
CHAPTER 4

Lenses, Prisms, and Mirrors

In theory, theory and practice are the same. In practice, they’re different.
—Anonymous

4.1 INTRODUCTION

Although lasers and nonlinear optics get all the attention, most of the real work in an
optical system consists of making the beam you’ve got into the one you want and routing
it where you want it. This prosaic but necessary work is done by lenses, prisms, and
mirrors (with an occasional cameo appearance by a grating). In this chapter, we discuss
the workings of these simple devices, beginning with what they’re made of and how they
work. The bulk of the chapter is a heuristic treatment of what they actually do, and the
surprisingly subtle business of how best to combine them so that they do what you want
them to.

Designing a complex lens is a highly specialized art using special tools, and is beyond
our scope. Using and combining lenses that others have designed, on the other hand, is
a very practical skill that everyone in optics should have.

4.2 OPTICAL MATERIALS

4.2.1 Glass

Glass is remarkable stuff. It can be far more transparent than air and stronger than steel.
It is useful for almost every optical purpose from lenses to torsion springs.

By and large, glass is a trouble-free material as well. It comes in a very wide variety
of types. The main properties we care about in optical glass are its refractive index, its
dispersion (i.e., how much the index changes with wavelength), and its transmittance. For
historical reasons, these are specified with respect to certain spectral lines of common
elements, which were discovered and labeled by Joseph von Fraunhofer in the solar
spectrum. The index usually quoted is nd , at the d line of helium at 587.6 nm. Older
references use the slightly redder D lines of sodium, 589.3 ± 0.3 nm, but it doesn’t
matter much. The dispersion is quoted as NFC ,

NFC = n(486.1 nm) − 1

n(656.3 nm) − 1
. (4.1)
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Figure 4.1. Refractive index nd versus reciprocal dispersive power Vd for Schott optical glasses
and common plastics.

The deep red C line at 656.3 nm is the Balmer α line of hydrogen, and the blue-green
F line at 486.1 nm is Balmer β. The quantity n − 1 governs the power of a glass–air
surface, so NFC is the ratio of the powers of a given surface at the F and C lines. The
classical way of quoting dispersion is the Abbe number V ,

V = nd − 1

nF − nC

, (4.2)

also called the reciprocal dispersive power (a big V means low dispersion). Figure 4.1
is a plot of the index versus dispersion for the optical glasses manufactured by Schott.

By and large, glass has a large coefficient of dispersion in the visible, which is highly
variable among different glass types, but it has low temperature coefficients of index and
of expansion.

Optical glasses are traditionally divided into two types: crowns, which have low
indices (1.5–1.6) and low dispersion, and flints, which have higher indices and dispersion.
The classical distinction was that anything whose V was over 50 was a crown, but the
two categories have become blurred over the years as new glass formulations have been
developed. The most common optical glass is BK7, a borosilicate crown glass with
n = 1.517. It is popular because it is inexpensive and works well. Glass prices span a
huge range—more than 100×.

Glass always has residual optical defects, such as bubbles and striae (long, thin regions
of slightly different optical properties). For a critical application such as laser windows,
choose a grade of glass whose striae and bubbles are guaranteed to be low enough.

For high quality applications, optical elements are often made of synthetic fused silica,
a very pure quartz glass made by a chemical vapor deposition process. Fused quartz, an
inferior material, is made by melting natural quartz sand. Fused silica comes in several
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grades, differing in the density and type of their bubbles and striae, and in their OH
content. The O—H bond absorbs at 1.34 μm, 2.2 μm, and especially 2.7 μm. High-OH
fused silica is essentially opaque at 2.7 μm. Low-OH fused silica, such as the Infrasil
grade from Heraeus Amersil, can be pretty transparent there (depending on its thickness
of course).

Fused silica and many types of glass are chemically fairly inert, but different glasses
differ significantly. Hostile environments, such as continuous exposure to salt spray,
will weather the surface of the glass (and any coatings present), degrading its optical
performance. Severely weathered glass may appear to have a whitish crust on top. Fused
silica and crown glasses resist weathering quite well, but high index glasses n ≈ 1.8–2
are often environmentally delicate, as they have less quartz and more lead oxide and other
less inert materials. Some of these will darken and weather over time even in ordinary
lab conditions. The trade term for chemical inertness is stain resistance, and glasses are
specified for it. Corrosion is not always a disaster: Fraunhofer discovered that weathering
glass slightly increased its transparency—he correctly guessed that weathering the surface
produced a layer of lower refractive index, which reduced the surface reflection. Pickling
telescope lenses to improve their transmission was popular throughout the 19th century.

4.2.2 Temperature Coefficients of Optical Materials

The subject of temperature effects on optical elements is somewhat subtle. The temper-
ature coefficients of expansion (CTE) and of refractive index (TCN) are both positive,
but CTE is specified in normalized (dimensionless) form, whereas TCN is just ∂n/∂T .
The time (phase) delay through a piece of dielectric is (n�)/c, where � is the length of
the optical path. The normalized temperature coefficient, TCOPL, is

TCOPL = 1

n�

∂(n�)

∂T
= TCN

n
+ CTE. (4.3)

For most glass types, TCOPL is approximately 10−5/◦C or a bit below. Fused silica
has a very low CTE—in the 5 × 10−7 range—but a big TCN, about 9 × 10−6, so with
n = 1.46, its TCOPL is 7 × 10−6. BK7, on the other hand, has a larger CTE, 8 × 10−6,
but a low TCN, only 1.6 × 10−6; its TCOPL is 9 × 10−6. There are a few glasses with
negative TCN, such as that used for molded optics by Corning.† The only common solid
with a negative TCN is magnesium fluoride (MgF2). Air’s TCN at constant pressure
is about −1 × 10−6 (see below). Glass used in solid state laser rods is often specially
formulated to achieve a zero TCOPL. Etalons sometimes use two materials with opposite
signs of TCOPL, their thicknesses chosen so as to athermalize the path length.

The definition of TCOPL here is for the phase delay inside the dielectric, which is
relevant for discussion of fringes. In discussions of the temperature coefficients of lenses
or of a mixture of dielectric and free space, another temperature coefficient is also useful,
that of the differential optical path length through the element,

G = TCN + (n − 1)CTE. (4.4)

†Mark A. Fitch, Molded optics: mating precision and mass production. Photonics Spectra, October 1991.
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4.2.3 Air and Other Gases

The expression (4.4) is actually only an approximation, since it leaves out the effects of
the refractive index of air. Air’s index is nearly 1, but it has surprisingly large temper-
ature and pressure coefficients. An ideal gas behaves strictly as a collection of isolated
molecules, whose molecular susceptibilities are constant. Thus the dielectric susceptibil-
ity of an ideal gas is strictly proportional to its density, which in turn can be predicted
from the ideal gas law. What this means is that χ (and hence εr − 1) is proportional to
pressure and inversely proportional to temperature,

(εr − 1) ∝ P

T
. (4.5)

Since εr ≈ 1, a binomial expansion shows that

TCN = −n − 1

T
,

∂n

∂P
= n − 1

P
. (4.6)

For dry air at T = 288K (15 ◦C) and P = 101.325 kPa (1 atm), n = 1.00028, so that
TCN ≈ −1.0 × 10−6/K and ∂n/∂P ≈ 2.8 × 10−6/kPa. Thus air’s TCN is comparable
in magnitude to that of BK7. These are small numbers that aren’t usually much of
a concern, but they become very important in the design of interferometers, especially
Fabry–Perot etalons, and in the presence of temperature and pressure gradients. Humidity
is a second-order effect, because the water content of moist air is only a couple of
percent and the molecular susceptibilities of H2O, N2, and O2 are similar. Helium has a
susceptibility about 8 times less than air, with corresponding decreases in the temperature
coefficients. Note also that these are partial derivatives—TCN is quoted at constant P ,
and ∂n/∂P at constant T .

4.2.4 Optical Plastics

Plastic lenses have become very popular lately. They are lightweight, cheap (at least in
high volumes), and can be molded with a mounting surface integral with the lens element,
which helps a lot with assembly and alignment. Mass-produced aspheric lenses (perhaps
with a diffractive element on one side) make it possible to get good performance with
fewer elements.

On the other hand, plastic tends to be less uniform than glass, cannot readily be
cemented, and is harder to coat. Plastic also has much larger temperature coefficients of
expansion (≈150 ppm/◦C) and of refractive index (≈100 ppm/◦C) than glass. The most
popular plastic used is polymethyl methacrylate (PMMA), sold under the trade names
Lucite, Perspex, and Plexiglas. Others are polycarbonate (Lexan), cyclic olefin copolymer
(COC, sold as Zeonex and Topas), and CR39, used for eyeglasses.

Plastics don’t have the variety of optical properties found in glasses. Their indices
range from about 1.44 to 1.6, with some of the newest (and very expensive) ones reaching
1.7. They have a narrow but reasonable range of V , 30 to about 58, so that plastic
lenses can be achromatized. They have higher internal Rayleigh scatter due to the high
molecular weight of the polymer chains. They are less transparent in both the UV and IR
than most glasses and are more vulnerable to solvents and other environmental hazards.
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UV exposure is especially damaging to some kinds of plastics, causing them to yellow
and craze. This is especially true of the polyethylene used in far-IR Fresnel lenses, as
used in automatic porch lights. Thermosets such as CR39 (nd = 1.50, V = 58) are about
the most durable optical plastics.

4.3 LIGHT TRANSMISSION

Alongside refractive index and dispersion, the transmission properties of a material gov-
ern its range of applicability. As a rule of thumb, a wide selection of good materials
is available between 300 nm and 3 μm; there is some choice between 200 nm and 15
μm; below 200 nm and beyond 15μm, most materials are strongly absorbing, so we take
what we can get.

4.3.1 UV Materials

Optical materials don’t go very far into the UV. The absolute champion is lithium fluoride,
LiF, which dies at about 120 nm, right around the Lyman α line of hydrogen at 121.6 nm.
The fluorides of barium (BaF2), magnesium (MgF2), and strontium (SrF2) are nearly as
good and are more practical materials—harder, easier to polish, and less vulnerable to
water. Water absorption can destroy the UV transmittance of LiF completely.

UV grade fused silica is useful down to 170 nm, but glass craps out at about
300–350 nm. Many types of materials are damaged by exposure to short wave UV
(below 320 nm or so); glass will darken, and plastics yellow and craze. Flashlamps
and arc lamps have strong UV emission, so this can easily happen even in visible-light
applications.

4.3.2 IR Materials

Optical glass and low-OH fused silica are useful out to 3 μm or so. Beyond there, the
choices diminish considerably; the best window materials are semiconductors like silicon
and germanium, both of which can be made transparent out to 15 μm or further. These
materials have high indices, 3.5 for Si and 4 for Ge. This is great for lenses, because
with a high index, large aperture lenses can be made with shallowly sloped surfaces,
so that aberrations are minimized. It is less helpful for windows, because Fresnel losses
are large, and the huge index mismatch makes AR coatings rather narrowband. These
materials are opaque in the visible, which is a pain because all your alignment has to
be done blind. (Don’t underestimate the difficulty of this if you haven’t tried it—you’ll
have a good deal less hair afterwards.)

