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Model Adequacy:

Determining a Network’s
Future Performance

In this chapter we present various metrics in order to assess a trained network. We

are interested in measuring the predictive ability of a wavelet network in the context

of a particular application. The evaluation of the model usually includes two clearly

distinct, although related stages.

In the first stage, various metrics that quantify the accuracy of the predictions or

the classifications made by the model are used and the model is evaluated based on

these metrics. The term accuracy is a quantification of the “proximity” between the
outputs of the wavelet network and the target values desired. The measurements of

the precision are related to the error function that is minimized (or in some cases,

the profit function that is maximized) during model specification of the wavelet

network model. When an estimate of the model is done by minimizing the squared

error function, the simplest example of such a measurement of accuracy is the mean

squared error (MSE). The most common error criteria are theMSE, the root MSE, the

normalized MSE, the sum of squared errors, the maximum absolute error, the mean

absolute error, the (symmetric) mean absolute percentage error, and Theil’s U index.
In addition, useful and immediate information can be provided by visual exam-

ination of a scatter plot of the network forecasts and the target values. Moreover,

the statistical hypothesis testing of the values of the intercept and the slope of the

regression between the wavelet network outputs and the target values can also pro-

vide useful information. Indicators such as the prediction of change in direction,

independent prediction of change in direction, and the position of sign evaluate the

ability of a wavelet network to predict changes in sign or direction of the values. In
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classification applications, metrics such as the classification rates, relative entropy,

and the Kolmogorov–Smirnov statistic are used. The metrics above provide useful

information about the predictive capabilities of the wavelet network; however, they

are not sufficient for a complete evaluation of the adequacy of our model.

The second step is to assess the behavior and the performance of the wavelet net-

work model under conditions as close as possible to the actual operating conditions of

the application. The greater accuracy of the network model does not necessarily mean

that it will be applied more successfully. For example, in a time-series application

for forecasting returns, it is possible for a model that is characterized by low MSE to

create large losses because of only a few failed predictions that are accompanied by

high costs (Yao et al., 1999).

It is important, therefore, that the performance of the model is evaluated in the

context of decision making that it supports. Especially in the case of time-series

forecasting applications, the performance and the evaluation of the model should be

based on benchmark trading strategies. It is also important to evaluate the behavior of

the model throughout the range of the actual possible scenarios. For example, a trader

should know how a predictive model behaves during an upward or downward trend

in the market, sideways movements, if it is able to predict turning points, and so on.

The wavelet neural model is evaluated using validation samples. The patterns used

in the validation samples were not used during the training of the wavelet network and

represent all possible scenarios that can arise in reality. For example, if the application

concerns prediction of the performance of a stock index, it would not be correct if

the validation sample corresponds solely to a period with a strong upward trend since

the evaluation will be restricted to the specific circumstances. It is possible to use

more than one validation sample, each corresponding to different conditions, to cover

the full range of possible scenarios.

The full understanding of the behavior of the model under different conditions is

a prerequisite for the creation of a successful decision support system or simply a

decision-making system (e.g., automated trading systems). The sensitivity analysis

of the model will help us understand the dynamics and the nature of the process that

the wavelet network has learned during the training phase. An optical analysis of the

relationship between the explanatory and the dependent variable is recommended, by

constructing two- or three-dimensional plots that connect the value of the dependent

variable with the value of one or two explanatory variables, respectively. Using

the model adequacy process and the appealing properties of wavelet networks, the

wavelet neural model ceases to be a “black box” but, rather, it constitutes a reliable

framework where we can base our decisions depending on the application. Almost

always, a pilot phase follows where the final evaluation of our model is performed

under the actual conditions.

TESTING THE RESIDUALS

For a “correctly specified”wavelet neural networkmodel, the nonparametric residuals

yi − g(x; ŵn) = ei (6.1)
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are such that ei ≅ 𝜀i = yi − 𝜑(xi). The residuals {ei} can be used to perform mean-
ingful diagnostic tests about the initial assumptions regarding error term 𝜀 of the

theoretical underlying model yi = 𝜑(xi) + 𝜀i. However, because of the nonparametric
nature of wavelet neural networks, satisfying those tests is a “necessary but not suffi-

cient” condition for model adequacy. As in the case of the methodology proposed by

Box and Jenkins (1970) for ARMA models, the stage of diagnostic checking should

be integrated in the process of specifying a model, but it cannot replace it.

The graphical representation and visual inspection of the residuals can reveal

extreme values, autocorrelations, or periodicities. To test for autocorrelation, the true

nature of the serially correlated error process must be known. However, often this

is not the case. As a result, the methods proposed include the fitting of stationary

time series to ordinary least squares residuals. An example is the Durbin–Watson

test, which has been developed for linear regression models to test the hypothesis that

𝜑 = 0 in the error model ei = 𝜑ei−1 + ai. For linear models it has been shown that
the autocorrelations estimated from the OLS residuals converge to the true autocor-

relations. This observation can lead to tests such as the Box–Pierce and Ljung–Box,

which are used for adequacy testing of ARMA models. These tests will still hold

asymptotically for nonlinear models such as wavelet neural networks, although larger

samples will be needed for finite sample validity (Zapranis and Refenes, 1999). It

should be noted here that the relevant theory behind these tests refers to an observed

time series. Here we use {ei} and we assume that it is sufficiently close to {𝜀i}. In
the following paragraphs we refer to various diagnostic tests, including a test for the

adequacy of the model in the sense of heteroscedasticity presence in the error term.

More sophisticated tests to identify the source of the specification error also exist.

One typical example is Ramsey’s RESET test (Ramsey, 1969), which is based on the

residuals of estimated linear regression models, and it is used to identify specification

errors due to omitted variables or incorrect functional form. A similar test for neural

networks was proposed by White (1989).

Testing for Serial Correlation in the Residuals

Correlogram The autocorrelation function (ACF) can be used to determine whether

there is any pattern in the residuals, and the absence of such a pattern may reveal that

the particular sample of residuals is random. The sample autocorrelation function for

lag k, denoted by r̂k, is defined as follows:

r̂k =
𝛾̂k

𝛾̂0
(6.2)

where 𝛾k is the sample covariance (or autocovariance) at lag k and 𝛾0 is the sample
variance (i.e., the covariance at lag 0), which are given by the following two equations:

𝛾̂k =
∑
(ei − ē)(ei+k − ē)

n
(6.3)

𝛾̂0 =
∑
(ei − ē)2

n
(6.4)
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where ē is the mean value of the residuals and n is the sample size. A plot of r̂k
against k is known as the sample correlogram. It can be shown that if a time series is
purely random, the sample autocorrelation coefficients are asymptotically normally

distributed with zero mean and variance 1∕n. Thus, it can be concluded that the
residuals are random if the autocorrelations calculated are within the limits

− za
1√
n
≤ r̂k ≤ +za

1√
n

(6.5)

with za being the 100(1 − a) percentile point of the standard normal distribution.

Box–Pierce Q-Statistic To test the joint hypothesis that all the autocorrelation

coefficients are simultaneously equal to zero (i.e., to test the null hypothesis H0: r1 =
r2 = ⋯ = rm = 0 against the alternative that not all autocorrelation coefficients are
zero), one can use the Box–Pierce test (Makridakis et al., 2008). The Box–Pierce test

requires computation of the “portmanteau” Q-statistic:

Q = n
m∑
k=1

r̂2k (6.6)

where m is the lag length. Under H0, Q is distributed asymptotically as 𝜒
2
m.

