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Modeling Uncertainty:
From Point Estimates to

Prediction Intervals

In earlier chapters a frameworkwas presentedwhere awavelet network can efficiently

be constructed, initialized, and trained. In this chapter we discuss the reliability of

estimates of wavelet networks, since forecasts are characterized by uncertainty due

to (1) inaccuracy in the measurements of the training data, and (2) limitations of

the model. More precisely, in this chapter the framework proposed is expanded by

presenting two methods for estimating confidence and prediction intervals.

The output of the wavelet network is the approximation of the underlying function

f (x) obtained from the noisy data. Inmany applications, and especially in finance, risk
managers may be more interested in predicting intervals for future movements of the

underlying function f (x) than simply point estimates. For example, financial analysts
who want to forecast the future movements of a stock are interested not only in the

prices predicted but also in the confidence and prediction intervals. For example, if

the price of a stock moves outside the prediction intervals, a financial analyst will

take a position in the stock. If the price of the stock is below the lower bound, the

stock is traded lower that it should be and a long position must be taken. On the other

hand, if the price stock is above the upper bound of the prediction interval, the stock

is too expensive and a short position should be taken.

In real data sets the training patterns are usually inaccurate, since they contain noise

or they are incomplete due to missing observations. Financial time series especially

are dominated by these characteristics. As a result, the validity of the predictions of

our model (as well as of any other model) is questioned. The uncertainty that results
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from the data, called the data noise variance 𝜎2
𝜀
, contributes to the total variance

of the prediction (Breiman, 1996; Carney et al., 1999; Heskes, 1997; Papadopoulos

et al., 2000).

On the other hand, presenting to a trained network new data that were not intro-

duced to the wavelet networks during the training phase, additional uncertainty is

introduced to the predictions. Since the training set consists of a finite number of

training pairs, the solution ŵn is likely not to be valid in regions not represented in the

training sample (Papadopoulos et al., 2000). In addition, the iterative algorithm that

is applied to train a wavelet network may converge to a local minimum of the loss

function. This source of uncertainty, which arises frommisspecifications in the model

or in the parameter selection as well as from limitations of the training algorithm also

contributes to the total variance of the prediction, is called the model variance 𝜎2m
(Papadopoulos et al., 2000).

The model variance and the data noise variance are assumed to be independent.

The total variance of the prediction is given by the sum of two variances:

𝜎2p = 𝜎
2
m + 𝜎

2
𝜀

(7.1)

To apply wavelet networks in financial applications, a statistical measure of the

confidence of the predictions must be derived.

If the total variance of a prediction can be estimated, it is possible to construct

confidence and prediction intervals. In the first case we are interested in the difference

between the network’s output and the true underlying generating process; in the

second case we are interested in the difference between the network’s output and the

value observed. We explore this in the remainder of the chapter.

THE USUAL PRACTICE

In the framework of classical sigmoid neural networks, the methods proposed for

constructing confidence and prediction intervals fall into three major categories: the

analytical, the Bayesian, and the ensemble network methods. Analytical methods

provide good prediction intervals only if the training set is very large (De Veaux

et al., 1998). They are based on the assumptions that the noise in the data is inde-

pendent and identically distributed with mean zero and constant standard deviation.

In real problems that hypothesis usually does not hold. As a result, there will be

intervals where the analytical method either over- or underestimates the total vari-

ance. Finally, with analytical methods the effective number of parameters must be

identified, although pruning schemes such as the Irrelevant Connection Elimination

scheme can be used to solve this problem. On the other hand, Bayesian methods are

computationally expensive techniques that need to be tested further (Zapranis and

Refenes, 1999; Ζαπράνης, 1999). Results from Papadopoulos et al. (2000) indicate
that the use of Bayesian methods and the increase in the computational burden are not

justified by their performance. Finally, analytical and Bayesian methods are compu-

tationally complex since the inverse of the Hessian matrix must be estimated, which

under certain circumstances can be very unstable.
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Finally, ensemble network methods create different versions of the initial network

and then combine the outputs to provide constancy to the predictor by stabilizing the

high variance of a wavelet network. In ensemble networkmethods the new versions of

the network are generally created using bootstrapping. The only assumption needed

is that the wavelet network provides an unbiased estimation of the true regression.

