pressure pb at the right-hand boundary. uB is given by: 
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– prescribed velocity ub at the right-hand boundary. The pressure pB is given by: 

ctuupp b ρ)]([ B'B'B −+=  [2.94] 

2.4.4.3. Bergeron’s graphical method 

Bergeron’s graphical method uses a representation of the characteristic 
relationships in the (p, u) plane instead of the (x, t) phase space. The principle of the 
method is outlined for horizontal pipes with a constant cross-sectional area where 
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the wave speed is constant and friction is negligible. Under such assumptions, 
equations [2.85] can be rewritten as: 
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These are the equations of straight lines in the (p, u) coordinate system 
(Figure 2.11). Indeed, system [2.95] can be rewritten as: 
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Figure 2.11. Principle of Bergeron’s graphical method. 

The slopes of the straight lines are –1/(ρc) and 1/(ρc). The solution (pM, uM), that 
satisfies equations [2.96], is therefore located at the intersection between the straight 
lines in the plane (p, u). The solution is determined graphically by locating the 
points A and B in the (p, u) plane, drawing the straight lines with slopes –1/(ρc) and 
1/(ρc) that pass at A and B respectively and finding their intersection M 
(Figure 2.11). Note that the method can be applied to more complex physical 
situations, in particular when friction is not negligible or when a boundary condition 
is supplied in the form of a relationship between the pressure and the flow velocity. 
Application examples can be found in [CAR 72] and [LEN 96]. 

2.4.5. Summary 

The water hammer equations are based on the assumptions of a weakly 
compressible fluid and a weakly deformable pipe, where inertia is negligible and the 
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relationship between the pressure and the mass per unit length is linear (see 
Assumptions (A1–4) in section 2.4.1). 

The water hammer equations are written in conservation form [2.2] by defining 
the variable vector, the flux and the source term as in equation [2.68]. 

The characteristic form of the water hammer equations is given by 
equation [2.79]. When the physical properties of the pipe are homogeneous 
(constant wave speed and cross-sectional area) equation [2.79] can be simplified into 
equation [2.82]. The differential dW can then be integrated and W and S are given 
by equation [2.83]. 

The solution is computed at internal points using equation [2.86]. The existence 
and uniqueness of the solution requires that a boundary condition should be 
prescribed at each end of the computational domain. Boundary conditions in the 
form of prescribed pressure or velocity are given by equations [2.89–94]. 

2.5. A nonlinear 2×2 system: the Saint Venant equations 

2.5.1. Physical context – assumptions 

The open channel flow equations, also known as the Saint Venant equations, 
describe the behavior of flows in open channels such as rivers, canals or pipes where 
the water flows freely (in other words, the flow is not pressurized). Such equations 
are one-dimensional because the transverse dimensions of open channels are often 
very small compared to their longitudinal dimension. The Saint Venant equations 
are based on the following set of assumptions: 

– Assumption (A1). The water is assumed to be incompressible within the usual 
range of pressure. Its density ρ is constant. 

– Assumption (A2). The transverse and vertical acceleration of the water 
particles can be neglected compared to the longitudinal component of the 
acceleration. This is equivalent to assuming that the streamlines are only weakly 
curved. Consequently the pressure field is hydrostatic in a given channel cross-
section. 

– Assumption (A3). The flow regime is turbulent. The head loss, mainly due to 
friction against the channel walls, is proportional to the square of the velocity. 

– Assumption (A4). The slope of the channel is small enough for the longitudinal 
coordinate to coincide with the horizontal axis. 
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If we compare the Saint Venant equations to the water hammer equations studied 
in section 2.4, several differences arise: 

– the water in an open channel is not assumed to be compressible because the 
range of the pressure variations in an open channel is much smaller than in 
pressurized pipes; 

– the inertial terms cannot be neglected in the momentum equation. They may 
even become locally predominant and trigger discontinuities in the flow, such as 
hydraulic jumps, that appear when a rapid flow enters a zone where the flow is 
slower. 

A detailed analysis of the Saint Venant equations, as well as their numerical 
solution by standard, commercially available numerical models, can be found in 
[CUN 80]. 

2.5.2. Conservation form 

2.5.2.1. Notation 

The following notation is used (Figure 2.12). A(x) is the cross-sectional area of 
the channel at the abscissa x, b(x) is the width of the free surface, h(x) is the water 
depth, that is, the vertical distance between the free surface and the lowest point of 
the section (called the bottom of the channel), W(x, z) is the width of the channel at 
the abscissa x and the elevation z, zb(x) is the elevation of the bottom, ζ(x) is the 
elevation of the free surface and χ is the wetted perimeter.  

x 

x0
x0 + δx

ϕ 

z ζ(x)

h(x)
p(x0, z)

p(x0 + δx, z) 

zb(x)

b(x)

A(x) 

W(x, z) 

χ 
 

Figure 2.12. Definition sketch for the Saint Venant equations. The pressure forces exerted on 
the control volume are given by the areas of the gray-shaded triangles 
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Note that by definition, the following relationship holds between A and b: 

zbA dd =  [2.97] 

This relationship is used in section 2.5.3.3 to derive the expression of the wave 
speed. 

2.5.2.2. Continuity equation 

A mass balance is carried out between the times t0 and t0 + δt over an elementary 
control volume extending from x0 to x0 + δx:  

)()()()( 01010101 xxFxFtUttU δδδδδδ +−=−+  [2.98] 

where δU1(t) is the mass of the fluid contained in the control volume at the time t 
and δF1 (x) is the mass of fluid that passes at the abscissa x during the time interval 
δt. Equation [2.98] states that the variation of the amount of water contained in the 
control volume is equal to the difference between the amount that flows in and the 
amount that flows out. By definition, δU1 and δF1 are given by: 
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where A is the cross-sectional area, u is the fluid velocity and ρ is the density of the 
fluid. Substituting equation [2.99] into equation [2.98] in the limit of small δt and δx 
leads to the following equation (see equations [1.12–16] for a detailed proof): 
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Using Assumption (A2) of an incompressible fluid allows equation [2.100] to be 
divided by the (constant) density ρ. Noting that Q = Au, equation [2.100] is 
simplified into: 
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Defining the first component of the vector variable as A, equation [2.101] can be 
written in conservation form as: 
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2.5.2.3. Momentum equation 

The momentum balance is obtained by applying the fundamental principle of 
dynamics to a control volume of length δx over a time interval δt: 
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where δP(x) is the integral between t and t + δt of the pressure force exerted on the 
cross-section at the abscissa x, δU2(t) is the momentum of the fluid contained in the 
slice of channel of length δx, and δFW is the x-component of the reaction exerted by 
the channel walls on the control volume. By definition, δU2 and δF2 are given by 
equation [2.55], recalled here: 
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The pressure force P(x) is equal to the integral of the pressure over the cross-
section. From Assumption (A2), the pressure field is hydrostatic, that is, it is 
proportional to the distance between the point under consideration and the free 
surface. The pressure p(x, z) at the abscissa x and at the elevation z is therefore: 

gzzxp ρζ )(),( −=  [2.104] 

where both z and ζ depend on x (this is omitted in the notation for the sake of 
clarity). The pressure p(x, z) is exerted on an elementary slice of height δz and 
width W(x, z). The pressure force P(x) is therefore given by: 
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The force δFW exerted by the walls of the channel on the control volume is 
expressed as the sum of three forces: 
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where Rb, Rf and Rw are respectively the reaction of the bottom on the control 
volume in the vertical plane, the friction force and the reaction of the walls on the 
control volume in the horizontal plane. The friction force Rf is usually expressed in 
terms of the “energy slope”, or “energy grade line” Sf. Sf is positive when energy is 
lost in the direction of positive x. The following equivalence holds between Rf and 
Sf: 

ff ghSR ρ−=  [2.107] 