There exist lower index materials with excellent IR transmission, but most of them
are toxic or water soluble. The best ones are diamond (if you can afford it, it goes from
230 nm to 40 μm with a weak interband absorption at 2.6–6.6 μm), zinc selenide (ZnSe),
arsenic trisulfide or triselenide glass (As2S3 and As2Se3), and sodium chloride (NaCl).
Good quality synthetic sapphire and calcium fluoride are also good if you can live with
their limitations (mild birefringence for sapphire and sensitivity to thermal shock for
CaF2). Others, such as thallium bromoiodide (KRS-5), are sufficiently toxic that only the
stout of heart and fastidious of touch should grind and polish them. These materials have
the enormous advantage of being transparent in at least part of the visible, which makes
using them a great deal easier.
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In the far IR, some plastics such as high density polyethylene (HDPE) are reasonable
window materials. Their high molecular weight and polycrystalline morphology, which
make them highly scattering in the visible, are not a problem in the IR (Rayleigh scattering
goes as λ−4). Ordinary polyethylene or PVC (Saran) food wrap makes a good moisture
barrier to protect hygroscopic window materials from humidity. These films can be
wrapped around the delicate element without affecting its optical properties in the far IR
very much (although each type should be tested for absorption before use).

Unlike visible-light optical materials, most IR materials have low dispersion but have
huge temperature coefficients of index and expansion compared with glass (silicon’s
dn/dT is ∼170 ppm/K, and while As2S3’s dn/dT is only about 10 ppm/K, its CTE is
25 ppm/K. Near- and mid-IR absorption depends on molecular vibrational modes.

4.4 SURFACE QUALITY

It isn’t just the material that matters, but the surface quality too. Ray bending happens
at the surfaces, so they have to be accurate to a fraction of a wavelength to maintain
image quality. Total scattered light tends to go as [4π (rms roughness)/λ]2, so optical
surfaces have to be smooth to ∼ λ/1000. The figure error is the deviation of the surface
from the specified figure, without regard for small localized errors, which are divided
into scratches and digs (small craters or pits). Scratches are usually just that, but digs are
often the result of a bubble in the glass having intersected the surface of the element.

A commodity colored glass filter might have a scratch/dig specification of 80/60,
which is pretty poor. An indifferent surface polish is 60/40, a good one is 20/10, and
a laser quality one (good enough for use inside a laser cavity) is 10/5. The scratch/dig
specification largely determines the level of scatter that can occur at the surface and also
affects the laser damage threshold and the weathering properties of the glass. It tells
something about how numerous and how large the defects can be but is a subjective
visual check, not anything that can be easily converted to hard numbers.

Figure error and scattering from scratches and digs are not the only ways that manufac-
turing variations can mess up your wavefronts. Striae and bubbles in the glass can result
in significant wavefront errors, even in a perfectly ground and polished lens, and will
produce a certain amount of internal scattering. Rayleigh scattering from the dielectric
sets the lower limit.

Lenses are more forgiving of surface errors than mirrors are, because the rays are bent
through a smaller angle at the surface. Tipping a mirror by 1◦ deflects the reflected light
through 2◦, regardless of incidence angle, whereas tipping a window or a weak lens has
almost no effect at all.

An alternative way of saying this is that a figure error of ε wavelengths produces
a phase error on the order of ε(n − 1) waves in a lens and 2ε waves in a mirror at
normal incidence. If the error is a tilt or a bend, even this reduced error tends to cancel
upon exiting the other side of the lens. If the mirror is operated at grazing incidence, to
reproduce the ray-bending effect of the lens, the surface roughness sensitivity is reduced
equivalently, because kZ is smaller.

Aside: Surface Error Sensitivity. The effects of roughness or surface error in a high
index material such as germanium (n = 4.0) can be even worse than in a mirror, when
quoted in terms of wavelengths. Since these materials transmit only in the IR, however,
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the actual sensitivity in waves per micron of surface error is not much different from
glass in the visible.

Small-scale roughness produces a phase front with random phase errors. Since
exp(iφ) ≈ 1 + iφ, this appears as additive noise on the wavefront and produces a
scattering pattern that is the Fourier transform of the surface error profile. In Section
13.6.9, we’ll see an exactly analogous case in which additive noise produces random
phase shifts in signals. For the optical case, compute the deviation from perfect specular
reflection. Anything that doesn’t wind up in the main beam is scatter, so in the thin
object approximation (Section 1.3.9) the total integrated scatter (TIS) is

TIS ≡ Pscat/Prefl = 1 − exp(−(2kz〈�z〉)2). (4.7)

Quantities like 〈�z〉 are implicitly filtered to spatial frequencies below k, since evanescent
modes don’t reduce the specular reflection.

Lenses are often poorly specified for wavefront error, since most of the time simple
lenses would be limited by their aberrations even if their figures were perfect. Mirrors
are usually specified with a certain degree of flatness (λ/10 at 633 nm is typical).

4.5 WINDOWS

Although windows are very simple optical elements, they are unusual in that their purpose
is not usually optical at all, but environmental: a window separates two volumes that are
incompatible in some way. Ordinary windows in a house or an airplane are examples, as
are windows in a vacuum chamber, laser tube, or spectrometer cell. Microscope slides
and cover slips are also windows. A window is the simplest lens and the simplest prism.

The trick with windows is to make sure that their environmental function does not
detract from the working of the optical system. A beam of light is affected by any surface
it encounters, so windows should be specified with the same sort of care as lenses and
mirrors. There is a large range of choice among windows: material, thickness, coatings,
wedge angle, and surface quality. For work in the visible, in a benign environment,
choose windows made of an optical crown glass such as BK7 or its relatives. In a
corrosive environment, quartz, fused silica, or sapphire are better choices. Filters sold
for cameras, for example, UV or Video filters (not skylight or color correcting ones), are
pretty flat, have good multilayer coatings for the visible, and are very cheap. Be sure
you buy the multilayer coated ones.

4.5.1 Leading Order Optical Effects

The leading order optical effects of windows are shown in Figure 4.2. Rays entering a
window are bent toward the surface normal, so images seen through a window appear
closer than they are; a window of thickness d and index n shifts the image a distance
�z = d(1 − 1/n) but does not change the magnification. The window thus looks from
an imaging point of view like a negative free-space propagation. This effect on images is
opposite to its effect on the actual optical phase; because light is slower in the window,
the phase is delayed by the presence of the window, as though the propagation distance
had increased . These effects are very useful in imaging laser interferometers, where they
allow a nonzero path difference with identical magnification in the two arms—tuning
the laser slightly shifts the phase of the interference pattern.
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Figure 4.2. The leading order effect of a window is a shift in image position and a phase delay.

4.5.2 Optical Flats

A window that has been polished very flat (λ/20 or so) is called an optical flat . Flats
are used as phase references (e.g, in Newton’s rings and Fizeau wedges). Most of them
have a small built-in wedge angle of 30 arc minutes or so to reduce etalon effects, but
you can get them with two flat parallel surfaces.

4.6 PATHOLOGIES OF OPTICAL ELEMENTS

It is normally possible to get lenses, windows, and mirrors of adequate surface quality
in a suitable material. The troubles we get into with optical elements don’t come so
much from random wavefront wiggles due to fabrication errors, but from aberrations,
front-surface reflections, and birefringence. Aberrations we’ll talk about beginning in
Section 9.2.2, but briefly they are higher-order corrections to the paraxial picture of what
optical elements do. As for the other two, let’s do birefringence first—it’s simpler.

4.6.1 Birefringence

(See Section 6.3.2 for more detail.) Birefringence in good quality lenses and windows
comes from material properties, as in sapphire or crystalline quartz, and from stress. The
stress can be externally applied as in pressure-vessel windows or lenses with poor mounts
(e.g., tight metal set screws). It can also be internal to the glass due to nonuniform cooling
from the melt or surface modification such as metalliding. The birefringence produced
by stress is n⊥ − n‖ with respect to the direction of the stress:

n⊥ − n‖ = K · S (4.8)

where S is the stress in N/m2 (tensile is positive) and K is the piezo-optic coefficient
(or stress-optic coefficient). Most optical glasses have piezo-optic coefficients of around
+2 × 10−12 m2/N, so that a compressive stress of 200 N on a 1 mm square area will
produce a �n of around 0.0004. A few glasses have negative or near-zero K values, for
example, Schott SF57HHT, whose K is two orders of magnitude smaller (+2 × 10−14

m2/N). Note that the K value is wavelength dependent, which matters at these low levels.
Stress birefringence comes up especially when we use tempered glass, in which the

residual stress is deliberately kept high in order to force surface cracks to remain closed.
Colored glass filters are usually tempered, so that it is dangerous to assume that the
polarization of your beam will remain constant going through a glass filter.
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Good optical glass is carefully annealed to remove most of the residual stress.
Fine-annealed glass, the best commercial grade, has less than 12 nm of residual
birefringence in a 100 mm thickness. In a normal window of perhaps 3–5 mm thickness,
this is usually negligible, but in a large prism it may not be.

Intrinsic birefringence is encountered in windows made of sapphire and some other
crystalline materials. It is often vexing because these windows are usually chosen for a
good physical reason—sapphire has unusually high mechanical strength and unsurpassed
chemical and thermal inertness. Examples are flow cell windows in liquid particle coun-
ters, which may encounter liquids such as hydrofluoric acid (HF) solutions, which rapidly
destroy quartz and glass, or windows in the plasma chambers used for reactive ion etch-
ing. In such cases, we must be grateful that such windows even exist, and make the best
of their optical deficiencies.

Like most common birefringent optical materials, sapphire is uniaxial ( two of its
indices are the same). Its birefringence is fairly small and negative (n⊥ − n‖ = 0.008)
and its index is around 1.8. The phase difference due to randomly oriented sapphire
amounts to a few dozen waves for a typical 3 mm thick window in the visible, which is
large enough to be very awkward. If we just need to get a beam in or out near normal
incidence, we can use so-called c-axis normal sapphire windows, where the optic axis is
normal to the surfaces, and light entering near normal incidence sees no birefringence.
If this is not possible, we must usually choose optical designs that are insensitive to
polarization, or compensate for the polarization error with appropriate wave plates or
other means. Should this be unreasonably difficult, it is often possible (though usually
painful) to use polarization diversity—doing the same measurement at several different
polarizations and choosing the ones that work best. Fortunately, it is now possible to
obtain quartz windows with a thin coating of transparent amorphous sapphire,† which
has the inertness of crystalline sapphire without its pronounced birefringence. There’s
more on these effects beginning with Section 6.3.1.