Ljung–Box LB-Statistic A variant of the Box–Pierce Q-statistic is the Ljung–Box
LB-statistic, defined as

LB = n (n + 2)
m∑
k=1

r̂2k
n − k

(6.7)

which under the null hypothesis is also distributed as 𝜒2m. The Ljung–Box test has

better properties than the Box–Pierce test. Typically, the Q-statistic is evaluated for
several choices of m. Under H0, for large n,

E[Q(m1) − Q(m2)] = m2 − m1 (6.8)

so that different sections of the correlogram can be checked for departures from H0.
Furthermore, acceptance of H0 requires one to check the individual autocorrelation
coefficients to see whether a large number of them are close to zero and mask the

presence of a highly significant individual.

Durbin–Watson Statistic The Durbin–Watson test was derived for linear regression

models to test the hypothesis that 𝜑 = 0 in the error model ei = 𝜑ei−1 + ai. The test
statistic is

d =
∑n

i=2 (ei − ei−1)
2∑n

i=2 e
2
i

≈ 2(1 − r̂1) (6.9)
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where r̂1 is the sample autocorrelation at lag k = 1. Durbin and Watson (1951)
calculated bound dL and dU for d, which depend on the number of linear regressors.
The null hypothesis H0 : 𝜑 = 0 versus the alternative H1 : 𝜑 > 0 is not rejected if
d > dU , and it is rejected if d < dL. The test is inconclusive if dL < d < dU . To test
versus H1: 𝜑 < 0, we replace d with 4 − d. The test was described analytically by
Judge et al. (1982). The asymptotic equivalence (locally) of a nonlinear regression

[e.g., the wavelet network model g(x; ŵn)] and its linear approximation around the

true parameter vector w0, as given by the first-order Taylor approximation

g(x;w0) +
𝜕(x;w0)

𝜕ŵT
n

(ŵn − w0) (6.10)

suggests that the test will be approximately valid. However, the applicability of

the Durbin–Watson test for nonlinear models has not been established rigorously

(Zapranis and Refenes, 1999).

EVALUATION CRITERIA FOR THE PREDICTION ABILITY
OF THEWAVELET NETWORK

To evaluate the ability of the wavelet network to predict the level of values, prices,

returns, or trends, various metrics are used. Generally, we can distinguish between

two groups of measurements: (1) measurements regarding the accuracy of the predic-

tion of our model in isolation or compared against another reference model, and (2)

measurements regarding the predictability of the changes in direction of the values.

Also, very often, visual inspection of the scatter plot between the wavelet network

predictions against target values is used, as it provides immediate information. More-

over, in this section we present and analyze the predictive power of the wavelet

network based on statistical hypothesis testing of the values of the parameters of the

linear regression between the outputs of the wavelet network and the target values.

Measuring the Accuracy of the Predictions

The usual metric that is used for quantification of the accuracy of the predictions of

the network is the mean squared error (MSE). To find the MSE, first the difference

between the network predictions and the real target values is estimated. This difference

is squared and then the average is taken. The MSE is given by

MSE = 1
n

n∑
i=1
(yi − ŷi)

2 (6.11)

where yi are the target values, ŷi are the wavelet networks prediction, and n is the
number of observations.

Another measure that is often used is the root mean squared error (RMSE). The

RMSE is simply the squared root of the MSE. Since MSE is considered the variance
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of an unbiased estimator, in the same sense, the RMSE is the standard deviation. The

RMSE is given by

RMSE =

√√√√1

n

n∑
i=1
(yi − ŷi)2 =

√
MSE (6.12)

An extension of the previousmetric is the normalizedmean squared error (NMSE),

which is given by

NMSE =

n∑
i=1
(yi − ŷi)

2

n∑
i=1
(yi − ȳ)2

(6.13)

where ȳ is the average value of the target values:

ȳ = 1
n

n∑
i=1

yi (6.14)

On the other hand, the mean absolute error (MAE) measures the accuracy in

absolute terms:

MAE = 1
n

n∑
i=1

||yi − ŷi|| (6.15)

A metric similar to the MAE is the median absolute error (Md.AE). The median

is the numerical value that separates the higher half of the errors from the lower half.

Hence, to estimate the Md.AE, we first arrange all the absolute errors from the lowest

value to the highest, and then we pick the middle one. If there is an even number of

observations, there is no single middle value; in this case the Md.AE is defined to be

the mean of the two middle values.

Sometimes the sum of squared errors (SSE) is used. The SSE is given by

SSE =
n∑
i=1
(yi − ŷi)

2 (6.16)

In some cases it is useful to estimate the maximum absolute error (MaxAE):

MaxAE = max ||yi − ŷi|| (6.17)

Similarly, the mean absolute percentage error (MAPE) measures the accuracy of

the network prediction in absolute and percentage terms:

MAPE = 100
n

n∑
i=1

||||yi − ŷi
yi

|||| (6.18)
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The difference between the actual value and the prediction is again divided by the

actual value. However, the concept of MAPE has a major drawback in practical

applications. If there are zero values in the data sample, there will be a division by

zero. In the case of a perfect fit, MAPE is zero.

The symmetrical mean absolute percentage error (SMAPE) is an extension of the

MAPE. The SMAPE is given by

SMAPE = 100
n

n∑
i=1

||yi − ŷi||
(yi + ŷi)

/
2

(6.19)

This formula provides a result between 0 and 200%. However, a percentage error

between 0 and 100% is much easier to interpret. Hence, the following formula is used

in practice:

SMAPE = 100
n

n∑
i=1

||yi − ŷi||
yi + ŷi

(6.20)

Often, we want to compare the performance between two models. To compare the

predictive power of a wavelet network and a benchmark, Theil’s U Index is used:

U =

√√√√ n∑
i=1

(
yi − ŷi
yi − fi

)2
(6.21)

where fi are the predictions of the benchmark model. If U = 1, the prediction power
of the wavelet network is equal to the predictive power of the benchmark model. If

U > 1, the performance of the networks is worse than the benchmark model, while if

U < 1, the network’s performance is better. TheU index is generally used in forecast-
ing econometric time series, and the benchmark model is the simple random walk.

Scatter Plots

The visual examination of a scatter plot between the forecasts of the wavelet network

and the target values can provide direct information about the predictive ability of

the network. In a scatter plot, the horizontal axis represents the predictions of the

wavelet network, ŷi, and the vertical axis represents the target values, yi. Each point
on the graph corresponds to a pair of values (yi, ŷi). Clearly, it is desirable that the
points are to be distributed near and around the straight line yi = ŷi which has a
slope of 45◦ and passes through the origin of the axes. In Figures 6.1a and 6.2 we

see this case exactly. On the other hand, Figure 6.1b shows a model that generates

predictions rather randomly. An intermediate situation between the two corresponds

to an intermediate predictor. Other possible cases are presented in Figure 6.1c and d.

In the first case we have a linear relationship but with a slope different from 45◦; in

the second case the network has no predictive power and almost always returns the

same output value.
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Figure 6.1 Various scatter plots between the wavelet network’s predictions and the target values.

