
Chapter 6 

Finite Difference Methods for  
Hyperbolic Systems 

6.1. Discretization of time and space 

6.1.1. Discretization for one-dimensional problems 

Hyperbolic systems of conservation laws can seldom be solved analytically 
when real-world problems are dealt with. This is because the initial and boundary 
conditions and the geometry of most real-world problems cannot be described 
analytically in a simple way. Most engineering applications therefore involve the 
solution of approximations of the governing equations. The solution of the 
approximate equations, that is easier to derive, can be expected to be “reasonably” 
close to that of the real equations provided that a number of criteria are satisfied (see 
Appendix B for basic notions in numerical analysis). The operation by which the 
original equations are approximated is called discretization. In the finite difference 
approach, presented in this chapter, time and space are treated identically in the 
discretization process. Other approaches exist, as shown in Chapters 7 and 8. 

The discretization process consists of transforming the originally continuous 
time and space coordinates into discrete variables (see Figure 6.1). A set of points 
(called the computational points) is defined in time and space by the modeler. The 
solution is calculated at these points. The governing equations are approximated 
using the differences between the known and unknown values of the computational 
solution at the predefined points. Denoting by n

iU  the solution at the computational 
point xi at the computational time tn, the following difference may be seen as a 
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“good” approximation of the derivative xU ∂∂ /  over the interval [xi, xi+1] at the time 
tn. 
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Equation [6.1] is not the only possible approximation for the derivative xU ∂∂ / . 
Many alternative formulations may be proposed. The accuracy of the numerical 
solution depends on the accuracy with which the governing equations are 
approximated (see section B.1 in Appendix B). Approximation methods where the 
differences between the point values are used to estimate the derivatives are referred 
to as finite difference methods. 
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Figure 6.1. Discretization of time and space in the one-dimensional case 

In what follows, the distance between the points i and i + 1 is denoted by Δxi+1/2. 
It is often referred to as the grid spacing, or cell width. The difference between two 
successive computational times tn and tn+1, also called the computational time step, is 
usually denoted by Δt. The time tn is usually referred to as “the time level n”. 

6.1.2. Multidimensional discretization 

Several options are available for the discretization of multidimensional 
equations. Two main types of grid are distinguished (Figure 6.2): 

1) Structured grids. The computational points of a structured grid are arranged 
along rows and columns. A computational point is located using two indices (i, j) in 
a two-dimensional space. The index i generally indicates the location of the point 
along the x-coordinate, while the index j indicates its location along the y-
coordinate. A computational point is located using a triple index (i, j, k) in a three-
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dimensional space. The value of the variable U at the point (i, j, k) at the time level n 
is usually denoted by n

kjiU ,, . The family of structured grid is divided into two 

subcategories: 

1.1) Cartesian, or rectangular grids. The computational points form the 
intersection between two families of orthogonal, straight lines (Figure 6.2a). 

1.2) Curvilinear grids. The computational points are located at the intersections 
between two families of curves that do not necessarily intersect at straight angles 
(Figure 6.2b). While curvilinear grids allow real-world geometries to be described 
more accurately, they require more work from the modeler in that it is the modeler’s 
responsibility to define the curvature of the lines and the locations at which the 
computational points are to be distributed along the lines.  

2) Unstructured grids. Such grids do not use the arrangement in lines and 
columns used by structured grids. The computational points are placed and linked to 
each other at the modeler’s convenience, mostly based on the geometrical 
constraints imposed by the problem to be solved (Figure 6.2c). 

x 

y

xi xi+1 

yj+1

yj

(i+1, j+1)(i, j+1) 

(i, j) (i+1, j) 

(a) 

x 

y
(i+1, j+1) 

(i, j+1)

(i, j) 
(i+1, j) 

(b) 

x 

y
p1 

(c) 

p2 

p3 

 

Figure 6.2. The various types of grid: structured, Cartesian (a), structured, curvilinear (b), 
unstructured (c). Sketch for a two-dimensional problem 
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6.1.3. Explicit schemes, implicit schemes 

All scalar hyperbolic laws and hyperbolic systems of conservation laws contain 
derivatives with respect to time and space and a source term. The time derivative is 
that of the conserved variable, while the space derivative is that of the flux or the 
conserved variable, depending on whether the conservation form or the non-
conservation form is being discretized.  

When the space derivative and the source term are discretized using only the 
known values of U at the time level n, the discretization is said to be explicit 
because the unknown solution at the time level n + 1 can be computed directly from 
the known values at the time level n. 

When the space derivative and/or the source term are discretized using the 
unknown values of U at the time level n + 1, the estimate of U n+1 is based on 
expressions that involve U n+1 itself. In such a case, the discretization is said to be 
implicit because U n+1 is defined as a function of itself.  

Explicit schemes are easily programmed and maintained. However, they are 
subjected to a so-called stability constraint that yields a restriction in the range of 
permissible computational time steps (see section B.2 in Appendix B). The 
computational time step must remain smaller than a threshold value Δtmax above 
which the numerical solution becomes unstable. Explicit methods usually lead to 
small computational time steps, thus increasing the number of calculations and 
leading to time-consuming simulations.  

As shown in section B.2 of Appendix B, the so-called Courant number Cr (also 
called CFL number) is a key factor to the stability of explicit numerical methods. 
The Courant number expresses the ratio of the area covered by a wave of speed λ 
during the interval Δt to the total area of the grid cells. Most explicit methods are 
stable only when the absolute value of the Courant number is smaller than one.  

Implicit schemes are not subjected to stability constraints. Most of them are 
indeed unconditionally stable, regardless of the Courant number. This makes them 
popular for industrial use because they allow larger computational time steps to be 
used, thus restricting the number of time steps and leading to faster applications. It 
should be remembered however that a fast method is not necessarily an accurate 
one.  
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6.2. The method of characteristics (MOC) 

6.2.1. MOC for scalar hyperbolic laws 

6.2.1.1. Principle of the method 

The conservation form [1.1] of a scalar hyperbolic conservation law is recalled: 
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As shown in Chapter 1, equation [1.1] may be rewritten in the characteristic form 
[1.27], recalled here:  
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Equation [1.27] is solved numerically by discretizing time and space as 
illustrated in Figure 6.3. The calculation of the unknown value 1+n

iU  at the time 
level n + 1 is detailed hereafter. 
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Figure 6.3. Definition sketch for the MOC 
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The principle of the MOC is the following. Assume first that the shape of the 
characteristic passing at (xi, tn+1) can be determined in the phase space. The 
intersection between the characteristic and the grid lines, also called the foot of the 
characteristic, is denoted by A. The various possible locations of the foot of the 
characteristic are illustrated in Figure 6.3. Integrating the characteristic form [1.27] 
between A and the point (xi, tn+1) leads to: 
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The unknown value 1+n
iU  can be calculated provided that the following two 

terms are estimated: (i) the value UA of U at the foot of the characteristic and (ii) the 
integral of the source term between A and M. Classically, polynomial interpolation 
formulae are used. The most widely used are the first- and second-order and the 
Hermite polynomial-based interpolation introduced by Holly and Preissmann 
[HOL 77]. Interpolation issues are dealt with in the next three sections. 

6.2.1.2. Interpolation at the foot of the characteristic: first-order formula 

The value UA of U at the foot of the characteristic is interpolated from the known 
values at the computational points. Consider first the case of the linear, or first-order 
interpolation, where U is estimated using the equation of a straight line. Two cases 
may be distinguished (Figure 6.4). 

1) Point A is located between the points (i–1, n) and (i, n). The following first-
order interpolation formula is used: 
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Defining the cell size and the average wave speed as: 
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where 2/1+n
iλ  represents the average wave speed of the characteristic that passes at 

the point (i, n + 1) between the time levels n and n + 1. The expression [6.5] is 
simplified by introducing the Courant number, that represents the fraction of the cell 
covered by the characteristic over the time step Δt: 
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Figure 6.4. Interpolation at the foot of the characteristic. Sketch in the physical space (top) 
and in the phase space (bottom) for a first-order linear interpolation 

Note that Cr is between 0 and 1 when A is located between the points (i – 1, n) 
and (i, n). Substituting definition [6.6] into equation [6.5] leads to the following 
expression: 

1Cr0,)Cr1(Cr 1A ≤≤−+= −
n
i

n
i UUU  [6.7] 

2) The point A is located between the points (i, n) and (i + 1, n). It is easy to 
check that the following formula applies: 
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where the Courant number Cr is defined as: 
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3) Point A is located between (i – 1, n) and (i – 1, n + 1). By definition, the 
Courant number is larger than unity. The following interpolation is used: 
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By definition of the average wave speed and the Courant number, we have: 
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Substituting equations [6.11] into equation [6.10] leads to: 
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4) The point A is located between (i + 1, n) and (i + 1, n + 1). By definition, the 
Courant number is smaller than – 1. The following interpolation formula is used: 
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The formulae above can be summarized as follows: 
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where the Courant number is defined as: 
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Note that the first and fourth formulae [6.14] are implicit because they involve 
the unknown values 1

1
+

−
n
iU  and 1

1
+

+
n
iU . In contrast, the second and third formulae 

[6.14] are explicit because they allow 1+n
iU  to be calculated directly from the 

known values at the time level n.  