4.7 FRINGES

The good news about fringes is that they are very sensitive to many different physical
effects—displacement, frequency, temperature, air speed, and so on. Fringes are the basis
of a great many highly sensitive measurements, as we saw beginning in Section 1.6. The
bad news is that they are very sensitive to many different physical effects. The power of
interference fringes to turn small changes into big signals is not limited to the ones we
make on purpose, but extends to all the incidental fringes we create by putting things in
the way of light as it propagates.

4.7.1 Surface Reflections

All surfaces reflect light. An uncoated glass-to-air surface at normal incidence reflects
about 4% of the light reaching it, the proportion generally increasing for higher incidence
angles (depending on the polarization). This leads to problems with stray light, etalon
fringes, and multiple reflections.

†Research Electro-Optics, Inc.
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4.7.2 Etalon Fringes

There are lots of different kinds of fringes, associated with the names of Fizeau, Newton,
Haidinger, Fabry and Perot, and so on. All are useful in their place, all will occur acciden-
tally, and all have baleful effects on measurement accuracy, independent of nomenclature.
The usual informal term for these unloved stripes is etalon fringes . The name should
not be allowed to conjure up visions of beautiful uniform beams blinking on and off as
the length of a carefully aligned Fabry–Perot cavity changes by λ/2—the fringes we’re
talking about are not pretty, not uniform, and usually not visually obvious.

Fringes arise from the linear superposition of two fields. In Chapter 1, Eq. (1.68) shows
that for two beams having the same shape, and whose phase relationship is constant across
them, the combined intensity of two beams is

iAC|peak = 2
√

iLOisig, (4.9)

where iLO and isig are the detected photocurrents corresponding to the two beams individ-
ually, and iAC isthe amplitude of the interference photocurrent (half the peak-to–valley
value). In the case of a single window, etalon fringes arise from the interference of fields
reflected from its front and back surfaces. Their interference causes large modulations
in the total reflectance of the window, which vary extremely rapidly with wavelength
and temperature. If the two reflections are comparable in strength, the net reflectance
varies from twice the sum of the two (16% in the case of uncoated glass) to zero. (Since
T + R = 1 for lossless elements, the transmittance changes from 84% to 100%.) The
magnitude of this problem is not commonly realized, which is part of what gives optical
measurements their reputation as a black art.

Since the size of the fringes depends on the amplitude of the stray reflections, it does
not decrease as rapidly as you might imagine with multiple reflections. A two-bounce
reflection, whose intensity is only 0.16% of the main beam, can cause a 3.2% p-v change
in the reflectance, and even a completely invisible five-bounce beam (i5/i0 ≈ 10−7) can
manage a p-v change of 6 parts in 104 (with a long path length to boot, which multiplies
its sensitivity). In a more complicated system, the possibilities go up very rapidly; the
number of possible five-bounce beams goes as the fifth power of the number of elements.

Example 4.1: Polarizing Cube. Consider an ordinary 25 mm polarizing beamsplitter
cube, made of BK7 glass (nd = 1.517), with a broadband antireflection (BBAR) coating
of 1% reflectance. We’ll use it with a HeNe laser at 632.8 nm. As shown in Figure 4.3, if
the beam is aligned for maximum interference, the peak-to-valley transmission change is
about 4% due to etalon fringes. The cube is 60,000 wavelengths long (120,000 round trip),
so it goes from a peak to a valley over a wavelength change of 4 parts in 106 —0.0026 nm,
or 2 GHz in frequency. If the HeNe has a mode spacing of 1 GHz, then a mode jump
can produce a transmission change of as much as 2.8% from this effect alone. The tem-
perature effects are large as well. BK7 has a temperature coefficient of expansion of
about +7 × 10−6/◦C, and its TC of index is +1.6 × 10−6/◦C. Thus the TC of optical
path length is 8 ppm/◦C. At this level, a 1◦ temperature change will cause a full cycle
fringe shift, and for small changes on the slope of the curve, the TC of transmittance is
π(8 × 10−6)(120, 000)(4%) ≈ 12%/◦C for one element alone. You see the problem—a
1 millidegree temperature shift will make your measurement drift by 120 ppm. Fortu-
nately, we’re rarely that well aligned, but being anywhere close is enough to cause big
problems.
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Figure 4.3. Normal-incidence transmission of a polarizing cube for 633 nm HeNe laser light, as a
function of temperature.

4.7.3 Getting Rid of Fringes

Since we obviously can’t make decent narrowband measurements in the presence of these
fringes, we’ll just have to get rid of them. Two basic strategies are commonly used: get
rid of the fringes altogether, or cause them to smear out and average to some constant
value. There is a long list of approaches people use to do these things, because everybody
has to do them. None of them works that well, so a highly precise instrument usually
relies on a combination of them—wear a belt and suspenders.

Add Strategic Beam Dumps. This sounds like an arms reduction program, but really
it’s like emergency roof maintenance: put buckets in the living room to catch the leaks.
By calculating or finding experimentally where the front-surface reflections go, it is
possible to put an efficient beam dump to catch them. See Chapter 5 for more on beam
dumps—black paint is not usually good enough by itself. The main problem with this
is that if you don’t catch the stray beams before they hit other optical elements, they
multiply in numbers to the point that it is nearly impossible to catch all of them.

Cant the Window. Tipping the element so that the front- and back-surface reflections
are offset laterally from one another can be helpful. If the beam is narrow enough that
the two will miss each other completely, this is a tolerably complete solution, assuming
that there are no higher-order reflections that land on top of each other.

Apply Coatings. Front-surface reflections can be reduced by coating the glass. This is
less effective than we would wish, as we saw in the egregious polarizing beamsplitter
example above. A really good multilayer coating such as a V-coating can reduce Fresnel
reflections to the level of 0.25%, but rarely any further unless the optical materials
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are specially chosen for the purpose. Such coatings are normally narrowband, but it’s
narrowband applications that really need them. V-coating the cube of Example 4.1 would
reduce the slope to a mere 3%/K.

Come in at Brewster’s Angle. Windows and prisms can be used at Brewster’s angle,
so that the p-polarized reflections go to zero. With highly polarized light and great care
in alignment, the reflections can be reduced to very low levels. To reduce the amplitude
reflection coefficient of an air–dielectric interface to less than ε requires an angular
accuracy of

�θ1 < ε
2n1n2

n2 − n1
, (4.10)

so if we require ε = 10−3 (reflectivity = 10−6) for a glass–air interface, we find that
the incidence angle must be within 9 milliradians, or about 0.5 degree. Since the
s-polarization reflection coefficient is

rs |θB
= n2

2 − n2
1

n2
2 + n2

1

, (4.11)

which is larger than the normal incidence value, the polarization must be really pure.
With fused silica, rs = 13.8%, rising to 27.9% for a flint glass with n = 1.8.

The other advantage of Brewster incidence is that the residual surface reflection goes
off at a large angle, where it can be controlled easily. For a prism, it is more important
to control the internal reflection than the external one, because you usually can’t put
a strategically placed absorber inside an optical element. Thus if you have to choose,
AR coat the entrance face and put the exit face at Brewster’s angle. You will have to
accept the residual stress in the prism causing slight polarization funnies. Brewster angle
incidence is never quite what it promises to be.

Cement Elements Together. Elements whose refractive indices are similar can
be cemented together, which reduces the surface reflections. If the match is good, for
example a plano convex lens and a prism made of the same glass, or a colored glass
filter (n ≈ 1.51–1.55) and a BK7 window, the reflections can be reduced by factors of
100 or more. Another convenient feature is that when the two indices are closely similar,
Brewster’s angle is 45◦, which is often a convenient incidence angle to work at.

Remember that the cement has to be index-matched as well! If the cement has an index
midway between the two glass elements, the reflectivities are reduced by an additional
factor of 2 on average, but anywhere in between is usually fine. Index oil can be used
in lab applications; it comes in standard index increments of 0.002 and can be mixed
or temperature controlled to better accuracy than that. Note its high dispersion (see
Figure 4.1) and high TCN.

Use Noncollimated Beams. By using a converging or diverging beam, all interfering
beams will be in different states of focus. This leads to lots of fringes across the field,
so that the average reflectance is stabilized. The average interference term drops only
polynomially with defocus, even with Gaussian beams, so more may be needed. With
careful design, a reflection can be eliminated by bringing it to a focus at the surface
of another element, and placing a dot of India ink or opaque there to catch it—baffle
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design in its minimalist essence. Remember the astigmatism, spherical aberration, and
chromatic aberration caused by putting windows in nonparallel light. (Note: Parallel
includes collimated but is more general; it refers to any place where the image point is
at infinity.)

4.7.4 Smearing Fringes Out

Use Canted Windows and Low Spatial Coherence. Sometimes the beam is wide,
the element thin, or the allowable tilt small, so the reflections won’t miss each other
completely. Nonetheless, if the spatial coherence of the beam is low enough, canted
windows can still be useful. If the reflections are laterally separated by several times
λ/NA, where NA is the sine of the minimum divergence angle of the beam at the
given diameter, the fringe contrast will be substantially reduced. This works well for
narrowband thermal light such as a mercury line.

Use Time Delays and Low Temporal Coherence. The same trick can be played
in time. Fringes can be smeared out by taking advantage of the limits of your beam’s
temporal coherence, with a window several times c/(n�ν) thick, so that the different
optical frequencies present give rise to fringes of different phase, which average to near
zero (for narrowband sources, this will not be your thin delicate window). Do remember
the coherence fluctuation problem too.

Modulate the Phase. If the source is too highly coherent, etalon fringes can be
reduced by wobbling the window or the beam rapidly, as with rotating wedge prisms or
rotating diffusers, so that fringe motion is large and rapid compared to the measurement
time. Unless this is done really well, it is less effective than it looks. The strength of
the fringes depends on the time autocorrelation of the field at a delay corresponding to
the round-trip time. If the phases of the two are being varied continuously but slowly
compared to optical frequencies, what we get is fringes moving back and forth.

The kicker is that these fringes won’t in general average to zero. For instance, take a
triangle wave phase modulation of ±10.5 cycles, where the unmodulated fields exhibit
a bright fringe. Over a modulation cycle, the pattern will traverse 20 bright fringes and
21 dark ones, so that the average fringe amplitude is down by only a factor of 20. If
the amplitude changes by 5%, to 10.0 or 11.0 cycles, the average fringe amplitude is
0—assuming that your measurement time is an exact multiple of the modulation period.

Modulate the Frequency. Another way of applying phase modulation is to tune the
source wavelength rapidly (e.g., current tuned diode lasers). For modulation slow enough
that the entire apparatus sees nearly the same optical frequency, this is nearly the same
as the previous case, except that the range of phase shifts attainable is usually lower due
to the limited tuning range of inexpensive diode lasers.

