
CHAPTER 1

Basic Optical Calculations

An excellent plumber is infinitely more admirable than an incompetent philosopher. The
society which scorns excellence in plumbing because plumbing is a humble duty and tolerates
shoddiness in philosophy because it is an exalted activity will have neither good plumbing
nor good philosophy. Neither its pipes nor its theories will hold water.

—John W. Gardner†

1.1 INTRODUCTION

Okay, we’ve decided to build an electro-optical system. It’s going to be so great that
everybody who sees it will hate us. Now comes the fun part, the planning and designing,
and then the hard part, the building and testing. To design and plan, we have to have
some way of knowing how our brainchild ought to behave before it is built—that is,
theory.

At the conceptual stage, the measurement principle is poorly understood and many
quite different schemes are suggesting themselves. To make sense of it, you need a white
board and a couple of smart and experienced colleagues to bounce ideas off, plus some
pointers on how to begin. The aim of this chapter is to equip you to do a conceptual
instrument design on the back of an envelope. It assumes some background in optics,
especially some acquaintance with plane waves and Fourier transforms.

The indispensable ingredients of a conceptual design are:

• A measurement idea
• Operational requirements (field of view, scan speed, spot size, sensitivity, etc.)
• A photon budget
• A rough optical design
• A detection strategy
• A signal processing strategy

†John W. Gardner, Excellence, Can We Be Equal and Excellent Too? Harper, New York, 1961, p. 86.
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2 BASIC OPTICAL CALCULATIONS

The best way to get them is through several sessions at that white board, with a lot
of thought and calculation in between. (It is amazing how many people think they’ve
finished with engineering calculations when they hand in their last exam, but that attitude
is sudden death in the instrument-building business.) Once you have these, you can make
a list of the main technical risks, in descending order of hairiness, and pretty soon you
have a plan for how to proceed. The size of these technical risks is important—they
can range from finding parts to violating laws of physics. Right at the beginning, we
must decide whether the measurement is even possible, which requires more imagina-
tion than analysis. The invention of two-photon Doppler-free spectroscopy is a good
example.

Example 1.1: Two-Photon Doppler-Free Spectroscopy.† Gas-phase spectroscopy is
limited at low pressure by the random thermal motions of the gas molecules, and
at high pressures by their collisions. Molecules with different speeds along the laser
beam axis experience different Doppler shifts, so that their absorption features occur at
different frequencies in the lab frame, leading to Doppler broadening . A two-photon
transition involves the absorption of two photons, whose energies must sum to the
transition energy. The absorption (and any resulting fluorescence) can be modulated
by chopping the excitation beam. By using two excitation beams going in opposite
directions, some events will involve absorption of one photon from each beam,
which can occur only when both beams are unblocked by their choppers. If the
modulation frequencies of the two beams are different, this part of the signal will
appear at the sum and difference of the chopping frequencies. If a molecule has
nonzero speed along the beam, then to leading order in V/c, it will see each beam
shifted by

�νi = −ki · v
2π

. (1.1)

Since the two beams have oppositely directed k vectors, one will be upshifted and the
other downshifted by the same amount; the sum of the photon energies, h(ν1 + ν2), is
unshifted. Thus these mixing components are present only when the laser is tuned exactly
to the rest-frame resonance frequency—they show no first-order Doppler broadening. An
apparently inherent physical limit is circumvented with an extra chopper and a mirror or
two; such is the power of a good measurement idea.

Once the idea is in hand, analysis is needed, to decide between competing alternatives.
Such feasibility calculations are at the heart of electro-optical systems lore, and their most
important fruit is a highly trained intuition, so we’ll do lots of examples. The places
where assumptions break down are usually the most instructive, so we’ll also spend
some time discussing some of the seedier areas of optical theory, in the hope of finding
out where the unexamined assumptions lurk. We’ll begin with wave propagation and
imaging.

†This example is adapted from L. S. Vasilenko, V. P. Chebotaev, and A. V. Shishaev, JETP Lett . 3 (English
translation), 161 (1970).
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1.2 WAVE PROPAGATION

1.2.1 Maxwell’s Equations and Plane Waves

Any self-respecting book on optics is obliged to include Maxwell’s equations, which
are the complete relativistic description of the electromagnetic field in vacuo and are
the basis on which all optical instruments function. They are also useful for printing on
T-shirts. Fortunately, this is a book of practical lore, and since Maxwell’s equations are
almost never used in real design work, we don’t need to exhibit them. The most basic
equation that is actually useful is the vector wave equation ,

∇2E − 1

c2

∂2E
∂t2

= 0, (1.2)

where c is the speed of light. Most of the time we will be calculating a monochromatic
field, or at least a superposition of monochromatic fields. We can then separate out
the time dependence as exp(−iωt) and write k = ω/c, leaving the vector Helmholtz
equation,

(∇2 + k2)E = 0. (1.3)

Its simplest solution is a vector plane wave,

E(x) = E0e
ik·x (1.4)

where the two fixed vectors are E0, the electric field vector, which may be complex, and
k is the wave vector , whose magnitude k = |k| = ω/c is called the propagation constant .
If E0 is real, the field is said to be linearly polarized along E0; if its real and imaginary
parts are the same size, so that the instantaneous E rotates without changing length, the
field is circularly polarized ; otherwise, it’s elliptically polarized (see Section 1.2.8).

Power flows parallel to k in an isotropic medium, but need not in an anisotropic one, so
it is separately defined as the Poynting vector S = E × H (see Sections 4.6.1 and 6.3.2).
In the complex notation, the one-cycle average Poynting vector is S = Re[E × H∗].

1.2.2 Plane Waves in Material Media

So far, we have only considered propagation in vacuo. Electromagnetics in material media
is enormously complicated on a microscopic scale, since there are ∼1022 scatterers/cm3.
Fortunately, for most purposes their effects are well approximated by mean field theory,
which smears out all those scatterers into a jelly that looks a lot like vacuum except for
in a change in the propagation velocity, the E/H ratio, and some loss. A plane wave
entering a material medium via a plane surface remains a plane wave, with different k
and E0.

In a medium, light travels at a speed v = c/n. The constant n, the refractive index ,
is given by n = √

μrεr , where μr and εr are the relative magnetic permeability and
dielectric constant of the material at the optical frequency, respectively. Since μr is nearly
always 1 in optics, n = √

εr . In addition, the material will change the wave impedance,
Z = E/H = √

μ/ε = (120π �)
√

μr/εr . The analogy between wave impedance and
transmission line impedance is a fruitful one.
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In absorbing media, the refractive index is complex.† Assuming the medium is linear
and time invariant, the temporal frequency cannot change, so k is different in the medium;
the new k is kn = nk0, where k0 is the vacuum value. We usually drop the subscripts, so
k is taken to be in the medium under consideration.

There are one or two fine points deserving attention here. One is that n is not con-
stant with ω, a phenomenon known as dispersion . Besides making light of different
colors behave differently, this leads to distortion of a time-modulated signal. The carrier
wave propagates at the phase velocity vp = ω/k, but the envelope instead propagates,
approximately unchanged in shape, at the group velocity vg, given by

vg = ∂ω/∂k. (1.5)

Since the carrier propagates at the phase velocity v, as an optical pulse goes along
its carrier “slips cycles” with respect to its envelope; that’s worth remembering if you
build interferometers. The group velocity approximation (1.5) holds for short propagation
distances only, that is, when the difference �t in the transit times of different frequency
components is much less than the pulse width τ . In the opposite limit, where �t � τ ,
the output is a time Fourier transform of the input pulse.‡

The other fine point is that εr is in general a tensor quantity; there is no guarantee
that the response of the material to an applied electric field is the same in all directions.
In this book we’re concerned only with the linear properties of optical systems, so a
tensor is the most general local relationship possible. The resulting dependence of n

on polarization leads to all sorts of interesting things, such as birefringence and beam
walkoff . There are in addition strange effects such as optical activity (also known as
circular birefringence), where the plane of polarization of a beam rotates slowly as it
propagates. We’ll talk more about these weird wonders in Chapters 4 and 6.

Aside: The Other Kind of Polarization. The dielectric constant εr expresses the
readiness with which the charges in the medium respond to the applied electric field; it
is given by εr = 1 + 4πχ , where χ is the electric susceptibility (zero for vacuum); the
electric polarization P is ε0χE. This is a different usage than the usual optical meaning
of polarization, and it’s worth keeping the two distinct in your mind.

1.2.3 Phase Matching

The two basic properties of any wave field are amplitude and phase. At any point in
space-time, a monochromatic wave has a unique phase, which is just a number specifying
how many cycles have gone by since time t = 0. Since it’s based on counting, phase
is invariant to everything—it’s a Lorentz scalar, so it doesn’t depend on your frame
of reference or anything else, which turns out to be a very powerful property. The
requirement for phase matching at optical interfaces is the physical basis of geometrical
optics. A plane wave has the unique property of being translationally invariant, meaning
that if you move from one point to another, the only thing that changes is an additive

†Complex refractive index ñ is often quoted as n + ik, where n and k are real and positive, but it is conceptually
simpler to leave n complex, because the Fresnel formulas and Snell’s law still work with absorbing media.
‡The impulse response of a linearly dispersive medium is a chirp, and the Fourier transform can be computed
as the convolution of a function with a chirp. This turns out to be important in digital signal processing, where
it leads to the chirp-Z transform.
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phase shift (equivalent to a pure time delay). In particular, at a planar interface, moving
the reference point within the plane cannot change the phase relationship between the
fields on either side.

1.2.4 Refraction, Snell’s Law, and the Fresnel Coefficients

If a plane wave encounters a plane interface between two semi-infinite slabs of index n1

and n2, as shown in Figure 1.1, the light is partially reflected and partially transmitted—a
standard problem in undergraduate electromagnetics classes. We expect the fields to
consist of an incident and a reflected plane wave on the input side and a single transmitted
plane wave on the output side. Phase matching at the interface requires that the tangential
k vectors of all the waves be the same, which reproduces the law of reflection for the
reflected component and Snell’s law for the transmitted one:

n1 sin θ1 = n2 sin θ2. (1.6)

If there are m parallel planar interfaces, k‖ is the same in all the layers, so since (in
the j th layer) kj = nj k0, we can use the phase matching condition to get k⊥ in the j th
layer:

k2
⊥ = n2

j k
2
0 − k2

‖ . (1.7)

This is important in the theory of optical coatings. The continuity conditions on tangential
E and perpendicular D across the boundary give the Fresnel formulas for the field
amplitudes,

E′′
p

Ep

≡ rp12 = − tan(θ1 − θ2)

tan(θ1 + θ2)
= −n2 cos θ1 − n1

√
1 − [(n1/n2) sin θ1]2

n2 cos θ1 + n1

√
1 − [(n1/n2) sin θ1]2

, (1.8)

E′
p

Ep

≡ tp12 = 2 sin θ1 cos θ2

sin(θ1 + θ2)
= 2n1 cos θ1

n2 cos θ1 + n1

√
1 − [(n1/n2) sin θ1]2

, (1.9)

for light linearly polarized (i.e., E lying) in the plane of incidence. This plane is defined
by the surface normal n̂ (unrelated to n) and kinc. In Figure 1.1, it is the plane of
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Figure 1.1. Refraction and reflection of a plane wave at a plane dielectric boundary. The angle of
refraction θ2 is given by Snell’s law.
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the page. For light linearly polarized perpendicular to the plane of incidence, these
become

E′′
s

Es

≡ rs12 = − sin(θ1 − θ2)

sin(θ1 + θ2)
= n1 cos θ1 − n2

√
1 − [(n1/n2) sin θ1]2

n1 cos θ1 + n2

√
1 − [(n1/n2) sin θ1]2

, (1.10)

E′
s

Es

≡ ts12 = 2 sin θ2 cos θ1

sin(θ1 + θ2)
= 2n1 cos θ1

n1 cos θ1 + n2

√
1 − [(n1/n2) sin θ1]2

. (1.11)

The two polarizations are known as p and s, respectively. As a mnemonic, s polar-
ization means that E sticks out of the plane of incidence.† The quantities r and t are
the reflection and transmission coefficients, respectively. These Fresnel coefficients act
on the amplitudes of the fields.‡ The transmitted and reflected power ratios R and T ,
given by

R = |r|2 and T = n2 cos θ2

n1 cos θ1
|t |2, (1.12)

are known as the reflectance and transmittance, respectively.
The Fresnel coefficients have fairly simple symmetry properties; if the wave going

from n1 to n2 sees coefficients r12 and t12, a wave coming in the opposite direction sees
r21 and t21, where

rp21 = −rp12, tp21 = (n1 cos θ1)/(n2 cos θ2)tp12;
rs21 = −rs12, ts21 = (n2 cos θ2)/(n1 cos θ1)ts12.

(1.13)

The symmetry expressions for t21 are more complicated because they have to take account
of energy conservation between the two media.

1.2.5 Brewster’s Angle

Especially sharp-eyed readers may have spotted the fact that if θ1 + θ2 = π/2, the denom-
inator of (1.8) goes to infinity, so rp = 0. At that angle, sin θ2 = cos θ1, so from Snell’s
law, tan θ1 = n2/n1. This special value of θi is called Brewster’s angle θB . Note that
the transmitted angle is π/2 − θB , which is Brewster’s angle for going from n2 into n1.
Brewster angle incidence with very pure p-polarized light is the best existing technique
for reducing reflections from flat surfaces, a perennial concern of instrument designers
(see Section 4.7.3).

Laser tube windows are always at Brewster’s angle to reduce the round-trip loss
through the cavity. The loss in the s polarization due to four high angle quartz–air
surfaces is nearly 40% in each direction. Regeneration in the cavity greatly magnifies
this gain difference, which is why the laser output is highly polarized. Brewster angle

†The s is actually short for senkrecht , which is German for perpendicular. The two polarizations are also called
TE and TM, for transverse electric and transverse magnetic, that is, which field is sticking out of the plane of
incidence. This nomenclature is more common in waveguide theory.
‡There is another sign convention commonly used for the p-polarized case, where the incident and reflected E
fields are taken in opposite directions, yielding a confusing sign change in (1.8). We adopt the one that makes
rp = rs at normal incidence.
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incidence is also commonly used in spectroscopic sample cells, Littrow prisms, and other
high accuracy applications using linearly polarized, collimated beams.

Ideally, a smooth optical surface oriented at θB to the incoming p-polarized beam
would reflect nothing at all, but this is not the case with real surfaces. Roughness and
optical anisotropy make it impossible to make every single region encounter the light
beam at the same angle or with the same refractive index, so there are always residual
reflections even at θB . Surface layers also prevent complete canceling of the reflected
wave, because the two will in general have different Brewster’s angles and because of
the phase delay between the reflections from the top and bottom of the layer. Below the
critical angle, dielectric reflections always have phase 0 or π , so there’s no way to tip
the surface to get rid of a phase-shifted reflection.

Aside: Fossil Nomenclature. When Malus discovered polarization (in 1808) by look-
ing at reflections from a dielectric, he quite reasonably identified the plane of polarization
with the plane of incidence. This conflicts with our modern tendency to fix on the E field
in considering polarization. There are still some people who follow Malus’s convention,
so watch out when you read their papers.

