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Modeling Financial

Temperature Derivatives

In this chapter a real data set is used to demonstrate the application of our proposed

framework. We focus on a financial application in forecasting the prices of weather

derivatives. A weather derivative is a financial instrument that has a payoff derived

fromvariables such as temperature, snowfall, humidity, and rainfall. Since their incep-

tion in 1996, weather derivatives have shown substantial growth. The first parties to

arrange for, and issue, weather derivatives in 1996 were energy companies, which,

after the deregulation of energy markets, were exposed to weather risk. In September

1999, the Chicago Mercantile Exchange (CME) launched the first exchange-traded

weather derivatives. Today, weather derivatives are being used for hedging purposes

by companies and industries whose profits can be affected adversely by unseasonal

weather or, for speculative purposes, by hedge funds and others interested in capital-

izing on those volatile markets.

Weather risk is unique in that it is highly localized, and despite great advances in

meteorological science, still cannot be predicted precisely and consistently. Weather

derivatives are also different from other financial derivatives in that the underlying

weather index (i.e., HDD, CDD, CAT, etc.) cannot be traded. Furthermore, the corre-

sponding market is relatively illiquid. Consequently, since weather derivatives cannot

be replicated cost-efficiently by other weather derivatives, arbitrage pricing cannot

apply to them directly. The weather derivatives market is a classically incomplete

market, because the underlying weather variables are not tradable. When the market

is incomplete, prices cannot be derived from the no-arbitrage condition, since it is
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not possible to replicate the payoff of a given contingent claim by a controlled port-

folio of basic securities. Consequently, the classical Black–Scholes–Merton pricing

approach, which is based on no-arbitrage arguments, cannot be applied directly. In

addition, market incompleteness is not the only reason; weather indices do not fol-

low random walks (as the Black and Scholes approach assumes), and the payoffs of

weather derivatives are determined by indices that are average quantities, whereas the

Black–Scholes payoff is determined by the underlying value at exactly the maturity

date of the contract (European options).

In the remainder of the chapter we introduce the weather derivative market and

then focus on the modeling of the temperature process and the forecasting of future

outcomes of weather derivatives. More precisely, using data from detrended and

deseasonalized daily average temperatures (DATs), a wavelet network is constructed,

initialized, and trained. At the same time, the significant variables are selected, in this

case the correct number of lags. Finally, the trained wavelet network will be used to

predict the future evolution of the weather derivative and to construct confidence and

prediction intervals.

WEATHER DERIVATIVES

Weather derivatives are financial instruments that can be used by organizations or

individuals as part of a risk management strategy to reduce risk associated with

adverse or unexpected weather conditions. Just as traditional contingent claims,

whose payoffs depend on the price of some fundamental underlying, a weather deriva-

tive has an underlying measure, such as rainfall, temperature, humidity, or snowfall.

The difference from other derivatives is that the underlying asset has no value and

cannot be stored or traded; at the same time, the weather should be quantified in order

to be introduced in the weather derivative. To do so, temperature, rainfall, precipita-

tion, or snowfall indices are introduced as underlying assets. However, it is estimated

that over 90% of the weather derivatives now traded are based on temperature.

Today, weather derivatives are being used for hedging purposes by companies

and industries whose profits can be affected adversely by unseasonal weather or, for

speculative purposes, by hedge funds and others interested in capitalizing on those

volatile markets. According to Hanley (1999) and Challis (1999), nearly $1 trillion

of the U.S. economy is directly exposed to weather risk. It is estimated that nearly

30% of the U.S. economy and 70% of U.S. companies are affected by weather (CME,

2005). The electricity sector is especially sensitive to temperature. According to Li

and Sailor (1995) and Sailor and Munoz (1997), temperature is the most significant

weather factor explaining electricity and gas demand in the United States. The impact

of temperature on both electricity demand and price has been considered in many

papers, including those of Engle et al. (1992), Henley and Peirson (1998), and

Peirson and Henley (1994). Unlike insurance- and catastrophe-linked instruments,

which cover high-risk and low-probability events, weather derivatives shield revenues

against low-risk and high-probability events (e.g., mild or cold winters).

Today, the weather market is one of the fastest-developing markets. In 2004,

the notional value of Chicago Mercantile Exchange (CME) weather derivatives was
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$2.2 billion and grew tenfold to $22 billion through September 2005, with open inter-

est exceeding $300,000 and volume surpassing 630,000 contracts traded. However,

the over-the-counter (OTC) market was still more active than the exchange, so the

bid–ask spreads were quite large.

Pricing and Modeling Methods

Early methods such as the actuarial method or the historical burn analysis (HBA)

were used to derive the price of a temperature derivative written on a temperature

index without actually modeling the dynamics of the temperature. Both methods

measure how a temperature derivative would perform the previous years. The average

(discounted) payoff thatwas derived fromprevious years is considered to be the payoff

of the derivative (Jewson et al., 2005).

Alternatively, one can model the corresponding index directly, a method known

as index modeling: the heating degree day (HDD) index, the cooling degree day
(CDD) index, the cumulative average temperature (CAT) index, the accumulated

HDDs (AccHDDs) index, or the accumulated CDDs (AccCDDs) index. A different

model must be developed for each index. In the literature, a few papers suggest

that temperature index modeling (HDD or CDD Index) might be more appropriate

(Davis, 2001; Dorfleitner and Wimmer, 2010; Geman and Leonardi, 2005; Jewson

et al., 2005).

