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Classification of Breast

Cancer Cases

Breast cancer has become a major cause of death among women in developed coun-

tries (Senapati et al., 2011). As the causes of breast cancer remain unknown, early

detection is crucial to reduce the death rate. However, early detection requires accu-

rate and reliable diagnosis (Cheng et al., 2010). A diagnostic tool should distinguish

between benign and malignant tumors while producing low false-positive (rate of

missing chances) and false-negative (rate of failure) rates.

Mammography is probably the most effective method for breast tumor detection.

However, the technique has limitations in cancer detection. For example, due to its

low specificity, many unnecessary biopsy operations are performed, increasing the

cost, the emotional pressure, and in some cases the risk to the patient (Zainuddin and

Ong, 2010).

In this chapter a wavelet network is constructed to classify breast cancer based

on various attributes. Hence, a computer-aided system is developed and proposed

to provide additional accuracy in the classification of benign and malignant cases

of breast tumors. The Wisconsin breast cancer (WBC) data set was obtained by the

UCI Machine Learning Repository and was provided by Mangasarian and Wolberg

(1990). In this particular case study we are more interested in producing fewer false

negatives. Whereas a false positive will result in extra cost for additional clinical

tests, a false negative may result in the death of the patient.
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232 CLASSIFICATION OF BREAST CANCER CASES

Cheng et al. (2010) detected breast cancer based on ultrasound images. They

employed a variety of classifiers, such as wavelet networks, and neural networks, and

support vector machines to construct a computer-aided diagnostic system.

Similarly, Zainuddin and Ong (2010) used microarray slides as inputs to a wavelet

neural network for cancer diagnosis. El-Sebakhy et al. (2006) proposed and evaluated

functional networks from theWBC data set. Their results indicate that their proposed

classifier is reliable and efficient.

Senapati et al. (2011) proposed a local linear wavelet neural network for breast

cancer recognition. Their model was evaluated on the WBC data set and compared

with methods already developed. Their results indicate that the local linear wavelet

neural network performs better and has a higher level of generalization than those

of common existing approaches. Methods other than artificial intelligence have been

proposed for breast cancer classification: for example, linear programing by Man-

gasarian and Wolberg (1990) and fuzzy logic by Hassanien and Ali (2006).

In the remainder of the chapter we evaluate the classification ability of a wavelet

network using two methods. In the first, the wavelet network is trained on the training

sample and then evaluated out-of-sample in the validation sample. In the second,

a cross-validation technique is utilized for training and forecasting evaluation of

the wavelet network. Moreover, the model identification method is used to find the

optimal set of input variables and the optimal structure of the wavelet network.

Data

The Wisconsin breast cancer (WBC) data set contains 699 samples. However, 16

values are missing, reducing the sample to 683 values. Each instance has one of

two possible classes: benign or malignant. There are 239 (35%) malignant cases and

444 (65%) benign cases. The aim is to construct a wavelet network that classifies

each clinical case accurately. The classification is based on nine attributes: clump

thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, single

epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses.

PART A: CLASSIFICATION OF BREAST CANCER

In this case the data set was split into training and validation samples. The training

sample consists of 478 (70%) cases. The validation sample, consisting of 205 (30%)

cases, is used to evaluate the predictive and classification power of the trained wavelet

network.We assume that all nine variables are statistically significant, and theywill be

used as predictors. Hence, the variable selection algorithm is omitted in this section.

Model Selection

To construct the wavelet network, first the optimal number of hidden units must be

found. To do so, the minimum prediction risk criterion is applied and the bootstrap

method will be used. From the training sample we created 50 bootstrapped samples.
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The prediction risk was minimized when only 1 hidden unit was used. The prediction

risk for the full model was 0.2796 and the empirical loss was 0.0862.

Initialization and Training

TheBEmethod is used to initialize thewavelet network.Awavelet basis is constructed

by scanning the first four levels of the wavelet decomposition of the data. The wavelet

basis is very large and consists of 719 wavelets. However, not all wavelets in the

wavelet basis contribute to the approximation of the original time series. The wavelets

that contain fewer than 11 sample points of the training data in their support are

removed. Seven hundred and seven wavelets that do not contribute significantly to the

approximation of the original time series were identified. The truncated basis contains

only 12wavelet candidates. Applying the BEmethod, the wavelets are ranked in order

of significance. Since only 1 hidden unit is used on the architecture of the model,

only the wavelet with the highest ranking is used to initialize the wavelet network.