1.2.6 Total Internal Reflection

If n1 > n2, there exists an angle θC , the critical angle, where Snell’s law predicts that
sin θ2 = 1, so θ2 = π/2: grazing incidence. It is given by

θC = arcsin(n2/n1). (1.14)

Beyond there, the surds in the Fresnel formulas (1.8)–(1.11) become imaginary, so t

vanishes and r sits somewhere on the unit circle (the reflectivity is 1 and the elements
of E′ become complex).

This total internal reflection (TIR) is familiar to anyone who has held a glass of water,
or looked up at the surface while underwater. It is widely used in reflecting prisms. There
are two things to remember when using TIR: the reflection phase is massively polarization
dependent and the fields extend beyond the surface, even though there is no propagating
wave there. A TIR surface must thus be kept very clean, and at least a few wavelengths
away from any other surface.

By putting another surface sufficiently close by, it is possible to couple light via the
evanescent field, a phenomenon called frustrated TIR or, more poetically, evanescent
coupling . This is the optical analogue of quantum mechanical tunneling.

The reflection phase represents a relative time delay of the propagating wave. The
s-polarized wave is delayed more, because it has a larger amplitude in the evanescent
region, which requires more of a phase slip between the incident and reflected waves
(remember the continuity conditions). This sort of physical reasoning is helpful in keeping
sign conventions straight, although it is not infallible. The phase shift δ between s and
p polarizations is†

δ = δs − δp = −arctan
2 cos θi

√
sin2 θi − (n2/n1)2

sin2 θi

. (1.15)

†M. Born and E. Wolf, Principles of Optics , 6th ed. (corrected). Pergamon, Oxford, 1983, pp. 47–51.
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1.2.7 Goos–Hänchen Shift

The angle-dependent phase shift on TIR functions much as dispersion does in the time
domain, delaying different components differently. Dispersion causes the envelope of a
pulse to propagate at the group velocity, which is different from the phase velocity. In the
same way, the phase shift on TIR causes the envelope of a reflected beam to be shifted
slightly in space from the incident beam, the Goos–Hänchen shift . It is less well known
than the group velocity effect, mainly because the effect doesn’t build up as it goes
the way dispersion effects do, so the shift is small under normal circumstances, though
large enough to cause image aberrations on reflection from TIR surfaces. The place it
does become important is in multimode fiber optics, where a ray undergoes many, many
reflections and the shift accordingly adds up.

The variation in the Goos–Hänchen shift comes from the speeding up of the wave
that sticks out the most into the low index material. It is responsible for the apparently
paradoxical behavior of optical fiber modes near cutoff (see Section 8.3.1). We expect
high angle modes to slow down due to the decrease of kz with angle—they spend more of
their time bouncing back and forth instead of traveling down the fiber axis. In fact, they
do slow down with increasing angle at first, but then speed up again as they near cutoff,
when the wave sticks farther and farther out into the low index material. To leading
order, the effect is the same as if the wave bounced off an imaginary surface one decay
length into the low index material. Note that this does not contradict the last section;
the phase shift is a delay, but the Goos–Hänchen shift makes the mode propagation
anomalously fast.

1.2.8 Circular and Elliptical Polarization

What happens when the p and s components get out of phase with each other? The
exponential notation, remember, is just a calculating convenience; real physical quantities
always give real numbers. The instantaneous E-field strength is

E2 = [Re{Exe
iωt }]2 + [Re{Eye

iωt+φ}]2. (1.16)

A linearly polarized monochromatic wave has an E that varies sinusoidally, passing
through zero twice each cycle. When E has complex coefficients, the p and s components
oscillate out of phase with one another. If the two are the same size and a quarter cycle
apart, the real (i.e., physical) part of the E vector will spin through 2π once per cycle,
without changing its length, like a screw thread. Its endpoint will traverse a circle, so
that this is known as circular polarization . Like screws, there is right and left circular
polarization, but unlike screws, the names are backwards.

If the two components are not exactly equal in magnitude, or are not exactly π /2
radians apart, the vector will still rotate, but will change in length as it goes round,
tracing an ellipse. This more general case is elliptical polarization . Circular and linear
polarizations are special cases of elliptical polarization. Elliptical polarization can also
be right or left handed.

1.2.9 Optical Loss

In a lossless medium, the E and H fields of a propagating wave are exactly in phase
with each other. Any phase difference between them is due to absorption or gain in the
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material. A material with dielectric constant ε′ − iε′′ has a loss tangent δ = ε′′/ε′. In
such a material, H lags E in phase by 1

2 arctan δ.

1.3 CALCULATING WAVE PROPAGATION IN REAL LIFE

A real optical system is too complicated to be readily described in terms of vector fields,
so being practical folk, we look for an appropriate sleazy approximation. We know
that in a homogeneous and time-invariant medium, all propagating light waves can be
decomposed into their plane wave spectra; at each (temporal) frequency, there will be a
unique set of vector plane waves that combine to produce the observed field distributions.
The approximations we will use are four:

1. Scalar Optics: Replace vector field addition with scalar addition.

2. Paraxial Propagation: Use an approximate propagator (the Huyghens integral) to
calculate wave propagation, limiting us to beams of small cone angles.

3. Fourier Optics: Use a simplistic model for how individual spatial Fourier com-
ponents on a surface couple to the plane wave components of the incident light.

4. Ray Optics: Ignore diffraction by using an asymptotic theory valid as λ → 0.

Analytical models, within their realm of applicability, are so much superior to numer-
ical models in intuitive insight and predictive power that it is worth sacrificing significant
amounts of accuracy to get one. Numerical models have their place—but the output is
just a pile of special cases, so don’t use them as a crutch to avoid hard thinking.

1.3.1 Scalar Optics

If we shine an ideal laser beam (one perfectly collimated and having a rectangular
amplitude profile) through a perfect lens and examine the resulting fields near focus, the
result is a complete mess. There are nonzero field components along the propagation
axis, odd wiggly phase shifts, and so on, due entirely to the wave and vector nature of
the fields themselves. The mess becomes worse very rapidly as the sine of the cone angle
θ of the beam approaches unity. The effect is aggravated by the fact that no one really
knows what a lens does, in sufficient detail to describe it accurately analytically—a real
system is a real mess.

For most optical systems, we don’t have to worry about that, because empirically it
doesn’t affect real measurements much. Instead, we use scalar optics . Scalar optics is
based on the replacement of the six components of the true vector electromagnetic field
by a single number, usually thought of as being the electric field component along the
(fixed) polarization axis. In an isotropic medium, the vector wave equation admits plane
wave solutions whose electric, magnetic, and propagation vectors are constant in space,
so that the field components can be considered separately, which leads to the scalar
Helmholtz equation ,

(∇2 + k2)E = 0. (1.17)

(This rationale is nothing but a fig leaf, of course.) Any solution of (1.17) can be decom-
posed in a Fourier function space of plane waves, which are identified with one Cartesian
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Central
Zone

Edge
Zone

Figure 1.2. Scalar addition is a good approximation to vector addition except near high-NA foci.

component of the vector field. A scalar plane wave traveling along a direction k has the
form

ψ(x) = ei(k·x−ωt), (1.18)

where the vector k has length k = 2π/λ. Conceptually, the true vector field can be built
up from three sets of these.

The only difficulty with this in free space is that the field vectors of the plane waves
are perpendicular to their propagation axes, so that for large numerical aperture,† where
the propagation axes of the various components are very different, the vector addition
of fields near a focus is not too well approximated by a scalar addition. Far from focus,
this is not much of a worry, because the components separate spatially, as shown in
Figure 1.2.

Aside: Plane Waves and δ-Functions. This separation is not entirely obvious from
a plane wave viewpoint, but remember that plane waves are δ-functions in k-space; that
makes them just as singular in their way as δ-functions. They aren’t always an aid to
intuition. Of course, it is not free space propagation that provides useful data, but the
interaction of light with matter; boundaries of physical interest will in general mix the
different polarization components. Such mathematical and practical objections are swept
under the rug.‡

†The numerical aperture (NA) of a beam is given by NA = n sin θ , where n is the refractive index of the
medium and θ is the half-angle of the beam cone. By Snell’s law, the numerical aperture of a beam crossing
an interface between two media at normal incidence remains the same.
‡The actual electromagnetic boundary conditions at surfaces of interest are very complicated, and usually poorly
understood, so that most of the time the inaccuracies we commit by approximating the boundary conditions
are smaller than our ignorance.
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Polarization and finite bandwidth effects are usually put in by hand . This means that
we keep track of the polarization state of the beam separately and follow it through the
various optical elements by bookkeeping; for frequency-dependent elements, we keep the
frequency as an independent variable and integrate over it at the end. Such a procedure is
inelegant and mathematically unjustified, but (as we shall see) it works well in practice,
even in regimes such as high numerical aperture and highly asymmetric illumination,
in which we would expect it to fail. Everyone in the optical systems design field uses
it, and the newcomer would be well advised to follow this wholesome tradition unless
driven from it by unusual requirements (and even then, to put up a fight).

1.3.2 Paraxial Propagation

Discussions of beam propagation, pupil functions, optical and coherent transfer functions,
and point spread functions take place with reference to the plane wave basis set. There are
an infinite variety of such basis sets for decomposition of solutions of the scalar Helmholtz
equation, nearly none of which are actually useful. Plane waves are one exception, and
the Gauss–Legendre beams are another—or would be if they quite qualified. Gaussian
beams (as they are usually called) don’t even satisfy the true scalar Helmholtz equation,
because their phase fronts are paraboloidal rather than spherical, and because they extend
to infinity in both real- and k- (spatial frequency) space.

Instead, they satisfy the slowly varying envelope equation , also known as the paraxial
wave equation . First, we construct a field as a product of a plane wave eikz times an
envelope function �(x) that varies slowly on the scale of a wavelength. This field is
plugged into the scalar Helmholtz equation, the product rule for the Laplacian operator
is invoked, and the subdominant term d2�/dz2 is discarded, leaving a Schrödinger-type
equation for the envelope �, the paraxial wave equation

d2�

dx2
+ d2�

dy2
+ 2ik

d�

dz
= 0. (1.19)

A general solution to this equation for all (x, y, z) is given by the Huyghens integral ,

�(x, y, z) = − i

λ

∫∫
P

�(x ′, y ′, z′)
exp

[
ik

(x − x ′)2 + (y − y ′)2

2(z − z′)

]
(z − z′)

dx ′dy ′, (1.20)

where P is the x ′y ′ plane. In diffraction theory (1.20) is also known as the Fresnel
approximation . The Huyghens integral is an example of a propagator , an integral opera-
tor that uses the field values on a surface to predict those in the entire space. It is slightly
inconvenient to lose the explicit phase dependence on z, but that can be recovered at the
end by calculating the phase of an axial ray (one traveling right down the axis of the
system) and adding it in. The Huyghens kernel depends only on x−x′ and so is a convo-
lution (see Section 1.3.8), leading naturally to a Fourier space (k-space) interpretation.
In k-space, (1.20) is

�(x, y, z) =
∫∫

P ′
U(u, v)ei(2π/λ)(ux+vy)e−i(2πz/λ)[(u2+v2)/2]dudv, (1.21)
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where P ′ is the uv plane and U is the plane wave spectrum of � at z = 0, which is
given by

U(u, v) =
∫∫

P

�(x, y, 0)e−i(2π/λ)(ux+vy) dx

λ

dy

λ
(1.22)

The quantities u and v are the direction cosines in the x and y directions, respectively,
and are related to the spatial frequencies kx and ky by the relations u = kx/k, v = ky/k.
What we’re doing here is taking the field apart into plane waves, propagating each wave
through a distance z by multiplying by exp(ikzz), and putting them back together to get
the field distribution at the new plane. The (u, v) coordinates of each component describe
its propagation direction. This is a perfectly general procedure.

Aside: Use k-Space. The real-space propagator (1.20) isn’t too ugly, but the
Rayleigh–Sommerfeld and Kirchhoff propagators we will exhibit in Section 9.3.2 are
not easy to use in their real-space form. The procedure of splitting the field apart into
plane waves, propagating them, and reassembling the new field is applicable to all these
propagators, because in k-space they differ only slightly (in their obliquity factors , of
which more later). This is really the right way to go for hand calculations.

It is actually easier to spot what we’re doing with the more complicated propaga-
tors, because the exp(ikzz) appears explicitly. The Huyghens propagator ignores the
exp(ikz) factor and uses an approximation for exp[iz(kz − k)], which obscures what’s
really happening.

1.3.3 Gaussian Beams

The Gauss–Legendre beams are particular solutions to the paraxial wave equation. The
general form of a zero-order Gauss–Legendre beam that travels along the z axis in the
positive direction and whose phase fronts are planar at z = 0 is

�(x, y, z, t) =
√

2

π

1

w(z)
exp

{
iφ(z) + (x2 + y2)

[ −1

w2(z)
+ ik

2R(z)

]}
, (1.23)

where R(z), φ(z), w(z), zR , and w0 are given in Table 1.1. (Remember that the scalar field
E is the envelope � multiplied by the plane wave “carrier” eikz−ωt .) These parameters
depend only on the beam waist radius w0 and the wavelength λ of the light in the
medium.

The envelope function is complex, which means that it modulates both the amplitude
and the phase φ of the associated plane wave. This gives rise to the curved wavefronts
(surfaces of constant phase) of focused beams, and also to the less well-known variations
in ∂φ/∂z with focal position, the Gouy phase shift.

Gaussian beams reproduce the ordinary properties of laser beams of small to moderate
numerical aperture. They also form a complete set of basis functions, which means that
any solution of (1.19) can be described as a sum of Gaussian beams. This useful property
should not be allowed to go to the user’s head; Gaussian beams have a well-defined axis,
and so can only represent beams with the same axis. The number of terms required for
a given accuracy and the size of the coefficients both explode as the beam axis departs
from that of the eigenfunctions.
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TABLE 1.1. TEM00 Gaussian Beam Parameters (Beam Waist at z = 0)

Central intensity I0 = 2P/(πw2)

Central intensity at the waist I0W = 2P/(πw2
0)

Total power P = πw2I0/2

Beam waist radius (power density on axis = I0/e
2) w0 = λ/(πNA)

1/e2 Power density radius w(z) = w0[1 + (z/zR)2]1/2

3 dB Power density radius vs. 1/e2 radius w1/2(z) = 0.5887 w(z)

Radius within which I > given Ith r = w/
√

2 ln1/2(I0/Ith)

Power included inside r ≤ w 86.4%
99% Included power radius r99 = 1.517 w

Fourier transform pair exp[−π(r/λ)2] ⊃ exp(−π sin2 θ)

Separation of variables exp(−π(r/λ)2)

= exp[−π(x/λ)2] exp[−π(y/λ)2]

Numerical aperture (1/e2 points in k-space) NA = λ/(πw0)

Radius of curvature of phase fronts R(z) = z + z2
R/z

Rayleigh range (axial intensity 50% of peak) zR = πw2
0/λ = λ/(π(NA)2)

Displacement of waist from geometric focus �z ≈ −z2
R/f

Envelope phase shift φ(z) = tan−1(z/zR)

Equivalent projected solid angle �′
eq = π(NA)2 = λ2/(πw2

0)

In this book, as in most of practical electro-optical instrument design, only this
lowest-order mode, called TEM00, is needed. This mode describes the field distribution
of a good quality laser beam, such as that from a HeNe or circularized diode laser.

