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Modeling Financial

Wind Derivatives

Weather derivatives are financial tools that can help organizations or individuals to

reduce risk associated with adverse or unexpected weather conditions and can be used

as part of a risk management strategy. Weather derivatives linked to various weather

indices, such as rainfall, temperature, or wind, are traded extensively in CME as well

as on the OTCmarket. The electricity sector is especially sensitive to the temperature

and wind since temperature affects the consumption of electricity while wind affects

production of electricity in wind farms. Hence, it is logical that energy companies

are the main investors of the weather market. In Chapter 8 a detailed framework for

modeling and pricing temperature derivatives was developed. In this chapter we focus

on wind derivatives.

The notional value of the wind-linked securities traded is around $36 million,

indicating a large and growing market (WRMA, 2010). However, after the close

of the U.S. Future Exchange, wind derivatives have been traded OTC. A demand

for these derivatives exists. However, investors hesitate to enter into wind contracts.

The main reasons for the slow growth of the wind market compared to temperature

contracts are the difficulty in modeling wind accurately and the challenge of finding

a reliable model for valuing related contracts. As a result, there is a lack of reliable

valuation framework that makes financial institutions reluctant to quote prices over

these derivatives.

The aim of this chapter is to model and price wind derivatives. Wind derivatives

are standardized products that depend only on the daily average wind speed measured
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by a predefined meteorological station over a specified period and can be used by

wind (and weather in general)-sensitive businesses such as wind farms, transportation

companies, construction companies, and theme parks. The financial contracts that are

traded are based on the simple daily average wind speed index, and this is the reason

that we choose to model only the dynamics of the daily average wind speeds. The

revenues of each company have a unique dependence and sensitivity to wind speeds.

Although wind derivatives and weather derivatives can hedge a significant part of

the weather risk of the company, some basis risk will always still exist which must

be hedged from each company separately. This can be done either by defining a

more complex wind index or by taking an additional hedging position. Cao and Wei

(2003) provided various examples of how weather derivatives can reduce the basis

and volumetric risks in weather-sensitive businesses (e.g., ski resorts, restaurants,

theme parks, electricity companies).

Wind is a free, renewable, and environmentally friendly source of energy (Billinton

et al., 1996).Wind derivatives are traded extensively in the electricity sector.While the

demand for electricity is closely related to the temperature, the electricity produced by

a wind farm is dependent on the wind conditions. The risk exposure of the wind

farm depends on the wind speed, the wind direction, and in some cases the wind

duration of the wind speed at certain levels. However, modern wind turbines include

mechanisms that allow turbines to rotate in the appropriate wind direction (Caporin

and Pres, 2010). Wind derivatives can be used as part of a hedging-strategy in wind-

sensitive businesses. However, the underlying wind indices do not account for the

duration of the wind speed at certain levels but, rather, usually measure the average

daily wind speed. Hence, the parameter of the duration of the wind speed at certain

levels is not considered in our daily model. Hence, the risk exposure of a wind-

sensitive company can be analyzed by quantifying only the wind speed. On the other

hand, companies such as wind farms whose revenues depend on the duration effect

can use an additional hedging strategy that includes this parameter. This can be

done by introducing a second index that measures the duration. A similar index for

temperature is the frost day index.

Many different approaches have been proposed so far for modeling the dynamics

of the wind speed process. The most common is the generalized autoregressive

moving average (ARMA) approach. There has been a number of studies on the use

of linear ARMA models to simulate and forecast wind speed in various locations

(Billinton et al., 1996; Caporin and Pres, 2010; Castino et al., 1998; Daniel and

Chen, 1991; Huang and Chalabi, 1995; Kamal and Jafri, 1997; Martin et al.,

1999; Saltyte-Benth and Benth, 2010; Tol, 1997; Torres et al., 2005). Kavasseri

and Seetharaman (2009) used a more sophisticated fractional integrated ARMA

(ARFIMA) model. Most of these studies did not consider in detail the accuracy of

the wind speed forecasts (Huang and Chalabi, 1995). On the other hand, Ailliot et al.

(2006) apply an autoregressive model (AR) with time-varying coefficients to describe

the space-time evolution of wind fields. Benth and Saltyte-Benth (2009) introduced

a stochastic process called the continuous AR (CAR) model to model and forecast

daily wind speeds. Finally, Nielsen et al. (2006) presented various statistical methods

for short-term wind speed forecasting. Sfetsos (2002) argues about the use of linear

or meteorological models, since their prediction error is not significantly lower than
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the elementary persistent method. Alternatively, some studies use space-state models

to fit the speed and the direction of the wind simultaneously (Castino et al., 1998;

Cripps et al., 2005; Haslett and Raftery, 1989; Martin et al., 1999; Tolman and Booij,

1998; Tuller and Brett, 1984).

Alternative to the linear models, artificial intelligence was used for wind speed

modeling and forecasting. Alexiadis et al. (1998), Barbounis et al. (2006), Beyer et al.

(1994),Mohandes et al. (1998),More andDeo 2003, and Sfetsos (2000, 2002) utilized

neural networks to model the dynamics of the wind speed process. Mohandes et al.

(2004) used support vector machines, and Pinson and Kariniotakis (2003) employed

fuzzy neural networks.