The initialization was very good and theMSE after the initialization was only 0.1905.

The time needed for the initialization was 0.1692 second. The training stopped after

135 iterations, when the minimum velocity was reached and the MSE was 0.1725.

The complete training time (initialization and training) was only 0.7572 second.

Classification

In-Sample In the training sample there are 284 benign cases given the value−1 and
194 malignant cases given the value 1. The cutting score is−0.189. The classification
matrix of the training sample is presented in Table 11.1. A closer inspection of the

table reveals very good classification rates. More specifically, the wavelet network

classified correctly 274 benign cases and 194 malignant cases. Hence, the wavelet

network classified correctly 461 of 478 cases (96.44%). The specificity of the models

is 96.39% and the sensitivity is 96.48%. On the other hand, the rate of failure and

the rate of missing chances are very low, 3.61% and 3.52%, respectively. Finally, the

fitness function is 0.5643.

Evaluation of the classification ability of the wavelet network is presented in

Table 11.2. The maximum chance criterion is 59.41%, while in the heuristic method

presented by Hair et al. (2010) it is 74.27%. Finally, the proportional chance criterion

is 51.77%. The hit ratio is 96.44%, significantly larger than the various chance criteria.

TABLE 11.1 In-Sample Classification Matrix

Forecast

Target Benign Malignant Total Sensitivity Specificity

Benign 274 10 284 96.48% 96.39%

Malignant 7 187 194 Rate of Missing Rate of

Chances Failure

Total 281 197 478 3.52% 3.61%
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TABLE 11.2 Evaluation of the Classification Ability of the Wavelet Network

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

59.41% 74.27% 51.77% 412.41 96.44%

aPress’s Q critical values at the confidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.

TABLE 11.3 Out-of-Sample Classification Matrix

Forecast

Target Benign Malignant Total Sensitivity Specificity

Benign 159 1 160 99.38% 100%

Malignant 0 45 45 Rate of Missing Rate of

Chances Failure

Total 159 46 205 0.63% 0.00%

Hence, the model is predicting significantly better than chance. This is also confirmed

by the large value of Press’s Q statistic, which is greater than the critical values in the
0.1, 0.05, and 0.01 confidence levels.

Out-of-Sample Next, the forecasting and classification ability of the trained

wavelet network is evaluated in the validation sample. The data in the validation

sample were not used during the training phase. Hence, these are new data that were

never presented to the wavelet network. In the validation sample there are 160 benign

cases given the value −1, and 45 malignant cases given the value 1. The classification
matrix of the training sample is presented in Table 11.3. A close inspection of the table

reveals the very good predictive ability and classification rates. More specifically, the

wavelet network classified correctly 159 benign cases and 45malignant cases. Hence,

the wavelet network classified correctly 204 of 205 cases (99.51%). The specificity of

the model is 100% and the sensitivity is 99.38%. Note that in this application the rate

of failure is significantly more important than the rate of missing chances. If the net-

work classifies a benign case as malignant, it is just a false alarm; however, classifying

a malignant case as benign is lethal. Our results indicate that the wavelet network

has very strong classification ability since the rate of failure and the rate of missing

chances are very low: 0% and 0.63%, respectively. Finally, the fitness function

is 0.5964.

Evaluation of the classification ability of the wavelet network is presented in

Table 11.4. The maximum chance criterion is 78.05%, while in the heuristic method

presented by Hair et al. (2010) it is 97.56%. Finally, the proportional chance criterion

TABLE 11.4 Out-of-Sample Evaluation of the Classification Ability of the Wavelet Network

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

78.05% 97.56% 65.73% 201.02 99.51%

aPress’s Q critical values at the confidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.
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is 65.73%. The hit ratio, 99.51%, is significantly larger than the maximum chance and

the proportional chance criteria. Hence, the model is predicting significantly better

than chance. This is also confirmed by the large value of Press’s Q-statistic, which is
greater than the critical values at the 0.1, 0.05, and 0.01 confidence levels.

PART B: CROSS-VALIDATION IN BREAST CANCER
CLASSIFICATION IN WISCONSIN

In this section a different approach is followed. Instead of splitting the data into

training and validation samples, cross-validation methods are used. In addition, we

employ the variable selection algorithm to test if some of the attributes can be

removed. More precisely, the model identification algorithm is utilized, and at each

step the significant variables and the optimal structure of the wavelet network are

estimated.

