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Model Selection:

Selecting the Architecture
of the Network

In this chapter we describe the model selection procedure. One of the most crucial

steps is to identify the correct topology of the network. A desired wavelet network

architecture should contain as few hidden units as necessary; at the same time it should

explain as much variability of the training data as possible. A network with fewer

hidden units than needed would not be able to learn the underlying function; selecting

more hidden units than needed would result in an overfitted model. Therefore, it is

essential to derive an algorithm to select the appropriate wavelet network model for

a given problem.

The simplest way to select the optimal number of hidden units—in other words, the

architecture of the wavelet network—is by trial and error, a method called exhaustive
search. To do so, the training patterns must be split into a training sample and a
validation sample. This method suggests that the optimum number of wavelons is

given by the structure of the wavelet network that gives the minimum error on the

validation set. This method is very simple but also very time consuming, and the

information in the validation sample is not utilized for better training of the wavelet

network.

In early stopping a fixed and large number of hidden units is used in construction
of the network. The weights are allowed to change during the training phase. These

free parameters are growing during the training phase. In early stopping the training

is stopped to avoid overfitting of the wavelet network to the data.
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Another approach to avoid overfitting is regularization. In regularization, a param-
eter larger than zero is specified, and a regularized performance index is minimized

instead of the original mean squared error. The idea is to keep the overall growth of

weights to a minimum such that weights are pulled toward zero. In this process, only

the important weights are allowed to grow; the others are forced to decay.

Both early stopping and regularization use all weights in training. As a result,

the structural complexity of the network is not reduced. Alternatively, in the pruning
method the complexity of the network is reduced so that only the essential weights
and neurons remain in the model. However, the various criteria used in pruning the

weights are not employed in a statistical way.

Finally, another method used to find the optimal architecture of a wavelet network

is minimum prediction risk (MPR). The idea behind MPR is to estimate the out-
of-sample performance of incrementally growing networks. The number of hidden

units that minimizes the prediction risk is the appropriate number of hidden units that

should be used for construction of a wavelet network. In other words, the prediction

risk is a form of measurement of the generalization ability of the wavelet network.

Early methods used information criteria to estimate the minimum prediction risk.
The most popular information criteria are Akaike’s final prediction error (FPE),

generalized cross-validation (GCV), and the Bayesian information criterion (BIC).

Information criteria measure the error between the training data and the network

output, but a penalty term is added for large networks. Information criteria were

derived for linear models, and some of the assumptions that they employ are not

necessarily true for nonlinear nonparametric wavelet networks.

Alternatively, resampling schemes such as bootstrap or cross-validation can
be used. In resampling schemes, different versions of a single statistic that would

ordinarily be calculated from one sample can be estimated. Bootstrap and cross-

validation do not require prior identification of the data-generating process. The

main disadvantage of the application of sampling techniques is the fact that they are

computationally expensive.

THE USUAL PRACTICE

The usual approaches proposed in the literature are early stopping, regularization,

and pruning. In early stopping a fixed and large number of hidden units is used in

construction of the network. In regularization methods the weights of the network

are trained to minimize the loss function plus a penalty term. The idea is to keep the

overall growth of weights to a minimum such that weights are pulled toward zero.

Therefore, only a subset of weights that become most sensitive to the output is used

effectively. In this process, only the important weights are allowed to grow; others

are forced to decay.

Early Stopping

In early stopping a fixed and large number of hidden units are used in construction

of the network. Hence, a large number of weights must be initialized and optimized



THE USUAL PRACTICE 83

during the training phase. The number of weights roughly defines the degrees of

freedom of the network. If the training phase continues past the appropriate number

of iterations and the weights grow very large in the training phase, the network will

begin to learn the noise part of the data and will become overfitted. As a result, the

generalization ability of the network will be lost. Hence, it is not appropriate to use the

wavelet network in predicting new and unseen data. On the other hand, if the training

is stopped at an appropriate point, it is possible to avoid overfitting the network.

A common practice to overcome the problems outlined above is the use of a

validation sample. At each iteration, the network is trained using the training sample.

Then the cost function between the training data and the network output is estimated

and it is used to adjust the weights. Then the generalization ability of the network is

measured using the validation sample. More precisely, the network is used to forecast

the target values of the validation sample using the unseen input data of the validation

sample. The error between the network output and the target data of the validation

sample is calculated. Usually, the validation sample has 10 to 30% the size of the

training sample.

At the beginning of the training phase the errors of both the training and the

validation sample will start to decrease as the network weights are adjusted to the

training data. After a particular iteration the network will begin to learn the noise part

of the data. As a result, the error of the validation sample will begin to increase. This

is an indication that the network is starting to lose its generalization ability and that

the training phase must be stopped.

In the early stopping method a more complex model than needed is used. Hence, a

large number of weightsmust be trained. As a result, large training times are expected.

Moreover, the network incorporates a large number of connections, most of themwith

small weights. In addition, a validation sample should be used. However, in real appli-

cations, usually only a small amount of data is available, and splitting the data is not

useful. Furthermore, growing validation errors indicate the reduction of a network’s

complexity (Anders and Korn, 1999). Finally, the solution ŵn of the network is highly

dependent on dividing the data and the initial conditions (Dimopoulos et al., 1995).

Regularization

Another approach to avoiding overfitting is regularization. In regularization methods

the weights of the network are trained to minimize the loss function plus a penalty

term. Regularization is attempting to keep the overall growth of weights to a min-

imum by allowing only the important weights to grow. The remaining weights are

pulled toward zero (Samarasinghe, 2006). This method is often called weight decay
(Samarasinghe, 2006).

The regularization method tries to minimizes the sum:

W = Ln + 𝛿
J∑
j=1

𝑤2j (4.1)

where the second term is the penalty term, 𝑤j is a weight, J is the total number
of weights in the network architecture, and 𝛿 is a regularization parameter. The
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penalty term is not restricted to the choice above. However, the penalty terms are

usually chosen arbitrarily without theoretical justification (Anders and Korn, 1999).