Depending on the application, wind modeling is based on an hourly (Ailliot et al.,

2006; Castino et al., 1998; Daniel and Chen, 1991; Kamal and Jafri, 1997; Martin

et al., 1999; Sfetsos, 2000, 2002; Torres et al., 2005; Yamada, 2008), daily (Benth

and Saltyte-Benth, 2009; Billinton et al., 1996; Caporin and Pres, 2010; Huang and

Chalabi, 1995; More and Deo, 2003; Tol, 1997), weekly, or monthly basis (More

and Deo, 2003). When the objective is to hedge against electricity demand and

production, hourly modeling is used, whereas for weather derivative pricing the

daily method is used. More rarely, weekly or monthly modeling is used to estimate

monthly wind indexes. Since we want to focus on weather derivative pricing, the

daily modeling approach is followed; however, the method proposed can be easily

be adapted to hourly modeling.

Wind speed modeling is much more complicated than temperature modeling

since wind has a direction and is greatly affected by the surrounding terrain, such as

buildings, and trees (Jewson et al., 2005). However, Benth and Saltyte-Benth (2009)

have shown that wind speed dynamics share a lot of common characteristics with

the dynamics of temperature derivatives. In this context we use a mean reverting

Ornstein–Uhlenbeck stochastic process to model the dynamics of the wind speed,

where the innovations are driven by a Brownian motion. The statistical analysis

reveals seasonality in the mean and variance. In addition we use a novel approach

to model the autocorrelation of wind speeds. More precisely, a wavelet network is

utilized to capture accurately the autoregressive characteristics of the wind speeds.

The evaluation of the proposed methodology against alternative modeling proce-

dures proposed in prior studies indicates that wavelet networks can accurately model

and forecast the dynamics and evolution of the speed of the wind. The performance

of each method was evaluated in-sample as well as out-of-sample and for different

time periods.

The remainder of the chapter is organized as follows. First, a statistical analysis

of the wind speed dynamics is presented. Then, a linear model and a nonlinear

nonparametric wavelet network are fitted to the data. Next, an evaluation and a

comparison of the models studied is presented. Finally, we conclude.

MODELING THE DAILY AVERAGEWIND SPEED

In this section we derive empirically the characteristics of the daily average wind

speed (DAWS) dynamics in New York. The data were collected from NOAA
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Figure 9.1 Daily average wind speed for New York.

(http://www.noaa.gov/) and correspond to DAWSs. The wind speeds are measured

in units of 0.1 knot. The measurement period is between January 1, 1988 and Febru-

ary 28, 2008. The first 20 years are used for estimation of the parameters, while

the remaining two months are used for evaluation of the performance of the model

proposed. So that each year will have the same number of observations, February 29

is removed from the data, resulting in 7359 data points. The time series is complete

without any missing values.

In Figure 9.1 the DAWSs for the first 20 years are presented. The descriptive

statistics of the in-sample data are presented in Table 9.1. The values of the data are

always positive and range from 1.8 to 32.8 with a mean around 9.91. Also, a closer

inspection of Figure 9.1 reveals seasonality.

The descriptive statistics of the DAWSs indicate that there is a strong positive

kurtosis and skewness, while the normality hypothesis is rejected based on the Jarque–

Bera statistic. The same conclusions can be reached by observing the first part of

Figure 9.2, where the histogram of the DAWSs is represented. The distribution of

DAWSs deviates significantly from the normal and is not symmetrical. In the literature

theWeibull or the Rayleigh (which is a special case of theWeibull) distributions were

proposed describe the distribution of the wind speed (Brown et al., 1984; Daniel and

Chen, 1991; Garcia et al., 1998; Justus et al., 1978; KavakAkpinar andAkpinar, 2005;

Nfaoui et al., 1996; Torres et al., 2005; Tuller and Brett, 1984). In addition, some

TABLE 9.1 Descriptive Statistics of the Wind Speed in New Yorka

Mean Med. Max. Min. S. Dev. Skew Kurt. JB p-Value

Original 9.91 9.3 32.8 1.8 3.38 0.96 4.24 1595.41 0

Transformed 2.28 2.3 3.6 0.6 0.34 0.00 3.04 0.51 1

aJB, Jarque–Bera statistic; p-value, p-values of the JB statistic.
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Figure 9.2 Histogram of the (a) original and (b) Box–Cox transformed data.

studies propose use of the lognormal distribution (Garcia et al., 1998) or chi-square

(Dorvlo, 2002). Finally, Jaramillo and Borja (2004) used a bimodal Weibull and

Weibull distribution. However, empirical studies favor use of the Weibull distribution

(Celik 2004; Tuller and Brett, 1984).

A closer inspection of Figure 9.2a reveals that the DAWSs in New York follow a

Weibull distributionwith scale parameter𝜆 = 11.07 and shape parameter k = 3.04. To
symmetrize the data, the Box–Cox transform is applied. The Box–Cox transformation

is given by

W(l) =

{
Wl − 1

l
l ≠ 0

ln(W) l = 0
(9.1)

where W(l) is the transformed data. The parameter l is estimated by maximizing the
log-likelihood function. Note that log-transform is a special case of the Box–Cox

transform with l = 0. The optimal l of the Box–Cox transform for the DAWSs in
New York is estimated to be 0.014. In Figure 9.2b the histogram of the transformed

data can be found while the second row of Table 9.1 shows the descriptive statistics

of the transformed data.