Moreover, ensemble networks can handle nonconstant variance. Assuming a constant

variance is a simplification of reality. In real data sets the variance changes over time

as new data arrive. Similarly, in finance, the variance of daily data changes as new

information arrives at the traders. Hence, we suppose that the total variance of the

prediction is not constant and is given by

𝜎2p (x) = 𝜎
2
m(x) + 𝜎

2
𝜀
(x) (7.2)

The methods most often cited are bagging (Breiman, 1996) and balancing (Carney

et al., 1999; Heskes, 1997). In the following sections we adapt these two methods

to construct confidence and prediction intervals under the framework of wavelet

networks. A framework similar to the one presented by Carney et al. (1999) to

estimate the total prediction variance 𝜎2p and to construct confidence and prediction

intervals is adapted.

CONFIDENCE AND PREDICTION INTERVALS

Suppose that our set of observations is given by Dn = (xi, yi), i = 1,…, n, which
verifies the following nonlinear nonparametric wavelet network:

yi = g𝜆(xi;w0) + 𝜀i. (7.3)

where yi is the output of the wavelet network g𝜆(xi;w0) and w0 represents the true
vector of parameters for the specific unknown function 𝜑(xi), which is estimated by
the network. This means that

g𝜆(xi;w0) ≈ 𝜑(xi) ≡ E[yi | xi] (7.4)

Initially, we assume that the error 𝜀i is distributed independently and identically with

zero mean and variance 𝜎2
𝜀
.

The estimation of the vector w0 using least squares is given by the vector ŵn. The

vector ŵn is estimated by minimizing the sum of squares of the error:

SSE =
n∑
i=1
[yi − g𝜆(xi;w)]

2 (7.5)

For the input vector xi and the weight vector of the network ŵn, the output of the

network is

ŷi = g𝜆(xi; ŵn) (7.6)
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Within this context, the concept of “confidence” has a dual meaning. In the first

case we are interested in the accuracy of the estimation of the actual but unknown

function 𝜑(xi). Namely, the distribution of the quantity is

𝜑(xi) − g𝜆(xi; ŵn) ≡ 𝜑(xi) − ŷi (7.7)

referred to as the confidence interval. In the second case we are interested in the
accuracy of the estimation regarding the network output observed. That relates to the

distribution of the quantity

yi − g𝜆(xi; ŵn) ≡ yi − ŷi (7.8)

and is referred to as the prediction interval.
Figures 7.1 and 7.2 present the relationship between the differences (7.7) and (7.8).

In Figure 7.1 the prediction obtained by the wavelet network has a greater value than

the value observed, while in Figure 7.2 the opposite is true. We observe that

yi − g𝜆(xi; ŵn) = {𝜑(xi) − g𝜆(xi; ŵn)} + {yi − 𝜑(xi)}
⇔ yi − g𝜆(xi; ŵn) = {𝜑(xi) − g𝜆(xi; ŵn)} + 𝜀i

(7.9)

or equivalently from relations (7.7) and (7.8),

yi − ŷi = (𝜑(xi) − ŷi) + 𝜀i (7.10)

xi

= yi

yi

i
yi

g

A

C

B

(xi)φ

(xi)φ

(xi)φ

(xi; wn)

ε

λ −ˆ

g (xi, wn)λ −

−

ˆ

(xi)φg (xi; wn)λ ≡ˆ ˆ

Figure 7.1 Relationship between the wavelet network output ŷi, the observation yi, and the underlying
function 𝜑(xi) that created the observation by adding the stochastic term 𝜀i in the case where the predicted
value is greater than the observation (ŷi > yi).
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xi

= yii
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φ
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(xi) − g (xi, wn)λ ˆ
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(xi)φg (xi; wn)λ ≡ˆ ˆ

Figure 7.2 Relationship between the wavelet network output ŷi, the observation yi, and the underlying
function 𝜑(xi) that created the observation by adding the stochastic term 𝜀i in the case where the predicted
value is less than the observation (ŷi > yi).