Linear Regression Between Forecasts and Targets

Although scatter plots provide an easy and direct (visual) assessment of the predictive

power of the wavelet network, which do not quantify this ability. A very useful way to

quantify the forecasting ability of a wavelet network, which also allows comparison

of different models, is the linear regression between the forecasts of the wavelet

network and the target values: in other words, estimation of the following model:

yi = 𝛽0 + 𝛽1ŷi (6.22)

The estimated parameters that arise from the OLS of the parameters 𝛽0 and 𝛽1
are denoted by b0 and b1, respectively. The residuals of the regression are given by
ei = y1 − (b0 + b1ŷi). Hence, the estimated model is

y1 = b0 + b1ŷi + ei (6.23)
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yi

ŷ
i

(yi, yi)
ˆ

yi – yi ≡ yi – g
2
 (xi; w)ˆ ˆ

yi = yi
ˆ

Figure 6.2 Scatter plot between the wavelet network’s predictions and the target values where the line
yi = ŷi passes through the origin and has a slope of 45◦.

To estimate the t-statistics and p-values of the parameters b0 and b1, a normal distri-
bution is assumed.

If the slope of the regression b1 is equal to zero, there is no linear relationship
between the targets yi and the predicted values ŷi. There are two cases where the
slope of the regression can be zero:

� When the predicted value, ŷi, is constant for every target value.
� When the predicted values, ŷi, and the targets, yi, are completely uncorrelated.

In any other case there is a form of linear relationship. The coefficient of deter-

mination R2 indicates how well data points fit a line or curve. The values of R2 are
between 0 and 1 and given by the following relationship:

R2 = 1 −
SSETP
SSTTP

(6.24)

where SSETP is the sum of the squared errors given by

SSETP =
n∑
i=1
[yi − (b0 + b1ŷi)]

2 =
n∑
i=1

e2i (6.25)
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and SSTTP is the total sum of squares:

SSTTP =
n∑
i=1
(yi − ȳ)2 (6.26)

We use the subscript TP to refer to the regression between the target values and the

values predicted.

The F-statistic informs us if there is a linear relationship between the target values
and the values predicted:

F =
SSTTP − SSETP
SSETP∕(n − 2)

(6.27)

The same information can be obtained from the t-statistic of the slope of the
regression b1. More precisely, the t-statistic is used for the following hypothesis test
regarding the existence of a linear relationship between the target values, yi, and the
values predicted, ŷi:

H0: b1 = 0
H1: b1 ≠ 0 (6.28)

If the slope of the linear regression is zero, there is no linear relationship between

the targets yi and the predictions ŷi. If it is not equal to zero, the slope will be either
positive or negative, and as a result, a linear relationship will exist.

Assuming that the residuals ei follow a normal distribution, the t-statistic follows
the t-Student distribution with 𝑣 = n − 2 degrees of freedom and is given by

tn−2 =
b1

s.e.(b1)
(6.29)

where s.e. (b1) is the standard error of the slope b1, which is given by

s.e.(b1) =
s√∑n

i=1 (ŷi − ̂̄yi)
(6.30)

where s is the standard error of the residuals:

s =

√∑n
i=1 e

2
i

n − 2
=
√
SSETP
n − 2

(6.31)

and

̂̄y = 1
n

n∑
i=1

ŷi (6.32)
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For a large sample and a significance level 𝛼 = 0.05, the critical values of the
t-Student distribution are ±1.96. If the t-statistic is larger than 1.96 or smaller
than −1.96, the hypothesis H0 is rejected. In other words, b1 is statistically sig-
nificantly different from zero; hence, a linear relationship exists between the tar-

gets yi and the predictions ŷi. Alternatively, the p-values can be calculated. The
p-values report the minimum significance level at which the null hypothesis can be
rejected.

The previous test is not sufficient for our analysis. Even if a linear relationship

exists between the targets yi and the predictions ŷi, it is possible that the imaginary
line formed by the pairs (ŷi, yi) does not pass through the origin of the axes or have a
slope different from 45◦, or both.

When the imaginary straight line does not pass through the origin, the constant

term of the regression b0 is different from zero. Therefore, in this case the null

hypothesis H0 that the constant term is zero should be tested against the alternative
H1 that it is different from zero:

H0: b0 = 0
H1: b0 ≠ 0 (6.33)

The test of the hypothesis of a zero value of b0 is based on the t-ratio

tn−2 =
b0

s.e.(b0)
(6.34)

where s.e.(b0) is the standard error of the constant b0, which is given by

s.e.(b1) = s

√
1

n
+

̂̄yi2∑n
i=1 (ŷi − ̂̄yi)2

(6.35)

The t-ratio given by equation (6.34) is compared against the critical value of the
t-Student distribution with 𝑣 = n − 2 degrees of freedom.
Finally, we must test whether or not the slope of the imaginary straight line

formed by the pairs (ŷi, yi) is different from 45
◦. In other words, we want to test the

null hypothesis H0, that the slope of the regression b1 = 1, against H1, that b1 ≠ 1:
H0: b1 = 1
H1: b1 ≠ 1 (6.36)

The t-ratio given by (6.29) is a special version of the statistic

tn−2 =
b1 − 𝛽1,0
s.e.(b1)

(6.37)
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where 𝛽1,0 is the value of the slope b1 under the null hypothesis. Hence, for b1 = 1
we have that

tn−2 =
b1 − 1
s.e.(b1)

(6.38)

It should be noted that if autocorrelation exists in the residuals of the regression

ei, the standard errors of the intercept b0 and the slope b1 of the regression will be
very small. As a result, it will be difficult to accept the null hypotheses H0: b0 = 0
and H0: b1 = 1. For this reason, the statistical Durbin–Watson (DW), which is used
for the diagnosis of autocorrelation in the residues of regression, is also reported.

Summing up, for a properly identified, nonbiased wavelet neural network, a linear

relationship between the targets and the predictions of the network should exist, the

intercept b0 should be equal to zero, and the slope of the regression b1 should be equal
to 1. It should be clarified that this is a necessary but not a sufficient condition for a

proper model identification framework. For example, an overparameterized wavelet

neural network model that “learned” the noise that exists in the training data, but not

the underlying function that generated the observations, will satisfy the foregoing

conditions for the training sample but will be biased with reduced generalization

ability to new data.

The generating process of the observations is given by the relationship

yi = 𝜑(xi) + 𝜀i. (6.39)

where the error 𝜀i is distributed identically and independently with mean zero and

variance 𝜎2
𝜀
. We have that

var
[
(yi − ŷi)

2
]
= var

[
(𝜑(xi) − ŷi)

2
]
+ var

[
𝜀2i

]
⇔ 𝜎2p (x) = 𝜎

2
m (x) + 𝜎

2
e

(6.40)

where 𝜎2p is the prediction variance and 𝜎
2
m is the model variance.

As can be seen from equation (6.40) the size of the dispersion of the pairs (ŷi, yi)
around the imaginary straight yi = ŷi depends on two factors: (1) howwell the wavelet
neural model was identified [i.e., how close the predictions of the network ŷi are to
the unknown underlying function 𝜑(xi)] and (2) the variance of the error term 𝜎2

𝜀
. It

follows that the pairs (ŷi, yi) will lie on the imaginary straight line yi = ŷi if the model
has been specified properly and there is no error term.