At large z, the Gaussian beam looks like a spherical wave with a Gaussian cutoff
in u and v, but for small z, it appears to be a collimated beam. The distance, called
zR or the Rayleigh range, over which the beam stays approximately collimated goes as
1/(NA)2 —the beam waist goes as 1/NA and the the angular width as NA. At z = ±zR ,
the 1/e2 beam diameter has increased by a factor of

√
2, so that the central intensity has

halved.
The Gaussian beam is a paraxial animal: it’s hard to make good ones of high NA. Its

extreme smoothness makes it exquisitely sensitive to vignetting, which of course becomes
inevitable as sin θ approaches 1, and the slowly varying envelope approximation itself
breaks down as the numerical aperture increases (see Example 9.8).

There are a variety of parameters of Gaussian beams which are frequently of use,
some of which are summarized in Table 1.1; P is the total power in watts, I is the
intensity in W/m2, w is the 1/e2 intensity radius, w0 is the beam waist radius, zR is the
Rayleigh range, and NA is measured at the 1/e2 intensity points in k-space. Of interest
in applications is the envelope phase, which shows a ±π/4 phase shift (beyond the plane
wave’s exp(ikz)) over the full depth of focus (twice the Rayleigh range), so that in a
focused beam it is not a good assumption that the phase is simply exp(ikz). This phase
is exploited in phase contrast systems such as the Smartt interferometer.

Aside: Gaussian Beams and Lenses. When a Gaussian beam passes through a lens, it
is transformed into a different Gaussian beam. For the most part, ray optics is sufficient
to predict the position of the beam waist and the numerical aperture, from which the
waist radius and Rayleigh range can be predicted. There are some useful invariants of
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this process: for example, a Gaussian beam whose waist scans back and forth by b waist
radii will be transformed into another beam whose waist scans b times the new waist
radius. A position c times the Rayleigh range from the waist will image to a point c

times the new Rayleigh range from the new waist. A corollary is that the number of
resolvable spots , that is, the scan range divided by the spot diameter, is also invariant.
These invariants, which are not limited to the Gaussian case, allow one to juggle spot
sizes, focal positions, and scan angles freely, without having to follow them laboriously
through the whole optical system.

1.3.4 The Debye Approximation, Fresnel Zones, and Fresnel Number

The plane wave decomposition of a given disturbance can be calculated from (1.22) or
its higher-NA brethren in Section 9.3.6, and those work regardless of where we put the
observation plane. When discussing the NA of a lens, however, we usually use a much
simpler method: draw rays representing the edges of the beam and set NA = n sin θ .
This sensible approach, the Debye approximation , obviously requires the beam to be
well represented by geometric optics, because otherwise we can’t draw the rays—it
breaks down if you put the aperture near a focus, for instance. We can crispen this up
considerably via the Fresnel construction .

In a spherical wave, the surfaces of constant phase are equally spaced concentric hemi-
spheres, so on a plane, the lines of constant phase are concentric circles, corresponding
to annular cones, as shown in Figure 1.3. Drawing these circles at multiples of π radians
divides the plane into annular regions of positive and negative field contributions, called
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Figure 1.3. The Fresnel zone construction with f = 10 μm and λ = 0.5 μm. For a plane wave,
taking the phase on axis as 0, alternating rings produce positive and negative field contributions at
f , so blocking alternate ones (or inverting their phases with a λ/2 coating) produces a focus at f .
For a converging spherical wave, all zones produce positive contributions at the focus.
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Fresnel zones . The zones are not equally spaced; for a beam whose axis is along ẑ and
whose focus is at z = 0, the angular zone boundaries in the far field are at

θn = cos−1 1

1 + (2n + 1)λ/(4f )
(1.24)

(the equation for the N th zone center is the same, except with 2N instead of (2n + 1)).
The Fresnel number N is the number of these zones that are illuminated. This

number largely determines the character of the beam in the vicinity of the reference
point—whether it is dominated by diffraction or by geometric optics. The Debye approx-
imation is valid in the geometric limit, that is, N � 1.

Taking r to be the radius of the illuminated circle and applying a couple of trigono-
metric identities to (1.24) gets us a quadratic equation for N , the number of annular zone
centers falling inside r . Assuming that Nλ � f , this simplifies into

N = r2

λz
, (1.25)

which due to its simplicity is the usual definition of Fresnel number.
In small Fresnel-number situations, the focus is displaced toward the lens from its

geometric position and diffraction is important everywhere, not just at the focus. The
number of resolvable spots seen through an aperture of radius r is N/2.

Example 1.2: Gaussian Beams and Diffraction. For small numerical apertures, the
position of the beam waist does not coincide with the geometric focus, but is closer. This
somewhat counterintuitive fact can be illustrated by considering a beam 40λ in radius,
with a lens of 104λ focal length placed at its waist. The lens changes the Gaussian beam
parameters, as we can calculate. Geometrically, the incoming beam is collimated, so
the focus is 104λ away, but in reality the Rayleigh range of the beam is 40(π /4) spot
diameters, or 1260λ. This is only 1/8 of the geometric focal length, so the lens makes
only a small perturbation on the normal diffractive behavior of the original beam. At the
geometric focus, N = 402/104 = 0.16, so the total phase change due to the lens is only
π/6 across the beam waist.

1.3.5 Ray Optics

We all know that the way you check a board for warpage is by sighting along it, because
light in a homogeneous medium travels in straight lines. The departures of light from
straight-line propagation arise from nonuniformities in the medium (as in mirages) and
from diffraction. Most of the time these are both small effects and light can be well
described by rays , thought of as vanishingly thin pencil beams whose position and direc-
tion are both well defined—the usual mild weirdness exhibited by asymptotic theories.
Ray optics does not require the paraxial approximation, or even scalar waves.

In the absence of diffraction (i.e., as λ → 0), the direction of propagation of a
light beam in an isotropic medium is parallel to the gradient of the phase† ∇φ (see

†M. Born and E. Wolf, Principles of Optics , 6th ed. (corrected). Pergamon, Oxford, 1983, p. 112.
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Section 9.2.3). This means that a beam whose phase fronts are curved is either converg-
ing or diverging (see Section 9.2.2) and that rays can be identified with the normals to the
phase fronts. Rays are the basis of elementary imaging calculations, as in the following
example.

Example 1.3: Imaging with a Camera Lens. As a simple example of the use of ray
optics, consider using a 35 mm camera to take a head-and-shoulders portrait of a friend.
For portraits, the most pleasing perspective occurs with a camera-to-subject distance of
a few feet, 4 feet (1.3 m) being about optimal. What focal length lens is required?

The film frame is 24 by 36 mm in size and the outline of a human head and shoulders
is about 400 by 500 mm. Thus the desired magnification is 24/400, or 0.06. The rules of
thin-lens optics are:

1. Rays passing through the center of the lens are undeviated.

2. Rays entering parallel to the axis pass through the focus.

3. The locus of ray bending is the plane of the center of the lens.

All of these rules can be fixed up for the thick-lens case (see Section 4.11.2). The similar
triangles in Figure 1.4 show that the magnification M is

M = di

do

(1.26)

and elementary manipulation of the geometric identities shown yields

1

do

+ 1

di

= 1

f
(1.27)

and
sosi = f 2. (1.28)

f Si

difSo

do

A

B

sin a = (A + B)/do = B/f = A/So

a b

sin b = (A + B)/di = A/f = B/Si

Object

Image

Figure 1.4. Portraiture with a 35 mm camera.
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Using (1.26) and (1.27), we find that

f = Mdo

1 + M
(1.29)

or 73.5 mm. Since the optimum distance is only a rough concept, we can say that a
portrait lens for 35 mm photography should have a focal length of around 70 to 80 mm.

We can associate a phase with each ray, by calculating the phase shift of a plane wave
traversing the same path. In doing this, we have to ignore surface curvature, in order that
the wave remain plane. A shorthand for this is to add up the distances the ray traverses
in each medium (e.g., air or glass) and multiply by the appropriate values of k.

1.3.6 Lenses

In the wave picture, an ideal lens of focal length f transforms a plane wave eik(ux+vy) into
a converging spherical wave, whose center of curvature is at (uf, vf ). It does so by insert-
ing a spatially dependent phase delay, due to propagation through different thicknesses
of glass. In the paraxial picture, this corresponds to a real-space multiplication by

L(x, y : f ) = exp

[
iπ

λf
(x2 + y2)

]
. (1.30)

Example 1.4: A Lens as a Fourier Transformer. As an example of how to use the
Huyghens propagator with lenses, consider a general field �(x, y, −f ) a distance f

behind a lens whose focal length is also f . The operators must be applied in the order
the fields encounter them; here, the order is free-space propagation through f , followed
by the lens’s quadratic phase delay (1.30) and another free-space propagation through f .
Using (1.20) twice, the field becomes

�(x, y, +f ) = iλ

f

∫ ∞

−∞
d

x ′

λ

∫ ∞

−∞
d

y ′

λ
e−i(2π/λf )(xx′+yy′)�(x ′, y ′, −f ), (1.31)

which is a pure scaled Fourier transform. Thus a lens performs a Fourier transform
between two planes at z = ±f . If we put two such lenses a distance 2f apart, as shown
in Figure 1.5, then the fields at the input plane are reproduced at the output plane, with
a Fourier transform plane in between. The image is inverted, because we’ve applied two
forward transforms instead of a forward (−i) followed by a reverse (+i) transform, so
(x, y) → (−x, −y).

If we put some partially transmitting mask at the transform plane, we are blocking
some Fourier components of �, while allowing others to pass. Mathematically, we are
multiplying the Fourier transform of � by the amplitude transmission coefficient of
the mask, which is the same as convolving it with the Fourier transform of the mask,
appropriately scaled. This operation is called spatial filtering and is widely used.

The Fourier transforming property of lenses is extremely useful in both theory and
applications. Perhaps surprisingly, it is not limited to the paraxial case, as we will see
below.
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Detail

Incident Beam
Profile

Entrance
Pupil

Exit Pupil
f f f f

Figure 1.5. Spatial filtering.

1.3.7 Aperture, Field Angle, and Stops

Not every ray that enters an optical system will make it out the other side. At most
locations in a system, there is no sharp boundary. At a given point in space, light going
in some directions will make it and that going in other directions will not; similarly
for a given angle, there may be part of the system where it can pass and part where
it cannot. However, each ray that fails to make it will wind up hitting some opaque
surface. The surface that most limits the spatial field of a ray parallel to the axis is
called the field stop and that which limits the angular acceptance of a point on the axis
most, the aperture stop. At these surfaces, the boundary between blocked and transmitted
components is sharp. These locations are shown in Figure 1.6. It is common to put the
aperture stop at a Fourier transform plane, since then all points on the object are viewed
from the same range of angles. Optical systems image a volume into a volume, not just

Axis

Field
Stop

Aperture
Stop

Field Angle

Principal Ray

Upper Rim Ray

θ = Aperture Angle

θ

Lower Rim Ray

Figure 1.6. Definitions of aperture and field angle.
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a plane into a plane, so the stops can’t always be at the exact image and transform
planes.

Aside: Vignetting. Aperture and field are defined in terms of axial points and axial rays.
There’s no guarantee that the aperture and field are exactly the same for other points and
other directions. Rays that get occluded somewhere other than the field or aperture stops
are said to have been vignetted . Vignetting isn’t always bad—it’s commonly used to get
rid of badly aberrated rays, which would degrade the image if they weren’t intercepted.

When a laser beam hits the edge of an aperture, it is also loosely termed vignetting,
even when it does happen at one of the stops.

1.3.8 Fourier Transform Relations

Fourier transforms crop up all the time in imaging theory. They are a common source
of frustration. We forget the transform of a common function or can’t figure out how
to scale it correctly, and what was a tool becomes a roadblock. This is a pity, because
Fourier transforms are both powerful and intuitive, once you have memorized a couple
of basic facts and a few theorems. In an effort to reduce this confusion, here are a few
things to remember. Following Bracewell, we put the factors of 2π in the exponents and
write g ⊃ G and G = Fg for “g has transform G:”

G(f ) =
∫ ∞

−∞
g(x)e−i2πf xdx, (1.32)

g(x) =
∫ ∞

−∞
G(f )ei2πf xdf. (1.33)

A side benefit of this is that we work exclusively in units of cycles. One pitfall is that
since for a wave traveling in the positive direction, the x and t terms in the exponent
have opposite signs, so it is easy to get mixed up about forward and inverse transforms.
Physicists and electrical engineers typically use opposite sign conventions.

Useful Functions. The Heaviside unit step function U(x) is 0 for x < 0 and 1 for
x > 0. The derivative of U(x) is the Dirac δ-function, δ(x). Sinc and jinc func-
tions come up in connection with uniform beams: sinc(x) = sin(πx)/(πx) and
jinc(x) = J1(2πx)/(πx). Even and odd impulse pairs II(x) = [δ(x − 1

2 ) + δ(x + 1
2 )]/2

and II(x) = [δ(x + 1
2 ) − δ(x − 1

2 )]/2 have transforms cos(πf ) and i sin(πf ),
respectively.

Conjugacy. Conjugate variables are those that appear multiplied together in the kernel
of the Fourier transform, such as time in seconds and frequency in hertz. In optical Fourier
transforms, the conjugate variables are x/λ and u, which is as before the direction cosine
of the plane wave component on the given surface, that is, u = kx/k.

Convolution. A convolution is the mathematical description of what a filter does in
the real time or space domain, namely, a moving average. If g(x) is a given data stream
and h(x) is the impulse response of a filter (e.g., a Butterworth lowpass electrical filter,
with x standing for time):

h(x) ∗ g(x) =
∫ ∞

−∞
h(ξ)g(x − ξ)dξ =

∫ ∞

−∞
g(ξ)h(x − ξ)dξ. (1.34)
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The second integral in (1.34) is obtained by the transformation u → x − ξ ; it shows
that convolution is commutative: g ∗ h = h ∗ g. Convolution in the time domain is mul-
tiplication in the frequency domain,

F(h ∗ g) = HG, (1.35)

where capitals denote transforms, for example, G(f ) = F(g(x)). This makes things
clearer: since multiplication is commutative, convolution must be too. A lot of imaging
operations involve convolutions between a point spread function (impulse response) and
the sample surface reflection coefficient (coherent case) or reflectance (incoherent case).
The Huyghens propagator is also a convolution. Note that one of the functions is flipped
horizontally before the two are shifted, multiplied, and integrated. This apparently trivial
point in fact has deep consequences for the phase information, as we’ll see in a moment.
The convolution theorem is also very useful for finding the transform of a function,
which looks like what you want, by cobbling together transforms that you know (see
Example 1.5).

Symmetry. By a change of variable in the Fourier integral, you can show that g(−x) ⊃
G(−f ), g∗(x) ⊃ G∗(−f ), g∗(−x) ⊃ G∗(f ), and (if g is real) G(−f ) = G∗(f ).

Correlation and Power Spectrum. The cross-correlation g � h between functions g

and h is the convolution of g(x) and h∗(−x): g � h = g(x) ∗ h∗(−x) ⊃ GH ∗. This can
also be shown by a change of variables.

An important species of correlation is the autocorrelation, g � g, whose transform is
GG∗ = |G|2, the power spectrum. The autocorrelation always achieves its maximum
value at zero (this is an elementary consequence of the Schwarz inequality) and all phase
information about the Fourier components of g is lost.