The DAWSs exhibit a clear seasonal pattern which is preserved in the transformed

data. The same conclusion can be reached by examining the autocorrelation function

(ACF) of the DAWSs in the first part of Figure 9.3. The seasonal effects are modeled

by a truncated Fourier series, given by

S(t) = a0 + b0t +
I1∑
i=1

ai sin
2𝜋i(t − fi)

365
+

J1∑
j=1

bi sin
2𝜋j(t − gj)

365
(9.2)

In addition, we examine the data for a linear trend representing the global warming

or the urbanization around the meteorological station. First, we quantify the trend by

fitting a linear regression to the DAWS data. The regression is statistically significant
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Figure 9.3 Autocorrelation function of the transformed DAWSs in New York (a) before and (b) after
removing the seasonal mean.

TABLE 9.2 Estimated Parameters of the Seasonal Component

a0 b0 a1 f1 b1 g1

2.3632 −0.000024 0.0144 827.81 0.1537 28.9350

with intercept a0 = 2.3632 and slope b0 = −0.000024, indicating a slight decrease
in the DAWSs. Next, the seasonal periodicities are removed from the detrended data.

The remaining statistically significant estimated parameters of equation (9.2) with

I1 = J1 = 1 are presented in Table 9.2. As shown in Figure 9.3b, the seasonal mean
was removed successfully. The same conclusion was reached in previous studies

for daily models for both temperature and wind (Benth and Saltyte-Benth, 2009;

Zapranis and Alexandridis, 2008).

LINEAR ARMAMODEL

In the literature, various methods have been proposed for studying the statistical

characteristics of the wind speed, in daily or hourly measurements. However, the

majority of the studies utilize variations of the general ARMA model. In this chapter

we first estimate the dynamics of the detrended and deseasonalized DAWS process

using a general ARMA model and then compare our results with a wavelet network.

We define the detrended and deseasonalized DAWS as

W̃(l)(t) = W(l)(t) − S(t) (9.3)

The dynamics of W̃(l)(t) are modeled by a vectorial Ornstein–Uhlenbeck stochastic
process,

dW̃(l)(t) = aW̃(l)(t) dt − Ip𝜎(t) dBt (9.4)

where Ip is the pth unit vector in R
p and 𝜎(t) is the standard deviation.
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Figure 9.4 Partial autocorrelation function of the detrended and deseasonalized DAWSs in New York.

First, to select the correct ARMA model, we examine the ACF of the detrended

and deseasonalized DAWSs. A closer inspection of Figure 9.3b reveals that the lags

1, 2, and 4 are significant. On the other hand, by examining the partial autocorrelation

function (PACF) in Figure 9.4, we conclude that the first four lags are necessary to

model the autoregressive effects of the dynamics of the wind speed.

To find the correct model, we estimate the log-likelihood function (LLF) and the

akaike information criterion (AIC). Consistent with the PACF, both criteria suggest

that an AR(4) model is adequate for modeling the wind process since they were

minimized when a model with four lags was used. The estimated parameters and

the corresponding p-values are presented in Table 9.3. It is clear that the three first
parameters are statistically very significant since their p-value is less than 0.05. The
parameter of the fourth lag is statistically significant with a p-value of 0.0657. The
AIC for this model is 0.46852 and the LLF is −1705.14.
Observing the residuals of the AR model in Figure 9.5a, we conclude that the

autocorrelation was removed successfully. However, the ACF of the squared residuals

indicates a strong seasonal effect in the variance of the wind speed, as shown in

Figure 9.6. Similar behavior was observed in the residuals of temperature and wind in

TABLE 9.3 Estimated Parameters of the Linear AR(4) Model

Parameter AR(1) AR(2) AR(3) AR(4)

Value 0.3617 −0.0999 0.0274 0.0216

p-Value 0.0000 0.0000 0.0279 0.0657
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Figure 9.5 Autocorrelation function of the residuals of (a) the linear model and (b) the WN.

various studies (Zapranis and Alexandridis, 2008). The seasonal variance is modeled

with a truncated Fourier series:

𝜎2(t) = c0 +
I2∑
i=1

ci sin
2i𝜋t
365

+
J2∑
j=1

dj sin
2𝜋jt

365
(9.5)

Note that we assume that the seasonal variance is periodic and repeated every year

[i.e., 𝜎2(t + 365) = 𝜎2(t), where t = 1,… , 7359]. The empirical and fitted seasonal

variance are presented in Figure 9.7 and the estimated parameters of equation (9.5)

are presented in Table 9.4.

Not surprisingly, the variance exhibits the same characteristics as in the case of

temperature. More precisely, the seasonal variance is higher in the winter and early

summer, while it reaches its lower values during the summer period.

Finally, the descriptive statistics of the final residuals are examined. A closer

inspection of Table 9.5 shows that the autocorrelation has been removed successfully,

as indicated by the Ljung–BoxQ-statistic. In addition, the distribution of the residuals
is very close to the normal distribution, as shown in Figure 9.8a. However, small
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Figure 9.6 Autocorrelation function of the squared residuals of (a) the linear model and (b) the WN.
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Figure 9.7 Empirical and fitted seasonal variance of (a) the linear model and (b) the WN.

