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Variable Selection:

Determining the
Explanatory Variables

As mentioned in earlier chapters, the model identification procedure is divided into

two parts: model selection and variable selection. In this chapter we focus on the

second part of the model identification procedure, variable selection.

The use of absolutely necessary explanatory variables is known as the principle
of parsimony, or Occam’s razor. In real problems it is important for various reasons
to determine correctly the independent variables. In most financial problems there is

little theoretical guidance and information about the relationship of any explanatory

variable with the dependent variable. As a result, unnecessary independent variables

are included in themodel, reducing its predictive power. The use of irrelevant variables

is among the most common sources of specification error. Also, correctly specified

models are easier to understand and to interpret. The underlying relationship is

explained by only a few key variables, while all minor and random influences are

attributed to the error term. Finally, including a large number of independent variables

relative to sample size (an overdetermined model) runs the risk of a spurious fit.
To select the statistical significant and relevant variables from a group of possi-

ble explanatory variables, an approach involving the significance of statistical tests

of hypotheses is followed. To do so, the relative contributions of the explanatory

variables in explaining the dependent variable in the context of a specific model are

estimated. Then the significance of a variable is assessed. This can be done by testing
the null hypothesis that it is “irrelevant,” either by comparing a test statistic with a

known theoretical distribution with its critical value or by constructing confidence
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intervals for the relevance criterion. Our decision as to whether or not to reject the

null hypothesis is based on a given significance level. The p-value, the smallest sig-
nificance level for which the null hypothesis will not be refuted, imposes a ranking

on the variables according to their relevance to the particular model (Zapranis and

Refenes, 1999).

Evaluating the statistical significance of explanatory variables involves the fol-

lowing three stages:

� Defining a variable’s “relevance” to the model
� Estimating the sampling variation of the relevance measure
� Testing the hypothesis that the variable is “irrelevant”

Before proceeding to the variable selection, a measure of relevance must be

defined. For nonlinear models the derivative 𝜕y
/
𝜕xj is not constant. As a result, new

composite measures of the sensitivity of y on xj were developed. Practitioners usually
employmeasures such as the average derivative and the average derivativemagnitude.

In the next sections, various sensitivity measures are presented. Alternatively, model-

fitness sensitivity (MFS) criteria can be used. The model-fitness sensitivity criteria

quantify the effect of the explanatory variable on the empirical loss and on the

coefficient of determination, R2.
Estimating sampling variability is an important part of this chapter.Without knowl-

edge of the sampling distributions of the relevance measures, there is no way of

knowing to which level the estimates available are affected by random sampling

variation. In this chapter the bootstrapping and cross-validation methods are used to

estimate the sampling distributions and to compute the p-values for variable signifi-
cance hypothesis testing.

In this chapter we also outline a framework for hypothesis testing using nonpara-

metric confidence intervals for the sensitivity and the MFS criteria in the context of

variable selection. In this section, various methods of testing the significance of each

explanatory variable are presented and tested. The purpose of this section is to find an

algorithm that constantly gives stable and correct results when it is used with wavelet

networks.

Once a variable is removed as being insignificant, the correctness of that action has

to be evaluated. It is not uncommon, for example, to overestimate standard error in

the presence of multicollinearity. A usual approach is to compare the reduced model

with the full model on the basis of some performance criterion. For this purpose the

prediction risk is used.Moreover, the adjusted coefficient of determination for degrees

of freedom, R̄2, is computed, and we outline an iterative variable selection process
with backward variable elimination. Finally, we use two case studies to demonstrate

the framework we propose for variable selection.

EXISTING ALGORITHMS

In linear models the coefficient of an explanatory variable reflects the reactions of

the dependent variable to small changes in the value of the explanatory variable.
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However, the value of the coefficient does not provide any information about the

significance of the corresponding explanatory variable. Hence, in linear models,

to determine if a coefficient, and as a result an input variable, are significant, the

t-statistics or p-values of each coefficient are examined. Applying such a method in
wavelet networks is not a straightforward process since the coefficients (weights)

are estimated iteratively and each variable contributes to the output of the wavelet

network linearly through the direct connections and nonlinearly through the hidden

units.Moreover, the finite-sample distribution of the network parameters is not known

either; it must be estimated empirically, or asymptotic arguments have to be used.

Instead of removing the irrelevant variables, one can reduce the dimensionality

of the input space. An effective procedure for performing this operation is principal
components analysis (PCA). PCA has many advantages and has been used in many
applications with great success (Khayamian et al., 2005). This technique has three

effects on the data: It orthogonalizes the components of the input vectors (so that

they are uncorrelated with each other), it orders the resulting orthogonal components

(principal components) so that those with the largest variation come first, and it

eliminates those components that contribute the least to variation in the data set. PCA

is based on the following assumptions:

� The dimensionality of data can be reduced efficiently by linear transformation.
� Most information is contained in those directions where input data variance is

maximum.

