
2
Neural Networks

Artificial neural networks derive their origins from biological neural networks. They

are systems of parallel and distributed processing that simulate the basic operating

principles of the biological brain. Sometimes they are referred to in the literature as

machine learning algorithms. The biological brain in its basic structure is a network
of neural cells (neurons) attached through connections that have the ability to adjust

the power of the electrical pulse that runs through them (synapses). The external

stimulus in the form of an electrical pulse is transmitted as information through

synapses to the neurons, where it is processed, and eventually, an output response

of the network is produced. The information is encoded as “knowledge” through

continuous updating of the existing synapses between neurons.

In this book we treat neural networks as the eminent expression of nonparametric

regression. Nonparametric regression is a very powerful approach, especially for

financial applications. Neural networks can approximate any unknown nonlinear

function and are generally less sensitive than classical approaches to assumptions

about the error term; hence, they can perform well in the presence of noise, chaotic

sections, and fat tails of probability distributions.

The basic aspects of neural networks are presented below. More precisely, the

usual training algorithm and network structures are presented. In addition, a geometric

explanation of the backpropagation learning rule is given.

Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification,
First Edition. Antonios K. Alexandridis and Achilleas D. Zapranis.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

35

36 NEURAL NETWORKS

PARALLEL PROCESSING

Although there are now many types of artificial neural networks, they all have one

common characteristic: They are systems of parallel distributed processing (PDP).

The processing of information is distributed over several computing units, while its

encryption is accomplished by the interactions of all these units. Each PDP system

consists of the following components (Rumelhart et al., 1986b):

� A set of processing units.
� A state of activation.
� An output function for each unit.
� An activation rule that combines all the inputs of a unit with the current activation

state in order to compute the new activation state.
� A connectivity model between units.
� A signal propagation rule through the connections between units.
� A learning rule according to which the connectivity model alters through

training.
� An environment in which the system must operate.

Usually, the output function and the activation rule are the same. A schematic

representation of a PDP system is shown in Figure 2.1, and Figure 2.2 illustrates

the general features of a processing unit. Below we examine the most important of

these features and the assumptions made for them, and the interdependence of the

components within a PDP system.

nets outs

netj outj

netk outk

Unit uk

wis

wij

iθ

kθ

jθ

sθ

wsj

wik

wkj

Unit ui

Unit us

Unit ujneti outi

Figure 2.1 Schematic representation of parallel distributed processing.

PARALLEL PROCESSING 37

WeightsInputs

W1in1

in2

inm

W2

Wm

Outputs

Processing unit

Bias

Sumation Activation

Connections

out

net = ∑ iwi ini + out = (net) θ γ

θ

Figure 2.2 Schematic representation of the general characteristics of a processing unit (an artificial
neuron).

Processing Units

Each processing unit receives inputs from the neighboring units or external sources

and uses them to calculate an output signal which is distributed to other units. As

illustrated in Figure 2.2, a unit receives some input signals, in1, in2,…, inm, which,
unlike electrical pulses of the biological neuron, correspond to continuous variables.A

weight value 𝑤i changes any such input signal. The role of the weights is equivalent

to the biological neuron’s synapses. The value of the weight can be positive or

negative. The input signal that is transferred via the bias connection is constant and has

a value of 1.

The body of the artificial neuron is divided into two sections. In the first, the net

input is estimated by the weighted summation of the inputs, net; in the second, the
output value is estimated by the activation function 𝛾 . We can distinguish among

three types of units: input units, which receive the data; output units, which are

sending data out of the network; and hidden units, whose inputs and outputs signals

are staying inside the network. During operation of the neural network, the units can

be adjusted synchronously or asynchronously. In synchronous updating, all units

update their activation level simultaneously; in asynchronous updating each unit has

some (usually, fixed) probability to adjust its activation level at time t, and usually
only one unit will be able to do so at this particular time.

Activation Status and Activation Rules

A rule that defines the effect of the net input to the activation state of a unit is needed.

This rule is given by the function 𝛾 , which is also called an activation function or
transfer function, and takes as inputs the net input net (t) and the current activation
status out (t) at time t and returns as output the new value of the activation state
out (t + 1) at time t + 1:

out (t + 1) = 𝛾 (net (t) , out (t)) (2.1)

38 NEURAL NETWORKS

sgn Semilinear
s s

Ramp Sigmoid
s s

Figure 2.3 Different types of activation functions.

Usually, the activation function is a nondecreasing function of the net input

only. Also, the activation functions are not strictly limited to nondecreasing forms.

That is,

out (t + 1) = 𝛾 (net (t)) = 𝛾

(∑
i

𝑤i (t) ini (t) + 𝜃 (t)

)
(2.2)

Generally, some type of threshold function is used. Such examples are the sign

function (sgn), the linear or semilinear function, the ramp function, or the sigmoid

function. These functions are presented in Figure 2.3.