TABLE 9.4 Estimated Parameters of the Seasonal Variance in the Linear Model

c0 c1 c2 c3 c4 d1 d2 d3 d4

0.0932 0.000032 −0.0041 0.0015 −0.0028 0.0358 −0.0025 −0.0048 −0.0054

TABLE 9.5 Descriptive Statistics of the Residuals for the Linear AR(4) Model

Var. Mean S. dev. Max. Min. Skew Kur. JB p-Value KS p-Value LBQ p-Value

Noise 0 1 3.32 −5.03 −0.09 3.03 10.097 0.007 1.033 0.2349 8.383 0.989

S. dev., standard deviation; JB, Jarque–Bera statistic; KS, Komogorov–Smirnov statistic; LBQ, Ljung–Box Q–statistic.

negative skewness exists. More precisely, the residuals have mean 0 and standard

deviation 1. In addition, the kurtosis is 3.03 and the skewness is −0.09.
Concluding, the previous analysis indicates that an AR(4) model provides a

good fit for the wind process, while the final residuals are very close to the normal

distribution.
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Figure 9.8 Empirical and fitted normal distribution of the final residuals of (a) the linear model and
(b) the WN.
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WAVELET NETWORKS FORWIND SPEED MODELING

In this section, wavelet networks are applied in the transformed, detrended, and

deseasonalized wind speed data in order to model the daily dynamics of wind speeds

in New York. Motivated by the waveform of the data, we expect a wavelet function

to better fit the wind speed. In addition, it is expected that the nonlinear form of the

wavelet network will provide more accurate representation of the dynamics of the

wind speed process both in-sample and out-of-sample.

In the context of the linear ARMA model, the mean reversion parameter a is
typically assumed to be constant over time. Brody et al. (2002) mentioned that, in

general, a should be a function of time, but no evidence was presented. The impact
of a false specification of a on the accuracy of the pricing of temperature derivatives
is significant (Alaton et al., 2002).

In this section we address that issue by using a wavelet network to estimate

nonparametrically the relationship (9.4) and then estimate a as a function of time. In
addition, we propose the variable selection algorithm presented in previous chapters

for selecting the statistical significant lags. Hence, a series of speed of mean reversion

parameters, ai(t), are estimated. By computing the derivative of the network output
with respect to the network input, we obtain a series of daily values for ai(t). This is
done for the first time, and it gives us a much better insight into DAWS dynamics and

wind derivative pricing. As we will see, the daily variation of ai(t) is quite significant
after all. In addition, it is expected that the waveform of the wavelet network will

provide a better fit to the DATs that are governed by seasonalities and periodicities.

Using wavelet networks the generalized version of the autoregressive dynamics of

detrended and deseasonalized DAWS estimated nonlinearly and nonparametrically

is given by

W̃(l)(t + 1) = 𝜙
(
W̃(l)(t), W̃(l)(t − 1),…

)
+ e(t) (9.6)

where

e(t) = 𝜎(t)𝜀(t) (9.7)

and W̃(l)(t) is given by (9.3).

Variable Selection

Model (9.6) uses past DAWSs (detrended and deseasonalized) over one period. Using

more lags, we expect to overcome the strong correlation found in the residuals. How-

ever, the length of the lag series must be selected. In previous chapters detailed

explanations were given of how to apply the model identification framework. Model

identification can be separated into two parts: model selection and variable signif-

icance testing. Since wavelet networks are nonlinear tools, criteria such as AIC or

LLF cannot be used. Hence, in this section the framework proposed will be used

to select the significant lags, to select the appropriate network structure, to train a

wavelet network in order to learn the dynamics of the wind speeds, and finally, to

forecast the future evolution of wind speeds.
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The model identification algorithm uses a recurrent algorithm to simultaneously

estimate the correct number of lags that must be used to model the wind speed

dynamics and the architecture of the wavelet network.

Our backward selection algorithm examines the contribution of each available

explanatory variable to the predictive power of the wavelet network. First, the pre-

diction risk of the wavelet network is estimated as well as the statistical significance

of each variable. If a variable is statistically insignificant, it is removed from the

training set and the prediction risk and new statistical measures are estimated. The

algorithm stops if all explanatory variables are significant. Hence, in each step of

our algorithm, the variable with the larger p-value greater than 0.1 will be removed
from the training set of our model. After each variable removal, a new architec-

ture of the wavelet network will be selected and a new wavelet network will be

trained. However, the correctness of the decision of removing a variable must be

examined. This can be done by examining either the prediction risk or R̄2. If the
new prediction risk is smaller than the new prediction risk multiplied by a threshold,

the decision of removing the variable was correct. If the prediction risk increased

more than the allowed threshold, the variable was reintroduced back to the model.

We set this threshold at 5%. The statistical measure selected is the SBP. Our results

indicate that the SBP fitness criterion was found to outperform alternative criteria

significantly in the variable selection algorithm.

The variable selection framework proposed will be utilized for the transformed,

detrended, and deseasonalized wind speeds in New York to select the length of the

lag series. The target values of the wavelet network are the DAWSs. The explanatory

variables are lagged versions of the target variable. The relevance of a variable to

the model is quantified by the SBP criterion. Initially, the training set contains the

dependent variable and seven lags. The analysis in the preceding section indicates

that a training set with seven lags will provide all the necessary information of the

ACF of the detrended and deseasonalized DAWSs. Hence, the initial training set

consists of 7 inputs, 1 output, and 7293 training pairs.

