THE OXFORD SERIES IN ELECTRICAL AND COMPUTER ENGINEERING
Adel S. Sedra, Serics Editor

Allen and Holberg, CMOS Analog Circuit Design, 2nd Edition
Bobrow, Elementary Linear Circuit Analysis, 2nd Edition
Bobrow, Fundamentals of Electrical Engineering, 2nd Edition
Burns and Roberts, An Introduction to Mixed-Signal IC Test and Measurement
Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd Edition Chen, Digital Signal Processing
Chen, Linear System Theory and Design, 3rd Edition
Chen, Signals and Systems, 3rd Edition
Comer, Digital Logic and State Machine Design, 3rd Edition
Comer, Microprocessor-based System Design
Cooper and McGillem, Probabilistic Methods of Signal and System Analysis, 3rd Edition DeCarlo and Lin, Linear Circuit Analysis, 2nd Edition
Dimitrijev, Understanding Semiconductor Devices
Fortney, Principles of Electronics: Analog \& Digital
Franco, Electric Circuits Fundamentals
Ghausi, Electronic Devices and Circuits: Discrete and Integrated
Guru and Hiziroglu, Electric Machinery and Transformers, 3rd Edition
Houts, Signal Analysis in Linear Systems
ones, Introduction to Optical Fiber Communication Systems
Krein, Elements of Power Electronics
Kuo, Digital Control Systems, 3rd Edition
Lathi, Linear Systems and Signals, 2nd Edition
Lathi, Modern Digital and Analog Communications Systems, 3rd Edition
Lathi, Signal Processing and Linear Systems
Martin, Digital Integrated Circuit Design
Miner, Lines and Electromagnetic Fields for Engineer:
Parhami, Computer Arithmetic
oberts and Sedra, SPICE, 2nd Edition
Roulston, An Introduction to the Physics of Semiconductor Device Sadiku, Elements of Electromagnetics, 3rd Edition
Santina, Subbcrud, aud Hostetter, Digital Control System Design, 2nd Edition Sarna, Introduction to Electrical Engineering
chaumann and Van Valkenburg, Design of Analog Filter
Schwarz and Oldham, Electrical Engineering: An Introduction, 2nd Edition
edra and Smith, Microelectronic Circuits, 5th Edition
Stefani, Savant, Shahian, and Hostetcr, Design of Feedback Control Systems, 4th Edition Tsividis, Operation and Modeling of the MOS Transistor, 2nd Edition
an Valkenburg, Analog Filter Design
Warner and Grung Semiconductor Device Electronics
Wolovich, Automatic Control Systems
Yariv, Opfical Electronics in Modern Communications, 5th Edition Jak, Systems and Control

FIFTH EDITION
MICROELECTRONIC CIRCUITS

Adel S. Sedra

University of Waterloo

Kenneth C. Smith
University of Toronto

New York
 Oxford

OXFORD UNIVERSITY PRESS

Oxford University Press
Oxford New York
Auckland Bangkok Buenos Aires Cape Town Chennai
Dar es Salaam Delhi Hong Kong 1stanbul Karachi Kolkata Kuala Lampur Madrid Mclboume MexicoCity Mumbai Nairobi São Paulo Shanghai Taipei Tukyo Toronto

Copyright © 1982, 1987, 1991, 1998, 2004 by Oxford University Press, Inc
Publishod by Oxford University Press, Inc.
198 Madison Avenuc, New York, New York 10016 www.oup.com

Oxford is a registered trademark of Oxford Eniversity Press
All rights reserved. No part of this publication may be reproduced
stored in a retrieval system, or transmitted, in any form or by any means
elecuronic, mechanical, photocopying, recording, or otherwise
without the prior permission of Oxford University Press.

ISBN 0-19-514252-7

Cover Illustration: The chip shown is an inside view of a mass-produced surface-micromachined gyroscope sys-
Cover Mlustrafion: The chip shown is an inside vew of a mass-produced surface-micromachined gyroscope sys tem, integrated on a 3 mm by 3 ram dre, and using a standard $3-\mathrm{nl} 2-\mathrm{V}$ BiCMOS process suited for the harsh automotive environment. This first single-chip gyroscopic sensor, in which micio-necthanical aud electronic components are intimately entwined on the same chip, provides unprecedented performance through the use of ad
collection of precision-directed techniques, including emphasis on differential operation (both mechanically and collection of precision-directed techniques, including emphasis on differential operation (bot-mechanically and
electronically) bolstered by trimmable ihin-film resistive components. Tbis tiny, robust, low-power, angular-rateelectronically) bolstered by trimmable thin-film resistive components. This tiny, robust. low-power, angular-rate-
to-voltage transducer, having a scnsitivity of $12.5 \mathrm{mV} / / \mathrm{s}$ and resolution of $0.015^{\circ} / \mathrm{s}$ (or $50^{\circ} / \mathrm{hour}$) has a myriad of to-voltage transducer, having a sensitivity of $12.5 \mathrm{mV} / \mathrm{s}$ and resolution of $0.015 / \mathrm{s}$ (or 50% hour) has a myriad of
applications-including automotive skil coutrol and rollover detection, dead reckoning for GPS backup and robot applications-including automotive skal coutrol and rollover detection, dcad reckoning for GPS backup and robot
mution control, and camera-ficld stabilization. The complete gyroscope package, weighing $1 / 3$ gram with a vol-
 Chang. Stephen R. Lewis; Single-chip surface micromachined integrated Gyroscope with $50^{\circ} / \mathrm{h}$ Allan Jeviation, IEEE Journal of Solid-State Circuits, wol. 37, pp. 1860-1866, December 2002. (Originally presented at ISSCC 2002.) Photographed by Jobn Chang, provided by John Gcen, both of Analog Devices, Micromachine Products Division, Cambridge, MA, USA

Printing number: 987654321
Printed in the United States of Americi on acid-free paper

PREFACE $x x i i i$

1 Introduction to Electronics 5
2 Operational Amplifiers 63
3 Diodes 139
4 MOS Field-Effect Transistors (MOSFETs) 235
5 Bipolar Junction Transistors (BJTs) 377

ANALOG AND DIGITAL INTEGRATED

PART II CIRCUITS 542

6 Single-Stage Integrated-Circuit Amplifiers 545

7 Differential and Multistage Amplifiers 687
8 Feedback 791
9 Operational-Amplifier and Data-Converter Circuits 871
10 Digital CMOS Logic Circuits 949

野 PART III SELECTED TOPICS 1010

Memory and Advanced Digital Circuits 1013
Filters and Tuned Amplifiers 1083
Signal Generators and Waveform-Shaping Circuits 1165
Output Stages and Power Amplifiers 1229
APPENDIXES
A VLSI Fabrication Technology A-1
B Two-Port Network Parameters B-1
C Some Useful Network Theorems C-1
D Single-Time-Constant Circuits D-1
E 5 -Domain Analysis: Poles, Zeros, and Bode Plots E-1
F Bibliography F-1
G Standard Resistance Values and Unit Prefixes G-1
H Answers to Selected Problems $\mathbf{H - 1}$

DETAIED TABLE OR CONTENIS

PREFACE xxiii

23 PART I DEVICES AND BASIC CIRCUITS 2
1 Introduction to Electronics 5
Introduction 5
.1 Signals 6
1.2 Frequency Spectrum of Signals 7
1.3 Analog and Digital Signals 10
1.4 Amplificrs 13
1.4.1 Signal Amplification 1
1.4.3 Volage Gain 14
4.3 Volage Gain 14
1.4.5 Expressing Gain Current Gain $\quad 15$
1.4.6 The Amplifier Power Supplies 15
1.4.7 Amplificr Saturation 18
1.4.8 Nonlincar Transfer Characteristics and Biasing I
1.4.9 Symbol Convention 22
1.5 Circuit Models for Amplifiers 23
1.5.1 Volage Amplifiers 23
1.5.2 Cascaded Anplificrs 25
15.4 Relationships Between 27
1.61 Re Amplifiers 31
1.6.1 Measuring thc Amplificr Frequency Response 31
1.6 .2 Hzaluaing the Frequence
1.0.3 Evaluaing the Frequency Response of Amplifiers 33
1.6.5 Classification of Amplifiers Based on Frequency Response 38
1.7 Digital Logic Inverters 40
1.7.2 The Voltage Transfer Characteristic (VTC) 41
1.7.3. Noise Margins 42
1.7.4 The Ideal VTC 43
1.7.5 Inverter Implementation 43
1.7.6 Power Dissipation 45
. 8 Circuit Simulation Using SPICE 49
Summary 50
Problems 51

Introduction 63
2.1 The Ideal Op Amp 64
2.1.1 The Op-Amp Terminals 64
2.1.2 Function and Characteristics of the Ideal

Op Amp 65
2.1.3 Differential and Common-Mode Signals 67
2.2 The Inverting Configuration 68
2.2.1 The Closed-Loop Gain 69
2.2.2 Effect of Finite Open-Loop Gain ${ }^{71}$
2.2.4 An Important Application-The Weighted Summer 75
2.3 The Noninverting Configuration 77
2.3.1 The Closed-Loop Gain 77
2.3.2 Characteristics of the Noninvering

Configuration 78
2.3.3 Effect of Finite Open-Loop Gain 78
2.3.4 The Voltage Follower 79
2. 4 Difference Amplifiers 81
2.4.1 A Single Op-Amp Difference Amplifier 82
2.4.2 A Superior Circuit-The Instrumentation Amplifier 85
2.5 Effect of Finite Open-Loop Gain and Bandwidth on

Circuit Performance 89
2.5.1 Frequency Dependence of the Open-Loop Gain 89
2.6 Large-Signal Operation of Op Amps 94
2.6.1 Output Voltage Saturation
2.6.2 Output Current Limits 94
2.6.3 Slew Rate 95
2.6.4 Full-Power Bandwidh 97
2.7 DC Imperfections 98
2.7.1 Offset Voltage 98
2.7.2 Input Bias and Offset Currents 102
2.8 Integrators and Differentiators 105
2.8.1 The Inverting Contiguration with General Impedances 105
2.8.2 The Inverting Integrator 107
2.8.3 The Op-Amp Differentiator 112
2.9 The SPICE Op-Amp Model and Simulation Examples 114
2.1. Linear Macromodel 115
2.9.2 Nonlinear Macromodel $/ 19$

Summary 122
Problems 123

3 Diodes 139
Introduction 139
3.1 The Ideal Diode 140
3.1.1 Current-Voltage Characteristic 140
3.1.2 A Simple Application: The Rectifier \quad I4
3.1.3 Another Application: Diode Logic Gates 144
3.2 Terminal Characteristics of Junction Diodes 147
3.2.1 The Forward-Bias Region 148
3.2.2 The Reveakse-Bias Region 152
3.3 Modeling the Diode Forward Characteristic 153
3.3.1 The Exponential Model 153
3.3.2 Graphical Analysis Using the Exponential Model 154
3.3.3 Iterative Analysis Using the Exponential Model 154
3.3.5 The Piecewise-Linear Model 155
3.3.6 The Constanl-Voltage-Drop Model
3.3.7 The Ideäl-Diode Model 158
3.3.8 The Small-Signal Model 15
3.3.9 Use of the Diode Forward Drop in

Voltage Regulation 163
3.3.10 Summary 165
3.4 Operation in the Reverse Breakdown Region-

Zener Diodes 167
3.4.1 specifying and Modeling the Zener Diode 167
3.4.2 Use of the Zener as a Shunt Regulator 168
3.4.3 Temperature Effects 170
3.5 Rectifier Circuits 171
3.5.1 Thc Half-Wave Rectifier $\quad 172$
3.5.2 The Full-Wave Rectifier 174
3.5.3 The Bridge Recifier $\quad 176$
3.5 The Rectifier with a Filter Capacitor-
3.5.5 Precision Recliflier 177
3.5.5 Precision Hall-Wave Rectifier-
The Supcr Diode 183
3.6 Limiting and Clamping Circuits 18
3.6.1 Limiter Circuits 184
3.6.2 The Clamped Capacitor or DC Restorer
3.6.3 The Voltage Doubler 189
.7 Physical Operation of Diodes 190
...2 The pn Junction Under Open-Circuit Conditions 196
3.7.3 The $p n$ Junction Under Reverse-Bias Conditions 199
3.7.4 The $p n$ Junction in the Breakdown Region 203
3.7.5 The $p n$ Junction Under Forward-Bias
3.7.6 Summary 208
3.8 Special Diode Types 209
3.8.1 The Schotiky-Barrier Diode (SBD) 210
3.8.2 Varactors 210
3.8.3 Photodiodes 21

Ligh-Emining Diodes (LEDs) 211
3.9 The SPICE Diode Model and Simulation Examples 212
3.9.1 The Diode Model 212

213
Problems 218

4 MOS Field-Effect Transistors (MOSFETs) 235
Introduction 235
4.1 Device Structure and Physical Operation 236
4.1.1 Devicc Structure 236

413 Creating Chanel fate Coltage 238
23
4.1.5 Operation as $i_{D S}$ Is Increased
4.1.6 Derivation of the $i_{D}-\psi_{D S}$ Rclationship 243
4.1.7 The p-Channel MOSFET 247
4.1.8 Complementary MOS or CMOS 247
4.1.9 Operating the MOS Transistor in the Subthreshold Region 248
4.2 Current-Voltage Characteristics 248
4.2.1 Circuit Symbol 248
4.2.2 The $i_{D}-v_{D S}$ Characteristics 249
4.2.3 Finite Ouput Resistance in Saturation 253
4.2.4 Charactcristics of the p-Channel MOSFET 256
4.2.6 Temperature Effects 259
2.7 Breatdown and Input Pro

259
4.3 MOSFET Circuits at DC 26
4.4 The MOSFET as an Amplifier and as a Switch 270
4.4.1 Large-Signal Operation-The Transfcr Characteristic $27 I$
4.4.1 Large-Signal Operation-The Transfcr Characteristic
4.4.3 Operation as a Switch 274
4.4.4 Operation as a Linear Amplifier 274
4.4.5 Analylical Expressions for the Transfcr Characteristic 275
4.4.6 A Final Remark on Biasing 280
4.5 Biasing in MOS Amplifier Circuits 280
4.5.1 Biasing by Fixing $V_{G S} \quad 280$
4.5.2 Biasing by Fixing V_{G} and Conncting a Resistance
in the Source 281
.5.3 Biasing Using a Drain-to-Gate Fecdback Resistor
4.5.4 Biasing Using a Constant-Current Source 285
4.5.5 A Final Remark 287
4.6 Small-Signal Operation and Models 287
4.6.1 The DC Bias Point 287
4.6.2 The Signal Curicnt in the Drain Terminal 288
4.6.3 The Voltage Gain 289
4.6.4 Separating the DC Analysis and the Signal Analysis 290
4.6.5 Small-Sigual Equivalent-Circuit Models 290
4.6.6 The Transconductance $g_{m} 292$
4.6.7 Modeling the Body Effect 296
.6.8 Modering 297
4.6.9 Summary 297
4.7 Single-Stage MOS Amplifiers 299
4.7.1 The Basic Structure 299
4.7.3 The Common-Source (CS) Amplifier 306
4.7.4 The Common-Sourcc Amplifier with a Source Resistance 309
detailed table of contents
4.7.5 The Common-Gate (CG) Amplifier 311
4.7.6 The Common-Drain or Source-Forlower Amplifier 315
4.7.7 Summary and Compparisons 318
4.8 The MOSFET Internal Capacitances and High-Frequency Model 320
$\begin{array}{ll}\text { 4.8.1 The Gate Capacitive Effect } & 321 \\ \text { 4.8.2 The Junction Capacitances } & 322\end{array}$
4.8.3 The High-Frequency MOSFET Model 322
4.8.4 Thc MOSFET Unity-Gain Frequency $\left(f_{T}\right) \quad 324$
4.8.5 Summary 325
4.9 Frequency Response of the CS Amplifier 326
4.9.1 The Three Frequency Bands 326
4.9.2 The High-Frequency Response 328
4.9.3 The Low-Frequency Responsc 332
4.9.4 A Final Rematk 336
4.10 The CMOS Digital Logic Inverter 336
4.10.1 Circuit Operation 337
4.10.2 The Voltage Transfer Characteristic 339
4.10.3 Dynamic Operation 342
4.10.4 Current Flow and Power Dissipation 345
4.10.5 Summary 346

11 The Depletion-Type MOSFET 346
4.12 The SPICE MOSFET Model and Simulation Example 351 4.12.1 MOSFET Models 351
4.12.1 MOSFET Models 351
4.12.2 MOSFET Model Parameters 352

Summary 359
Problems 360

5 Bipolar Junction Transistors (BJTs) 377

Introduction 377
5.1 Device Structure and Physical Operation 378
5.1.1 Simplified Stucture and Modes of Operation 378
5.1.2 Operation of the npn Transistor in the Active Mode 380
5.1.3 Structure of Actual Transistors 386
5.1.4 The Ebers-Moli (EM) Model 387
5.1.5 Operation in the Saturation Mode 390
. 1.6 pnp Transistor 39
5.2 Current-Voltage Characteristics 392
5.2 Graphin Represention oftions 392

397
5.2.3 Dependence of i_{c} on the Collector Voltage-The Early
Effect 399
2.4 The Common-Emitter Characteristics 401
5.2.5 Transistor Breakdown 406
5.2.6 Summary 407
5.3 The BJT as an Amplifier and as a Switch 407
5.3.1 Large-Signal Operation-The Transfer Characteristic 410
5.3.2 Amplifier Gam 412
5.3.3 Graphical Analysis 415
5.4 BJT Circuits at DC 421
5.5 Biasing in BJT Amplifier Circuits 436
5.5.1 The Classical Discrete-Circuit Bia
5.5.2 A Two-Power-Supply

Arrangement 440
A Two-Power-Supply Version of the Classical Bias
5.5.3 Biasing Using a Collector-to-Base Feedback Resistor 441
5.5.4 Biasing Using a Constant-Current Source 442
5.6 Small-Signal Operation and Models 443
5.6.1 The Collector Current and the
5.6.2 The Base Current and the Input Resistance
5.6.2 The Base Current and the Input Resistance
at the Base 445
5.6.3 The Emitter Current and the Input Resistance
at the Emitter 446
5.6.4 Voltage Gain 447
5.6.5 Separating the Signal and the DC Quantities 448
5.6.6 The Hybrid- π Model 4
5.6.7 Tinadel 449
5.6.8 Application of the Small-Signal Equivalent Circuits 45
5.6.9 Perfonming Small-Signal Analysis Directly on the
5.6.10 Augmenting the Small-Signal Models to Account
for the Early Effect 457
5.6.11 Summary 458
5.7 Single-Stage BJT Amplifiers 460
.7.1 The Basic Structure 460
731
467
7.7.4 The Common-Emitter Amplifier with an Enitter
5.7.5 The Common-Base (CB) Amplifier 475
5.7.6 The Common-Collector (CC) Amplifier or
$\begin{array}{lll}\text { Entitter Follower } & 478 \\ \text { 5.7.7 Summary and Comparisons } & 483\end{array}$
5.8 The BJT Internal Capacitances and High-Frequency Model 48
5.8.1 The Base-Charging or Diffusion Capacitance $C_{d e} \quad 486$
8.2 The Base-Eniitter Junction Capacitance $C_{j e} \quad 486$
5.8.3 The Collector-Base Junction Capacitance $C_{\mu} \quad 48$
5.8.4 The High-Frequency Hybrid- π Model 487
5.8.5 The Cutoff Frequency 487
5.8.6. Summary 490
5.9 Frequency Response of the Common-Emitter Amplifier 491
5.9.1 The Three Frequency Bands 491
9.2 The High-Frequency Rcsponse
5.9.3 The Low-Frequency Response 497
5.9.4 A Final Remark 503
5.10 The Basic BJT Digital Logic Inverter 503
5.10.1 The Voltage Transfer Characteristic 504
5.10.2 Saturated Versus Nonsaturated BJT Digital Circuits 50.5
5.11 The SPICE BJT Model and Simulation Examples 50
5.11.1 The SPICE Ebers-Moll Modcl of the BJT 507
5.11.2 The SPICE Gumbnel-Poon Model of the BJ
5.11.3 The SPICE BJT Model Parameters 510
511.4 The BJT Model Parameters BF and BR in SPICE

Summary 516
Problcms 517

PART II CIRCUITS 542

6 Single-Stage Integrated-Circuit Amplifiers

Introduction 545
6.1 IC Design Philosophy 546
6.2 Comparison of the MOSFET and the BJT 547
6.2.1 Typical Values of MOSFET Parameters 5
6.23 Comparison 1 Impertant Charaters 548
62.4 Combining MOS and Bipolar Transistors - BiCM
6.2.4 Combining MOS and Bipolar Transistors--BiCMO
Circuits
561
6.2.5 Validity of the Squarc-Law MOSFET Model 562
6.3 IC Biasing - Current Sources, Current Mirrors, and

Current-Steering Circuits 56
6.3.1 The Basic MOSFET Current Source 562
6.3.2 MOS Current-Steering Circuits 565
63.3 BJT Circuits ' 567
6.4 High-Frequency Response-Gencral Considerations $57!$
6.4.1 The High-Frequency Gain Function 572
6.4.2 Determining the 3-dB Frequency $f_{I I} 573$
6.4.3 Using Open-Circuit Time Constants for the Approximate
6.4.4 Miller's Theorem 578
6.5 The Common-Source and Common-Emitter Amplificrs with Active Loads 582
6.5.1 The Common-Source Circuit $\quad 58$
6.5.2 CMOS Implementation of the Common-Source Amplifier
6.5.3 Thc Common-Emitter Circuit $\quad 588$
6.6 High-Frequency Response of the CS and CE Amplifiers 588
6.6.1 Analysis Using Miller's Theorem 589
6.6.2 Analysis Lsing Open-Circuit Time Constants 590
6.6.3 Exact Analysis 591
6.6.4 Adapting the Formulas for the Case of the CE Amplifier 595

7 The Co The Sinaion When $K_{\text {sig }}$ s Low 5
The Conmon-Gate and Common-Base Amplifiers with Active Loads 600
6.7.2 The Common-Gate Amplificr $\mathbf{\sigma 0 0}$
67.3
6.8 The Cascode Amplifier 61.3
6.8.1 The MOS Cascode $\quad 61$
6.8.2 Frequency Response of the MOS Cascode
6.8.3 The BJT Cascode 623
6.8.4 A Cascode Current Source $\quad 62$

686 Thc Folded Cascode 626
6.8.7 BiCMOS Cascodes 628
6.9 The CS and CE Amplifiers with Source (Emitter) Degeneration 629
6.9.1 The CS Amplifier with a Source Resistance 629
6.9.2 The CE Amplifier with an Emilter Resistance 6.3
6.10 The Source and Emitter Followers 6
6.10.1 The Source Follower 635
.10.2 Fh Source Follower 637
11 Some Useful Transistor Pairings
11 Some Useful Transistor Pairings 641
6.11.1 The CD-CS, CC-CE and CD-CE Configurations 641
6.11.3 The CC-CB and CD-CG Configur
6.12 Current-Mirror Circuits with Improved

Performance 649
6.12.1 Cascode MOS Mirrors 649
6.12.2 A Bipolar Mirror with Base-Curcnt Compensation 650
6.12.3 The Wilson Current Mirror 651
6.12.4 The Wilson MOS Mirror 652
6.12.5 Thc Widlar Current Source 653
6.13 SPICE Simulation Examples 656

Summary 665
Problems 66

7 Differential and Multistage Amplifiers 687
Introduction 687
7.1 The MOS Differential Pair 688
7.1.1 Operation with a Common-Mode Input
7.1.2 Operation with a Differential Input Voltage 691
7.1.3 Large-Signal Operation 693
7.2 Small-Signal Operation of the MOS Differential Pair 696
7.2.1 Differential Gain 697
7.2.2
(CMmR)
(CMOD
700
7.3 The BJT Differential Pair 704
7.3.1 Basic Operation 704
$\begin{array}{ll}7.3 & \text { Large-Signal Operation } 707 \\ 709\end{array}$
7.4 Other Nonideal Characteristics of the Differential

$$
\text { Amplifier } 720
$$

Amplifier 720 .
7.4.2 Input Offset Voltage of the Bipolar Differential Pair 723
7.4.3 Input Bias and Offset Currents of the Bipolar Pair 725
7.4.4 Input Common-Mode Range 726
7.4.5 A Concluding Remark 726
7.5 The Differential Amplifier with Active Load 727
7.5.1 Differential-to-Single-Ended Conversion 727
5.2 The Active-Loaded MOS Differential Pair 728
.5.3 Differential Gain of the Active-Loaded
729
Mode
7.5.5 The Bipolar Differential Pair with Active Load 733
7.6 Frequency Response of the Differential Amplificr 740
7.6.1 Analysis of the Resistively Loaded MOS Amplificr 740
7.6.2 Analysis of the Activc-Loaded MOS Anplifier 744
7.7 Multistage Amplifiers 749
7.7.1 A Two-Stage CMOS Op Amp 749
7.7.2 A Bipolar Op Amp 758
7.8 SPICE Simulation Example 767

Summary 773
Problems 775

8 Feedback 791

Introduction 791

8.1 The General Feedback Structure 792
8.2 Some Properties of Negative Feedback 79.
8.2.1 Gain Desensiitivity 795
8.2.2 Bandwidth Extension
8.2.3 Noise Reduction 796
8.2.4 Reduction in Nonlinear Distortion 797
8.3 The Four Basic Feedback Topologies 798
8.3.1 Voltage Amplificrs 799
8.3.3 Transconductance Amplifiers 801
8.3.4 Transresistance Amplifiers 802
8.4 The Series-Shunt Feedback Amplifier 802
8.4.1 The Ideal Situation 802
8.4.2 The Practical Situ

The Series-Series Feedback Amplifier 811 8.5.1 The Ideal Case 811
8.5.2 The Practical Case
8.5.3 Summary 814
8.6 The Shunt-Shunt and Shunt-Series Fecdback Amplifiers 818
8.6.1 The Shunt-Shunt Configuration
8.6.2 An Important Note 823
8.6.3 The Shunt-Series Configuration 823
8.6.4 Summary of Results 831
8.7 Determining the Loop Gain 83
8.7.1 An Alternative Approach for Finding AB 83 8.7.2 Equivalencc of Circuits from a Feedback-Loop Point of View 833
8.8 The Stability Problem 834
8.8.1 Transfer Function of the Feedhack Amplifier 83 8.8.2 The Nyquist Plot 835
8.9 Effect of Feedback on the Amplifier Polcs 836 8.9.1 Stability and Pole Location 837
8.9.2 Poies of the Fecdback Amplifier 838
8.9.3 Amplificr with Singlc-Pole Response 838
8.9.4 Amplifier with Two-Pole Response 839
8.9.5 Amplifiers with Three or More Polcs 843
8.10 Stability Study Using Bode Plots 84
8.10.1 Gain and Phase Margins 84
-Loop Responsc 846
8103 An Altemative Approach for Investigating Stability 847
8.11 Frequency Compensation 849
8.11.1 Theory 850
piementation 851
8.11.3 Miller Compensation and Pole Splitting

852
8.12 SPICE Simulation Example 855

Summary 859
Problems 860
9 Operational-Amplifier and Data-Converter Circuits 871

Introduction 871

9.1 The Two-Stage CMOS Op Amp 872
9.1.2 Input Common-Mode Range and Output Swing
9.1.3 Voltage Gain 874
1.1.4 Frequency Response 87
9.1.5 Slew Rate 879
9.2 The Folded-Cascode CMOS Op Amp 883
9.2.1 The Circuit 883
9.2.2 Input Common-Mode Range and the Outpu
9.2.3 Voltage Gain 886
9.2.3 Voltage Gain 886
,2.4 Frequency Response 888
Slew Ratc 888
9.2.6 Increasing the Input Common-Mode Range:

Rail-to-Rail Input Operation 890
9.2.7 Increasing the Output Voltage Range:
The Wide-Swing Current Mirror 892
9.3 The 741 Op-Amp Circuit 893
9.3.1 Bias Circuil 893
9.3.2 Short-Circuit Protcction Circuitry 895
9.3.3 The Input Stage 895
9.3.5 The Output Stage. 89
9.3.6 Device Parameters 898
9.4 DC Analysis of the 741899
9.4. Reference Bias Current 899
9.4 .3 Input Bias and Offset Currents 902
9.4.4 Input Offset Voltage 902
9.4.5 Input Common-Mode Range 902
9.4.6 Second-Stage Bias 902
9.4. Summary 904
9.5 Small-Signal Analysis of the 741905
9.5.1 The Input Stage 905
9.5.2 The Second Stage 910
9.5.3 The Output Stage 912
9.6 Gain, Frequency Response, and Slew Rate of the 741917
9.6.1 Small-Signal Gain 917
6.63 Si lifiesponse 917
9.6.4 Slew Rate 919
9.6.5 Relationship Between f_{t} and $S R \quad 920$
9.7 Data Convecters-An Introduction 922
9.7.1 Digital Processing of Signals 922
9.7.2 Sampling of Analog Signal
9.7 .4 The A/D and D/A Converters as Functional Blocks 924
9.8 D/A Converter Circuits 925
9.8.1 Basic Circuit Using Binary-Weighted Resistors 925
9.8.2 R-2R Ladders 926
9.8.3 A Practical Circuit Implementation 927
9.8.4 Current Switches 928
9.9 A/D Converter Circuits 929
9.9.1 The Feedback-Type Converter 929
9.3 The Parallel or Flash Converter 930
9.9.4 The Charge-Redistribution Converter 932
9.10 SPICE Simulation Example 934

Suminary 940
Problems 941

10 Digital CMOS Logic Circuits 949

10.1 Digital Circuit Design: An Overview 950
10.1.1 Digita IC Technologies and Logic-Circuit Familics 950
10.1.2 Logic-Circuit Characterization 952
10.1.3 Siyles for Digital System Design 954
10.1.4 Design Abstraction and Compuler Aids
10.2 Design and Performance Analysis of the CMOS Inverter 955
10.2.1 Circuit Structure 955
10.2.2 Static Operation 956
10.2.3 Dynamic Operation 958
10.2.4 Dynamic Power Dissipation 961
10.3 CMOS Logic-Gate Circuits
10.3.1 Basic Structurc 963

1033 The Two-Inpul NAND Gate 966
10.3.4 A Complex Gate 967
10.3.5 Obtaining the PLN from the PDN an
10.3.6 The Exclusive-OR Function 969
10.3.7 Summary of the Syntticsis Method 970
10.3.8 Transistor Sizing 970
10.3.9 Effects of Fan-kn and Fan-Out on Propagation Delay 973
10.4 Pseudo-NMOS Logic Circuits 974
10.4.1 The Pscudo-NMOS Inverter 974
0.4.2 Static Characteristics 975
10.4.3 Derivation of the VTC 976
10.4.5 Design 979
10.46 Gate Circuits
10.4.7 Concluding Remarks 980
10.5 Pass-Transistor Logic Circuits 982
10.5.1 An Essemtial Design Requirement 983
10.5.2 Operation with NMOS Transistors as Switches 984
10.5.3 The Usc of CMOS Transmission Gates as Switches 988
10.5.4 Pass-Transistor Logic Circuit Examples 990
10.5.5 A Final Renark 991
10.6 Dynamic Logic Circuits 991
10.6.1 Basic Principle 992
10.6.2 Nonideal Effects 993
10.6.3 Domino CMOS Logic 996

7 Spice Simulatiou Example 998
Summary 1002
Problems 1002

PART III SELECTED TOPICS 1010
11 Memory and Advanced Digital Circuits 1013
Introduction 1013
11.1 Latches and Flip-flops 1014
11.1.1 The Latch 1014
11.1.3 CMOS Flip-Flop 1015
11.1.4 A Smplemenation of SR Flip-Flops 1016
1.1.4 Flop ${ }_{1019}^{\text {A Simpler CMOS Implementation of the Clocked SR Flip }}$

112 Mutivibrator Circuits 1021
11.2.1 A CMOS Monostable Circuit $\quad 1022$
11.2.2 An Astable Circuit 1026
11.3 Semiconductor Memories: Types and Architectures 1028
11.3.1 Memory-Chip Organization 1028
11.3.2 Memory-Chip Timing 1030
Random-Access Memory (RAM) Cells $\quad 1031$ 11.4.1 Static Memory Cell 1031
11.5 Sense Amplifiers and Address Decoders 1038
11.5.1 The Sense Amplifier 1038
11.5.2 The Row-Address Decoder 1043
11.5.3 The Colum1-Address Decoder 1045
11.6 Read-Only Memory (ROM) 1046
11.6.1 A MOS ROM 1047
11.6.2 Mask-Progranmable ROMs 1049
11.6.3 Programinable ROMs (PROMs and EPROMs) 1049
11.7 Emitter-Coupled Logic (ECL) 105
11.7.1 The Basic Principle 1052
117.2 The Basic Gatc Circut
117.4 Vala Trate 1053
11.7.4 Volage Fransfer Chatacteristics 1057
11.7.6 Speed of Operation and Signal Transmission
11.7.7 Power Dissipation 106.3
11.7.8 Thermal Effects 1063
11.7.9 The Wired-OR Capability 1066
11.7.10 Some Final Remarks 1066
11.8 BiCMOS Digital Circuits 1067
11.8.1 The BiCMOS Inverter 1067
11.8.2 Dynamic Operation 1069

SPICE Simult Logic Gates 1071
Summary 1076
Problems 1077
12 Filters and Tuned Amplifiers 1083

Introduction 108

12.1 Filter Transmission, Types, and Specification 1084
12.1.1 Filter Transmission 1084
12.1.3 Filler Specification 1085
12.2 The Filter Transfer Function 1088
12.3 Butterworth and Chebyshev Filters 1091

The Butcrworth Filter 1091
12.4 First-Order and Second-Order Filter Functions 1098 12.4.1 First-Order Filters 1098
12.4.2 Sccond-Order Filter Functions 1101

The Sccond-Order LCR Resonator 1106
12.5.1 The Resonator Natural Modes 1106
12.5.2 Realization of Transmission Zcros 1107
12.5.3 Realization of the Low-Pass Function 1108
12.5:4 Realization of the High-Pass Function 1108
12.5.5 Realization of the Bandpass Function 1108 12.5.6 Realization of the Notch Functions 1110 12.5.7 Realization of the All-Pass Function 1111
12.6 Second-Order Active Filters Based on Inducto
eplacement $/ 112$
2.6.1 The Antoniou Inductancc-Simulation Circuit 1112
12.6.2 The Op Amp-RC Resonator $\quad 1114$ 12.6.4 The All-Pass Circuit 1118
12.7 Second-Order Active Filters Based on the Two-Integrator-Loop Topology 1120
12.7.1 Derivation of the Two-Integrator-Loop Biquad 1120 12.7.2 Circuil Implementation $\quad 1122$
12.7.3 An Allernative Two-Integrator-Loop Biquad
Circuit 1123

Circuit 1123
1274 Final Remarks 1125
12.8 Single-Amplifier Biquadratic Active Filters $\quad 1125$
12.8.I Synthesis of the Feedback Loop 1126
12.8.2 Injecting the Inpul Signal 1128
12.8.3 Generation of Equivalent Fcedback Loops 1130
12.9 Sensitivity 1133
12.10 Switched-Capacitor Filters 1136 12.10.1 The Basic Principle 1136 2.10.2 Practical Circuils 1137 12.10.3 \triangle Final Remark $\quad 1141$
12.11 Tuned Amplifiers 1141
12.11.1 The Basic Principle 1141
2.11.2 Inductor Losses 1143
2.11.3 Use of Transiormers 114
2.11.4 Amplifiers with Multiplc Tuned Circuils 1145
12.11.5 The Cascode and the CC-CB Cascade 1146
2.11.6 Synchronous Tuning 11
12.11.7 Stagger-Tuning 1148
12.12 SPICE Simulation Examples 1152

Summary 1158
Problems 115
13 Signal Generators And Waveform-Shaping Circuits 1165

Introduction 1165

13.1 Basic Principles of Sinusoidal Oscillators 1166
13.1.1 Thc Oscillator Feedback Loop 1166
13.1.2 The Oscillation Criterion \quad /16
13.1.3 Nonlinear Amplitude Control 1168
13.1.4 A Popular Limiler Circuit for Amplitude Control 1169
13.2 Op Amp-RC Oscillator Circuits 1171
13.2.1 The Wien-Bridge Oscillator 1171
13.2.2 The Phase-Shift Oscillator 1174
13.2.3 The Quadrature Oscillator 1176
13.25

LC and Crystal Oscillators 1179
LC and Crystal Oscillators $\quad 1179$
13.3.1 LC-Tuned Oscillators
1179
13.3.2 Crystal Oscillators 1182
13.4 Bistable Multivibrators 1185
13.4.1 The Feedback Loop 1185
13.4.2 Transfer Characteristics of the Bistable Circuil 1186
13.4.3 Triggering the Bistable Cireuit 1187
13.4.4 The Bistable Circuit as a Memory Element 118
13.4.5 A Bistable Circuit with Noniinverling Transfer

Characteristics 1188
13.4.6 Application of the Bistable Circuit as
Comparator 1189
13.4.7 Making the Output Levels More Precisc 11
xxi
13.5 Gcneration of Square and Triangular Waveforms Using Astable Multivibrators 1192
13.5.1 Operation of the Astable Multivibrator 1192
13.5.2 Generation of Triangular Waveforms 1194
13.6 Gencration of a Standardized Pulse-The Monostable
7.7 Incer

Integratcd-Circuit Timers 1198
13.7.1 The 555 Circuit 1198
7.2 implementing a Monostable Multivibrator Using the 555 IC. 1199
13.7.3 An Astable Multivibrator Using the 555 IC 1201
13.8 Nonlinear Waveform-Shaping Circuits 1203 13.8.1 The Breakpoint Method \quad I203

1205
13.9 Precision Rectifier Circuits 1206
13.9.1 Precision Halt-Wavc Reclifier
13.9.2 An Alternative Circuit \quad 1208
13.9.3 An Application: Measuring AC Voltages 120
13.9.4 Precision Full-Wave Rectifier 1210
13.9.5 A Precision Bridge Rectificr for Instrumentation Applications 1212
13.9.6 Precision Peak Rectifiers 1213
139.8 A Precision Clamping Ciravitector 1214
13.10 SPICE Simulation Examples 1214

Summary 1219
Problems 1220
14 Output Stages and Power Amplifiers 1229 Introduction 1229
14.1 Classification of Output Stages 1230
14.2 Class A Output Stage 1231
14.2.1 Transfer Characteristic 1231
$\begin{array}{ll}\text { 14.2.2 Signal Waveforms } & \mathbf{1 2 3 3} \\ \text { 14.2.3 Power Dissipation } & \mathbf{1 2 3 3}\end{array}$
14.2.4 Power-Conversion Efficiency 1235
14.3 Class B Output Stage 1235
14.3.1 Circuit Operation $\quad 1236$
14.3.2 Transfer Characteristic 1236
14.3.3 Power-Conversion Efficiency 1236
14.3.4 Power Dissipation 1238
14.3.5 Reducing Crossover Distortion 1240
1.4 Class AB Output Stage 1241
14.4.1 Circuit Operation 1242
14.4.2 Output Resistance 1243
14.5 Biasing the Class AB Circuit 1244
14.5.1 Biasing Using Diodes 1244
14.5.2 Biasing Using the $V_{B E}$ Multiplier $\quad 1246$
14.6 Power BJTs 1249
14.6.1 Junction 'lemperature 1249
14.6.2 Thermal Resistance 1249
14.63 Power Dissipation Versus Temperature 1250
14.6.4 Transistor Casc and Heat Sink 1251
14.6.6 Paramcter Values of Power Transistors 1255
14.7 Variations on Clas AB Configuration 1256
14.7.1 Usc of Input Fmitter Followers 1256
14.7.2 Usc of Compound Devices 1257
14.7.3 Shor-Circuit Protection 1259
14.7.4 Thermal Shutdown 1260
14.8 IC Power Amplifiers 1261
14.8.1 A Fixed-Gain IC Power Amplifier 1261
14.8.2 Power Op Λ mps $\quad 1265$
14.8.3 The Bridge Amplifier 1265
14.9 MOS Power Transistors 1266
14.9.1 Structure of the Power MOSFET 1266
14.9.2 Characteristics of Power MOSFETs
14.9.2 Characteristics of Power MOSFETs 1268
14.9.3 Tcmpcrature Effects 1269
14.9.5 A Class AB Output Stage Utilizizing MOSFETs 1270
14.10 SPICE Simulation Example 1271

Summary 1276
Problems 1277

APPENDIXES

A VLSI Fabrication Technology A-1
B Two-Port Network Parameters B-1
C. Some Useful Network Theorems C-1

D Single-Time-Constant Circuits D-1
E s-Domain Analysis: Poles, Zeros, and Bode Plots E-1
F Bibliography F-1
G Standard Resistance Values and Unit Prefixes G-1
H Answers to Selected Problems H-1

INDEX ${ }^{\text {N }} \mathbf{- 1}$

Microelectronic Circuits, fifth edition, is intended as a text for the core courses in electronic circuits taught to majors in electrical and computer engineering. It should also prove usefui to engineers and other professionals wishing to update their knowledge through self-study.

As was the case with the first four editions, the objective of this book is to develop in the reader the ability to analyze and design electronic circuits, both analog and digital, discrete and integrated. While the application of integrated circuits is covered, emplasis is placed on transistor circuit design. This is done because of our belicf that even if the majority of those studying the book were not to pursuc a career in IC design, knowledge of what is inside the IC package would enable intelligent and innovative application of such chips. Furthermore, with the advances in VLSI technology and design methodology, IC design itself is becoming accessible to an increasing numher of engineers.

PREREQUISITES

The prerequisite for studying the material in this book is a first course in circuit analysis. As a review, some linear circuits material is included here in appendixes: specifically, two-port network parameters in Appendix B; some useful network theorems in Appendix C; single-time-constant circuits in Appendix D; and s-domain analysis in Appendix E. No prior knowledge of physical electronics is assumed. All required device physics is included, and Appendix A provides a brief description of IC fabrication.

NEW TO THIS EDITION

Although the philosophy and pedagogical approach of the first four editions have been retained, several changes have been made to both organization and coverage.

1. The book has been reorganized into three parts. Part I: Devices and Basic Circuits, composed of the first five chapters, provides a coherent and reasonably comprehensive single-semester introductory course in electronics. Similarly, Part II: Analog and Digital Integrated Circuits (Chapters 6-10) presents a body of material suitable for a second one-semester course. Finally, four carefully chosen subjects are included in Part III: Selected Topics. These cau be used as enhancements or substitutions for some of the material iu earlier chapters, as resources for projects or thesis work, and/or as part of a third course.
2. Each chapter is organized so that the essential "must-cover" topics are placed first, and the more specialized material appears last. This allows cousiderable flexibility in teaching and learning from the book.
3. Chapter 4, MOSFETs, and Chapter 5, BJTs, have been completely rewritten, updated, and made completely independent of each other. The MOSFET chapter is placed first to reflect the fact that it is currently the most significant electronics device by a wide margin. However, if desired, the BJT can be covered frist. Also, the identical structure of the two chapters makes teaching and learning about the second device easier and faster.
4. To make the first course comprehensive, both Chapters 4 and 5 include material on amplifier and digital-logic circuits. In addition, the frequency response of the basi common-source (common-emitter) amplifier is included. This is important for students who might not take a second course in electronics.
5. A new chapter on integrated-circuit (IC) amplifiers (Chapter 6) is added. It begins with a comprehensive comparison between the MOSFET and the BJT. Typica parameter values of devices produced hy modern submicron fabrication processes are given and utilized in the examples, exercises, and end-of-chapter problems. The study of each amplifier configuration includes its frequency response. This should make the study of amplifier frequency response more interesting and somewhat easier.
6. The material on differential and multistage amplifiers in Chapter 7 has been rewritten to present the MOSFET differential pair first. Here also, the examples, exercises, and problems have been expanded and updated to utilize parameter values representative of modern submicron technologies.
7. Throughout the book, greater emphasis is placed on MOSFET circuits.
8. To make room for new material, some of the topics that have become less current, such as JFETs and TTL, or have remained highly specialized, such as GaAs devices and circuits, have been removed from the book. However, they are made available on the CD accompanying the book and on the book's website.
9. As a study aid and for easy refcrence, many summary tables have been added.
10. The review exercises, examples, and end-of-chapter problems have hecn updated and heir numbers and variety increased.
11. The SPICE sections have been rewritten and the SPICE examples now utilize schematic entry. To enable further experimentation, the filcs for all SPICE cxamples arc provided on the $C D$ and website.

THE CD-ROM AND THE WEBSITE

A CD-ROM accompanics this book. It contains much useful supplementary information and material inteuded to enrich the student's learning experience. These include (1) A Student's Edition of OrCAD PSpice 9.2. (2) The input files for all the SPICE examples in this hook. (3) A link to the book's wcbsite accessing PowcrPoint slides of every figure in this book that students can print and carry to class to facilitate taking notes. (4) Bonus text material of specialized topics not covered in the current edition of the textbook. These include: JFETs, GaAs devices and circuits, and TTL circuits.

A websitc for the book has been set up (www.sedrasmith.org). Its content will change frequently to reflect new developments in the field. It features SPICE models and files for all PSpice examples, links to industrial and academic websites of interest, and a message center to communicate with the authors. Thcre is also a link to the Higher Education Group of Oxford University Press so professors can receive complete text support.

EMPHASIS ON DESIGN

It has been our philosophy that circuit design is best taught by pointing out the various tradeoffs available in selecting a circuit configuration and in selecting component values for a given configuration. The emphasis on design has been increased in this edition by including more design examples, exercise problems, and end-of-chapter problems. Those exercises and
end-of-chapter problems that are considered "design-oriented" are indicated with a D. Also. the most valuable design aid, SPICE, is utilized throughout the book, as already outlined.

EXERCISES, END-OF-CHAPTER PROBLLMS,

AND ADDITIONAL SOLVED PROBLEMS
Over 450 excrcises are integrated throughout the text. The answer to each exercise is given below the exercise so students can check their understanding of the material as they read. Solving these exercises should enable the reader to gauge his or her grasp of the preceding matcrial. In addition, more than 1370 end-of-chapter problems, about a third of which are new to this edition, are provided. The problems are keyed to the individual sections and their degree of difficulty is indicated hy a rating system: difficult problens are marked with as asterisk (*); more difficull prohlems with two asterisks (**); and very difficult (and/or time consuming) problems with three asterisks (***). We must admit, however, that this classification is by no means exact. Our rating no doubt had depended to some degree on our thinking (and mood!) at the time a particular problem was created. Answers to about half the problems are given in Appendix H. Complete solutions for all exercises and problems are included in the Instructor's Manual, which is available from the publisher for thosc instructors who adopt the book.

As in the previous four editions, many cxamples are included. The examples, and indeed most of the problems and exercises, are based on real circuits and anticipate the applications encountered in designing real-life circuits. This edition continues the use of numbered solution steps in the figures for many examples, as an attempt to recreate the dynamics of the classroom.

A recurring request from many of the students who used earlier editions of the book has been for solved problems. To satisfy this nced, a book of additional prohlems with solutions is available with this edition (see the list of available ancillaries later in this preface).

AN OUTLINE FOR THE READER

The book starts with an introduction to the basic concepts of electronics in Chapter 1. Signals, their frequency spectra, and their analog and digital forms are presented. Amplifiers are introduced as circuit building blocks and their various types and models are studied. The basic element of digital electronics, the digital logic inverter, is defined in terms of its voltagetransfer characteristic, and its various implementations using voltage and current switches are discussed. This chapter also establishes some of the terminology and conventions used throughout the text.

The next four chapters are devoted to the study of electronic devices and basic circuits and constitute the bulk of Part I of the text. Chapter 2 deals with operational amplifiers, their terminal characteristics, simple applications, and limitations. We have chosen to discuss the op amp as a circuit building block at this early stage simply because it is easy to deal with and because the student can experiment with op-amp circuits that perform nontrivial tasks with relative ease and with a sense of accomplishment. We have found this approach to be highly motivating to the student. We should point out, however, that part or all of this chapter can be skipped and studied at a later stage (for instance in conjunction with Chapter 7, Chapter 8, and/or Chapter 9) with no loss of continuity

Chapter 3 is devoted to the study of the most fundamental electronic device, the $p n$ junction diode. The diode terminal characteristics and its hicrarchy of models and basic circuit
applications are presented. To understand the physical operation of the diode, and indeed of applications are presented. To understand the phe instan and the BJT, concise but substantial introduction to semiconductors and the $p n$ junction is provided. This material is placed near the end of the chapter (Section 3.7) so that part or all of it can be skipped by those who have already had a course in physical electronics.

Chapters 4 at) and the sistor (MOSNical and heture ind are bave an identical structure and are completely independent of each other and thus, can be covercd in either order. Each chapter begins with a study of the device structure and its physical oper high degree of familiarity with the operation of the transistor as a circuit element a marg-signal operation of the basic common-source (conmon-emitter) circuit is then studied and used to delineate the region over which the device can be used as a linear amplifier from those regions where it cau be used as a switch. This makes clear the need for biasing the transistor and leads naturally to the study of biasing methods. At this point, the biasing transistor and leads mastly for discrete circuits, leaving the study of IC biasing to Chapter 6 methods used are mostly for discrete circuits, leaving the study of IC biasing to Chapter 6 . Next, small-signal operation is studied and small-signal models are denived. This is followcd by a study of the basic contigurations of discrete-circuit amplifiers. The internal capacitive effects that limit the high-frequency operation of the transistor are then studied, and the high-frequency equivalent-circuit model is presented. This model is then used to As well, the low-frequency response resulting from the use of coupling and bypass capaciAs well, the low-frequency response resuling from the use of coupling and bypass capaci-
tors is also presented. The basic digital-logic inverter circuit is then studied. Botb chapters conclude with a study of the transistor models used in SPICE together with circuit-simulation examples using PSpice. This description should indicate that Chapters 4 and 5 contain the essential material for a first course in elcetronics.

Part II: Analog and Digital Integrated Circuits (Chapters 6-10) begins with a comprehensive compilation and comparison of the properties of the MOSFET and the BJT. The comparison is facilitated by the provision of typical parameter values of devices fabricated with modern process technologies. Following a study of biasing methods employed in IC amplifier design (Section 6.3), and some basic background material for the analysis of highfrequency amplifier response (Section 6.4), the various configurations of single-stage IC amplifiers are presented in a systematic manner. In each case, the MOS circuit is presented first. Some transistor-pair configurations that are usually treated as a single stage, such as the cascode and the Darlington circuits, are also studied. Each section includes a study of the high-frequency response of the particular amplifier configuration. Again, we believe that this "in-situ" study of frequency response is superior to the traditional approach of postponing all coverage of frequency response to a later chapter. As in other chapters, the more specialized material, including advanced current-mirtor and current-source concepts, is placed in the second half of the chapter, allowing the reader to skip some of this material in a first reading. This chapter should provide an excellent preparation for an in-depth study of analog IC design.

The study of IC amplifiers is continued in Chapter 7 where the emphasis is on two major topics: differential amplifiers and mullistage amplifiers. Here again, the MOSFET differential pair is treated first. Also, frequency response is discussed where needed, including in the two cxamples of multistage amplifiers.

Chapter 8 deals with the important topic of feedback. Practical circuit applications of negative feedback are presented. We also discuss the stability problem in fcedback amplifi ers and treat frequency compensation in some detail.

Chapter 9 integrates the material on analog IC design presented in the preceding three chapters and applies it to the analysis and design of two major analog IC functional blocks: op amps and data converters. Both CMOS and bipolar op amps are studied. The dataCer sections provide a bridge to the study of digital CMOS logic circuits in Chapter 10
Chapter 10 builds on the introduction to CMOS logic circuits in Section 4.10 and includes a carefully selected set of topics on static and dynamic CMOS logic circuits that ound out the study of analog and digital ICs in Part II.

The study of digital circuits is continued in the first of the four selected-topics chapters that comprise Part III. Specifically, Chapter 11 deals with memory and related circuits, such as latches, flip-flops, and monostable and stable multivibrators. As well, two somewhat speand BiCMOS The two digital chapters (10 and 11) together with the earlier material (LCL) and BiCMOS. The two digital chapters (10 and 11) together with the earlier material on digVLSI circuits.

The next two chapters of Part III, Chapters 12 and 13, are application or system oriented Chapter 12 is devoled to the study of analog-filter design and tuned amplifiers. Chapter 13 presents a study of sinusoidal oscillators, waveform generators, and other nonlincar signal-processing circuits.
The last chapter of the book, Chapter 14, deals with various types of amplifier output stages. Thermal design is studied, and examples of IC power amplifiers are presented.
The eight appendixes contain much useful background and supplementary matcrial. Wc wish to draw the reader's attention in particular to Appendix A, which provides a concise introduction to the important topic of IC fabrication technology including IC layout.

COURSE ORGANIZATION

The book contains sufficient material for a sequence of two single-semester courses (each of 40 to 50 lecture hours). The organization of the book provides considerable flexibility in course design. In the following, we suggest various possibilities for the two courses.

The First Course

The most obvious package for the first coursc consists of Chapters 1 through 5. However, if time is limited, some or all of the following sections can be postponed to the second course: .6, 1.7, 2.6, 2.7, 2.8, 3.6, 3.8, 4.8, 4.9, 4.10, 4.1I, 5.8, 5.9, and 5.10. It is also quite possible MOSFET (Chater 4) ather from this course. Also, it is possible to concentrate on Covering Chapter 5) aroughly and Chapter 4 only partialy andly andor more quickly. possible-but not reomended! An entirely ang first course is or more quicky is also Sections 17,410 and 5.10 . A digitally oriented first course is also possible It would con ist of the following sections; 11, 12, 13, 14, 17, 18, 31, 32 $33,3,4,37,41,4,43$, $4,410,412,51,52,53,5.4,510,511$, all of Chapter 10 , an select to ics fro Chater 11. Also, if time pe ps would be beneficial.

The Second Course

An excellent place to begin the second course is Chapter 6 where Section 6.2 can serve as a review of the MOSFET and BJT characteristics. Ideally, the second course would cover

Chapters 6 through 10 (assuming, of course, that the first course covered Chapters 1 through 5) If time is short, cither Chapter 10 can postponed to a subsequent course on digital circuit and/or some sections of Chapters $6-9$ can be omitted. One possibility would be to de mphasize bipolar circuits by omitting some or all of the bipolar sections in Chapters 6, lat Aners be casily deleted from the second course Still, for Chapter 9 pcrhap mly CMOS op amps necd to be cered and the 741 deleted postponed. It is also possible replace some of the material from Chaters 6-10 by selected topics from Chapters 11-1 For instance, in an antrely analog second couse, Chapter 10 can be replaced by a selection For instance, in an of topics from Chapters 13-14

ANCILLARIES

A complete set of ancillary materials is available with this text to support your course

For the Instructor

The Instructor's Manual with Transparency Masters provides complete worked solutions to
all the exercises in each chapter and all the end-of-chapter problems in the text. It als contains 200 transparency masters that duplicate the figures in the text most often used in class.
A set of Transparency Acetates of the 200 most important figures in the book.
A PowerPoint $C D$ with slides of every figure in the book and each corresponding caption.

For the Student and the Instructor

The CD-ROM included with every new copy of the textbook contains SPICE input files, a Student Edition of OrCAD PSpice 9.2 Lite Edition, a link to the website featuring PowerPoint slides of the book's illustrations, and bonus topics.
Laboratory Explorations for Microelectronic Circuits, 5th edition, by Kenneth C. Smith (KC) contains laboratory experiments and instructions for the major topics studied in the text. KC's Problems and Solutions for Microelectronic Circuits. Sth edition, by Kenneth C Smith (KC), contains hundreds of additional study problems with complete solutions for students who want more practice.
SPICE, 2nd edition, by Gordon Roberts of McGill University and Adel Sedra, provides a detailed treatment of SPICE and its application in the analysis and design of circuits of the type studied in this book.

ACKNOWLEDGMENTS

Many of the changes in this fifth edition were made in response to feedback received from some of the instructors who adopted the fourth edition. We are grateful to all those who took he time to write to us. In addition, the following reviewers provided detailed commentary on he fourth edition and suggested many of the changes that we have incorporated in this revision. To all of them, we extend our sincere thanks: Maurice Aburdene, Bucknell University Patrick L. Chapman, University of Illinois at Urbana-Champaign; Artice Davis, San Jose State University; Paul M. Furth, New Mexico State University; Roobik Gharabagi, St. Louis

University; Reza Hashemian, Northern Illinois University; Ward J. Hclms, University of Washington; Hsiung Hsu, Ohio State University: Marian Kazimierczuk, Wright State University; Roger King, University of Toledo; Robert J. Krueger, University of WisconsinMilwaukee; Un-Ku Moon, Oregon State University; John A. Ringo, Washington State University; Zvi S. Roth, Florida Atlantic University; Mulukutla Sarma, Northeastern University John Scalzo, Louisiana State University; Ali Shcikholeslami, University of Toronto; Pierre Schmidt, Florida International University; Charles Sullivan, Dartmouth College; Gregory M. Wierzba, Michigan State University; and Alex Zaslavsky, Brown University.

We are also grateful to the following collcagues and friends who have provided many helpful suggestions: Anthony Chan-Carusone, University of Toronto; Roman Genov, Uni versity of Toronto; David Johns, University of Toronto; Ken Martin, University of Toronto; Wai-Tung Ng, University of Toronto; Khoman Phang, University of Toronto; Gordon Roberts, McGill University; and Ali Sheikholeslami, University of Toronto.

We remain grateful to the reviewers of the four previous editions: Michael Bartz, University of Memphis; Roy H. Cornely, New Jersey Institute of Technology; Dale L. Critchlow, University of Vermont; Steven de Haas, Califormia State University-Sacramento; Eby G. Friedman, University of Rochester; Rhett T. George, Jr., Duke University; Richard Hornsey, York University; Robert Irvine, California State University, Pamona; John Khoury, Columbia University; Steve Jantzi, Broadcom; Jacob B. Khurgin, The Johns Hopkins University; Joy Laskar, Georgia Institute of Technology; David Luke, University of New Brunswick; Bahram Nabet, Drexel University; Dipankar Nagchoudhuri, Indian Institute of Technology, Delhi, India; David Nairn, Analog Devices; Joseph H. Ncvin, Universily of Cincinnati; Rabin Raut, Concordia University; Richard Schreier, Analog Devices; Dipankar Sengupta, Royal Melboume Institute of Technology; Michael L. Simpson, University of Tennessee; Karl A. Spuhl, Washington University; Daniel van der Weide, University of Dclaware.

A number of individuals made significant contributions to this edition. Anas Hamoui of the University of Toronto played a key role in shaping both the organization and content of this edition. In addition, he wrote the SPICE sections. Olivier Trescases of the University of Toronto preformed the SPICE simulations. Richard Schreier of Analog Devices helped us locate the excellent cover photo. Wai-Tung Ng of the University of Toronto completely rewrote Appendix A. Gordon Roberts of McGill University gave us permission to use some of the examples from the book SPICE by Roberts and Sedra. Mandana Amiri, Karen Kozma, Shahriar Mirabbasi, Roberto Rosales, Jim Somers of Sonora Designworks, and John Wilson all helped significantly in preparing the student and instructor support materials. Jennifer Rodrigues typed all the revisions with skill and good humor and assisted with many of the logistics. Laura Fujino assisted in the preparation of the index, and perhaps more importantly, in keeping one of us (KCS) focused. To all of these friends and colleagues we say thank you.

The authors would like to thank Cadence Design Systems, Inc., for allowing Oxford University Press to distribute OrCad Family Release 9.2 Lite Edition softwarc with this book. We are grateful to John Geen from Analog Devices for providing the cover photo and to Tons McElwee (from TWM Research).

A large number of peoplc at Oxford University Press contributed to the development of this edition and its various ancillaries. We would like to specifically mention Barbara Wasserman, Liza Murphy, Mary Beth Jarrad, Mac Hawkins, Barbara Brown, Cathleen Bennett, Celeste Alexander, Chris Critelli, Eve Siegel, Mary Hopkins, Jeanne Ambrosio, Trent Haywood, Jennifer Slomack, Ned Escobar, Jim Brooks, Debbie Agee, Sylvia Parrish, Lee Rozakis, Kathlcen Kelly, Sheridan Orr, and Kerry Cahill.

We wish to extend special thanks to our Publisher at Oxford University Press, Chris Rogers. We are also grateful to Scott Burns, Marketing and Sales Director, for his many excellent and creative ideas and for his friendship. We received a great deal of support and advice from our previous editor and friend, Peter Gordon. After Peter's departure, the leadership of the project has been most ably assumed by Danielle Christensen, our current editor. Elyse Dubin, Director of Editorial, Design, and Production, played a pivotal role in ensuring that the book would receive the greatest possible attention in the various stages of design and production.

If there is a single person at Oxford University Press that is responsible for this book coming out on time and looking so good, it is our Managing Editor, Karen Shapiro: She has been simply great, and we are deeply indebted to her. We also wish to thank our families for their support and understanding.

Adel S. Sedra
Kenneth C. Smith

MICROELECTRONIC CIRCUITS

DEVICES AND BASIC CIRCUITS

CHAPTER 1

Introduction to Electronics 5

CHAPTER 2

Operational Amplifiers 63

CHAPTER 3
 Diodes 139

CHAPTER 4
MOS Field-Effect Transistors (MOSFETs) 235

CHAPTER 5

Bipolar Junction Transistors (BJTs) 377

INTRODUCTION

Part I, Devices and Basic Circuits, includes the most fundamental and essential topics for the study of electronic circuits. At the same time, it constitutes a complete package for a first course on the subject.

Besides silicon diodes and transistors, the basic electronic devices, the op amp is tudied in Part I. Although not an electronic device in the most fundamental senso the op amp is commercially available as an integrated circuit (IC) package and has well-defined terminal characteristics. Thus, despite the fact that the op amp's internal circuit is complex, typically incorporating 20 or more transistors, its almost-ideal ter minal behavior makes it possible to treat the op amp as a circuit element and to use il in the design of powerful circuits, as we do in Chapter 2, without any knowledge of its internal construction. We should mention, however, that the study of op amps can be delaycd to a later point, and Chapter 2 can be skipped with no loss of continuity.

The most basic silicon device is the diode. In addition to learning about diodes and a sample of their applications, Chapter 3 also introduccs the general topic of device modeling for the purpose of circuit analysis and design. Also, Section 3.7 pro vides a substantial introduction to the physical operation of semiconductor devices. This subject is then continued in Section 4.1 for the MOSFET and in Section 5.1 for the BJT. Taken together, these three sections provide a physical background sufficien for the study of electronic circuits at the level presented in this book.

The heart of this book, and of any electronics course, is the study of the two transis tor types in use today: the MOS field-effect transistor (MOSFET) in Chapter 4 and the bipolar junction transistor (BJT) in Chapter 5 . These two chapters have been written to be completely independent of one another and thus can be studied im either desired orde Furthermore, the two chapters have the same structure, making it easier and faster to study the second device, as well as to draw comparisons between the two device types.

Chapter 1 provides both an introduction to the study of electronics and a number of important concepts for the study of amplifiers (Sections 1.4-1.6) and of digital circuits (Section 1.7).

Each of the five chapters concludes with a section on the use of SPICE simula tion in circuit analysis and design. Of particular importance here are the device mod els employed by SPICE. Finally, nute that as in must of the chapters of this book, the must-know matcrial is placed near the beginning of a chapter while the good-to-know topics are placed in the latter part of the chapter. Some of this latter material can therefore be skipped in a first course and covered at a later time, when needed.

Introduction to Electronics

INTRODUCTION

The subject of this book is modern electronics, a field that has come to be known as microelectronics. Microclectronics refers to the integrated-circuit (IC) technology that at the time of this writing is capable of producing circuits that contain millions of components in a small piece of silicon (known as a silicon chip) whose area is on the order of $100 \mathrm{~mm}^{2}$. One such microelectronic circuit, for example, is a complete digital computer, which accordingly is known as a microcomputer or, more generally, a microprocessor.

In this book we shall study electronic devices that can be used singly (in the design of discrete circuits) or as components of an integrated-circuit (IC) chip. We shall study the design and analysis of interconnections of these devices, which form discrete and integrated circuits of varying complexity and perform a wide varicty of functions. We shall also lcarn about available IC chips and their application in the design of electronic systems.

The purpose of this first chapter is to introduce some basic concepts and terminology. In particular, we shall learn about signals and about one of the most important signal-processing functions electronic circuits are designed to perform, namely, signal amplification. We shall then look at modets for linear amplifiers. These models will be employed in subsequent chapters in the design and analysis of actual amplifier circuits.

Whercas the amplifier is the basic element of analog circuits, the logic inverter plays this role in digital circuits. We shall therefore take a preliminary look at the digital inverter, its circuit function, and important characteristics.

In addition to motivating the study of electronics, this chapter serves as a bridge between the study of linear circuits and that of the subject of this book: the design and analysis of electronic circuits.

1.1 SIGNALS

Signals contain information about a variety of things and activities in our physical world. Examples abound: Information about the weather is contained in signals that represent the air temperature, pressure, wind speed, etc. The voice of a radio announcer reading the news into a microphone provides an acoustic signal that contains information about world affairs o monitor the status of a nuclear reactor, instruments are used to measure a multitude of relevant parameters, cach instrument producing a signal.
To extract required information from a set of signals, the observer (be it a human or a machine) invariably needs to process the signals in some predetermined manner. This signa processing is usually most conveniently performed by electronic systems. For this to be possible, however the signal must first be converted into an electric signal, that is, a voltag possible, however, the signal must first be converted into an electric signal, that is, a voltage or a current. This process is accomplished by devices known as transducers. A variety of he sound waves generated by a human can be converted into electric signals using a microphone, which is in effect a pressure transducer. It is not our purpose here to study transduc phone, which is in effect a pressure transducer. It is not our purpose here to study transduc ars; rather, we shall assume that the signals of interest aiready exist in the electrical domain and represent them by one of the two equivalent forms shown in Fig. 1.1. In Fig. 1. (a) the sig nal is represented by a voltage source $v_{s}(t)$ having a source resistance R_{s}. In the alternate representation of Fig. 1.1(b) the signal is represented by a current source $i_{s}(t)$ havng a source
resistance R_{s}. Although the two representations are equivalent, that in Fig. 1.1(a) (known as resistance R_{s}. Although the two representaions are equivalent, that in Fig. 1.1(a) (known as
he Thevenin form) is preferred when R_{s} is low. The representation of Fig. 1.1(b) (known as the Norton form) is preferred when R_{s} is high. The reader will come to appreciate this point later in this chapter when we study the different types of amplifiers. For the time being, it is important to be familiar with Thévenin's and Norton's theorems (for a brief review, see Appendix D) and to note that for the two representations in Fig. 1.1 to be equivalent, their parameters are related by

$$
v_{s}(t)=R_{s} i_{s}(t)
$$

From the discussion above, it should be apparent that a signal is a time-varying quantity hat can be represented by a graph such as that shown in Fig. 1.2. In fact, the informatio ontent of the signal is represented by the changes in its magnitude as time progresses; that is, the information is contained in the "wiggles" in the signal wavcform. In general, such aveforms are difficult to characterize mathematically. In other words, it is not easy to escribe succinctly an arbitrary-looking waveform such as that of Fig. 1.2. Of course, such

FIGURE 1.2 An arbitrary voltage signal $v_{s}(t)$
description is of great importance for the purpose of designing appropriate signal-processing circuits that perform desired functions on the given signal.

EXERCSES
 put voltages that would be observed? II, for each, the output terminals are shont-cirevited fie, wired ogether: .hat curent would How For the representations to be equwatent: what must the reationship be between $0_{s} t_{s}$, and R ?
 Ans. For (a): $v_{o c}=v_{i}(t)$ for $(b) v_{0 i}=R i(t)$, for $(a), i v=\nu(t) / R_{z} ;$ for $(b) ; i_{s c}=i(t) ;$ for equivalency, $v_{s}(t)=R_{i}(t)$
 1.2 A signal source has an open-circuit voltage of 10 mV and a short-circuit current of $10 \mu \mathrm{~A}$. What is the sorrce resmance
 Ans. $\mathrm{k} \Omega$

1.2 FREQUENCY SPECTRUM OF SIGNALS

An extremely useful characterization of a signal, and for that matter of any arbitrary funcon of time, is in terms of its frequency spectrum. Such a description of signals is obtaine through the mathematical tools of Fourier series and Fourier transform. We are no interested at this point in the details of these transformations; suffice it to say that they prode the means for representing a voltage signal $v_{s}(t)$ or a current signal $i_{s}(t)$ as the sum of sime-wave signals of different frequencies and amplifudes. This makes the sinc wave a very mportant signal in he hall briefly review the properties of the sinusoid.

Figure 1.3 shows a sine-wave voltage signal $v_{a}(t)$,

$$
\begin{equation*}
v_{a}(t)=V_{a} \sin \omega t \tag{1.1}
\end{equation*}
$$

[^0]

FIGURE 1.3 Sine-wave voltage signal of amplitude V_{a} and frequency $f=1 / T \mathrm{~Hz}$ The angular frequency $\omega=2 \pi f \mathrm{rad} / \mathrm{s}$.
where V_{a} denotes the peak value or amplitude in volts and ω denotes the angular frequency in radians per second; that is, $\omega=2 \pi f \mathrm{rad} / \mathrm{s}$, where \int is the frequency in hertr, $\int=1 / T \mathrm{~Hz}$, and T is the period in seconds.

The sine-wave signal is completely characterized by its peak value V_{a}, its frequency ω, and its phase with respect to an arbitrary rcference time. In the case depicted in Fig. 1.3, the time origin has been chosen so that the phase angle is 0 . It should be mentioned that it is common to express the amplitude of a sinc-wave signal in terms of its root-mean-square (rms) value, which is equal to the peak value divided by $\sqrt{2}$. Thus the rms value of the sinusoid $v_{a}(t)$ of Fig. 1.3 is $V_{a} / \sqrt{2}$. For instance, when we speak of the wall power supply in our homes as being 120 V , we mean that it has a sinc waveform of $120 \sqrt{2}$ volts peak value.

Returning now to the representation of signals as the sum of sinusoids, we note that the Fouricr series is utilized to accomplish this cask for the special case when the signal is a peri odic function of time. On the other hand, the Fourier transform is more general and can be odic function of time. On the other hand, the Fourier transform is more general and can be
 The
The Fourier series allows us to express a given periodic function of time as the sum of an infinite number of sinusoids whose frequencies are harmonically related. For instance, the symmerrical square-wave signal in Fig. 1.4 can be expressed as

$$
\begin{equation*}
v(t)=\frac{4 V}{\pi}\left(\sin \omega_{0} t+\frac{1}{3} \sin 3 \omega_{0} t+\frac{1}{5} \sin 5 \omega_{0} t+\cdots\right) \tag{1.2}
\end{equation*}
$$

where V is the amplitude of the square wave and $\omega_{0}=2 \pi / T$ (T is the period of the squarc wave) is called the fundamental frequency. Note that because the amplitudes of the harmonics progressively decrease, the infinite series can be truncated, with the truncated scries providing an approximation to the square waveform.

FIGURE 1.4 A symmetrical square-wave signal of amplitude V.

FIGURE 1.5 The frequency spectrum (also known as the line spectrum) of the periodic square way of Fig. 1.4.

The sinusoidal components in the series of Eq. (1.2) constitute the frequency spectrum of the square-wave signal. Such a spectrum can be graphically represented as in Fig. 1.5 where the horizontal axis represents the angular frequency ω in radians per second.

The Fourier transform can be applied to a nonperiodic function of time, such as that depicted in Fig. 1.2, and provides its frequency spectrum as a continuous function of frequency, as indicated in Fig. 1.6. Unlike the case of periodic signals, where the spectrum consists of discrete frequencies (at ω_{0} and its harmonics), the spectrum of a nonperiodic signal contains in general all possible frequencics. Neverthelcss, the essential paris of the spectra of practical signals are usually confined to relatively short segments of the frequency (ω) axis-an observation that is very uscful in the processing of such signals. For instance, the axis-an obscrvation that is very usclul in the processing of such signals. For instance, the
spectrum of audible sounds such as speech and music extends from about 20 Hz to about spectrum of audible sounds such as speech and music extends from about 20 Hz to about
20 kHz -a frequency range known as the audio band. Here we should note that although 20 kHz -a frequency range known as the audio band. Here we should note that although frequencies that are much above 20 kHz . As another example, analog video signals have their spectra in the range of 0 MHz , to 4.5 MHz .

We conclude this section by noting that a signal cán be represented either by the manner in which its waveform varies with time, as for the voltage signal $\nu_{u}(t)$ shown in Fig. 1.2, or in terms of its frequency spectrum, as in Fig. 1.6. The two alternative representations arc known as the time-domain representation and the frequency-domain representation, respectively. The frequency-domain representation of $v_{s}(t)$ will be denoted by the symbol $V(\omega)$.

FIGURE 1.6 The frequency spectrum of an arbitrary waveform such as that in
Fig. 1.2.

EXERCISES

13 Find the frequencies f and ω of a sine-wave signal with a period of 1 ms . Ans. $f=1000$ Hz: $\omega=2 \pi \times 10^{3}$ rad/s
14 What is the period T of sme waveforms characterized by freqrencies of (a) $f=60 \mathrm{~Hz}$? (b) $f=10^{3} \mathrm{~Hz}$ (c) $=1$ MHz?

Ans. 167 ms : $1000 \mathrm{~s}: 14 \mathrm{~s}$
1.5. The UIF (Llita High Frequency television broadcast band begins with channel 14 and extends from 470. MH7 to 806 MH: If 6 MHz is shlocated for cach chamet, how many channels can this band acconimodate? Ans. S6. chamnels 14 to 69
1.6 When the square-wave signal of Fig 1.4 , whose Fourier series is given in Eq. (1.2), is apphed to a resistor; the total power dissipated may be calculated directly using the retatonship $P=1 / 7 \mathrm{Tov} / \mathrm{K}$) or indircetly by summing the contribution of each of the tramonic components, that is, $P=P_{1}+$ $P_{3}+P_{5}+$. Which may be found directly from rms values Verify that the two approaches are equivalenc. What fraction of the energy of a square wave is in its tundamental? In iss first five harmonics? In its first sercy First nine? In what number of harmonics is. 90% of the energy? (Note that in counting harmonics, the fundamental at ω_{0} is the first, the one at $2 \omega_{0}$ is the second, etc.) Ans $0.81,0.93,0.95,0.96,3$

1.3 ANALOG AND DIGITAL SIGNALS

The voltage signal depicted in Fig. 1.2 is called an analog signal. The name derives from the fact that such a signal is analogous to the physical signal that it represents. The magnitude of an analog signal can take on any value; that is, the amplitude of an analog signal exhibits a continuous variation over its range of activity. The vast majority of signals in the world around us are analog. Electronic circuits that process such signals are known as analog circuits. A variety of analog circuits will be studied in this book
An alternative form of signal representation is that of a sequence of numbers, each number representing the signal magnitude at an instant of time. The resulting signal is called a digital signal. To see how a signal can be represented in this form-that is, how signals can be converted from analog to digital form-consider Fig. 17(a). Here the curye represents a voltage sigmal, identical to that in Fig. 12. At equal intervals ang the time axis we have marked the time instants $t_{0} t_{1} t_{2}$, and so on. At each of these time instants the magnitude of the signal is measured, a proccss known as sampling Figure 17 (b) shows a representation of the signal of Fig. 1.7(a) in terms of its samples. The signal of Fig. 1.7 (b) is defined only at the sampling iustants; it no longer is a continuous function of time, but rather, it is a discretetime signal. However, since the magnitude of each sample can take any value in a continuous range, the signal in Fig. 1.7(b) is still an analog signal.
Now if we represent the magnitude of each of the signal samples in Fig. 1.7(b) by a number having a finite number of digits, then the signal amplitude will no longer be continuous; rather, it is said to he quantized, discretized, or digitized. The resulting digital signal then is rather, it is said to he quantized, discretized, or digitized. The resulting digital signal then is
simply a sequence of numbers that represent the magnitudes of the successive signal samples. imply a sequence of numbers that represent the magnitudes of the successive signal samples.
The choicc of number system to represent the signal samples affects the type of digital signal produced and has a profound effect on the complexity of the digital circuits required

FIGURE 1.7 Sarmpling the continuous-time analog sigaal in (a) results in the discrete-time signal in (b).
to process the signals. It turns out that the binary number systern results in the simplest possible digital signals and circuits. In a binary system, each digit in the number takes on one of only two possible values, denoted 0 and 1 . Correspondingly, the digital signals in binary systems need have only two voltage levels, which can be labeled low and high. As an example, in some of the digital circuits studied in this book, the levels arc 0 V and +5 V . Fisure 1.8 shows the time variation of such a digital signal. Observe that the waveform is a pulse train with 0 V representing a 0 signal, or logic 0 , and +5 V representing logic 1 .

FIGURE 1.8 Variation of a particular binary digital signal with time.

If we use N binary digits (bits) to represent each sample of the analog signal, then the digitized sample value can be expressed as

$$
\begin{equation*}
D=b_{0} 2^{0}+b_{1} 2^{1}+b_{2} 2^{2}+\cdots+b_{N-1} 2^{N-1} \tag{1.3}
\end{equation*}
$$

where $b_{0}, b_{1}, \ldots, b_{N-1}$, denote the N bits and have valucs of 0 or 1 . Here bit b_{0} is the least significant bit (LSB), and bit b_{N-1} is the most significant bit (MSB). Conventionally, this hinary number is written as $b_{N-1} b_{N-2} \ldots b_{0}$. We observe that such a representation quantizes the analog sample into one of 2^{N} levels. Obviously the greater the number of bits (i.e., the arger the N), the closer the digital word D approximates the magnitude of the analog sample. That is, increasing the number of bits reduces the quantization error and increas the resolution of the analog-to-digital conversion. This improvenent is, however, usuall obtained at the expense of more complex and hence more costly circuit implementations. is not our purpose here to delve into this topic any deeper; we merely want the reader appreciate the nature of analog and digital signals. Nevertheless, it is an opportune to-digital converter (A/D circuil building block of modern clectroni. The ADC accepts at its input the samples of an analog signal and provides for each input sample the correspond ing N-bit digital representation (according to Eq. 1.3) at its N output terminals. Thu although the voltage at the input might be, say, 6.51 V , at each of the oulput terninals (say, at the i ith terminal), the voltage will be either low $(0 \mathrm{~V})$ or high $(5 \mathrm{~V})$ if b i is supposed to be 0 or 1 , respectively. We shall study the ADC and its dual circuit the digital-to-analo converter (D/A or DAC) in Chapter 9.
Once the signal is in digital form, it can be processed using digital circuits. Of course digital circuits can deal also with signals that do not have an analog origin, such as the sig nals that represent the various instructions of a digital computer
Since digital circuits deal exclusively with binary signals, their design is simpler than that of analog circuits. Furthermore, digital systems can be designed using a relatively few different kinds of digital circuit blocks. However, a large nuniber (e.g., hundreds of thousands or even millions) of each of these blocks are usually necded. Thus the design of digital circuits poses its own set of challenges to the designer but provides reliable and economic inplementations of a great variely of signal processing functions, some of which are no possible with analog circuits. At the present time, more and more of the signal processing unctions are being performed digitally. Examples around us abound: from the digital watch and the calculator to digital audio systems and, more recently, digital television. Moreover, ome longstanding analog systems such as the telephone communication system are now most entirely digital. And we should not forget the most important of all digital systems, he digital computer.
The basic building blocks of digital systems are logic circuits and memory circuits. We hall study both in this book, beginning in Section 1.7 with the most fundamental digital circuit, the digital logic inverter.

FIGURE 1.9 Block-diagram reprcsentation of the analog-to-digital converter (ADC).

One final remark: Although the digital processing of signals is at present all-pervasive, there remain many signal processing functions that are best performed by analog circuits. Indeed, many electronic systems include both analog and digital parts. It follows that a good electronics engineer must be proficient in the design of both analog and digital circuits, or mixed-signal or mixed-mode design as it is currently known. Such is the aim of this book.

EXERGISE

 between 0 . and 13
a) Give 10 cortespondine 10 : $t=0.1 .1 V: 2 \mathrm{~V}$ and 15 V .

(c) If $v=5.2 \mathrm{~V}$. what do you expect D to be? What is the resulting ertor in representation?

1.4 AMPLIFIERS

In this section, we shall introduce a fundamental signal-processing function that is employed in some form in almost every electronic system, namely, signal amplification. We shall study the amplifier as a circuit building block, that is consider its external characteristics and leave the design of its internal circuit to later chapters.

1.4.1 Signal Amplification

From a conceptual point of view the simplest signal-processing task is that of signal amplification. The need for amplification arises because transducers provide signals that are said to be "weak," that is, in the microvolt ($\mu \mathrm{V}$) or millivolt (mV) range and possessing little energy. Such signals are too small for reliablc processing, and processing is much easier if the signal magnitude is made larger. The functional block that accomplishes this task is the signal amplifier
It is appropriate at this point to discuss the need for linearity in amplifiers. When amplifying a signal, care must be exercised so that the information contained in the signal is not changed and no new information is introduced. Thus when feeding the signal shown in Fig. 1.2 to an amplifier, we want the output signal of the amplifier to be an exact replica of that at the input, except of course for having larger magnitude. In other words, the "wiggles" in the output waveform must be identical to those in the input waveform. Any chanse in waveform is considered to be distortion and is obviously undesirable.

An amplifier that preserves the details of the signal waveform is characterized by the relationship

$$
v_{o}(t)=A v_{i}(t)
$$

(1.4)
where v_{i} and v_{o} are the input and output signals, respectively, and Λ is a constant representing the magnitude of amplification, known as amplifier gain. Equation (1.4) is a linear relationship; hence the amplifier it describes is a linear amplifier. It should be easy to see that if the relationship between v_{o} and v_{i} contains higher powers of v_{i}, then the waveform of v_{o} will no longer be identical to that of ν_{1}. The amplifier is then said to exhibit nonlinear distortion.

The amplifiers discussed so far are primarily intended to operate on very small input signals. Their purpose is to make the signal magnitude larger and therefore are thought of as voltage amplifiers. The preamplifier in the home stereo system is an example of a voltage amplifier. However, it usually does more than just amplify the signal; specifically, it performs some shaping of the frequency spectrum of the input signal. This topic, however, is beyond our need at this moment.

At this time we wish to mention another type of amplifier, namely, the power amplificr. Such an amplifier may provide only a modest amount of voltage gain but substantial current gain. Thus while absorbing little power from the input signal source to which it is connected, often a preamplifier, it delivers large amounts of power to its load. An example is found in the power amplifier of the home sterco system, whose purpose is to provide sufficient power to drive the loudspeaker, which is the amplifier load. Here we should note that the loudspeaker is the output transducer of the sterco system; it converts the electric output signal of the system into an acoustic signal. A further appreciation of the need for linearity can be acquired by reflecting on the power amplifier. A linear power amplifier causes both soft and loud music passages to be reproduced witbout distortion.

1.4.2 Amplifier Circuit Symbol

The signal amplifier is obviously a two-port network. Its function is conveniently represented by the circuit symbol of Fig. 1.10(a). This symbol clearly distinguishes the input and output ports and indicates the direction of signal flow. Thus, in subsequent diagrams it will not be necessary to label the two ports "input" and "output." For generality we have shown the amplifier to have two input terminals that are distinct from the two output terminals. A more common situation is illustrated in Fig. 1.10(b), where a conmon terminal exists between the input and output ports of the amplifier. This conmon terminal is used as a reference point and is called the circuit ground.