The sign function is given by

𝛾 (s) = sgn(s) =
{
+1 s > 0
−1 s ≤ 0 (2.3)

However, the classic case is the use of the family of sigmoid functions that belong to

the class

Γ = {𝛾 = 𝛾 (s, k,T , c) |x, s ∈ ℜ − {0}} (2.4)

and is defined as follows:

𝛾 (s) = k + c
1 + e−Ts

(2.5)

where T is a factor regulating the speed of transition to one of two asymptotic values.
This type of function is very important because it provides nonlinearity to the neuron,

which is essential in modeling nonlinear phenomena. If in equation (2.5) we set

PARALLEL PROCESSING 39

Figure 2.4 Family of symmetric sigmoid activation functions with values between −1 and 1.

k = −1 and c = 2, the symmetric sigmoid activation functions are obtained, which
return values between −1 and 1.
As presented in Figure 2.4, if the value of T increases, this family of functions

converges to the sign function (2.3). The most commonly used function of this form

is obtained for T = 2:

𝛾 (s) = 2

1 + e−2s
− 1 (2.6)

Similarly, if in equation (2.5) we set k = 0 and c = 1, we obtain the family of
asymmetric sigmoid activation functions which return values between 0 and 1

(Figure 2.5). Usually, for this function the value of T = 1 is used:

𝛾 (s) = 1

1 + e−s
(2.7)

Connectivity Model

The connectivity model is related to the organization of the connections between

units. It determines what the system knows and how it will respond to some

random input.

40 NEURAL NETWORKS

Figure 2.5 Family of asymmetric sigmoid activation functions with values between 0 and 1.

Usually, it is assumed that each unit provides an additive contribution to the inputs

of the units with which it is connected. Hence, the total (net) input of a unit is simply

the weighted sum of inputs from the other units plus a bias term:

net =
∑
i

𝑤iini + 𝜃 (2.8)

Propagation Rule The propagation rule refers to the way that data flow through a

network. There are two basic categories of neural networks: feedforward networks

and recurrent networks.

Feedforward Networks In this case, there is a forward flow of data from the input

units to the output units. The processing of the data can be extended to multiple layers

of hidden units, but there are no feedback connections. In other words, there are no

connections from the outputs of the units to the inputs of the units of the same or

previous layers.

Recurrent Network These networks include feedback connections. Unlike in

feedforward networks, in this case the dynamic properties of the network are

significant.

Learning Rule When a set of inputs is inserted in the neural network, it should

return the desired set of outputs. To do so, appropriate values of the weights must be

selected. One method is to give values to the weights relying on existing (a priori)

knowledge of the problem. However, in most cases this knowledge is not available.

Another method is to “train” the network by presenting “training examples” and allow

PERCEPTRON 41

the network to change the weights of the connections according to some learning rule.

The ways in which learning is conducted generally falls into two broad categories:

supervised and unsupervised learning.

In supervised or associative learning, the network is trained by providing training
input and their corresponding output examples. The network gradually learns the

underlying relationship between the inputs and the output. In unsupervised learning
or self-organizing, the output units are trained to respond in some complexes of
input examples and to discover some of their prominent statistical properties. Unlike

supervised learning, there are no a priori categories in which the patterns can be

classified, but the network should develop its own representation for the input stimuli.

Both types of learning result in an adjustment of the weights of the connections

between the units, according to some learning rule.

PERCEPTRON

Suppose that a feedforward neural network has no hidden layers. Hence, the out-

put units are connected directly with the input units. Such a network is shown in

Figure 2.6. More precisely, the network shown has only one output unit, two input

units, and a bias term, 𝜃.

Furthermore, we assume a training sample that consists of the input vector x =
(x1, x2) and the corresponding desired output y. In classification problems y usually
takes values of −1 and +1. The perceptron learning algorithm that updates the

weights is the following:

1. Initialize the weights to random values.

2. Select an input vector from the training sample, present it to the network, and

compute the output of the network, out, for the input vector specified and the

values of the weights.

3. If out ≠ y (i.e., the response of the perceptron is incorrect), modify all connec-
tions 𝑤i by adding the changes Δ𝑤i = yxi.

4. Go back to step 1.

Figure 2.6 Feedforward neural network without hidden layers with one output and two inputs.

42 NEURAL NETWORKS

When the response of the network is correct, the weights are not updated. The

weight of the bias term should also be updated. The biasmay be seen as the connection

𝑤0 between the output of the network and an entry input that always has the value

of 1. Hence, based on the perceptron algorithm, the change of bias is zero if the

network response is correct and is equal to y otherwise.
However, in problems where the input–output pairs are not linearly separable,

they cannot be modeled with the perceptron rule; the use of neural networks with

intermediate hidden layers is required.

The Approximation Theorem

For the perceptron learning rule described above, Rosenblatt (1959) formulated and

proved the famous theoremof convergence, which states: If there is a set of connection

weightsw∗ that is able to perform the transformation out = y, the perceptron learning
rule will converge to a solution (which may or may not be the same as w∗) after a
finite number of steps for any initial selection of weights. For a proof of the theorem

the reader is directed to Rosenblatt (1959).