Moreover, a bad regularization parameter, 𝛿, can severely restrict the growth of

weights, and as result, the network will be underfitted (Samarasinghe, 2006).

Pruning

Similar to other methods, the aim of pruning is to identify those parameters that

contribute the least to network performance. Several approaches have been proposed

to prune networks. However, the significance of each weight is usually not measured

in a statistical way (Anders and Korn, 1999). Reed (1993) has provided an extensive

survey of pruning methods. One of the disadvantages of pruning is that it often does

not take correlated weights into account. Two weights that cancel each other out do

not have any effect at the output of the network; however, each weight may have

a large effect (Reed, 1993). Also, the time when the pruning should stop is usually

arbitrary (Reed, 1993). Reed (1993) separated the pruning algorithms into two major

groups: sensitivity calculation methods and penalty term methods. Here we present

selected methods from each group.

Brute-Force Pruning In brute-force pruning, the simplest method, each weight is

set to zero and the effect on the error is estimated. If the change in the error increases

“too much,” the weight is restored to its value. One way to do so is, first, to estimate

the change in error for every weight and for every pattern and then delete the weight

with the least effect. This procedure is repeated up to a fixed threshold. However, it

is not very straightforward to define whether or not the increase in error is large.

Sensitivity Calculation: Saliency Reed (1993) has estimated the saliency of a

weight using the second derivative of the error with respect to the weight:

𝛿Ln =
p∑
i=1

gi 𝛿𝑤i +
1

2

p∑
i=1

aii 𝛿𝑤
2
i +

1

2

p∑
i=1,i≠j

aij 𝛿𝑤i 𝛿𝑤j + O
(‖𝛿W‖2) (4.2)

where the 𝛿𝑤i’s are the components of 𝛿W, gi are the components of the gradient of
Ln with respect toW, and the aij are the elements of the Hessian matrix H:

gi =
𝜕Ln
𝜕𝑤i

(4.3)

aij =
𝜕2Ln

𝜕𝑤i 𝜕𝑤j
(4.4)
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Since pruning is done on a well-defined local minimum and for small perturbations,

(4.2) can be simplified since the Hessian matrix is very large:

𝛿Ln ≈
1

2

p∑
i=1

aii𝛿𝑤
2
i (4.5)

Then the saliency of weight 𝑤k is given by

S(𝑤i) =
aii𝑤

2
i

2
(4.6)

It can be considered that aii is an indication of the acceleration of the error with
respect to a small perturbation to a weight 𝑤i. Hence, through equation (4.6), an

indication of the total effect of 𝑤i on the error is obtained. The larger the saliency,

the larger the influence of 𝑤i on error. The other entries of the Hessian matrix are

assumed to be zero; therefore, the second derivative with respect to weights other than

itself is ignored (Samarasinghe, 2006). This implies that the weights of the network

are independent. However, this may not be true for a network that has more than the

optimum number of weights.

To apply thismethod, the following procedure is followed. First, a wavelet network

should be trained in the normal way and the saliency computed for each weight.

Then, weights with small values of saliency are removed. This may lead to pruning

of weights as well as neurons. After a removal of a weight, the wavelet network is

trained further. The simplified trained wavelet network should perform as well as the

optimum network with a larger number of weights (Samarasinghe, 2006).

Irrelevant Connection Elimination Scheme An extension of sensitivity calculation

is the irrelevant connection elimination scheme proposed by Zapranis and Haramis

(2001). Once the parameters of the wavelet neural model g𝜆 (x;w) are estimated, we
have to deal with the presence of flat minima (potentially, many combinations of the

network parameters corresponding to the same level of the empirical loss), especially

if the statistical properties of the model are of importance, as is the case in complex

financial applications. To identify a locally unique solution, we have to remove all

the irrelevant parameters: that is, the parameters that do not affect the level of the

empirical loss.

For this purpose we use the irrelevant connection elimination (ICE) scheme,

which is much less computationally demanding than other alternatives. The irrelevant

connection elimination scheme, although it uses the full Hessian of Ln, does not
require inverting the Hessian matrix, a common requirement of other algorithms.

ICE is based on Taylor’s approximation of the empirical loss:

𝛿Ln =
p∑
i=1

gi 𝛿𝑤i +
1

2

p∑
i=1

aii 𝛿𝑤
2
i +

1

2

p∑
i=1,i≠j

aij 𝛿𝑤i 𝛿𝑤j + O
(
(𝛿𝑤)3

)
(4.7)
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where

aij =
𝜕2Ln

𝜕𝑤i 𝜕𝑤j
(4.8)

From (4.7), ICE derives the “saliencies” S(𝑤i) (i.e., the contribution of 𝑤i to 𝛿Ln)
when a small perturbation 𝛿𝑤k is added to all connections:

S(𝑤i) = gi 𝛿𝑤i +
1

2

p∑
j=1

aij 𝛿𝑤i 𝛿𝑤j (4.9)

where 𝛿Ln =
∑p

i=1 S(𝑤i).

At a well-defined local minimum, (4.9) can be simplified by setting gi = 0,
although this is not a requirement. The method can be summarized in the following

steps:

Step 1: Train to convergence.
Step 2: Compute the saliencies S(𝑤i).

Step 3: Deactivate the connection with the least associated saliency, unless it was
reactivated in step 5. When a prespecified maximum number of steps has been

reached, the algorithm STOPS.

Step 4: Train further for a small number of epochs, until the training error has
stabilized.

Step 5: If the training error has increased, reactivate the connection; otherwise,
remove it. Then go to step 3.

Because of possible dependencies in the connections, it is not advisable to remove

more than one connection at a time (the removal of one connection can affect the

standard errors and saliencies of others). This does not pose any computational

problems to ICE, since computing the Hessian is of the same order of complexity as

computing the derivatives 𝜕Ln
/
𝜕𝑤i during training.

MINIMUM PREDICTION RISK

The aim of model selection is to find the least complex model that can learn the

underlying target function. Previous methods do not use the optimal architecture of a

wavelet network. A very large wavelet network is used and then various methods are

developed to avoid overfitting. Smaller networks usually are faster to train and need

less computational power to build (Reed, 1993).

