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Predicting Chaotic

Time Series

One of themost common problems that financial managers have to face is the accurate

prediction of time series. Various models are used for the modeling of stock returns

and prices or levels of volatility. The usual approach that financial analysts follow to

solve these problems is to employ statistical procedures such as the general family

of ARFIMA and/or GARCH models. However, financial time series often exhibit

chaotic behavior. As a result, the prediction power of linear models is limited, due

to their inability to model the evolutionary dynamics of the process. The models

mentioned previously do not have the ability to adapt to a change of the dynamics in

a chaotic system.

Chaotic time series are dynamic systems that are extremely sensitive to initial

conditions and can exhibit complex external behavior. Small differences in initial

conditions can exhibit diverging results. Hence, it is difficult to find the dynamic

system simply through observations of the outcome. As defined by Edward Lorenz,

in chaos the present determines the future, but the approximate present does not

approximately determine the future.

To improve the modeling of chaotic time series, a number of nonlinear prediction

methods have been developed, such as polynomials, neural networks, genetic algo-

rithms, dynamic programming, and swarm optimization. Recently, neural networks

and local models have been employed directly for chaotic time-series prediction, and

comparatively satisfactory results have been reported (Inoue et al., 2001).
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In this chapter, wavelet networks are used to model the dynamics of a chaotic time

series. More precisely, the framework proposed in earlier chapters is evaluated in a

chaotic time series where the data were generated from the Mackey–Glass equation

(Mackey and Glass, 1977). Moreover, the trained wavelet network is used to predict

the future evolution of the chaotic system.

MACKEY–GLASS EQUATION

TheMackey–Glass equation was proposed byMackey andGlass (1977) as amodel of

white blood cell production. Subsequently, it was popularized in the neural network

field due to its richness in structure (Hsu and Tenorio, 1992). The equation was

first proposed to associate the onset of disease with bifurcations in the dynamics of

first-order differential-delay equations that model physiologic systems (Mackey and

Glass, 1977).

The Mackey–Glass equation is a time-delay differential equation given by

𝜕x
𝜕t

= ax(t − 𝜏)
1 + xc (t − 𝜏)

− bx(t) (10.1)

The equation displays a broad diversity of dynamic behavior, including limit-

cycle oscillation, with a variety of waveforms, and apparently aperiodic or “chaotic”

solutions (Mackey and Glass, 1977). The behavior of the Mackey–Glass equation

depends on the choice of the time delay 𝜏. If 𝜏 < 4.53, the behavior of the Mackey–

Glass equation is characterized by a stable fixed-point attractor. Similarly, if 4.53 <

𝜏 < 13.3, there is a stable limit-cycle attractor. For 13.3 < 𝜏 < 16.8, the period of the

limit cycle doubles. Finally, if 𝜏 > 16.8, the behavior of the Mackey–Glass equation

is characterized by a chaotic attractor, which is characterized by 𝜏.

The common value used is 𝜏 = 17, and this is also the case in this case study
(Hsu and Tenorio, 1992; Yingwei et al., 1997). The Mackey–Glass equation with

𝜏 = 17 has chaotic behavior and an attractor with a fractal dimension of about

2.1. The usual function approximation approaches are disadvantageous when the

fractal dimension is greater than 2 (Cao et al., 1995; Iyengar et al., 2002). At 𝜏 = 17
the time series appear to be quasiperiodic and the power spectrum is broadband with

numerous spikes, due to the quasiperiodicity (Hsu and Tenorio, 1992).

Different values of the parameters a, b, and c can be used; however, the usual
values of the parameters are a = 0.2, b = 0.1, and c = 10. The series is initialized at
x0 0.1. For the initialization transients to decay, the first 4000 data points
were discarded (Platt, 1991; Yingwei et al., 1997). As in previous studies, the

series is predicted with 𝑣 = 50 sample steps ahead using four past samples:

xn−𝑣, xn−𝑣−6, xn−𝑣−12, and xn−𝑣−18.
The chaotic Mackey–Glass differential delay equation is recognized as a bench-

mark problem that has been used and reported by a number of researchers for com-

paring the learning and generalization ability of different models (Chen et al., 2006).



INITIALIZATION AND TRAINING 221

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
0 5 10 15

Hidden units

20 25 30

X: 21

Y: 0.002185

P.R.

E.L.

Figure 10.1 Prediction risk (P.R.) and empirical loss (E.L.) for the first 30 hidden units for the Mackey–
Glass equation.