The calculation of the Courant number Cr requires that 2/1+n
iλ  be estimated. A 

number of possible formulae are proposed hereafter (the list is non-exhaustive): 
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The last two formulae are said to be implicit because they involve the unknown 
values of λ at the time level n + 1. Since λ is a function of U in the general case, the 
determination of 2/1+n

iλ  in an implicit method is iterative. 

Note that when the Courant number is an integer, the foot of the characteristic is 
located at a grid point. The interpolation formulae are exact and the numerical 
solution is the analytical solution.  Also note that formulae [6.14] are defined over 
different intervals that coincide only at Cr = – 1, Cr = 0 and Cr = + 1. Both the first 
and second formula [6.14] give the analytical solution n

iU 1−  when Cr tends to 1 by a 
lower or upper value; both the second and third formulae [6.14] yield the analytical 
solution n

iU  when the Courant number tends to zero; eventually, both the third and 

fourth formulae [6.14] give the solution n
iU 1+  when the Courant number tends to – 1 

by a lower or upper value. This continuous behavior of the interpolation formula is 
referred to as a “continuous switch” in the literature. 
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The linear interpolation procedures introduce a numerical effect known as 
“numerical diffusion” (see section B.1.3). Numerical diffusion may be eliminated 
using higher-order interpolations that use more computational points. A second-
order interpolation technique is presented in the next section. 

6.2.1.3. Interpolation at the foot of the characteristic: second-order formula 

This section deals with a second-order interpolation method for UA (Figure 6.5): 
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Equation [6.17] is valid when point A is located between the points (i – 1, n) and 
(i + 1, n). It is applicable for Courant numbers ranging from – 1 to + 1. The 
coefficients ai and bi are determined by stating that function [6.17] should coincide 
with the value n

iU 1−  for xA = xi–1 and with n
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Figure 6.5. Second-order interpolation. Sketch in the physical space (top)  
and in the phase space (bottom) 
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Solving equations [6.18] for ai and bi leads to: 
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When the grid is regular, Δxi–1/2 = Δxi+1/2 = Δx and equations [6.19] simplify into: 
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Substituting equation [6.20] into equation [6.17], using the relationship xA = xi –
 Cr Δx leads to: 
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Note that for Cr = – 1, Cr = 0 or Cr = + 1, the foot of the characteristic coincides 
with a grid point and the interpolation is exact. The analytical solution is obtained. 

6.2.1.4. Estimation of the source term 

The integral of the source term must be estimated in equation [6.2]. Four options 
are proposed hereafter: 
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The first two options are explicit because they use only known values of U, 
whether they are point values at the computational points or interpolated values. The 
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remaining two expressions are implicit because they require the knowledge of the 
unknown value 1+n

iU . The solution is determined iteratively in the general case. 

6.2.1.5. Treatment of boundary conditions 

Assume first that the wave speed 2/1
1

+nλ at the first computational point (i.e. at 
the left-hand boundary of the domain) is positive. Then the characteristic dx/dt = λ 
enters the computational domain and the value of U at i = 1 cannot be computed 
from the internal points. It must be supplied in the form of a boundary condition (see 
Figure 6.6). Applying equations [6.14] with i = 1 in the case of a positive Courant 
number gives: 
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Conversely, if the wave speed 2/1+n
Mλ  at the right-hand boundary of the 

computational domain is negative, the value of U at i = M must be supplied in the 
form of a boundary condition. Equations [6.14] lead to: 
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Figure 6.6. Treatment of boundary conditions. The boundary is indicated by a bold line 
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6.2.2. The MOC for hyperbolic systems of conservation laws 

6.2.2.1. Principle of the method 

The generalization of the MOC to hyperbolic systems of conservation laws is 
best known as the Courant-Isaacson-Rees (CIR) scheme [COU 52]. The CIR scheme 
can be viewed as a direct application of the scalar MOC to the Riemann invariants 
(Figure 6.7). The purpose is to solve the conservation form [2.2], recalled hereafter: 
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As shown in Chapter 2, equation [2.2] can be written in characteristic form as in 
equation [2.25], recalled hereafter: 
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where S" = K–1S' and the wave speeds λ(p) are the eigenvalues of the Jacobian matrix 
A of F with respect to U and K is the matrix formed by the eigenvectors of A (see 
section 2.1.3 for the details of the developments). 
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Figure 6.7. Interpolation at the feet of the characteristics. Definition sketch in the physical 
space (top) and in the phase space (bottom) for a linear interpolation 



236     Wave Propagation in Fluids 

The foot of the pth characteristic passing at the point (i, n + 1) is denoted by A(p) 
(Figure 6.7). Integrating relationship [2.25] along the characteristic line A(p)M leads 
to: 
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Note that this formulation is identical to equation [6.2] for the scalar problem. 
Two options are available for the calculation of the pth Riemann invariant. 

1) Interpolate Wp at the foot of the pth characteristic from the known values at 
the computational points: 
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where n
ipW )(  is the value of the pth Riemann invariant calculated from the value of 

n
iU  and Cr(p) is the Courant number for the pth wave: 
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2) Calculate Wp from the interpolated value of U at the foot of the characteristic: 

)U()( )()( AA pp pp WW =  [6.28] 



Finite Difference Methods    237 

where )(AU p  is the estimate of U at the foot A(p) of the pth characteristic: 
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When the governing equations are linear (as is the case with the water hammer 
equations), the Riemann invariants are linear combinations of the components of U 
and both options give the same result. 

The wave speeds and the source term may be estimated using any of the 
formulae [6.16] and [6.22]. The number of boundary conditions to be provided at 
each boundary of the domain is equal to the number of characteristics that enter the 
domain. 

The practical implementation of the CIR scheme for Courant numbers smaller 
than one is straightforward. Indeed, the case |Cr| ≤ 1 uses only the second and third 
formulae [6.26] or [6.29], where only known values of U are required for the 
calculation of the solution. In contrast, when the absolute value of the Courant 
number is larger than one, an implicit formulation must be used, leading to a 
dependence between the unknown value of U at two neighboring points. The 
nonlinear dependence between the wave speed and the conserved variable U makes 
the procedure time-consuming in the general case. 

6.2.2.2. Application example: the water hammer equations 

This section deals with the application of the CIR scheme to the water hammer 
equations. Expression [2.79] is recalled: 
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For the sake of clarity, the source term is assumed to be zero hereafter. 
Equations [2.79] simplify into equations [2.83] where S" is set to zero: 
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Integrating equations [6.30] along the characteristics dx/dt = – c and dx/dt = + c 
yields the following algebraic system: 
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where A(1) and A(2) are the feet of the first and second characteristic passing at 
(i, n + 1) respectively (Figure 6.8). 
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Figure 6.8. Application of the CIR scheme to the water hammer equations 

Solving equations [6.31] for p and Q leads to: 
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The value of p and Q at the feet of the characteristics may be interpolated 
indifferently from U and W. It is easy to check that the linear dependence between U 
and W leads to identical formulations for [6.26] and [6.29]. In the case of a regular 
cell size Δx, the following formula is obtained: 
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Substituting [6.33] into [6.32], noting that Cr(2) = – Cr(1) = Cr, yields 
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where Cr is given by 

x
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Many software packages for water hammer simulation use the fact that the speed 
of sound c is constant in pipes with homogenous material and geometrical 
properties. The time step and/or cell size are adjusted in such a way that the Courant 
number is equal to one over the computational domain. The need for an interpolation 
procedure is then eliminated and the solution is exact. Equations [6.34] simplify 
into: 
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The reduced number of computations makes the particular application [6.36] 
approximately three times as fast as the general form [6.34]. 
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6.2.3. Application examples 

6.2.3.1. The linear advection equation 

A major drawback of the MOC is that the equations are not solved in 
conservation form. Due to this, mass and/or momentum conservation may not 
always be guaranteed. The non-conservation form [1.48] of the linear advection 
equation, recalled hereafter, is solved: 
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The flow velocity u is assumed to be uniform over the computational domain. 
The parameters of the problem are given in Table 6.1. Such parameters are typical 
for the advection of a contaminant in a river. The initial condition is a top hat 
function, the width of which is 5 km. The calculation is carried out over an irregular 
computational grid. The cell size is 1 km over the entire domain, except 
between x = 10 km and x = 14 km, where Δx = 4 km. Since u is uniform, the Courant 
number is not. It is equal to one all over the domain, except between x = 10 km and 
x = 14 km, where it is equal to 1/4. 

