
Chapter 5 

Multidimensional Hyperbolic Systems 

5.1. Definitions 

5.1.1. Scalar laws 

 A two-dimensional scalar hyperbolic conservation law is a PDE that can be 
written in conservation form as: 
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where F and G are respectively the fluxes in the x- and y-direction and S is the 
source term. As in the one-dimensional case, F and G are functions of U and, 
possibly, of x and t, but do not contain functions of any of the derivatives of U. 

Equation [5.1] can be written in non-conservation form as: 
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where λx and λy are respectively the wave speeds in the x- and y-direction. λx, λy and 
S ' are given by: 
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Equation [5.2] is equivalent to the following characteristic form: 
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In the particular case S ' = 0, equation [5.4] can be integrated into: 
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Equation [5.1] is extended to three dimensions of space as follows: 

S
z
H

y
G

x
F

t
U

=
∂
∂

+
∂
∂

+
∂
∂

+
∂

∂
 [5.6] 

The non-conservation form of equation [5.6] is: 
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where λx, λy, λz and S ' are given by: 
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Equation [5.6] can also be written in characteristic form as: 
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Note that in the particular case S ' = 0, equation [5.9] is integrated into: 
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5.1.2. Two-dimensional hyperbolic systems 

A two-dimensional, m×m system of conservation laws is a system of m PDEs in 
the form [5.1]: 
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where Up, Fp, Gp and Sp (p = 1, …, m) are respectively the conserved variable, the 
flux in the x- and y-direction and the source term for the pth equation. In the general 
case, Fp, Gp and Sp are functions not only of Up but also of the other conserved 
variables U1, …, Um. System [5.11] can be written in vector conservation form as: 
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where U, F, G and S are defined as: 
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Equation [5.12] can be written in non-conservation form as: 
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where Ax, Ay and S' are given by: 
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System [5.11] is said to be hyperbolic if any linear combination of the matrices 
Ax and Ay has m real distinct eigenvalues. This definition is justified and interpreted 
in section 5.3.1.2. 

5.1.3. Three-dimensional hyperbolic systems 

A three-dimensional, m×m system of conservation laws is a system of m PDEs in 
the form [5.6]: 
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where Up, Fp, Gp, Hp and Sp (p = 1, …, m) are the conserved variable, the flux in the 
x-, y- and z-direction respectively, and the source term for the pth equation. In the 
general case, Fp, Gp, Hp and Sp are functions not only of Up but also of the other 
conserved variables U1, …, Um. System [5.16] can be written in vector conservation 
form as: 
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where the vectors U, F, G, H and S are defined as: 
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Equation [5.17] can be written in non-conservation form as: 
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where Ax, Ay, Az and S' are defined as: 
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The three-dimensional system of conservation laws [5.17] is said to be 
hyperbolic if any linear combination of the matrices Ax, Ay and Az has m real, 
distinct eigenvalues. 

5.2. Derivation from conservation principles 

This section focuses on the derivation of two-dimensional systems of 
conservation laws. The generalization to three-dimensional systems is 
straightforward and will not be detailed hereafter. A system of conservation laws 
being formed by a set of scalar laws, only the derivation of scalar laws is dealt with 
hereafter. 

Two-dimensional conservation laws are written using a mass balance over a two-
dimensional control volume of size δx × δy over a time interval δt (Figure 5.1). The 
balance can be written as: 
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where δU(t) is the total amount of U contained in the control volume at the time t, 
δF(x) is the total amount of U that crosses the interface of width δy located at the 
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abscissa x over the time interval δt, δG(y) is the total amount of U that crosses the 
interface of width δx located at the ordinate y over the time interval δt, and δS is the 
total amount of U that appears within the control volume over the time interval δt 
owing to the source term. By definition: 
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Figure 5.1. Definition sketch for the derivation of a two-dimensional,  
scalar conservation law 

When δx, δy and δt tend to zero, the integral of a given function over a surface or 
a segment tends to the product of the point value of the function and the surface or 
the segment length. This leads to the following equivalence for δU: 
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and to the following equivalence for δF and δG:  
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The following equivalence holds for δS: 
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Substituting equations [5.23–25] into equation [5.21] leads to:  
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The differences in equation [5.26] can be expressed as functions of the 
derivatives of U, F and G with respect to time and space using the following 
equivalences: 
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Substituting equations [5.27] into equation [5.26] and simplifying leads to 
equation [5.1]. 