1.4.3 Voltage Gain

A lincar amplificr accepts an input signal $v_{I}(t)$ and provides at the output, across a load resistance R_{L} (sce Fig. $1.11\left(\right.$ a)), an output signal $v_{o}(t)$ that is a magnified replica of $v_{l}(t)$. The voltage gain of the amplifier is defined by

$$
\begin{equation*}
\text { Voltage gain }\left(A_{i j}\right) \equiv \frac{v_{O}}{v_{I}} \tag{1.5}
\end{equation*}
$$

Fig. 1.11(b) shows the transfer characteristic of a linear amplifier. If we apply to the input of this amplifier a sinusoidal voltage of amplitude \hat{V}, we obtain at the output a sinusoid of amplitude $A_{v} \hat{V}$.

(a)

(b)

FIGURE 1.10 (a) Circuit symbol for amplifier. (b) An amplifier with a common terminal (ground) between the input and ouput ports.

FIGURE 1.11 (a) A voltage amplificr fed with a signal $v_{l}(t)$ and connected to a load resistance R_{L} (b) Trausfer characteristic of a linear voltage amplifier with voltage gain A_{v}.

1.4.4 Power Gain and Current Gain

An amplifier increases the signal power, an important feature that distinguishes an amplifier from a transformer. In the case of a transformer, although the voltage delivered to the load could be greater tban the voltage feeding the input side (the primary), the power delivered to the load (from the secondary side of the transformer) is less than or at most equal to the power supplied by the signal source. On the other hand, an amplifier provides the load with power greater than that obtained from the signal source. That is, amplifiers have power gain. The power gain of the amplifier in Fig. 1.11(a) is defined as

$$
\text { Power gain } \begin{align*}
\left(A_{p}\right) & \equiv \frac{\text { load power }\left(P_{L}\right)}{\text { input power }\left(P_{I}\right)} \tag{1.6}\\
& =\frac{v_{0} i_{0}}{v_{I} i_{i}} \tag{1.7}
\end{align*}
$$

where i_{o} is the current that the amplifier delivers to the load $\left(R_{L}\right), i_{o}=v_{O} / R_{L}$, and i_{I} is the current the amplifier draws from the signal source. The current gain of the amplifier is defined as

$$
\begin{equation*}
\text { Current gain }\left(A_{i}\right) \equiv \frac{i_{O}}{i_{1}} \tag{1.8}
\end{equation*}
$$

From Eqs. (1.5) to (1.8) we note that

$$
\begin{equation*}
A_{\Gamma}=A_{v} A_{i} \tag{1.9}
\end{equation*}
$$

1.4.5 Expressing Gain in Decibels

The amplifier gains defined above are ratios of similarly dimensioned quantities. Thus they will be expressed either as dimensionless numbers or, for emphasis, as V / V for the voltage gain, A/A for the current gain, and W/W for the power gain. Alternatively, for a number of reasons, some of them historic, electronics engineers express amplifier gain with a logarithmic measure. Specifically the voltage gain A_{v} can be expressed as

Voltage gain in decibels $=20 \log \left|A_{v}\right| \quad \mathrm{dB}$
and the current gain A_{i} can be expressed as

$$
\text { Current gain in decibels }=20 \log \left|A_{i}\right| \quad \mathrm{dB}
$$

Since power is related to voltage (or current) squared, the power gain A_{p} can be expressed in decibels as

$$
\text { Power gain in decibcls }=10 \log A_{p} \quad \mathrm{~dB}
$$

The absolute values of the voltage and current gains are used because in some cases A_{v} or A_{i} may be negative numbers. A negative gain A_{ν} simply means that there is a 180° phase no the setween input and output signals; it docs not imply that the amplifier is attenuat attenuating the input signal by a factor of $10\left(\right.$ i.c..,$\left.A_{\nu}=0.1 \mathrm{~V} / \mathrm{V}\right)$.

1.4.6 The Amplifier Power Supplies

Since the power delivered to the Joad is greater than the power drawn from the signal source, he question arises as to the source of this additional power. The answer is found by observ ing that amplifiers need de power supplies for their operation. These dc sources supply the extra power delivered to the load as well as any power that might be dissipated in the inter nal circuit of the amplifier (such power is converted to heat). In Fig. 1.11(a) we have not explicitly shown these de sources.
Figure 1.12(a) shows an amplifier that requires two dc sources: one positive of value V and one negative of value V_{2}. The amplifier has two terninals, labeled V^{+}and V^{-}, for con nection to the dc supplies. For the amplifier to operate, the terminal labeled V^{+}has to be con nected to the positive side of a dc source whose voltage is V_{1} and whose negative side i connected to the circuit ground. Also, the terminal labeled V has to be connected to the negative side of a de source whose voltage is V_{2} and whose positive side is connected to the circuit ground. Now, if the current drawn from the positive supply is denoted I_{1} and that from the negative supply is I_{2} (see Fig. 1.12(a)), then the dc power delivered to the amplifier is

$$
P_{\mathrm{dc}}=V_{1} I_{1}+V_{2} I_{2}
$$

If the power dissipated in the amplifier circuit is denoted $P_{\text {disssispate, }}$, the power-balance equa ion for the amplifier can be written as

$$
P_{\mathrm{dc}}+P_{I}=P_{L}+P_{\text {dissipated }}
$$

(a)
where P_{I} is the power drawn from the signal source and P_{l} is the power delivered to the load. Since the power drawn from the signal source is usually small, the amplifier efficiency is detined as

$$
\begin{equation*}
\eta \equiv \frac{P_{l}}{P_{\mathrm{dc}}} \times 100 \tag{1.10}
\end{equation*}
$$

The power efficiency is an important performance parameter for amplifiers that handle large amounts of power. Such amplifiers, called power amplifiers, are used, for example, as out put amplifiers of stereo systems.

In order to simplify circuit diagrams, we shall adopt the convention illustrated in Fig. 1.12(b). Here the V^{+}terminal is shown connected to an arrowhead pointing upward and the V^{-}terminal to an arrowhead pointing downward. The corresponding voltage is indicated next to cach arrowhead. Note that in many cases we will not explicitly show the con nections of the amplifier to the dc power sources. Finally, we note that some amplifier require only one power supply.

23MME = 7x:

Consider an amplificr operating from ± 10 - V power supplies. It is fed with a sinusoidal voltage having 1 V peak and delivers a sinusoidal voltage output of 9 V peak to a $1-\mathrm{k} \Omega$ load. The amplifier draws a current of 9.5 mA from each of its two power supplies. The input current of the annplifier is found to be sinusoidal with 0.1 mA peak. Find the voltage gain, the current gain, the power gain, the power drawn from the de supplies, the power dissipated in the amplifier, and the amplifier efficiency.

Solution

$$
A_{2}=\frac{9}{1}=9 \mathrm{~V} / \mathrm{V}
$$

or

$$
A_{v}=20 \log 9 \simeq 19.1 \mathrm{~dB}
$$

$$
\hat{I}_{o}=\frac{9 \mathrm{~V}}{1 \mathrm{k} \Omega}=9 \mathrm{~mA}
$$

$$
A_{i}=\frac{\hat{I}_{u}}{\hat{I}_{i}}=\frac{9}{0.1}=90 \mathrm{~A} / \mathrm{A}
$$

or
$A_{i}=20 \log 90=39.1 \mathrm{~dB}$
$P_{L}=V_{o_{\mathrm{rms}}} I_{o_{\mathrm{rms}}}=\frac{9}{\sqrt{2}} \frac{9}{\sqrt{2}}=40.5 \mathrm{~mW}$
$P_{I}=V_{i_{\mathrm{rms}}} I_{i_{\mathrm{rms}}}=\frac{1}{\sqrt{2}} \frac{0.1}{\sqrt{2}}=0.05 \mathrm{~mW}$
$A_{p}=\frac{P_{L}}{P_{I}}=\frac{40.5}{0.05}=810 \mathrm{~W} / \mathrm{W}$
or
$A_{p}=10 \log 810=29.1 \mathrm{~dB}$

$$
\begin{aligned}
P_{\mathrm{dc}} & =10 \times 9.5+10 \times 9.5=190 \mathrm{~mW} \\
P_{\text {dissippreded }} & =P_{\mathrm{dc}}+P_{Y}-P_{L} \\
& =190+0.05-40.5=149.6 \mathrm{~mW} \\
\eta & =\frac{P_{L}}{P_{\mathrm{dc}}} \times 100=21.3 \%
\end{aligned}
$$

From the above example we observe that the anplifier converts some of the de power it draws from the power supplies to signal power that it delivers to the load

1.4.7 Amplifier Saturation

Practically speaking, the amplifier transfer characteristic remains linear over only a limited range of input and output voltages. For an amplifier operaticd from two power supplies the output voltage cannot exceed a specified positive limit and cannot decrease below a spccified negative limit. The resulting transfer characteristic is shown in Fig. 1.13, with the positive and

FIGURE 1.13 An amplifier transfer characteristic that is linear except for output saluration.
ncgative saturation levels denoted L_{+}and L_{-}, respectively. Each of the two saturation levels is usually within a volt or so of the voltage of the corresponding power supply.
Obviously, in order to avoid distorting the output signal waveform, the input signal swing must be kept within the linear range of operation,

$$
\frac{L_{-}}{A_{v}} \leq z_{l} \leq \frac{L_{+}}{A_{v}}
$$

Figure 1.13 shows two input waveforms and the corresponding output waveforms. We note that the peaks of the larger waveform have becn clipped off because of amplifier saturation

1.4.8 Nonlinear Transfer Characteristics and Biasing

Except for the output saturation cffect discussed above, the amplifier transfer characteristics have been assumed to be perfectly linear. In practical amplifiers the transfer characteristic may exhibit nonlinearities of various magnitudes, dcpending on how elaborate the amplifier circuit is and on how much effort has bcen expended in the design to ensure linear operation. Consider as an example the transfer characteristic depicted in Fig. I.I4. Such a character istic is typical of simple amplifiers that are opcrated from a single (positive) power supply The transfer characteristic is obviously nonlinear and, because of the single-supply opera tion, is not centered around the origin. Fortunately, a simple technique exists for obtaining inear amplification from an amplifier with such a nonlinear transfcr characteristic.

The technique consists of first biasing the circuit to operate at a point near the middle of he transfer characteristic. This is achieved by applying a dc voltage ν_{l}, as indicated in Fig. 1.14, where the operating point is labeled Q and the corresponding dc voltage at the output is V_{O}. The point Q is known as the quiescent point, the dc bias point, or simply the operating point. The time-varying signal to be amplified, $v_{i}(t)$, is then superimposed on the de bias voltage V_{l} as indicated in Fig. 1.14. Now, as the total instantaneous input $v_{l}(t)$,

$$
v_{i}(t)=V_{I}+v_{i}(t)
$$

varies around V_{l}, the instantaneous operating point moves up and down the transfer curve around the dc operating point Q. In this way, one can determine the waveform of the total instantaneous output voltage $v_{0}(t)$. It can be scen that by keeping the amplitude of $v_{i}(t)$ sufficiently small the instantanieous operating point can be confined to an almost lincar segment of the transfer curve centcred about Q This in turn results in the time-varying portion of the output being proportional to $v(t)$; that is,

$$
\pi_{o}(t)=V_{o}+v_{o}(t)
$$

with

$$
v_{o}(t)=A_{v} v_{i}(t)
$$

where A_{v} is the slope of the almost linear segment of the transfer curve; that is,

$$
A_{v}=\left.\frac{d v_{0}}{d v_{I}}\right|_{\mathrm{at} Q}
$$

In this manner, linear amplification is achieved. Of course, there is a limitation: The input signal must be kept sufficiently small. Increasing the amplitude of the input signal can cause

$\downarrow t$
(a)

(b) linear operation the amplifier is biased as shown, and the signal amplitude is kept small. Observe that this amplifier is operated from a single power supply, $V_{D D}$.
the operation to be no longer restricted to an almost linear segment of the transfer curve. This in turn results in a distorted output signal waveform. Such nonlinear distortion is undesirable: The output signal contains additional spurious information that is not part of the input. We shall use this biasing technique and the associated small-signal approximation
frequently in the design of transistor amplifiers.

Fhaying tis

A transistor amplifier has the transfer characteristic

$$
\begin{equation*}
v_{0}=10-10^{-11} e^{44 v_{t}} \tag{1.11}
\end{equation*}
$$

which applies for $v_{I} \geq 0 \mathrm{~V}$ and $v_{o} \geq 0.3 \mathrm{~V}$. Find the limits L_{-}and L_{-}and the corresponding values of v. Also, find the value of the dc bias voltage V_{l} that results in $V_{o}=5 \mathrm{~V}$ and the voltage gain at the corresponding operating point.

Solution

The limit L is obviously 0.3 V . The corresponding valuc of y_{l}, is obtained by substituting $v_{o}=0.3 \mathrm{~V}$ in Eq. (1.11); that is,

$$
v_{t}=0.690 \mathrm{~V}
$$

The limit L_{-}is determined by $v_{l}=0$ and is thus given by

$$
L_{+}=10-10^{-11} \simeq 10 \mathrm{~V}
$$

To bias the device so that $V_{0}=5 \mathrm{~V}$ we require a dc input V_{I} whose value is obtained by substituting $v_{0}=5 \mathrm{~V}$ in Eq. (1.11) to find

$$
V_{I}=0.673 \mathrm{~V}
$$

The gain at the operating point is obtained by evaluating the derivative $d v_{0} / d v_{I}$ at $v_{l}=0.673 \mathrm{~V}$. The result is

$$
A_{v}=-200 \mathrm{~V} / \mathrm{V}
$$

which indicates that this amplifier in an inverting one; that is, the output is 180° out of phase with the input. A sketch of the amplifier transfer characteristic (not to scale) is shown in Fig. 1.15, from which we observe the inverting nature of the amplifier.

FIGURE $1.15 ~ \Lambda$ sketch of the transter characteristic of the amplifier of Example 1. Note that this amplifier is inverting (i.c., with a gain that is negative)

Once an amplifier is properly biased and the input signal is kept sufficiently small, the operation is assumed to be linear. We can then employ the techniques of linear circuit analysis to analyze the signal operation of the amplifier circuit. This is the topic of Sections 1.5 and 1.6

1.4.9 Symbol Convention

At this point, we draw the reader's attention to the terminology used above and which we shall employ throughout the book. Total instantaneous quantities are denoted by a lowercase symbol with an uppercase subscript, for example, $i_{A}(t), v_{C}(t)$. Direct-current (dc) quantities
will be denoted by an uppercase symbol with an uppercasc Power-supply (dc) voltages are denoted by an uppercase subscript, for example, I_{A}, V_{C}. subscript, for example V_{0} a similar notation is used for the do double-letter uppercase power supply, for cxample, I. Finally incren powercase symbol with a lowercase subscript, for wave, then its witude is dease subscrip, for example, $i_{a}\left(t, v_{c}(t)\right.$. If the signal is a sine example, I V This notation is illustrated in Fig 1.16. example, I_{a}, V. This notation is illustrated in Fig. 1.16

FIGURE 1.16 Symbol convention employed throughout the book

Diniks

 Milulull

110 The objective of this exercise is to investigate the linitation of the small signal approximation. Con sider the amplifier of Example 1.2 with a positive input signal of l mV superinposed on the de bias voltage V. Find the cortespording signal at the outpul for two situations: (a) Assunte the aniplifier is inear aroind the operating point that is, the the value of gain evatuated in Example 1.2 . (h) Use the transfer chatacteritic of the amplifier: Repeat for input siguals of 5 my /and 11 mV
Ans:-1.2 V: $0.204 \mathrm{~V}:-1 \mathrm{~V},-1.107 \mathrm{~V}:-2 \mathrm{~V}:-2.459 \mathrm{~V}$

1.5 CIRCUIT MODELS FOR AMPLIFIERS

A good part of this book is concerned with the design of amplifier circuits using transisto of various types. Such circuits will vary in complexity from those using a single transistor to those with 20 or more devices. In order to be able to apply the resulting amplifier circuit as a building block in a system, one must he able to characterize, or mode, iss tenmal bely ind In this section, we study simple but effective amplier models. These moden aphy spective of the complexily of the internal circuit of the amplif. The vales af the parameters can be found cither by analyzing the amplifier circuit or by performing measurements at the amplifier terminals.

1.5.1 Voltage Amplifiers

Figure 1.17(a) shows a circuil model for the voltage amplifier. The model consists of a voltagecontrolled voltage source having a gain factor $A_{v o}$, an input resistance R_{i} that accounts for the fact that the amplifier draws an input current from the signal source, and an output resistance R_{o} that accounts for the change in output voltage as the amplifier is called upon to

(a)

(b)
(a) Circuitmodef for he volage amplificr. (b) The voltage amplicr whinput signt source and load.
supply output current to a load. To be specific, we show in Fig. 1.17(b) the amplifier model fed with a signal voltage source v_{s} having a resistance R_{s} and connected at the output to a load resistance R_{L}. The nonzero output resistance R_{o} causes only a fraction of $A_{w y} v_{i}$ to appear across the output. Using the voltage-divider rule we obtain

$$
v_{o}=A_{v o} v_{v} \frac{R_{L}}{R_{l,}+R_{o}}
$$

Thus the voltage gain is given by

$$
\begin{equation*}
\Lambda_{v} \equiv \frac{v_{o}}{v_{i}}=\Lambda_{v c} \frac{R_{L}}{R_{L}+R_{o}} \tag{1.12}
\end{equation*}
$$

It follows that in order not to lose gain in coupling the amplificr output to a load, the output resistance R_{U} should be much smaller than the load resistance R_{L}. In other words, for a given R_{L} one must design the amplifier so that its R_{o} is much smaller than R_{L}. Furthermore, there are applications in which R_{L} is known to vary over a certain range. In order to keep the output vollage v_{v} as constant as possible, the amplifier is designed with R_{o} much smaller than the lowest value of R_{t}. An ideal voltage amplifier is one with $R_{o}=0$. Equation (1.12) indicates also that for $R_{L}=\infty, A_{v}=A_{w}$. Thus $A_{z o}$ is the voltage gain of the unloaded amplifier, or the open-circuit voltage gain. It should also be clear that in specifying the voltage gain of an amplifier, one must also specify the value of load resistance at which this gain is measured or calculated. If a load resistance is not specified, it is normally assumed that the given voltage gain is the open-circuit gain A_{w}.
The finite input resistance R_{i} introduces another voltage-divider action at the input, with the result that only a fraction of the source signal v_{s} actually reaches the input terminals of the amplifier; that is,

$$
\begin{equation*}
v_{i}=v_{s} \frac{R_{i}}{R_{i}+R_{s}} \tag{1.13}
\end{equation*}
$$

It follows that in order not to lose a significant portion of the input signal in coupling the signal source to the amplifier input, the amplifier must be designed to have an input resistance R_{i} much greater than the resistance of the signal source, $R_{i} \gg R_{s .}$. Furthermore, there are applications in which the source resistance is known to vary over a certain range. To minimize the effect of this variation on the value of the signal that appears at the input of the amplifier, the design ensures that R_{i} is much greater than the largest value of R_{s}. An ideal voltage amplifier is one with $R_{i}=\infty$. In this ideal case both the current gain and power gain
become infinite. become infinite.

The overall voltage gain ($\left(v_{o} / v_{s}\right)$ can be found by combining Eqs. (1.12) and (1.13),

$$
\frac{v_{o}}{y_{s}}=A_{w o} \frac{R_{i}}{R_{i}+R_{s}} \frac{R_{L}}{R_{L}+R_{o}}
$$

There are situations in which one is interested not in voltage gain but only in a significant power gain. For instance, the source signal can have a respectable voltage but a source resistance which is much greater than the load resistance. Connecting the source directly to the load would result in significant signal attenuation. In such a case, one requires an amplificr with a high input resistance (much greater than the source resistance) and a low output resistance (much smaller than the load resistance) but with a modest voltage gain (or even unity gain). Such an amplifier is referred to as a buffer amplifier. We shall encounter buffer amplifiers often throughout this book.

ExERCISES

 soirce and load: what do the outpit tottaje and power levelt become? For the new atrasfenent find the yoltage gain fion source to load and the porter gail buth expressed in decibets

1.12. The ouput soltage of a vortace amplitel hat bech inind to dectease by 20 \% whena load resistance of 1 kQ is conneeted, What is the valite of the amplifer output restance? Ans. 250 O
133 An amplifiet with a voltace gain of +40 dB , an input resistance of 10 kQ : and an output resistance of
 Ans. 100 VV: 41 dB

1.5.2 Cascaded Amplifier

To meet given amplifier specifications the need often arises to design the ampifier as a cascade of two or more stages. The stages are usually not identical; rather, each is designed to serve a specific purpose. For instance, the first stage is usually required to have a large input resistance, and the final stage in the cascade is usually designed to have a low output resistance. To illustrate the analysis and design of cascaded amplificrs, we consider a practical example.

5RMPL=3

Figure 1.18 depicts an amplifier composed of a cascade of three stages. The amplifier is fed by a signal source with a source resistance of $100 \mathrm{k} \Omega$ and delivers its output into a load resistance of 100Ω. The first stage has a relatively high input resistance and a modest gain factor of 10 . The sccond stage has a higher gain factor but lower input resistance. Finally, the last, or output, stage has unity gain but a low output resistance. We wish to cvaluatc the overall voltage gain, that is, v_{l} / w_{s}, the current gain, and the power gain.

FIGURE 1.18 Thre--stage amplifier for Exampie i.3

Solution

The fraction of source signal appearing at the input terminals of the amplifier is obtained using the voltage-divider rule at the input, as follows

$$
\frac{v_{i 1}}{v_{s}}=\frac{1 \mathrm{M} \Omega}{1 \mathrm{M} \Omega+100 \mathrm{k} \Omega}=0.909 \mathrm{~V} / \mathrm{V}
$$

The voltage gain of the first stage is obtained by considering the input resistance of the second stage to be the load of the first stage; that is.

$$
A_{v 1} \equiv \frac{v_{i 2}}{v_{i 1}}=10 \frac{100 \mathrm{k} \Omega}{100 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=9.9 \mathrm{~V} / \mathrm{V}
$$

Similarly, the voltage gain of the second stage is obtaincd by considering the input resistance of the third stage to be the load of the second stage,

$$
A_{v 2} \equiv \frac{v_{i 3}}{v_{i 2}}=100 \frac{10 \mathrm{k} \Omega}{10 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=90.9 \mathrm{~V} / \mathrm{V}
$$

Finally, the voltage gain of the output stage is as follows:

$$
A_{v 3} \equiv \frac{v_{L}}{v_{i j}}=1 \frac{100 \Omega}{100 \Omega+10 \Omega}=0.909 \mathrm{~V} / \mathrm{V}
$$

The total gain of the three stages in cascade can he now found from

$$
A_{v} \equiv \frac{v_{L}}{v_{i 1}}=\Lambda_{v 1} A_{v 2} A_{u 3}=818 \mathrm{~V} / \mathrm{V}
$$

or 58.3 dB .
To find the voltage gain from source to load, we multiply A_{v} by the factor representing the loss of gain at the input; that is

$$
\begin{aligned}
\frac{v_{L}}{v_{s}} & =\frac{v_{L}}{v_{i 1}} \frac{v_{i 1}}{v_{s}}=A_{v} \frac{v_{i 1}}{v_{s}} \\
& =818 \times 0.909=743.6 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

or 57.4 dB .
The current gain is found as follows:

$$
A_{i} \equiv \frac{i_{o}}{i_{i}}=\frac{v_{L} / 100 \Omega}{v_{i 1} / 1 \mathrm{M} \Omega}
$$

$$
=10^{4} \times \dot{A}_{v}=8.18 \times 10^{6} \mathrm{~A} / \mathrm{A}
$$

or 138.3 dB .
The power gain is found from

$$
\begin{aligned}
A_{p} \equiv \frac{P_{L}}{P_{I}} & =\frac{v_{L} i_{o}}{v_{i 1} i_{i}} \\
& =A_{v} \Lambda_{i}=818 \times 8.18 \times 10^{6}=66.9 \times 10^{8} \mathrm{~W} / \mathrm{W}
\end{aligned}
$$

or 98.3 dB . Note that

$$
A_{p}(\mathrm{~dB})=\frac{1}{2}\left[A_{v}(\mathrm{~dB})+A_{i}(\mathrm{~dB})\right]
$$

A few comments on the cascade amplifier in the above example are in order. To avoid losing signal strength at the amplifier input where the signal is usually very small, the first stage is designed to have a relatively large input resistance ($1 \mathrm{M} \Omega$), which is much larger than the source resistance. The trade-off appears to be a moderate voltage gain ($10 \mathrm{~V} / \mathrm{V}$) The second stage does not need to have such a high input resistance; rather, here we need to realize the bulk of the required voltage gain. The third and final, or output, stage is not asked to provide any voltage gain; rather, it functions as a buffer amplifier, providing a relatively large input resistance and a low output resistance, much lower than R_{L}. It is this stage that enables connecting the amplifier to the $10-\Omega$ load. These points can be made more concrete by solving the following exercises.

EXERCISES

1.14 What would the overall vilage gain of the cascade amplifter in Example 13 be without stage 3 ? Ans, $81.8 \mathrm{~V} / \mathrm{V}$
1.15 For the caseade amplifier of Example 13 , Tet \Downarrow_{s} be 1 mV Find y_{i}, T_{2}, ψ_{i}, and Ans. $0.91 \mathrm{mV} .9 \mathrm{mV}: 818 \mathrm{mV}: 744 \mathrm{nv}$
1.16 (a) Medel the three stage amplifier of Example 1.3 (without the soutce and load) asing the voltage amplifier model What are the values of $R_{0} A_{w}$, and $R_{?}$?
(b) $1 t R_{L}$ varies in the range 10Ω to 0000Ω find the corresponding fange of the overall yoltage sain. $y_{0} H_{s}$. Ans: 1 M 2,900 V/V 10Ω, 409 VIV to 810 V/V

1.5.3 Other Amplifier Types

In the design of an electronic system, the signal of intcrest-whether at the system input, a an intermediate stage, or at the output--can be either a voltage or a current. For instance, ome transducers have very high output resistances and can be more appropriately modeled as current sources. Similarly, there are applications in which the output cuirent rather tha he voltage is of interest. Thus, although it is the most popular, the voltage amplifier consid ered above is just one of four possible amplifier types. The other three are the current amplifier, the transconductance amplifier, and the transresistance amplifier. Table 1.1 shows the our amplifier types, their circuit models, the definition of their gain parameters, and the ideal values of their input and output resistances.

1.5.4 Relationships Between the Four Amplifier Models

Although for a given amplifier a particular one of the four models in Table 1.1 is most preferable, any of the four can be used to model the amplifier. In fact, simple relationships can be derived to relate the paramcters of the various models. For instance, the open-circuit volt ge gain $A_{w o}$ can be related to the short-circuit current gain $A_{i s}$ as follows: The open-circuit output voltage given by the voltage amplifier model of Table 1.1 is $A_{\nu o} v_{i}$. The current amplifier model in the same table gives an open-circuit output voltage of $A_{i j} i_{i} R_{o}^{\prime}$. Equating these two values and noting that $i_{i}=v_{i} / R_{i}$ gives

$$
A_{v o}=A_{i s}\left(\frac{R_{o}}{R_{i}}\right)
$$

Type	Circuit Model	Gain Parameter	Ideal Characteristics
Voltage Amplifier		Open-Circuit Voltage Gain $A_{\mathrm{vo}} \equiv \frac{v_{o}}{\left.v_{i}\right\|_{i_{0}=0}}{ }^{(\mathrm{V} / \mathrm{V})}$	$\begin{aligned} & R_{i}=\infty \\ & R_{o}=0 \end{aligned}$
Current Amplifier		Short-Circuit Current Gain $\left.A_{i s i} \equiv \frac{i_{o}}{i_{i}}\right\|_{v_{0}=0}(\mathrm{~A} / \mathrm{A})$	$\begin{aligned} & R_{i}=0 \\ & R_{o}=\infty \end{aligned}$
Transconductance Amplifier		Short-Circuit Transconductance $\left.G_{m} \equiv \frac{i_{o}}{v_{i}}\right\|_{v_{n}=0}(\mathrm{~A} / \mathrm{V})$	$\begin{aligned} & R_{i}=\infty \\ & R_{o}=\infty \end{aligned}$
Transresistance Amplifier		Open-Circuit Transresistance $R_{m}=\left.\frac{v_{o}}{i_{i}}\right\|_{i_{i}=0} \quad(\mathrm{~V} / \mathrm{A})$	$\begin{aligned} & R_{i}=0 \\ & R_{o}=0 \end{aligned}$

Similarly, we can show that

$$
\text { and } \quad \begin{align*}
A_{v o} & =G_{m} R_{o} \\
A_{v o} & =\frac{R_{m}}{R_{i}} \tag{1.15}
\end{align*}
$$

The expressions in Eqs. (1.14) to (1.16) can be used to relate any two of the gain parameter $A_{z o}, A_{i s}, G_{m}$, and R_{m}.

From the amplifier circuit models given in Table 1.1, we ohserve that the input resistance R_{i} of the amplificr can be determined by applying an input voltage v_{i} and measuring (or calculating) the input current i_{i}; that is, $R_{i}=v_{i} i_{i}$. The output resistance is found as the ratio of the open-circuit output voltage to the short-circuit output current. Alternatively, the be zero) and applying a voltage signal $y_{\text {, }}$ to the output of the smplifier. If we i_{i} and v_{i} will both rent drawn from v_{x} into the outpur terminals as i_{x} (note that amplifier. If we denote the curthen $R_{o}=v / i$. Although these techniques are conceptually i_{x} is opposite in direction to i_{n}), refined mehods are employed in measuring $R_{\text {and }} R$, in actual practice mores The amplifier models considcred aring K_{i} and R_{o}
are unilateral; that is, signal flow is unidirectional, from inder is usually undesirable but must nonetheless be modelcd. We shall not pursue this point
further at this time except to mention that more complete models for linear two-port networks further given in Appendix B. Also, in Chapters 4 and 5, we will augment the models of Table 1.1 are given in Appendix B. Also, in Chapters 4 and 5 , we will augment the mo
to take into account the nonunilateral nature of some transistor amplifiers.

Whyrk

The bipolar junction transistor (BJT), which will be studied in Chapter 5, is a three-terminal deviee that when dc biased and operated with small signals can be modeled by the lincar circuit The heart of the model is a transconductance amplifier represented by an input resistance between B and E (denoted r_{π}), a short-circuit transconductance g_{m}, and an output resistance r_{o}.

FIGURE 1.19 (a) Small-signal circuit model for a bipolar junction transistor (BJT). (b) The BJT connected as an amplifier with the enitter as a common terminal between input and output (called a commonemitter amplifier). (c) An alternative small-signal circuit model for the BIT.
(a) With the emitter used as a common terminal between input and output, Fig. 1.19(b) shows a transistor amplifier known as a common-emitter or grounded-emitter circuit. Derive an expression for the voltage gain v_{0} / v_{s}, and evaluate its magnitude for the case $R_{5}=5 \mathrm{k} \Omega, r_{\pi}=$ $2.5 \mathrm{k} \Omega, g_{m}=40 \mathrm{~mA} / \mathrm{V}, r_{o}=100 \mathrm{k} \Omega$, and $R_{L}=5 \mathrm{k} \Omega$. What would the gain value be if the effect of r_{ρ}, were neglected?
(b) An alternative model for the transistor in which a current amplificr rather thau a transconductance amplifier is utilized is shown in Fis 1.19(c). What must the short-circuit current-gain β be? Give both an expression and a value.

Solution

(a) Using the voltage-divider rule, we determine the fraction of input signal that appears at the amplifier input as

$$
\begin{equation*}
v_{b e}=v_{s} \frac{r_{\pi}}{r_{\pi}+R_{s}} \tag{1.17}
\end{equation*}
$$

Wext we determine the output voltage v_{n} by multiplying the current $\left(g_{m} v_{b c}\right)$ by the resistance $\left(R_{L} \| r_{o}\right)$,

$$
v_{o}=-g_{m} v_{b e}\left(R_{I} . \| r_{o}\right)
$$

Substiutuing for $v_{b e}$ from Eq. (1.17) yields the voitage-gain expression

$$
\begin{equation*}
\frac{v_{g}}{v_{s}}=-\frac{r_{\pi}}{r_{\pi}+R_{s}} g_{m}\left(R_{l,} \| r_{o}\right) \tag{1.19}
\end{equation*}
$$

Observe that the gain is negativc, indicating that this amplifier is inverting. For the given component values,

$$
\begin{aligned}
\frac{v_{a}}{v_{s}} & =-\frac{2.5}{2.5+5} \times 40 \times(5 \| 100) \\
& =-63.5 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

Neglecting the cffect of r_{o}, we obtain

$$
\begin{aligned}
\frac{v_{o}}{v_{s}} & \simeq-\frac{2.5}{2.5+5} \times 40 \times 5 \\
& =-66.7 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

which is quite close to the value obtained including r_{r}. This is not surprising since $r_{o} \gg R_{L}$, (b) For the model in Fig. 1.19(c) to be equivalent to that in Fig. 1.19(a),

But $i_{b}=v_{b e} / r_{\pi} ;$ thus,

$$
\beta i_{n}=g_{m} v_{b e}
$$

$$
\beta=g_{m} r_{\pi}
$$

For the values given,

$$
\beta=40 \mathrm{~mA} / \mathrm{V} \times 2.5 \mathrm{k} \Omega
$$

$$
=100 \mathrm{~A} / \mathrm{A}
$$

EXERCISES

 be fed with ot sgmal cirrent-ssurce i having a resisfance R, and let the output be comnected to a load resistance R_{1} Show that the overfil current gain il given by:

118 Consider the trimsconductance amphiter whose model is shown in the thitd tow of Table 11 . Let a volt age signal-source it with a source resistance R_{s}, be connected to the input and a toad resistance R_{L} be connected to the outpu: Show thal the overall voltage gain is given by

$$
\frac{v_{o}}{v_{s}}=G_{m} \frac{R_{i}}{R_{i}+R_{s}}\left(R_{o} \| R_{L}\right)
$$

1.6 FREQUENCY RESPONSE OF AMPLIFIERS

43 31
1.19 Consider a transresitance amplifier having the model shown in the thir foy of Table 1.1. Let the amplifier be fed with a sisnal curtent-source i_{s}, having a resistance R, and let the output be connected to a load resistance $R_{\text {: }}$. Show that the overall gain is given by

$$
\frac{U}{T}=R_{m} \frac{R_{s}}{R_{s}+R_{2}} \frac{R_{L}}{R_{i}+R_{i}}
$$

1.20. Find the input tesistance hetween terminals B and Gin the circuit shown in Fig El 20. The voltage it is atest roltage with the impul resistance R_{0} defined as $R_{i}=v_{i} H_{\text {: }}$

Ans $R_{n=}=n_{n}+(\beta+1) R_{e}$
1.6 FREQUENCY RESPONSE OF AMPLIFIERS

From Section 1.2 we know that the input signal to an amplifier can always be expressed as the sum of sinusoidal signals. It follows that an important characterization of an amplifier is in terms of its response to input sinusoids of different frequencies. Such a characterization of amplifier performance is known as the amplifier frequency response.
1.6.1 Measuring the Amplifier Frequency Response

We shall introduce the subject of amplifier frequency response by showing how it can be measurcd. Figure 1.20 depicts a linear voltage amplifier fed at its input with a sine-wave signal of amplitude V_{i} and frequency ω. As the figure indicates, the signal measured at the

FIGURE 1.20 Measurin the frequency response of a gain is characterized by its magnitude $\left(V_{v} / V\right)$ and phase ϕ.
amplifier output also is sinusoidal with exactly the same frequency ω. This is an important point to notc: Whenever a sine-wave signal is applied to a linear circuit, the resulting output is sinusoidal with the same frequency as the input. In fact, the sine wave is the only sigual that does not change shape as it passes through a linear circuit. Observe, however, that the output sinusoid will in general have a different amplitude and will be shifted in phase relative to the input. The ratio of the amplitude of the output sinusoid $\left(V_{o}\right)$ to the amplitude of the input sinusoid (V_{j}) is the magnitude of the amplifier gain (or transmission) at the test frequency ω. Also, the angle ϕ is the phase of the amplifier transmission at the test frequency ω. If we denote the amplifier transmission, or transfer function as it is more commonly
known, by $T(\omega)$, then known, by $T(\omega)$, then

$$
\begin{aligned}
|T(\omega)| & =\frac{V_{o}}{V_{i}} \\
\angle T(\omega) & =\phi
\end{aligned}
$$

The response of the amplifier to a sinusoid of frequency ω is completely described by $|T(\omega)|$
and $\angle T(\omega)$. Now, to ohtain the and $\angle T(\omega)$. Now, to ohtain the complete frequency response of the amplifier we simply change the frequency of the input sinusoid and measure the new value for $|T|$ and $\angle T$. The end result will be a table and/or graph of gain magnitude $[I T(\omega) \| \mid$ versus frequency and a lable and/or graph of phase angle $\{\angle T(\omega) \mid$ versus frequency. These two plots together constitute the frequency response of the amplifier; the first is known as the magnitude or amplitude response, and the second is the phase response. Finally, we should mention that 20 and the magnitude of transmission in decibels and thus plot $20 \log |T(\omega)|$ versus frequency.

1.6.2 Amplifier Bandwidth

Figure 1.21 shows the magnitude response of an amplifier. It indicates that the gain is quencies are below ω_{1} wr frequency range, roughly berween ω_{1} and ω_{2}. Signals whose frewe move farther away from ω_{1} and ω_{2} The bance lower gain, with the gain decreasing as amplifier is almost constant, to within a certain nut frequencies over which the gain of the amplifier bandwidth. Normally the amplifier is designed so that its 3 dB), is called the with the spectrum of the signals it is required to amplify. If this were the tidth coincides fier would distort the frequency specrrum of the inpuu signal with niffere case, the amplithe input signal being amplified by different amounts signal, with different components of

FIGURE 1.21 Typical magnitude response of an amplifier. $17 \%(\omega) \mid$ is the magnitude of the amplifier transfer
finction-that is, the ratio of the output $V,(\omega)$ to the input $V(\omega)$.

1.6.3 Evaluating the Frequency Response of Amplifiers

above, we described the method used to measure the frequency response of an amplifier We now briefly discuss the method for analytically obtaining an expression for the frequency response. What we are about to say is just a preview of this important subject, whose detailed study starts in Chapter 4
To evaluate the frequency response of an amplifier one has to analyze the amplifier equivalent circuit model, taking into account all reactive components. ${ }^{2}$ Circuit analysis proceeds in the usual fashion but with inductances and capacitances represented by their reactances. An inductance L has a reactance or impedance $j \omega L$, and a capacitance C has a reactance or impedance $1 / j \omega C$ or, equivalently, a susceptance or admittance $j \omega C$. Thus in a frequency-domain analysis we deal with impedances and/or admittances. The result of the analysis is the amplifier transfer function $T(\omega)$:

$$
T(\omega)=\frac{V_{o}(\omega)}{V_{i}(\omega)}
$$

where $V_{i}(\omega)$ and $V_{o}(\omega)$ denote the input and output signals, respectively. $T(\omega)$ is generally a complex function whose magnitude $|T(\omega)|$ gives the magnitude of transmission or the magnitude response of the amplifier. The phase of $T(\omega)$ gives the phase response of the amplifier
In the analysis of a circuit to determine its frequency response, the algebraic manipula tions can be considerably simplified by using the complex frequency variable s. In terms of s, the impedance of an inductance L is $s L$ and that of a capacitance C is $1 / s C$. Rcplacing he reactive elements with their impedances and perforning standard circuit analysis, w obtain the transfer function $T(s)$ as

$$
T(s) \equiv \frac{V_{o}(s)}{V_{i}(s)}
$$

Subsequently, we replace s by $j \omega$ to determine the transfer function for physical frequen cies, $T(j \omega)$. Note that $T(j \omega)$ is the same function we called $T(\omega)$ above; ${ }^{3}$ the additional j is included in order to emphasize that $T(j \omega)$ is obtained from $T(s)$ by replacing s with $j \omega$

1.6.4 Single-Time-Constant Networks

In analyzing amplifier circuits to determine their frequency response, one is greatly aided by knowledge of the frequency response characteristics of single-time-constant (STC) networks. An STC network is one that is composed of, or can be reduced to, one reactive component inductance or capacitance) and one resistance. Examples are shown in Fig. 1.22. An STC network formed of an inductance L and a resistance R has a time constant $\tau=L / R$. The ime constant τ of an STC network composed of a capacitance C and a resistance R is given by $\tau=C R$.

Appendix D presents a study of STC networks and their responses to sinusoidal, step, and pulse inputs. Knowledge of this material will be needed at various points throughout this book, and the reader will be encouraged to refer to the Appendix. At this point we need in particular the frequency response results; we will, in fact, briefly discuss this important topic, now.

[^1]

FIGURE 1.22 Two examples of STC networks: (a) a low-pass network and (b) a high-pass network

TABLE. 1.2 Frequency Response of SIC Networks.

	Low-Pass (LP)	High-Pass (HP)
Transfer Function $T(s)$	$\frac{K}{1+\left(s / \omega_{0}\right)}$	$\frac{K s}{s+\omega_{0}}$
Transfer Function (for physical frequencies) $T(j \omega)$	$\frac{K}{1+j\left(\omega / \omega_{0}\right)}$	$\frac{K}{1-j\left(\omega_{0} / \omega\right)}$
Magnitude Response $\|T(j \omega)\|$	$\frac{\|K\|}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}$	$\frac{\|K\|}{\sqrt{1+\left(\omega_{0} / \omega\right)^{2}}}$
Phase Response $\angle T(j \omega)$	$-\tan ^{\prime \prime}\left(\omega / \omega_{0}\right)$	$\tan ^{1}\left(\omega_{0} / \omega\right)$
Transmission at $\omega=0$ (dc)	K	0
Transmission at $\omega=\infty$	0	K
3-dB Frequency	$\omega_{0}=1 / \tau ; \tau \equiv$ time constant	
Bode Plots	$\tau-C R$ or L / R	

Most STC networks can be classified into two categories, ${ }^{4}$ low pass (LP) and high pass (HP), with each of the two categories displaying distinctly different signal responses. As an example, the STC network shown in Fig. 1.22(a) is of the low-pass type and that in Fig. 1.22(b) is of the high-pass type. To see the reasoning behind this classification, observe that the transfer function of each of these two circuits can be expressed as a voltage-divider ratio, with the divider composed of a resistor and a capacitor. Now, recalling how the impedance of a capacitor varies with frequency $(Z=1 / j \omega C)$ it is easy to see that the transmission of the circuit in Fig. 1.22(a) will decrease with frequency and approach zero as ω approaches ∞. Thus the circuit of Fig. 1.22(a) acts as a low-pass filter;' it passes low-frequency sine-wave inputs with little or no attenuation (at $\omega=0$, the transmission is unity) and attenuates high-frequency input sinusoids. The circuit of Fig. 1.22(b) does the opposite; its transmis sion is unity at $\omega=\infty$ and decreases as ω is reduced, reaching 0 for $\omega=0$. The latter circuit herefore, performs as a high-pass filter.
Table 1.2 provides a summary of the frequency response results for STC nctworks of both types. ${ }^{6}$ Also, sketches of the magnitude and phase responses are given in Figs. 1.23 and 1.24

An important exception is the all-pass STC network swdied in Chapter 11 .
A filter is a circuit that passes signals in a specitied frequency hand (the filter passhand) and stops or severcly attenuates (filters out) signals in another frequency band (the filter stopband). Fillers will be studicd in Chapter 12
The transfer functions in Tabie 1.2 are given in general form. For the circuits of Fig. $1.22, K=1$ and
$\omega_{0}=1 / C R$.

(a)

(b)

FIGURE 1.23 (a) Magniude and (b) phase response or STC
networks of the low-pass type.

(a)

(b)

FIGURE 1.24 (a) Magnitude and (w) phase response of
networks of the high-pass type

These frequency response diagrams are known as Bode plots and the 3-dB frequency $\left(\omega_{0}\right)$ is also known as the corner frequency or break frequency. The reader is urged to becomc is also known as the corner frequency or break frequency. The reader is urged to become familiar with this information and to consult Appendix D if further clarifications are needed In particular, it is importan to develop a facility for the rapid determination of the time constant τ of an STC circuit.

RWMITE su

Figure 1.25 shows a voltage amplifier having an input resistance R_{i}, an input capacitance C_{i}, a gain factor μ, and an output resistance R_{θ}. The amplifier is fed with a voltage source V_{s} having a source resistance R_{s}, and a load of resistance R_{L}. is connected to the output

FIGURE 1.25 Circuil for Example 15
(a) Derive an expression for the amplifier voltage gain V_{o} / V_{s} as a function of frequency. From this find expressions for the de gain and the $3-\mathrm{dB}$ frequency.
(b) Calculate the values of the de gain, the $3-\mathrm{dB}$ frequency, and the frequency at which the gain becomes 0 dB (i.e., unity) for the case $R_{s}=20 \mathrm{k} \Omega, R_{2}=100 \mathrm{k} \Omega, C_{1}=60 \mathrm{pF}, \mu=144 \mathrm{~V} / \mathrm{V}$, $R_{o}=200 \Omega$, and $R_{L}=1 \mathrm{k} \Omega$.
(c) Find $v_{o}(t)$ for each of the following inputs:
(i) $v_{i}=0.1 \sin 10^{2} l, \mathrm{~V}$
(iii) $v_{i}=0.1 \sin 10^{6} t$, V
(iv) $v_{2}=0.1 \sin 10^{8} t v$

Solution

(a) Utilizing the voltage-divider rule, we can express V_{i} in terms of V_{s} as follows

$$
V_{i}=V_{s} \frac{Z_{i}}{Z_{i}+R_{s}}
$$

where Z_{i} is the amplifier input impedance. Since \boldsymbol{Z}_{i} is composed of two parallel elements it is obviously easier to work in terms of $Y_{i}=1 / Z_{i}$. Toward that end we divide the numerator and denominator by Z_{i}, thus obtaining

$$
\begin{aligned}
V_{i} & =V_{s} \frac{1}{1+R_{s} Y_{i}} \\
& =V_{s} \frac{1}{1+R_{\mathrm{s}}\left[\left(\overline{1} / R_{i}\right)+s C_{i}\right]}
\end{aligned}
$$

Thus,

$$
\frac{V_{i}}{V_{s}}=\frac{1}{1+\left(R_{s} / R_{i}\right)+s C_{i} R_{s}}
$$

This expression can be put in the standard form for a low-pass STC network (see the top line of Table 1.2) by extracting [$1+\left(R_{s} / R_{i}\right)$] from the denominator; thus we have

$$
\begin{equation*}
\frac{V_{i}}{V_{s}}=\frac{1}{1+\left(R_{s} / R_{i}\right)} \frac{1}{\left.1+s C_{i} i\left(R_{s} R_{i}\right) /\left(R_{s}+R_{i}\right)\right]} \tag{1.20}
\end{equation*}
$$

At the output side of the amplifier we can use the voltage-divider rule to writc

$$
V_{o}=\mu V_{i} \frac{R_{L}}{R_{L}+R_{o}}
$$

This equation can be combined with Eq. (1.20) to obtain the amplifier transfer function as

$$
\begin{equation*}
\frac{V_{n}}{V_{s}}=\mu \frac{1}{1+\left(R_{s} / R_{i}\right)} \frac{1}{1+\left(R_{o} / R_{f}\right)} \frac{1}{1+s C_{i}\left[\left(R_{s} R_{i}\right) /\left(R_{s}+R_{i}\right)\right]} \tag{1.21}
\end{equation*}
$$

We note that only the last factor in this expression is new (compared with the expression derived in the last section). This factor is a result of the inpul capacitance C_{i}, with the time constant being

$$
\begin{align*}
\tau & =C_{i} \frac{R_{s} R_{i}}{R_{s}+R_{i}} \tag{1.22}\\
& =C_{i}\left(R_{s} / / R_{i}\right)
\end{align*}
$$

We could have obtained this result by inspection: From Fig. 1.25 we see that the input circuit is an STC network and that its time constant can be found by reducing V_{s} to zero, with the result that the resistance seen hy C_{i} is R_{i} in parallel with R_{s}. The cransfer function in Eq. (1.21) is of the form $K /\left(1+\left(s / \omega_{0}\right)\right)$, which corresponds to a low-pass STC network. The de gain is found as

$$
\begin{equation*}
K \equiv \frac{V_{o}}{V_{s}}(s=0)=\mu \frac{1}{1+\left(R_{s} / R_{i}\right)} \frac{1}{1+\left(R_{o} / R_{L}\right)} \tag{1.23}
\end{equation*}
$$

The 3-dB frequency ω_{0} can be found from

$$
\begin{equation*}
\omega_{0}=\frac{1}{\tau}=\frac{1}{C_{i}\left(R_{s} / / R_{i}\right)} \tag{1.24}
\end{equation*}
$$

Since the frequeney response of this amplificr is of the low-pass STC type, the Bode plots for the gain magnitude and phase will take the form shown in Fig. 1.23, wherc K is given by Eq. (1.23) and ω_{0} is given by Eq. (1.24).
(b) Substituting the numerical values given into Eq. (1.23) results in

$$
K=144 \frac{1}{1+(20 / 100)} \frac{1}{1+(200 / 1000)}=100 \mathrm{~V} / \mathrm{V}
$$

Thus the amplifier has a dc gain of 40 dB . Subslituting the numerical values into Eq. (1.24) gives the $3-\mathrm{dB}$ frequency

Thus,

$$
\begin{aligned}
\omega_{0} & =\frac{1}{60 \mathrm{pF} \times(20 \mathrm{k} \Omega / 100 \mathrm{k} \Omega)} \\
& =\frac{1}{60 \times 10^{-12} \times(20 \times 100 /(20+100)) \times 10^{3}}=10^{6} \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

$$
f_{0}=\frac{10^{6}}{2 \pi}=159.2 \mathrm{kHz}
$$

Since the gain falls off at the rate of $-20 \mathrm{~dB} /$ decade, starting at ω_{0} (see Fig. 1.23a) the gain will reach 0 dB in two decades (a factor of 100); thus we have

$$
\text { Unity-gain frequency }=100 \times \omega_{0}=10^{8} \mathrm{rad} / \mathrm{s} \text { or } 15.92 \mathrm{MHz}
$$

(c) To find $v_{o}(t)$ we need to determine the gain magnitude and phase at $10^{2}, 10^{5}, 10^{6}$, and $10^{8} \mathrm{rad} / \mathrm{s}$. This can be done eithcr approximately utilizing the Bode plots of Fig. 1.23 or exactly utilizing the expression for the amplilier transfer function,

$$
T(j \omega) \equiv \frac{V_{o}}{V_{s}}(j \omega)=\frac{100}{1+j\left(\omega / 10^{6}\right)}
$$

We shall do both:
(i) For $\omega=10^{2} \mathrm{rad} / \mathrm{s}$, which is $\left(\omega_{0} / 10^{4}\right)$, the Bode plots of Fig. 1.23 suggest that $|T| \simeq K=100$ and $\phi=0^{\circ}$. The transfer function expression gives $|T| \simeq 100$ and $\phi=-\tan ^{-1} 10^{-4} \simeq 0^{\circ}$. Thus,

$$
v_{o}(t)=10 \sin 10^{2} t, \mathrm{~V}
$$

(ii) For $\omega=10^{5} \mathrm{rad} / \mathrm{s}$, which is ($\omega_{0} / 10$), the Bode plots of Fig. 1.23 suggest that $|T| \simeq K=100$ and $\phi=-5.7^{\circ}$. The transfer function expression gives $|T|=99.5$ and $\phi=-\tan ^{-1} 0.1=-5.7^{\circ}$. Thus,

$$
v_{o}(t)=9.95 \sin \left(10^{5} t-5.7^{\circ}\right), \mathrm{V}
$$

(iii) For $\omega=10^{6} \mathrm{rad} / \mathrm{s}=\omega_{0}, \mid T=100 / \sqrt{2}=70.7 \mathrm{~V} / \mathrm{V}$ or 37 dB and $\phi=-45^{\circ}$. Thus,

$$
v_{o}(t)=7.07 \sin \left(10^{6} t-45^{\circ}\right), \mathrm{V}
$$

(iv) For $\omega=10^{8} \mathrm{rad} / \mathrm{s}$, which is $\left(100 \omega_{0}\right)$, the Bode plots suggest that $|T|=1$ and $\phi=-90^{\circ}$. Th transfer function expression gives

$$
\left|T^{\prime}\right| \simeq 1 \text { and } \phi=-\tan ^{-1} 100=-89.4^{\circ},
$$

Thus,
$v_{o}(t)=0.1 \sin \left(10^{8} t-89.4^{\circ}\right), \mathrm{V}$

1.6.5 Classification of Amplifiers Based on Frequency Response

Amplifiers can be classified based on the shape of their magnitude-response curve. Figure 1.26 shows typical frequency response curves for various amplifier types. In Fig. 1.26(a) the gain remains constant over a wide frequency range but falls off at low and high frequencies. Thi a common type of frequency response found in audio amplifiers.
As will be gain at high freqeies, just as C, did in the circuit of Exice (a transistor) cause the falloff of gain at high frequencies, just as C_{i} did in the circuit of Example 1.5 . On the othe hand, the fallofr of gain at low requencies is usually caused by coupling capacitors used to to simplify the design process of the different stages. The coupling capacitors are usually chosen quite large (a fraction of a microfarad to a few tens of microfarads) so that their reactance impedance) is small at the frequencies of interest. Nevertheless, at sufficiently low frequencies he rean of a coupled to appear as a voltage drop across the coupling capacitor and thus not reach the sub sequent stage. Coupling capacitors will thus cuuse loss of gain at low frequencies and cause the gain to be zero at dc. This is not at all currising since from Fig 127 we observe that the coupling capacitor, acting together with the input resitance of the subsequent forms

FIGURE 1.26 Frequency responsc for (a) a capacitively coupled amplifier, (b) a direct-coupled amplificr, and (c) a tuned or bandpass amplificr.

high-pass STC circuit. It is the frequency response of this high-pass circuit that accounts for the shape of the amplifier frequency response in Fig. 1.26(a) at the low-frequency end.

There are many applications in which it is important that the amplifier maintain its gain at low frequencies down to dc. Furthermore, monolithic integrated-circuit (If) technology does not allow the fabrication of large copifiers (as opposed to capacitively coupled or designed as directly coupled or de amplifiers (as opposed to capacitively coupled or ac amplifiers). Figure 1.26 (b) shows the frequency response of a dc response characterizes what is referred to as a low-pass amplifier

In a number of applications, such as in the design of radio and TV receivers, the need arises for an amplifier whose frequency response peaks around a certain frequency (called the center frequency) and falls off on both sides of this frequency, as shown in Fig. 1.26(c)

Amplifiers with such a response are called tuned amplifiers, bandpass amplifiers, or bandpass filters. A tuned amplifier forms the heart of the front-end or tuner of a communication receiver; by adjusting its center frequency to coincide with the frequency of a desired communications channel (e.g., a radio station), the signal of this particular channel can be received while those of other channels are attenuated or filtered out.

EXERCISES

1.21 Consider a voltage amplitier haying a frequency response of the Iow-pass STC type with a de gan of 60 dB ind a 3 -dB frequency of 1000 Hz . Find the gain in aB at $f=10 \mathrm{H}_{3}$, 10 kH , 100 kit , and 1 MHz
Ans. $60 \mathrm{~dB}: 40 \mathrm{~dB}, 20 \mathrm{~dB}: 0 \mathrm{~dB}$
D1:22 Eonsider atransconductance amplifier having the modet showm in Tabte 11. with $R=S \mathrm{kR}, R_{R}=50 \mathrm{ks}$,

 connected. Find the lighest value that C. can have while a 3 -dB bandwidth of at least 100 kHz is obrained.
Ans. $12.5 \mathrm{k} \Omega, 159.2 \mathrm{pF}$
D1.23 Consider the situation illustrated in Fig. $1: 27$. Let the output resistance of the first voltage amplifier be I k and the input resistance of the second voltage amplifier (including the resistor shown) be $9 \mathrm{k} \Omega$ The resulting equivalent circuit is shown in Fid. E1, 23 where y and R_{5} are the output voltage and out-
putresistance of the first anplifice, C is a coupling capacior, and R is the snput resistance of the second
 that will ensure that the 3 - dB frequency is not higher than 100 Hz ?

1.7 DIGITAL LOGIC INVERTERS ${ }^{7}$

The logic inverter is the most basic element in digital circuit design; it plays a role parallel to that of the amplifier in analog circuits. In this section we provide an introduction to the logic inverter.

1.7.1 Function of the Inverter

As its name implies, the logic inverter inverts the logic value of its input signal. Thus for a logic 0 input, the output will be a logic 1 , and vice versa. In terms of voltage levels, consider

he inverter shown in block form in Fig. 1.28: When \boldsymbol{y}_{l} is low (close to 0 V), the output v_{O} will be high (close to $V_{D D}$), and vice versa.

1.7.2 The Voltage Transfer Characteristic (VTC)

To quantify the operation of the inverter, we utilize its voltage transfer characteristic (VTC as it is usually abbreviated). First we refer the reader to the amplifier considered in Example 1.2 whose transfer characteristic is sketched in Fig. 1.15. Observe that the transfer characteristic ndicates that this inverting amplifier can be used as a logic inverter. Specifically, if the input is high ($v_{I}>0.690 \mathrm{~V}$), v_{o} will be low at 0.3 V . On the other hand, if the input is low close to 0 V), the output will be high (close to 10 V). Thus to use this amplifier as a logic inverter, we utilize its extreme regions of operation. This is exactly the opposite to its use a a signal amplifier, where it would be biased at the middle of the transfer characteristic and he signal kept sufficiently sinall so as to restrict operation to a short, almost linear, segment of the transfer curve. Digital applications, on the other hand, make use of the gross noninearity exhibited by the VTC.

With these observations in mind, we show in Fig. 1.29 a possible VTC of a logic inverter. For simplicity. we are using threc straight lines to approximate the VTC, which is usually a nonlinear curve such as that in Fig. 1.15. Observe that the outpul high level,

FIGURE 1.29 Voitage transfer characteristic of an inverter. The VTC is approximated by three straightine segments. Note the four parameters of the $V I C\left(V_{O H}, V_{O L}, V_{L}\right.$, and $V_{H H}$) and their use in determining the noise margins ($N M_{H}$ and $N M_{L}$).
denoted $V_{O H}$, does not depend on the exact value of v_{l} as long as v_{l} does not exceed the value labeled $V_{I L}$; when v_{I} exceeds $V_{L L}$, the output decreases and the inverter enters its amplifier region of operation, also called the transition region. It follows that V_{L} is an important parameter of the inverter VTC: It is the maximum value that v_{I} can have while being interreted by the inverter as representing a logic 0

Similarly, we observe that the output low level, denoted $V_{O L}$, does not depend on the exact value of v_{I} as long as v_{I} does not fall below $V_{I J}$. Thus $V_{H H}$ is an important parameter of exact value of v_{I} as inverter VTC: It is the minimum value that v_{t} can have while being interpreted by the inverter as representing a logic 1 .

1.7.3 Noise Margins

The insensitivity of the inverter output to the exact value of v_{I} within allowed regions is a great advantage that digital circuits have over analog circuits. To quanlify this insensitivity property, consider the situation that occurs often in a digital system where an inverter (or a logic gate based on the inverter circuit) is driving another similar inverter. If the output of the driving inverter is high at $V_{O H}$, we see that we have a "margin of safety" equal to the difference between $V_{O H}$ and $V_{I H}$ (see Fig. 1.29). In other words, if for some reason a disturbing signal (called "electric noise," or simply noise) is superimposed on the output of the driving inverter, the driven inverter would not be "bothered" so long as this noise does not decrease the voltage at its input below $V_{I H}$. Thus we can say that the inverter has a noise margin for high input, $N M_{I}$, of

$$
\begin{equation*}
N M_{H}=V_{O H}-V_{I H} \tag{1.25}
\end{equation*}
$$

Similarly, if the output of the driving inverter is low at $V_{O I}$, the driven inverter will provide Similarly, if the output of the driving inverter is low at $V_{O L}$, the driven inverter will provide
a high output even if noise corrupts the $V_{O L}$ level at its inpul, raising it up to ncarly $V_{L L}$. Thus we can say that the inverter exhibits a noise margin for tow input, $N M_{L}$, of

$$
\begin{equation*}
N M_{L}=V_{I L}-V_{O L} \tag{1.26}
\end{equation*}
$$

In summary, four parameters, $V_{O H}, V_{O H}, V_{I H}$, and V_{L}, define the VTC of an inverter and determine its noise margins, which in turn measure the ability of the inverter to tolerate variations in the input signal levels. In this regard, observe that changes in the input signal level within the noise margins are rejected by the inverter. Thus noise is not allowed to propagate further through the system, a definite advantage of digital over analog circuits. Alternatively, we can think of the inverter as restoring the signal levels to standard values ($V_{O I}$ and $V_{O H}$) even when it is presented with corrupted signal levels (within the noise margins). As a summary, useful for future reference, we present a listing of the definitions of the important parameters of the inverter VTC in Table 1.3

TABLE 1.3 . inpartan P Parameters of the VIC of the Ligic Inverter (Refer to Fig, $1: 29$
$V_{O I}$: Output low level
$V_{\text {OH: }}$: Output high level
$V_{I L}$: Maximum value of input interpreted by the inverter as a logic 0
$V_{H:}:$ Minimum value of input interpreted by the inverter as a logic 1
$N M_{L}$: Noise margin for low input $=V_{u}-V_{0}$
$N M_{l}:$ Noise margio for low input $=V_{I L}-V_{O L}$
$N M_{H}$: Noise margin for high imput $=V_{O H}-V_{H H}$

FIGURE 1.30 The VTC of an ideal inverter:

1.7.4 The Ideal VTC

The question naturally arises as to what constitutes an ideal VTC for an inverter. The answer follows directly from the preceding discussion: An ideal VTC is one that maximizes the noise margins and distributes them equally between the low and high input regions. Such a VTC is shown in Fig. 1.30 for an inverter operated from a dc supply $\dot{V}_{D D}$. Observe that the output high level $V_{O I I}$ is at its maximun possible value of $V_{D D}$, and the output low level is at its minimum possible value of 0 V . Observe also that the threshold voltages $V_{I L}$ and $V_{l H}$ are equalized and placed at the middle of the power supply voltage ($V_{D D^{\prime}} / 2$). Thus the width of the transition region between the high and low output regions has been reduced to zero. The transition region, though obviously very important for amplifier applications, is of no value in digital circuits. The ideal VTC exhibits a steep cransition at the threshold voltage $V_{D D} / 2$ with the gain in the transition region being infinite. The noise margins are now equal:

$$
\begin{equation*}
N M_{H}=N M_{L}=V_{D D} / 2 \tag{1.27}
\end{equation*}
$$

We will see in Chapter 4 that inverter circuits designed using the complementary metal-oxide-semiconductor (or CMOS) technology come very close to realizing the ideal VTC.

1.7.5 Inverter Implementation

Invertcrs are implemented using transistors (Chapters 4 and 5) operating as voltage-controlled switches. The simplest inverter implementation is shown in Fig. 1.31. The switch is controlled by the inverter input voltage v_{F} : When v_{I} is low, the switch will be open and $v_{O}=V_{D D}$ since no current flows through R. When v_{I} is high, the switch will be closed and, assuming an ideal switch, $v_{o}=0$

Transistor switches, however, as we will see in Chapters 4 and 5, are not perfect. Although their off resistances are very liigh and thus an open switch closely approximates

(a)

v_{I} low

(c)

FIGURE 1.31 (a) The simplest implementation of a logic inverter using a voltage-controlled switch; (b) equivalent circuit when v_{I} is low; and (c) equivalent circuit when v_{l} is high. Note that the switch is
an open circuit, the "on" switch has a finite closure or "on" resistance, $R_{\text {on }}$. Furthermore, some switches (e.g., those implemented using bipolar transistors'; see Chapter 5) exhibit in addition to $R_{\text {on }}$ an offset voltage, $V_{\text {ofrsec }}$. The result is that when $v_{/}$is high, the inverter has the equivalent circuit shown in Fig. 1.31(c), from which $V_{O L}$ can be found.
Morc claboratc implementations of the logic inverter exist, and we show two of these in Figs. 1.32(a) and 1.33(a). The circuit in Fig. 1.32(a) utilizes a pair of complementary PD) switch connects (he output node to ground when node to $V_{D D}$, and the "pull-down"

FIGURE 1.32 A more elaborate implementation of the logic inverter utilin switches. This is the basis of the CMOS inverter studied in Section 4.10.

FIGURE 1.33 Another invciter implementation utilizing a double-dirow switch to stecr the consiant current $I_{E F}$ to $R_{C I}$ hen ψ_{1} is high) or $R_{C 2}$ (when ψ_{1} is ow, This is the a ais
closed and the PD switch open, resulting in the equivalent circuit of Fig. 1.32(b). Observe that in this case $R_{\text {on }}$ of PU connects the output to $V_{D D}$, thus establishing $V_{O H}=V_{D D}$. Also observe that no current flows and thus no power is dissipated in the circuit. Next, if v_{I} is raised to the logic / level, the PU switch will open while the PD switch will close, resulting in the equivalent circuit shown in Fig. 1.32(c). Here $R_{\text {un }}$ of the PD switch connects the output to ground, thus establishing $V_{O L}=0$. Here again no current flows, and no power is dissipated. The superiority of this implementation over that using the single pull-down switch and a resistor (known as a pull-up resistor) should be obvious. This circuit constitutes the basis of the CMOS inverter that we will study in Section 4.10. Note that we have not included offset voltages in the equivalent circuits because MOS switches do not exhibit a voltage offset (Chapter 4).
Finally, consider the inverter implementation of Fig. 1.33. Here a double-throw switch is used to steer the constant current $I_{E E}$ into one of two resistors connected to the positive supply $V_{C C}$. The reader is urged to show that if a high v_{I} results in the switch being connected to $R_{C l}$, then a logic inversion-function is realized at ψ_{01}. Note that the output voltage is independent of the switch resistance. This current-steering or current-mode logic arrangement is the basis of the fastest available digital logic circuits, called emitter-coupled logic (ECL), introduced iu Chapter 7 and studied in Chapter 11

1.7.6 Power Dissipation

Digital systems are implemented using very large numbers of logic gates. For space and other economic considerations, it is desirable to implement the system with as few integratedcircuit (IC) chips as possible. It follows that one must pack as many logic gates as pessible on an IC chip. At present, 100,000 gates or more can be fabricated on a single IC chip in what is known as very-Iarge-scale integration (VLSI). To keep the power dissipated in the chip to acceptable limits (imposed by thermal considerations), the power dissipation per gate must be kept to a miuimum. Indeed, a very important performance measure of the logic inverter is the power it dissipates.

The simple inverter of Fig. 1.31 obviously dissipates no power when v_{i} is low and the switch is open. In the other state, however, the power dissipation is approximately $V_{D D} / R$ and can be substantial. This power dissipation occurs even if the inverter is not switching
and is thus known as static power dissipation. The inverter of Fig, 1.32 exhibits no static power dissipation, a definite advantage. Unfortunately, however, another component of power dissipation arises when a capacitance exists between the output node of the inverter and ground. This is always the case for the devices that implement the switches have inter nal capacitances, the wires that connect the inverter output to other circuits have capacitance, and of conrse, there is the input capacitance of whatever circuit the inverter is driving. Now, as the inverter is switched from one state to another, current must flow trough the switch(es) to charge (and dischare) the load capacitance. These currents give rise to power dissipation in the switches, called dynamic power dissipation In Chapter 4 we shall study dynamic power dissipation in the CMOS inverter, and we shall show that an we serter witched at a frequcy f Hz exhibits a dynamic power disipation inverter switched at a frequency $f \mathrm{~Hz}$ exhibits a dynamic power dissipation

$$
\begin{equation*}
P_{\text {dynnamic }}=f C V_{D D}^{2} \tag{1.28}
\end{equation*}
$$

where C is the capacitance between the output node and ground and $V_{D D}$ is the power-supply voltage. This result applies (approximately) to all inverter circuits.

1.7.7 Propagation Delay

Whereas the dynamic bchavior of amplifiers is specified in tenns of their frequency response, that of inverters is characterized in terms of the time delay between switching of v_{i} (from low to high or vice versa) and the corresponding change appearing at the output. Such a delay, called propagation delay, arises for two reasons: The transistors that implement the switches exhibit finite (nonzero) switching times, and the capacitance that is inevitably present between the inverter output node and ground needs to charge (or discharge, as the case may he) hefore the output reaches its required level of $V_{O I I}$ or $V_{\text {OL }}$. We shall analyze the inverter switching times in subsequent chapters. Such a study depends on a thoroug familiarity with the time response of single-time-constant (STC) circuits. A review of this subject is presented in Appendix D. For our purposes here, we remind the reader of the key equation in determining the response to a step function:

Consider a step-function input applied to an STC network of either the low-pass or high pass type, and let the network have a time constant τ. The output at any time t is given by

$$
\begin{equation*}
y(t)=Y_{\infty}-\left(Y_{\infty}-Y_{0+}\right) e^{-t / \tau} \tag{1.29}
\end{equation*}
$$

where Y_{∞} is the final value, that is, the value toward which the response is heading, and Y_{0+} is the value of the response immediately after $t=0$. This equation states that the output at any time t is equal to the difference between the final value Y_{∞} and a gap whose initial value is $Y_{\infty}-Y_{0+}$ and that is shrinking exponentially.

Whinetz \%

Consider the inverter of Fig. 1.31(a) with a capacitor $C=10 \mathrm{pF}$ connected between the output and ground. Let $V_{D D}=5 \mathrm{~V}, R=1 \mathrm{k} \Omega, R_{\text {on }}=100 \Omega$, and $V_{\text {offsel }}=0.1 \mathrm{~V}$. If at $t=0, v_{1}$ goes low and neglecting the delay time of the switch, that is, assuming that it opens immediately, find the time for the output to reach $\frac{1}{2}\left(V_{O H}+V_{O L}\right)$. The time to this 50% point on the output waveform is defined as the low-10-high propagation delay, $t_{\text {PIH }}$

Solution

First we determine $V_{O L}$, which is the voltage at the output prior to $t=0$. From the equivalen
circuit in Fig. 1.31(b), we find

$$
\begin{aligned}
V_{O L} & =V_{\text {offict }}+\frac{V_{D D}-V_{\text {offee }}}{R+R_{\text {on }}} R_{\text {on }} \\
& =0.1+\frac{5-0.1}{1.1} \times 0.1=0.55 \mathrm{~V}
\end{aligned}
$$

Next, whon the switch opens at $t=0$, the circuit takes the form shown in Fig. 1.34(a). Since the voltage across the capacitor cannot change instantaneously, at $t=0+$ the output will still be 0.55 V

FIGURE 1.34 Example 1.6: (a) The inverter circuit after the switch opens (i.e.,. for $t \geq 0+$). (b) Wavecon of v_{r} and v_{0}. Observe that the switch is assumed to operate instantameocusly. v_{0} rises exponentially, starting a $V_{O I}$ and heading toward $V_{\text {OII }}$.
Then the capacitor charges through R, and v_{0} rises exponentially toward $V_{D D}$. The output waveform will be as shown in Fig. 1.34(b), and its equation can be obtained by substituting in Eq. (1.29), $v_{o}(\infty)=5 \mathrm{~V}$ and $v_{o}(0+)=0.55 \mathrm{~V}$. Thus,

$$
v_{O}(t)=5-(5-0.55) e^{-t / \tau}
$$

where $\tau=C R$. To find $t_{P I, H}$, we substitute

$$
\begin{aligned}
v_{O}\left(t_{P L H}\right) & =\frac{1}{2}\left(V_{O H}+V_{O L}\right) \\
& =\frac{1}{2}(5+0.55)
\end{aligned}
$$

The result is

$$
t_{P L H}=0.69 \tau
$$

$=0.69 \mathrm{RC}$
$=0.69 \times 10^{3} \times 10^{-11}$
$=6.9 \mathrm{~ns}$

FIGURE 1.35 Definitions of propagation delays and transition times of the logic inverter.

We conclude this section by showing in Fig. 1.35 the formal definition of the propaga fion delay of an inverter. As shown, an input pulse with finite (nonzero) rise and fal times is applied. The inverted pulse at the output exhibits finite rise and fall times (labeled $t_{T_{L H}}$ and $t_{T H L}$, where the subscript T denotes transition, $L H$ denotes low-to-high, and $H L$ denotes high-to-low). There is also a delay time between the input and output wave forms. The usual way to specify the propagation delay is to take the average of the high-to-low propagation dclay, $t_{P H}$, and the low-to-high propagation delay $t_{P L}$ As indicated, these elays are measured between the 50% points of the input and output waveforms. Also note that the transition times are specified using the 10% and 90% points of the output excursion ($V_{O H}-V_{O I}$).
1.8 CIRCUIT SIMULATION USING SPICE

The use of computer programs to simulate the operation of electronic circuits has become an essential step in the circuit-design process. This is especially the case for circuits that are be fabricated in integrated-circuit form. However, even circuits that are assembled on printed-circuit board using discrete components can and do benefit from circuit simulion. Circuit simulation enables the designer to verify that the design will meet specifications when actual components (with their many imperfections) are used, and it can also provide additional insight into circuit operation allowing the designer to fine-tune the final design prior fabrication. However, notwithstanding the advantages of computer simulation, it is not a sub stitute for a thorough understanding of circuit operation. It should be performed only at a late stage in the design process and, most certainly, after a paper-and-pencil design has been donc

Among the various circuit-simulation programs available for the computer-aided numer ical analysis of microelectronic circuits, SPICE (Simulation Program with Integrated Cir cuit Emphasis) is generally regarded to be the most widcly used: SPICE is an open-source program which has been under development by the University of California at Berkeley since the early 1970s. PSpice is a commercial personal-computer version of SPICE that is now commercially available from Cadence. Also available from Cadence is PSpice A/Dan advanced version of PSpice that can model the behavior and, hence; simulate circuits that process a mix of both analog and digital signals. ${ }^{8}$ SPICE was originalily a text-based program The user had to describe the circuit to be simulated and the type of simulation to be per formed using an input text file, called a netlist. The simulation results were also displayed as text. As an example of more recent developments, Cadence provides a graphical interface, called OrCAD Capture CIS (Component Information System), for circuit-schematic entry and editing. Such graphical interface tools are referred to in the literature as schematic entry, schematic editor, or schematic capture tools. Furthermore, PSpice A/D includes a graphical postprocessor, called Probe, to numerically analyze and graphically display the results of the PSpice simulations. In this text, "using PSpice" or "using SPICE" loosely efers to using Capture CIS, PSpice A/D, and Probe to simulate à circuit and to numerical ualyze and graphically display the simulation results.
An evaluation (student) version of Capture CIS and PSpice A/D are included on the CD accompanying this book. These correspond to the OrCAD Family Release 9.2 Litc Edition avail able from Cadence. Furthermore, the circuit diagrams entered in Capture CIS (called Capture chematis) and the corresponding Pspice simalation files of all SPRE examples in Cais book la tie or It is ang ans in wing
It is not our how SPICE works nor the intriOcies of using it effectively. This can be found in SPICE books listed in Appendix F uapter, is the the fPICE to represt the ver
 elcetronic devices, and to illustrate how aseful SPICE can be in investigating circuit operation
 Find Vort Yot NM, and $N M_{\text {, Aliso find the aterage static power dissipation assuming that the inverte }}$ ends half the fime in each of its two state
1.25 Find the dyamic power dissipted in an inverter operated from a $5 . V$ power supply. The inverter has a 2-pF capacitance load and is switched at 50 MHz . Ans. 2.5 mW

[^2] circuits arc called mixed-signal simulators

SUMMARY

\％An electrical sicnal source can be represented in either the Thévenin form（a voltage source v_{s} in series with a source resistancc R_{s} ）or the Norton form（a current sourcc i_{s} in parallel with a source resistance R_{R} ．The Thévenin voltage e_{s} equal to the Norton current i_{s} is equal to the short－circuit current between the source terminals．For the two represcn－ tations to be equivalent，$v_{s}=R_{i}$,
＊The sine－wave signal is completely characterized by its pcak valuc（or rms value which is the peak $/ \sqrt{2}$ ），its fre－ T is the period in seconds），and its phase with respect to an arhitrary reference time．
＊A signal can be represented either by its wavcform versus time，or as the sum of sinusoids．The latter represcntation is known as the frequency spectrum of the signal．

镃 Analog signals have magnitudes that can assume any value．Electronic circuits that process analog signals are called analog circuits．Sampling the magnitude of an ana－ log signal at discreete instants of time and represcnting Digital signals are processed hy digital circuits．
The simplest digital signals are ohtained when the binary system is used．An individual digitial signal then assumes one of only two possible values：low and high（say， 0 V and

2．An analog－to－digital converter（ADC）provides at its oult－ put the digits of the binary number representing the ana－ log signal sample applied to its input．The output digital signal can then be processed using digital circuits．Refer
to Fig． 1.9 and Eq．1．3．
\％The transfer characteristic，v_{0} versus v_{1} ，of a linear ampli－ fier is a straight line with a slope equal to the voltage gain． Refer to Fig． 1.11
3 Amplificrs increase the signal power and thus require dc power supplies for their operation．
The amplifier voltage gain can be expressed as a ratio A_{v} in V / V or in decibels， $20 \log \left|\Lambda_{v}\right|$ dB．Similarly，for cur－ rent gain：A_{i} A／A or $20 \log \mid A_{i}$, dB．For power gain：A_{1} W / W or $10 \log A_{p} \mathrm{~dB}$ ．
（inear amplification can be obtained from a devicc hav ing a nonlinear transfer characteristic by employing dc biais 1.14 pping the input signal ampliude small．Refer －Fe． 1.1
緅 Depending on the signal to be amplified（voitage or cur－ rent）and on the desircd form of output signal（volage or
current），there are four basic amplifier types：voltage， current，transconductance，and transresistance amplifiers． For the circuit models and ideal characteristics of these four anplifier lypes，refer to Table 1．1．A given amplifier case their parameters are related by the formulas in Eqs．（1．14）to（1．16）．
（5 A sinusoid is the only signal whose wave form is un－ changed tlrough a linear circuit．Sinusoidal signals are used to measure the frcqucncy responsc of amplifiers：
襄 The transfer function $T(s) \equiv V_{o}(s) / V_{i}(s)$ of a voltage amplificr can be determined from circuit analysis．Substi－ utting $s=j \omega$ gives $T(j \omega$ ），whose magnitude $|T(j \omega)|$ is th magnitude response，and whose phase $\phi(\omega)$ is the phase response，of the amplifier．
2andifiers are classified according to the shape of their Frequicncy response，iT（ $j \omega)$ ）．Refer to Fig．1．26
Single－time－constant（STC）networks are those networks that are composed of，or can he reduced to，one reactive stant τ is either $L R$ or $C R$ ．resistance (R) ．The time con－ stant τ is cither $L /$ or $C R$
＊STC networks can be classified into two categories：low－ pass（LP）and high－pass（HP）．LP networks pass dc and low frequencics and attenvate high frequencies．The op posite is true for HP networks．
（2 The gain of an LP （HP）STC circuit drops by 3 dB below the zero－frequency（infinite－frequency）value at a fre－ quency $\omega_{0}=1 / \tau$ ．At high frequencies（low frequencics） the gain falls off at the rate of $6 \mathrm{~dB} /$ octave or $20 \mathrm{~dB} /$ decade． Refer to Table 1.2 on page 34 and Figs．（1．23）and（1．24）． Further details are given in Appendix E．
眼 The digital logic inverter is the basic building block of digital circuits，just as the amplifier is the basic building block of analog circuits．
碃 The static operation of che inverter is described by its volt－ age transfer characteristic（VTC）．The break－points of the transfer characteristic determine the inverter noise mar－ gins；refer to Fig．1．29 and Tablc 1．3．In particular，note that $N M_{H}=V_{O H}-V_{t H}$ and $N M_{L}=V_{I L}-V_{O L}$ ．
The inverter is implemented using transistors operating as voltage－controlled switches．The arrangement uilizing two switches operated in a complenentary fashion results o high－performance invertcr．This is the basis for the CMOS inverter studied in Chapter 4.
 amount of power it dissipates．There are two components of power dissipation：static and dynamic．The first is a result of current flow in eithcr the 0 or 1 state or both．The second
occurs when the inverter is switched and has a capacior oad．Dynamic power dissipation is given approximatcly by
（3．Another very important pcrformance parameter of the in vcrter is its propagation delay（see Fig． 1.35 for dcfimitions）． $f C V_{D D}^{2}$

PROBLEMS ${ }^{1,2}$

CIRCUIT BASICS

As a review of the basics of circuit analysis and in order for the readers to gauge their preparedncss for the study of elec－ tronic circuits；this section presents a number of relcyant cir－ cuit analysis problems．For a summary of Thévenin＇s and Norton＇s theorems，refer to Appcndix D．The problems are grouped in appropriate categories．

RESISTORS AND OHM＇S LAW

1．1 Ohm＇s law relates V, I ，and R for a resistor．For each of the situations following，find the missing item：
（a）$R=1 \mathrm{k} \Omega, V=10 \mathrm{~V}$
（b）$V=10 \mathrm{~V}, I=1 \mathrm{~mA}$
（c）$R=10 \mathrm{k} \Omega, l=10 \mathrm{~mA}$
（d）$R=100 \Omega, V=10 \mathrm{~V}$
1．2 Measurenents takcn on various resistors are shown below． For each，calculate the power dissipated in the resistor and the power rating nccessary for safe operation using standard compo－ nents wih power ratings of $1 / 8 \mathrm{~W}, 1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}$ ，or 2 W ：
（a） $1 \mathrm{k} \Omega$ conducting 30 mA
（b） $1 \mathrm{k} \Omega$ conducting 40 mA
（c） $10 \mathrm{k} \Omega$ conducting 3 mA
（d） $10 \mathrm{k} \Omega$ conducting 4 m
（e） $1 \mathrm{k} \Omega$ dropping 20 V
（f） $1 \mathrm{k} \Omega$ dropping 11 V
1．3 Ohm＇s law and the power law for a resistor relate V, I ， R ，and P ，making only two variables independent．For each pair identified below，find the other two：
（a）$R=1 \mathrm{k} \Omega, I=10 \mathrm{~mA}$
（b）$V=10 \mathrm{~V}, I=1 \mathrm{~mA}$
（c）$V=10 \mathrm{~V}, P=1 \mathrm{~W}$
（e）$R=1 \mathrm{kS}, P=1 \mathrm{~W}$

COMBINING RESISTORS

1．4 You are given three resistors whose values are $10 \mathrm{k} \Omega$ ， $20 \mathrm{k} \Omega$ ，and $40 \mathrm{k} \Omega$ ．How many different resistances can you
create using series and parallel combinations of thesc three List them in value order，lowest first．Be thorough and combinations，then consider series combinations，and the consider series paralel comhinations，of which there are to kinds）．
1．5 In the analysis and test of elcetronic circuits，it is ofte useful to connect one resistor in paraliel wilh another to maller of the two resistors．Oftien，particularly during circut lesting，one resistor is already installed，in which case the sec ond．when connected in parallel，is said to＂shunt＂the first．If the originial resistor is $10 \mathrm{k} \Omega$ ，what is the valuc of the shuntin resistor needed to reduce the combined value hy 1% ， 5% ， 10% ，and 50% ？What is the result of shunting a $10-\mathrm{k} 52$ resistor hy 1 M 2 ？By $100 \mathrm{k} \Omega$ ？By $10 \mathrm{k} \Omega$ ？

voltage dividers

1．6 Figure P1．6（a）shows a two－resistor voltage divider．It function is to generatc a voltage V_{O}（sinallcr than the power－ supply voltage $V_{D D}$ at its output node X ．The circuit looking Observe that this is the Thévenin equivalent of the volte divider circuit．Find expressions for V_{o} and R_{o} ．

（a）

Somewhat difficult problems are marked with an asterisk（ ${ }^{*}$ ；more difficult problems arc marked with two asterisks（＊＊）；and very difficult （and／or time－consumuning）problems arce marked with thicc asterisks（ ${ }^{(* * * *)}$ ）．
${ }^{2}$ Design－oriented problems are marked with a D ．
1.7 A two-resistor voltage divider employing a $3.3-\mathrm{k} \Omega$ and a $6.8-\mathrm{k} \Omega$ resistor is connected to a $9-\mathrm{V}$ ground-referenced power supply io provide a relatively low voltage. Sketch the (measured to ground) and equivalent output resistance result? If the resistors used are not ideal but have a $\pm 5 \%$ manufactur ing tolerance, what are the extreme output voltages and resis tances that can result?
1.8 You are given three resistors, each of $10 \mathrm{k} \Omega$, and a $9-\mathrm{V}$ battery whose negative terminal is conncected to ground. With ollage divider using sume or all of your resitor, ho many positive-voltage sources of magnitude les than 9 V can you design? List them in order, smallest first. What is the out put resistance (i.e., the Thévenin resistance) of cach?
D*1.9 Two resistors, with nominal values of $4.7 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$, are used in a voltage divider with a $+15-\mathrm{V}$ supply to create a what is the put. Assuming the resint value Which resistor must be shunted (paralleled) by what thir resistor to create a voltage-divider output of 10.00 V ? If a outpul resistance of exactly $3.33 \mathrm{k} \Omega$ is also required, what do you suggest? What should be done if the requirement is 10.00 V and $3.00 \mathrm{k} \Omega$ while still using the original $4.7-\mathrm{k} \Omega$ and $10-\mathrm{kS}$ rcsistors?

current dividers

. 10 Current dividers play an impottant role in circi design. Therefore it is important to develop a facility for dea ing with current dividers in circuil analysis. Figure Pl. shows a two-resistor current divider fed with an ideal cuircn source I. Show that

$$
\begin{aligned}
& I_{1}=\frac{R_{2}}{R_{1}+R_{2}} I \\
& I_{2}=\frac{R_{1}}{R_{1}+R_{2}} I
\end{aligned}
$$

and find the voltage V that develops across the curren divide

FIGURE P1.10

D1.11 Design a simple current divider that will reduce the current provided to a $1-\mathrm{k} \Omega$ load to 20% of that available from the source.