Equivalent Width. We often talk about the width of a function or its transform. There
are lots of different widths in common use; 3 dB width, 1/e2 width, the Rayleigh cri-
terion, and so on. When we come to make precise statements about the relative widths
of functions and their transforms, we talk in terms of equivalent width or sometimes
autocorrelation width. The equivalent width of a function is

we(g) =
∫ ∞
−∞ g(x ′)dx ′

g(0)
= G(0)

g(0)
. (1.36)

It is obvious from this that if g and G are nonzero at the origin, the equivalent width of
a function is the reciprocal of that of its transform. It is this relationship that allows us
to say airily that a 10-wavelength-wide aperture has an angular spectrum 0.1 rad wide.

Functions having most of their energy far from zero are not well described by an
equivalent width. For example, if we move the same aperture out to x = 200λ, it will
have a very large equivalent width (since g(0) is very small), even though the aperture
itself hasn’t actually gotten any wider. Such a function is best described either by quoting
its autocorrelation width , which is the equivalent width of the autocorrelation g � g, or
by shifting it to the origin. (We commonly remove the tilt from a measured wavefront,
which is equivalent to a lateral shift of the focus to the origin.) Autocorrelations always
achieve their maximum values at zero. Since the transform of the autocorrelation is the
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power spectrum, the autocorrelation width is the reciprocal of the equivalent width of
the power spectrum.

Shifting. Given g(x), then shifting the function to the right by x0 corresponds to sub-
tracting x0 from the argument. If g(x) is represented as a sum of sinusoids, shifting it
this way will phase shift a component at frequency f by f x0 cycles:

F(g(x − x0)) = e−i2πf x0G(f ). (1.37)

Scaling. A feature 10λ wide has a transform 0.1 rad wide (in the small-angle approx-
imation). Making it a times narrower in one dimension without changing its amplitude
makes the transform a times wider in the same direction and a times smaller in height,
without changing anything in the perpendicular direction:

g(at) ⊃ 1

|a|G
[
f

a

]
. (1.38)

You can check this by noting that the value of the transform at the origin is just the
integral over all space of the function.

Integrating and Differentiating. For differentiable functions, if g ⊃ G, then

dg

dx
⊃ i2πfG, (1.39)

which is easily verified by integrating by parts. If g is absolutely integrable, then∫ x

g dx ′ ⊃ G

i2πf
+ Kδ(f ), (1.40)

where K is an arbitrary integration constant. It follows from (1.39) that the derivative of
a convolution is given by

d

dx
(h ∗ g) = h ∗ dg

dx
= g ∗ dh

dx
⊃ i2πf GH. (1.41)

Power Theorem. If we compute the central value of the cross-correlation of g and h,
we get the odd-looking but very useful power theorem:∫ ∞

−∞
dx g(x)h∗(x) =

∫ ∞

−∞
df G(f )H ∗(f ) (1.42)

(e.g., think of g as voltage and h as current). With the choice g = h, this becomes
Rayleigh’s theorem ,† ∫ ∞

−∞
dx|g(x)|2 =

∫ ∞

−∞
df |G(f )|2, (1.43)

which says that the function and its transform have equal energy. This is physically
obvious when it comes to lenses, of course.

†The same relationship in Fourier series is Parseval’s theorem.
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Asymptotic Behavior. Finite energy transforms have to fall off eventually at high
frequencies, and it is useful to know how they behave as f → ∞. A good rule of thumb
is that if the nth derivative of the function leads to delta functions, the transform will
die off as 1/f n. You can see this by repeatedly using the formula for the transform of a
derivative until you reach delta functions, whose transforms are asymptotically constant
in amplitude.

Transform Pairs. Figure 1.7 is a short gallery of Fourier transform pairs.

Example 1.5: Cobbling Together Transforms. In analyzing systems, we often need a
function with certain given properties, but don’t care too much about its exact identity, as
long as it is easy to work with and we don’t have to work too hard to find its transform.
For example, we might need a function with a flat top, decreasing smoothly to zero on

s

s

s

x

x

rect(x)

x

II(x)

sx

II(x)

sinc(s)

cos(πs)

exp(−πx2) exp(−πs2)

isin(πs)

Figure 1.7. A pictorial gallery of Fourier transform pairs. Bracewell has lots more.
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both sides, to represent a time gating operation of width tg followed by a filter. The
gross behavior of the operation does not depend strongly on minor departures from ideal
filtering, so it is reasonable to model this function as the convolution of rect(t/tg) with
a Gaussian:

m(t) = exp[−π(t/τ )2] ∗ rect

[
t

tg

]
, (1.44)

whose transform is
M(f ) = τ tge

−π(f τ)2
sinc(f tg). (1.45)

One can write m(t) as the difference of two error functions, but the nice algebraic
properties of convolutions make the decomposed form (1.44) more useful.

1.3.9 Fourier Imaging

We have seen that a lens performs a Fourier transform between its front and back focal
planes, and that in k-space, the propagation operator involves Fourier decomposing the
beam, phase shifting the components, and reassembling them. There is thus a deep
connection between the imaging action of lenses and Fourier transforms. Calculating
the behavior of an imaging system is a matter of constructing an integral operator for
the system by cascading a series of lenses and free-space propagators, then simplifying.
Nobody actually does it that way, because it can easily run to 20th-order integrals. In a
system without aberrations, we can just use ray optics to get the imaging properties, such
as the focal position and numerical aperture, and then use at most three double integrals
to get the actual fields, as in Example 1.4.

Most of the time, we are discussing imaging of objects that are not self-luminous,
so that they must be externally illuminated. Usually, we accept the restriction to thin
objects —ones where multiple scattering can be ignored and the surface does not go in
and out of focus with lateral position. The reasoning goes as follows: we assume that our
incoming light has some simple form Ein(x, y), such as a plane wave. We imagine that
this plane wave encounters a surface that has an amplitude reflection coefficient ρ(x, y),
which may depend on position, but not on the angle of incidence, so that the outgoing
wave is

Eout(x, y) = Ein(x, y)ρ(x, y), (1.46)

and then we apply the Huyghens integral to Eout.
Small changes in height (within the depth of focus) are modeled as changes in the

phase of the reflection coefficient. Since different plane wave components have different
values of kz, we apply a weighted average of the kz values over the pupil function. The
breakdown of this procedure due to the differences in kzz becoming comparable to a
cycle gives rise to the limits of the depth of focus of the beam. We ignore the possibility
that the height of the surface might be multiple-valued (e.g., a cliff or overhang) and any
geometric shadowing.

A very convenient feature of this model, the one that gives it its name, is the simple
way we can predict the angular spectrum of the scattered light from the Fourier transform
of the sample’s complex reflection ρ(x, y). The outgoing wave in real space is the product
ρEin, so in Fourier space,

Eout(u, v) = Ein(u, v) ∗ P (u, v) (1.47)
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where ρ(x/λ, y/λ) ⊃ P . The real power of this is that Eout(u, v) is also the angular
spectrum of the outgoing field, so that we can predict the scattering behavior of a thin
sample with any illumination we like.

If Ein is a plane wave, Ein(x, y) = exp[i2π(uinx + viny)/λ], then its transform is
very simple: Ein(u, v) = δ(u − uin)δ(v − vin). Convolution with a shifted delta function
performs a shift, so

Eout(u, v) = Ein(u − uin, v − vin). (1.48)

The angular spectrum of Eout is the spatial frequency spectrum of the sample, shifted
by the spatial frequency of the illumination—the spatial frequencies add. In an imaging
system, the spatial frequency cutoff occurs when an incoming wave with the largest
positive u is scattered into the largest negative u the imaging lens can accept.† Since
u2 + v2 ≤ (NA)2, if the NAs of the illumination and the collecting lenses are equal, the
highest spatial frequency an imaging system can accept is 2 NA/λ.

The conceptual deficiencies of this procedure are considerable, even with thin objects.
It works fine for large holes punched in a thin plane screen, but for more complicated
objects, such as transparent screens containing phase objects (e.g., microscope slides),
screens with small features, or nearly anything viewed in reflection, the approximations
become somewhat scalier. The conceptual problem arises right at the beginning, when
we assume that we know a priori the outgoing field distributions at the boundary.

There is no real material that, even when uniform, really has reflection or transmis-
sion coefficients independent of angle and polarization at optical frequencies, and the
situation is only made worse by material nonuniformity and topography. This and the
scalar approximation are the most problematic assumptions of Fourier optics; parax-
ial propagation is a convenience in calculations and not a fundamental limitation (see
Section 9.3.5).

1.3.10 The Pupil

As anyone who has ever been frustrated by an out-of-focus movie knows, the image
plane of an optical system is rather special and easily missed. Some other special places
in an optical system are less well known. The most important of these is the pupil ,
which is an image of the aperture stop. If we look into the optical system from the
object side, we see the entrance pupil . Looking from the image side, we see the exit
pupil . By moving from side to side, we can locate the position in space of a pupil
by how it moves in response. (This is the same way we tell how far away anything
appears.)

There’s nothing magical about pupils, although they are talked about in terms that
may confuse newcomers—they really are just places in an optical system, which can be
imaged where you want them and otherwise manipulated just as a focal plane can.

The aperture stop is usually put at the Fourier transform plane, to avoid nonuniform
vignetting. The field distribution at a pupil then is the Fourier transform of that at the
object or an image, appropriately scaled and with an obliquity correction. Equivalently,
the field function at the transform plane is a scaled replica of the far-field diffraction

†There’s nothing special about the choice of axes, so the limiting resolution might be different along y or at
other angles.
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pattern of the object, as derived using the Huyghens integral (1.20). In an imaging
system, the propagator is a convolution in space, so the imaging properties are controlled
by the illumination pattern and detector sensitivity function at the transform plane. Since
the transform plane is usually at the pupil, these are loosely called pupil functions , and are
two-dimensional versions of the complex frequency response of an electronic system.†

(They are still called pupil functions even when the transform plane is not at the pupil.
Laziness is the father of invention.)

Aside: Perspective. The center of the entrance pupil (or really, of the Fourier transform
plane in the object space) is the center of perspective. If you’re trying to make a panoramic
view using an image mosaic, you’ll want both foreground and background objects to have
the same perspective—because otherwise, the positions of the joints between mosaic
elements would have to be different depending on the distance. You can accomplish this
by rotating the camera around its center of perspective.

1.3.11 Connecting Wave and Ray Optics: ABCD Matrices

This section could be subtitled “How to combine optical elements without drowning in
multiple integrals.” In an optical system consisting of lenses, mirrors, and free-space
propagation, it is possible to model the paraxial imaging properties by means of very
simple transformation matrices, one for each element or air space, which are multiplied
together to form a combined operator that models the entire system. Here we shall discuss
the 2 × 2 case, appropriate for axially symmetric systems or for systems of cylindrical
lenses whose axes are aligned. Generalization to 4 × 4 matrices is straightforward but
more laborious.

In the small-angle approximation (where sin θ ≈ θ ), a ray at height x above the optical
axis and propagating at an angle θ measured counterclockwise from the optical axis is
represented by a column vector (x, θ)T, and it transforms as

[
x

θ

]
=

[
a b

c d

] [
x ′

θ ′

]
, (1.49)

where the matrix abcd is the ordered product of the ABCD matrices of the individual
elements. Let’s do an example to see how this works.

Example 1.6: Deriving the ABCD Matrix for a Thin Lens. In the ray tracing section,
we saw that a thin lens brings all rays entering parallel to the axis and that a ray passing
through the center of the lens is undeviated. We can use these facts to derive the ABCD
matrix for a thin lens, as shown in Figure 1.8. The undeviated central ray, (0, θ)T is
unchanged, so element B must be zero and element D must be 1. The ray parallel to the
axis, (1, 0)T, remains at the same height immediately following the lens, so that element

†The analogy depends on the Debye approximation, so the exponential in/exponential out property of linear
systems doesn’t hold as accurately in Fourier optics as in most circuits, but it’s still pretty good if the Fresnel
number is high.
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Figure 1.8. Action of a lens, for deriving its ABCD matrix.

TABLE 1.2. ABCD Matrices for Common Operations

Free-space propagation through distance z

[
1 z

0 1

]

Thin lens of focal length f

[
1 0

−1/f 1

]

Magnification by M

[
M 0

0 1/M

]

Fourier transform

[
0 −1

1 0

]

A is also 1. However, it is bent so as to cross the axis at f , so element C must be −1/f .
Thus a thin lens has an ABCD matrix given in Table 1.2.

Optical layouts conventionally have light going from left to right, whereas matrix
multiplication goes right to left. Thus we have to write the matrix product backwards:
the ABCD matrix of the first element encountered by the beam goes at the right, with
subsequent operations left-multiplying it in succession, as in Figure 1.9.

It is straightforward to extend this formalism to small deviations from given angles
of incidence, for example, oblique reflection from a spherical mirror; when doing that,
however, excellent drawings are required to avoid confusion about just what is going on.

Example 1.7: Portraiture Calculation Using ABCD Matrices. Example 1.3 demon-
strated how to find elementary imaging parameters such as magnification and focal
length rapidly using the thin-lens rules on rays passing through the center of the lens
and rays passing through the focus. Let us follow the path of a more general paraxial
ray using ABCD matrices. We note first that the light from the object propagates through
do = 1300 mm of free space, then a thin lens of focal length f = 73.5 mm, and finally
another free-space propagation through a distance di . The column vector representing the
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f

di

do

Object Image

h

(h, 0)T

(h, −h/do)T

(−h di/do, −h/f)T

(−h di/do, −h/do)T

(0, −h/do)T

(0, −h/f)T

(h, −h/f)T

1 do

0 1

1 di

0 1

1 0

−1/f 1

1−di/f do + di −dodi/f

−1/f 1 −do/f
=

−di/do

−1/f − do/di

=
0 −M

−1/f −1/M
=

0

Figure 1.9. Imaging geometry with ray vectors and ABCD matrices: rays (h, θ)T are successively
multiplied by ABCD matrices corresponding to free space do, a lens of focal length f , and free
space di . For the imaging condition, 1/do + 1/di = 1/f , which makes the last three equalities
true.

ray must be acted on by the matrix operators (written in reverse order as already noted):

[
x ′

θ ′

]
=

[
1 di

0 1

][
1 0

−1/f 1

] [
1 do

0 1

] [
x

θ

]

=
[

1 − di/f do + di − dido/f

−1/f 1 − do/f

]⎡
⎣ x

θ

⎤
⎦ (1.50)

=
[

1 − 0.0136di 1300 + 18.68di

−0.0136 −16.68

][
x

θ

]
.

Comparing the algebraic form of the matrix product in (1.50) to the prototypes in
Table 1.2, it is apparent that the combination of a lens plus free space on either side
behaves as a Fourier transformer (scaled by a magnification of −f ) when do = di = f .
Furthermore, the imaging condition demands that all rays leaving an object point coincide
at the same image point; this means that b, the (1, 2) element of the matrix, must be
zero, which reproduces (1.27). These sorts of considerations are very valuable for more
complex systems, where the thin-lens ray picture is cumbersome.
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Useful as these are, matrix multiplication is not sufficiently powerful to model such
elementary operations as the addition of a thin prism of angle φ and index n, which
requires adding an angle �θ = (n − 1)φ. These matrix operators ignore wave effects
and are completely unable to cope with absorbing or partially scattering objects such as
beamsplitters and diffraction gratings. While these can of course be put in by hand, a
more general operator algebra is desirable, which would take account of the wave nature
of the light and model light beams more faithfully.