Another approach to estimating the temperature-driving process is to use models

based on daily temperatures. Daily modeling can, in principle, lead to more accurate

pricing than that from modeling temperature indices (Jewson et al., 2005), as a lot

of information is lost due to existing boundaries in the calculation of temperature

indices by a normal or lognormal process, such as HDD being bounded by zero.

On the other hand, deriving an accurate model for the daily temperature is not

a straightforward process. Temperatures observed show seasonality in the mean,

variance, distribution, and autocorrelation, and there is evidence of long memory

in the autocorrelation. The risk with daily modeling is that small misspecifications

in the models can lead to large mispricing of the temperature contracts (Jewson

et al., 2005).

In the literature, two methods have been proposed for the modeling of the DAT,

the use of a discrete or a continuous process. Moreno (2000) argues against the

use of continuous processes in temperature modeling based on the fact that the

values of temperature are in discrete form; hence, a discrete process should be used

directly. Caballero and Jewson (2002), Caballero et al. (2002), Campbell and Diebold

(2005), Cao et al. (2004), Cao and Wei (1999, 2000, 2003, 2004), Carmona (1999),

Franses et al. (2001), Jewson and Caballero (2003a,b), Moreno (2000), Roustant

et al. (2003a,b), Svec and Stevenson (2007), Taylor and Buizza (2002, 2004), and Tol

(1996) make use of a general ARMA framework.

On the other hand, a wide range of studies suggest a temperature diffusion stochas-

tic differential equation: Alaton et al. (2002), Bellini (2005), Benth (2003), Benth

and Saltyte-Benth (2005, 2007), Benth et al. (2007, 2008), Bhowan (2003), Brody

et al. (2002), Dischel (1998a,b, 1999), Dornier and Queruel (2000), Geman and

Leonardi (2005), Hamisultane (2006a,b, 2007, 2008), McIntyre and Doherty (1999),
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Oetomo and Stevenson (2005), Richards et al. (2004), Schiller et al. (2008), Torro

et al. (2003), Yoo (2003), Zapranis and Alexandridis (2006, 2007, 2008, 2009a,b),

and Zapranis and Alexandridis (2011). The continuous processes used for modeling

daily temperatures usually take a mean-reverting form, which has to be discretized

to estimate its various parameters. Once the parameters of the process are estimated,

one can then value any contingent claim by taking the expectation of the discounted

future payoff. Given the complex form of the process and the path-dependent nature

of most payoffs, the pricing expression usually does not have closed-form solutions.

In that case, MonteCarlo (MC) simulations are used. This approach typically involves

generating a large number of simulated scenarios of weather indices to determine

the possible payoffs of the weather derivative. The fair price of the derivative is then

the average of all simulated payoffs, appropriately discounted for the time value

of money. The precision of the MC approach depends on the correct choice of the

temperature process and the look-back period of available weather data.

DATA DESCRIPTION AND PREPROCESSING

For accurate pricing and efficient weather risk management, the weather data must

be of both adequate amount and highly quality (Dunis and Karalis, 2003). The

data corresponding to the DATs for Berlin were provided by the European Climate

Assessment and Dataset (ECAD; http://eca.knmi.nl/). The weather index we are

interested in is the DAT. In the ECAD the DAT is measured as the average of

the daily maximum and minimum temperature and is measured in Celsius degrees

(◦C). European weather contracts traded on the CME use the same measurement for

the temperature. The precision with which temperature is measured in the ECAD

is 0.1◦C.

The data set consists of 3650 values, corresponding to 10 years’ (1991–2000) of

detrended and deseasonalized DATs in Berlin. So that each year would have equal

observations, February 29 was removed from the data.

DATA EXAMINATION

In this section the data of the DATs of Berlin are examined to build a mathematical

model that describes the dynamics of the temperature. In Figure 8.1a the DATs for

Berlin for the period 1/1/1991 to 12/31/2000 are presented. Closer inspection of the

figure reveals a seasonal cycle of one year, as expected. Moreover, extreme values

in summer and winter are evident. To obtain a better insight of the temperature

dynamics, the descriptive statistics of the DATs are examined. The mean temperature

is 10.1, while variation of the DAT is quite large, with a standard deviation of 7.91.

The difference between the maximum and minimum temperatures is around 44◦C.

These results indicate that temperature is very volatile and it is expected to be difficult

to model and predict it accurately.
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Figure 8.1 (a) Daily average temperature, (b) empirical distribution, (c) mean, (d) standard deviation,
(e) skewness, and (e) kurtosis of the DAT in Berlin.
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Negative skewness is evident, while the temperature in Berlin exhibits excess

negative kurtosis. More precisely, the skewness is −0.08 and the kurtosis is 2.38. The
results above indicate that the distribution of the DAT in Berlin is platykurtic, with

a lower and wider peak where the mass of the distribution is concentrated on the

left tail.