Note that the assumption of a continuous and differentiable solution is not 
necessary in the derivation of the weak form [5.21], while equation [5.1] is based on 
such an assumption. The assumption of a differentiable variable is used in 
equation [5.27] to introduce the derivatives of U, F and G with respect to time and 
space. As in the one-dimensional case, the “strong form” [5.1] is a particular case of 
the weak form [5.21]. As in the one-dimensional case, the weak solutions of 
equation [5.1] may be non-unique. These remarks also hold for three-dimensional 
scalar laws and for hyperbolic systems of conservation laws. 



200     Wave Propagation in Fluids 
 

5.3. Solution properties 

5.3.1. Two-dimensional hyperbolic systems 

5.3.1.1. The bicharacteristic approach 

This section deals with the properties of the solutions of two-dimensional 
hyperbolic systems of conservation laws, that is, systems in the form [5.12]. Several 
approaches may be used to characterize the behavior and properties of the solutions 
of such systems. The bicharacteristic approach, also called the characteristic surface 
approach, is one of them.  

As in the one-dimensional case, the purpose is to find surfaces in the phase space 
(x, y, t), over which certain quantities are invariant (Figure 5.2). The knowledge of 
the solution U at a given point (x0, y0) in the characteristic surface should allow the 
value of U to be computed at any other point that belongs to the surface. Conversely, 
a given characteristic surface cannot provide any information about the value of U at 
a point that does not belong to it. This property is used in the derivation of the 
characteristic form. 

x y

t

x0 y0

t = φ(x, y) 

 

Figure 5.2. Definition sketch for a characteristic surface in the phase space  
for a two-dimensional hyperbolic system 

Assume that U is known at a point (x0, y0, t0) in the phase space. The value of U 
at this point is denoted by U0. U verifies the conservation form [5.12] and its non-
conservation form [5.14]. The equation of the characteristic surface that passes at 
(x0, y0, t0) is sought in the form: 

),( yxt φ=  [5.28] 
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Assume that U is known over all the surface. The value of U at the point 
(x, y, φ(x, y)) is denoted by Us(x, y). The differential dUs is defined as: 
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The differential dφ is given by: 
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Substituting equation [5.29] into equation [5.30] leads to: 
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Hence the derivatives of Us with respect to x and y: 
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The system [5.32] can be rewritten as: 
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Substituting equation [5.33] into the non-conservation form [5.14] leads to: 
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where I is the m×m identity matrix. U may be calculated at any point that does not 
belong to the surface t = φ(x, y) using a first-order expansion: 
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U cannot be calculated at a point that does not belong to the characteristic 
surface if  tU ∂∂ /  cannot be computed. From equation [5.34], such a condition is 
equivalent to stating that the matrix yx yx A/A/I ∂∂−∂∂− φφ  has no inverse, that 

is, if its determinant is equal to zero: 
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Equation [5.36] provides a necessary condition on the x- and y-slopes of the 
surfaces t = φ(x, y). As shown in section 5.4, such surfaces may be approximated 
locally with cones or straight lines in the phase space. 

The equation of the characteristic surfaces allows the generalization of the 
Riemann invariants to be derived along the surfaces. Equation [5.36] means that at 
least one of the rows in the matrix yx yx A/A/I ∂∂−∂∂− φφ  is a linear 

combination of the others. In other words, there exists a row vector v such that: 
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Substituting equation [5.32] into the first equation [5.37] leads to: 
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which leads to a differential relationship between the various components of U. 

5.3.1.2. The secant plane approach 

The classical equations of fluid mechanics are invariant by rotation. The secant 
plane approach consists of finding the characteristic form of the restriction of the 
equations to a plane parallel to the time axis for any value of the angle θ between the 
plane and the x-axis (Figure 5.3). For a given value of θ, the intersection between the 
plane and the characteristic surface gives one or several characteristic curves. As in 
the one-dimensional case, Riemann invariants can be derived along these curves. 
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Figure 5.3. Definition sketch for the secant plane approach. Secant plane and characteristic 
surface (thin lines), characteristic curves in the secant planes (bold lines) 

A local coordinate system (ξ, ψ) is attached to the secant plane (Figure 5.3). The 
following relationships hold between the local and global coordinate systems: 
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The partial derivatives with respect to x and y are related to those with respect to 
ξ and ψ via: 
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Substituting equation [5.40] into equation [5.14] leads to the following equation: 
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Equation [5.41] can be rewritten as a one-dimensional equation in the direction 
of the secant plane: 
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where Aξ and Aψ are defined as 
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If Aξ has m real, distinct eigenvalues for all θ, the system [5.42] is hyperbolic 
regardless of the orientation of the secant plane. The matrix Aξ is a linear 
combination of the matrices Ax and Ay. It spans all the possible linear combinations 
of Ax and Ay as θ spans the interval [0, 2π]. The definition of a hyperbolic system as 
given in section 5.1.2 is justified as follows: system [5.14] is hyperbolic if its one-
dimensional restriction [5.42] to all the possible secant planes is hyperbolic. 