MODEL SELECTION

In this section the appropriate number of hidden units is determined by applying

the model selection algorithm presented in Chapter 4. In Figure 10.1 the predic-

tion risk and empirical loss for the Mackey–Glass equation are presented. The pre-

diction risk was estimated up to a maximum of 35 hidden units. To estimate the

prediction risk and find the optimal number of hidden units, the bootstrap method

was used.

A close inspection of Figure 10.1 reveals that the empirical loss decreases (almost)

monotonically as the complexity of the network increases. As expected, a better fit is

obtained as more hidden units are used; however, the generalization ability does not

necessarily increase. On the other hand, the prediction risk decreases (almost) mono-

tonically until a minimum is reached and then will start to increase (almost)

monotonically. The minimum value of the prediction risk, 0.002185, is obtained

when a wavelet network with 21 hidden units is used. Hence, 21 hidden units were

selected for the construction of the wavelet network model.

INITIALIZATION AND TRAINING

In the first two steps, the training set and correct topology of the wavelet network

were selected. Next, the wavelet network can be constructed and trained. The training

data set consists of 982 pairs. First, the wavelet network must be initialized. The
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Figure 10.2 (a) Initialization of the wavelet network using the backward elimination method and 21
hidden units; (b) approximation of the wavelet network after the training phase for the Mackey–Glass
equation.

backward elimination method was used for initialization of the set of parameters

𝑤 = (𝑤[0]i ,𝑤
[2]
j ,𝑤

[2]
𝜆+1,𝑤

[1]
(𝜉)ij,𝑤

[1]
(𝜁 )ij) of the wavelet network. Our results in Chapter 3

indicate that the BEmethod significantly outperforms alternative methods. A wavelet

basis is constructed by scanning the first four levels of the wavelet decomposition of

the data set.

The initial wavelet basis consists of 254 wavelets. However, not all wavelets in

the wavelet basis contribute to the approximation of the original time series. The

wavelets that contain fewer than six sample points of the training data in their

support were removed. The truncated basis contains 116 wavelet candidates. The

remainingwaveletswere ranked and the “best” 21waveletswere used for construction

of the wavelet network.

First, we want to test if the initialization provides a good approximation of the

Mackey–Glass function. To do so, the MSE between the initial approximation and

the underlying function is computed. After the initialization the MSE was 0.220581,

and the initialization needed 0.45 second to finish. The underlying function and the

initialization of the wavelet network is shown in Figure 10.2a. A closer inspection of

the figure reveals that the initialization is very good. The wavelet network converged

after only 7277 iterations. The training stopped when the minimum velocity, 10–4, of

the training algorithm was reached. In this case the minimum velocity was increased

slightly, from 10–5 to 10–4, to avoid very large training times. The MSE error after

training is 0.000299, and the total amount of time needed to train the network

(initialization and training) was 39.2 seconds. R̄2 = 99.30%, POCID = 89.60%, and
IPOCID = 91.23%. The initialization of the WN and the final approximation after
the training phase are presented in Figure 10.2.

MODEL ADEQUACY

Before proceeding to prediction of the time series out-of-sample, the model adequacy

of the wavelet network will be studied. The n/p ratio is 5.06, indicating that each
parameter of the network corresponds to five values. To avoid overfitting in problems
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TABLE 10.1 Residual Testinga

Parameter p-Values

n/p Ratio 5.06

Mean 0.0000

Median −0.0011
S. dev. 0.0173

DW 0.6238 0.0000

LB Q-stat. 954.3906 0.0000

JB stat. 25.7340 0.0000

KS stat. 15.0600 0.0000

R2 99.44%

R̄2 99.30%

aS. dev., standard deviation; DW, Durbin–Watson; LB, Ljung–Box;

KS, Kolmogorov–Smirnov.

where only a small number of observations are available, it is useful to look at the

n/p ratio.
In a closer examination of the residuals we found that the mean of the residuals

is zero with a standard deviation of 0.0173. The normality hypothesis is rejected as

well as the hypothesis that the residuals are uncorrelated. This is not a problem for

wavelet networks since, unlike linear models, normal distribution for the residuals

was not assumed. Finally, the fitting of the wavelet network to the data is very

good, with R = 99.44% and R̄ = 99.30%. The results are reported analytically in
Table 10.1.

The various error criteria are reported in Table 10.2. A close inspection of the

table confirms our previous results that the fit is very good. The MSE is only 0.0003,

while the NMSE and RMSE are only 0.0056 and 0.0173, respectively. Similarly, the

maximum absolute error is 0.0673. Finally, the MAPE and SMAPE are 1.60% and

0.80%, respectively.