As mentioned earlier, cross-validation is used to assess the predictive power of the

wavelet network. Hold-one-out cross-validation is used in each step of our algorithm.

One training pattern of the data set will be removed from the training sample in each

step. Then a wavelet network is trained on the remaining data. Finally, the trained

network is evaluated on the pattern that was removed from the sample. The procedure

is repeated 683 times, once from each training pattern.

Variable Selection

The target values of the wavelet network are the two possible classes. The explanatory

variables are the nine attributes named earlier. To construct an accurate wavelet

network classifier, the contribution of each attribute to the predictive power of the

classifier must be tested. First, the significance of each attribute is examined. Hence,

the initial training set consists of 9 inputs, 1 output, and 683 training samples. Again,

the relevance of each attribute is quantified by the SBP criterion. Applying the variable

selection proposed, the final model has only six variables, while the predictive power

of the model remains almost unchanged.

Table 11.5 summarizes the results of the model identification algorithm for the

WBC data. Both the model selection and variable selection algorithm are included

TABLE 11.5 Variable Selection with Backward Elimination in Wisconsin Breast Cancer
Data Seta

Variable to Variable to Variables Hidden Units n/p Empirical Prediction

Step Remove Enter (Lag) in Model (Parameters) Ratio Loss Risk

— — — 9 1 (29) 23.6 0.0713 0.1488

1 X9 — 8 1 (26) 26.7 0.0713 0.1485

2 X4 — 7 3 (53) 12.9 0.0404 0.1136

3 X3 — 6 3 (46) 14.8 0.0426 0.1135

aThe algorithm concluded in four steps. In each step the following are presented: which variable is removed, the number

of hidden units for the particular set of input variables and the parameters used in the wavelet network, the empirical loss,

and the prediction risk.
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TABLE 11.6 Step-by-Step Variable Selectiona

Full Model Step 1 Step 2 Step 3

Variable SBP p-Value SBP p-Value SBP p-Value SBP p-Value

1 0.0323 0.0000 0.0328 0.0000 0.0369 0.2695 0.0511 0.0000

2 0.0188 0.0000 0.0198 0.0000 0.0255 0.5068 0.0501 0.0000

3 0.0099 0.0873 0.0091 0.0000 0.0067 0.6547
4 0.0025 0.0000 0.0023 0.2166
5 0.0021 0.0985 0.0021 0.1995 0.0100 0.1655 0.0359 0.0000

6 0.1087 0.0000 0.1101 0.0000 0.1636 0.0000 0.01915 0.0000

7 0.0084 0.0831 0.0084 0.0945 0.0050 0.6080 0.0200 0.0000

8 0.0126 0.0000 0.0123 0.0298 0.0318 0.0000 0.0828 0.0000

9 0.0001 0.9133

MAE 0.2474 0.2481 0.1473 0.2510

MaxAE 1.6811 1.6481 1.9735 1.6857

NMSE 0.1566 0.1569 0.0935 0.1597

MAPE 24.73% 24.81% 14.73% 25.10%

R̄2 83.67% 83.71% 89.88% 82.90%

Empirical loss 0.0713 0.0713 0.0404 0.0426

Prediction risk 0.1488 0.1485 0.1136 0.1135

Iterations 149 119 11,283 264

aSBP is the average SBP for each variable of 50 bootstrapped samples, the standard deviation, and the p-value. SBP,
sensitivity-based pruning; MAE, mean absolute error; MaxAE, maximum absolute error; NMSE, normalized mean

squared error; MSE, mean squared error; MAPE, mean absolute percentage error.

in the table. The algorithm was concluded in three steps and the final model consists

of six variables only. A closer inspection of the table reveals that the empirical loss

decreased from 0.0713 in the full model to 0.0426 in the reduced and simpler model.

In addition, the prediction risk decreased from 0.1488 to 0.1135, indicating that the

reduced model provides a better fitting to the data but also has better forecasting

ability. The results of the variable significance algorithm indicate that the uniformity

of cell shape, marginal adhesion, and mitoses should be removed from the input of

the training sample in breast tumor classification. On the other hand, the attributes

clump thickness, uniformity of cell size, single epithelial cell size, bare nuclei, bland

chromatin, and normal nucleoli are statistically significant predictors.

Finally, the reduced model needed more hidden units in order to train the wavelet

network.More precisely, in the full model only 1 hidden unit was used, corresponding

to a 23.6 n∕p ratio, while in the reduced model 3 hidden units were used, correspond-
ing to a ratio of 14.8.