Symbol Meaning Value 
A River cross-sectional area 1,000 m2 

0
iC  Initial concentration 1 g/l for 1 km ≤ x ≤ 5 km, 

0 g/l otherwise 
CG Concentration at the left-hand boundary 0 g/l 
L Length of the domain 30 km 
u Flow velocity 1 km/hr 
Δt Computational time step 1 h 
Δx Cell size 4 km for 10 km ≤ x ≤14 km,  

1 km otherwise 

Table 6.1. Physical and numerical parameters for the solution of the advection  
equation over an irregular grid 

The numerical solution computed by the first-order MOC is compared to the 
analytical solution in Figure 6.9. The concentration signal reaches the zone Δx = 4 
km at t = 4 hr. Up to this time, the numerical solution is identical to the analytical 
solution because the concentration signal is transported with a Courant number 
equal to one. At t = 5 hr, the signal enters the zone Δx = 4 km. Owing to the 
interpolation between x11 = 10 km and x12 = 14 km, the solution is smoothed out and 
spreads artificially over the cell. Owing to the interpolation between the zero value 
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at x11 and the non-zero value at x12, the concentration at x = x12 does not return to 
zero, even after an infinite time. 
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Figure 6.9. Advection of a square concentration signal. Comparison between the analytical 
solution and the numerical solution obtained using the first-order MOC on an irregular grid 

The total mass of contaminant in the computational domain is plotted as a 
function of time in Figure 6.10. The mass is calculated as the integral of the 
concentration profile: 
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The total mass of contaminant is not constant, which indicates that the 
conservation properties of the numerical solution are violated. The artificial 
spreading of the contaminant front at t = 5 hr results in a simultaneous increase in 
the total mass of contaminant. When the contaminant leaves the zone Δx = 4 km, the 
total mass suddenly decreases below its initial value. The initial value is recovered 
asymptotically as the contaminant travels downstream. However, it is never totally 
recovered, even for infinite times. 

0

5

0 5 10 15

t (h)

MT

(103kg)

 

Figure 6.10. Advection of a square concentration signal. Total mass of contaminant in the 
domain as computed by the first-order MOC on an irregular grid 

6.2.3.2. The inviscid Burgers equation 

The characteristic form [1.68] of the inviscid Burgers equation is solved. A 
Riemann problem, the parameters of which are given in Table 6.2, is solved using 
the first-order MOC. 

Symbol Meaning Value 
L Length of the domain 20 m 

0
iu  Initial speed 1 m/s for x ≤ 5 m,    

0 m/s otherwise 
Δt Computational time step 1 s 
Δx Cell size 1 m 

Table 6.2. Physical and numerical parameters for the solution of the  
inviscid Burgers equation using the first-order MOC 

The following options are used for the estimate of λ: 
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The numerical solution at t = 20 s is compared to the analytical solution for each 
of the three options in Figure 6.11. Note that the analytical solution is a shock that 
propagates at a speed given by the average value of the speeds on both sides of the 
discontinuity. 

Option 1 gives a zero value for λ. The shock does not move.  

Option 2 is based on the analytical formula for the shock speed. The numerical 
solution moves at the right speed, but the front is subjected to numerical diffusion. 
This is because the front moves at a speed cs = 0.5 m/s, which corresponds to 
Cr = 1/2. As shown in section B.2.5, the phase portrait of the first-order MOC shows 
that numerical diffusion is maximum for Cr = 1/2, hence the smoothing in the 
neighborhood of the front. 

Option 3 leads to an underestimated shock speed. The numerical profile is slower 
than the analytical profile.  
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Figure 6.11. Analytical solution and numerical profiles computed by the  
first-order MOC for the three calculation options [6.38] 

As shown by the two examples above, the MOC may lead to conservation 
problems when the Courant number is not uniform over the computational domain. 
This is because the MOC does not solve the governing equations in conservation 
form. This is one of the reasons why the method is seldom used in modern 
computational software packages (with the exception of the water hammer equations 
that are based on a constant wave speed). 
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6.3. Upwind schemes for scalar laws 

6.3.1. The explicit upwind scheme (non-conservative version) 

Upwind schemes aim to solve the conservation form [1.1] recalled here: 

S
x
F

t
U

=
∂
∂

+
∂

∂
 

The derivative of U with respect to time is estimated as: 
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 [6.39] 

The scheme is said to be “upwind” because the derivative of F with respect to 
space is estimated using the computational point located upstream of the point i 
(Figure 6.12). 
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Figure 6.12. Definition sketch for the explicit upwind scheme. Sketch for a positive wave 
speed (left), for a negative wave speed (right) 

In the explicit approach, the flux F and the source term S are estimated using the 
known values of U: 
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where )( n
i

n
i UFF =  and )( n

i
n
i USS = . The numerical solution is stable if the 

absolute value of the Courant number is smaller than or equal to one. The Courant 
number is defined as in equation [6.15], recalled hereafter: 
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Substituting approximations [6.39−40] into equation [1.1] leads to: 
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In the particular case of the linear advection equation, F = uC. It is easy to check 
that equations [6.41] simplify into the same expression as the second and third 
equations [6.14]: 
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In other words, the explicit upwind scheme is equivalent to the MOC when the 
absolute value of the Courant number is smaller than one. It is stable only when the 
Courant number lies within the range [– 1, + 1]. 

6.3.2. The implicit upwind scheme (non-conservative version) 

In this scheme the time derivative is estimated as in equation [6.39], recalled 
here: 
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while the space derivative of the flux is estimated using the unknown values at the 
time level n + 1:  
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 [6.43] 
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Figure 6.13. Definition sketch for the implicit upwind scheme. Sketch for a positive  
wave speed (left), for a negative wave speed (right) 

Substituting approximations [6.39] and [6.43] into equation [1.1] leads to: 
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Applying the implicit scheme to the particular case of the advection equation 
leads to the following formula that is not equivalent to the MOC: 
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A consistency analysis (see section B.1) shows that the implicit upwind scheme 
is more diffusive than the first-order MOC for Courant numbers larger than one. The 
numerical solution is stable for all values of the Courant number. 

6.3.3. Conservative versions of the implicit upwind scheme 

The explicit upwind scheme presented in section 6.3.1 leads to the same 
formulation as the first-order MOC when applied to the advection equation. 
Consequently, conservation is not guaranteed when the scheme is applied with 
irregular grids. Conservation can be restored via a minor modification in the 
estimate of the time derivative. This is done by attaching a control volume to each 
computational point. The control volume is delineated by interfaces located at mid-
distance between two adjacent computational points (Figure 6.14).  
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Figure 6.14. Defining control volumes for the upwind scheme 

A mass balance over the control volume attached to the point i gives: 
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where 2/1
2/1

+
−
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iF  and 2/1
2/1

+
+
n

iF  are the average value of the fluxes across the left- and 

right-hand interface of the control volume respectively and 2/1
2/1

+
+
n
iS  is the average 

value of the source term over the control volume. The size of the control volume is 
given by 2/)( 2/12/1 +− Δ+Δ=Δ iii xxx . Note that in equation [6.46] the quantity n

iU  
is not a point value but the average value of U over the control volume at the time 
level n. This approach is to be put in parallel with the finite volume approach 
described in Chapter 7. 

In the conservative upwind approach, the flux is estimated at a given interface 
using the variable in the cell located immediately upstream of the interface. For 
instance, the flux at the interface i – 1/2 is computed using the cell i – 1 if the wave 
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speed is positive. It is computed using the cell i if the wave speed is negative. In the 
same way, the flux at the interface i + 1/2 is computed using the cell i or i + 1 for a 
positive and negative wave speed respectively. These formulations can be 
summarized as follows: 
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Substituting equations [6.47] into equation [6.46] leads to: 
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In the implicit version of the scheme, the flux and the source term are calculated 
using the unknown values at the time level n + 1: 
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The total amount of U contained within the control volume is conserved. Indeed, 
the mass is defined as: 

∑
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Δ=
M
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n
ii
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T UxM
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 [6.50] 

The flux 2/1
2/1

+
+
n

iF  leaving the control volume i across the interface i + 1/2 enters 
the control volume i + 1/2 through the same interface. Therefore, no mass is gained 
or lost during the time step. 

This conservative version of the finite difference approach is sometimes referred 
to as “finite differences with control volume”.  
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6.3.4. Application examples 

The conservative scheme is applied to the same test cases as in section 6.2.3, 
with the same test parameters (Tables 6.1 and 6.2). 