THE DELTA RULE

For a network with no hidden units, one output, and a linear activation function, the

output of the network is given by

out =
∑
i

𝑤ixi + 𝜃 (2.9)

Then, for a given input vector output from the training sample, we have that

outp =
∑
i

𝑤ixpi + 𝜃 (2.10)

Such a simple network has the ability to represent a linear relationship between

the input and output variables. Using a sign function as an activation function in the

output unit, we can construct a classifier, such as the Adaline of Widrow and Hoff

(1960). Here we focus on the linear relationship, but we will use the network for a

function approximation problem.

We assume that we want to train a network to adapt as best as possible to a

hyperplane in a training sample consisting of pairs of the form (xp, yp), where xp =
(x1, x2,… , xm) and p = 1,… , n. For each input vector xp, the network’s output differs
from the target value by yp − outp. The error function that uses the delta rule is based
on the squares of these differences. Specifically, the error for the example p is
calculated from the relationship

Ep =
1

2
(yp − outp)2 (2.11)

THE DELTA RULE 43

The total error that is minimized by the delta rule is given by the relationship

E =
n∑

p=1
Ep =

1

2

n∑
p=1
(yp − outp)2 (2.12)

The minimum mean error finds the values of the weights that minimize the error

function (2.12) with the method of gradient descent, also called the method of steep-
est descent. This method is based on the change in weight 𝑤i by Δp𝑤i, which is

proportional to the negative value of the derivative of the error Ep which has been

calculated for the training pattern p with respect to the weight 𝑤i, namely:

Δp𝑤i = −𝜂
𝜕Ep

𝜕𝑤i
(2.13)

where 𝜂 is a constant called the learning rate. Using the chain rule, the derivative
𝜕Ep

/
𝜕𝑤i can be written as

𝜕Ep

𝜕𝑤i
=

𝜕Ep

𝜕outp

𝜕outp

𝜕𝑤i
(2.14)

The first derivative is easily calculated from (2.11) as follows:

𝜕Ep

𝜕outp
= −(yp − outp) = −𝛿p (2.15)

where 𝛿p is the difference between the output of the network and the target value y
for pattern p. Because of the linear output unit (2.10), the partial derivative of the
output of the network with respect to the weight 𝑤i is

𝜕outp

𝜕𝑤i
= xpi (2.16)

Placing equations (2.15) and (2.15) into (2.14), we have that

−
𝜕Ep

𝜕𝑤i
= 𝛿pxpi (2.17)

Substituting into equation (2.13), we finally get

Δp𝑤i = −𝜂𝛿pxpi (2.18)

44 NEURAL NETWORKS

which express the delta rule. Combining equation (2.17) with the equation

𝜕E
𝜕𝑤i

=
∑
p

𝜕Ep

𝜕𝑤i
(2.19)

we conclude that the change in the weight 𝑤i after a complete cycle of presentation

of all the training patterns of the training sample is similar to that of the derivative,

and thus the delta rule implements a gradient descent in the space E −𝑤. This is
true only if the weights change only at the end of the cycle. If the weights change

after the presentation of each training example, the method deviates slightly from

the true gradient descent. If the learning rate is small enough, this deviation would

be negligible and the delta rule would be a very good approximation of the gradient

descent to the sum of squared errors. More precisely, if the learning rate is small

enough, the delta rule will find a set of weights that minimize the error function.

Although this algorithm is better than the one applied to perceptrons, it cannot

be applied to networks that have hidden layers. For each neuron, its output must be

known exactly, which is not possible when there are hidden layers.

BACKPROPAGATION NEURAL NETWORKS

As we saw earlier, neural networks without hidden layers are characterized by severe

limitations, as the set of problems which they solve is very limited. Minsky and

Papert (1969) showed that neural networks with hidden layers can overcome many of

these limitations; however, a solution to the problem of adjusting the weights of the

connections between the input units and the hidden units was not given. One solution

to this problem was given by Rumelhart et al., (1986a).

The idea behind this method is that errors in the hidden units of the hidden layer

are determined by the backpropagation of errors in the output units. This is why this

training algorithm is called the backpropagation learning rule. The backpropagation
algorithm can be seen as a generalization of the delta rule for the case of neural

networks with hidden layers and nonlinear activation functions.

Multilayer Feedforward Networks

The processing units of feedforward networks are organized in layers, which is why

they are called multilayer networks. The first of these layers, the input layer, is used
for data entry. The processing units of this layer do not perform any computations

(they do not have any input weights or activation functions).

Next are one or more intermediate hidden layers, then an output layer. The units of
each layer receive their inputs from the units of the layer immediately below (behind)

and send their outputs to the units of the layer lying directly above (front).

THE GENERALIZED DELTA RULE 45

Information flow

Hidden layersInput layers Output layers

Figure 2.7 Fully connected feedforward neural network with two hidden layers.

The network can be connected either fully or partially. In the former case, the

processing units of different layers are associated with all the units of the next layer,

whereas in the Latter case the connection is with only some of them. There are no

feedback connections (i.e., connections that send the output of a unit in the same or a

previous layer). Also, there are no connections between units of the same layer. The

flow of information is done through the connections and the processing units in one

direction only: from the input layer to the output layer. In Figure 2.7, a schematic

representation of a fully connected feedforward neural network with two hidden

layers is presented.