From (7.10) we can conclude that the confidence interval is included in the pre-

diction interval. Since the difference (𝜑(xi) − ŷi) and the error term 𝜀i in (7.10) are

statistically independent, it holds that

E
[
(yi − ŷi)

2
]
= E

[
(𝜑(xi) − ŷi)

2
]
+ E

[
𝜀2i

]
⇔ var

[
yi − ŷi

]
= E

[
𝜑(xi) − ŷi

]
+ var

[
𝜀2i

] (7.11)

which results in

𝜎2p (x) = 𝜎
2
m(x) + 𝜎

2
𝜀

(7.12)

The assumption that the variance of the term 𝜎2
𝜀
is constant, has in practice proved

simplistic, particularly in the case of financial problems. Hence, equation (7.3) can

be rewritten using the following more realistic form:

yi = g𝜆(xi;w0) + 𝜀i(xi) (7.13)

In this case we have that

yi − g𝜆(xi; ŵn) = {𝜑(xi) − g𝜆(xi; ŵn)} + 𝜀i(xi)
⇒ var

[
yi − ŷi

]
= E

[
𝜑(xi) − ŷi

]
+ var

[
𝜀2i (xi)

] (7.14)
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which will result in

𝜎2p (x) = 𝜎
2
m(x) + 𝜎

2
𝜀
(x) (7.15)

CONSTRUCTING CONFIDENCE INTERVALS

To generate confidence intervals, distribution of the accuracy of the network predic-

tion to the true underlying function is needed. In other words, the variance of the

distribution of

f (x) − ŷ ≡ f (x) − g𝜆(x, ŵn) (7.16)

must be estimated. The model variance 𝜎2m will be estimated using two different

bootstrapping methods: the bagging method, proposed by Breiman (1996), and the

balancingmethod, proposed byHeskes (1997) andCarney et al. (1999). Bothmethods

are variations of bootstrapping.

The Bagging Method

As mentioned earlier, ensemble network methods create different versions of the

initial network and then combine the outputs to provide constancy to the predictor

by stabilizing the high variance of the wavelet network. To do so, bootstrapping is

used to create a new training sample from the initial data set. The algorithm of the

bagging methods is described below.

In the first step, B = 200 new random samples with replacement are created

from the original training sample. A new wavelet network is trained in each of the

bootstrapped samples, g𝜆(x
(∗i); ŵ(∗i)), where (∗i) indicates the ith bootstrapped sample

and ŵ(∗i) is the solution of the ith bootstrapped sample. Each network is trained using
the same topology as in the case of the original network (i.e., the same number of

hidden units). Then each new network is evaluated to the original training sample, x.
In other words, we measure the forecasting accuracy of each bootstrapped network

to the original data set.

The next step is to estimate the average output of the B networks using the original
training sample x:

g𝜆,avg(x) =
1

B

B∑
i=1

g𝜆(x; ŵ
(∗i)) (7.17)

It is assumed that the wavelet network produces an unbiased estimate of the under-

lying function f (x). This means that the distribution of P(f (x) | g𝜆,avg(x)) is centered
on the estimate g𝜆,avg(x) (Carney et al., 1999; Heskes, 1997; Zapranis and Livanis,
2005). Since the wavelet network is not an unbiased estimator (as any other model),

it is assumed that the bias component arising from the wavelet network is negligible
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compared to the variance component (Carney et al., 1999; Zapranis and Livanis,

2005). Finally, if we assume that the distribution of P(f (x) | g𝜆,avg(x)) is normal, the
model variance can be estimated by

�̂�2m(x) =
1

B − 1

B∑
i=1

[
g𝜆(x; ŵ

(∗i)) − g𝜆,avg(x)
]2

(7.18)