As in the one-dimensional case (see Chapter 2), equation [5.40] allows Riemann 
invariants to be defined in the secant plane. The vector W is defined in differential 
form as: 
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where Kξ is the matrix formed by the eigenvectors of Aξ. Equation [5.42] is 
rewritten as: 
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where Λξ is the diagonal matrix formed with the eigenvalues of Aξ. Equation [5.45] 
is equivalent to: 
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5.3.1.3. Domain of influence, domain of dependence 

A hyperbolic system of conservation laws leads to several characteristic surfaces 
in the general case. The domain of influence of the solution is contained within the 
characteristic surface, the spatial extent of which is the largest. The domain of 
influence includes not only the characteristic surface but also all the points contained 
in the volume delineated by the surface. Such a surface is illustrated by Figure 5.4 in 
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the phase space. For the sake of clarity, only one family of characteristic surfaces is 
sketched in the figure. 

yx 

t
B 

A 

M 

(C’) (C)

 

Figure 5.4. Definition sketch for the domain of influence in the phase space 

When the equations are nonlinear the speeds of the various waves are variable in 
the phase space. This accounts for the curvature of the surfaces issued from A and M 
in Figure 5.4. Consider the characteristic surface issued from A. Point A influences 
all the points M of all the curves (AB) that belong to the surface. Several 
characteristic surfaces are issued from point B (for the sake of clarity, only the 
widest surface is drawn). The intersection between the characteristic surface issued 
from A and the plane (t = tB) is a closed contour denoted by (C) in the figure. The 
intersection between the characteristic surface issued from M and the plane (t = tB) is 
a closed contour denoted by (C’) in the figure. 

When M = A, (C’) = (C). When M = B, (C’) = B. The size of (C’) decreases 
gradually as M spans all the possible locations from A to B along the line (AB). 
Consequently, the domain of influence of A includes the curve (C) and all its inner 
points. Since this is true for any time tB, the domain of influence of the solution 
includes all the points in the volume delineated by the widest of all the existing 
characteristic surfaces issued from A. 

A similar reasoning leads to the conclusion that the domain of dependence of the 
solution at the point B is made of all the points contained in the volume that is 
delimited by the widest of all the characteristic surfaces passing at B (Figure 5.5). 
For the sake of clarity, only the widest characteristic surface (C) is represented in 
Figure 5.5. The characteristic surface is formed by an infinity of generating curves 
(AB), where the points A are points in the plane (t = tA), tA < tB. The intersection 
between the characteristic surface and the plane (t = tA) is a closed curve denoted by 
(C).  
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Figure 5.5. Definition sketch for the domain of dependence in the phase space 

Consider a point M located along the curve (AB). Several characteristic surfaces 
pass at M. Only the widest one is sketched in the figure for the sake of clarity. The 
intersection between the surface and the plane (t = tA) is a closed curve (C’). 
(C’) = (C) for M = B, while (C’) = A for M = A. The curve (C’) spans all the inner 
points of the curve (C) as the point M spans all the possible locations along the 
curve (AB). Consequently, all the points enclosed in (C) influence at least one point 
along the curve (AB), thus influencing indirectly the solution at the point B. Since 
this is true for all possible values of tA, the domain of dependence of the solution at 
B includes the most extended characteristic surface that passes at B as well as all the 
points contained in the volume delineated by the surface. 