Finally, a normality test is performed. The normality is strongly rejected by a

Jarque–Bera (JB) test. JB tests the null hypothesis that the sample data come from a

normal distribution with unknown mean and variance, against the alternative that it

does not come from a normal distribution:

H0 = sample comes from a normal distribution

H1 = sample does not come from a normal distribution
(8.1)

The JB test is a two-sided goodness-of-fit test suitable when a fully specified null

distribution is unknown and its parameters must be estimated. The test statistic is

given by

JB = n
6

[
s2 + (k − 3)

2

4

]
(8.2)

where n is the sample size, s is the sample skewness, and k is the sample kurtosis.
The JB statistic is over 62, and the p-value is zero, indicating the rejection of the
null hypothesis that the temperature at the seven European cities follows a normal

distribution. Figure 8.1b presents the empirical distribution of the DAT in Berlin.

A closer inspection of the figure reveals a bimodal distribution, with the two peaks

corresponding to the summer and winter temperatures.

To obtain better understanding of the temperature dynamics, the daily mean,

standard deviation, skewness, and kurtosis of DAT were estimated. The mean of

the DAT, Tavg,t, was estimated using only observations for each particular day t. In
Figure 8.1c the seasonal pattern is clear. The temperature has its highest values during

the end of July and the beginning of August, while the lowest values are observed

during the end of December and until the beginning of February. The mean DAT in

Berlin fluctuates from −1.2 to 22.4◦C.
Next, the standard deviation of the DAT is estimated. In Figure 8.1d the standard

deviation for Berlin is presented. The standard deviation is higher in the winter period,

while it is smaller in summer. Our results confirm the studies of Bellini (2005), Benth

and Saltyte-Benth (2005, 2007), Benth et al. (2007), and Zapranis and Alexandridis

(2008, 2009b).

Figure 8.1e presents the estimated skewness for each day t for Berlin. The fig-
ure reveals that the skewness tends to increase during the summer months while it

decreases during the winter months. In general, the skewness is negative in win-

ter months and positive in summer months. This means that it is more likely to

have warmer days than average in summer and colder days than average in winter

(Bellini, 2005).
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Finally, the kurtosis on each day t can be found in Figure 8.1f. The figure does
not reveal any seasonal pattern of the kurtosis. On the other hand, it is clear that the

kurtosis has small deviations around 2, with many large upward spikes.

Two unit root tests were performed in the DAT. The temperature time series is

tested for a unit root using an augmented Dickey–Fuller (ADF) test. The ADF was

performed using the Schwartz information criterion in order to select the optimal

number of lagged values. Our results reveal that the null hypothesis of a unit root is

rejected since the ADF statistic is smaller than the critical value at the 5% significance

level. More precisely, the ADF statistic is −5.1116, with p-value zero, while the
critical value at the 5% significance level is −2.8621.
When a more powerful test is required, the Kwiatkowski et al. (1992) (KPSS)

unit root test is employed. In contrast to the ADF test, the KPSS tests the null

hypothesis that the time series is stationary versus the alternative that the time series

is nonstationary (a unit root exists). The optimal bandwidth number was estimated

using the Newery–West method. The KPSS statistic is 0.0505. The KPSS statistic

has a value smaller than the critical value 0.463; hence, the null hypothesis that the

time series is stationary cannot be rejected.

MODEL FOR THE DAILY AVERAGE TEMPERATURE:
GAUSSIAN ORNSTEIN–UHLENBECK PROCESS
WITH LAGS AND TIME-VARYING MEAN REVERSION

Many different models have been proposed to describe the dynamics of a temperature

process. In this section a model for the seven cities studied in the preceding section is

derived. Studying temperature data, Cao et al. (2004) and Cao and Wei (1999, 2000,

2003) built their framework on the following five assumptions about DAT:

� It follows a predicted cycle.
� It moves around a seasonal mean.
� It is affected by global warming and urban effects.
� It appears to have autoregressive changes.
� Its volatility is higher in winter than in summer.

As shown in the rest of the section, our results confirm the foregoing assumptions.

It is known that temperature follows a predicted cycle. As expected and as shown in

Figure 8.1, a strong cycle of one year is evident in all cities. It is also known that

temperature has a mean-reverting form. Temperature moves around a seasonal mean

and cannot deviate from that seasonal mean for long periods. This can be verified

by Figure 8.1a,c, and d. In other words, it is not possible to observe temperatures

of 20◦C in winter in Oslo. Additionally, temperature is affected by global warming

and urban effects. In areas under development, the surface temperature rises as more

people and buildings concentrate. This is due to the sun’s energy absorbed by the

urban buildings and the emissions of vehicles, industrial buildings, and cooling units.
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Hence, urbanization around a weather station results in an increment in the observed

measurements of temperature. Finally, observing Figure 8.1d it is clear that the

temperature volatility is higher in winter than in summer.