To construct confidence intervals, the distribution of P(g𝜆,avg(x) | f (x)) is needed.
Since the distribution of P(f (x) | g𝜆,avg(x)) is assumed to be normal, the “inverse”
distribution P(g𝜆,avg(x) | f (x)) is also normal. However, this distribution is unknown.
Alternatively, it is estimated empirically by the distribution of P(g𝜆(x) | g𝜆,avg(x))
(Carney et al., 1999; Zapranis and Livanis, 2005). Then the confidence intervals are

given by

g𝜆,avg(x) − t𝛼∕2�̂�m(x) ≤ f (x) ≤ g𝜆,avg(x) + t𝛼∕2�̂�m(x) (7.19)

where t𝛼∕2 can be found in a Student’s t table and 1 − a is the confidence level desired.

The Balancing Method

However, the estimator of the model variance, �̂�2m, given by (7.18) is known to be

biased (Carney et al., 1999); as a result, wider confidence intervals will be produced.

Carney et al. (1999) proposed a balancing method to improve the model variance

estimator. The algorithm for the balancing method is described below.

In the first strep, B = 200 new random samples with replacement are created from
the original training sample. As in the bagging method, a new wavelet network is

trained in each of the bootstrapped samples, g𝜆(x
(∗i); ŵ(∗i)), where (∗i) indicates the

ith bootstrapped sample and ŵ(∗i) is the solution of the ith bootstrapped sample. Each
network is trained using the same topology as in the case of the original network.

Then each new network is evaluated to the original training sample x. In other words,
we measure the forecasting accuracy of each bootstrapped network for the original

data set.

Then the B bootstrapped samples are divided into M groups. More precisely, in

our case the 200 ensemble samples are divided into M = 8 groups of 25 samples
each. Next, the average output of each group is estimated:

𝜁 =
{
g(i)
𝜆,avg

(x)
}M

i=1
(7.20)

The model variance is not estimated just by the M ensemble output since this

estimation will be highly volatile (Carney et al., 1999). To overcome this, a set of

P = 1000 bootstraps of the values of 𝜁 is created:

Y =
{
𝜁∗j

}P

j=1
(7.21)
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where

𝜁∗j =
{
g(∗j1)
𝜆,avg

(x), g(∗j2)
𝜆,avg

(x),…, g(∗jM)
𝜆,avg

(x)
}

(7.22)

is a bootstrapped sample of 𝜁 . Then the model variance is estimated for each one of

these sets by

�̂�2∗j (x) =
1

M

M∑
k=1

[
g(∗jk)
𝜆,avg

(x) − gj
𝜆,avg

(x)
]2

(7.23)

where

gj
𝜆,avg

(x) = 1

M

M∑
k=1

g(∗jk)
𝜆,avg

(x) (7.24)

Finally, the average model variance is estimated by taking the average of all

�̂�2∗j (x):

�̂�2m(x) =
1

P

P∑
j=1

�̂�2∗j (x) (7.25)

This procedure is not computationally expensive since there is no need to train

new networks. Hence, the complexity of both methods is similar and depends on the

number B of the wavelet networks that must be trained.
Following the same assumptions as in the bagging method, confidence intervals

can be constructed. Since a good estimator of the model variance is obtained, the

improved confidence intervals using the balancing methods are given by

g𝜆,avg(x) − z𝛼∕2�̂�m(x) ≤ f (x) ≤ g𝜆,avg(x) + z𝛼∕2�̂�m(x) (7.26)

where z𝛼∕2 can be found in a standard Gaussian distribution table and 1 − a is the
confidence level desired.

CONSTRUCTING PREDICTION INTERVALS

To generate prediction intervals, the distribution of the accuracy of the network

prediction to target values is needed. In other words, the variance of the distribution of

y − ŷ ≡ y − g𝜆
(
x, ŵn

)
(7.27)

must be estimated. To construct prediction intervals, the total variance of the predic-

tion, 𝜎2p , must be estimated. As presented earlier, the total variance of the prediction

is the sum of the model variance and the data noise variance. In the preceding section
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a method for estimating the model variance was presented. Here we emphasize a

method for estimating the data noise variance.