If the tuning is fast with respect to the delay between the reflections, the two reflections
will be at a different frequency most of the time. Since the average frequencies of the
two are the same, if the laser is turned on continuously the two instantaneous frequencies
have to be the same twice per cycle of modulation (a stopped clock is right twice a day).
The autocorrelation thus falls off more slowly than you might hope as the modulation
amplitude increases, but nevertheless, this is a very useful trick, especially since by
adjusting the modulation frequency and phase, you can put an autocorrelation null at the



158 LENSES, PRISMS, AND MIRRORS

position of your worst reflection. It is especially good in reducing another etalon effect:
mode hopping from diode lasers used in situations where backscatter is unavoidable.
(Gating the laser can also improve matters sometimes.)

Put in a Wedge. Fringes are tamer if the two beams are not exactly collinear. Replacing
the parallel surfaces with wedged ones makes sure this will be the case, leading to fringes
of higher spatial frequency. These fringes will average out spatially if a large detector or
a spatial filter is used. If there is enough space available, or the angle can be made large, a
simple baffle will separate the two reflections completely. The key to this trick is to make
sure that there is no low-spatial frequency component in the fringe pattern. Interference
between two unvignetted Gaussian beams is an excellent example; the integral over the
detector of the interference term goes to zero faster than exponentially with angular
offset.

Allow the beams to be vignetted, or use less smooth pupil functions (e.g., uniform), and
all bets are off. Since the pupil function and the vignetting both enter multiplicatively, they
work like a frequency mixer in a superhet radio, moving the energy of your harmless high
frequency fringe down toward 0, defeating the spatial averaging. Detector nonuniformity
is also a problem here. Nonetheless, if this strategy is carefully applied, rejection on the
order of 104 (electrical) is easily possible.

4.7.5 Advice

You will note that all of these strategies require care, and that all will become less
effective very rapidly as the number of optical surfaces becomes larger, or their spacing
smaller. Keep your system as simple as possible and, in an instrument where high stability
is needed, be prepared to sacrifice aberration correction, which multiplies the number of
surfaces. It is usually preferable to make a measurement at half the spatial resolution
with 103 times better stability.

In a monochromatic system, eliminate all closely spaced, parallel planar surfaces,
cement things together a lot, and use mirrors rather than prisms for beam steering.

4.8 MIRRORS

4.8.1 Plate Beamsplitters

These useful devices are just windows with an enhanced reflection coating on one side
and often an antireflection coating on the other. They were once made with a very thin
(10 nm or less) coating of metal on a glass plate, but such coatings are very lossy and
so are no longer widely used. Good beamsplitters use a half-wave stack coating instead.
Their problems are the same as those of windows, and the treatment is similar as well.
They are available in a wide range of splitting ratios, from 90:10 to 10:90, with a very
rough 50:50 being most common.

Beamsplitters are often used to allow illumination and viewing along the same optical
path, as in microscope vertical illuminators. In that case, the light encounters the beam-
splitter twice, once in reflection and once in transmission. The optimal efficiency is only
25% and occurs with a 50:50 beamsplitter. This maximum is very flat; 60:40 and 40:60
both give you 24%, and even 80:20 gives you 16%. Thus the poor accuracy of the 50:50
beamsplitter is not much of a worry.
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Beamsplitters are always polarization sensitive. Polarizing plate beamsplitters are
available at wavelengths of common high power pulsed lasers: 694 nm ruby and 1064 nm
Nd:YAG. The cement used in polarizing cubes is easily damaged by high peak powers.
These rely on multilayer λ/2 stacks oriented near Brewster’s angle, so that one polar-
ization is passed nearly completely and the other nearly completely reflected. In these
devices, the transmitted beam is much more thoroughly polarized than the reflected one.

A dielectric plate inserted in a converging wave produces significant spherical aber-
ration and, for off-axis points, astigmatism and coma as well (see Section 9.4.1). Either
use the first-surface reflection for imaging, and illuminate in transmission, or put the
beamsplitter before the objective lens, where the NA is low.

4.8.2 Pellicles

A pellicle is a plate beamsplitter on a diet. It consists of a 2–5 μm thick membrane
(typically made of nitrocellulose) stretched across a very flat metal ring, sometimes
coated. A pellicle is sufficiently thin that (at least in transmission) the aberrations it
introduces are small enough to ignore. It is surprisingly robust mechanically, providing
nothing actually hits the membrane.

Pellicles reduce the drift due to etalon fringes by making the etalon very thin, so that
the fringe period is large, and its variation with temperature relatively slow. This works
well enough for moderately narrowband sources, such as mercury tubes; with lasers, it
may or may not, depending on your accuracy requirements. In fact, with broader band
sources, pellicles tend to be a nuisance, as their broad fringes make the transmission
nonuniform on the scale of thousands of wave numbers (hundreds of nanometers wave-
length). Their main benefit in white-light systems is that they essentially eliminate ghost
images due to the two reflecting surfaces.

Pellicles are not very flat—1 wave/cm typically, far worse than a decent plate beam-
splitter. What’s more, pellicles are very sensitive to vibration and air currents, which
make them deform. A deformed or vibrating pellicle will not reflect a faithful replica
of the incident wavefront; the transmitted beam is almost unaffected by the vibration
but still suffers from the nonuniformity. The reflection from a pellicle is strongly angle
dependent, varying from about 16% to 0% with angle and wavelength. Cleaning pelli-
cles is difficult—you obviously can’t use compressed air or lens paper, but in addition,
nitrocellulose softens in ethanol. You can get away with detergent and deionized water
or with isopropanol. As with gratings, it’s best not to get pellicles dirty in the first place.

4.8.3 Flat Mirrors

Flat mirrors are conceptually the simplest optical elements available and often are the
simplest to use, as well. Excellent quality mirrors are available at low cost, for a wide
range of wavelengths, and from many suppliers. There are three main dangers in using
them: neglect, leading to underspecifying or careless mounting; worst-case design, which
although commendable in most fields, is something of a vice in optical systems, since
it leads to very expensive overspecification; and blunders such as thumb prints. Mirrors
are often more sensitive to contamination than lenses and more difficult to clean. Mirror
coatings are discussed in detail in Section 5.2.

Some situations require high surface quality in mirrors: interferometers, flying-spot
systems, and the best quality imaging systems are examples. Even there, however, there
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are lots of places in the system where the best mirrors are not needed. Before the
two beams of an interferometer have been split, and especially after they have been
recombined, the precision required of the mirrors is less than that of the end mirrors
of the interferometer arms. Mirrors made of ordinary float glass (as used in domestic
windows) are flat to better than 1 wave per cm of diameter. These very inexpensive
mirrors are good enough to pipe light into detectors, for example. If there are more than
a few mirrors in use, the total photon efficiency starts to drop dramatically if ordinary
protected aluminum is used. Depending on how valuable your photons are, you may
be much better off buying more expensive mirrors (or at least more expensively coated
ones) if you can’t simplify your optical system.

4.9 GLASS PRISMS

Glass prisms are used for dispersing light into its color spectrum, but most often for
beam bending and image erection, both of which usually involve internal reflections off
one or more faces of the prism. These reflections can be of two sorts: total internal
reflection (TIR), in which the light hits the face at an incidence angle greater than the
critical angle; or an ordinary reflection from a mirror-coated surface. Which of the two is
superior depends on the application. TIR prisms are often used because their efficiency
is superior to that of any mirror coating (provided the entrance and exit faces of the
prism are AR coated sufficiently well, and the TIR face is really clean). Mirror coatings
such as silver or aluminum are used in applications where the TIR condition is violated,
where the reflecting surface cannot conveniently be kept clean, or where the phase and
polarization shifts on total internal reflection are unacceptable. Some of the more common
types of glass prism are shown in Figure 4.4.

4.9.1 Right-Angle and Porro Prisms

Right angle prisms are used for bending a beam through roughly 90◦ as in Figure 4.4a.
Their performance is similar to a simple mirror oriented parallel to the hypotenuse of

(e)(d)

(c)

(b)(a)

Figure 4.4. Types of glass prisms: (a) and (b) right angle, (c) Dove, (d) penta, and (e) Littrow.
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the prism. Light enters normal to one face, bounces off the hypotenuse (either through
total internal reflection or by means of a mirror coating), and exits through the other
face. This arrangement is commonly used in microscopes, where prisms are more easily
aligned and cleaned than mirrors, and where the high efficiency and spectral flatness of
TIR reflectors or metallic silver coatings is important. Another advantage of prisms for
microscopes is that the bulky optic is mostly inside the optical path, whereas the thick
substrate of a mirror is entirely outside it. This makes a prism system mechanically more
compact, an important attribute of parts that must slide in and out of the optical path.

The other way of using a right angle prism is shown in Figure 4.4b, which is the
typical operating mode of the Porro prism (which is just a gussied-up right angle prism).
Here the beam is reflected through 180◦ in one axis and undeviated in the other. The 180◦

angle is constant irrespective of rotations of the prism about an axis coming out of the
page. This property is purely geometrical—the 180◦ is made up of two 90◦ reflections
that add; rotating the prism through an angle φ will decrease the effect of the first
reflection by φ while increasing the second one by exactly the same amount. Even the
surface refraction cancels out, since the light emerges through the hypotenuse at exactly
the same angle it entered at.

Porro prisms have a big enough incidence angle for TIR, so they are usually uncoated.
There is a polarization shift on TIR, since the s and p polarizations have different phase
shifts. Porro prisms are usually used in L-shaped pairs, one for up–down reversal and
one for left–right, so as to produce an erect image. Provided that the prisms are at right
angles to one another, s polarization for one bounce is p for the other, so the polarization
shift cancels out.

Right angle prisms have one major pathology, which is the one that runs through this
chapter (and much of the first part of this book in fact): severe etalon fringes due to the
coincidence of the incident light and the front-surface reflections. We all have a natural
desire for the beam path to be as simple as possible, without complicated alignment at
odd angles. Unfortunately, this desire leads to lots of collimated beams and perpendicular
surfaces, which makes for lots of etalon fringes. It is thus in direct conflict with our other
natural desire, namely, to have our gizmos work when they’re done.

4.9.2 Dove Prisms

The Dove prism is an image rotating prism, which also inverts the image left–right. It
is a cylinder of square cross section and has faces cut at Brewster’s angle to its central
axis. Light propagating along the axis is refracted at the faces, bounces off one side, and
exits through the other face, being refracted back to axial propagation in the process.
If the prism is rotated about its axis, the image rotates at twice the speed of the prism.
Interestingly, the polarization of the light does not rotate—it stays more or less the same
(see Section 6.2.4 for why). Because of the two symmetrical refractions, there is no
angular chromatic aberration, as in a simple prism, but there is lateral —different colors
emerge moving in parallel directions but offset laterally from each other.