Following Zapranis and Alexandridis (2008, 2011) and Alexandridis (2010), a

model that describes the temperature dynamics is given by a Gaussianmean-reverting

Ornstein–Uhlenbeck process and is defined as follows:

dT(t) = dS(t) + 𝜅(t) [T(t) − S(t)] dt + 𝜎(t) dB(t) (8.3)

where T(t) is the average daily temperature, 𝜅(t) is the speed of mean reversion, S(t) is
a deterministic function modeling the trend and seasonality, 𝜎(t) is the daily volatility
of temperature variations, and B(t) is the driving noise process. As shown by Dornier
and Queruel (2000), the term dS(t) should be added for a proper mean-reversion
toward the historical mean, S(t).
Intuitively, it is expected that the speed of mean reversion is not constant. If the

temperature today is away from the seasonal average (a cold day in summer), it is

expected that the speed of mean reversion is high (i.e., the difference of today’s and

tomorrow’s temperature is expected to be high). In contrast, if the temperature today

is close to the seasonal variance, we expect the temperature to revert slowly to its

seasonal average. To capture this feature, the speed of mean reversion is modeled by

a time-varying function 𝜅(t).
It is clear that strong seasonalities and trends exist in the data. Before we present

the time series to the wavelet network, both the trend and the seasonality must be

removed. The usual approach is to model the seasonality by a sinusoid given by

S(t) = Trendt + A sin
2𝜋(t − fi)

365
(8.4)

and the trend by a first-order polynomial given by

Trendt = a + bt (8.5)

Alexandridis and Zapranis (2013) used amore complexmethodwhere the seasonal

mean and variance were extracted using wavelet analysis:

S(t) = Trendt +
I1∑
i=1

ai sin
2𝜋(t − fi)

pi ⋅ 365

+ aI1+1

[
1 + sin

2𝜋(t − fI1+1)

pI1+1 ⋅ 365

]
sin 2𝜋t
365

(8.6)

𝜎2(t) = c +
I2∑
i=1

ci sin
2p′i𝜋t

365
+

J2∑
j=1

dj cos
2p′j𝜋t

365
(8.7)
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Figure 8.2 Empirical and normal distribution (solid line) of the first difference of the daily average
temperature in Berlin.

To identify the terms I1 and pi in (8.6) and I2, J2, and p
′
i in (8.7), we decompose the

temperature series using a wavelet transform.

Finally, the driving noise process B(t) is modeled by a standard Brownian motion
(BM). The histogram of the first difference of the DAT and the normal distribution

(solid line) is presented in Figure 8.2. A closer inspection of the figure reveals that

the empirical distribution of the first difference of the DAT is similar to the normal

distribution. Hence, selecting the BM as the driving noise process seems logical. This

hypothesis is tested further later.

Following Benth and Saltyte-Benth (2007) and Zapranis and Alexandridis (2008),

a discrete approximation of (8.3) is obtained and is given by

ΔT(t) ≈ ΔS(t) + 𝜅 [T(t − 1) − S(t − 1)] + 𝜎(t)ΔB(t) (8.8)

Next, by setting

T̃(t) = T(t) − S(t) (8.9)

we have that

T̃(t) = aT̃(t − 1) + 𝜎(t)𝜀(t) (8.10)

with

a = 1 + 𝜅 (8.11)
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Similarly, when the speed of mean reversion is a function of time, we have that

T̃(t) = a(t − 1)T̃(t − 1) + 𝜎(t)𝜀(t) (8.12)

a(t) = 1 + 𝜅(t) (8.13)

The detrended and deseasonalized temperature series, T̃(t), can be modeled with
an AR(1) process with a zero constant term, as shown in (8.12). In the context of such

amodel, themean reversion parameter a is typically assumed to be constant over time.
Brody et al. (2002) mentioned that in general a should be a function of time, but no
evidence was presented. On the other hand, Benth and Saltyte-Benth (2005), using a

data set comprising 10 years of Norwegian temperature data, calculated mean annual

values of a. They reported that the variation of the values of a from year to year was
not significant. They also investigated the seasonal structures inmonthly averages of a
and reported that none was found. However, to date no one has computed daily values

of themean reversion parameter, since there is no obvious way to do this in the context

of model (8.12). On the other hand, averaging techniques, on a yearly or monthly

basis, run the danger of filtering out toomuch variation and consequently of presenting

a distorted picture regarding the true nature of a. The impact of a false specification
of a on the accuracy of the pricing of temperature derivatives is significant (Alaton
et al., 2002). However, Zapranis and Alexandridis (2008) estimated daily values of

the variable a(t) for the city of Paris using a nonparametric nonlinear NN. Their
results indicate strong time dependence in the daily values of a(t).
In this section we address that issue by using a wavelet network to estimate

relationship (8.12) nonparametrically and then estimate a as a function of time. In
addition, we apply the variable selection framework to select the number of lags in

the temperature process. Hence, a series of speed of mean reversion parameters, ai(t),
are estimated. By computing the derivative of the network output with respect to the

network input, we obtain a series of daily values for ai(t). This gives us a much better
insight into temperature dynamics and temperature derivative pricing. As shown by

Alexandridis and Zapranis (2013), the daily variation of ai(t) is quite significant after
all. In addition it is expected that the waveform of the wavelet network will provide

a better fit to the DATs that are governed by seasonalities and periodicities.

In previous studies (Alaton et al., 2002; Bellini, 2005; Benth and Saltyte-Benth,

2005, 2007); Zapranis and Alexandridis, 2008, 2009b), it has been shown that an

AR(1) model is not complex enough to completely remove the autocorrelation in

the residuals. Alternatively, more complex models were suggested (Carmona, 1999;

Geman and Leonardi, 2005). Using wavelet networks, the generalized version of

(8.12) is estimated nonlinearly and nonparametrically; that is,

T̃(t + 1) = 𝜙
(
T̃(t), T̃(t − 1), ...