Note that Rf is exerted in a direction that is parallel to the channel bottom and not 
along the horizontal. In addition, owing to the non-zero bottom slope, Rf is exerted 
over a length that is slightly larger than δx. However, Assumption (A4) allows Rf to 
be approximated as its projection on the x-axis, while the length over which the 
force is exerted is approximated with δx. Several formulae are available for Sf. All of 
them use Assumption (A3) of a turbulent flow regime, hence the assumption that the 
slope of the energy line is proportional to the square of the flow velocity u. The most 
frequently used laws are: 
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where C, KStr and nM are respectively the Chezy, Strickler and Manning friction 
coefficients. RH is the hydraulic radius, defined as the ratio of the cross-sectional 
area to the wetted perimeter: 

χ
A

RH =  [2.109] 
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The Chezy coefficient is often used by coastal engineers, while river engineers 
usually prefer the Strickler and Manning coefficients. A large value of the Chezy or 
Strickler coefficients, or a small value of the Manning coefficient, indicate that 
friction is small. The three coefficients can be related to each other as follows: 
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As in the water hammer equation, the force Rp is given by the projection of the 
reaction of the walls of the channel onto the x-axis. In what follows, the reaction of 
the walls is understood as the horizontal component of the reaction of the walls. The 
reaction of the walls also has a vertical component that is usually referred to as the 
reaction Rb of the bottom of the channel. The force Rp is considered first. Consider 
an elementary volume of channel of height dz, the distance of which to the free 
surface is denoted by d. The domain extends from one channel wall to the other 
between the abscissas x – dx/2 and x + dx/2 (Figure 2.13). From Assumption (A2), 
the (hydrostatic) pressure p is given by equation [2.104]. The x-component of the 
reaction of the wall onto the elementary volume is therefore:  
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 [2.111] 

where the notation Const)/( =−∂∂ zxW ζ  indicates that the partial derivative of the 

width with respect to z is estimated keeping a constant distance below the free 
surface. The force Rp is obtained by integrating dRp from zb to ζ and from x0 to 
x0 + δx: 

∫ ∫
+
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0

dd)(
)(

)( Const
 [2.112] 

The projection Rb of the reaction of the bottom onto the x-axis is determined by 
carrying out a balance between the forces exerted onto a slice of channel delineated 
by x – dx/2 and x + dx/2. The reaction of the bottom onto the control volume is 
exerted in a vertical plane, in the direction of the normal unit vector to the bottom of 
the channel (see Figure 2.13, top). The projection of the reaction of the channel onto 
the z-axis is equal to the opposite of the weight ρgAdx of the control volume. Since 
the bottom of the channel makes an angle ϕ with the horizontal, the horizontal 
component of the reaction of the bottom of the channel onto the fluid is:  

xxgARb dtg)( ϕρ=  [2.113] 
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xx0 x0 + δx

p(x, z)

W(x − dx/2) W(x + dx/2)

dx 

dz 

ϕ 

ϕ 

zxgA Gdρ−

xxgA
G

dtgϕρ

zxgA Gdρ

z 

 

Figure 2.13. Force exerted by the fluid onto the wall (dashed arrows), reaction of the wall 
onto the fluid (solid arrows).Vertical projection (top), horizontal projection (bottom) 

Note that the tangent of the angle ϕ is the slope S0 of the channel: 

x
z

S b

∂
∂

−== ϕtan0  [2.114] 

Substituting equations [2.55, 2.105, 2.107, 2.112–114] into equation [2.103] in 
the limit of zero δt and δx, dividing by the constant density ρ leads to: 
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where the integral Ip is given by: 
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Equation [2.115] can be written in conservation form as: 
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 [2.117] 

2.5.2.4. Vector form 

The system formed by equations [2.102] and [2.117] can be written in the vector 
conservation form [2.2], recalled here: 

S
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=
∂
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+
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∂

xt
 

by defining U, F and S as:  
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where M = Q2/A + P/ρ is the specific force and Q2/A is the momentum flux. 

2.5.3. Characteristic form – Riemann invariants 

2.5.3.1. Non-conservation form 

Equation [2.2] is first rewritten in the non-conservation form [2.5], recalled 
hereafter: 

'S
U

A
U

=
∂
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+
∂
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xt
 

where A and S' are given as in equation [2.6], recalled here: 
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Note from equation [2.118] that A is given by: 

⎥
⎦
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=
uuc 2
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A 22  [2.119] 

where c is defined as:  
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 [2.120] 

The expression for c is given in section 2.5.3.3. The source term S' is derived by 
noting that ConstU)U/F( =∂∂  is to be computed for a fixed value of U, that is, for 
constant A and Q. Consequently: 

– the first component of S' is zero because both A and Q are assumed constant; 

– the term Q2/A in the second component M of F is also assumed constant. The 
only term in M that changes with x for a constant U is the pressure force P. 
Variations in P arise either from variations in the water depth h for a given channel 
shape, or from variations in the shape of the channel cross-section for a given h. 
Differentiating P/ρ with respect to x gives: 
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 [2.121] 

where z' = z – zb is the elevation above the bed level. Using Leibniz’ differentiation 
rule for the integral, noting that p = 0 for z' = h and substituting equation [2.104] into 
equation [2.121] leads to: 
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 [2.122] 

Note that the second term in equation [2.122] is nothing but the integral Ip as 
defined in equation [2.116]. Moreover, it is noted that in the case of a prismatic 
channel, Ip = 0. Consequently, the first integral in equation [2.122] is part of the 
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second component of the vector term xx ∂∂∂∂ = /U)U/F( Const  in equation [2.6], 
while Ip represents the second component of the term ConstU)/F( =∂∂ x : 
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Consequently, we have: 
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2.5.3.2. Characteristic form 

The eigenvalues and eigenvectors of A are: 
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Since the Jacobian matrix A has two real and distinct eigenvalues, system [2.2, 
2.118] is hyperbolic. The variations of the pressure force are related to those of the 
mass per unit length; therefore the system describes a compressible behavior.  

Recall that the characteristic form is obtained by multiplying the non-
conservation form by K–1 so as to involve the diagonal matrix Λ formed by the 
eigenvalues of A:  
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=
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∂
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∂
∂

xt
 

The differential of the vector Riemann invariant dW is defined by the first 
relationship [2.21]: 

UdKWd 1−=  
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Matrices K and K–1 are derived from equation [2.125]: 
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Substituting equations [2.119] and [2.126] into equation [2.21] with the 
definition [2.124] leads to: 
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The differential dW can be integrated only if the expression for c is known. This 
is the subject of section 2.5.3.2. The formula for c is then used to derive that of the 
Riemann invariants in a number of particular cases examined in section 2.5.3.3. 