Alternatively, the minimum prediction risk principle can be applied (Efron and

Tibshirani, 1993; Zapranis and Refenes, 1999). The idea behind minimum prediction

risk is to estimate the out-of-sample performance of incrementally growing networks.

Assuming that the explanatory variables x were selected correctly and remain fixed,
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the model selection procedure is the following: The procedure starts with a fully

connected network with no hidden units (in our proposed structure of wavelet net-

works, this is a linear model). The wavelet network is trained, and then the prediction

risk is estimated. Then, iteratively, a new hidden unit is added to the network. The

new wavelet networks are trained and the new prediction risk is estimated at each

step. The number of hidden units that minimizes the prediction risk is the appropriate

number of hidden units that should be used for construction of the wavelet network.

The prediction risk measures the generalization ability of the network. More

precisely, the prediction risk of a network g𝜆(x; ŵn) is the expected performance of

the network on new data that were not introduced during the training phase and is

given by

P𝜆 = E

[
1

n

n∑
p=1

(
y∗p − ŷ∗p

)2]
(4.10)

where (x∗p, y
∗
p) are the new observations that have not been used in the construction

of the network g𝜆(x; ŵn), and ŷ
∗
p is the network output using the new observations,

g𝜆(x
∗;w).
Finding a statistical measure that estimates the prediction risk is not a straightfor-

ward procedure, however. Since there is a linear relationship between the wavelons

and the output of the wavelet network, Zhang (1993, 1994, 1997) and Zhang and

Benveniste (1992) propose the use of information criteria widely applied previously

in linear models. A different approach was presented by Zapranis and Refenes (1999).

An analytical form of the prediction risk (4.10) was presented for sigmoid neural net-

works. However, the assumptions made by Zapranis and Refenes (1999) are not

necessarily true in the framework of wavelet networks, and analytical forms are not

available for estimating the prediction risk for wavelet networks. Alternatively, the

use of sampling methods such as bootstrap and cross-validation can be employed

since they do not depend on any assumptions regarding the model (Efron and Tib-

shirani, 1993). The only assumption made by sampling methods is that the data are

a sequence of independent, identically distributed variables.

ESTIMATING THE PREDICTION RISK USING
INFORMATION CRITERIA

In wavelet networks, the wavelons are connected linearly to the output of the wavelet

network, Zhang (1993, 1994, 1997) and Zhang and Benveniste (1992) propose the

use of information criteria to find the optimal architecture of a wavelet network.

Information criteria are used widely and successfully in estimation of the number of

parameters in linear models. More precisely, Zhang (1994) suggested that Akaike’s

final prediction error (FPE) can be used in various applications. More recently,

Zhang (1997) suggested that generalized cross-validation (GCV) is an accurate tool

for selecting the number of wavelets that constitutes the wavelet network’s topology.
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To estimate the prediction risk and to find the network with the best predicting

ability, a series of information criteria was developed. As the model complexity

increases and more parameters are added to the wavelet network, it is expected that

the fit will improve, but not necessarily the forecasting ability of the wavelet network.

The idea behind these criteria is to measure the error between the training data and

the network output, but at the same time to penalize the complexity of the network.

To select the best architecture of the wavelet network, the following procedure

is pursued. In the first step, a wavelet network with no hidden units is constructed.

The wavelet network is trained and then the corresponding information criterion and

the prediction risk are estimated. In the next step, 1 hidden unit is added to the

architecture of the wavelet network and the procedure is repeated until the network

contains a predefined maximum number of hidden units. The number of hidden units

that produces the smallest prediction risk is the number of the appropriate wavelets

for the construction of the wavelet network.

Akaike’s Information Criterion Several criteria exist for model selection. Early

studies make use of the generalized prediction error (GPE) proposed by Moody

(1992) and the network information criterion (NIC) proposed byMurata et al. (1994).

However, the results by Anders and Korn (1999) indicate that NIC significantly

underperforms other criteria. Alternatively, Akaike’s information criterion (AIC)

(Akaike, 1973, 1974), which was proved to work well in various cases, was used.

AIC is given by

JAIC = 2k + n ln

[
1

n

n∑
p=1

(
yp − ŷp

)2]
(4.11)

where k is the number of parameters of the network and n is the number of train-
ing patterns in the training sample. The target value is given by yp, and ŷpis the
approximation of the target value by the network.

Final Prediction Error Zhang (1994) suggested that Akaike’s final prediction error

(FPE) can be used in various applications. The FPE is given by

JFPE =
1 + k∕n
2n − 2k

n∑
p=1

(
yp − ŷp

)2
(4.12)

Generalized Cross-Validation More recently, Zhang (1997) suggested that gener-

alized cross-validation (GCV) should be used to select the number of wavelets that

constitutes the wavelet network topology. GCV is given by

JGCV =
1

n

n∑
p=1

(
yp − ŷp

)2 + 2HU ⋅ �̂�2

n
(4.13)
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In practice, the noise variance 𝜎2 is not known. In that case it has to be estimated. An

estimate is given by the MSE between the network output and the target data (Zhang,

1997).

Bayesian Information Criterion Similar to GCV is the Bayesian information cri-

terion (BIC), given by

JBIC =
1

n

n∑
p=1

(
yp − ŷp

)2 + k�̂�2 ln(n)
n

(4.14)

To estimate the AIC, FPE, GCV, and BIC, the number of the hidden units is needed.

Because we do not have a priori knowledge of the correct number of hidden units

or parameters of a wavelet network for estimation of GCV and the BIC, we estimate

the criteria above iteratively. The computational cost of these algorithms can be

expressed as a function of wavelet networks to be trained. For example, to estimate

the prediction risk using the FPE or GCV from 1 to five hidden units, five wavelet

networks must be initialized and fully trained. The model selection algorithm using

IC is illustrated in Figure 4.1. It is expected that the prediction risk will decrease

(almost) monotonically until it reaches a minimum and then it will increase (almost)

monotonically. The number of wavelons needed for the construction of the networks

is the number of hidden units that minimize the prediction risk.