Although the backpropagation learning rule may be applied to feedforward net-

works with any number of hidden layers, a series of studies (Funahashi, 1989;

Hartman et al., 1990; Hornik et al., 1989) have proved that a single hidden layer

is sufficient for the neural network to approximate any function to any random

degree of accuracy, with the condition that the activation functions of the network are

nonlinear. This is known as the universal approximation theorem. In most cases,

neural networks with a single hidden layer and sigmoidal transfer function are used.

THE GENERALIZED DELTA RULE

The backpropagation method is the most widely used method for training multilayer

neural networks. The basic idea behind this training algorithm is to determine the

percentage of the total error for the weight of each connection. Hence, it is possible

46 NEURAL NETWORKS

to calculate the correction to the weight of each connection separately, which is

quite complex for the hidden layers since their outputs affect many connections

simultaneously.

In backpropagation, initially the error of the output unit is estimated in the same

way as for the delta rule. This error is used to calculate the errors in the last hidden

layer. Then the process is repeated recursively toward the input layer. Based on the

propagation of the error backward, it is possible to estimate the contribution of each

connection to the total error. Then the errors estimated for each connection of the

layer are used to alter the weights of the connections in a manner similar to that of

the delta rule. The process is therefore based on a generalization of the delta rule,

which is why it is called the generalized delta rule. The procedure is repeated until

the value of the total error reaches a predefined value.

As discussed earlier, the delta rule performs a gradient descent on the sum of

squared errors for linear transfer functions. In the case of no hidden units, error

surface has a convex shape with a unique minimum. It is therefore it is guaranteed that

the gradient descent will eventually find the best set of weights. However, when the

neural network has hidden units, the error surface does not have a unique minimum.

As a result, the alogrithm might reach and be trapped into a local minimum.

In the delta rule algorithm, first a set of training patterns are presented to the

network. The training patterns consist of the input and output vectors. First, the

network uses the input vector to calculate its own output vector and then it compares

it against the desired output vector (the target). If there is no difference, the learning

procedure stops. Otherwise, the weights of the network connections are modified to

reduce the difference. If we do not have any hidden layers, the network connections

change according to the delta rule. More precisely, the change in the weight of the

connection between the input and output units is given by (2.18).

In the remainder of the section we present the generalized delta rule for multilayer

feedforward neural networks with nonlinear activation functions. The net input of an

output unit uj in Figure 2.8 for the output–input vector p is given by

netpj =
∑
i

𝑤ijoutpi (2.20)

To calculate the output of the same unit, an upward, continuous, and differentiable

function is used:

outpj = 𝛾(netpj) (2.21)

The usual function that is used is the sigmoid. In the generalized delta rule the changes

in the weights are given by

Δp𝑤i = −𝜂
𝜕Ep

𝜕𝑤ij
(2.22)

THE GENERALIZED DELTA RULE 47

Figure 2.8 Estimation of the delta in a feedforward neural network for the connections to the output
units of the network.

where E is the same measurement of the square errors used earlier. Using the chain
rule, the derivative 𝜕E

/
𝜕𝑤ij can be written as

𝜕E
𝜕𝑤ij

= 𝜕E
𝜕netpj

𝜕netpj

𝜕𝑤ij
(2.23)

From equation (2.20) we see that the partial derivative of the total input to unit j
based on the weight of one of the connections 𝑤ij is

𝜕netpj

𝜕𝑤ij
= 𝜕

𝜕𝑤ij

(∑
k

𝑤kjoutpk

)
= outpi (2.24)

Next, we define

𝛿pj = −
𝜕Ep

𝜕netpj
(2.25)

This definition is consistent with the definition of the delta given by equation (2.18)

since for linear transfer functions we have that netpj = outpj.

48 NEURAL NETWORKS

From relationships (2.23) to (2.25) we have that

−
𝜕Ep

𝜕𝑤pj
= 𝛿pjoutpj (2.26)

and by replacing (2.26) with (2.22) we observe that the changes in the weights of the

connections can be computed by

Δp𝑤pj = 𝜂𝛿pjoutpj (2.27)

From equation (2.27) we observe that the change in weight 𝑤ij of the connection

between the units ui and uj (the unit uj is located in the next layer of unit ui) is
a product of the learning rate and the delta of unit uj and the output unit ui. The
learning rate is a constant chosen by us, and the output of unit i is easily calculated
from equation (2.21). Hence, we are interested in estimation of the delta of each unit.

Applying the chain rule in (2.25), we have that

𝛿pj = −
𝜕Ep

𝜕netpj
= −

𝜕Ep

𝜕outpj

𝜕outpj

𝜕netpj
(2.28)

From (2.21) we see that the second term of the product in (2.28) is just the

derivative of the transfer function of the unit uj:

𝜕outpj

𝜕netpj
= 𝛾 ′(netpj) (2.29)

To estimate the first term of (2.28) we have to distinguish between two cases. First

we consider the case where the unit uj is located in the output layer, as in Figure 2.8.
From the definition of the error criterion we have that

𝜕Ep

𝜕outpj
= −(ypj − outpj) (2.30)

Therefore, substituting relations (2.30) and (2.29) into (2.28) we find that the delta

of the output units of the network is calculated as follows:

𝛿pj = (ypj − outpj) 𝛾 ′(netpj) (2.31)

Next, we focus in the case where the unit uj is located in a hidden layer, as in
Figure 2.9. In this case the contribution of the output of the unit to the error Ep cannot

be calculated directly. However, measurement of the error is a function of the net

input to the units of the output layer:

Ep = Ep(netp1, netp2,…, netpk,…) (2.32)

BACKPROPAGATION IN PRACTICE 49

Figure 2.9 Estimation of the delta of a feedforward network in the hidden layer.