)
+ e(t) (8.14)

where

e(t) = 𝜎(t)𝜀(t) (8.15)
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where T̃ is the detrended and deseasonalized DAT and the e(t) are the residuals of the
wavelet network.

After estimation of the wavelet network, the seasonal variance must be removed

from the residuals. The exact modeling of the temperature process is beyond our

scope in this chapter. To compare the out-of-sample forecast of a proposed model, the

complete system, consisting of equations (8.5), (8.6), (8.7), (8.14), and (8.15), must

be estimated. Here we focus on the construction of an optimal wavelet network for the

system (8.14) that represents the detrended and deseasonalized DATs. Although the

remaining steps are of no interest in this book, an out-of-sample comparison between

the wavelet network and two linear models used widely in the literature is presented

at the end of the chapter.

ESTIMATION USINGWAVELET NETWORKS

Model (8.14) uses past temperatures (detrended and deseasonalized) over one period.

Using more lags, we expect to overcome the strong correlation found in the residuals

in models such as those of Alaton et al. (2002), Benth and Saltyte-Benth (2007),

and Zapranis and Alexandridis (2008). However, the length of the lag series must be

selected. Since the wavelet network is a nonparametrical nonlinear estimator, results

from the autocorrelation function (ACF) or the partial ACF (PACF) cannot be used.

Similarly, criteria used in linear models like the Schwarz criterion cannot be utilized.

Hence, the variable significance algorithm presented in Chapter 5 is employed to

determine the number of significant lags.

Variable Selection

The target values of the wavelet network are the detrended and deseasonalized DATs.

The explanatory variables are lagged versions of the target variable. Choosing the

length of a lag distribution in linear models can be done byminimizing an information

criterion such as the Akaike or Schwarz criterion. Alternatively, the ACF and the

PACF can be studied. The ACF suggests that the first 35 lags are significant. On

the other hand, the PACF suggests that the first six lags, as well as lags 8 and 11, must

be included in the model. However, results from these methods are not necessarily

true in nonlinear nonparametric models.

Alternatively, to select only the significant lags, the variable selection algorithm

presented in the preceding section will be employed. Initially, the training set contains

the dependent variable and seven lags. Hence, the training set consists of 7 inputs, 1

output, and 3643 training pairs. The relevance of a variable to the model is quantified

by the SBP criterion introduced earlier, which outperformed similar criteria.

Table 8.1 summarizes the results of the model identification algorithm for Berlin.

Both the model selection and variable selection algorithms are included in the table.

The algorithm concluded in four steps and the final model contains only three vari-

ables. The prediction risk for the reduced model is 3.1914, whereas for the original

model it was 3.2004. On the other hand, the empirical loss increased slightly, from
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TABLE 8.1 Variable Selection with Backward Elimination in Berlina

Step

Variable to

Remove (Lag)

Variable to

Enter (Lag)

Variables

in Model

Hidden Units

(Parameters)

n/p
Ratio

Empirical

Loss

Prediction

Risk

— — — 7 5 (83) 43.9 1.5928 3.2004

1 X6 — 6 2 (33) 110.4 1.5922 3.1812

2 X7 — 5 1 (17) 214.3 1.5927 3.1902

3 X5 — 4 1 (14) 260.2 1.6004 3.2056

4 X4 — 3 1 (11) 331.2 1.5969 3.1914

aThe algorithm concluded in four steps. In each step the following are presented: which variable is removed, the number

of hidden units for the particular set of input variables and the parameters used in the wavelet network, the empirical loss,

and the prediction risk.

1.5928 for the initial model to 1.5969 for the reduced model, indicating that the

explained variability (unadjusted) decreased slightly. However, the explained vari-

ability (adjusted for degrees of freedom) was increased for the reduced model to

64.61%, whereas it was 63.98% initially. Note that the noise term in T̃ is large, since
the seasonal and trend parts were removed from the data; hence, we expect low values

of R2 and R̄2.
Finally, the number of parameters is reduced significantly in the final model. The

initial model needed 5 hidden units and 7 inputs. Hence, 83 parameters were adjusted

during the training phase, so the ratio of the number of training pairs n to the number
of parameters p was 43.9. In the final model, only 1 hidden unit and 3 inputs were
used, hence only 11 parameters were adjusted during the training phase and the ratio

of the number of training pairs n to the number of parameters p was 331.2.
The statistics for the wavelet network model at each step are given in Table 8.2.

More precisely, the first part of the table reports the value of the SBP and its p-value.
In the second part of the table, various fitting criteria are reported: the mean absolute

error, the maximum absolute error (MaxAE), the normalized mean squared error

(NMSE), the mean absolute percentage error (MAPE), R̄2, the empirical loss, and
the prediction risk.

In the full model it is clear that the value of the SBP for the last three variables is

very small, in contrast to the first two variables. Observing the p-values, we conclude
that the last four variables have p-value greater than 0.1, while the sixth lag has
a p-value of 0.8826, strongly indicating a “not significant” variable. The wavelet
network was converged after 43 iterations. In general, a very good fit was obtained.