The PCA method generates a new set of variables, called principal components.
Each principal component is a linear combination of the original variables. All

the principal components are orthogonal to each other, so there is no redundant

information. The principal components as a whole form an orthogonal basis for

the space of the data. This approach will result in a significantly reduced set of

uncorrelated variables, which will help to reduce the complexity of the network and

prevent overfitting (Samarasinghe, 2006).

In applications where wavelet networks are used for the prediction of future values

of a target variable, PCA can be proved very useful. On the other hand, in applications

where wavelet networks are used for function approximation or sensitivity analysis,

PCA can be proved to be cumbersome. The main disadvantage of PCA is that the

principal components are usually a combination of all the available variables. Hence,

it is often very difficult to distinguish which variable is important and which is not

statistically significant. In addition, extra care must be taken when linking to the

original variables the information resulting from principal components.

PCA cannot always be used since a linear transformation among the explanatory

variables is not always able to reduce the dimension of the data set. Another disad-

vantage of PCA is the fact that the directions maximizing variance do not always

maximize information. Finally, PCA is an orthogonal linear transformation, whereas

the use of a wavelet network implies a nonlinear relationship between the explanatory

variables and the dependent variable.
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Wei et al. (2004) present a novel approach to term and variable selection. This

method applies locally linear models together with orthogonal least squares to deter-

mine which of the input variables are significant. This algorithm ranks the variables

and determines the amount of a system’s output variance that can be explained by each

term. The method assumes that nonlinearities in the system are relatively smooth.

Then, local linear models are fitted in each interval. However, the number of locally

linear models increases exponentially as the number of intervals for each independent

variable is increased (Wei et al., 2004). Also, selecting the optimal operating regions

for the locally piecewise linear models is usually computationally expensive (Wei

et al., 2004).

A similar approach was presented by Wei and Billings (2007) based on fea-

ture subset selection. In feature selection an optimal or suboptimal subset of the

original features is selected (Mitra et al., 2002). More precisely, Wei and Billings

(2007) presented a forward orthogonal search algorithm by maximizing the overall

dependency to detect the significant variables. This algorithm can produce efficient

subsets with a direct link back to the underlying system. The method proposed

assumes a linear relationship between sample features. However, this assumption

is not always true, and the method may lead to a wider subset of explanatory

variables.

SENSITIVITY CRITERIA

Alternatively, one can quantify the average effect of each input variable, xj, on the
output variable, y. The sensitivity of the wavelet network output according to small
input perturbations of variable xj can be estimated either by applying the average
derivative (AvgD) or the average elasticity (AvgL), where the effect is presented as
a percentage and is given by the following equations:

AvgD(xj) =
1

n

n∑
i=1

𝜕ŷ

𝜕xij
(5.1)

AvgL(xj) =
1

n

n∑
i=1

𝜕ŷ

𝜕xij

xij
ŷ

(5.2)

Note that for an estimation of the average elasticity it is assumed that ŷi ≠ 0. The
average elasticity, apart from having a natural interpretation, takes into account the

differences in magnitude between y and x . For example, assume that for the pairs
z1 = {x1, y1} and z2 = {x2, y2} the derivatives of ŷ with respect to x are equal. Then,
in general, the same change in x (in value or percentage change) will not induce the
same change in y, because of the differences in magnitude between x1 and x2 and
y1and y2, even if dy1∕dx1 = dy2∕dx2.
Although the average elasticity conveys more information, in both criteria can-

cellations between negative and positive values are possible. Natural extensions of
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the criteria above are the average derivative magnitude (AvgDM) and the average
elasticity magnitude (AvgLM):

AvgDM(xj) =
1

n

n∑
i=1

||||| 𝜕ŷ𝜕xij
||||| (5.3)

AvgLM(xj) =
1

n

n∑
i=1

||||| 𝜕ŷ𝜕xij
|||||
||||xijŷ |||| (5.4)

Note that for estimation of the average elasticity magnitude, it is assumed that

ŷi ≠ 0. Equations (5.1) to (5.4) utilize the average derivative of the output of the
wavelet network with respect to each explanatory variable. As in averaging proce-

dures, a lot of information is lost, so additional criteria are introduced.

The maximum and minimum derivative (MaxD, MinD) or the maximum and min-
imum derivative magnitude (MaxDM, MinDM) give additional insight into the sen-
sitivity of the wavelet network output to each explanatory variable. However, these

criteria generally cannot be used on their own since they are appropriate only for

some applications and are sensitive to inflection points (Zapranis and Refenes, 1999).