The Bagging Method

First, the algorithm for creating predicting intervals using the bagging method is

presented. To estimate the noise variance 𝜎2
𝜀
, maximum likelihood methods are used.

More precisely, a wavelet network will be trained on the residuals. An analytical

description of the algorithm follows.

First, the initial wavelet network g𝜆(x; ŵn) is estimated and the solution ŵn of the

loss function is found. Since it is assumed that the estimated wavelet network is a

good approximation of the unknown underlying function, the vector ŵn is expected

to be very close to the true vector w0 that minimizes the loss function.
In the next step the residuals between the network output and the target values

are estimated. The noise variance can be approximated by a second wavelet network,

f𝑣(x; ûn), where the squared residuals of the initial wavelet network are used as target
values (Satchwell, 1994). In the second wavelet network, f𝑣(x; ûn), 𝑣 is the number
of hidden units and ûn is the estimated vector of parameters that minimizes the loss
function of the secondwavelet network. Since it is assumed that the estimated wavelet

network is a good approximation of the unknown underlying function, the vector ûn
is expected to be very close to the true vector u0 that minimizes the loss function.
The following cost function is minimized in the second network:

n∑
i=1

{
[g𝜆(xi;w0) − yi]

2 − f𝑣(xi; u0)
}2

(7.28)

and for a new set of observations, x∗, that were not used in the training, we have that

�̂�2
𝜀
(x∗) ≈ f𝑣(x

∗; u0) (7.29)

This technique assumes that the residual errors are caused by variance alone

(Carney et al., 1999). To estimate the noise variance, data that were not used in the

training of the bootstrapped sample should be used. One way to do this is to divide

the data set in a training and a validation set. However, leaving out these test patterns

is a waste of data (Heskes, 1997). Alternatively, an unbiased estimation of the output

of the wavelet network, ŷub(x), can be approximated by

ŷub(x) =
∑B

i=i q
m
i ŷi(x)∑B

i=i q
m
i

(7.30)

where qmi is zero if the patternm appears on the ith bootstrap sample and 1 otherwise.
Constructing the new network f𝑣(x; u), we face the problem of model selection

again. Using the methodology described in the preceding section, the correct number

of 𝑣 hidden units is selected. Usually, 1 or 2 hidden units are sufficient to model

the residuals.
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Using the estimation of the noise variance, the total variance can be calculated.

The prediction intervals can be constructed using the following relationship:

g𝜆,avg(x
∗) − t𝛼∕2�̂�p(x

∗) ≤ f (x∗) ≤ g𝜆,avg(x
∗) + t𝛼∕2�̂�p(x

∗) (7.31)

where t𝛼∕2 can be found in a Student’s t distribution table and 1 − a is the confidence
level desired.

The Balancing Method

As in the case of confidence intervals, the balancingmethod can be used to improve the

accuracy of the intervals. The algorithm for estimating the noise variance is the same

as in the case of the bagging method. However, the difference lies in the estimation of

the model variance. Hence, if the balancing method is used, the prediction intervals

are given by

g𝜆,avg(x
∗) − z𝛼∕2�̂�p(x

∗) ≤ f (x∗) ≤ g𝜆,avg(x
∗) + z𝛼∕2�̂�p(x

∗) (7.32)

where z𝛼∕2 can be found in a standard Gaussian distribution table and 1 − a is the
confidence level desired.

EVALUATING THE METHODS FOR CONSTRUCTING CONFIDENCE
AND PREDICTION INTERVALS

In this section the bagging and balancing methods are evaluated in constructing

confidence and prediction intervals. The two methods will be tested in the two

functions f (x) and g(x), given by (3.15) and (3.17), respectively.
The confidence intervals are presented for the first function in Figure 7.3. The first

part of the figure presents the confidence intervals using the bagging method, and the
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Figure 7.3 Confidence intervals for the first case using the bagging (a) and balancing (b) methods.
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Figure 7.4 Confidence intervals for the second case using the bagging (a) and balancing (b) methods.

second part presents the confidence intervals using the balancing method. Similarly,

Figure 7.4 presents the confidence intervals for the second function, where the first

part refers to the bagging method, and the second part refers to the balancing method.