4.9.3 Equilateral, Brewster, and Littrow Prisms

An equilateral prism is commonly used for spectral dispersion. For use with polarized
light, employment of a Brewster prism, in which the light enters and leaves near Brew-
ster’s angle, is generally superior. A Littrow prism Figure 4.4(e) is one in which the light
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enters at Brewster’s angle and is reflected at normal incidence from the second face of
the prism. Light of a certain wavelength thus returns along the path of the incident light,
with other wavelengths dispersed on one side or the other. Such a prism is nice because it
avoids having the beam direction pass through inconveniently arbitrary angles, and leads
to a compact light path with few bends. Such prisms are commonly used as cavity mirrors
in argon ion lasers. The laser can oscillate only at the wavelength at which the light path
retraces itself. Littrow prisms are not particularly vulnerable to etalon fringes, because
the front-surface reflections go off at large angles. The residual external reflection can
be got rid of easily with a beam dump, and the internal one controlled with a patch of
black wax or other index-matched absorber placed where it hits the prism surface.

There are several types of compound dispersing prisms, of which the Amici prism
is representative. It has alternating triangles of high and low dispersion glass cemented
together, oriented like the teeth of a bear trap with the low dispersion prisms forming
one row of teeth and the high dispersion ones the other. This allows multiplication of the
dispersing power without the beam having to go in circles. The cemented construction
allows the internal surfaces to work near grazing, for high dispersion, without the large
surface reflections and sensitivity to figure errors. Such high dispersion prisms have been
superseded almost entirely by diffraction gratings, except in oddball applications where
polarization sensitivity or overlap of grating orders is a problem and the linearity of the
dispersion is not critical.

4.9.4 Pentaprisms

A pentaprism (Figure 4.4(d)) is an image erecting prism that maintains a constant 90◦

deviation between incoming and outgoing rays, independent of their incidence angle. The
physical basis of this is two reflections in one plane, as in the porro prism. The beam
undergoes two reflections from mirrors that are at an accurate 45◦ to one another (as
shown in Figure 4.4d). Unless the prism is made of a very high index material (n > 2.5 or
so), the steep incidence angle makes TIR operation impossible, so the reflecting faces are
normally silvered. The entrance and exit facets are both normal to the beam direction,
so pentaprisms produce etalon fringes but don’t exhibit much chromatic distortion in
parallel light. (See Section 4.10.)

4.9.5 Other Constant-Angle Prisms

There’s nothing special about 90◦ or 180◦ as far as constant deviation prisms are
concerned—the only requirement is to have two reflections from surfaces rigidly held
together. To make a 60◦ constant deviation, for example, you can use a 30-60-90 degree
prism. Send the beam in near normal to the short face. It will bounce off the hypotenuse
(by TIR) and the long side, then exit through the hypotenuse at normal incidence, devi-
ated by 60◦ exactly. The incidence angle on the long side is only 30◦, so it must be
silvered unless n > 2.0.

4.9.6 Wedges

A wedge prism is used for performing small deviations (up to perhaps 20◦) in the pointing
of a beam. Two such identical wedges mounted coaxially and independently rotatable
can be used to point a beam anywhere in a cone of 40◦ half-angle (except for a small
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zone around 0◦, caused by the inevitable slight mismatch between the angles of the two
prisms). This adjustment is considerably more compact and robust than a reflection from
two mirrors, but is somewhat less convenient to adjust and (like all refracting devices)
more prone to etalon fringes.

The tendency to produce fringes is better controlled in wedge prisms than in most
other refracting devices, since the surfaces are not parallel and the surface reflections can
often be isolated by applying black wax or other index-matched absorbing material in
strategic locations, or merely by making sure that none even of the high-order surface
reflections can reenter the main optical path.

4.9.7 Roof Prisms

Most of the standard prism types are occasionally modified by replacing one face with
a roof —a pair of surfaces at 90◦ to one another. The effect is identical to cementing a
right angle prism, hypotenuse-first, on top of the standard prism: an additional left–right
inversion takes place. The most common type is the Amici roof prism, which is a right
angle prism with a roof. It has the useful property of reflecting a beam through 90◦

without inverting it left-to-right. In imaging applications, the roof prism must be made
very carefully, because the ridge of the roof appears right in the middle of the field of
view; any imperfections will be quite obvious.

4.9.8 Corner Reflectors and Cats’ Eyes

A corner reflector (aka corner cube or retroreflector) is a constant 180◦ deviation prism.
These useful devices come in two varieties: hollow ones, which are built up from three
flat mirrors accurately perpendicular to one another, and solid ones, which are ground
from a block of glass. They have the threefold symmetry of a cube about its body
diagonal, but since the beam comes in and out at opposite sides, the optical symmetry is
sixfold—looking into the corner cube, you see your own eye cut by six radial segments
like an equatorial slice of an orange.

Solid retroreflectors may use TIR or may be coated with metal. The hollow ones tend
to work better (stock items are available with 2 arc seconds tolerance, vs. 20 to 50 for
solid). Solid ones have poorer transmitted beam quality and suffer from etalon fringes
and multiple reflections; those that rely on TIR also cause large polarization shifts. On
the other hand, solid retroreflectors are considerably easier to clean, very rugged, and can
be used as a vernier adjustment of polarization by rotating them slightly. The polarization
changes where the beam crosses a segment boundary, and the shift is big enough to cause
weird apodizations in polarizing applications. The phase is also not continuous across
the boundary, which will mess up focused or interferometric measurements. The net of
all this is that corner cubes work great, but if you want to do anything fancy with the
returned beam, it has to fit completely within one of the six 60◦ orange segments. It
follows that the displacement of the returning beam axis has to be at least two beam
diameters or so.

A retroreflector successively inverts kx , ky , and kz of the incoming beam on each reflec-
tion. The amplitude profile is reflected through the axis of the cube, and kout = −kin. For
collimated beams, this is identical to the action of a cat’s eye —a lens with a mirror sur-
face at its focus. It is different for converging or diverging beams, of course, since the back
focus of the lens arrangement is reimaged at the back focal plane, whereas the retrore-
flector looks like a free-space propagation, so that the light would converge or diverge
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considerably before returning. This approximate equivalence is useful in building focused
beam interferometers such as the ISICL sensor of Example 1.12. With a lens in one arm
and a corner reflector in the other, no fine alignment is necessary, apart from collimation.

4.9.9 Beamsplitter Cubes

A beamsplitter cube works the same way as a plate beamsplitter, except that the reflective
coating is deposited on the hypotenuse of a right angle prism, and another one is cemented
on top of it, forming a cube with a reflective surface at its diagonal. They are most
commonly polarizing, so that one linear polarization is reflected and the other transmitted,
similarly to the polarizing type of plate beamsplitter.

Cube beamsplitters are very widely used, much more widely than their merits deserve.
The advantages of the cube, namely, no beam deviation and easy mounting, are nowhere
near sufficient to make up for the deficiency we saw in Example 4.1: severe etalon fringes
in both the transmitted and reflected beams. If you do laser-based measurements, these
infernal devices will make your life miserable.

On the other hand, with broadband sources and low spectral resolution, etalon fringes
are not normally a problem, so cubes are a good choice. Even with lasers a bit of tweaking
can help; if your beams are narrow, canting the cube slightly will help by making the
reflections miss each other laterally, but you can’t go too far or the polarization quality
degrades badly. For experiments where you want good polarization and don’t mind
tweakiness, a cube mounted on a three-axis tilt table (such as a small prism table)
can often be adjusted to give polarization purity of 1 part in 105 or even better in the
transmitted beam.

Relaxing the requirement for no beam deviation can improve matters quite a lot more.
If the faces are polished at an angle of a few degrees to one another, much better control of
the reflections can be achieved. Such near-cubes are not catalog products, unfortunately,
but can be synthesized for lab purposes by removing the coating from one or two faces
and attaching wedge prisms with UV epoxy or index oil. There is only a very small
index discontinuity at the surface, so the repolished surface doesn’t have to be perfect,
making hand work feasible if you don’t have an optical shop.

Like all reflection type polarizers, polarizing cubes have problems with the polarization
purity of the reflected light; more on that appears in Chapter 6.

4.9.10 Fresnel Rhombs

In Section 1.2.6 we saw that beyond the critical angle, the reflection coefficients of p-
and s-polarized light both have magnitude 1 but have different phases, and that the phases
depend only on n and θi , as given by (1.15),

δ = δs − δp = −2 arctan

⎡
⎢⎣cos θi

√
sin2 θi − n2

2/n2
1

sin2 θi

⎤
⎥⎦ . (4.12)

To get a 90◦ retardation requires that n2/n1 > 1/(
√

2 − 1) = 2.41, which while not
impossible is inconveniently high. A Fresnel rhomb, shown in Figure 4.5, does the
trick by using two TIR reflections from a glass–air interface to produce an achromatic
quarter-wave retarder.
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Figure 4.5. The Fresnel rhomb functions as an achromatic quarter-wave retarder.

Retarders in general are discussed in Section 6.9, but briefly, a quarter-wave retarder
can be used to change linear into circular polarization and back again. Most retarders
produce phase shifts by time delaying one polarization with respect to the other, so that the
retardation depends strongly on the wavelength. Fresnel rhombs do not, so that apart from
material dispersion, their phase retardation is constant with wavelength. This property
makes them unique. The two reflections make this another constant-deviation prism—0◦

this time. Two rhombs cemented together like a V make an achromatic half-wave retarder
with no beam deviation.

The retardation of a rhomb depends mildly on field angle, though less than that of
a birefringent retarder (since when one angle goes down the other goes up). The main
problem is the the long path length in glass. A 10 mm aperture rhomb made of BK7 has a
path length in glass of (10 mm)(2 sec(54◦

) ) = 34 mm, so that material nonuniformities
produce retardation variations and phase wiggles across the aperture. Big rhombs are
thus less accurate than other retarders for narrowband applications, besides being heavy.

4.10 PRISM PATHOLOGIES

Glass prisms are pretty trouble-free devices. They share the normal problems of any
thick piece of dielectric, namely, residual birefringence, material nonuniformity, and
etalon fringes. In polychromatic measurements, chromatic effects are also important.

A thick piece of glass is not as uniform as an air space of the same size, so that the
waveform quality is poorer. Apart from polarization funnies, a prism has the same effect
on an image as a window whose thickness is the length of the optical path inside the
prism, unfolded (see Section 3.11.15). If the entrance and exit angles from the prism are
not equal, the equivalent window has a wedge angle as well. Reflecting prisms such as
pentaprisms and Fresnel rhombs can unfold to a very long path in glass. This means,
for example, that a pentaprism placed in a converging or diverging beam will introduce
large amounts of spherical aberration if care is not taken.

A big chunk of dispersive dielectric will cause lots of chromatic aberration if either
the entrance and exit angles are different or the incident light is not parallel (focused at
infinity).