Measuring the Ability to Predict the Change in Direction

While the indicators discussed previously examine the accuracy of the prediction,

in some cases we are also interested in predicting the changes in direction of the

dependent value independent of their range. These metrics are often used in the

analysis and forecasting of financial time series and are expressed as percentages.
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The first indicator is the prediction of change in direction (POCID):

POCID = 100
n

n∑
i=1

di (6.41)

where

di =
{
1 (yi − yi−1)(ŷi − yi−1) > 0

0 (yi − yi−1)(ŷi − yi−1) ≤ 0 (6.42)

An extension of the POCID is the independent prediction of change in direction

(IPOCID), given by

IPOCID = 100
n

n∑
i=1

di (6.43)

where

di =
{
1 (yi − yi−1)(ŷi − ŷi−1) > 0

0 (yi − yi−1)(ŷi − ŷi−1) ≤ 0 (6.44)

Finally, an indicator often used in forecasting financial returns is the prediction of

sign (POS), given by

POS = 100
n

n∑
i=1

di (6.45)

where

di =
{
1 yi ⋅ ŷi > 0

0 yi ⋅ ŷi ≤ 0 (6.46)

TWO SIMULATED CASES

In this section we demonstrate how the previous metrics can be used in two simulated

cases to assess the model adequacy of a wavelet network. The first case is the sinusoid

with a decreasing variance in the noise, and the second case is a summation of two

sinusoids with Cauchy noise. Both cases were discussed in earlier chapters.

Case 1: Sinusoid and Noise with Decreasing Variance

As discussed in Chapters 3 and 4, a wavelet networkwith 2 hidden units was used. The

initialization method was presented in Chapter 3 and various methods for selecting

the optimal architecture of the wavelet network were presented in Chapter 4. In this
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TABLE 6.1 Case 1: Residuals Testinga

Parameter p-Values

n/p Ratio 125.1250

Mean 0.0001

Median 0.0045

S. dev. 0.1771

DW 1.9594 0.5199

LB Q-stat. 42.5310 0.0024

JB stat. 74.26664 0.0010

KS stat. 10.5471 0.0000

R2 0.71044

R̄2 0.70840

aS. dev., standard deviation; DW, Durbin–Watson; LB, Ljung–Box;

KS, Kolmogorov–Smirnov.

section we examine how well the wavelet network was trained on the data: in other

words, the ability of the network to learn the data and then forecast the future values

of the underlying function.

Testing the Residuals First, the residuals of the trained networks will be examined.

In Table 6.1 the various descriptive statistics as well as various tests on the residuals

are presented. The mean of the residuals is close to zero with a standard deviation

of 0.17. Both the Durbin–Watson and the Ljung–Box tests reject the hypothesis

of uncorrelated residuals. Similarly, the Komlogorov–Smirnov and Jarque–Berra

statistics indicate the absence of normality in the residuals, which is logical taking

into account the generating process of the residuals. Finally, both the R2 and the R̄2

show a good fit of the network to the data.

Error Criteria Various error criteria are presented in Table 6.2. These criteria will

help us assess the fit of the wavelet network to the data: in other words, how well

the wavelet network learned the data. All criteria are very small, with MSE and

NMSE 0.0313 and 0.286, respectively. On the other hand, the MAPE and SMAPE

are 119.39% and 44.74%, respectively. Note that there is a large presence of noise

to the data. As a result, the error criteria will increase. The wavelet network learned

the underlying function successfully as presented in earlier chapters without being

affected by the noise.

Scatter Plot Figure 6.3 is a scatter plot of the real values versus the values forecasted

TABLE 6.2 Case 1: Error Criteriaa

Md.AE MAE MaxAE SSE RMSE NMSE MSE MAPE SMAPE

0.0866 0.1276 0.6813 31.3626 0.1770 0.2896 0.0313 119.39% 44.74%

aMd.AE, median absolute error; MAE, mean absolute error; MaxAE, maximum absolute error; SSE, sum of squared

errors; RMSE, root mean square error; NMSE, normalized mean squared error; MSE, mean square error; MAPE, mean

absolute percentage error; SPAME, symmetric mean absolute percentage error.
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Figure 6.3 Scatter plot for the first simulated case.

for the wavelet network. As can be seen, the forecasts and the targets are in line, but

there is a large dispersion, caused by the large noise term.

RegressionBetween theForecasts and theTargetValues The estimated parameters

of the regression between the forecasted values and the target values are presented

in Table 6.3. Close inspection reveals that parameter b0 is not statistically different
from zero, while the parameter b1 is not statistically different from 1. Moreover, the
linear regression is statistically significant, according to the F-statistic.

Changes in Direction The POCID, IPOCID, and POS criteria are presented in

Table 6.4. In this application the aim is to learn the underlying process that is masked

by a large noise part with increasing variance. As a result, we expect the POCID and

IPOCID to be relatively low. More precisely, the POCID and IPCOID are 75.4% and

50.9%, respectively, while the POS is 97.5%.

TABLE 6.3 Case 1: Regression Statistics for the First Simulated Casea

Parameter p-Values S.E. T-Stat.

b0 0.0001 0.9934 0.0114 0.0083

b1 1.0000 0.0000 0.0202 49.5080

b1 = 1 test 1.0000 0.9996 0.0202 −0.0004
R2 0.7104

F 2451.1000 0.0000

DW 1.9594 0.49959

aS.E., squared errors; DW, Durbin–Watson.



140 MODEL ADEQUACY: DETERMINING A NETWORK’S FUTURE PERFORMANCE

TABLE 6.4 Case 1: Change-in-Direction Metricsa

POCID IPOCID POS

75.4% 50.9% 97.5%

aPOCID, prediction of change in direction; IPOCID, indepen-

dent prediction of change in direction; POS, prediction of sign.

TABLE 6.5 Case 1: Out-of-Sample Residual Testinga

Parameter p-Values

n/p Ratio 37.5000

Mean 0.0031

Median −0.0089
S. dev. 0.2211

DW 1.8484 0.1876

LB Q-stat. 36.7980 0.0124

JB stat. 5.2543 0.0617

KS stat. 5.3766 0.0000

R2 0.6578

R̄2 0.6496

aS. dev., standard deviation; DW, Durbin–Watson; LB, Ljung–Box;

KS, Kolmogorov–Smirnov.

Out-of-Sample Forecasts In this section the out-of-sample performance of the

wavelet network is evaluated. The various descriptive statistics as well as various

tests on the out-of-sample residuals are presented in Table 6.5. The mean of the

residuals is close to zero with a standard deviation of 0.22. Both the Durbin–Watson

and Ljung–Box tests reject the hypothesis of uncorrelated residuals. Similarly, the

Komlogorov–Smirnov test indicates the absence of normality in the residuals. On

the other hand, the normality hypothesis is accepted at a 5% confidence level using

the Jarque–Berra statistic. Hence, comparing Tables 6.1 and 6.5, we can conclude that

there are similar circumstances that generated the training and the validation sample.

Finally, both R2 and R̄2 show the good prediction ability of the network, considering
the large amount of noise.

Next, the accuracy of the prediction is evaluated. In Table 6.6 various error criteria

are presented. The values of themetrics are similar to those presented in Table 6.2. The

MSE is 0.0487, indicating the very good forecasting ability of the wavelet network.

On the other hand, MAPE and SMAPE are relatively high, presenting the high impact

of the large noise term.