Applying the chain rule, we have

𝜕Ep

𝜕outp
=
∑
k

𝜕Ep

𝜕netpk

𝜕netpk

𝜕outp

=
∑
k

𝜕Ep

𝜕netpk

𝜕

𝜕outp

(∑
j

𝑤jkoutpj

)

=
∑
k

𝜕Ep

𝜕netpk
𝑤jk

= −
∑
k

𝛿pk𝑤jk (2.33)

By replacing equations (2.29) and (2.33) with (2.28), we get

𝛿pj = 𝛾 ′j (netpj)
∑
k

𝛿pk𝑤jk (2.34)

BACKPROPAGATION IN PRACTICE

The generalized delta rule is applied in two steps. During the first step, the input

vector x is introduced to the network and is propagated from layer to layer toward the

50 NEURAL NETWORKS

output layer and the network’s outputs are computed. The outputs are compared with

the target values desired, creating an error signal from each output of the network.

At the second step, the error signal propagates backward through the network (i.e.,

from the output to the input layer). At the same time, the appropriate changes in the

weights of the network’s connections are estimated.

These two steps are summarized as follows:

� For a given input vector and initial values of the weights of the network con-

nections, the net inputs and outputs of each unit are estimated, moving from the

input layer to the output layer. Finally, the approximation error is estimated.
� Then, the derivatives of the transfer functions and the delta of the output units

are estimated.

The most commonly used activation function is the asymmetrical sigmoid with

asymptotic values 0 and 1:

𝛾(netpj) =
1

1 + e−netpj
(2.35)

The derivative of this transfer function with respect to netpj is given by

𝛾 ′(netpj) =
d

d netpj

1

1 + e−netpj

= e−netpj

(1 + e−netpj)2

= 1

(1 + e−netpj)

e−netpj

(1 + e−netpj)

= 𝛾(netpj)[1 − 𝛾(netpj)] (2.36)

As we see the derivative of the activation function is expressed as a function of

itself. Substituting the relationship above to the delta, we have that

𝛿pj = (ypj − outpj)𝛾j(netpj)[1 − 𝛾j(netpj)] (2.37)

� Next, the changes in the weights of connections of the output layer are computed

using the generalized delta rule.
� Next, the derivatives of the transfer functions and the delta of the units of the

previous hidden layer are computed.

𝛿pj = 𝛾j(netpj)[1 − 𝛾j(netpj)]
∑
k

𝛿pk𝑤jk (2.38)

TRAINING WITH BACKPROPAGATION 51

� Then the changes of weights of the connections of the previous hidden layer are

computed using the generalized delta rule.
� The previous two steps are repeated for all hidden layers moving from the output

layer to the input layer.

TRAININGWITH BACKPROPAGATION

The backpropagation algorithm implements a search for the total minimum error

of the function E (w), which has as parameters the values of the weights. In each step
the weights are corrected by choosing a change that seems to reduce the error locally

with the aim of minimizing the error E (w). Given the current weight vector wc, for

each iteration a direction uc is calculated and then the weight vector wc is updated

using the following learning rule:

w+ = wc − 𝜂uc (2.39)

where w+ is the new weight vector and 𝜂 is the learning rate. Specifically, the

backpropagation algorithm calculates the slope∇E(wc) = 𝜕E
/
𝜕wc and then performs

a minimization step toward the direction uc = ∇E(wc).

Note that the gradient operator ∇ is meaningless by itself. On the other hand, the
gradient vector ∇E(wc) points in the direction of the maximum growth rate of the

error function at point wc and is equal to this growth rate. Hence, the learning rule is

w+ = wc − 𝜂∇E(wc) (2.40)

As presented in (2.39), the product between uc and the learning rate is subtracted
from the current weight vector. When ∇E(w+) is vertical to uc, the backpropagation
algorithm has found a minimum wmin.
In Figure 2.10 a simplistic schematic representation of the gradient descent is

shown. In reality, the surface (E − w) cannot be represented graphically when there
are two more weights: in other words, for any useful neural network topology.

However, the greater the value of the learning rate 𝜂, the greater the risk that the

stepwise gradient descent starts oscillating, as presented in Figure 2.11. In this case

it is impossible to find the global minimum as the algorithm oscillates between two

points (e.g., in points 3 and 4 in Figure 2.11).

On the other hand, very small values of the learning rate drastically reduce the

chances that the algorithm will start oscillating. However, the algorithm becomes

significantly slower. A schematic representation of the behavior of backpropagation

algorithm with a relatively small learning rate is presented in Figure 2.12.