Nazarathy and Shamir† have produced a suitable operator algebra for Fourier optics.
The key simplification in use is that they have published a multiplication table for these
operators, which allows easy algebraic simplification of what are otherwise horrible
high order multiple integrals. These transformations are in principle easy to automate
and could be packaged as an add-on to symbolic math packages. This algebra takes
advantage of the fact that commonly encountered objects such as lenses, gratings, mirrors,
prisms, and transparencies can be modeled as operator multiplication in the complex field
representation, which (as we have seen earlier) many cannot be so modeled in the ray
representation.

Another way of coming at this is to use ABCD matrices for the operator algebra,
and then convert the final result to a Huyghens integral. In the paraxial picture, an
axisymmetric, unaberrated, unvignetted optical system consisting of lenses and free space
can be expressed as a single ABCD matrix, and any ABCD matrix with d �= 0 can be
decomposed into a magnification followed by a lens followed by free space:

[
a b

c d

]
=

[
1 z

0 1

] [
1 0

−1/f 1

] [
M 0

0 1/M

]
, (1.51)

where

M = 1

d
, z = b

d
, f = − 1

cd
. (1.52)

Element a does not appear because that degree of freedom is used up to ensure that
the determinant of the matrix is unity, as required by the conservation of phase space
volume. A magnification by M corresponds to the integral operator

�(x, y) = 1

M

∫∫
dx ′dy ′�(x ′, y ′)δ

[
x ′ − x

M

]
δ
[
y ′ − y

M

]
. (1.53)

Identifying these matrix operators with the corresponding paraxial integral operators
(1.20), (1.30), and (1.53), we can construct the equivalent integral operator to a general
ABCD matrix with d �= 0:

�(x, y) = −i

zMλ

∫∫
dx ′dy ′�

[
x ′

M
,

y ′

M

]
exp

[
iπ

λ

(
(x − x ′)2 + (y − y ′)2

z
+ x ′2 + y ′2

f

)]
.

(1.54)

†M. Nazarathy and J. Shamir, First-order optics—a canonical operator representing lossless systems. J. Opt.
Soc. Am . 72, 356–364 (March 1982).
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This transformation is simple, and it can save a lot of ugly integrals. The special case
where d = 0 corresponds to a lens, followed by a scaled Fourier transform:

[
a b

−1/b 0

]
=

[
M 0

0 1/M

] [
0 −1

1 0

] [
1 0

−1/f 1

]
. (1.55)

The constraint that c = −1/b keeps the determinant 1, as before. Here the parameters
are M = −b, f = −b/a so that the equivalent integral in the wave picture is

�(x, y) = −iM

λ

∫∫
dx ′dy ′�(Mx ′, My ′) exp

[
iπM

λ

(
xx ′ + yy ′ + x ′2 + y ′2

f

)]
.

(1.56)

These two equivalences allow wave and ray descriptions of the same optical system to
be freely interchanged, which is very convenient in calculations.

The problem of offsets, both in position and angle, can be dealt with by using the
augmented vectors [x, θ, 1]T and 3 × 3 matrices. A general element producing a trans-
formation ABCD and then adding an offset [�x, �θ ]T is then

⎡
⎢⎣

a b �x

c d �θ

0 0 1

⎤
⎥⎦ . (1.57)

This is especially useful in getting some idea of the allowable tolerances for wedge
angle, tilt, and decentration; a lens of focal length f , decentered by a distance d, adds an
angular offset �θ = d/f . Similarly, a window of thickness t and index n, whose axis is
α degrees off the normal, looks like a free-space propagation of t/n with a spatial offset
of �x = αt(n − 1). In the integral representation, offsets are modeled as convolutions
with shifted δ-functions; a shift of ξ is a convolution with δ(x − ξ).

Aside: Complex ABCD Matrices and Diffraction. Siegman† shows that a Gaussian
amplitude apodization can be modeled using the ABCD matrix for a thin lens with an
imaginary focal length. This isn’t magic, it’s just that a thin lens is a multiplication by an
imaginary parabolic exponential, I (x) = exp[iπx2/(λf )], so a Gaussian of 1/e2 radius
w, A(x) = exp(−x2/w2), might be said mathematically to be a lens of focal length
iπw2/λ.‡ Thus by making the first (rightmost) ABCD matrix a Gaussian aperture,

[
1 0

−iλ/(πw2) 1

]
, (1.58)

you can carry the beam radius right through the ABCD calculation, including converting
it to a Helmholtz integral. This makes it simple to find the beam waist, for instance,
and if you’re building interferometers with very small diameter beams, allows you to
calculate the phase front matching at the beam combiner.

†A. E. Siegman, Lasers . University Science Books, Mill Valley, CA 1986, pp. 786–797.
‡Note that we’re using field amplitudes and not intensity here.
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1.3.12 Source Angular Distribution: Isotropic and Lambertian Sources

A light source (such as the Sun) whose output is independent of direction is said to be
isotropic; there’s no special direction. Light inside an integrating sphere (Section 5.7.7)
is also isotropically distributed because there’s no special direction. When there’s a
surface involved, though, things change, on account of obliquity. If you shine a light on
a perfectly matte-finished surface, its surface looks equally bright no matter what angle
you look from. If you tilt it, it gets foreshortened by the perspective, but if you looked
at it from a distance through a drinking straw, you wouldn’t be able to tell from its
brightness whether it was tilted or not. A surface that passes the drinking-straw test is
said to be Lambertian .

If you replace your eye with a photodiode, each drinking-straw patch of surface
contributes the same amount of photocurrent. As the angle increases, the patches get
longer like evening shadows, so cos θ times fewer patches will fit on the surface of the
source. Another way to put this is that the total projected area of the source goes down
like the cosine of the angle of incidence, so the detected photocurrent will be multiplied
by the obliquity factor cos θ . Obliquity factors come in just about everywhere—often
disguised as n̂ · ∇ψ —and sometimes they seem mysterious, but all that’s really going
on is that shadows get longer in the evening.

1.3.13 Solid Angle

Waves expand as they propagate, but as the ray model predicts, a given wave’s angular
spread is asymptotically constant as R → ∞. A plane angle is measured between two
straight lines, so its measure doesn’t depend on how far out you go. A cone has the
same property in three dimensions, leading to a natural generalization, solid angle. The
measure of a plane angle is the arc length cut out by the angle on the unit circle, so we
define the solid angle of a cone to be the area it cuts out of the unit sphere. (Note that
the cone need not be circular in cross section, or convex in outline, or even be a single
glob—it just needs to have a shape that’s independent of distance from the vertex.) This
area is of course

� =
∫∫

cone
sin θ dθ dφ, (1.59)

where θ is the polar angle (measured from the surface normal) and φ is the azimuth
(angle in the horizon plane). In optics, we’re normally calculating the flux in or out of a
surface, so we have to worry about obliquity. Once again, obliquity is nothing deep or
difficult to understand—when a beam of light hits a surface at an angle θ off normal, the
illuminated patch is stretched out by sec θ , just as afternoon shadows of vertical objects
lengthen as tan θ . Mathematically, the outward flux through each bit of surface dA is
P · dA. It simplifies matters if we fold the obliquity into the quoted solid angle, so we
usually work with the projected solid angle �′, where

�′ =
∫∫

cone
sin θ cos θ dθ dφ. (1.60)

To crispen this idea up, consider a circular angular pattern of half-angle ψ around the
surface normal, that is, one that covers the angular disc θ < ψ , 0 ≤ φ < 2π . Its solid
angle is � = 2π(1 − cos ψ) = π(ψ2 − ψ4/12 + · · ·) and its projected solid angle is
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�′ = πsin2ψ = π(ψ2 − ψ4/3 + · · ·). Conveniently, if n = 1 then �′ = π(NA)2, which
is a useful and easily remembered rule.

A Lambertian surface (one that has no preferred direction) emits into π steradians (the
projected solid angle of a hemisphere). Optics folk tend to be loose about the distinction
between � and �′, but it isn’t hard to keep straight—if the emitter or receiver is a
surface, there’s obliquity to worry about, so use �′; if not (e.g., as in gas spectroscopy)
use �. In the usual low-NA situations, the two are equivalent for practical purposes.
There are two cautions to keep in mind: first, be careful if the surface isn’t flat—it’s
the angle between the local surface normal and the light rays that matters. Second, both
solid angle and obliquity are far-field concepts, so near a focus we have to use the plane
wave decomposition of the field to get the right answer.

1.3.14 Étendue: How Much Light Can I Get?

The first thing that an optical system has to be able to do is transmit light. Apart from
solar telescopes, electro-optical systems are limited at least some of the time by how
much light they can emit, collect, or detect. Figuring out how much you have and how
much more you can get is the aim of radiometry. In Section 1.3.11, we saw that a given
light beam can be focused into a smaller area, but only at the price of increasing its
numerical aperture. Since sin θ cannot exceed unity, a given beam cannot be focused
arbitrarily tightly. Some beams can be focused better than others; for example, a beam
from an incandescent bulb cannot be focused as tightly as one from a laser. The difference
is in their degree of spatial coherence.

The spatial coherence of a beam is a measure of how well its different components
(Fourier or real-space) stay in phase with each other. This is revealed by how deep
the interference fringes are when different components are made to interfere with one
another, as in Young’s slit experiment (there’s more on this in Section 2.5.4). The theory
of imaging with partially coherent light is discussed by Goodman, Born and Wolf, and
others and is beyond the scope of this book. As a practical matter, we usually want spatial
coherence low enough to eliminate fringes in a full-field (i.e., not scanning) imaging
system and high enough not to limit our ability to focus it on our area of interest. The
coherence area of an optical field gives an idea of how far apart the slits can be and still
have interference.

Conversely, one important attribute of an optical system is how well it can cope with
low coherence sources. To transmit the most light from such sources, the system needs
both a large area and a large angular acceptance. The figure of merit for this attribute is
called the étendue and is given by

E = n2A�′, (1.61)

where A is the clear area and n is the refractive index of the medium in which the
projected solid angle �′ is measured. It’s usually just written A�′, which assumes that
n = 1, but we’ll carry the n along explicitly. For on-axis circular pupils (the usual
case), E = n2Aπ(NA)2. This quantity is invariant under magnification, which increases A

while decreasing �′ proportionately, and under refraction. Étendue is a purely geometric
property, which explicitly neglects the transmittance of the optical system. This is fine
as long as this is reasonably uniform up to the edges of A and �′. It is less useful
with systems whose transmittance is a strong function of angle, high-index dielectric
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interfaces. The useful étendue is not preserved on passing through a succession of such
elements, so the transmittance must be expressed as a function of position and angle,
and carried along mathematically. Étendue is related to the statistical mechanics notion
of phase space volume, and the conservation of étendue is the optical analogue of the
conservation of phase space volume by adiabatic processes. (The ABCD matrices of
Section 1.3.11 are all unitary, which is the paraxial version of this.)

With a given low coherence source, any two lossless optical systems with the same
étendue will pass the same total optical power, if the source is matched to their charac-
teristics with an appropriate magnification. Any mismatch will reduce the power actually
transmitted. A corollary is that the étendue of a system stays the same if you send the
light back through the other way. The étendue of an optical system cannot be larger than
that of its poorest component, and can easily be worse due to mismatch. This is worth
keeping in mind, for example, in the choice of polarizing prisms; types relying on total
internal reflection (such as the Glan–Taylor) have much smaller acceptance angles than
those relying on double refraction (such as Wollastons), so a bigger prism can have a
smaller étendue.

Example 1.8: Étendue and Mismatch. Consider coupling sunlight into a 100×, 0.95
NA microscope objective (f = 2 mm, FOV diameter = 100 μm). If we shine
sunlight (9 mrad angular diameter) in the pointy end, we get an effective n2A�′ of
π (0.005 cm)2[π(4.5 mrad)2] = 5 × 10−9 cm2 · sr. If we turn it around, the étendue is
unaltered, but we get the 6 mm diameter back element instead. The angular acceptance
on the exit pupil is a few degrees, so we don’t lose anything, and the effective n2A�′
goes up by a factor of 3600 to 1.8 × 10−5 cm2 · sr—and the source is still mismatched.

1.3.15 What Is ‘‘Resolution’’?

The classical definitions of Rayleigh and Sparrow specify that two point-like objects
of equal brightness are resolved if their images are separated by a defined multiple of
the diameters of their diffraction discs. This definition is reasonably adequate for photo-
graphic detection, where the photon statistics do not significantly reduce the precision of
the measurement.

With modern detectors, it is impossible to specify the resolution of an optical system
when signal-to-noise considerations are absent. For example, for a two-point object, one
can model the image as the sum of two Airy patterns, whose locations and intensities are
parameters. By fitting the model to the observed data, the positions and intensities of the
two sources can be extracted. With a high enough signal-to-noise ratio and a sufficiently
accurate knowledge of the exact imaging characteristics of our systems, there is no clear
limit to the two-point resolution of an optical system, as defined in this way. Optical
lithography is another example where the “resolution limit” has repeatedly turned out not
to be where it was expected, largely on account of the very high contrast of photoresist
and, recently, phase shift masks and computational mask design.

What we really mean by resolution is the ability to look at an object and see what is
there, in an unambiguous way that does not depend on our choice of model. This model-
independent imaging property does degrade roughly in line with Rayleigh and Sparrow,
but it is a much more complicated notion than simple two-point resolution. Most of the
disagreement surrounding the subject of resolution is rooted here.
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1.4 DETECTION

To calculate what an instrument will detect, we need to know how to model the operation
of a photodetector. Fortunately, this is relatively simple to do, providing that the detector
is reasonably uniform across its sensitive area. From a physical point of view, all detectors
convert optical energy into electrical energy, and do it in a square-law fashion—the
electrical power is proportional to the square of the optical power, with a short time
average through the detector’s impulse response. Throughout the rest of this chapter, we
will normalize the scalar field function ψ so that the (paraxial) power function ψψ∗ has
units of watts per square meter.

A general square-law detector with an input beam ψ(x) and a responsivity R will
produce an output signal S given by

S(t) = R
∫∫

〈ψ(x, t)∗n̂ · ∇ψ(x)/k〉d2x (1.62)

which for small NA is

S(t) = R
∫∫

〈|ψ(x), t)|2〉d2x, (1.63)

where angle brackets denote time averaging through the temporal response of the detector
and the integral is over the active surface of the detector. The gradient ∇ψ is parallel
to the local direction of propagation (see Section 9.2.3) and the dot product supplies the
obliquity factor , as we saw in Section 1.3.13. If the detector is seriously nonuniform, the
responsivity becomes a function of x, so R(x) must be put under the integral sign.