2.5.3.3. Expression of the speed of the waves in still water 

Definition [2.120] is recalled for c: 
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where P is given by equation [2.105]. Dividing equation [2.105] by ρ leads to: 
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The pressure force P is first shown to be related to the cross-sectional area by a 
one-to-one relationship. Both the cross-sectional area A and the pressure force P are 
strictly increasing functions of the elevation ζ of the free surface, provided that b is 
non-zero. Consequently there is a one-to-one relationship between P and ζ, and 
there is a one-to-one relationship between A and ζ. Therefore, there exists a one-to-
one relationship between A and P and the derivative AP ∂∂ /  can be computed as: 
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The expression of ζ∂∂ /A  is derived assuming that the elevation of the free 
surface is subjected to an infinitesimal variation dζ. The corresponding variation dA 
in the cross-sectional area is:  

ζdd bA =  [2.130] 

Consequently: 

b
A

=
∂
∂
ζ

 [2.131] 

The derivative ζ∂∂ /P  is derived as follows. Consider an infinitesimal variation 
dζ in the elevation of the free surface, that moves from the point A to the point A' 
(Figure 2.14). 

z

A

B

A’
dζ 

ζ+dζ 

dp = ρgdζ 

z 
bdζ 

U1 = A

dζ 
ζ+dζ 

ζ 

zb  

Figure 2.14. Variation in the pressure force caused by a variation dζ in the water level. The 
variation dP1 in the pressure force triggered by the variation dζ is the area of the gray-

shaded areas between the triangles that illustrate the pressure field 

Since the pressure is hydrostatic, it increases uniformly by a quantity ρg dz over 
the entire section. The resulting increase in the pressure field is therefore: 

ζρ ddd 1 gApAP ==  [2.132] 

The additional force brought by the infinitesimal area between the points A and 
A' in the side view (Figure 2.14, right) is given by: 
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The total variation in the pressure force is given by dP1 + dP2: 
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In the limit of small dζ, dP becomes equivalent to ρgA dζ and:  
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Substituting equations [2.131] and [2.135] into equation [2.129] leads to:  

b
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Hence the expression of c: 

2/1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=
b
gA

c  [2.137] 

In the particular case of a rectangular channel, equation [2.137] simplifies into: 

2/1)(ghc =  [2.138] 

This expression is to be connected to a very remarkable behavior. Free-surface 
waves propagate more rapidly in deep water than in shallow water. This explains in 
particular the steepening and the breaking of sea waves traveling to the shore. In a 
more dramatic fashion, equation [2.138] also accounts for the development of 
tsunamis. The behavior of the solutions of hyperbolic conservation laws in the 
presence of steep fronts and discontinuities is covered in detail in Chapter 3. 

2.5.3.4. Riemann invariants 

The purpose is to derive a simplified formulation for the Riemann invariants as 
given by equations [2.127]. Substituting equations [2.135] into equation [2.22] and 
multiplying by 2c leads to the following system: 
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Dividing by A leads to: 
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The above equations can be integrated easily in a number of particular cases. The 
following three configurations are examined for prismatic channels (hx,A = 0): 

– Rectangular channel. b is constant, A and c are given by: 
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The following relationship holds: 
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Substituting equation [2.142] into equation [2.140] and noting that c2 = gh, the 
following system is obtained: 
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Note that the source term on the right-hand side of the equations is canceled out 
in horizontal channels with negligible friction or when the flow is uniform (S0 = Sf 
by definition). The quantity u – 2c is then constant along the characteristics, the 
speed of which is u – c. The quantity u + 2c is constant along the characteristics of 
speed u + c. The Riemann invariants and the source term in equation [2.22] can be 
redefined as: 
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– Triangular channel. The width b is proportional to the water depth h, A is 
proportional to the square of b and h: 
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where θ is the angle of the embankments with the vertical (the channel is assumed to 
be symmetric). Equations [2.140] can be rewritten as: 
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Under uniform conditions, or when the channel is horizontal and friction is 
negligible, the quantity u – 4c is invariant along the characteristic of speed u – c. 
The quantity u + 4c is invariant along the characteristic of speed u + c. The Riemann 
invariants and the source term in equation [2.22] may be redefined as: 
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– Approximation for arbitrary-shaped channels. The following relationships 
hold: 
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Substituting equation [2.148] into equation [2.140] leads to the following 
system: 
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If the quantity db/dc can be assumed to be proportional to b/c, then: 

Const
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c
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and the term (c/b db/dc) can be passed into the operator d/dt. Equations [2.149] then 
become: 
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If (c/b db/dc) is not strictly constant, equation [2.151] is only an approximation. 
This approximation may however prove useful in a number of cases. Note that the 
rectangular channel (db/dc = 0) and the triangular channel (db/dc = 2) are particular 
cases of equations [2.151]. 

The quantity (c/b db/dc) is difficult to estimate in practical applications. It is 
more conveniently related to the geometry of the channel via the general definition 
of the propagation speed of the waves in still water: 
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Differentiating equation [2.152] leads to: 
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Hence the expression of dc/db: 
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and: 
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The quantity c/b db/dc is obtained directly from equation [2.155]. Note that 
dh/db can be estimated very easily from the geometry of the channel. The general 
formula [2.149] becomes: 
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where β is defined as: 
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If dh/db can be assumed to be proportional to A/b2, equation [2.151] becomes: 
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The Riemann invariants and the source term in equation [2.22] can be redefined 
as: 
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NOTE.− Equation [2.158] leads to equation [2.147]. Equation [2.158] does not 
lead to equation [2.145] for a rectangular channel because the assumption db ≠ 0 is 
needed in equation [2.154] to proceed from equation [2.149] to equation [2.158]. 
This assumption is wrong in the case of a rectangular channel because b is constant. 

2.5.4. Calculation of solutions 

2.5.4.1. The various possible flow regimes 

As seen in section 2.5.3.1, the propagation speeds of the waves are u – c and 
u + c. In contrast with the water hammer phenomenon, the speeds of the waves are 
not independent of the flow variables. They can bee seen as the result of the 
superimposition of two phenomena: 
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– The propagation of the pressure waves is accounted for the terms – c and + c. 
As in the water hammer phenomenon, a perturbation in the flow gives rise to two 
pressure waves traveling in opposite directions. 

– The pressure waves travel in the fluid (here, water) that moves at the speed u. 
Therefore, the flow velocity u must be added to the speed of the pressure waves to 
account for the movement of the water molecules in the channel.  

In a Lagrangian coordinate system, that is, a coordinate system that moves at the 
speed of the flow, the speeds of the waves become – c and + c respectively.  

The so-called Froude number is commonly used to characterize the flow regime. 
This dimensionless number is defined as: 

c

u
=Fr  [2.160] 

Depending on the value of Fr, the flow regime is said to be subcritical, critical or 
supercritical: 

– For Fr < 1, the flow is said to be subcritical. This corresponds to the condition 
|u| < c. In this case, u – c is negative and u + c is positive. The first wave travels 
upstream, the second wave travels downstream. As a consequence, the behavior of 
the flow at a given point in the channel is influenced by the flow conditions 
downstream of it.  

– For Fr > 1, the flow is said to be supercritical. This corresponds to the 
condition |u| > c. If u is positive, both wave speeds are positive. If u is negative, both 
wave speeds are negative. Both waves propagate downstream and the local behavior 
of the flow is influenced only by the flow conditions upstream. 