4.11 LENSES

The sign conventions used in lens design are simple, but tend to be hard to remember,
because they are completely arbitrary. Here are the four rules.
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Sign Conventions in Lens Design

1. The object is at the extreme left of the drawing, and the image at the right (not so
for mirrors of course).

2. The radius of a curved surface is positive if it is convex toward the left.

3. Distances along the direction of ray propagation are positive. If the ray would have
to back up to get from the object to the lens or from the lens to the image, the
distance is negative. Both do and di are positive when the image is real (true also
for mirrors).

4. Phase increases with extra propagation distance; a ray that has to travel further
than it should to get to a reference surface has a more positive phase, and so a
positive aberration coefficient.

Glass lenses have been used for over a thousand years, since transparent glass became
available. The fact that useful lenses could be made in the early days of glassmaking
is an excellent indication of their forgiving qualities; for such precise artifacts, lenses
are remarkably hard to get wrong. The main danger to the beginner is getting the signs
backwards.

A lens images one space (the object space) into another, the image space. Since light
propagation is time-reversal symmetric, lenses work fine backwards too; thus the choice
of which is the object and which the image is somewhat arbitrary, so the two are often
lumped together as conjugate points , or just conjugates . We covered the paraxial thin
lens case in Section 1.3; here we go into the more general case.

4.11.1 Thin Lenses

The simple lens, usually made of glass and having spherical surfaces, is the most use-
ful basic optical component. Although they are not in themselves adequate as imaging
devices, except well into the infrared or at very low numerical aperture, they can be
built up into lens systems that perform remarkably well. The simplest approximation to
what a lens does is the thin-lens approximation , where the total thickness of a lens is
vanishingly small. How thin is thin in real life? The thickness of the lens has to be small
compared to the depth of focus of the beam you’re using,

d <
λ

NA2 , (4.13)

so that not knowing just where the ray bending is really going on doesn’t affect the
results.

A thin lens is characterized by its focal length f or equivalently by its power P ,
which is 1/f . If its radii of curvature are r1 and r2, it has a focal length f (in air) given
by the so-called lensmaker’s equation ,

1

f
= (n − 1)

[
1

R1
− 1

R2

]
. (4.14)

From the rules in the text box, both radii are measured from the right side of the
lens, so that for a biconvex lens r1 is positive and r2 negative; thus they both contribute
positive power in (4.14). The powers of thin lenses placed in contact add.
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Figure 4.6. A thick lens acts like a thin lens, but operating between the principal planes . In the
thin-lens limit, the principal planes collapse at the center of the lens. (Adapted from Kingslake.)

This approximation is convenient for initial layout of an optical system, but the effects
of thickness must be put in before the real optomechanical design is done; the condition
(4.13) is extremely stringent, requiring that a 1 mm thick lens of 10 mm diameter have
a focal length f � 800 mm when used with a collimated red HeNe beam.

4.11.2 Thick Lenses

Fortunately this ferocious restriction can be got round easily; Gauss himself recognized
that a lens of finite thickness has imaging properties very similar to those of a thin lens,
except for the location error, and that this error can be eliminated by splicing in a small
section of hyperspace, as shown in Figure 4.6†.

The planes P1 and P2 are the principal planes of the lens and intersect the lens axis at
the principal points . Notionally, a paraxial ray coming from the left is undeviated until it
hits the first principal plane P1. It is then magically translated to P2 at exactly the same
lateral position (height) and then bent as if a thin lens of the same focal length were at P2.
The focal points F1 and F2 are the front and back foci, respectively. The axial distance
from the left vertex of the lens to F1 is the front focal distance or working distance, and
that from the right vertex to F2 is the back focal distance (also confusingly called the
back focus). These are what you’d measure with a caliper and are tabulated by the lens
manufacturer. The back focus is nearly always less than the focal length (BF < FL).

If the refractive indices of the media on both sides of the lens are the same, then
f1 = f2. If not, the Lagrange invariant (see Section 9.2.9) can be used to show that
n1/f1 = n2/f2.

The lensmaker’s equation can be generalized to the case of a single thick lens;

P = 1

f
= (n − 1)

[
1

R1
− 1

R2
+ t

n

n − 1

R1R2

]
, (4.15)

where t is the thickness of the lens, measured from vertex to vertex. The front and back
focal distances are

WD = f1

[
1 − t (n − 1)

nR1

]
(4.16)

†Rudolf Kingslake, Lens Design Fundamentals . Academic Press, Orlando, FL, 1978, p. 49.
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and

BF = f2

[
1 − t (n − 1)

nR2

]
, (4.17)

and the separation 2δ between the principal planes is

2δ = t + BF − WD = t (n − 1)

n
. (4.18)

It is reasonable to take the center of the lens to be halfway between the front and
back foci.

The axial distance from the vertex of a surface to its rim is called the sagitta or sag
for short. The same term is used for an off-axis point, but there it is not the sag of the
surface but the sag of that point, so confusion seldom arises. For a spherical surface of
radius R and element diameter d,

sag = R

[
1 −

√
1 − d2

2R2

]
≈ d2

4R
. (4.19)

Example 4.2: Biconvex Lens. Consider a 100 mm f /4 symmetrical biconvex lens
(25 mm diameter), made of BK7. From the lensmaker’s equation, R1 = 200(1.517 − 1)

= 103.4 mm. Over a 25 mm diameter, each surface will have a sag of about 252/(412)
or 1.5 mm. If we leave 1 mm edge width, then t ≈ 4 mm. If we take that thickness,
then the thick-lens equation gives us (in units of meters and diopters)

10 diopters = 0.517

[
2

R
+ 0.004(0.517)

1.517R2

]
, (4.20)

where the second term is expected to be a small perturbation. We can either use the
quadratic formula or just use the approximate value of 0.1034 m we got before to plug
into the correction term; either way, we get R = 104.7 mm. Since the refractive index is
uncertain at the level of ± 0.002, and most of the time the tolerance on focal length is
a couple of percent, the iterative method works fine. Note also that we have discovered
a useful rule of thumb: for glass of n = 1.5, the surface radii are equal to f for an
equiconvex lens (f /2 and ∞ for a plano-convex).

Note that the temperature coefficients of index and of expansion (both positive) fight
each other in (4.15); as T increases, the radii, thickness, and index all normally go up.
This is in contrast to what we saw earlier for the temperature coefficient of optical path
length. Since the net effect can be made positive or negative, it is possible to athermalize
even a single element lens, so its focal length is nearly constant with temperature. Of
course, the mounting and other mechanical parts must be considered in an athermalized
design.

A thick lens can easily be put into the ABCD matrix formulation. Consider a thick
lens of focal length f whose principle planes are at ±δ. The ABCD matrix for this is
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composed of a thin lens L(f ) with a (negative) free-space propagation operator Z(−δ)

on each side:

LT (f ; δ) = Z(−δ)L(f )Z(−δ) =

⎡
⎢⎢⎣ 1 + δ

f
−

(
2δ − δ2

f

)
− 1

f
+ δ

f

⎤
⎥⎥⎦ (4.21)

One subtle but important point: you might think that the symmetry of the operator
form in (4.21) would mean that the lens can be put in backwards without any problem,
but that isn’t so. For an asymmetric lens, the front and back focal distances are different,
so putting the lens in a mount backwards will move the center of the lens, and so cause
a focus shift. It also changes the aberrations. This somewhat subtle effect leads to a
huge gotcha if the lens is nearly, but not quite, symmetric; the asymmetry may not be
immediately obvious, leading to blunders in assembly.

4.11.3 Fast Lenses

A lens with a short focal ratio (diameter/focal length) produces a bright image, due to
concentrating light from a large angular range. In photographic applications, this allows
a short exposure time, so that the lens is said to be fast . Fast lenses bend rays sharply,
for which they need highly curved (steep) surfaces. Unfortunately, aberrations increase
rapidly with increasing incidence angles of the rays; making a fast lens with good image
quality is challenging. A rule of thumb to minimize spherical aberration is to minimize
the maximum incidence angle of any ray on any surface. Thus when using a single
element lens to focus a beam, use a plano-convex one with its flat side toward the focus.
Use a double-convex lens for 1:1 imaging, and a meniscus lens in a converging beam.

Aside: Short and Fast. If you’re wondering why we bother with fast and short instead
of, say, large, it’s another one of those historical quirks. A rather slow lens whose focal
length is 8 times its diameter is said to be an f /8 lens, pronounced “eff eight.” The
aperture rings of camera lenses just say “8.” People who think this is 1/8 would say
that the ratio is small, while those who think it’s 8 would say it was large. Everybody
knows what fast and short mean—fast exposures and a short focal length for the lens
diameter. Increasing and reducing the aperture with a diaphragm are always known as
opening up and stopping down , also from camera lore; the detentes on an aperture ring
are known as stops and go in integral powers of

√
2: 1.4, 2, 2.8, 4, 5.6. . .. Doubling the

aperture would be “opening up 2 stops.” Don’t confuse this with the other use of stop,
as in field stop and aperture stop —this could get muddled, since when stopping down
the aperture, you’re adjusting the aperture stop.

4.11.4 Lens Bending

The lensmaker’s equation shows that the power of a lens can be distributed between the
two surfaces by increasing one radius while decreasing the other. This procedure is called
lens bending and leads to lenses of the sorts shown in Figure 4.7. Lenses of different
types have identical paraxial properties, but their aberrations differ when the focal ratio
is shorter. Lens bending is the most important degree of freedom in lens design.
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(d) (f)(e)(c)(b)(a)

Figure 4.7. Lens types: (a) double convex, (b) plano-convex, (c) positive meniscus, (d) double-
concave, (e) plano-concave, and (f) negative meniscus.

4.11.5 Dependence of Aberrations on Wavelength and Refractive Index

A single element 1-inch f /2 glass lens bent for minimum spherical aberration has about
10 waves RMS error at 588 nm. If it had an index of 4, that would be 1 wave; at 10.6
μm, it’s 0.05 waves—diffraction limited.† The time-delay differences between different
components do not change with wavelength, apart from dispersion, but as the wave-
length gets longer, these differences become small compared to a wavelength, which is
what diffraction limited means. Another way of looking at it is that as λ increases, the
diffraction spot grows until it eventually dwarfs the geometric errors.

4.11.6 Aspheric Lenses

Because of the limitations of simple spherical lenses, it is natural to consider two possi-
ble ways of improving their performance: using them in combination, and relaxing the
seemingly astrological constraint of spherical surfaces. Aspheric lenses can indeed per-
form better than simple spheres, and in low precision applications such as condensers, or
large volume applications such as disposable cameras (where the lenses are made by a
sophisticated plastic-over-glass molding process), they can be an excellent solution. The
plastic-over-glass approach minimizes problems with the temperature coefficient and poor
transparency of the plastic. Aspheric lenses are also commonly made by hot-pressing a
few waves of asphericity into a glass preform (Corning) and by a sol-gel process based on
tetramethyl orthosilicate (TMOS), which can be turned into a gel consisting of pure silica
and then cured and baked to make it fully dense (Geltech). One-off custom aspheres are
difficult to make and so are too expensive for most purposes. Molded glass aspheres can
have good optical performance (e.g., a single element 4 mm 0.55 NA laser collimating
lens (Corning 350160) with λ/20 RMS wavefront error—a Strehl ratio of around 0.95).