The empirical loss is 1.5928, and the prediction risk is 3.2004. MaxAE is 11.1823,

MAE is 1.8080, and NMSE is 0.3521. MAPE is 3.7336. Finally, the R̄2 = 63.98%.
The statistics for the wavelet network at step 1 are also presented in Table 8.2. The

network had 6 inputs, two wavelets were used to construct the wavelet network, and

33 weights were adjusted during the training phase. The wavelet network converged

after 17 iterations. By removing X6 from themodel, we observe from the table that the
p-value of X5 became 0, while for X7 and X4 the p-values became 0.5700 and 0.1403,
respectively. The empirical loss was decreased slightly to 1.5922. However, MAE

and NMSE were increased slightly, to 1.8085 and 0.3529, respectively. On the other

hand, MaxAE and the MAPE were decreased to 11.1446 and 3.7127, respectively.
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Next, the decision to remove X6 is tested. The new prediction risk was reduced to
3.1812, while the explained variability adjusted for degrees of freedom increased to

64.40%. Hence, the removal of X6 reduced the complexity of the model, while its
predictive power was increased.

At step 2, X7, which had the largest p-value, 0.5700, at the previous step, was
removed from the model. Table 8.2 shows the statistics for the wavelet network at

step 2. The newwavelet network had 5 inputs, 1 hidden unit was used, and 17 weights

were adjusted during the training phase. The WN converged after 19 iterations. A

closer inspection of Table 8.2 reveals that the removal of X7 resulted in an increase
in the error measures and a worse fit was obtained. The new R̄2 is 64.59%. The
new prediction risk increased to 3.1902, which is smaller than the threshold. In other

words, by removingX7 the total predictive power of ourmodel was slightly decreased;
however, adding the variable X7 to the model, only 0.28% additional variability of our
model was explained, while the computational burden was increased significantly.

Examining the values of the SBP in Table 8.2 it is observed that the first two

variables still have significantly larger values than the remaining variables. The

p-values reveal that in the third step the X5 must be removed from the model since
its p-value is 0.1907.
At step 3 the network had 4 inputs, 1 hidden unit was used, and 14 weights

were adjusted during the training phase. The wavelet network converged after four

iterations. When removing X5 from the model, we observe from Table 8.2 that

only X4 has a p-value greater than 0.1. Again the empirical loss and the prediction
risk were increased. More precisely, the empirical loss is 1.6004 and the prediction

risk increased from 0.48% to 3.2056%. The new prediction risk is greater than the

estimated prediction risk of the initial model of about 0.16%. Again the increase in

the prediction risk was significantly smaller than the threshold. On the other hand, R̄2

was increased to 64.61%, indicating an improved fit. Hence, the decision to remove

X5 was accepted.
In the final step, the variable X4 had a p-value of 0.4701 and it was removed

from the model. The network had 3 inputs, one wavelet was used in the construction

of the wavelet network, and only 11 weights were adjusted during the training phase.

The wavelet network converged after only 19 iterations. After the removal of X4,
a new wavelet network was trained with only one wavelet. The new empirical loss

was decreased to 1.5969. The MAE and NMSE are 1.8095 and 0.3530, respectively,

while MaxAE and MAPE are 11.0925 and 3.7171, respectively. Next the decision

to remove X4 was tested. The new prediction risk was reduced to 3.1914, while the
explained variability adjusted for degrees of freedomwas 64.61%.Hence, the removal

of X4 reduced the complexity of the model while its performance was increased. The
p-values of the remaining variables are zero, indicating that the remaining variables
are characterized as very significant variables. Hence, the algorithm stops. Our pro-

posed algorithm indicates that only the three most recent lags should be used, while

the PACF suggested the first six lags as well as lags 8 and 11.

In the final model only three of the seven variables were used. The complexity of

the model was reduced significantly, since from 83 parameters in the initial model

only 11 parameters have to be trained in the final model. In addition, in the reduced
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TABLE 8.3 Prediction Risk at Each Step of the Variable Selection Algorithm for the First
5 Hidden Units for Berlin

Hidden Units

Step 1 2 3 4 5

0 3.2009 3.2026 3.2023 3.2019 3.2004
1 3.1817 3.1812 3.1828 3.1861 3.1860

2 3.1902 3.1915 3.1927 3.1972 3.1974

3 3.2056 3.2077 3.2082 3.2168 3.2190

4 3.1914 3.2020 3.2182 3.2158 3.2169

model the prediction risk was minimized when only 1 hidden unit was used, while

5 hidden units were needed initially. Our results indicate that the in-sample fit was

slightly decreased in the reduced model. However, when an adjustment is made for

the degrees of freedom, we observe that R̄2 was increased to 64.61% from 63.98% in
the initial model. Finally, the prediction power of the final and less complex proposed

model was improved since the prediction risk was reduced to 3.1914 from 3.2004.

Model Selection

In each step the appropriate number of hidden units is determined by applying the

model selection algorithm presented in Chapter 4. Table 8.3 shows the prediction risk

for the first 5 hidden units at each step of the variable selection algorithm for Berlin.