Table 9.6 summarizes the results of the model identification algorithm for New

York. Both the model selection and the variable selection algorithms are included in

the table. The algorithm concluded in four steps and the final model contains only

three variables (i.e., three lags). The prediction risk for the reduced model is 0.0937,

TABLE 9.6 Variable Selection with Backward Elimination in New Yorka

Step

Variable to

Remove

(Lag)

Variable

to Enter

(Lag)

Variables

in Model

Hidden Units

(Parameters)

n/p
Ratio

Empirical

Loss

Prediction

Risk

— 7 1 (23) 317.4 0.0467 0.0938

1 7 — 6 1 (20) 365.0 0.0467 0.0940

2 5 — 5 1 (17) 429.4 0.0467 0.0932

3 6 — 4 2 (23) 317.4 0.0467 0.0938

4 4 — 3 2 (18) 405.6 0.0468 0.0937

aThe algorithm concluded in four steps. In each step the following are presented: which variable is removed, the number

of hidden units for the particular set of input variables and the parameters used in the wavelet network, the ratio between

the parameters and the training patterns, the empirical loss, and the prediction risk.
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while for the original model it was 0.0938, indicating that the predictive power of

the wavelet network was slightly increased. On the other hand, the empirical loss

increased slightly from 0.0467 for the initial model to 0.0468 for the reduced model,

indicating that the explained variability (unadjusted) decreased slightly. Finally, the

complexity of the network structure and the number of parameters were reduced

significantly in the final model. The initial model needed 1 hidden unit and 7 inputs.

Hence, 23 parameters were adjusted during the training phase, so the ratio of the

number of training pairs n to the number of parameters p was 317.4. In the final
model only 2 hidden units and 3 inputs were used, so only 18 parameters were

adjusted during the training phase and the ratio of the number of training pairs n to
the number of parameters p was 405.6.
The statistics for the wavelet network at each step are given in Table 9.7. The first

part of the Table 9.7 reports the values of the SBP and its p-value; then various fitting
criteria are reported. A closer inspection of the table reveals that the various error

measures are reduced in the final model. However, the values of R̄2 are relatively
small in all cases. This is due to the presence of large noise values compared to the

small values of the underlying function.

In the final model, only three of the seven variables were used. The complexity

of the model was reduced while the prediction power of the reduced model was

increased. However, the in-sample obtained was a slightly poorer fit. The algorithm

proposed suggests that a wavelet network needs only three lags to extract the autocor-

relation from the data, whereas the linear model needed four lags. A closer inspection

of Table 9.6 reveals that wavelet networks with three and four lags have the same

predictive power in-sample and out-of-sample. Hence, we chose the simpler model.

TABLE 9.7 Step-by-Step Variable Selection in New Yorka

Full Model Step 1 Step 2 Step 3 Step 4

Variable SBP p-Value SBP p-Value SBP p-Value SBP p-Value SBP p-Value

7 0.0000 0.8392
6 0.0000 0.7467 0.0000 0.4855 0.0000 0.9167
5 0.0000 0.6799 0.0000 0.9467
4 0.0000 0.5203 0.0000 0.7180 0.0000 0.2643 0.0000 0.7480
3 0.0001 0.1470 0.0001 0.0000 0.0001 0.4706 0.0001 0.4719 0.0003 0.0000

2 0.0010 0.0469 0.0010 0.0000 0.0010 0.0000 0.0009 0.0000 0.0010 0.0168

1 0.0141 0.0000 0.0141 0.0000 0.0137 0.0000 0.0140 0.0000 0.0135 0.0000

MAE 0.2430 0.2430 0.2428 0.2430 0.2429

MaxAE 1.7451 1.7453 1.7156 1.7541 1.6986

NMSE 0.8832 0.8832 0.8833 0.8832 0.8834

R̄2 11.68% 11.67% 11.67% 11.68% 11.65%

Empirical

loss

0.0467 0.0467 0.0467 0.0467 0.0468

Prediction

risk

0.0938 0.0940 0.0932 0.0938 0.0937

Iterations 22 37 26 19 225

aThe SBP is the average for each variable of 50 bootstrapped samples, the standard deviation, and the p-value; SBP,
sensitivity-based pruning; MAE, mean absolute error; MaxAE, maximum absolute error; NMSE, normalized mean

squared error; MSE, mean square error; MAPE, mean absolute percentage error.
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TABLE 9.8 Prediction Risk at Each Step of the Variable Selection Algorithm for the First
5 Hidden Units for New York

Hidden Units

Step 1 2 3 4 5

0 0.09378 0.09380 0.09379 0.09379 0.09380

1 0.09403 0.09404 0.09403 0.09406 0.09406

2 0.09321 0.09324 0.09325 0.09326 0.09327

3 0.09384 0.09380 0.09384 0.09387 0.09386

4 0.09370 0.09367 0.09368 0.09373 0.09379

Model Selection

In this section the appropriate number of hidden units is determined by applying the

model selection algorithm. Table 9.8 shows the prediction risk for the first 5 hidden

units at each step of the variable selection algorithm for the DAWSs in NewYork. It is

clear that only 1 hidden unit is sufficient to model the detrended and deseasonalized

DAWSs in New York at the first three steps. Similarly, 2 hidden units were needed

for the last two steps.