MaxD(xj) = max
i=1…n

{
𝜕ŷ

𝜕xij

}
(5.5)

MinD(xj) = min
i=1…n

{
𝜕ŷ

𝜕xij

}
(5.6)

MaxDM(xj) = max
i=1…n

{||||| 𝜕ŷ𝜕xij
|||||
}

(5.7)

MinDM(xj) = min
i=1…n

{||||| 𝜕ŷ𝜕xij
|||||
}

(5.8)

A way of “standardizing” 𝜕ŷ
/
𝜕xij is to compute the xj’s average contribution to

the magnitude of the gradient vector since the local gradient is calculated from all
derivatives (Zapranis and Refenes, 1999). Locally, the relative contribution of 𝜕ŷ

/
𝜕xij

to the gradient magnitude is given by the ratio

rij =
(𝜕ŷi∕𝜕xij)2‖∇ŷi‖2 =

(𝜕ŷi∕𝜕xij)2∑m

i=1
(𝜕ŷi∕𝜕xij)2

(5.9)

and the xj’s average contribution to the gradient magnitude by

AvgSTD(xj) =
1

n

n∑
i=1

rij (5.10)
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Alternatively, the standard deviation of the derivatives across the sample measures
the dispersion of the derivatives around their mean and is given by

SDD(xj) =

[
1

n

n∑
j=1

(
𝜕ŷ

𝜕xij
− AvgD(xj)

)2]1∕2
(5.11)

Finally, the standard deviation per unit of sensitivity, called the coefficient of
variation, is given by

CVD(xj) =
SDD(xj)

AvgD(xj)
(5.12)

MODEL FITNESS CRITERIA

As an alternative to sensitivity criteria, model fitness criteria such as the sensitivity-
based pruning (SBP) proposed by Moody and Utans (1992) or the effect on the
coefficient of determination of a small pertubation of x can be used.

Sensitivity-Based Pruning The SBPmethod quantifies a variable’s relevance to the

model by the effect on the empirical loss of the replacement of that variable by its

mean. The SBP is given by

SBP(xj) = Ln(x; ŵn) − Ln(x̄
(j); ŵn) (5.13)

where

x̄(j) = (x1,t, x2,t,… , x̄j,… , xm,t) (5.14)

and

x̄j =
1

n

n∑
t=1

xj,t (5.15)

Additional criteria can be used, such as those presented by Dimopoulos et al. (1995).

(Adjusted) Coefficient of Determination A model-fitness sensitivity criterion that

is simpler to interpret is the effect of a variable on the sample coefficient of determi-

nation R2, as measured by the derivative of R2 with respect to xj. The coefficient of
determination is defined as the ratio

R2 =

∑n

i=1
(ŷi − ȳ)2∑n

i=1
(yi − ȳ)2

= SSR
SST

(5.16)
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where SSR and SST are the regression sum of squares and the total sum of squares,

respectively, given by

SSR =
n∑
i=1
(ŷi − ȳ)2 (5.17)

SST =
n∑
i=1
(yi − ȳ)2 (5.18)

The coefficient of determination can also be written as

R2 = 1 − SSE
SST

(5.19)

where SSE is the sum of squared residuals, given by

SSE =
n∑
i=1
(yi − ŷi)

2 (5.20)

Note that SST is fixed for a given sample; hence, the derivative 𝜕R2∕𝜕xj can be
computed by the following relationship:

𝜕R2

𝜕xj
= 1

SST

𝜕SSR

𝜕xj
(5.21)

where

𝜕SSR

𝜕xj
= 2

n∑
i=1

𝜕ŷi
𝜕xj
(ŷi − ȳ) (5.22)

Hence, relationship (5.21) can be written as

𝜕R2

𝜕xj
= 2

SST

n∑
i=1

𝜕ŷi
𝜕xj
(ŷi − ȳ) (5.23)

Alternatively, the adjusted coefficient of determination, R̄2, can be estimated. The
adjusted coefficient of determination is an attempt to take into account automatically

the phenomenon of R2 and increasing spuriously when extra explanatory variables
are added to the model. R̄2 is given by

R̄2 = 1 −
SSE

/
dfe

SST
/
dft

= 1 −
SSE∕(n − p)

SST∕(n − 1)
(5.24)
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where df is the number of degrees of freedom, n is the number of training patterns,
and p is the number of parameters that are adjusted during the training phase of the
wavelet network. The number of parameters is computed by

p = 1 + 2𝜆j + 𝜆 + j = 2(𝜆 + j) + j + 1 (5.25)

where 𝜆 is the number of hidden units and j is the number of input variables.

ALGORITHM FOR SELECTING THE SIGNIFICANT VARIABLES

To test statistically whether or not a variable is insignificant and can be removed

from the training data set, the distributions of the criteria presented in the preced-

ing section are needed. Without the distribution of the preferred measure of rele-

vance, it is not clear if the effects of the variable xi on y are statistically significant
(Zapranis and Refenes, 1999). More precisely, the only information obtained by cri-

teria described in the preceding section is how sensitive the dependent variable is to

small perturbations of the independent variable. It is clear that the smaller the value

of the preferred criterion, the less significant the corresponding variable is. However,

there is no information as to whether or not this variable should be removed from

the model.