TABLE 6.6 Case 1: Out-of-Sample Error Criteriaa

Md.AE MAE MaxAE SSE RMSE NMSE MSE MAPE SMAPE

0.1243 0.1669 0.7171 14.6254 0.2208 0.3422 0.0487 145.67% 62.59%

aMd.AE, median absolute error; MAE, mean absolute error; MaxAE, maximum absolute error; SSE, sum of squared

errors; RMSE, root mean squared error; NMSE, normalized mean squared error; MSE, mean squared error; MAPE, mean

absolute percentage error; SPAME, symmetric mean absolute percentage error.
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Figure 6.4 Case 1: out-of-sample scatter plot.

The scatter plot of the out-of-sample forecasts and the target values is presented in

Figure 6.4, and the estimated parameters of the linear regression between the values

forecasted and the target values are presented in Table 6.7. A close inspection of

the table reveals that the parameter b0 is not statistically different from zero, while
the parameter b1 is not statistically different from 1 at a confidence level of 5%.

Moreover, the linear regression is statistically significant according to the F-statistic.
Finally, as presented in Table 6.8, POCID, IPOCID, and POS are 65.9%, 45.5%, and

92.3%, respectively.

TABLE 6.7 Case 1: Out-of-Sample Regression Statisticsa

Parameter p-Values S.E. T-Stat.

b0 −0.044029 0.082175 0.025245 −1.744089
b1 1.08430 0.000000 0.044898 24.150415

b1 = 1 test 1.08430 0.061413 0.044898 1.877597

R2 0.661841

F 583.243 0.000000

DW 1.870093 0.235214

aS.E., squared error; DW, Durbin–Watson.

TABLE 6.8 Case 1: Change-in-Direction Metricsa

POCID IPOCID POS

65.9% 45.5% 92.3%

aPOCID, prediction of change in direction; IPOCID, indepen-

dent prediction of change in direction; POS, prediction of sign.
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TABLE 6.9 Case 2: Residuals Testinga

Parameter p-Values

n/p Ratio 38.5000

Mean 0.0002

Median 0.0004

S. dev. 0.0661

DW 1.9415 0.3540

LB Q-stat. 10.9627 0.9472

JB stat. 908,651.8641 0.0000

KS stat. 14.4117 0.0000

R2 0.9974

R̄2 0.9973

aS.dev., standard deviation; DW, Durbin–Watson; LB, Ljung–Box;

KS, Kolmogorov–Smirnov.

Case 2: Sum of Sinusoids and Cauchy Noise

As discussed in Chapters 3 and 4, a wavelet network with 8 hidden units was used.

This simulated case incorporated large outliers to the data. In this section we examine

how well the wavelet network was trained on the data. In other words, we assess

the ability of the network to learn the data and then forecast the future values of the

underlying function.

Testing the Residuals First, the residuals of the trained networks are examined. The

various descriptive statistics as well as various tests on the residuals are presented

in Table 6.9. The mean of the residuals is close to zero, 0.002, while the standard

deviation is only 0.0661. The Ljung–Box tests reject the hypothesis of correlation

on the residuals. The Komlogorov–Smirnov and the Jarque–Berra statistics indicate

the absence of normality in the residuals, which is logical given the fact the residuals

were generated by a Cauchy process. Finally, both the R2 and the R̄2 show a good fit
of the network to the data, with values over 99.7%.

Error Criteria Various error criteria are presented in Table 6.10. These criteria will

help us assess the fit of the wavelet network to the data: in other words, how well

the wavelet network learned the data. A closer inspection of the table reveals that all

criteria are very small, indicating a very good fit of the wavelet network to the data.

The MSE and NMSE 0.0044 and 0.0026, respectively. On the other hand, MAPE and

SMAPE are only 3.80% and 2.03%, respectively.

TABLE 6.10 Case 2: Error Criteriaa

Md.AE MAE MaxAE SSE RMSE NMSE MSE MAPE SMAPE

0.0084 0.0201 1.1068 4.3683 0.0661 0.0026 0.0044 3.80% 2.03%

aMd.AE, median absolute error; MAE, mean absolute error; MaxAE, maximum absolute error; SSE, sum of squared

errors; RMSE, root mean squared error; NMSE, normalized mean squared error; MSE, mean squared error; MAPE, mean

absolute percentage error; SPAME, symmetric mean absolute percentage error.
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Figure 6.5 Scatter plot for the second simulated case.

Scatter Plot Figure 6.5 is a scatter plot of the real values versus the values forecasted

for the wavelet network. As can be seen, the forecasts and the targets are in line.

RegressionBetween theForecasts and theTargetValues The estimated parameters

of the regression between the forecasted values and the target values are presented in

Table 6.11. A close inspection reveals that the parameter b0 is not statistically different
from zero, while the parameter b1 is not statistically different from 1. Moreover, the
linear regression is statistically significant according to the F-statistic.

Changes in Direction The POCID, IPOCID, and POS criteria are presented in

Table 6.12. In this application the aim for the wavelet network is to learn the under-

lying process in the presence of large outliers. The POCID, IPOCID, and POS are

81.40%, 75.10%, and 99.80%, indicating that the wavelet network can successfully

identify and predict the changes in the direction of the underlying function.

TABLE 6.11 Case 2: Regression Statistics for the Second Simulated Casea

Parameter p-Values S.E. T-Stat.

b0 0.0002 0.9147 0.0021 0.1072

b1 0.9999 0.0000 0.0016 619.8138

b1 = 1 test 0.9999 0.9577 0.0016 −0.0531
R2 0.9974

F 384,170.0000 0.0000

DW 1.9415 0.338

aS.E., squared error; DW, Durbin–Watson.
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TABLE 6.12 Case 2: Change-in-Direction Metricsa

POCID IPOCID POS

81.40% 75.10% 99.80%

aPOCID, prediction of change in direction; IPOCID, independent

prediction of change in direction; POS, prediction of sign.

TABLE 6.13 Case 2: Out-of-Sample Residuals Testinga

Parameter p-Values

n/p Ratio 11.5385

Mean 0.0043

Median −0.0008
S. dev. 0.0655

DW 2.0068 0.9523

LB Q-stat. 15.3770 0.7544

JB stat. 143,397.8894 0.0000

KS stat. 7.9658 0.0000

R2 0.9971

R̄2 0.9969

aS. dev., standard deviation; DW, Durbin–Watson; LB, Ljung–Box;

KS, Kolmogorov–Smirnov.

Out-of-Sample Forecasts In this section the out-of-sample performance of the

wavelet network is evaluated. The various descriptive statistics as well as various

tests on the out-of-sample residuals are presented in Table 6.13. The mean of the

residuals is close to zero with a standard deviation of 0.06. The Ljung–Box test

accepts the hypothesis of uncorrelated residuals. Similarly, the Komlogorov–Smirnov

and Jarque–Berra tests indicate the absence of normality in the residuals. Finally, both

R2 and R̄2 are over 99.6%, showing the good predictive ability of the network.
Next, the accuracy of the prediction is evaluated. Various error criteria are pre-

sented in Table 6.14. The values of the metrics are similar to those presented in

Table 6.10. MSE, NMSE, and RMSE are 0.0043, 0.0029, and 0.0656, indicating the

very good forecasting ability of the wavelet network. On the other hand, MAPE and

SMAPE are only 3.88% and 0.19%.