– For Fr = 1, the flow is said to be critical. This situation corresponds to the 
transition between subcritical and supercritical conditions. It is usually restricted to a 
very small region of the flow. A critical point indicates the limit point in the channel 
where the flow conditions cease to be influenced by the conditions downstream. 
Critical conditions are usually encountered at singularities such as sills, weirs or 
next to bridge piers. 

The various possible flow regimes can be illustrated in the phase space as in 
Figure 2.15. If the flow is subcritical, the slopes of the characteristics have opposite 
signs (Figure 2.15a). When the flow is critical, one of the characteristics is parallel 
to the time axis (Figure 2.15b). When the flow is supercritical, the slopes of the two 
characteristics have the same sign (Figure 2.15c). 
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dx/dt = u − c 
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dx/dt = u + c
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dx/dt = u − c 

(a) (b) (c) 

 

Figure 2.15. Definition sketch for the various possible flow regimes in the phase space: 
subcritical (a), critical (b), supercritical (c) 

2.5.4.2. Treatment of internal points 

Assume first that S" = 0 and that the Riemann invariants can be integrated in the 
general form [2.159] with the coefficient β defined as in equation [2.157]. The 
channel reach over which the solution (that is, the couple (A, Q)) is to be determined 
extends from x = 0 to x = L (Figure 2.16). This section focuses on the calculation of 
the solution at internal points. 

x

t 

x 

t

L L 

M M

0 0 
A 

A
B B 

dx/dt = u −c 

dx/dt = u +c 

(a) (b)

dx/dt = u +c

dx/dt = u −c 

 

Figure 2.16. Calculation of the solution at internal points when the domain of dependence is 
included in the computational domain (a) and when it includes a boundary (b) 

Let A and B denote the feet of the characteristics dx/dt = u + c and dx/dt = u – c 
respectively passing at the point M where the solution is sought. A and B may or 
may not be located at a boundary. A and Q are assumed to be known at both A and 
B. 
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As mentioned in section 2.2.2, the solution can be determined uniquely at M 
provided that the invariant W1 at B and the invariant W2 at A are known. Applying 
relationships [2.158] under the assumption of a zero source term gives: 
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that is: 
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Solving equations [2.162] for uM and cM leads to:  
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The speed c of the waves in still water is in general related to the cross-sectional 
area A by a one-to-one relationship. The knowledge of cM allows AM to be 
determined uniquely. 

When the source term S" is non-zero, equations [2.158] are integrated into: 
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where tA, tB and tM are the time coordinates of the points A, B and M in the phase 
space respectively and "

AMS  and "
BMS  are the average values of the source term S" 

along the characteristics [AM] and [BM] respectively: 
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The solution of system [2.165] is unique: 
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Despite its apparent simplicity, the calculation of the solution as in equation 
[2.166] is not straightforward. Indeed, it requires that the average values of S" be 
estimated along the characteristics [AM] and [BM]. From a theoretical point of 
view, this requires that u and c be known exactly at all points along these 
characteristics. In arbitrarily-shaped channels, u and c vary along the characteristics. 
Moreover, the variations in the bed slope S0 and the friction slope Sf cannot be 
described analytically. In practical applications, the source term S" must be 
approximated. 

2.5.4.3. Treatment of boundary conditions 

The treatment of boundary points depends on the flow regime. Three typical 
situations are examined (Figure 2.17): (1) the flow is subcritical at the boundary, 
(2) the flow is supercritical, entering the domain, (3) the flow is supercritical, 
leaving the domain. These cases are detailed hereafter for the treatment of the left-
hand boundary of the domain: 

x 

t 

M 

0 
B 

dx/dt = u −c 

dx/dt = u +c 

(1) 
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dx/dt = u +c

(2)
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t

M 

0 
B 

dx/dt = u −c 

dx/dt = u +c 

(3)

A

 

Figure 2.17. Calculation of the solution at the left-hand boundary: subcritical flow (1), 
inflowing supercritical flow (2), outflowing supercritical flow (3) 

(1) Subcritical flow. The characteristic dx/dt = u – c leaves the domain, the 
characteristic dx/dt = u + c enters the domain. The invariant W1 at any point M on 
the boundary is known from its value at the internal point B. In contrast, the 
unknown invariant W2 cannot be determined from internal points. Additional 
information must be supplied in the form of a boundary condition. Two equations 
may be written, the first for the Riemann invariant along the characteristic [BM], the 
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second for the boundary condition. Except for very simple geometries and boundary 
conditions, these equations are nonlinear. They can be written in general form as: 
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where the (assumed known) function fb expresses the boundary condition in the form 
of a time-dependent relationship between u and c. Three main types of boundary 
conditions are used in practice: prescribed water level (or depth), prescribed 
discharge, stage-discharge relationship. Their expression for a rectangular channel 
can be found in section 2.5.4.4. In the general case, system [2.167] must be solved 
using iterative techniques. 

(2) Inflowing supercritical flow. The two characteristics dx/dt = u – c and 
dx/dt = u + c enter the domain. The solution at the boundary point M is not 
influenced by the solution at internal points. Two boundary conditions must be 
supplied. This is usually done by prescribing the water level and the discharge as 
functions of time. 

(3) Outflowing supercritical flow. The two characteristics dx/dt = u – c and 
dx/dt = u + c leave the domain. The solution at the boundary point M is uniquely 
determined from the internal points. It can be calculated by applying relationships 
[2.166] between M and the internal points A and B, M being treated exactly in the 
same way as an internal point (see section 2.5.4.2). 

2.5.4.4. Boundary conditions for a rectangular channel 

The full expression of the main three types of boundary conditions in a 
rectangular channel where the flow is subcritical is provided hereafter. The channel 
is assumed to be prismatic, the slope and the friction term are neglected, which leads 
to a zero source term S". Remember that for a rectangular channel, the speed of the 
waves in still water is given by c = (gh)1/2.  

– Prescribed water level hb at the left-hand boundary. The invariant W1 is used 
together with the boundary condition: 
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Solving system [2.168] for uM yields: 

2/1
BBM )(22 bghcuu +−=  [2.169] 



106     Wave Propagation in Fluids 
 

– Prescribed discharge Qb at the left-hand boundary. The invariant W1 is used 
again: 

⎪
⎭

⎪
⎬

⎫

==

−=−

bQ
g
ubc

Au

cucu

M
2
M

MM

BBMM 22

 [2.170] 

Note that the relationship A = bh = bc2/g is used in the second equation. The 
nonlinear system [2.170] must be solved iteratively for uM and cM. 

– Prescribed stage-discharge relationship at the left-hand boundary. The 
invariant W1 and the boundary condition are used: 
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Using the relationship A = bc2/g leads to: 
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In the general case system [2.172] is nonlinear and must be solved iteratively. 

– Prescribed water depth hb at the right-hand boundary. The invariant W2 is used 
together with the boundary condition: 
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Solving system [2.173] for uM yields: 
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– Prescribed discharge Qb at the right-hand boundary. The following system is 
obtained: 
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The nonlinear system [2.175] must be solved iteratively. 

– Prescribed stage-discharge relationship at the right-hand boundary. The 
invariant W2 is used together with the boundary condition that is rewritten in the 
form of a time-dependent relationship between u and c: 
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In this case again, an iterative solution technique is needed. 

2.5.5. Summary 

The Saint Venant equations are derived on the assumption of incompressible 
water, of a hydrostatic pressure field, for turbulent flow in nearly horizontal 
channels. 