The statistics for the wavelet network model at each step are given in Table 11.6.

The first part of the table reports the value of the SBP and its p-value. Various fitting
criteria are also reported: MAE, MaxAE, NMSE, MAPE, R̄2, empirical loss, and
prediction risk.

In the full model it is clear that the value of the SBP for the last variable (mitoses) is

very high compared to the remaining variables. Observing the p-values, we conclude
that the p-value of mitoses is 0.9133 and is greater than 0.1, strongly indicating a
“not significant” variable. The wavelet network was converged after 149 iterations. In
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general, a very good fit was obtained. The empirical loss is 0.0713 and the prediction

risk is 0.1488. MaxAE is 1.6811, MAE is 0.2474, and NMSE is 0.1566. MAPE is

24.74%. Finally, R̄2 = 84.34%.
The statistics for the wavelet network at step 1 are also presented in Table 11.6.

The network had 8 inputs, one wavelet was used to construct the wavelet network, and

26 weights were adjusted during the training phase. The wavelet network converged

after 119 iterations. By removing X9 from the model, we observe from Table 11.6
that the p-value of X5 and X4 became 0.1995 and 0.2166, respectively. The empirical
loss remained the same. However, MAE and NMSEwere increased slightly to 0.2481

and 0.1569, respectively. Similarly, the remaining error criteria were increased. Next,

the decision to remove X9 is tested. The new prediction risk was reduced to 0.1485,
while the explained variability adjusted for degrees of freedom increased to 83.71%.

Hence, the removal of X6 reduced the complexity of the model while its predictive
power increased.

At step 2, X4(marginal adhesion), which had the largest p-value, 0.2166, at step 1,
was removed from the model. The new wavelet network had 7 inputs, 3 hidden units

were used for the architecture of the wavelet network, and 53 weights were adjusted

during the training phase. The wavelet network converged after 11,283 iterations. All

error criteria were reduced significantly and the new R̄2 is 89.88%.The new prediction
risk is reduced significantly, to 0.1136. Hence, removing X4, we obtain a better fit
and better potential forecasting ability. Finally, observing the p-values, we conclude
that at step 2, X3 has the higher p-value, 0.6547.
In the final step the variable X3 (uniformity of cell shape) was removed from the

model. The network had 6 inputs, three wavelets were used for the construction of the

wavelet network, and 46weights were adjusted during the training phase. Thewavelet

network converged after 264 iterations. The new empirical loss was increased slightly

to 0.0424, compared to 0.0404 in the previous step. Similarly, all error criteria were

increased slightly. However, the explained variability adjusted for degrees of freedom

was reduced to 82.90%. Hence, removing X3, a slightly poorer fit was obtained. On
the other hand, the prediction risk decreased further, to 0.1135.

The p-values of the remaining variables are zero, indicating that the remaining
variables are characterized as very significant variables. Hence, the algorithm stops.

Model Selection

In each step of the algorithm the optimal number of hidden units is determined by

applying the model selection algorithm. The results of the model selection algorithm

are presented in Table 11.7. In the full model a wavelet networkwith 1 hidden unit was

constructed. Applying the model selection algorithm using 50 bootstrapped samples

of the initial training set, the prediction risk was minimized when only 1 hidden unit

was used. The prediction risk for the full model was 0.1488 and the empirical loss

was 0.0713. In the second step, the prediction risk increases monotonically again

as the complexity of the wavelet network increases. Hence, the prediction risk is

minimized when only 1 hidden unit is used and is 0.1485. Similarly, in the third

step the prediction risk is minimized when 3 hidden units are used. In the final step,
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TABLE 11.7 Prediction Risk at Each Step of the Variable Selection Algorithm for the First
5 Hidden Units

Hidden Units

Step 1 2 3 4 5

0 0.1488 0.1495 0.1504 0.1520 0.1519

1 0.1485 0.1550 0.1624 0.1699 0.1706

2 0.1526 0.1672 0.1136 0.1146 0.1232

3 0.1490 0.1573 0.1135 0.1157 0.1151

the reduced model needed 3 hidden units and the prediction risk was 0.1135. The

empirical loss was 0.0426, indicating that the reduced model provides a better fit to

the data but also has better forecasting ability.

Initialization and Training

After the training set and the correct topology of the wavelet network are selected, the

wavelet network can be constructed and trained. The BE method is used to initialize

the wavelet network. A wavelet basis is constructed by scanning the first four levels

of the wavelet decomposition of the data set.