It is not really that a particular asphere is so very awkward to fabricate, at least not
more so than another one; rather, what is at work is the strong tendency of any surface
being polished to become spherical. This tendency is largely responsible for the fact that
a small optical polishing shop producing components with surface accuracies measured
in nanometers usually looks rather lower tech than an auto garage. The precision comes
from the lens grinder’s skill, the ease of testing the particular property sought (i.e.,
focusing), and from the surface’s own seeming desire for sphericity.‡

Making aspheric lenses or mirrors requires resisting this desire, either by generating
the surface with computer numerically controlled (CNC) diamond machining, or by

†McGraw-Hill Encyclopedia of Lasers and Optical Technology , p. 530.
‡Large optical shops nowadays have big surface generating machines that can polish many lenses at once.
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nonuniform grinding and polishing, combined with iteration after iteration of polishing
and careful interferometric measurement using a precisely made null corrector. Both
procedures are expensive, and diamond machining has the additional disadvantage that
the tool marks left behind tend to scatter large amounts of light when the element is used
with visible light (it is much less of a problem in the IR).

4.11.7 Cylinder Lenses

The most common type of asphere is the cylindrical lens. These are widely available and
relatively inexpensive, but their optical quality is notoriously poor. Grinding a lens with
one accurately circular cross section and one accurately rectangular one is nontrivial.

Few applications of cylindrical lenses really require high accuracy, fortunately. Cylin-
ders are often used as light buckets, directing light to a slit, as in a spectrograph, or to a
linear photodiode array. Their one common, moderate accuracy application is in anamor-
phic pairs for correcting gross astigmatism or distortion, as in diode laser collimators; a
better choice for this application is the combination of anamorphic prisms and controlled
misalignment of the collimator. Despite the nice catalog pictures, cylinder lenses are
lousy, so don’t design systems requiring accurate ones.

4.12 COMPLEX LENSES

4.12.1 Achromats and Apochromats

For nearly all dielectric materials at nearly all wavelengths, the dispersion coefficients
are positive; that is, n increases as λ decreases. The only exceptions are deep within
absorption bands, where you won’t want to use the stuff anyway. Thus it is not possible
to color correct merely by sandwiching two plates of opposite dispersion.

On the other hand, you can color correct lenses by putting a positive lens of a high
dispersion material next to a negative lens of low dispersion material, or vice versa.
Let’s take the positive lens case. A powerful positive lens made from crown glass next
to a weaker negative lens made from flint glass produces a weakened but still positive
two-element lens. If the powers of the two elements are adjusted correctly, then as we
go to shorter λ, the increasing positive power is balanced by the increasing negative
power, so that the net power of the combination is nearly constant. With two elements,
the lens can be color corrected at two wavelengths and is called an achromat . Exploiting
the different shapes of the dispersion curves of different glasses, color correction can
be extended to three or more wavelengths, giving much lower average error over the
wavelength band of interest; such a lens is called an apochromat .

A side benefit of needing two lenses to get color correction is that the extra degrees
of freedom can be used to improve the monochromatic aberrations as well; a commercial
achromat has so much less spherical aberration that its wavefront error will generally be
10 or more times better than a single-element lens of the same diameter and focal length.

Example 4.3: Achromatic Doublet. Suppose we want to make an achromatic 200 mm
f /8 lens, corrected so that the F and C wavelengths come to a common focus. We’ll use
BK7 (nd = 1.51673, nF = 1.52224, nC = 1.51432, so NFC = 1.01539 and V = 65.24)
for the front element, and SF11 (nd = 1.78446, nF = 1.80645, nC = 1.77599, so NFC =
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1.03925 and V = 25.75) for the rear. The crown glass is usually more durable than the
flint, so it is put on the exposed side unless there is a compelling reason not to. Real
lens designers do this by exact ray tracing. We’ll do it paraxially with the lensmaker’s
equation:

Ptot = P1 + P2 = (n1 − 1)

(
1

R1
− 1

R2

)
+ (n2 − 1)

(
1

R3
− 1

R4

)

= P1d

(n1 − 1)

(n1d − 1)
+ P2d

(n2 − 1)

(n2d − 1)
, (4.22)

where R1 and R2 are the surface radii of the first element, and R3 and R4 are those of
the second element.

The achromatic condition requires PF = PC , which leads to

P1d

P2d

= −V1

V2
= −2.534 (4.23)

and hence P1d = 1.652P , P2d = −0.652P . It is slightly simpler to express this in terms
of the ratio of P1C /P2C and NFC . For this lens, we require a positive element 1.65 times
stronger than the combination, and a negative element 0.65 times as strong. We haven’t
specified anything about the bending of this lens, so we can put most of the power in
the buried surfaces; nevertheless, it is difficult to make a cemented achromat faster than
f /1.4 this way. It is possible to distribute the chromatic correction across the groups of
a more complicated design to achieve good color correction at short focal ratios.

4.12.2 Camera Lenses

Camera lenses are a wonderful and inexpensive resource for optical instrument builders.
For a hundred bucks or so, you get a very well corrected lens, preadjusted, mounted, and
tested, on its own focusing ring and with an aperture diaphragm. Mating bayonet mounts
are available to attach them to your system.

Bargains like that are not common in optics, so take advantage of it while it lasts.
Camera lenses tend to have lots of elements, so their stray light and etalon fringe perfor-
mance is not as good as simpler designs. Use the slower, fixed focal length designs rather
than the superduper fast ones, the extreme wide angles, or the zooms; they have better
image quality and a lot fewer elements to scatter and make fringes. Ordinary camera
lenses are best for distant objects; the macrolenses are better for magnifications of 1:10
to 1:1. For higher magnifications, turn the lens around—for 1:1 to 10:1, use a macrolens
backwards, and for magnifications greater than 10×, use an ordinary lens backwards
(watch out for the soft coatings on the rear elements—they’re not as durable as the hard
front-surface coatings). For large magnifications, you can also use enlarger lenses, which
are somewhat cheaper.

Camera lenses are often described as having, say, 13 elements in 6 groups (about
typical for a zoom lens in 35 mm format). That means that there are 13 bits of glass, but
that some of them are cemented together, leaving only 6 × 2 = 12 air–glass surfaces.
Since the air–glass surfaces scatter more light, this is worth knowing; a 13-element lens
with 13 groups would have 26 surfaces, so its surface reflections would likely be much
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worse. The etalon fringes in a lens like this would daunt the bravest, but even in a
white-light application with good coatings, around a quarter of the total light would be
bouncing around inside the lens barrel, much of it eventually arriving at the image plane
to reduce the contrast and introduce artifacts. The 13/6 lens would be about half that bad.

4.12.3 Microscope Objectives

A lot of optical instruments can be cobbled together from microscope parts. Microscopes
are high image quality systems built in modular fashion. Their optical trains must be
designed to support this use, and those are just the qualities we want in instrument
prototypes. Usually we just use the objectives, but sometimes an eyepiece or a trinocular
head is useful too—you can’t align what you can’t see (see Section 11.8).

Microscope objectives are specified by magnification and numerical aperture. To find
out what the actual focal length is, divide the magnification into the tube length , which is
nearly always 200 mm, or 160 mm for old designs. Thus a modern 20×, 0.5 NA objective
normally has a focal length of 10 mm. The working distance will be significantly less
than this, which is sometimes very inconvenient in instruments; we often have to get
other things in between the sample and the lens. Since this gets worse with shorter focal
lengths, and since the NA and not f controls the resolution, 20×, 0.5 NA is the most
all-round useful microscope objective for instruments.

Long working distance objectives are available; the longest ones come from Mitutoyo
and are big enough to use as antiaircraft shells. They get rapidly more expensive as the
aperture and working distance increase.

Some high NA microscope lenses come with an adjustable correction for cover glass
thickness, which dials in a controllable amount of spherical aberration to correct for that
introduced by the cover slip. This can be useful in other situations as well.

Microscope lenses exhibit severe longitudinal chromatic aberration; different colors
come to focus at different depths. This is a trade-off based on the characteristics of the
human visual system, which has poorer spatial resolution in the blue, but is obnoxious
in some instrument applications, such as white light scanning microscopy. For such
applications, and for use in the UV or IR, where microscope lenses are tough to get, you
can use an all-mirror microscope objective, the Schwarzschild objective.

In choosing a microscope objective, know what it is you need. For applications not
requiring the highest quality, such as the condenser side of a spatial filter, use a commod-
ity objective such as the cheap ones from American Optical, Newport, Swift, or several
others. For imaging, or on the collection side of a spatial filter, a good objective such as
a Nikon, Olympus, Reichert, Leitz, or Zeiss will work much better. Japanese objectives
tend to be nicely corrected in the objective itself, which makes them useful for other
purposes where you don’t want the microscope attached.

4.12.4 Infinity Correction

A lens designed to operate with its image at infinity is said to be infinity corrected . Most
modern microscope objectives are infinity corrected, because the resulting parallel light
exhibits no chromatic errors when being piped through bending prisms, and the system
aberrations do not depend strongly on where subsequent optical components are located.
These properties make infinity corrected lenses extremely useful in building instruments.

Camera lenses run backwards are another example of infinity correction—most of
them are designed to have the object at infinity, but by time reversal symmetry, this is
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exactly equivalent to having the object at the film plane and the image at infinity. A pair
of camera lenses operated nose to nose makes a good transfer lens, for example, to image
the center of one scan mirror onto the center of another one, or to image an acousto-optic
cell at the pupil of a microscope objective to make a scanning microscope. Note that the
antireflection coating on the back of the lens is often much softer than the one on the front,
and so much more easily damaged in cleaning. Similarly, the glass itself is often more
delicate, and of course all the mechanical works are exposed to damage or corrosion.

4.12.5 Focusing Mirrors

Curved mirrors can do nearly anything lenses can but have a completely different set
of design trade-offs. A focusing mirror causes much larger ray bending than a lens of
the same focal length; this makes it much more sensitive to surface inaccuracies and
misalignment than a lens, but also can lead to a more compact optical system, due
to the opportunity for folding the light path. Folding leads to two problems, however;
obscuration, as mirrors partially shadow one another, and light leakage, as far off-axis
light can often get into the detector without having traversed the entire optical system.
Baffles can eliminate leakage, but eliminating obscuration requires the use of off-axis
aspheric mirrors, which are very difficult to align among other faults.