D1.12 A designer searches for a simple circuit to provide one-third of a signal current I to a load resistance R. Suggest a solution using one resistor. What must its value be?
What is the input resiscance of the resulling carrent divider? For a particular value R, the designer discovers that the oiherwise-best-available resistor is 10% too high. Suggest two circuit topologies using one additional resistor that will solve this problem. What is the value of the resistor required? What is the input resistance of the current divider in each case?
D1.13 A particular electronic signal source gencrates currents in the range 0 mA to 1 mA under the condition that its load voitage not exceed 1 V . For loads causing more than 1 V to appear across the generator, the output current is no longer assured but will be reduced by some unknown amount. This nal sine wave, will lead to undesirable signal distortion that must be avoided. If a 10 - k I Ioad is to be comnected, what must be done? What is the name of the circuit you must use? How many resistors are needed? What is (are) the(ir) value(s)?

thévenin-equivalent circuits

1.14 For the circuit in Fig. P1.14, find the Thévenin equivalent circuit between terminals (a) 1 and 2 , (b) 2 and 3 ; and (c) 1 and 3

FIGURE P1. 14
1.15 Through repeated application of Thevenin's theorem. find the Thévenin-equivalent of the circuit in Fig. P1. 15 between node 4 and ground and hence find the current that flows through a load resistance of $1.5 \mathrm{k} \Omega$ conncected between node 4 and ground

FIGURE P1. 15

circuit analysis

1.16 For the circuit shown in Fig. Pl.16, find the current in common node using two methods:
(a) Curent: Define branch currents I_{1} and I_{2} in R_{1} and R_{2} (a) Cunct: identify two equations; and solve them. respectively; identiily two equations, and at the conmon node identify a single equation; and solvc it.
Which method do you prcfer? Why?

FIGURE P1.16

1.17 The circuit shown in Fig. Pl. 17 represenis the equiva lent circuit of an unbalanced bridge. It is required to calculate he current in the detector branch $\left(R_{5}\right)$ and the voltage acros t. Although this can be done using loop and node equatuons, f the circuit to the left of node 1 and the Thevenin equivalen of the circuit to the right of node 2 . Then solve the resulting simplified circuit.

FIGURE P1.17
1.18 For the circuit in Fig. P1.18, find the equivalent resistance to ground, $R_{\text {eq }}$. To do chis, apply a voltage V_{s} between terminai X and ground and find the current drawn from V_{x}. Note that you
an use particular special propertics of the circuit to get the result directly! Now, if R_{4} is raiscd to $1.2 \mathrm{k} \Omega$, what does $R_{\text {eq }}$ become?

FIGURE P1.18

AC CIRCUITS
1.19 The periodicity of recurrent waveforms, such as sine waves or square waves, can be completely specified using only one of three possibe parameerverional) frequency, f, in Hertz (Hz); or period T, in seconds (s). As well, each of the parameters can be specified numerically in one of several ways: using letter prefixes associated with the basic units, using scientific notation, or using some combination of both. Thus, for example, a particular period may be specified as $100 \mathrm{~ns}, 0.1 \mu \mathrm{~s}$, $10^{-1} \mu \mathrm{~s}, 10^{5} \mathrm{ps}$, or $1 \times 10^{-7} \mathrm{~s}$. (For the definition of the various prefixes used in electronics, see Appendix H.) For each of the measures listed below, expss notation associated with the basic unit (c.g., $10^{-1} \mathrm{~s}$ sather than $10^{-1} \mu \mathrm{~s}$).
(a) $T=10^{-4} \mathrm{~ms}$
(b) $f=1 \mathrm{GHz}$
(c) $\omega=6.28 \times 10^{2} \mathrm{rad} / \mathrm{s}$
(d) $T=10 \mathrm{~s}$
(c) $f=60 \mathrm{~Hz}$
(f) $\omega=1 \mathrm{krad}$
(f) $\omega=1 \mathrm{krad} / \mathrm{s}$
(g) $f=1900 \mathrm{MHz}$
1.20 Find the complex impedance Z of each of the follow1.20 . n dic complex impedance, $Z 00 \mathrm{kHz}$, and 1 GHz
(a) $R=1 \mathrm{k} \Omega$
(h) $C=10 \mathrm{nF}$
(c) $C=2 \mathrm{pF}$
(d) $L=10 \mathrm{mH}$
(e) $L=1 \mathrm{nH}$
1.21 Find the complex impedance at 10 kHz of the follow ing networks:
(a) $1 \mathrm{k} \Omega$ in series with 10 nF
(b) 1 kS 2 in parallel with $0.01 \mu \mathrm{~F}$
(c) $100 \mathrm{k} \Omega$ in parallel with 100 pF
(d) 100Ω in serics with 10 mH

SECTION 1.1: SIGNALS

1.22 Any given signal source provides an upen circuit votagc, $v_{c e}$ and a short-circuit current $i_{s c}$. For the following sourccs, calculate the internal resistance, $R_{\text {s, }}$ the Norton current, i_{s}, and the Thevcnin vollage, v_{s}
(a) $v_{o c}=10 \mathrm{~V}, i_{s c}=100 \mu \Lambda$
(b) $i_{c c}=0.1 \mathrm{~V}, i_{s c}=10 \mu \mathrm{~A}$
1.23 A particular signal source produces an output of 30 mV when loaded by a $100-\mathrm{k} \Omega$ resistor and 10 mV when loaded by a $10-\mathrm{k} \Omega$ resistor. Calculate the Thévenia vollage,
Norton current, and source resistance.
1.24 A ternpcrature sensor is specified to provide $2 \mathrm{mV}{ }^{\rho} \mathrm{C}$ When connected to a load resistance of $10 \mathrm{k} \Omega$, the output voltage was measured to change by 10 mV , corresponding to a change in temperature of $10^{\circ} \mathrm{C}$. What is the solurce resislance of the sensor?
1.25 Refer to the Thévenin and Norton representations of the siynal source (Fig. 1.1). If the current supplied by the source is denoled i_{μ} and the voltage appcaring between the source output terminals is denoted v_{o}, sketch and clearly label v_{n} versus i_{s} for $0 \leq i_{o} \leq i_{r}$.
1.26 The conncction of a signal source to an associaled signal processor or amplificr generally involves some degrec of signal loss as neasurcd at the processor or amplifier input. Considering the two signal-source representations shown in Fig. 1.1, provide two sketches showing each signal-source representation connected to the input terminals (and corresponding input resistance) of a signal processor. What signal processor input resistance will result in 90% of the open-circui vollage bcing delivcred to the processor? What input resisentering the pressor? entering the processor

SECTION 1.2: FREQUENCY SPECTRUM

OF SIGNALS

1.27 To familiarize yourself with typical values of angular requency ω, conventional frequency f, and period T, com plete the entries in the following table.

Case	$\omega(\mathrm{rad} / \mathrm{s})$:	${ }_{\text {(Hz) }}$	T 15
a		1×10^{9}	
b	1×10^{9}		
d		60	1×10^{-10}
${ }_{\text {e }}$	6.28×10^{3}	60	
f			1×10^{-6}

1.28 For the following peak or rms values of some inpor tant sine waves, calculate the corresponding other value:
(a) 33.9 Vm , a household-power voltage in North America b) $33.9 \mathrm{~V}_{\text {peak }}$ a somewhat common peak vollage in rectitier circuits
(d) $220 \mathrm{~V}_{\text {mus }}$ a household-power voltage in parts of Europe d) $220 \mathrm{kV}_{\text {rnse }}$ a high-voltage transmission-line voltage in North America
having: $\mathbf{2 9}$ Give cxpressions for the sine-wave vollagc signal
(a) $10-\mathrm{V}$ peak amplitude and $10-\mathrm{kHz}$ frequency
(b) $120-\mathrm{V}$ mss and $60-\mathrm{H} z$ frequency
(c) 0.2 -V peak-to-peak and 1000 -rad/s frequency
(d) $100-\mathrm{mV}$ peak and $1-\mathrm{ms}$ period
1.30 Using the information provided by Eq. (1.2) in association with Fig. 1.4, characterize the signal represented by $v(t)=$ $1 / 2+2 / \pi\left(\sin 2000 \pi t+\frac{1}{3} \sin 6000 \pi t+\frac{1}{3} \sin 10,000 \pi t+\cdots\right)$. Sketch the waveforn. What is its average valuc? Its pcak-topeak value? Its lowest valuc? Its highest välue? Its frequency?
Its period? Its period?
1.31 Measurements taken of a square-wave signal using a (requency-selective voltmeter (called a spectrum analyzer) show its spectrum to contain adjacent components (spectral lines) at 98 kHz and 126 kHz of amplitudes 63 mV and 49 mV , respectively. For this signal, what would dircet measurement of the fundamental show its frequency and amplitude to bc? What is the rms value of the fundamental? What are the peaking square wave?
1.32 What is the fundamental frequency of the highestfrequency square wave for which the fifith harmonic is barely audible by a relatively young listener? What is the fundamental frequency of the lowest-frequency square wave for which
the fifth and some of the higher harmonics (Note that the psychoacoustic properties of human hearing allow a listener to sense the lower harmonics as well).
1.33 Find the amplitude of a syminetrical square wave of period T that provides the same power as a sine wave of peak amplitude \hat{V} and the same frequency. Does this result depend on equality of the frequencies of the two waveforms?

SECTION 1.3: ANALOG AND DIGITAL SIGNALS

1.34 Give the hinary representation of the following decimal numbers: $0,5,8,25$, and 57 .
1.35 Consider a 4 -bit digital word $b_{3} b_{2} b_{1} b_{0}$ in a format called signed-magnitude, in which the most-significant bit, b_{3}, is interpreted as a sign bit-0) for positive and 1 for nega-
(ive values. List the values that can bc represented by this scheme. What is peculiar about the representation of zero? For a particular analog-to-digital converler ($A \mathrm{DC}$), each

figure pi. 37
change in b_{0} corresponds to a $0.5-\mathrm{V}$ change in the analog input. What is the full range of the analog signal that can be represented +2.5 V? For -3.0 V? For +2.7 V? For -2.8 V?
1.36 Consider an N-hit ADC whose analog input varie between 0 and $V_{F S}$ (where the subscript $F S$ denotes "full scale"). (a) Show that the least significant hit (LSB) corresponds to a change in the analog signal of $V_{F S} /\left(2^{*}-1\right)$. This is the resolution of the converter.
(b) Convince yourself that the maximum enor in the conversion (called the quantization error) is half the resolution; that is, the quantization error $=V_{F S} / 2\left(2^{\prime \prime}-1\right)$.
(c) For $V_{F S}=10 \mathrm{~V}$, how many bits are required to obtuin a resolution of 5 mV or bettcr? What is the actual resolution
1.37 Figure P1.37 shows che circuit of an N-bit digital-toanalog converter (DAC). Each of the N bits of the digital word 10 be converted controls one of the swiches. When the bit is 0 , the switch is in the position labeled 0 ; when the bit is 1 , the switch is in the position labelcd 1 . The analog output is the curent is $V_{\text {wi }}$ is a constant merence volage
(a) Show that

$$
i_{o}=\frac{V_{\text {ref }}}{R}\left(\frac{b_{1}}{2^{1}}+\frac{b_{2}}{2^{2}}+\cdots+\frac{b_{N}}{2^{N}}\right)
$$

(b) Which bit is the LSB? Which is the MSB
(c) For $V_{\text {ref }}=10 \mathrm{~V}, R=5 \mathrm{k} \Omega$, and $N=6$, find the maximum value of i_{o} obtained. What is the change in i_{o} resulting from the LSB changing from 0 to 1 ?
1.38 In compact-disc (CD) audio technology, the audio signal is sampled at 44.1 kHz . Each sample is represented by 16 bits. What is the speed of this system in bits/second?

SECTION 1.4: AMPLIFIERS

1.39 Various amplifier and load combinations are measured as listed below using rms values. For cach, find the voltage, current, and power gains (A_{v}, A_{i}, and A_{p}, respectivcly) both as ratios and in dB :
(a) $v_{I}=100 \mathrm{mV}, i_{I}=100 \mu \mathrm{~A}, v_{O}=10 \mathrm{~V}, R_{L}=100 \Omega$
(b) $v_{1}=10 \mu \mathrm{~V}, i_{t}=100 \mathrm{nA}, v_{o}=2 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$
(c) $v_{l}=1 \mathrm{~V}, i_{l}=1 \mathrm{~mA}, v_{o}=10 \mathrm{~V}, R_{L}=10 \Omega$
1.40 An amplifier operating from $\pm 3 \mathrm{~V}$ supplies provides a $2.2-\mathrm{V}_{\text {peak }}$ sine wave across a $100-\Omega$ load when provided with a $0.2-\mathrm{V}_{\text {peak }}$ input from which $1.0 \mathrm{~mA}_{\text {pasa }}$ is drawn. Thc average current in each supplyis measured o be 2 mA . Find ratios and in dB as well as the supply power, amplifier dissipation, and amplifier efficiency
1.41 An amplifier using balanced power supplies is know to saturate for signals extending within 1.2 V of either supply. For linear operation, its gain is son-wave output availahle and inpur needed, with +5 -V supplies? With ± 10-V supplies? with ± 15-V supplies?
1.42 Symmetrically saturating amplifiers, operatung in the so-called clipping mode, can be used tu) convert sine waves to pen of 1000 and clipping levels of +9 V what peak value of input sinusoid is needed to produce an output whose extreme are just at the edge of clipping? Clipped 90% of the time Clipped 99% of the time?
1.43 A particular amplifier operating from a single supply exhibits clipped peaks for signals intended to extend above possible undistorted sine wave when this amplifier is biased 4 V ? At what bias point is the largest undistorted sine wave available?
*1.44 An amplifier designed using a single metal aideser characteristic

$$
v_{o}=10-5\left(v_{l}-2\right)^{2}
$$

where v_{1} and v_{0} are in volts. This transfer characteristic aplics for $2 \leq v_{l} \leq v_{o}+2$ and v_{0} positive. At the limits of this the amplifier saturates.
(a) Sketch and clearly label the transfer charactenstic. What are the saturation levels $L \leftarrow$ and L.and the corresponding values of y_{l} ?
(b) Bias the amplifier to oblain a dc output voltage of 5 V What value of input do voltage V_{l} is required?
(c) Calculate the value of the smail-signal voltage gain at the hias point.
(d) If a sinusoidal
voltage V_{V}, that is,

$$
t_{i}=V_{I}+V_{i} \cos \omega_{2}
$$

find the resuling v_{0}. Using the trigonometric identity $\cos ^{2} \theta=$ $\frac{1}{2}+\frac{1}{2} \cos 2 \theta$. cxpress v_{o} as the sum of a dc component, a signal component wilh frequency ω, and a sinusvidal component with frequency 2ω. The latter component is undesirable and is a result of the nonlinear transfer characteristic of the amplifier. If it is required to limit the ratio of the second-harmonic component to the fundamental component to 1% (this ratio is known as the second-harmonic distortion), what is the corresponding upper limit on V_{i} ? What output amplitude resulis?

SECTION 1.5: CIRCUIT MODELS

FOR AMPLIFIERS

1.45 Consider the voltage-amplinier circuit model shown in Fig. 1.17(b), in which $A_{v o}=10 \mathrm{~V} / \mathrm{V}$ under the following conditions:
(a) $R_{i}=10 R_{s,} R_{L}=10 R_{0}$
(c) $R_{i}=R_{s}, R_{L}=R_{o}$
(c) $R_{i}=R_{s} / 10, R_{t}=R_{s} / 10$

Calculate the overall voltage gain v_{o} / v_{s} in cach casc, expressed both directly and in dB .
1.46 An amplificr with 40 dB of small-signal open-circuit voltage gain, an input resistance of $1 \mathrm{M} \Omega$, and an output resistance of 10Ω drives a load of 100Ω. What voltaye and power nectcd? If the amplifier has a peak output-current limitation of 100 mA , what is the rms value of the largest sinc-wave input for which an undistorted oulput is possible? What is the corresponding output power available?
1.47 A $10-\mathrm{mV}$ signal source having an internal resistance of $100 \mathrm{k} \Omega 2$ is connccted to an amplifier for which the input resistance is $10 \mathrm{k} \Omega$, the open-circuit voltage gain is $1000 \mathrm{~V} / \mathrm{V}$ and the output resistince is $1 \mathrm{k} \Omega$. The amplilier is connected in turn to a $100-\Omega$ load. What overall voltage gain results as masurca irom the source internal voltage to the load? Wher did all the gain go? What would the gain be if the source was connected directly to the load? What is the ratio of these two gains'? This ratio is a uscful measure of the benefit the amplificr brings.
1.48 A buffer amplifier with a gain of $1 \mathrm{~V} / \mathrm{V}$ has an input resistance of $1 \mathrm{M} \Omega$ and an output resistance of 10Ω. It is connceted between a $1-V, 100-\mathrm{k} \Omega$ source and a $100-\Omega$ load.

What load voltage results? What are the corresponding volt age, current, and power gains expressed in dB ?
1.49 Consider the cascade amplifier of Example 1.3. Find the overall voltagc gain $z_{\delta} / \mathcal{U}_{s}$ obtained when the first and sec ond slages aut itucrechanged. Compare this value wibh the resul in Example 1.3, and conment.
1.50 You are given two amplifiers, A and B, to connect in cascade between a $10-\mathrm{mV}, 100-\mathrm{k} \Omega$ source and a $100-\mathrm{s} 2$ load. The amplifiers have voltage gain, input resistance, and outpur resistance as follows: For A, $100 \mathrm{~V} / \mathrm{N}, 10 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$, respec tively; for $\mathrm{B}, 1 \mathrm{~V} / \mathrm{N}, 100 \mathrm{k} \Omega 2,100 \mathrm{k} \Omega$, respectively. Your problen is to decide how the amplifiers should be connected. To proceed. cvaluate the two possihle connections between source S and load L, namely, SABL and SBAL. Find the voltage gain
for each both as a ratio and in dB. Which amplitier nent is best?
*1. 51 A designer has availahle voltage amplifiers with an input resistance of 10 kS , an output resistance of $1 \mathrm{k} \Omega$, and an open-circuit voltage gain of 10 . The signal source has a 10 kS 2 to provide a signal of at least 2 V rms to a $1-\mathrm{k} \Omega$ load. many amplifier stages are required? What is the output voit age actually obtained.
*1.52 Design an ampifier that provides 0.5 W or signa power to a $100-\Omega$ load resistance. The signal source provide a $30-\mathrm{mV}$ rms signal and has a resistance of $0.5 \mathrm{M} \Omega$. 'Three types of voltage amplifier stages arc available:
(a) A high-input-rcsistance type with $R_{i}=1 \mathrm{M} \Omega, A_{z o}=10$, and $R_{o}=10 \mathrm{kS} 2$
(b) A high-gain type with $R_{i}=10 \mathrm{k} \Omega, A_{z o}=100$, and $R_{n}=1 \mathrm{k} \Omega$ (c) A low-output-resistance type wiih $R_{i}=10 \mathrm{kS}, A_{v o}=1$ and $R_{o}=20 \Omega$

Design a suitable amplifier using a combination of these stages. Your design should utilize the minimum numher of stages and should ensure that the signal level is not reduced below 10 mV at any point in the amplifier chain. Find the load voltage and power outpul realized.
D*1.53 It is required to design a voltage amplifier to be driven from a signal source having a $10-\mathrm{mV}$ peak amplitude and a source resistance of $10 \mathrm{k} \Omega$ to supply a peak output of 3 V across a $1-\mathrm{k} \Omega$ load.
(a) What is the required vollage gain from the source to the load?
(b) If the peak current available from the source is $0.1 \mu \mathrm{~A}$, wih this value of R_{i}, find the overall current gain and power gain.
(c) If the amplifier power supply limits the peak value of th atput open-circuit voltage to 5 V , what is the largest output allowed?
(d) For the design with R_{i} as in (b) and R_{o} as in (c), what is the required valuc of open-circuit voltage gain $\left(\right.$ i.c., $\left.\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}\right)$ of the amplifier?
(c) If, as a possible design option, you are able to increase n to the nearest value of the form $1 \times 10^{n} \Omega$ and to decrease R to the nearest value of the form $1 \times 10^{n} \Omega$, find (i) the input resistance achievable; (ii) the output resistancc achievable and (iii) the open-circuit voltage gain now required to mect the specifications.
01.54 A voltagc amplifier with an input resistance of $10 \mathrm{k} \Omega$ output resistance of 200 S and a gain of $1000 \mathrm{~V} / \mathrm{V}$ is conected berween a $100-\mathrm{k} \Omega$ source with an open-circuit voltage of 10 mV and a $100-\Omega$ load. For this situation:
(a) What output voltage results?
b) What is the voltage gain from source to load?
(c) What is the voltage gain from the amplifier input to the oad?
(d) If the output voltage across the load is twice that needed and there are signs of internal amplifier overload, sugyest the desired oulput. Choose an arrangement that would cause ininimum disruption to an operating circuit. (Hint: Use paralle] rather than series connections.)
.55 A current amplifier for which $R_{i}=1 \mathrm{k} \Omega, R_{o}=10 \mathrm{k} \Omega$ and $A_{i s}=100 \mathrm{~A} / \mathrm{A}$ is to be connecied between a $100-\mathrm{mV}$ source with a resistance of $100 \mathrm{k} \Omega$ and a load of $1 \mathrm{k} \Omega$. Wha are the values of current gain $i_{o} i_{i}$, of voltage gain v_{o} / τ_{s}, and of power gain expressed direclly and in dB ?
$1.56 \wedge$ transconductance amplifier with $R_{i}=2 \mathrm{k} \Omega, G_{m}=40$ $\mathrm{mA} / V_{;}$and $R_{o}=20 \mathrm{k} \Omega$ is fed with a voltaige source having a tance. Find the voltage gain realized.
D**1.57 A designer is réquired to provide, across a $10-\mathrm{kS}$ load, the weighted sum, $v_{o}=10 v_{1}+20 v_{2}$, of input signals v_{1} and τ_{2}, each having a source resistance of 10 kS . She has a and output resistances are hoth $10 \mathrm{k} \Omega$ and $G_{m}=20 \mathrm{na} A / \mathrm{V}$ together with a selection of suitable resistors. Sketch an appropriate amplifier topology with additional resistors selccted to provide the desired result. (Hint: In your design arrange to add currents.)
1.58 Fisure P1.58 shows a transconductance amplifier whose output is jed back to its input. Find the inpul resis ance $R_{\text {in }}$ of the resulting one-porn network. (Hint: Apply a test
 rent i_{x} drawn from the source. Then, $R_{\text {in }} \equiv v_{x} / i_{x}$.)

$R_{\text {in }}$

FIGURE P1.58

1.59 It is required to design an amplifier to sense the pen-circuit output voltage of a transducer and to provide a proportional voltage across a load resistor. The equivale range of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$. Also, the load resistance varies in the ange of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$. The change in Ioad voltage cortesponding to the specified change in R_{s} should be 10% at mos. Similarly, the change in load voltage corrcsponding to the specified change in R_{L} should be limited to 10%. Also, correspondin to a $10-\mathrm{mV}$ transducer open-circuil output voltage, the ampli. fier should provide a ninimum of V across he load. Wha type of amplifier is required? Sketch its circuit model, ain pccify the values of its parameters. Specify appropriate val

D1.60 It is required to design an amplifier to sense the short-circuit oulput current of a transducer and to provide a proportional current tirough a load resistor. The cquvale ource resistance of the transduccr is specified to vary in ange of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$. Similarly, the load resistance had ciilet corresponding to the specified change in R equired to be limited to 10%. Similarly, the changc in load current corresponding to the specified change in R_{L} should b 0% at most. Also, for a nominal short-circuit output current of the transducer of $10 \mu \mathrm{~A}$, the amplifier is required to pro vide a minimum of 1 mA brough the load. What type ampliiicr is required? Sketch the circuit model of the anph fier, and specity values for its paramcters. Selcet appropriat values for R_{i} and R_{o} in the form $1 \times 10^{m} \Omega$
1.61 It is required to design an amplificr to sense the open-circuit output voltage of a transducer and to provide proportional current through a load resistor. The equivalent source resistance of the transduccr is specified to vary in the range of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$. Also, the load resistance is known
vary in the range of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$. The change in the current supplied to thc load corresponding to the specified change in R_{s} is to be 10% at most. Similarly, the change in load current corresponding to the specified change in R_{L} is to be 10% at age of 10 mV , the amplifier is required to provide oupur volt of 1 mA current through the load. What type of anplifier is required? Sketch the amplifier circuit model, and specify valnes for its parameters. For R_{i} and R_{o}, specify values in the form $1 \times 10^{1{ }^{1 t}} \Omega$.
01.62 It is required to design an amplificr to sense the short-circuit output current of a transducer and to provide proportional voltage across a load resistor The puive sourcc resistance of the transducer is specified to vary in the ange of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$. Similarly, the load resistance is min vary in the range of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$. The change in load voltage corresponding to the specified change in R_{s} ardata be 10% at most. Similarly, the change in load voltage corresponding to the specitied change in R_{L} is to be limited to 10%. Also, for a nominal transducer shor-circuit output curyoltage across the load of 1 V what to provide a minimum equired? Sketch its circuit model, What type of amplifier is he model parameters: For R andi, specify appopiale valus in the form $1 \times 10^{m i} \Omega$.
1.63 For the circuit in Fig. P1.63, show that

$$
\frac{v_{c}}{v_{b}}=\frac{-\beta R_{L}}{r_{\pi}+(\beta+1) R_{E}}
$$

and

$$
\frac{v_{e}}{v_{b}}=\frac{R_{E}}{R_{E}+\left[r_{\pi^{\prime}}(\beta+1)\right]}
$$

FIGURE P1.63
1.64 An amplifier with an input resistance of $10 \mathrm{k} \Omega$, when driven by a current source of $1 \mu \mathrm{~A}$ and a sourcc resistance of $100 \mathrm{k} \Omega$, has a short-circuit output current of 10 mA and an open-circuit output voltage of 10 V . When driving a $4-\mathrm{k} \Omega$ load, what are the valucs of the volage gain, current gain, and power gain expressed as ratios and in dB?
1.65 Figure P1.65(a) shows two transconductance amplifiers connected in a special configuration. Find ψ in terms of and τ_{2}. Let $g_{m}=100 \mathrm{~mA} / \mathrm{V}$ and $R=5 \mathrm{k} \Omega$. If $v_{1}=v_{2}=1 \mathrm{~V}$, find the value of v_{o}. Also, find v_{s} for the case $v_{1}=1.01 \mathrm{~V}$ and $v_{1}=$ 0.99 V (Note: This circuit is called a differential amplifier and is given the symbol shown in Fig. P1.65(b). A particular type of differential amplifier known as an operational amplifier will be studied in Chapter 2.)

FIGURE P1.65
SECTION T.6: FREQUENCY RESPONSE OF AMPLIFIERS
. 66 Using he voltage-divider rule, derive the transfer funcons $T(s) \equiv V_{o}(s) / V_{i}(s)$ of the circuils shown in Fig. 1.22, and show that the transfer functions are of the form given at
1.67 Figure P1. 67 shows a signal source connected to the R_{s} of an amplifier. Here R_{s} is the source resistance, and R_{i} and C_{i} are the input resistance and input capacilance,
respectively, of the amplifier. Dcrive an expression for $V_{i}(s) / V_{s}(s)$, and show that it is of the low-pass STC type and $C_{i}=5 \mathrm{pF}$.

FIGURE P1.67

1.68 For the circuit shown in Fig. P1.68, find the transfer function $T(s)=V_{o}(s) / V_{i}(s)$, and arrange it in the appro-low-pass network? What is its transmission at yery higs or quencies? [Estimate this directly, as well as by letting $s \rightarrow \infty$ in your expression for $T(s)$.] What is the corner frecuency ω_{0} ? For $R_{1}=10 \mathrm{k} \Omega, R_{2}=40 \mathrm{kS}$, and $C=0.1 \mu \mathrm{~F}$, find f_{0}. What is the value of $\left|T\left(j \omega_{0}\right)\right|$?

IGURE P1.68

1.69 It is required to couple a voltage source V_{s} with a esistance R_{s} to a load R_{L} via a capacitor C. Derive an expression for the transfer function from sourcc to load (i.c., V_{L} / V_{s}),
and show that it is of the high-pass STC type. For $P_{s}=51 \Omega$ and $R_{l}=20 \mathrm{k} \Omega$, find the smallest coupling capacitor that will result in a 3-dB frequency no greater than 10 Hz .
1.70 Measurement of the frequency response of an amplifier yields the data in the following table

$f(\mathrm{~Hz})$	$T 7(\mathrm{~dB})$	$\angle T 19$
0	40	0
100	40	0
1000	37	-45
10^{4}	20	
10^{5}	0	

Provide plausible approxinate values for the missing entries. Also, sketch and clearly label the magnitude frequency response (i.e., provide a Bode plot) for this amphtifier.
1.71 Measurement of the frequency response of an amplifier yields the data in the following table:

Provide approximate plausible values for the missing table entries. Also, sketch and clearly label the magnitude frequency response (Bode plot) of this amplifier
1.72 The unity-gain voltage amplifiers in the circuit of Fig. P1.72 have infinite input resistances and zero output resistances and thus function as perfect buffers. Convince yourself that the overall gain V_{o} / V_{i} will drop by 3 dB below the value at dc at the frequency for which the gain of cach $R C$ circuit is 1.0 dB down. What is that frequency in terms of $C R$?
1.73 An internal node of a high-frequency amplifier whose Thévenin-equivalent node resistance is $100 \mathrm{k} \Omega$ is accidentally shunted to ground by a capacitor (i.e., the node is connected to ground through a capacitor) through a manufacturing error. If the measured 3 dB bandwidth of the amplifier is reduccd from the expected 6 MHz to 120 kHz , esimate the value of the shunting capacitos. II the original cutoff frequency can be attributed to a small parasitic capacitor at the same internal node (i.e., between the node and ground), what would you estimate it to be?

figure P1.72
FIGURE P1.72

D*1.74 A designer wishing to lower the overall upper 3-dB frequency of a three-stage amplifier to 10 kHz considers the first stage and the input of the second stage, and Node B, between the output of the second slage and the input of the third stage, to ground with a small capacitor. Whilc measuring the overall frequency response of the amplifier, she shunts a capacitor of 1 nF , first to node A and then to node B , fowering the 3 -dB frequency from 2 MHz to 150 kHz and 15 kHz , respectively. If she knows that each amplifier stage has an input rcsislance of $100 \mathrm{k} \Omega$, what output resistance must the driving stage have at node A? At node B? What capacitor problem most conomically? problem most economically?

D1.75 An amplifier with an input resistance of 100 kS 2 and an output resistance of $1 \mathrm{k} \Omega$ is to be capacitor-coupled to a $10-\mathrm{k} \Omega$ source and a $1-\mathrm{k} \Omega$ load. Available capacitors have values only of the form $1 \times 10^{-n} \mathrm{~F}$. What are the values of the smallest capacitors needed to ensure that the corner frecorner frequencies result? For the situation in which the basic aminplizier has an open-circuit voltagc gain $\left(A_{v o}\right)$ of $100 \mathrm{~V} / \mathrm{V}$, find an expression for $T(s)=V_{o}(s) / V_{s}(s)$.
*1.76 A voltage amplifier has the transfer function

$$
A_{v}=\frac{100}{\left(1+j \frac{f}{10^{4}}\right)\left(1+\frac{10^{2}}{j f}\right)}
$$

Using the Bode plots for low-pass and high-pass STC networks (Figs. 1.23 and 1.24), sketch a Bode plot for 14,1 . Give approximate values for the gain magnitude at $f=10 \mathrm{~Hz}, 10^{2} \mathrm{~Hz}$. $10^{3} \mathrm{~Hz}, 10^{4} \mathrm{~Hz}, 10^{5} \mathrm{~Hz}, 10^{6} \mathrm{~Hz}$, and $10^{\circ} \mathrm{Hz}$. Find the bandwidth of the amplifier (defined as the frequency range over
*1.77 For the circuit shown in Fig. P1.77 first, evaluate $T_{i}(s)=V_{i}(s) / V_{s}(s)$ and the corresponding cutoff (comer)

FIGURE P1.77
frcquency. Second, evaluate $T_{o}(s)=V_{o}(s) / V_{i}(s)$ and the corresponding cutoff frequency. Put each of tha transter func-
tions in the standard form (see Table 12) to form the overall transfer fuction $T(s)=T(s) \times T(s)$ Providc a Bode magnitude pio for $|T(j \omega)|$ What is the bandwidth between 3 -dB cutoff points?
D**1.78 A transconductance amplifier having the equivalent circuit shown in Table 1.1 is fed with a voltage source V_{s}
having a source resistance R, and its output is conected load consisting of a resistance R_{l} in parallel with a capacitance C_{L}. For given values of $R_{R} R_{L}$, and C_{L} it is required to specify the values of the anplifier parameters R_{i}, G_{m} and R_{b} to meet thc following design constraints:
(a) At most, $x \%$ of the input signal is lost in coupling the signal source to the amplifier (i.e., $V_{i} \geq[1-(x / 100)] V_{\}}$)
b) ne specificd value f (c) The dc ain V / V
ain V_{o} / V_{s} is equal to or greater than a specificd

Show that these constraints can be met by selecting

$$
\begin{aligned}
& R_{i} \geq\left(\frac{100}{x}-1\right) R_{s} \\
& R_{o} \leq \frac{1}{2 \pi f_{3 \mathrm{~dB}} C_{L}-\left(1 / R_{L}\right)} \\
& G_{m} \geq \frac{A_{0} /[1-(x / 100)]}{\left(R_{L} \| R_{o}\right)}
\end{aligned}
$$

Find R_{i}, R_{n}, and G_{m} for $R_{s}=10 \mathrm{k} \Omega, x=20 \%, A_{0}=80$ $R_{L}=10 \mathrm{k} \Omega, C_{t}=10 \mathrm{pF}$, and $f_{3 \mathrm{Bi}}=3 \mathrm{MHz}$.
*1.79 Use the voltage-divider rule to find the transfer function $V_{o}(s) / V_{i}(s)$ of the circuit in Fig. P1.79. Show that the transfer function can be made independent of frequency if
he condition $C_{1} R_{1}=C_{2} R_{2}$ applies. Under this condition the circuit is called a compensated attenuator and is frequently
ployed in the design of oscilloscope probes. Find the trans mission of the compensated attenuator in terms of R_{1} and R_{2}.

FIGURE P1.79

*1.84 An amplificr with a frequency response of the type shown in Fig. 1.21 is specified to have a phase shift of magnitude no greater than 11.4° over the amplifier bandwidth, which extends from 100 Hz to 1 kHz . It has been found that the gain falloff at the low-frequency end is determined by the response of a high-pass STC circuit and that at the highfrequency end it is determined by a low-pass STC tircuit. cuits to be? What is the drop in gain in decibels (relative to the maximum gain) at the two frequencies that deline the amplifier bandwidtt? What are the frequencies at which the drop in gain is 3 dB ?

SECTION 1.7: DIGITAL LOGIC INVERTERS

1.81 A particular logic inverter is specified to have $V_{L}=1.3 \mathrm{~V}$, $V_{I H}=1.7 \mathrm{~V}, V_{O L}=0 \mathrm{~V}$, and $V_{O H}=3.3 \mathrm{~V}$. Find the high and low noise margins, $N M_{H}$ and $N M_{L}$.
1.82 The voitage-transfer characteristic of a particular logic inverter is modeled by three straight-line segments in the namer shown in Fig. 1.29. If $V_{l L}=1.5 \mathrm{~V}, V_{I H}=2.5 \mathrm{~V}, V_{O L}=$
0.5 V , and $V_{O H}=4 \mathrm{~V}$, find:
(a) The noise margins
(b) The value of v_{l} at which $v_{0}=v_{1}$ (known as the inverter threshold)
(c) The voltage gain in the transition region
1.83 For a particular inverter design using a power supply $V_{D D}, V_{O L}=0.1 V_{D D}, V_{O H}=0.8 V_{D D}, V_{H}=0.4 V_{D D}$, and $V_{H H}=$
$0.6 V_{D D}$. What are the noise margins? What is the width of the transition region? For a minimum noise margin of 1 V , what value of $V_{D D}$ is required?
1.84 A logic circuit family that used to be very popular is Transistor-Transistor Logic (TTL). The TTL logic gates and other building blocks are available commercially in smallpackages. Such packages can be assembled on printed-circuit boards to implement a digital system. The device data sheets
provide the following specifications of the basic TTL inverter (of the SN7400 type):

Logic-1 input level required to ensure a logic-0 level at the output: MIN (minimum) 2 V
Logic-0 input level required to ensure a logic-1 level at the output: MAX (maximum) 0.8 V
Logic-1 output voltage: MIN 2.4 V , TYP (typical) 3.3 V
Logic-0 output voltage: TYP $0.22 \mathrm{~V}, \mathrm{MAX} 0.4 \mathrm{~V}$
Logic-1-level supply current: TYP 1 mA, MAX 2 mA
Logic-1-level supply current: TYP 1 mA, MAX 2 mA
Propagation delay time to logic-0 level ($t_{\text {PHI }}$): TYP 7 ns ,

$$
\text { MAX } 15 \text { ns }
$$

Propagation delay timc to logic-1 level ($t_{P / H}$): TYP 11 ns , M $\wedge X 22 \mathrm{~ns}$
(a) Find the worst-case values of the noise inargins.
(b) Assunuing ihat the inverter is in the 1 -state 50% of the time and in the 0 -state 50% of the time, find the average stric power dissipation in a typical circuit. The power supply is 5 V (c) Assuming that the inverter drives a capacitance $C_{L}=45 \mathrm{pF}$ and is switched at a 1-MHz. rate, use the formula in Eq. (1.28) d) Finate the dynalnic power dissipation. d) Find the propagation delay t_{p}.
1.85 Consider an inverter implemented as in Fig. 1.31(a). Let 1.85 Consider an inverter implemented as in Fig. 1.31(a). Let
$V_{D D}=5 \mathrm{~V}, R=2 \mathrm{k} \Omega, V_{\text {offeit }}=0.1 \mathrm{~V}, R_{\mathrm{on}}=200 \Omega \Omega, V_{l L}=1 \mathrm{~V}$, and $V_{I H}=2 \mathrm{~V}$.
(a) Find $V_{O L}, V_{O H}, N M_{H}$, and $N M$
(b) The inverter is driving N identical inverters. Each of thes oad inverters, or fan-out inverters as they are usually called is specified to require an input current of 0.2 mA when th when the input voltage is low. Noting that the input currents of the fan-out inverters will have to be supplied through R of the driving inverter, find the resulting value of $V_{O H}$ and of $N M_{I I}$ as a function of the number or fan-out inverters N. Hence find the maximum value N can have while the inverter is still providing an $N M_{H}$ value at least equal to its $N M_{L}$.
(c) Find the static power dissipation in the inverter in the two cases: (i) the output is low, and (ii) the output is high and driving the maximum fan-out found in (b).
1.86 A logic inverter is implemented using the arrangement of Fig. 1.32 with switches having $R_{o n}=1 \mathrm{k} \Omega, V_{D D}=5 \mathrm{~V}$, and $V_{I L}=V_{I H}=V_{D D} / 2$.
(a) Find $V_{O L}, V_{O H}, N M_{L}$, and $N M_{H}$
b) If v_{r} rises instantaneously from 0 V to +5 V and assumin the switches operate instantaneously-that is, at $t=0, \mathrm{PU}$ opens, and PD closes-find an expression for $v_{o}(t)$ assumning
that a capacitance C is connected between the outpul noule and ground. Hence find the high-to-low propagation delay $\left(t_{p+H I}\right)$ for $C=1 \mathrm{pF}$. Also find $t_{7+\mathcal{L}}$ (sec Fig. 1.35).
c-O-level supply current: TYP 3 mA, MAX 5 m ${ }_{1 H}=2 \mathrm{~V}$ hen the input voltage is low. Noting that the input currents

[^3]Chapter 1 introductionto electronics
(c) Repeat (h) for v, falling instantancously from +5 V to 0 V . Again assume that PD opens and PU closes instantaneously. Find an expression for $v_{0}(t)$, and hence find $t_{P L A}$ and $t_{\text {TLIF }}$.
1.87 For the current-mode inverter shown in Fig. 1.33 , let $V_{C C}=5 \mathrm{~V}, I_{F Z}=1 \mathrm{~mA}$, and $R_{C 1}=R_{C 2}=2 \mathrm{k} \Omega$. Find $V_{O L}$ and $V_{O H}$.
1.88 Consider a logic inverter of the type shown in Fig. 1.32. L.et $V_{D D}=5 \mathrm{~V}$, and let at $10-\mathrm{pF}$ capacitance be connected between the output node and ground. If the inverter is E. (128) to estimate the dynamic power dissination What is the average current drawn from the dc power supply?

D**1.89 We wish to investigate the design of the inverter shown in Fig. 1.31(a). In particular we wish to determine the value for R. Selection of a suitable value for R is determined hy two considerations: propagation delay, and power dissipation
(a) Show that if y_{1} changes instantaneously from high to low and assuming that the switch opens instantancously, the output voltage ohtained across a load capacitance C will he

$$
v_{O}(t)=V_{\text {OHI }}-\left(V_{\text {OII }}-V_{O L}\right) e^{-t / \tau_{1}}
$$

where $\tau_{1}=C R$. Hence show that the time required for $v_{0}(t)$ to reach the 50% point, $\frac{1}{2}\left(V_{O H}+V_{O I}\right)$, is

$$
t_{P L H}=0.69 C R
$$

(b) Following a steady state, if y_{l} gocs high and assuming hat the switch closes immediately and has the equivalen circuit in Fig. 1.31, show that the output talls exponentially according to

$$
v_{O}(t)=V_{O L}+\left(V_{\text {OII }}-V_{O T}\right) e^{-t / \tau_{2}}
$$

ghaptis 2
where $\tau_{2}=C\left(R \| R_{\text {on }}\right) \cong C R_{\text {on }}$ for $R_{\text {on }} \varangle R$. Hence show that he time for $v_{0}(t)$ to reach the 50% point is

$$
t_{\text {PHI }}=0.69 C R_{\text {on }}
$$

(c) Use the results of (a) and (b) to obtain the inverter propa gation delay, defined as the averagc of $t_{p_{I / I}}$ and $t_{p / I,}$ as

$$
\tau_{P} \cong 0.35 C R \text { for } R_{\mathrm{on}}<R
$$

d) Assuming that $V_{\text {ofivet }}$ of the switch is much smaller than $V_{D D}$, show that for an inverter that spends half the time in the slate and half the time in the 1 state, the average static power dissipation is

$$
P=\frac{1}{2} \frac{V_{D D}^{2}}{R}
$$

(e) Now that the trade-offs in selecting R sbould be obvious, show that. for $V_{D D}=5 \mathrm{~V}$ and $C=10 \mathrm{pF}$, to obtain a propaga greater than 10 mW , R should be in a specificr cange. Find that range and select an appropriate value for R. Then determin the resulting values of t_{p} and P.

Operational Amplifiers

Introduction

Having learned basic amplifier concepts and terminology, we are now ready to undertake the study of a circuit building block of universal importance: the operational amplifier (op amp). Op amps have been in use for a long time, their initial applications being primarily in the areas of analog computation and sophisticated instrumentation. Early op amps were constructed from discrete components (vacuum tubes and then transistors, and resistors), and their cost was prohibitively high (tens of dollars). In the mid-1960s the first integratedircuit (IC) op amp was produced. This unit (the $\mu \mathrm{A} 709$) was made up of a relatively large umber of transistors and resistors all on the same silicon chip. Although its characteristics ere poor (by today's standards) and its price was still quite high, its appearance signaled a pantities electronic circuit design. Electronics cngineers started using op amps in large pamps, Sin caused heir price to drop dranaically. They also domanded belter-quality panps. Sexicondar mana (arge number of suppliers.
One of the reasons for the popularity of the op amp is its versatility. As we will shortly see, one can do almost anything with op amps! Equally important is the fact that the IC op amp has characteristics that closely approach the assumed ideal. This implies that it is quite
easy to design circuits using the IC op amp. Also, op-amp circuits work at perfomance level that are quite close to those predicted theoretically. It is for this reason that we are studying op amps at this carly stage. It is expected that by the end of this chapter the reader should be able to design nontrivial circuits successfully using op amps.

As already implicd, an IC op amp is made up of a large number (tens) of transistors, resistors, and (usually) onc capacitor comected in a rather complex circuit. Since we have not yet studied transistor circuits, the circuit inside the op amp will not he discussed in this chapter. Rather, we will treat the op amp as a circuit building block and stedy its terminal characteristics and its applications. This approach is quite satisfactory in many op-amp applications. Neverthelcss, for the more difficult and demanding applications it is quite uscful to know what is inside the op-amp package. This topic will be studied in Chapter 9. Finally, it should be mentioned that more advanced applications of op amps will appear in later chapters.

2.1 THE IDEAL OP AMP

2.1.1 The Op-Amp Terminals

Froun a signal point-of-view the op amp has threc terminals: two input terminals and one output terminal. Figure 2.1 shows the symbol we shall use to represent the op amp. Terminals 1 and 2 are input terminals, and terminal 3 is the output terminal. As explained in Section 1.4, amplifiers require dc power to operate. Most IC op amps require two dc power supplies, as shown in Fig. 2.2. Two terninals, 4 and 5, are brought out of the op-amp package and connected to a positive voltage $V_{C:}$ and a negative voltage $-V_{E B}$, respectively. In Fig. 2.2(b)

FIGURE 2.1 Circuit symbol lor the op amp.

FIGURE 2.2 The op amp shown connected to dc power supplies.
explicitly show the two de power supplies as batteries with a common ground. It is interesting to note that the reference grounding point in op-amp circuits is just the cominteresting the the power supplics; that is, no terminal of the op-amp package is physically connected to ground. In what follows we will not explicitly show the op-amp power supplies.
In addition to the three signal terminals and the two power-supply terminals, an op amp may have other terminals for specific purposes. These other terminals can include terminals for frequency compensation and terminals for offset nulling; both functions will be explained in later sections.

8 What

 MI
ㄴ… 1.

2.1.2 Function and Characteristics

 of the Ideal Op AmpWe now consider the circuit function of the op amp. The op amp is designed to sense the difference between the voltage signals applied at its two input terminals (i.e., the quantity $v_{2}-v_{1}$), multiply this by a number A, and cause the resulting voltage $\dot{A}\left(v_{2}-v_{1}\right)$ to appear at output terminal 3. Herc it should be emphasized that when we talk about the voltage at a terminal we mean the voltage between that terminal and ground; thus v_{1} means the voltage applied between terminal 1 and ground.

The ideal op amp is not supposed to draw any input current; that is, the signal current into terminal 1 and the signal current into terminal 2 are both zero. In other words, the input impedance of an ideal op amp is supposed to be infinite.

How about the output terminal 3? This terminal is supposed to act as the output terminal of an ideal voltage source. That is, the voltage between terminal 3 and ground will always be equal to $A\left(v_{2}-v_{1}\right)$, independent of the current that may be drawn from terminal 3 into a load impedance. In other words, the output impedance of an ideal op amp is supposed to be zero.

Putting together all of the above, we arrive at the equivalent circuit model shown in Fig. 2.3. Note that the output is in phase with (has the same sign as) τ_{2} and is out of phase with (has the opposite sign of) v_{1}. For this reason, input terminal 1 is called the inverting input terminal and is distinguished by a "-" sign, while input terminal 2 is called the noninverting input terminal and is distinguished by a " + " sign.
As can be seen from the above description, the op amp responds only to the difference sigual $v_{2}-v_{1}$ and hence iguores any signal common to both inputs. That is, if $v_{1}=v_{2}=1 \mathrm{~V}$, then the output will-ideally-be zero. We call this property common-mode rejection, and we conclude that an ideal op amp has zero common-mode gain or, equivalently, infiuite common-mode rejection. We will have more to say about this point later. For the time being note that the op amp is a differential-input single-ended-output amplifier, with the latter term referring to the fact that the output appears between terminal 3 and

FIGURE 2.3 Equivalent circuit of the ideal op amp.

TABLE 2.1 Characteristics of the ldeal Op Amp

1. Infinite input impedance

3. Zero output impedance

Zero common-mode gain or, equivalently, infinite common-mode rcjection
4. Infinitc open-loop gai
ground. ${ }^{\text {I }}$ Furthermore, gain A is called the differential gain, for ohvious reasons. Perhap not so obvious is another name that we will attach to A : the open-loop gain. The reason for this name will become obvious later on when we "close the loop" around the op anp and define another gain, the closed-loop gain.

An important characteristic of op amps is that they are direct-coupled or dc amplifiers, where de stands for direct-coupled (it could cqually well stand for direct current, since direct-coupled amplifier is one that amplifies signals whose frequency is as low as zero). The fact that op amps are direct-coupled devices will allow us to use them in many impor tant applications. Unfortunately, though, the direct-coupling property can cause some seriou practical problems, as will be discussed in a later section.

How about bandwidth? The ideal op amp has a gain A that remains constant down to zero frequency and up to infinite frequency. That is, ideal op amps will amplify signals of any frequency with equal gain, and are thus said to have infinite bandwidth.

Wc have discussed all of the properties of the ideal op amp except for one, which in fact is he most important. This has to do with the value of A. The ideal op amp should have a gain whose value is very large and ideally infinite. One may justifrably ask: If the gain A is infinite, how are we going to use the op amp? The answer is very simple: In almost all appli cations the op amp will not be used alone in a so-called open-loop configuration. Rather we will use other components to apply feedback to close the loop around the op anap, as will be illustrated in detail in Section 2.2 .

For future reference, Table 2.1 lists the characteristics of the ideal op amp.
Some op atrips are designed to have differential outputs. This topic will be discussed in Chapter 9. In the current chapter we confine ourselves to single-cnded-output op amps, which constilute the vast majority of commercially available op amps.

21.3 Differential and Common-Mode Signals

The differential input signal $v_{l d}$ is simply the difference between the two input signals v_{1} and v_{2}; that is,

$$
v_{l d}=v_{2}-v_{1}
$$

The common-mode input signal $v_{\text {com }}$ is the average of the two input signals v_{1} and v_{2} namely,

$$
\begin{equation*}
v_{l c m}=\frac{1}{2}\left(v_{1}+v_{2}\right) \tag{2.2}
\end{equation*}
$$

Equations (2.1) and (2.2) can be used to express the input signals v_{1} and v_{2} in terms of their differential and common-mode components as follows:

$$
\begin{equation*}
v_{1}=v_{I c m}-v_{I d} / 2 \tag{2.3}
\end{equation*}
$$

and

$$
v_{2}=v_{l c m}+v_{l_{d} / 2}
$$

These equations can in turn lead to the pictorial representation in Fig. 2.4

FIGURE 2.4 Representation of the signal sources ν_{1} and y_{2} in terms of their differential and common-mod
components.
2.2. Consider an op amp that is deal excent hat its open loop gain $A=10^{3}$. The op amp is used in fcedback circuit and the wotases appearing at two of its thee stgnal terminals are measired In

 and $H_{3}=2 \mathrm{~V},(6) p_{2}=55 \mathrm{~V}$ and $H_{2}=10 \mathrm{~V}$: (c) $t_{1}=1.002 \mathrm{~V}$ and $t_{2}=0.998 \mathrm{~V}$. (d) $1=3=3.6 \mathrm{~V}$ and is $=3.6 \mathrm{~V}$.

 N.

23 The internal circut of a particular op anp can be modeled by the circuit shown in Fis. E2.3. Express T_{3} as a function of 4 and r_{2}. For the case $G_{2}=10 \mathrm{~mA} / \mathrm{V}, R=10 \mathrm{k} \Omega$, and $\mu=100$. find the value of the open-loop gain A
Ans $=\mu G R\left(t_{2}-, A_{1} 10000 \mathrm{~V} / \mathrm{V}\right.$ or 80 dB

2.2 THE INVERTING CONFIGURATION

As mentioned above, op amps are not used alone; rather, the op amp is connected to passive components in a feedback circuit. There are two such basic circuit configurations employing an op amp and two resistors: the inverting configuration, which is studied in this section, and the noninverting configuration, which we shall study in the next section.
Figure 2.5 shows the inverting configuration. It consists of one op amp and two resistors R_{1} and R_{2}. Resistor R_{2} is connected from the output terminal of the op amp, terminal 3 , back to the inverting or negative input terminal, terminal 1 . We speak of R_{2} as applying negative feedback; if R_{2} were connected between terminals 3 and 2 we would have called this positive feedback. Notc also that R_{2} closes the loop around the op amp. In addition to adding R_{2}, we have grounded terminal 2 and connected a resistor R_{1} between terminal 1 and an input signal source

with a voltage τ_{r}. The output of the overall circuit is taken at terminal 3 (i.e., hetwcen terminal 3 and ground). Terminal 3 is, of course, a convenient point to take the output, since the impedance level there is ideally zero. Thus the voltage v_{o} will not depend on the value of the current that might be supplied to a load impedance connected between terminal 3 and ground.

2.2.1 The Closed-Loop Gain

We now wish to analyze the circuit in Fig. 2.5 to determine the closed-loop gain \boldsymbol{G}, defined as

$$
G \equiv \frac{v_{o}}{v_{1}}
$$

We will do so assuming the op amp to be ideal. Figure 2.6(a) shows the equivalent circuit, and the analysis procecds as follows: The gain A is very large (ideally infinite). If we assume that the circuit is "working" and producing a finite output voltage at terminal 3 , then the voltage between the op amp input terminals should be negligibly small and ideally zero. Specifically, if we call the output voltage τ_{0}, then, by definition,

$$
v_{2}-v_{1}=\frac{v_{0}}{A}=0
$$

It follows that the voltage at the inverting input terminal $\left(v_{1}\right)$ is given by $v_{1}=v_{2}$. That is, because the gain A approaches infinity, the voltage y_{1} approaches and ideally equals τ_{2}. We speak of this as the two input terminals "tracking each other in potential." We also speak of a "vutual short curcuit" that exists between the two input terminals. Here the word virtual should be emphasized, and one slould make the mistake physically shorting terminals 1 and 2 togeher hill and
 nected to groan, dre $_{2}=0$ and $n_{1}=0$. We speak of teninal 1 as
Now
Now that we current i_{1} through R_{1} (see Fig. 2.6) as follows:

$$
i_{1}=\frac{v_{1}-v_{1}}{R_{1}}=\frac{v_{1}-0}{R_{1}}=\frac{v_{I}}{R_{1}}
$$

Where will this current go? It cannot go into the op amp, since the ideal op amp has an infinite input impcdance and hence draws zero current. It follows that i_{1} will have to flow through R_{2} to the low-impedance terminal 3. We can then apply Ohm's law to R_{2} and determine v_{0}; that is,

$$
\begin{aligned}
v_{O} & =v_{1}-i_{1} R_{2} \\
& =0-\frac{v_{1}}{R_{1}} R_{2}
\end{aligned}
$$

Thus

$$
\frac{v_{O}}{v_{I}}=-\frac{R_{2}}{R_{1}}
$$

(b)

FIGURE 2.6 Analysis of the inverting configuration. The circled numbers indicate the order of the analysis steps.
which is the required closed-loop gain. Figure 2.6(b) illustrates these steps and indicates by the circled numbers the order in which the analysis is performed.
We thus see that the closed-loop gain is simply the ratio of the two resistances R_{2} and R_{1}. The minus sign means that the closed-loop amplificr provides signal inversion. Thus if $R_{2} / R_{1}=10$ and we apply at the input $\left(v_{7}\right)$ a sine-wave signal of 1 V peak-to-peak, then the $R_{2} / R_{1}=10$ and we apply at the input $\left(v_{D}\right.$ a sine-wave signal of 1 V peak-to-pcak, then the output $\%_{0}$ will be a sine wave of 10 V peak-to-peak and phase-shifted 180° with respect to configuration is called the inverting conffguration
The fact that the closed-loop gain depends entirely on external passive components (resistors R_{1} and R_{2}) is very siynificant. It means tbat we can make the closed-loop gain as
curate as we want by selecting passive components of appropriate accuracy. It also accurate as we want by selecting passive components of appropriate accuracy. It also
means that the closed-loop gain is (ideally) independent of the op-amp gain. This is a dramatic illustration of negative feedback: We statted out with an amplifier having very larg gain A, and through applying negative feedback we have obtained a closed-loop gai R_{2} / R_{1} that is much smaller than A but is stable and predictable. That is, we are trading gain for accuracy

2.2.2 Effect of Finite Open-Loop Gain

The points just made are more clearly illustrated by deriving an expression for the closed loop gain under the assumption that the op-amp open-loop gain A is finite. Figure 2.7 shows the analysis. If we denote the output voltage v_{0}, then the voltage between the two input terminals of the op amp will be v_{0} / A. Since the positive input terminal is grounded, the voltage at the negative input terminal must be $-v_{0} / A$. The current i_{1} through R_{1} can now be found from

$$
i_{1}=\frac{v_{I}-\left(-v_{o} / A\right)}{R_{1}}=\frac{v_{I}+v_{o} / A}{R_{1}}
$$

The infinite input impedance of the op amp forces the current i_{1} to flow entirely through R_{2}. The output voltage v_{0} can thus be determined from

$$
\begin{aligned}
v_{O} & =-\frac{v_{O}}{A}-i_{1} R_{2} \\
& =-\frac{v_{O}}{\Lambda}-\left(\frac{v_{1}+v_{O} / A}{R_{1}}\right) R_{2}
\end{aligned}
$$

Collecting terms, the closed-loop gain G is found as

$$
\begin{equation*}
G \equiv \frac{v_{O}}{v_{I}}=\frac{-R_{2} / R_{1}}{1+\left(1+R_{2} / R_{1}\right) / A} \tag{2.5}
\end{equation*}
$$

We note that as A approaches ∞, G approaches the ideal value of $-R_{2} / R_{1}$. Also, from Fig. 2.7 we see that as A approaches ∞, the voltage at the inverting input terminal approache zero. This is the virtual-ground assumption we used in our earlier analysis when the op amp was assumed to be ideal. Finally, note that Eq. (2.5) in fact indicates that to minimize should make

$$
1+\frac{R_{2}}{R_{1}}<A
$$

FIGURE 2.7 Analysis of the inverting configuration taking into account the finite opel-loop gain of the op amp.

CHAPTER 2 OPERATIONAL AMPLIFIERS
2.2 the inverting configuration

4 7
73

ExMritzit

Consider the inverting configuration with $R_{1}=1 \mathrm{k} \Omega$ and $R_{2}=100 \mathrm{k} \Omega$
(a) Find the closed-loop gain for the cases $A=10^{3}, 10^{4}$, and 10^{5}. In each case determine the percentage error in the magnitude of G relative to the ideal value of R_{2} / R_{1} (obtained with $A=\infty$). Also determine the voltage ν_{1} that appears at the invering input terminal when $v_{1}=0.1 \mathrm{~V}$.
(b) If the open-loop gain A changes from 100,000 to 50,000 (i.e., drops by 50%), what is the corresponding percentage change in the magnitude of the closed-loop gain G ?

Solution

(a) Substiluting the given values in Eq. (2.5), we oblain the values given in the following table where the percentage error ε is defined as

$$
\varepsilon \equiv \frac{|G|-\left(R_{2} / R_{1}\right)}{\left(R_{2} / R_{1}\right)} \times 100
$$

The values of v_{1} are obtained from $v_{1}=-v_{o} / A=G v_{I} / A$ with $v_{1}=0.1 \mathrm{~V}$.

A	151		v
10^{3}	90.83	-9.17\%	$-9.08 \mathrm{mV}$
10_{5}^{4}	99.00	-1.00%	$-0.99 \mathrm{mV}$
10^{5}	99.90	-0.10\%	$-0.10 \mathrm{mV}$

(b) Using Eq. (2.5), we find that for $A=50,000,|G|=99.80$. Thus a -50% change in the openloop gain results in a change of only -0.1% in the closed-loop gain!

2.2.3 Input and Output Resistances

Assuming an ideal op amp with infinite open-loop gain, the input resistance of the closedloop invertiug amplifier of Fig. 2.5 is simply equal to R_{1}. This can be seen from Fig. 2.6(b), wherc

$$
R_{i} \equiv \frac{v_{1}}{i_{1}}=\frac{v_{l}}{v_{I} / R_{1}}=R_{1}
$$

Now recall that in Section 1.5 we learned that the amplifier input resistance forms a voltage divider with the resistance of the source that feeds the amplifier. Thus, to avoid the loss of signal strength, voltage amplifiers are required to have high input resistance. In the case of the inverting op-amp configuration we are studying, to make R_{i} high we should select a high value for R_{1}. However, if the required gain R_{2} / R_{1} is also high, then R_{2} could become impractically large (e.g., greater than a few megaohms). We may conclude that the inverting impractically large (e.g.,. greater than a few megaohms). We may conclude that the inverting Example 2.2 below.
Since the output of the inverting configuration is taken at the terminals of the ideal volt-
ge source $A\left(\tau_{h}-v_{1}\right)$ (sec Fig 2.6a), it follows the the restance of the close amplifier is zero.

Mx M M Hepa

Assuming the op amp to he ideal, derive an expression for the closed-loop gain v_{o} / v_{1} of the circuit shown in Fig. 2.8. Use this circuit to design an inverting amplificr with a oain of 100 and an inp 1 Compare your design with that based on the inverting configura resistors grcater
tion of Fig. 2.5 .

FIGURE 2.8 Circuit for Example 2.2. The circled numbers indicate the secuence of the steps in the analysis.

Solution

The analysis begins at the inverting input terminal of the op amp, where the voltage is

$$
v_{1}=\frac{-v_{O}}{A}=\frac{-v_{O}}{\infty}=0
$$

Here we have assumed that the circuit is "working" and producing a finite output voltage v_{0}. Knowing v_{1}, we can deternine the current i_{1} as follows:

$$
i_{1}=\frac{v_{I}-v_{1}}{R_{1}}=\frac{v_{I}-0}{R_{1}}=\frac{v_{I}}{R_{1}}
$$

Since zero current flows into the inverting input lerminal, all of i_{1} will flow through R_{2}, and thus

$$
i_{2}=i_{1}=\frac{\psi_{T}}{R_{1}}
$$

Now we can determine the voltage at node x

$$
v_{x}=v_{1}-i_{2} R_{2}=0-\frac{v_{1}}{R_{1}} R_{2}=-\frac{R_{2}}{R_{1}} v_{1}
$$

This in turn enables us to find the current i_{3} :

$$
i_{3}=\frac{0-v_{x}}{R_{3}}=\frac{R_{2}}{R_{1} R_{3}} v_{1}
$$

Next, a node equation at x yields i_{4} :

$$
i_{4}=i_{2}+i_{3}=\frac{v_{I}}{R_{1}}+\frac{R_{2}}{R_{1} R_{3}} i_{I}
$$

Finally, we can determine v_{o} from

$$
\begin{aligned}
v_{O} & =v_{x}-i_{4} R_{4} \\
& =-\frac{R_{2}}{R_{1}} v_{l}-\left(\frac{v_{I}}{R_{1}}+\frac{R_{2}}{R_{1} R_{3}} v_{l}\right) R_{4}
\end{aligned}
$$

Thus the voltage gain is given by

$$
\frac{v_{O}}{v_{l}}=-\left[\frac{R_{2}}{R_{1}}+\frac{R_{4}}{R_{1}}\left(1+\frac{R_{2}}{R_{3}}\right)\right]
$$

which can be written in the form

$$
\frac{v_{0}}{v_{1}}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{4}}{R_{2}}+\frac{R_{4}}{R_{3}}\right)
$$

Now, since an input resistance of $1 \mathrm{M} \Omega$ is required, we select $R_{1}=1 \mathrm{M} \Omega$. Then, with the limitation of using resistors no greater than $1 \mathrm{M} \Omega$, the maximum value possible for the first factor in the gain expression is 1 and is obtained by selecting $R_{2}=1 \mathrm{M} \Omega$. To obtain a gain of $-100, R_{3}$ and R_{4} must be selected so that the second factor in the gain expression is 100 . If we select the maximum allowed (in this example) value of $1 \mathrm{M} \Omega$ for R_{4}, then the required valuc of R_{3} can be calculated to be $10.2 \mathrm{k} \Omega$. Thus this circuit utilizes three $1-\mathrm{M} \Omega$ resistors and a $10.2-\mathrm{k} \Omega$ resistor. In comparison, if the inverting configuration were used with $R_{1}=1 \mathrm{M} \Omega$ we would have required a feedback resistor of 100 MS , an impractically large value!
Before leaving this example it is insightful to enquire into the mechanism by which the circuit is able to realize a large voltage gain without using large resistances in the fcedback path.
Toward that end, observe that because of the virual ground at thc inverting input terminal of the op amp, R_{2} and R_{3} are in effect in parallel. Thus, by making R_{3} lower than R_{2} by, say, a factor k (i.c., $R_{3}=R_{2} / k$ where $k>1$), R_{3} is forced to carry a current k-times that in R_{2}. Thus, while $i_{2}=i_{1}$, $i_{3}=k i_{1}$ and $i_{4}=(k+1) i_{1}$. It is the current multiplication by a factor of $(k+1)$ that enables a large voltage drop to develop across R_{4} and hence a large v_{0} without using a large value for R_{4}. Notice also that the current through R_{4} is independent of the value of R_{4}. It follows that the circuit can be used as a current amplifier as shown in Fig. 2.9.

FIGURE 2.9 A current amplifice based on the circuit of Fiy. 2.8. The amplifier delivers ils output current to R_{4}. It has a current gain of $\left(1+R_{2} / R_{3}\right.$), a zero input resistance, and an infimite outpur resistance. The load (R_{4}, , however,
must be floating (i.e., neither of its
wwo terminals can be connected to ground).

EXGRGMEs

2. 4x

02.4 Use the crecuit of His: 25 to desisn in inverting amplifier having 4 gin of 10 and an input resistance of 100 k 2 . Give the whies of R and R.
Ans. $R_{1}=100 \mathrm{k} \Omega R_{2}=1 \mathrm{M} \Omega$
25 The circul shown in fic: EL.5(a) can he ised to implementa trantresistance implifier (see Table 1,1 in Section 1.5). Find the value of the input resistance R, the tanstresistance R, and the output resistance the transtesistance amplifiet, find ils output voltage.

(a)

(b):

FIGURE E2.5

 gain Io th chrrent einh it is and powct ean P_{0} I P.

FIGURE E2.6.

2.2.4 An Important Application-The Weighted Summer

A very important application of the inverting configuration is the weighted-summer circuit shown in Fig. 2.10. Here we have a resistance R_{f} in the negative-feedback path (as before), but we have a number of input signals $v_{1}, v_{2}, \ldots, v_{n}$ each applied to a corresponding resistor $R_{1}, R_{2}, \ldots, R_{n}$, which are connected to the inverting terminal of the op amp. From our previous discussion, the ideal op amp will have a virtual ground appearing at its negative input terminal. Ohm's law then tells us that the currents $i_{1}, i_{2}, \ldots, i_{n}$ are given by

$$
i_{1}=\frac{v_{1}}{R_{1}}, \quad i_{2}=\frac{v_{2}}{R_{2}}, \quad \ldots, \quad i_{n}=\frac{v_{n}}{R_{n}}
$$

FIGURE 2.10 A weighted summer
All these currents sum together to produce the current i; that is,

$$
\begin{equation*}
i=i_{1}+i_{2}+\cdots+i_{n} \tag{2.6}
\end{equation*}
$$

will be forced to flow through R_{f} (since no current flows into the input terminals of an ideal op amp). The output voltage v_{O} may now be determined by another application of Ohm's law,

$$
v_{0}=0-i R_{f}=-i R_{f}
$$

Thus,

$$
\begin{equation*}
v_{O}=-\left(\frac{R_{f}}{R_{l}} v_{1}+\frac{R_{f}}{R_{2}} v_{2}+\cdots+\frac{R_{f}}{R_{n}} v_{n}\right) \tag{2.7}
\end{equation*}
$$

That is, the output voltage is a weighted sum of the input signals $v_{1}, v_{2}, \ldots, v_{n}$. This circuit is thereforc called a weighted summer. Note that each summing coefficient may be independently adjusted by adjusting the corresponding "feed-in" resistor (R_{I} to R_{n}). This nice property, which greatly simplifies circuit adjustment, is a direct consequence of the vitual ground that exists at the inverting op-amp terminal. As the reader will soon come to appreciate, virtual grounds are extremely "handy." The weighted summer of Fig. 2.10 has the constraint that all the summing coefficients are of the same sign. The need occasionally arises for summing signals with opposite signs. Such a function can be implemented using two op amps as shown in Fig. 2.11. Assuming ideal op amps, it can be easily shown that the output voltage is given by

$$
\begin{equation*}
v_{o}=v_{1}\left(\frac{R_{\dot{b}}}{R_{1}}\right)\left(\frac{R_{c}}{R_{b}}\right)+v_{2}\left(\frac{R_{a}}{R_{2}}\right)\left(\frac{R_{c}}{R_{b}}\right)-v_{3}\left(\frac{R_{c}}{R_{3}}\right)-v_{4}\left(\frac{R_{c}}{R_{4}}\right) \tag{2.8}
\end{equation*}
$$

FIGURE 2.11 A weighted summer capable of implementing summing coefficients of both signs.

EXERGSES

D2.7. Design an inverting op-amp circuit to form the weighted stim of two inpuls t and $n \rightarrow 1$ is requifce that $t_{0}=(t)+5(b)$ Choose values for R_{1}, R_{R}, and $R_{\text {, }}$, so that for a Maximum outpu voltage of 101 hee current in the feedback resistor will hot ercecd 1 mA
Ans. A possible choice: $R_{\mathrm{I}}=10 \mathrm{kS} 2, R_{2}=2 \mathrm{k} \Omega$ and $R_{f}=10 \mathrm{k} 9$
02.8 Use the idea presented in Fis. 2.11 to design a wrighted summer that provides

$$
v_{0}=2 v_{1}+r_{2} \psi_{j_{0}}
$$

Ans. A possible choice: $R_{1}=5 \mathrm{k} \Omega, R_{2}=10 \mathrm{ks}, R_{a}=10 \mathrm{k} \Omega, R_{b}=10 \mathrm{k} \Omega, R_{3}=2.5 \mathrm{k} \Omega, R_{c}=10 \mathrm{k} \Omega$

2.3 THE NONINVERTING CONFIGURATION

The second closed-loop configuration we shall study is shown in Fig. 2.12. Here the input signal v_{I} is applied directly to the positive input terminal of the op amp while one terminal of R_{1} is connected to ground.

2.3.1 The Closed-Loop Gain

Analysis of the noninverting circuit to determine its closed-loop gain (v_{o} / v_{l}) is illustrated in Fig. 2.13. Notice that the order of the steps in the analysis is indicated by circled numbers.

FIGURE 2.13 Analysis of the noninverting circuit. The sequence of the steps in the analysis is indicated by the circled numbers.

Assuming that the op amp is ideal with infinite gain, a virtual short circuit cxists between its two input terminals. Hence the difference input signal is

$$
v_{l d}=\frac{v_{O}}{A}=0 \quad \text { for } A=\infty
$$

Thus the voltage at the inverting input terminal will be equal to that at the noninverting input terminal, which is the applied voltage v_{1}. The current through R_{1} can then be determined as y_{1} / R_{1}. Because of the infinite input impedance of the op amp, this current will flow through R_{2}, as shown in Fig. 2.13. Now the output voltage can be determined from

$$
v_{O}=v_{I}+\left(\frac{v_{I}}{R_{1}}\right) R_{2}
$$

which yields

$$
\begin{equation*}
\frac{v_{0}}{v_{I}}=1+\frac{R_{2}}{R_{1}} \tag{2.9}
\end{equation*}
$$

Further insight into the operation of the noninverting configuration can be obtained by considering the following: Since the current into the op-amp inverting input is zero, the circuit composed of R_{1} and R_{2} acts in effect as a voltage divider feeding a fraction of the output voltage back to the inverting input terminal of the op amp; that is,

$$
\begin{equation*}
v_{1}=v_{0}\left(\frac{R_{1}}{R_{1}+R_{2}}\right) \tag{2.10}
\end{equation*}
$$

Then the infinite op-amp gain and the resulting virtual short circuit between the two input terminals of the op-amp forces this voltage to he equal to that applied at the positive input terminal; thus

$$
v_{o}\left(\frac{R_{1}}{R_{1}+R_{2}}\right)=v_{I}
$$

which yields the gain expression given in Eq. (2.9).
This is an appropriatc point to reflect further on the action of the negative feedback present in the noninverting circuit of Fig. 2.12. Let v_{t} increase. Such a change in v_{l} will cause $v_{l d}$ to increase, and v_{0} will correspondingly increase as a result of the high (ideally infinite) gain of the op amp. However, a fraction of the increase in v_{0} will be fed back to the inverting input terininal of the op amp through the (R_{1}, R_{2}) voltage divider. The result of this feedback will be to counteract the increase in $v_{I d}$, driving $v_{l d}$ back to zero, albeit at a higher value of v_{0} that concsponds to the increased value of v_{v}. This degeneran ally, note of that ive feedback gives it the alternative namc degenerative feedback. Finally argument above applies equally well if v_{I} decreases. A formal and detailed stndy of feedback is presented in Chapter 8 .

2.3.2 Characteristics of the Noninverting Configuration

The gain of the noninverting configuration is positive--hence the name noninverting. The input impedance of this closed-loop amplifier is ideally infinite, since no current flows into the positive input terminal of the op amp. The output of the noninverting amplifier is taken at the terminals of the ideal volage source $A\left(v_{2}-v_{1}\right)$ (see the op-amp equivalent circuit in Fig. 2.3), thus the output resistance of the noninverting configuration is zero.

2.3.3 Effect of Finite Open-Loop Gain

As we have done for the inverting configuration, we now consider the effect of the finite op-amp open-loop gain A on the gain of the noninverting configuration. Assuming the op amp
to be ideal except for having a finite open-loop gain A, it can be shown that the closed-loop to be of the noninverting amplifier circuit of Fig. 2.12 is given by

$$
\begin{equation*}
G \equiv \frac{v_{O}}{v_{1}}=\frac{1+\left(R_{2} / R_{1}\right)}{1+\frac{1+\left(R_{2} / R_{1}\right)}{A}} \tag{2.11}
\end{equation*}
$$

Observe that the denominator is identical to that for the case of the inverting configuration (Eq. 2.5). This is no coincidence; it is a result of the fact that both the inverting and the noninverting configurations have the same feedback loop, which can be readily seen if the inpu signal source is eliminated (i.e., shor-circuled). The $\left(-R_{2} / R_{1}\right.$ for the inverting configu the numerator $1+R_{\text {(}}$ for the noninverting configuration). Finally wc note (with reassurance) and $1+R_{2}$ R. in Eq. (211) rducs to the ideal value for $A=\infty$. In fact, it approx mates the ideal value for

$$
\begin{equation*}
A \gg 1+\frac{R_{2}}{R_{1}} \tag{2.12}
\end{equation*}
$$

This is the same condition as in the inverting configuration, except that here the quantity on the rigbt-hand side is the nominal closed-loop gain.

2.3.4 The Voltage Followe

The property of high input impedance is a very desirable feature of the noniaverting config uration. It enables using this circuit as a buffer amplifier to connect a source with a high impedance to a low-impedance load. We have discussed the need for buffer amplifiers in Section 1.5. In many applications the buffer amplifier is not required to provide any voltage gain; rather, it is used mainly as an impedance transformer or a power amplifier. In such cases we may make $R_{2}=0$ and $R_{1}=\infty$ to obtain the unity-gain amplifier shown in Fig. 2.14(a). This circuit is commonly referred to as a voltage follower, since the outpu "follows" the input. In the ideal case, $v_{0}=v_{v}, R_{\text {in }}=\infty, R_{\text {out }}=0$, and the follower has the equivalent circuit shown in Fig. 2.14(b)

Since in the voltage-follower circuit the entire output is fed back to the inverting input, the circuit is said to have 100% negative feedback. The infinite gain of the op amp then act to make $v_{l d}=0$ and hence $v_{0}=v_{r}$. Observe that the circuit is elegant in its simplicity
Since the noninverting configuration has a gain greater than or equal to unity, depending on the choice of R_{2} / R_{1}, some prefer to call it "a follower with gain."

FIGURE 2.14 (a) The unity-gain buffer or follower amplifier. (b) Its equivalent circuit model

EXERCISES

2.9. Ise the supetposition principte to find the output sotage of the cicuil shown in Fis E2.9 Ans. $v_{0}=6 y_{1}+4 i_{2}$
$)^{\text {Ans }}$

figure e2.9

2.10 If in the citcuit of Fig. E2.9 the 1 iks resistor is disconnected from ground and connected to a third signal source y_{3}, ise superposition to derermine v_{0} in terms of $v_{1} v_{2}$ and t_{3}
Ans: $v_{0}=6 u_{1}+4 v_{2}-9 v_{3}$
02.11 Design a nonitherting amplifier with a gain of 2. At the maximum oupht voltage of 10 v the current in the voltage divider is to be $10 \mu \mathrm{~A}$.
Ans. $R_{1}-R_{2}=05 \mathrm{MS}$
212 (a) Show thatif the op anp in the circuit of Fio. 212 has a finite open loop gain A, thein the closed loop gain is given by $\mathrm{Eq}(211)$, b) For $R_{1}=1 \mathrm{kS}$ and $R_{2}=9 \mathrm{k} \Omega$ find the percentage deviation e of the fin in ach 10 , 10^{4} and 10^{5}. For $y_{H}=1 \mathrm{y}$ he op amp

$$
\text { Ans } \varepsilon=-1 \%,-0.1 \%,-0.01 \%, v_{2}, v_{1}=9.9 \mathrm{nV}, 1 \mathrm{nV}, 0 . \mathrm{n} \mathrm{nV}
$$

2.13 For the circuit in Fig E2.13 find the values of $i_{,}, v_{1}, i_{1}, i_{2}, v_{o}, i_{2}$, and i_{0}. Also find the voltage gain $v_{0} U_{1}$ the curren gain $I_{L} /_{1}$, and the power cain P_{L} / P_{1} Ans of, 1 V/ $1 \mathrm{~mA}, 1 \mathrm{~mA}, 10 \mathrm{~V}, 10 \mathrm{~mA}, 11 \mathrm{~mA}, 10 \mathrm{~V} / \mathrm{V}(20 \mathrm{~dB})$,o, o.

2.14 It is required to coniect a transtucer having an onen eircut voltice of 1 Y and a source resistance of $1 \mathrm{M} \Omega$ to a load of 7 kS resistance. Find the load voltage il the connection is done (a) directly and (b) throuef a anity-gain voltae follow cr.

Ans. (a) 1 MV : (b) 1 V

缕榇2.4 DIFFERENCE AMPLIFIERS

Having studied the two basic configurations of op-amp circuits together with some of the direct applications, we are now ready to consider a somewhat more involved but very important application. Specifically, we shall study the use of op amps to design difference or differential amplifiers. A difference amplifier is one that responds to the difference between the two signals applied at its input and ideally rcjects signals that are common to the two inputs. The representation of signals in terms of their differential and common-mode components was given in Fig. 2.4. It is repeated here in Fig. 2.15 with slightly different symbols to serve as the input signals for the difference amplificrs we are about to design Although ideally the difference amplificr will amplify only the differential input signal $v_{b_{l}}$ and reject completcly the common-mode input signal $v_{\text {sm }}$, practical circuits will have an output volage v_{o} given by

$$
\begin{equation*}
v_{O}=A_{d} v_{l d}+A_{c m} z_{l c m} \tag{2.13}
\end{equation*}
$$

where A_{d} denotes the amplifier differential gain and $A_{c m}$ denotes its common-mode gain (ideally zero). The efficacy of a differential amplifier is measured by the degree of its rejec tion of common-mode signals in preference to differential signals. This is usually quantified by a measure known as the common-mode rejection ratio (CMRR), defined as

$$
\begin{equation*}
\mathrm{CMRR}=20 \log \frac{\left|A_{d}\right|}{\left|A_{c m}\right|} \tag{2.14}
\end{equation*}
$$

The need for difference amplifiers arises frequently in the design of electronic systems especially those employed in instrumentation. As a common example, consider a transduce providing a small (e.g., 1 mV) signal between its two output terminals while each of the two wires leading from the transducer terninals to the measuring instrument may have a larg interfcrence signal (e.g., 1 V) relative to the circuit ground. The instrument front end obviously needs a difference amplifier.