The initial wavelet basis consists of 675 wavelets. However, not all wavelets

in the wavelet basis contribute to the approximation of the original time series.

The wavelets that contain fewer than eight sample points of the training data in

their support are removed. The truncated basis contains 28 wavelet candidates. The

MSE after the initialization was 0.173170 and the initialization needed 0.23 second

to finish. The initialization is very good and the wavelet network converged after

only 264 iterations. The training stopped when the minimum velocity, 10–5, of the

training algorithm was reached. The MSE error after the training is 0.145352, and

the total amount of time needed to train the network (initialization and training) was

1.53 seconds.

Classification Power of the Full and Reduced Models

In this section the predictive and classification power of the wavelet network are

evaluated. More precisely, first the full model, including all nine attributes, is tested

using the leave-one-out cross-validation. Then a comparison is made against the

reduced model, which uses only six attributes.

The full model is first trained using all training examples. The classification matrix

of the wavelet network in-sample is presented in Table 11.8. The wavelet network

accuracy in the sample is 97.66%. The sensitivity is 97.07% and the specificity

is 98.74%. Also, the wavelet network classified the malignant tumors incorrectly

only three times, indicating a rate of failure of only 1.26%. Finally, in Table 11.9

we observe that the wavelet network classification ability is significantly greater

than chance.
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TABLE 11.8 In Sample Classification Matrix of the Full Model

Forecast

Target Benign Malignant Total Sensitivity Specificity

Benign 431 13 444 97.07% 98.74%

Malignant 3 236 239 Rate of Missing Rate of

Chances Failure

Total 434 249 683 2.93% 1.26%

TABLE 11.9 Evaluation of the Classification Ability of the Full Wavelet Network

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

65% 81.25% 54.50% 620.49 97.66%

aPress’s Q critical values at confidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.

TABLE 11.10 Out-of-Sample Classification Matrix of the Full Model

Forecast

Target Benign Malignant Total Sensitivity Specificity

Benign 431 13 444 97.07% 98.32%

Malignant 4 235 239 Rate of Missing Rate of

Chances Failure

Total 435 248 683 2.93% 1.68%

Next, the predictive power of the wavelet network is evaluated out-of-sample

using the leave-one-out cross-validation method. Each time a validation sample is

created that consists of only one observation, with the remaining pairs (x, y) used
for the training of a wavelet network. In the next step, another validation sample is

created and a new wavelet network is trained. The procedure is repeated until the

wavelet network classifies all pairs (x, y). Table 11.10 presents the out-of-sample
classification matrix of the full model. The accuracy of the full model out-of-sample

is 97.51%, while the sensitivity and specificity are 97.07% and 98.32%, respectively.

The misclassification of malignant cases is only 4, indicating a rate of failure of only

1.68%. Again, the very high hit ratio and the high Press’s Q-statistic presented in
Table 11.11 indicate that the wavelet network’s classification ability is statistically

significantly better than chance.

Next, the predictive power of the reducedmodel is evaluated in-sample and out-of-

sample. The classificationmatrix is presented in Table 11.12. In-sample the sensitivity

TABLE 11.11 Evaluation of the Classification Ability of the Full Wavelet Network Out-of-Sample

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

65% 81.25% 54.50% 616.29 97.51%

aPress’s Q critical values at confidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.
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TABLE 11.12 In-Sample Classification Matrix of the Reduced Model

Forecast

Target Benign Malignant Total Sensitivity Specificity

Benign 431 13 444 97.07% 98.32%

Malignant 4 235 239 Rate of Missing Rate of

Chances Failure

Total 435 248 683 2.93% 1.68%

TABLE 11.13 Evaluation of the Classification Ability of the Reduced Wavelet Network

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

65% 81.25% 54.50% 616.29 97.51%

aPress’s Q critical values at confidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.

TABLE 11.14 Out-of-Sample Classification Matrix of the Full Model

Forecast

Target Total Sensitivity Specificity

Benign 431 13 444 97.07% 97.91

Malignant 5 234 239 Rate of Missing Rate of

Chances Failure

Total 436 237 683 2.93% 2.09%

and specificity of the wavelet network are 97.07% and 98.32%, respectively. The

malignant cases were misclassified only four times, indicating a very small rate of

failure of 1.68%. Finally, in Table 11.13 we observe that Press’s Q-statistic is higher
than the critical values. Finally, the hit ratio is 97.51%, so the forecasting ability of

the wavelet network is significantly better than chance.