The results of the first test, which deals with the linear advection of a 
concentration profile, are illustrated by Figures 6.15–16. 
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Figure 6.15. Pure advection of a square concentration signal. Analytical solution and 
numerical solution calculated by the explicit upwind scheme on an irregular grid 

In contrast with the first-order MOC, the integral of the numerical profile 
obtained using the conservative upwind scheme is the same at all times. This is 
confirmed by Figure 6.16, which shows the variation in the total mass of 
contaminant in the domain. The mass is constant in the limit of the precision of the 
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computer. It must be stressed however that the conservative upwind scheme remains 
diffusive, which leads to an underestimation of the peak concentration compared to 
the analytical solution. 
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Figure 6.16. Pure advection of a square concentration signal calculated by the conservative, 
explicit upwind scheme. Total mass of contaminant in the domain as a function of time 

The second test, that deals with a Riemann problem for the inviscid Burgers 
equation, is applied to the conservation form [1.69]. In contrast with the application 
to the first-order MOC in section 6.2.3, the three options [6.38] give the same result. 
Conservation being ensured intrinsically by the scheme, the front propagates at the 
correct speed (Figure 6.17). Nevertheless, the scheme remains diffusive and the 
shape of the front is altered by numerical smoothing. 
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Figure 6.17. Analytical solution and numerical profiles computed by the conservative, 
explicit upwind scheme for the three calculation options [6.38] 

6.4. The Preissmann scheme 

6.4.1. Formulation 

The Preissmann scheme [PRE 61a-c] is a conservative scheme. It is used in a 
number of commercially available packages for the simulation of open channel 
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hydraulics such as flows in rivers, urban drainage and sewer systems. The 
discretization follows the same rule for a hyperbolic system as for a scalar, 
conservation law. The scheme uses the four computational points that define the 
corners of a “box” in the phase space (Figure 6.18), hence the name of “box 
scheme”. 
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Figure 6.18. Definition sketch for the control volume in the Preissmann scheme 

A balance over the control volume materialized by the gray-shaded area in 
Figure 6.18 gives: 
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where n
i 2/1U +  is the average value of U over the segment [xi, xi+1] at the time level n, 

2/1F +n
i  is the average of the flux F at the point i over the time step and 2/1

2/1S +
+

n
i  is the 

average value of the source term S over the segment [xi, xi+1] between the time levels 
n and n + 1. The following estimates are used for n

i 2/1U +  and 2/1F +n
i : 
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where θ and ψ are parameters ranging from 0 to 1. θ is usually called the time-
centering, or implicitation, parameter. Most practical implementations of the scheme 
use the value ψ = 1/2. The same weight is then given to the waves with positive and 
negative wave speeds.  
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In this case the numerical solution is unconditionally stable for θ ≥ 1/2, while it 
is unconditionally unstable for θ < 1/2. Substituting equations [6.52] into 
equation [6.51] gives: 
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Multiplying by Δt and rearranging leads to: 
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Equation [6.54] is a vector equation, that is, a system of m scalar equations. In 
the general case, the nonlinearity of F with respect to U makes the solution of the 
system [6.54] computationally intensive. In a number of approaches [CUN 80], 
solving a linearized version of the system makes the solution process easier: 
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where the matrix 2/1A +n
i is an approximation of the average value of the Jacobian 

matrix U/FA ∂∂=  between the time levels n and n + 1. How this matrix should be 
approximated is the subject of section 6.4.2. Equation [6.53] can be rewritten as: 
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Simplifying by Δt leads to: 
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where I is the identity matrix. System [6.57] is linear and can be solved using 
standard matrix inversion techniques. When a scalar equation is to be solved, the 
matrix A becomes the wave speed λ and equation [6.57] simplifies into: 
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where the average Courant numbers at the points i and i + 1 are given by: 
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6.4.2. Estimation of nonlinear terms – algorithmic aspects 

The Jacobian matrix A and the source term S being functions of U, the average 
values 2/1A +n

i  and 2/1
2/1S +

+
n
i  over the time steps necessarily depend on the (unknown) 

value of U at the time level n + 1. The following expressions are used in practice: 
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The calculation procedure is iterative. It consists of the following steps: 

1) Initialize 2/1A +n
i  and 2/1

2/1S +
+

n
i  using the values at the beginning of the time 

step: 
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2) Solve system [6.57] using estimates [6.61]. 

3) Update 2/1A +n
i  and 2/1

2/1S +
+

n
i  using equation [6.60]. 

Steps 2–3 must be repeated until convergence is achieved. In practical 
applications such as the Saint Venant equations, only a few iterations are needed. 

The Preissmann scheme has the drawback that it cannot be used in a 
straightforward manner in applications where the speed of the waves change sign 
over the computational domain [MES 97]. In such a case, instability may occur. A 
new version of the scheme, based on an approach similar to flux splitting (see 
section 6.7), has been proposed in [JOH 02]. 

6.4.3. Numerical applications 

This chapter details the application of the Preissmann scheme to the test cases 
presented in sections 6.2.3 and 6.3.4, with the difference that the linear advection 
equation is solved on a regular grid (see Table 6.3). Using different values for the 
time step leads to different values of the Courant number. In this test, the influence 
of θ on the accuracy of the numerical solution is investigated. 

The Preissmann scheme is applied to the linear advection equation by defining U 
and F as U = AC, F = AuC in equation [6.58] and dividing by A. 

Symbol Meaning Value 
A River cross-sectional area 1,000 m2 

0
iC  Initial concentration 1 g/l for 1 km ≤ x ≤ 5 km, 0 g/l 

otherwise 
CG Concentration at the left-hand boundary 0 g/l 

L Length of the domain 30 km 
u Flow velocity 1 km/hr 

Δt Computational time step 0.5 hr, 1 hr, 2 hr 
Δx Cell size 1 km 

Table 6.3. Physical and numerical parameters for the numerical solution of the linear 
advection equation on a regular grid 
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Equation [6.62] is a recurrence relationship between the unknown values of C at 
the points i and i + 1. In the case of a positive flow velocity, the computational 
domain is swept from left to right by rewriting equation [6.62] as: 
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Figure 6.19 illustrates the behavior of the numerical solution after 10 hours for 
various values of the numerical parameter θ. Note that: 

– for θ = ψ = 1/2 the scheme is dispersive if the Courant number is different 
from one. The numerical dispersion is reflected by the oscillations in the computed 
profile. When the Courant number is smaller than one the oscillations propagate 
faster than the analytical solution. For Courant numbers larger than one the 
oscillations propagate more slowly than the analytical solution;  

– increasing the value of θ induces numerical diffusion, which contributes to 
dampening the oscillations. Numerical dispersion still occurs but its effects are 
“hidden” by those of numerical diffusion. Using θ = 0.7 with a Courant number 
Cr = 1/2 allows the oscillations to be almost completely eliminated (Figure 6.19). 

In the second test the Preissmann scheme is applied to the Riemann problem for 
the inviscid Burgers equation. The parameters of the test case are given in Table 6.4. 

Symbol Meaning Value 

L Length of the domain 30 m 

0
iu  Initial flow velocity 2 m/s for x ≤ 5 m,    1 m/s 

otherwise 

Δt Computational time step 0.5 s, 1 s 

Δx Cell width 1 m 

Table 6.4. Physical and numerical parameters for the solution  
of the inviscid Burgers equation 
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Figure 6.19. Pure advection of a square concentration signal.  
Comparison between the numerical and analytical solutions for various values of the 

parameter θ and the Courant number 

The linearized version [6.58] of the scheme is applied with U = u and F = u2/2: 
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where the following expressions are used for the Courant number: 
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For a positive flow velocity the wave speed is positive and the domain is swept 
directly from the left-hand boundary to the right-hand boundary: 
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which allows 1
1
+

+
n
iu  to be calculated as: 

11
1

1 ++
+

+ Δ+= i
n
i

n
i uuu  [6.67] 

The analytical solution is a shock, the speed of which is the average of the 
speeds on both sides, i.e. 1.5 m/s. The numerical profile obtained at t = 10 s for 
various values of the time step and the parameter θ are compared to the analytical 
profile in Figure 6.20.  

Four iterations are used for the determination of the Courant number. However, 
2 iterations would have been sufficient in that the values obtained using 2 iterations 
and those obtained using 4 iterations differ by less than 1%.  

As in the linear case, using θ = 1/2 eliminates numerical diffusion and the effect 
of numerical dispersion becomes clearly visible. When the Courant number is larger 
than one (as is the case for Δt = 1 s) the oscillations appear behind the shock. When 
the Courant number is smaller than one (as is the case for Δt = 0.5 s) the oscillations 
appear ahead of the shock. Increasing θ even by a slight amount leads to a dramatic 
damping of the oscillations. For θ = 0.7 the oscillations are almost absent from the 
profile. They disappear completely for θ = 1. 
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Figure 6.20. Riemann problem for the inviscid Burgers equation with the data in Table 6.4. 
Analytical and numerical solution at t = 10 s 
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The Preissmann scheme may lead to unstable solutions when applied to 
problems where the direction of the wave changes locally or becomes locally zero. 
This is the case with the Riemann problem specified in Table 6.2. The wave speed in 
the right state of the initial profile is zero. Adding numerical diffusion via the 
implicitation parameter θ does not always lead to a total damping of the oscillations. 
This is one of the reasons why the Preissmann scheme, although frequently applied 
to free surface flow simulations, remains restricted to the simulation of subcritical 
regimes. 
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Figure 6.21. Riemann problem for the inviscid Burgers equation with the parameters given in 
Table 6.2. Analytical and numerical solution at t = 10 s 
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6.5. Centered schemes 

6.5.1. The Crank-Nicholson scheme 

The MOC and the upwind schemes presented in sections 6.2 and 6.3 are 
sensitive to the direction of the waves. As a consequence, a test should be carried 
out at each computational point in order to determine the direction from which the 
information comes and which computational points must be used. Moreover, 
characteristics-based and upwind schemes are considered to be too diffusive (see 
section B.1 for detailed considerations on numerical diffusion) in a number of 
computational applications, among which are turbulent flow simulations. Centered 
schemes aim to eliminate this drawback. 