5.3.2. Three-dimensional hyperbolic systems 

In the case of a three-dimensional hyperbolic system, the phase space is four-
dimensional. The characteristic surface approach leads us to seek a hyper-surface 
defined as: 

),,( zyxt φ=  [5.47] 

from which the solution cannot be calculated at points that do not belong to the 
surface. Applying the same reasoning as in section 5.3.1.1, the following condition 
is derived for the function φ: 
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−
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− zyx zyx
φφφ

 [5.48] 
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If the secant plane approach is to be used, a local coordinate system (ξ, ψ, ζ) is 
defined, that is obtained from the original coordinate system by applying a first 
rotation of angle θ in the (x, y) plane, followed by a second rotation in the thus 
obtained (ξ, z) plane (Figure 5.6). The two coordinate systems are related by the 
following differentials: 
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⎪
⎬

⎫
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++=
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Figure 5.6. Definition sketch for the local coordinate system in the secant plane  
approach as applied to three-dimensional hyperbolic systems 

Equation [5.19] can be rewritten in the form [5.42] by defining Aξ and Sξ as:  
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The non-conservation form [5.45] and the characteristic form [5.46] are 
applicable in the local coordinate system. 
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5.4. Application: the two-dimensional shallow water equations 

5.4.1. Governing equations 

5.4.1.1. Physical context – assumptions 

The two-dimensional free-surface flow equations, also called two-dimensional 
shallow water equations, can be viewed as a two-dimensional extension of the Saint 
Venant equations. They are often used in floodplain modeling studies or coastal 
modeling, where the classical, one-dimensional Saint Venant equations do not 
suffice to provide a correct description of the flow. This is the case in particular 
when sharp contrasts appear in the velocity field or in the water depths (Figure 5.7). 
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Figure 5.7. Typical situations where the one-dimensional approximation is invalid.  
Plan view (top), cross-sectional view (bottom) 

Figure 5.7 illustrates three typical situations where the one-dimensional approach 
is invalid: 

a) A wide floodplain, where the water depth is small compared to that in the 
main channel (Figure 5.7a), invalidates the one-dimensional assumption [CUN 80]. 
If a uniform water level is assumed over the cross-section, the difference between 
the depth in the main channel (indicated by a dashed line in Figure 5.7a) and the 
floodplain (solid lines) leads to different values for the flow velocity because the 
friction terms are larger in the floodplain than in the main channel. If a uniform 
velocity field is assumed across the entire section, the slope of the energy line 
cannot be the same in the floodplain and in the main channel because the depth is 
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not the same. Therefore the water depth cannot be the same in the main channel and 
in the floodplain. 

b) Presence of a storage pocket in the floodplain (Figure 5.7b). The pocket may 
be filled as a result of water stage increase during a flood. As a result, a swirling 
zone, also called a dead zone, appears in the pocket. The swirl appears as a 
consequence of lateral momentum diffusion due to viscosity and turbulent diffusion. 
The direction of the flow changes along the segment [BC] that is drawn across the 
pocket. Under steady state conditions, or near the peak flow, the amount of water 
stored in the pocket is nearly constant, which means that the average discharge in 
the pocket is zero. In other words, the pocket does not participate in the dynamics of 
the river. Most of the discharge is transferred via the main channel [AB]. Neglecting 
this by assuming a uniform flow velocity over the whole cross-section [AC] may 
lead to tremendous error in the assessment of the friction term and in the 
subsequently calculated discharge and water depth. 

c) Propagation of a flood wave over rapidly varying geometries (Figure 5.7c). A 
transient propagating into a region where the channel geometry varies strongly is 
subjected to two-dimensional effects. As mentioned in sections 5.4.2 and 5.4.3, 
multidimensional waves tend to expand in the radial direction. The elevation of the 
free surface and the velocity profile are therefore not constant along a cross-section 
when a wave enters a sudden widening as sketched in Figure 5.7c. 

The governing equations for two-dimensional free surface flow are derived from 
the following assumptions: 

– Assumption (A1). The water is assumed to be incompressible in the range of 
ordinary pressure and water levels. The density is constant. 

– Assumption (A2). The vertical acceleration of the water molecules is 
negligible compared to the horizontal acceleration. The pressure field is considered 
to be hydrostatic. 

– Assumption (A3). The flow is turbulent. The head loss due to bottom friction is 
proportional to the square of the velocity. 

– Assumption (A4). The diffusion of momentum due to turbulence and viscosity, 
the Coriolis effect and the shear stress due to the wind are neglected.  