Before we proceed any further we should address a question that the reader might have: The op amp is itself a difference amplifier; why not just use an op amp? The answer is that the very high (ideally infinite) gain of the op amp makes it impossible to use by itself

FIGURE 2.15 Representig he input signals to a differential amplifier in terms of their differential and common-mode components.
${ }^{2}$ The terms difference and differential are usually used to describe somewhat different amplifier types For our purposes at his point the distinction is not sufficiently significant. We will be more precise near the end of this section.

Chapter 2 operational amplifiers

Rather, as we did before, we have to devise an appropriate feedback network to connect to the op amp to create a circuit whose closed-loop gain is finite, predictable, and stable.

2.4.1 A Single Op-Amp Difference Amplifier

Our first attempt at designing a difference amplifier is motivated by the observation that the gain of the noninverting amplifier configuration is positive, $\left(1+R_{2} / R_{1}\right)$, while that of the inverting configuration is negative, $\left(-R_{2} / R_{1}\right)$. Combining the two configurations together is then a step in the right direction-namely, getting the difference between two input signals. Of course, we have to make the two gain magnitudes equal in order to reject common-mode signals. This, however, can be easily achieved by attenuating the positive input signal to reduce the gain of the positive path from $\left(1+R_{2} / R_{1}\right)$ to $\left(R_{2} / R_{1}\right)$. The resulting circuit would then look like that shown in Fig. 2.16. where the attenuation in the positive input path is achieved by the voltage divider $\left(R_{3}, R_{4}\right)$. The proper ratio of this voltage divider can be determined from

$$
\frac{R_{4}}{R_{4}+R_{3}}\left(1+\frac{R_{2}}{R_{1}}\right)=\frac{R_{2}}{R_{1}}
$$

which can be put in the form

$$
\frac{R_{4}}{R_{4}+R_{3}}=\frac{R_{2}}{R_{2}+R_{1}}
$$

This condition is satisfied by selecting

$$
\begin{equation*}
\frac{R_{4}}{R_{3}}=\frac{R_{2}}{R_{1}} \tag{2.15}
\end{equation*}
$$

This completes our work. However, we have perhaps proceeded a little too fast! Let's step back and verify that the circuit in Fig. 2.16 with R_{3} and R_{4} selected according to Eq. (2.15) does in fact function as a difference amplifier. Specifically, we wish to determine the output thus we can use superposition thus we can use superposition.

To apply superposition, we first reduce $v_{I 2}$ to zero-chat is, ground the terminal to which v_{12} is applied-and then find the corresponding output voltage, which will be due entirely to v_{11}. We denote this oulput voliage v_{01}. Its value may be found from the circuit in Fig. 2.17(a), which we recognize as that of the inverting configuration. The existence of R_{3} and R_{4} does not affect the gain expression, since no current flows through either of them. Thus,

$$
v_{O 1}=-\frac{R_{2}}{R_{1}} v_{f 1}
$$

FIGURE 2.17 Application of supcrposition to the analysis of the circuit of Fig. 2.16.
Net, we reduce v_{11} to zero and evaluate the corresponding output voltage v_{02}. The circuit Next, wow take the form shown in Fig. 2.17(b), which we recognize as the noninverting conin v_{2}. The output voltage v_{02} is therefore given by

$$
v_{02}=v_{l 2} \frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{2}}{R_{1}}\right)=\frac{R_{2}}{R_{1}} v_{12}
$$

where we have utilized Eq. (2.15)
The superposition principle tells us that the output voltage v_{0} is equal to the sum of v_{01} and v_{02}. Thus we have

$$
\begin{equation*}
v_{O}=\frac{R_{2}}{R_{1}}\left(v_{12}-v_{f 1}\right)=\frac{R_{2}}{R_{1}} v_{l d} \tag{2.16}
\end{equation*}
$$

Thus, as expected, the circuit acts as a difference amplifier with a differential gain A_{d} of

$$
\begin{equation*}
A_{d}=\frac{R_{2}}{R_{1}} \tag{2.17}
\end{equation*}
$$

Of course this is predicated on the op amp bcing ideal and fuuthermore on the selection of R_{3} and R_{4} so that their ratio matches that of R_{1} and R_{2} (Eq. 2.15). To make this matching requirement a little easier to satisfy, we usually select

$$
R_{3}=R_{1} \quad \text { and } \quad R_{4}=R_{2}
$$

Let's next consider the circuit with only a common-mode signal applicd at the input, as shown in Fig. 2.18. The figure also shows some of the analysis steps. Thus,

$$
\begin{align*}
i_{1} & =\frac{1}{R_{1}}\left[\tilde{U}_{\text {lcm }}-\frac{R_{4}}{R_{4}+R_{3}} y_{\text {lcm }}\right] \\
& =v_{\text {Icm }} \frac{R_{3}}{R_{4}+R_{3}} \frac{1}{R_{1}} \tag{2.18}
\end{align*}
$$

The output voltage can now be found from

$$
v_{O}=\frac{R_{4}}{R_{4}+R_{3}} v_{l c m}-i_{2} R_{2}
$$

Since the two input terminals of the op amp track each other in potential, we may write a loop equation and obtain

$$
v_{I d}=R_{1} i_{l}+0+R_{1} i_{l}
$$

Thus,

$$
R_{i d}=2 R_{1}
$$

Note that if the amplifier is required to have a large differential gain $\left(R_{2} / R_{1}\right)$, then R_{1} of necessity will be relatively small and the input resistance will be corespondingly low, a drawback of this circuit. Another drawback of the circuit is that it is not easy to vary the dif frawaial gain of the amplifier. Both of these drawbacks are overcome in the instrumentatio amplifier discussed next.

EXERCISES

215 Consider the differtice-amplifier circuit of Fig, 2.16 for the case $R_{1}-R_{1}=2 \mathrm{kQ}$ and $R_{1}=R_{1}=200 \mathrm{k} \Omega$ (a) Find the value of the differential gain A_{d}. b) Find the value of the differential input resistance R and the output resistance R. (c) It the eesistors have 1% tolerance (i.e., each can be within $\pm 1 \%$ of its nominal value), find the worstecase common thode gain $A_{\text {a }}$ and the corresponding value of CMRR.
Ans. (a) $100 \mathrm{~V} / \mathrm{V}(40 \mathrm{~dB})$: (b) $4 \mathrm{k} \Omega .0 \Omega$; (c) $0.04 \mathrm{~V} / \mathrm{V}, 68 \mathrm{~dB}$
02.16 Find values for the resistances in the circuit of Fie. 2.16 so that the circuit behaves as a difference Find sifier with an input resistance of $20 \mathrm{k} \Omega$ and a gain of 10 .
Ans. $R_{1}=R_{3}=10 \mathrm{k} \Omega, R_{2}=R_{4}=100 \mathrm{k} \Omega$

2.4.2 A Superior Circuit-The Instrumentation Amplifier

The low-input-resistance problem of the difference amplifier of Fig. 2.16 can be solved by buffering the two input terminals using voltage followers; that is, a voltage follower of the ype in Fig. 2.14 is connected between each input terminal and the corresponding input ter minal of the differcnce amplifier. However, if we are going to use two additional op amps, we should ask the question: Can we get more from them than just impedance buffering? A obvious answer would be that we should try to get some voltage gain. If is especially interesting hat we can achieve this without compromising the high ioput resistance simply by uning followers-with-gain rather than unity-gain followers. Achieving some or indeed the bulk the required gain in this new first stage of the differential amplifier eases the burden on the difference amplifier in the second stage, leaving it to its main task of implementing the differencing function and thus rejecting conmon-mode signal

The resulting circuit is shown in Fig. 2.20(a). It consists of two stages. The first stage is formed by op amps A_{1} and A_{2} and their associated resistors, and the second stage is the by now-famisiar difference amplifier formed by op amp A_{3} and its four associated resistor Observe that as we set out to do, each of A_{1} and A_{2} is connected in the noninverting configuration and thus realizes a gain of $\left(1+R_{2} / R_{1}\right)$. It follows that each of $v_{l 1}$ and γ_{12} is amplified by this factor, and the resulting amplified signals appear at the outputs of A_{1} and A_{2}, respectively The difference amplifier in the second slage opcrates on the difference signal $\left(1+R_{2} / R_{1}\right)\left(v_{12}-v_{11}\right)=\left(1+R_{2} / R_{1}\right) v_{I d}$ and provides at its output

$$
v_{0}=\frac{R_{4}}{R_{3}}\left(1+\frac{R_{2}}{R_{1}}\right) v_{/ d}
$$

(a)

(b)

(c)

FIGURE 2.20 A popular circuit for an instrumentation amplifier: (a) Initial approach to the circuit; (b) The circuil in (a) with the connection between node X and ground removed and the two resistors R_{1} and R_{1} lumped logether. The simple wiring change dramatically improves performance; (c) Analysis of the circuit in ${ }^{\text {' }}$ (b) assuming ideal op amps.

Thus the differential gain realized is

$$
\begin{equation*}
A_{d}=\left(\frac{R_{4}}{R_{\mathrm{y}}}\right)\left(1+\frac{R_{2}}{R_{1}}\right) \tag{2.21}
\end{equation*}
$$

The common-mode gain will be zero because of the differencing action of the second-stage amplifier.
The circuit in Fig. 2.20(a) has the advantage of very high (ideally infinite) input resistance and high differential gain. Also, provided that A_{1} and A_{2} and their corresponding resistors are matched, the two signal paths are symmetric-a definitc advantage in the design of a differential amplifier. The circuit, however, has three major disadvantages

1. The input common-mode signal $v_{\text {cm }}$ is amplified in the first stage by a gain equal to that experienced by the differential signal $v_{l d}$. This is a very serious issue, for it could result in the signals at the outputs of A_{1} and A_{3} being of such large magnitudes that the op amps saturate (more on op-amp saturation in Section 2.6). But even if the op amps do not saturate, the difference amplifier of the second stage will now have to deal with much larger common-mode signals, with the result that the CMRR of the overal amplifier will iuevitably be reduced
2. The two amplifier channels in the first stage have to be perfectly matched, otherwise a spurious signal may appear between their two outputs. Such a signal would get amplified by the difference amplificr in the second stage.
3. To vary the differential gain A_{d}, two resistors have to be varied simultaneously, say the two resistors labcled R_{1}. At each gain setting the two resistors have to be perfectly matched, a difficult task.

All three problems can be solved with a very simple wiring change: Simply disconnect the node between the two resistors labeled k_{1}, node X , from ground. The circuit with this smal but functionally profound change is redrawn in Fig. 2.20(b), where we have lumped the two resistors (R_{1} and R_{1}) together into a single resistor ($2 R_{1}$).

Analysis of the circuit in Fig. 2.20(b), assuming idcal op amps, is straightorward, as is ustrated in Fig. 2.20(c). The key point is that the virtual short circuits at the inputs of op amps Λ_{1} and A_{2} cause the input voltages i_{n} and v_{n} to appear at the two terninals of resistor $\left(2 R_{\mathrm{t}}\right)$. Thus the differential input voltage $y_{n}-v_{11} \equiv v_{I d}$ appears across $2 R_{1}$ and causes a current $i=v_{l d} / 2 R_{1}$ to flow through $2 R_{1}$ and the two resistors labeled R_{2}. This current in turn produces a voltage difference between the output terminals of A_{1} and A_{2} given by

$$
v_{O 2}-v_{O 1}=\left(1+\frac{2 R_{2}}{2 R_{1}}\right) v_{l d}
$$

The difference amplifier formed by op amp A_{3} and its associated resistors senses the voltage difference ($v_{O 2}-v_{O 1}$) and provides a proportional output voltage v_{O}

$$
\begin{aligned}
v_{O} & =\frac{R_{4}}{R_{3}}\left(v_{O 2}-v_{O 1}\right) \\
& =\frac{R_{4}}{R_{3}}\left(1+\frac{R_{2}}{R_{1}}\right) v_{l d}
\end{aligned}
$$

Thus the overall diffcrential voltage gain is given by

$$
\begin{equation*}
A_{d d} \equiv \frac{v_{0}}{v_{I d}}=\frac{R_{4}}{R_{3}}\left(1+\frac{R_{2}}{R_{1}}\right) \tag{2.22}
\end{equation*}
$$

Observe that proper differential operation does not depend on the matching of the two resistors labeled R_{2}. Indeed, if one of the two is of different value, say R_{2}^{\prime}, the expression for A_{d} becomes

$$
\begin{equation*}
A_{d}=\frac{R_{4}}{R_{3}}\left(1+\frac{R_{2}+R_{2}^{\prime}}{2 R_{\mathrm{t}}^{\prime}}\right) \tag{2.23}
\end{equation*}
$$

Consider next what happens when the two input terminals are connected together to a common-mode input voltage $\tau_{\text {ccm }}$. It is easy to see that an equal voltage appears at the negative input terminals of A_{1} and A_{2}, causing the current through $2 R_{1}$ to be zero. Thus there will be no current flowing in the R_{2} resistors, and the voltages at the output terminals of A_{1} and A_{2} will be equal to the input (i.e., $v_{l c m}$). Thus the first stage no longer amplifies $v_{\text {lcm }}$; it simply propagates $y_{\text {lcm }}$ to its two output terminals, where they are sublracted to produce a zero conson-mode output by A_{3}. The difference amplifer $\left(1+R_{1} / R_{1}\right)$ while the common-mode voltage remained unchanged \quad - mplified by $\left(1+R_{2} / R_{1}\right)$ while the common-mode voltage remained unchanged

Finally, we observe from the expression in Eq. (2.22) that the gain can be varied by changing only one resistor, $2 R_{1}$. We conclude that this is an excellent differential amplifier circuit and is widely employed as an instrumentation amplifier; that is, as the input amplifier used in a variety of electronic instruments.

Design the instrumentation amplifier circuit in Fig. 2.20(b) to provide a gain that can be varied over the range of 2 to 1000 utilizing a $100-\mathrm{k} \Omega$ variable resistance (a potentiometer, or "pot" for short).

Solution

It is usually preferable to obtain all the required gain in the first stagc, leaving the sccond stage to perform the task of taking the difference between the outputs of the first stage and thereby rejecting the common-mode signal. In other words, the second stage is usually designed for a gain of 1 . Adopting this approach, we select all the second-stage resistors to be equal to a practically convenient value, say $10 \mathrm{k} \Omega$. The problem then reduces to designing the first stage to realize a gain

$$
1+\frac{2 R_{2}}{R_{1 f}+R_{\mathrm{t}, y}}=2 \text { to } 1000
$$

Thus,

$$
1+\frac{2 R_{2}}{R_{1 f}}=1000
$$

FIGURE $\mathbf{2 . 2 1}$ To make the gain of the circuit in Fig. 2.20(b) variable, $2 R$, is implemented as the series combination of a fixed resistor $R_{1,}$ and a variable resistor R_{15}, Resistor $R_{1 /}$ ensures that
and

$$
1+\frac{2 R_{2}}{R_{1 f}+100 \mathrm{k} \Omega}=2
$$

These two equations yield $R_{i f}=100.2 \Omega$ and $R_{2}=50.050 \mathrm{k} \Omega$. Othcr practical values may be selected; for instance, $R_{1 j}=100 \Omega$ and $R_{2}=49.9 \mathrm{k} \Omega$ (both values are available as standard 1%-tolerance metal-film resistors; see Appendix G) results in a gain covering approximately the required range.

Exergise

 and a differential input signal of 10 -my-peak sine wave Let $\left(2 R_{1}\right)=1 \mathrm{k} \Omega R_{2}=0.5 \mathrm{M} \Omega$, and $R=R_{4}=$ $10 \mathrm{k} \Omega$ Find the voltage at every fode in the eirevit.
 $5+0.005 \sin \omega t, v_{0}=5,5.005 \mathrm{sin} \omega t, v_{02}=5+5.005 \sin \omega t, v_{1}\left(A_{3}\right) v_{+}\left(A_{3}\right)-25+2.0025 \sin \omega t$ $v_{0}=10.01 \mathrm{sin} \omega t$ (all in volts)
 \subsection*{2.5 EFFECT OF FINITE OPEN-LOOP GAIN AND
BANDWIDTH ON CIRCUIT PERFORMANCE}
 \subsection*{2.5 EFFECT OF FINITE OPEN-LOOP GAIN AND
BANDWIDTH ON CIRCUIT PERFORMANCE}

Above we defined the ideal op amp, and we presented a number of circuit applications of op amps. The analysis of tbese circuits assumed the op amps to be ideal. Although in many applications such an assumption is not a bad one, a circuit designer has to be thoroughly familiar with the characteristics of practical op amps and the effects of such characteristics on the performance of op-amp circuits. Only then will the designer be able to use the op amp intelligently, especially if the application at hand is not a straightforward one. The nonideal properties of op amps will, of course, limit the range of operation of the circuits analyzed in the previous examples.

In this and the two sections that follow, we consider some of the important nonideal properties of the op amp. ${ }^{3}$ We do this by treating one parameter at a time, beginning in this section with the most serious op -amp nonidealities, its finite gain and limited bandwidth.

2.5.1 Frequency Dependence of the Open-Loop Gain

The differential open-loop gain of an op amp is not infinite; rather, it is finite and decreases with frequency. Figure 2.22 shows a plot for $|A|$, with the numbers typical of most commercially frequency. Figure 2.22 shows a plot for A, with the numbers typical of most commercialy
available general-purpose op amps (such as the 741 -type op amp, which is available from many semiconductor manufacturers and whose internal circuit is studied in Chapter 9).

[^4]

FIGURE 2.22 Open-loop gain of a typical general-purpose interually compensated op amp.

Note that although the gain is quite high at dc and low frequencies, it starts to fall off at a rather low frequency (10 Hz in our example). The uniform -20 -dB/decade gain rolloff shown is typical of internally compensated op amps. These are units that have a network the op-amp eain to process of modifying the the single time-constant (STC) low-pass response shown. This pose is to ensure that op-amp circuits will be stable casency compensation, and its purpose is to ensure that op-amp circuits will be stable (as opposed to oscillatory). The subject of stability of op-anp circuits-or, more generally, of fecdback amplifiers-will be y analogy to the
By andix D), the gain response of low-pass STC circuits (sce Section 1.6 and, for more detail, Appendix D), the gain $A(s)$ of an internally compensated op amp may be expressed as

$$
\begin{equation*}
A(s)=\frac{A_{0}}{1+s / \omega_{b}} \tag{2.24}
\end{equation*}
$$

which for physical frequencies, $s=j \omega$, becomes

$$
\begin{equation*}
A(j \omega)=\frac{A_{0}}{1+j \omega / \omega_{b}} \tag{2.25}
\end{equation*}
$$

where A_{0} denotes the dc gain and ω_{b} is the $3-\mathrm{dB}$ frequency (corner frequency or "break" frequency). For the example shown in Fig. 2.22, $A_{0}=10^{5}$ and $\omega_{b}=2 \pi \times 10 \mathrm{rad} / \mathrm{s}$. For frequencies $\omega \gg \omega_{b}$ (ahout 10 times and higher) Eq. (2.25) may be approximated by

$$
A(j \omega) \simeq \frac{A_{0} \omega_{b}}{j \omega}
$$

Thus,

$$
|A(j \omega)|=\frac{A_{0} \omega_{b}}{\omega}
$$

from which it can be seen that the gain $|A|$ reaches unity $(0 \mathrm{~dB})$ at a frequency denoted by ω_{r} and given by

$$
\begin{equation*}
\omega_{i}=A_{0} \omega_{b} \tag{2.28}
\end{equation*}
$$

Substituting in Eq. (2.26) gives

$$
\begin{equation*}
A(j \omega) \simeq \frac{\omega_{t}}{j \omega} \tag{2.29}
\end{equation*}
$$

The frequency $f_{t}=\omega_{i} / 2 \pi$ is usually specified on the data sheets of commercially available op amps and is known as the unity-gain bandwidth. ${ }^{4}$ Also note that for $\omega \gg \omega_{b}$ the openloop gain in Eq. (2.24) becomes

$$
\begin{equation*}
A(s) \simeq \frac{\omega_{t}}{s} \tag{2.30}
\end{equation*}
$$

The gain magnitude can be obtained from Eq. (2.29) as

$$
\begin{equation*}
|A(j \omega)| \simeq \frac{\omega_{z}}{\omega}=\frac{f_{t}}{f} \tag{2.31}
\end{equation*}
$$

Thus if f_{t} is known ($10^{6} \mathrm{~Hz}$ in our example), one can easily determine the magnitude of the op-amp gain at a given frequency f. Furthermore, observe that this relationship correlates with the Bode plot in Fig. 2.22. Specifically, for $f \geqslant f_{b}$, doubling f (an octave increase) results in halving the gain (a $6-\mathrm{dB}$ reduction). Similarly, increasing f by a factor of 10 (a decade increase) results in reducing $|A|$ by a factor of $10(20 \mathrm{~dB})$.
As a matter of practical importance, we note that the production spread in the value of f_{t} between op-amp units of the same typc is usually much smaller than that observed for A_{0} and f_{b}. For this reason f_{t} is preferred as a specification parameter. Finally, it should be mentioned that an op anyp having this uniform $-6-\mathrm{dB} /$ octave (or equivalently $-20-\mathrm{dB} / \mathrm{dec}$ ade) gain rolloff is said to have a single-pole model. Also, since this single pole dominates the amplifier frequency respouse, it is called a dominant pole. For more on poles (and zeros), the reader nay wish to consult Appendix E.

WHETME

1 雷

2.5.2 Frequency Response of Closed-Loop Amplifiers

We next consider the effect of limited op-amp gain and bandwidth on the closed-loop transfer functions of the two basic configurations: the inverting circuit of Fig. 2.5 and the nouilnverting circuit of Fig. 2.12. The closed-loop gain of the inverting amplifier, assuming a finite op-amp open-loop gain A, was derived in Section 2.2 and given in Eq. (2.5), which we repeat herc as

$$
\begin{equation*}
\frac{V_{o}}{V_{i}}=\frac{-R_{2} / R_{1}}{1+\left(1+R_{2} / R_{1}\right) / A} \tag{2.32}
\end{equation*}
$$

${ }^{4}$ Since f_{t} is the product of the dc gain A_{0} and the 3 -dB bandwidth f_{b} (where $f_{b}=\omega_{b} / 2 \pi$), it is also known
${ }^{4}$ Since f is the product of the dc gain A_{A} and the 3 -dB bandwidth f_{b} (where $f_{b}=\omega_{b} / 2 \pi$) it is also known
as the gain-bandwidth product (GB). The reader is cautioned, however, that in some amplifiers, the unity-gain frequency and the gain-bandwidth product are not equal.

Substituting for A from Eq. (2.24) gives

$$
\begin{equation*}
\frac{V_{o}(s)}{V_{i}(s)}=\frac{-R_{2} / R_{1}}{1+\frac{1}{A_{0}}\left(1+\frac{R_{2}}{R_{1}}\right)+\frac{s}{\omega_{r} /\left(1+R_{2} / R_{1}\right)}} \tag{2.33}
\end{equation*}
$$

For $A_{0} \gg 1+R_{2} / R_{1}$, which is usually the case,

$$
\begin{equation*}
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{-R_{2} / R_{1}}{1+\frac{s}{\omega_{1} /\left(1+R_{2} / R_{1}\right)}} \tag{2.34}
\end{equation*}
$$

which is of the same form as that for a low-pass STC network (see Table 1.2, page 34). Thus the inverting amplifier has an STC low-pass response with a dc gain of magnitude equal to R_{2} / R_{1}. The closed-loop gain rolls off at a uniform $-20-\mathrm{dB} /$ decade slope with a corner frequency (3-dB frequency) given by

$$
\begin{equation*}
\omega_{3 \mathrm{~dB}}=\frac{\omega_{i}}{1+R_{2} / R_{1}} \tag{2.35}
\end{equation*}
$$

Similarly, analysis of the noninverting amplifier of Fig. 2.12, assuming a finite open-loop gain A, yields the closed-loop transfer function

$$
\begin{equation*}
\frac{V_{o}}{V_{i}}=\frac{1+R_{2} / R_{1}}{1+\left(1+R_{2} / R_{1}\right) / A} \tag{2.36}
\end{equation*}
$$

Substituting for A from Eq. (2.24) and making the approximation $A_{0} \gg 1+R_{2} / R_{1}$ results in

$$
\begin{equation*}
\frac{V_{o}(s)}{V_{i}(s)} \simeq \frac{1+R_{2} / R_{1}}{1+\frac{s}{\omega_{i} /\left(1+R_{2} / R_{1}\right)}} \tag{2.37}
\end{equation*}
$$

Thus the noninverting amplifier has an STC low-pass response with a dc gain of ($1+R_{2} / R_{1}$) and a $3-\mathrm{dB}$ frequency given also by Eq. (2.35).

ExAMTE24:

Consider an op amp with $f_{t}=1 \mathrm{MHz}$. Find the $3-\mathrm{dB}$ frequency of closed-loop amplifiers with nominal gains of $+1000,+100,+10,+1,-1,-10,-1.00$, and -1000 . Sketch the magnitude frequency response for the amplifiers wihh closed-loop gains of +10 and -10 .

Solution

Using Eq. (2.35), we obtain the results given in the following table

Closed-Loop Gain	R_{2} / R_{1}	$f_{3 \mathrm{~dB}}=f_{1}\left(1+R_{2} / R_{1}\right)$
+1000	999	1 kHz
+100	99	10 kHz
+10	9	100 kHz
+1	0	1 MHz
-1	1	0.5 MHz
-10	10	90.9 kHz
-100	100	9.9 kHz
-1000	1000	$\underset{\sim}{1} \mathrm{kHz}$

Figue 223 shows the frequency response for the amplifier whose nominal dc gain is +10 (20 dB), and Fig. 2.24 shows the frequency response for the -10 (also 20 dB) case. An interesting observation follows from the table above: The unity-gain inverting amplifier has a 3 - dB frequenc of $f / 2$ as compared to f_{t} for the unity-gain noninverting amplifier (the unity-gain voltage follower)

FIGURE 2.23 Frequency response of an amplifier with a nominal gain of +10 VN .
$\left|\frac{V_{o}}{V_{i}}\right|(\mathrm{dB})$

FIGURE 2.24 Frequency response of an amplifier with a nominal gain of $-10 \mathrm{~V} / \mathrm{V}$
The table in Example 2.4 above clearly illustrates the trade-off between gain and band width: For a given op amp, the lower the closed-loop gain required, the wider the bandwidth achieved. Indeed, the noninverting configuration exhibits a constant gain-bandwidth product equal to f_{t} of the op armp. An interpretation of these results in terms of feedback theory will be given in Chapter 8.

VXRCISES

2.19. An internally compensated op amp has a dc open toop gain of $10^{\circ} \mathrm{V} \mathrm{V}$ ad an ac open loop gain of 40 dB at (O kHz . Estimate its 3 -dB frequency, its inity-gan frequency, its gain bandwidth product, and ifs expected gain at 1 lH
Ans. $1 \mathrm{~Hz}_{2}, \mathrm{MHz}, 1 \mathrm{MHz} ; 60 \mathrm{~dB}$
2.20. An op amp having a: 106 -dB gain at dc and a single-pole frequency tesponse with $f=2 \mathrm{MHz}$ is used to design s noninvertiing amplifier with nominal dc gain of 100 Find the 3 -dB frequency of the closed loop Eain.
Ans. 20 kH .

3. 2.6 LARGE-SIGNAL OPERATION OF OP AMPS

In this section, we study the limitations on the performance of op-amp circuits when large output signals are present.

2.6.1 Output Voltage Saturation

Similar to all other amplifiers, op amps operate linearly over a limited range of output voltages. Specifically, the op-amp output saturates in the manner shown in Fig. 1.13 with L_{+}and L. within 1 V or so of the positive and negative power supplies, respectively. Thus, an op amp that is operating from $\pm 15-\mathrm{V}$ supplies will saturate when the output voltage reaches about +13 V in the positive direction and -13 V in the negative direction. For this particular op amp the rated output voltage is said to be $\pm 13 \mathrm{~V}$. To avoid clipping off the peaks of the output waveform, and the resulting waveform distortion, the input signal must be kept correspondingly small.

2.6.2 Output Current Limits

Another limitation on the operation of op amps is that their output current is limited to a specified maximum. For instance, the popular 741 op amp is specified to have a maximum output current of $\pm 20 \mathrm{~mA}$. Thus, in designing closed-loop circuits utilizing the 741 , the designer has to ensure that under no condition will the op amp be required to supply an outcurrent in the feedback circuit as well as the current supplied to a load resistor. If the circuit current in the feedback circuit as well as the current supplied to a load resistor. If the circuit requires a larger current, the op-amp output voltage will saturate at the level corresponding
to the maximum allowed output current.

3MMDTE 4

Consider the noninverting amplifier circuit shown m Fig. 2.25. As shown, the circuit is designed for a nominal gain $\left(1+R_{2} / R_{1}\right)=10 \mathrm{~V} / \mathrm{V}$. It is fed with a low-frequency sinc-wave signal of peak voltage V_{p} and is connected to a load resistor R_{L}. The op amp is specified to have output saturation voltages of $\pm 13 \mathrm{~V}$ and output current limits of $\pm 20 \mathrm{~mA}$.
(a) For $V_{p}=1 \mathrm{~V}$ and $R_{L}=1 \mathrm{k} \Omega$, specify the signal resulting at the output of the amplifier.
(b) For $V_{p}=1.5 \mathrm{~V}$ and $R_{L}=1 \mathrm{k} \Omega$, specify the signal resulting at the output of the amplifier
(c) For $R_{L}=1 \mathrm{k} \Omega$, what is the maximum value of V_{p} for which an undistorted sine-wave output is obtained?
(d) For $V_{p}=1 \mathrm{~V}$, what is the lowest value of R_{L} for which an undistorted sine-wave output is obtained?

FIGURE 2.25 (a) A noninverting anplifier with a nominal gain of $10 \mathrm{~V} / \mathrm{V}$ designed using an op amp that saturates $15+13-\mathrm{V}$ output voltage and has $\pm 20 \mathrm{~mA}$ output current limits. (b) When the input sine wave has sauk of 1.5 V , the output is clipped off at $\pm 13 \mathrm{~V}$.

Solution

(a) For $V_{\rho}=1 \mathrm{~V}$ and $R_{L}=1 \mathrm{k} \Omega$, the output will be a sinc wave with peak value of 10 V . This is lower than output saturation levels of $\pm 13 \mathrm{~V}$, and chus the amplifier is not fimited that way. Also, when the output is at its peak (10 V), the current in the load will he $10 \mathrm{~V} / 1 \mathrm{k} \Omega=10 \mathrm{~mA}$, and the current in the fcedback network will be $10 \mathrm{~V} /(9+1) \mathrm{k} \Omega=1 \mathrm{~mA}$. for a total op-amp output cur rent of 11 mA , well under its limit of 20 mA .
(b) Now if V_{p} is increased to 1.5 V , ideally the output would be a sine wave of $15-\mathrm{V}$ peak. The op amp, however, will saturate at $\pm 13 \mathrm{~V}$, thus clipping the sine-wave output at thcse levels. Let's next check on the op-amp output current: At $13-\mathrm{V}$ output and $R_{L}=1 \mathrm{k} \Omega$, $i_{L}=13 \mathrm{~mA}$ and i_{F} 1.3 mA ; thus $i_{0}=14.3 \mathrm{~mA}$, again under the 20 mA . mit . . with its peaks clipped off at $\pm 13 \mathrm{~V}$, as shown in Fig. 2.25(b).
(c) For $R_{L}=1 \mathrm{k} \Omega$, the maximum value of V_{p} for undistorted sine-wave output is 1.3 V . The output will be a $13-\mathrm{V}$ peak sine wave, and the op-amp output current at the pcaks will be 14.3 mA . (d) For $V_{p}=1 \mathrm{~V}$ and R_{L} reduced, the lowest value possible for R_{L} while the output is remaining an undistorted sine wave of $10-V$ peak can be found from

$$
i_{O \text { max }}=20 \mathrm{~mA}=\frac{10 \mathrm{~V}}{R_{l \text { min }}}+\frac{10 \mathrm{~V}}{9 \mathrm{k} \Omega+1 \mathrm{k} \Omega}
$$

which results in

$$
R_{L \min }=526 \Omega
$$

2.6.3 Slew Rate

Another phenomenon that can cause nonlinear distortion when large output signals are present is that of slew-rate limiling. This refers to the fact that there is a spccific maximum rate of change possible at the output of a real op amp. This maximum is known as the slew rate (SR) of the op amp and is defined as

$$
\mathrm{SR}=\left.\frac{d v_{o}}{d t}\right|_{\max }
$$

(b)

FIGURE 2.26 (a) Unity-gain follower. (b) Inpul step waveform. (c) Linearly rising oulput waveform obtained when the amplifier is slew-rate limited. (d) Exponentially rising output waveform obtained when V is sufficiently snall so that the initial slope $\left(\omega_{1}\right)$) is smaller than or equal to SR.
and is usually specificd on the op-amp data sheet in units of $V / \mu \mathrm{s}$. It follows that if the input signal applied to an op-amp circuit is such that it demands an output response that is faster than the specified value of SR, the op amp will not comply. Rather, its output will change at the maximum possible rate, which is equal to its SR. As an example, consider an op amp connected in the unity-gain voltage-follower configuration shown in Fig. 2.26(a), and let the input signal be the step voltage shown in Fig. 2.26(b). The output of the op amp will not be able to rise instantaneously to the ideal value V; rather, the output will be the linear ramp of slope equal to SR , shown in Fig. 2.26(c). The amplifier is then said to be slewing, and its output is slew-rate limited.

In order to understand the origin of the slew-rate phenomenon, we need to know about he internal circuit of the op amp, and we will do so in Chapter 9. For the time being, however, it is sufficient to know about the phenomenon and to note that it is distinct from the finite op-amp bandwidth that linits the frequency response of the closed-loop amplifiers studied in the previous section. The limited bandwidth is a linear phenomenon and does no result in a change in the shape of an input sinusoid; that is, it does not lead to nonlinear distortion. The slew-rate limitation, on the other hand, can cause nonlinear distortion to an
input sinusoidal signal when its frequency and amplitude are such that the corresponding ideal output would require v_{o} to change at a rate greater than SR . This is the origin of another related op-amp specification, its fur-power bandwidth, oo be explamed later

Before leaving the example in Fig. 2.26, however, we should point out that if the step input voltage V is sumcienhy small, 1 be in Fig. 2.26(d). Sun its dynamic performance is the finite op-amp bandwidth. Specifc (237) ner for of the follower can be found by substituting $R_{1}=\infty$ and $R_{2}=0$ in Eq. (2.37) to obtain

$$
\begin{equation*}
\frac{V_{o}}{V_{i}}=\frac{1}{1+s / \omega_{i}} \tag{2.39}
\end{equation*}
$$

which is a low-pass STC response with a time constant $1 / \omega_{t}$. Its step response would therefore be (see Appendix D)

$$
\begin{equation*}
v_{0}(t)=V\left(1-e^{-\omega_{1}, t}\right) \tag{2.40}
\end{equation*}
$$

The initial slope of this exponentially rising function is $\left(\omega_{r} V\right)$. Thus, as long as V is sufficiently small so that $\omega_{i} V \leq \mathrm{SR}$, the output will be as in Fig. 2.26(d)

ExERCISE

2.21 An op amp that has a slev rate of IVY/es and a unity, gan bandwidth f of $\} M H z$ is connected in thit unity-gan follower configutation. Pind the largest posible input voltage step for which the output waveform will still be given by the exponential ramp of Eq, (2.40) For this itput vottage; what is th 10% to 90% itse time of the output waveform? If an mput step 10 times as Targe is applied, find the 10% to 90% ise time of the output waveforn
Ans. $0.16 \mathrm{~V}: 0.35 \mathrm{Hs}, 1.28 \mu \mathrm{~s}$

2.6.4 Full-Power Bandwidth

Op-amp slew-rate limiting can cause nonlinear distortion in sinusoidal waveforms. Conside once more the unity-gain follower with a sine wave input given by

$$
v_{I}=\hat{V}_{i} \sin \omega t
$$

The rate of change of this waveform is given by

$$
\frac{d v_{I}}{d t}=\omega \hat{V}_{i} \cos \omega t
$$

with a maximum value of $\omega \hat{V}_{i}$. This maximum occurs at the zero crossings of the inpu sinusoid. Now if $\omega \hat{V}_{i}$ exceeds the slew rate of the op amp, the output waveform will be distorted in the manner shown in Fig. 2.27. Observe that the output cannot keep up with the arge rate of change of the sinusoid at its zero crossings, and the op amp slews.
The op-amp data sheets usually specify a frequency f_{M} called the full-power band width. It is the frequency at which an output sinusoid with amplitude equal to the rated out the rated output voltage V begins then f_{3} is related to SR as follows:

$$
\omega_{\text {oh }} V_{o \text { max }}=\mathrm{SR}
$$

FIGURE 2.27 Effect of slew-rate limiting on output sinusoidal waveforms.
Thus

$$
\begin{equation*}
f_{M}=\frac{\mathrm{SR}}{2 \pi V_{\text {omax }}} \tag{2.41}
\end{equation*}
$$

It should be obvious that output sinusoids of amplitudes smaller than $V_{\text {orax }}$ will show slew rate distortion at freqnencies higher than ω_{M}. In fact, at a frequency ω higher than ω_{k}, the maximum amplitude of the undistorted output sinusoid is given by

$$
V_{o}=V_{o \text { max }}\left(\frac{\omega_{M}}{\omega}\right)
$$

Tintide

 :3..

2.7 DC IMPERFECTIONS

2.7.1 Offset Voltage

Because op amps are direct-coupled devices with large gains at dc, they are prone to dc problems. The first such problem is the dc offset voltage. To understand this problem con sider the following conceptual experiment: If the two input terminals of the op amp are ticd together and connected to ground, it will be found that a finite dc voltage exists at the out put. In fact, if the op amp has a high dc gain, the output will be at either the positive or negative saturation level. The op-amp output can be brougbt back to its ideal value of 0 V by connecting a dc voltage source of appropriate polarity and magnitude between the two input terminals of the op amp. This external source balances out the input offset voltage of the op anp. It follows that the input ofset voltage ($v_{\text {os }}$) must be of equal magnitude and of opposite polarity to the voltage we applied externally.

FIGURE 2.28 Circuil model for an op amp with input offsct voltage $V_{O S}$

The input offset voltage arises as a result of the unavoidable mismatches present in the input differential stage inside the op amp. In later chapters we shall study this topie in detail. Here, however, our concern is to investigate the effect of $V_{O S}$ on the operation of closed-loop op-amp circuits. Toward that end, we note that general-purpose op amps exhibit os in the range of 1 mV to 5 mV . Also, the value of $V_{o s}$ depends on temperature. The op-amp data sheets usually specify typical and naximum values for os at room temperature as well as the temperature coefficient of $V_{O S}$ (usually in $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$). They do not, however, specify the polarity of $V_{o s}$ because the component mismatches that give rise to $V_{\text {os }}$ are obviously not known a prior, different units of the same op-amp type may exhibit either a positive or a negative $V_{o s}$

To analyze the effect of $V_{o s}$ on the operation of op-amp circuits, we need a circuit mode for the op amp with input offset voltage. Such a model is sbown in Fig. 2.28. It consists of de source of value $V_{\text {os }}$ placed in series with the positive input lead of an offset-free op amp. The justification for this model follows from the description above.
2.23 Use the model of Fig. 2.28 to sketch the franster characterstic o versus $v_{1 d} t_{0}=y_{3}$ and $v_{d}=v_{2}, v_{1}$.
 Ans. See Fis E2.23.

FIGURE E2.23 Transer characteristic of an op amp with $V o s=5$ nt.

FIGURE 2.29 Evaluating the output dc offset voltage due to $V_{o s}$ in a clused-loop amplifier

Analysis of op-amp circuits to determine the effect of the op-amp $V_{O S}$ on their performance is straightforward: The input voltage signal source is short circuited and the op amp is replaced with the model of Fig. 2.28. (Eliminating the input signal, done to simplify matters, is based on the principle of superposition.) Following this procedure we find that both the inverting and the noninverting amplifier configurations result in the same circuit, that shown in Fig. 2.29, from which the output dc voltage due to $V_{O S}$ is found to be

$$
\begin{equation*}
V_{O}=V_{O S}\left[1+\frac{R_{2}}{R_{1}}\right] \tag{2.43}
\end{equation*}
$$

This output de voltage can have a large magnitude. For instance, a noninverting amplifier with a closed-loop gain of 1000 , when constructed from an op amp with a $5-\mathrm{mV}$ input offset voltage, will have a dc output voltage of +5 V or -5 V (depending on the polarity of $V_{\text {OS }}$) rather than the ideal value of 0 V . Now, when an input signal is applied to the amplificr, the corresponding signal output will be superimposed on the $5-\mathrm{V}$ dc Obviously then, the allowable signal swing at the output will be reduced. Even worse, if he signal to be amplified is dc, we would not know whether the output is due to $V_{O S}$ or to he signal!
Some op amps are provided with two additional terminals to which a specified circuit can be connected to trim to zero the output dc voltage due to $V_{O S}$. Figure 2.30 shows such an arrangement that is typically used with general-purpose op amps. A potentiometer is

Figure 2.30 The outpul de offsel voitage of an op amp can be trimmed to zero by connecting a potentiometer to the two offset-nulling terminalls. The wiper of tho otentiometer is connected to the negative
ecter between offset-nulling terminals with the wiper of the potentiometer conth the op-amp negative supply. Moving the potentiometer wiper introduces medand the asymmetry present in the internal op-amp circuitry and that imbalance that counteracts the asymmetry present in the internal op-amp circuitry and that gives rise the ofset can tre trimains of the variation (or drift) of V output offset can with temperature.

EXERCISE

2.24 Consider an inverting amplifier with a mominal gain of 1000 constricted from an op amp with an input offec voltace of 3 ml V and with output saturation levels of 410 V . (a) What is tapproximately) the peak sine-wave uput signal that can be applied without output clipping? (b) If the effect of $Y_{\text {OS }}$ is nulled at room temperature $\left(25^{\circ} \mathrm{C}\right.$, hov large an input Can one now apply if (1 the cirtuit s 10 operate at a constant temperature? (ii) the circuit is to operate at tomperature in the range η° ($1075^{\circ} \mathrm{C}$ and the temper athre coefficien of $V_{0 \&}$ \& $10 \mu \geqslant / \mathrm{C}$? Ans. (a) 7 mV , (b) 10 mV .95 mV .

One way to overcome the dc offset problem is by capacitively coupling the amplifie This, however, will be possible only in applications where the closed-loop amplifier is required to amplify de or very low-frequchcy signals. Figure 2.3 (a) shows a capacitively coupled amplifier. Because of its infinite impedance at de, the coupling capacitor will caus the gain to be zero at dc. As a result the equivalent circuit for detcrmining the dc output volage resulting from the op-amp input offset voltage $V_{O S}$ will be that shown in Fig. 2.31(b) Thus $V_{O S}$ sces in effect a unity-gain voltage follower, and the dc output voltage V_{O} will b equal to $V_{O S}$ rather than $V_{O S}\left(1+R_{2} / R_{1}\right)$, which is the case without the coupling capacitor As far as input signals are concerned, the coupling capacitor C forms together with R_{1} an STC high-pass circuit with a comer frequency of $\omega_{0}=1 / C R_{1}$. Thus the gain of the capac lively coupled amplifier will fall off at the low-frequency end |from a magnitude of $\left(1+R_{2} / R_{1}\right)$ at high frequencies] and will be 3 dB down at ω_{0}.

FIGURE 2.31 (a) A capacitively couplcd inverting amplificr, and (b) the equivalent circuit for determin ing is dc output offset voltage V.

ExERCISE

2.7.2 Input Bias and Offset Currents

The second dc problem encouncered in op amps is illustrated in Fig. 2.32. In order for the op amp to operate, its iwo input terminals have to be supplied with de currents, termed the input bias currents. In Fig. 2.32 these two currents are represented by two current sources, $I_{B 1}$ and I_{82}, connected to the two input terminals. It should be emphasized that the input bias currents are independent of the fact that a real op amp has finite though large input resistance (not hown in Fig. 2.32 . The op-amp manufacturer usually specilies the average value of $I_{B 1}$ and

$$
I_{B}=\frac{I_{B 1}+I_{B 2}}{2}
$$

and the difference is called the input offset current and is given by

$$
I_{O S}=\left|I_{B 1}-I_{B 2}\right|
$$

Typical values for general-purpose op amps that use bipolar transistors are $I_{B}=100 \mathrm{nA}$ and $o s=10 \mathrm{nA} . O p \mathrm{amps}$ that utilize field-effect transistors in the input stage have a much maller input bias current (of the order of picoamperes)
We now wish to find the dc output voltage of the closed-loop amplifier due to the input bias currents. To do this we ground the signal source and obtain the circuit shown in

FIGURE 2.33 Analysis of the closed-loop amplifier, taking into account the input bias currents.
. 2.33 for both the inverting and nominverting confgrations. As shown in Fig. 2.33, the outpul de voltage is given by

$$
V_{o}=I_{B 1} R_{2} \simeq I_{B} R_{2}
$$

This obviously places an upper limit on the value of R_{2}. Fortunately, however, a technique . exists for reducing the value of the ouput R_{3} in series with the noninverting input lead, a shown in Fig. 2.34. From a signal point of view, R_{3} has a negligible effect (ideally no effect).

FIGURE 2.34 Reducing the cffect of the input bias currents by introducing a resistor R_{3}.

The appropriate value for R_{3} can be determined by analyzing the circuit in Fig. 2.34, where analysis details are shown and the output voltage is given by

$$
\begin{equation*}
V_{O}=-I_{B 2} R_{3}+R_{2}\left(I_{B 1}-I_{B 2} R_{3} / R_{1}\right) \tag{2.45}
\end{equation*}
$$

Consider first the case $I_{B 1}=I_{B 2}=I_{B}$, which results in

$$
V_{O}=I_{B}\left[R_{2}-R_{3}\left(1+R_{2} / R_{1}\right)\right]
$$

Thus we can reduce V_{O} to zero by selecting R_{3} such that

$$
R_{3}=\frac{R_{2}}{1+R_{2} / R_{1}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

That is, R_{3} should be made equal to the parallel equivalent of R_{1} and R_{2}.
Having selected R_{3} as above, let us evaluate the cffect of a finite offset curtent $I_{O S}$. Lct $I_{B 1}=I_{B}+I_{O S} / 2$ and $I_{B 2}=I_{B}-I_{O S} / 2$, and substitute in Eq. (2.45). The result is

$$
\begin{equation*}
V_{O}=I_{O S} R_{2} \tag{2.47}
\end{equation*}
$$

which is ustally about an order of magnitude smaller than the value obtained without R_{3} (Eq. 2.44). We conclude that to minimize the effect of the input bias currents one should place in the positive lead a resistance equal to the dc resistance seen by the inverting terminal We should emphasize the word $d c$ in the last statement; note that if the amplifier is accoupled, we should select $R_{3}=R_{2}$, as shown in Fig. 2.35.
While we are on the subject of ac-coupled amplifiers, we should note that one must always provide a continuous dc path between each of the input terminals of the op amp and ground. For this reason the ac-coupled noninverting amplifier of Fig. 2.36 will not work without the resistance R_{3} to ground. Unfortunately, including R_{3} lowers considerably the oput resistance of the closed-loop amplifier.

FIGURE 2.35 In an ac-coupled amplifier the dc R_{2} ristance seen by the inverting terminal is R_{2}; hence R_{3} is chosen equal to R_{2}

FIGURE 2.36 Illustrating the need for a continuous dc path for each of the op-amp input terminals. Specifically, note that the anplifier will not work without resistor R_{3}.

EXERASE

226 Consideizin inverting amplifier circuit designed usingen op amp and two resistors. $R=10 \mathrm{kS}$ and R_{2}

 with the positive input lead in order tominime the outpul offsec volitee. What is the new vatue of V_{0} Ans, $0.1 \mathrm{~V}, 9.9 \mathrm{k} \Omega(-10 \mathrm{kS} 2) ; 0.01 \mathrm{~V}$
Ans. O.

2.8 INTEGRATORS AND DIFFERENTIATORS

The op-amp circuit applications we have studied thus far utilized resistors in the op-amp feedback path and in connecting the signal source to the circuit, that is, in the feed-in path. As a result circuit operation has been (ideally) independent of frequency. The only exception has been the use of coupling capacitors in order to minimize the effect of the dc innperfections of op amps [e.g., the circuits in Figs. 2.31(a) and 2.36]. By allowing the use of capacitors together with resistors in the feedback and feed-in paths of op-amp circuits, we open the door to a very wide range of useful and exciting applications of the op amp. We begin our study of op-amp-RC circuits in this section by considering two basic applications, namely signal integrators and differentiators.

2.8.1 The Inverting Configuration with General Impedances

To begin with, consider the inverting closed-loop configuration with impçdances $Z_{1}(s)$ and $Z_{2}(s)$ replacing resistors R_{1} and R_{2}, respectively. The resulting circuit is shown in Fig, 2.37 and, for an ideal op amp, has the closed-loop gain or, more appropriately, the closed-loop transfer function

$$
\begin{equation*}
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)} \tag{2.48}
\end{equation*}
$$

As explained in Section 1.6 , replacing s by $j \omega$ provides the transfer function for physical frequencies ω, that is, the transmission magnitude and phase for a sinusoidal input signal of frequency ω.

FGURE 2.3. The inverting configuration with general impedances in the reedback and tho fecd-in pachs.

vewures

For the circuit in Fig. 2.38, derive an expression for the transfer function $V_{o}(s) / V_{i}(s)$. Show that the ransfer function is that of a low-pass STC circuit. By expressing the transfer function in the the dard form shown in Table 1.2 on page 34, find the dc gain and the 3-dB frequency. Design the circuit to obtain a dc gain of 40 dB , a $3-\mathrm{dB}$ frequency of 1 kHz , and an input resistance of 1 kS A what frequency does the magnitude of transmission become unity? What is the phase angle this frequency?

FIGURE 2.38 Circuit for Example 2.6.

Solution

To obtain the transfer function of the circuit in Fig. 2.38, we substitute in Eq. (2.48), $Z_{1}=R_{1}$ and $Z_{2}=R_{2} \|\left(1 / s C_{2}\right)$. Since Z_{2} is the parallel connection of two components, it is more convenient to work in terms of Y_{2}; that is, we use the following alternative forin of the transfer function

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{1}{Z_{1}(s) Y_{2}(s)}
$$

and substitute $Z_{1}=R_{1}$ and $Y_{2}(s)=\left(1 / R_{2}\right)+s C_{2}$ to obtain

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{1}{\frac{R_{1}}{R_{2}}+s C_{2} R_{1}}
$$

This transfer function is of first order, has a finite dc gain (at $s=0, V_{o} / V_{i}=-R_{2} / R_{1}$), and has
zero gain at infinite frequency. Thus it is the transer fuct zero gain at infinite frequency. Thus it is the transfer function of a low-pass STC network and can
be expressed in the standard forn of Table 1.2 as follows:

$$
\frac{V_{o}(s)}{V_{i}(s)}=\frac{-R_{2} / R_{1}}{1+s C_{2} R_{2}}
$$

from which we find the dc gain K to be

$$
K=-\frac{R_{2}}{R_{1}}
$$

and the 3 - dB frequency ω_{0} as

$$
\omega_{0}=\frac{1}{C_{2} R_{2}}
$$

We could have found all this from the circuit in Fig. 2.38 by inspection. Specifically, note that the capacitor behaves as an open circuit at dc; thus at de the gain is simply $\left(-R_{2} / R_{1}\right)$. Furthermore, because there is a virtual ground at the inverting input terminal, the resistance seen by tho capacitor is R_{2}, and thus the time constant of the $S T C$ network is $C_{2} R_{2}$.
Now to obtain a dc gain of 40 dB , that is, $100 \mathrm{~V} / \mathrm{V}$, we select $R_{2} / R_{1}=100$. For an input resistance of $1 \mathrm{k} \Omega$, we select $R_{1}=1 \mathrm{k} \Omega$, and thus $R_{2}=100 \mathrm{k} \Omega$. Finally, for a 3-dB frequency $f_{0}=$ 1 kHz , we seject C_{2} from

$$
2 \pi \times 1 \times 10^{3}=\frac{1}{C_{2} \times 100 \times 10^{3}}
$$

which yields $C_{2}=1.59 \mathrm{nF}$.
The circuit has gain and phase Bode plots of the standard form in Fig. 1.23. As the gain falls off at the rate of $-20 \mathrm{~dB} /$ decade, it will reach 0 dB in two decades, that is, at $f=100 f_{0}=100 \mathrm{kH} \angle$ As Fig. 1.23(b) indicates, at such a frequency which is much greater than f_{i}, the phase is approximately -90°. To this, however, we must add the 180° arising from the inverting nature of the anplifier (i.e., the negative sign in the transfer function expression). Thus at 100 kHz , the total phase shift will be -270° or, equivalently, $+90^{\circ}$.

2.8.2 The inverting Integrator

By placing a capacitor in the feedback path (i.e., in place or Z_{2} in Fig. 2.37) and a resistor at the input (in place of Z_{1}), we obtain the circuit of Fig. 2.39(a). We shall now show that this circuit realizes the mathematical operation of integration. Let the input be a time-varying function $v_{l}(t)$. The virtual ground at the inverting op-amp input causes $v_{l}(t)$ to appear in effect across R, and thus the current $i_{1}(t)$ will be $v_{l}(t) / R$. This current flows through th capacitor C, causing charge to accumulate on C. If we assume that the circuit begins opera ion at time $t=0$, then at an arbitrary time t the current $i(t)$ will have deposiled on C charge equal to $\int_{0}^{t} i_{1}(t) d t$. Thus the capacitor voltage $v_{C}(t)$ will change by $\frac{1}{C_{0}^{j}} j_{0} i_{1}(t) d t$. If the initial voltage on C (at $t=0$) is denoted V_{C}, then

$$
v_{C}(t)=V_{C}+\frac{1}{C} \int_{1}^{t} i_{1}(t) d t
$$

Now the output voltage $v_{0}(t)=-v_{C}(t)$; thus,

$$
\begin{equation*}
v_{o}(t)=-\frac{1}{C R} \int_{0}^{t} \nu_{l}(t) d t-V_{C} \tag{2.49}
\end{equation*}
$$

Thus the circuit provides an output voltage that is proportional to the time-integral of the input, with V_{C} being the initial condition of integration and $C R$ the integrator time-constant. Note that, as expected, there is a negative sign atlached to the output voltage, and thus this fegrator circuit is sadd to be an inverting integrer in fter an early worker in this area.
The operation of the integrator circuit can be described alternatively in the frequency domain by substituting $Z_{1}(s)=R$ and $Z_{2}(s)=1 / s C$ in Eq. (2.48) to obtain the transfer function

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{1}{s C R}
$$

(a)
$\left|\frac{V_{o}}{V_{i}}\right|$ (dB)

(b)

FIGURE 2.39 (a) Thc Miller or invering integrator. (b) Frequency response of the integrator.
For physical frequencies, $s=j \omega$ and

$$
\begin{equation*}
\frac{V_{o}(j \omega)}{V_{i}(j \omega)}=-\frac{1}{j \omega C R} \tag{2.51}
\end{equation*}
$$

Thus the integrator transfer function has magnitude

$$
\left|\frac{V_{o}}{V_{i}}\right|=\frac{1}{\omega C R}
$$

and phas

$$
\begin{equation*}
\phi=+90^{\circ} \tag{2.53}
\end{equation*}
$$

The Bode plot for the integrator magnitude response can be obtained by noting from Eq. (2.52) hat as ω doubles (increases by an octave) the magnitude is halved (decreased by 6 dB) Thus the Bode plot is a straight line of slope -6 dB /octave (or, equivalently, -20 dB decade). This line [shown in Fig. 2.39(b)] intercepts the $0-\mathrm{dB}$ line at the frequency that makes $\left|V_{o} / V_{i}\right|=1$, which from Eq. (2.52) is

$$
\begin{equation*}
\omega_{i p t}=\frac{1}{C R} \tag{2.54}
\end{equation*}
$$

The frequency $\omega_{\text {int }}$ is known as the integrator frequency and is simply the inverse of the integrator time constant.

Comparison of the frequency response of the integrator to that of an STC low-pass net work indicates that the integrator behaves as a low-pass filter with a corner frequency of zero. Observe also that at $\omega=0$, the magnitude of the integrator transfer function is infinite This indicates that at dc the op amp is operating with an open loop. This should also be obvious from the inegrar circuit itsel. Rerence to Fig. 2.3 (a) shows that the feeback cle ment is a capach, Mis a do wifical neghe with the integrator circuit: Any tiny dc component in the input signal will the of probly produce intinite outpul. Of course wo infinite outpu volage revalt in pratice
 tather, he or coply (L or L) depending on the polarity of the input de signal

Ive
It should be clear from his discassion ecs input ds offset voltage V consider the integrator circuit in Fig. 2.40 where for sim licity we have short circuted the input source, Analysis of the circuit is straight plicity we have short-circuited the input signal source. Analysis of the circuit is straightforward and is shown in Fig. 2.40. Assuming for simplicity that at time $t=0$ the voltage across the capacitor is zero, the output voltase as a function of time is given by

$$
\begin{equation*}
v_{O}=V_{O S}+\frac{V_{O S}}{C R} t \tag{2.55}
\end{equation*}
$$

Thus v_{o} increases linearly with time until the op amp saturates-clearly an unacceptable situation! As should be expected, the dc input offset current $I_{O S}$ produces a similar problem. Figure 2.41 illustrates the situation. Observe that we have added a resistance R in the opamp positive-input lead in order to keep the input bias current I_{B} from flowing through C

FIGURE 2.40 Determining the effect of the op-amp input olfsel voltage $V_{o s}$ on thc Miller integrato circcit. Note that since the oulput rises with time, the op amp eventually saturates.

Figure 2.41 Effect of the op-amp input bias and offset currents on the performance of the Miller .

FIGURE 2.42 The Miller inegrator with a large resistance R_{F} connected in parallet with C in order to provide negative feedback and hence finite gain at dc.

Nevertheless, the offset current $I_{O S}$ will flow through C and cause v_{o} to ramp linearly with time until the op amp saturates.

The dc problem of the integrator circuit can be alleviated by connecting a resistor R_{F} across the integrator capacitor \mathcal{C}, as shown in Fig. 2.42. Such a resistor provides a dc path through which the Jc currents $\left(V_{O S} / R\right.$) and $I_{O S}$ can flow, with the result that v_{O} will now have a dc component $\left[V_{O S}\left(1+R_{F} / R\right)+I_{O S} R_{F}\right]$ instead of tising linearly. To keep the dc offset at the output small, one would select a low value for R_{F}. Unforlunately, however, the lower the value of R_{F}, the less ideal the integrator circuit becomes. This is because R_{F} causes the frequency of the integrator pole to move from ils ideal location at $\omega=0$ to one determined by the corner frequency of the STC network (R_{F}, C). Specifically, the integrator transfer function becomes

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{R_{F} / R}{1+s C R_{F}}
$$

as opposed to the ideal function of $-1 / s C R$. The lower the value we select for R_{F}, the higher the corner frequency ($1 / C R_{F}$) will be and the more nonideal the integrator becomes. Thus selecting a valuc for R_{F} presents the designer with a trade-off between dc performance and signal performance. The effect of R_{F} on integrator performance is investigated further in the Example 2.7. Before doing so, however, observe that R_{F} closes the negativc-feedback loop at dc and provides the integrator circuit with a finite de gain of $-R_{F} / R$.

MhMeridersim

Find the output produced by a Miller integrator in response to an input pulse of $1-\mathrm{V}$ height and 1 -ms width [Fig. 2.43(a)]. Let $R=10 \mathrm{k} \Omega$ and $C=10 \mathrm{nF}$. If the integrator capacior is shunted by a $1-\mathrm{M} \Omega$ resistor, how will the response be modified? The op amp is specified to saturate at $\pm 13 \mathrm{~V}$.

Solution

In response to a 1-V, 1 -ms input pulse, the intcgrator output will be

$$
v_{0}(t)=-\frac{1}{C R} \int_{0}^{t} 1 \cdot d t, \quad 0 \leq t \leq 1 \mathrm{~ms}
$$

where we have assumcd that the initial voltage on the integrator capacitor is 0 . For $C=10 \mathrm{nF}$ and $R=10 \mathrm{k} \Omega, C R=0.1 \mathrm{~ms}$, and

$$
v_{0}(t)=-10 t, \quad 0 \leq t \leq 1 \mathrm{~ms}
$$

which is the linear ramp shown in Fig. 2.43(b). It reaches a magnitude of -10 V at $t=1 \mathrm{~ms}$ and remains constant thereafler.

FIGURE 2.43 Waveforms for Example 2.7: (a) Input pulse. (b) Output linear ramp of ideal integrator with im

- That the output is a lincar ramp should also be obvious from the fact that the $1-V$ input puse produces a $1 \mathrm{~V} / 10 \mathrm{k} \Omega=0.1 \mathrm{~mA}$ constant current through the capacitor. This constant curreut $I=0.1 \mathrm{~mA}$ supplies the capacitor with a charge $I t$, and thus the capacitor voltage changes lin carly as ($I t / C$), resulting in $v_{0}=-(I / C) t$. It is worlh remembering that charging a capacito with a constant current produces a lincar voltage across it.
Next consider the situation with resistor $R_{F}=1 \mathrm{M} \Omega$ connected across C. As beforc, the $1-\mathrm{V}$ pulse will provide a constant currcnt $I=0.1 \mathrm{~mA}$. Now, however, this current is supplied to an

STC network composed of R_{f} in parallel with C. To find the output voltage, we use Eq. (1.29), which can be adapted to our case here as follows:

$$
v_{o}(t)=v_{o}(\infty)-\left[v_{o}(\infty)-v_{0}(0+)\right] e^{-t / C R_{F}}
$$

where $v_{o}(\infty)$ is the final value, obtained as

$$
v_{0}(\infty)=-I R_{F}=-0.1 \times 10^{-3} \times 1 \times 10^{6}=-100 \mathrm{~V}
$$

and $v_{o}(0+)$ is the initial value, which is zcro. That is, the output will be an exponential heading toward -100 V with a time constant of $C R_{F}=10 \times 10^{9} \times 1 \times 10^{6}=10 \mathrm{~ms}$,

$$
v_{o}(t)=-100\left(1-e^{-t / 10}\right),
$$

$$
0 \leq t \leq 1 \mathrm{~ms}
$$

Of course, the exponential will be interrupted at the cnd of the pulse, that is, at $t=1 \mathrm{~ms}$, and the output will reach the value

$$
v_{0}(1 \mathrm{~ms})=-100\left(1-e^{\cdot 1 / 10}\right)=-9.5 \mathrm{~V}
$$

The output wavcform is shown in Fig. 2.43(c), from which we see that jncluding R_{F} causes the ramp to be slightly rounded such that the output reaches only $-9.5 \mathrm{~V}, 0.5 \mathrm{~V}$ short of the ideal valuc of -10 V . Furthernore, for $t>1 \mathrm{~ms}$, the capacitor discharges through R_{F} with the relatively long time-constant of 10 ms . Finally, we note that op amp saturation, specified to occur $\pm 13 \mathrm{~V}$, has no effect on the operation of this circuit.

The preceding example hints at an important application of integrators, namely, their use in providing triangular waveforms in response to square-wave inputs. This application is explored in Exercise 2.27. Integrators have many other applications, including their use in the design of filters (Chapter 12).

2.8.3 The Op-Amp Differentiator

Interchanging the location of the capacitor and the resistor of the integrator circuit results in the circuit in Fig. 2.44(a), which performs the mathematical function of differentiation. To see how this comes about, let the input be the time-varying function $v_{l}(t)$, and note that the
virtual ground at the inverting input terminal of the op amp causes across the capacitor C. Thus the current through of the op amp causes $v_{1}(t)$ to appear in effect througb the feedback resistor R providing the hrougb the feedback resistor R providing at the op-amp output a voltagc $v_{0}(t)$,

$$
v_{0}(t)=-C R \frac{d v_{T}(t)}{d t}
$$

The frequency-domain transfer function of the differentiator circuit can be found by substituting in Eq. (2.56), $Z_{1}(s)=1 / s \mathrm{C}$ and $Z_{2}(s)=R$ to obtain

$$
\frac{V_{o}(s)}{V_{i}(s)}=-s C R
$$

which for physical frequencies $s=j \omega$ yields

$$
\frac{V_{o}(j \omega)}{V_{i}(j \omega)}=-j \omega C R
$$

Thus the transfer function has magnitude

$$
\left|\frac{V_{o}}{V_{i}}\right|=\omega C R
$$

(a)

(b)

IGURE 2.44 (a) Adifrerentiator (b) Frequency response of a differentiator with a time-constant $C R$.
and phase

$$
\phi=-90^{\circ}
$$

The Bode plot of the magnitude response can be found from Eq : (2.59) by noting that for an octave increase in ω, the magnitude doubles (increases by 6 dB). Thus the plot is simply straight line of slope $+6 \mathrm{~dB} /$ octave (or, equivalently, $+20 \mathrm{~dB} /$ decade) intersecting the $0-\mathrm{dB}$ line (where $\left|V_{o} / V_{i}\right|=1$) at $\omega=1 / C R$, where $C R$ is the differentiator time-constant [see Fig. 2.44(b)|.

The frequency response of the differentiator can be thought of as that of an STC highpas filter with a corner frequency at infinity (refcr to Fig. 1.24). Finally, we should note that the very nature of a differentiator circuit causes it to be a "noise magnifier." This is due to the spike introduced at the output every time there is a sharp change in $v_{l}(t)$; sucb a change could be interference coupled electromagnetically ("picked-up") from adjacent signal sources. For this reason and because they suffer from stability problems (Chapter 8), differentiator cir cuits are generally avoided in practice. When the circuit of Fig. 2.44(a) is used, it is usually necessary to connect a small-valued resistor in series with the capacitor. This modilication unfortunately, turns the circuit into a nonideal differentiator.

EXERCISES

227. Consider a symmetrical squate waye of $20-\mathrm{V}$ peak-to-peak; 0 arerage: and 2 -ms period applied to Miller integrator. Find the value of the time constant $C R$ such that the tianoitor w. fefor topplec to has a $20 . \mathrm{V}$ peal-to-pedla amplitude
Ans 05 m.
D2.28 Using an itcal op anp, design an ine etting integrator with an input resitance of 10 kS and an integra thon the constant of 10^{-3} s. What 's the gain magnitude and plase angle of this circuit at 10 rad/s and at 1 rad/s? What is the freguency it which fhe gain magnitude is unity?
 $1000 \mathrm{VN} \mathrm{gud} \varphi=400^{\circ} .1000 \mathrm{rad} / \mathrm{s}$
2.29. Consiter a Miler integtator witha hime constant of Ins and an input is istance of 101Ω. Let the of anp have $V_{o s}=2$ nV and output saturation voltages of $\pm 12 V_{V}$ (a) Assuming that when the power stpply is turned on the capacitor voltage is tro, how long does it take for the amplifier to atiuate? (6) Select the largest possible value for a feedback resistor R, so that at least $\pm 10 \mathrm{~V}$ of output signal swing remans a ailable. What is the corner trequency of the resulting STC network? Ans. (a) 68 (b) 10 Ms 2016 Hz
02.30 Design a differentiator to have a tine constant of $10^{-2} s$ and an input capacitance of $0.01 \mu \mathrm{H}$. What it The gain magnitude and phase of this circuit at $10 \mathrm{tad} / \mathrm{s}$, and at 10^{3} rad/s? in order to timit the hishfrequency gain or the differentator circuil to 100 a acsistor is added in series with thes and is the reguired resistor valuc.
 $1 V_{0} / V_{1}=10 \mathrm{~V} / \mathrm{V}$ and $\phi=-90^{\circ} \% 10 \mathrm{kS}$

3. 2.9 THE SPICE OP-AMP MODEL AND SIMULATION

As mentioned at the beginning of this chapter, the op ann is not a single electronic device, such as the junction diode or the MOS transistor, boch of which we shall sudy later on; rather, it is a complex IC made up of a large number of electronic devices. Nevertheless, as we have seen in this chapter, he op anp can be treated and indeed effectively used as a circuit component or a circuit building block without the uscr nceding to know the details of its internal circuiry. The ser, however, nceds to know the terminal characteristics of the op amp, such as its open-loop gain, its input resistance, its frequency response, etc. Furthermore, in designing circuits uilizing he op amp, it is useful to be able to represent the op amp with an equivalent circuit model. Indeed, we have already done this in this chapter, albeit with very simple equivalent circuit mod-
 ape cas possible for the op amp's nonideal performance. Op amp models that are based on their observed terminal characteristics are known as every device in the very complex a that utilizes a The a large number of op amps.
The goal of macromodeling of a circuit block (in our case here, the op amp) is to achieve of significantly reduced the aciual performance of the op amp while using circuit mode of significantly reduced complexity compared to the actual internal circuit. Advantages of

FIGURE 2.45 A linear macromodel used to model the finite gain and bandwidith of an intermally FIGURE 2.45 A
ing macromodels include: A macromodel can be developed on the basis of data-sheet using macromodels include: A macromodel can be developernal circuitry of the op amp. specification, without having to know the details of the internal circuitry of of op amps to be performed much faster.

29.1 Linear Macromodel

The Capture schematic ${ }^{5}$ of a linear macromodel for an internally compensated op amp with finite gain and bandwidth is shown in Fig. 2.45. In this equivalent-circuit model, the gain constant $A_{0 d}$ of the voltage-controlled voltage source E_{d} corresponds to the differential gain of the op amp at dc. Resistor R_{b} and capacitor C_{b}, form an STC filter with a corner frequency

$$
f_{b}=\frac{1}{2 \pi R_{b} C_{b}}
$$

The low-pass response of this filter is used to model the frequency response of the internally compensated op amp. The values of R_{b} and C_{b} uscd in the macromodel are chosen such that f_{b} corresponds to the $3-\mathrm{dB}$ frequency of the op amp being modeled. This is done by arbitrarily selecting a value for cither R_{b} or C_{b} (the selected value does not necd to be a practical one) and then using Ey. (2.61) to compute the other value. In Fig. 2.45, the voltage-controled voltage source E_{b} with a gain constant of unity is used as a buffer to isolate the low-pass filc from any load at the op-amp outpul. Thus any op-amp loading will not affect the frequency response of the filter and hence that of the op amp.

The linear macromodel in Fig. 2.45 can be further expanded to account for other op-amp monidealitics. For example, the equivalent-circuit model in Fig. 2.46 can be used to mode an internally compensated op amp while accounting for the following op-anp nonidealities

1. Input Offset Voltage ($V_{O S}$). The dc voltage source $V_{O S}$ models the op-amp input offset voltage.
2. Input Bias Current (I_{B}) and Input Offset Current $\left(I_{O S}\right)$. The de current sources $I_{B 1}$ and $I_{B 2}$ model the input bias current at each input terminal of the op amp, with

$$
I_{B 1}=I_{B}+\frac{I_{O S}}{2} \quad \text { and } \quad I_{B 2}=I_{B}-\frac{I_{O S}}{2}
$$

where I_{B} and $I_{O S}$ are, respectively, the input bias current and the iuput offset current specified by the op-amp manufacturer.
${ }^{5}$ The rcader is reminded that the Caplure schematics and the corresponding PSPice simulation files
of all SPICE examples in this book can be found on the text's CD, as well as on its website
of all SPICE examples in this book can be found on the text's CD, as well as on its websit
(www.sedrasmith.org).

FIGURE 2.46 A comprehensive linear macromodel of an internally compensated op amp.
3. Common-Mode Input Resistance ($\boldsymbol{R}_{\text {icm }}$). If the two input terminals of an oinp are tied together and the input resistance (to ground) is measured, the result is the common-
mode input resistance R mode input resistance $R_{i c m}$. In the macromodel of Fig. 2.46, we have split R commonequal parts ($2 R_{i c m}$), each connected between one of the input terminals and ground.
4. Differential-Input Resistance ($\boldsymbol{R}_{i j}$). The resistance seen between the two input minals of an op amp is the differential injut resistance $R_{i d}$.
5. Differential Gain at DC ($A_{0 d}$) and Common-Mode R
output voltage of an op amp at dc can bection Ratio (CMRR). The

$$
V_{3}=A_{0 d}\left(V_{2}-V_{1}\right)+\frac{A_{0 c m}}{2}\left(V_{1}+V_{2}\right)
$$

where $A_{O d}$ and $A_{0 c m}$ are, respectively, the differential and common-mode gains of the op amp at dc. For an op amp with a finite CMRR,

$$
\begin{equation*}
A_{0 c m i}=A_{\theta d} / \mathrm{CMRR} \tag{2.62}
\end{equation*}
$$

where CMRR is expressed in V / V (not in dB). Note that the CMRR valuc in Eq. (2.62) is that of the open-loop op amp while the CMRR in Eq. (2.14) is that of a particula ciosed-loop amplifier. In the macromodel of Fig. 2.46, the voltage-controlled voltage sources $E_{\text {com1 }}$ and $E_{c m 2}$ with gain constants of $A_{\theta_{c m}} / 2$ account for the finite CMRR while source E_{d} models $A_{0 d}$.
6. Unity-Gain Frequan (
gain frequency (or gain-bandwidth product) f, the 3 -dB frequency f_{b} and the unitywith an STC frequency response are related f_{t} of an internally compensated op amp with an STC frequency response are related through

$$
\begin{equation*}
f_{b}=\frac{f_{i}}{A_{0 d}} \tag{2.63}
\end{equation*}
$$

As in Fig. 2.45, the finite op-amp bandwidth is accounted for in the macromiodel
of Fig. 2.46 by setting the of Fig. 2.46 by setting the corner frequency of the filter formed by resistor R_{h} and
apacitor $C_{\text {(}}$ (Eq. 2.61) to equal the $3-\mathrm{dB}$ frequency of the op amp (Fq. 2.63). It should be noted that here we are assuming that the differential gain and the commonmode gain have the same frequency response (not always a valid assumption!).
7. Output Resistance (\boldsymbol{R}_{o}). The resistance seen at the output termintal of an op amp is the output resistance R_{0}

FEwhind

Performance of a Noninverting Amplifier

Consider an op amp with a differential input resistance of $2 \mathrm{M} \Omega$, an input offsct voltage of 1 mV
de gain of 100 dB , and an output resistance of 75Ω. Assume the op amp is internally compensated and has an STC frequency response with a gain-bandwidth product of 1 MHz .
(a) Create a subcircuit model for this op amp in PSpice
(b) Using this subcircuit, simulate the closed-loop noninverling amplifier in Fig. 2.12 with rcsis ors $R_{1}=1 \mathrm{k} \Omega$ and $R_{2}=100 \mathrm{k} \Omega$ to find
(i) Its $3-\mathrm{dB}$ bandwidth $f_{\text {Sub }}$.
(ii) Its output offset voltage $V_{O \text { Sutt }}$
(iii) Its input resistance $R_{\text {in }}$.
(iv) Its output resistance $R_{\text {out }}$
(c) Simulate the step response of the closed-loop amplifier, and measure its rise time t, Verify that this time agrees with the $3-\mathrm{dB}$ frequency measured above.

Solution

To model the op amp in PSpice, we use the equivalent circuit in Fig. 2.46 but with $R_{i d}=2 \mathrm{MS}$, $R_{i c m}=\infty$ (open circuit), $I_{t 1}=I_{b 2}=0$ (open circuit), $V_{o s}=1 \mathrm{mV}, A_{06}=10^{5} \mathrm{~V} / \mathrm{V}, A_{\text {bem }}=0$ (short circuil), and $R_{o}=75 \Omega$. Furthermore, we set $C_{b}=1 \mu \mathrm{~F}$ and $R_{b}=15.915 \mathrm{k} \Omega$ to achieve an $f_{t}=1 \mathrm{MHz}$. To measure the $3-\mathrm{dB}$ frequency of the closed-loop amplifier, we apply a $1-\mathrm{V}$ ac voltage at its input, perform an ac-analysis simulation in PSpicc, and plot its output versus frequency. The output voltage, plotted in Fig. 2.47, corrcsponds to the gain of the amplifier because we chosc an input voltage of 1 V . Thus, from Fig. 2.47, the closed-loop amplifier has a dc gain of $G_{0}=100.9$ V / V. and the frequency at which its gain drops to $G_{0} / \sqrt{2}=71.35 \mathrm{~V} / \mathrm{V}$ is $f_{3 \mathrm{JiB}}=9.9 \mathrm{kHz}$, which agrees with Eq. (2.28).
The input resistance $R_{\text {in }}$ corresponds to the reciprocal of the current drawn out of the $1-\mathrm{V}$ ac voltagc source used in the ahove ac-analysis simulation at 0.1 Hz . (Theoretically, R_{in} is the smallsignal input resistance at de. However, ac-analysis simulations must start at frequencics greater than zero, so we use 0.1 Hz to approximate the dc point.) Accordingly, $R_{\text {in }}$ is found to be $2 \mathrm{G} \Omega$.

To measure $R_{\text {mut }}$, we shori-circnit the amplifier input to ground, inject a $1-\mathrm{A}$ ac current at its output, and perform an ac-analysis simulation. $R_{\text {out }}$ corresponds to the amplifier output voltage at 0.1 Hz and is found to be 76 ms . Although an ac test voltage source could equally well have bcen used to measure the output resistance in this case, it is a good pracuice to attach a current source rather than a voltage source between the output aud ground. This is because an ac curreut source appears as an open circuit when the simulator computes the de bias point of the circuit hile an as voroge source appeas as a short circuit, which can erroneously force the dc outpu bing volt A carcful lock P and R of the

A carcfull look at $R_{\text {in }}$ and $R_{\text {out }}$ of the closed-loop amplifier reveals that their values have respectively, increased and decreased by a factor of about 1000 relative to tbc corresponding

119

.
desirable charact
 tors R_{1} and R_{2}) around the open-lonp op amp. We will study negative feedback (through resiswhere we will also learn how the improvement factor (1000 in thisative feedback in Chapter 8 , of the open-loop op-amp gain $\left(10^{5}\right)$ to the closed-loop amplifier From Eqs. (2.37) and (2.35), the closed-loop amplificr has STC

$$
\frac{V_{o}(s)}{V_{i}(s)}=\frac{G_{0}}{1+\frac{s}{2 \pi f_{3 \mathrm{~dB}}}}
$$

As described in Appendix D, the response of such an amplifier to an input step of height $V_{\text {step }}$ is
given by

$$
v_{0}(t)=V_{\text {final }}\left(1-e^{-t / \tau}\right)
$$

where $V_{\text {final }}=G_{0} V_{\text {step }}$ is the final output-voltage value (i.e., the voltage value toward which the
output is heading) and $\tau=1 /\left(2 \pi f_{\text {p }}\right.$) is the time and $t_{90 \%}$ to be the time it takes for the output $V_{\text {final }}$, then from Eq. (2.64), $t_{10 \%} \approx 0.1 \tau$ and $t_{20} \approx 2.3 \tau$. can be expressed as

$$
t_{r}=t_{50 \%}-t_{100}=2.2 \tau=\frac{2.2}{2 \pi f_{3 \mathrm{BB}}}
$$

Therefore, if $f_{\delta_{\text {sd }}}=9.9 \mathrm{kHz}$, then $t_{r}=35.4 \mu \mathrm{~s}$. To simulate the step rcsponse of the closed-loop
amplifier, wc apply a step voltage at its in amplifier, we apply a step voltage at its input, using a piece-wisc--linear (PWL) source (with output versus time , Inen perform a transient-analysis simulation, and measure the voltage at the in Fig. 2.48, and measured t_{r} to be $35.3 \mu \mathrm{~s}$.

FIGURE 2.48 Step response of the closed-loop amplifier in Example 2.8
The linear macromodels in Figs. 2.45 and 2.46 assume that the op-amp circuit is operating in its linear range, and do not account for its nonidcal performance when large signals arc present at the output. Therefore, nonlinear effects, such as output saturation and slew rate, are not modeled. This is why, in the slep responsc of Fig. 2.48, we could see an output voltage of 100 V when we applicd a $1-\mathrm{V}$ step inpul. However, 1 C op amps are not capable of producing It large output voltages. Hence, a designer must be very careful when using these models. It is important to point out that we also saw output voltages or 100 V or so in the ac rthe cose fe acolot for nonlinear effects (particulaly output sturation)? The anper is ye odel accounted for nonlinear effects (particularly ouput satiration)? The answer is yes, enal
 analys may no blist whe importance to the de igner in anal

2.9.2 Nonlinear Macromodel

The linear macromodel in Fig. 2.46 can be further expanded to account for the op-amp non linear performance. For example, the finite output voltage swing of the op amp can be modeled by placing limits on the output voltage of the voltage-controlled voltage source E_{b}. In ABM library be done ung the Futher details on how to build nonlinear mecroms for the op amp can be found in
 ear effects in an IC arc provided by the op-anp manufacturers. Most simulators include such
macromodels for some of the popular off-the-shelf ICs in their libraries. For example, PSpice includes models for the $\mu \mathrm{A} 741$, the LF411, and the LM324 op amps. ${ }^{6}$

W8MP

Characteristics of the 741 OP Amp

Consider the $\mu \mathrm{A} 741$ op amp whose macromodel is available in PSpice. Use PSpice to plot the open-loop gain and hence determine f. Also, investigate the SR limitation and the output saturation of this op amp.

Solution

Figure 2.49 shows the Capture schematic used to simulate the frequency response of the $\mu \mathrm{A} 741$ op amp. The $\mu \mathrm{A} 741$ part has seven terminals. Terminals 7 and 4 are, respectively, the positive and negative dc power-supply terminals of the op amp. 741-type op amps are typically operated from ± 15-V power supplies; therefore we connected the dc voltage sources $V_{C C}=+15 \mathrm{~V}$ and $V_{E E}=$ -15 V to terminals 7 and 4 , respectively. Terminals 3 and 2 of the $\mu \mathrm{A} 741$ part correspond to the positive and negative input terminals, respectively of the op amp. In general, as outlined in Section 2.1.3, the op amp input signals are expressed as

$$
\begin{aligned}
& v_{I N P}=V_{C M}+\frac{V_{d}}{2} \\
& v_{I N N}=V_{C M}-\frac{V_{d}}{2}
\end{aligned}
$$

where $v_{I_{N P}}$ and $\tau_{X_{N N}}$ are the signals at, respectively, the positive- and negative-input terminals of the op amp with $V_{C M}$ being the common-mode input signal (which scts the de bias voltage at the op amp input terminals) and V_{d} being the differential input signal to be amplificd. The dc voltage source $V_{C M}$ in Fig. 2.49 is used to set the common-mode ioput voltage. Typically, $V_{C M}$ is set to the average of the de power-supply voltages $V_{C C}$ and $V_{E E}$ to maximize the available input signal swing. Hence, we set $V_{C M}=0$. The voltage source V_{d} in Fig. 2.49 is used to generate the differential input signal V_{d}. This signal is applied differentially to the op-amp input terminals using the voltage-controlled voltage sources E_{p} and E_{n} whose gain constaats are set to 0.5 .