To avoid oscillations and at the same time to speed up the learning process, a

momentum term is added to equation (2.27):

Δp𝑤ij (t + 1) = 𝜂𝛿pjoutpi + mΔp𝑤ij (t) (2.41)

52 NEURAL NETWORKS

Minimum

− uc = − ∇E(wc)η η

wwminwc

E(wmin)

E(w+)

E(wc)
E

(w
)

w+

Figure 2.10 Simplistic representation of the minimum error search through stepwise gradient descent in
the weights–error surface (E − w) that is implemented by the backpropagation algorithm.

where m is the momentum term and t refers to the iteration number. From equation
(2.41) we observe that the change in the weight estimated in the previous presentation

of the training patterns is multiplied by a constant (the momentum) and then is added

to the current change of the weight. The momentum determines the effect of the

previous change to the next. The addition of the momentum term allows us to use

relatively small values for the learning rate without increasing the learning time

significantly.

Minimum

4

3

2

1

Starting point

(initial conditions)

wwmin

E(wmin)

E
(w

)

Figure 2.11 Stepwise descent to the surface (E − w)with a very large learning rate. The backpropagation
algorithm starts swinging between points 3 and 4, so it is not possible to find the point that minimizes the
error function.

TRAINING WITH BACKPROPAGATION 53

Minimum

Starting point

(initial conditions)

wwmin

E(wmin)

E
(w

)

Figure 2.12 Stepwise descent to the surface (E − w) with a very small learning rate, which results in
long training times (more iterations).

Since in the change of weight a proportion of the previous variation is added,

when the algorithm enters a region of the surface (E − w) with a high gradient, it
begins to perform a continuously accelerated descent until it reaches the minimum

(Figure 2.13). Hence, the relationship (2.40) with the momentum term becomes

w+ = wc − 𝜂∇E(wc) − m∇E(wc−1) (2.42)

Minimum

Starting point

(initial conditions)

wwmin

E(wmin)

E
(w

)

Figure 2.13 Stepwise descent to the surface (E − w) with a relatively small learning rate and momentum
term, which accelerates the search for the minimum of the error function.

54 NEURAL NETWORKS

In general, the purpose of the addition of the momentum term is to accelerate the

network’s training process without a disproportionate increase the probability that

the algorithm will be trapped in oscillations between two nonoptimal solutions.

Despite the obvious potential of the backpropagation algorithm, under some cir-

cumstances various problems can occur. It is possible, for example, for the algorithm

to reach a static state known as network paralysis, due to the saturation of the acti-
vation function. Additional problems arise due to the existence of local minima in
the weights–error surface and due to the nonuniqueness of the solutions. Finally, a

common problem that can occur is long training times, as a result of the suboptimal

choice of the learning rate and the momentum values. This can be treated by extend-

ing the backpropagation algorithm and using a variable learning rate and momentum.

We examine these problems and how to tackle them next.

Network Paralysis

One problem that may possibly arise in the training of the network is for the back-

propagation algorithm to reach a stationary state. Network paralysis may occur due to

the values that the network’s weights may reach. If the values of the weights become

too high, this will also lead to very high values of the net input of some hidden

units. Furthermore, if a sigmoid activation function is used, the output of the unit will

be very close to 1. In this case the delta estimated from relations (2.37) and (2.38)

will be very close to zero, as 𝛾j(netpj)[1 − 𝛾j(netpj)] ≈ 0. Hence, the changes of the
weights calculated from relation (2.27) would be practically zero. So, in reality, the

learning process stops.

The same problem would arise in the event that some weights had very low values.

Then the net input of some units will be very small, and as a result the output of the

unit will be very close to zero. Since 𝛾j(netpj)[1 − 𝛾j(netpj)] ≈ 0, the delta would also
be negligible, as would the changes in weights.

Wang et al., (2004) proposed a solution to the problem of network paralysis. For

each training sample they suggested using a different activation function. In addition,

the activation functions would be adjusted continuously during training to avoid

saturation.

Local Minima

Another problem that arises during the training of a network is associated with the

morphology of the weight–error surface (E − w), which for feedforward neural net-
workswith hidden layers is generally very complicated. A simplistic two-dimensional

representation is shown in Figure 2.14, where we see that there is more than one min-

imum (points B, C, and D). The backpropagation algorithm can reach one of these

solutions, depending on the starting point (points A and E).

The way in which the stepwise gradient descent is implemented does not provide

any guarantee that the solution found will be the overall optimal, that is, that it will

correspond to the lower overall error level (point C in Figure 2.14). This solution is

known as the global minimum; other solutions are called local minima. The inherent

TRAINING WITH BACKPROPAGATION 55

Global minimum

B

C

D

E

A

Local minima

Starting point

(initial conditions)

wwCwB wD

E(wC)

E(wB)

E(wD)

E
(w

)

Figure 2.14 Surface weight–error (E − w) with multiple minima. The backpropagation algorithm can
be “trapped” in a local minimum (point B) which does not correspond to the total minimum error
(point C), depending on the starting point of the gradient descent.