We use the bootstrap method to approximate asymptotically the distribution of

the measures of relevance. More precisely, a number of bootstrapped training sam-

ples can be created by the original training data set. The idea is to estimate the

preferred criterion on each bootstrapped sample. If the number of the bootstrapped

samples is large, a good approximation of the empirical distribution of the criterion

is expected. Obtaining an approximation of the empirical distributions, confidence

intervals and hypothesis tests can be constructed for the value of the criterion. The

variable selection algorithm is explained analytically below and is illustrated in

Figure 5.1.

The algorithm startswith a training sample that consists of all available explanatory

variables.

1. Create B bootstrapped training samples from the original data set.

2. Identify the correct topology of the wavelet network following the procedure

described Chapter 4 and estimate the prediction risk.

3. Estimate the preferred measure of relevance for each explanatory variable for

each of the B bootstrapped training samples.

4. Calculate the p-values of the measure of relevance.

5. Test if any explanatory variables have a p-value greater than 0.1. If variables
with a p-value greater than 0.1 exist, the variable with the largest p-value is
removed from the training data set; else, the algorithm stops.

6. Estimate the prediction risk and the new p-values of the reduced model. If the
new estimated prediction risk is smaller than the prediction risk multiplied by a
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prediction risk and the

corresponding p-values of the MFS

Model selection Variable selection

Add one hidden unit

  =    + 1λ λ

Start with all available explanatory

variables

Figure 5.1 Model identification: model selection and variable selection algorithms.

threshold (usually, 5%), the decision of removing the variable was correct and
we return to step 5.

7. If the new prediction risk is greater than the new prediction risk multiplied by a

threshold (usually, 5%), the decision to remove the variable was wrong and the
variable must be reintroduced to the model. In this case the variable with the

next largest p-value which is also greater than 0.1 is removed from the training
sample and we return to step 6. If the remaining variables have p-values smaller
than 0.1, the algorithm stops.
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Resampling Methods for the Estimation of Empirical Distributions

To have a good estimation of the prediction risk as well as an approximation of the

distribution of the measure of relevance, a large number of bootstrapped samples

B are needed. As B increases, the accuracy of the algorithm also increases, but so
does the computational burden. Zapranis and Refenes (1999) presented two different

bootstrap methods, local bootstrap and parametric sampling, that are significantly
less computationally expensive.

Since a unique strong solution of the loss function L(x; ŵn) does not exist, the

local bootstrap is proposed by Zapranis and Refenes (1999). In local bootstrapping,

first a network is trained where the original training sample is used as an input and

the vector ŵn that minimizes the loss function is estimated. Then new samples are

generated from the original training patterns using the bootstrap method. To train the

new samples, the neural networks are not initialized randomly; on the contrary, the

initial conditions are given by the vector ŵn estimated by the initial training sample.

Starting the training of the neural network very close to ŵn, the probability of the

convergence of the neural network to another local minimum is reduced significantly.

A novel approach (parametric sampling) is also presented by Zapranis and Refenes

(1999). The distribution of the weights of a neural network is known. As has been

shown by Galland and White (1988) and White (1989), the asymptotic distribution

of
√
n(ŵn − w0) is a multivariate normal distribution with zero mean and known

covariance matrix C, where ŵn is the estimated vector and w0 is the true vector of
parameters that minimizes the loss function. Since w0 is not known, an estimator Ĉn
of the covariance matrix has to be used.

A basic requirement of parametric sampling is locally identified models, models
without superfluous connections. The most important assumption is that the network

was not converged in a flat minimum (i.e., ŵn has to be a local unique solution). This

can be avoided if the irrelevant connections are removed using pruning techniques.

As a result, an estimate of the standard error of any function of ŵn can be estimated

robustly (Zapranis and Refenes, 1999).

In the framework above, instead of creating new bootstrapped training samples,

Zapranis and Refenes (1999) propose sampling from the distribution of ŵn (para-

metric sampling). As a result, a very large number of parameter vectors ŵ(a)n can be

created. Then any function of ŵn can be estimated using the bootstrapped parameter

vectors ŵ(a)n . This procedure can be applied to any function, like that of the measures

of significance of the explanatory variables presented in the preceding section. The

proposed scheme is orders of magnitude faster than alternative methods since there

is no need to train new networks. For each new parameter vector the corresponding

model fitness or sensitivity criterion is evaluated. However, parametric sampling is

computationally more complex, since the computation and inversion of the Hessian

matrix of the loss function must be estimated in order to compute Ĉn.

However, the bootstrapped samples may differ significantly from the original

sample. Hence, applying local bootstrapping or parametric sampling may lead to

wavelets outside their effective support (i.e., wavelets with value of zero), since
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wavelets are local functions with limited duration. In addition, in contrast to the case

of neural networks, the asymptotic distribution of the weights of a wavelet network

is not known. These observations constitute both local bootstrapping and parametric

sampling inappropriate for wavelet networks.