Terminals 1 and 5 of part μ A 741 are the offset-nulling terninals of the op amp (as depicted in Fig. 2.30). However, a check of the PSpice netlist of this part (by sclecting Edit \rightarrow PSpice Model, in the Capture nenus), revcals that these terminals are floating; therefore the off set-nulling characteristic of the op amp is not incorporated in this macromodel.
To mcasure f_{i} of the op-amp, we set thc voltage of source V_{d} to be $1-\mathrm{V}$ ac, perform an acanalysis simulation in PSpice, and plot the output voltage versus frequency as shown in Fig. 2.50. Aceordingly, the frequency at which the op-amp voltage gain drops to 0 dB is $f_{t}=0.9 \mathrm{MH}$ (which
is close to the $1-\mathrm{MHz}$ value reported in the data sheets for 741 -type op amps).
To determine the slew rate of the $\mu A 741 \mathrm{op}$ amp, we connect the op amp in a unity-gain confall times as shown in Fig. 2.51, apply a large pulse signal at the input with very short ise and PSpice and plot he output voltase put we, averm corresonds the put waveform corresponds to the slew-rate of the op amp and is found to be $\mathrm{SR}=0.5 \mathrm{~V} / \mu \mathrm{s}$ which agrees with the value specified in the data sheets for 741 -type op amps)

The OrCAD 9.2 Litc Edition of PSpice. which is available on the CD accompanying this book, includes
these models in its evaluation (FVAL)) library.

SIGURE 2.49 Simulating une frequency response of the $\mu A 741 \mathrm{op}$-amp in Example 2.9

FIGURE 2.50 Frequency response of the $\mu \mathrm{A} 741$ op amp in Examplc 2.9.
The To determine the maximum outpul voluge or targe value, say +1 V , and perform a bias-point differcntial voltage source V_{d} in simulation in PSpice. The cosp age of the op amp. We repa find the negative-ouput satage $V_{o \text { max }}=14.8 \mathrm{~V}$

FIGURE 2.51 Curcuii for determining the slew rate of the $\mu \mathrm{A} 741$ op arap in Example 2.9.

FIGURE 2.52 Square-wave response of the $\mu \mathrm{A} 741$ op amp connected in the unity-gain configuration shown in Fig. 2.51.

Summary

興 The IC op amp is a versatile circuit building hlock. It is easy to apply, and the performance of op-amp circuits closely matches thcoretical predictions.
The op-amp terminals are the inverting input terminal (1), the noninverting input terminal (2), the output terminal (3) the positive-supply terminal $\left(V^{+}\right)$to be connected to the
positive power supply, and the negative-supply lerminal (V) to be connected to the negative supply. The common lerminal of the two supplies is the circuit ground.
*The ideal op amp responds only to the differencc input terminal 3 and ground, a signial $A\left(v_{2}-v_{1}\right)$, where A, the
open-loop gain, is very large $\left(10^{4}\right.$ to $\left.10^{6}\right)$ and ideally infi-pen-loop gain, is has and ingut resistancc and a zero output resistance.
Negative feedback is applied to an op amp by connecting a passive component between its output terminal and its causes the voltage between the cwo input terminals to become very snall and ideally zero. Correspondingly, a virtual short circuit is said to exist between the two inpu terminals. If the positive input terminal is connccted to ground, a virtual ground appears on the negative input erminal.
The Two most important assumptions in the analysis of op-amp circuits, presuming negative feedback exists and the op amps arc ideal, are: the two input terminals of the op amp are at the same voltage, and zero currcnt flows nto the op-amp input terminals.

* With negative feedback applied and the loop closed, the closed-loop gain is almost entirely dctermined by external components: For the inverting configuration, $V_{0} / V_{i}=-R_{2} / R_{1}$; and for the noninverting configuraion, $V_{n} / V_{i}=1+R_{2} / R_{1}$.
(The noninverting closed-loop configuration features a very high input resistance. A special case is the unity-gain collower, frequently employed as a buffer amplifier to connect a high-resistance source to a low-resistance load.
(For most internally compensated op amps, the open-loop gain falls off with frequency at a rate of $-20 \mathrm{~dB} /$ decade, reaching unity at a frequency f_{t} (the unity-gain bandwidth. Frequency f_{t} is also known as the gain-bandwidth product of the op amp: $f_{t}=A_{0} f_{b}$, wherc A_{0} is the dc gain, and f_{b} is the 3 -dB frequency of the open-loop gain. At any frequency $f\left(f \geqslant f\right.$), the op-amp gain $|A| \simeq f_{t} / f$.

For both the inverting and the noninverting closed-loop co figurations, the $3-\mathrm{dB}$ frequency is equal to $f_{t} /\left(1+R_{2} / R_{1}\right)$
T The maximum rate at which the op-amp output voltag can change is called the slew rate. The slew rate, SR , is nonlinear distortion of output signal waveforms
? The full-power bandwidth, f_{w}, is the maximum frequenc at which an output sinusoid with an amplitude equal to the without distorion: $f_{n}=\mathrm{SR} / 2 \pi \mathrm{~V}$ $=\mathrm{SR} / 2 \pi v_{u \text { max }}$
The input offset voltage, $V_{O S}$, is the magnitudc of dc volt age that when applied between the op amp input termnals, wase the output to zero voltage at the output to zero.
ㄷ. The effect of $V_{o s}$ on performance can be evaluated b including in the analysis a de source $V_{o s}$ in series with th op-amp positive input lead. For both the inverting and the voltage at the output of $V_{O S}\left(1+R_{2} / R_{1}\right)$,
§ Capacitively coupling an op amp rcduces the dc offset voltage at the output considerahly

2 The average of the two dc currents, $I_{B 1}$ and $I_{B 2}$, that flow in the input terminals of the op amp, is called the input bias current, I_{B}. In a closed-loop amplifier, I_{B} gives rise to a dc offset voltage at the output of magnitude $I_{B} R_{2}$. This in series with the positive input terminal equal to the total dc resistance seen by the negative input terminal. $I_{o s}$ is the input offset current that is, $I_{0}=\mid I_{B 1}-I_{B}$
(1) Connecting a large resistance in parallel with the capaci tor of an op-amp inverting integrator prevents op-amp saturation (due to the effect of $V_{O S}$ and I_{B}.

PROBLEMS

SECTION 2.1: THE IDEAL OP AMP

2.1 What is the minime nimber of pins required for a so called dual-op-amp IC package, one containing two op amps? What is the number of pins required for a so-called quad-op-
amp package, one containing four op amps?
2.2 The circuit of Fig. P2.2 uses an op amp chat is ideal except for having a finite gain A. Measurements indicate $v_{0}=4.0 \mathrm{~V}$ when $v_{i}=4.0 \mathrm{~V}$. What is the op amp gain A ?
ut to be

FIGURE P2.2
-2.000 V and chat at the negative input to be -3.000 V . For che amplifier to be ideal, what would you expect the voltage at the positive input to be? If the measured yoltage at the positive inf is -3.020 V , what is likely to be the actual gain of the amplificr?
2.4 A set of experiments are run on an op aunp that is ide except for having a finite gin A. an op aunt that is idea low. Ate the results consite? If resuls ane thol in view of the possibility of experimental error? What do they show the gain to be? Using this value predict valucs of the me surements that werc accidentally omitted (the blank entries).

Experiment \#	v_{0}	v_{2}	v_{0}
1	0.00	0.00	0.00
2	1.00	1.00	0.00
3		1.00	1.00
4	1.00	1.10	10.1
5	2.01	2.00	-0.99
6	1.99	2.00	1.00
7	5.10		-5.10

2.5 Refer to Exercise 2.3. This problem explores an altema live internal structure for the op amp. In particular, we wish o model the internal structure of a particular op amp using wo transconductance amplifiers and one transresistance amplitances $G_{\text {w }}$ and a transresistance R, For equal transconduc pen-loop gain A For $G_{n}=100 \mathrm{~mA} / \mathrm{V}$ and $R_{n}=10^{6}$ for value of A results?
2.6 The two wires leading from the output terminals of ransducer pick up an interference signal that is a $60-\mathrm{Hz}$ i-

2.8 Assuming ideal op amps, find the voltage gain v_{o} / v_{i} and

 input resistance $R_{\text {in }}$ of each of the circuits in Fig. P2.8.inusuid. The output signal of the transducer is sinusoidal of $10-\mathrm{mV}$ amplitude and $1000-\mathrm{Hz}$ frequency. Give expressions system ground. systern ground.
2.7 Nonideal (i.e., real) operational amplifiers respond to both the differential and common-mode components of their input signals (refer io Fig. 2.4 for signal representation). Thus the output voltage of the op amp can be expressed a

$$
v_{o}=A_{d} v_{l d}+A_{c m} v_{l c m}
$$

text) A_{d} is the differential gain (refcrred to simply as A in the (ext) and $A_{c n}$ is the common-mode gain (assumed to be zero in the text). The op amp's effectiveness in rejecting commonmode signals is measured by its CMRR, defined as

$$
\mathrm{CMRR}=20 \log \left|\frac{A_{d}}{A_{c m} \mid}\right|
$$ Consider an op amp whose intenal structure is of the type

shown in Fig. E2.3 except for a mismatch ΔG_{m} between the transconductances of the two channels; that is,

$$
\begin{aligned}
G_{m, 1} & =G_{m}-\frac{1}{2} \Delta G_{m} \\
G_{m \cdot 2} & =G_{m}+\frac{1}{2} \Delta G_{m}
\end{aligned}
$$

Find expressions for $A_{d}, A_{c m}$, and CMRR. If A_{d} is 80 dB and the two transconduclances are matched to within 0.1% of each other, calculate $A_{\text {cm }}$ and CMRR.

SECTION 2.2: THE INVERTING CONFIGURATION

$$
\text { ansducer pick up an interference signal that is a } 60-\mathrm{Hz}, 1-\mathrm{V}
$$

(b)

(c)

FIGURE P2.9
(d)

2.9 A particular inverting circuit uses an ideal op amp and two $10-\mathrm{k} \Omega$ resistors. What closed-loop gain would you expect? If a dc voltage of +5.0 is appled at the input, what resistors," having values somewhere in the range (1 ± 0.05) times the nominal value, what range of outputs would you expect to actually measure for an input of precisely 5.00 V ?
2.10 You are provided with an ideal op amp and three $10-\mathrm{k} \Omega$ resistors. Using series and parallel resistor combinations, how many different inverting-amplifier circuit topologies are possible? What is the laggest (noninfinite) available voltagc gain? What is the smallest (nonzero) available gain? What are the input resistances in these two cases?
2.11 For ideal op amps operating with the following feedback nctworks in the inverting configuration. what closed-loop gain results?
(a) $R_{1}=10 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega$
(b) $R_{1}=10 \mathrm{kS}, R_{2}=100 \mathrm{k} \Omega$
(c) $R_{1}=10 \mathrm{k} \Omega, R_{2}=1 \mathrm{k} \Omega$
(e) $R_{1}=100 \mathrm{k} \Omega . R_{2}=1 \mathrm{M} \Omega$

D2.12 Using an ideal op amp, what are the values of the resistors R_{1} and R_{2} to be used to design amplifiers with the closed-loop gains listed below? In your designs, use at leas one $10-\mathrm{k} \Omega$ resistor and anotber larger resisto
(a) -1 VN
(b) $-2 \mathrm{~V} / \mathrm{V}$
(c) $-0.5 \mathrm{~V} / \mathrm{V}$
(d) $-100 \mathrm{~V} / \mathrm{V}$
D.13 Desin an inverting op-amp circuit for which the gain is $-5 \mathrm{~V} / \mathrm{V}$ and the total resistance uscd is 120 kS .
02.14 Using the circuit of Fig. 2.5 and assuming an ideal op anp, design an inverting amplifier with a gain of 26 dB straint of having to use resistors no larger than $10 \mathrm{M} \Omega$. What is the input resistance of your design?
2.15 An ideal op amp connected as shown in Fig. 2.5 of the text with $R_{1}=10 \mathrm{k} \Omega$ and $R_{2}=100 \mathrm{k} \Omega$. A symmetrical squarewave signal with levels of 0 V and 1 V is applied at the mput. Sketch and clcarly label the waveform of the resulting output voltage. What is its average value? What is its highest value? What is its lowest value?
2.16 For the circuit in Fig. P2.16, find the currents through all branches and the voltages at all nodes. Since the drawn from the input signal source, where does the additional current come from?

FIGURE P2.16
2.17 An inverting op amp circuit is fahricated with the resistors R_{1} and R_{2} having. $x \%$ tolcrance (i.e, the value of cach resistance can deviate from the nominal value by as much a $\pm x \%$. What is the tolerance on the realized closed-loop gain? Assume the op amp to be ideal. If the nominal closed-loo gain is $-100 \mathrm{~V} / \mathrm{V}$ and $x=5$, what is the range of gain value xpected from such a circuit?
2.18 An ideal op amp with $5-\mathrm{k} \Omega$ and $15-\mathrm{k} \Omega$ resistors is used to create $a+5$-V supply from a -15 -V reference. Sketch he circuit. What are the voltages at the ends of the $5-\mathrm{k} \Omega$ resistor? If these resistors are so-catled 1% resistors, whose actual values are the range bounded by the nominal value $\pm 1 \%$, what are the limits of the output voltage produced? I the -15 -V supply can also vary by $\pm 1 \%$, what is the range of
2.19 An inverting op-amp circuil for which the require gain is -50 V uses an op anp whose open-loop gain is only $200 \mathrm{~V} / \mathrm{N}$. If the larger resistor used is $100 \mathrm{k} \Omega$, to what must he smaller be adjusted? With what resistor must a 2 -k resistor connected to the input be shunted to achieved thi goal? (No, is ar ,

D2.20 (a) Design an inverting amplifier with a closed-loop gain of $-100 \mathrm{~V} / \mathrm{V}$ and an input resistance of $1 \mathrm{k} \Omega$.
b) If the op amp is known to have an open-loop gain of $1000 \mathrm{~V} / \mathrm{V}$, what do you expect the closed-loop gair of your circuit to he (assuming the resistors have precis yalues)?
(shunt) with R to restore the closed-loop pain to it paralle value. Use the closest standard 1% resistor value (se Appendix G).
2.21 An op amp with an open-loop gain of $1000 \mathrm{~V} / \mathrm{V}$ is sed in the inverting configuration. If in this application the man -10 V to +10 V , what is the max from its ideal value?
2.22 The circuit in Fig. P2.22 is frequently used to provide an output voltage v, proportional to an input signal current i Derive expressions for the transresistance $R_{w} \equiv v_{c} / i_{\text {a }}$ and the input resistance $R_{i} \equiv v_{i} / \lambda_{i}$ for the following cases:
(a) A is infinite.
(b) A is finite.

figure p2.22

2.23 Derive an exprcssion for the input resistance of the inverting amplifier of Fig. 2.5 taking into account the finite open-loop gain A of the op amp.
*2.24 For an inverting op amp with open-loop gain A and nominal closed-loop gain R_{2} / R_{1}, find the minimum value $0 . \mathrm{g}_{1}$ A must havc (in terms of R_{2} / R_{1}) for a gain crror of can bc used to shunt R_{R} to
*2.25 Figure P2.25 shows an op amp that is ideal exccpt for having a finite open-loop gain and is used to realize an inverting amplifier whose gain has a nominal magnitude $G=R_{2} / R_{1}$. To compeusate for the gain reduction due to the inite A, a resistor R_{c} is shunted across R_{1}. Show that perfect
compensation is achieved when R_{c} is selected according to

$$
\frac{R_{c}}{R_{\mathrm{t}}}=\frac{A-G}{1+G}
$$

FIGURE P2.25
*2.26 Rearrange Eq. (2.5) to give the amplifier open-loop gain A required to realize a specified closed-loop gain $\left(G_{\text {nominal }}=-R_{2} / R_{1}\right)$ within a specified gain error ε,

$$
\varepsilon \equiv\left|\frac{G-G_{\text {nominalal }}}{G_{\text {nominal }}}\right|
$$

For a closed-loop gain of -100 and a gain error of $\leq 10 \%$, what is the minimum A required?
*2.27 Using Eq. (2.5), determine the value of A for which a reduction of A by $x \%$ results in a reduction in $|G|$ by $(x / k) \%$. Find the value of A required for the case in which the nominal closed-loop gain is $100, x$ is 50 , and k is 100
2.28 Consider thc circuit in Fig. 2.8 with $R_{1}=R_{2}=R_{4}=1 \mathrm{M} \Omega$, and assume the op amp to be ideal. Find valucs for R_{3} to obtain the following gains
(a) $-10 \mathrm{~V} / \mathrm{V}$
(b) $-100 \mathrm{~V} / \mathrm{V}$
(c) $-2 \mathrm{~V} / \mathrm{V}$
02.29 An invecting op-amp circuit using an ideal op amp must be designed to have a gain of $-1000 \mathrm{~V} / \mathrm{V}$ using resistors no larger than $100 \mathrm{k} \Omega$.
(a) For the simple two-rcsistor circuit, what input resistance (b) If the circuit in Fig. 2.8 is used with threc resistors of maximum value, what input resistance results? What is the value of the smallest resistor needed?
2.30 The inverting circuit with the T network in the feedback is redrawn in Fig. P2.30 in a way that emphasizes the the ideal op amp forces a virtual ground at the inverting input terminal). Use this ubservation to derive an expression for the gain $\left(v_{o} / v_{y}\right)$ by first finding (v_{X} / v_{j}) and (v_{o} / v_{X}).

FIGURE P2.30

*2.31 The circuit in Fig. P2.31 can be considered an extension of the circuit in Fig. 2.8.
(a) Find the resistances looking into node $1, R_{1}$; node $2, R_{2}$ node $3, R_{3}$; and nude $4, R_{4}$.
(b) Find the currents I_{1}, L_{2}, I_{3}, and I_{4} in terms of the input current I.

FIGURE P2.31
(c) Find the voltages at nodes $1,2,3$, and 4 , that is, V_{1}, V_{2}, V_{3}, and V_{4} in terms of (IR).
2.32 The circuit in Fig. P2.32 utilizes an ideal op amp. (a) Find I_{1}, I_{2}, I_{3}, and V_{x}.
(b) If V_{O} is not to be lower than -13 V , find the maximum allowed value for R_{L}.
(c) If R_{L} is varied in the range 100Ω to $1 \mathrm{k} \Omega$, what is the corresponding change in I_{L} and in V_{o} ?

FIGURE P2.32

D2. 33 Assuming the op amp to be ideal, it is required to design the circuit shown in Fig. P2. 33 to implement a current amplifier with gain $i_{L} / i_{I}=20 \mathrm{~A} / \mathrm{A}$.

figure p2.33
(a) Find the required value for R.
(b) If $R_{t}=1 \mathrm{k} \Omega$ and the op amp operates in an ideal manner so lony as π_{o} is in the range $\pm 12 \mathrm{~V}$. What range of i_{I} is possible? (c) What is the input resistance of the current amplifier? If the amplifier is fed with a current source having a current of 1 mA and
2.34 Figure P 2.34 shows the inverting amplifier circuit of Fig. 2.8 redrawn to emphasize the fact that R_{3} and R_{1} can be thought of as a voltage divider connected across the oulput v_{0} and from which a fraction of the output voltage (that available at node A) is fed back through R_{2}. Assuming $R_{2} \geqslant R_{3}$ and thus that the loading of the fecdback network can he ignored, express v_{A} as a function of v_{O}. Now express v_{A} as at function of v_{K}. Use these two relationships to find the (approx-
innate) relationship betwecn v_{0} and v_{1}. With appropriate imate) relationship betwecn v_{o} and $v_{\text {s }}$. With appropriate
manipulation, compare it with the result obtained in Example 2.2. Show that the exact result can be obtained hy noting that R_{2} appears in effect across R_{3} and, thus, that the voltage divider is composed of R_{4} and $\left(R_{3} \| R_{2}\right)$.

FIGURE P2.34
02.35 Design the circuit shown in Fig. P2.35 to have an input resiscance of $100 \mathrm{k} \Omega$ and a gain that can be varied fron $-1 \mathrm{~V} / \mathrm{V}$ to $-10 \mathrm{~V} / \mathrm{V}$ using the $10-\mathrm{k} \Omega$ potentioncter R_{4}. What
voltage gain results when the potentiometer is set exactly at its middle value?

Figure p2.35

2.36 A weighted summer circuit using an ideal op amp has threc inputs using $100-k \Omega$ resistors and a feedback resistor of $50 \mathrm{k} \Omega$. A signal \boldsymbol{v}_{1} is connccted to two of the inputs while a signal v_{2} is connected to the third. Express v_{0} in terns of v_{1}
and v_{2}. If $v_{1}=3 \mathrm{~V}$ and $v_{2}=-3 \mathrm{~V}$, what is v_{0} ?
2.37 Design an op amp circuit to provide an outpur $v_{0}=-\left[4 v_{1}+\left(v_{2} / 3\right)\right]$. Choose relatively low values of resisors but ones for which the input current (from each inpu ignal source) docs not exceed 0.1 mA for $1-\mathrm{V}$ input signals.
2.38 Using the scheme illustrated in Fig. 2.10, design an op-amp circuit wih inputs v_{1}, v_{2}, and v_{3} whose output is $v_{0}=-\left(2 v_{1}+4 v_{2}+8 v_{3}\right)$ using small resistors but no smallor han $10 \mathrm{k} \Omega$.
2.39 An ideal op amp is connected in the weighted sum mer configuration of Fig. 2.10. The feedback resistor $R_{f}=$ $10 \mathrm{k} \Omega$, and six $10-\mathrm{k} \Omega$ resistors are connected to the inverting input terminal of the op amp. Show, by sketching the various circuit configurations, how this basic circuit can be used to mplement the following functions
(a) $v_{0}=-\left(v_{1}+2 v_{2}+3 v_{3}\right)$
(b) $v_{0}=-\left(v_{1}+v_{2}+2 v_{3}+2 v_{4}\right)$
(c) $v_{0}=-\left(v_{1}+5 v_{2}\right)$
(d) $v_{0}=-6 v_{1}$

In each case find the input resistance seen by each of the signal sources supplying v_{1}, v_{2}, v_{3}, and v_{4}. Suggest at least two additional summing functions that you can realize with this circuit. How would you realize a summing coefficient that
is 0.5 ? is 0.5 ?

D2.40 Give a circuit, complete with component values, for a weighted surmmer that shifts the dc level of a sine-wave signal of $5 \sin (\omega t) \mathrm{V}$ from zero to -5 V . Assume that in addition to the sine-wave signal you have a dc reference voltage of 2 V
available. Sketch the output signal waveform.

D2.41 Use two ideal op amps and resistors to implement the summing function.

$$
v_{O}=v_{1}+2 v_{2}-3 v_{3}-4 v_{4}
$$

D*2.42 In an instrumentation system, there is a need to take the difference belween two signals, one of $\nu_{1}=3 \sin (2 \pi \times$ $60 t)+0.01 \sin (2 \pi \times 1000 t)$, volts and another of $v_{2}=$ $3 \sin (2 \pi \times 60 t)-0.01 \sin (2 \pi \times 1000 t)$ volts. Draw a circuit
that finds the required difference using two mainly $10-\mathrm{k} \Omega$ resistors. Since it is desirable to amplify the $1000-\mathrm{Hz}$ component in the process, arrange to provide an overall gain of 10 as well. The op amps available are ideal except that their output voltage swing is limited to $\pm 10 \mathrm{~V}$.
*2.43 Figurc P2.43 shows a circuit for a digital-to-analog converter (D Λ). The circuit accepts a 4 -bit input binary word $a_{3} a_{2} a_{1} a_{1} a_{0}$, where a_{0}, a_{1}, a_{2}, and a_{3} lakc the values of 0 or to the valuc of the digital input. Each of the bits of the input word controls the correspondingly numbered switch. For instance, if a_{2} is 0 then switch S_{2} conncets the $20-\mathrm{k} \Omega$ resistor to ground, while if a_{2} is 1 then S_{2} connects the $20-\mathrm{k} \Omega$ resistor to the $+5-\mathrm{V}$ power supply. Show that v_{o} is given by

$$
v_{0}=-\frac{R_{f}}{16}\left[2^{0} a_{0}+2^{1} a_{1}+2^{2} a_{2}+2^{3} a_{3}\right]
$$

where R_{f} is in $\mathrm{k} \Omega$. Find the value of R_{f} so that v_{o} ranges from 0 to -12 volls.

SECTION 2.3: THE NONINVERTING

CONFIGURATION

D2.44 Using an idcal op amp to implement dcsigns for R_{2} following closed-loop gains, what values of resistors $\left(R_{1}, R\right)$ should be used? Wherc possible, usc at Teast onc $10-\mathrm{k} \Omega$ resis to ts the smallest resistor in your design.
(a) $+1 \mathrm{~V} / \mathrm{V}$
(b) $+2 \mathrm{~V} / \mathrm{V}$
(c) $+101 \mathrm{~V} / \mathrm{V}$
(d) $+100 \mathrm{~V} / \mathrm{V}$

D2.45 Design a circuit based on the topology of the noninverting amplifier to obtain a gain of $+1.5 \mathrm{~V} / \mathrm{N}$, using only $10-\mathrm{k} \Omega$ resistors. Note that there are two possibilities. Which of these can be easily converted to have a gain of either $+1.0 \mathrm{~V} / \mathrm{N}$ or $+2.0 \mathrm{~V} / \mathrm{V}$ simply by short-circuiting a single resistor in each case?

D2.46 Figure P2.46 shows a circuit for an analog voltmeter of very high input resistance that uses an inexpensive moving-coil meter. The voltmeter measurcs the voltage V applied between the op amp's positive-input terminal and ground. Assuming chat the moving coil produces fuil-scale
defiection when the current passing through it is $100 \mu \mathrm{~A}$, find deflection when the currenul passing eading is obtained when \dot{V} is +10 V . Does the meter resistance shown affect the voltmeter calibration?

FIGURE P2.46

D*2.47 (a) Use superposition to show that the output of the circuil in Fig. P2.47 is given by

$$
\begin{aligned}
v_{O}= & -\left\lfloor\frac{R_{f}}{R_{N 1}} v_{N 1}+\frac{R_{f}}{R_{N 2}} i_{N 2}+\cdots+\frac{R_{f}}{R_{N n}} v_{N n}\right] \\
& +\left[1+\frac{R_{f}}{R_{N}}\right]\left[\frac{R_{P}}{R_{P_{1}}} \mathrm{v}_{P 1}+\frac{R_{P}}{R_{P 2}} v_{P_{P}}+\cdots+\frac{R_{P}}{R_{P n}} v_{P n}\right\rfloor
\end{aligned}
$$

$$
\text { wherc } R_{N}=R_{N 1} / / R_{N_{N}} / / \cdots / / / R_{N_{n}} \text { and }
$$

$$
R_{P}=R_{P 1} / / / R_{P 2} / / \cdots / / R_{P_{2}} / / R_{P 0}
$$

(b) Design a circuit to obtain
$v_{0}=-2 v_{M_{1}}+v_{\rho_{1}}+2 v_{P_{2}}$
The smallest resistor used should be $10 \mathrm{k} \Omega$.

FIGURE P2.47

D2.48 Design a circuit, using one ideal op amp, whose output is $v_{0}=v_{11}+3 v_{12}-2\left(v_{I S}+3 v_{I 4}\right)$. (Hint: Lse a structure similar to that shown in general form in Fig. P2.47.)
.49 Derive an expression for the voltage gain, $v_{o} v_{1}$, of the circuit in Fig. P2.49

FIGURE P2.49

2.50 For the circuit in Fig. P2.50, use superposition to fin v_{0} in terms of the input voltages v_{1} and v_{2}. Assume an idea op amp. For

$$
v_{1}=10 \sin (2 \pi \times 60 t)-0.1 \sin (2 \pi \times 1000 t), \text { volls }
$$

$$
v_{2}=10 \sin (2 \pi \times 60 t)+0.1 \sin (2 \pi \times 1000 t), \text { volts }
$$ find v_{o}.

FIGURE P2.50

D2.51 The circuit shown in Fig. P2.51 utilizes a $10-\mathrm{k} \Omega$ potentiometcr to realize an adjustable-gain amplifier Derive an expression for the gain as a tunction of the potentiometer setting x. Assume the op amp to be ideal. What is the range of gains obtained? Show how to add a fixcd resistor so that the gain range can be 1 to $21 \mathrm{~V} / \mathrm{V}$. What should the resistor value be?

FIGURE P2.51

02.52 Given the availability of resistors of value $1 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ only, design a circuit based on the noninverting configuration to realize a gain of $+10 \mathrm{~V} / \mathrm{V}$.
2.53 It is required to connect a $10-\mathrm{V}$ source with a source resistance of $100 \mathrm{k} \Omega$ to a $1-\mathrm{k} \Omega$ load. Find the voltage that will appear across the load if:
(a) The source is connected directly to the Joad.
(b) A unity-gain op-annp buffer is inserted between the sourcc and the load.
In each case find the load current and the current supplied by the source. Where does the load curtent come from in case (b)? 2.54 Derive an expression for the gain of the voltage follower of Fig. 2.14 assuming the op amp to be ideal cxcept for having a finite gain A. Calculate the value of the closedloop gain for $A=1000,100$, and 10 . In each case find the percentage error in gain magnitude trom the nominal value of unity.
2.55 Complete the following table for feedback amplifiers created using one ideal op amp. Note thal $R_{\text {in }}$ signifies input resistance and R_{1} and R_{2} are feedback-network resistors as labelled in the inverting and noninverting configurations.

Case	Gain	An	R_{1}	${ }_{7}$
a	-10 V/v	$10 \mathrm{k} \Omega$		
b	-1 V/V		$100 \mathrm{k} \Omega$	
c	-2 V/V			$100 \mathrm{k} \Omega$
d	+1 V/y	∞		
e	+2 V/V		$10 \mathrm{k} \Omega$	
f	+11 V/V			$100 \mathrm{k} \Omega$
g	-0.5 V/V	$10 \mathrm{k} \Omega$		

02.56 A noninverting op-amp circuit with nominal gain of $10 \mathrm{~V} / \mathrm{N}$ uses an op amp with open-loop gain of $50 \mathrm{~V} / \mathrm{V}$ and lowest-value resistor of $10 \mathrm{k} \Omega$. What closed-loop gain actually results? With what value resistor can which resistor be shunted to achicve the nomiual gain? If in the manufacturing process, an op amp of gain $100 \mathrm{~V} / \mathrm{V}$ were used, wbat closed loop gain would result in each case (the uncompensated one and the compensatcd one)?
2.57 Using Eq. (2.11), sllow that if the reduction in the closed-loop gain G from the nominal value $G_{0}=1+R_{2} / R_{1}$ is to be kept less than $x \%$ of G_{0}, then the open-loop gain of the op amp must exceed G_{0} by at least a factor $F=$ $(100 / x)-1 \simeq 100 / x$. Find the required F for $x=0.01,0.1$, 1 , and 10 . Utilize chese results to find for each value of x the minimum required open-loop gain to obtain closed-loop
gains of $1,10,10^{2}, 10^{3}$, and $10^{4} \mathrm{~V} / \mathrm{V}$.
2.58 For each of the following combinations of op-amp pen-loop gain A and nominal closed-loop gain G_{0}, calculate he actual closed-loop gain G that is achieved. Also, calculate the percentage by which $|G|$ falls short of the nominal gain magnitude $\left|G_{0}\right|$.

Case	Go (V/V)	Av/V
a	-1	10
b	+1	10
c	-1	100
d	+10	10
e	-10	100
f	-10	1000
g	+1	

2.59 Figure P2.59 shows a circuit that provides an output voltage v_{ρ} whose valuc can be varied hy turning the wiper of the $100-\mathrm{k} \Omega$ potentiometer. Find the range over which v_{0} can be varied. If the potentiometer is a " 20 -turn" device, find the change in v_{o} corresponding to each lum of the pot.

FIGURE P2.59

SECTION 2.4: DIFFERENCE AMPLIFIERS

2.60 Find the voltage gain $v_{o} / v_{i d}$ for the difference amplificr of Fig. 2.16 for the case $R_{1}=R_{3}=10 \mathrm{k} \Omega$ and $R_{2}=R_{4}=$ $00 \mathrm{k} \Omega$. What is the differential input resistance $R_{d i d}$? If the wo key resistance ratios (R_{2} / R_{1}) and (R_{4} / R_{3}) are different from each other by 1%, what do you expect the common mode gain $A_{\text {cut }}$ to be? Also, find the CMRR in this case.
2.61 Using the difference amplifier configuration of Fig. 2.16 and assuming an ideal op-amp, design the circuit to provide the following differential gains.
(a) $1 \mathrm{~V} / \mathrm{V}$
(c) $100 \mathrm{~V} / \mathrm{V}$
(c) $000 \mathrm{~V} / \mathrm{V}$
2.62. For the circuit shown in Fig. P2.62, express v_{0} as a function of ν_{1} and v_{2}. What is the input resistance seell by v_{1} nput terininals') By a source connected to both input temihalls simultaneously?

FIGURE P2.62
2.63 Consider the difference amplifier of Fig. 2.16 with th wo input terminals connected together to an input commonmode signal source. For $R_{2} / R_{1}=R_{4} / R_{3}$, show that thc input common-mode resistance is $\left(R_{3}+R_{4}\right) \|\left(R_{1}+R_{2}\right)$
2.64 Consider the circuit of Fig. 2.16, and let each of the v and v_{12} signal sources have a series resistance R_{s}. What condiapply in addition to the condition in Eq. (2.15) in order tor the amplifier to function as an ideal difference amplificr?
2.65 For the difference amplifier shown in Fig. P2.62, let all the resistors be $100 k \Omega \pm x \%$. Find an expression for th wors-case commen-mode heres 5 . 5 .
2.66 For the difference amplifier of Fig. 2.16, show that if eac csistor has a tolerance of $\pm 100 \mathrm{\varepsilon} \mathrm{\%}$ (i.e., for, say, a 5% resisto $\varepsilon=0.05$) then the worst-ciase CMRR is given approximately by

$$
\mathrm{CMRR} \cong 20 \log \left[\frac{K+1}{4 \varepsilon}\right]
$$

where K is the nominal (ideal) value of the $\operatorname{ratios}\left(R_{2} / R_{1}\right.$ and (R_{4} / R_{3}). Calculate the value of worst-case CMRR for amplifier designed to have a differential gain of ideally 100 VN .67 hat be op anp is ideal and hat 1% resistors are used.
0*2.67 Design the difference amplifier circuit of Fig. 2.16 to realize a differential gain of 100 , a differential input resis ance of $20 \mathrm{k} \Omega$, and a minimum CMRR of 80 dB . Assume the op amp to be ideal. Specify both the resistor values and their required tolerance (c.g., better than $x \%$)
*2.68 (a) Find A_{d} and $A_{c m}$ for the difference amplifier circuit shown in Fig. P2.68.
is specified to operate properly so long as the common-mode voltage at its positive and negative inputs falls in the range $\pm 2.5 \mathrm{~V}$, what is the corresponding limitation on the range of the inpul common-mode signal $r^{\prime \prime}$? (This is know as the common-mode range of the differential amplifier) (c) The circuit is modified by connecting a $10-\mathrm{k} \Omega$ resistor between node A and ground and another $10-\mathrm{k} \Omega$ resistor between node B and ground. What will no.

FIGURE P2.68
2.69 To obtain a high-gain, high-input-resistance differ ence amplifier the circuit in Fig. P2.69 employs positive fce lack, in addition to the negative feedback provided by the resistor R connected from the output to the negative input of the op amp. Specifically, a voltage divider (R_{5}, R_{6}) connected across the output feeds a fraction β of the output, that is, anp ihrough a resistor R. mailler than R su that the curient through P is R_{6} are muc than the current in the voltage divider with the result th $\beta \cong R_{6} \mid\left(R_{5}+R_{6}\right)$. Show that the differential gain is given by

$$
A_{d} \equiv \frac{v_{0}}{v_{l d}}=\frac{1}{1-\beta}
$$

Design the circuit to obtain a differential gain of $10 \mathrm{~V} / \mathrm{V}$ and differential input resistance of $2 \mathrm{M} \Omega$. Select values for R, R_{5}, and R_{6} such that $\left(R_{5}+R_{6}\right) \leq R / 100$.

FIGURE P2.69

*2.70 Figure P2.70 shows a modificd version of the difference amplifier. The modified circuit includcs a resistor R_{G} which can be used to vary the gain. Show that the differential voltage gain is given by

$$
\frac{v_{0}}{v_{l d}}=-2 \frac{R_{2}}{R_{1}}\left[1+\frac{R_{2}}{R_{G}}\right]
$$

(Hint: The virtual short circuit at the op amp input causes the current through the R_{1} resistors to be $v_{l d} / 2 R_{1}$.)

FIGURE P2.70

D*2.71 The circuit shown in Fig. P2 71 is a representation of a versatilc, commercially available IC, the INA105, manufactured by Burr-Brown and known as a differential amplifier trimmed, It consists of an op amp and precision, laserfor a variety of applicaions by the circuit can be configured terminals $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and O .

(a) Show how the circuit can be used to implement a differ ence amplifier of unity gain.
(b) Show how the circiuit can be used to implement single ers with gains:
(i) $-1 V / V$
(ii) $+1 V / V$
(iii) $+2 V / 7$
(iv) $+1 / 2 \mathrm{~V} / \mathrm{V}$

Avoid leaving a terminal open-circuited, for such a terminal may act as an "antenna, picking up intcrference and noisc hrough capacitive coupling. Rather, find a convenient node to connect such a terminal in a redundant way. When more than ive circuit inplementation is possible, comment on the rela dependencc on component matching such considerations a dependencc on component matching and input resistance.
2.72 Consider the instrumentation amplifier of Fig. 2.20(b) with a conmon-mode input voltage of +3 V (dc) and a differential input signal of $80-\mathrm{mV}$ peak sine wave. Let $2 R_{1}=1 \mathrm{k} \Omega$ $R_{2}=50 \mathrm{k} \Omega, R_{3}=R_{4}=10 \mathrm{k} \Omega$. Find the voltage at cvery node i the circui.
2.73 (a) Consider the instrumentation amplifier circuit of Fig. 2.20 (a). If the op amps are ideal except that their outputs saturate at $\pm 14 \mathrm{~V}$, in the manner shown in Fig. 1.13, find th $R_{1}=1 \mathrm{k} \Omega$ and $R_{2}=100 \mathrm{kO} \quad$ non-mode signal for the case b) Repeat (a) for the circuit
cuit in Fig. 2.20(b), and comment on drerence between the two circuits.
2.74 (a) Expressing v_{π} and $v_{r_{12}}$ in terms of differential and common-mode components, find v_{01} and v_{02} in the circuit
in Fig. $2.20($ a) and hencc find their differntial $v_{\mathrm{OO}_{2}}-v_{01}$ and their common-mode component $\frac{1}{2}\left(v_{01}+v_{02}\right)$ Now find the differential gain and the cominon-mode gain of
first stage of this instrumentation amplifier and hence the CMRR.

Reat for the circuit in Fig. 2.20(b), and comment on the difference between the two circuits.
*2.75 For an instrumentation amplifier of the type shown in 2ig 200(b) a deciser penoses to make $R_{2}=R_{3}=R_{4}=100 \mathrm{k} \Omega$. $2 R_{1}=10 \mathrm{kS}$. For ideal components, what difference-mode in, common-mode gain, and CMRR result? Reevaluate the worst-case values for these for the situation in which all resisors are specified as $\pm 1 \%$ units. Repeat the latter analysis for the case in which $2 R_{1}$ is reduced to $1 \mathrm{k} \Omega$. What do you conclude about the importance of the rclative difference gains of the first and second stages?
2.76 Design the instrumentation-amplifier circuit of Fig. 2.20 (b) to realize a differential gain, variable in the rang 1 to 100 , utilizing a $100-\mathrm{k} \Omega$ pot as variable resistor. (Hint. Design the second stage for a gain of 0.5.)
*2.77 The circuit shown in Fig. P . 77 is intended to supply a voltage to floating loads (those for which both temminals are nile making greatest possible use of the avalble power supply.
a) Assuming ideal op amps, sketch the voltage waveforms at nodes B and C for a $1-V$ peak-to-peak sine wave applied at A. Also sketch v_{o}.
b) What is the voltage gain v_{0} / v_{l} ?
c) Assuming that the op amps operate from ± 15-V power upplies and that their output saturates at $\pm 14 \mathrm{~V}$ (in the manner

(a)

(b)
shown in Fig. 1.13), what is the largest sine wave output that can be accommodated? Specify both its peak-to-peak and rms values.

FIGURE P2.77
*2.78 The two circuits in Fig. P2.78 are intended to function as voltage-vo-current converters; that is, they supply the load impedance Z with a current proporlional io in and independent of the value of Z_{L}. Show that this is indeed the casse. and find for each circuit i_{o} as a function of v_{r}. Conment on the differences between the two circuils.

FIGURE P2.78

SECTION 2.5: EFFECT OF FINITE OPEN-LOOP GAIN AND BANDWIDTH ON CIRCUIT

PERFORMANCE

2.79 The data in the following table apply to internally
compensated op amps. Fill in the blank entries.

A°	$\mathrm{f}_{6}(\mathrm{~Hz})$	ti (Hz)
10^{5}	10^{2}	
10^{6}		10^{6}
	${ }_{10}^{10} 1{ }^{-1}$	100^{8} 10^{6}
2×10^{5}	10	

2.80 A measurement of the open-loop gain of an internally compensated op amp at very low frequencies shows it to be
86 dB ; at 100 kHz , this shows it is 40 dB . Estimate values for A_{0}, f_{b}, and f_{b}
2.81 Measurements of the open-loop gain of a compensated op amp intended for high-frequency operation indicate that the gain is 5.1×10^{3} at 100 kHz and 8.3×10^{3} at 10 kHz . Estimate its 3 -dB frequency, its unity-gain frequency, and its dc gain.
2.82 Mcasurements made on the internaily compensated amplifiers listed helow provide the dc gain and the frequency at which the gain has dropped by 20 dB . For each, what are the 3 dB and unity-gain frequencies?
(a) $3 \times 10^{5} \mathrm{~V} / \mathrm{V}$ and $6 \times 10^{2} \mathrm{H}$?
(b) $50 \times 10^{5} \mathrm{~V} / \mathrm{V}$ and 10 Hz
(c) $1500 \mathrm{~V} / \mathrm{V}$ and 0.1 MHz
(d) $100 \mathrm{~V} / \mathrm{V}$ and $0.1 \mathrm{GHz}, 25 \mathrm{~V} / \mathrm{mV}$ and $25 \mathrm{kHz}, ~$
2.83 An inverting amplifier with nominal gain of $-20 \mathrm{~V} / \mathrm{V}$ employs an op amp having a de gain of 10^{4} and a unity-gain requency of $10^{\circ} \mathrm{Hz}$. What is the $3-\mathrm{dB}$ frequency $f_{\text {3dB }}$ of the closed-loop amplifier? What is its gain at $0.1 f_{\text {3ab }}$ and at $10 f_{\text {3BB }}$?
2.84 A particular op antp, characterized by a gain-bandwidth product of 20 MHz , is operated with a closed-loop gain of $+100 \mathrm{~V} / \mathrm{V}$. What $3-\mathrm{dB}$ bandwidth results? At what frequeccy does the closed-loop amplifier exhibit a -6° phase shift? A -84° phase shift?
2.85 Find the f_{i} required for internally compensated op amp to be used in the implementation of closed-loop amplificr with the following nominal dc gains and 3 -dB bandwidth
(a) $-100 \mathrm{~V} / \mathrm{V} ; 100 \mathrm{kHz}$
(b) $+100 \mathrm{~V} / \mathrm{V} ; 100 \mathrm{kH}$
(c) $-2 \mathrm{~V} / \mathrm{V} ; 10 \mathrm{MHz}$
(c) $-1000 \mathrm{~V} / \mathrm{V}: 20 \mathrm{kH}$
(f) $+1 \mathrm{~V} / \mathrm{V}$; 1 MHz
(g) $-1 \mathrm{~V} / \mathrm{V} ; 1 \mathrm{MHz}$
2.86 A noninverting op-amp circuit wich a gain of $100 \mathrm{~V} / \mathrm{V}$ sfound to have a 3 - dB frequency of 8 kHz . For a particular is the highest gain available under these conditions?
2.87 Consider a unity-gain follower utilizing an internally compensated op amp with $f_{t}=1 \mathrm{MHz}$. What is the $3-\mathrm{dB}$ fre uency of the follower? At what frequency is the gain of th ollower 1% below its low-frequency magnitude? If the inpu on the follower is a l-V step, find the 10% to 90% rise time o networks is discussed in Appendix D.) D*2.88 It is requr to deso
2. 2.8 It is requircd to design a noninverting amplifie with a dc gain of 10 . When a step voltage of 100 mV is applied at the input, it is required that the output be within 1% of its final value of 1 V in at most 100 ns . What must the $\mathcal{S}_{\text {, }}$ of the op amp be? (Note: The step response of STC low-pas
*2.89 This problem illustrates the use of cascaded closedloop amplifiers to obtain an overall bandwidch greater than can be achieved using a single-stage amplifier with the same overall gain.
(a) Show that cascading two identical amplifier stages, cach having a low-pass STC frequency response with a $3-\mathrm{dB}$ frequency f_{1}, results in an overall amplifier with a $3-\mathrm{dB}$ frequency given hy

$$
f_{3 \mathrm{~dB}}=\sqrt{\sqrt{2}-1} f_{1}
$$

(b) It is required to design a noninverting amplifier with a dc gain of 40 dB utilizing a single internally-compensated op amp with $f_{t}=1 \mathrm{MHz}$. What is the $3-\mathrm{dB}$ frequency obtained?
(c) Redesign the anplifier of (b) hy cascading two identical noninverting amplifiers each with a dc gain of 20 dB . What is the $3-\mathrm{dB}$ frequency of the overall amplifier? Compare this to the value ohtained in (b) above
D**2.90 A designer, wanting to achieve a stable gain of $100 \mathrm{~V} / \mathrm{V}$ at 5 MHz , considers her choice of amplifier topologies. What unity-gain frequency would a single operational amplificr require to sauisty her need? Unfortunately, the best available amplifice has an f_{i} of 40 MHz . How mnany such amplifiers connceted in a cascade of identical noninverting stages would shc need to achieve her goal? What is the $3-\mathrm{dB}$ frequency of
each stage she can use? What is the overall $3-\mathrm{dB}$ frequency?
2.91 Consider the use of an op amp with a unity-gain frequency f_{t} in the realization of
(a) an invering ampinfier with dc gain of magnitude K (b) a noninverting anplifier with a dc gain of K.

In each case find the 3 -dB frequency and the gain-bandwidth product ($G B P \equiv|\operatorname{Gain}| \times f_{3 \text { d }}$). Comment on the results.
2.92 Consider an inverings sammer winh inpus and V_{2} and with $V_{o}=-\left(V_{1}+V_{2}\right)$. Find the 3-dB frequency of each of the gain funcions $V_{o} V_{1}$ and $V_{o} o V_{2}$ in terms of th op antp f_{r} (tre zero an aplication of superposition.)

ECTION 2.6: LARGE-SIGNAL OPERATION

 OF OP AMPS2.93 A particular op amp using $\pm 15-\mathrm{V}$ supplies operate linearly for outputs in the range $-12 \mathrm{~V} 10+12 \mathrm{~V}$. If used in an invering ap the largest possible sine wave that can he applied at the input without output clipping?
2.94 Consider an op anp connected in the inverting config uration to realize a closed-loop gain of $-100 \mathrm{~V} / \mathrm{N}$ utilizing esistors of 1 kS and 100 kS . A load resistance R_{L} is con eavc sisnal of peak ampliude V is applied to the input Let the op amp be idcal excent that its output voluge saturates $\pm 10 \mathrm{~V}$ and its output current is limited to the range +20 mA .
(a) For $R_{L}=\{\mathrm{k} \Omega$, what is the maximum possible value of V while an undistorled output sinusoid is obtained? b) Repeat (a) for $R_{L}=100 \Omega$.
(c) IIt in is desired to oblain an output sinusoid of $10-\mathrm{V}$ peak nplitude, what minimum value of R_{L} is allowed?
.35 An op amp having a slew rate of $20 \mathrm{~V} \mu \mathrm{~s}$ is to he use in the unity-gain follower configuration, with input pulse that rise from 0 to 3 V . What is the shortest pulse that can be ased while cnsuring full-amplitude output? For such a pulse, describe the output resulting.
2.96 For operation with $10-\mathrm{V}$ output pulses with the requirement that the sum of the rise and fall times should repesent only 20% of the pulse width (at half amplitude), what is the slew-rate requirement for an op amp to handle pulse $\mu \mathrm{s}$ wide? (Note: The rise and fall times of a pulse signal ar usually measured between the 10% - and 90%-height points.)
.97 What is the highest frequency of a triangle wave of $20-\mathrm{y}$ peak-to-peak amplitude that can be reproduced by an op amp hose slew rate is $10 \mathrm{~V} / \mu \mathrm{s}$? For a sine wave of the same th ernains undistorted?
2.98 For an amplificr having a slew rate of $60 \mathrm{v} / \mu \mathrm{s}$, what is the highest frequency at which a $20-\mathrm{V}$ peak-to-pcak sinc wave can he produced at the output?
*2.99 In designing with op amps one has to check the mitations on the voltage and frequency ranges of operatio of the closed-loop amplifier, imposed by the op amp finit

This problem illustrates the point by considering the use of an op annp with $f_{i}=2 \mathrm{MHz}$, SR $=1 \mathrm{~V} / \mu \mathrm{s}$, and $V_{\text {gmax }}=10 \mathrm{~V}$ in the design of a noninverting amplifier with a nominal gain of 10 . sinc-wavc input with peak amplitudc V_{r}
(a) II $V_{i}=0.5 \mathrm{~V}$. what is the maximum frequency belore the output distorts?
(b) If $f=20 \mathrm{kHz}$, what is the maximum value of V_{i} hefiore the output distorts?
(c) If $V_{i}=50 \mathrm{~m} \mathrm{~V}$, what is the useful frequency range of operauion?

SECTION 2.7: DC IMPERFECTIONS

2.100 An op amp wired in the inverting coniliguration with the input grounded, having $R_{2}=100 \mathrm{k} \Omega$ and $R_{1}=1 \mathrm{k} \Omega$, has an output dc voltage of -0.3 V . If the input bias current is
known to be very small, find the input ofifset voltage.
2.101 A nomnverting amplifier with a gain of 200 uses an op amp having an input offset voltage of $\pm 2 \mathrm{mV}$. Find the output when the input is $0.01 \sin \omega t$, volts.
2.102 Λ noninverting amplifier with a closed-loop gain of 1000 is designed using an op amp having an input offset voltage of 3 mV and output saturation levels of $\pm 13 \mathrm{~V}$. What is the maximum amplitude of the sine wave that can be applied at the input without the output clipping? ff the amplifier is
capacitively coupled in the manner indicated in Fig. 2.36, what would the maximum possinle ainplitude be?
2.103 An op amp connected in a closed-loop inverting configuration having a gain of $1000 \mathrm{~V} / \mathrm{V}$ and using relatively small-valued resistors is measured with input grounded to have a de output voltage of -1.4 V . What is its input offset that in Fig. 2.28. Be careful of polarities.
2.104 A particular inverting amplifier with nominal gain of - $100 \mathrm{~V} / \mathrm{V}$ uses an imperfect op amp in conjunction with be +9.31 V when measured with the input open and +9.09 V with the input grounded.
(a) What is the bias current of this amplifier? In what direc tion does it flow?
(b) Estinnate the value of the input offset voltage.
input terminal and ground. With the betwecn the positiveconnected), the outpur de vollage is measured to be -0.8 V . Estimate the input offset current.
D*2.105 A noninverting amplifier with a gain of $+10 \mathrm{~V} / \mathrm{V}$ using $100 \mathrm{k} \Omega 2$ as the feedback resistor operates from a $5-\mathrm{k} \Omega$ source. For an amplificicr offset voltagc of 0 mV , but with a
bias current of $1 \mu \mathrm{~A}$ and an offset current of $0.1 \mu \mathrm{~A}$, what range of outputs would you expect? Indicate where you would add an additional resistor to compensate for the bia currents. What does the range of possible outputs then become? A designer wishes to use this amplitier with a $15-\mathrm{ks}$ source. In order to compensate for the bias current in this
2.106 The circuit of Fig. 2.36 is used to create an ac coupled noninverting amplifier with a gain of $200 \mathrm{~V} / \mathrm{N}$ using resistors no larger than $100 \mathrm{k} \Omega$. What values of R_{1}, R_{2}, and R_{3} should be used? For a break frequency due to C_{1} at 100 Hz and that due to C_{2} at 10 Hz , what values of C_{1} and C_{2} are needed?
2.107 Consider the difference amplifier circuit in Fig. 2.16 et $R_{1}=R_{3}=10 \mathrm{k} \Omega$ and $R_{2}=R_{4}=1 \mathrm{M} \Omega$. If the op amp ha $O_{O S}=4 \mathrm{mV}, I_{B}=0.3 \mu \mathrm{~A}$, and $I_{O S}=50 \mathrm{nA}$, find the worst-case (largcst) dc offsel voltage at the oulput.
2.108 The circuit shown in Fig. P2. 108 uses an op amp having a $\pm 4-\mathrm{mV}$ offset. What is its output offset voltage? What does the output offset become with the input ac coupled through a capacitor C ? If, instead, the $1-k \Omega$ resistor apacitively coupled to ground, what does the output offse become?

FIGURE P2,108

2.109 Using offset-nulling facilities provided for the op amp, a closed-loop ampififier with gain of +1000 is adjusted at $25^{\circ} \mathrm{C}$ to produce zero output with the input grounded. If the inpul offset-voltage drift of the op amp is specificd to be
 whe noming can be said separately about the polarity of the relative polarities to be?
2.110 An op amp is connected in a closed loop with gain of +100 utilizing a feedback resistor of $1 \mathrm{M} \Omega$
(a) If the input bias current is 100 aA , what output volage results with the input grounded
(b) If the input offset voltage is $\pm 1 \mathrm{mV}$ and the input bias current as in (a), what is the largest possible output that can be observed with the input grounded?
(c) If bias-current compensation is used, what is the value of the required resistor? If the offset current is no more than onc-tenth the bias current, what is the resulting output offset voltage (due to offset current alone)?
(d) With bias-current compensation as in (c) in place what is the largest dc voltage at the output due to the combined effect of offset voltage and off set current?
*2.111 An op amp intended for operation with a closedloop gain of $-100 \mathrm{~V} / \mathrm{V}$ uses feedback resistors of $10 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$ with a bias-current-compensation resistor R_{3}. What should the value of R_{3} be? With input grounded, the output offser volage is found volage can be as large as 1 mV of unknown polarity what range of offset current is possible? What current injected into, or extracted from, the nongrounded end of R_{3} would reduce the op amp coutput voltage to \%ero? For availahle ± 15-V supplies, what resistor and supply voltage would you use?

SECTION 2.8: INTEGRATORS AND

DIFFERENTIATORS
2.112 A Miller integrator incorporates an ideal op amp, a resistor R of $100 \mathrm{k} \Omega$, and a capacitor C of 10 nF . A sine-wave signal is applied to its input.
(a) At what frequency (in H) are the input and output sig nals equal in amplitude?
(b) At that frequency how does the phase of the output sine wave relate to that of the input?
(c) If the frequency is lowered by a factor of 10 from that found in (a), by what factor does the output voltage change, and in what direction (smaller or larger)? (d) What is the phase relation between the input and output in siluation (c)?
D2.113 Design a Miller integrator wilh a time constant of one second and an input resistance of $100 \mathrm{k} \Omega$. For a dc voitare of -1 volt applied at the input at time 0 , at which moment $v_{n}=-10 \mathrm{~V}$, how long does it takc the output to reach $0 \mathrm{~V} ?+10 \mathrm{~V}$?
2.114 An op-amp-based inverting integrator is measured a 1 kHz to have a voltage gain of $-100 \mathrm{~V} / \mathrm{V}$. At what frequency is its cain reduced to $-1 \mathrm{~V} / \mathrm{V}$? What is the integrator time constant?
02.115 Design a Miller integrator that has a unity-gain fre quency of $1 \mathrm{krad} / \mathrm{s}$ and an input resistance of 100 kS . Sketch he output you would expect for the situation in which with output initially at 0 V , a $2-\mathrm{V} 2$-ms pulse is applied to the input. Characterize the output that results when a sine wave $2 \sin 1000 t$ is applied to the input?
02.116 Design a Miller integrator whose input resistance is $20 \mathrm{k} \Omega$ and unity-gain frequency is 10 kHz . What components are needed? For long-term stability. a fcedback resistor is introduced across the capacitior, which limits the de gain to
40 dB . What is its value? What is the associated lower $3-\mathrm{dB}$ frequency? Sketch and labcl the oulput which results with a $0.1-\mathrm{ms}, \mathrm{I}-\mathrm{V}$ positive-inpul pulse (initially at O V) with (a) an dc stabilization (but with the output initially at 0 V) and (b) the feedback resistor connected.
*2.117 A Miller integrator whose inpat and output voltages are initially \not ero and whose time constant is 1 ms is driven by the signal shown in Fig. P2.117. Sketch and labcl the output waveform that results. Indicate what happens if the input levels are $\pm 2 \mathrm{~V}$, with the time conslant the same (1 ms) and wiht the time constant raised to 2 ms .

FiGURE P2.117

2.118 Consider a Miller integrator having a time constau of 1 ms , and whose output is initially zero. when fed with fromg of pulses of 0 V (sce Fis P 2 s duration and $1-V$ amplitude rising rin resulting How many pulses are required for an outpu voltage change of V ?

FIGURE P2.118
D2.119 Figure P2.119 shows a circuit that performs a low pass STC function. Such a circuit is known as a first-order show that the dc gain is $\left(-R_{2} / R_{\text {}}\right)$ and the $3-\mathrm{dB}$ frequcnc
$\omega_{0}=1 / C R_{2}$. Design the circuit to obtain an input rcsistance of 1 kS , a de gain of 20 dB , and a $3-\mathrm{dB}$ frequency of 4 kHz . At what frequency does the magnitude of the transfer function reduce to unity?

FIGURE P2.119
2.120 A Miller integrator with $R=10 \mathrm{k} \Omega$ and $C=10 \mathrm{nF}$ is mplemented using an op amp with $V=3 \mathrm{mV} J_{=}=01 \mu \mathrm{~A}$ ad $I_{O S}=10$ nA To provide a finite de gain a 1 -MQ resistor is connccted across the capacitor.
(a) To compensatc for the cffect of I_{3}, a resistor is connected in serics with the positive-inpnt teminal of the op amp. What shoutd its value be?
b) With the resistor of (a) in place, lind the worst-case dc output voltage of the incegrator when the input is grounded.
2.121 A differentiator utizes an ideal op amp, a $10-\mathrm{ks}$ resistor. and a $0.01-\mu \mathrm{F}$ capacitor. What is the frequency f_{0}
 peak sine-wave input with frequency equal to $10 f$??
2.122 An op-amp differentiator with 1 -ms time constant driven by the rate-controllcd step shown in Fig. P2 122. Assuin ing v_{0} to bc zero initially, sketch and label its waveform.

FIGURE P2. 122

2.123 An op-amp differentiator, employing the circuit shown in Fig. 2.44(a), has $R=10 \mathrm{k} \Omega$ and $C=0.1 \mu \mathrm{~F}$. When a riangle wave of $\pm 1-\mathrm{V}$ peak amplitude at 1 kHz is applied to the input, what form of output results? What is its frequency What is its peak ampliude? What is its average value? What amplitude? When a $1-V$ peak sine wave at 1 kHz is applied
chapter 2 operational amplifiers
the (original) circuit, what output waveform is produced? What is its peak amplitude? Calculate this thrce ways: First use the second formula in Fig. 2.44(a) directly; second, use the third formula in Fig. 2.44(a); third, use the maximum slope of the input sine wave. In each case, establish a value for the peak output voltage and its location.
2.124 Using an ideal op amp, design a differentiation circuit for which the time constant is $10^{-3} \mathrm{~s}$ using a $10-\mathrm{nF}$ capacitor. What are the gains and phase shifts found for this circuil at one-tenth and 10 times the unity-gain frequency? A senies input resistor is added to limit the gain magnitude
high frequencies to $100 \mathrm{~V} / \mathrm{V}$. What is the associated $3-\mathrm{dB}$ fre quency? What gain and phase shift result at 10 times the unity-gain frequcncy?

D2.125 Figure P2.125 shows a circuit that performs the high-pass single-time-constant function. Such a circuit known as a first-ordcr high-pass active filter. Derive the cransfer function and show that the high-frequency gain $\left(-R_{2} / R_{1}\right)$ and the $3-\mathrm{dB}$ fircqucncy $\omega_{0}=1 / C R_{1}$. Design the circuit to obtain a high-frequency mput resistance of $10 \mathrm{k} \Omega$, a high-frequency gain of 40 dB , and a $3-\mathrm{dB}$ frequency of 1000 Hz At what frequency does the magnitude of the transfer func tion reduce to unity?

FIGURE P2.125

D**2.126 Derive the transfer function of the circuit il Fig. P2.126 (for an ideal op amp) and show that it can be writen in the form

$$
\frac{V_{o}}{V_{0}}=\frac{-R_{2} / R_{1}}{r 1+(\omega / i \omega 11}
$$

\qquad
where $\omega_{1}=1 / C_{1} R_{1}$ and $\omega_{2}=1 / C_{2} R_{2}$. Assuming that the circuit is designed such that $\omega_{2} \geqslant \omega_{3}$, find approximate expressions for the transfer function in the following fre quency regions.
(a) $\omega \ll \omega_{1}$
(b) $\omega_{1} \varangle \omega<\omega_{2}$

FIGURE P2.126
Use these approximations to sketch a Bode plot for the magnitude responsc. Observe that the circuit performs as an amplifier whose gain rolls off at the low-frequency end in the manner of a high-pass STC network, and at the highDesign the circuit to provide a a a low-pass STC network. 60 dB in the "middle frequency range," a low-frequcncy 3 -dB point at 100 Hz , a high-frequency $3-\mathrm{dB}$ point at 10 kHz , and an input resistance
$\left(\right.$ at $\left.\omega \gg \omega_{1}\right)$ of $1 \mathrm{k} \Omega$.

Diodes

	Introduction 139	3.6	Limiting and Clamping
31	The ldeal Diode 140		Circuits 18
3.2	Terminal Characteristics of Junction Diodes 147	3.7	Physical Operation of Diodes 190
3.3	Modeling the Diode Forward Characteristic 153	3.8 3.9	Special Diode Types 209 ,
3.4	Operation in the Reverse Breakdown Region Zener Diodes 167		Simulation Examples 212 Summary 217 Problems 218
3.5	Rectifier Circuits 171		

INTRODUCTION

In the previous chapter we dealt almost entirely with linear circuits; any nonlinearity, suc as that introduced by amplifier output saturation; was considered a problem to be solved by the circuit designer. However, there are many other signal-processing functions that can be implemented only by nonlinear circuits. Examples include the generation of dc voltage from the ac power supply and the generation of signals of various waveforns (e.g., sinusoids, square waves, pulses, etc.). Also, digital logic and memory circuits constitute a specia class of nonlinear circuits.

The simplest and most fundamental nonlinear circuit elone is and dist resistor, the diode has two terminals; but unlike the resistor, which has a linear (straight-line) relationship between the current flowing through it and the voltage appearing across it, the diode has a nonlinear $i-v$ characteristic.

This chapter is concerned with the study of diodes. In order to understand the essence of he diode function, we begin with a ficititious element, the ideal diode. We then introduce the silicon junction diode, explain its terminal characteristics, and provide techniques for the analysis of diode circuits. The latter task involves the important subject of device modeling

Our study of modeling the diode characteristics will lay the foundation for our study of modeling transistor operation in the next two chapters
Of the many applications of diodes, their use in the design of rectifiers (which convert ac o dc) is the most common. Therefore we shall study rectifier circuits in some detail and briefly look at a number of other diode applications. Further nonlinear circuits that utilize will be found throughout the book but particularly in Chapter 13
To understand the origin of the diode terminal characteristics, we consider its physia
Totion Our study of the physical operation of the pn junction and of the basic concepts of semiconductor physics is poded to provide a foundation for understanding not only the haracteristics of junction diodes but tho those of the field effect transistor, studied in the
 Alh
briefly consider sone specilized diode types, including the phon $p n$-junction diodes, we briefly consider emitting diodc. The chapter concludes with a description of the diode model utilized in the program. We also present a design example that illustrates the us of SPICE simulation.

3新 3.1 THE IDEAL DIODE

3.1.1 Current-Voltage Characteristic

The ideal diode may be considered the most fundamental nonlinear circuit element. It is a two-ternunal device having the circuit symbol of Fig. 3.1(a) and the $i-v$ characteristic shown in Fig. 3.1(b). The terminal characteristic of the ideal diode can be interpreted as follows: If a

(a)

\xrightarrow{i}

$v<0 \Rightarrow i=0$
(c)

$i>0 \Rightarrow v=0$

FIGURE 3.1 The ideal diode: (a) diode circuit symbol; (b) $i-\nu$ characteristic; (c) equivalent circuit in the reverse direction; (d) equivalent circuit in the forward dircction.

(a)

FIGURE 3.2 The two modes of uperation of idcal diodes and the use of in external circuit of limit the forward current (a) and the reversc vollage (b).
negative voltage (relative to the reference direction indicated in Fig. 3.1a) is applied to the diode, no current flows and the diode behaves as an open circuit (Fig. 3.1c). Diodes operate in this mode are said to be reverse biased, or operated in the reverse direction. An ideal diode has 7ero cuirent when operated in the reverse direction and is said to be cut off, simply off.
On the oher hand, if a positive current (relative to the reference direction indicated in Fig. 3.1a) is applied to the ideal diode, zero voltage drop appears across the diode. In other Fig. 3.1a) is applied to the ideal diode, zero voltage drop appears across the diode. In other
words, the ideal diode behaves as a short circuit in the forward direction (Fig. 3.1d); it passes any current with cro voltage drop. A forward-biased diode is said to be turned on, or simply on.
From the above description it should be noted that the external circuit must be designed o limit the forward current through a conducting diode, and the reverse voltage across a cutoff diode, to predetermined values. Figure 3.2 shows two diode circuits that illustrate this point. In the circuit of Fig. 3.2(a) the diode is obviously conducting. Thus its voltage drop will he zero, and the current through it will be determined by the $+10-\mathrm{V}$ supply and the $1-\mathrm{k} \Omega$ resis or as 10 mA . The diode in the circuit of Fig. 3.2(b) is obviously cut off, and thus its current will be zero, which in turn means that the entire $10-\mathrm{V}$ supply will appear as reverse bias across the diode.

The positive terminal of the diode is called the anode and the negative terminal the cathode, a carryover from the days of vacuum-tube diodes. The $i-v$ characteristic of the ideal diode (conducting in one direction and not in the other) should explain the choice of its arrow-like circuit symbol.
As should he evident from the preceding description, the $i-v$ characteristic of the ideal diode is highly nonlinear: although it consists of two straight-line segments, they are at 90° o one another. A nonlinear curve that consists of straight-line segments is said to be piccewise linear. If a device having a piecewise-linear characteristic is used in a particular appliwise linear. If a device having a piecewise-linear characteristic is used in a particular applisegmeuts, then the device can be considered a linear circuit element as far as that particular circuit application is concerned. On the other hand, if signals swing past one or more of the break points in the characteristic, linear analysis is no longer possible.

3.1.2 A Simple Application: The Rectifier

A fundamental application of the diode, one that makes use of its severely nonlinear $i-v$ curve, is the rectifier circuit shown in Fig. 3.3(a). The circuit consists of the series connection

(a)

≥ 0
(c)
$+{ }_{v}$ -

$v_{I} \leq 0$
(d)

(e)

FIGURE 3.3 (a) Rectifier circuit. (b) Input waveform. (c) Equivalent circuit when $v_{l} \geq 0$. (d) Equivalent circuit when $v_{l} \leq 0$. (e) Output wavcform.
of a diode D and a resistor R. Let the input voltage v_{I} be the sinusoid shown in Fig. 3.3(b) and assume the dide to be ileal. During the posit darcycles of the input sinusoid, 1 be positive v_{I} will cause current to flow through the diode in its forward direction. It follows that the diode voltage v_{D} will be very sman-ideally zero. Thus the circuit will have the equivalent shown in Fig . 3.3(c), and the output voltage v_{0} will be equal to the input volt age v_{l}. On the other hand, during the negative half-cycles of $v_{\text {, }}$, the diode will not conduct Thus the circuit will have the equivalent shown in Fig. 3.3(d), and v_{o} will be zero. Thus the output voltage will have the waveform shown in Fig. 3.3(e). Note that while v_{I} alternates in polarity and has a zero average value, v_{o} is unidirectional and has a finite average value or a dc component. Thus the circuit of Fig. 3.3(a) rectifies the signal and hence is called a rectifier. It can be used to generate dc from ac. We will study rectifier circuits in Section 3.5

EXMRESES

3.1 For the circhit in Fiy. 33 (a), sketch the transter characterstic yo versus.

Ans: See Fig E3 1

figureez. 1

3.2 For the citcuit in Fig 33 (a), sketch the waveform of y_{D}. Ans, Sec Fig. F32.

FIGURE E3.2

33. In the circuit of Fig, 3 (a), let w_{1} have a peak value of 10 V and $R=1 \mathrm{kS}$. Find the peak value of i_{p} and the dc component of ν_{0}.
Ans. $10 \mathrm{~mA} \cdot 3.18 \mathrm{~V}$

THuputevix

Figure 34 (a) shows a circuit for charging a $12-\mathrm{V}$ battery. If v_{s} is a sinusoid with $24-\mathrm{V}$ peak mplitude find the fraction of each cycle during which the diode conducts. Also, find the peak merne

(a)
(b)

FIGURE 3.4 Circuit and waveforms for Example 3.

Solution

The diode conducts when v_{s} exceeds 12 V , as shown in Fig. 3.4(b). The conduction angle is 2θ where θ is given by

$$
24 \cos \theta=12
$$

Thus $\theta=60^{\circ}$ and the conduction angle is 120°, or one-third of a cycle.
The peak value of the diode current is given by

$$
I_{d}=\frac{24-12}{100}=0.12 \mathrm{~A}
$$

The maximum reverse voltage across the diode occurs when ν_{s} is at its negative peak and is equal to $24+12=36 \mathrm{~V}$.

3.1.3 Another Application: Diode Logic Gates

Diodes together with resistors can be used to implement digital logic functions. Figure 3.5 shows two diode logic gates. To see how these circuits function, consider a positive-logic system in which voltage valucs close to 0 V correspond to $\operatorname{logic} 0$ (or low) and voltage values

(a)

(b)

FIGURE 3.5 Diode logic gates: (a) OR gatc; (b) AND gatc (in a positive-kogic system).
lose to +5 V correspond to logic 1 (or high). The circuit in Fig. 3.5(a) has three inputs, v_{A} $v_{\text {and }} v_{c}$. It is easy to see that diodes connected to $+5-\mathrm{V}$ inputs will conduct, thus clamping the output v_{y} to a value equal to +5 V . This positive voltage at the output will keep the diodes whose inputs are low (around 0 V) cut off. Thus the output will be high if one or more of the inputs are high. The circuit therefore implements the logic OR function, which in Boolean notation is expressed as

$$
Y=A+B+C
$$

Similarly, the reader is encouraged to show that using the same logic system mentioned Si the circuit of Fig. 3.5(b) implements the logic AND function,

$$
Y=A \cdot B \cdot C
$$

Assuming the diodes to be ideal, find the values of I and V in the circuits of Fig. 3.6.

(a)

(b)

FIGURE 3.6 Circuits for Exaniple 3.2.

Solution

In these circuits it might not be obvious at first sight whelher none, one, or both diodes are con-
ducting. In such a case, we make a plausible assumption, proceed wilh the analysis, and then check whether we end up with a consistent solution. For the circuit in Fig. 3.6(a), we shall assume that bolh diodes are conducting It follows that $V_{2}=0$ and $V=0$. The current through D_{2} can now be determined from

$$
I_{D 2}=\frac{10-0}{10}=1 \mathrm{~mA}
$$

Writing a node equation at B

$$
I+1=\frac{0-(-10)}{5}
$$

results in $I=1 \mathrm{~mA}$. Thus D_{t} is conducting as originally assumed, and the final result is $I=1 \mathrm{~mA}$
and $V=0 \mathrm{~V}$.
For the circuit in Fig. $3.6(b)$, if we assume that both diodes are conducting, then $V_{B}=0$ and
$V=0$. The current in D_{2} is obtained from

$$
I_{D 2}=\frac{10-0}{5}=2 \mathrm{~mA}
$$

The node equation at B is

$$
I+2=\frac{0-(-10)}{10}
$$

which yields $I=-1 \mathrm{~mA}$. Since this is not possible, our original assumption is not correct. We start again, assurning that D_{1} is off and D_{2} is on. The current $I_{D 2}$ is given by

$$
I_{D 2}=\frac{10-(-10)}{15}=1.33 \mathrm{~mA}
$$

and the voltage at node B is

$$
V_{B}=-10+10 \times 1.33=+3.3 \mathrm{~V}
$$

Thus D_{1} is reverse biased as assumed, and the final result is $I=0$ and $V=3.3 \mathrm{~V}$

3.2 terminal characteristics of junction diodes

5497 147

Ans. (a) 2 mA . 0 V . $60 \mathrm{~mA}, 5 V$ (c) $0 \mathrm{~mA}, 5$ V (d) 2 mA .01 (e) $3 \mathrm{~mA}, 3 \mathrm{~V}$. (1) $4 \mathrm{~mA}, 1 \mathrm{~V}$
fimere E3S shows a circuit for an ac voltheter It utilizes a movino-coil meter that sives a full-scal
 reading whe

Figure esis

Find the value of R that results in the ineter indicating a full-scale reading when the fiput sine-wave vottage y_{1} i 20 V peak-to peak. Tint The average watue of hall-sine waves is $1 /(\mathrm{r}$)
Ans. $3133 \mathrm{k} \Omega$

3 3.2 TERMINAL CHARACTERISTICS - OF JUNCTION DIODES

In this section we study the characteristics of real diodes-specifically, semiconductor junction diodes made of silicon. The physical processes that give tise to the diode terminal characteristics, and to the name "junction diode," will be studied in Section 3.7

Figure 3.7 shows the $i-v$ characteristic of a silicon junction diode. The same characteris-
tic is shown in Fig. 3.8 with some scales expanded and others compressed to reveal details.
Note that the scale changes have resulted in the apparent discontinuity at the origin.
As indicated, the characteristic curve consists of three distinct regions

1. The forward-bias region, determined by $v>0$
2. The reverse-bias region, determined by $v<0$
3. The breakdown region, determined by $v<-V_{Z K}$

These three regions of operation are described in the following sections.

FIGURE 3.7 The i-v characteristic of a silicon junction diode.

FIGURE 3.8 The diode i-vivelationship with some scales expanded and others compressed in order to
revcal details.

3.2.1 The Forward-Bias Region

The forward-bias-or simply forward-region of operation is entered when the terminal voltage v is positive. In the forward region the $i-v$ relationship is closely approximated by

$$
i=I_{S}\left(e^{\nu / n V_{T}}-1\right)
$$

In this equation l_{s} is a constant for a given diode at a given temperature. A formula for s_{s} in terms of the diode's physical paramcters and temperature will be given in Section 3.7. The current I_{s} is usually called the saturation current (for reasons that will become apparent shortly). Another name for I_{S}, and one that we will occasionally use, is the scale current. This name arises from the fact that I_{S} is directly proportional to the cross-sectional area of the diode. Thus doubling of the junction arca results in a diode with double the value of I_{s} and, as the diode equation indicates, double the value of current i for a given forward voltage v. For "small-signal" diodes, which are small-size diodes intended for low-power applications, I_{S} is on the order of $10^{-15} \mathrm{~A}$. The value of I_{S} is, however, a very strong function of temperature. As a rule of thumb, Λ_{S} doubles in value for every $5^{\circ} \mathrm{C}$ rise in temperature.

The voltage V_{T} in Eq. (3.1) is a constant called the thermal voltage and is given by

$$
\begin{equation*}
V_{T}=\frac{k T}{q} \tag{3.2}
\end{equation*}
$$

where
$k=$ Boltzmann's constant $=1.38 \times 10^{-23}$ joules/kelvin
$T=$ the absolute temperature in kelvins $=273+$ temperature in ${ }^{\circ} \mathrm{C}$
$q=$ the magnitude of electronic charge $=1.60 \times 10^{-19}$ coulomb
At room temperature $\left(20^{\circ} \mathrm{C}\right)$ the value of V_{T} is 25.2 mV . In rapid approximate circuit analysis we shall use $V_{T} \simeq 25 \mathrm{mV}$ at room temperature.

In the diode equation the constant n has a value between 1 and 2 , depending on the material and the physical structure of the diode. Diodes made using the standard integratedcircuit fabrication process exhibit $n=1$ when operated under normal conditions. ${ }^{2}$ Diodes available as discrete two-terminal components generally exhibit $n=2$. In general, we shall assume $n=1$ unless othcrwisc specified.
For appreciable current i in the forward direction, specifically for $i \gg I_{5}$, Eq. (3.1) can be approximated by the exponential relationship

$$
\begin{equation*}
i=I_{S} e^{v / \pi V_{T}} \tag{3.3}
\end{equation*}
$$

This relationship can be expressed alternatively in the logarithmic form

$$
\begin{equation*}
v=n V_{T} \ln \frac{i}{I_{S}} \tag{3.4}
\end{equation*}
$$

where In denotes the natural (base e) logarithm.
The exponential relationship of the current i to the voltage v holds over many decades of current (a span of as many as seven decades-i.c., a factor of 10^{7}-can be found). This is quite a remarkable property of junction diodes, one that is also found in bipolar junction transistors and that las been exploited in many interesting applications.
Let us consider the forward $i-v$ relationship in Eq. (3.3) and evaluate the current I corresponding to a diode voltage V

$$
I_{1}=I_{S} e^{V_{1} / n v_{T}}
$$

A slightly higher ambient temperature ($25^{\circ} \mathrm{C}$ or so) is usually assumed for electronic equipment operating inside a cabinet. At this temperature, $V_{\tau} \simeq 25.8 \mathrm{mV}$. Nevertheless, for the sake of simplicity and on promote rapid circuit analysis, we shall use the morc arithmetically convenient value of $V_{T} \simeq 25 \mathrm{mV}$ ${ }^{\text {throughout this book }}$
${ }^{2}$ In an integrated circcit, diodes are usually obtained by connecting a bipolar junction transistor (BJT)
as a two-trrninal device, as will be seen in Chapter 5 .

Similarly, if the voltage is V_{2}, the diode current I_{2} will be

$$
I_{2}=I_{s} e^{V_{2} / n V_{T}}
$$

These two equations can be combined to produce

$$
\frac{I_{2}}{I_{1}}=e^{\left(V_{2}-V_{1}\right) / n V_{T}}
$$

which can be rewritten as

$$
V_{2}-V_{1}=n V_{T} \ln \frac{I_{2}}{I_{1}}
$$

or, in terms of base-10 logarithms,

$$
\begin{equation*}
V_{2}-V_{1}=2.3 n V_{T} \log \frac{I_{2}}{I_{1}} \tag{3.5}
\end{equation*}
$$

This equation simply states that for a dccade (factor of 10) change in current, the diode voltage drop changes by $2.3 n V_{T}$, which is approximately 60 mV for $n=1$ and 120 mV for $n=2$. This also suggests that the diode $i-v$ relationship is most conveniently plotted on scmilog paper. Using the vertical, linear axis for v and the horizontal, log axis for i, one obtains a straight line with a slope of $2.3 n V_{T}$ per decade of current. Finally, it should be mentioned
that not knowing the exact value of n (which can be obtained from a simple experiment), circuit designers use the convenient approximate number of $0.1 \mathrm{~V} /$ decade for the slope of the diode logarithmic characteristic.

A glance at the $i-v$ characteristic in the forward region (Fig. 3.8) reveals that the current is negligibly small for y smaller than about 0.5 V . This value is usually referred to as the cut-in voltage. It should be emphasized, however, that this apparent threshold in the characteristic is simply a consequence of the exponential relationship. Another consequence of this relationship is the rapid increase of i. Thus, for a "fully conductiug" diode, the voltage drop lies in a narrow range, approximately 0.6 V to 0.8 V . This gives rise to a simple "model" for the diode where it is assumed that a conducting diode has approximately a $0.7-\mathrm{V}$ drop across it. Diodes with different current ratings (i.e., different areas and correspondingly different I_{5}) will exhibit the $0.7-\mathrm{V}$ drop at different currents. For instance, a small-signal diode may be considered to have a $0.7-\mathrm{V}$ drop at $i=1 \mathrm{~mA}$, while a higher-power diode may have a $0.7-\mathrm{V}$ drop at $i=1 \mathrm{~A}$. We will study the topics of diode-circuit analysis and diode models in the next section.

13 HMP13 ss

A silicon diode said to be a $1-\mathrm{mA}$ device displays a forward voltage of 0.7 V at a current of 1 mA . Evaluate the junctiou scaling constant I_{S} in the event that n is either 1 or 2 . What scaling constants would apply for a 1-A diode of the same manufacture that conducts 1 A at 0.7 V ?

Solution

Since

$$
i=I_{s} e^{v / \pi V_{x}}
$$

then

$$
I_{S}=i e^{-\bar{i} / \lambda V_{T}}
$$

For the $1-\mathrm{mA}$ diode:

$$
\begin{array}{ll}
\text { If } n=1: & I_{5}=10^{-3} e^{-700 / 25}=6.9 \times 10^{-16} \mathrm{~A}, \\
\text { If about } 10^{-15} \mathrm{~A} \\
\text { If } n=2: & I_{S}=10^{-3} e^{-700 / 50}=8.3 \times 10^{-10} \mathrm{~A}, \\
\text { or about } 10^{-9} \mathrm{~A}
\end{array}
$$

The diode conducting 1 A at 0.7 V corresponds to one-thousand $1-\mathrm{mA}$ diodes in parallel with a The diode conducting 100 times greater. Thus I_{s} is also 1000 times greater, being 1 pA and $1 \mu \mathrm{~A}$, respectively for $n=1$ and $n=2$.

From this example it should be apparent that the value of n used can be quite importan
Since both I_{S} and V_{T} are functions of temperature, the forward $i-v$ characteristic varies with tempcrature, as illustrated in Fig. 3.9. At a given constant diode current the voltage drop across the diode decreases by approximately 2 mV for every $1^{\circ} \mathrm{C}$ incrcase in temperature. The change in diode voltage with temperature has been exploited in the design of electronic thermometers.

Exticises

3.6 Consider a silicon diode with $n=1.5$. Find the change in volage il the curent changes fromi 01 mA to 10 mA . Ans, 172.5 my
37 A slicon function diode with $n=1$ bas $v=07 \mathrm{~V}$ at $i=1 \mathrm{~mA}$ Find the voltage drop at $t=0.1 \mathrm{~mA}$ and $i=10 \mathrm{~mA}$.
Ans. $0.64 \mathrm{~V}, 0.76 \mathrm{~V}$
3.8 Using the fact hat a silicon diode has $h^{\prime}=10^{-14} \mathrm{~A}$ at $25^{\circ} \mathrm{C}$ and that I_{5} ncreaser by 15% per ${ }^{\circ} \mathrm{C}$ rise in temperature find the value of s_{5} at $125^{\circ} \mathrm{C}$. Ans. $1.17 \times 10^{-8} \mathrm{~A}$

FIGURE 3.9 Illustrating the temperature dependence of the diode forward characteristic. At a constant current, the voltage drop decreases
by approximately 2 mV for cvery $1^{\circ} \mathrm{C}$ increase in temperature.