Mirrors exhibit no dispersion, so chromatic aberration is eliminated in all-mirror sys-
tems; the expected improvement in optical quality is not always realized, since it is much
easier to make multielement lens systems than multielement mirror systems. On the other
hand, for UV and IR use, it is delightfully easy to be able to focus the system with a
HeNe laser and be sure that it will be perfectly focused at 335 nm or 1.06 μm. Most
lenses have poorly corrected longitudinal chromatic aberration, so that different wave-
lengths come to focus at slightly different depths. Where spatial filtering is used with
broadband illumination (e.g., real-time confocal scanning optical microscopy, where a
disc full of pinholes is spun to make an array of moving spots), longitudinal chromatic
is extremely objectionable, so mirror systems make a lot of sense.

Because there are no transparent surfaces in an all-mirror system, there is no oppor-
tunity for etalon fringes to form, which can be a very important advantage.

Where there are fewer surfaces, there are fewer degrees of freedom to optimize, and
mirrors are much more seriously affected by surface errors than lenses are. For these
reasons, aspheric mirrors are much more common than aspheric lenses. Overall, mirrors
are wonderful in special situations such as working with invisible light, but there is
nothing like an optical system based on focusing mirrors to make you appreciate the
forgiving qualities of lenses.

Aside: Off-Axis Performance of Focusing Mirrors. Fast mirrors have amazingly bad
oblique aberrations, and off-axis ones are the worst. For example, a 25 mm diameter,
f /1, 90◦ off-axis paraboloid exhibits a spot size of approximately 30% of the off-axis
distance—if you go 100 microns from the axis, the spot grows from the diffraction limit
to 30 μm diameter. You really can’t run any sort of field angle at all with those things.

4.12.6 Anamorphic Systems

An anamorphic system is one whose magnifications in x and y differ. The main uses of
these are to correct for perspective distortion caused by oblique imaging, as in a picture
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of the ground taken from the side of an aeroplane, and to circularize elliptical beams
from diode lasers. There are two main types: prism or grating systems, and telescopes
made from cylindrical lenses. When a beam encounters a surface, its edges define an
illuminated patch. If the beam comes in near grazing incidence, its illuminated patch will
be greatly elongated. The law of reflection guarantees that a reflected beam will have the
same shape as the incident one, but if the beam is refracted or diffracted at the surface,
this is no longer the case. On refraction, a beam entering near grazing incidence will
leave near the critical angle, elongated. Two prisms are often used together, with the
second one bending the beam back to its original propagation direction. On diffraction, a
beam entering near grazing can be made to leave near normal, so that a properly chosen
grating can substitute for a 90◦ folding mirror. This idea is used in commercial beam
circularizers based on anamorphic prisms.

Cylindrical telescopes can easily be made in any desired magnification, can be slightly
defocused in order to correct astigmatism, and do not offset the beam axis, but this is
as far as their advantages go. It is a great deal easier to make good prisms than good
cylindrical lenses, and the astigmatism correction can be done by mildly misaligning the
collimating lens.

4.12.7 Fringe Diagrams

Fringe diagrams are very nearly useless for good quality (< λ/4) optics. A good quality
optical component will have a surface accuracy of a small fraction of a wavelength. Such
a small deviation produces only very small irregularities in the spacing and direction of
the fuzzy fringes in the diagram. Localized errors are reasonably easily spotted, but
global ones, such as astigmatism, are very hard to see by eye, especially since the strong
visual asymmetry caused by the fringes running in one direction masks asymmetric
errors—you can see a λ/4 kink by sighting along the fringes, but good luck seeing a
λ/4 spacing error spread out over 20 periods. For evaluating the quality of an optical
component, use a phase shifting measuring interferometer if at all possible. Failing that,
a Foucault knife-edge test using a razor blade is good for qualitative work, for example,
examining a batch of lenses for bad units. If you really need to get quantitative data from
a hard copy fringe diagram, either scan it into a computer and digest it in software, or
use a parallel rule and a pencil to construct the axes of the fringes, and measure their
straightness and separation. It really would be much more useful if optics vendors would
ship their fringe diagrams on CD or make them available for downloading, but the author
is not hanging about waiting for the day.

4.13 OTHER LENS-LIKE DEVICES

There are other devices besides lenses and curved mirrors that can make beams converge
or diverge. These are based on refractive index gradients or on diffraction.

4.13.1 GRIN Lenses

Section 9.2.6 shows how a refractive index gradient causes light to bend. It turns out
that a circular cylinder whose index decreases parabolically moving out from the core
works like a lens. The ray bending happens continuously throughout the bulk, rather
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2.2 periods

Figure 4.8. A GRIN lens exhibits periodic foci along its length.

than happening abruptly at the surface, as shown in Figure 4.8. Such a device is called
a graded-index (GRIN) lens, or GRIN rod . Because the bending happens continuously,
a length of GRIN rod exhibits periodically spaced images down its axis, alternating
between erect and inverted. If it is cut to an even number of half-periods, a point on one
surface is imaged onto the other surface; if it is a quarter period shorter, the image is
at infinity. Thus making a GRIN lens of any desired focal length (up to a quarter of a
period) is just a matter of cutting the rod to the right length.

At one time, GRIN lenses were quite poor—good enough for coupling light in and
out of fibers but not for imaging. Recently, they have been developed to the point where
their imaging properties are quite respectable. Fiber coupling is probably still the most
common application, but borescopes and endoscopes are now often made from long GRIN
rods instead of many sets of relay lenses. Besides simplicity and robustness, GRIN rods
avoid the accumulation of field curvature that plagues designs with cascaded relays (e.g.,
periscopes).

Another approach to using index gradients is to fuse together slabs of optical glass of
slightly different index.† When a spherical surface is ground into the high index side, the
power of the margins of the lens is automatically weakened by the gradual decrease of
n. This weakening can be chosen so as to cancel the spherical aberrations of the surface,
and so aspheric-quality images can be obtained with a single spherical element.

Aside: Birefringence of GRIN Rods. GRIN rods are usually made by diffusing
dopants in from the outside of a plain glass rod. This results in an axially symmet-
ric pattern of residual mechanical stress, so that GRIN rods are actually birefringent,
with a pattern not found in nature. This is sometimes important.

4.13.2 Fresnel Zone Plates, Diffractive Lenses, and Holographic Optical
Elements

Recently, as a result of improvements in optical modeling software and in the molding
of plastic and sol-gel glass, it has become possible to fabricate not only aspheric lenses
but lenses with diffractive properties: for example, an aspheric lens with a phase grating
on the other surface (zone plates and general holographic elements are discussed in
Chapter 7). These diffractive lenses can have unique properties. Although the power

†Gradium glass, made by LightPath Technologies, Albuquerque, NM.
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of the refractive surface decreases as the wavelength increases, that of the diffractive
element increases; thus it can be used to cancel the chromatic aberration of the refractive
surface, resulting in a novel element, an achromatic singlet. The possibilities inherent
in such a capability have only begun to be assimilated, and such elements should be
considered any time more than 10,000 units are needed. Before becoming too breathless
with excitement, however, remember the drawbacks: plastics have huge temperature
coefficients of index and of thermal expansion; getting good aberration correction over
a large field is very difficult with only two surfaces of a low index material; and you
absolutely must have very high diffraction efficiency, which is very difficult to maintain
over a wide bandwidth (e.g., the visible spectrum). Also see Section 7.9.9 for reasons to
keep the diffractive power small. The effective V number of a DOE can be found from
the grating equation: V = λd/(λf − λc) = −3.452.

4.13.3 Fresnel Lenses

A mirror does all its work at the surface—all that stuff underneath is only there to
keep the surface accurately in place. You can make a lightweight mirror by removing
unnecessary material from the blank. This isn’t quite as easy to do with a lens, since
the material in the middle is there to preserve phase coherence by making all the rays
arrive with the same delay. For crude light bucket applications, however, an idea of
the same sort leads to the Fresnel lens . A Fresnel lens is a whole bunch of concentric
annular lenses, with the same focal length, as shown in Figure 4.9. Because of all the
sharp edges, there’s lots of scatter, and because of the loss of phase coherence, the image
quality is very poor.† Fresnel lenses can’t normally be coated, either. Thus their efficiency
is poor—as low as 50% in some cases.

On the other hand, they are light and compact, and nonimaging applications such as
condensers aren’t sensitive to their poor image quality. Projectors are the largest use of
Fresnel lenses, but you can make a solar furnace this way, too—up to 2500 times solar
concentration has been demonstrated. Off-axis Fresnel lenses are available, or can be
made easily from a big one with snips or a razor knife.

When using a fast Fresnel lens, make sure to put the side with the ridges toward
the more distant conjugate. Otherwise, the outer rings will exhibit TIR, and no light
will get through them. Really steep conventional lenses exhibit this behavior too. The
image quality of a Fresnel lens, nothing much to start with, gets dramatically worse with
increasing field angle. (This can often be helped by shifting the aperture stop well out
ahead of the Fresnel lens.)

4.13.4 Microlens Arrays

Lenses are sometimes used in arrays, to produce an array of very small, poor images.
Microlenses as small as 10 μm in diameter are often deposited on top of interline transfer
CCDs, to corral light into the small active area of each pixel. Somewhat larger lenses
can be used to measure wavefront tilt as a function of position (the Shack–Hartmann
technique), from which the wavefront can be reconstructed, more or less. (Even in thermal
light, where the etalon fringes aren’t so bad, there are never enough pixels per microlens

†Since there’s no point knocking oneself out in a lost cause, Fresnel lenses are also manufactured to very loose
tolerances.
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Figure 4.9. Fresnel lens.

to do a decent job of the reconstruction, unfortunately; the Shack–Hartmann measures
the local slope of the wavefront, so to reconstruct it you have to extrapolate, which is
always fraught with problems.)

Another interesting class of microlens array applications relies on the moiré pattern
between two microlens arrays of slightly different pitch, which can synthesize the equiv-
alent of a single short-focus lens. Standard microlens products are available (e.g., from
WaveFront Sciences). They are typically 0.2 mm to a few millimeters in diameter, with
focal lengths of 1–100 mm. They are generally plano-convex singlets, of course, and
so their numerical apertures are limited even given their small Fresnel numbers. The
existence of standard products makes microlens arrays good candidates for building into
real systems.

4.13.5 Axicons

In addition to flat surfaces and spheres, there exists a class of conical prisms called axi-
cons , as shown in Figure 4.10. They are generally made by single-point diamond turning,
because otherwise it’s difficult to get an accurate surface. Typical uses of an axicon are
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Figure 4.10. An axicon converts between filled and annular beams, or between a collimated beam
and a J0 Bessel beam.

sending a laser beam through a Schwarzschild (Cassegrain) microscope objective without
hitting the central obstruction, turning annular beams from unstable laser resonators into
uniform beams, and, less respectably, making J0 Bessel beams (misnamed “nondiffract-
ing”) from uniform ones. Aligning axicons is very fiddly, especially in angle. The cone
beam dump of Section 5.6.10 is also an axicon.