Alternatively, new samples from training patterns can be constructed. This can be

done by applying bootstrapping from pairs and training a wavelet network for each

sample. Since the initialization of a wavelet network is very good, this procedure

is not prohibitively expensive. The computational cost of this algorithm is B, the
number of wavelet networks that must be trained. As 𝑣-fold cross-validation is much
less computationally expensive and performs as well as bootstrapping, an approach

where 50 new training samples are created according to 𝑣-fold cross-validation can

also be employed.

EVALUATING THE VARIABLE SIGNIFICANCE CRITERIA

In this section the algorithm proposed in the preceding section to select the significant

explanatory variables is evaluated. More precisely, the eight sensitivity criteria and

the model fitness sensitivity criterion are evaluated for the two functions, f (x) and
g(x), presented in Chapter 3.

Case 1: Sinusoid and Noise with Decreasing Variance

First, a second variable is created, which was drawn randomly from the uniform

distribution within the range (0,1). Both variables are considered significant and

constitute the training patterns (xi, yi) of the training data set,where xi = {x1,i, x2,i}and
yi are the target values.Awavelet network is trained in order to learn the target function
f (x), where both x1 and x2 are introduced to the wavelet network as input patterns.
The BE algorithm was used for initialization of the wavelet network. Using cross-

validation and bootstrapping, the prediction risk is minimized when 3 hidden units

are used and is 0.04194. The network converges after 3502 iterations. Comparing

the results with the findings in the preceding section, it is clear that including an

irrelevant variable in our model increases the model complexity and the training time

while reducing the predictive power of the model. Note that as presented in Chapter

4, when only the relevant variable was used, the optimal number of hidden units was

2, while the network converged after only one iteration.

After the wavelet network is fully trained, the various measures of relevance

presented in the preceding section can be estimated. The weights of the direct con-

nections between the explanatory variables and the network output are presented in

Table 5.1. In addition, the following sensitivity criteria are also presented: MaxD,

the MinD, MaxDM, MinDM, AvgD, AvgDM, AvgL, and AvgLM. Finally, the SBP

criterion can be found in the final column of the table. The first part of the table refers

to the full model, where both variables x1 and x2 were used, while the second part
refers to the reduced model, where only the significant variable x1 was used.
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TABLE 5.1 Sensitivity Measures for the First Casea

wi
[0] MaxD MinD MaxDM MinDM AvgD AvgDM AvgL AvgLM SBP

Full model

(two

variables)

X1 0.0161 1.3962 −1.3459 1.3962 0.0005 −0.0529 0.6739 0.2127 1.6323 0.0953

X2 0.0186 0.4964 −0.7590 0.7590 0.0002 0.0256 0.0915 0.0781 0.1953 0.0001

Reduced

model

(one

variable)

X1 0.1296 1.1646 −1.1622 1.1644 0.0014 0.0841 0.7686 0.3165 1.3510 0.0970

awi
[0], the linear connection between the input and output variables; MaxD, maximum derivative; MinD, minimum

derivative;MaxDM,maximum derivativemagnitude;MinDM,minimum derivativemagnitude; AvgD, average derivative;

AvgDM, average derivative magnitude; AvgL, average elasticity; AvgLM, average elasticity magnitude; SBP, sensitivity-

based pruning.

Examining the direct connections of the weights between the explanatory vari-

ables and the network output, 𝑤[0]i , we conclude that both variables have the same

significance, since both weights have almost the same value, with𝑤[0]
2
being slightly

larger. Closer inspection of Table 5.1 reveals a contradiction between AvgL and

AvdD. The AvgL value for the first variable is 0.2127 and for the second variable is

0.0781, indicating that x1 is more significant than x2. On the other hand, AvgD for
x2 is −0.0529 and for x2 is 0.0256, indicating that changes in x1 have an opposite
effect on the dependent variable. In these two criteria, cancellations between negative

and positive values are possible, so it is essential also to examine the AvgLM and

AvgDM. Both criteria are significantly larger in the case of the first variable. The same

results are obtained for the remaining sensitivity criteria. Note that MinD indicates as

significant the variable with the smaller value. Finally, the SBP for the first variable is

0.0953 and for the second variable is only 0.0001, indicating that the second variable

has a negligible effect on the performance of the wavelet network. Next, observing

the values of the various criteria for the reduced model in Table 5.1, we conclude

that the value of the weight, MinDM, and AvgD are affected by the presence of the

second variable.

The previous simple case indicates that of the 10 criteria listed, only three produced

robust results: AvgDM, AvgLM, and SBP. However, perhaps with the exception of

SBP, it is unclear if the second variable should be removed from the training data set.