The structure of the Saint Venant equations is that of a 2×2 compressible system. 
The wave speeds are u – c and u + c. The general formula for the speed c of the 
waves in still water is given by equation [2.137]. It is given by equation [2.138] for a 
rectangular channel and by equation [2.145] for a triangular channel. 

The general form of the Riemann invariants is defined as in equation [2.140]. 
Equations [2.149] and equations [2.156–157] provide an alternative writing. These 
differential relationships may be integrated easily for simple geometries such as 
rectangular prismatic channels (see equations [2.143–144]) or triangular prismatic 
channels (see equations [2.146–147]). In prismatic channels with arbitrarily-shaped 
cross-sections, the (equivalent) formulations [2.151] and [2.158] are applicable, with 
Riemann invariants defined as in equation [2.159] when dh/db can be assumed to be 
proportional to A/b2. If this is not the case, equations [2.151], [2.158] and [2.159] are 
not exact formulae but approximations of the Riemann invariants. 

The flow regime can be characterized using the so-called Froude number Fr, 
defined as the ratio of the flow velocity u to the speed c of the waves in still water 
(see equation [2.160]). The flow is said to be subcritical if Fr is smaller than one, 
supercritical if Fr is larger than one, and critical if Fr is equal to one. The Froude 
number has the same meaning as the Mach number used for the Euler equations of 
gas dynamics (see section 2.6). 

The solution is unique provided that the initial condition is known at the internal 
points of the computational domain and that a boundary condition is specified for 
each characteristic that enters the domain at the boundary of the domain. When the 
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flow is subcritical at a given boundary, only one condition is required. When the 
flow is supercritical, entering the domain, two boundary conditions are needed. 
When the flow is supercritical, leaving the domain, no boundary condition is 
required. 

2.6. A nonlinear 3×3 system: the Euler equations 

2.6.1. Physical context – assumptions 

The Euler equations are among the simplest possible systems of governing 
equations for compressible gas dynamics. They can be seen as a simplified form of 
the Navier-Stokes equations in the absence of diffusion terms, with the addition of 
an equation for energy. The Euler equations are derived under the following 
assumptions: 

– Assumption (A1). The gas is compressible. It obeys the equation of state for a 
perfect gas, whereby the gas internal energy (thus the gas temperature) is a function 
of the gas pressure and density. 

– Assumption (A2). The density, the momentum and the total energy of the gas 
are assumed to be conserved. The total energy of the gas is formed by the kinetic 
energy, the internal energy and the energy per unit volume, i.e. the pressure. The 
total energy should be distinguished from the mechanical energy of the gas, which 
does not account for thermal effects. 

– Assumption (A3). The effects of viscosity, turbulence and heat conduction are 
neglected. Consequently, the Euler equations do not account for momentum or heat 
diffusion. 

– Assumption (A4). The effects of volume forces such as gravity are negligible. 

The Euler equations are used in aerodynamics for far field flow simulations. In 
near field simulations, a turbulent boundary layer appears in the neighborhood of 
walls and obstacles that is not accounted for by the Euler equations. Since the 
continuity and momentum equations in the Euler equations account for the 
hyperbolic part of the Navier-Stokes equations, their understanding and the 
understanding of the properties of their solution appears as an important prerequisite 
in the study of the complete Navier-Stokes equations with energy transport. In fact, 
the Euler equations allow a number of fundamental phenomena of aerodynamics to 
be accounted for: 

– As shown in sections 2.6.3 and 2.6.4, Assumption (A1) accounts for the fact 
that the Euler equations describe a compressible flow system. The pressure waves 
(also called the sound waves) propagate at a finite speed. The Euler equations allow 
acoustic phenomena to be accounted for.  
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– The Euler equations allow the occurrence of subsonic, sonic and supersonic 
flow regimes to be explained. 

– The Euler equations allow thermodynamic effects associated with the sudden 
expansion or compression of gases to be accounted for (deflagrations, etc.). 

The study of the Euler equation therefore appears as an indispensable step in the 
study and practice of aerodynamic modeling. 

2.6.2. Conservation form 

2.6.2.1. Definitions – notation 

The following notation is used. The gas density, velocity and pressure are 
denoted by ρ, u and p respectively. The total energy per unit volume, denoted by E, 
is defined as follows: 
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where e is the internal energy of the gas. From Assumption (A1), e is a function of p 
and ρ: 
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The internal energy of a perfect gas is expressed as: 
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where γ = 7/5. The entropy s is defined in differential form as: 

T
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where T is the temperature, assumed to satisfy the equation of state for a perfect gas: 

ρ
p

RT =  [2.181] 
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Substituting equations [2.181] and [2.179] into equation [2.180] yields the 
following expression: 
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The conservation form of the one-dimensional continuity, momentum and 
energy equations is obtained from a balance over a control volume of unit cross-
sectional area extending from x = x0 to x  x0 + δx (Figure 2.18). 

x

x0 x0 + δx A = 1

U1 = ρ 
U2 = ρu 
U3 = ρE

 

Figure 2.18. Mass, momentum and energy balance over a control volume 

2.6.2.2. Continuity equation 

The mass balance can be written as follows: 

)()()()( 01010101 xxFxFtUttU δδδδδδ +−=−+  [2.183] 

where δU1(t) is the mass of fluid contained in the control volume at the time t and 
δF1(x) is the mass of fluid that passes at the abscissa x during the time interval δt. 
Equation [2.183] expresses the fact that the variation of the mass contained in the 
control volume is due to the difference between the inflowing and outflowing mass 
fluxes across the control sections located at x0 and x0 + δx. δU1 and δF1 are defined 
as: 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

==

==

∫∫

∫∫

++

++

tt

t

tt

t

xx

x

xx

x

xtxuAxtxuAxF

xtxAxtxAtU

δδ

δδ

ρρδ

ρρδ

0

0

0

0

0

0

0

0

d),)((d),)(()(

d),(d),)(()(

1

1

 [2.184] 



Hyperbolic Systems of Conservation Laws      111 
 

Substituting equation [2.184] into equation [2.183], dividing by A in the limit of 
small δt and δx (see equations [1.12–16] for a detailed proof) leads to the following 
equation for continuity: 
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Equation [2.185] can be written in the form [2.1] as: 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

=

=

=
∂

∂
+

∂
∂

uF

U
x
F

t
U

ρ

ρ

1

1

11 0

 [2.186] 

2.6.2.3. Momentum equation  

A momentum balance over the control volume between t0 and t0 + δt yields: 
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where δU2(t) is the momentum contained in the control volume at the time t and 
δF2(x) is the momentum attached to the volume of fluid that crosses the abscissa x 
between t0 and t0 + δt. δP(x) represents the integral of the pressure force with respect 
to time between t0 and t0 + δt. δU2 and δF2 are defined as: 
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The pressure force P is the product of the pressure p and the cross-sectional area 
A of the control volume: 
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Substituting equations [2.188–189] into equation [2.187], dividing by A in the 
limit of small δt and δx (see equations [1.12–16] for details of the proof) leads to the 
following equation: 
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that can be written in the form [2.1] as: 
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2.6.2.4. Energy equation 