The derivative of the conserved variable with respect to time is estimated as in 
equation [6.39]: 
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The derivative of the flux with respect to space is estimated as:  
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Note that the estimate of the space derivative is symmetric with respect to the 
point i, hence the term “centered scheme”. Substituting equations [6.39] and [6.68] 
into equation [2.1] leads to: 
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A domain with M computational points (including the boundary points) allows 
M – 2 equations [6.69] to be written. The values of U at the remaining points i = 1 
and i = M cannot be computed using equation [6.69] because the points 0 and M + 1 
do not exist. Since the vector U has m components, 2m unknown values are to be 
determined. Except in the particular case where all the characteristics enter the 
computational domain across both boundaries, the boundary conditions do not allow 
the solution to be determined uniquely. Additional conditions, such as zero gradient 
conditions or fixed values, must be prescribed at the points i = 1 and i = M. Another 
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possibility is to discretize the governing equations at the first and last points in the 
domain using schemes that involve only two adjacent points in space, such as the 
CIR scheme or the Preissmann scheme. 

If the flux function is nonlinear, system [6.69] is a nonlinear system. Its solution 
may be computationally demanding. The computational effort can be reduced to 
some extent by linearizing the system as proposed in equations [6.55], recalled 
hereafter: 
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Substituting equations [6.55] into equation [6.69] leads to:  
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where the Jacobian matrices 2/1
1A +

±
n
i  are estimated as explained in section 6.4.2. 

6.5.2. Centered schemes with Runge-Kutta time stepping 

The Crank-Nicholson scheme presented in the previous section is an implicit 
scheme. This implies an iterative linearization of the equations, followed by the  
solution of a system of algebraic equations in the form [6.70]. The question thus 
arises of the possibility to develop explicit, centered schemes so as to preserve the 
non-dissipative character of the centered formulation, while making the 
computational procedure simpler. The following discretization may be seen as a 
good candidate for the central discretization of the conservation form [2.2] or the 
non-conservation form [2.5]: 
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Applying the discretization above to the linear advection equation [1.48] leads to 
the following numerical scheme: 
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However, a simple stability analysis [VIC 82] reveals that the numerical solution 
obtained using equation [6.72] is unconditionally unstable. Stable solutions can be 
obtained only if the derivative with respect to space is integrated using multiple step 
integration procedures, such as the Runge-Kutta technique. The most widely used 
options are the second- and fourth-order Runge-Kutta time stepping techniques. The 
principle of such techniques is outlined hereafter. 

Assume that the scheme can be expressed in the form: 
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where M is a matrix operator. If equation [6.72] is to be used, M is given by: 
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where δ is the shift operator, defined as: 
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The formula for the pth-order Runge-Kutta technique is: 
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where the notation Mk indicates that the operator M is to be applied k successive 
times. For instance, assuming that M is given by equation [6.72], the operator M2 is 
defined as: 
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As shown by a linear stability analysis, second-order Runge-Kutta methods do 
not yield stable solutions. The minimal order for which the numerical solution can 
be made stable is p = 3. The stability domains of the third- and fourth-order Runge-
Kutta time stepping methods are given by (see [VIC 82]): 
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The range of stability of the centered scheme with third- and fourth-order Runge-
Kutta time stepping is wider than that of classical explicit schemes. In contrast, the 
computational effort required by Runge-Kutta time stepping schemes is larger than 
that required by classical schemes in that the operator M must be applied several 
times over a given time step and the results of the successive applications must be 
combined linearly as in equation [6.76]. 

6.6. TVD schemes 

6.6.1. Definitions 

Consider the numerical solution n
iU  of a scalar conservation law over a one-

dimensional domain, i = 1,…, M. The total variation TVn of the solution over the 
domain at the time level n is defined as: 
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The total variation serves as a quantitative indicator for the oscillatory character 
of the solution. A numerical scheme is said to be Total Variation Diminishing 
(TVD) if it satisfies the following property: 

nn UU )(TV)(TV 1 ≤+  [6.80] 

Applying a TVD scheme to an initially monotone numerical solution necessarily 
yields a monotone numerical solution. 

A scheme is said to be monotony-preserving if the following conditions hold: 
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A TVD scheme is always monotony-preserving. 

The monotony property has the advantage that spurious oscillations do not arise 
in the numerical solution. Monotone schemes are developed with the purpose of 
minimizing numerical diffusion, while preserving the monotony of the solution. 

6.6.2. General formulation of TVD schemes 

This section focuses on three-point TVD schemes as applied to the linear 
advection equation. The generalization of such schemes to hyperbolic systems of 
conservation laws is dealt with in section 6.7. Applying the second-order MOC seen 
in section 6.2 to the linear advection equation on a regular grid leads to 
equation [6.21]. In the particular case of a zero source term, equation [6.21] 
simplifies into: 
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Equation [6.82] is also known as the Lax-Wendroff scheme [LAX 60]. Equation 
[6.82] can be obtained from a second-order consistency analysis by specifying a 
zero numerical diffusion condition. The scheme may also be written as the 
combination of an upwind scheme and a function of the variations in the conserved 
variable. Assuming that the advection velocity is positive, equation [6.82] can be 
rewritten as: 
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Reasoning by symmetry leads to the following expression for a negative 
advection velocity: 
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Equations [6.83] and [6.84] can be rewritten in the following, condensed form: 
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Scheme [6.85] yields oscillatory solutions in the neighborhood of steep fronts. 
TVD schemes aim to limit the contribution of the variations in U locally when the 
gradient of the solution becomes too large. To do so, scheme [6.85] is modified into: 
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where the so-called limiting function φ, also referred to as a limiter, is a real number 
between 0 and 1. The value of φ depends on the regularity (or smoothness) of the 
profile. If the profile is regular (or smooth) enough the limiter is set to unity and 
scheme [6.86] is equivalent to the original Lax-Wendroff scheme. When the solution 
becomes irregular, with sudden changes in the local slope of the solution profile, φ is 
decreased, which is equivalent to adding numerical diffusion. In the particular case 
φ = 0, equation [6.86] is equivalent to the upwind scheme. The smoothness of the 
solution is characterized by a monotony indicator θ defined as: 
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The monotony indicator is the ratio of the slope of the profile upstream of the 
point i to the slope of the profile downstream of it (Figure 6.22). The indicator is 
positive when the solution is monotone and negative otherwise. It is zero if the slope 
of the profile is zero upstream of the point i. It is infinite if the profile is horizontal 
downstream of the point i. The various TVD schemes proposed in the literature use 
different formulations for the limiter φ(θ). The conditions that must be fulfilled by 
the function φ(θ) are detailed in the next section.   

Note that a number of schemes proposed in the literature before the appearance 
of TVD schemes were found later to be particular cases of the general formulation 
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[6.86], provided that φ(θ) is defined appropriately. This is the case with the schemes 
listed in Table 6.5. Note that not all of these schemes are TVD. 
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Figure 6.22. Monotony indicator for various possible configurations  
(sketched here only for a positive wave speed) 

Scheme Equivalent limiter 
Upwind scheme 0)( =θφ  

Lax-Wendroff scheme 1)( =θφ  

Beam and Warming scheme θθφ =)(  

Fromm scheme 2/)1()( θθφ +=  

Table 6.5. Expression of the limiter for classical schemes 

6.6.3. Harten’s and Sweby’s criteria 

The necessary conditions for a scheme to be TVD were derived by Harten  
[HAR 83a, HAR 84]. Harten’s analysis focuses on schemes in the form: 
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Such schemes are TVD provided that a and b satisfy the following conditions: 
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Note that equation [6.86] can be written in the form [6.88] by defining a and b 
as: 
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Also note that definitions [6.90] are given only for a positive wave speed. 
Substituting equations [6.90] into equations [6.89] leads to: 
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Since the Courant number is assumed to be smaller than one for the sake of 
stability, equation [6.91] becomes: 
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If θ is negative the limiter φ is set to zero and the scheme becomes locally 
equivalent to the TVD, explicit upwind scheme. This leads to the final set of 
conditions for θ : 
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Figure 6.23 provides a representation of the TVD region in the (θ, φ) space. The 
TVD region is the gray-shaded area in the figure. Note that the Lax-Wendroff and 
the explicit upwind scheme are represented by the straight lines φ = 1 and φ = 0 
respectively. 
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Figure 6.23. Representation of the TVD region in the (θ, φ) space. General TVD region (light 
gray-shaded area), Sweby’s TVD region (dark gray-shaded area) 
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Limiters that belong to region A exhibit a compressive behavior that tends to 
make the fronts artificially steeper, while limiter functions located in region B 
induce an artificial smoothing of the solution via numerical diffusion. Sweby 
[SWE 84] suggested that optimal limiting is achieved in regions B and C in 
Figure 6.23, hence the following criteria for φ : 
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A number of classical limiters are presented in section 6.6.4. 