Next, the algorithm described in the preceding section will be utilized to estimate

the p-values of each criterion. More precisely, the bootstrap and cross-validation
methods will be applied to estimate the asymptotic distributions of the various criteria

presented in Table 5.1. The mean, standard deviation, and p-values for all sensitivity
and model fitness measures for the two variables of the first case are presented

in Table 5.2. Using cross-validation, 50 new samples were created to approximate

the empirical distributions of the various criteria, and the corresponding criteria

and p-values were calculated. As expected, the average values of the criteria are
similar to those presented in Table 5.1. Observing Table 5.2, it is clear that x1
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TABLE 5.2 Variable Significance Testing for the First Case Using Cross-Validationa

MaxD MinD MaxDM MinDM AvgD AvgDM AvgL AvgLM SBP

Full model

(two

variables)

X1 0.9947 −1.5589 1.5589 0.0037 −0.1369 0.6898 −0.0753 1.2667 0.0967

Std. 0.0332 0.0120 0.0120 0.0023 0.0091 0.0051 0.0258 0.0375 0.0006

p-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

X2 0.6231 −0.6099 0.6231 0.0001 0.0575 0.1253 0.0976 0.2137 −0.0001
Std. 0.0342 0.0182 0.0170 0.0001 0.0166 0.0031 0.0235 0.0078 0.0001

p-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0153 0.0000 0.6019

Reduced

model

(one

variable)

X1 — — — — — — — — 0.0970

Std. — — — — — — — — 0.0006

p-Value — — — — — — — — 0.0000

aMaxD, maximum derivative; MinD, minimum derivative; MaxDM, maximum derivative magnitude; MinDM, minimum

derivativemagnitude;AvgD, average derivative;AvgDM, average derivativemagnitude;AvgL, average elasticity;AvgLM,

average elasticity magnitude; SBP, sensitivity-based pruning.

has a larger impact on output y. However, all eight sensitivity measures consider
both variables as significant predictors. As discussed previously, these criteria are

application dependent; model fitness criteria are much better suited for testing the

significance of the explanatory variables (Zapranis and Refenes, 1999). Indeed, the

p-value for x2 using SBP is 0.6019, indicating that this variable must be removed
from the model. On the other hand, the p-value for x1 using SBP is zero, indicating
that x1 is very significant. Finally, the p-value of x1 using SBP in the reduced model
is zero, indicating that x1 is still very significant. Moreover, the average value of SBP
is almost the same in the full and reduced models.

Next, the bootstrap method will be need to estimate the asymptotic distributions of

the various criteria. To approximate the empirical distributions of the various criteria,

50 new bootstrapped samples were created, and their corresponding p-values are
presented in Table 5.3. In the table the same analysis is repeated for the first case,

but the random samples were created using bootstrapping. As in the cross-validation

approach, 50 new bootstrapped samples were created to approximate the empirical

distributions of the various criteria. A closer inspection of Table 5.3 reveals that

MaxD, MinD, MaxDM, MinDM, AvgDM, and AvgLM suggest that both variables

are significant andmust remain in the model. On the other hand, the p-values obtained
using the AvgL criterion wrongly suggests that the variable x1 must be removed from
the model. Finally, SBP and AvgD suggest correctly that x2 must be removed from
the model. More precisely, the p-values obtained using AvgD are 0.0614 and 0.3158
for x1 and x2, respectively, while the p-values obtained using SBP are 0 and 0.9434
for x1 and x2, respectively. Finally, the p-value of x1 using SBP in the reduced model
is zero, indicating that x1 is still very significant. However, while the average value
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TABLE 5.3 Variable Significance Testing for the First Case Using Bootstrappinga

MaxD MinD MaxDM MinDM AvgD AvgDM AvgL AvgLM SBP

Full model

(two

variables)

X1 1.6242 −2.1524 2.2707 0.0031 −0.1079 0.6998 −0.0267 1.3498 0.0982

Std. 1.3929 2.3538 2.4426 0.0029 0.0758 0.0391 0.1651 0.4161 0.0045

p-Value 0.0000 0.0000 0.0000 0.0000 0.0614 0.0000 0.6039 0.0000 0.0000

X2 1.1038 −1.2013 1.4472 0.0003 0.0402 0.1369 0.1033 0.2488 0.0011

Std. 1.4173 2.6560 2.8320 0.0003 0.0477 0.0277 0.1010 0.1244 0.0013

p-Value 0.0000 0.0000 0.0000 0.0179 0.3158 0.0000 0.4610 0.0000 0.9434

Reduced

model

(one

variable)

X1 — — — — 0.0800 — — — 0.0988

Std. — — — — 0.0433 — — — 0.0051

p-Value — — — — 0.0000 — — — 0.0000

aMaxD, maximum derivative; MinD, minimum derivative; MaxDM, maximum derivative magnitude; MinDM, minimum

derivativemagnitude;AvgD, average derivative;AvgDM, average derivativemagnitude;AvgL, average elasticity;AvgLM,

average elasticity magnitude; SBP, sensitivity-based pruning.

of SBP is almost the same in the full and reduced models, the average value of AvgD

is completely different in magnitude and sign.