The criteria described above for estimation of the prediction risk are derived from

linear models. Usually, these methods are based on assumptions that are not neces-

sarily true in the framework of nonlinear nonparametric estimation. The hypothesis

behind these information criteria is the asymptotic normality of the maximum like-

lihood estimators; hence, the information criteria are not theoretically justified for

overparameterized networks (Anders and Korn, 1999).

Moreover, in fitting problems more complex than least squares, the number of

parameters k is not known (Efron and Tibshirani, 1993) and it is unclear how to
compute the degrees of freedom (Curry and Morgan, 2006) or the effective number

of parameters described by Moody (1992).

Alternatively, the use of sampling methods such as bootstrapping and cross-

validation was suggested (Efron and Tibshirani, 1993). The only assumption made

by sampling methods is that the data are a sequence of independent, identically dis-

tributed variables. Bootstrapping and cross-validation do not require knowledge of

the number of parameters k. Another advantage of bootstrapping and cross-validation
is their robustness. In contrast to sampling methods, both GCV and BIC require a

roughly correct model to obtain an estimate of the noise variance.

ESTIMATING THE PREDICTION RISK USING
SAMPLING TECHNIQUES

Instead of using information criteria to obtain an estimate of the prediction risk,

resampling schemes can be used. Two resampling schemes described in this section
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Train a wavelet network with

zero hidden units

Estimate the information criterion

Add one hidden unit

  =    + 1λ λ

λ λ> max
No

Yes

Choose the model that minimizes

the information criterion

Figure 4.1 Model selection algorithm using information criteria.

are bootstrapping and cross-validation, which do not require prior identification of the

data-generating process. Furthermore, they can approximate the distributional prop-

erties of a small sample ŵn accurately when the data are a sequence of independent,

identically distributed variables. The estimation of these two approaches is asymp-

totically equal. The main disadvantage of the application of sampling techniques is

the fact that they are computationally expensive.

Bootstrapping allows one to gather many alternative versions of a single statistic

that would ordinarily be calculated from one sample. Where a set of observations

can be assumed to originate from an independent, identically distributed population,

bootstrapping can be implemented by constructing a number of new samples of the

data set observed (and equal in size to the data set), each of which is obtained by

random sampling with replacement from the original data set.
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Similarly, in cross-validation, new samples are constructed from the original data

set. However, there are two differences. First, random sampling is performed without

replacement, and second, each sample is split into two parts, the training set and the

validation set.

Bootstrapping

In this section the bootstrapping method is described. In summary, the simple boot-

strapping approach generates new random instances from the original data. Then a

new model is estimated for each sample, and finally, each fitted model is applied in

order to generate an estimate of the prediction risk.

There are two methods of applying bootstrapping: bootstrapping pairs and boot-

strapping residuals. In this book the bootstrapping pairs method is followed. The

bootstrapping pairs method is less sensitive to assumptions than are bootstrapping

residuals (Efron and Tibshirani, 1993). The only assumption behind bootstrapping

pairs is that the original pairs were sampled randomly from some distribution. On

the other hand, in bootstrapping residuals, the distribution of the residuals must

be assumed beforehand. This is a very strong assumption which may lead to false

conclusions.

Typically, a large numberB of new samplesD∗(b)
n = {x∗(b)p , y∗(b)p }np=1 is created from

the original sample, Dn = {xp, yp}np=1, with size n, where b = 1,… ,B. Typically, the
number of samples is 20 < B. Each pattern {xp, yp} has 1∕n probability to be selected
with replacement from the original sample.

Next, we illustrate how bootstrapping works by presenting a very simple example.

Let us assume that the variable x = {1, 2,… , 10} and that the dependent variable y
is given by the relationship yp = x2p. Hence, y = {1, 4,… , 100}. The original data set

consists of 10 patterns {xp, yp}. By applying bootstrapping we create 10 new samples
of size 10 each. An example of 10 bootstrapped samples is presented in Table 4.1.

For each new sample D∗(b)
n , the wavelet network is trained to find the weight

vector ŵ∗(b)
n , and the loss function Ln(ŵ

∗(b)
n ) is estimated. Then an estimation of the

prediction risk is given by

P̂𝜆 =
1

nB

B∑
b=1

n∑
p=1

{
yp − g𝜆

(
xp; ŵ

∗(b)
n

)}2
(4.15)

The previous formula for the prediction risk is the average performance of the

wavelet networks, which were trained on bootstrapped samples, on the original data

set. In other words, it is the average of all loss functions estimated of the bootstrapped

wavelet networks to the original sample.

In the estimation of prediction risk above, the wavelet network from each boot-

strapped sample was used to predict the target values of the original sample. The

estimation above of the prediction risk is very simple in use; however, it is known

that it is not very accurate (Efron and Tibshirani, 1993).
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TABLE 4.1 Simple Bootstrapping Example

Pattern

Sample 1 2 3 4 5 6 7 8 9 10

x∗(1) 5 7 10 10 7 2 1 7 6 10

y∗(1) 25 49 100 100 49 4 1 49 36 100

x∗(2) 8 7 6 3 10 6 1 7 6 1

y∗(2) 64 49 36 9 100 36 1 49 36 1

x∗(3) 9 4 3 2 4 3 7 1 3 3

y∗(3) 81 16 9 4 16 9 49 1 9 9

x∗(4) 9 5 8 7 8 2 10 9 1 5

y∗(4) 81 25 64 49 64 4 100 81 1 25

x∗(5) 4 7 3 6 7 6 5 1 6 5

y∗(5) 16 49 9 36 49 36 25 1 36 25

x∗(6) 2 5 5 6 9 8 9 1 3 5

y∗(6) 4 25 25 36 81 64 81 1 9 25

x∗(7) 10 8 5 4 1 8 6 2 5 2

y∗(7) 100 64 25 16 1 64 36 4 25 4

x∗(8) 8 4 10 1 9 7 6 7 8 1

y∗(8) 64 16 100 1 81 49 36 49 64 1

x∗(9) 9 1 3 2 10 1 6 7 7 9

y∗(9) 81 1 9 4 100 1 36 49 49 81

x∗(10) 1 9 6 7 3 6 8 10 5 1

y∗(10) 1 81 36 49 9 36 64 100 25 1

A method proposed by Efron and Tibshirani (1993) to improve the estimated

prediction risk given by (4.15) is the following. First, the apparent error is estimated:

Aperr = 1

nB

B∑
b=1

n∑
p=1

[
y∗(b)p − g𝜆

(
x∗(b)p ; ŵ∗(b)

n

)]2
(4.16)

Since each wavelet network is estimated using the bootstrapped samplesD∗(b)
n and

is validated on the original sample Dn, the prediction risk P̂𝜆 given by (4.15) can be
considered to be an out-of-sample validation. On the other hand, the apparent error

can be considered to be an in-sample validation. The difference between these two

measures, called the optimism, can be estimated by

Opt = P̂𝜆 − Aperr (4.17)

Finally, the optimism is added to the training error of the original training sample

Dn:

P̃𝜆 = Ln(ŵn) + Opt (4.18)

The number of new samples B is usually over 30 (Aczel, 1993; Efron and Tib-
shirani, 1993). In our implementation 50 new samples were created. It is clear that

as the number of new samples B increases, the bootstrapping method becomes more
accurate but also more computationally expensive. The model selection algorithm

using the bootstrapped method described above is illustrated in Figure 4.2.
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the prediction risk
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  =    + 1λ λ

Figure 4.2 Model selection algorithm using the bootstrap method.
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As in the case of information criteria, the prediction risk is expected to decrease

monotonically until it reaches a minimum and then to increase monotonically. The

number of hidden units that minimizes the prediction risk is selected for construction

of the network.

Cross-Validation

Cross-validation is a standard tool for estimating the prediction error. The idea of

simple validation is to split the training sample Dn = {xp, yp}np=1 into two parts: the
training sample Dtrain = {xp, yp}mp=1and the validation sample Dvalid = {xp, yp}n−mp=1
with m < n. Hence, we can train the network on the training sample and estimate the
prediction risk from the new data of the validation sample. However, additional data

are often not available. In simple validation not all the data available are used for

network training. Hence, available information is lost and it is not utilized during the

training phase of the network.

Cross-validation makes efficient use of the information available (Efron and

Tibshirani, 1993). In the leave-one-out cross-validation proposed by Mosteller and

Tukey (1968), the validation sample consists of only one training pattern. The pro-

cedure is the following. First, we assume that the data consist of n independently
distributed random vectors. Starting with zero hidden units at step j, the jth training
pair {xj, yj} is removed from the training sample. Then a wavelet network is trained

using the reduced sampleDtrain. The trainedwavelet network, g𝜆(x; ŵ
(j)
n−1), is validated

on the validation sample Dvalid, which consists of the jth training pair {xj, yj}.
This procedure is repeated n times and the cross-validation criterion is given by

the equation

CV = 1
n

n∑
p=1

[
yp − g𝜆

(
xp; ŵ

(j)
n

)]2
(4.19)

and it is used as an estimator for the prediction risk E[L(ŵn)] for the wavelet network

g𝜆(x; ŵn). Then 1 hidden unit is added to the network and the procedure is repeated

up to a predefined maximum number of hidden units. The number of hidden units that

generates the smallest prediction risk is the number of the appropriate wavelets for

construction of the wavelet network. Again, it is expected that the prediction risk will

decrease (almost) monotonically until it reaches a minimum and then will increase

(almost) monotonically.

However, the leave-one-out cross-validation is very computationally expensive

since HU ⋅ n networks must be trained. Hence, for large data sets where the training
patterns are several hundreds or thousands, this method is very cumbersome and time

consuming.

Alternatively, 𝑣-fold cross-validation can be used. In this procedure, in the first
step, 𝑣 new subsamples Dj

m of size m < n are created with random sampling without
replacement from the original training sample. Next, starting with zero hidden units,

the subsamples Dj
m are removed one by one from the original sample Dn, and the
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network is trained on the remaining data. The resulting weight parameters are defined

by the vector ŵ
(Dj)

m . Then the trained network is validated at the left-out subsample

Dj
m by estimating the mean squared cross-validation error:

CVDj
= 1

n

∑
[
xp,yp

}
∈Dj

[
yp − g𝜆

(
xp; ŵ

(Dj)

m

)]2
(4.20)

The prediction risk is the average mean squared cross-validation error of all

subsamples and is given by

P̂𝜆 ≡ CV𝜆 = 1
𝑣

∑𝑣

j=1
CVDj

(4.21)

After the estimation of the prediction risk, 1 hidden unit is added to the network

and the procedure is repeated up to a predefined maximum number of hidden units.

The number of hidden units that produce the smallest prediction risk is the number

of appropriate wavelets for construction of the wavelet network. The model selection

algorithm using the cross-validation is illustrated in Figure 4.3.

To illustrate how cross-validation works, a very simple example is presented. Let

us assume that the variable x = {1, 2,… , 10} and that the dependent variable y is
given by the relationship yp = x2p. Hence, y = {1, 4,… , 100}. Our original data set

consists of 10 patterns {xp, yp}. By applying cross-validation we will create five new
samples of size 10 each. Each sample is separated in training and in a test subsample.

Moreover, the training sample consists of the 80% of the observations with the

validation conducted on the remaining 20%. Note that in contrast to bootstrapping

the pairs (xp, yp) are selected randomly from the original data set without replacement.
An example of five samples is presented in Table 4.2. In the case of the leave-one-out

cross-validation, 10 samples would be created and the test sample would contain only

one value. It is clear in this simple example that by using 𝑣-fold cross-validation, the
computational burden of the algorithm can be reduced significantly.