weakness of the gradient descent to find the global minimum is due to the selection of

the architecture (topology) of the neural network in relation to the complexity of the

problem. When the complexity of the network is greater than required for a relevant

application and for the size of the training sample, the estimated model will suffer

from a high level of variance. This means that for the same network architecture,

repeated sampling from the training sample, then fitting a model to the new sample,

will result in quite different solutions: in other words, to different weight vectors. On

the other hand, when the network architecture is simpler than necessary—that is, the

number of network parameters is relatively small—the fitted model runs the risk of

being underparameterized or biased.
A simplemethod that is used to increase the chances of finding the globalminimum

is called weight jogging. In this method, when an initial solution is found, a small
and random change is added to the weight vector and the training process continues

until the algorithm converges to a new solution. A simple example of weight jogging

is shown in Figure 2.15. The backpropagation algorithm has converged initially

at point B, which corresponds to a local minimum. In the weight vector of the

solution wB, a small random change is added. The modified vector wC corresponds,
as expected, to a greater level of error, but is located such that if network training

continues, it will lead to the global minimum D.

Of course, there is no guarantee that this process will lead to a better solution, as

it is simply an improvement in the local search carried out by the backpropagation

algorithm. Global search algorithms, as the simulated annealing, deal much better

with the problem of local minima.

56 NEURAL NETWORKS

Global minimum

New starting pointsWeight jogging

B

C

D

A

Local minimum

Starting point

(initial conditions)

wwCwB wD

E(wD)

E(wC)

E(wB)

E
(w

)

Figure 2.15 Small and random changes in the original solution (weight jogging) increase the chances
of finding the global minimum.

Nonunique Solutions

Whether the solution corresponds to a local or a global minimum, it is sometimes not

unique. This means that there are multiple combinations of weights and/or processing

units (i.e., more than one network topology) that correspond to the same value of the

error function (Chen and Hecht-Nielsen, 1991; Chen et al., 1993).

In general, we may have different local minima, derived from different weights

that correspond to the same error level. This case is presented in Figure 2.16 in

solutions Z and G, where E2 = E(wZ) = E(wG). Different initial conditions lead to
different solutions but are equivalent in the sense of minimizing the error function.

Another case is to have many similar solutions corresponding to the same level of

error and to create a flat minimum. This is the plateau that is shown in Figure 2.16,

where the adjacent weight vectors wB, wC, and wD correspond to the same error,
E1 = E(wB) = E(wC) = E(wD). The existence of such plateaus is a characteristic of
the overparameterized networks, where the complexity of their architecture exceeds

the requirements of the particular application. This problem is addressed by such

prunning methods as the ICE (Zapranis and Haramis, 2001), OBS (Hassibi and

Stork, 1993), and OBD (LeCun et al., 1989), algorithms.

CONFIGURATION REFERENCE

Neural networks are nonlinear estimators; hence, there are no a priori assumptions

regarding the structure of the model. As presented earlier, the stepwise algorithms

used for training of the neural networks are known as learning algorithms, due to

their iterative nature. White (1989) has demonstrated that the learning algorithms

CONFIGURATION REFERENCE 57

B C D

Plateau of

equivalent

solutions

E

H

GZ

A

Starting point

(initial conditions)

wCwB wD wZ wG

E2

E1

E
(w

)

Figure 2.16 Weight–error surface (E − w) with a flat minimum. Various vector weights wB, wC, and wD
of the solutions B, C, and D, corresponding to the same level of error, E1. Also, the local minima G and I
correspond to the same level error, E2.

of neural networks can be formulated as a nonlinear regression problem. We have

also demonstrated that the main strength of the neural networks lies in the universal

approximation property. Furthermore, 1 hidden layer is sufficient for a backpropaga-

tion neural network to approximate to any degree any function and its derivatives.

The usual structure of a backpropagation neural network that is used in themajority

of the applications is presented in Figure 2.17. The network has only 1 hidden layer

with 𝜆 hidden units. The input layer consists of m units, without any activation

function. The input signal of these units is identical to the output signal. All other

units of the neural network use the asymmetric sigmoidal activation function with

values in (0, 1). In addition, in the input and output layers, a bias unit is added. These

units do not accept any input, and their output has a constant value of 1. The desired

output of the network can be continuous or discrete.

The number m of the input units is determined by the relevant problem. The term
architecture or topology of a network, A𝜆, refers to the topological arrangement of
the network’s connections. We define a class of neural networks S𝜆:

S𝜆 ≡ {g𝜆(x;w), x ∈ ℜm,w ∈W,W ⊆ ℜp} (2.43)

where g𝜆 (x;w) is a nonlinear function, w = (𝑤1,𝑤2,… ,𝑤p) is the vector of param-

eters (i.e., the weights of network connections), and p is the number of parameters
determined by the topology A𝜆.
The class of neural networks S𝜆 is a set of neural networks that have the same archi-

tecture and whose members are differentiated and simultaneously defined entirely

58 NEURAL NETWORKS

Input

layer

Hidden

layer

Output

layer

Bias term

Bias term

out1

out2

out3

wj

xi

x4

x3

x2

x1

wij

xm

outλ

w +1λ

i=1
netj = ∑ wijxi + wm+1,j

wm+1,j

m

j=1
net = Σ wjoutj + w +1λ

λ

out = g (x;w) = (net)λ γ

γ (net) = 1

1 + e−net

γoutj = (netj)