The correctness of removing a variable from the model should always be tested

further. As discussed in the preceding section, this can be done either by estimating

the prediction risk or the R̄2of the reduced model. The prediction risk in the reduced
model was reduced to 0.0396, while it was 0.0419 in the full model. Moreover, the

R̄2 increased to 70.8% in the reduced model, while it was 69.8% in the full model.
The results indicate that the decision to remove x2 was correct.

Case 2: Sum of Sinusoids and Cauchy Noise

The same procedure is repeated for the second case, where a wavelet network is used

to learn the function g(x) from noisy data. First, a second variable is createdwhichwas
drawn randomly from the uniform distribution within the range (0,1). Both variables

are considered significant and constitute the training patterns. A wavelet network is

trained to learn the target function g(x), where both x1 and x2 are introduced to the
wavelet network as inputs patterns. The BE algorithm was used for initialization of

the wavelet network. Using cross-validation and bootstrapping, the prediction risk is

minimized when 10 hidden units are used and is 0.00336. The network approximation

converges after 18,811 iterations. Again the inclusion of an irrelevant variable to our

model increased the model complexity and the training time while reducing the

predictive power of the model. Note that when only the relevant variable was used

for the training of the wavelet network, only 8 hidden units were used, whereas the

wavelet network was converged after only 1107 iterations.
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TABLE 5.4 Sensitivity Measures for the Second Casea

wi
[0] MaxD MinD MaxDM MinDM AvgD AvgDM AvgL AvgLM SBP

Full model

(two

variables)

X1 −0.0001 1.4991 −1.4965 1.4991 0.0001 0.0032 0.5517 −1.1417 6.5997 0.4202

X2 0.0124 3.4623 −2.5508 3.4623 0.0001 0.0261 0.2691 −0.0095 0.1898 0.0002

Reduced

model

(one

variable)

X1 −0.0963 1.6802 −1.5662 1.6801 0.0019 0.0011 0.6031 −0.8662 9.7935 0.4707

awi
[0], the lineral connection between the input and output variables; MaxD, maximum derivative; MinD, minimum

derivative;MaxDM,maximum derivativemagnitude;MinDM,minimum derivativemagnitude; AvgD, average derivative;

AvgDM, average derivative magnitude; AvgL, average elasticity; AvgLM, average elasticity magnitude; SBP, sensitivity-

based pruning.

Table 5.4 presents the weights of the direct connections between the explanatory

variables and the network output, MaxD, MinD, MaxDM, MinDM, AvgD, AvgDM,

AvgL, and AvgLM sensitivity criteria, and the SBP model fitness criterion. The first

part of the table refers to the full model, where both variables x1 and x2 were used;
the second part refers to the reduced model, where only the variable x1 is used.
From Table 5.4 it is clear that the value of the weight of the direct connections

between the first variable and the network output is smaller than the weight of the

second variable. A closer inspection of the table reveals that almost all measures of

relevance wrongly identify the second variable as more significant than x1. The only
exceptions are the AvgDM and AvgLM criteria. Both criteria give a significantly

larger value in x1. Finally, SBP for the first variable is 0.4202 for the first variable,
while for the second variable it is only 0.0002, indicating that the second variable

has a negligible effect on the performance of the wavelet network. Next, observing

the values of the various criteria for the reduced model on the table, we conclude that

the value of the weight, MinDM, and AvgD are affected again by the presence of the

second variable.

Next, we estimate the p-values of the various criteria for the second case. The
standard deviation and p-values for all sensitivity and model fitness measures for the
two variables of the second case are presented in Table 5.5. Using cross-validation,

50 new samples were created to approximate the empirical distributions of the var-

ious criteria, and the corresponding criteria and p-values were calculated. The table
shows that only AvgLM and SBP indentified the insignificant variable correctly. The

p-values are 0.4838 and 0.6227, respectively, for the two criteria for x2, while in
the reduced model the p-values of x1 are zero. On the other hand, MinD and AvgL
wrongly suggested that x1 should be removed from the model. Finally, the remaining
criteria, MaxD, MinD, MaxDM, AvgD, and AvgDM, suggest that both variables are

significant and should remain in the model.

In Table 5.6 the same analysis is repeated for the second case, but the random sam-

ples were created using bootstrapping. As in the CV approach, 50 new bootstrapped
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TABLE 5.5 Variable Significance Testing for the Second Case Using Cross-Validationa

MaxD MinD MaxDM MinDM AvgD AvgDM AvgL AvgLM SBP

Full model

(two

variables)

X1 1.5624 −1.8437 1.8467 0.0016 −0.0192 0.5865 −2.7769 17.5475 0.4558

Std. 0.0061 0.1623 0.1561 0.0009 0.0038 0.0021 17.5304 14.7331 0.0035

p-Value 0.0000 0.0000 0.0000 0.6897 0.0000 0.0000 0.7184 0.1258 0.0000

X2 0.7745 −1.5054 1.5054 0.0004 −0.1797 0.2349 0.0091 0.2438 0.0002

Std. 0.0214 0.0843 0.0843 0.0003 0.0056 0.0038 0.0659 0.0586 0.0002

p-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3539 0.4838 0.6227

Reduced

model

(one

variable)