3.2.2 The Reverse-Bias Region

The reverse-bias region of operation is entered when the diode voltage $\%$ is made negative Equation (3.1) predicts that if v is negative and a few times larger than $V_{T}(25 \mathrm{mV})$ in magnibecornes
$i \simeq-I_{s}$
That is, the current in the reverse dircction is constant and equal to I_{s}. This constancy is the reason behind the term saturation current.
Real diodcs exhibit reverse currents that, though quite small, are nuch larger than I_{s}. Fo instance, a small-signal diode whose I_{S} is on the order of $10^{-14} \mathrm{~A}$ to $10^{-15} \mathrm{~A}$ could show reverse current on the order of 1 nA . The reverse current also increases somewhat with the ncrease in magnitude of the reverse voltage. Note that because of the very small magnitude A largent, these details are not clearly cvident on the diode i - v characteristic of Fig. 3.8. portional to the junction area, just as I_{s} is. Their dependence on teme leakage currents are different from that of I_{s}. Thus, whereas I_{s} doubles for eyery $5^{\circ} \mathrm{C}$ rise inperature, however, is responding rule of thumb for the temperature dependence of the reverse cuatrent, the cordoubles for every $10^{\circ} \mathrm{C}$ rise in temperature.

EXERCISE

39. The diode in the ciccuif if fig Ez3.9 is a latge high-curfent device whose reverse leakage is reasonably independent of witage if $Y / T Y$ at $20{ }^{\circ} \mathrm{C}$. find the watue of $\mathrm{V} 440^{\circ} \mathrm{C}$ and at $0^{\circ} \mathrm{C}$.

FIGURE E3.9
Ans. $4 \mathrm{~V}, 0.25 \mathrm{~V}$

3.2.3 The Breakdown Region

The third distinct region of diode operation is the brcakdown region, which can be easily identified on the diode $i-v$ characteristic in Fig. 3.8. The breakdown region is entered when the diode, called the reverse voltage exceeds a threshold value that is specific to the particular diode, called the breakdown voltage. This is the voltage at the "knee" of the $i-y$ curve in

Fig. 3.8 and is denoted $V_{Z K}$, where the subscript Z stands for zener (to be explained shortly) and K denotes knee.
As can be seen from Fig. 3.8, in the breakdown region the reverse current increases rap idly, with the associated increase in voltage drop being very small. Diode breakdown is normally nut destructive provided that the power dissipated in the diode is limited by external circuitry to a "safe" level. This safe value is normally specified on the device data sheets. I cherefore is necessary to limit the reverse
The fact that the diode $i-v$ characteristic in breakdown is almost a vertical line enables The fact in voltage regulation. This subject will be studied in Section 3.5 .

18
 3.3 MODELING THE DIODE FORWARD CHARACTERISTIC

Having studied the diode ternunal characteristics we are now ready to consider the analysi of circuits employing forward-conducting diodes. Figure 3.10 shows such a circuit. It con sists of a dc source $V_{D D}$, a resistor R, and a diode. We wish to analyze this circuit to deter mine the diode voltagc V_{D} and current I_{D}. Toward that end we consider developing a variety of models for the operation of the dode. We already know two such models. the ideal diode model, and the exponential model. In the following discussion we shall assess the suitability of these two ammen of and design of diode circuits, establishes a foundation for the modeling of transistor oper tion that we will study in the next two chapters.

3.3.1 The Exponential Model

The most accurate description of the diode operation in the forward region is provided by the exponential model. Unfortunately, however, its severely nonlinear nature makes this model the most difficult to use. To illustrate, let's analyze the circuit in Fig. 3.10 using the exponential diode model.
Assuming that $V_{D D}$ is greater than 0.5 V or so, the diode current will be much greater than I_{S}, and we can represent the diode $i-v$ characteristic by the exponential relationship resulting in

$$
\begin{equation*}
I_{D}=I_{s} e^{V_{D} / n V_{T}} \tag{3.6}
\end{equation*}
$$

The other equation that governs circuit operation is obtained by writing a Kirchhoff loop equation, resulting in

$$
\begin{equation*}
I_{D}=\frac{V_{D D}-V_{D}}{R} \tag{3.7}
\end{equation*}
$$

Assuming that the diode parameters I_{S} and n are known, Eqs. (3.6) and (3.7) are two equafions in the two unknown quantities I_{D} and V_{D}. Two alternative ways for obtaining the solu tion are graphical analysis and iterative analysis.

FIGURE 3.10 A simple circuit used to illustrate the analysis of FIGURE 3.10 A simple circeut used to inustrat
circuits in which the diove is forward conducting.

FIGURE 3.11 Graphical analysis of the circuit in Fig. 3.10 using the exponentiai diode model.

3.3.2 Graphical Analysis Using the Exponential Model

Graphical analysis is performed by plotting the relationships of Eqs. (3.6) and (3.7) on the $i-\varkappa$ plane. The solution can then be obtained as the coordinates of the point of intersection of the two graphs. A sketch of the graphical construction is shown in Fig. 3.11. The curve represents the exponential diode equation (Eq. 3.6), and the straight line represents Eq. (3.7). in core meaningful in later chapters. The load line intersects the diode curve at point Q, which represents the operating point of the circuit. Its coordinates give the values of I_{D} and V_{D}
Graphical analysis aids in the visualization of circuit operation. However, the effort justified in practice. justified in practice

3.3.3 Iterative Analysis Using the Exponential Model

Equations (3.6) and (3.7) can be solved using a simple iterative procedure, as illustrated in the following example.

Determine the current I_{D} and the diode voltage V_{D} for the circuit in Fig. 3.10 with $V_{D D}=5 \mathrm{~V}$ and $R=1 \mathrm{k} \Omega$. Assume that the diode has a current of 1 mA at a voltage of 0.7 V and that its voltage drop changes by 0.1 V for every decade chauge in current.

Solution

To begin the iteration, we assume that $V_{D}=0.7 \mathrm{~V}$ and use Eq. (3.7) to determine the current,

$$
\begin{aligned}
I_{D} & =\frac{V_{D D}-V_{D}}{R} \\
& =\frac{5-0.7}{1}=4.3 \mathrm{~mA}
\end{aligned}
$$

We then use the diode equation to obtain a better estimate for V_{D}. This can be done by employing Eq. (3.5), namely,

$$
V_{2}-V_{1}=2.3 n V_{T} \log \frac{I_{2}}{I_{1}}
$$

For our case, $2.3 n V_{T}=0.1 \mathrm{~V}$. Thus,

$$
V_{2}=V_{1}+0.1 \log \frac{I_{2}}{I_{1}}
$$

Substituing $V_{1}=0.7 \mathrm{~V}, I_{1}=1 \mathrm{~mA}$, and $I_{2}=4.3 \mathrm{~mA}$ rcsults in $V_{2}=0.763 \mathrm{~V}$. Thus the results of the first iteration are $I_{D}=4.3 \mathrm{~mA}$ and $V_{D}=0.763 \mathrm{~V}$. The second iteration proceeds in a similar manuer:

$$
\begin{aligned}
I_{D} & =\frac{5-0.763}{1}=4.237 \mathrm{~mA} \\
V_{2} & =0.763+0.1 \log \left[\frac{4.237}{4.3}\right] \\
& =0.762 \mathrm{~V}
\end{aligned}
$$

Thus the second iteration yields $I_{D}=4.237 \mathrm{~mA}$ and $V_{D}=0.762 \mathrm{~V}$. Since these values are not much different from the values obtained after the first iteration, no further iterations are necessary, and the solution is $I_{D}=4.237 \mathrm{~mA}$ and $V_{D}=0.762 \mathrm{~V}$.

3.3.4 The Need for Rapid Analysis

The iterative analysis procedurc utilized in the example above is simple and yields accurate results after two or three iterations. Nevertheless, there are situations in which the effort and time required are still greater than can be justified. Specifically, if one is doing a pencil-andpaper design of a relatively complex circuit, rapid circuit analysis is a necessity. Through quick analysis, the designer is able to evaluate various possibilities before deciding on a suitable circuit design. To speed up the analysis process one must be content with less precise results. This, however, is seldom a problem, because the more accurate analysis can be post perign a final or almost-final design is obtained. Accur sita , (see Section 3.9). The results of such an analysis can then be used to further refine or "finetune" the design,

To speed up the analysis process, we must find simpler models for the diode forward characteristic.

3.3.5 The Piecewise-Linear Model

The analysis can be greatly simplified if we can find linear relationships to describe the diode terminal characteristics. An attempt in this direction is illustrated in Fig. 3.12, where the exponential curve is approximated by two straight lines, line A with zero slope and line B with a slope of $1 / r_{D}$. It can be seen that for the particular case shown in Fig. 3.12, over the curent range of 0.1 mA to 10 mA the voltages predicted by the straight-lines model shown differ from those predicted by the exponential model by less than 50 mV . Obviously the choice of these two straight lines is not unique; one can obtain a closer approximation by restricting the current range over which the approximation is required.

FIGURE 3.12 APpInximating the diode forward characteristic with two siraight lines: the piecewisc-linear model.

The straight-lines (or piecewise-lincar) model of Fig. 3.12 can be described by

$$
\begin{aligned}
& i_{D}=0, \quad v_{D} \leq V_{D 0} \\
& i_{D}=\left(v_{D}-V_{D 0}\right) / r_{D}, \quad v_{D} \geq V_{D 0}
\end{aligned}
$$

where $V_{D 0}$ is the intercept of line B on the voltage axis and r_{D} is the inverse of the slope of line B. For the particular example shown, $V_{D 0}=0.65 \mathrm{~V}$ and $r_{D}=20 \Omega$.
ircuit shown in Fig 3 model described by Eqs. (3.8) can be represented by the equivalent i_{ν} to flow in the forward. Note that an ideal diode is included in this model to constrain resistance mode

(a)

(b)

ExM1R2a3

Repeat the problem in Example 3.4 utilizing the piecewise-linear model whose parameters ar gepeat in Fig. $3.12\left(V_{D 0}=0.65 \mathrm{~V}, r_{D}=20 \Omega\right)$. Note that the characteristics depicted in this figure re those of the diode described in Example 3.4 (1 mA at 0.7 V and $0.1 \mathrm{~V} / \mathrm{dccade}$).

Solution

Selacing the diode in the circuit of Fig. 3.10 with the equivalent circuit model of Fig. 3.13 results in the circuit in Fig. 3.14, from which we can write for the current I_{D},

$$
I_{D}=\frac{V_{D D}-V_{D 0}}{R+r_{D}}
$$

FIGURE 3.14 The circuit of Fig. 3.10 wint the diode replaced with its piecewise-linear modcl of Fig. 3.13
where the model parameters $V_{D 0}$ and r_{D} are seen from Fig. 3.12 to be $V_{D 0}=0.65 \mathrm{~V}$ and $r_{D}=20 \Omega$. Thus,

$$
I_{D}=\frac{5-0.65}{1+0.02}=4.26 \mathrm{~mA}
$$

The diode voltage V_{D} can now be computed:

$$
\begin{aligned}
V_{D} & =V_{D 0}+I_{D} T_{D} \\
& =0.65+4.26 \times 0.02=0.735 \mathrm{~V}
\end{aligned}
$$

3.3.6 The Constant-Voltage-Drop Model

An even simpler model of the diode forward characteristics can be obtained if we use a vertical straight line to approximate the fast-rising part of the exponential curve, as shown in Fig. 3.15. The resulting model simply says that a forward-conducting diode exhibits a constant voltage drop V_{D}. The value of V_{D} is usually taken to be 0.7 V . Note that for the particular diode whose characleristics are depicted in Fig. 3.15, this model predicts the diode voltage to within $\pm 0.1 \mathrm{~V}$ over the current range of 0.1 mA to 10 mA . The constant-voltagcdrop model can be represented by the cquivalent circuit shown in Fig. 3.16.

The constant-voltage-drop model is the one most frequently employed in the initial phases of analysis and design. This is especially true if at these stages one does not have detailed information about the diode characteristics, which is often the case.

Finally, note that if we employ the constant-voltage-drop model to solve the problem in Examples 3.4 and 3.5 , we obtain

FIGURE 3.15 Development of the constant oltage-drop model of the diode forward charaterisics. A vertical straight line (B) is user Observe that tlis simple moded predicts V_{D} within $\pm 0.1 \mathrm{~V}$ over the current range of 0.1 mA to 10 mA .

(a)

(b)

FIGURE 3.16 The constant-voitage-drop model of the diode forward characteristics and its equivalent
circuit representation. and

$$
\begin{aligned}
I_{D} & =\frac{V_{D D}-0.7}{R} \\
& =\frac{5-0.7}{1}=4.3 \mathrm{~mA}
\end{aligned}
$$

which are not too different from the values obtained before with the more elaborate models.

3.3.7 The Ideal-Diode Model

In applications that involve voltages much greater than the diode voltage drop ($0.6-0.8 \mathrm{~V}$), we may neglect the diode voltage drop altogether while calculating the diode current. The result is the ideal-diode model, which we studied in Section 3.1. For the circuit in Examples 3.4 and 3.5 (i.e., Fig. 3.10 with $V_{D D}=5 \mathrm{~V}$ and $R=1 \mathrm{k} \Omega$), utilization of the ideal-diode model leads to

$$
\begin{aligned}
& V_{D}=0 \mathrm{~V} \\
& I_{D}=\frac{5-0}{1}=5 \mathrm{~mA}
\end{aligned}
$$

ich for a very quick analysis would not be bad as a gross estimate. However, with almos wo additional work, the 0.7 -V-drop model yields much more realistic results. We note, how ever, that the greatest utility of the ideal-diode model is in determining which diodes are on ever, which are off in a multidiode circuit, such as those considered in Section 3.1.

EXSRCISES
 has a voltage of $07 . \mathrm{V}$ at 1 -mil current and that the voltage changes by 0.1 decade of current chang Ans (a) 0.434 mA , 0.663 V : (b) $0.434 \mathrm{~mA}, 0.659 \mathrm{~V}$, (c) $0.43 \mathrm{~mA}, 0.7 \mathrm{~V}$
311 Consider a diode that is 100 times as farge (injunction area) as that whose charactenstics ate displayed in Fig. 3.12. If we approximate the charfacteristics in a mamer simitar to that in Fig. 312 but over a current cange 100 times as latge) how would the nodel paraneters V, and $\%_{\text {, change? }}$ Ans. I_{D}. does not change, r_{n} decreases by a facter of 100 to 0.2Ω
D3.22 Design the circuit in Fig. E3 12 to provide an outp voltage of 2.4 V . Assume that the diodes available have 07 Wrop it 1 mA and hat $\Delta V=01$ V/decade change in current:

figure en, 12
Ans. $R=760 \Omega$
3.73 Repeat Exercise 3.4 using the $0.7-V$-drop model to obtain hetter estmates of l and V than those found in Exercise 3.4 (using the ideal-diode model),
Ans. (a) $1.72 \mathrm{~mA}, 0.7 \mathrm{~V}$; (b) $0 \mathrm{~mA}, 5 \mathrm{~V}$; (c) $0 \mathrm{~mA}, 5 \mathrm{~V}$; (d) $1.72 \mathrm{~mA}, 07 \mathrm{~V}$; (e) $2.3 \mathrm{~mA},+2.3 \mathrm{~V}$ (f) $33 \mathrm{~mA}+17 \mathrm{~V}$

3.3.8 The Small-Signal Mode

There are applications in which a diode is biased to operate at a point on the forward i characteristic and a small ac signal is superimposed on the dc quantities. For this situation, we first have to determine the de operating point (V_{D} and I_{D}) of the diode using one of the models discussed above. Most frequently, the 0.7-V-drop model is utilized. Then, fo

FIGURE 3.17 Development of the diode small-signal model. Note that the numerical values shown aro
for a diode with $n=$? for a diode with $n=2$
small-signal operation around the dc bias point, the diode is best modeled by a resistance equal to the inverse of the slope of the tangent to the exponential $i-v$ characteristic at the bias point. The concept of biasing a nonlinear device and restricting signal excursion to a short, almost-linear segment of its characteristic around the bias point was introduced in Section 1.4 for two-porl networks. In the following, we develop such a small-signal model for the junction diode and illustrate its application
Consider the conceptual circuit in Fig. 3.17(a) and the corresponding graphical representation in Fig. 3.17 (b). A dc voltage V_{D}, represented by a battery, is applied to the diode, and a time-varying signal $v_{d}(t)$, assumed (arbitrarily) to have a triangular waveform, is superimposed on the dc voltage V_{D}. In the absence of the signal $v_{d}(t)$ the diode voltage is equal to V_{D}, and correspondingly, the diode will conduct a de current I_{D} given by

$$
I_{D}=I_{S} e^{V_{D / n} V_{T}}
$$

(3.9)

When the signal $v_{i}(t)$ is applied, the total instantaneous diode voltage $v_{D}(t)$ will be given by

$$
v_{D}(t)=V_{D}+v_{d}(t)
$$

Correspondingly the total instantaneous diode current $i_{D}(t)$ will be

$$
\begin{equation*}
i_{D}(t)=I_{S} e^{v_{D} / n V_{T}} \tag{3.11}
\end{equation*}
$$

Substituting for v_{D} from Eq. (3.10) gives

$$
i_{D}(t)=I_{S} e^{\left(v_{D}+\tau_{D}\right) / 2 V_{T}}
$$

which can be rewritten

$$
i_{D}(t)=I_{S} e^{V_{D} / n V_{T}} e^{v_{R} / n V_{T}}
$$

Using Ey. (3.9) we obtain

$$
i_{D}(t)=I_{D} e^{v_{d} / n V_{T}}
$$

Now if the amplitude of the signal $v_{d}(t)$ is kept sufficiently small such that

$$
\frac{v_{d}}{n V_{T}} \ll
$$

hen we may expand the exponential of Eq. (3.12) in a series and truncate the series after the first two terms to obtain the approximate expression

$$
\begin{equation*}
i_{D}(t) \simeq I_{D}\left(1+\frac{v_{d}}{n V_{T}}\right) \tag{3.14}
\end{equation*}
$$

This is the small-signal approximation. It is valid for signals whose amplitudes are smaller than about 10 mV for the case $n=2$ and 5 mV for $n=1$ (see Eq. 3.13 and recall that $V_{T}=$ 25 mV).

From Eq. (3.14) we have

$$
i_{D}(t)=I_{D}+\frac{I_{D}}{n V_{T}} v_{d}
$$

Thus, superimposed on the de current I_{D}, we have a signal current component directly proportional to the signal voltage v_{d}. That is,

$$
i_{D}=I_{D}+i_{d}
$$

where

$$
\begin{equation*}
i_{d}=\frac{I_{D}}{n V_{\tau}} v_{d} \tag{3.17}
\end{equation*}
$$

The quantity relating the signal current i_{d} to the signal voltage v_{d} has the dimensions of conductance, mhos (δ), and is called the diode small-signal conductance. The inverse of this parameter is the diode small-signal resistance, or incremental resistance, r_{d},

$$
r_{d}=\frac{n V_{T}}{I_{D}}
$$

(3.18)

Note that the value of r_{d} is inversely proportional to the bias current I_{D}
${ }^{3}$ For $n=2, v_{d} / n V_{V}=0.2$ ith $v_{d}=10 \mathrm{mV}$. Thus the next term in the series expansion of the exponential
wiill be $!\times 0.2^{2}=0.02$, a factor of 10 lower then the linear term we kept. A better approximation can be achièved by keeping η_{2} smaller. Also, note that for $n=1$, v_{4} should be limited to, say, 5 mV .

Let us return to the graphical representation in Fig．3．17（b）．It is easy to see that using the small－signal approximation is equivalent to assuming that the signal amplitude is sufficiently Snall such that the excursion along the i－v curve is limited to a short almost－linear segment． The slope of ins segment，whe is equal to the slope to the $i-v$ curve at the operating point Q ，is equal to the small－signal conductance．The reader is encouraged to prove that the slope of the $i-v$ curve at $i=I_{D}$ is equal to $I_{D} / n V_{T}$ ，which is $1 / r_{d}$ ；that is，

$$
r_{d}=1 /\left[\frac{\partial i_{D}}{\partial v_{D}}\right\rfloor_{i_{D}=I_{D}}
$$

（3．19）
From the preceding we conclude that superimposed on the quantities V_{D} and I_{D} that define the dc bias point，or quiescent point，of the diode will be the small－signal quantities $v_{d}(t)$ and $i_{d}(t)$ ，which are related by the diode small－signal resistance r_{d} evaluated at the bias point（Eq．3．18）．Thus the small－signal analysis can be perforned separately from the dc bias analysis，a great convemence that results from the linearization of the diode characteristics
inherent in the small－signal approximation．Specifically，after the dc analysis is performed the small－signal equivalent circuit is obtaincd by eliminating all dc sources（i．c．short－ circuiting dc voltage sources and open－circuiting dc current sources）and replacing the diode by its small－signal resistance．The following example should illustrate the appling the diode small－signal model．

swhess

Consider the circuit shown in Fig．3．18（a）for the case in which $R=10 \mathrm{k} \Omega$ ．The power supply V^{+} has a dc value of 10 V on which is superimposed a $60-\mathrm{Hz}$ sinusoid of $1-\mathrm{V}$ peak amplitude．（This ＂signal＂component of the power－supply voltage is an innperfection in the power－supply design． It is known as the power－supply ripple．More on this later．）Calculate both the dc voltage of the It is known as the power－supply ripple．More on this later．）Calculate both the do voltage of the
diode and the amplitude of the sine－wave signal appearing across it．Assume the diode to have a $0.7-\mathrm{V}$ drop at $1-\mathrm{mA}$ current and $n=2$ ．

（a）
（c）Small－signal equivalent circuit．
Solution
Considering dc quantities only，we assume $V_{D} \simeq 0.7 \mathrm{~V}$ and calculate the diode dc current

$$
I_{D}=\frac{10-0.7}{10}=0.93 \mathrm{~mA}
$$

Since this value is very close to 1 mA ，the diode voltage will be very close to the assumed value of 0.7 V ．At this operating point，the diode incremental resistance r_{d} is

$$
r_{d}=\frac{n V_{T}}{I_{D}}=\frac{2 \times 25}{0.93}=53.8 \Omega
$$

The signal voltage across the diode can be found from the small－signal equivalent circuit in The signal voltage across the the $60-\mathrm{Hz} 1-\mathrm{V}$ peak sinusoidal component of V^{\dagger} ，and v_{d} is the cor－ Fig． 3.18 （c）．Here v_{s} denotes the $60-\mathrm{Hz}$ 1－ V peak sinusoidal component of ν ，and v_{d} is the cor－
responding signal across the diode．Using the voltage－divider rule provides the peak amplitude of responding sig
v_{d} as follows：

$$
\begin{aligned}
z_{d}(\text { peak }) & =\hat{V}_{s} \frac{r_{d}}{R+r_{d}} \\
& =1 \frac{0.0538}{10+0.0538}=5.35 \mathrm{mV}
\end{aligned}
$$

Finally we note that since this value is quite small，our use of the small－signal model of the diode is justified．

3．3．9 Use of the Diode Forward Drop in Voltage Regulation
A further application of the diode small－signal model is found in a popular diode application， namely the use of diodes to create a regulated voltage．A voltage regulator is a circuit whose purpose is to provide a constant dc voltage between its output terminals．The output voltage is required to remain as constant as possible in spite of（a）changes in the load current drawn from the regulator output terminal and（b）changes in the dc power－supply voltage that feeds the regulator circuit．Since the forward voltage drop of the diode renains almost constant at approximately 0.7 V while the current through it varies by relatively large amounts，a forward－biased diode can make a simple voltage regulator．For instance，we have seen in Example 3.6 that while the $10-\mathrm{V}$ dc supply voltage had a ripple of 2 V peak－to－peak（ $\mathrm{a} \pm 10 \%$ variation），the corresponding ripplc in the diode voltage was only about $\pm 5.4 \mathrm{mV}$（a $\pm 0.8 \%$ variation）．Regulated voltages greater than 0.7 V can be obtained by connecting a number of diodes in series．For example，the use of three forward－biased diodes in series provides a volt－ age of about 2 V ．One such circuit is investigated in the following example，which utilizes the diode small－signal model to quantify the efficacy of the voltage regulator that is rcalized．

Whuy

Consider the circuit showu in Fig．3．19．A string of three diodes is used to provide a constan voltage of about 2.1 V ．We want to calculate the percentage change in this regulated voltage caused by（a）a $\pm 10 \%$ change in the power－supply voltage and（b）connection of a $1-\mathrm{k} \Omega$ load resistance．Assume $n=2$ ．

Solution

With no load，the nominal value of the current in the diode string is given by

$$
I=\frac{10-2.1}{1}=7.9 \mathrm{~mA}
$$

Thus each diode will have an incremental resistance of

$$
r_{d}=\frac{n V_{T}}{l}
$$

FIGURE 3.19 Circuit for Example 3.7
Using $n=2$ gives

$$
r_{d}=\frac{2 \times 25}{7.9}=6.3 \Omega
$$

The threc diodes in series will have a total incremental resistance of

$$
r=3 r_{d}=18.9 \Omega
$$

This resistance, along with the resistance R, forms a voltage divider whose ratio can be used to calculate the change in output voltage due to $a \pm 10 \%$ (i.e., $\pm 1-\mathrm{V}$) changc in supply voltage. Thu the peak-to-peak change in output voltaice will be

$$
\Delta v_{O}=2 \frac{r}{r+R}=2 \frac{0.0189}{0.0189+1}=37.1 \mathrm{mV}
$$

That is, corresponding to the $\pm 1-\mathrm{V}(\pm 10 \%)$ change in supply voltage, the output voltage will change by $\pm 18.5 \mathrm{mV}$ or $\pm 0.9 \%$. Since this implies a change of about $\pm 6.2 \mathrm{mV}$ per diode, our use of the small-signal model is justified.
When a load resistance of $1 \mathrm{k} \Omega$ is connected across the diode string, it draws a current of approximately 2.1 mA . Thus the current in the diodes decreases by 2.1 mA , resulting in a decrease in voltage across the diode string given by

$$
\Delta v_{O}=-2.1 \times r=-2.1 \times 18.9=-39.7 \mathrm{mV}
$$

since this implies that the voltage across each diode decreases by about 13.2 mV , our use of the small-signal model is not entirely justified. Nevertheless, a detailed calculation of the voltage hange using the exponential model results in $\Delta v_{O}=-35.5 \mathrm{mV}$, which is not too different from the approximate value obtained using the incremental model.

ExERcISES

374 Find the value of the diode small-signal resistance r at bias currents of $0.4 \mathrm{~mA}, 1 \mathrm{~mA}$, and 10 mA Assume $n=1$
Ans. $250 \Omega: 25 \Omega 2.5 \Omega$
3.15 Considet a diode with $n-2$ biased at 1 mA . Find the change in current as a result of changing the volt age by (a) -20 mV . (b) -10 mV (c) -5 mV (d) +5 mV (e) +10 mV and (f) +20 mV It cach ase do the calculations (i) using the smat-signal model and (ii) using the exponential model. his: (a) $-0.40 .-0.33 \mathrm{~mA}$; (b) $-0.20-0.18 \mathrm{~mA}$: (c) -0.10 , (b) +0.22 mA ; (f) $+0.40 .+0.49 \mathrm{~mA}$
03.16 Design the circuit of Fig. E3. 16 so that $V_{0}=3 \mathrm{Y}$ when $I_{L}=0$ and V_{0} changes by 40 mV per 1 mA of Fad current Find the value of R and the junction arca of each diode (assume all four diodes are identical) relative to a diode with 0.7 .5 drop al $1-$ mA current: Assume $n=1$

figure ex.it.
Ans. $R=4.8 k 0.034$
3.3.10 Summary

As a summary of this important section on diode modeling, Table 3.1 lists the five diode models studied and provides pertinent comments regarding each. These comments are intended to aid in the selection of an appropriate model for a particular application. The question "which model?" is one that circuit designers face repeatcdly, not just with diodes but with every circuit element. The problem is finding an appropriate compromise between accuracy and speed of analysis. Onc's ability to select appropriate device models improves with practice and cxperience.

TABLE 3.1 Moteling the Diode Forward Characteristic

Model	Graph	Equations	Circuit	Comments
Exponential		$\begin{aligned} & i_{D}=I_{S} e^{v_{D} / n V_{T}} \\ & v_{D}=2.3 n V_{T} \log \left(\frac{i_{D}}{I_{S}}\right) \\ & V_{D 2}-V_{D 1}=2.3 n V_{T} \log \left(\frac{I_{D 2}}{I_{D 1}}\right) \\ & 2.3 n V_{T}=60 \mathrm{mV} \text { for } n=1 \\ & 2.3 n V_{T}=120 \mathrm{mV} \text { for } n=2 \end{aligned}$		$\begin{aligned} & I_{S}=10^{-12} \mathrm{~A} \text { to } 10^{-15} \mathrm{~A}, \\ & \text { } \begin{array}{l} \text { depending on junction } \\ \text { area } \\ V_{T} \cong 25 \mathrm{mV} \\ n=1 \text { to } 2 \end{array} \end{aligned}$ Physically based and remarkably accurate model Useful when accurate analysis is needed

TABLE 3.1
Model

3.4 OPERATION IN THE REVERSE BREAKDOWN 13 REGION-ZENER DIODES

The very steep $t-v$ curve that the diode extibits in the breakdown region (Fig. 3.8) and the almost-constant voltage drop that this indicates suggest that diodes operating in the break down region can be used in the design of voltage regulators. From the previous section, the reader will recall hat volage regulors are circuits that provide constant de output volage in the face of changes in their load current and in he system power-supply volage. This in fact turns oun to be an inpran application of diodes operaing in the everse beakdow region, and special diodes are manufactured to operate specifically in the breakdown region. Such diodes are called breakdown diodes or, more conunonly, zener diodes, atter an early worker in the area.

Figure 3.20 shows the circuit symbol of the zener diode. In normal applications of zene diodes, current flows into the cathode, and the cathode is positive with respect to the anode. Thus I_{z} and V_{z} in Fig. 3.20 have positive values.

3.4.1 Specifying and Modeling the Zener Diode

Figure 3.21 shows details of the diode $i-v$ characteristics in the breakdown region. We obscrve that for currents greater than the knee current $I_{Z K}$ (specified on the data sheet of

FIGURE 3.20 Circuit symbol lior a zener diode

$\Delta V=\Delta I r_{z}$
FIGURE 3.21 The diode $i-i /$ characteristic with the breakdown region shown in some detail
the zener diode), the $i-v$ characteristic is almost a straight line. The manufacturer usually specifies the voltage across the zener diode V_{z} at a specified test current, $I_{Z T}$. We have ind cated these parameters in Fig. 3.21 as the coordinates of the point labeled Q. Thus a 6.8-V zener diode will exhibit at $6.8-\mathrm{V}$ drop at a specified test current of, say, 10 mA . As the cur rent through the zener deviates from $I_{Z T}$, the voltage across it will change, though only slightly. Figure 3.21 shows that corresponding to current change ΔI the zener voltage changes by ΔV, which is related to ΔI by

$$
\Delta V=r_{z} \Delta I
$$

where r_{z} is the inverse of the slope of the almost-linear $i-v$ curve at point Q. Resistance r_{z} is the incremental resistance of the zener diode at operating point Q. It is also known as the dynamic resistance of the zener, and its value is specified on the device data sheet Typically, r_{z} is in the range of a few ohms to a few tens of ohms. Obviously, the lower the value of r_{2} is, the more constant the zener voltage remains as its current varies and thus the morc ideal its performance becomes in the design of voltage regulators. In this regard we observe from Fig. 3.21 that while r_{z} remains low and almost constant over a wid range of curtent, its value increases considerably in the vicinity of the knee. Therefore, as a general design guideline, one should avoid operating the zener in this low-current region.

Zener diodes are fabricated with voltages V_{Z} in the range of a few volts to a few hun dred volts. In addition to specifying V_{Z} at a particular current $I_{Z T}$, r_{z}, and $I_{Z K}$, the manufacturer also specifies the maximum power that the device can safely dissipate. Thu a 0.5 -W, 6.8-V 7.ener diode can operate safely at currents up to a maximum of about 70 mA .

The almost-linear $i-v$ characteristic of the zener diode suggests that the device can be modeled as indicated in Fig. 3.22 . Here V_{za} denotes the point at which the straight line of slope $1 / r_{z}$ intersects the voltage axis (refer to Fig. 3.21). Although $V_{z 0}$ is shown to be slightly different from the knee voltage $V_{Z K}$, in practice their values are almost equal. The equivalent circuit model of Fig. 3.22 can be analytically described by

$$
V_{Z}=V_{Z 0}+r_{z} I_{Z}
$$

and it applies for $I_{Z}>I_{Z K}$ and, obviously, $V_{Z}>V_{Z 0}$.

3.4.2 Use of the Zener as a Shunt Regulator

We now illustrate, by way of an example, the use of zener diodes in the design of shunt reg ulators, so named because the regulator circuit appears in parallel (shunt) with the load.

FIGURE 3.22 Model for the zener diode.

Exinnim

The $6.8-\mathrm{V}$ zener diode in the circuit of Fig. 3.23(a) is specified to have $V_{Z}=6.8 \mathrm{~V}$ at $I_{Z}=5 \mathrm{~mA}$, the $6.8-{ }^{2}$. The supply voltage V^{+}is nominally 10 V but can vary by $\pm 1 \mathrm{~V}$.

(a)

(b)

FIGURE 3.23 (a) Cic
(a) Find V_{o} with no load and with V^{+}at its nominal value in V^{+}. Note that ($\Delta V_{O} / \Delta V^{+}$), usually (b) Find the change in V_{o} resuling from the $\pm 1-\mathrm{V}$
expressed in mV / V, is known as line regulation. (c) Find the change in $V_{\text {o }}$ resulting from connecting a load resistance

1 mA , and hence find the load regulation $\left(\Delta V_{o} / \Delta I_{L}\right)$ in $\mathrm{mV} / \mathrm{mA}$.
(d) Find the change in V_{o} when $R_{L}=2 \mathrm{k} \Omega$.
(e) Find the value of V_{O} when $R_{L}=0.5 \mathrm{k} \Omega$. . the diode still operates in the breakdown region?
(f) What is the minimum value of R_{L} for which the dode

First we must determine the value of the parameter $V_{z 0}$ of the zener diode model. Substituting $V_{z}=6.8 \mathrm{~V}, I_{z}=5 \mathrm{~mA}$, and $r_{z}=20 \Omega$ in Eq. (3.20) yie
zener is given by

$$
\begin{aligned}
I_{Z} & =I=\frac{V^{+}-V_{Z 0}}{R+r_{z}} \\
& =\frac{10-6.7}{0.5+0.02}=6.35 \mathrm{~mA}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
V_{o} & =V_{z 0}+I_{z} r_{z} \\
& =6.7+6.35 \times 0.02=6.83 \mathrm{~V}
\end{aligned}
$$

(b) For $a \pm 1-\mathrm{V}$ change in V^{+}, the change in output voltage can be found from

$$
\begin{aligned}
\Delta V_{o} & =\Delta V^{+} \frac{r_{z}}{R+r_{z}} \\
& =11 \times \frac{20}{500+20}= \pm 38.5 \mathrm{mV}
\end{aligned}
$$

Thus,

$$
\text { Linc regulation }=38.5 \mathrm{mV} / \mathrm{V}
$$

(c) When a load resistance R_{I}, that draws a load current $L_{L}=1 \mathrm{~mA}$ is connected, the zener current will decrease by 1 mA . The corresponding change in zencr voltage can be found from

$$
\begin{aligned}
\Delta V_{O} & =r_{z} \Delta I_{Z} \\
& =20 \times-1=-20 \mathrm{mV}
\end{aligned}
$$

Thus the load regulation is

$$
\text { Load regulation } \equiv \frac{\Delta V_{O}}{\Delta I_{L}}=-20 \mathrm{mV} / \mathrm{mA}
$$

(d) When a load resistance of $2 \mathrm{k} \Omega$ is connected, the load current will be approximately
$6.8 \mathrm{~V} / 2 \mathrm{k} \Omega=3.4 \mathrm{~mA}$ $6.8 \mathrm{~V} / 2 \mathrm{k} \Omega=3.4 \mathrm{~mA}$. Thus the change in zener current will be $\Delta I_{z}=-3.4 \mathrm{~mA}$, and the corre-
sponding change in zener voltage (output voltage) will thus be sponding change in zener voltage (output voltage) will thus be

$$
\Delta V_{o}=r_{z} \Delta I_{Z}
$$

$$
=20 \times-3.4=-68 \mathrm{mV}
$$

This calculation, however, is approximate, because it neglects the change in the current I. A more
accurate estimate of ΔV_{0} can be obtained by such an analysis is $\Delta V_{o}=-70 \mathrm{mV}$. (e) $A \cap R_{4}$ of $05 \mathrm{k} \Omega$ would dran
the current I supplied through R is only 6.4 mA (for $6.8 / 0.5=13.6 \mathrm{~mA}$. This is not possible, because If this is indeed the case, then V_{o} is determined by the vollage divider formod by R_{L} and R (Fig. 3.23 a),

$$
\begin{aligned}
V_{o} & =V^{+} \frac{R_{L}}{R+R_{L}} \\
& =10 \frac{0.5}{0.5+0.5}=5 \mathrm{~V}
\end{aligned}
$$

Since this voltage is lower than the breakdown voltage of the zencr, the diode is indeed no longer
operating in the breakdown region. operating in the breakdown region.
(f) For the zener to be at the edge of the breakdown region, $I_{z}=I_{Z K}=0.2 \mathrm{~mA}$ and $V_{Z} \approx V_{Z K} \simeq$
6.7 V. At this point the lowest (worst-case) current suppied trigh and thus the load current is $4.6-0.2=44 \mathrm{~mA}$ (worst supplied through R is $(9-6.7) / 0.5=4.6 \mathrm{~mA}$, and thus the load current is $4.6-0.2=4.4 \mathrm{~mA}$. The corresponding value of R_{L} is

$$
R_{L}=\frac{6.7}{4.4} \simeq 1.5 \mathrm{k} \Omega
$$

3.4.3 Temperature Effects

The dependence of the zener voltage V_{z} on temperature is specified in terms of its tempera-
ture coefficient TC, or temco as it is commonly known, which is undy ture coefficient TC, or temco as it is commonly known, which is usually expressed in
$\mathrm{mV}{ }^{\circ} \mathrm{C}$. The value of TC depends on the zener voltage, and for a given diode the TC varies with the operating current. Zener diodes whose V_{z} are lower than about 5 V exhibit a negative TC. On the other hand, zeners with higher voltages exhibit a positive TC. The TC of a zener diode with a V_{Z} of about 5 V can be made zero by operating the diode at a specified current. Another commonly used technique for obtaining a reference voltage with low temperature coefficient is to connect a zener diode with a positive temperature cord-conducting diode has a voltage drop of $\simeq 0.7 \mathrm{~V}$ and a TC of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, the series combination will provide a voltage of $\left(V_{7}+0.7\right)$ with a TC of about zero.

EXERCISES

317 A ener diode whose nominal whlage is 10 V a 10 mA las an meremental resistance of 50Ω. What voltage do you expect ti the diode current is hatved Doubleed what is the watue of $1 .{ }_{20}$ in the zenet nodel?
Ans. $9.75 \mathrm{~V}, 10.5 \mathrm{~V}, 95 \mathrm{~V}$
D3.18 A zcnet diode exibis a constant voltage of 56 V for curtents geater lian five times the knee curent Iz is specified to be 1 mi. The efier is to be used in the desifn of a shunt tegulator fed from a $15-\mathrm{V}$ supply, The toad current varies over the range of 0 mA to 15 mA . Find a sutable value for the resistur R, What is the maximum power dissipation of the Jener diede?
Ans. $470 \Omega 2,112 \mathrm{nW}$
4.19 A shunt regilator utilizes a zener diode whose voltage i $5,1 \mathrm{~V}$ a a curent of 50 mA and whose incremental resistance is 7Ω. The diode is fed fron a supply of $15-1$ nominal voltage though a $200-\Omega$ resssmental resistance is 7Ω. The diode is fed from a supply of 15 -V nominal voltage through a
tor. What is the output voltage at no load? Find the line regulation and the load regulation. Ans. $5.1 \mathrm{~V}, 33.8 \mathrm{mV} / \mathrm{V},-7 \mathrm{mV} / \mathrm{mA}$

3.4.4 A Final Remark

Though simple and useful, zener diodes have lost a great deal of their popularity in recen years. They have been virtually replaced in voltage-regulator design by specially designed integrated circuits (ICs) that perform the voltage regulation function much more effectively and with greater flexibility than zener diodes.

3 3.5 RECTIFIER CIRCUITS

One of the most important applications of diodes is in the design of recrifier circuits. A diode rectifier forms an essential building block of the de power supplies required to powe electronic equipment. A block diagram of such a power supply is shown in Fig. 3.24. As indicated, the power supply is fed from the $120-\mathrm{V}$ (rms) $60-\mathrm{Hz}$ ac line, and it delivers a do voltage V_{O} (usually in the range of $5-20 \mathrm{~V}$) to an electronic circuit represented by the load block. The de voltage V_{O} is required to be as constant as possible in spite of variations in the ac line voltage and in the current drawn by the load.
The first block in a dc power supply is the power transformer. It consists of two separatc coils wound around an iron core that magnetically couples the two windings. The primary winding, having N_{1} turns, is connected to the $120-\mathrm{V}$ ac supply, and the secondary winding, having N_{2} turns, is connected to the circuit of the de power supply. Thus an ac voltage v_{s}

FIGURE 3.24 Block diagram of a dc power supply.
of $120\left(N_{2} / N_{1}\right) \vee$ (rms) develops between the two terminals of the secondary winding. By selecting an appropriate turns ratio $\left(N_{1} / N_{2}\right)$ for the transformer, the designer can step the line voltage down to the value required to yield the particular dc voltage output of the supply. For instance, a secondary voltage of 8 -V rms may be appropriate for a dc output of 5 V . This can be achieved with a $15: 1$ turns ratio.
In addition to providing the appropriate sinusoidal amplitude for the dc power supply, the power transformer provides electrical isolation between the electronic equipment and the power-line circuit. This isolation minimizes the risk of electric shock to the equipment user. The diode rectifier converts the input sinusoid v_{s} to a unipolar output, which can have the pulsating waveform indicated in Fig. 3.24. Although this waveform has a nonzero average or a dc component, its pulsating nature makes it unsuitable as a dc source for electronic circuits, hence the need for a filter. The variations in the magnitude of the rectifier output are considerably reduced by the filter block in Fig. 3.24. In the following sections we shall study a number of rectifier circuits and a simple implementation of the output filter.

The output of the rectifier filter, though much more constant than without the filter, still coutains a time-dependent component, known as ripple. To reduce the ripple and to stabilize the magnitude of the dc output voltage of the supply against variations caused meng sing load curent, a voltage regulator is employed. Such a reguator can be implemented using he and much more commonly al present, an integrated-circuit regulator can be used.

3.5.1 The Half-Wave Rectifier

The half-wave rectifier uilizes alternate half-cycles of the input sinusoid. Figure 3.25(a) shows the circuit of a half-wave rectifier. This circuit was analyzed in Section 3.1 (see Fig. 3.3) assuming an ideal diode. Using the more realistic battery-plus-resistance diode model, we obtain the equivalent circuit shown in Fig. 3.25(b), from which we can write

$$
\begin{aligned}
& v_{O}=0, \quad v_{S}<V_{D 0} \\
& v_{O}=\frac{R}{R+r_{D}} v_{S}-V_{D 0} \frac{R}{R+r_{D}}, \quad v_{S} \geq V_{D 0}
\end{aligned}
$$

The transfer characteristic represented by these equations is sketched in Fig. 3.25(c). In many applications, $r_{D} \ll R$ and the second equation can be simplified to

(c)

(d)
(a) (b) Equivalent circuit of the half-wave reccifier with the diode FIGURE 3.25 (a) Half-wave rectifier. (b) Equivalent circuit of the hall-wave ecciser wircit. (d) Input replaced with its batry-psuming that $r_{D} \ll R$.
here $V_{D 0}=0.7 V$ In selecting diodes for rectifier design, two inpormiped by the largest current the diod urren-lhandling capability required of the diode, dete (PIV) that the diode must be able is expected to conduct, and the peak in the largest reverse voltage that is expected
to appear across the diode. In the rectifier circuit of Fig. 3.25(a), we observe that when v_{S} is negative the diode will be cut off and v_{O} will be zero. It follows that the PIV is equal to the peak of γ_{s},

$$
\text { PIV }=V_{s}
$$

It is usually prudent, however, to select a diode that has a reverse breakdown voltage at least 50% greater than the expected PIV
Before leaving the half-wave rectifier, the reader should note two points. First, it is possible to use the diode exponential characteristic to determine the exact transfer characteristic of the rectifier (see Problem 3.73). However, the amount of work involved is usually 100 great to be justified in practice. Of course, such an analysis can be easily done using a computer circuit-analysis program such as SPICE (see Section 3.9).
Second, whether we analyze the circuit accurately or not, it should be obvious that this circuit does not function properly when the input signal is small. For instance, this circuit cannot be used to rectify an input sinusoid of $100-\mathrm{mV}$ amplitude. For such an application one resorts to a so-called precision rectificr, a circuit utilizing diodes in conjunction with op amps. One such circuit is presented in Section 3.5.5.

3:20 For the half-wave rectifice ericut in Fic 3.25 2) neolecting the eftect of show it tow
 terninates al $(\pi-\theta)$, for a total conduetion angle of ($\pi-2 \theta$, (b) The average value (dc component of
 Firta numcrical valites for these quanitics for the case of $12-\mathrm{V}(\mathrm{ms})$ simisoidal input. $V=07 \mathrm{~V}$. and $R=100 \Omega$ Also give the salue for PIV.
Ans. (a) $\theta=24^{9}$, conduction angle- 175°, (b) 5.05 V (c) 163 mA 17 V

3.5.2 The Full-Wave Rectifier

The full-wave rectifier utilizes both halves of the input sinusoid. To provide a unipolar out put, it inverts the negative halves of the sine wave. One possible implementation is shown in Fig. 3.26(a). Here the transformer secondary winding is center-tapped to provide two equal voltages v_{S} across the two halves of the secondary winding with the polarities indicated Note that when the input line voltage (feeding the primary) is positive, both of the signal labeled v_{s} will be positive. In this case D_{1} will conduct and D_{2} will be reverse biased The current through D_{1} will flow through R and back to the center tap of the secondary. The cir cuit then behaves like a half-wave rectifier and the cutput during the positive half cycle when D_{1} conducts will be identical to that produced by the half-wave rectifier. Now during the negative half cycle of the ac line voltage, both of the
will be negative. Thus D_{1} will be cut off while D_{2} will conduct The voltages labeled ν_{S}, D_{2} will flow through R and back to the corrent conducte half-cycles while D_{2} conducts, the circuit behaves again as a half-wave rectifier. The important point, however, is that the current through R always flows in the same direction, and thus w will be unipolar, as indicated in Fig. 3.26(c). The output waveform shown is obtained

(c)

GURE 3.26 Full-wave rectifier utilizing a transformer with a center-tapped secondary winding: AGURE circuit; (b) transfer characteristic assuming a constant-volage-drop model for the diodes; (c) input and output waveforms.
thent voltage drop V_{D}. Thus the transfer y

The full-wave rectifier obviously produces a more "energetic" waveform than that proThe full-wave rectifer obvious phost all rectifier applications, one opts for a full-wave type of some kind.

To find the PIV of the diodes in the full-wave recifier circuit, consider the situation dur-解 ing the positive half-cycles. Diode D_{1} is cond . Thus the reverse voltage across D_{2} will be cathode of D_{2} is v_{0}, and that at in whe v_{s}. is at its peak value of $\left(V_{s}-V_{D}\right)$, and v_{S} is at its peak value of V_{s}; thus,

$$
\mathrm{PIV}=2 V_{s}-V_{D}
$$

which is approximately twice that for the case of the half-wave rectificr

EXERCISE

 inpet (b) The werage value (ade component) of v_{0} is. $V=(2 / \pi) V=-V$ points of the sine wiave
 sinkoid $Y=0 . Y$, Ans 97.4%, $101 \vee, 13$,
Ans. $97.4 \% ; 101 \mathrm{~V}: 163 \mathrm{~mA}: 33.2 \mathrm{~V}$

3.5.3 The Bridge Rectifier

An alternative implementation of the full-wave rectifier is shown in Fig. 3.27(a). The cir Wheatstone bridge, does not requircause of the similarity of its configuration to that of the the full-wave rectifier circuit of Fig enter-capped transformer, a distinct advantage ove diodes as compared to two in he 3.26 . The bridge rectifier, however, requires fou because diodes are inexpensive and The bridge rectifier circuit
input voltage, v_{s} is positive, and thus

(a)

(b)

FIGURE 3.27 The bridge rectifier: (a) circuit; (b) input and output waveforms.
diode D_{2}. Meanwhile, diodes D_{3} and D_{4} will be reverse biased. Observe that there are two diodes in series in the conduction path, and thus v_{0} will be lower than v_{s} by two diode drops (compared to one drop in the circuit previously discussed). This is somewhat of a disadvantage of the bridge rectifier
Next, consider the situation during the negative half-cycles of the input voltage. The secndary voltage v_{s} will be negative, and thus $-v_{s}$ will be positive, forcing current through D_{3}, R, and D_{4}. Meanwhile, diodes D_{1} and D_{2} will be reverse biased. The important point to note, though, is that during both half-cycles, current flows through R in the same direction (from right to left), and thus v_{0} will always be positive, as indicated in Fig. 3.27(b).

To determine the peak inverse voltage (PIV) of each diode, consider the circuit during the positive half-cycles. The reverse voltage across D_{3} can be determined from the loop formed by D_{3}, R, and D_{2} as

$$
v_{D 3}(\text { reverse })=v_{0}+v_{D 2}(\text { forward })
$$

Thus the maximum valuc of $\nu_{D 3}$ occurs at the peak of v_{O} and is given by

$$
\mathrm{PIV}=V_{s}-2 V_{D}+V_{D}=V_{s}-V_{D}
$$

Observe that here the PIV is about half the value for the full-wave rectifier with a centertapped transformer. This is another advantage of the bridge rectifier.

Yet one more advantage of the bridge rectifier circuit over that utilizing a center-tapped transformer is that only about half as many tums are required for the secondary winding of the transformer. Anorer way of looking ad his poincan be obained by obscrving hat each haff of advantages have made the bridge rectifier the most popular rectifier circuit contiguration.

EXERGISE

 Siverage (ou de componem) of the oitpul volage is $1 /=(2 / \pi) / /=2 V_{p}$ and b) the peak tiode current is $\left(V_{N}, 2 V_{D}\right) / R$. Find numicrical values for the guantities in (a) and (b) and the PIV for the case in which y/h a 12 V (mis) sinisoid, V/ 0 V V , and $\mathrm{S}-100 \Omega$
Ans. $9.4 \cup, 156 \mathrm{~mA}, 163 \mathrm{y}$

3.5.4 The Rectifier with a Filter Capacitor-The Peak Rectifie

The pulsating nature of the output voltage produced by the rectifier circuits discussed above makes it unsuitable as a de supply for elecironic circuits. A simple way to reduce the variation of the output voltage is to place a capacitor across the load resistor. It will be shown that this bilter capacitor serves to reduce substantially the variations in the rectifier output voltage.
osec how the rectifier circuit with a filter capacitor works, consider first tbe simple circuit shown in Fig. 3.28. Lcl the inpul v_{1} be a sinusoid with a peak value γ_{p}, and assume the diode to be idcal. As v_{T} goes positive, the diode conducts and the capacitor is charged so that $v_{o}=v_{j}$. This situation continues until v_{1} reaches its peak value V_{p}. Beyond the peak, as v_{1} decreases the diode becomes reverse biased and the output voltage remains constant at the value V_{p}. In fact, theoretically speaking, the capacitor will retain its charge and hence its voltage indelfinitely, because therc is no way for the capacitor to discharge. Thus the circuit provides a dc voltage output equal to the peak of the input sine wave. This is a very encouraging result in vicw of our desire to produce a dc output.

(a)

(b)

FIGURE 3.28 (a) A simple circuit used to illustrate the effect of a filter capacitor. (b) Input and output waveforms assuming an ideal diode. Note that the circuit provides a do voltage equal to the peak of the input sine wave. The circuit is therefore knowin as a peak rectifier or a peak detector.

Next, we consider the more practical situation where a load resistance R is connected across the capacitor C, as depicted in Fig. 3.29(a). However, we will continue to assume the diode to be ideal. As before, for a sinusoidal input, the capacitor charges to the peak of the input V_{p}. Then the diode cuts off, and the capacitor discharges through the load resistance R. The capacitor discharge will continue for almost the entire cycle, until the time at which v_{A} exceeds the capacitor voltage. Then the diode turns on again and charges the capacitor up to he peak of v_{j}, and the process repeats itself. Observe that to keep the output voltage from rasig $C R$ in
We CR is me erer tha he drait ind
We are now realy to analyze the circuit in detail. Figure 3.29 (b) shows the steady-state nput and output voltage waveforms under the assumption that $C R \ngtr T$, where T is the period of the input sinusoid. The waveforms of the load current

$$
i_{L}=v_{0} / R
$$

and of the diode current (when it is conducting)

$$
\begin{aligned}
i_{D} & =i_{C}+i_{L} \\
& =c \frac{d v_{I}}{d t}+i_{L}
\end{aligned}
$$

(a)

(c)

HGURE 3.29 Voltage and curent waveforms in the peak rectifier circuit with $C R \gg T$. The diode is assumed ideal.
are shown in Fig. 3.29(c). The following observations are in order

1. The diode conducts for a brief interval, Δt, near the peak of the input sinusoid and . The diode conctito with charge equal to that lost during the much longer discharge supplies The latter is approximately equal to the period T
2. Assuming an ideal diode, the diode conduction begins at time t_{1}, at which the input v_{1} equals the peak of v_{2} exponial ${ }^{2}$ can be determined by setting $i_{D}=0$ in Eq. (3.25).
3. During the diode-off interval, the capacitor C discharges through R, and thus decays exponentially with a time constant $C R$. The discharge interval begins just past the peak of v_{I}. At the end of the discharge interval, which lasts for almost the entire period $T, v_{o}=V_{p}-V_{r}$, where V_{r} is the peak-to-peak ripple voltage. When $C R \gg T$ the
value of V_{r} is small.
4. When V_{F} is small, v_{0} is almost constant and equal to the peak value of $v_{\text {}}$. Thus the dc output voltage is approximately equal to V_{P}. Similarly, the current i_{l}, is almost constant, and its dc component I_{L} is given by

$$
\begin{equation*}
I_{L}=\frac{V_{p}}{R} \tag{3.26}
\end{equation*}
$$

If desired, a more accurate expression for the output dc voltage can be obtained by taking the average of the extreme values of v_{0},

$$
\begin{equation*}
V_{o}=V_{p}-\frac{1}{2} V_{r} \tag{3.27}
\end{equation*}
$$

With these observations in hand, we now derive expressions for V_{r} and for the averag and peak values of the diode current. During the diode-off interval, v_{o} can be expressed as

$$
v_{O}=V_{p} e^{-t / C R}
$$

At the end of the discharge interval we have

$$
\dot{V}_{p}-V_{r} \approx V_{p} e^{-T / C R}
$$

Now, since $C R \gg T$, we can use the approximation $e^{-T / C R} \approx 1-T / C R$ to obtain

$$
\begin{equation*}
V_{r}=V_{p} \frac{T}{C R} \tag{3.28}
\end{equation*}
$$

We observe that to keep V_{r} small we must select a capacitance C so that $C R \gg T$. The ripple voltage V_{r} in Eq . (3.28) can be expressed in terms of the frequency $\hat{f}=1 / T$ as

$$
V_{r}=\frac{V_{p}}{f C R}
$$

Using Eq. (3.26) we can express V_{r} by the alternate expression

$$
V_{r}=\frac{l_{L}}{f C}
$$

Note that an alternative interpretation of the approximation made above is that the capacitor as $V_{r} \ll V_{p}$. means of a constant current $I_{L}=V_{p} / R$. Thís approximation is valid as long Using Fig
we can deternine the conduction that diode conduction ceases almost at the peak of τ_{l},

$$
V_{p} \cos (\omega \Delta t)=V_{p}-V_{r}
$$

where $\omega=2 \pi f=2 \pi / T$ is thc angular frequency of ν_{r}. Since ($\omega \Delta t$) is a small angle, we can employ the approximation $\cos (\omega \Delta t) \simeq 1-\frac{1}{2}(\omega \Delta t)^{2}$ to obtain

$$
\begin{equation*}
\omega \Delta t \approx \sqrt{2 V_{r} / \bar{V}_{p}} \tag{3.30}
\end{equation*}
$$

To determinc the average diode current during conduction, $i_{\text {dav }}$, we equate the charge that the diode supplies to the capacitor,

$$
Q_{\text {supplied }}=i_{\text {Cav }} \Delta t
$$

where from Eq. (3.24),

$$
i_{C \mathrm{av}}=i_{\text {nav }}-I_{L}
$$

to the charge that the capacitor loses during the discharge interval,

$$
Q_{\text {lost }}=C V_{r}
$$

to obtain, using Eqs. (3.30) and (3.29a),

$$
\begin{equation*}
i_{D_{\mathrm{av}}}=I_{I}\left(1+\pi \sqrt{2 V_{p} / V_{r}}\right) \tag{3.31}
\end{equation*}
$$

Observe that when $V_{r} \ll V_{p}$, the average diode current during conduction is much greate than the dc load current. This is not surprising, since the diode conducts for a very short interval and must replenish the charge lost by the capacitor during the much longer interval in which it is discharged by I_{L}.

The peak value of the diode current, $i_{D \text { max }}$, can be determined by evaluating the expres sion in Eq. (3.25) at the onset of diode conduction-that is, at $t=t_{1}=-\Delta t$ (where $t=0$ is at the peak). Assuming that i_{L} is almost constant at the value given by Eq. (3.26), we obtain

$$
i_{D \max }=I_{L}\left(1+2 \pi \sqrt{2 V_{p} / V_{r}}\right)
$$

From Eqs. (3.31) and (3.32), we see that for $V_{r} \ll V_{p} ; i_{D_{\text {max }}} \simeq 2 i_{p_{2 x}}$, which correlates with the fact that the waveform of i_{D} is almost a right-angle triangle (see Fig. 3.29 c).

WYyHM $M=4$

Consider a peak rectifier fed by a $60-\mathrm{Hz}$ sinusoid having a peak value $V_{p}=100 \mathrm{~V}$. Let the load resistance $R=10 \mathrm{k} \Omega$. Find the value of the capacitance C that will result in a peak-to-peak ripple of 2 V . Also, calculate the fraction of the cycle during which the diode is conducting and the average and pcak values of the diode current.

Solution

From Eq. (3.29a) we obtain the value of C as

$$
C=\frac{V_{p}}{V_{r} f R}=\frac{100}{2 \times 60 \times 10 \times 10^{3}}=83.3 \mu \mathrm{~F}
$$

The conduction angle $\omega \Delta t$ is found from Eq. (3.30) as

$$
\omega \Delta t=\sqrt{2 \times 2 / 100}=0.2 \mathrm{rad}
$$

Thus the diode conducts for $(0.2 / 2 \pi) \times 100=3.18 \%$ of the cycle. The average diode current is oblained from Eq. (3.31), wherc $I_{L}=100 / 10=10 \mathrm{~mA}$, as

$$
i_{D \mathrm{av}}=10(1+\pi \sqrt{2 \times 100 / 2})=324 \mathrm{~mA}
$$

The peak diode current is found using Eq. (3.32),

$$
i_{D \max }=10(1+2 \pi \sqrt{2 \times 100 / 2})=638 \mathrm{~mA}
$$

FIGURE 3.30 Waveforms in the full-wave peak rectifier.
The circuit of Fig. 3.29 (a) is known as a hall-wave peak rectifier. The full-wave rectifier circuits of Figs. 3.26 (a) and 3.27 (a) can be converted to pcak rectifiers by including a capacitor across the load resistor. As in the hall-wave case, the output dc voltage will be ever, will be twice that of the input. The peak-tope (Fig. 3.30). The ripple frequency, howderived using a procedure identical to that above but with the discharge period T replaced by $T / 2$, resulting in

$$
\begin{equation*}
V_{r}=\frac{V_{r}}{2 f C R} \tag{3.33}
\end{equation*}
$$

While the diode conduction interval, Δt, will still be given by Eq. (3.30), the average and peak currents in each of the diodes will be given by

$$
\begin{align*}
i_{D \mathrm{av}} & =I_{L}\left(1+\pi \sqrt{V_{p} / 2 V_{r}}\right) \tag{3.34}\\
i_{\text {max }} & =I_{L}\left(1+2 \pi \sqrt{V_{p} / 2 V_{r}}\right) \tag{3.35}
\end{align*}
$$

Comparing these expressions with the corresponding ones for the half-wave case, we note that for the same values of V_{p}, f, R, and V_{r} (and thus the same l_{i}), we need a capacitor half the size of that required in the half-wave rectifier. Also, the current in each diode in the fullwave rectifier is approximately half that which flows in the diode of the half-wave circuit:
The analysis above assumed ideal diodes. The accuracy of the results can be improved hy taking the diode voltage drop into account. This can be easily done by replacing the peak voltage V_{p} to which the capacitor charges with ($V_{p}-V_{D}$) for the half-wave circuit and the full-wave circuit using a center-tapped transformer and with $\left(V_{p}-2 V_{D}\right)$ for the bridgerectifier case.
We conclude this section by noting that peak-rectifier circuits find application in signalprocessing systems where it is required to detect the peak of an input signal. In such a case, the circuit is referred to as a peak detector. A particularly popular application of the peak detector is in the design of a demodulator for amplitude-modulated (AM) signals. We shall not discuss this application further here.
 Which the transtormet secondary delivers a sinusoid of 12 V (ims) having a 60 Hz frequency and assumwhing $V_{0}=0.8 \mathrm{~V}$ and a load resistance $R-100 \Omega$. Find the vatue of C that resulte in a mple viltade no harger than V peak-to peak. What is the dc: voltage at the output? Find the load cartent Find the itiodes conduction angle. What is the everage diode curfent What is the peak reverse willadet ant diodes cioder Specity the diode in teins ol its peak current and its pil:
 Thins eefect a dode with 3.5 A to 4 . peat current and o $20-V$ PIV ating:

3.5.5 Precision Half-Wave Rectifier-The Super Diode ${ }^{4}$

The rectifier circuits studied thus far suffer from having one or two diode drops in the signal The Thus these circuits work well only when the signal to be rectified is much larger than paths. Thus these cita a conducting diode (0.7 V or so). In such a case the details of the diode he voltage drop orstics or the exact value of the diode voltage do not play a prominent rolc forward charact circuit performance. This is indeed the case in the application of rectifier cirin determing in power-supply design. There arc other applications, however, where the signal to be ectified is small (e.g., on the order of 100 mV or so) and thus clearly insufficient to turn on diode Also, in instrumentation applications, the need arises for rectifier circuits with very precise and predictable transfer characteristics. For these applications, a class of circuits has been developed utilizing op amps (Chapter 2) together with diodes to provide precision rectification. In the following discussion, we study one such circuit, leaving a more comprehensive study of op amp-diode circuits to Chapter 13.
Figure 3.31(a) shows a precision half-wave rectifier circuit consisting of a diode placed in the negative-feedback path of an op amp, with R being the rectificr load resistance. The op amp, of course, needs power supplies for its operation. For simplicity, these are not shown in the circuit diagram. The circuit works as follows: If v_{I} goes positive, the output voltage v_{A} of the op amp will go positive and the diode will conduct, thus establishing a closed feedback path between the op amp's output terminal and the negative input terminal.

(a)

(b)

FIGURE 3.31 The "superdiode" precision half-wave recifier and its almost-ideal transfer characteristic. Note that when $v_{1}>0$ and the diode conducts, the op amp supplies the load curren, and the source is conveniently buffered, an added advantage. Not shown are the op-amp power supplies.

This negative-feedback path will cause a virtual short circuit to appear between the two input terminals. Thus the voltage at the negative input terninal, which is also the output voltage v_{o}, will equal (to within a few millivolts) that at the positive input terminal, which is the input voltage ψ_{r},

$$
v_{o}=v_{I} \quad v_{1} \geq 0
$$

Note that the offset voltage ($\approx 0.6 \mathrm{~V}$) exhibited in the simple half-wave rectifier circuit of Fig. 3.25 is no longer present. For the op-amp circuit to start operation, v_{I} has to exceed only a negligibly small voltage equal to the diode drop divided by the op amp's open-loop gain in other words, the straight-ine cransfer characteristic $v_{o}-v_{I}$ almost passes through the or gin. This makes this circuit suitable for applications involving very small signals.
Consider now the case when v_{I} goes negative. The op amps soutput voltage $\nu_{/}$will tend or resistance R, causing v_{0} to remain equal to 0 V . Thus, for $v_{1}<0, v_{0}=0$. Since in this case the diode is off, the op anp will he negative saturation level.
The transfer characteristic of this circuit will be that shown in Fig. 3.31(b), which is almost identical to the ideal characteristic of a half-wave rectifier. The nonideal diode characteristics have been almost completely masked by placing the diode in the negative-feedback
 will study formaly in Chapter 8. The combination of diode and op an, shown in the dotte box in Fig. 3.31(a), is appropriately referred to as a "superdiode"

ExERGISES

 1 V and -1 V what are the woltages that result at the rectifies output and at ith output of the op amp Assume that the op amp is ideal and that to output saturates at 125 The diode has a 07 V diop at $\mathrm{I}-\mathrm{mA}$
curren, and the voltage drop changes by $01 \$$ per decade of current change.
Ans. $10 \mathrm{mV}, 0.5 \mathrm{~V}, 1 \mathrm{~V}, 17 \mathrm{~V}: 0 \mathrm{~V}, 12 \mathrm{~V}$
3.26 If the diode in the circuit of Fig. 331 (a) s steversed, find the transfer characteristic ν_{0} as a function of $\psi_{\text {. }}$ Ans. $v_{0}=0$ for $\geqslant \geqslant 0 ; v_{0}=$, for $v_{t} \leqslant 0$

9 (

3.6 LIMITING AND CLAMPING CIRCUITS

In this section, we shall present additional nonlinear circuit applications of diodes.

3.6.1 Limiter Circuits

Figure 3.32 shows the general transfer characteristic of a limiter circuit. As indicated, for inputs in a certain range, $L_{-} / K \leq v_{1} \leq L_{+} / K$, the limiter acts as a linear circuit, providing an ouppu proportional to the input, $v_{O}=K v_{F}$. Although in general K can be greater than 1 , the
circuits discussed in this section have $K \leq 1$ and are known as passive limiters. (Examples of active liniters will be presented in C, and are known as passive limiters. (Examples of he output voltage is linited or chaped the) is reduced below the lower limiting theshold (L, K), he ouput volte $v_{\text {in }}$ in it v_{l} is reduced ber miting threshold (L_{c} / K), the the lower limiting level L.
 for a limiter circuit.

FIGURE 3.33 Applying a sine wave to a limiter can result in clipping off its two peaks
The general transfer characteristic of Fig. 3.32 descrihes a double limiter-that is, The general transfer cha the positive and negative peaks of an input waveform. Single limnier of course, exist. Finally, note that if an input waveform such as that show inge sometime is fed to a double limiter, its two peaks will be clipped off. Limiters therefore are sometime referred to as clippers.
ferred to as clippers.
The limiter whose characteristics are depicted in Fig. 3.32 is described as a hard limiter. Soft limiting is characterized by smoother transitions between the lincar region and the saturation regions and a slope greater than zero in the saturation reg. Fig 3.34. Depending on the application, either hard or soft liming may berred

FIGURE 3.34 Soft limiting.

Limiters find application in a variety of signal-processing systems. One of their simples applications is in limiting the voltage between the two input terminals of an op amp to value lower than the breakdown voltage of the transistors that make up the input stage of the op-amp circuit. We will have more to say on this and other limiter applications at late points in this book.
Diodes can be combined with resistors to provide simple realizations of the limite function. A number of examples are depicted in Fig. 3.35. In each part of the figure both the circuit and its transfer characteristic are given. The transfer characteristics are obtaine using the constant-voltage-drop ($V_{D}=0.7 \mathrm{~V}$) diode model but assuming a smooth transition between the linear and saturation regions of the transfer characteristic. Better approxima ions for the transfer characteristics can be obtained using the piecewice. Better approxima this is done, the saturation region of the characteristic acquecewise-linear diode model ffect of r_{p}).
The circuit in Fig. 3.35(a) is that of the half-wave rectifier except that here the output taken across the diode. For $v_{i}<0.5 \mathrm{~V}$, the diode is cut off, no current flows, and the voltage

(a)

(b)

(d)

(e)
drop across R is zero; thus $v_{0}=v_{r}$. As v_{I} excecds 0.5 V , the diode turns on, eventually limit except that the diode is reversed.
Double limiting can be implemented by placing two diodes of opposite polarity in paralel, as shown in Fig. 3.35(c). Here the linear region of the charactenstic is obtained for $-0.5 \mathrm{~V} \leq v_{l} \leq 0.5 \mathrm{~V}$. For this range of v_{l}, both diodes are off and $v_{0}=v_{l}$. As v_{l} exceeds 0.5 V , D_{1} tunns on and eventually limits ψ_{0} to +0.7 V . Similarly, as v_{1} goes more negative than -0.5 V , D_{2} turns on and eventually limits v_{0} to -0.7 V
The thresholds and saturation levels of diode limiters can be coutrolled by using string. of diodes and/or by connecting a dc voltage in series with the diode(s). The latter idea is illustrated in Fig. 3.35(d). Finally, rather than strings of diodes, we may use two zener diodes in series, as shown in Fig. 3.35(e). In this circuit, limiung occurs in the positive direc tion at a voltage of $V_{z 2}+0.7$, where 0.7 V represents the voltage drop across zener diode Z_{1} when conducting in the forward direction. For negative inputs, ℓ_{1} acts as a zener, while Z_{2} conducts in the forward direction. It should be mentioned that pairs of zener diodes connected in series are available commercially for applications of this type under the name double-anode zener.
More flexible limiter circuits are possible if op amps are combined with diodes and resistors. Examples of such circuits are discussed in Chapter 13.

EXERGSE

3.27 Assuming the diodes to be deat, describe the fransfer characteristic of the cricuit shown in fig. E3.27.

Figure es.27.

$$
\begin{aligned}
& \text { Ans oo } v_{1} \text { for }-5<\psi_{1} \leq 15 \\
& v_{0}=-\frac{1}{2} v_{H}-2.5 \text { for } v_{r} \leq-5 \\
& v_{0}=\frac{1}{2} v_{0}+2.5 \text {. for } y_{1}>+5
\end{aligned}
$$

3.6.2 The Clamped Capacitor or DC Restorer

in the basic peak-rcctifier circuit the output is taken across the diode rather than across the capacitor, an interesting circuit with important applications results. The circuit, called a dc restorer, is shown in Fig. 3.36 fed with a square wave. Because of the polarity in which the diode is connected, the capacitor will charge to a voltage v_{C} with the polarity indicated in Fig. 3.36 and equal to the magnitude of the most negative peak of the input signal. Subsequently, the diode turns off and the capacitor retains its voltage indefinitely. If, for instance he input square wave has the arbitrary levcls -6 V and +4 V , then v_{c} will be equal to 6 V

(a)

(b)

(c)

FIGURE 3.36 The clamped capacitor or dc restorer with a square-wave input and no load.
Now, since the output voltage w_{o} is given by

$$
v_{0}=v_{1}+v_{c}
$$

it follows that the output waveform will be identical to that of the input, except that it is shifted upward by v_{C} volts. In our example the output will thus be a square wave with levels of 0 V and +10 V .

Another way of visualizing the opcration of the circuit in Fig. 3.36 is to note that because the diode is connected across the output with the polarity shown, it prevents the output voltage from going below 0 V (by conducting and charging up the capacitor, thus causing the output to rise to 0 V), but this connection will not constrain the positive excursion of v_{0}. The output to rise to 0 V , but this connection will not constrain the positive excursion of v_{0}. The output called a clamped capacitor. It should be obvious that reversing the diode polarity will procalled a clamped capacitor. It should be obvious that reversing the diode polarity will provide an output waveform whose highest peak is clannped to 0 V . In either case, the output waveform wilt have a finite average value or dc component. This dc component is entirely nal being transmitted through a capacitively coupled or ac-coupled system. The capacitive nal being transmitted through a capacitively coupled or ac-coupled system. The capacitive coupuing the resulting pulse waveform to a clamping circuit provides it with a well-determined dee component, a process known as de restoration. This is why the circuit is also called a dc restorer. Restoring dc is useful because the dc component or average value of a pulse waveform is an effective measure of its duty cycle ${ }^{5}$ The duty cycle of a pulse waveform can be modulated (in a process called pulsewidth modulation) and made to carry information In such a system, detection or demodulation could be achieved simply by feeding the received pulse system, detection or demodulation could be achieved simply by feeding the received pulse waveform to a dc restorer and then using a simple $R C$ low-pass filter to separate the average
of the output waveform from the superimposed pulses.
When a load resistance R is connected across the diode in a clamping circuit, as shown

When a load resistance R is connected across the diode in a clamping circuit, as shown in Fig. 3.37, the situation changes significantly. While the output is above ground, a net dc current must flow in R. Since at this time the diode is off, this current obviously comes from the capacitor, thus causing the capacitor to discharge and the output voltage to fall. This is shown in Fig. 3.37 for a square-wave input. During the interval t_{0} to t_{1}, the output voltage falls exponentially with time constant $C R$. At t_{1} the input decreases by V_{a} volts, and the output attempts to follow. This causes the diode to conduct heavily and to quickly charge the capacitor. At the end of the interval t_{1} to t_{2}, the output voltage would normally be a few capacitor. At the end of the interval t_{1} to t_{2}, the output voltage would normally be a few
tenths of a volt negative (e.g., -0.5 V). Then, as the input rises by V_{a} volts (at t_{2}), the output follows, and the cycle repeats itself. In the steady state the charge lost by the capacitor during
${ }^{5}$ The duty cycle of a pulse waveform is the proportion of each cycle occupied by the pulse. In other words, it is the pulse width expressed as a fraction of the pulse period.

(a)

(b)
V_{a}

(c)

FIGURE 3.37 The clamped caracitor with a load resistance R.
the interval t_{0} to t_{1} is recovered daring the interval t_{1} to t_{2}. This charge equilibrium enables us to calculate the averagc diode current as well as the details of the output wayeform.

3.6.3 The Voltage Doubler

Figure 3.38(a) shows a circuit composed of two sections in cascade: a clamp formed by C_{1} and D_{1}, and a peak rectifier formed by D_{2} and C_{2}. When excited by a sinusoid of amplitude V_{p} and \mathcal{L}_{3}, clamping section provides the vollage waveform shown, assuming ideal diodes, in Fig. $3.38(\mathrm{~b})$. Note that while the positive peaks are clamped to 0 V , the negative peak

(a)

(b)

FIGURE 3.38 Voitage doubler: (a) circuit; (b) waveform of the voltage across D_{1}
rcaches $-2 V_{p}$. In response to this waveform, the peak-detector section provides acros capacitor C_{2} a ncgative dc voltage of magnitude $2 V_{p}$. Because the output voltage is double the input peak, the circuit is known as a voltage doubler. The technique can be extended to provide output dc voltages that are higber multiples of V_{p}.
3.28 I ihe diode in the cricut of Fi s .336 is teversed, what will the de component of y_{0} become? Ans. 513.7 PHYSICAL OPERATION OF DIODES

Having studied the terminal characteristics and circuit applications of junction diodes, we will now briefly consider the physical processes that give rise to the observed terminal characteristics. The following treatment of device physics is somewhat simplified; nevertheless it should provide sufficient background for a fuller understanding of diodes and for understanding the operation of transistors in the following two chapters.

3.7.1 Basic Semiconductor Concepts

The $p n$ Junction The semiconductor diode is basically a $p n$ junction, as shown schematically in Fig. 3.39. As indicated, the $p n$ junction consists of p-type semiconductor material (e.g., silicon) brought into close contact with n-type semiconductor material (also silicon). In actual practice, both the p and n regions are part of the same silicon crystal; that is, the $p n$ junction is formed within a single silicon crystal by creating regions of different "dopings" (p and n regions). Appendix A provides a brief description of the process employed in the fabrication of $p n$ junctions. As indicated in Fig 3.39, external wire connections to the p and n regions (i.e., diode terminals) are made through metal (aluminum) contacts. In addition to being essentially a diode, the $p n$ junction is the basic elem.
junction transistors (BJTs) and plays an important role in the operation of field-effect transistors (FETs). Thus an understanding of the physical operation of $p n$ junctions is important to the understanding of the operation and terminal characteristics both of diodes and transistors.
Intrinsic Silicon Although either silicon or germanium can be used to manufacture semiconductor devices-indeed, earlier diodes and transistors were made of germanium-today's

FIGURE 3.39 Simplified physical structure of the junction diode. (Actual geomietries are given in Appendix A.)

FIGURE 3.40 Two-dimcnsional representation of the silicon crystal. The circles represent the inner core of silicon atoms, with +4 indicating its positive charge of +4 , which is neutralized by the charge of the four all bonds are intact and no free electrons arc available for curfent conduction.
integrated-circuit technology is based almost entirely on silicon. For this reason, we will deal mostly with silicon devices throughout his book.

A crystal of pure or intrinsic silicon has a regular latice structure where the atoms are held in their positions by bonds, called covalent bonds, formed by the four valence electrons associated with each silicon atom. Figure 3.40 shows a two-dimensional represena tion of such a structure. Observe hat each atom shares each of its for at with a neighboring atom, with each pair of electrons forming a covalen bod. At suliciently low temperatures, all covalent bonds are intact and no (or very few) free clectons are available to conduct electric current. However, at room temperature, some of the bonds are broken by thermal ionization and some electrons are freed. As shown in Fig. 3.41, when a covalent bond is broken, an electron leaves its parent atom, thas a positve chage, eq alo the magnitude of the clectron charge, is left with the parent atom. An electon. This action boring atom may be attracted to this positive charge, lcaving its parent atom. This action fills up the hole that existed in the ionized athe effectivcly have a positively charged This process may repeat itself, with the result hat we efceivol to poring to conduct carrier, or hole, moving through the silicon crystal structure and being avai ele
electric current. The charge of a hole is equal in magnitude to the charge of an electron.
Thermal ionization results in free electrons and holes in equal numbers and heuce equal concentrations. These free electrons and holes move randomy troush the silon cyst structure, and in the process she core free electrons and holes. The recombination rate is proportional to the number of free electrons and holes, which, in turn, is determined by

[^5]

FIGURE 3.41 At room temperature, some of the covalent bonds arc broken by thermal ionization. Each broken bond gives rise to a free electron and a hole. both of which become available for current conduction.
the ionization rate. The ionization rate is a strong function of temperature. In thermal equilib rium, the recombination rate is equal to the ionization or thermal-generation rate, and one can calculate the concentration of free clectrons n, which is equal to the concentration of holes p

$$
n=p=n_{i}
$$

where n_{i} denotes the concentration of free electrons or holes in intrinsic silicon at a give temperature. Study of semiconductor physics shows that at an absolute temperature T (in kelvins), the intrinsic concencration n_{i} (i.e., the numher of free electrons and holes per cubic centimeter) can be found from

$$
n_{i}^{2}=B T^{3} e^{-E_{G^{\prime}} / k T}
$$

where B is a material-dependent parameter $=5.4 \times 10^{31}$ for silicon, E_{G} is a parameter known as the bandgap energy $=1.12$ electron volts (eV) for silicon, and k is Boltzmann's constant focused introductory exposition it is inter mase of the bandgap energy in this circuit nergy required to ion in $\mathrm{Eq}(3.36)$ of perature ($T \sim 300 K$) $n_{2} \sim 15 \times 10^{10} \quad{ }^{10}$ iven hows that for intrinsic silicon at room tem
 ne of every billion atoms is ioniwed! $\times 10^{-2} \mathrm{atoms} / \mathrm{cm}^{3}$. Thus, at room temperature, only Finally, it boud be is ionzed
its conductivity, which is and the silicon is called a semiconductor is duct electric current is glass).