The square-law behavior of detectors has many powerful consequences. The first is
that all phase information is lost; if we want to see phase variations, we must convert
them to amplitude variations before the light is detected. Furthermore, provided that no
light is lost in the intervening optical components (watching vignetting especially), the
detector can in principle be placed anywhere in the receiving part of the optical system,
because the time averaged power will be the same at all positions by conservation of
energy. This has great practical importance, because we may need to use a small detector
in one situation, to minimize dark current or ambient light sensitivity, and a large one in
another, to prevent saturation and attendant nonlinearity due to high peak power levels.
The small detector can be put near focus and the large one far away. This freedom applies
mathematically as well; provided once again that no additional vignetting occurs, (1.63)
can be applied at an image, a pupil, or anywhere convenient.† This becomes very useful
in interferometers.

As in all interactions of light with matter, the surface properties of the detector and their
variation with position, polarization, and angle of incidence are important. Fortunately,
detector manufacturers endeavor to make their products as easy to use as possible, so
that the worst nonuniformities are eliminated, and in addition, by the time the light gets
to the detector, its numerical aperture is usually reduced sufficiently that obliquity factors
and dependence on overall polarization are not too serious. As usual, they can be put
in by hand if needed, so we’ll continue to use the scalar model and neglect these other
effects.

There are a fair number of head-scratchers associated with square-law detection. We’ll
talk more about it in Section 3.3.

†This is exact and not a Debye approximation.
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1.5 COHERENT DETECTION

1.5.1 Interference

An interferometer is nothing more than a device that overlaps two beams on one detector,
coherently , rather than combining the resulting photocurrents afterwards, incoherently .
Coherent addition allows optical phase shifts between the beams to give rise to signal
changes. In many applications the two beams are different in strength and the weaker one
carries the signal information. Consequently, they are often referred to as the signal and
local oscillator (LO) beams, by analogy with superheterodyne radios. Coherent detection
gives the optical fields the chance to add and subtract before the square law is applied,
so that the resulting photocurrent is

i(t) = R
∫∫

det
|ψLO(x)e−i(ωLOt+φLO(x, t)) + ψS(x)e−i(ωS t+φS(x, t))|2dA

= iLO + iS + iAC,

(1.64)

assuming that the beams are polarized identically (if there are signal beam components in
the orthogonal polarization state, they add in intensity, or equivalently in i). The individ-
ual
terms are

iLO = R
∫∫

det
d2x ψLOψ∗

LO, (1.65)

iS = R
∫∫

det
d2x ψSψ

∗
S , (1.66)

and

iAC = 2R Re

{∫∫
det

d2x ψLOψ∗
S

}

= 2R Re

{
exp(−i �ωt)

∫∫
det

|ψLO(x)||ψs(x)| exp(i �φ(x t))dA

}
.

(1.67)

The first two terms, iLO and iS , are the photocurrents the two beams would generate if
each were alone. The remaining portion is the interference term . It contains information
about the relative phases of the optical beams as a function of position. The interference
term can be positive or negative, and if the two beams are at different optical frequencies
it will be an AC disturbance at their difference frequency �ω. If the two beams are
superposed exactly and have the same shape (i.e., the same relative intensity distributions,
focus, and aberrations), ψLO and ψS differ only by a common factor, so the interference
term becomes

iAC = 2
√

iLOiS cos(�ωt + φ). (1.68)

Aside: Fringe Visibility. Looking at the light intensity on the detector (or on a sheet of
paper), we can see a pattern of light and dark fringes if the light is sufficiently coherent.
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These fringes are not necessarily nice looking. For laser beams of equal strength, they
will go from twice the average intensity to zero; for less coherent sources, the fringes
will be a fainter modulation on a constant background. The contrast of the fringes is
expressed by their visibility V ,

V = Imax − Imin

Imax + Imin
, (1.69)

which we’ll come back to in Section 2.5.4 in the context of coherence theory.

1.5.2 Coherent Detection and Shot Noise: The Rule of One

Application of coherent detection to improve the signal-to-noise ratio is covered in
Section 3.11.7. There are three key observations to be made here: coherent detection
is extremely selective, preserves phase information, and provides noiseless signal ampli-
fication.† These three properties give it its power. If the two beams are exactly in phase
across the entire detector, the amplitude of the interference term is twice the square root
of the product of the two DC terms:

iAC(peak) = 2
√

iLOiS. (1.70)

If iS is much weaker than iLO, this effectively represents a large amplification of ψS .
The amplification is noiseless—the LO shot noise is

iNshot =
√

2eiLO, (1.71)

which is exactly the rms value of iAC when iS is 1 electron per second (the noise current
is down by

√
2 due to the ensemble average over 2π phase). Thus with η = 1, a signal

beam of 1 photon/s is detectable at 1σ confidence in 1 s in a 1 Hz bandwidth, which is
a remarkable result—bright-field measurements can be made to the same sensitivity as
dark-field measurements.

This leads us to formulate the Shot Noise Rule of One: One coherently added photon
per One second gives an AC measurement with One sigma confidence in a One hertz
bandwidth. (See Sections 1.8.1 and 13.1 for more on AC versus DC measurements.)

Aside: Photons Considered Harmful. Thinking in terms of photons is useful in noise
calculations but pernicious almost everywhere else—see Section 3.3.2.

1.5.3 Spatial Selectivity of Coherent Detection

If the phase relationship is not constant across the detector, fringes will form, so the
product ELOE∗

s will have positive and negative regions; this will reduce the magnitude
of the interference term. As the phase errors increase, the interference term will be
reduced more and more, until ultimately it averages out to nearly zero. This means that
a coherent detector exhibits gain only for signal beams that are closely matched to the
LO beam, giving the effect of a matched spatial filter plus a noiseless amplifier.

†A. V. Jelalian, Laser Radar Systems . Artech House, Boston, 1992, pp. 33–41.
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Another way to look at this effect is to notionally put the detector at the Fourier trans-
form plane, where the two initially uniform beams are transformed into focused spots.
A phase error that grows linearly across the beam (equally spaced fringes) corresponds
to an angular error, which in the transform plane means that the two focused spots are
not concentric. As the phase slope increases, the spots move apart, so that their over-
lap is greatly reduced. Ultimately, they are entirely separate and the interference term
drops to zero. Mathematically these two are equivalent, but physically they generally
are not.

If the detector is placed at a focused spot, the local photocurrent density can be so
large as to lead to pronounced nonlinearity; this is much less of a problem when the
beams fill a substantial fraction of the detector area. On the other hand, two spots that
do not overlap will not give rise to any interference term whatsoever, which is not in
general true of two broad beams exhibiting lots of interference fringes; even if the broad
beams are mathematically orthogonal, small variations in sensitivity across the detector
will prevent their interference pattern from averaging to exactly zero.

It is hard to say exactly how serious this effect is in a given case, as it depends strongly
on the details of the sensitivity variations. Sharp, strong variations (e.g., vignetting) will
give rise to the largest effects, while a smooth center-to-edge variation may do nothing at
all noticeable. If the application requires >40 dB (electrical) selectivity between beams at
different angles, consider changing focus to separate them laterally, or relying on baffles
or spatial filters as well as fringe averaging.

1.6 INTERFEROMETERS

1.6.1 Two-Beam Interferometers

Two-beam interferometers implement the scheme of Section 1.5 in the simplest way: by
splitting the beam into two with a partially reflecting mirror, running the two through
different paths, and recombining them. Figure 1.10 shows the heavy lifters of the inter-
ferometer world, the Michelson and Mach–Zehnder. Mach–Zehnders are more common
in technological applications, because the light goes in only one direction in each arm,
so it’s easier to prevent back-reflections into the laser. On the other hand, a Michelson
is the right choice when robust alignment is needed, because one or both mirrors can be
replaced by corner cubes (don’t tell anyone, but if the cubes are offset from the beam axis,

Mirror
Compensator

(Optional)

Beam Splitter

Mirror

Output 1

Input

Output 2 

Output 1

Output
2

Input

(a) (b)

Figure 1.10. Workhorse two-beam interferometers: (a) Michelson and (b) Mach–Zehnder. The
compensator plate in (a) more or less eliminates the effects of dispersion, which will smear out
the white-light fringes otherwise, and also reduces the effect of finite aperture.
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that’s really a skinny Mach–Zehnder). Example 1.12 shows an intensive use of a corner
cube type interferometer. Michelsons are a bit easier to align, because autocollimation
(sending the beam back on itself) is an easy criterion to use.

An interferometer is intrinsically a four-port device; light is steered between the output
ports by interference. If the two beams are perfectly coherent with one another, the output
powers PO+ and PO− from the two output ports are

PO± = P1 + P2 ± 2
√

P1P2 cos φ, (1.72)

where P1 and P2 are the split beam powers and φ is the phase angle between them. The
sign difference comes from beam 1 being reflected and beam 2 transmitted going into
port + and vice versa for port −.

1.6.2 Multiple-Beam Interferometers: Fabry–Perots

If instead of splitting the light into multiple paths, we just take two partially reflecting
mirrors and put them next to each other, parallel, we get a Fabry–Perot (F-P) interfer-
ometer. The multiple reflections give Fabry–Perots much greater selectivity for a given
size, at the expense of far greater vulnerability to mirror errors and absorption. We’ll
go through the math in Section 5.4, but the upshot is that a plane-mirror F-P whose
mirrors have reflectance R and are spaced d apart in a medium of index n has a total
transmission

TF -P = 1

1 + 4R

(1 − R)2
sin2(nk0d cos θ)

, (1.73)

where θ is the angle of incidence of the beam on the mirrors (inside the medium). This
obviously consists of spikes at multiples of �ν = 1/(2nd), the free spectral range (FSR).
The FWHM of the peaks is FSR/F , where F is the finesse. Although F is nominally
(π

√
R)/(1 − R), it is really a measured quantity, because mirror flatness errors are

usually the limiting factor. If the mirrors have rms error δ in waves, that limits the
finesse to

Fmax < 1/(2δ), (1.74)

which is a pretty serious limitation most of the time—achieving a finesse of 100 requires
mirror accuracy and alignment precision of better than λ/200. Real F-Ps have a peak T

less than 1 (sometimes a lot less), and their total reflectance RF-P is less than 1 − TF-P.
Recently, fabrication precision and coating quality have advanced to the point where
finesse values of 2 × 105 or higher can be obtained, at a price.

Inside a F-P, the field is enhanced a great deal; the easiest way to calculate it is
to notice that the forward and backward propagating fields inside the cavity are nearly
equal, and that the transmitted power has to be T times the forward power. In a perfect
F-P, that means that if Pinc is coming in, the forward power inside is TF-P/(1 − R) · Pinc.

1.6.3 Focused-Beam Resonators

Fabry–Perots can have variable or fixed spacing; a fixed F-P is called an etalon . Etalons
can be tuned over a small range by tipping them, but the finesse drops pretty fast when
you do that since the N th reflections start missing each other completely.
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The highest finesse F-Ps are not plane-mirror devices, but rather more like laser res-
onators; as the finesse goes up, even small amounts of diffraction become an increasing
difficulty. They need careful matching of the incoming wave to the spherical wave cavity
mode, which is a big pain; fortunately, single-mode fiber coupled ones are available—buy
that kind if you possibly can. Otherwise, not only do you face critical matching prob-
lems, but the minor pointing instability of the laser will turn into noise that cannot
easily be removed. Fibers have their problems, but very high finesse focused F-Ps are
much worse.

Aside: Confocal Cavities and Instability. It might seem that the ideal optical resonator
would be a confocal cavity, where the two mirrors’ centers of curvature coincide at the
center of the cavity. This is not so, at least not for lasers. Such a cavity is a portion of
a single sphere, and there is no special direction in a sphere—any direction is as good
as any other, hence a confocal resonator has no stable axis. A tilt of ε radians in one
mirror produces a shift of the resonator axis of δθ ≈ ε[L/(�L)], where L is the distance
between the mirror vertices and �L is the distance between their foci—which goes to ∞
as �L → 0. The NA of the resonant mode depends on how far off confocal the cavity
is—resonant wavefronts will coincide with the cavity mirror surfaces, so NA = 0 for
planar mirrors, NA = 1 for confocal mirrors, and in between, the NA can be backed out
from the equation for R(z) in Table 1.1. (Should �L be positive or negative?)

1.7 PHOTON BUDGETS AND OPERATING SPECIFICATIONS

1.7.1 Basis

Photons are like money: a certain number are needed for the job at hand, and they’re
easier to lose than to gain back. Thus the idea of a budget applies to photons as to
finances, but it is more complicated in that not all photons are useful—as though we
had to budget a mixture of green and purple dollars. A photon budget is an accounting
of where photons come from, where they go, and how many are expected to be left by
the time they are converted to electrons by the detector. Also like the other kind, people
sometimes don’t even expect to be on budget; they settle for “this was the best we could
do, but I’m not sure what was the problem.” In the author’s experience, it is possible to
achieve an SNR within 3 dB of budget almost always, and 1 dB most of the time. Don’t
give up, this theory stuff really works.

On the other hand, the budget must be realistic too. Don’t try to measure anything in
a bandwidth of less than 10 Hz, unless you have lots of cheap graduate students, and
remember that you need a decent signal-to-noise ratio to actually do anything. Sensitivity
limits are frequently given as noise equivalent power (NEP) or noise equivalent temper-
ature difference (NE�T or NETD), meaning the amount of signal you need in order to
have a signal-to-noise ratio of 1, or equivalently a confidence level of 1 σ (68%). Don’t
let this convince you that an SNR of 1 is useful for anything, because it isn’t. Generally
for any reasonable measurement you need an SNR of at least 20 dB—even to do a single
go/no-go test with a reasonable false call probability, you’ll need at least 10 or 15 dB
(3–5 σ ). Tolerable images need at least 20 dB SNR; good ones, about 40 dB. Just how
large an SNR your measurement has to have is a matter of deepest concern, so it should
be one of the first things on the list. Don’t rely on a rule of thumb you don’t understand
fully, including this one. There’s lots more on this topic in Section 13.6.
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Arriving at a photon budget and a set of operational specifications is an iterative
process, as the two are inseparably linked. As the concepts are simple, the subtlety
dwells in the actual execution; we will therefore work some real-life examples. The first
one will be a shot-noise-limited bright-field system; the second, a background-limited
dark-field system, and the third, an astronomical CCD camera. Before we start, you’ll
need to know how to combine noise sources (see Section 13.6.7) and to think in decibels.

Aside: Decibels. One skill every designer needs is effortless facility with decibels.
There are just two things to remember: first, decibels always measure power ratios,
never voltage. G(dB) = 10 log10(P2/P1) (we’ll drop the subscript from now on and use
“ln” for natural log). That formula with a 20 in it is a convenience which applies only
when the impedances are identical, for example, a change in the noise level at a single
test point. If you don’t remember this, you’ll start thinking that a step-up transformer
has gain. Second, you can do quick mental conversions by remembering that a factor of
two is 3 dB (since log10(2) ≈ 0.3010), a factor of 10 is 10 dB, and ± 1 dB is 1.25× or
0.8× (since 100.1 ≈ 1.259). For example, if you’re looking at the output of an amplifier,
and the noise level changes from 10 mV to 77 mV, that’s about an 18 dB change: you
get 80 from 10 by multiplying by 10 and dividing by 1.25 (20 dB − 2 dB, remembering
that dB measure power), or by multiplying by 2 three times (6 + 6 + 6 = 18).