Ideally, the prediction risk will decrease (almost) monotonically until a minimum is

reached and will then start to increase (almost) monotonically. The number of hidden

units that minimizes the prediction risk is selected for the construction of the model.

In the initial model, where all seven inputs were used, the prediction risk with

1 hidden unit is only 3.2009. When 1 additional hidden unit is added to the model,

the prediction risk increases. Then, as more hidden units are added to the model, the

prediction risk decreases monotonically. The minimum is reached when 5 hidden

units are used and is 3.2004. When additional hidden units are added in the topology

of the model, the prediction risk increases. Hence, the architecture of the wavelet

network contains 5 hidden units. In other words, to construct the wavelet network, the

five higher-ranking wavelets should be selected to form the wavelet basis. Observing

Table 8.3, it is clear that the prediction risk in the initial model with only 1 hidden unit

is almost the same as in the model with 5 hidden units. This is due to the small number

of parameters that were adjusted during the training phase when only 1 hidden unit

is used, not due to a better fit.

At the second step, when variableX6 was removed, the prediction risk isminimized
when 2 hidden units are used. Similarly, at steps 2, 3, and 4, the prediction risk is

minimized when only 1 hidden unit is used. Additional hidden units do not improve

the fitting or the predictive power of the model.

Initialization and Training

After the training set and the correct topology of the wavelet network are selected, the

wavelet network can be constructed and trained. The BE method is used to initialize
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Figure 8.3 Initialization of the final model for the temperature data in Berlin using the BE method (a)
and the fit of the trained network with 1 hidden unit (b). The wavelet network converged after 19 iterations.

the wavelet network. A wavelet basis is constructed by scanning the first four levels

of the wavelet decomposition of the DAT in Berlin.

Thewavelet basis consists of 168wavelets.However, not allwavelets in thewavelet

basis contribute to the approximation of the original time series. Following Zhang

(1997), the wavelets that contain fewer than five sample points of the training data in

their support are removed. Seventy-six wavelets that do not contribute significantly

to the approximation of the original time series were identified. The truncated basis

contains 92 wavelet candidates. Applying the BE method, the wavelets are ranked

in order of significance. The wavelets in the wavelet library are ranked as follows:

The BE starts the regression by selecting all the available wavelets from the wavelet

library. Then the wavelet that contributes the least in the fitting of the training data

is repeatedly eliminated. Since only 1 hidden unit is used on the architecture of the

model, only the wavelet with the highest ranking is used to initialize the wavelet

network. Figure 8.3a presents the initialization of the final model using only 1 hidden

unit. The initialization is very good and the wavelet network converged after only

19 iterations. The training stopped when the minimum velocity, 10−5, of the training
algorithm was reached. The fitting of the trained wavelet network can be found in

Figure 8.3b.

Next, various fitness criteria of the wavelet network corresponding to the T̃t in
Berlin are estimated. Our results reveal that the wavelet networks fit the detrended

and deseasonalized DATs reasonably well. The overall fit for Berlin is R̄2 = 64.61%,
while the MSE is 5.4196 and the MAE is only 1.8090. As mentioned earlier, the

noise term is very large compared to the detrended and deseasonalized data, and as a

result, a relatively small R̄2 is expected.
Next, the prediction of sign (POS) as well the prediction of change in direction

(POCID) and the independent prediction of change in direction (IPOCID) are also

estimated. These three criteria examine the ability of the network to predict changes,

independent of the size of the change, and they are reported as percentages. The POS

measures the ability of the network to predict the sign of the target values, positive or
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negative. The POS for the detrended and deseasonalized DATs is very high, 81.49%.

The POCID is 60.15%, and the IPOCID is 52.30%.

For our temperature model we assumed that the noise term follows a normal

distribution. Examining the residuals of the wavelet network, e (t), given by equation
(8.14), we find that the residuals have a mean of 0.01 and a standard deviation of

2.33. The skewness is −0.03 and the kurtosis is 3.73. Finally, the KS normality test
has a p-value of 0 and rejects the normality of the residuals, while the Ljung–Box
Q-statistic is 31.469 with a p-value of 0.0493, barely accepting the hypothesis of
uncorrelated residuals.

However, after removal of the seasonal variance, the final residuals of the model,

𝜀 (t), given by (8.15) have a mean of 0 and a standard deviation of 1. The skewness is
–0.02 and the kurtosis is 3.53. Finally, the KS normality test has a p-value of 0.3081
and accepts the normality of the residuals, while the Ljung–BoxQ-statistic is 29.616,
with a p-value of 0.0763 accepting the hypothesis of uncorrelated residuals. Hence,
our model does not violate our initial assumption and can be used for predictions.

Confidence and Prediction Intervals

After the wavelet network is constructed and trained, it can be used for prediction.

Hence, confidence and prediction intervals can be constructed. In this section both

confidence and prediction intervals are constructed using the balancingmethod.Using

the BS method, 200 training samples are created and then divided into eight groups.

In each group the average output of the wavelet networks is estimated. Next, new

1000 bootstrapped samples are created for the 8 average outputs to estimate the model

variance given by (7.25). Then the confidence intervals is estimated with a level of

significance a of 5%.
Figure 8.4 presents the confidence intervals for the detrended and deseasonalized

DAT in Berlin as well as the average wavelet network output obtained from 200

bootstrapped samples. As the intervals are very narrow, to obtain a clear figure only

the five first values are presented.