γ (netj) =
1

1 + e−netj

Figure 2.17 Backpropagation neural network with 1 hidden layer and 1 output unit.

by the weight vector w. In the case of a neural network with a 1-hidden-layer archi-
tecture (Figure 2.17), the number of hidden units 𝜆 defines the different classes

S𝜆 since it uniquely determines the dimension of the parameter vector p, where
p = (m + 2) 𝜆 + 1.
For this type of network, given an input vector x and a weight vector w, the output

of the network g𝜆 (x;w) is

g𝜆 (x;w) = 𝛾

(
𝜆∑
j=1

𝑤j𝛾

(
m∑
i=1

𝑤ijxi +𝑤m+1,j

)
+𝑤𝜆+1

)
(2.44)

where 𝑤ij is the weight of the connection between the input i and the hidden unit j,
𝑤m+1,j is the weight of the connection between the term bias in the input layer m + 1
and the hidden unit j, 𝑤j is the weight of the connection between the hidden unit j
and the output unit, and 𝑤𝜆+1 is the weight of the connection between the bias term
of the hidden layer 𝜆 + 1 unit and the output.

REFERENCES 59

CONCLUSIONS

Artificial neural networks (or simply, neural networks) derive their origins from

biological neural networks. They are systems of parallel and distributed processing

that simulate the basic operating principles of the biological brain.

Feedforward neural networks with at least 1 hidden layer and nonlinear activation

functions have the property of universal approximation. In other words, they can

approximate any function. The stepwise algorithm that is used for their training is

based on the generalization of the delta rule that is used in perceptron networks.

Updating the weights of the network is done by propagating the error backward, so

thismethod is known as the backpropagation algorithm and the networks as backprop-

agation neural networks. The backpropagation algorithm, despite its disadvantages,

is the most commonly used training algorithm, as it is simpler and significantly less

computationally expensive.

From a statistical perspective, neural networks can be formulated as a nonparamet-

ric nonlinear regression model. In this book we treat neural networks as the eminent

expression of nonparametric regression, which constitutes a very powerful approach,

especially for financial applications. The main characteristic of neural networks is

their ability to approximate any nonlinear functions without making a priori assump-

tions about the nature of the process that created the available observations. This is

particularly useful in financial applications, where there are many hypotheses but

little is actually known about the nature of the processes that determine the prices of

assets. Nevertheless, knowledge of the relative theory of neural learning and the basic

models of neural networks are essential for their effective implementation, especially

in complex applications such as the ones encountered in finance.

REFERENCES

Chen, A. M., and Hecht-Nielsen, R. (1991). “On the geometry of feedforward neural network

weight spaces.” Second International Conference on Artificial Neural Networks, 1–4.

Chen, A. M., Lu, H.-M., and Hecht-Nielsen, R. (1993). “On the geometry of feedforward

neural network error surfaces.” Neural Computation, 5(6), 910–927.

Funahashi, K.-I. (1989). “On the approximate realization of continuous mappings by neural

networks.” Neural Networks, 2(3), 183–192.

Hartman, E. J., Keeler, J. D., and Kowalski, J. M. (1990). “Layered neural networks with

Gaussian hidden units as universal approximations.” Neural Computation, 2(2), 210–215.

Hassibi, B., and Stork, D. G. (1993). “Second order derivatives for network pruning: optimal

brain surgeon.” Advances in Neural Information Processing Systems, 164–164.

Hornik, K., Stinchcombe, M., and White, H. (1989). “Multilayer feedforward networks are

universal approximators.” Neural Networks, 2(5), 359–366.

LeCun, Y., Denker, J. S., Solla, S. A., Howard, R. E., and Jackel, L. D. (1989). “Optimal brain

damage.” NIPS, 598–605.

Minsky, M., and Papert, S. (1969). Perceptron: an Introduction to Computational Geometry,
expanded edition. MIT Press, Cambridge, MA, pp. 19, 88.

60 NEURAL NETWORKS

Rosenblatt, F. (1959). Principles of Neurodynamics. Spartan Books, New York.

Rumelhart, D. E., Hintont, G. E., and Williams, R. J. (1986a). “Learning representations by

back-propagating errors.” Nature, 323(6088), 533–536.

Rumelhart, D. E., McClelland, J. L., and University of California–San Diego PDP Research

Group. (1986b). Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, MIT Press, Cambridge, MA.

Wang, X., Tang, Z., Tamura, H., Ishii, M., and Sun, W. (2004). “An improved backpropagation

algorithm to avoid the local minima problem.” Neurocomputing, 56, 455–460.

White, H. (1989). “Learning in artificial neural networks: a statistical perspective.” Neural
Computation, 1, 425–464.

Widrow, B., and Hoff, M. E. (1960). “Adaptive switching circuits.” IRE WESCON Convention
Report, 96–104.

Zapranis, A. D., and Haramis, G. (2001). “An algorithm for controlling the complexity of

neural learning: the irrelevant connection elimination scheme.” Fifth Hellenic European
Research on Computer Mathematics and Its Applications, Athens, Greece.