Note that Assumption (A4) is introduced only for the sake of simplicity in the 
treatment of the equations, the main purpose being to focus on the hyperbolic part of 
the equations. It should be kept in mind however that momentum diffusion, Coriolis 
forces and wind-induced forces are taken into account in most simulation packages 
nowadays. 
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5.4.1.2. Continuity equation 

The continuity equation is derived as explained in section 5.2. The conserved 
variable is the mass per unit length, the fluxes are the mass discharges per unit width 
in the x- and y-direction and the source term is zero: 

⎪
⎪
⎭
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⎪
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=
=
=
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hvG
huF
hU

ρ
ρ
ρ

 [5.51] 

where h is the water depth, u and v are the x- and y-velocity respectively and ρ is the 
(constant) water density. Substituting definitions [5.51] into equation [5.1] and using 
Assumption (A1) leads to the following PDE: 

0)()( =
∂
∂

+
∂
∂

+
∂
∂

hv
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xt

h
 [5.52] 

5.4.1.3. Equation for the momentum in the x-direction 

The momentum equation is derived using the x-momentum per unit surface as 
the conserved variable: 

huU ρ=  [5.53] 

The flux F in the x-direction results from two terms: (i) the inertial term, that 
accounts for the advection of the conserved variable U at a speed u in the x-
direction, and (ii) the pressure force, expressed as the integral of the pressure 
between the bottom and the free surface (see sections 2.4.2.3 and 2.5.2.3 for the 
details of the proof): 

PhuF += 2ρ  [5.54] 

Note that Assumption (A2) leads to a hydrostatic pressure field, which leads to: 

2
dd)(

2

00

h
ggpP

hh
ρηηρηη === ∫∫  [5.55] 

where g is the gravitational acceleration and η is the distance to the free surface. 
Substituting equation [5.55] into equation [5.54] leads to: 
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The flux G in the y-direction accounts for the transport of the conserved variable 
U = ρhu at a speed v in the y-direction. G is expressed as: 

huvG ρ=  [5.57] 

The source term expresses the influence of two factors, namely the friction force 
Rf,x against the bottom and the projection of the reaction of the bottom onto the x-
axis. According to Assumption (A3), Rf,x is proportional to the square of the 
intensity of the velocity vector; its orientation is opposite to that of the flow. As in 
the Saint Venant equations, the friction force is expressed so as to involve the 
friction slope Sf,x in the x-direction: 

xfxf ghSR ,, ρ=  [5.58] 

The friction slope is estimated using the two-dimensional generalization of the 
Chezy, Strickler or Manning formulations (see equations [2.107–108]) 
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The projection of the reaction of the bottom onto the x-axis is derived exactly as 
in the Saint Venant equations (see section 2.5.2.3, equations [2.112–113]): 
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−=  [5.60] 

Substituting equations [5.53], [5.56–58] and [5.60] into equation [5.1], dividing 
by the density yields the x-momentum equation: 
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5.4.1.4. Equation for the y-momentum 

The y-momentum equation is derived exactly in the same way as the x-
momentum equation. Reproducing the reasoning of section 5.4.1.3 leads to the 
following equation: 
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 [5.62] 

where the friction slope in the y-direction is given by: 
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5.4.1.5. Vector form 

System [5.52], [5.61], [5.62] can be written in vector conservation form as in 
equation [5.12], recalled here: 

S
GFU

=
∂
∂

+
∂
∂

+
∂
∂

yxt
  

with the following definitions for U, F, G and S: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

ghSS

ghSS

ghhv

huv
hv

huv
ghhu

hu

hv
hu
h

yfy

xfx

)(

)(
0

S,

2/

G

,2/F,U

,,0

,,0
22

22

 [5.64] 
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The non-conservation form [5.14], recalled here: 
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is obtained with S = S' and:  
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where c = (gh)1/2 is the speed of the waves in still water.  

In what follows the characteristic surfaces and the Riemann invariants are 
derived using the secant plane approach. The bicharacteristic approach is described 
in detail in [DAU 67] and will not be detailed here. 

5.4.2. The secant plane approach 

5.4.2.1. Characteristic surfaces 

As shown in section 5.3.1.2, the secant plane approach consists of using a 
projection of the equations onto a secant plane so as to obtain a one-dimensional 
equation in the form [5.42], recalled here: 
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where Aξ and Sξ are defined as in equation [5.43], recalled here: 
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Substituting the definitions [5.65] into equation [5.43] yields:  
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The components of the velocity in the ξ- and ψ-direction are introduced: 
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Using definitions [5.67], the expression of Aξ can be simplified into: 
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The eigenvalues λ of Aξ verify: 

0=− IA λξ  [5.69] 

which gives the characteristic equation: 

[ ] 0)()( 22 =−−− cuu ξξ λλ  [5.70] 