Finally, the classificationmatrix of the reducedmodel out-of-sample is presented in

Table 11.14. A closer inspection of the table reveals that the sensitivity and specificity

are 97.07% and 97.91%. Also, there are five misclassified malignant cases, indicating

a rate of failure of only 2.09%. Finally, examining Table 11.15, we conclude that

the wavelet network has better forecasting ability than chance, with a hit ratio of

97.36%. Hence, the full model outperforms the reduced model by only one correct

classification.

TABLE 11.15 Evaluation of the Classification Ability of the Reduced Wavelet Network
Out-of-Sample

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

65% 81.25% 54.50% 612.90 97.36%

aPress’s Q critical values at confidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.
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TABLE 11.16 Classification Power of the Full and Reduced Modelsa

Model HU Accuracy Epochs Correct Wrong B/B M/B M/M B/M

Full (out) 1 97.51% 146 666 17 431 4 235 13

Full (in) 1 97.66% 146 667 16 431 3 236 13

Reduced (out) 3 97.36% 265 665 18 431 5 234 13

Reduced (in) 3 97.51% 264 666 17 431 4 235 13

aThe algorithm concluded in four steps. In each step the following are presented: which variable is removed, the number

of hidden units for the particular set of input variables and the parameters used in the wavelet network, the empirical loss

and the prediction risk. (in), in-sample; (out), out-of-sample using leave-one-out cross-validation; B/B, case is B/WN

predicts B; B/M, case is B/WN predicts M; M/M, case is M/WN predicts M; M/B, case is M/WN predicts B.

It is clear that the accuracy of the network remains practically the same even

though three classifiers were removed from the data. Hence, we can conclude that

the information that comes from the uniformity of cell shape, marginal adhesion, and

mitoses does not contribute significantly toward classifying breast tumors, since the

additional accuracy is only 0.15%. A summary of our results of the full and reduced

models is presented in Table 11.16.

Our results indicate that a wavelet network can be used successfully in breast

cancer classification, providing high classification accuracy. Moreover, the accuracy

of the wavelet network is higher than those presented in relevant studies (Duch and

Adamczak, 1998; Hassanien and Ali, 2006; Senapati et al., 2011; Setiono and Liu,

1997; Wei and Billings, 2007).

PART C: CLASSIFICATION OF BREAST CANCER (CONTINUED)

Two different methods were used in parts A and B to build a model for classifying

breast cancer. In the first part, the data set were split into two samples, the training

sample and the test sample, while in the second part, the cross-validation method was

used to create additional sample to train and evaluate our model.

Another difference between the two methodologies was the corresponding input

set of variables. In part A we assumed that all variables were statistically significant

and used as predictors, while in part B we applied the variable selection algorithm

to find which of the explanatory variables are statistically significant. Our results

indicate that the uniformity of cell shape, marginal adhesion, and mitoses should be

removed from the input of the training sample in breast cancer classification.

In this section we again split the data into training and validation samples, as in

part A, but only the statistically significant variables will be used for construction of

the wavelet networks. Hence, the attributes clump thickness, uniformity of cell size,

single epithelial cell size, bare nuclei, bland chromatin, and normal nucleoli are used

as input variables.

Classification

In-Sample The classification matrix of the training sample is presented in

Table 11.17. Close inspection of the table reveals very good classification rates.

More specifically, the wavelet network classified correctly 274 benign cases and 182
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TABLE 11.17 In-Sample Classification Matrix

Forecast

Target Benign Malignant Total Sensitivity Specificity

Benign 274 10 284 96.48% 93.81%

Malignant 12 182 194 Rate of Missing Rate of

Chances Failure

Total 286 182 478 3.52% 6.19%

malignant cases. Hence, the wavelet network classified correctly 456 of 478 cases

(95.40%). The specificity of the models is 93.81% and the sensitivity is 96.48%.

On the other hand, the rate of failure and the rate of missing chances are very low,

6.19% and 3.52%, respectively. Finally, the fitness function is 0.5503. Comparing

our results to those in part A, we observe that the wavelet network with the reduced

set of input variables misclassified 12 malignant cases, whereas when the full set of

input variables was used, the wavelet network misclassified only 7 cases.