6.6.4. Classical limiters 

A number of limiters have been proposed in the literature. Well-known examples 
are the minmod, MC, Superbee and Van Leer limiters. The corresponding formulae 
are given in Table 6.6. A graphical representation of the limiting functions in the 
(θ, φ) space is provided in Figure 6.24. A limiter, that is very close to the MC 
limiter, is also proposed for the Lax-Wendroff scheme. The minmod limiter, that is 
the most diffusive limiter among the limiters presented here, follows the lower 
bound of Sweby’s TVD region. The Superbee limiter, that follows the upper bound 
of Sweby’s TVD region, may prove to be overcompressive in some cases. The MC 
limiter follows the minimum between of Beam and Warming’s scheme [WAR 76], 
Fromm’s scheme [FRO 68] and the maximum permissible value φ = 2. Van Leer’s 
limiter is a rational function of θ. 

Limiter / scheme Formula Figure 

Upwind scheme 0)( =θφ  6.24a 

Lax-Wendroff scheme 1)( =θφ  6.24a 

Monotone Lax-Wendroff scheme [ ])2,1min(,0max)( θθφ =  6.24b 

Minmod limiter [ ]),1min(,0max)( θθφ =  6.24c 

Superbee limiter [ ]),2min(),2,1min(,0max)( θθθφ =  6.24d 

MC limiter [ ]{ }θθθφ 2,2,2/)1(min,0max)( +=  6.24e 

Van Leer’s limiter )1/()()( θθθθφ ++=  6.24f 

Table 6.6. Expression of the limiter φ  for various classical schemes and limiters available 
from the literature. All limiters take a zero value for negative values of θ 
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Figure 6.24. Representation of classical schemes and limiters in the (θ, φ) space. Upwind 
scheme and Lax-Wendroff scheme (a), Monotone Lax-Wendroff (b), minmod limiter (c), 

Superbee limiter (d),MC limiter (e), Van Leer’s limiter (f) 

6.6.5. Computational example 

The performance of the various schemes and limiters are illustrated by an 
application to the linear advection equation. The pure advection of a square 
concentration profile in a uniform velocity field is simulated by solving 
equation [1.48] numerically. The parameters of the test case are given in Table 6.7. 
The Courant number is equal to 0.5, which is the configuration where the effect of 
the limiter (or the absence of limiter) is maximum because the quantity (Cr – 1) Cr, 
that is the coefficient of the limiting function, is maximum (see e.g. equation [6.86] 
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or equation [6.90]). Figure 6.25 shows the numerical solutions computed at t = 50 s 
using a 15 m wide initial, square concentration profile. 

Symbol Meaning Value 

u Advection velocity 1 m/s 

Δt Computational time step 0.5 s 

Δx Cell width 1 m 

Table 6.7. Pure advection of a square concentration profile in a uniform velocity field. 
Parameters of the test case 

The performance of the schemes with limiters is intermediate between that of the 
first-order, diffusive upwind scheme and the second-order, dispersive Lax-Wendroff 
scheme. The amplitude and the total variation of the solutions at t = 50 s is shown in 
Table 6.8. The non-monotone character of the Lax-Wendroff scheme is illustrated 
by the increase in the total variation between t = 0 s and t = 50 s.  

The compressive Superbee limiter is the only one that allows the amplitude of 
the signal to be preserved after 100 time steps. The MC and Van Leer’s limiter give 
very similar results. The monotone Lax-Wendroff scheme yields an asymmetrical 
solution, with a larger amplitude and total variation than the minmod limiter. 

Solution method Amplitude at t = 50 s Total variation at t = 50 s 

Analytical solution 1 2 

Upwind scheme 0.837 1.673 

Lax-Wendroff scheme 1.373 2.990 

Monotone Lax-Wendroff scheme 0.996 1.992 

Minmod limiter 0.981 1.962 

Superbee limiter 1.000 1.999 

MC limiter 0.999 1.998 

Van Leer’s limiter 0.998 1.997 

Table 6.8. Amplitude and total variation of the numerical solution at t = 50 s 
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Figure 6.25. Pure advection of a square concentration profile (arbitrary units). Analytical 
and numerical solutions after 100 time steps with Cr = 1/2 

6.7. The flux splitting technique 

6.7.1. Principle of the approach 

The flux splitting technique [STE 81], also known as the flux vector splitting 
technique or flux difference splitting technique, allows the TVD approach to be 
generalized to hyperbolic systems of conservation laws. The discretization can be 
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made conservative provided that a number of conditions are satisfied. The flux 
splitting technique is applicable to all upwind schemes, the formulation of which 
depends on the direction in which the waves propagate. In hyperbolic systems of 
conservation laws, the various waves propagate at different speeds and in different 
directions. The purpose of the flux splitting technique is precisely to account for the 
propagation direction of each of the waves in the formulation of the upwind terms. 
The flux splitting technique has been applied to a variety of hyperbolic systems. The 
original publications focused on the equations of gas dynamics [STE 81, DIC 85]. 
An application to the one-dimensional Saint Venant equations can be found in 
[ALC 92, HUB 00].The purpose is to solve the non-conservation form [2.5]. The 
discretization can be made conservative as explained in section 6.7.2. For the sake of 
clarity, the source term is assumed to be zero hereafter. The non-conservation 
form [2.5] then simplifies into: 
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The derivative of U with respect to time is classically discretized as: 
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while the derivative with respect to space is discretized as: 
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where the terms 2/1
2/1)/U( +

−∂∂ n
ix  and 2/1

2/1)/U( +
+∂∂ n

ix  are estimated over the intervals 
[i – 1, i] and [i, i + 1] respectively. The estimates may be obtained using a first-
order, upwind formulation or one of the more complex TVD formulations seen in 
section 6.6. The superscript n + 1/2 indicates that the terms are estimated between 
the time levels n and n + 1. The estimate may be purely explicit, purely implicit or 
semi-implicit as in the Preissmann scheme. The flux splitting technique consists of 
estimating the matrices +

− 2/1A i  and −
+ 2/1A i  so as to preserve the upwind character 

of the formulation, that is, by eliminating all the waves that do not propagate in the 
direction of the point i. This is achieved using the diagonal form [2.22]:  
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where Λ is the diagonal matrix formed by the eigenvalues of A and W is the vector 
formed by the Riemann invariants. The matrix Λ is written as the sum of two 
matrices Λ– and Λ+ that contain only the negative and positive eigenvalues of A 
respectively: 
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where Λ– and Λ+ are defined as: 
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Equation [6.99] is discretized as follows:  
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where the terms 2/1
2/1)/W( +

−∂∂ n
ix  and 2/1

2/1)/W( +
+∂∂ n

ix  are estimated over the intervals 
[i – 1, i] and [i, i + 1] respectively. Multiplying equation [6.101] by the matrix K, 
introducing the product K–1 K = I leads to: 
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By definition (see equations [2.16] and [2.21]): 
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Substituting equations [6.103] into equation [6.102] leads to: 
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Comparing equation [6.104] and [6.97] yields the following expressions for 
+
− 2/1A i  and −

+ 2/1A i : 
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6.7.2. Application to classical schemes 

6.7.2.1. Explicit upwind scheme for the water hammer equations 

The conservation form of the explicit upwind scheme uses the following 
approximations for the space derivatives: 
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Substituting equations [6.96], [6.104] and [6.106] into equation [6.95] gives: 
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which leads to: 
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The expressions of the matrices A, K and K–1 derived in section 2.4.3 are 
recalled hereafter: 
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The matrices Λ, Λ – and Λ + are: 
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Hence the matrices A– and A+: 
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The variable vector U is defined as: 
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Substituting equations [6.111–112] into equation [6.108] leads to the following 
scheme: 
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The linear dependence between the mass per unit length and the pressure and the 
approximation [2.75] are recalled: 
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Substituting approximations [6.114] into equations [6.113] leads to: 
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where the Courant number is defined as in equation [6.35], recalled hereafter: 
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Note that equations [6.115] and [6.34] are equivalent when the grid is regular. 

6.7.2.2. TVD scheme for the water hammer equations 

The general expression for a scalar TVD scheme is provided in section 6.6.2. 
The generalization of the scheme to vector variables requires the evaluation of the 
derivatives for positive and negative wave speeds. Remember that TVD schemes 
can be recast in the following form 
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For the sake of clarity, the time index is omitted in the derivatives. The 
derivatives may be estimated using an explicit formulation (in which case the time 
level n is used), or an implicit approach (in which case the superscript n + 1 should 
be used), or any intermediate formulation. Comparing equations [6.116] and [6.86], 
using the definition Cr = λ Δt/Δx leads to: 
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where the limiters used at the interfaces i – 1/2 and i + 1/2 depend on the sign of the 
wave propagation speed. The limiters φ– and φ+ are defined for the waves 
propagating in the direction of negative and positive x respectively: 
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where the monotony indicators are defined from equation [6.87] as: 
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Equation [6.117] is generalized to hyperbolic systems as follows: 

1) In the particular case of the water hammer equations, both waves propagate in 
opposite directions, the absolute values of both speeds are identical. Therefore, the 
absolute value of the Courant number attached to both waves is the same. The same 
value of Cr is applied identically to all the components Up of U in equation [6.117]. 