The estimated parameters of the regression between the target values and the

network output are presented in Table 10.3. A close inspection reveals that the

parameter b0 is not statistically different from zero while the parameter b1 is not
statistically different from 1 at significance level 0.05. Moreover, the linear regression

is statistically significant according to the F-statistic. Figure 10.3 is a scatter plot
between the target values and the network output. Finally, as evident from Table 10.4,

the change in direction metrics is very high. More precisely, POCID, IPOCID, and

POS are 89.60%, 91.23%, and 100%, respectively.

TABLE 10.2 Error Criteriaa

Md.AE MAE MaxAE SSE RMSE NMSE MSE MAPE SMAPE

0.0111 0.0134 0.0673 0.2935 0.0173 0.0056 0.0003 1.60% 0.80%

a Md.AE, median absolute error; MAE, mean absolute error; MaxAE, maximum absolute error; SSE, sum of squared

errors; RMSE, root mean squared error; NMSE, normalized mean squared error; MSE, mean squared error; MAPE, mean

absolute percentage error; SPAME, symmetric mean absolute percentage error.
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TABLE 10.3 Regression Statisticsa

Parameter p-Values S.E. T-Stat.

b0 −0.0040 0.0774 0.0023 −1.7676
b1 1.0044 0.0000 0.0024 417.6064

b1 = 1 Test 1.0044 0.0687 0.0024 1.8223

R2 99.44%

F 174,391.7457 0.0000

DW 0.6310 0.0000

aS.E., squared error; DW, Durbin–Watson.
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Figure 10.3 Scatter plot of the wavelet network’s fit versus the target values.

TABLE 10.4 Change-in-Direction Metricsa

POCID IPOCID POS

89.60% 91.23% 100%

aPOCID, prediction of change in direction; IPOCID, independent prediction of

change in direction; POS, prediction of sign.
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Figure 10.4 Out-of-sample prediction of the wavelet network using 21 hidden units.

PREDICTING THE EVOLUTION OF THE CHAOTIC
MACKEY–GLASS TIME SERIES

In this section the performance of the wavelet network out-of-sample is evaluated.

The training data set consists of 982 pairs and the out-of-sample data set consists of

950 pairs. These additional data were not used in training the wavelet network. The

ability of the wavelet network to forecast the evolution of the chaotic Mackey–Glass

equation is presented in Figure 10.4. Examining the figure, we can conclude that

the wavelet network has very good generalization and forecasting ability, since the

values predicted for the wavelet network are very close to the real target values of the

Mackey–Glass equation.

Various statistics for the out-of-sample residuals are presented in Table 10.5. The

residuals exhibit the same dynamics as in the training sample. The mean is close to

zero and the standard deviation is 0.0186. The normality hypothesis is rejected as

TABLE 10.5 Out-of-Sample Residual Testinga

Parameter p-Values

n/p Ratio 4.89

Mean 0.0001

Median –0.0002

S. dev. 0.0186

DW 0.5755 0.0000

LB Q-stat. 750.1360 0.0000

JB stat. 46.4359 0.0000

KS stat. 14.7923 0.0000

R2 99.32%

R̄2 99.15%

aS. dev., standard deviation; DW, Durbin–Watson; LB, Ljung–Box;

KS, Kolmogorov–Smirnov.
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TABLE 10.6 Out-of-Sample Error Criteria.a

Md.AE MAE MaxAE SSE RMSE NMSE MSE MAPE SMAPE

0.0110 0.0142 0.0699 0.3294 0.0186 0.0068 0.0003 1.65% 0.83%

aMd.AE, median absolute error; MAE, mean absolute error; MaxAE, maximum absolute error; SSE, sum of squared

errors; RMSE, root mean squared error; NMSE, normalized mean squared error; MSE, mean squared error; MAPE, mean

absolute percentage error; SPAME, symmetric mean absolute percentage error.

TABLE 10.7 Out-of-Sample Regression Statisticsa

Parameter p-Values S.E. T-Stat.

b0 −0.0061 0.0177 0.0026 −2.3767
b1 1.0067 0.0000 0.0027 374.0211

b1 = 1 Test 1.0067 0.0135 0.0027 2.4751

R2 99.33%

F 139,891.7574 0.0000

DW 0.5867 0.0000

aS.E., squared error; DW, Durbin–Watson.

well as the hypothesis that the residuals are uncorrelated. Finally, the accuracy of the

predictions of the wavelet network is very good with R = 99.32% and R̄ = 99.15%.
The results are reported analytically in Table 10.5.