Since 𝑣 ≪ n, 𝑣-fold cross-validation is significantly less computationally expen-
sive than is leave-one-out cross-validation. As 𝑣, increases, the computational burden

increases but also the accuracy of the method increases. When 𝑣 = n the leave-one-
out cross-validation is retrieved. In our implementation, the training data were split

into 50 subsamples.

Model Selection Without Training

The preferred information criteria were estimated by Zhang (1997) after the initial-

ization stage of the network was performed. More precisely, in the SSO and RBS

the preferred information criteria were evaluated after the selection of each wavelet

in the initialization stage. Similarly, when the BE algorithm was used, the preferred

information criteria were evaluated after the elimination of each wavelet in the ini-

tialization stage.
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Figure 4.3 Model selection algorithm using the cross-validation method.
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TABLE 4.2 Simple Cross-Validation Example

Pattern Test Training

Sample 1 2 3 4 5 6 7 8 9 10

x∗(1) 1 9 10 5 7 2 4 3 6 8

y∗(1) 1 81 100 25 49 4 16 9 36 64

x∗(2) 2 9 8 4 10 1 3 6 7 5

y∗(2) 4 81 64 16 100 1 9 36 49 25

x∗(3) 5 8 9 10 3 4 6 7 2 1

y∗(3) 25 64 81 100 9 16 36 49 4 1

x∗(4) 9 8 10 6 1 2 7 5 3 4

y∗(4) 81 64 100 36 1 4 49 25 9 16

x∗(5) 3 1 7 6 2 8 5 4 9 10

y∗(5) 9 1 49 36 4 64 25 16 81 100

Since initialization of the wavelet network is very good, as discussed earlier, the

initial approximation is expected to be very close to the target function. Hence, a

good approximation of the prediction risk is expected to be obtained. The same idea

can also be applied when bootstrapping or cross-validation is used.

As presented in earlier chapters, the computational burden and time needed for the

initialization phase of a wavelet network are insignificant compared to the training

phase. Hence, the procedure above is significantly less computationally expensive.

However, the procedure is similar to early stopping techniques. Usually, early stop-

ping techniques suggest a network with more hidden units than necessary, although

the network is not fully trained to avoid overfitting (Samarasinghe, 2006). From our

experience this method does not work satisfactorily in complex problems.

EVALUATING THE MODEL SELECTION ALGORITHM

To find an algorithm that will work well with wavelet networks and lead to a good

estimation of prediction risk, in this section we compare the various criteria as well as

the sampling techniques discussed earlier. More precisely, in this section we compare

the sampling techniques that are used extensively in various studies with sigmoid

neural networks and two information criteria proposed previously in the construction

of a wavelet network. More precisely, the FPE proposed by Zhang (1994), the GCV

proposed by Zhang (1997), the bootstrapping (BS) and 𝑣-fold cross-validation (CV)
methods proposed by Efron and Tibshirani (1993) and Zapranis and Refenes (1999)

are tested as well as the performance of the BIC criterion.

The following procedure is followed to evaluate each method. First, the prediction

risk according to each method is estimated up to a predefined maximum of hidden

units. Then the number of hidden units that minimizes the prediction risk is selected

for construction of the wavelet network, which will be fully trained. Finally, the MSE

between the wavelet network output and the target function is estimated. The best

network topology will be considered the one that produces the smallest MSE and

shows no signs of overfitting.
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The four methods are evaluated using the functions f (x) and g(x) introduced in
Chapter 3. Both training samples consist of 1.000 training patterns, as in the preceding

section. The wavelet networks are trained using the backpropagation algorithm with

0.1 learning rate and zero momentum. To estimate the prediction risk using the

bootstrapping approach, 50 new networks were created for each hidden unit (B = 50).
Similarly, the prediction risk using the cross-validation method was estimated using

50 subsamples for each hidden unit. In other words, 50-fold cross-validation was

used (𝑣 = 50). All wavelet networks were initialized using the BE algorithm since
our results in previous sections indicate that the BE outperforms the alternative

algorithms.

Case 1: Sinusoid and Noise with Decreasing Variance

In this section we focus on the function f (x). As in Chapter 3, the function f (x) is
given by

f (x) = 0.5 + 0.4 sin 2𝜋x + 𝜀1 (x) x ∈ [0, 1]

where x is equally spaced in [0, 1] and the noise 𝜀1(x) follows a normal distribution
with mean zero and a decreasing variance

𝜎2
𝜀
(x) = 0.052 + 0.1(1 − x2)

In the first case we estimate the prediction risk for a wavelet network with no hidden

units, and iteratively, 1 hidden unit is added until a maximum number of 20 hidden

units is reached. Table 4.3 presents the prediction risk and the suggested hidden units

for each information criterion for the two functions described previously. Four of the

five criteria—the FPE, BIC, BS, and CV—suggest that a wavelet network with only

2 hidden units is sufficient to model function f (x). On the other hand, using the GCV,
the prediction risk is minimized when a wavelet network with 3 hidden units is used.

First, we examine graphically the performance of each criterion. Figure 4.4 shows

the approximation of the wavelet network to the training data using (a) 1 hidden unit,

(b) 2 hidden units, and (c) 3 hidden units. Figure 4.4d shows the training data and

TABLE 4.3 Prediction Risk and Hidden Units for the Four Information Criteriaa

FPE GCV BIC BS CV

Case 1

Prediction risk 0.01601 0.03149 0.03371 0.03144 0.03164

Hidden units 2 3 2 2 2

Case 2

Prediction risk 0.00231 0.00442 0.00524 0.00490 0.03309

Hidden units 8 15 8 8 8

aCase 1 refers to function f(x) and case 2 to function g(x). FPE, final prediction error; GCV, generalized cross-validation;
BS, bootstrapping; CV, 50-fold cross-validation.
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Figure 4.4 Training a wavelet network with (a) 1, (b) 2, and (c) 3 hidden units. The target function is
presented in part (d).

the target function f (x). It is clear that a wavelet network with only 1 hidden unit
cannot learn the underlying function. On the other hand, wavelet networks with 2

and 3 hidden units approximate the underlying function very well. However, when 3

hidden units are used, the network approximation is affected by the large variation of

the noise in the interval [0, 0.25]. To confirm the results above, the MSE between the

output of thewavelet network and the underlying target function f (x) is estimated. The
MSE is 0.001825 when a wavelet network with only 1 hidden unit is used. Adding 1

more hidden unit, 2 in total, the MSE is reduced to only 0.000121. Finally, when 3

hidden units are used, the MSE increased to 0.000267. Hence, two wavelets should

be used to construct a wavelet network to approximate function f (x). The results
above indicate that GCV suggested a more complex model than needed. Moreover, a

wavelet network with 3 hidden units shows signs of overfitting.