Evaluation of the classification ability of the wavelet network is presented in

Table 11.18. The maximum chance criterion is 59.41%, whereas in the heuristic

method presented by Hair et al. (2010) it is 74.27%. Finally, the proportional chance

criterion is 51.77%. The hit ratio, 90.40%, is significantly larger than the various

chance criteria. Hence, the model is predicting significantly better than chance. This

is confirmed by the large value of Press’sQ-statistic, which is greater than the critical
values at the 0.1, 0.05, and 0.01 confidence levels.

Out-of-Sample Next, the forecasting and classification ability of the trainedwavelet

network are evaluated in the validation sample. The data of the validation sample

were not used during the training phase. Hence, these are new data that were never

presented to the wavelet network.

In the validation sample there are 160 benign cases given the value −1 and 45
malignant cases given the value 1. The classification matrix of the training sample is

presented in Table 11.19. Close inspection of the table reveals perfect prediction abil-

ity and classification rates. More specifically, the wavelet network classified correctly

160 benign cases and 45 malignant cases. Hence, the wavelet network classified all

205 cases correctly (100%). Hence, both the sensitivity and the specificity of the

model are 100%, whereas the rate of failure and the rate of missing chances are

0%. Finally, the fitness function, 0.6, is the maximum value possible. Comparing our

results to those of part A, we conclude that although a poorer fit was obtained to

the data in-sample when the truncated set of input variables was used, the predictive

TABLE 11.18 Evaluation of the Classification Ability of the Wavelet Network

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

59.41% 74.27% 51.77% 394.05 95.40%

aPress’s Q critical values at confidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.
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TABLE 11.19 Out-of-Sample Classification Matrix.

Forecast

Target Benign Malignant Total Sensitivity Specificity

Benign 160 0 160 100% 100%

Malignant 0 45 45 Rate of Missing Rate of

Chances Failure

Total 160 45 205 0.00% 0.00%

TABLE 11.20 Out-of-Sample Evaluation of the Classification Ability of the Wavelet Network

Maximum Chance 1.25% Max. Chance Pro Press’s Qa Hit Ratio

78.05% 97.56% 65.73% 205 100%

aPress’s Q critical values at confidence levels 0.1, 0.05, and 0.01: 2.71, 3.84, 6.63.

power of the wavelet network increased. The out-of-sample results provided a perfect

classification.

Evaluation of the classification ability of the wavelet network is presented in

Table 11.20. The maximum chance criterion is 78.05%, whereas in the heuristic

method presented by Hair et al. (2010) it is 97.56%. Finally, the proportional chance

criterion is 65.73%. The hit ratio, 100%, is significantly larger than the maximum

chance and the proportional chance criteria. Hence, the model is predicting signifi-

cantly better than chance. This is confirmed by the large value of Press’s Q statistic,
which is greater than the critical values at the 0.1, 0.05, and 0.01 confidence levels.

CONCLUSIONS

Mammography is probably the most effective method for breast tumor detection. In

this chapter a computer-aided system for breast cancer classification was proposed.

More precisely, in this chapter a nonlinear nonparametric wavelet neural network was

constructed and trained to identify and classify benign and malignant breast cancer

cases correctly. The data set were obtained by the UCI Machine Learning Repository

and corresponds to clinical cases of breast cancer in Wisconsin. The classification

was based on nine attributes: clump thickness, uniformity of cell size, uniformity of

cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,

normal nucleoli, and mitoses.

Two modeling approaches were presented. In the first case the data were split into

training and validation samples. The first set was used for the model selection training

of the wavelet network; the second set was used to assess its classification power. The

procedure was applied in the full set of explanatory variables and on the truncated

set after the variable selection algorithm was employed. Our results indicate that the

wavelet network can classify the clinical case with very high accuracy. When the full

set of explanatory variables was used as an input, only one case was misclassified.
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On the other hand, on the reduced input of variables the wavelet network was able to

classify all cases perfectly.

In the second case, the hold-one-out cross-validation was used to create additional

training and validation samples. At the same time, the model identification algorithm

was used. Our results indicate that only six input variables—clump thickness, unifor-

mity of cell size, single epithelial cell size, bare nuclei, bland chromatin, and normal

nucleoli—can offer the same level of classification accuracy as the full set of input

variables.

In every case the classification ability of the wavelet network was very high. The

wavelet network had high generalization ability and produced robust and reliable

results both in-sample and out-of-sample, indicating that wavelet networks can be

accurate nonlinear nonparametric estimators for breast cancer recognition.
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