Diffusion and Drift There are two mechanisms by which holes and electrons move through a silicon crystal-diffusion and drift. Diffusion is associated with random motion due to thermal agitation. In a piece of silicon with uniform concentrations of free electrons

(a)

(b) and x-axis by some unspecified mechanism.
and holes, this random motion does not result in a net fow of charge (i.e., current). On other hand, if by some mechanism the concentration of, say, free electrons is made higher in one part of the picce of silicon than in another, then electrons will diffuse from the region of high concentration to the region of low concentration. This diffusion process gives rise to net flow of charge, or diffusion current. As an example, consider the bar of silicon shown in Fig. 3.42(a), in which the hole concentration profile shown in Fig. 3.42(b) has been created along the x-axis by some unspecified mechanism. The existence of such a conco f a ion profile results in a hole diffusion current in the x direction, withe magnor or current at any point being proportional to the slope of the concentration curve, or the con ceniration gradient, at that point,

$$
\begin{equation*}
J_{p}=-q D_{p} \frac{d p}{d x} \tag{3.37}
\end{equation*}
$$

wherc J_{p} is the current density (i.e., the current per unit area of the plane perpendicular to the x axis) in $\mathrm{A} / \mathrm{cm}^{2}, q$ is the magnitude of electron charge $=1.6 \times 10^{-19} \mathrm{C}$, and D_{p} is a constan號噱 electron diffusion resulting from an electron concentration gradient, a similar relationship pplies, giving the electron-current density

$$
J_{n}=q D_{n} \frac{d n}{d x}
$$

where D_{n} is the diffusivity of electrons. Observe that a negative ($d n / d x$) gives rise to a neg ative current, a result of the convention that the positive direction of current is taken to b hat of the flow of positive charge (and opposite to that of the flow of negative charge). For holes and electrons diffusing in intrinsic silicon, typical values are $D_{p}=12 \mathrm{~cm}^{2} / \mathrm{s}$ and $D_{n}=34 \mathrm{~cm}^{2} / \mathrm{s}$.
The other mechanism for carrier motion in semiconductors is drift. Carrier drift occurs when an electric field is applied across a piece of silicon. Free electrons and holes are accelerated by the electric field and acquire a velocity component (superimposed on the elocity of their thermal motion) called drift velocity. If the electric field strength is denoted
E (in V / cm), the positively charged holes will drift in the direction of E and acquire a velocity $v_{d r i f t}$ (in cm / s) given by

$$
\begin{equation*}
v_{d r f f}=\mu_{p} E \tag{3.39}
\end{equation*}
$$

where μ_{p} is a constant called the molility of holes which has the units of $\mathrm{cm}^{2} / \mathrm{V} \cdot \mathrm{s}$. For intrin sic silicon, μ_{j} is typically $480 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$. The negatively charged electrons will drift in direction opposite to that of the electric field, and their velocity is given by a relationship sim ilar to that in Eq. (3.39), except that μ_{q} is replaced by μ_{n}, the electron mobility. For intrinsic silicon, μ_{n} is typically $1350 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$, about 2.5 times greater than the hole mobility.
Consider now a silicon crystal having a hole density p and a free-electron density n subjected to an electric field E. The holes will drift in the same direction as E (call it the x direc tion) with a velocity $\mu_{p} E$. Thus we have a positive charge of density $q p$ (coulomb/cm ${ }^{3}$ moving in the x direction with velocity $\mu_{\rho} E(\mathrm{~cm} / \mathrm{s})$. It follows that in 1 second, a charge of $q p \mu_{p} E A$ (coulomb) will cross a plane of area $A\left(\mathrm{~cm}^{2}\right)$ perpendicular to the x-axis. This is the current component caused by hole drift. Dividing by the area A gives the current density

$$
J_{p-d r i \hbar}=q p \mu_{g} E
$$

The free electrons will drift in the direction opposite to that of E. Thus we have a charge of density ($-q n$) moving in the negative x direction, and thus it has a negative velocity $\left(-\mu_{n} E\right)$. The result is a positive current component with a density given by

$$
J_{n-\operatorname{driff}}=q n \mu_{n} E
$$

The total drift current density is obtained by combining Eqs. (3.40a) and (3.40b),

$$
\begin{equation*}
J_{d r i f t}=q\left(p \mu_{p}+n \mu_{n}\right) E \tag{3.40c}
\end{equation*}
$$

It should be noted that this is a form of Ohm's law with the resistivity ρ (in units of $\Omega \cdot \mathrm{cm}$) given by

$$
\rho=1 /\left[q\left(p \mu_{p}+n \mu_{n}\right)\right]
$$

Finally, it is worth mentioning that a simple relationship, known as the Einstein retationship, cxists between the carrier diffusivity and mobility,

$$
\begin{equation*}
\frac{D_{n}}{\mu_{n}}=\frac{D_{p}}{\mu_{p}}=V_{T} \tag{3.42}
\end{equation*}
$$

where V_{T} is the thermal voltage that we have encountered before, in the diode $i-v$ relationship (see Eq. 3.1). Recall that al room temperature, $V_{T} \simeq 25 \mathrm{mV}$. The reader can easily check the validity of Eq. (3.42) by substiluting the typical values given above for intrinsic silicon.
Doped Semiconductors The intrinsic silicon crystal described above has equal concentrations of free electrons and holes generated by thermal ionization. These concentrations, denoted n_{i}, are strongly dependent on temperature. Doped semiconductors are matcrials in which carriers of one kind (electrons or holes) predominate. Doped silicon in which the majority of charge carriers are the negatively charged electrons is called \boldsymbol{n} type, while silicon doped so that the majority of charge carriers are the positively charged holes is called \boldsymbol{p} type.
Doping of a silicon crystal to turn it into n type or p type is achieved by introducing a small number of impurity atoms. For instance, introducing impurity atoms of a pentavalent element such as phosphorus results in n-type silicon, because the phosphorus atoms that
replace some of the silicon atoms in the crystal structure have five valence electrons, four of

EIGURE 3.43 A silicon crystal doped by a pentavalent clement. Each dopant atom donates a free electron and is thus called a donor. The doped semiconductor becomes n type.
which form bonds with the neighboring silicon atoms while the fifth becomes a free electron (Fig. 3.43). Thus cach phosphorus atom donates a free electron to the silicon crystal, and the phosphorus impurity is called a donor. It should be clear, though, that no holes are gener ated by this process; hence the majonty of charge carriers in the phosphorus-doped silico will be electrons. In fact, if the concentration of donor atoms (phosphorus) is N equilibrium the concentration of free electrons in the n-type silicon, $n_{n 0}$, will be

$$
\begin{equation*}
n_{n 0} \simeq N_{D} \tag{3.43}
\end{equation*}
$$

where the additional subscript 0 denotes thermal equilibrium. From semiconductor physics, it tums out that in thermal equilibrium the product of electron and hole concentrations remains constant; that is

$$
n_{n 0} p_{n 0}=n_{i}^{2}
$$

Thus the concentration of holes, $p_{n 0}$, that are generated by thermal ionization will be

$$
\begin{equation*}
p_{n 0} \simeq \frac{n_{i}^{2}}{N_{D}} \tag{3.45}
\end{equation*}
$$

Since n_{i} is a function of temperature (Eq. 3.36), it follows that the concentration of the minority holes will be a function of temperature whereas that of the majority electrons is independent of temperature.

To produce a p-type semiconductor, silicon has to be doped with a trivalent impurity such as boron. Each of the impurity boron atoms accepts one electron from the silicon crys each boron atom the latice structure. Thus, as show in 3. ilicon, under thermal equilibrium, is the concentration of the majorty $N_{\text {a }} p$ the acceptor (boron) impurity,

$$
\begin{equation*}
p_{p 0} \simeq N_{A} \tag{3.46}
\end{equation*}
$$

FIGURE 3.44 A silicon crystal doped with a trivalent impurity. Each dopant atom gives rise to a hole, and the semiconductor becomes p type.

In this p-type silicon, the concentration of the minority electrons, which are generated by hermal ionization, can be calculated using the fact that the product of carrier concentration remains constant; thus,

$$
\begin{equation*}
n_{p 0} \simeq \frac{n_{i}^{2}}{N_{A}} \tag{3.47}
\end{equation*}
$$

It should be emphasized that a piece of n-type or p-type silicon is clectrically neutral; the majority free carriers (electrons in n-type silicon and holes in p-type silicon) are neutralized by bound cbarges associated with the impurity atoms.

EXERGISES

3.29 Calculate the intinsie carter density 1 at $250 \mathrm{~K} ; 300 \mathrm{~K}$. and 350 K Ans. $15 \times 10^{3} / \mathrm{cm}^{3} .1: 5 \times 10^{4} / \mathrm{cm}^{3} .418 \times 10^{11}\left(\mathrm{~cm}{ }^{3}\right.$
 concenifations at 250 K .300 K . and 350 K . om may use the resilts of Etercise 3.29

 mubilites:
Ans. (a) $\left.2.28: 10^{3} \Omega \mathrm{~cm} .6\right) 1.56 \Omega \mathrm{ch}$
3.7.2 The pn Junction Under Open-Circuit Conditions

Figure 3.45 shows a $p n$ junction under open-circuit conditions-that is, the external terminals sue left open. The " + " signs in the p-type material denote the majority holcs. The charge

FIGURE 3.45 (a) The $p n$ junction with no applicd voltage (open-circuited terminals). (b) The potential
distribution along an axis perpendicular to the junction.
of these holes is neutralized by an equal amount of bound negative charge associated with the acceptor atoms. For simplicity, these bound charges are not shown in the diagram. Als not shown are the minority electrons generated in the p-type material by thermal ionization,
In the n-type material the majority electrons are indicated by "-" signs. Here also, the
ound positive charge, which neutralizes the charge of the majority electrons, is not shown in order to keep the diagram simple. The n-type material also contaims minority holes gener ated by thermal ionization that are not shown in the diagram.
The Diffusion Current I_{D} Because the concentration of holes is high in the p region and low in the n region, holes diffuse across the junction from the p side to the n side; similarly, electrons diffuse across the junction from the n side to the p side. These two current components add together to form the diffusion current I_{D}, whose direction is from the p side to the n side, as indicated in Fig. 3.45.
The Depietion Region The holes that diffuse across the junction into the n region quickly recombine with some of the majority electrons present there and thus disappear from the scene. This recombination process results in the disappearance of some free electrons from the n-type material. Thus some of the bound positive charge will no longer be neutralized by free electrons, and this charge is said to have been uncovered. Since recombination takes place close to the junction, there will be a region cluse to the junction that is depleted of free electrons and contains uncovered bound positive charge, as indicated in Fig. 3.45

The elcctrons that diffuse across the junction into the p region quickly recombine with some of the majority holes there, and thus disappear from the scene. This results also in the disappearance of some majority holes, causing some of the bound negative charge to be uncovered (i.e., no longer neutralized by holes). Thus, in the p material close to the junction, there will be a region depleted of holes and containing uncovered bound negative charge, as indicated in Fig. 3.45.
From the above it follows that a carrier-depletion region will exist on both sides of the junction, with the n side of this region positively charged and the p side negatively charged.
This carrier-depletion region-or, This carrier-depletion region-or, simply, depletion region-is also called the spacebe established across the region; hence a phe deplate region cause an elecric field to be established across the region; hence a potential difference results across the depletion Thus the resulting electric field opposes the diffusion of holes into the n win ig. 3.45(b). Thus the resulting electric field opposes the diffusion of holes into the n region and electrons has to be overcome for holes to diffuse into the n region and electrons to diffuse into p region. The larger the barrier voltage the smaller the number of carriers that will be able p regen the barier and hence the lower the magnitude of diffusion that will be able to overion

The Drift Current I_{5} and Equilibrium In addition to the current component I_{D} due to majority-carrier diffusion, a component due to minority-carier drift exists across the junction. Specifically, sone of the thermally generated holes in the n material diffuse through the n material to the edge of the depletion region. There, they experience the electric field in the depletion region, which sweeps them across that region into the p side. Similarly, some of the minority thermally generated electrons in the p material diffuse to the edge of the depletion region and get swept hy the clectric field in the depletion region across that region into the n side. These two current components-electrons moved by drift from p to n and holes moved by drift from n to p-add together to form the drift current I_{S}, whose direction is carried by thermally p side of the junction, as indicated in Fig. 3.45. Since the current l_{S} is carried by thermally generated minority carriers, its value is strongly dependen
perature; however, it is independent of the value of the depletion-layer voltage V_{0}.
Under open-circuit conditions (Fig. 3.45) no external current exists; thus the two opposite currents across the junction should be equal in magnitude:

$$
I_{D}=I_{S}
$$

This equilibrium condition is maintained by the barrier voltage V_{0}. Thus, if for some reason I_{D} exceeds I_{5}, then more bound charge will be uncovered on both sides of the junction, the depletion layer will widen, and the voltage across it $\left(V_{0}\right)$ will increase. This in turn causes I_{D} to decrease until equilibrium is achieved with $I_{D}=I_{S}$. On the other hand, if I_{S} exceeds I_{D}, then the amount of uncovered charge will decrease, the depletion layer will narrow, and the voltage across it $\left(V_{0}\right)$ will decrease. This causes I_{D} to increase until equilibrium is achieved with $I_{D}=I_{s}$.

The Junction Built-In Voltage With no external voltage applicd, the voltage V_{0} across the $p n$ junction can be shown to be given by

$$
\begin{equation*}
V_{0}=V_{T} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right) \tag{3.48}
\end{equation*}
$$

where N_{A} and N_{D} are the doping concentrations of the p side and n side of the junction, respectively. Thus V_{0} depends both on doping concentrations and on temperature. It is
known as the junction buill-in voltage. Typically, for silicon at room temperature, V_{0} is in the range of 0.6 V to 0.8 V
When the $p n$ junction terminals are left open-circuited, the voltage measured between them will be zero. That is, the voltage V_{0} across the depletion region does not appear between the diode terminals. This is because of the contact orages exly ng ance the barrier voltage. If junctions at the dode his were not the case, we would have been able to draw energy from. which would clearly violat
Width of the Depletion Region From the above, it should be apparent that the deple tion region exists in both the p and n materials and that equal amounts of charge exist on both sides. However, since usually the doping levels are not equal in the p and n materials, one can reason that the width of the depletion region will not be the same on the two sides deeper into the more lightly doped material. Specifically, if we denote the width of the depletion region in the p side by x_{p} and in the n side by x_{n}, this charge-equality condition can be stated as

$$
q x_{p} A N_{A}=q x_{n} A N_{D}
$$

where A is the cross-sectional area of the junction. This equation can be rearranged to yield

$$
\begin{equation*}
\frac{x_{n}}{x_{p}}=\frac{N_{A}}{N_{D}} \tag{3.49}
\end{equation*}
$$

In actual practice, it is usual that one side of the junction is much more heavily doped than the other, with the result that the depletion region exists almost entirely on one side (the lightly doped side). Finally, from device physics, the width of the depletion region of an open-circuited junction is given by

$$
W_{\text {dep }}=x_{n}+x_{p}=\sqrt{\frac{2 \varepsilon_{s}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right) V_{0}}
$$

where ε_{s} is the electrical permittivity of silicon $=11.7 \varepsilon_{0}=1.04 \times 10^{-12} \mathrm{~F} / \mathrm{cm}$. Typically, $W_{\text {dep }}$ is in the range of $0.1 \mu \mathrm{~m}$ to $1 \mu \mathrm{~m}$.

EXERGSE
3.32 For a ph finction with $\Lambda_{A}=10^{17} / \mathrm{ch}^{3}$ and $N_{D}=10^{16} / \mathrm{cm}{ }^{3}$, find at $T=300 \mathrm{~K}$, he brilt in votage: he widh of the depletion region, and the distance it extends in the p side and in the n side of the furction. Use $n_{i}=1.5 \times 10^{16} / \mathrm{cn}^{3}$.
Ans. $728 \mathrm{mV} .0 .32 \mu \mathrm{~mm} .0 .03 \mu \mathrm{~m}$ and $0.29 \mu \mathrm{~m}$

3.7.3 The $p n$ Junction Under Reverse-Bias Conditions

The behavior of the $p n$ junction in the reverse direction is more easily explained on a microscopic scale if we consider exciting the junction with a constant-current source (rather reverse direction. For the time being let the magnitude of I be less than I_{S}; if I is greater than I_{s}, breakdown will occur, as explained in Section 3.7.4

FIGURE 3.46 The $p n$ junction excited by a constant-current source I in the reverse direction. To avoid breakdown, I is kept smaller than I_{s}. Note that the depletion layer widens and the barrier voltage increases by V_{R} volts, which appcars between the terminals as a reverse vollage.

The current I will be canied by electrons flowing in the external circuit from the n material to the ρ material (i.e., in the direction opposite to that of I). This will cause electrons to leave the n material and holes to leave the p material. The free electrons leaving the n material cause the uncovered positive bound charge to increase. Similarly, the holes leaving the p matcrial result in an increase in the uncovered negative bound charge. Thus the reverse current I will result in an increase in the width of, and the charge stored in, the deplction layer. This in turn will result in a higher voltage across the depletion region-that is, a greater barrier voltagc--which causes the diffusion current I_{D} to decrease. The drift current I_{S}, being independent of the barrier voltage, will remain constant. Finally, equilibrium (steady state) will be reached when

$$
I_{S}-I_{D}=I
$$

In equilibrium, the increase in depletion-layer voltage, above the value of the built-in voltage V_{0}, will appear as an external voltage that can be measured between the diode terminals, with n being positive with respect to p. This voltage is denoted V_{R} in Fig. 3.46.
We can now consider exciting the $p n$ junction by a reverse voltage V_{R}, wherc V_{R} is less than the breakdowu voltage $V_{Z K}$. (Refer to Fig. 3.8 for the definition of $V_{Z K}$.) When the voltage V_{R} is first applied, a reverse current flows in the external circuit from p to n. This current causes the increase in width and charge of the depletion layer. Eventually the volcage across the depletion layer will increase by the magnitude of the external voltage V_{R}, at which time an equilibrium is reached with the external reverse current I equal to $\left(I_{S}-I_{D}\right)$. Note, however, that initially the external current can be much greater than I_{5}. The purpose of this initial transient is to charge the depletion layer and increase the voltage across it by V_{R} volts. Eventually, when a steady state is reached, I_{D} will be negligibly small, and the reverse current will be nearly equal to I_{S}.
The Depletion Capacitance From the above we observe the analogy between the depletion layer of a $p n$ junction and a capacitor. As the voltage across the $p n$ junction changes,

FIGURE 3.47 The charge stored on either side of the depletion layer as a function of the reverse volage V_{R}.
the charge stored in the depletion layer changes accordingly. Figure 3.47 shows a sketch of typical charge-versus-external-voltage characteristic of a $p n$ junction. Note that only the portion of the curve for the reverse-bias region is shown.
An expression for the depletion-laycr stored charge q_{J} can be derived by finding the charge stored on either side of the junction (which charges are, of course, equal). Using the n side, we write

$$
q_{I}=q_{N}=q N_{D} x_{n} A
$$

where A is the cross-sectional area of the junction (in a plane perpendicular to the page) Where A is the cross-secto express x_{n} in terms of the depletion-layer width $W_{\text {dep }}$ to obtain

$$
\begin{equation*}
q_{J}=q \frac{N_{A} N_{D}}{N_{A}+N_{D}} A W_{d e p} \tag{3.51}
\end{equation*}
$$

where $W_{\text {dep }}$ can be found from Eq. (3.50) by replacing V_{0} by the total voltage across the depletion region, $\left(V_{0}+V_{R}\right)$,

$$
\begin{equation*}
W_{\text {dep }}=\sqrt{\left(\frac{2 \varepsilon_{s}}{q}\right)\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)\left(V_{0}+V_{R}\right)} \tag{3.52}
\end{equation*}
$$

Combining Eqs. (3.51) and (3.52) yields the expression for the nonlinear $q_{J}-V_{R}$ relationship depicted in Fig. 3.47. This relationship obviously does not represent a linear capacitor. However, a linear-capacitance approximation can he used 3.77 This is the technique signal swing around the bias point is small, as inlustrated his. we utilized in Section 1.4 to obtain linear ans absal for the diode in linear transfer cbaracteristic and in Section 3.3 to obtain a small-sisal mode che the forward-bias region. Under this small-signal approximation, the depletion capacitance (also called the junction capacitance) is simply the slope of the $q_{J}-V_{R}^{\prime}$ curve at the bias point Q,

$$
C_{j}=\left.\frac{d q_{J}}{d V_{R}}\right|_{V_{R}=V_{Q}}
$$

We can easily evaluate the derivative and find C_{j}. Alternatively, we can treat the depletion layer as a parallel-plate capacitor and obtain an identical expression for C_{j} using the familia formula

$$
\begin{equation*}
C_{j}=\frac{\varepsilon_{s} A}{W_{d e p}} \tag{3.54}
\end{equation*}
$$

where $W_{\text {dep }}$ is given in Eq. (3.52). The resulting expression for C_{j} can be written in the convenient form

$$
\begin{equation*}
C_{j}=\frac{C_{j 0}}{\sqrt{1+\frac{V_{R}}{V_{0}}}} \tag{3.55}
\end{equation*}
$$

where $C_{j 0}$ is the value of C_{j} oblained for zero applied voltage,

$$
\begin{equation*}
C_{j 0}=A \sqrt{\left(\frac{\varepsilon_{\varepsilon} q}{2}\right)\left(\frac{N_{A} N_{D}}{N_{A}+N_{D}}\right)\left(\frac{1}{V_{0}}\right)} \tag{3.56}
\end{equation*}
$$

The preceding analysis and the expression for C_{j} apply to junctions in which the carrier oncentration is made to change abruptly at the junction boundary. A more general formula for C_{j} is

$$
\begin{equation*}
C_{j}=\frac{C_{j 0}}{\left(1+\frac{V_{R}}{V_{0}}\right)^{m}} \tag{3.57}
\end{equation*}
$$

where m is a constant whose value depends on the manner in which the concentration changes from the p to the n side of the junction. It is called the grading coefficient, and its value ranges from $\frac{1}{3}$ to $\frac{1}{2}$.
To recap, as a reverse-bias voltage is applied to a $p n$ junction, a transient occurs during which the depletion capacitance is charged to the new bias voltage. After the transient dies, the steady-statc reverse current is simply equal to $I_{S}-I_{D}$. Usually I_{D} is very small when the diode is reverse-biased, and the reverse current is approximately equal to I_{S}. This, however, is only a theoretical model; one that does not apply very well. In actual fact, currents as high as few nanoamperes $\left(10^{-9} \mathrm{~A}\right)$ flow in the reverse direction in devices for which I_{S} is on the order of $10^{-15} \mathrm{~A}$. This large difference is due to leakage and other effects. Furthermore, the reverse current is dependent to a certain extent on the magnitude of the reverse voltage, contrary to the theoretical model which states that $I \simeq I_{S}$ independent of the value of the revcrse voltage applied. Nevertheless, because of the very low currents involved, one is usually not interested in the details of the diode $i-v$ characteristic in the
reverse direction. reverse direction.

EXERCISE

3.33 For aph anction with $\nu_{4}=10^{7} / \mathrm{cm}^{3}$ and $V_{D}=10^{16} / \mathrm{cm}{ }^{3}$. Operating at $T-300 \mathrm{~K}$. ind (a) the value of C :

 in Fxercise 3.320 (, 0.728 , Ans. (a) $0.32 .1 F / \mathrm{mm}^{2}$: b) 0.41 pF

FIGURE 3.48 The $p n$ junction excited by reversc-current sourcc I, where $I>I_{s}$. The nctionity indicated, develops across the unction.

3.7.4 The pn Junction in the Breakdown Region

In considering diode operation in the reverse-bias region in Section 3.7.3, it was assumed that the reverse-current source I (Fig. 3.46) was smaller than I_{S} or, equivalently, that the that the reverse-current source I (Fig. definition of $V_{Z K}$.) We now wish to consider the breakdown mechanisnss in $p n$ junctions and explain the reasons behind the almost-vertical line representing the $i-v$ relationship in the breakdown region. For this purpose, let the $p n$ junction be excited by a current source that causes a constant current I greater than I_{S} to flow in the reverse direction, as shown in Fig. 3.48. This current source will move holes from the p material through the external circuii ${ }^{7}$ into the n material and electrons from the n material through the external circuit into the p material. This action results in more and more of the bound charge beiug uncovered hence the depletion layer widens and the barricr voltage rises. This latter effect causes the diffusion current to decrease; eventually it will be reduced to almost zero. Neverthcless, this is not sufficient to reach a steady state, since I is greater than I_{S}. Therefore the process lead ing to the widening of the depletion layer continues until a sufficiently high junction voltage develops, at which point a new mechanism sets in to supply the charge carriers needed to support the current I. As will be now explained, this mechanism for supplying reverse curents in excess of I_{s} can take one of two forms depending on the $p n$ junction material, structure, and so on.

The two possible breakdown mechanisms are the zener effect and the avalanche effect. If a $p n$ junction breaks down with a breakdown voltage $V_{2}<5 \mathrm{~V}$, the breakdown mechanism is usually the zener effect. Avalanche breakdown occurs when V_{Z} is greater than approximately 7 V . For junctions that break down between 5 V and 7 V , the breakdown mechanism can be cither the zener or the avalanche effect or a combination of the two.
Zener breakdown occurs when the electric field in the depletion layer increases to the point where it can break covalent bonds and generate electron-hole pairs. The electrons generated in this way will be swept by the electric field into the n side and the holes into the p side. Thus these clectrons and holes constitute a reverse current across the junction that helps support the external current I. Once the zener effect starts, a large number of carriers can be generated, with a negligible increase in the junction voltage. Thus the reverse current in the breakdown region will be determined by the external circuit, while the reverse voltage appearing between the diode terminals will remain close to the rated brcakdown voltage V_{z}.
The other breakdown mechanisnı is avalanche brcakdown, which occurs when the minority carriers that cross the depletion region under the influence of the electric field gain
sufficient kinetic energy to be able to break covalent bonds in atoms with which they collide. The carriers liberated by this process may have sufficiently high energy to be able to cause other cartiers to be liberated in another ionizing collision. This process occurs in the fashion of an avalanche, with the result that many carriers are created that are able to support in the voltage drop across the junction in the voltage drop across the junction.
As mentioned before, $p n$ junction breakdown is not a destructive process, provided that the maximum specified power dissipation is not exceeded. This maximum power-dissipation rating in turn implies a maximum value for the reverse current.

3.7.5 The pn Junction Under Forward-Bias Conditions

We next consider operation of the $p n$ junction in the forward-bias region. Again, it is easier to explain physical operation if we excite the junction by a constant-current source supplying a current I in the forward direction, as shown in Fig. 3.49. This causes majority carriers to be supplied to both sides of the junction by the external circuit: holes to the p material and electrons to the n material. These majority carriers will neutralize some of the uncovered hound charge, causing less charge to be stored in the depletion layer. Thus the depletion layer narrows and the depletion balrier voltage reduces. The reduction in barrier voltage enables more holes to cross the barrier from the p material into the n material and more electrons from the n side to cross into the p side. Thus the diffusion curent I_{D} increases until equilibrium is achieved with $I_{D}-I_{S}=I$, the externally supplied forward current. Let us now examine closely the current flow across the forward biard current.
steady state. The barricr voltage is now lower than V_{0} by an amount V that appears between the diode terminals as a forward voltage drop (i.e., the anode of the diode will be more positive than the cathode by V volts). Owing to the decrease in the barrier voltage or, alternatively, because of the forward voltage drop V, holes are injected across the junction into the n region and electrons are injected across the junction into the p region. The holes injected into the n region will cause the minority-carrier concentration there, p_{n}, to exceed the thermal equilibrium value, $p_{n 0}$. The excess concentration ($p_{n}-p_{n 0}$) will be highest near the edge of

FIGURE 3.49 The p n junction cxcited by a constant-current source supplying a current I in the forward external voltage in the forward direction.

FIGURE 3.50 Minority-carricr distribution in a forward-biased $p n$ junction. It is assumed that the p region is more heavily doped than the n region; $N_{A} \gg N_{D}$
the depletion layer and will decrease (exponentially) as one moves away from the junction, eventually reaching zero. Figure 3.50 shows such a minority-carrier distribution.

In the steady state the concentration profile of excess minority carriers remains constant, and indeed it is such a distribution that gives rise to the increase of diffusion current I_{D} above the value I_{S}. This is because the distribution shown causes injected minority holes to diffuse away from the junction into the n region and disappear by recombination. To maintain equilibrium, an equal number of electrons will have to be supplied by the external circuit, thus replenishing the electron supply in the n material.

Similar statements can be made about the minority electrons in the p material. The diffusion current I_{D} is, of course, the sum of the electron and hole components.
The Current-Voltage Relationship we now show how the diode $i-v$ relationship of Eq. (3.1) arises. Toward that end, we consider in some detail the current component caused by the holes injected across the junction into the n region. An important result from semiconductor physics relates the concentration of minority carriers at the edge of the depletion region, denoted by $p_{n}\left(x_{n}\right)$ in Fig. 3.50, to the forward voltage V,

$$
\begin{equation*}
p_{n}\left(x_{n}\right)=p_{n 0} e^{V / V_{\tau}} \tag{3.58}
\end{equation*}
$$

This is known as the law of the junction; its proof is normally found in textbooks dealing with device physics.

The distribution of excess hole concentration in the n region, shown in Fig. 3.50, is an exponentially decaying function of distance and can be expressed as

$$
\begin{equation*}
p_{n}(x)=p_{n 0}+\left[p_{n}\left(x_{n}\right)-p_{n 0}\right] e^{-\left(x-x_{n}\right) / L_{p}} \tag{3.59}
\end{equation*}
$$

where L_{p} is a constant that determines the stcepness of the exponential decay. It is called the diffusion length of holes in the n-type silicon. The smaller the value of L_{p}, the faster the injected holes will recombinc with majority electrons, resulting in a steeper decay of minority-cartier
concentration. In fact, L_{p} is related to another semiconductor parameter known as the excess-minority-carrier lifetime, τ_{ρ}. It is the average time it takes for a hole injected into the n region to recombine with a majority electron. The relationship is

$$
\begin{equation*}
L_{p}=\sqrt{D_{p} \tau_{p}} \tag{3.60}
\end{equation*}
$$

where, as mentioned before, D_{p} is the diffusion constant for holes in the n-type silicon. Typical values for L_{p} are $1 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$, and the corresponding values of τ_{p} are in the range of 1 ns to $10,000 \mathrm{~ns}$.
The holes diffusing in the n region will give rise to a hole current whose density can be evaluated using Eqs. (3.37) and (3.59) with $p_{n}\left(x_{n}\right)$ obtained from Eq. (3.58),

$$
J_{p}=q \frac{D_{p}}{L_{p}} p_{n 0}\left(e^{V / V_{T}}-1\right) e^{-\left(x-x_{n j}\right) / L_{p}}
$$

Observe that J_{p} is largest at the edge of the depletion region $\left(x=x_{n}\right)$ and decays exponen tially with distance. The decay is, of course, due to the recombination with the majority electrons. In the steady state, the majority carriers will have to be replenished, and thus electrons will be supplied from the external circuit to the n region at a rate that will keep the current constant at the valuc it has at $x=x_{n}$. Thus the current density due to hole injection is given by

$$
\begin{equation*}
J_{p}=q \frac{D_{p}}{L_{p}} p_{n 0}\left(e^{V / V_{T}}-1\right) \tag{3.61}
\end{equation*}
$$

A similar analysis can be performed for the electrons injected across the junction into the p rcgion resulting in the electron-current component J_{n}

$$
\begin{equation*}
J_{n}=q \frac{D_{n}}{L_{n}} n_{p n}\left(e^{V / V_{T}}-1\right) \tag{3.62}
\end{equation*}
$$

where L_{n} is the diffusion length of electrons in the p regien. Since J_{p} and J_{n} are in the same direction, they can be added and multiplied by the junction cross-sectional area A to obtain the total current $/$ as

$$
I=A\left(\frac{q D_{p} p_{n 0}}{L_{p}}+\frac{q D_{n} n_{p 0}}{L_{n}}\right)\left(e^{V / V_{T}}-1\right)
$$

Substituting for $p_{n 0}=n_{i}^{2} / N_{D}$ and for $n_{p 0}=n_{i}^{2} / N_{A}$, we can express I in the form

$$
\begin{equation*}
I=A q n_{i}^{2}\left(\frac{D_{D}}{L_{p} N_{D}}+\frac{D_{n}}{L_{n} N_{A}}\right)\left(e^{V / V_{T}}-1\right) \tag{3.63}
\end{equation*}
$$

We recognize this as the diode equation where the saluration current I_{S} is given by

$$
\begin{equation*}
I_{S}=A q n_{i}^{2}\left(\frac{D_{p}}{L_{p} N_{D}}+\frac{D_{n}}{L_{n} N_{A}}\right) \tag{3.64}
\end{equation*}
$$

Obscrve that, as cxpected, I_{S} is directly proportional to the junction area A. Furthermore, I_{S} is proportional to n_{i}^{2}, which is a strong function of temperature (Eq. 3.36). Also, note that the exponential in Eq. (3.63) does not include the constant $n ; n$ is a "fix-up" parameter that is included to account for nonideal effects.
Diffusion Capacitance From the description of the operation of the $p \pi$ junction in the forward region, we note that in the steady state a certain amount of excess minority-carrier charge is stored in each of the p and n bulk regions. If the terminal voltage changes, this charge
will have to change before a new steady state is achieved. This charge-storage phenomenon another capacitive effect, distinctly different from that due to charge storage in the depletion region.

To calculate the excess minority-carrier stored charge, refer to Fig. 3.50. The excess in n resion be found from the shadcd area under the exponential as follows

$$
Q_{p}=A q \times \text { shaded area under the } p_{n}(x) \text { exponential }
$$

$$
=A q \times\left[p_{n}\left(x_{n}\right)-p_{n 0} 1 L_{p}\right.
$$

Substituting for $p_{n}\left(x_{n}\right)$ from Eq. (3.58) and using Eq. (3.61) enables us to express Q_{p} as

$$
Q_{p}=\frac{L_{p}^{2}}{D_{p}} I_{p}
$$

here $I_{=}=A . I_{\text {, }}$ is the hole component of the current across the junction. Now, using Eq. (3.60) we can substitute for $L_{p}^{2} / D_{p}=\tau_{p}$, the hole lifetime, to obtain

$$
Q_{p}=\tau_{p} I_{p}
$$

This attractive relationship says that the stored excess hole charge is proportional to both the hole current-component and the bole lifetime. A similar relationship can be developed for the electron charge stored in the p region,

$$
\begin{equation*}
Q_{n}=\tau_{n} I_{n} \tag{3.6}
\end{equation*}
$$

here τ is the electron lifetime in the p region. The total excess minority-carrier charge can be obtaincd hy adding together Q_{p} and Q_{n}

$$
\begin{equation*}
Q=\tau_{p} I_{p}+\tau_{n} I_{n} \tag{3.67}
\end{equation*}
$$

This charge can be expressed in terms of the diode current $I=I_{p}+I_{n}$ as

$$
\begin{equation*}
Q=\tau_{T} I \tag{3.68}
\end{equation*}
$$

where τ_{T} is called the mean transit time of the diode. Obviously, τ_{T} is related to τ_{p} and τ_{n} Furthermore, in most practical devices, one side of the junction is much more heavily doped than the other. For instance, if $N_{A} \gg N_{D}$, one can show that $I_{p} \gg I_{n}, 20$.
For small changes around a bias point, we can define the small-signal diffusion capaciFor small tance C_{d} as

$$
C_{d}=\frac{d Q}{d V}
$$

and can show that

$$
\begin{equation*}
C_{d}=\left(\frac{\tau_{T}}{V_{T}}\right) I \tag{3.69}
\end{equation*}
$$

where I is the diode current at the bias point. Note that C_{d} is directly proportional to the where I is the diode current alione current I and is thus negligibly small when the diode is revcrse biased. Also, note that to keep C_{d} small, the transit time τ_{T} must be made sinall, an important requirement for diodes intended for high-speed or high-frequency operation

EXERCISE

 of the currenI I tue to hole injection and that due to electron meecton actoss the juctions (d) τ_{p} and τ_{n} (e) the excess hole charge in he n region Q_{p}. and the excess electrom charge in the p tegion Q_{n}, and hemee the total minority stored charge $Q_{\text {, as w }}$ well as the transt time t_{t} and f) the diffusion capacitance. Ans (a) 2×10^{-1} A; (b) 0.616 V ; (c) $91.7 \mu \mathrm{~A} .83 \mu \mathrm{~A}$; (d) $25 \mathrm{~ns}, 556 \mathrm{~ns}$, (e) $2.29 \mathrm{pC}, 046 \mathrm{pC}, 275 \mathrm{pC}$ $27.5 \mathrm{~ns} ;(\mathrm{f}) 110 \mathrm{pF}$

Junction Capacitance The depletion-layer or junction capacitance under forward-bias conditions can be found by replacing V_{R} with $-V$ in Eq. (3.57). It turns out, however, that the accuracy of this relationship in the forward-bias region is rather poor. As an alternative, circuit designers use the following rule of thumb:

$$
C_{j} \simeq 2 C_{j 0}
$$

3.7.6 Summary

ror easy reference, Tabie 3.2 provides a listing of the important relationships that describe the physical operation of $p n$ junctions.

TABLE 3.2. Sumniry of Inportant Equation for po - IInction Operation

Quantity	Relationship	Values of Constants and Parameters (for Intrinsic Siat $T=300 \mathrm{~K}$)
Carrier concentration in intrinsic silicon $\left(/ \mathrm{cm}^{3}\right)$	$n_{i}^{2}=B T^{3} e^{-E_{G^{\prime} / k T}}$	$\begin{aligned} B & =5.4 \times 10^{31}\left(\mathrm{~K}^{2} \mathrm{~cm}^{6}\right) \\ E_{G} & =1.12 \mathrm{eV} \\ k & =8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K} \\ n_{i} & =1.5 \times 10^{10} / \mathrm{cm}^{3} \end{aligned}$
Diffusion current density $\left(\mathrm{A} / \mathrm{cm}^{2}\right)$	$\begin{aligned} & J_{p}=-q D_{p} \frac{d p}{d x} \\ & J_{n}=q D_{n} \frac{d n}{d x} \end{aligned}$	$\begin{aligned} Q & =1.60 \times 10^{-19} \text { coulomb } \\ D_{p} & =12 \mathrm{~cm}^{2} / \mathrm{s} \\ D_{n} & =34 \mathrm{~cm}^{2} / \mathrm{s} \end{aligned}$
Drift cument density ($\mathrm{A} / \mathrm{cm}^{2}$)	$J_{\text {driff }}=q\left(p \mu_{p}+\pi \mu_{n}\right) E$	$\begin{aligned} \mu_{p} & =480 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{~s} \\ \mu_{n} & =1350 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{~s} \end{aligned}$
Resistivity ($\Omega 2 \mathrm{~cm}$)	$\rho=1 /\left\{q\left(p \mu_{\rho}+n \mu_{n}\right)!\right.$	μ_{p} and μ_{n} decrease with the increase in doping concentration
Relationship between mobility and diffusivily	$\frac{D_{n}}{\mu_{n}}=\frac{D_{p}}{\mu_{p}}=V_{T}$	$\begin{aligned} V_{T} & =k T / q \\ & =25.8 \mathrm{mV} \end{aligned}$
Carrier concentration in n-type silicon ($/ \mathrm{cm}^{3}$)	$\begin{aligned} & n_{n 0} \approx N_{D} \\ & p_{n 0}=n_{i}^{2} / N_{D} \end{aligned}$	

Quantity	Relationship	Values of Constants and Parameters (for Intrinsic Si at $T=300 \mathrm{~K}$)
Carrier concentration in p-type silicon ($/ \mathrm{cm}^{3}$)	$\begin{aligned} & p_{p 0} \simeq N_{A} \\ & n_{p 0}=\bar{n}_{i}^{2} / N_{A} \end{aligned}$	
Junction built-in voltage (V)	$\overline{V_{0}}=V_{T} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)$	
Width of depletion region (cm)	$\begin{aligned} \frac{x_{n}}{x_{p}} & =\frac{N_{A}}{N_{D}} \\ W_{\text {dep }} & =x_{n}+x_{p} \\ & =\sqrt{\frac{2 \varepsilon_{s}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)\left(V_{0}+V_{R}\right)} \end{aligned}$	$\begin{aligned} & \varepsilon_{\mathrm{s}}=11.7 \varepsilon_{0} \\ & \varepsilon_{0}=8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm} \end{aligned}$
Charge stored in depletion layer (coulomb)	$q_{J}=q \frac{N_{A} N_{D}}{N_{A}+N_{D}} A W_{d e p}$	
Depletion capacitance (F)	$\begin{aligned} & C_{j}=\frac{\varepsilon_{j} A}{W_{d e p}}, C_{j 0}=\frac{\varepsilon_{s} A}{\left.W_{d e p}\right\|_{V_{k=0}}} \\ & C_{j}=C_{j 0} /\left(1+\frac{V_{R}}{\left.V_{0}\right)^{m}}\right. \\ & C_{j} \simeq 2 C_{j 0} \text { (for forward bias) } \end{aligned}$	$m=\frac{1}{3}$ to $\frac{1}{2}$
Forward current (A)	$\begin{aligned} & I=I_{p}+I_{n} \\ & I_{p}=A q n_{i}^{2} \frac{D_{p}}{L_{p} N_{p}}\left(e^{V / V_{T}}-1\right) \\ & I_{n}=A g n_{i}^{2} \frac{D_{n}}{L_{n} N_{A}}\left(e^{V / V_{T}}-1\right) \end{aligned}$	
Sauration ciurrent (A)	$I_{S}=A g n_{i}^{2}\left(\frac{D_{p}}{L_{p} N_{D}}+\frac{D_{n}}{L_{n} N_{A}}\right)$	
Minority-carrier lifetime (s)	$\tau_{p}=L_{p}^{2} / D_{p} \quad \tau_{n}=L_{n}^{2} / D_{n}$	$\begin{aligned} L_{p}, L_{n} & =1 \mu \mathrm{~m} \text { to } 100 \mu \mathrm{~m} \\ \tau_{p}, \tau_{n} & =1 \text { ns to } 10^{4} \text { Ds } \end{aligned}$
Minority-carrier charge slorage (coulomb)	$\begin{aligned} & Q_{p}=\tau_{p} I_{p} \quad Q_{n}=\tau_{n} I_{n} \\ & Q=Q_{p}+Q_{n}=\tau_{T} I \end{aligned}$	
$\begin{aligned} & \text { Diffusion } \\ & \text { capacitance }(\mathrm{H}) \end{aligned}$	$C_{d}=\left(\frac{\tau_{T}}{V_{T}}\right)_{I}$	

維 3.8 SPECIAL DIODE TYPES ${ }^{8}$

In this section, we discuss briefly some important special types of diodes.
${ }^{8}$ This section can be skipped with no loss in continuity

3.8.1 The Schottky-Barrier Diode (SBD)

The Schottky-barrier diode (SBD) is formed by bringing metal into contact with a moder ately doped n-type semiconductor material. The resulting metal-semiconductor junction behaves like a diode, conducting current in one direction (from the metal anode to the semi conductor cathode) and barrier diode or simply the Sce characteristic of the SBD is remarkably similar to that of a $p n$-junction diode, with two important exceptions:

1. In the SBD, current is conducted by majority carriers (electrons). Thus the SBD does ot exhibit the minority-carrier charge-storage effects found in forward bies onctions. As a result, Schottky diodes can be switched from on to off, and vice versa much faster than is possible with $p n$-junction diodes.
2. The forward voltage drop of a conducting SBD is lower than that of a $p n$-junction diode. For example, an SBD made of silicon exhibits a forward voltage drop of 0.3 V to 0.5 V , compared to the 0.6 V to 0.8 V found in silicon $p n$-junction diodes SBD made of gallium arsenide (GaAs) and, in fact, play an impotant role ins dhe be GaAs circuits. ${ }^{9}$ Gallium-arsenide SBDs exhibit forward voltage drops of abou 0.7 V.

Apart from GaAs circuits, Schottky diodes find application in the design of a special form of bipolar-transistor logic circuits, known as Schottky-TTL, where TTL, stands for transistortransistor logic.
Before leaving the subject of Schottky-barrier diodes, it is important to note that not cvery metal-semiconductor contact is a diode. In fact, metal is commonly deposited on the semiconductor surface in order to make terminals for the semiconductor devices and to connet SBDs Ohmic concacts to distinguish them from the rectifying contacts that result in thus low-resistivity) scmie usually made by depositing metal on very heavily doped (and thus low-resistivity) semiconductor regions.

3.8.2 Varactors

Earlier, we learned that reverse-biased $p n$ junctions exhibit a charge-storage effect that i modeled with the depletion-layer or junction capacitance C_{j}. As Eq. (3.57) indicates, C_{j} is function of the reverse-bias voltage V_{R}. This dependence turns out to be useful in a number fabricated to be used as voltonatic tuning of radio receivers. Special diodes are therefore optimized to make the capacitance a strong functions known as varactors. These devices are optimized to make the capacitance a strong function of voltage by arranging that the grading
coefficient m is 3 or 4 .

3.8.3 Photodiodes

If a reverse-biased $p n$ junction is illuminated-that is, exposed to incident light-the photons impacting the junction cause covalent bonds to break, and thus electron-hole pairs are generated in the depletion laycr. The electric field in the depletion region then sweeps are berated electrons to the n side and the holes to the p side, giving rise to a reverse cuuren across the junction. This current, known as photocurrent, is proportional to the intensity of
e incident light. Such a diode, called a photodiode, can be used to convert light signals into the incical signals.
Photodiodes are usually fabricated using a compound semiconductor ${ }^{10}$ such as gallium Photododes a diode is an important component of a growing family of circuits known phetronics or photonics. As the name implies, such circuits utilize an optimum as optoelectroncs or pics and optics for signal processing, storage, añd transmission. Usucombinationis is the preferred means for signal processing, whereas optics is most suited ally, electronics and storage. Examples include fiber-optic transmission of telephone and for transm signals and the use of optical storage in CD-ROM computer disks. Optical trans television provides very wide bandwidths and low signal attenuation. Optical storage allows vast amounts of data to be stored reliably in a small space.
Finally, we should note that without reverse bias, the illuminated photodiode function . energy.

3.8.4 Light-Emitting Diodes (LEDs)

The light-emitting diode (LED) performs the inverse of the function of the photodiode; it -onverts a forward current into light. The reader will recall that in a forward-biased $p n$ junction, minority caniers are injected across the junction and diffuse into the p and n regions. The iffusing minority carriers then recombine with the najority carriers. Such recombination an be made to give rise to light emission. This can be done by fabricating the $p n$ junction sing a semiconductor of the type known as direct-bandgap materials. Gallum arsenide belongs to this group and can thus be used to fabricate light-emilting diodes.
The light emitted by an LED is proportional to the number of recombinations that take pace, which in turn is proportional to the forward current in the diode.
LEDs are very popular devices. They find application in the design of numerous types of displays, including the displays of laboratory instruments such as digital voltmeters. They can be made to produce light in a variety of colors. Furthermore, LEDs can be designed so as to produce coherent light with a very narrow bandwidth. The resulting device is a lase diode. Laser diodes find application in optical communication systems and in CD players, among other things.

Combining an LED with a photodiode in the same package rcsults in a device known as an optoisolator. The LED converts an electrical signal applied to the optoisolator into light, which the photodiode detects and converts back to an electrical signal at the output of the optoisolator. Use of the optoisolator provides completc electrical solation between the elec trical circuit that is connected to the isolator's input and the circuit that is connecled to its output. Such isolation can be useful in reducing the effect of electrical interference on signa transmission within a system, and thus optoisolators are frequently employed in the desig of digital systems. They can also be used in the design of medical instruments to reduce the risk of electrical shock to patients.

Note that the optical coupling between an LED and photodiode need not be accom plished inside a small package. Indeed, it can be implemented over a long distance using an optical fiber, as is done in fiber-optic communication links.
${ }^{10}$ Whereas an elemental semiconductor, such as silicon, uses an element from column IV of the periodic table, a compound semiconductor uses a combination of elemensenic (column V) and is thus known I. For example, GaAs is formed of gallium (column III) and arsenic (column V) and is thus known as a III-V compound.

9\% AND THE SPICE DIODE MODEL

We conclude this chapter with a description of the model that SPICE uses for the diode. We will also illustrate the use of SPICE in the design of a dc power supply.

3.9.1 The Diode Model

To the designer, the value of simulation results is a direct function of the quality of the models used for the devices. The more faithfully the model represents the various characteristics of the device, the more accurately the simulation results will describe the operation of an actual fabricated circuit. In other words, to see the effect of various imperfections in device operation on circuit performance, these imperfections must be included in the device model used by the circuit simulator. These comments about device modeling obviously apply to all devices and not just to diodes.
The large-signal SPICE model for the diode is shown in Fig. 3.51. The static bebavior is modeled by the exponential $i-v$ relationship. The dynamic behavior is represented by the nonlinear capacitor C_{D}, which is the sum of the diffusion capacitance C_{d} and the junction capacitance $C_{\text {. }}$. The series resistance R_{s} represents the total resislance of the p and n region on both sides of the junctiou. The value of this parasitic resistance is ideally zcro, but it is typically in the range of a few ohms for small-sigual diodes. For small-signal analysis, SPICE uses the diode incremental resistance r_{d} and the incremental values of C_{d} and C_{j}.
Table 3.3 provides a partial listing of the diode-model parameters used by SPICE, all of which should be familiar to the reader. But, having a good device model solves only half of the modeling problem; the other half is to detennine appropriate values for the model parameters. This is by no means an casy task. The values of the model parameters are determined using a combination of characterization of the device-fabrication process and specific measurements performed on the actual manufactured devices. Semiconductor manufacturers expend enormous effort and money to extract the valucs of the model parameters for their devices. For discrete diodes, the values of the SPICE model parameters can be determined from the diode data sheets, supplemented if needed by key measurements. Circuit simulators (suich as PSpice) include in their libraries the model parameters of some of the popular off-the-self components. For instance, in Example 3.10, we will usc the commercially available 1N4148 pn-junction diode whose SPICE model parameters are available in PSpice.

FIGURE 3.51 The SPICE diode model.

TABLE 33 Parameters of the SPICE Diode Model (Partial Listing) TABLE 33 parameters of the SPICE Diode Model Partial Listing),

SPICE	Book Symbol	Description	Units
Parameter		Saturation current	A
IS	${ }_{\text {I }}$	Emission coefficient	0
N	R_{s}	Ohmic resistance	V
RS VJ	V_{0}	Buill-in potential	F
VJ CIO	$C_{j 0}$	Zero-bias depletion (junction) capacitance Grading coefficient	
M	m	Grading coetincent Transit time	s
TT	$\tau_{T}{ }_{V_{\text {F }}}$	Breakdown voltage	V
BV	$V_{z K}$	${ }_{\text {Reverse cein }}$ current at $V_{Z K}$	A

FIGURE 3.52 Equivalent-circuit model used to simulate the zener diode in SPICE. Diode D_{1} is ideal and can be he zener diode in SPICE by using a very small value for n (say $n=0.01$).
3.9.2 The Zener Diode Model
. The diode mence it does not provide a satisfactory model for zener diodes. However, the down region. Hence, it does not in Fig. 3.52 cau be used to simulate a zener diode in SPICE. equivalen-c D is an ideal diode which can be approximated in SPICE by using a very small Here, do ${ }^{2}$. Diode D_{2} is a regular diode that models the forward-bias region of value (

ESIGN OF A DC POWER SUPPLY

In this example, we will design a dc power supply using the rectifier circuit whose Capture schematic ${ }^{11}$ is shown in Fig. 3.53. This circuit consists of a full-wave diode rectifier, a filter
${ }^{11}$ The reader is reminded that the Capture schematics, and the corresponding PSpicc simulation ${ }^{1}$ The reader is reminded that the Capturesces in thand on the text's CD as well as on its website
fiies, of all SPICE examples in this book can be foun in Fig. 3.53 , we use variable paramelers www.sedrasmith.org). In these schermatics (as shown in Fig. 3.53), we use variabe para efect of enter thc values of the various circuit components. Tise apons ong parameter values.
噱

FIGURE 3.53 Capture schematic of the 5 -V dc power supply in Example 3.10.
capacitor, and a zener voltage regulator. The only perhaps-puzzling component is $R_{\text {islataon }}$ the 100 $\mathrm{M} \Omega$ resistor between the secondary winding of the transformer and ground. This resistor is included to provide dc continuily and thus "keep SPICE happy"; it has little effect on circuit operation.
be able to supply that the power supply 125 mA , The power supply is fed from a $120-\mathrm{V}$ (rms) $60-\mathrm{Hz}$ ac line Note that in be as low as 200Ω. (Fig. 3.53), we use a sinusoidal voltage source with a $169-\mathrm{V}$ peak amplitude to P pice schematic V rms supply (as $120-\mathrm{V}$ rns $=169-\mathrm{V}$ peak). Assume the avaitability of a 511 V ser did 120 ing $r_{z}=10 \Omega$ at $I_{2}=20 \mathrm{~mA}$ (and thus $V_{20}=49 \mathrm{~V}$) and that the required i. through the zener diode is $I_{\text {Znin }}=5 \mathrm{~mA}$
An approximate first-cut design can be obtained as follows: The 120 - ((ms) supply is stepped down to provide $12-\mathrm{V}$ (pcak) sinusoids across each of the secondary windings using a 14:1 turns ratio for the center-tapped transformer. The choice of 12 V is a reasonable comprong a between the need to allow for sufficient voltage (above the 5 -V output) to operate the rectifier and the regulator, while keeping the PIV ratings of the diodes reasonahly low. To detenine a value for R, we can use the following expression:

$$
R=\frac{V_{c_{\text {min }}}-V_{z 0}-r_{z} I_{Z \text { min }}}{I_{Z_{\text {min }}}+I_{L \text { max }}}
$$

where an estimate for $V_{C \text { min }}$, the minimum voltage across the capacitor, can be obtained by subtracting a diode drop (say, 0.8 V) from 12 V and allowing for a ripple voltage across the capacitor of, say, $V_{r}=0.5 \mathrm{~V}$. Thus, $V_{S_{\text {min }}}=10.7 \mathrm{~V}$. Furthermore, we note that $I_{L_{\text {max }}}=25 \mathrm{~mA}$ and $I_{I_{\text {min }}}=5 \mathrm{~mA}$, and that $V_{Z 0}=4.9 \mathrm{~V}$ and $r_{z}=10 \Omega$. The result is that $R=191 \Omega$.
Next, we determine C using a restatenent of Eq. (3.33) with V_{p} / R replaced by the current througb the $191-\Omega$ resistor. This current can be estimated by noting that the voltage across C varies from 10.7 to 11.2 V , and thus has an average value of 10.95 V . Furthermore, the desired voltage across the zener is 5 V . The result is $C=520 \mu \mathrm{~F}$.
Now, with an approxinate design in hand, we can procecd with the SPICE simulation. For
the zener diode, we use the the zener diode, we use the model of Fig. 3.52, and assume (arbitrarily) that D_{1} has $I_{s}=100 \mathrm{pA}$
3.9 THE SPICE DIODE MODEL AND SIMULATION EXAMPLES

54P5 354 The veltage across the smoothing capacitor \bar{C} and the voltage v_{o} actoss the load resistor $R_{\text {lad }}=200 \Omega$ in the 5 -V power supply of Example 3.10 .
and $n=0.01$ while D_{2} has $I_{s}=100 \mathrm{pA}$ and $n=1.7$. For the rectificr diodes, we use the com nercially ailalc 1 N 4148 (ype ${ }^{12}$ (with $I_{c}=2.682 \mathrm{n} \Lambda, n=1.836, R_{s}=0.5664 \Omega, V_{0}=0.5 \mathrm{~V}, C_{j 0}$ $\left.4 \mathrm{pF}, m=0.333, \tau_{T}=11.54 \mathrm{~ns}, V_{7 K}=100 \mathrm{~V}, I_{Z K}=100 \mu \mathrm{~A}\right)$.
${ }^{n}$ PSpice, wc perform a ransient analysis and plot the waveforms of both the voltage v_{C}, acros he smoothing capacitor C and the voltage τ_{o} across the load resistor $R_{\text {luad }}$. The sinulation resuls for $R_{\text {tod }}=200 \Omega(I \sim 25 \mathrm{~mA})$ are presented in Fig. 3.54. Observe that v_{C} has an average of 10.85 and a ripple of $\pm 0.21 \mathrm{~V}$. Thus, $V_{r}=0.42 \mathrm{~V}$, which is close to the $0.5-\mathrm{V}$ value that we would expect from the chosen value of C. The output voltage v_{0} is very close to the required 5 V , with v_{o} varying between 4.957 V and 4.977 V for a ripple of only 20 mV . The variations of v_{0} with $R_{\text {Joad }}$ is illustrated in Fig 3.55 for $R_{\text {tod }}=500 \Omega, 250 \Omega, 200 \Omega$, and 150Ω. Accordingly, v_{o} remains close t he nominal value of 5 V for $R_{\text {bed }}$ as low as $200 \Omega\left(I_{\text {load }} \cong 25 \mathrm{~mA}\right)$. For $R_{\text {ivad }}=150 \Omega$ (which implies $I_{\text {wid }} \equiv 33.3 \mathrm{~mA}$, greater than the maximum designed value), wc see a significant drop in v_{o} (to abour 4.8 V), as well as a large incrcase in the ripple voltage at the output (to about 190 mV). This is because the zener regulator is no longer operational; the zener has in fact cut off.
We conclude that the design meets the specifications, and we can stop here. Alternativcly, we may consider fine-tuning the design using further runs of PSpice to help with the task. For instance, we could consider what happens if we use a lower value of C, and so on. We can also investigate other properties of the present design; for instance, the maximum current through each diode and ascertain whether this naximum is within the rating specificd for the diode.

[^6]

FIGURE 3.55 The output-voltage waveform from the 5 -V power supply (in Example 3.10) for various load resistances: $R_{\text {lood }}=500 \Omega, 250 \Omega, 200 \Omega$, and 150Ω. The voitage regulation is lost at a load resistance of 150Ω

33 Use PSpte to Fig E3:35(a). Specifically, plot the transient the voliavor of double whose Capture schematic is shown in

 Ans. The voltage waveforms are shown in Fig E3.35(b).

(a).

FIGURE E3.35 (a) Capture schematic of the soliage-doubler circuit in Exercise 335)

 and the toithom erabi displays the totase that apeears at the output:

SUMMARY

- In the forward direction, the ideal diode conducts any current forced by the external circuit while displaying zero voltage drop The ideal diode does not conduct in the everse direction; any applied voltage appears as reverse bias across the diode.

The undirectional-current-flow property makes the diod useful in the design of rectifier circuits.

The forward conduction of practical siticon dodernan curately characterized by the relationship $i=I_{S}$
(6) A silicon diode conducts a negligible current untii the forward voltage is at leasi 0.5 V . Then the current increases rapidly, with the voltage drop increasing by 60 mV to 120 mV (depending on the value of n) for every decade f current change.
2. In the reverse direction, a silicon diode conducts a curent on the order of $10^{-9} \mathrm{~A}$. This current is much greater han I_{s} and increases with the magnitude of reverse voltage.
(4) Beyond a certain value of reverse voltage (that depends on the diode) breakdown occurs, and current increases rapidly with a small corresponding increase in voltage.
ksi Diodes designed to operate in the breakdown region are called zener diodes. They are employed in the design of voltage regulators whose function is to provide a constant
dc voltage that varies litul with variations in power supply vollage and/or load curent.

A hierarchy of diode models exists, with the sclection an appropriate model dictated by the application.
28 In many applications, a conducting diode is modeled as 0.7 V .

确 A diode biased to operate at a de current I_{D} has a small signal resistance $r_{d}=n V_{7} / I_{D}$
*The silicun junction diode is basically a $p n$ junction. Such junction is formed in a single silicon crystal

In p-type silicon there is an overabundance of holes (pos tively charged carriers), whilc in n-type silicon electron ate abundant.
E A carrier-depletion region develops at the interface in a jurction, with the n side positively charged and the p sid negatively charged. The voltage difference resulting is called the barrier voltagc.
㐷 A diffusion current I_{D} tlows in the forward direction (carried by holes from the p side and electrons from (ca n side), and a current I_{s} flows in the reverse direction (carried by thermally generated minority carriers). In an open circuited junction, $I_{D}=I_{s}$ and the barrier voltage is denoted V_{0}. V_{0} is also called the junction built-in voltage.
\%. Applying a reverse-bias voltage $[V \mid$ to a pr junction causes the depletion region to widen, and the barrier voltage in creases to $\left(V_{0}+|V|\right)$. The diffusion current decreases and a nel reverse current of ($I_{s}-I_{D}$) flows.
. Applying a forward-bias voltage $|V|$ to a pn junction causes the depletion region to become narrower, and the barrie voltage decreases to ($V_{0}-i V^{\prime}$). The diffusion current in creases, and a net forward current of ($I_{D}-I_{S}$) flows.
ty For a summary of the diode models in the forward region, refer to Table 3.1.
\$. For a summary of the relationships that govern the phys ical operation of the $p n$ junction, refer to Table 3.2 .

(b)

(c)

SECTION 3.1: THEIDEAL DIODE

3.1 An AA flashlight cell, whose Thévenin cquivalent is a voltage source of 1.5 V and a resistance of 1Ω, is connected the terminals of an ideal diode. Describe two possible situations that result. What are the diode current and terminal voltage when (a) the connection is between the diode cathode and the positive terminal of the battery and (b) the anode and the positive terminal are connected
3.2 For the circuits shown in Fig. P3.2 using ideal diodes, find the values of the voltages and currents indicated.
3.3 For the circuits shown in Fig. P3.3 using ideal diodes, ind the values of the labeled voltages and currents.
3.4 In each of the ideal-diode circuits shown in Fig. P3.4 v_{f} is a $1-\mathrm{kHz}, 10-\mathrm{V}$ peak sine wave. Sketch the waveform resulting at z_{0}. What are its positive and negative peak 3.5
3.5 The circuit shown in Fig. P3.5 is a model for a battery chargcr. Here v_{I} is a 10 - V pcak sine wave, D_{1} and D_{2} are idcal diodes, I is a $100-\mathrm{mA}$ current source. and B is a 4.5 - V battery sketch and label the waveform of the battery current i_{s}. What is its peak value? What is its average valuc? If the peak value

(a)

(b)

(c)

(d)

FIGURE P3.2

(a)

FIGURE P3. 3

(a)
(d)

. 4 (Continued)
FIGURE P3.4 (Continued)

(g)

(h)

(i)

(j)

FIGURE P3.4 (Continued)
of ν_{i} is reduced by 10%, what do the peak and average value of i_{g} becomc?

FIGURE P3.5

3.6 The circuits shown in Fig. P3.6 call function as logic
anes for input voltages are cither high or low. Using " 1 "
to denote the high value and " 0 " to denote the low value prepare a table with four columns including all possible inpu function is X of A and resulting values or X and Y. What logic For what values of A and B do X and Y have the same value? For what values of A and B do X and Y havc opposite values

(a)

FIGURE P3.6

(b)
3.7 For the logic gate of Fig. 3.5(a), assume ideal diode nd input voltage levels of 0 V and +5 V . Find a suitable value ns that the current recuired from each of the input signal ources does not exceed 0.1 mA .
33.8 Repeat Problem 3.7 for the logic gate of Fig. 3.5 (b)
.9 Assuming that the diodes in the circuits of Fig. P3. 9 . 9 Aseal find the valucs of the labeied voltages and currents.

(a)

(b)

FIGURE P3.

3.10 Assnming that the dores in the cicits of Fig. are ideal, utilize Thévenin's theorem to simplify the cir cuits and thus find the values of the labeled currents and oitayes.

(a)

(b)

FIGURE P3.10
03.11 For the rectifier circuit of Fig. 3.3(a), let the input sine wave have $120-\mathrm{V}$ rms value and assume the diode to be ideal. Select a suitable value for R so that the peak diode current does not exceed 50 mA . What is the greatest reverse voltage that will appear across the diode?
3.12 Consider the rectifier circuit of Fig. 3.3 in the event that the input source ν_{1} has a source resistancc R. For the case $R_{s}=R$ and assuming the diode to be ideal, sketch and clearly label the transfer characteristic v_{0} versus v_{1}.
3.13 A squarc wave of 6 - V peak-to-peak amplitude and $z \mathrm{cro}$ average is applied to a circuit ressmbling that in Fig. 3.3(a) and employing a $100-\Omega 2$ resistor. What is the peak output voltage What is the peak diode current? What is the averave diodc current? What is the maximum reverse voltaye across the diode"?
3.14 Rcpcat Problem 3.13 for the situation in which the average voltage of the square wave is 2 V whilc its peak-topeak valne remains at 6 V
*D3. 15 Design a batcery-charging circuit, resembling that im Fig. 3.4 and using an ideal diode, in which current flows to the 12 -V battcry 20% of the time and has an average value of 100 mA . What peak-to-peak sine-wave voltage is required? What resistance is required? What peak diode current flows? What peak reverse voltage docs the diode endure? If resistors can be specified to only one significant digit and he peak-10peak voltage only to the nearest volt, what design would you choose to guarantee the required charging current? What fraction of the cycle does diode current flow? What is the average diode current? What is the peak dre?
3.16 The circuit of Fig. P3. 16 can be used in a signailling system using one wire plus a common ground return. At and moment, the input has one of threc values: $+3 \mathrm{~V}, 0 \mathrm{~V},-3 \mathrm{~V}$. What is the status of the lamps for each input value? (Note hat the lamps can be located apart from cach other and that there may be scyeral of cach type of conncction, all on one wire!)

FIGURE P3.16

SECTION 3.2: TERMINAL CHARACTERISTICS

OF JUNCTION DIODES

3.17 Calculate the value of the thermal voltage, V_{T}, at $-40^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C},+40^{\circ} \mathrm{C}$, and $+150^{\circ} \mathrm{C}$. At what temperature is V_{r} exacily
3.18 At what forward voltage docs a diode for which $n=2$ conduct a current equal to $1000{ }_{s}$? In terms of f_{s}, what curren flows in the same diode when its forward voltage is 0.7 V ?
3.19 A diode for which the forward voltage drop is 0.7 V at 1.0 mA and for which $n=1$ is operated at 0.5 V . What is the value of the current?
3.20 A particular diode, for which $n=1$, is found to conduct 5 mA with a junction voltage or 0.7 V . What is its satuation current 15 ? What current will flow in this diode if the
junction voltage is raised to 0.71 V ? To 0.8 V ? II the junction volage is lowered to 0.69 V ? To 0.6 V ? What change in junction voltage will increase the diode current by a factor of 10 ?
3.21 The following measurements are taken on particula junction diodes to which V is the terminal voltage and $/$ is the lerminal voltage at 1% of the measured current of I_{s} and the for $n=2$. Use $V_{V}=25 \mathrm{mV}$ in your computatios
(a) $V=0.700 \mathrm{~V}$ at $l=1.00 \mathrm{~A}$
(b) $V=0.650 \mathrm{~V}$ at $l=1.00 \mathrm{~A}$
(c) $V=0.650 \mathrm{~V}$ ut $I=10 \mu \mathrm{~A}$
(d) $V=0.700 \mathrm{~V}$ at $I=10 \mathrm{~mA}$
3.22 Listed below arc the results of measurements taken on several different junction diodes. For each diode, the data voltage V, and the diode voltage at a currest $L 10$, tiode case, estimate $I_{5} n$, and the diode voltagre al $10 I$. In each (a) , eninate I_{5}, n, and he diode voltage at $10 /$
(a) $10.0 \mathrm{~mA}, 700 \mathrm{mV}, 600 \mathrm{mV}$
(c) $10 \mathrm{~A}, 800 \mathrm{mV}, 700 \mathrm{mV}$
(d) $1 \mathrm{~mA}, 700 \mathrm{mV}, 580 \mathrm{mV}$
(c) $10 \mu \mathrm{~A}, 700 \mathrm{mV}, 640 \mathrm{mV}$
3.23 The circuil in Fig. P3.23 utilizes three identical diodes having $n=1$ and $I_{s}=10^{-14} \mathrm{~A}$. Find the value of the current I required to oblain an output voltage $V_{o}=2 \mathrm{~V}$. If a current of
1 mA is drawn away from the is the change in output voltage?
3.24 J
3.2pplied with forward voltagc of the diode if l. What is the effect on the in parallel? Assume $n=1$. anidenical diode is conncted .25 m .
$=1$, but D_{1} has 10 times the junction arca of D_{2}. What value

FIGURE P3. 23

of V rcsults? To obtain a valuc for V of 50 mV , what current
I_{2} is needed? I_{2} is needed?

3.26 For the circuit shown in Fig. P3.26, both diodes are identical, conducting 10 mA at 0.7 V and 100 mA at 0.8 V . Find the value of R for which $V=80 \mathrm{mV}$

FIGURE P3.26
3.27 Several diodes having a range of sizes. but all with $n=1$, are measured at various temperatures and junclion currents noted below. For cach, estimnate the diode voltage at 1 mA and $25^{\circ} \mathrm{C}$.
(a) 620 mV at $10 \mu \mathrm{~A}$ and $0^{\circ} \mathrm{C}$
(b) 790 mV at 1 A and $50^{\circ} \mathrm{C}$
(c) 590 mV at $100 \mu \mathrm{~A}$ and $100^{\circ} \mathrm{C}$
(d) 850 mV at 10 mA and $-50^{\circ} \mathrm{C}$
(e) 700 mV at 100 mA and $75^{\circ} \mathrm{C}$
*3.28 In the circuit shown in Fig. P3.28, D_{1} is a large-area high-current diode whose reverse leakage is high and independent of applied voltage while D_{2} is a much smaller, lowcurrent diode for which $n=1$. At an ambient temperature of $20^{\circ} \mathrm{C}$, resistor R_{1} is adjusted to make $V_{R_{1}}=V_{2}=520 \mathrm{mV}$. Subsequent measurement indicates that R_{1} is 52 k . ${ }^{\circ} \mathrm{C}$ at at $40^{\circ} \mathrm{C}$?

FIGURE P3.28
.29 When a 15 -A current is appled to a particu it is found that the junction voitage immediately becomes 00 mV . However, as the power being dissipated in the diod caises its temperaure, 580 mV what is the apparent rise in and evenumper what is the power dissipated in the diode in is final statc? What is the temperature risc per watl of power dissipation? (This is called the thermal resistance.)
3.30 A designer of an instrument that must operate over wide supply-volage range, noting that a diodes s juncionvolage drop is relaively independent of junction curren considers the use of a large diode to cstabish a small rela
 esigner has ion
rent source, which varies from 0.5 mA to 1.5 mA , what junction voltage might be expected? What additional voltage be expected for a temperaure vain
*3.31 As an allcrnative to the idca suggested in Prob lein 3.30, the designer considers a second approach vo procurrenl supply: If relies on the ability to make quicc accurate onics of any small current that is available (using a proces alled current miroring). The designer proposes to use this dea to supply two diodes of diffcerent junction arcas with the same current and to measurc their junction-voltage differ ence. Two types of diodes are available; for a forward volt age of 700 mV , one conducts 0.1 mA whilc the other conducts A. Now, for identical currents in the range of 0.5 mA to .5 mA supplied to each, what on this arrangement? Assume $n=1$

SECTION 3.3: MODELING THE DIODE FORWARD

 CHARACTERISTIC3.32 Consider the graphical analysis of the diode circuit of Fie. 3.10 with $V_{D D}=1 \mathrm{~V}, R=1 \mathrm{kS}$, and a diode having I_{S} $10^{-15} \mathrm{~A}$ and $n=1$. Calculate a sinall numbcr of points on the diode characteristic in the vinea of where you expeer load line to n did, curent What valuc of diode cunent your voltuge do you find? Analytically, find the voltage corresponding to your estinate of current. By how much does differ from the graphically estimated value?
3.33 Use the iterative-analysis procedure to determine the diode current and voltage in the circuit of Fig. 3.10 for $V_{D D}$ $1 \mathrm{~V}, R=1 \mathrm{k} \Omega$, and a diode having $I_{5}=10^{-15} \mathrm{~A}$ and $n=1$
3.34 A " 1 -mA diode" (i.e., one that has $v_{D}=0.7 \mathrm{~V}$ at $i_{D}-$ 1 mA)
supply.
(a) Provide a rough estimate of the diode current you would expect.
(b) If che diode is characterized by $n=2$, estimate the diode curent more closely using iterativc analysis.
3.35 A collection of circuits, which are variants of that showin in Fig. 3.10, are histed below. For each diode used, measurca junction carren r_{0} aw inction ΔV ver vided, along with he chage jored 10 -fold. For cach circuit, surcd whe diode curce $I_{\text {and }}$ liode voltage V_{D} that result, using the diode exponcntial equation and iteration. (Hint: To educe your workload, notice the very special rclation between the circuit and diode parameters in many-but not all-cases. Finally, note that using such relationships, or approximations
to them, can often make your first pass at a circuit design much easier and faster!)

Circuit	$V_{\text {on }}(V)$	$R(\mathbf{k} \Omega)$	$I_{0}(\mathbf{m A})$	$V_{0}(\mathrm{mV})$	$\Delta V(\mathbf{m} V)$
a	10.0	9.3	1.0	700	100
b	3.0	2.3	1.0	700	100
c	2.0	2.0	10	700	100
d	2.0	2.0	1.0	700	100
e	1.0	0.30	10	700	100
f	1.0	0.30	10	700	60
g	1.0	0.30	10	700	120
h	0.5	30	10	700	100

03.36 Assuming the availability of diodes for which v_{D}, 0.7 V at $i_{D}=1 \mathrm{~mA}$ and $n=1$, design a circuit that utilizes fou diodes connected in series, in series with a resistor R con necled to a $10-\mathrm{V}$ power supply. The voltage across the string
3.37 Find the paramneters of a piecewise-linear model of a diode for which $v_{D}=0.7 \mathrm{~V}$ at $i_{D}=1 \mathrm{~mA}$ and $n=2$. The model is to fit exactly at 1 mA and 10 mA . Calculate the error m millivolts in predicting v_{D} using the piecewise-linear mode at $i_{D}=0.5,5$, and 14 mA .
3.38 Using a copy of the diode curve presented in Fig. 3.12 approximate the diode characteristic using a straight inc 1 cxactly matches the diode characteristic at both 10 mA an 1 mA . What is the slope? What is r_{D} ? What is $V_{D 0}$?
3.39 On a copy of the diode characteristics presented in Fig. 3.12, draw a load line corresponding to an external cir eonsisting of a $0.9-\mathrm{V}$ voltage source and a $100-\Omega$ resi . What are the values of diode drop and loop current you estimate using:
(a) the actual diode characteristics?
(b) the two-segment model shown?
3.40 For the diodes characterized below, find r_{D} and V_{D} the elements of the battery-plus-resistor model for which the rraight ine intersects the diode exponential characteristic at 0x the specified diode current.
(a) $V_{D}=0.7 \mathrm{~V}$ at $l_{D}=1 \mathrm{~mA}$ and $n=$
(b) $V_{D}=0.7 \mathrm{~V}$ at $I_{D}=1 \mathrm{~A}$ and $n=1$
3.41 The diode whose characteristic curve is shown Fig. 3.15 is to be operated at 10 mA . What would likely be suitable voltage choice for an appropriate constant-voltage-drop model?
.42 A diode operales in a series circuit with R and V A designer, considering using a constant-voltage model,
uncertain whether to use $0.7 V$ or $0.6 \vee$ for V_{D}. For what value of V is the difference in the calculated values of current only 1% ? For $V=2 \mathrm{~V}$ and $R=1 \mathrm{k} \Omega$, what two currents would result from the use of the two values of V_{D} ? What is their percentage difference?
03.43 A designer has a relatively latge number of diodes for which a currcnt of 20 mA flows at 0.7 V and the $0 . \mathrm{l}-\mathrm{V} /$ decade approximation is relatively good. Using a $10-\mathrm{mA}$ current source, the designer wishes to create a referencc voltage of 1.25 V . Suggest a combination of series and parallel diodes necded? What voltage is actually achieved? 3.44 Conder
. 1 Consider the hall-wave rectifier circuit of Fig. 3.3(a) with $R=1 \mathrm{k} \Omega$ and the diode having the characteristics and the pieccowise-inear model shown in Fig. $3.12\left(V_{D 0}=0.65 \mathrm{~V}\right.$, $r_{D}=20 \Omega$). Analyze the recifier circuit using the piccewisc-
linear model for the diode and thus find the output wolte v_{0} as a function of v_{s} Sketch the transfer characteristic v_{0} versus v_{1} for $0 \leq v_{l} \leq 10 \mathrm{~V}$. For v_{l} being a sinusoid with 10 V peak amplitude, sketch and clearly label the waveform of v_{0}.
3.45 Solve the problems in Example 3.2 using the constant-vollage-drop ($V_{D}=0.7 \mathrm{~V}$) diode model.
3.46 For the circuits shown in Fig. P3.2, using the constant-voltage-drop ($V_{D}=0.7 \mathrm{~V}$) diode model, find the voltages and currents indicated
3.47 For the circuits shown in Fig. P3.3, using the constant-voltage-drop ($V_{D}=0.7 \mathrm{~V}$) diode model, find the voltages and
3.48 For the circuits in Fig. P3.9, using the constant-voitage3.48 For the circuits in Fig. P3.9, using the constant-voltagecurrents and voltages.
3.49 For the circuits in Fig. P3.10, utilize Thévenin's theorem to simplify the circuits and find the values of the labeled currents and voltages. Assume that conducting diodes can be

Q3.50 Repeat Problem 3.11, representing the diode by its constant-voltage-drop ($V_{D}=0.7 \mathrm{~V}$) model. How different is the resulting design?
3.51 Repeat the problcm in Example 3.1 assuming that the diode has 10 times the area of the device whose characteristics and piecewise-linear model arc displayed in Fig. 3.12. $0.65+2)^{2}$ the diode by its piecewise-linear model ($v_{D}=$ $\left.0.65+2 i_{D}\right)$
variationc stmall-signal model is said to be valid for voltage variations of aboul 10 mV . To what percentage current change
his correspond (consider both positive and negative signals) for
(a) $n=1$?
(b) $n=2$

For each case, what is the maximum allowable voltage signal For each case, wegative) if the current change is to be limited to 10% ?
3.53 In a particular circuit application, ten " $20-\mathrm{mA}$ diodes $3.53-\mathrm{mA}$ diode is a diode that provides a $0.7-\mathrm{V}$ drop when (a current through it is 20 mA) connected in paraliel operate at a total current of 0.1 A . For the diodes closely matched, with $n=1$, what current flows in each? What is the coresponding small-signal resistance of each diode and of the combination? Compare the $20-\mathrm{mA}$ of a single dode e resistance of 0.2Ω associated with the diodes has se the juccion what is the equivalent resistance wire be 10 parallel-connected diodes? What connection resisof the would a single diode need in order to be totally cquivalent? (Note: This is why the paraliel connection of real diodes can often be used to advantage.)
3.54 in the circuit shown in Fig. P3.54, I is a dc current and v_{s} is a sinusoidal signal. Capacitors C_{1} and C_{2} are very large; v_{s} is a sinusoidal signal. Capaciorat to and from the diode but block the dc current from llowing into the signal source or the load (not shown). Use the diode small-signal model to show that the signal component of the oulput voluage is

$$
v_{n}=v_{s} \frac{n v_{T}}{n V_{T}+I R_{s}}
$$

If $v_{s}=10 \mathrm{mV}$, find v_{0} for $I=1 \mathrm{~mA}, 0.1 \mathrm{~mA}$, and $1 \mu \mathrm{~A}$. Let $R_{s}=$ $\mathrm{k} \Omega$ and $n=2$. At what value of I does v_{b} become onc-hal of v ? Note that this circuit functions as a signal attenuato
with inc attenuation factor controlled by the value of the d current I.

FIGURE P3.54
3.55 In the aticnuator circuit of Fig. P3.54, let $R_{s}=10 \mathrm{k} \Omega$. The diode is a $1-\mathrm{mA}$ device; that is, it exhibits a voitage drop of 0.7 V at a de current of mA I is needed for $v_{0} / v=$ inpur signask, $01 ? 0$ 001? In each case, what is the largest . ${ }^{2}$.isnal that can be used while ensuring that the signal component of the diode current is limited to $\pm 10 \%$ of its dc current? What output signals correspond?
3.56 In the capacitor-coupled attenuator circuit shown in 3.56 In the capacior-coupled
Fig. $3.56, I$ is a dc current that varies from 0 mA to 1 mA , $D_{\text {. and }} D_{2}$ are diodes with $n=1$, and C_{1} and C_{2} are large cou${ }^{2} 1$ ing capacitors. For very small input signals, find the values of the ratio v_{0} / v_{i} for I equal to
(a) $0 \mu \mathrm{~A}$
(b) $1 \mu \mathrm{~A}$
(c) $10 \mu \mathrm{~A}$
(d) $100 \mu \mathrm{~A}$
(e) $500 \mu \mathrm{~A}$
(f) $600 \mu \mathrm{~A}$
(g) $900 \mu \mathrm{~A}$
(h) $990 \mu \mathrm{~A}$

FIGURE P3.56
For the current in each diode in excess of $10 \mu \mathrm{~A}$, what is the largest input signal lor which the critical diode current remains within 10% of tits dc value?
*3.57 In the circuii shown in Fig. P3.57, diodes D_{1} through $D_{\text {are }}$ identical. Each has $n=1$ and is a " 1 -mA diode"; thal is, it exhibits a volage drop of 0.7 V at a $1-\mathrm{mA}$ current. (a) For small inpur signals (e.g., 10 mV peak), find values of $0 \mu \mathrm{~A}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}$, and 10 mA .

FIGURE P3.57

(b) For a forward-conducting diode, what is the largest signalvoltage magnitude that it can support while the correspondin signal current is limited to 10% of the dc bias current. Now, for the circuit in Fig. P3.57, for $10-\mathrm{mV}$ peak input, what is the smallest value of I for which the diode curents remain withii of their dc value?
(c) For $I=1 \mathrm{~mA}$, what is the largest possible output signal
for which the diode currents deviate by for which the diode currents deviacte by at most 10% of their
de values? What is the corresponding pcak input?
*3.58 In the circuit shown in Fig. P3.58, I is a dc current and $v_{\text {i }}$ is a sinusoidal signal with small amplitude (less han by its small-signal rey of 100 kHz . Representing the diode oy its simal -signal resistance r_{d}, which is a function of I, , sketch the circuit for determining the age V_{c}, and thus find the phase shift betwsoidal output voltthe value of I that will provide a phase shift of -45° and find the range of phase shift achieved as I is varied over the fand of 0.1 to 10 tines this value. Assume $n=1$.

figure p3.58
*3.59 Consider the voltage-regulator circuit shown in Fig. P3.59. The value of R is selected to obtain an output voit ge V_{o} (across the diode) of 0.7 V
(a) Use the diode small-signal model to show that the chang in output voltage corresponding to a change of 1 V in V^{+}is

$$
\frac{\Delta V_{O}}{\Delta V^{+}}=\frac{n V_{T}}{V^{+}+n V_{T}-0.7}
$$

This quantity is known as the line regulation and is usually expressed in mV / V.
connected in sexiexpression above for the case of m diodes connected in series and the value of R adjusted so that the (c) Calculate the value is 0.7 V (and $V_{o}=0.7 \mathrm{~m} \mathrm{~V}$). (c) Calculate the value of line regulation for the case $V^{+}=$
10 V (nominally) and (i) $m=1$ and (ii) $m=3$. Use $n=2$

figure p3.59

D3.60 Consider the voltage-regulator circuit shown is Fig P3. 59 under the condition that a load current I_{l} is draw from the output terminal.
(a) If the value of I_{L} is sufficiently small so that the corro sponding change in regulator output voltage ΔV_{O} is smal that

$$
\frac{\Delta V_{o}}{I_{L}}=-\left(r_{d} / / R\right)
$$

This quantity is known as the load regulation and is usually expressed in $\mathrm{mV} / \mathrm{mA}$
age across the of R is selected such that at no load the voltage across the diode is 0.7 V and the diode current is I_{D}, show that the expression derived in (a) becomes

$$
\frac{\Delta V_{O}}{I_{L}}=-\frac{n V_{T}}{I_{D}} \frac{V^{+}-0.7}{V^{+}-0.7+n V_{T}}
$$

Select the lowest possible value for I_{p} that results in a load regulation $\leq 5 \mathrm{nV} / \mathrm{mA}$. Assume $n=2$. If V^{4} is nominally 10 V , what value of R is required? Also, specify the diode required.

Generalize the expression derived in (b) for the case of diodes connected in serics and R adjusted to obtain $V_{O}=$ m diodes con load.

D3.61 Design a diode voltage regulator to supply 1.5 V to a $150-\Omega$ load. Lse two diodes specified to have a $0.7-\mathrm{V}$ drop at a current of 10 mA and $n=1$. The diodes are to be connected to a $+5-V$ supply throgh with the load connected? What is the What is the diode current with the load connected? What is the increase resulne thange results if the load resistance is reduced to 100Ω ? To 75Ω ? To $50 \Omega 2$?
*D3.62 A voltage regulator consisting of two diodes in series fed with a constant-current source is used as a replacement for a single carbon-zinc cell (battery) of nominal voltage 1.5 V . The regulator load current varies from 2 mA
to 7 mA . Constant-current supplics of $5 \mathrm{~mA}, 10 \mathrm{~mA}$, and 15 mA are available. Which would you choose, and why? What change in output voltage would result when the load current varies over its full range?' Assume that the diodes have $n=2$.
*3.63 A particular design of a voltage regulator is shown in Fig. P3.63. Diodes D_{1} and D_{2} arc $10-\mathrm{mA}$ units; that is, each has a voltage drop of 0.7 V at a current of 10 mA . Each has $n=1$.
(A) What is the regulator ouput voltage V_{o} with the $150-\Omega$ load connected?
(b) Find V_{o} with no load.
(c) With the load counected, to what value can the $5-\mathrm{V}$ supply be lowered while maintaining the loaded output volage within 0.1 V of its nominal value
(d) What does thc loaded output voltage become when the 5 -V supply is raised hy the same amount as the drop found in (c)?
percentage range of changes explored in (c) and (d), by what age change or she output voltage change for each percentage change of supply voltage in the worst case?