Initialization and Training

After the training set and the correct topology of the wavelet network are selected,

the wavelet network can be constructed and trained. In this case study the BE method

is used to initialize the wavelet network. A wavelet basis is constructed by scanning

the first four levels of the wavelet decomposition of the detrended and deseasonalized

DAWSs in New York.

The wavelet basis consists of 205 wavelets. To reduce the number of wavelets

in the wavelet basis, the wavelets that contain fewer than six sample points of the

training data in their support are removed. The truncated basis contains 119 wavelet

candidates. Applying the BEmethod, the wavelets are ranked in order of significance.

Since only 2 hidden units are used in the architecture of the model, the best two

wavelets are selected. The results of previous steps are similar. The MSE after the

initialization was only 0.09420. Figure 9.9a presented the initialization of the final

model using 2 hidden units. The initialization is very good, and the wavelet network

converged after 225 iterations. The training stopped when the minimum velocity,

10−5, of the training algorithmwas reached. The fitting of the trained wavelet network
is shown in Figure 9.9b.

Model Adequacy

In this section the model adequacy of the wavelet network is studied. The n∕p ratio
is 405.3, indicating that each parameter of the network corresponds to 405 values.

Hence, we can safely conclude that overfitting was avoided.
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Figure 9.9 Initialization of the final model for the wind data in New York using the BE method (a) and
the fit of the trained network with 2 hidden units (b). The wavelet network converged after 225 iterations.

TABLE 9.9 Residual Testinga

Parameter p-Values

n/p Ratio 405.3 −
Mean 0.0000

Median 0.0018

S. dev. 0.3058

DW 2.0184 0.4526

LB Q-stat. 20.6002 0.4210

JB stat. 28.8917 0.0000

KS stat. 22.3453 0.0000

aS. dev., standard deviation; DW, Durbin–Watson; LB, Ljung–Box; KS, Kolmogorov–Smirnov.

In a closer examination of the residuals we found that the mean of the residuals is

zero with a standard deviation of 0.3058. The normality hypothesis is rejected, but

the hypothesis that the residuals are uncorrelated is accepted. The results are reported

analytically in Table 9.9.

Various error criteria are reported in Table 9.10. TheMSE is only 0.0937, while the

NMSE and the RMSE are 0.8834 and 0.0937, respectively. Similarly, the maximum

absolute error is 1.6986. Finally, the SMAPE is 27.55%. Note that since some values

are zero, the MAPE cannot be computed. We observer that the SMAPE is relative

high. This is due to the presence of a large error term compared to the very small

values of the targets.

The parameters estimated for the regression between the target values and the

network output are presented in Table 9.11. A closer inspection reveals that the

TABLE 9.10 Error Criteriaa

Md.AE MAE MaxAE SSE RMSE NMSE MSE MAPE SMAPE

0.2034 0.2429 1.6986 682.4678 0.3058 0.8834 0.0937 — 27.55%

aMd.AE, median absolute error; MAE, mean absolute error; MaxAE, maximum absolute error; SSE, sum of squared

errors; RMSE, root mean squared error; NMSE, normalized mean squared error; MSE, mean squared error; MAPE, mean

absolute percentage error; SPAME, symmetric mean absolute percentage error.
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TABLE 9.11 Regression Statisticsa

Parameter p-Values S.E. T-Stat.

b0 0.0001 0.9886 0.0036 0.0143

b1 0.9655 0.0000 0.0311 31.0318

b1 = 1 Test 0.9655 0.2670 0.0311 31.0318

F 962.9701 0.0000

DW 1.9933 0.7611

aS.E., squared error; DW, Durbin–Watson.

parameter b0 is not statistically different from zero, while the parameter b1 is not
statistically different from1 at significance level 5%.Moreover, the linear regression is

statistically significant according to theF-statistic. Finally, as presented in Table 9.12,
the changes in the direction metric are reported. More precisely, POCID, IPOCID,

and POS are 69.64%, 43.28%, and 59.55%, respectively.

Speed of Mean Reversion and Seasonal Variance

The daily values of the speed of mean reversion function ai(t) (7293 values) are
depicted in Figure 9.10. Since there are three significant lags, there are three mean-

reverting functions. Our results indicate that the speed of mean reversion is not

constant. On the contrary, its daily variation is quite significant; this fact naturally

has an impact on the accuracy of the pricing equations and thus must be taken into

account. Intuitively, it was expected that ai(t) would not be constant. If the wind
speed today is away from the seasonal average, it is expected that the speed of mean

reversion will be high (i.e., the wind speed cannot deviate from its seasonal mean for

long periods).

Examining the second part of Figure 9.5, we conclude that the autocorrelation

was removed from the data successfully; however, the seasonal autocorrelation in

the squared residuals is still present, as shown in Figure 9.6. We remove the sea-

sonal autocorrelation using equation (9.5). The estimated parameters are presented

in Table 9.13 and, as expected, their values are similar to those of the case of the

linear model. The empirical and fitted seasonal variance are presented in Figure 9.7.

The variance is higher during the winter period and reaches its minimum during the

summer period.

Finally, examining the final residuals of the wavelet network model, we observe

that the distribution of the residuals is very close to the normal distribution shown

in Figure 9.8 and the autocorrelation was removed from the data successfully. In

addition, we observe an improvement in the distributional statistics, in contrast to the

TABLE 9.12 Change-in-Direction Metricsa

POCID IPOCID POS

69.64% 43.28% 59.55%

aPOCID, prediction of change in direction; IPOCID, independent

prediction of change in direction; POS, prediction of sign.
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Figure 9.10 Daily variations of the speed of mean reversion function ai(t) in New York.