Example 1.9: Photon Budget for a Dual-Beam Absorption Measurement. One way of
compensating for variations in laser output is to use two beams, sending one through
the sample to a detector and the other one directly to a second detector for comparison.
A tunable laser (e.g., Ti:sapphire or diode) provides the light. The desired output is the
ratio of the instantaneous intensities of the two beams, uncontaminated by laser noise,
drift, and artifacts due to etalon fringes or atmospheric absorption. For small absorptions,
the beams can be adjusted to the same strength, and the ratio approximated by their
difference divided by a calibration value of average intensity,

ε = nsig(λ, t)

ncomp(λ, t)
− 1 ≈ nsig(λ, t) − ncomp(λ, t)

〈ncomp(λ)〉 , (1.75)

where nsig and ncomp are the photon flux (s−1) in the beams. The total electrical power
in the signal part is

Psig = [ηe(nsig − ncomp)]
2RL. (1.76)

In the absence of other noise sources, shot noise will set the noise floor:

iNshot = e

√
2η(ncomp + nsig). (1.77)

For 1 mW per beam at 800 nm and η = 1, this amounts to a dynamic range (largest
electrical signal power/noise electrical power) of 150 dB in 1 Hz, or a 1σ absorption of
3 parts in 108. Real spectrometers based on simple subtraction are not this good, due
primarily to laser noise and etalon fringes. Laser noise comes in two flavors, intensity
and frequency; it’s treated in Section 2.13.

Laser noise cancelers use subtraction to eliminate intensity noise and actually reach
this shot noise measurement limit (see Sections 10.8.6 and 18.6.3). When frequency
noise is a problem (e.g., in high resolution spectroscopy) we have to stabilize the laser.
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Frequency noise also couples with the variations in the instrument’s T versus λ to
produce differential intensity noise, which in general cannot be canceled well. If the
instrument’s optical transmittance is T and the laser has a (one-sided) FM power spectrum
S(fm) (which we assume is confined to frequencies small compared to the scale of T ’s
variation), FM-AM conversion will contribute rms current noise iNfa:

iNfa(f ) = nηeS(f )
dT

dν
. (1.78)

If this noise source is made small, and the absorption can be externally modulated,
for example, by making the sample a molecular beam and chopping it mechanically,
the shot noise sensitivity limit can be reached fairly routinely. Note that this is not the
same as a measurement accuracy of this order; any variations in T or drifts in calibration
will result in a multiplicative error, which, while it goes to zero at zero signal, usually
dominates when signals are strong.

Example 1.10: Photon Budget for a Dark-Field Light Scattering System. Many sys-
tems (e.g., laser Doppler anemometers) detect small amounts of light scattered from
objects near the waist of a beam. Consider a Gaussian beam with P = 0.5 mW and
0.002 NA at 633 nm. From Table 1.1, the 3 dB beam radius at the waist is 70 μm, and the
central intensity is 2Pπ(NA)2/λ2 = 3.1 × 104 W/m2, which is 1.0 × 1023 photons/m2/s.
A sufficiently small particle behaves as a dipole scatterer, so that the scattered light
intensity is zero along the polarization axis, and goes as the sine squared of the polar
angle θ . It will thus scatter light into 2π steradians, so if the total scattering cross section
of the particle is σtot, the averaged scattered flux through a solid angle � (placed near the
maximum) will be F = 1.0 × 1023σtot�/(2π). (Larger particles exhibit significant angu-
lar structure in their scattering behavior, with a very pronounced lobe near the forward
direction.) A 1 cm diameter circular detector at a distance of 5 cm from the beam waist
will subtend a projected solid angle of �′ = π(NA)2 = π(0.5/5)2 ≈ 0.03. A particle
crossing the beam waist will thus result in N = 5 × 1021σtot photons/s.

If the detector is an AR-coated photodiode (η ≈ 0.9) with a load resistor RL = 10 M�,
then in a time t (bandwidth 1/(2t) Hz), the 1 Hz rms Johnson noise current (4kT B/R)1/2

is (2kT /107)1/2, which is 0.029 pA or 1.8 × 105 electrons/s (which isn’t too good).
From Section 13.6.15, we know that in order to achieve a false count rate R of 1 in

every 106 measurement times, we must set our threshold at approximately 5.1 times the
rms amplitude of the additive Gaussian noise (assuming that no other noise source is
present). Thus a particle should be detectable in a time t if σtot exceeds

σmin = 1.8 × 105

5 × 1021

(5.1)

η
√

t
= 1.8 × 10−16

η
√

t
, (1.79)

where η is the quantum efficiency. A particle moving at 1 m/s will cross the 140 μm
3-dB diameter of this beam in 140 μs, so to be detectable it will need a scattering cross
section of at least 1.6 × 10−14 m2, corresponding to a polystyrene latex (PSL) sphere
(n = 1.51) of about 0.2 μm diameter.

Now let’s sanity-check our assumptions. For the circuit to respond this fast, the time
constant CdetRL must be shorter than 100 μs or so, which limits the detector capacitance
to 10 pF, an unattainable value for such a large detector. Even fast detectors are generally
limited to capacitances of 50 pF/cm2, so assuming the detector capacitance is actually



1.7 PHOTON BUDGETS AND OPERATING SPECIFICATIONS 41

100 pF, we cannot measure pulses faster than 1 to 2 ms with our system as assumed. There
are circuit tricks that will help considerably (by as much as 600×, see Section 18.4.4),
but for now we’ll work within this limit. If we can accept this speed limitation, and
the accompanying ∼10× decrease in volumetric sampling rate, we can trade it in for
increased sensitivity; a particle whose transit time is 2 ms can be detected at σmin =
4 × 10−15 m2. If the particle is much slower than this, its signal will start to get down
into the 1/f noise region, and non-Gaussian noise such as popcorn bursts will start to
be important. Already it is in danger from room lights, hum, and so on.

If the detector is a photon-counting photomultiplier tube (PMT, η ≈ 0.2), the noise is
dominated by the counting statistics, and the technical speed limitation is removed (see
Section 3.6.1). However, PMTs have a certain rate of spurious dark counts . Dark counts
generally obey Poisson statistics, so if we assume a mean rate Ndark = 200 Hz, then in a
140 μs measurement, the probability of at least one dark count is 200 × 140μs ≈ 0.028.
We are clearly in a different operating regime here, where the fluctuations in the dark
count are not well described by additive Gaussian noise as in the previous case. From
Section 13.6.16, the probability of a Poisson process of mean rate λ per second producing
exactly M counts in t seconds is

P (M) = (λt)Me−λt

M!
. (1.80)

If we get 200 photons per second, then the probability that a second photon will
arrive within 140 μs of the first one is (0.028)e−0.028 ≈ 0.027, so we expect it to happen
200 × 0.027 ≈ 5.5 times a second. Two or more additional photons will arrive within
140 μs of the first one about 0.076 times per second, and three or more additional photons
only 0.0007 times per second, so if we require at least four counts for a valid event, the
false count rate will be one every 20 minutes or so, which is usually acceptable. The
limiting value σmin is then

σmin ≈ 4

5 × 1021ηt
≈ 8 × 10−22

ηt
, (1.81)

which is about 3 × 10−17 m2, nearly three orders of magnitude better than the photodiode,
and sufficient to detect a PSL sphere of 0.08 μm (alas for particle counters, the signal
goes as a6). We can use the same Poisson statistics to predict the probability of detection,
that is, P (≥ 4 photons) as a function of σtot.

Besides detector capacitance, such measurements are often limited by the shot noise
of light from the background, from imperfect beam dumps, or from molecular Rayleigh
scatter (as in the blue sky), so that our photon budget is not a sufficient theoretical basis
for the planned measurement. More detail is available in Chapter 10. In addition, we have
here assumed a very simple deterministic model for signal detection in noise; any event
whose nominal detected signal is greater than our threshold is assumed to be detected.
This assumption is unreliable for signals near the threshold, and is dealt with in a bit
more detail in Section 13.6.15. Finally, we assumed that our noise was limited by the
use of a boxcar averaging function of width t , equal to the 3 dB width of the pulse. Even
with a priori knowledge of the arrival time of the particle, this is not the optimal case;
if the particles are moving faster or slower than we anticipate, a fixed averaging window
may be far from optimal. This is the topic of Section 13.8.10.
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Example 1.11: Photon Budget for an Astronomical CCD Camera. An astronomical
telescope gathers photons from sources whose brightness cannot be controlled. It also
gathers photons from Earth, due to aurora, meteors, cosmic ray bursts, scattered moon-
light, and human artifacts such as street lights. Extraneous celestial sources such as
the zodiacal light and the Milky Way are also important. It represents an interesting
signal detection problem: the signals that it tries to pull out of random noise are them-
selves random noise. The inherent noisiness of the signal is of less consequence in
the optical and infrared regions than in the radio region. The brightness of sky objects
is quoted in logarithmic relative magnitudes , with respect to standard spectral filters.
A look in Allen’s Astrophysical Quantities (affectionately known as “AQ”) reveals that
in the “visible” (V ) filter band, centered at 540 nm in the green, a very bright star
such as Arcturus or α Centauri has a magnitude mV = 0, and that such an object pro-
duces a total flux at the top of the atmosphere of about 3.8 nW/m2, of which about
80% makes it to the Earth’s surface. A first magnitude star (mV = 1.0) is 100 times
brighter than a sixth magnitude star, which is about the limit of naked-eye detection in a
dark location. A one-magnitude interval thus corresponds to a factor of 1000.2 ≈ 2.512
in brightness.†

Even in a dark location, the night sky is not perfectly dark; its surface brightness in
the V band is about 400 nW/m2/sr, which at 2.3 eV/photon is about 1 × 1010 photons/s/
m2/sr. An extended object such as a galaxy will be imaged over several resolution ele-
ments of the detector, whereas a point-like object such as a star will ideally be imaged
onto a single detector element. Without adaptive optics, the turbulence of the atmo-
sphere during the (long) measurement time limits the resolution to the size of a seeing
disc of diameter 0.25′′ (arc seconds) on the best nights, at the best locations, with 1′′
being more typical, and 3′′ –5′′ being not uncommon in backyard observatories. Thus
with enough pixels, even a stellar object produces an extended image, and the SNR
will be limited by the fluctuations in the sky brightness in a single pixel. Each pixel
subtends the same solid angle � on the sky, so the mean photoelectron generation rate
per pixel is

ntot = η�A(Jsky + Jstar), (1.82)

where A is the area of the telescope objective, η is the quantum efficiency, n is in
electrons/s , and J is the photon angular flux density in photons/s/m2/sr.

There are two classes of noise source in the measurement: counting statistics of the
sky photoelectrons and of the dark current, which go as (nt)1/2, and the (fixed) readout
noise qRO. The electrical SNR thus is

SNR = (Jstartη�A)2

�n2
RO + ndarkt + tη�A(Jstar + Jsky)

. (1.83)

CCD pixels have a fixed full well capacity B, ranging from about 5 × 104 electrons for
the ones used in a camcorder to 106 for a scientific device. Thus the maximum exposure
time for a perfect device is equal to eB/isky, which is on the order of 1 week, so that the

†The magnitude scale goes back to the ancient Greeks—the numerical factor is weird because the log scale
was bolted on afterwards and tweaked to preserve the classical magnitudes while being reasonably memorable.
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well capacity is not a limitation for dim objects. The noise-equivalent photon flux density
(NE�J) is the number of photons per second required to achieve an SNR of 1 (0 dB)
in the measurement time. Setting the SNR in (1.83) to 1 yields a quadratic equation for
Jstar, whose solution is

NE�Jstar ≈ 1

η�A

√
ndark + η�AJsky

t
+ �q2

RO

t2
. (1.84)

A 100 cm telescope with a 40% central obstruction (due to the secondary mirror) has
an area A = 0.66 m2, and an angular resolution of about 0.14 arc seconds. A commer-
cially available V filter has a transmittance of about 0.72 at the nominal peak.† Assuming
that the telescope itself has an efficiency of 0.8, due primarily to absorption in uncoated
aluminum primary and secondary mirrors, and is used with a cooled, back-surface illu-
minated CCD with η = 0.85 and B = 1.8 × 105, the end-to-end quantum efficiency of
the telescope system is η ≈ 0.5. A good cooled CCD has a dark current of around 1
electron per second per pixel, and rms readout noise of about 5 electrons. With this
apparatus,

NE�J ≈ 3

�

√
1 + 3.3 × 1011�

t
+ 52

t2
. (1.85)

This is dominated by readout noise at short exposures. At longer times, dark current fluc-
tuations dominate for very small values of � but sky background fluctuations dominate
for larger �. The largest SNR improvement comes from increasing integration time, as
shown in Figure 1.11a–d which are pictures of the galaxy M100 taken by Dennis di
Cicco using an 11 inch Schmidt–Cassegrain telescope at f /6.2 and an SBIG ST-6 CCD
camera.‡

With an exposure time of an hour, and a 3 × 3 arc second pixel size (favored by many
amateurs, whose CCD budgets don’t run to as many pixels as the professionals’), Jmin

is 2.2 × 109, which corresponds to a surface brightness of −28 magnitudes per square
arc second, which is how this is usually quoted in astronomical circles.

If we were merely users of this instrument, that would be that. However, we are the
designers, so we have complete flexibility to trade off the operating parameters. What
should � be? For detection of faint objects, we set � as large as is consistent with
adequate image resolution, so that the photoelectrons dominate the dark current. For
stellar objects, such as star clusters, we want � small, since if all the light from each
star is going on one pixel anyway, shrinking � reduces the sky light while keeping the
dark current and signal current the same. For a pixel size of 0.22 arc seconds, Jmin is
1.1 × 1011, which means that with a 1 hour exposure on a really great seeing night,
we could detect a star of magnitude 25.6 with 3σ confidence. (We’ve left out the noise
contributed by the calibration process, which may be significant if there aren’t enough
calibration frames—see Section 3.9.19.)

†Optec Corp, Model PFE−1 Technical Manual .
‡Michael V. Newberry, The signal to noise connection. CCD Astronomy , Summer 1994. (Copyright © 1994
by Sky Publishing). Reprinted with permission.
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(a) (b)

(c) (d)

Figure 1.11. CCD image of M100: (a) 1 s integration, (b) 10 s integration, (c) 100 s integration,
and (d) 1000 s integration.

1.8 SIGNAL PROCESSING STRATEGY

Once a photocurrent leaves the detector, the work of the optical system is done and the
maximum SNR has been fixed by the photon budget. The signal processing job is to
avoid screwing this up by needlessly rejecting or distorting the signal, on one hand, or
by admitting noise unnecessarily, on the other. Signal processing operates under physical
constraints, having to do with maximum allowable time delays, and practical ones such
as complexity and cost. Most of the time, the inherently highly parallel data coming
in as light is converted to a serial electrical channel, so that electrical wave filtering is
appropriate.

1.8.1 Analog Signal Processing

The first bit of signal processing is the detector front end amplifier, in which should
be included any summing or subtracting of photocurrents, for example, in a differential
position measurement using a split detector. As we saw in Example 1.10, a bad front
end can hobble the system by adding noise and having too narrow a bandwidth with a
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given detector. Most designers are uncomfortable designing front ends, and many wind up
crippling themselves by buying a packaged solution that isn’t appropriate to the problem;
there’s detailed help available in Chapters 3 and 18.