The energy balance over the control volume can be written as: 
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where δU3(t) is the total energy contained in the control volume at the time t, δF3(x) 
is the total energy attached to the volume of fluid that crosses the abscissa x during 
the time interval δt and δWp(x) is the work of the pressure force exerted onto the 
section at the abscissa x during the time interval δt. δU3 and δF3 are defined as: 
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The work dWp(x) of the pressure force over an infinitesimal time interval dt is 
defined as the product of the pressure force Ap and the displacement u dt of the 
fluid. Consequently: 
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Substituting equations [2.193–194] into equation [2.192], dividing by A in the 
limit of small δt and δx leads to (see equations [1.12–16] for the details of the 
reasoning): 
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The energy equation can be rewritten in the conservation form [2.1] as: 
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2.6.2.5. Vector conservation form 

Equations [2.186], [2.191] and [2.196] can be rewritten in the vector 
conservation form [2.2] by defining U and F as: 
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2.6.3. Characteristic form – Riemann invariants 

System [2.2] can be rewritten in the non-conservation form [2.5] by setting the 
source term to zero: 
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where A is defined as U/F ∂∂ . Defining the sound speed c as: 
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leads to the following expression for A: 
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A has the following eigenvalues and eigenvectors: 
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The vector of the Riemann invariants is defined in differential form as 
UdKWd 1−= . K–1 is given by: 
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hence the expression of dW: 
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Noting that d(ρu) = ρ du + u dρ, equations [2.203] become: 
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The term E/ρ dρ is removed from the second equation [2.204] by noting that: 
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Substituting equation [2.205] into the second equation [2.204] yields: 
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Using definition [2.177], equation [2.206] is transformed into: 
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Using equation [2.180] leads to the following expression: 
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The density ρ not being measurable directly, the first and third characteristic 
equations are rewritten so as to involve the pressure p that can be measured directly. 
This is done by substituting relationship [2.199] into equations [2.204]: 
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Note that definition [2.199] allows for an explicit definition of the speed of 
sound c. This definition can be used to integrate the Riemann invariants. Indeed, c is 
defined for a constant entropy, that is, for ds = 0. Using the differential form [2.184], 
it is easy to check that assuming ds = 0 is equivalent to assuming a constant ratio 
pγ/ρ. Consequently, the pressure and the density are related by a law of the type: 
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where p0 is a reference pressure for which the density is equal to ρ0. Substituting 
equation [2.210] into equation [2.199] yields: 
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Using [2.210] and [2.211], the following expression is obtained for ρc: 
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The first Riemann invariant becomes: 
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Equation [2.213] can be integrated into: 
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where the coefficients β1 and β2 are defined as: 
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Applying the same reasoning to the third Riemann invariant, the vector W is 
eventually defined as: 
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The characteristic equations are: 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

+==+

−==

−==−

cu
t
xpu

t

cu
t
x

t
s

cu
t
xpu

t

d
dfor 0)(

d
d

d
dfor 0

d
d

d
dfor 0)(

d
d

2

2

1

1

β

β

β

β

 [2.217] 

Note that this expression is valid only because the equation of state [2.179] 
allows the system to be closed, allowing equation [2.210] to be derived from 
equation [2.182]. 

2.6.4. Calculation of the solution 

2.6.4.1. The various possible flow regimes 

As seen in section 2.6.3, the three wave speeds are u – c, u and u + c. They 
reflect the combination of two physical processes: 

– the variables that reflect the local state of the flow (the pressure p, the entropy 
s, the density ρ) are transported with the local flow velocity u; 

– the propagation of the pressure waves is “superimposed” onto the transport 
phenomenon. The pressure waves, also called the sound waves, arise from the 
equation of state that provides a relationship between the pressure and the density. 
From the point of view of an observer moving at the fluid velocity u, the pressure 
waves propagate in opposite directions at speeds – c and + c.  

Note that the equation of state between the pressure and the density is essential 
to the hyperbolic character of the Euler equations. Indeed, the inviscid Burgers 
equation seen in section 1.4 is derived on the basis of equations [1.62] and [1.63] 
that do not form a hyperbolic system. In contrast, the continuity and momentum 
equations [2.186] and [2.191] in the Euler equations form a hyperbolic system 
(adding the energy equation [2.196] is not necessary for the system to be 
hyperbolic). Equations [2.186, 2.191] differ from system [1.62–63] only by the 
pressure term p in equation [2.191]. Therefore the presence of the pressure term is 
the necessary condition for the system to be hyperbolic. 

The flow regime may be characterized by the dimensionless Mach number M, 
defined as the ratio of the flow velocity to the speed of sound: 
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c

u
M =  [2.218] 

The Mach number is the equivalent of the Froude number used for open channel 
flows (see section 2.5). Three types of flow regimes are distinguished: 

– If M is smaller than one, the flow is said to be subsonic. The fluid velocity is 
smaller than the speed of sound. The characteristic dx/dt = u – c influences the 
points located upstream, while the characteristics dx/dt = u and dx/dt = u + c travel 
downstream, thus influencing the points located downstream. 

– If M is larger than one, the flow is said to be supersonic. The flow velocity 
being larger than the speed of sound, the three waves travel in the downstream 
direction. A perturbation arising in the flow cannot influence the points located 
upstream of its original location.  

– If M is strictly equal to one, the flow is said to be sonic, or transonic. 

The subsonic, transonic and supersonic flow regimes are illustrated in 
Figure 2.19 for a flow directed from left to right. 

(a) (b) (c) 
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dx/dt = u − c 

dx/dt = u + c 

dx/dt = u 

x 

t 
dx/dt = u + c

dx/dt = u − c

dx/dt = u 

x 

t dx/dt = u − c 

dx/dt = u − c

dx/dt = u 

 

Figure 2.19. Representation of the various possible flow regimes in the phase space: 
 subsonic (a), transonic (b), supersonic (c). Sketches for a positive flow velocity 

2.6.4.2. Treatment of internal points 

This section focuses on the solution of the Euler equations at the internal points 
M of a computational domain that is assumed to extend from x = 0 to x = L 
(Figure 2.20). The feet of the characteristics u + c, u and u + c passing at M are 
denoted by A, B and C respectively. A, B and C may be located on a domain 
boundary as well as be internal points. The flow variables ρ, u and E are assumed to 
be known at A, B and C. 
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Figure 2.20. Calculation of the solution at internal points.  
The domain of dependence may be entirely included in the computational domain (a) or 

include a boundary (b) 

The Riemann invariants [2.224] allow the following relationships to be written: 
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Owing to the presence of the nonlinear pressure terms in equations [2.219] and 
to the dependence of the sound speed c on the pressure, the location of A, B and C 
cannot be determined analytically in the general case. The calculation of an 
analytical solution at M is therefore impossible in most practical applications where 
the initial and boundary conditions are arbitrary functions of space and time. 
However, analytical or semi-analytical solutions can be found for problems based on 
simple initial conditions. Such problems include the Riemann problem covered in 
detail in Chapter 4. The Riemann problem is used in a number of numerical 
techniques for hyperbolic systems of conservation laws. 