Equation [5.70] has the following solutions: 
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The surface associated with the first eigenvalue is defined as: 
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that is: 
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The angle θ between the secant plane and the x-axis is eliminated from 
equation [5.73] by first differentiating equation [5.73] with respect to θ: 
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and raising equations [5.73] and [5.74] to the square. The difference between the 
resulting equations leads to: 
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Equation [5.75] is the equation of a circle in the plane (x, y). The center of the 
circle moves at a speed (u, v) and the radius of the circle grows at a speed c 
(Figure 5.8). Note that this surface is identical to that associated with the eigenvalue 
λ(3) because changing – c into + c leads identically to equation [5.75]. Reasoning 
along the same line, the characteristic surface associated with the eigenvalue λ(2) is 
easily shown to be the straight line along which the center of the circle moves. 
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Figure 5.8. Bicharacteristic surfaces as derived using the secant plane approach.  
Plan view (left), perspective view (right) 
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5.4.2.2. Derivation of the Riemann invariants 

The Riemann invariants are derived using equation [5.42]. The eigenvectors of 
Aξ are: 
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The inverse of the matrix K formed by the eigenvectors is: 
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Consequently, the vector W is defined by the differential: 
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Equation [5.78] is simplified using the reciprocal of equations [5.67]: 
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Substituting equations [5.79] into equation [5.78] and differentiating the equality 
h = c2/g into dh = 2c dc/g leads to: 
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The source term Sξ is given by the second equation [5.43], recalled here: 
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Expanding the terms d(uh), d(vh), using dh = c2/g, substituting equations [5.67] 
and rewriting equations [5.39] as: 
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leads to: 
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where S0,ξ and Sf,ξ are respectively the bottom and friction slope in the ξ-direction, 
and S0,ψ and Sf,ψ are respectively the bottom and friction slope in the ψ-direction. 
Substituting equations [5.80] and [5.82] into equation [5.42] yields the following 
differential relationships: 
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where the components of the source term Sξ are given by: 
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Note that the coordinate system (ξ, ψ) attached to the secant plane coincides with 
the global coordinate system (x, y) for θ = 0. Then uξ and uψ coincide with u and v 
respectively and the first and third Riemann invariants coincide with the classical 
invariants u – 2c and u + 2c derived in section 2.5.3.3 for the one-dimensional flow 
equations in rectangular channels. 

5.4.3. Interpretation – determination of the solution 

5.4.3.1. Domain of influence, domain of dependence 

The secant plane approach leads to the same result as the bicharacteristic 
approach developed in [DAU 67]. There are two characteristic surfaces in the phase 
space. The first surface is generated by a circle, the center of which moves at the 
speed of the flow and the radius of which expands at the propagation speed of the 
waves in still water. The second surface is the line generated by the successive 
locations of the center of the circle. The wave speeds u – c and u + c and the 
Riemann invariants u – 2c and u + 2c are recovered when u is redefined as the speed 
in the local coordinate ξ attached to the secant plane. This is because the shallow 
water equations are invariant by rotation. For the sake of clarity, u, v and c are 
considered constant hereafter. However, the reasoning remains valid for non-
constant flow variables. 

The domain of influence of the solution is located inside the first characteristic 
surface. It includes both the surface and the region of the phase space delimited by 
the surface. Indeed, a characteristic surface may be drawn from each point M located 
on a generating line (AB) of the surface issued from A (Figure 5.9). The segment 
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[MB] belongs to both characteristic surfaces. The intersection of the first surface 
with the plane t = tB is a circle (C), the intersection of the second surface with the 
plane is a circle (C’). The point A influences the point M, thus influencing indirectly 
all the points on the circle (C’). The circle (C’) spans the set of the internal points of 
the circle (C) as the point M spans all the possible locations along the segment [AB]. 
Consequently point A influences not only the points located on (C) but also all its 
internal points. The domain of influence of A includes all the points located inside 
the first characteristic surface. 

t

y x 

M

A 

B 

(C’)

(C)

 

Figure 5.9. Definition sketch for the domain of influence in the phase space 

The domain of dependence is determined by extending the reasoning to negative 
time intervals, that is, by travelling backward in time. Consider the characteristic 
surface passing at B (Figure 5.10). At any point M located on a generating curve, a 
characteristic surface can be drawn that passes at M. The intersection of the 
characteristic surface passing at M with the plane t = tA is a circle denoted by (C’). 
The intersection between the characteristic surface passing at B and the plane t = tA 
is denoted by (C).  

yx 

t

A

B 

M (C’)

(C)

 

Figure 5.10. Definition sketch for the domain of dependence in the phase space 
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The circle (C’) spans the complete set of interior points of the circle (C) as the 
point M spans all the possible locations along the line (AB). Consequently, the point 
B is influenced directly or indirectly by all the points located inside the 
characteristic surface passing at B. 