TABLE 9.13 Estimated Parameters of the Seasonal Variance for the WN

c0 c1 c2 c3 c4 d1 d2 d3 d4

0.0935 −0.000020 −0.0034 0.0014 −0.0026 0.0353 −0.0016 −0.0042 −0.0052

case of the linear model. The distributional statistics of the residuals are presented in

Table 9.14.

The distributional statistics of the residuals indicate that in-sample the two models

can represent the dynamics of the DAWSs accurately; however, an improvement is

evident when a nonlinear nonparametric wavelet network is used.

FORECASTING DAILY AVERAGEWIND SPEEDS

In this section the model proposed is validated out-of-sample. In addition, the

performance of the model is tested against two models: first, against the linear model

described previously, and second, against the simple persistent method, usually

referred to as the benchmark. The linear model is the AR(4) model described in

TABLE 9.14 Descriptive Statistics of the Residuals for the Wavelet Network Modela

Var. Mean S. dev. Max. Min. Skew Kur. JB p-Value KS p-Value LBQ p-Value

Noise 0 1 3.32 −4.91 −0.08 3.04 8.84 0.0043 0.927 0.3544 13.437 0.858

S. dev., standard deviation; JB, Jarque–Bera statistic; KS, Komogorov–Smirnov statistic; LBQ, Ljung–Box Q-statistic.
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the preceding section. The persistent method assumes that today’s and tomorrow’s

DAWSs will be equal [i.e., W∗(t + 1) = W(t), where W∗ indicates the forecasted
value].

The three models will be used for forecasting DAWSs for two different periods.

Usually, wind derivatives are written for a period of a month. Hence, DAWSs for

one and two months will be forecasted. The out-of-sample data set corresponds to the

period from January 1 to February 28, 2008 and was not used for the estimation of the

linear and nonlinear models. Note that our previous analysis reveals that the variance

is higher in the winter period, indicating that it is more difficult to forecast DAWS

accurately for these two months. To compare our results, the Monte Carlo approach

is followed. We simulate 10,000 paths and calculate the average error criteria.

The performance of the three methods when the forecast window is one month

is presented in Table 9.15. Various error criteria are estimated, such as the mean

error, the median, Max. AE, the MSE, the POCID, and the IPOCID. As shown in the

table, our proposed method outperforms both the persistent and the AR(4) model.

The AR(4) model performs better than the naive persistent method; however, all error

criteria are improved further when a nonlinear wavelet network is used. The MSE

is 16.3848 for the persistent method, 10.5376 for the AR(4) model, and 10.4643

for the wavelet network. In addition, our model can predict the movements of the

wind speed more accurately since the POCID is 80% for the wavelet network and

the AR(4) models, whereas it is only 47% for the persistent method. Moreover, the

IPOCID is 37% for the model proposed, whereas it is only 33% for the other two

methods.

Next, the three forecasting methods are evaluated for two months of day-ahead

forecasts. The results are similar and are presented in Table 9.16. Thewavelet network

proposed outperforms the other two methods. Only theMd.AE is slightly better when

theAR(4)model is used.However, the IPOCID is 38% for theAR(4)method,whereas

TABLE 9.15 Out-of-Sample Comparison of One-Month Forecasts of DAWSa

Persistent AR(4) WN

Md.AE 2.3000 2.3363 2.0468

ME −0.0483 0.2117 −0.0485
MAE 3.3000 2.5403 2.5151

MaxAE 8.2000 7.9160 7.7019

SSE 507.9300 326.6666 324.3940

RMSE 4.0478 3.2461 3.2348

NMSE 1.5981 1.0278 1.0206

MSE 16.3848 10.5376 10.4643

MAPE 0.3456 0.2724 0.2680

SMAPE 0.3233 0.2555 0.2518

POCID 47% 80% 80%

IPOCID 33% 33% 37%

POS 100% 100% 100%

aMd.AE, median absolute error; ME, mean error; MAE, mean absolute error; MaxAE, maximum absolute error; SSE,

sum of squared errors; RMSE, root mean squared error; NMSE, normalized mean squared error; MSE, mean squared

error; MAPE, mean absolute percentage error; SMAPE, symmetric MAPE; POCID, position of change in direction;

IPOCID, independent POCID; POS, position of sign.
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TABLE 9.16 Out-of-Sample Comparison of Two-Month Forecasts of DAWSa

Persistent AR(4) WN

Md.AE 2.4000 2.6393 2.6745

ME 0.1101 0.3570 0.1616

MAE 3.3678 2.8908 2.7967

MaxAE 11.2000 10.0054 8.3488

SSE 1054.3500 754.9589 688.2363

RMSE 4.2273 3.5771 3.4154

NMSE 1.4110 1.0103 0.9210

MSE 17.8703 12.7959 11.6650

MAPE 0.3611 0.3126 0.3056

SMAPE 0.3289 0.2808 0.2778

POCID 45% 69% 69%

IPOCID 36% 38% 43%

POS 100% 100% 100%

aMd.AE, median absolute error; ME, mean error; MAE, mean absolute error; MaxAE, maximum absolute error; SSE,

sum of squared errors; RMSE, root mean squared error; NMSE, normalized mean squared error; MSE, mean squared

error; MAPE, mean absolute percentage error; SMAPE, symmetric MAPE; POCID, position of change in direction;

IPOCID, independent POCID; POS, position of sign.

it is 43% for the wavelet network. Also, our results indicate that the benchmark

persistent method produces significantly poorer forecasts.