From Table 4.3 it is shown that the FPE criterion suggests 2 hidden units; however,

the prediction risk is only 0.01601, in contrast to GCV, BIC, BS, and CV, which is

0.03149, 0.03371, 0.03144, and 0.03164, respectively. To find the correct magnitude

of the prediction risk, a validation sample is used to measure the performance of the

wavelet network with 2 hidden units in out-of-sample data. The validation sample

consists of 300 patterns randomly generated by f (x). These patterns were not used
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Figure 4.5 Out-of-sample prediction for the first case.

for training of the wavelet network. The MSE between the network forecasts and the

out-of-sample targets is 0.048751, indicating that the FPE criterion is too optimistic

as to estimation of the prediction risk. The approximations forecast for the wavelet

network and the out-of-sample target values are shown in Figure 4.5.

Case 2: Sum of Sinusoids and Cauchy Noise

In the second part of Table 4.3, the results are presented for the model selection

algorithm for the function g(x). The function g(x) is given by

g (x) = 0.5x sin x + cos2 x + 𝜀2 (x) x ∈ [−6, 6]

and 𝜀2(x) follows a Cauchy distribution with location 0 and scale 0.05. As in the
first case, the prediction risk for a wavelet network with no hidden units is estimated,

and 1 hidden unit is added iteratively to the wavelet network until the predefined

maximum number of 20 hidden units is reached. The FPE criterion suggests that

7 hidden units are appropriate for modeling the function g(x). On the other hand,
using GCV, the prediction risk is minimized when a wavelet network with 15 hidden

units is used. Finally, using the BIC, bootstrapping, and the cross-validation criteria,

the prediction risk is minimized when a wavelet network with 8 hidden units is used.

In Figure 4.6 the approximation of the wavelet network to the training data using

(a) 7, (b) 8, and (c) 15 hidden units is presented. Part (d) of the figure shows the target

function g(x) and the training data. It is clear that all networks produce similar results,
and it is difficult to compare them visually. To compare the results above, the MSE

between the output of the wavelet network and the underlying target function g(x)
was estimated. The MSE is 0.001611 when a wavelet network with only 7 hidden

units is used. Adding one more hidden unit, 8 in total, the MSE is reduced to only

0.000074, which is also the minimum MSE achieved. Adding additional hidden

units results in an increase in the MSE between the underlying function g(x) and
the wavelet network. Finally, when 15 hidden units are used, the MSE increased to
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Figure 4.6 Training a wavelet network with (a) 7, (b) 8, and (c) 15 hidden units. The target function is
presented in part (d).

0.000190. To find the best network, the MSE between the network approximation

and the underlying function is estimated for a wavelet network with up to 20 hidden

units. The MSE is minimized when a network with 8 hidden units is used. Hence,

the optimum number of wavelets to approximate the function g(x) is 8. The results
above indicate that GCV suggests a more complex model, while the FPE suggests a

simpler model than needed. On the other hand, our results indicate that the BIC and

the sampling techniques again proposed the correct topology of the wavelet network.

As reported in Table 4.3, the estimated prediction risk proposed by the FPE

criterion is 0.002312, in contrast to GCV, BIC, BS, and CV, which is 0.00442,

0.005238, 0.00490, and 0.00331, respectively. To find the correct magnitude of the

prediction risk a validation sample is used to measure the performance of the wavelet

network with 8 hidden units in out-of-sample data. The validation sample consists of

300 patterns randomly generated by the function g(x). These patterns were not used
for the training of the wavelet network. The MSE between the network forecasts and

the out-of-sample targets is 0.0043. Our results again indicate that the FPE criterion

is too optimistic on the estimation of the prediction risk. The out-of-sample data and

the forecast produced by the wavelet network are shown in Figure 4.7.

A closer inspection of Figure 4.6 reveals that the wavelet network approximation

was not affected by the presence of large outliers, in contrast to the findings of Li



102 MODEL SELECTION: SELECTING THE ARCHITECTURE OF THE NETWORK

1.5

1

0.5

0

–0.5

–1

–1.5

–2

–2.5
–6 –4.8 –3.6 –2.4 –1.2 0 1.2 2.4 3.6 4.8 6

Figure 4.7 Out-of-sample prediction for the second case.

and Chen (2002). In this study 8 hidden units were used to construct the wavelet

network, as proposed by 𝑣-fold cross-validation and bootstrapping, while in Li and

Chen (2002) the architecture of the wavelet network had 10 hidden units, as proposed

by the FPE criterion. Our results indicate that the FPE criterion does not perform

as well as sampling techniques (bootstrapping or 𝑣-fold cross-validation) and should

not be used.

Model Selection without Training Estimation of the preferred information criteria

was performed by Zhang (1997) after the initialization stage of the network. More

precisely, in the SSO and RBS the preferred information criterion is evaluated after

the selection of each wavelet in the initialization stage. Similarly, when the BE

algorithm is used, the preferred information criteria are evaluated after the elimination

of each wavelet in the initialization stage. Since initialization of the wavelet network

is very good, the initial approximation is expected to be very close to the target

function. Hence, a good approximation of the prediction risk is expected to be

obtained. The same idea can also be applied when bootstrap or cross-validation

is used. The procedure above is significantly less computationally expensive since

training additional wavelet networks is not required for the bootstrapped samples.