Figure 6.6 is a scatter plot of the out-of-sample forecasts and the target values.

The estimated parameters of the linear regression between the values forecasted

and the target values are presented in Table 6.15. A close inspection of the table

TABLE 6.14 Case 2: Out-of-Sample Error Criteriaa

Md.AE MAE MaxAE SSE RMSE NMSE MSE MAPE SMAPE

0.0074 0.0198 0.8572 1.2903 0.0656 0.0029 0.0043 3.88% 0.19%

aMd.AE, median absolute error; MAE, mean absolute error; MaxAE, maximum absolute error; SSE, sum of squared

errors; RMSE, root mean squared error; NMSE, normalized mean squared error; MSE, mean squared error; MAPE, mean

absolute percentage error; SPAME, symmetric mean absolute percentage error.



TWO SIMULATED CASES 145

y = 0.99*x + 0.0049

1.5

1

0.5

0

–0.5

–1

–1.5

–2

–2.5
–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5

Data

Linear

Figure 6.6 Case 2: out-of-sample scatter plot.

TABLE 6.15 Case 2: Out-of-Sample Regression Statisticsa

Parameter p-Values S.E. T-Stat.

b0 0.0049 0.1928 0.0038 1.3052

b1 0.9944 0.0000 0.0031 324.9527

b1 = 1 test 0.9944 0.0664 0.0031 −1.8425
R2 0.9972

F 105,594.2273 0.0000

DW 2.0384 0.7830

aS.E., squared error; DW, Durbin–Watson.

reveals that the parameter b0 is not statistically different from zero and the parameter
b1 is not statistically different from 1 at a confidence level of 5%. Moreover, the

linear regression is statistically significant according to the F-statistic. Finally, as
presented in Table 6.16, POCID, IPOCID, and POS are 82.29%, 79.93%, and 99.33%,

respectively.

TABLE 6.16 Case 2: Change-in-Direction Metricsa

POCID IPOCID POS

86.29% 79.93% 99.33%

aPOCID, prediction of change in direction; IPOCID, independent

prediction of change in direction; POS, prediction of sign.
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CLASSIFICATION

In classification applications, the primary objective is to determine the group to which

an “object” (person, company, product, etc.) belongs (Green and Carroll, 1978). In

finance, some of the usual classification applications are: prediction of the success

or failure of a new product, determination of credit risk of client, and bankruptcy

probability.

In statistical terminology such applications are known as applications of discrim-
inant analysis. Discriminant analysis is the appropriate statistical approach when the
dependent variable is categorical—nominal or nonmetric—while the independent

variables are numerical.

If the dependent variable is composed of two groups or classifications, it is called

discriminant analysis of two groups. When the dependent variable is composed of
three or more groups or classifications, it is called multiple discriminant analysis.
Discriminant analysis involves extraction of the linear combination of dependent

variables that will better distinguish among the a priori fixed groups. The linear

combinations for a discriminant analysis are derived from an equation that takes the

following form:

z = 𝑤1x1 +𝑤2x2 + ⋅ ⋅ ⋅ +𝑤mxm (6.47)

where i = 1,… ,m, xi are the independent variables,𝑤i are the discriminant weights,

and z is the discriminant score. In the case of wavelet networks, the linear relationship
(6.47) is replaced by the following nonparametric relationship:

z = g𝜆
(
x; ŵn

)
(6.48)

From equation (6.47) it can be derived that in discrete analysis each independent

variable is multiplied by its respective weight and then the products are added to

estimate the discrete score of vector xi. The average value of the discrete scores of
all individuals within a given group is called a centroid. The number of centroids is
equal to the number of groups. For simplicity, we restrict our analysis to applications

with only two centroids. The greater the distance between the centroids, the smaller

the overlap of the distributions of distinct scores of the two groups and therefore the

better the distinct function.

A distinct function that provides good separation between classes A and B is

presented in Figure 6.7.On the other hand, a distinct function that performs a relatively

poor separation between classes A and B is presented in Figure 6.8.

Assumptions and Objectives of Discriminant Analysis

The basic assumptions under the (linear) discriminant analysis is a multivariate

normality of the independent variables and unknown (but equal) dispersion and

covariance matrices for the groups as defined by the dependent variable (Green and

Carroll, 1978; Harris, 2001).
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Figure 6.7 Good separation between groups A and B and the optimal cutoff value for samples of the
same size.

Additionally, it must be ensured that the independent variables are truly linearly

independent and that multicollinearity between the input variables does not exist. This

assumption becomes especially important when stepwise variable selection methods,

such as the ones presented in Chapter 5, are used (Hair et al., 2010).

Finally, regarding the size of the sample (either of the training or of the validation

sample), a general rule that many studies suggest is that the sample must contain at

least 20 observation for each independent variable (Hair et al., 2010).

Cutting score

Class A Class B

Classify as B

Classify as A

ZA
–

ZB
–

ZCE

Figure 6.8 Insufficient separation between groups A and B and the cutoff value for samples of the
same size.
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The objectives of discriminant analysis are summarized as follows:

� To create models for the classification of individuals or objects into groups on

the basis of their scores on several variables.
� To determine whether statistically significant differences exist between the aver-

age score profiles of the two (or more) a priori defined groups.
� To determine the independent variables that contribute most in the average

discriminant score.

It is clear from the foregoing objectives that discriminant analysis is useful in the

correct classification of statistical units into groups or classes or in an understanding

of the differences among the various groups. Hence, discriminant analysis can be

used either as a predictive technique or as a type of profile analysis (Hair et al., 2010).

In this book we are interested in using discriminant analysis as a predictive technique.

Validation of the Discriminant Function

The next step in discriminant analysis is the validation. After estimation of the

discriminant function, the statistical significance of the function must be estimated.

This can be done either by the calculation of chi-square or the Mahalanobis D2

statistics.Although these statistics assess the significance of the discriminant function,

they do not provide any information about the predictive power of the function.

On the other hand, the predictive power of the discriminant function can be

determined by the classification matrix. The classification matrix can be related to

the concept of the R2 in linear regression. As in the case of linear regression, there
are cases where the regression is statistically significant; however, the R2 is very
low. In other words, the linear regression explains a very small percentage of the

variance. Similarly, the discriminant function can be statistically significant but with

low predictive ability. In discriminant analysis the percentage of the cases classified

correctly is called the hit ratio and is analogous to R2.

Cutting Score Determination Before proceeding with construction of the classi-

fication matrix, we need to determine the cutting score. The cutting score criterion
is the score against which each case’s discriminant score is compared to determine

into which group the observation should be classified. To construct the classification

matrix, the optimal cutting score or critical Z values must be determined. The optimal
cutting score will differ depending on whether the sizes of the groups are equal or

unequal.

If the two groups are of equal size, that is, have the same number of observations,

the optimal cutting score will be located in the middle of the distance between the

two centroids. In this case the cutting score is given by

z =
z̄A + z̄B
2

(6.49)
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Figure 6.9 Cutting score for two classes of unequal sample size.

where z is the critical cutting score value for equal group sizes, z̄A is the centroid for
group A, and z̄B is the centroid for group B.
If the two groups are not of equal size, the cutting score is estimated by a weighted

average as follows:

z =
nAz̄A + nBz̄B
nA + nB

(6.50)

where z is the critical cutting score value for unequal group sizes, z̄A is the centroid
for group A, z̄B is the centroid for group B, nA is the number of observations in group
A, and nB is the number of observations in group B. An example of a cutting score
for two groups of unequal size is presented in Figure 6.9. Note that formula (6.49) is

a special case of (6.50) with nA = nB. Furthermore, in formulas (6.49) and (6.50), a
normal distribution and a known covariance are assumed.