It is clear that the confidence intervals using the balancing method are significantly

narrower. This is due to the biased model variance estimator of the bagging method,

which results in overestimation of the confidence intervals (Carney et al., 1999).

The 95% prediction intervals of the first function, f (x), are presented in Figure 7.5.
Again, the first part refers to the bagging method, and the second part refers to the

balancing method. It is clear that both methods were able to capture the change in

the variance of the noise. In both cases a wavelet network with 2 hidden units was

used to approximate function f (x), and a wavelet network with 1 hidden unit was
used to approximate the residuals in order to estimate the noise variance. To compare

the two methods, the prediction interval correct percentage (PICP) is used. PICP is

the percentage of data points contained in the prediction intervals. Since the 95%
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Figure 7.5 Prediction intervals for the first case using the (a) bagging (PICP = 98%) and (b) balancing
(PICP = 95%) methods.
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Figure 7.6 Prediction intervals for the second case using the (a) bagging (PICP = 98.33%) and
(b) balancing (PICP = 97.33%) methods.

prediction intervals were estimated, a value of PICP close to 95 is expected. The

bagging prediction intervals contain 98% of the data points (PICP), while in the case

of the balancing method the PICP = 95% and is equal to the nominal value of 95%.
The same analysis is then repeated for the second function, g(x). The 95% predic-

tion intervals of g(x) are presented in Figure 7.6. The first part refers to the bagging
method and the second part refers to the balancing method. In both cases a wavelet

network with 8 hidden units was used to approximate function g(x), and a wavelet
networkwith 2 hidden units was used to approximate the residuals in order to estimate

the noise variance. As in the preceding case, the two methods are compared using the

PICP. For the bagging method the PICP = 98.33%, while for the balancing method
the PICP = 97.33%.
It is clear that the balancing method produced an improved estimator of the model

variance. Our results are consistent with those of Breiman (1996), Carney et al.

(1999), Heskes (1997), Papadopoulos et al. (2000), Zapranis and Livanis (2005), and

Ζαπράνης (1999). In all cases the intervals produced by the balancing method were
significantly smaller, while the PICP was considerable improved and closer to its

nominal value.

CONCLUSIONS

In this chapter we described the main methodologies mentioned in the literature to

estimate confidence intervals and prediction intervals for nonlinear nonparametric

wavelet neural networks. In real applications, researchers and practitioners are gener-

ally more interested in prediction intervals. This is due to the fact that the prediction

intervals are associated with the accuracy with which we can predict future prices

and not just limited to the assessment of the correctness of the estimation of the

actual function.
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The model variance and the data noise variance are assumed to be independent.

The total variance of the prediction is given by the sum of two variances. We assumed

that the variance is not constant but changes over time.

Although the maximum likelihood method is considered biased, it can be used

to estimate the variance, which depends on the network’s input vector. Methods of

random repetitive sampling, such as bootstrapping, make no assumptions about the

nature of the noise; they can only estimate the uncertainty of the model variance and

thus cannot be used to construct predictive intervals but only confidence intervals. For

the construction of prediction intervals, an estimation of noise variance is needed. To

approximate the noise variance a second wavelet network is trained, with the squared

residuals of the initial wavelet network used as the target values.

We described two methods for constructing prediction and confidence intervals:

bagging and balancing. Our results indicate that the balancing methods provide

narrower confidence intervals and prediction intervals that produce more accurate

PICP. The disadvantage of the iterativemethodologies is that they are computationally

expensive. In any case, analysis of the various approaches for estimating confidence

and prediction intervals is an extremely interesting field of research.
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