Equations [2.219] involve the initial values of p, u and s over the domain of 
dependence of the solution. The solution can be calculated at internal points only if 
the initial condition is known over the entire domain [0, L]. The knowledge of the 
initial condition is a necessary condition. It is not a sufficient condition because the 
knowledge of the solution at the boundaries of the domain is necessary when the 
domain of dependence of the point M includes the boundaries, as illustrated in 
Figure 2.20b. The determination of the solution at the boundaries is detailed in the 
next section.  
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2.6.4.3. Treatment of boundary points 

The number of boundary conditions to be supplied depends on the regime and 
direction of the flow. The following four configurations may occur (Figure 2.21): 
the flow is subsonic, leaving the domain (Figure 2.21a); the flow is subsonic, 
entering the domain (Figure 2.21b); the flow is supersonic, entering the domain 
(Figure 2.21c); or the flow is supersonic, leaving the domain (Figure 2.21d). These 
configurations are examined for a left-hand boundary, the treatment of a right-hand 
boundary being deduced by symmetry. 

– Subsonic flow leaving the domain (Figure 2.1a). The characteristics dx/dt = u – c 
and dx/dt = u leave the domain. The flow at the boundary point M is influenced by 
the Riemann invariants W2 and W1 coming respectively from the feet B and C of the 
characteristics. The missing information on the Riemann invariant W3 must be 
supplied in the form of a boundary condition, that is, a possibly time-dependent 
relationship between the pressure, the flow velocity and the entropy (or the density). 
This leads to the following system of equations: 
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Figure 2.21. Treatment of boundary points (here on the left-hand boundary). 
 Subsonic flow leaving the domain (a), subsonic flow entering the domain (b), supersonic flow 

entering the domain (c), supersonic flow leaving the domain (d) 
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– Subsonic flow entering the domain (Figure 2.21b). The characteristic 
dx/dt = u – c leaves the domain, the remaining two characteristics enter the domain. 
The invariant W3 is known from the initial condition at the foot C of the 
characteristic. The missing information about the remaining two invariants must be 
specified in the form of boundary conditions. This results in the following system:  
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– Supersonic flow entering the domain (Figure 2.21c). The three characteristics 
enter the domain. The behavior of the flow at the boundary is not influenced by the 
flow conditions inside the domain. Three boundary conditions must be specified: 
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– Supersonic flow leaving the domain (Figure 2.21d). The three characteristics 
leave the domain. The flow conditions at M are entirely determined by the flow 
conditions at points A, B and C. System [2.219] is solved exactly as if M was an 
internal point. No boundary condition is required. 

2.6.5. Summary 

The Euler equations form a 3×3 hyperbolic system of conservation laws. The 
governing equations are derived from the assumptions of a compressible flow with 
negligible volume forces, momentum diffusion and heat diffusion.  

The Euler equations verify the definitions of a compressible flow system. The 
speeds of the waves are u – c, u and u + c. The speed of sound c is given by 
equations [2.199] and [2.211]. The existence of a finite sound speed reflects the 
existence of a relationship between the pressure and the density. The hyperbolic 
character of the Euler equations stems directly from this relationship. If the pressure 
was independent of the density, the continuity and the momentum equation would 
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be degraded into a simpler formulation of the type [1.62–63] that leads to the 
inviscid Burgers equation. System [1.62–63] is not hyperbolic. 

The Riemann invariants are defined in differential form by equations [2.209]. 
They can be integrated into equations [2.216]. Their analytical determination is in 
general impossible because the speed of the characteristics depends on the solution 
itself, which makes the analytical determination of the feet of the characteristics very 
difficult, if not impossible. 

The flow regime is characterized by the dimensionless Mach number M, defined 
as in equation [2.218]. The Mach number is the ratio if the flow velocity to the speed 
of sound. The flow is said to be subsonic when M is smaller than one, sonic or 
transonic if M is strictly equal to one, and supersonic when M is larger than one. 

The solution is determined uniquely over the computational domain provided 
that (i) the initial condition is known over all the domain and (ii) a boundary 
condition is supplied for each characteristic that enters the domain. No condition is 
needed at boundaries where the flow is supersonic, leaving the domain. A boundary 
with a supersonic inflow requires three conditions. A boundary where the flow is 
subsonic requires one or two conditions depending on whether the flow leaves or 
enters the domain. 

2.7. Summary of Chapter 2 

2.7.1. What you should remember 

Hyperbolic systems of conservation laws may be expressed in conservation, non-
conservation or characteristic form. They reflect the propagation of several waves at 
different finite speeds. 

Coupling several scalar hyperbolic conservation laws does not necessarily yield 
a hyperbolic system. As shown in section 2.1.2, coupling the scalar hyperbolic 
equations for continuity and momentum conservation does not lead to a hyperbolic 
system. 

A flow system is said to be compressible if its governing equations form a 
hyperbolic system of conservation laws with the additional criteria that (i) the 
system includes at least an equation for the conservation of mass and an equation for 
the conservation of momentum, (ii) the pressure force is related to the mass per unit 
volume via an equation of state. The water hammer equations, the Saint Venant 
equations and the Euler equations describe the behavior of compressible flow 
systems. 
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The wave speeds are the eigenvalues of the Jacobian matrix of the flux vector 
with respect to the conserved variable vector. 

The water hammer equations presented in section 2.4 form a 2×2 hyperbolic 
system of conservation laws. The two waves propagate in opposite directions at the 
speed of sound. The wave speeds are functions of the local characteristics of the 
pipe and do not depend on the local flow conditions. The solution can be determined 
uniquely over a computational domain of finite length provided that the initial 
condition is known over the entire computational domain and that exactly one 
boundary condition is specified at each boundary of the domain. 

The Saint Venant equations dealt with in section 2.5 form a 2×2 hyperbolic 
system of conservation laws where the wave speeds are the sum of the local flow 
velocity and the propagation speed of the waves in still water. The wave speeds are 
not constant in the general case because they depend on the local flow conditions. 
Their sign may change depending on whether the flow is subcritical, critical or 
supercritical. The solution of the Saint Venant equations is determined uniquely over 
a computational domain of finite length provided that the initial condition is known 
everywhere over the domain and that one boundary condition is specified for each 
characteristic that enters the domain at the boundaries.  

The Euler equations dealt with in section 2.6 form a 3×3 hyperbolic system of 
conservation laws, the wave speeds of which are combinations of the local flow 
velocity and the sound speed. The hyperbolic character of the system stems directly 
from the presence of the pressure term in the momentum equation. The wave speeds 
are functions of the local characteristics of the flow. Their sign may change 
depending on the subsonic, sonic or supersonic nature of the flow. The solution of 
the Euler equations is determined uniquely over a computational domain of finite 
length provided that the initial condition is known over the entire domain and that 
one boundary condition is prescribed for each characteristic that enters the domain. 

2.7.2. Application exercises 

2.7.2.1. Exercise 2.1: the water hammer equations 

Consider a horizontal pipe of cross-sectional area A, where the pressure waves 
propagate at the speed c. Friction is assumed to be negligible. The initial flow 
conditions are steady state conditions, with a pressure and velocity uniformly equal 
to p0 and u0 respectively. 

A variation Δp in the pressure appears at the left-hand end of the pipe and 
propagates to the right at the speed c (Figure 2.22). As a consequence, a variation Δu 
appears in the flow velocity. 
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1) Show that Δp and Δu verify the following relationship:  

ucp Δ=Δ ρ  [2.223] 

2) Assume now that the wave propagates from right to left. Show that the 
following relationship holds between Δp and Δu:  

ucp Δ−=Δ ρ  [2.224] 

These equations are called Joukowski’s relationships. 
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Figure 2.22. Propagation of a pressure and velocity variation in a pipe.  
Propagation from left to right (a), from right to left (b) 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 6Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

2.7.2.2. Exercise 2.2: the water hammer equations 

Consider a horizontal pipe of cross-sectional area A, where the speed of the 
pressure waves is piecewise constant. The wave speed to the left of the point x = x0 
is denoted by c1, the wave speed to the right of x = x0 is denoted by c2. The fluid is 
initially at rest, the pressure is uniformly equal to p0. The influence of friction is 
assumed to be negligible. 