Our results indicate that thewavelet network can forecast evolution of the dynamics

of the DAWSs and hence constitute an accurate tool for wind derivative pricing. The

cumulative average wind speed (CAWS) index is calculated to provide better insight

into the performance of each method. Since we are interested in weather derivatives,

one common index is the sum of the daily average wind speed index over a specific

period. An estimation of three methods is presented in Table 9.17. The wavelet

network, theAR(4), and the historical burn analysis (HBA)method are compared. The

HBA is a simple statistical method that estimates the performance of the index over

a specific period in the past and is often used in the industry. It represents the average

of 20 years of the index during January and February and serves as a benchmark.

The final row of Table 9.17 presents the actual values of the cumulative rainfall

index. An inspection of the table reveals that the wavelet network significantly out-

performs the other two methods. For the first case, where forecasts for one month

ahead are estimated, the forecast of the CAWS index using the wavelet network is

312.7, while the actual index is 311.2. On the other hand, the forecast using the AR(4)

model is 305.1. However, when the forecast period is increased, the forecast of the

AR(4) model deviates significantly. For the second case, the forecast of the wavelet

TABLE 9.17 Estimation of the Cumulative Rainfall Index for 1 and 2 Months Using an AR(4)
model, Wavelet Network, and Historical Burn Analysis

AR(4) WN HBA Actual

1 month 305.1 312.7 345.5 311.2

2 months 579.5 591.1 658.3 600.6
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network is 591.1, the actual index is 600.6, and the AR(4) forecast is 579.5. Finally,

we have to mention that the wavelet network uses less information than the AR(4)

model, since with the wavelet network only the information of from three lags is used.

Since we are interested in wind derivatives and the valuation of wind contracts, an

illustration of the performance of eachmethod using a theoretical contract is presented

next. A common wind contract has a tick size of 0.1 knot and pays $20 per tick size.

Hence, for a one-month contract the AR(4) method underestimates the contract

size by $1200, while the wavelet network only overestimates the contract by $300.

Similarly, for a two-month contract the AR(4) method underestimates the contract

size by $4220, while the wavelet network underestimates the contract by $1900.

Incorporating meteorological forecasts can lead to a potentially significant

improvement in the performance of the model proposed. Meteorological forecasts

can easily be incorporated in both the linear and wavelet network models presented

previously. A similar approach was followed for temperature derivatives by Dorfleit-

ner and Wimmer (2010). However, this method cannot always be applied. Despite

great advances in meteorological science, weather still cannot be predicted precisely

and consistently, and forecasts beyond 10 days are not considered accurate (Wilks,

2011). If the day that the contract is traded is during or close to the life of the deriva-

tive (during the period that wind measurements are considered), the meteorological

forecasts can be incorporated in order to improve the performance of the methods.

However, very often, weather derivatives are traded long before the start of the life

of the derivative. More precisely, very often weather derivatives are traded months

or even a season before the starting day of the contract. In that case, meteorological

forecasts cannot be used.

CONCLUSIONS

In this chapter the DAWSs fromNewYork were studied. Our analysis revealed strong

seasonality in the mean and variance. The DAWSs were modeled by a mean reverting

Ornstein–Uhlenbeck process in the context of wind derivative pricing. In this study

the dynamics of the wind-generating process are modeled using a nonparametric

nonlinear wavelet network. Our proposed methodology was compared in-sample and

out-of-sample against two methods often used in prior studies. The characteristics of

the wind speed process are very similar to the process of daily average temperatures.

Our results indicate a slight downward trend and seasonality in themean and variance.

In addition, the seasonal variance is higher in winter, reaching its lower values during

the summer period.

Our method is validated in a two-month-ahead out-sample forecast period. More-

over, the various error criteria produced by the wavelet network are compared against

the linear ARmodel and the persistent method. Results show that the wavelet network

outperforms the other two methods, indicating that wavelet networks constitute an

accurate model for forecasting DAWSs. More precisely, the wavelet network fore-

casting ability is stronger in both samples. When we test the fitted residuals of the

wavelet network, we observe that the distribution of the residuals is very close to
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normal. Also, the wavelet network needed only the information of the past three

days, while the linear method suggested a model with four lags. Finally, although we

focused on DAWSs, our model can easily be adapted in hourly modeling.

The results in this case study are preliminary and can be analyzed further. More

precisely, alternative methods for estimating the seasonality in the mean and in the

variance can be developed. Alternative methods could improve the fitting to the

original data as well as the training of the wavelet network. In addition, the inclusion

of meteorological forecasts can further improve the forecasting performance of the

wavelet networks.

It is also important to test the largest forecasting window of each method. Since

meteorological forecasts of awindow larger than a fewdays are considered inaccurate,

this analysis will suggest the best model according to the forecasting interval desired.

Finally, a large-scale comparisonmust be conducted. Testing themethods proposed

as well as more sophisticated models such as general ARFIMA or GARCH in various

meteorological stations will provide a better insight into the dynamics of the DAWS

as well as in the predictive ability of each method.
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