Furthermore, the very good predictive power of the wavelet network is verified

by the various error criteria in Table 10.6. The MSE in the out-of-sample data set is

only 0.000347, and the NMSE and RMSE are only 0.00686, and 0.0186, respectively.

Similarly, the maximum absolute error is 0.0699. Finally, MAPE and SMAPE are

1.65% and 0.83%, respectively. Additional error criteria are reported in Table 10.6.

Our results so far indicate that the wavelet network proposed can accurately

forecast the evolution of a chaotic time series such as the Mackey–Glass equation.

The estimated parameters of the regression between the target values and the

network output are presented in Table 10.7. The scatter plot between the out-of-

sample target values and the forecasted values of the wavelet network is presented

in Figure 10.5. In both cases it is clear that the values forecast and the target values

are similar. Moreover, the linear regression is statistically significant according to the

F-statistic. Finally, as shown in Table 10.8, the change-in-direction metrics are very
high. More precisely, POCID, IPOCID, and POS are 87.36%, 90.41%, and 100%,

respectively, indicating that the wavelet network can predict with great accuracy the

changes in the direction of the chaotic dynamic system.

CONFIDENCE AND PREDICTION INTERVALS

After the wavelet network is constructed and trained, it can be used for prediction.

However, in many applications, and especially in finance, risk managers may be more

interested in predicting intervals for futuremovements of the underlying function than
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Figure 10.5 Scatter plot between the wavelet network’s output and the target values.

simply point estimates. Hence, confidence and prediction intervals can be constructed.

In this section both confidence and prediction intervals are constructed using the

balancingmethod. Using the BSmethod, 200 training samples are created and divided

into eight groups. In each group the average output of the wavelet networks is

estimated. Next, 1000 new bootstrapped samples are created for the eight average

outputs to estimate the model variance given by (7.25). Then the confidence intervals

are estimated with a level of significance a of 5%. Unlike the previous case studies
and examples, in this case no noise is added to the underlying function. Moreover,

the network fitting and prediction are very good, as mentioned in the preceding

section, with R̄2 = 99.30% in-sample and R̄2 = 99.15% out-of-sample. As a result, it
is expected that the variance 𝜎2p = 𝜎

2
m + 𝜎

2
𝜀
will be very small.

Figure 10.6 presents the confidence intervals and the true underlying function,

which is the Mackey–Glass equation. Since the confidence intervals are very narrow,

for clarity only one section is shown in Figure 10.6. It is clear that the underlying

function is always between the confidence intervals.

In addition, in Figure 10.7 the prediction intervals for the out-of-sample data set

together with the data read and the average forecast of the wavelet network for the

200 bootstrapped samples are presented. PICP = 98.8%.

TABLE 10.8 Out-of-Sample Change in Direction Metricsa

POCID IPOCID POS

87.36% 90.41% 100.00%

a POCID, prediction of change in direction; IPOCID, independent prediction

of change in direction; POS, prediction of sign.
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Figure 10.6 In-sample confidence intervals (light gray line) together with the Mackey–Glass equation
(black line) using the balancing method.
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Figure 10.7 Out-of-sample prediction intervals (light gray lines) together with the Mackey–Glass equa-
tion (gray line) and the network approximation (black line) using the balancing method (PICP = 98.8%).

CONCLUSIONS

In this chapter the ability of a wavelet network to learn and predict the dynamics of a

chaotic system was tested using the Mackey–Glass equation. The chaotic Mackey–

Glass differential delay equation is recognized as a benchmark problem that has

been used and reported by a number of researchers for comparing the learning and

generalization ability of different models.

The objective was to predict 𝑣 = 50 steps ahead using four past samples:
xn−𝑣, xn−𝑣−6, xn−𝑣−12, and xn−𝑣−18. Following the framework proposed in this book,
a wavelet network with 21 hidden units was constructed. The optimal topology of

the network was selected by estimating the minimum prediction risk criterion using

the bootstrap method. The wavelet network model was initialized by applying the

backward elimination method.
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The trained wavelet network provided a very good fit to the data. Moreover, the

performance of the wavelet network in the out-of-sample data was very good. The

accuracy of the predictions of the wavelet network was very good, with R = 99.32%
and R̄ = 99.15%.
Our results indicate that the wavelet network can predict the future evolution of

the chaotic system accurately as well as predict the change in the direction of the

chaotic Mackey–Glass dynamic system.
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