At t = 0 the pressure at the left-hand end of the pipe rises instantaneously to the 
constant value p1. The resulting pressure discontinuity propagates to the right at a 
speed c1. 

1) Derive the expression of the discharge Q1 on the left-hand side of the pressure 
discontinuity. 
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2) The pressure wave reaches the abscissa x0 where the speed of sound changes 
to c2. Considering that the pressure is continuous at x = x0, show that the pressure 
and the discharge change to new values p2 and Q2 when the pressure wave reaches 
x = x0. Provide the expression of p2 and Q2 as functions of p0, p1, c1 and c2. 

3) Show that the pressure surge is amplified if c1 < c2 (in other words, 
0102 pppp −>− ). Conversely, show that the pressure surge is damped if 

c1 > c2. Provide a physical interpretation for such a behavior. 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 7Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

2.7.2.3. Exercise 2.3: the water hammer equations 

Consider a horizontal pipe, the cross-sectional area is the following function of 
the longitudinal coordinate x (Figure 2.23): 

– for x < x1 the section is constant, equal to A1; 

– for x > x2 > x1 the section is constant, equal to A2; 

– for x1 < x < x2 the section varies continuously from A1 to A2. 

x
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c

x

x1

x2

p1

p0

 

Figure 2.23. Propagation of a pressure wave in a pipe with variable cross-sectional area 

A2 may be larger or smaller than A1. The wave speed c is the same all along the 
pipe. The effects of friction are assumed to be negligible. The water is initially 
flowing with a uniform pressure p0 and a uniform discharge Q0. At t = 0, the 
pressure at the left-hand end of the pipe changes instantaneously from p0 to p1. The 
resulting pressure discontinuity propagates to the right at the constant wave speed c.  

1) Provide the expression of the discharge Q1 on the left-hand side of the 
pressure wave before the pressure wave reaches the abscissa x1. 
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2) Provide the expression for the pressure p2 and the discharge Q2 when the 
pressure wave reaches the abscissa x2. What is the effect of a narrowing on the 
pressure transient? What is the effect of a widening? 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 8Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

2.7.2.4. Exercise 2.4: the Saint Venant equations 

Consider a channel, the width of which decreases from x1 to x2 and increases 
from x2 to x3 (Figure 2.24). Assuming steady state, negligible friction and bottom 
slope, show that: 

1) if the flow is subcritical (u < c) upstream of the narrowing and supercritical 
(u > c) downstream of it, critical conditions (u = c) can be reached only at the 
narrowest point, x = x2, 

2) if the flow is subcritical everywhere in the channel, the water depth reaches a 
minimum value at x = x2, 

3) if the flow is supercritical everywhere in the channel, the water depth reaches 
a maximum value at x = x2. 
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Figure 2.24. Free surface flow in a channel with a local section narrowing 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 9Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

2.7.2.5. Exercise 2.5: the Saint Venant equations 

Consider a rectangular channel, the width and slope of which are denoted by b 
and S0 respectively. The Strickler coefficient is assumed to be uniform. Steady, 
uniform flow is assumed, that is, the slope of the energy line is assumed to be 
identical to the slope of the bottom of the channel.  

1) Provide the expression of the wave speed λ of the kinematic wave as a 
function of the water depth h. The wide channel approximation (h << b) will be 
assumed in the calculation of the hydraulic radius for the sake of simplicity. 
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2) Provide the expressions of the wave speeds λ(1) and λ(2) in the Saint Venant 
equations as a function of h, assuming that the assumption of a steady, uniform flow 
and the wide channel approximation remain valid (the assumption of a uniform flow 
allows the flow velocity u to be expressed as a function of h). 

3) Compare the two expressions and plot the wave speeds as functions of h for 
the numerical values provided in Table 2.1. Conclude about the validity of the 
kinematic wave approximation in practical applications. 

Symbol Meaning Value 

b Channel width 10 m 

g Gravitational acceleration 9.81 m/s2 

KStr Strickler coefficient 40 

S0 Channel bottom slope 0.1%, 1%, 5% 

Table 2.1. Parameters for Exercise 2.5 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 10Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

2.7.2.6. Exercise 2.6: the Saint Venant equations 

Consider a rectangular channel, the length and bottom slope of which are 
denoted by L and S0 respectively. The elevation of the bottom at the left-hand end of 
the channel is denoted by zL. The water is initially at rest. The elevation of the free 
surface is denoted by ζ0 (Figure 2.25). The effect of friction is neglected and the 
perturbations in the free surface elevation are assumed to be small enough for the 
wave speeds to be considered independent of time. The numerical values of the 
physical parameters can be found in Table 2.2. 
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Figure 2.25. Propagation of a perturbation in a channel with constant bottom slope 
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At t = 0, a perturbation appears at the left-hand end of the channel. The height of 
the perturbation is denoted by ΔzL. 

1) Provide the expressions of the resulting perturbations ΔuL and ΔQL in the 
velocity and in the discharge. 

2) Provide a graphical representation of the characteristic along which the 
perturbation travels in the phase space. Provide the expression for the time TR at 
which the perturbation reaches the right-hand end of the channel. 

3)  Compute the height ΔzR of the perturbation when it reaches the right-hand 
end of the channel, as well as the perturbations ΔuR and ΔQR in the velocity and in 
the discharge. What is your conclusion about the validity of the assumption that the 
wave speed does not depend on time? 

Symbol Meaning Value 

b Channel width 10 m 

g Gravitational acceleration 9.81 m/s2 

L Channel length 100 m 

S0 Channel bottom slope 10% 

zG Elevation of the channel bottom at the left-hand end 0 m 

ΔzG Height of the perturbation at the left-hand end of the channel 0.1 m 

ζ0 Initial elevation of the free surface 1 m 

Table 2.2. Parameters for Exercise 2.6 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 11Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

2.7.2.7. Exercise 2.7: the Euler equations 

A loudspeaker may be schematized as a plane membrane of cross-sectional area 
A subjected to a displacement in the direction x normal to the plane (Figure 2.26).  



Hyperbolic Systems of Conservation Laws      129 
 

A
x

x(t)

 

Figure 2.26. Definition sketch of a loudspeaker membrane 

Both sides of the membrane are in contact with the ambient air (orifices on the 
rear side of the cabinet to allow for such a contact with the back side of the 
membrane). Assume that the movement x(t) of the membrane can be described by a 
periodic, sinusoidal function of time in the form: 

)2cos()( Ntatx π=  [2.225] 

where a is the (constant) amplitude of the movement and N is the (constant) 
frequency of the sound signal. 

1) Assuming a constant speed of sound c, provide the expression for the pressure 
as a function of time on both sides of the membrane.  

2) Determine the average mechanical power needed to move the membrane over 
a period. Show that the power is proportional to the square of the frequency.  

3) Carry out the numerical application for the parameter values in Table 2.3. 