5.4.3.2. Calculation of the solution 

In spite of their apparent simplicity, the Riemann invariants derived in 
section 5.4.2 cannot be used to compute analytical solutions in a straightforward 
manner. Indeed, equation [5.84] includes derivatives in the direction normal to the 
secant plane. In the case of a genuinely two-dimensional flow field, such derivatives 
are non-zero and no analytical expression can be found for them, unless the flow 
configuration is very simple (e.g. radial symmetry). The characteristic form must 
then be approximated. Two possible approaches have been reported in the literature: 

1) The first approach consists of selecting three bicharacteristic lines [A1M], 
[A2M] and [A3M] passing at the point M of interest and writing the characteristic 
relationships [5.83–84] along them. The transverse derivatives are estimated from 
the known solution at points A1, A2 and A3 (see Figure 5.11). The three 
characteristic relationships allow the three flow variables to be determined uniquely 
at M. The approach was applied to gas dynamics and magnetohydrodynamics by 
Sauerwein [SAU 66, SAU 67] and to the two-dimensional shallow water equations 
by Daubert and Graffe [DAU 67], Katopodes [KAT 77], Katopodes and 
Strelkoff [KAT 79] and Gerritsen [GER 82]. The question remains however of the 
optimal choice of points A1, A2 and A3. In fact, each particular choice for these 
points leads to a different solution. 
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Figure 5.11. Calculating the solution at point M using three bicharacteristics 

2) In another approach, proposed by the author [GUI 03b], the proper selection 
of the points A1, A2 and A3 is less crucial because the characteristic relationships are 
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integrated over the entire domain of dependence. Integrating equations [5.83–84] 
over the three surfaces [A1A2M], [A2A3M] and [A3A1M] allows the three 
independent flow variables to be determined uniquely at M, while taking into 
account the details of the variations of the initial condition along the curve 
(A1A2A3). 

5.5. Summary 

5.5.1. What you should remember 

An m×m multidimensional system of conservation laws is said to be hyperbolic 
if any linear combination of the Jacobian matrices of the fluxes with respect to the 
conserved variable has m real, distinct eigenvalues. 

The notion of characteristic curve defined for one-dimensional problems may be 
extended to characteristic surfaces for two-dimensional problems and to 
characteristic volumes for three-dimensional problems. 

The characteristic surfaces may be derived using the bicharacteristic approach 
presented in section 5.3.1.1 and the secant plane approach presented in 
section 5.3.1.2 indifferently.  

In the case of a two-dimensional problem the characteristic surfaces are conical 
envelopes or curved lines in the phase space (x, y, t).  

5.5.2. Application exercises 

5.5.2.1. Exercise 5.1: the Doppler effect 

Consider a mobile sound source that moves at a speed u smaller than the speed 
of sound. The frequency N of the sound is constant. Using the secant plane 
approach, show that the frequency N ' of the sound as heard by an immobile observer 
is given by: 

)cos1(
'

θM
N

N
−

=  [5.85] 

where M is the Mach number and θ is the angle between the velocity vector of the 
source and the direction of the straight line drawn from the observer to the source 
(Figure 5.12). 

This phenomenon is known as the Doppler effect. 
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Indications and searching tips for the solution of this exercise can be found at the 
following URL: 19Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

S u 
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θ 

 

Figure 5.12. Mobile sound source 

5.5.2.2. Exercise 5.2: visual assessment of the Mach number 

Airplanes entering high moisture regions at supersonic speeds sometimes 
generate condensation patterns that develop next to the convex part of the wings and 
the hull. A condensation pattern indicates a sudden pressure drop, which is an 
indication that a shock wave is present (Figure 5.13). 

u 

θ 

Shock 

 

Figure 5.13. Condensation zone developing along the shock wave  
for a plane in supersonic flight 

Show that the angle between the shock and the velocity vector of the airplane is 
given by: 

θsin
1

=M  [5.86] 

which allows the Mach number M to be determined visually. 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 20Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

 