In determining the optimal cutoff score, the cost of classifying a case incorrectly

should be taken into account. If the costs of an incorrect prediction in various cases are

about the same, the optimal cutoff score will be the one that will classify incorrectly

the smaller number of cases in all groups. If the costs of misclassifications are not

the same, the optimal cutoff score will be the one that minimizes the total cost of the

misclassification. For an in-depth analysis in defining the optimum cutoff score, we

refer to Dillon and Goldstein (1984) and Huberty et al. (1987).

For construction of the classification matrix, for each case in which it is included

in the testing sample, its discriminant score must be compared against the cutting

score. Then each case is classified as follows:

� Classify case n intro group A if zn < zcs.
� Classify case n intro group B if zn > zcs.
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TABLE 6.17 Classification Matrix

Forecast

Target 0 1 Total

0 𝛼 𝛽 𝛼 + 𝛽
1 𝛾 𝛿 𝛾 + 𝛿
Total 𝛼 + 𝛾 𝛽 + 𝛿 𝛼 + 𝛽 + 𝛾 + 𝛿

Here zn is the discriminant score of observation n and zcs is the critical cutting score
value.

The results of the classification are represented in matrix form. Table 6.17 shows

an example of a classification matrix.

The significance of the classification accuracy can be determined by the following

t-test in the case of two equal sample groups:

t =
p − 0.5√

0.5 (1 − 0.5)∕n
(6.51)

where p is the proportion classified correctly and n is the sample size. Formula (6.51)
can easily be modified to be used with more groups and unequal sample sizes.

Evaluating the Classification Ability of a Wavelet Network

In the preceding section, the classification accuracy of a discriminant function was

measured by the hit ratio, which is obtained by the classification matrix. Additional

measures that can describe the predictive and classification accuracy are presented in

this section.

Relative Entropy The first measure presented, the relative entropy, can be estimated

as follows:

RE = −1
n

[ nA∑
s=1

ln
(
1 − y(s)

A

)
+

nB∑
t=1

ln
(
y(t)
B

)]
(6.52)

where nA and nB are the observations in class A (0) and B (1), respectively, and y
(s)
A

and y(t)
B
are the outputs of the network for the patterns s in class 0 and t in class 1. If

the relative entropy is close to zero, it indicates a good fit to the data.

Kolmogorov–Smirnov Statistic Another indicator of the classification power of a

wavelet network that can be used is the Kolmogorov–Smirnov (KS) statistic. To

estimate the KS statistic, cumulative histograms of the projected outputs of the

network are computed and their overlaps are estimated.

The KS statistic is the maximum distance between the respective percentile values

of the two histograms. If the output values of the model were random, the cumulative
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histograms would both be linear and the KS statistic would be close to zero. If the

model were perfect, the KS statistic would be equal to 1.

Maximum Chance Criterion Before we proceed with our analysis, we must define

what is considered an acceptable level of prediction for a distinct function. This

depends on the percentage number of observations that can be classified correctly

in a random manner. If every class consists of the same number of observations, the

percentage is 1 divided by the number of classes.

However, when the number of observations is different for each class, the maxi-

mum chance criterion is used. This criterion is determined by the largest class. For

example, if the data set consists of two classes, where the first has 65 observations

and the second has 35, the maximum chance criterion is 65%. In other words, if our

model cannot classify correctly at least 65% of the observations, it does not have any

classification power.

Proportional Chance Criterion The preceding criterion should be used when the

sole objective aim of the analysis is to maximize the proportion of cases classified

correctly. However, we are usually interested in the correct classification in both

classes. In other words, the criterion above does not take into account the classification

in the smaller group. Returning to the preceding example, where class A (0) had 35

observations and class B (1) had 65 observation. If we classify all cases (all of the

100 cases) as 1, our strategy will produce 65 correct classifications.

Alternatively, the proportional chance criterion can be used:

PRO = p2 + (1 − p)2 (6.53)

where p is the percentage of the cases that belong to classA and 1 − p is the percentage
of the cases that belong to class B.

Classification Accuracy Relative to Chance A crucial question that must be asked

is whether our model has a percentage of correct classification significantly larger

than would be expected by chance. If the wavelet network has classification accuracy

greater than the one that can be expected by chance, we can proceed on the inter-

pretation of the discriminant functions. Otherwise, an analysis would not provide

meaningful results (Hair et al., 2010).

The following quick criterion is presented by Hair et al. (2010): The classification

accuracy should be at least 25% greater than that achieved by chance. For example,
if chance accuracy is 50%, the classification accuracy should be at least 62.5%.
A more robust test is Press’s Q-statistic. This measure compares the number of

correct classifications with the total sample size and the number of groups. The value

calculated is then compared with a critical value obtained for chi-square with 1 degree

of freedom. If the estimated value is greater than the critical value, a significantly

better classification ability can be obtained using the model than by chance.
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Press’s Q-statistic is given by

Q = [n − (c × k)]2

n (k − 1)
(6.54)

where n is the sample size, c the number of correct classifications, and k the number
of classification groups. This test is sensitive to sample size, where large samples are

more likely to show significance than small sample sizes of the same classification

rate.

Sensitivity The sensitivity test measures the ability of a model to identify positive

results. The sensitivity, also called the true positive rate, is given by the relationship

sensitivity =
true positives

true positives + false negatives
=
true positives

total positives
(6.55)

Specificity Similarly, the specificity test measures the ability of a model to identify

negative results. The specificity, also called the true negative rate, is given by the
following relationship:

specificity =
true negatives

true negatives + false positives
=
true negatives

total negatives
(6.56)

Rate of Correctness (Hit Ratio) As already presented, the rate of correctness or hit

ratio measures the percentage of the correct classification of the wavelet network:

RC =
true positives + true negatives

true positives + true negatives + false positives + false negatives
(6.57)

Rate of Missing Chances The rate of missing chance measures the percentage of

true cases that were classified as false:

RMC =
false negatives

false negatives + true positives
(6.58)

Rate of Failure The rate of failure measures the percentage of false cases identified

as true.

RF =
false positives

false positives + true negatives
(6.59)

Fitness Functions The criteria above can be used to construct fitness functions.

Fitness functions are useful for comparing different models. An example of a fitness

function is

fitness = 0.6 RC − 0.1 RMC − 0.3 RF (6.60)

In equation (6.60), different weights can be used, depending on the application.
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Case 3: Classification Example on Bankruptcy

In this section a different problem is considered. A wavelet network is constructed

to classify if a firm will or will not go bankrupt based on various attributes. The

data set contains samples from 240 Greek firms. Each instance has one of two

possible classes: bankrupt or nonbankrupt. The two groups have the same number

of firms; hence, there are 120 firms in each group. The objective is to construct a

wavelet network that accurately classifies each firm. The classification is based on

four attributes proposed by Altman and Saunders (1997):

X1 =
working capital

total assets

X2 =
retained earnings

total assets

X3 =
earnings before interest and tax

total assets

X4 =
book value of equity

total liabilities

Our results will be compared against a linear classification model.