X1 — — — — — — — 9.4370 0.4776

Std. — — — — — — — 1.8363 0.0075

p-Value — — — — — — — 0.0000 0.0000

aMaxD, maximum derivative; MinD, minimum derivative; MaxDM, maximum derivative magnitude; MinDM, minimum

derivativemagnitude;AvgD, average derivative;AvgDM, average derivativemagnitude;AvgL, average elasticity;AvgLM,

average elasticity magnitude; SBP, sensitivity-based pruning.

samples were created to approximate the empirical distributions of the various crite-

ria. In the table the analysis for the second case is presented. A closer inspection of the

table reveals that MaxD, MinD, AvgDM, and AvgLM suggest that both variables are

significant and must remain in the model. On the other hand, the p-values obtained
using the AvgL and AvgD criteria wrongly suggest that the variable x1 must be

TABLE 5.6 Variable Significance Testing for the Second Case Using Bootstrappinga

MaxD MinD MaxDM MinDM AvgD AvgDM AvgL AvgLM SBP

Full model

(two

variables)

X1 1.6485 −1.8391 1.9459 0.0006 0.0225 0.5412 0.2908 8.9262 0.4191

Std. 0.3555 0.7505 0.7475 0.0008 0.0736 0.0524 7.0110 5.9525 0.0589

p-Value 0.0000 0.0000 0.0000 0.2867 0.9877 0.0000 0.8708 0.0000 0.0000

X2 10.0490 −7.7106 11.4443 0.0007 0.0269 0.4564 −0.1217 0.6045 0.0024

Std. 16.2599 9.5366 16.9065 0.0005 0.0923 0.2912 0.5508 0.7338 0.0085

p-Value 0.07838 0.0762 0.1597 0.4158 0.6686 0.0000 0.7864 0.0000 0.8433

Reduced

model

(one

variable)

X1 — — 1.7261 0.0009 — — — — 0.4779

Std. — — 0.0916 0.0008 — — — — 0.0255

p-Value — — 0.0000 0.1795 — — — — 0.0000

aMaxD, maximum derivative; MinD, minimum derivative; MaxDM, maximum derivative magnitude; MinDM, minimum

derivativemagnitude AvgD, average derivative; AvgDM, average derivativemagnitude; AvgL, average elasticity; AvgLM,

average elasticity magnitude; SBP, sensitivity-based pruning.



REFERENCES 123

removed from the model. Finally, SBP, MaxD, and Min DM suggest correctly that x2
is not a significant variable and can be removed from the model. More precisely, the

p-values obtained using MaxDM are 0 and 0.1597 for x1 and x2, respectively, while
the p-values obtained usingMinDM are 0.2867 and 0.4158 for x1 and x2, respectively.
Finally, the p-values obtained using SBP are 0 and 0.8433 for x1 and x2, respectively.
Examining the reduced model, where only x1 is used for the training of the WN, the
p-values are zero for x1 when the MaxDM or SBP criteria are used. On the other

hand, the p-value for x1 is 0.1795 when the MinDM is used, indicating that x1 is
insignificant and should also be removed from the model.

Next, the correctness of removing a variable from the model is tested further. As

discussed in the preceding section, this can be done either by estimating the prediction

risk or the R̄2of the reduced model. The prediction risk in the reduced model was
reduced to 0.0008, while it was 0.0033 in the full model. Moreover, the R̄2 increased
to 99.7% in the reduced model, while it was 99.2% in the full model.

CONCLUSIONS

The criteria presented in the preceding section introduce a measure of relevance

between the input and output variables. These criteria can be used for data prepro-

cessing, sensitivity analysis, and variable selection. In this chapter we developed an

algorithm for variable selection based on the empirical distribution of these criteria

and examined their performance.

The results from the previous simulated experiments indicate that SBP gives con-

stantly correct and robust results. In every case, the SBP criterion correctly identified

the irrelevant variable. Moreover, the SBP criterion was stable and had the same

magnitude and sign in both the full and reduced models.

The results of the previous cases indicate that when our algorithm is employed and

the p-values are estimated, the performance of the remaining sensitivity criteria is
unstable. In general, the sensitivity criteria were not able to identify the insignificant

variable. Moreover, they often suggested removal of the significant variable x1. The
sensitivity criteria are application dependent, and extra care must be taken when

they are used (Zapranis and Refenes, 1999). As their name suggests, they are more

appropriate for use in sensitivity analysis than in variable significance testing.

Finally, when the bootstrap method was used, the standard deviation of each

criterion was constantly significantly larger than the values obtained when the cross-

validation was used. Bootstrapped samples contain more variability and may differ

significantly from the original sample. As a result, an unbiased empirical distribution

of the corresponding statistic is obtained.
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