2) Several waves may propagate in the same direction in the general case. Each 
wave has a specific Courant number. The following options are available: 

2.1) Apply the wave speed, the absolute value of which is the smallest. This 
option minimizes the anti-diffusion. 

2.2) Apply equations [6.117] to each of the Riemann invariants individually 
and apply the following estimate for the derivative of U; 
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Option 1) is used in the particular case of the water hammer equations. The 
limiter is computed for each of the components of the vector U. The limiter function 
is generalized into a diagonal matrix and equation [6.117] is generalized into: 
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where the coefficients of the limiter matrix are given by: 
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where θp is the monotony indicator for the pth component of U. The superscript + or 
– indicates that two monotony indicators must be defined: one in the direction of 
negative waves, another in the direction of positive waves. 

6.7.2.3. Computational example 

Discretization [6.121] is applied to the simulation of the instantaneous failure of 
a valve in a pipe. The parameters of the test case are given in Table 6.9. 

Symbol Meaning Value 
A Cross-sectional area of the pipe 1 m2 

c Sound speed 1,000 m/s 

L Length of the pipe 500 m 
p0 Initial pressure 5.105 Pa for x < 250 m, 105 Pa otherwise 
T Simulated time 0.15 s 
Δt Computational time step 0.005 s 
Δx Cell width 10 m 
ρ Density of water 1,000 kg/m 

Table 6.9. Sudden failure of a valve. Physical and numerical parameters 
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The cell width and the computational time step are chosen such that the Courant 
number is 0.5, a value for which the effect of profile limiting (when applied) is 
maximum. The pressure profiles computed at t = 0.15 s are represented in 
Figure 6.26. 

Note that the monotone version of the Lax-Wendroff scheme yields an 
asymmetry in the fronts, which the other limiters do not do. The Superbee limiter 
remains the most compressive, while the MC and Van Leer limiters yield 
comparable results. 
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Figure 6.26. Sudden failure of a valve. Pressure profiles computed at t = 0.15 s by the 
upwind scheme, the Lax-Wendroff scheme, and TVD schemes with various limiters 
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6.8. Conservative discretizations: Roe’s matrix 

6.8.1. Rationale and principle of the approach 

A number of techniques presented in the previous sections are based on the 
discretization of the equations in non-conservation form. This is the case of the 
Preissmann scheme seen in section 6.4 with the linearization technique [6.55] 
presented in section 6.4.2. This is also the case of the flux splitting technique seen in 
section 6.7. Both techniques require that the Jacobian matrix A of the flux F with 
respect to the conserved variable U be estimated. The computational examples 
provided in section 6.2.3 show however that the non-conservation form of the 
equations may give erroneous results when discontinuities appear in the solution. 
This is because the propagation speed of shocks is extremely sensitive to the 
formulation used to estimate the wave speed in the non-conservation form. If a 
wrong estimate is used, conservation may be violated. The approach presented here 
allows conservation to be preserved even though the equation is not solved in 
conservation form. 

 Consider first the conservation form [2.2] without source term. A balance over a 
control volume centered around the point i between the time level n and n + 1 yields: 
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The linearized Preissmann scheme and flux splitting techniques use 
discretizations of the non-conservation form that can be written as: 
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where ΔU denotes the variation in U between two adjacent computational points: 
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The superscript n + 1/2 indicates that the estimate is carried out between the time 
levels n and n + 1. It could be an explicit estimate, a fully implicit estimate or a 
semi-implicit estimate. Roe [ROE 81] provides a set of necessary conditions that 
should be satisfied by the estimate of the matrix A for conservation to be 
guaranteed: 
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The first and second conditions [6.126] express consistency. The third condition 
enforces conservation. The last condition states the hyperbolic character of the 
system of conservation laws. Substituting the third equation [6.126] into 
equation [6.124] leads to equation [6.123] and conservation is guaranteed.   

6.8.2. Expression of Roe’s matrix 

6.8.2.1. Roe’s method 

In his publication [ROE 81], Roe provides a general method for the derivation of 
the matrix A. The method is based on the following reasoning. 

The expression of A is a function of the values UL and UR of U on the left- and 
right-hand sides of the discontinuity. Conservation is guaranteed if:  
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A “parameter vector” V is introduced, such that: 
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where B and C are matrices, the expression of which is to be determined from 
equation [6.128]. Comparing equations [6.127] and [6.128] leads to the following 
expression for A: 
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Application example: Roe [ROE 81] proposed the following parameter vector 
for the Euler equations: 
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where the enthalpy H is defined as: 
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The following expression is obtained for the matrix B: 
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and the following expression is obtained for C: 
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Note that the eigenvalues and eigenvectors of A may be obtained directly from 
the expressions of B and C without using equation [6.129]. By definition the 
eigenvalues of A verify: 
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Consequently: 

0BAB =− λ  [6.135] 

Using equation [6.129], condition [6.135] becomes: 
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Substituting equations [6.132–133] into equation [6.129] leads to: 

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

+

+
=

+

+
=

+
=

2/1
R

2/1
L

R
2/1

RL
2/1

L

2/1
R

2/1
L

R
2/1

RL
2/1

L

2/1
L

2/1
L2/1

2

ρρ
ρρ

ρρ
ρρ

ρρρ

HH
H

uu
u  [6.137] 



Finite Difference Methods    283 

6.8.2.2. Expression in the base of eigenvectors 

The expression of A may also be obtained by writing the variations ΔU and ΔF 
as linear combinations of the eigenvectors of A. The so-called wave strengths 
ap (p = 1, …, m) are introduced: 
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where the eigenvectors K(p) and the wave speeds λ(p) are estimated from a weighted 
average between UL and UR. Finding the expressions of the wave strengths allows 
the relationship between ΔU and ΔF to be determined. 

Application example. Consider the Saint Venant equations. U, F and K are 
defined as: 
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where A is the channel cross-sectional area, c is the speed of the waves in still water, 
P is the pressure force exerted on the channel cross-section, Q is the liquid 
discharge, u is the flow velocity and ρ is the density of water. The first equation 
[6.138] yields the following system: 
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Solving equations [6.140] for the wave strengths leads to: 
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The second equation [6.138] gives: 
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Note that the first equation [6.142] is equivalent to the second equation [6.140]. 
Solving equations [6.142] for c and u leads to: 
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6.9. Multidimensional problems 

6.9.1. Explicit alternate directions 

Most classical numerical schemes were originally developed in one dimension of 
space. As well as for historical reasons, the numerical properties of one-dimensional 
schemes (consistency, solution stability, etc.) are easier to study than those of 
multidimensional schemes. Alternate directions, sometimes referred to as dimension 
splitting or time splitting techniques, allow multidimensional problems to be solved 
using one-dimensional techniques. Alternate directions techniques are analyzed in 
[STR 68] and [GOU 77]. Such techniques are mainly used on Cartesian grids. 

Consider the following multidimensional problem: 
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where U is the conserved variable, F, G and H are the flux vectors in the x-, y- and z-
direction respectively, and S is the source term. The solution Un at the time level n is 
assumed to be known at all points of the computational grid. The purpose is to 
compute the solution Un+1 at the time level n + 1. The solution may be approximated 
as: 
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where )(L x
tΔ  is the numerical scheme (also referred to as “numerical operator”) that 

solves the conservation part of equation [6.144] in the x-direction over the time step 
Δt. The conservation part of equation [6.144] in the x-direction is:  
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 [6.146] 
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and )(L x
tΔ is the numerical scheme that solves equation [6.146] numerically over the 

time step Δt via a formula that can be written in the form: 
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By definition of the time derivative, the values of U at the time levels n and n + 1 
are related by: 
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where )U(/F n
ix∂∂  is the discretized form of x∂∂ /F  at the computational point i. 

Comparing equations [6.147] and [6.148] leads to the following definition for the 
operator )(L x

tΔ : 
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where I is the identity matrix. The operators )(L y
tΔ  and )(L z

tΔ  solve the conservation 

part of the equation in the y- and z-direction respectively and the operator )(L S
tΔ  

accounts for the contribution of the source term by solving:  

S
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t
 [6.150] 

Equation [6.145] describes the following sequence. The conservation part of 
equation [6.144] is solved in the x-direction. The result is used as a starting point for 
the solution of the conservation part in the y-direction. The result of this 
computation is used as an initial state to solve the conservation part of the equation 
in the z-direction. The result of this step is used as an initial condition in the solution 
of equation [6.150]. 