The data were split randomly into training and validation samples. The training

sample consists of 168 (70%) cases. The validation sample consists of 72 (30%) cases

and is used to evaluate the predictive and classification power of the trained wavelet

network.

In the training sample, 86 firms went bankrupt and were given the value 0, and 82

firms that were not bankrupt and were given the value 1. The cutting score is 0.4882.

A classification matrix of the training sample using a wavelet network is presented

in Table 6.18. A closer inspection of the table reveals very good classification rates.

More specifically, the wavelet network classified correctly 56 nonbankrupt firms and

70 bankrupt cases. Hence, the wavelet network classified correctly 126 of 168 cases

(75%). The specificity of the models is 68.29% and the sensitivity is 81.40%. On

the other hand, the rate of failure and the rate of missing chances are 18.60% and

31.71%, respectively. Finally, the fitness function given by (6.60) is 0.3625.

Similarly, in Table 6.19 the classification matrix is presented when a linear model

is used. A closer inspection reveals that the classification ability of the linear model

in-sample is worse. The hit ratio is only 70.83% and the sensitivity and specificity

TABLE 6.18 In-Sample Classification Matrix: Wavelet Network

Forecast

Target Nonbankrupt Bankrupt Total Sensitivity Specificity

Nonbankrupt 56 26 82 68.29% 81.40%

Bankrupt 16 70 86 Rate of Missing Chances Rate of Failure

Total 72 96 168 31.71% 18.60%
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TABLE 6.19 In-Sample Classification Matrix: Linear Case

Forecast

Target Bankrupt Nonbankrupt Total Sensitivity Specificity

Bankrupt 55 27 82 67.07% 74.42%

Nonbankrupt 22 64 86 Rate of Missing Chances Rate of Failure

Total 77 91 168 32.93 25.58%

TABLE 6.20 Evaluation of the Classification Ability of the Wavelet Network

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

51.19% 63.99% 50.03% 42 75.00%

aPress’s Q critical values at confidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.

are 67.07% and 74.42%, respectively. Finally, the fitness function is reduced and is

only 0.3153.

The evaluation of the classification ability of the wavelet network is presented

in Table 6.20. The maximum chance criterion is 51.19% and the heuristic method

presented by Hair et al. (2010) is 63.99%. Finally, the proportional chance criterion

is 51.77%. The hit ratio is significantly larger than the various chance criteria and

is 75%. Hence, the model is predicting significantly better than chance. This is

also confirmed by the large value of Press’s Q-statistic, which is greater than the
critical values at confidence levels 0.1, 0.05, and 0.01. Similarly, the evaluation of

the classification ability of the linear model is presented in Table 6.21. The hit ratio

is 70.83% and Press’s Q-statistic is higher than the critical values. Hence, both the
wavelet network and the linear model predict significantly better than chance.

Out-of-Sample Next, the forecasting and classification ability of the trainedwavelet

network is evaluated in the validation sample. The data of the validation sample were

not used during the training phase.Hence, these are newdata thatwere never presented

to the wavelet network.

In the validation sample there are 40 bankrupt cases given the value 0 and 32

nonbankrupt cases given the value 1. The classification matrix of the training sample

using the wavelet network is presented in Table 6.22. A closer inspection of the table

reveals very good prediction ability and classification rates. More specifically, the

wavelet network classified correctly 24 nonbankrupt cases and 31 bankrupt cases.

Hence, the wavelet network classified correctly 55 of 72 cases (76.39%). The speci-

ficity of the models is 77.50% and the sensitivity is 75%. On the other hand, the rate

TABLE 6.21 Evaluation of the Classification Ability of the Linear Model

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

51.19% 63.99% 50.03% 29.16 70.83%

aPress’s Q critical values at confidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.
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TABLE 6.22 Out-of-Sample Classification Matrix: Wavelet Network

Forecast

Target Nonbankrupt Bankrupt Total Sensitivity Specificity

Nonbankrupt 24 8 32 75.00% 77.50%

Bankrupt 9 31 40 Rate of Missing Chances Rate of Failure

Total 33 39 72 25.00% 22.50%

TABLE 6.23 Out-of-Sample Classification Matrix: Linear Case

Forecast

Target Nonbankrupt Bankrupt Total Sensitivity Specificity

Nonbankrupt 23 9 32 71.88% 65.00%

Bankrupt 14 26 40 Rate of Missing Chances Rate of Failure

Total 37 35 72 28.12% 35.00%

of failure and the rate of missing chances are low, 22.50% and 25%, respectively.

Finally, the fitness function is 0.3658.

The out-of-sample classification matrix of the linear model is presented in

Table 6.23. It is clear that the classification accuracy is reduced when a linear model

is used. More precisely, the sensitivity and specificity were reduced to 71.88% and

65% while the linear model classified correctly only 49 of the 72 cases. Similarly, the

rate of missing chances and the rate of failure were increased to 28.12% and 35%.

Finally, the fitness function is 0.2752.

The evaluation of the classification ability of the wavelet network and the linear

model are presented in Tables 6.24 and 6.25, respectively. The maximum chance

criterion is 55.56% and the heuristic method presented by Hair et al. (2010) is

69.44%. Finally, the proportional chance criterion is 50.62%. The hit ratio of the

wavelet network is significantly larger than themaximum chance and the proportional

chance criteria and is 76.39%. Similarly, the hit ratio of the linear model is 68.06%.

Hence, both the linear and the wavelet network models are predicting significantly

better than chance. This is confirmed by the large value of Press’s Q-statistic, which

TABLE 6.24 Out-of-Sample Evaluation of the Classification Ability of the Wavelet Network

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

55.56% 69.44% 50.62% 20.05 76.39%

aPress’s Q critical values at confidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.

TABLE 6.25 Out-of-Sample Evaluation of the Classification Ability of the Linear Model

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

55.56% 69.44% 50.62% 9.39 68.06%

aPress’s Q critical values at condidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.
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is greater than the critical values at confidence levels 0.1, 0.05, and 0.01. However,

it is clear that the wavelet network outperforms the linear model. Not only is the

hit ratio significantly higher when a wavelet network is used, but the rate of failure,

which leads to false decisions and loss of money, is also significantly smaller.

CONCLUSIONS

In this chapter various metrics for measuring model adequacy and the predicting

ability of a wavelet network were presented. First, various tests were presented that

test the properties of the residuals of the fitted wavelet network. Next, the forecasting

ability of a wavelet network was tested using scatter plots and a linear regression

between the values forecasted obtained from the wavelet network and the target

values. Depending on the application, we may be interested in three categories of

predictions. In the first case, we are interested in value forecasting. In this case, the

predictive power of thewavelet network ismeasured as an expression of the difference

between the target values and the output of the network. Second, in classification

applications we are interested in the correct classification of various cases. In this

case the predictive power of the network is measured as the ability of the wavelet

network to classify the individual cases correctly. Finally, there are applications where

we are interested only in the sign or in the change in the direction of the values. In

this case, metrics such as the POS and IPOCID are used.

In this section the wavelet network models were tested for adequacy in three cases.

The first two were time-series approximation and forecasting problems; the last was

a classification problem. More precisely, in the last case study, a wavelet network was

constructed and used to classify the credit risk of firms. Our results indicate that the

nonlinear nonparametric wavelet network outperforms the linear model significantly.
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