However, the procedure above is similar to early stopping techniques. Usually,

early stopping techniques suggest a network with more hidden units than necessary,

although the network is not fully trained to avoid overfitting (Samarasinghe, 2006),

while they do not work satisfactorily in complex problems.

In the first case the results were similar to the case where the wavelet networks

were fully trained. More precisely, the FPE, bootstrap, and cross-validation methods

suggested that a wavelet network with 2 hidden units is sufficient to model f (x), while
GCV suggested a wavelet network with 3 hidden units. In the second case, both the

information criteria and sampling techniques suggested that a wavelet network with

more than 14 hidden units is needed to model function g(x). On the other hand, the
BIC criterion suggested correctly that 8 hidden units should be used for construction

of the wavelet network. However, as mentioned, the BIC assumes the asymptotic



ADAPTIVE NETWORKS AND ONLINE SYNTHESIS 103

normality of the maximum likelihood estimators. Moreover, from our experience, in

general, information criteria do not perform very well in complex applications. The

results above indicate that when more complex problems are introduced, as in the

second case, this method does not work satisfactorily.

Since sampling techniques are computationally expensive methods, the BIC cri-

terion can be used initially to approximate the optimal number of wavelons. Then

the bootstrap or cross-validation methods can be used (e.g., in ±5 hidden units),
around the number of hidden units proposed by the BIC to define the best network

topology.

ADAPTIVE NETWORKS AND ONLINE SYNTHESIS

In contrast to previous constructivemethods, online approaches do not require that the

number of wavelets be determined before the start of the training (Wong and Leung,

1998). For some applications where real-time responses of the wavelet network are

crucial, online approaches, can be useful. In off-line approaches, if there is a change

in the system parameters, the trained network may not be able to adapt to the change

and has to be retrained. On the other hand, online training and synthesis methods

allow the parameters to be updated after the presentation of each training pattern.

New wavelets are added to the network when it is needed, while wavelets that do not

contribute to the performance of the network anymore are removed.

Cannon and Slotine (1995) and Wong and Leung (1998) used online synthesis

in the construction of wavelet networks. Similarly, Xu and Ho (1999) proposed and

introduced a wavelet network for adaptive nonlinear system identification. The basis

functions were selected online according to the local spatial frequency content of

the approximated function. The adaptive weight updating was based on Lyapunov

stability theory.

In general, an adaptive algorithm can be summarized in the following steps. First,

the appropriate time that a new wavelet should be added to the network must be

determined. Second, if a new wavelet is entered in the network, the optimal position

in which it should be placed must be found. Third, it must be determined if a wavelet

entered previously no longer contributes to the wavelet network approximation and

if it should be removed. Finally, the stopping condition of the algorithm should be

determined.

For the first step, the following procedure is utilized. Assume that, so far, a

wavelet network with j wavelets has been constructed. After each iteration of the
training algorithm theMSE between the network approximation and the target values

is measured. If the MSE is stabilized after a certain point, a new wavelet is entered in

the wavelet network. More precisely, the structure of the wavelet network is increased

by one wavelon (hidden unit). To determine if the MSE is stabilized, the difference

of the MSE between time step t and t − 1 can be compared to a fixed threshold:

MSEt −MSEt−1 < threshold (4.22)
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or alternatively the ratio of the MSE between time step t and t − 1:

MSEt −MSEt−1
MSEt

< threshold (4.23)

In the second step, the optimal position of the new wavelet must be found. In other

words, the newly entered wavelet must be initialized. At the previous stage, when j
wavelets were used, the residuals between the wavelet network approximation and

the target patterns could be found. Hence, the new wavelet, j + 1, can be initialized
on the residuals using the BE method.

Next, the wavelets that were entered in the model previously must be examined.

The contribution of each wavelet to the total wavelet network output is examined.

When the dynamics or the parameters of the underlying system were changed, there

is a possibility that some of the wavelets no longer provide any useful information.

To remove unnecessary wavelons, pruning methods can be employed.

The final problem that must be solved is to determine the stopping time of the

algorithm. If a stopping criterion is not defined, it is possible to construct very large

wavelet networks. Moreover, there is a possibility for the algorithm to be trapped in

an infinite loop between steps 2 and 3. After a new wavelet is entered in the structure

of the wavelet network, an information criterion such as the BIC can be estimated. If

the new wavelet causes the BIC to increase, the algorithm stops.

Adaptive wavelet network can be useful in applications where dynamic systems

are examined. More precisely, in cases where the parameters of the dynamic systems

change, a response of the wavelet network is needed in real time. However, in

problems of function approximation, the results fromWong andLeung (1998) indicate

that this method is very prone to the initialization of the wavelet network. Their results

indicate that the suggested topology of a particular function approximation problem

varied from 4 to 10 hidden units.

CONCLUSIONS

When building a wavelet network a crucial decision that needs to be made is to

choose the number of the wavelons or hidden units. The number of the wavelons

also defines the architecture of the wavelet network. A network with fewer hidden

units than needed would not be able to learn the underlying function; selecting more

hidden units than needed will result in an overfitted model. In both cases the wavelet

network cannot be used for forecasting. Moreover, the results of an analysis based on

an overfitted or underfitted wavelet network are not credible or reliable.

In this chapter, various methods of selecting the optimal number of hidden units

were presented and tested. More precisely, three information criteria and two resam-

pling techniques were evaluated on two simulated cases. The five methods were used

to estimate the prediction risk. In general, the resampling techniques outperformed

the information criteria. In addition, both bootstrapping and cross-validation are not
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based on restrictive assumptions as in the case of information criteria. However,

resampling schemes are computationally expensive methods.

The information criteria performed satisfactorily on the simple example. However,

the results were not good on the more complex problem, with the exception of the

BIC. In general, the results obtained fromBICwere very stable, and this can constitute

a guideline to reduce the computational burden of the resampling techniques.

Alternatively, when dynamic systems are examined and a response from the

wavelet network is needed in real time, an adaptive wavelet network can prove

useful. However, the wavelet forecasts of a wavelet that was constructed adaptively

may be unstable.
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