The numerical solution is stable if each of the operators in sequence [6.145] is 
stable. The advection operators in the x-, y- and z-direction give stable solutions if 
the absolute value of the Courant number in the corresponding direction of space is 
smaller than one: 

( ) 1Cr,Cr,Crmax ≤zyx  [6.151] 
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where Crx, Cry and Crz are respectively the Courant numbers in the x-, y- and z-
direction. Sequence [6.145] is first-order accurate with respect to time. 

When second- and higher-order schemes are used, the first-order time stepping 
sequence [6.145] may not be accurate enough. The accuracy of the solution may be 
improved by using the following sequence for the conservation part, as suggested in 
[STR 68]: 
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where the subscripts Δt/2 indicate that the operators are applied over half a time 
step. Equation [6.152] can be generalized to account for the influence of the source 
term as: 
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Since the operators L(y) and L(z) are used over half a time step, the stability 
criterion becomes: 

( ) 12/Cr,2/Cr,Crmax ≤zyx  [6.154] 

Sequence [6.153] allows spurious effects such as solution anisotropy to be 
reduced to a large extent compared to the first-order approach [6.145]. However, it 
is more time-consuming. 

6.9.2. The ADI method 

The Alternate Directions Implicit (ADI) method is iterative. It uses implicit one-
dimensional schemes that allow large time steps to be used without making the 
numerical solution unstable. The schemes being one-dimensional, the linear 
algebraic systems to be solved remain diagonal and can be solved using fast system 
inversion techniques. Any implicit discretization of equation [6.144] can be written 
in the form: 
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where R(Un) contains all the terms that are functions of the known solution at the 
time level n. Equation [6.155] is solved as follows: 
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1) The equation is solved in the x-direction, all the remaining terms in the 
equation being assumed known. In the first iteration, the derivatives of G and H 
must be “guessed”. The simplest method is to use the value at the time level n. The 
following equation is solved: 

)U(R)U(S

)U(H)U(G)U(F
U

,1
,1

nn

nnxn
xn

zyx

++

∂
∂

−
∂

∂
−=

∂
∂

+
+

+
 [6.156] 

where Un+1,x is the solution of equation [6.156] over the time step Δt. 

2) The solution Un+1,x is used as an initial condition for the equation in the y-
direction: 
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where Un+1,y is the solution of equation [6.157] over the time step Δt. 

3) The solution Un+1,y is used as an initial condition for the equation in the z-
direction: 
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where Un+1,z is the solution of equation [6.158] over the time step Δt. 

4) The solution Un+1,z is used as an initial condition for the contribution of the 
source term: 
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where Un+1,S is the solution of equation [6.159] over the time step Δt. 
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5) The solution Un+1,S is used as an initial condition to solve the equation in the x-
direction: 
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Steps 2–5, that form a single iteration, must be repeated until convergence is 
achieved, that is: 

– the value of U at a given step (e.g. step 5) between two successive iterations 
should not differ by more than a given threshold value ε specified by the modeler; 

– the values of U between two successive steps within the same iteration should 
not differ by more than the threshold value ε. 

In many industrial implementations of the ADI method, only the first condition 
is checked. In other applications, the first condition is not checked and the second 
condition is checked only between two steps (e.g. between steps 2 and 3) instead of 
the complete sequence. When this is the case, the solution may be abnormally 
sensitive to the orientation chosen for the main axes of the grid. The ADI method is 
known to converge slowly when applied to nonlinear systems. For this reason, most 
industrial implementations of the method use a maximum permissible number of 
iterations, after which the sequence 2)–5) will be stopped regardless of the 
convergence of the iterative process. The maximum permissible number of iterations 
may be left to the modeler’s choice or hard-programmed in the software. The fact 
that the user is not informed of or has no control over the parameters that influence 
the accuracy of the method may lead to erroneous computational results, thus 
destroying the predictive power of the simulation.  

6.9.3. Multidimensional schemes 

Multidimensional schemes solve multidimensional problems by treating all the 
spatial derivatives within one single step. When a two-dimensional problem is to be 
solved, the operators L(x) and L(y) introduced in the previous section are applied as 
follows: 
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where I is the identity matrix. Equation [6.161] is derived as follows. Extending 
equation [6.149] to the y-direction gives: 
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The discretized form of the equation to be solved is: 
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It is easy to check that substituting equations [6.149] and [6.162] into 
equation [6.163] leads to equation [6.161]. Extending the reasoning to three 
dimensions of space leads to the following formula: 
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Since the effects of the operators in each direction of space are added within a 
single step, the stability constraint attached to multidimensional schemes is usually 
more restrictive than for alternate direction techniques. Most two-dimensional 
explicit schemes are subjected to the following constraint: 

( ) 1CrCrmax ≤+ yx  [6.165] 

the three-dimensional version of which is: 

( ) 1CrCrCrmax ≤++ zyx  [6.166] 

6.10. Summary 

6.10.1. What you should remember 

Finite difference methods are based on the discretization of space and time, 
which allows partial differential equations to be approximated in the form of 
differences between the values taken by the solution at predefined time and space 
coordinates. When the unknown value of the solution at the next time level can be 
expressed only as a function of the known value at the current time step, the method 
is said to be explicit. A discretization of the partial differential equation that 
provides a relationship between several unknowns at the next time level is said to be 
implicit. Explicit methods are subjected to stability constraints, while implicit 
methods are not in general. 

The performance of a numerical method for hyperbolic conservation laws is 
conditioned by the Courant number, defined as the ratio of the distance covered by 
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the wave over a time step to the distance between two adjacent computational 
points. 

Characteristic-based methods, covered in section 6.2, solve the governing 
equations in characteristic form. The Riemann invariants are interpolated at the feet 
of the characteristics from their values at the computational points. Linear 
interpolations lead to first-order, diffusive numerical schemes. Parabolic 
interpolations lead to second-order, dispersive schemes. Characteristic-based 
methods may fail to preserve the conservation properties of the solution, especially 
in the presence of shocks and when the Courant number is not uniform over the 
computational domain. 

Upwind schemes for scalar laws, presented in section 6.3, may be applied to the 
conservation and non-conservation form of the equations. In such schemes the 
derivative with respect to space is discretized using the point located upstream of the 
point at which the time derivative is discretized.  

The Preissmann scheme presented in section 6.4 is a conservative scheme. It is 
used by a number of commercially available software packages for free-surface flow 
modeling. The degree of consistency of the discretization can be adjusted in time 
and space via two weighting parameters ψ and θ. The parameters ψ that control the 
weighting in space is usually set to 1/2. When this is the case, setting θ = 1/2 leads 
to a purely dispersive scheme. Increasing θ induces numerical diffusion. 

Centered schemes are dealt with in section 6.5. They are not sensitive to the 
direction in which the waves propagate. They are less diffusive than upwind 
schemes. The Crank-Nicholson scheme is an implicit scheme. Explicit centered 
schemes require the use of third- and higher-order Runge-Kutta time integration 
algorithms for stability reasons. Their range of stability is wider than that of classical 
explicit schemes. 

TVD schemes for scalar laws are presented in section 6.6. They can be seen as 
weighted combinations between the upwind scheme and the second-order Lax-
Wendroff scheme. The weighting between the two schemes is a function of the local 
variations in the slope of the variable. The contributions of the gradient of the 
variable are limited using a so-called limiter, for which many formulations have 
been proposed in the literature. 

Flux splitting techniques are presented in section 6.7. Such techniques allow 
upwind and TVD schemes to be generalized to hyperbolic systems of conservation 
laws. They use the non-conservation form of the equations. The flux splitting 
approach consists of separating the Jacobian matrix of the flux into two matrices, 
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one that accounts for the waves propagating in the direction of negative x, the other 
accounting for the waves that propagate in the direction of positive x. 

The flux splitting technique allows conservation to be preserved provided that 
the Jacobian matrix satisfies a number of criteria. Roe’s linearization technique, 
presented in section 6.8, provides guidelines for the derivation of the Jacobian 
matrix. 

Several options are available for the treatment of multidimensional problems 
(see section 6.9). The alternate direction technique consists of solving the governing 
equations in each direction of space successively. Multidimensional schemes treat 
all the directions of space within a single step. 

6.10.2. Application exercises 

6.10.2.1. Exercise 6.1: finite difference methods for scalar laws 

Check the conclusions of Exercises 1.1 to 1.5 using finite difference methods. 
The following methods are advised: 

– a characteristic-based method, 

– an upwind scheme (conservative version), 

– Preissmann’s scheme, 

– a TVD scheme. 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 21Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

6.10.2.2. Exercise 6.2: finite difference methods for hyperbolic systems 

Check the conclusions derived in Exercises 2.2 and 2.5 by solving the equations 
numerically. The first-order MOC is advised for the sake of simplicity. 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 22Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

6.10.2.3. Exercise 6.3: finite difference methods for hyperbolic systems 

Implement the numerical schemes used in the examples presented in 
sections 6.2.3, 6.2.4, 6.4.3, 6.6.5 and 6.7.2.3. 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 23Hhttp://vincentguinot.free.fr/waves/exercises.htm. 