In a baseband (near DC) measurement, the next part is usually filtering and then
digitizing (AC signals will usually need frequency conversion and detection too). The
filter should roll off by at least 6N dB (where N is the number of bits) at the Nyquist
limit of the digitizer (see Section 17.4.4) and should reject strong spurious signals signals
(e.g., 120 Hz from room lights) that would otherwise overwhelm subsequent stages or
require more bits in the digitizer. The bandwidth of the filter should be the same as
that of the signal. Although some of the signal is lost, maximum SNR occurs when the
filter’s frequency response is identical with the signal’s power spectrum. Filters wider
than that allow more noise in than necessary, and narrower ones clip off too much signal.
Some filters have much better time responses than others. Have a look at the Bessel and
equiripple group delay filters of Section 15.8.4. To get the best SNR with pulses, use a
matched filter (Section 13.8.10).

We need to be able to convert time-domain to frequency-domain specifications.
Remember that a 1 s averaging window corresponds to a bandwidth of 0.5 Hz at DC.
The reason is that in the analytic signal picture negative frequencies get folded over
into positive ones. However, that same 1 s window and the same folding, applied to an
AC measurement, gives 0.5 Hz both above and below the (positive frequency) carrier, a
total of 1 Hz. The result is that a baseband (near-DC) measurement has half the noise
bandwidth† of an AC measurement with the same temporal response. The resulting
factor of 3 dB may be confusing.

The digitizing step requires care in making sure that the dynamic range is adequate;
an attractively priced 8 bit digitizer may dominate the noise budget of the whole instru-
ment. For signals at least a few ADUs‡ in size, an ideal digitizer contributes additive
quantization noise of 1/

√
12 ADU to the signal, but real A/Ds may have as much as

several ADUs of technical noise and artifacts (up to ∼100 ADUs for �� ADCs, see
Section 14.8.3), so check the data sheet. Converter performance will degrade by 1–3
bits’ worth between DC and the Nyquist frequency. Bits lost here cannot be recovered
by postprocessing, so be careful to include a realistic model of digitizer performance in
your conceptual design.§

1.8.2 Postprocessing Strategy

With the current abundance of computing power, most measurements will include a fair
bit of digital postprocessing. This may take the form of simple digital filtering to optimize
the SNR and impulse response of the system, or may be much more complicated, such as
digital phase-locked loops or maximum likelihood estimators of signal properties in the
presence of statistically nonstationary noise and interference. In general, the difference
between a simplistic postprocessing strategy and an optimal one is several decibels; this

†Noise bandwidth is the equivalent width of the power spectrum of the filter (see Section 13.2.5). If we put
white noise into our filter, the noise bandwidth is the output power divided by the input noise power spectral
density (in W/Hz), corrected for the passband insertion loss of the filter.
‡An ADU (analog-to-digital converter unit) is the amount of signal required to cause a change of 1 in the least
significant bit of the converter.
§High-end oscilloscopes are a partial exception—they overcome timing skew and slew-dependent nonlinearity
by calibrating the daylights out of themselves. They cost $100k and are only good to 6 bits.
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may seem trivial, but remember that a 3 dB improvement in your detection strategy
can sometimes save you half your laser power or 2/3 of the weight of your collection
optics. (As an aside, calling it postprocessing doesn’t mean that it can’t be happening in
real time.)

1.8.3 Putting It All Together

Let’s catch our breath for a moment. We began this chapter with the aim of learning how
to do a complete feasibility calculation for an optical instrument, which we should now
be fully equipped to do. We have covered a lot of ground in a short time, so don’t be
discouraged if it takes a while for it all to slot together. It becomes easier with practice,
and standing around with one or two smart colleagues doing this stuff on a white board
is the most fun of any technical activity. To sum up, a conceptual design goes like this:

1. Write down what you know . Get a handle on the basic physics, figure out which
is the largest effect operating, and estimate how much smaller the next biggest
one is.

2. Think up a measurement principle. This may be routine, or may take a lot of
imagination. Use it to take a rough cut at your photon budget. From that, estimate,
for example, the laser power required, the size of the detection area needed, and
so on.

3. Simplify the analysis . Use limiting cases, but estimate where they will break down.

4. Make a very rough optical design . Choose the NAs, wavelength, working distances,
and so on. Check that it makes physical and economic sense.

5. Guess a detection and signal processing strategy . One might choose a large ger-
manium photodiode operating at zero bias, followed by a somewhat noisy front
end amplifier, a Butterworth lowpass filter, and a fixed threshold. Watch out for
sources of systematic error and drift (e.g., etalon fringes or spectral changes in the
source).

6. Make a detailed photon budget . See if your scheme will do the job, without unre-
alistically difficult steps.† If so, you have a measurement. If not, try step 5 again.
If no amount of background reduction, low noise circuitry, or signal processing
will help, go back to step 2 and think harder.

7. Check it for blunders . Do it all over again a different way, and using scaling
arguments to make sure the power laws are all correct. If you go ahead with this
instrument, a lot will be riding on the correctness of your calculation—don’t scrimp
on time and effort here. If you have one or two colleagues who are difficult to
convince, try it out on them, to see if they can poke any holes in your logic.

Remember that what will get you is not misplacing a factor of Boltzmann’s constant—
that’s large and obvious—but rather the factors of order 1 that you haven’t thought out
carefully. These are things like using the peak value when the rms is what’s relevant,
or forgetting that when you multiply two similar peaks together the result is

√
2 times

narrower, or assuming that the bandwidth of a 1 s averaging window is 1 Hz (see

†As in the light bulb spectrometer of Example 17.9.
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Figure 1.12. The ISICL sensor is an alignment-insensitive scanning interferometer for finding
submicron particles in hostile places such as plasma chambers.

Section 13.2.5). A few of these taken together can put you off by factors of 10 or
more—very embarrassing.

Estimating and controlling systematic errors is one of the high arts of the designer,
since they don’t obey any nice theorems as random errors sometimes do. For now we’ll
just try to keep the optical system simple and the processing modest and linear. Getting
too far away from the measurement data is a ticket to perdition.

Let’s do an extended example that illustrates many of the concepts of this chapter.

Example 1.12: Conceptual Design of a Shot-Noise-Limited, Scanning Interferometer.
The ISICL (in situ coherent lidar) system† detects submicron (>0.25 μm) contaminant
particles in plasma chambers and other semiconductor processing equipment. As shown
in Figure 1.12, it works by scanning a weakly focused laser beam around inside the
chamber through a single window, and detecting the light backscattered from particles.

Backscatter operation is very difficult. Between the strong plasma glow and the stray
laser light bouncing off the back wall of the chamber, it must deal with very bright stray
light—thousands of times worse than that seen by an ordinary dark-field detector, and
around a million times brighter than a nominally detectable particle. Coherent detection
is probably the only feasible measurement strategy. With a coherent detector, a particle
crossing near the focus of the beam gives rise to a short (3 μs) tone burst, whose
duration is the transit time of the beam across the particle and whose carrier frequency
is the Doppler shift from its radial motion. These tone bursts are filtered and amplified,
then compared with a threshold to determine whether a particle event has occurred. Since

†P. C. D. Hobbs, ISICL: in situ coherent lidar for particle detection in semiconductor processing equipment.
Appl. Opt . 34(9), 1579–1590 (March 1995). Available at http://electrooptical.net/www/isicl/isiclAO.pdf.
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the phase of the tone burst is random, the highest peak may be positive or negative, so
bipolar thresholds are used.

The sensitivity of an instrument is expressed by the minimum number of photons it
requires in order to detect a particle, which is a function of the confidence level required.
A false alarm rate of 10−11 in the measurement time corresponds to about 1 false count
per day with bipolar thresholds in a 1 MHz bandwidth. From Section 13.6.15, the false
count rate depends only on the measurement bandwidth and the ratio α of the threshold
to the rms noise voltage. A false count rate of 10−11 per inverse bandwidth requires
α = 7.1.

In an AC measurement, the shot noise level is equivalent to a single coherently detected
noise photon in the measurement time, so it might seem that 7 scattered photons would be
enough. Coherent detectors detect the amplitude rather than the intensity of the received
light, however, so to get a signal peak 7.1 times the rms noise current, we actually need
7.12 ≈ 50 photons per burst.

We have a first estimate of how many photons we need, so let’s look at how many
we expect to get. For a particle in the center of the sensitive region, the received power
is the product of the transmit beam flux density times the differential scattering cross
section ∂σ/∂� of the particle, times the detector projected solid angle �d . Working in
units of photons is convenient, because the relationship between photon counts and shot
noise means that electrical SNR is numerically equal to the received photon count per
measurement time. This works independently of the signal and filter bandwidth. Initially
we ignore the losses imposed by the matched filter.

For a Gaussian transmit beam of power P at wavelength λ, focused at a numerical
aperture NA, Table 1.1 gives the photon flux density at the beam waist as

J (P, λ, NA) = 2π(NA)2Pλ

hc
. (1.86)

Assuming the scattered field is constant over the detector aperture, Table 1.1 predicts
that the effective detector solid angle is

�d = π(NA)2 (1.87)

and so the expected number of photons available per second is

〈n0〉 = 2π2(NA)4Pλ

hc

∂σ

∂�
. (1.88)

Not all of these will be detected, due to imperfect efficiency of the optics and the
detector. The quantum efficiency η of the detector is the average number of detection
events per incident photon on the detector; it’s always between 0 and 1. (Photodetec-
tors generally give one photoelectron per detection event, so η〈n0〉 is the number of
photoelectrons before any amplification.) A good quality, antireflection coated silicon
photodiode can have η ≈ 0.95 in the red and near IR, but there are in addition front sur-
face reflections from windows and other optical losses. A receiver whose end-to-end
efficiency is over 0.5 is respectable, and anything over 0.8 is very good. A value
of 0.9 can be achieved in systems without too many elements, but not cheaply. (We
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should also multiply by the square of the Strehl ratio to account for aberrations; see
Example 9.6.)

The SNR can be traded off against measurement speed, by the choice of scanning
parameters and filter bandwidths. Narrowing the bandwidth improves the time-averaged
SNR but smears pulses out. In a pulsed measurement, the optimal filter is the one that
maximizes the received SNR at the peak of the pulse. For pulses in additive white
Gaussian noise, the optimum filter transfer function is the complex conjugate of the
received pulse spectrum (this filter is not necessarily the best in real life, but it’s an
excellent place to start—see Section 13.8.10). Such a matched filter imposes a 3 dB
signal loss on a Gaussian pulse.† However, the measurement detects threshold cross-
ings, and for the weakest detectable signals, the peaks just cross the threshold. Thus
this 3 dB is made up by the factor of

√
2 voltage gain from the peak-to-rms ratio, so

that the minimum detectable number of photons (in the deterministic approximation)
is still α2.

We can estimate the stray light in the following way. Assume a detector requiring
50 photons for reliable particle identification, operating in backscatter with a 100 mW
laser at 820 nm and NA = 0.008. Assume further (optimistically) that the back wall of
the chamber is a perfectly diffuse (Lambertian) reflector, so that the light is scattered
into π sr. The incident beam has 4 × 1017 photons/s, so that the backscattered stray light
has average brightness 1.3 × 1017 photons/s/sr; the detector solid angle is π(NA)2 ≈
0.0002 sr, so the total detected signal due to stray light is about 2.6 × 1013 photons per
second. Assuming that a particle takes 3 μs to yield 50 photons (1.7 × 107 photons/s),
the stray light is 106 times more intense than the signal from a nominally detectable
particle. What is worse, the signal from the back wall exhibits speckles, which move
rapidly as the beam is scanned, giving rise to large (order-unity) fluctuations about the
average stray light intensity. The size of the speckles (and hence the bandwidth of the
speckle noise) depends on the distance from the focus to the chamber wall and on the
surface finish of the wall. Peak background signals are generally much larger than this
average.

The Doppler frequency shift in the detected signal due to a particle traveling with
velocity v encountering incident light with wave vector ki and scattering it into a wave
with wave vector ks is

fd = v · (ks − ki )/(2π). (1.89)

For a system operating in backscatter, ks − ki ≈ −2ki . At 830 nm, a particle moving
axially at 50 cm/s will give rise to a tone burst whose carrier frequency is about 1.22 MHz.
This is the nominal maximum particle axial velocity for ISICL.

The remaining engineering problems center on the choice of detection bandwidths
and the accurate estimation of the shot noise level in the presence of large signals due
to particles. In the present case, where the Doppler shift may be large compared to the
transit time bandwidth, the peak frequency of the received spectrum of a given pulse is
not known in advance. The optimal signal processing system depends on the range of
particle velocities expected. In quiet plasma chambers, where most particles orbit slowly
within well-defined traps, the maximum expected velocity may be as low as 5 cm/s,

†M. Skolnik, ed., Radar Handbook , 2nd ed. McGraw-Hill, New York, 1990, pp. 3.21–3.23.
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whereas in an environment such as a rapidly stirred fluid tank or the roughing line of
a vacuum pump, the velocity range may be much greater. The scan speed of the beam
focus through the inspected volume is much higher (about 20 m/s).

With carrier frequencies ranging from 0 to 1.22 MHz, the Doppler bandwidth is much
larger than the transit time bandwidth (150 kHz for a 3 μs burst FWHM), so that it is
inefficient to perform the thresholding operation in a single band. In the present system,
four bands are used to cover the Doppler bandwidth. This is frequently best in low NA
systems like ISICL, where the focus is many wavelengths across.

In a thresholding operation, it is essential to set a high enough threshold that the sensor
does not report erroneously high particle counts, possibly resulting in needless down time
for the processing tool being monitored. At the same time, it is economically important
to use the available laser power as efficiently as possible; at the time, the laser used in
this sensor cost over $1200, so that (loosely speaking) too-high thresholds cost $400 per
decibel. The signal processing strategy is to set separate bipolar thresholds for each band,
using an automatic thresholding circuit. This circuit exploits the accurately known noise
amplitude statistics to servo on the false counts themselves and ignore signal pulses,
however large they may be. In radar applications, this is known as a CFAR (constant
false alarm rate) servo; the technologies employed are quite different, however, since a
radar system can look at a given target many times, and its noise is very non-Gaussian.
The ISICL false alarm rate (FAR) tracker can accurately servo the FAR at a level much
below the true count rate in most applications.

Figure 1.13 shows a typical tone burst from a 0.8 μm diameter PSL sphere, together
with cursors showing the predicted peak-to-peak voltage for a particle passing through
the center of the sensing volume. For a particle exactly in focus, the photon flux predicted

Figure 1.13. Measured tone burst caused by a 0.8 μm polystyrene latex (PSL) sphere crossing
the beam near focus. The horizontal cursors are the predicted peak-to-peak value of the output.
The bandwidth of the signal shown is several times wider than the actual measurement bandwidth,
which prevents distortion of the tone burst but increases the noise background.
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by (1.88) is converted to a signal current iAC by (1.68), and to a voltage by multiplying by
the known current to voltage gain (transimpedance) of the front end and any subsequent
amplifiers. Because of the known relationship between the signal size and the shot noise
in a coherent detector, we can check the ratio of the rms noise to the signal easily as
well (the aberration contribution is calculated in Example 9.6). The measured system
parameters are NA = 0.0045, P = 90 mW, λ = 820 nm, η = 0.64. Taking into account
the addition of the noise and signal, the error is less than 20% (1.6 dB electrical),
indicating that the theory correctly predicts the signal size and SNR.