Next, the prediction intervals are constructed for the out-of-sample data set. The

out-of-sample data consist of 365 values of detrended and deseasonalized DATs

in Berlin for the period 2000–2001. The out-of-sample performance criteria are

presented in Table 8.4. The overall fit adjusted for degrees of freedom is R̄2 = 59.27%.
The NMSE is 0.3961, while the MAPE is only 2.4108. Figure 8.5 illustrates the

prediction intervals together with the real data and the average forecast of the wavelet

network for the 200 bootstrapped samples. PICP = 93.46%.

Out-of-Sample Comparison

As mentioned earlier, to compare the out-of-sample forecast of a proposed model,

the complete system consisting of equations (8.5), (8.6), (8.7), (8.14), and (8.15)

must be estimated. An analytical discussion of temperature modeling in the context

of weather derivatives was presented by Alexandridis and Zapranis (2013).
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Figure 8.4 Confidence intervals and the average WN output using the balancing method and 200
bootstrapped samples. The five presents only the first five values for simplicity.

TABLE 8.4 Out-of-Sample Performance
Criteria for Berlin

MAE 1.7340

MaxAE 9.3330

NMSE 0.3961

MAPE 2.4108

R̄2 59.27%
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Figure 8.5 Prediction intervals (red solid lines), the real data (dotted), and the average wavelet network
output (black solid line) using the balancing method and 200 bootstrapped samples of the detrended and
deseasonalized DATs in Berlin for the period 2000–2001. PICP = 93.46%.
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We presented only the part that is modeled by a wavelet network—in other words,

the estimation of model (8.14)—but it would also be interesting to examine the

forecasting ability of our model. To do so we examine the predictive power of the

wavelet network against two linear models proposed previously and used widely in

the literature: the first proposed by Alaton et al. (2002) and the second proposed by

Benth and Saltyte-Benth (2007). The three models are similar, but in the two linear

models, the speed of mean reversion, 𝜅, is assumed to be constant and is computed

through an AR(1) model given by (8.10).

The three models will be compared in the prediction of two temperature indices

in seven European cities; the forecasting window will be 1, 2, 3, 6, and 12 months.

Moreover, two forecasting methods will be used: one-day-ahead forecasting and out-

of-sample forecasting. Hence, the three methods will be compared in 140 samples.

The results indicate that the wavelet network outperforms the other two methods in

81 case (58%). On the other hand, the model proposed by Alaton et al. (2002) gave

the best results in 35 cases (25%), while the model proposed by Benth and Saltyte-

Benth (2007) gave the best results in only 24 cases (17%). For a complete analysis of

temperature modeling and presentation of the forecasting comparison, we refer the

reader to the book by Alexandridis and Zapranis (2013).

CONCLUSIONS

In this chapter a temperature time series was studied to develop a model that describes

the temperature evolution in the context of weather derivative pricing. A mean revert-

ing Ornstein–Uhlenbeck with seasonal mean and variance and time-varying speed of

mean reversion was proposed.

In the context of anOrnstein–Uhlenbeck temperature process, the time dependence

of the speed of the mean reversion 𝜅(t) was examined using a wavelet network. First,
the variable selection framework proposed in Chapter 7 was utilized to estimate the

number of lags of the nonlinear nonparametric ARmodel. At each step of the variable

selection algorithm, the optimal number of wavelons was obtained by applying the

minimum prediction risk criterion using bootstrapping.

The initial model had seven variables, whereas the final had one only three. Our

results indicated that the reduced model has the same fitting to the data but increased

predicting power. Moreover, a significantly smaller network and fewer parameters

were needed during the training phase of the reduced wavelet network. Similarly, the

training time was reduced significantly.

We compared the fit of the residuals with the normal distributions with two types

of models. The first type was the nonlinear nonparametric model proposed, where 𝜅

is a function of time. The second category of models consists of two linear models

proposed previously and often cited in the literature, where 𝜅 is constant. It follows

that by setting the speed of mean reversion to be a function of time, the accuracy of

the pricing of temperature derivatives improves. Generally, in our model a better fit

was obtained.
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Testing our model for adequacy, we find that the wavelet network does not violate

any of the initial conditions. The residuals are uncorrelated and follow a normal distri-

bution. On the other hand, in the two linear models, as presented by Alexandridis and

Zapranis (2013), the normality hypothesis was rejected while strong autocorrelation

in the residuals was evident.

The model proposed was evaluated out-of-sample. The predictive power of the

model proposed was evaluated using two out-of-sample forecasting methods: out-of-

sample forecasts over a period and one-day-ahead forecasts over a period. Modeling

the DAT using wavelet networks significantly enhanced the fitting and the predictive

accuracy of the temperature process. Modeling the DAT assuming a time-varying

speed of mean reversion resulted in a model with better out-of-sample predictive

accuracy. The additional accuracy of our model has an impact on the accurate pricing

of temperature derivatives.

Concluding, wavelet networks can model very well the temperature process in

the context of financial weather derivatives pricing. Consequently, they constitute an

accurate and efficient tool for weather derivative pricing.
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