FIGURE P3.63

SECTION 3.4: OPERATION IN THE REVERSE

 bREAKDOWN REGION -ZENER DIODES3.64 Partial specifications of a collection of zener diodes ro provided below. Identify tle missing parameter, and esti mate
(a) $V_{Z}=10.0 \mathrm{~V}, V_{Z K}=9.6 \mathrm{~V}$, and $I_{Z T}=50 \mathrm{~mA}$
(b) $l_{Z Z}=10 \mathrm{~mA}, V_{2}=9.1 \mathrm{~V}$, and $r_{z}=30 \Omega$
(c) $r_{2}=2 \Omega, V_{z}=6.8 \mathrm{~V}$, and $V_{I K}=6.6 \mathrm{~V}$
(d) $V_{Y}=18 \mathrm{~V}, I_{Z T}=5 \mathrm{~mA}$, and $V_{Z K}=17.2 \mathrm{~V}$
(e) $I_{z 7}=200 \mathrm{~mA}, V_{2}=7.5 \mathrm{~V}$, and $r_{2}=1.5 \Omega$

Assuming that the power rating of a breakdown diode is stablished at about twice the specified zener current $\left(I_{z T}\right)$ what is the power rating of each of the diodes described
3.65 A designer requires a slunt regulator of approximately 20 V . Two kinds of zener diodes are available: $6.8-\mathrm{-}$ er the wo mill r_{z} of 10Ω and $5.1-\mathrm{V}$ devices with r_{z} of 30Ω For the two major choices possible, find the load regula
 csistance R.
.66 A shont regulator utilizing a zener diode wihh an incremental resistance of 5Ω is fed through an 82Ω resistor erave she the corresponding hange in the regulated output voltage?
3.67 A 9.1-V zener diode exhibits its nominal voltage at lest current of 28 mA . At this current the incremental resis tance is specified as 5Ω. Find $V_{z 0}$ of the zener model. Find ener voltage at a current of 10 mA and at 100 mA
D3.68 Design a $7.5-\mathrm{V}$ zener regulator circuit using a $7.5-\mathrm{V}$ zener specificd at 12 ma . The zener has an incremental resistance $r_{=}=30 \Omega$ and a knee current of 0.5 mA . The regulator operates from a $10-\mathrm{V}$ supply and has a $1.2-\mathrm{k} \Omega$ load. What is the value of R you have chosen? What is the regulator output voltage when the supply is 10% high? Is 10% low? What is the output voltage when both the supply is 10% high and the load is removed? What is the smallest possible toad resistor that can be used while the zener operates at a current no lower than the knee currcnt while the supply is 10% low?
©3.69 Provide two designs of shunt regulators utilizing the 1 N5235 zener diode, which is specified as follows: $V_{z}=$ 6.8 V and $r_{z}=5 \Omega$ for $l_{z}=20 \mathrm{~mA}$; at $l_{\ell}=0.25 \mathrm{~mA}$ (ncarcer the knee), $r_{z}=750 \Omega$. For both designs, the supply voltage is nominally 9 V and varies by $\pm 1 \mathrm{~V}$. For the irrst design, assum that the availability of supply current is not a problem, and thus opcrate the diode at 20 mA . For the sccond design, therefore you arc forced to operate the diode at 0.25 mA . For the purpose of these initial designs, assume no load. For each design find the value of R and the line regulation.

D3．70 A zener shunt regulator employs a $9.1-\mathrm{V}$ zener diode for which $V_{z}=9.1 \mathrm{~V}$ at $I_{z}=9 \mathrm{~mA}$ ，with $r_{z}=30 \Omega$ and $I_{Z X}=0.3 \mathrm{mAA}$ ．The available supply voltage of 15 V can vary For a nominal load resistance R_{L} of $1 \mathrm{k} \Omega$ and a nominal fene current of 10 mA ，what current must flow in the supply resis tor R ？For the nominal value of supply voltage，select a value for resistor R ，specified to one significant digit，to provide at least that current．What nominal output voltage results？For 10% change in the supply volage，what variation in output oitage results？If the load current is reduced by 50% ，what increase in V_{0} results？What is the stmallest value of toa esistance that can be tolerated while maintaining regulation
 ation and for the load regulation for this circuit using th umerical results obtained in this problenn
＊03．71 It is required to design a zener shunt rcgulator to pro－ vide a regulated yollagc of about 10 V ．The available $10-\mathrm{V}, 1-\mathrm{W}$ cner of type 1 N 4740 is specified to have a $10-\mathrm{V}$ drop at a tes curren of 25 mA ．At this current its r_{z} is 7Ω ．The raw supply $\pm 25 \%$ ．The regulator is required to supply a load current of 0 mA to 20 mA ．Design for a minimum zener current of 5 mA ． （a）Find $V_{Z 0}$ ．
（b）Calculate the requircd value of R ．
（c）Find the line regulation．What is the change in V_{θ} ex－ pressed as a pcrcentage，corresponding to the $\pm 25 \%$ change in V_{s} ？
（d）Find the load regulation．By what percentage does V_{o} change from the no－load to the full－load condition？
e）What is the maximum current that the zener in your郎

SECTION 3．5：RECTIFIER CIRCUITS

3．72 Consider the half－wave rectifier circuit of Fig．3．25（a） with the diode reversed．Let ψ_{s} be a sinusoid with $15-\mathrm{V}$ peak mplitude，and let $R=1.5 \mathrm{k} \Omega$ ．Use the constant－voltage－drop diode model wihh $V_{D}=0.7 \mathrm{~V}$
a）Sketch the transfer characteristic．
（b）Sketch the waveform of w_{0} ．
（c）Find the average value of v_{0} ．
（d）Find the peak current in the diode．
（e）Find the PIV of the diode．
3．73 Using the exponential diode characteristic，show that for v_{5} and v_{0} both greater than zero，the circuit of Fig．3．25（a） has the transfer characteristic

$$
v_{0}=v_{S}-v_{D}\left(a \mathrm{t} i_{D}=1 \mathrm{~mA}\right)-n V_{T} \ln \left(v_{0} / R\right)
$$

$$
\text { where } v_{S} \text { and } v_{o} \text { are in volts and } R \text { is in kilohms. }
$$

3．74 Consider a half－wave rectificr circuit with a triangula and with $R=1$－peak－to－pcak amplifude and zero avera and with $R=1 \mathrm{k} \Omega$ ．Assume that the diode can be represented by the piecewisc－linear model with $V_{p 0}=0.65 \mathrm{~V}$ and $r_{D}=20 \Omega$ Find the average value of ψ_{0}

3．75 For a haif－wavc rectifier circuit with $R=1 \mathrm{k} \Omega$ ，utiliz ing a diode whose voltage drop is 0.7 V at a current of 1 mA and exhibiting a $0.1-\mathrm{V}$ changc per decade of current variatio ing to $y_{0}=0.1 \mathrm{~V}, 05 \mathrm{~V}$ voltage to the rectifier correspond rectifier transfer characteristic

3．76 A half－wave rectificr circuit with a $1-\mathrm{k} \Omega$ load ope ates from a $120-\mathrm{V}$（rms） $60-\mathrm{Hz}$ household suppiy through $10-\mathrm{to-1}$ step－down transformer．It uses a silicon diode th an bedeled to have a $0.7-\mathrm{V}$ drop for any current．Wh fraction peak voltage of the rectified output？For what average output voltage？What is the average current in the load？

3．77 A full－wave rectifier circuit with a $1-k \Omega$ load operate from a $120-\mathrm{V}$（rms） $60-\mathrm{Hz}$ household supply through a 5 －to－ transformer having a center－tapped secondary winding．It ses two silicon diodes that can be modeled to have a 0.7 － rop for all currents．What is the peak voltage of the rectified Wh？For what fraction of a cycle does each diode conduct current in the lod？ current in the load？

3．78 A full－wave bridge rectifier circuit with a $1-\mathrm{kS}$ load operates from a $120-\mathrm{V}$（rms） $60-\mathrm{Hz}$ household supply hrough a 10 －to－1 stcp－down transformer having a single sec ndary winding．It uses four diodes，each of which can be modeled to have a $0.7-\mathrm{V}$ drop for any current．What is the peak value of the rectified voltage across the load？For wha fraction of a cycle does each diode conduct？What is the verage voltage across the load？What is the average current hrough the load？
D3．79 It is required to design a full－wave rectifier circuit sing the circuit of Fig． 3.26 to provide an average outpu voltage ot
（a） 10 V
（b） 100 V
each case find the required turns ratio of the transformet． Assume that a conducting diode has a voltage drop of 0.7 V he ac line voltage is 120 V rms．
3．80 Repcat Problem 3.79 for the bridg of Fig．3．27．

FIGURE P3．82

D3． 81 Consider the full－wave rectifier in Fig． 3.26 when Dhe transformer turns ratio is such that the voltage across the etirc secondary winding is 24 V rms．If the input ac line voltage（ 120 V rmss）fluctuatcs by as much as $\pm 10 \%$ ，lind the reguired PIV of the diodes．（Remember to use a factor of safety in your design．）
＊3．82 The circuit in Fig．P3．82 implements a complementary－ output rectifier．Sketch and clearly labcl the waveforms of v_{0}^{+}and v_{0}^{-}．Assume a $0.7-\mathrm{V}$ drop across cach conducting diode．If the magnitude of the average of each output is to the entirc secondary winding．What is the PIV of each diode？
3．83 Augment the rectifier circuit of Problem 3.76 with a capacitor chosen to provide a peak－to－pcak ripple voltage of （i） 10% of the peak output and（ii）$\} \%$ of the peak outpul．In each case：
（a）What average output voltage results？
（b）What fraction of the cycle does the diode conduct？
（d）What is the peak diode current？
3．84 Repeat Problem 3.83 for the rectifier in Problen 3.77
3．85 Repeat Problem 3.83 for the rectifier in Problem 3.78 ．
＊D3．86 It is required to use a peak rectifier to design a do power supply that provides an average dc output voltage of
15 V on which a maximum of $+1-\mathrm{V}$ ripple is allowed．The rectifier feeds a load of 150Ω The rectifier is fed from the line voltage（ 120 V rms 60 Hz ）through a transformer．The diodes available have $07-\mathrm{V}$ drop when conducting．If the designer opts for the half－wave circuit
（a）Specify the rms voltage that must appear across che trans－ ormer secondary
b）Find the required value of the filter capacitor．
c）Find the maximum reverse voltage that will appear acros the diode，and spccify the PIV rating of the diode．
Calculate the average current through the diode during就都ion．
＊D3．87 Repeat Problcm 3.86 for the case in which the designer opts for a full－wavc circuil utilizing a center－tapped ransformer．
＊ $\mathbf{3 . 8 8}$ Repeat Problem 3.86 for the case in which the designer opts for a full－wave bridge rectificr circuit．
3．89 Consider a half wave peak rectifier fed with a volt agc v_{s} having a triangular waveform with $20-\mathrm{V}$ peak－to－peak amplitude，zero average，and $1-\mathrm{kHz}$ frequency．Assume tha he diode has a $0.7-\mathrm{V}$ drop when conducting．Let the loa resistance $R=100 \Omega$ and the filter capacitor $C=100 \mu \mathrm{~F}$ ．Find he average dc output voliage，the time incival during wid the diode conducts，the avcrag ion．and the maximum diode current．

D3．90 Consider the circuil in Fig．P3．82 with two cqua filter capacitors placed across the load resistors R ．Assume hat the diodes available exhibit a $0.7-\mathrm{V}$ drop when conduc ing．Design the circuit to provide \pm－V－V de oden wo． hould he capable of providing 200 mA dc current to it load resistor R Complctely specify the capacitors，diode and the transformer．
3．91 The op amp in the precision rectifier circuit of Fig．P3．9 ideal with output saturation levels of $\pm 12 \mathrm{~V}$ ．Assume tha ing the diode exhibits a constant voltage drop 7 V ．Find v_{-}, v_{o} ，and v_{Δ} for：
（a）$v_{1}=+1 \mathrm{~V}$
（c）$v_{i}=-1 \mathrm{~V}$
（d）$v_{I}=-2 \mathrm{~V}$

Also，find the avcrage output voltage obtained when v_{I} is a symmetrical square wave of $1-\mathrm{kHz}$ frequency， 5 － V amplitude， and zero average．

FIGURE P3．91
3．92 The op amp in the circuil of Fig．P3． 92 is ideal with output saturaion levets of $\pm 12 \mathrm{~V}$ ．The diodes exhibit a con stant $0.7-\mathrm{V}$ drop when conducting．Find $v_{.}, v_{A}$ ，and v_{0} for：
（a）$y_{i}=+1 \mathrm{~V}$
（b）$y_{t}=+2 \mathrm{~V}$
（c）$y_{1}=-1 \mathrm{~V}$
（d）$z_{h}=-2 \mathrm{~V}$

FIGURE P3．92

SECTION 3．6．LIMITING AND CLAMPING

CIRCUITS

3．93 Sketch the transfer characteristic v_{o} versus $v_{\text {}}$ for the limiler circuits shown in Fig．P3．93．All diodes begin con－ ducting at a forward voltage drop of 0.5 V and have voltage drops of 0.7 V when fully conducting．
3．94 Repeat Problem 3.93 assuming that the diodes are modeled with the piecewisc－linear model with $V_{D 0}=0.65 \mathrm{~V}$ and $r_{D}=20 \Omega$ ．

3．95 The circuits in Fig．P3．93（a）and（d）are connected as follows：The two input terminals are tied together，and the

（a）

（b）

（c）

（d）

FIGURE P3．93

wo outpul terminals are tied together．Sketch the transfer characteristic of the circuit resulting，assuming that the cut－in voltage of the diodes is 0.5 V and their voltage drop when fully conducting is 0.7 V
．96 Repeat Problem 3.95 for the two circuits in Fig．P3．93（a） nd（b）connected together as follows：The two input terminals ． 3．97 Sketch and clearly label the transfer characteristic of he circuit in Fig．P3． 97 for $-20 \mathrm{~V} \leq v_{5} \leq+20 \mathrm{~V}$ ．Assume th wilh $V_{D 0}=0.65 \mathrm{~V}$ and $r_{D}=20 \Omega$ ．Assuming that the specified
zener voltage（ 8.2 V ）is measured at a current of 10 mA and ener voltage Ω ，represent the zener by a piecewise－linea model．

FIGURE P3．97

＊3．98 Plot the transfer characteristic of the circuit in Fig．P3．98 by evaluating v_{t} corresponding to $v_{0}=0.5 \mathrm{~V}$ $0.6 \mathrm{~V}, 0.7 \mathrm{~V}, 0.8 \mathrm{~V}, 0 \mathrm{~V},-0.5 \mathrm{~V},-0.6 \mathrm{~V},-0.7 \mathrm{~V}$ ，and -0.8 V Assume that the diodes are $1-\mathrm{mA}$ units（i．c．，have $0.7-\mathrm{V}$ drops at 1 －mA currents having a .1 ．A cade logat liniter eristic．Characteri is the vie ${ }^{2}$ I Estimate L_{4} and L

FIGURE P3．98

03．99 Design limiter circuits using only diodes and $10-\mathrm{k} \Omega$ resistors to provide an output signal limitcd to the range：
（a）-0.7 V and above
（b）-2.1 V and above
（c）$\pm 1.4 \mathrm{~V}$
Assume that each diode has a $0.7-\mathrm{V}$ drop when conducting．
D3．100 Design a two－sided limiting circuit using a resistor， two diodes，and two power supplies to feed a $1-\mathrm{k} \Omega$ load with nominal himiting levels of $\pm 3 \mathrm{~V}$ ．Use diodes modeled by a constant 0.7 V ．In the nonlimiting region，the circuit voltage gain should be at least $0.95 \mathrm{~V} / \mathrm{N}$ ．
3．101 Reconsider Problem 3.100 with diodes modeled by a $0.5-\mathrm{V}$ offset and a resistor consistent with $10-\mathrm{mA}$ conductio at 0.7 V ．Sketch and quantify the output voltage for inputs of $\pm 10 \mathrm{~V}$ ．
＊3．102．In the circuit shown in Fig．P3．102，the diodes ex hibit a 0.7 －V drop at 0.1 mA wilh a $0.1 \mathrm{~V} /$ decade characteristic

For inputs over the range of $\pm 5 \mathrm{~V}$ ，provide a calibrated sketch of the voltages at outputs B and C．For a $5-\mathrm{V}$ peak， $100-\mathrm{Hz}$ nusoid applied al A．sketch the signals at nodes B and C ．

$\text { 人。ـ } \underbrace{5 \mathrm{k} \Omega}$	$\bigcirc \mathrm{B}$
$D_{2} \mathbf{\square}$	가 D_{3}
$D_{1} \mathbf{\Sigma}$	マ D_{4}
－	。
	$\xi 1 \mathrm{k} \Omega$
	＝

FIGURE P3． 102

＊＊3．103 Sketch and label the transfer characteristic of the circuil shown in Fig．P3． 103 over a ± 10－V range of input signals．All diodes are $1-\mathrm{mA}$ units（i．e．，each exhibits a $0.7-\mathrm{V}$ drop at a current of 1 mA ）with $n=1$ ．What are the slopes of e characteristic at the extreme ± 10－ V levels？
＊＊3．105 For the circuits in Fig．P3．105，each utilizing an idcal diode（or diodes），sketch the output for the input shown． Label the most posilive and most negative output levels．
figure p3． 103
3．104 A clamped capacitor using an ideal diode with cath－ ode grounded is supplied with a sine wave of $10-\mathrm{V}$ rms．What is the average（dc）value of the resulting output？ Assume $C R \gg T$ ．

(a)

(c)

(b)

(f)

FIGURE P3.105

SECTION 3.7: PHYSICAL OPERATION

OF DIODES

Note: If in the following problems the need arises for the valucs of particular parameters or physical constants that are not
stated, plcase consult Table 3.1 .
3.106 Find values of the intrinsic carrier concentration n_{i} for silicon at $-70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$, and $125^{\circ} \mathrm{C}$. At each temperature, what fraction of the atoms is ionized? Recall that a silicon crystal has approximately 5×10^{22} atoms $/ \mathrm{cm}^{3}$.
3.107 A young designer, aiming to develop intuition concerring conducting paths within an integrated circuit, examines the end-to-end resistance of a connecting bar $10 \mu \mathrm{~m}$ long, $3 \mu \mathrm{~m}$ wide, and $1 \mu \mathrm{~m}$ thick, made of various materials. The designer considers:
(a) intrinsic silicon
(b) n-doped silicon with $N_{D}=10^{16} / \mathrm{cm}^{3}$
(c) n-doped silicon with $N_{D}=10^{18} / \mathrm{cm}^{3}$
(d) p-doped silicon with $N_{A}=1010 / \mathrm{cm}^{3}$
(e) aluminum with resistivity of $2.8 \mu \Omega \cdot \mathrm{~cm}$

(c)

(g)

(d)

(h)

Find the resistance in each case. For intrinsic silicon, usc the data in Table 3.2. For doped silicon, assume $\mu_{n} \equiv 2.5 \mu_{p}=$ $200 \mathrm{~cm}^{2} / \mathrm{V}$.s. (Recall that $R=\rho L / A$.)
3.108 Hoics arc being steadily injected into a region of n-type silicon (connected to other devices, the details of he excess-hole concentration profile shown in Fig P3 state, established in the n-type silicon region Here "exces" man

FIGURE P3.108
over and above the concentration $p_{n 0}$. If $N_{D}=10^{16} / \mathrm{cm}^{3}, n_{i}=$ $1.5 \times 10^{10} / \mathrm{cm}^{3}$, and $W=5 \mu \mathrm{nn}$, find the density of the curren that will flow in the x direction.
3.109 Contrast the electron and hole drift velocities trough a $10-\mu \mathrm{m}$ laycr of intrinsic silicon across which a through a 5 V is imposed. Let $\mu_{n}=1350 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$ and $\mu_{p}=$ $480 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$.
3.110 Find the current flow in a silicon bar of $10-\mu \mathrm{m}$ length having a a $5-\mu \mathrm{m} \times 4-\mu \mathrm{m}$ cross-scction and having frcelectron and holc delich ond-to-end Use $\mu=1200 \mathrm{~cm}^{2} / \mathrm{V}$ jively, with $1 \mathrm{v}^{2}$ applicd
3.111 In a $10-\mu \mathrm{m}$ long bar of donor-doped silicon, what donor concentration is needed to realize a current density of $1 \mathrm{~mA} / \mu \mathrm{mm}^{2}$ in response to an applied voltage of 1 V . (Note: Although the carrier mobilities change with doping concenaproximation you may assume μ, to be constant and usc the value for intrinsic silicon, $1350 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$.)
.112 in a phosphorous-doped silicon layer wiur impurily concentration of $10^{16} / \mathrm{cm}^{3}$, find the hole and electron concenrration at $25^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$.
3.113 Both the carrier mobility and diftusivity decreasc as ihe doping concentration of silicon is increased. The following table provides a few data points for μ_{n} and μ_{p} versus doping concentration. Lise the Einstein relationship to obtain the corresponding value for D_{n} and D_{p}

Doping Concen tration	$\mathrm{cm}^{\mu_{n} N .}$	$\mathrm{cm}^{u^{2}} v \mathrm{~s}$	$D_{\mathrm{cm}^{2} / \mathrm{s}}$	$\begin{gathered} \mathrm{cm}_{2} / \mathrm{s} \end{gathered}$
Intrinsic	1350	480		
10^{16}	1100	400		
10^{17}	700	260		
10^{18}	360	150		

3.114 Calculate the buill-in voltage of a junction in which he p and n regions arc doped equally with 10^{16} atoms $/ \mathrm{cm}^{3}$. Assume $n_{i} \approx 10 / \mathrm{cm}^{3}$. With no external voltage applied, What is the width of the dcpletion region, and how far does it extend into the p and n regions? If the cross-sectional area of the junction is $100 \mu \mathrm{~m}^{2}$, find the magnitude of the charge stored on either side of the junction, and calculate the junc-
tion capacitance C.
3.115 If, for a particular junction, the acceptor concentration is $10 / \mathrm{cm}^{3}$ and the donor concentration is $10^{-1} / \mathrm{cm}^{3}$, find the junction built-in voltage. Assume $n_{i} \simeq 10^{10} / \mathrm{cm}^{3}$. Also, find the width of the depletion region $\left(W_{\text {dep }}\right)$ and its
extent in each of the p and n regions when the junction is reverse biased wilh $V_{R}=5 \mathrm{~V}$. At this value of reverse bias, calculate the magnitude of the charge stored on either sid of the junction. Assume the junction area is $400 \mu \mathrm{~m}^{2}$. Also alculate C_{j}.
3.116 Estimate the total charge stored in a $0.1-\mu \mathrm{m}$ deple tion layer on one side of a $10-\mu \mathrm{m} \times 10-\mu \mathrm{m}$ junction. The do
ing concentration on thal side of 1 he junction is $10^{16} / \mathrm{cm}^{3}$.
3.117 Combine Eqs. (3.51) and (3.52) to find q_{j} in terms of V_{R}. Differentiate this expression to find an expression for the junction capacitance C. Show that the expression you found is the same as the result obtained using F.q. (3.54) in conjunction with Eq. (3.52).
3.118 For a particular junction for which $C_{j 0}=0.6 \mathrm{pF}, V_{0}=$ 0.75 V , and $m=1 / 3$, find the capacitance at reverse-bia voltages of 1 V and 10 V .
3.119 An avalanche-breakdown dinde, for which the breakdown voltage is 12 V , has a rated power dissipation of 0.25 W . What continuous operating current will raise the dis sipation to hall the maximum valuc? If breakdown nccurs for only 10 ms in cecry 20 ms , what average breakdown curre is allowed?
.120 In a forward-biased $p n$ junction show that the ratio of the current component due to hole injection across the junction to the component due to electron injection is given by

$$
\frac{I_{p}}{I_{n}}=\frac{D_{p}}{D_{n}} \frac{L_{n}}{L_{p}} \frac{N_{A}}{N_{D}}
$$

Evaluate this ratio for the case $N_{A}=10^{18} / \mathrm{cm}^{3}, N_{D}=10^{16} / \mathrm{cm}^{3}$, $L_{p}=5 \mu \mathrm{~m}, L_{n}=10 \mu \mathrm{~m}, D_{p}=10 \mathrm{~cm}^{2} / \mathrm{s}, D_{n}=20 \mathrm{~cm}^{2} / \mathrm{s}$, and hence find I_{p} and I_{n} for the case in which the diode is conduct ing a forward current $I=1 \mathrm{~mA}$.
.121 A $p^{-}-n$ diode is one in which the doping concentra lion in the p region is much greater than that in the n region. In such a diode, the forward current is mostly due to hole injection across the junction. Show that

$$
I \simeq I_{p}=\Lambda q n_{i}^{2} \frac{D_{p}}{L_{p} N_{p}}\left(e^{v / V_{T}}-1\right)
$$

For the specific case in which $N_{D}=5 \times 10^{16} / \mathrm{cm}^{3}, D_{p}=$ $10 \mathrm{~cm}^{2} / \mathrm{s}, \tau_{\nu}=0.1 \mu \mathrm{~s}$, and $A=10^{4} \mu \mathrm{~m}^{2}$, find I_{s} and the voltagc V obtained when $l=0.2 \mathrm{~mA}$. Assume operation at 300 K
where $n_{i}=1.5 \times 10^{10} / \mathrm{cm}^{3}$. Also, calculate tbe excess minorityarricr charge 1 and the waue of the diffusion capacitance $=02 \mathrm{ma}$
r-base diode is one where the wiatis of the and n regions are much smaller than L_{n} and L_{p}, respectively. s a result the excess minurity-cartier distribulion in each chapter 3 diodes

Fig. 3.50 - thaight line rather than the exponentials shown in
(a) For the short-base diode, sketch a figure corresponding to Fig. 3.50, and assume, as in Fig. 3.50, that $N_{A}>N_{D}$.
(b) Following a derivation sumilar to that given on page 205 206 , show that if the widths of the p and n regions are denoted W_{p} and W_{n} then
$I=A q n_{i}^{2}\left[\frac{D_{p}}{\left(W_{n}-x_{n}\right) N_{D}}+\frac{D_{n}}{\left(W_{p}-x_{p}\right) N_{A}}\right]\left(e^{V / V_{T}}-1\right)$

$$
\begin{aligned}
Q_{p} & =\frac{1}{2} \frac{\left(W_{n}-x_{n}\right)^{2}}{D_{p}} I_{p} \\
& =\frac{1}{2} \frac{W_{n}^{2}}{D_{p}} I_{p}, \quad \text { for } W_{n} \gg x_{n}
\end{aligned}
$$

(c) Also, assuming $Q \simeq Q_{p}, I \simeq I_{p}$, show that

$$
C_{d}=\frac{\tau_{T}}{V_{T}}
$$

where

$$
\tau_{T}=\frac{1}{2} \frac{W_{n}^{2}}{D_{p}}
$$

d) If a designer wishes to limit C_{d} to 8 pF at $I=1 \mathrm{~mA}$, what hould W_{n} be? Assume $D_{p}=10 \mathrm{~cm}^{2} / \mathrm{s}$.

INTRODUCTION

Having sludied the junction diode, which is the most basic two-terminal semiconductor device, we now turn our attention to three-terminal semiconductor devices. Three-terminal devices are far more useful than two-terminal ones because they can be used in a multitude of applications, ranging from signal amplification to digital logic and memory. The basic principle involved is the use of the volage between two terminals to control the current flowing in the third terminal. In this way a three-terminal device can be used to realize a controlled source, which as we have learned in Chapter I is the basis for amplifier design. Also, in the extreme, the control signal can be used to cause the current in the third terminal to change from zero to a large value, thus allowing the device to act as a switch. As we also
learned in Chapter 1, the switch is the basis for the realization of the logic inverter, the basic element of digital circuits.

There are two major types of three-terminal semiconductor device: the metal-oxidesemiconductor field-effect transistor (MOSFET), which is studied in this chapter, and the bipolar junction transistor (BJT), which we shall study in Chapter 5. Although each of the two transistor types offers unique features and areas of application, the MOSFET has become by far the most widely used electronic device, especially in the design of integrated circuits (ICs), which are circuits fabricated on a single silicon chip.
Compared to BJTs, MOSFETs can be made quite small (i.e., requiring a small area on the silicon IC chip), and their manufacturing process is relatively simple (see Appendix A). Also, their operation requires comparatively little power. Furthernore, circuit designers have found ingenious ways to implement digital and analog functions utilizing MOSFETs almost exclusively (i.e., with very few or no resistors). All of these properties have made it possible to pack large numbers of MOSFETs (>200 million!) on a single IC chip to implement very sophisticated, very-large-scale-integrated (VLSI) circuits such as those for memory and microprocessors. Analog circuits such as amplifiers and filters are also implemented in MOS technology, albeit in smaller less-dense chips. Also, both analog and digital functions are increasingly being implemented on the same JC chip, in what is known as mixed-signal design. The objective of this chapter is to develop in the reader a high degree of familiarity with the MOSFET: its physical structure and operation, terminal characteristics, circuit models, and basic circuit applications, both as an amplifier and a digital logic inverter. Although discrete MOS transistors exist, and the material studied in this chapter will enable the reader to design discrete MOS circuits, our study of the MOSFET is strongly influenced by the fact that most of its applications are in integrated-circuit design. The design of IC analog and digital MOS circuits occupies a large proportion of the remainder of this book.

The enhancement-type MOSFET is the most widely used field-effect transistor. In this section, we shall study its structure and physical operation. This will lead to the current-voltage characteristics of the device, studied in the next section.

4.1. 1 Device Structure

Figure 4.1, shows the physical structure of the n-channel enhancement-type MOSFET. The meaning of the names "enhancement" and " n-channel" will become apparent shortly. The transistor is fabricated on a p-type substrate, which is a single-crystal silicon wafer that provides physical support for the device (and for the entire circuit in the case of an integrated circuit). Two heavily doped n-type regions, indicated in the figure as the n^{+}source ${ }^{1}$ and the n^{+}drain regions, are created in the substrate. A thin layer of silicon dioxide $\left(\mathrm{SiO}_{2}\right)$ of thickness $t_{o \text { o }}$ (typically $2-50 \mathrm{~nm}$), ${ }^{2}$ which is an excellent electrical insulator, is grown on the surlace of the substrate, covering the area between the source and drain regions. Metal is deposited on top of the oxide layer to form the gate electrode of the device. Metal contacts are also made to the source region, the drain region, and the substrate, also known as the
${ }^{1}$ The notation n^{+}indicates heavily doped n-type silicon. Conversely, n is used to denote lightly doped n-type silicon. Similar notation applies for p-type silicon.
oxide thickness is expressed in $0.001 \mu \mathrm{~m}$. A micrometer $(\mu \mathrm{m})$, of micron, is $10^{-6} \mathrm{~m}$. Sometimes the

(a)

FIGURE 4.1 Physical structure of the enhancemen--type NMOS transistor: (a) perspective view; (b) cross. section. Typically $L=0.1$ to $3 \mu \mathrm{~m}, W=0.2$ to $100 \mu \mathrm{~m}$, and the thickness of the oxide layer $\left(t_{o x}\right)$ is in the range of 2 to 50 nm .
body. ${ }^{3}$ Thus four terminals are brought out: the gate terminal (G), the source terminal (S), the drain terminal (D), and the substrate or body terminal (B).
At this point it should be clear that the name of the device (metal-oxide-semiconductos FET) is derived from its physical structure. The name, however, has become a general one and is

[^7]used also for FETs that do not use metal for the gate clectrode. In fact, most modern MOSFETs are fabricated usiug a process known as silicon-gate technology, in which a cerlain type of silicon, called polysilicon, is used to form the gate electrode (see Appendix A). Our description of MOSFET operation and characteristics applies irrespective of the type of gate electrode.
Another name for the MOSFET is the insulated-gate FET or IGFET. This name also is electrically insulal structure of the device, emphasizing the fact that the gate electrode is electrically insulated from the device hody (by the oxide layer). It is this insulation that Observe that the the gate terminal to be extremely small (of the order of $10^{-15} \mathrm{~A}$).
Observe that the substrate forms $p n$ junctions with the source and drain regions. In norapere the perese-biased at all times. Since the drain will he in ply he the case in enencer opcration. Thus, here, the substrate will three-rinas and th will be shown the, wite (G), the source (S), and the drain (D). drain. This current will tlow in applied to the gate controls current flow between source and abelod "chand "" in frel drain to source in the region mate of the ange of $02 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$. Finally, 2 is in the range of $0.1 \mu \mathrm{~m}$ to $3 \mu \mathrm{~m}$, and W is in the ource and drain a symmetrical device; thus it ource and drain can be interchanged with no change in device characteristics.

4.1.2 Operation with No Gate Voltage

With no bias voltage applied to the gate, two back-to-back diodes exist in series between drain and source. One diode is formed by the $p n$ junction between the n^{+}drain rerion the p-type substrate, and the other diode is formed by the $p n$ junction between the p-type substrate and the n^{+}source region. These back-to-back diodes prevent current conduction from drain to source when a voltage $\gamma_{n s}$ is applied. In fact, the path between drain and source has a very high resistance (of the order of $10^{12} \Omega$).

4.1.3 Creating a Channel for Current Flow

Consider next the situation depicted in Fig. 4.2. Here we have grounded the source and the drain and applied a positive voltage to the gate. Since the source is grounded, the gate voltage appears in effect between gate and source and thus is denoted $v_{G S}$. The positive voltage on the from the region of the substrate, the free holes (which are positively charged) to be repelled downward into the substrate, populated by the bound eate, the depletion region is "uncovere"" be begarge associated with the acceptor atoms. These charges are

As well, the positive gatre voling holes have been pushed downward into the substrate. (where they are in abundance) into the chan drain regions trons accumulate near the ated, connecting the source and dain applied between drain and solate is the mobile electrons. The induced n region flows through this indnced n region, carticd by to source and is aptly colled so n region thus forms a channel for current flow from drain n-channel MOSFET or, alternatively MOSFET is formed in a p-type substrate an NMOS transistor. Note that an n-channcl surface from p type to n type. Hence the ind surface from p type to n type. Hence the induced channel is also called an inversion layer.

IGURE 4.2 The enhancement-type VMOS transistor with a positive voltage applied to the gale. An n channel is induced at the top of the substrate beneath the gate.

The value of $v_{G S}$ at which a sufficient number of mobile electrons accunnulate in the hannel region to forin a conducting channel is called the threshold voltage and is denoted V^{4} Obviously, V, for an n-channel FET is positive. The value of V_{t} is controlled during revice fabrication and typically lies in the range of 0.5 V to 1.0 V .
The gate and the channel region of the MOSFET form a parallel-plate capacitor, with thc xide layer acting as the capacitor dielectric. The positive gatc voltage causes positive charge to accumulate on the top plate of the capacitor (the gate electrode). The correspond ing negative charge on the bottom plate is formed by the clectrons in the the develops in the vertical direction. It is this controls the and thus it determines the channel conductivity and, in amorn the current that will flow through the channel when a voltage $v_{n s}$ is applied.

4.1.4 Applying a Small $v_{D S}$

Having induced a channcl, we now apply a positive voltage $v_{D S}$ between drain and source, as shown in Fig. 4.3. We first consider the case where $v_{D S}$ is small (i.c., 50 mV or so). The vollage $v_{\text {DS }}$ causes a current i_{D} to flow through the induced n channel. Current is carried by free electrons traveling from source to drain (hence the names source and drain). By convention, the direction of current flow is opposite to that of the flow of negative charge. Thus the current in the channel, i_{D}, will be from drain to source, as indicated in Fig. 4.3. The magnitude of i_{D} depends on the density of electrons in the channel, which in turn depense conducted is still of $v_{C S}$. Specifically, for $v_{C S}=V_{t}$ the channel is just induce and the the channel. We may negligibly small. As $v_{c s}$ excecds v_{b}, more electrons are attracted ine in the channel depth. visualize the increase in charge carries in the er aivalently, reduced resistance. In fact, The result is a channel of increased conductance or the excess gate voltage ($v_{G S}-V_{t}$), also

[^8]

FIGURE 4.3 An NMOS transistor with $v_{G S}>V_{t}$ and with a small $v_{D S}$ applied. The device acts as a res thus i_{D} is proportional to ($v_{C s}-V V_{G S}$.路 (for simplicity).
be proportional to $v_{G S}-V$ and, of course to the voltage. It follows that the current i_{D} will Figure 4.4 shows a sketch of i_{D} versus $\tau_{D D}$ for variou $v_{D S}$ that causes i_{D} to flow.
MOSFET is operating as a linear resistance whose various values of $v_{G S}$. We observe that the is infinite for $v_{G S} \leq V_{t}$, and its value decreases as $v_{\text {alue }}$ is controlled by $v_{G S}$. The resistance

drain and source, $i_{0 \text { o }}$ is kest

The descrintion above indicates that for the MOSFET to conduct, a channel has to be The duced. Then, increasing $v_{G S}$ above the threshold voltage V_{t} enhances the channel, hence induced. enhancement-mode operation and enhancement-type MOSFET. Finally, the names e he current that leaves the source terminal $\left(i_{s}\right)$ is equal to the current that enters we drain terminal $\left(i_{D}\right)$, and the gate current $i_{G}=0$

EXERGSS

4.1 From the description above of the operation of the MOSFET for small y s we note that is is proportiona to (tics -V) iss Find the constant of praportionality for the particular device whose characterstics ar depicted in Fig. 44. Also: ifie the range of drail-to source resistances corresponding to an overdrit oltaze, $\mathrm{vis}^{\prime} \mathrm{V}$. of 0.5 l to 2
Ans. $1 \mathrm{ma} \mathrm{V}^{2} \cdot 2 \mathrm{k} \Omega \mathrm{to} 0.0 \mathrm{ks}$

4.1.5 Operation as $v_{D S}$ Is Increased

We next consider the situation as $v_{D S}$ is increased. For this purpose let $v_{G S}$ be held constant at a value greater than V_{l}. Refer to Fig. 4.5, and note that $v_{D S}$ appears as a voltage drop across the length of the channel. That is, as we travel along the channel from source to drain, the voltage (measured relative to the source) increases from 0 to $v_{D s}$. Thus the voltage between the gate and points along the channel decreases from $v_{G S}$ at the source end to $v_{G S}-v_{b s}$ at the drain end. Since the channcl depth depends on this voltage, we find that the channel is no longer of uniform depth; rather, the channcl will take the tapered form shown in Fig. 4.5, being deepest at the source end and shallowest at the drain end. As $v_{D S}$ is increased, the channel becomes more tapered and its resistance increases correspondingly.
 Eventually, when $v_{D S}$ is increased to the value that reduces the voltage between gate and

FIGURE 4.5 Operation of the enhancement NMOS transistor as $\%$ sos is increased. The induced channcl scquires a tapercd shape, and its resistance increases as $v_{p S}$ is increased. Here, $v_{G S}$ is kept constant at a

FIGURE 4.6 The drain current i_{D} versus the drain-to-source voltage $\gamma_{D S}$ for au enhancement-type NMOS
channel at the drain end to V_{t}-that is, $v_{G D}=V_{t}$ or $v_{G S}-v_{D S}=V_{i}$ or $v_{D S}=v_{G S}-V_{i}$-the chan-
nel depth at the drain end decreases to almotst nel depth at the drain end decreases to almost zero, and the channel is said to be pinched off. Increasing $v_{D S}$ beyond this value has little effect (theoretically, no effect) on the channel shape, and the current through the chaninel remains constant at the value reached for $v_{D S}=$ $v_{G S}-V_{\text {r }}$. The drain current thus saturates at this value, and the MOSFET is said to have denoted v_{D} saturation region of operation. The voltage $v_{D S}$ at which saturation occurs is denoted $v_{\text {DSsat }}$

$$
\begin{equation*}
v_{D \text { sat }}=v_{G S}-V_{t} \tag{4.1}
\end{equation*}
$$

Obviously, for every value of $v_{G S} \geq V_{t}$, there is a corresponding value of $v_{D \text { ssitr }}$. The device operates in the saturation region if $v_{D s} \geq v_{D S s a t}$. The region of the $i_{D}-v_{D S}$ characteristic obtained for $v_{D s}<v_{D S \text { sax }}$ is called the triode region, a carryover from the days of vacuum-tube devices whose operation a FET resembles.
To help further in visualizing the effect of $v_{D S}$, we show in Fig. 4.7 sketches of the channel as $v_{D S}$ is increased while $v_{G S}$ is kept constant. Theoretically, any increase in $v_{D S}$ above

FIGURE 4.7 Increasing $v_{D S}$ causes the chamnel to acquire a tapered shape. Eventually, as $v_{D S}$ reache $v_{G S}-V_{\text {, }}$, the channel is pinched off at the drain end. Increasing $v_{D s}$ above $v_{G S}-V_{1}$ has litule cffect (theoretically,
no cffect) on the channcl's shope
(which is equal to $v_{G S}-V_{t}$) has no effect on the channel shape and simply appears $v_{\text {DSsat }}$ across the depletion region surrounding the channel and the n^{+}drain region.
and

4.1.6 Derivation of the $I_{D}-V_{D S}$ Relationship

The description of physical operation presented above can be used to derive an expression The description relationship depicted in Fig. 4.6. Toward that end, assume that a voltage $v_{G S}$ is for the V_{D}, appled is applied between drain and source. First, we shall consider operation in the triode age $v_{D S}$ for which the channel must be continuous and thus $v_{G D}$ must be greater than V_{L} or, equivalently, $v_{D S}<v_{G S}-V_{r}$. In this case the channel will have the tapered shape shown in Fig. 4.8.

Fig. 4.8.
The reader will recall that in the MOSFET, the gate and the channel region form a parallelThe reader will recall pate area is denoted $C_{o x}$ and the thickness of the oxide layer is $t_{o x}$ then

$$
C_{o x}=\frac{\varepsilon_{o x}}{t_{o x}}
$$

(4.2)
where $\varepsilon_{o x}$ is the permittivity of the silicon oxide,

$$
\varepsilon_{o x}=3.9 \varepsilon_{0}=3.9 \times 8.854 \times 10^{-12}=3.45 \times 10^{-11} \mathrm{~F} / \mathrm{m}
$$

The oxide thickness $t_{u . \mathrm{C}}$ is determined by the process technology used to fabricate the MOSFET. As an example, for $t_{o x}=10 \mathrm{~nm}, C_{o x}=3.45 \times 10^{-3} \mathrm{~F} / \mathrm{m}^{2}$, or $3.45 \mathrm{fF} / \mathrm{m}^{2}$ as it is usually expressed.

Now refer to Fig 48 and consider the infinitesimal strip of the gate at distance x from Ne suurce. The capacitance of this strip is $C_{o x} W d x$. To find the charge stored on this infinitesimal strip of the gate capacitance, we multiply the capacitance by the effective voltage

FIGURE 4.8 Derivation of the $i_{D}-v_{\text {os }}$ characteristic of the NMOS transistor.
between the gate and the channel at point x, where the effective voltage is the voltage that i responsible for inducing the channel at point x and is thus $\left[v_{G S}-v(x)-V_{t}\right]$ where $v(x)$ is the
voltage in the channel at point x. voltage in the channel at point x. It follows that the electron charge $d q$ in the infinitesimal
portion of the channel at point x is portion of the channel at point x is

$$
d q=-C_{o x}(W d x)\left[\widetilde{v_{G S}}-v(x)-V_{t}\right]
$$

where the leading negative sign accounts for the fact that $d q$ is a negative charge. At point x this field can be expressed as

$$
E(x)=-\frac{d v(x)}{d x}
$$

The electric field $E(x)$ causes the electron charge $d q$ to drift toward the drain with a velocity
$d x / d t$,

$$
\frac{d x}{d t}=-\mu_{n} E(x)=\mu_{n} \frac{d v(x)}{d x}
$$

where μ_{n} is the mobility of electrons in the channel (called surface mobility). It is a physical current i can be obtained as follows:

$$
\begin{aligned}
i & =\frac{d q}{d t} \\
& =\frac{d q}{d x} \frac{d x}{d t}
\end{aligned}
$$

Substituting for the charge-per-unit-length $d q / d x$ from Eq. (4.3), and for the electron drift
velocity $d x / d t$ from Eq. (4.4), results in

$$
i=-\mu_{n} C_{o x} W\left[\tilde{v}_{G S}-v(x)-V_{t}\right] \frac{d v(x)}{d x}
$$

Although evaluated at a particular point in the channel, the current i must be constant at al interested in the drain-to-source current i equal to the source-to-drain current. Since we are

$$
i_{D}=-i=\mu_{n} C_{o x} W\left[v_{G S}-v(x)-V_{t}\right] \frac{d v(x)}{d x}
$$

which can be rearranged in the form

$$
i_{D} d x=\mu_{n} C_{o x} W\left[v_{C i S}-V_{t}-v(x)\right] d v(x)
$$

Integrating both sides of this equation from $x=0$ to $x=L$ and, correspondingly, for $v(0)=0$
to $v(L)=v_{D S}$,

$$
\int_{0}^{L} i_{D} d x=\int_{0}^{v_{D S}} \mu_{n} C_{u x} W\left[v_{G S}-V_{t}-v(x)\right] d v(x)
$$

gives

$$
\begin{equation*}
i_{D}=\left(\mu_{n} C_{o x}\right)\left(\frac{W}{L}\right)\left[\left(v_{G S}-V_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right] \tag{4.5}
\end{equation*}
$$

4.1 DEVICE STRUCTURE AND PHYSICAL OPERATION

This is the expression for the $i_{D}-v_{D S}$ characteristic in the triode region. The value of the curThis is the edge of the triode region or, equivalently, at the beginning of the saturation region rent at the edged by substiluting $v_{D S}=v_{G S}-V_{g}$, resulting in
can be obtained

$$
\begin{equation*}
i_{D}=\frac{1}{2}\left(\mu_{n} C_{\sigma x}\right)\left(\frac{W}{L}\right)\left(v_{G S}-V_{t}\right)^{2} \tag{4.6}
\end{equation*}
$$

This is the expression for the $i_{D}-v_{D S}$ characteristic in the saturation region; it simply gives the saturation value of i_{D} corresponding to the given $v_{C S}$. (Recall that in saturation i_{D} remains constant for a given $v_{G S}$ as $v_{D S}$ is varied.)

In the expressions in Eqs. (4.5) and (4.6), $\mu_{n} C_{C x}$ is a constant deternined by the process technology used to fabricate the n-channel MOSFET. It is known as the process transconductance parameter, for as we shall see shortly, it determincs the value of the MOSFET transconductance, is denoted k_{n}^{\prime}, and has the dimensions of $\mathrm{A} / \mathrm{V}^{2}$:

$$
\begin{equation*}
k_{n}^{\prime}=\mu_{n} C_{o x} \tag{4.7}
\end{equation*}
$$

Of course, the $i_{D}-v_{D S}$ expressions in Eqs. (4.5) and (4.6) can be written in terms of k_{n}^{\prime} as follows:

$$
\begin{array}{ll}
i_{D}=k_{n}^{\prime} \frac{W}{L}\left[\left(v_{G S}-V_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right] & \text { (Triode region) } \tag{4.5a}\\
i_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2} & \text { (Saturation region) }
\end{array}
$$

(4.6a)

In this book we will use the forms with $\left(\mu_{n} C_{o x}\right)$ and with k_{n}^{\prime} interchangeably.
From Eqs. (4.5) and (4.6) we see that the drain current is proportional to the ratio of the channel width W to the channel length L, known as the aspect ratio of the MOSFET. The values of W and L can be selected by the circuit designer to obtain the desired $i-v$ characteristics. For a given fabrication process, however, there is a minimum channel length, $L_{\text {min }}$. In fact, the minimum channel length that is possible with a given fabrication process is used to characterize the process and is being continually reduced as technology advances. For instance, at the time of this writing (2003) the state-of-the-art in MOS technology is a $0.13-\mu \mathrm{m}$ process, meaning that for this process the minimum channel length possible is $0.13 \mu \mathrm{~m}$. There also is a minimum value for the channel width W. For instance, for the $0.13-\mu \mathrm{m}$ process just mentioned, $W_{\text {min }}$ is $0.16 \mu \mathrm{~m}$. Finally, we should note that the oxide thickncss $t_{o x}$ scalces down with $L_{\text {min }}$. Thus, for a $1.5-\mu \mathrm{m}$ technology, $t_{o x}$ is 25 mm , but the modern $0.13-\mu \mathrm{m}$ technology mentioned above has $t_{o x}=2 \mathrm{~nm}$.

$33 \min / 2$

Consider a process technology for which $L_{\text {nin }}=0.4 \mu \mathrm{~m}, t_{o x}=8 \mathrm{~nm}, \mu_{n}=450 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$, and $V_{t}=0.7 \mathrm{~V}$.
(a) Find $C_{o x}$ and $k_{t r}^{\prime}$.
(b) For a MOSFET with $W / L=8 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$, calculate the values of $V_{G S}$ and $V_{D S \text { min }}$ necded to operate the transistor in the saturation region with a de current $I_{D}=100 \mu \mathrm{~A}$.
(c) For the device in (b), find the value of $V_{G i 5}$ required to cause the device to operate as a $1000-\Omega$ resistor for very small $\nu_{D S}$.

Solution

(a)

$$
C_{o x}=\frac{\varepsilon_{o x}}{t_{o x}}=\frac{3.45 \times 10^{-11}}{8 \times 10^{-9}}=4.32 \times 10^{-3} \mathrm{~F} / \mathrm{m}^{2}
$$

$$
=4.32 \mathrm{fF} / \mu \mathrm{m}^{2}
$$

$k_{n}^{\prime}=\mu_{n} C_{o x}=450\left(\mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}\right) \times 4.32\left(\mathrm{fF} / \mu \mathrm{m}^{2}\right)$
$=450 \times 10^{8}\left(\mu^{2} / \mathrm{V} \cdot \mathrm{s}\right) \times 4.32 \times 10^{-15}\left(\mathrm{~F} / \mu^{2}\right)$
$=194 \times 10^{-6}(\mathrm{~F} / \mathrm{V} \cdot \mathrm{s})$
$=194 \mu \mathrm{~A} / \mathrm{V}^{2}$
(b) For operation in the saturation region,

$$
i_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(v_{C S}-V_{t}\right)^{2}
$$

Thus,

$$
100=\frac{1}{2} \times 194 \times \frac{8}{0.8}\left(V_{G S}-0.7\right)^{2}
$$

which results in

$$
V_{G S}-0.7=0.32 \mathrm{~V}
$$

or

$$
V_{G S}=1.02 \mathrm{~V}
$$

and

$$
V_{D S \text { min }}=V_{G S}-V_{1}=0.32 \mathrm{~V}
$$

(c) For the MOSFET in the triode region with $v_{D S}$ very stnall,

$$
i_{D} \equiv k_{n}^{\prime} \frac{W}{L}\left(v_{G S}-V_{t}\right) v_{D S}
$$

from which the drain-to-source resistance $r_{D S}$ can be found as

$$
\begin{aligned}
r_{D S} & \left.\equiv \frac{v_{D S}}{i_{D}}\right|_{\text {small } v_{D S}} \\
& =1 /\left[k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)\right]
\end{aligned}
$$

Thus
which yields

$$
1000=\frac{1}{194 \times 10^{-6} \times 10\left(V_{G S}-0.7\right)}
$$

Thus,

$$
V_{G S}-0.7=0.52 \mathrm{~V}
$$

$$
V_{G S}=1.22 \mathrm{~V}
$$

EXERESES
4.2 For a 0.8 -ump process technology for which $t_{u x}=15 \mathrm{~mm}$ and $\mu_{n}=550 \mathrm{~cm}^{2} N$ s. find C_{0}, k_{n}, and the over drive voltage $V /=V_{G S}-V$ required to operate a transis or haying $W / L=20 \mathrm{~m}$ saturation with I_{b} 2 ma Wha the minimum the of V ne needed

4.3 Use the expression for operation in the triode region to show that an n-channel MOSFET operated in saturation with in overdrive voltage $T_{o v}=V_{G S}-V$ and having a small $V_{D S}$ a cross it behaves approxi mately as a linear resistance $r_{D S}$.

$$
I_{n s}=1 /\left[k^{\prime} \frac{W^{2}}{L} V_{o r}\right]^{\prime}
$$

Calculate the value of fos obtained for a device having $k_{n}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $W / L=10$ when operated with an overdrive voltage of 05 V .
Ans. $2 \mathrm{k} \Omega$

4.1.7 The p-Channel MOSFET

A p-channel enhancement-type MOSFET (PMOS transistor), fabricated on an n-type substrate with p^{+}regions for the drain and source, has holes as charge carriers. The device operates in the same manncr as the n-channel device except that $v_{G S}$ and $v_{D S}$ are negative and the threshold voltage V_{t} is negative. Also, the current i_{D} enters the source terminal and leaves through the drain terminal

PMOS technology originally dominated MOS manufacturing. However, because NMOS devices can be made smaller and thus operate faster, and because NMOS historically required lower supply voltages than PMOS, NMOS technology has virtually replaced PMOS. Nevertheless, it is important to be familiar with the PMOS transistor for two reasons: PMOS devices are still available for discrete-circuit design, and more importantly, both PMOS and NMOS transistors are utilized in complementary MOS or CMOS circuits, which is currently the dominant MOS technology.

4.1.8 Complementary MOS or CMOS

As the name implies, complementary MOS technology employs MOS transistors of both polarities. Although CMOS circuits are somewhat more difficult to fabricate than NMOS, the availability of complementary devices makes possible many powerful circuit-design possibilities. Indeed, at the present time CMOS is the most widely used of all the IC technologies. This statement applies to both analog and digital circuits. CMOS technology has virtually replaced designs based on NMOS transistors alone. Furthermore, at the time of this writing (2003), CMOS technology has taken over many applications that just a few years ago were possible only with bipolar devices. Throughout this book, we will study many CMOS circuit echniques.
Figure 4.9 shows a cross-section of a CMOS chip illustrating how the PMOS and NMOS transistors are fabricated. Observe that while the NMOS transistor is implemented directly in the p-type substrate, the PMOS transistor is fabricated in a specially created n region, known as an n well. The two devices are isolated from each other by a thick region of oxide that func tions as an insulator. Not shown on the diagram are the conmections made to the p-type body and to the n well. The latter connection serves as the body terminal for the PMOS transistor

FIGURE 4.9 Cross-section of a CMOS integrated circuit. Note that the PMOS transistor is formed in a separate n-type region, known as an n well. Another arrangement is also possible in which an n-type body is used and the n device is formed in a p well. Not shown are the connections made to the p-typc body and to
the n well. the latter fuccions as the boll the n well: the latter functions as the body lerminal for the p-channel device.

4.1.9 Operating the MOS Transistor in the Subthreshoid Region

 The above description of the n-channel MOSFET operation implies that for $v_{G S}<V_{t}$, wo current flows and the device is cut off. This is not entirely true, for it has been found that for values of $v_{G S}$ smaller than but close to $V_{\text {, }}$, a small drain current flows. In this subthreshold region of operation the drain current is exponentially related to $v_{G S}$, much like the i_{C-} relationship of a BJT, as will be shown in the next chapter.Although in most applications the MOS transistor is operated with $v_{G S}>V_{t}$, there are special, but a growing number of, applications that make use of subthreshold operation. In book, we win not consider subthreshold operation any further and refer the reader to the references listed in Appendix F.

W复4.2 CURRENT-VOLTAGE CHARACTERISTICS

Building on the physical foundation established in the previous section for the operation of the enhancement MOS transistor, we present in this section its complete current-voltage characteristics. These characteristics can be measured at dc or at low frequencies and thus re called static characteristics. The dynamic effects that limil the operation of the MOSFET at high frequencies and high switching speeds will he discussed in Section 4.8.

4.2.1 Circuit Symbol

Figure 4.10(a) shows the circuit symbol for the n-channel enhancennent-type MOSFET Observe that the spacing between the two vertical lines that represent the gate and the channel indicates the fact that the gate electrode is insulated from the body of the device. The polarity of the p-type substrate (body) and the n channel is indicated by the arrowhead on the line representing the body (B). This attowhead also indicates the polarity of the transistor, namely, that it is an n-channel devicc.
Although the MOSFET is a symmetrical device, it is often useful in circuit design to desig ate one terminal as the source and the other as the drain (without having to wite S and D beside the terminals). This objective is achieved in the modified circuit symbel shand Fig. 4.10(b). Here an arrowhead is placed on the source terminal, thus distinguishing it from

. 2 current-voltage characteristics 4 249

GURE 4.10 (a) Circuit symbol for the n-channel enhancement-type MOSFET. (b) Modified circuit symbol with an arrowhead on the source terrininal to distinguish it from the drain and to indicate device or when the effect of the body on device opcration is unimporant.
the drain terminal. The arrowhead points in the normial direction of current flow and thus indicates the polarity of the device (i.e., n channel). Observe that in the modified symbol, therc is no need to show the arrowhead on the body line. Although the circuit symbol of Fig. 4.10 (b) clearly distinguishes the source from the drain, in practice it is the polarity of the voltage impressed across the device that deternines source and drain; the drain is alway positive relative to the source in an n-channel $F E T$.

In applications where the source is connected to the body of the device, a further simplification of the circuit symbol is possihle, as indicated in Fig. 4.10(c). This symbol is also used in applications when the effect of the body on circuit operation is not important, as will be seen later.

4.2.2 The $i_{D}-V_{D S}$ Characteristics

Figure 4.11 (a) shows an n-channel enhancement-type MOSFET with voltages $v_{G S}$ and $v_{D S}$ applied and with the normal directions of current flow indicated. This conceptual circuit can be used to measure the $i_{D}-v_{D S}$ characteristics, which are a family of curves, each measured at a constant $v_{G s}$. From the study of physical operation in the previous section, we expect each of the $i_{D}-v_{D S}$ curves to have the shape shown in Fig. 4.6. This indeed is the case, as is evident from Fig. 4.11 (b), which shows a typical set of $i_{D}-v_{D S}$ characteristics. A thorough understanding of the MOSFET terminal characteristics is essential for the reader who intends to design MOS circuits.
The characteristic curves in Fig. 4.11(b) indicate that there are three distinct regions of peration: the cutoff region, the triode region, and the saturation region. The saturation region is used if the FET is to operate as an amplifier. For operation as a switch, the cutof and triode regions are utilized. The device is cut off when $v_{G S}<V_{r}$. To operate the MOSFET in the triode region we must first induce a channel,

$$
v_{G S} \geq V_{t} \quad(\text { Induced channel })
$$

and then keep $v_{D S}$ small enough so that the channel remains continuous. This is achieved by ensuring that the gate-to-drain voltage
$v_{G D}>V_{t} \quad$ (Continuous channel)
(4.9)

This condition can be stated explicitly in terms of $v_{D S}$ by writing $v_{G D}=v_{G S}+v_{S D}=v_{G S}-v_{D S}$ thus,

FIGURE 4.11 (a) An n-channel enhanccement-type MOSFET with $v_{C S}$ and $v_{D S}$ applied and with the normal directions of current flow indicated. (b) The $i_{D}-\gamma_{D S}$ characteristics for a device with $k_{n}^{\prime}(W / L)=1.0 \mathrm{~mA} / \mathrm{N}^{2}$
which can be rearranged to yield

$$
v_{D S}<v_{G S}-V_{t} \text { (Continuous channel) }
$$

Either Eq. (4.9) or Eq. (4.10) can be used to ascertain trio n-channel enhancement-type MOSFET operates in the triode region when $v_{\text {cs }}$ is words, the V_{t} and the drain voltage is lower than the gate voltage by at least V_{t} volts. ${ }^{6}$ is greater the In the triode region, the $i_{D}-v_{D S}$ characteristics can be described by
Eq. (4.5), which we repeat here,

$$
i_{D}=k_{n}^{\prime} \frac{W}{L}\left[\left(v_{G S}-V_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right]
$$

where $k_{n}^{\prime}=\mu_{n} C_{o x}$ is the process transconductance parameter; its value is determined by Eq. (4.11), we obtain for the $i_{D S}$ is sufficiently small so that we can neglect the $\tau_{D S}^{2}$ term in Eq. (4.1I), we obtain for the $i_{D}-v_{D S}$ characteristics near the origin the relationship

$$
i_{D} \approx k_{n}^{\prime} \frac{W}{L}\left(v_{G S}-v_{t}\right) v_{D S}
$$

This linear relationship represents the operation of the MOS transistor as a linear resistance $r_{D S}$ whose value is controlled by $v_{G S}$. Specifically, for $v_{C S}$ set to a value $V_{C S}$. $r_{D S}$ is given by

$$
\begin{equation*}
\left.r_{D S} \equiv \frac{v_{D S}}{i_{D}}\right|_{v_{D S}, \text { madl }} ^{v_{G S}=v_{C S}}=\left[k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)\right]^{-1} \tag{4.13}
\end{equation*}
$$

We discussed this region of operation in the previous section (refer to Fig. 4.4). It is also useful to express $r_{D s}$ in terms of the gate-to-source overdrive voltage,

$$
V_{O V} \equiv V_{G S}-V_{t}
$$

as

$$
\begin{equation*}
r_{D S}=1 /\left[k_{n}^{\prime}\left(\frac{W}{L}\right) V_{O V}\right] \tag{4.15}
\end{equation*}
$$

Finally, we urge the reader to show that the approximation involved in writing Eq. (4.12) is based on the assumption that $v_{D S}<2 V_{O V}$
To operate the MOSFET in the saturation region, a channel must be induced,

$$
\begin{equation*}
v_{G S} \geq V_{r} \quad \text { (Induced channel) } \tag{4.16}
\end{equation*}
$$

and pinched off at the drain end by raising $v_{D S}$ to a value that results in the gate-to-drain voltage falling below $V_{\text {s }}$,

$$
\begin{equation*}
\left.v_{G D} \leq V_{t} \quad \text { (Pinched-off channel }\right) \tag{4.17}
\end{equation*}
$$

This condition can be expressed explicitly in terms of $v_{D S}$ as

$$
\begin{equation*}
v_{D S} \geq v_{G S}-V_{t} \quad \text { (Pinched-off channel) } \tag{4.18}
\end{equation*}
$$

In words, the n-channel enhancement-type MOSFET operates in the saturation region when $v_{G S}$ is greater than V_{t} and the drain voltage does not fall below the gate voltage by more than V_{i} volts.

The boundary between the triode region and the saturation region is characterized by

$$
\begin{equation*}
z_{D S}=v_{G S}-V_{t} \quad \text { (Boundary) } \tag{4.19}
\end{equation*}
$$

Substituting this value of $v_{D S}$ into Eq. (4.11) gives the saturation value of the current i_{D} as

$$
i_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2}
$$

Thus in saturation the MOSFET provides a drain current whose value is independent of the drain voltage $v_{D S}$ and is determined by the gate voltage $v_{G S}$ according to the square-law relationship in Eq. (4.20), a sketch of which is shown in Fig. 4.12. Since the drain current is independent of the drain voltage, the saturated MOSFET behaves as an ideal current source whose value is controlled by $v_{G S}$ according to the nonlinear relationship in Eq. (4.20). FIgure 4.13 shows a circuit representation of his view of MOSFET operation in the salura tion region. Note that this is a large-signal equivalent-circuit model.
Referning back to the $i_{D}-v_{D S}$ characteristics in Fig. $4.11(\mathrm{~b})$, we note that the boundary between the triode and the saturation regions is shown as a broken-line curve. Since this curve is characterized by $v_{D S}=v_{G S} V_{\text {, }}$, ss equation can be found by subsing for $v_{C S}-v_{i}$ by $v_{D S}$ in either the triode-region equation (Eq. 4.11) or the saturation-region equation The result is

$$
\begin{equation*}
i_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L} v_{D S}^{2} \tag{4.21}
\end{equation*}
$$

It should be noted that the characteristics depicted in Figs. 4.4, 4.11, and 4.12 are for a MOSFET with $k_{n}^{\prime}(W / L)=1.0 \mathrm{~mA} / V^{2}$ and $V_{t}=1 \mathrm{~V}$

Finally, the chart in Fig. 4.14 shows the relative levels of the terminal voltages of the enhancement-type NMOS transistor for operation, both in the triode region and the saturation region.

FIGURE 4.12 The $i_{D}-\eta_{G S}$ characteristic for an enhancement-type NMOS transistor in saturation $(V=1 V$

$$
\begin{gathered}
v_{G S} \geq V_{i} \\
v_{D S S} \geq v_{G S}-V
\end{gathered}
$$

FIGURE 4.13 Large-signal equivalent-circuit model of an n-channel MOSFET operating in the saturation
region.

FIGURE 4.14 The relative levels of the terminai voltages of the enhancement NMOS transistor for operation in the triode region and
in the saturation region.

Ex
4.4 An enhancement-type MMOS transistor with $V=07 \mathrm{~V}$ has its source terminal grounded and a 1.5 V de applied to the gate: In what region does the device operate for (a) $V_{D}=+0.5 \mathrm{~V} \quad$ (b) $V_{D}=0.9$ V (c) $V_{s}=3 \mathrm{~V}$?

Ans. (a) Triode; (b) Saturation (c) Saturation
4.5 If the MMOS device in Exercise 4.4 has $\mu, \mathrm{C}_{a \mathrm{r}}=100 \mu \mathrm{AV}, W=10 \mu \mathrm{~m}$, and $L=1 \mu \mathrm{~m}$, find the value of drain current that results in each of the three cases (a, (b). and (c) specified in Exerctse 4.4 . Ans. (a) $275 \mu \mathrm{~A}$; (b) $320 \mu \mathrm{~A}$: (c) $321 \mu \mathrm{~A}$
4.6 Air enhancement-type NMOS tansistor with $V=07 \mathrm{~V}$ conducts a curten $l_{D}=100 \mu \mathrm{~A}$ when $\mathrm{v}_{\text {os }}-$ $=1.2 \mathrm{~V}$. Find the value of i_{s} for $v_{c s}=1.5 \mathrm{~V}$ and $t_{n s}=3 \mathrm{~V}$. Also, calculate the value of the drain-tosource resistance f fs for small i_{p} and $v_{\mathrm{cs}}=3.2 \mathrm{~V}$
Ans. $256 \mu \mathrm{~A}, 500 \Omega$

4.2.3 Finite Output Resistance in Saturation

Equation (4.12) and the corresponding large-signal equivalent circuit in Fig. 4.13 indicale that in saturation, i_{D} is independent of $v_{\nu S}$. Thus a change $\Delta v_{D S}$ in the drain-to-source voltage causes a zero change in i_{D}, which implies that the incremental resistance looking into the drain of a saturated MOSFET is infinite. This, however, is an idealization based on the prenise that once the channel is pinched off at the drain end, further increases in $v_{D S}$ have no effect on the channel's shape. But, in practice, increasing $\tau_{D S}$ beyond $v_{D S s a t}$ docs affect the channel somewhat. Specifically, as $\tau_{D S}$ is increased, the channel pinch-off point is moved slightly away from the drain, toward the source. This is illustrated in Fig. 4.15, from which we note that the voltage across the channel remains constant at $v_{G S}-V_{l}=v_{\text {DSsat }}$ and the additional voltage applied to the drain appcars as a voltage drop across the narrow depletion region between the end of the channel and the drain region. This voltage accelerates the electrons that reach the drain end of the channel and sweeps them across the depletion region into the drain. Note, however, that (with depletion-layer widening) the channel length is in effect reduced, from L to $L-\Delta L$, a phenomenon known as channel-length modulation. Now, since i_{D} is inverscly proportional to the channel length (Eq. 4.20), i_{D} increases with $v_{p S}$

FIGURE 4. 15 Increasing $v_{\text {DS }}$ beyond $\tau_{/ \text {ssat }}$ Causes , the drain, chus reducing the cffective clamnel length (by ΔL)

To account for the dependence of i_{D} on $v_{D S}$ in saturation, we replace L in Eq. (4.20) will $L-\Delta I$ to obtain

$$
\begin{aligned}
i_{D} & =\frac{1}{2} k_{n}^{\prime} \frac{W}{L-\Delta L}\left(v_{G S}-V_{t}\right)^{2} \\
& =\frac{1}{2} k_{n}^{\prime} \frac{W}{L} \frac{1}{1-(\Delta L / L)}\left(v_{G S}-V_{t}\right)^{2} \\
& \cong \frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(1+\frac{\Delta L}{L}\right)\left(v_{G S}-V_{t}\right)^{2}
\end{aligned}
$$

where we have assumed that $(\Delta L / L) \leftrightarrow 1$. Now, if we assume that ΔL is proportional to $v_{D S}$,

$$
\Delta L=\lambda^{\prime} v_{D S}
$$

where λ^{\prime} is a process-technology parameter with the dimensions of $\mu \mathrm{m} / \mathrm{V}$, we obtain for i_{n},

$$
i_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(1+\frac{\lambda^{\prime}}{L} v_{D S}\right)\left(v_{G S}-V_{t}\right)^{2}
$$

Usually, λ^{\prime} / L is denoted λ,

$$
\lambda=\frac{\lambda^{\prime}}{L}
$$

It follows that λ is a process-technology parametcr with the dimensions of V^{-1} and that, for a given process, $\hat{\lambda}$ is inversely proportional to the length selected for the channel. In terms of λ, the expression for i_{D} becomes

$$
\begin{equation*}
i_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2}\left(1+\lambda v_{D S}\right) \tag{4.22}
\end{equation*}
$$

A typical set of $i_{D}-v_{D S}$ characteristics showing the cffect of channel-length modulation is displayed in Fig. 4.16. The observed linear dependence of i_{D} on $v_{D S}$ in the saturation region is represented in Eq. (4.22) by the factor ($1+\lambda v_{D s}$). From Fig. 4.16 we observe that when the slraight-line $i_{D}-v_{D S}$ characteristics are extrapolated they intercept the $v_{D S}$-axis at the point $v_{D S}=-V_{A}$, where V_{A} is a positive voltage. Equation (4.22), however, indicates that $i_{D}=0$

rocess technology and of $\nu_{D S}$ on i_{D} in the saturation region. Thc MOSFET $p a$ process technology and, for a given process, is proportional to the channel length L.

FIGURE 4.17 Large-signal equivalent circuit model of the n-channel MOSFET in saturation, incorporating the output resistance r_{o}. The oupput
resistaice models the linear dependence of i_{D} on $v_{\nu S}$ and is given by Eq. (4.22),
at $y_{D S}=-1 / \lambda$. It follows that

$$
V_{A}=\frac{1}{\lambda}
$$

ad thus V_{A} is a process-technology parameter with the dimensions of V . For a given proand thus V_{A} is proportional to the channel length L that the designer selects for a MOSFET. Just cess, \mathcal{A}_{A} is proportional ${ }_{\text {a }}$.

$$
V_{A}=V_{A}^{\prime} L
$$

where V_{A}^{\prime} is entirely process-technology dependent with the dimensions of $\mathrm{V} / \mu \mathrm{mm}$. Typically, V_{A}^{\prime} falls in the range of $5 \mathrm{~V} / \mu \mathrm{n}$ to $50 \mathrm{~V} / \mu \mathrm{m}$. The voltage V_{A} is usually referted to as the Early voltagc, after J.M. Early, who discovered a similar phenomenon for the BJT (Chapter 5).
Equation (4.22) indicates that when channel-length modulation is taken into account, Equation (4.22) indicates saturation values of i_{D} depend on $v_{D S}$. Thus, for a given $v_{G S}$, a change $\Delta v_{D S}$ yields a corresponding change Δi_{D} in the drain current i_{D}. It follows that the output resistance of the current source representing i_{D} in saturation is no longer infinite. Defining the oupput resistance r_{0} as ${ }^{5}$

$$
\begin{equation*}
r_{o} \equiv\left[\frac{\partial i_{D}}{\partial v_{D S}}\right\lrcorner_{v_{G S} \text { oonstant }}^{1} \tag{4.23}
\end{equation*}
$$

and using Eq. (4.22) results in

$$
\begin{equation*}
r_{o}=\left[\lambda \frac{k_{n}^{\prime}}{2} \frac{W}{L}\left(V_{C S}-V_{t}\right)^{2}\right]^{1} \tag{4.24}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
r_{o}=\frac{1}{\lambda I_{D}} \tag{4.25}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
r_{o}=\frac{V_{A}}{I_{D}} \tag{4.26}
\end{equation*}
$$

where I_{D} is the drain current without channel-length modulation taken into account; that is;

$$
I_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}
$$

Thus the output resistance is inversely proportional to the drain current. Finally, we show in Fig. 4.17 the large-signal equivalent circuit model incorporating r_{σ}
${ }^{5}$ In this book we use r_{o} to denote the output resistance in saturation, and $r_{D S}$ to denote the drain-toIn unce recistance in the triode region, for small $v_{D S}$.

Wixasit

 $\because \mathrm{M}$

4.2.4 Characteristics of the p-Channel MOSFET

The circuit symbol for the p-channel enhancement-type MOSFET is shown in Fig. 4.18(a) Figure 4.18 (b) shows a modified circuit symbol in which an arrowhead pointing in the normal direction of current flow is included on the source terminal. For the case where the source is comnected to the substrate, the simplified symbol of Fig. 4.18(c) is usually used. The voltage and current polarities for normal operation are indicated in Fig. 4.18(d). Recall that for the p-channel device the threshold voltage V_{l} is negative. To induce a channel we apply a gate voltage that is more negative than V,

$$
v_{G S} \leq V_{i} \quad \text { (Induced channel) }
$$

(a)

(b)

(c)

(d)

FIGURE 4.18 (a) Circuit symbol for the p-channel enhancement-type MOSFET. (b) Modified symbol with an arrowhead on the source lead. (c) Simplified circuit symbol for the case where the source is col nected to the body. (d) The MOSFET with voltages applied and the directions of current flow indicated.
Note that $v_{\text {GS }}$ and $v_{D S}$ are negative and i_{D} flows out of the drain terminal.
or, equivalently

$$
v_{S G} \geq\left|V_{d}\right|
$$

nd apply a drain voltage that is more negative than the source voltage (i.c., $v_{D S}$ is negative or, equivalently, $v_{S D}$ is positive). The current i_{D} flows out of the drain terminal, as indicated or, equivalene. To operate in the triode region $v_{D S}$ must satisfy

$$
v_{D S} \geq v_{G S}-V_{t} \quad(\text { Continuous channel })
$$

hat is, the drain voltage must be higher than the gate voltage by at least $\left|V_{t}\right|$. The current i_{j} given by the same equation as for NMOS, Eq. (4.11), except for replacing k_{n}^{\prime} with k_{p}^{\prime},

$$
\begin{equation*}
i_{D}=k_{p}^{\prime} \frac{W}{L}\left[\left(v_{G S}-v_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right] \tag{4.29}
\end{equation*}
$$

where $v_{G S}, V_{s}$, and $v_{D S}$ are negative and the transconductance parameter k_{p}^{\prime} is given by

$$
k_{p}^{\prime}=\mu_{p} C_{o x}
$$

where μ_{p} is the mobility of holes in the induced p channel. Typically, $\mu_{p}=0.25$ to $0.5 \mu_{n}$ and is process-lechnology dependent.
To operatc in saturation, $v_{D S}$ must satisfy the relationship

$$
\begin{equation*}
v_{D S} \leq v_{G S}-V_{t} \quad(\text { Pinched-off channel }) \tag{4.31}
\end{equation*}
$$

hat is. the drain voltage must be lower than (gate voltage $+\left|V_{t}\right|$). The current i_{D} is given by he same equation used for NMOS. Eq. (4.22), again with k_{1}^{\prime} replaced with k_{p}^{\prime},

$$
\begin{equation*}
i_{D}=\frac{1}{2} k_{P}^{\prime} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2}\left(1+\lambda v_{D S}\right) \tag{4.32}
\end{equation*}
$$

where $v_{C S}, V_{t} \lambda$ and $v_{D S}$ are all negative. We should note, however, that in evaluating r_{0} asing Eqs. (4.24) through (4.26), the magnitudes or λ and V_{A} should be used
To recap, to turn a PMOS transistor on, the gate voltage has to be made lower than that the source by at least $\mid V_{t}$. To operate in the triode region, the drain voltage has to exceed that of the gate by at least ${ }_{\mid} V_{i} \mid$; otherwise, the PMOS operates in saturation.

Finally, the chart in Fig. 4.19 provides a pictorial representation of these operating conditions.

Voltage

IGURE 4.19 The relative levels of the coIm nal voltages of the cnhancement-type PMOS ransistor for operation in the triode region and in the saturation region.
 the range of V_{0} for which the transistor conducts. b) la terns of V_{G}. find the range of V_{D} fo which the transistor operates in the tiode region (c) \ln terms of V_{0}, find the range of V_{0} for which the transisto operates in saturation (d) Neglecing chamel lensth modulation (i.e. assuming is 0), find the values $T_{0}=75 \mu \mathrm{~A}$, (e) If $\lambda=-0.02 V^{-1}$ find the the of V_{t} to operate the transistor in the saturation mode with in (d). f) For $\lambda=-0.02 v$ and for the vatue of v. corrcsponding to the overdrive voltage deternined 0 V . hence, calculate the value of the apparent outiput resistance in $\left(\mathrm{d}\right.$, find l_{p} at $l_{D}=+3 \mathrm{~V}$ and at V_{p} found in (e).

V, $\%$

 +3 y+4

migure ens

Ans, (a) $V_{G}=4 V_{i}(b) V_{p} \geqslant V_{G}+(c) V_{\rho} \leq V_{\rho}+1$, (d) $0.5 \mathrm{~V}, 3.5 \mathrm{~V} . \leq 4.5 \mathrm{~V} ;$ (e) $0.67 \mathrm{M} \Omega$,
(f) $78 \mu \mathrm{~A}, 82.5 \mu \mathrm{~A}, 0.67 \mathrm{M} \Omega$ same

4.2.5 The Role of the Substrate-The Body Effect

In many applications the source terminal is connected to the substrate (or body) terminal B which results in the $p n$ junction between the substrate and the induced channel (see Fig. 4.5) having a constant zero (cutoff) bias. In such a case the substrate does not play any role in ircuit operation and its existence can be ignored altogether.
hintegrated circuits, however, the substrate is usually common to many MOS transistors. nn order to maintain the cutoff condition for all the substrate-to-channel junctions, the sub positive in ally connected to the most negative power supply in an NMOS circuit (the most $V_{\text {su }}$ in in a PMOS circuit). The resulting reverse-bias voltage betwcen source and body $S_{S B}$ in an n-channel devicc) will have an effect on device operation. To appreciate this fact consider an NMOS transistor and let ils substrate be made negative relative to the seuree The reverse bias voltage will widen the depletion region (refer to Fig. 4.2). This in turn deduces the channel depth. To return the channel to its former state, $v_{G S}$ has to be increased.
The ef fect of $V_{S B}$ on the channel call be most conveniently represented as a change in the threshold voltage V_{r}. Specifically, it has been shown that increasing the reverse substrate bias voltage $V_{S B}$ results in an increase in V_{t} according to the relationship

$$
\begin{equation*}
V_{t}=V_{t 0}+\gamma\left[\sqrt{2 \phi_{f}+V_{S B}}-\sqrt{2 \phi_{f}}\right] \tag{4.33}
\end{equation*}
$$

$0.6 \mathrm{~V} ; \gamma$ is the threshold voltage for $V_{S B}=0 ; \phi_{f}$ is a physical paramcter with $\left(2 \phi_{f}\right)$ typically $0.6 \mathrm{~V} ; \gamma$ is a fabrication-process parameter given by

$$
\gamma=\frac{\sqrt{2 q N_{A} \varepsilon_{s}}}{C_{o x}}
$$

here q is the electron charge $\left(1.6 \times 10^{-19} \mathrm{C}\right), N_{A}$ is the doping concentration of the p-type sub strate, and ε_{s} is the permittivity of silicon $\left(11.7 \varepsilon_{0}=11.7 \times 8.854 \times 10^{-14}=1.04 \times 10^{-12} \mathrm{~F} / \mathrm{cm}\right)$ The parameter γ has the dimension of $\sqrt{\mathrm{V}}$ and is typically $0.4 \mathrm{~V}^{1 / 2}$. Finally, note that Eq. (4.33) applies equally well for p-cbannel devices with $V_{S B}$ replaced by the reverse bia of the substratc, $V_{B S}$ (or, alternatively, replace $V_{S B}$ by $\left|V_{S B}\right|$) and note that γ is negative. evaluating γ, N_{A} must be replaced with N_{D}, the doping concentration of the n well in which the PMOS is formed $-0.5 \mathrm{~V}^{1 / 2}$
Equation (4.33) indicates that an incremental change in $V_{S B}$ gives rise to an incremental change in V_{v}, which in turn results in an incremental change in i_{D} cven though $v_{G S}$ might have been kept constant. It follows that the body voltage controls i_{D}; thus the body acts a nother yate for the MOSFET, a phenomenon known as the body effect. Here he parameter γ is known as the body-effect parameter. The hody effect can cause consid rable degradation in circuit performance, as will be sbown in Chapter 6.

191074

 many

4.2.6 Temperature Effects

Both V_{t} and k^{\prime} are temperature sensitive. The magnitude of V_{t} decreases by about 2 mV for every $1^{\circ} \mathrm{C}$ rise in temperature. This decrease in $\left|V_{t}\right|$ gives rise to a corresponding increase in drain current as temperature is increased. However, because k^{\prime} decreases with temperaturc and its effect is a dominant one, the overall observed effect of a temperature increase is a decrease in drain current. This very interesting result is put to use in applying the MOSFET in power circuits (Chapter 14).

4.2.7 Breakdown and Input Protection

As the voltage on the drain is increased, a value is reached at which the $p n$ junction between the drain region and substrate suffers ayalanche breakdown (sce Section 3.7.4). This break down usually occurs at voltages of 20 V to 150 V and results in a somewhat rapid increase in current (known as a weak avalanche).

Another breakdown effect that occurs at lower voltages (about 20 V) in modern devices is called punch-through. It occurs in devices with relatively shorl channels when the drain volage is increased to the point that the depletion region surrounding the drain region extends chrough the channel to the source. The drain current then increases rapidly Normally, punch-through does not result in permanent damage to the device.
Yet another kind of breakdown occurs when the gatc-to-source voltage exceeds about 30 V . This is the breakdown of the gate oxide and results in permanent damage to the device. Although 30 V may scem high, it must be remembered that the MOSFET has a very charge accumulating and a very smaacitor can cause its breakdown voltage to be exceeded.

To prevent the accumulation of static charge on the gate capacitor of a MOSFET, gateprotection devices are usually included at the input terminals of MOS integrated circuits. The protection mechanism invariably makes use of clamping diodes.

4.2.8 Summary

For easy reference we present in Table 4.1 a summary of the current-voltage relationships for enhancement-type MOSFETs.

TABLE 4 . I. Summaty of the MOSFET Current -VItroge Cforacteristics:

NMOS Transistor

Symbol:

Overdrive voltage:
$v_{O V}=v_{G S}-V_{t}$
$v_{G S}=V_{t}+v_{o v}$
Operation in the triode region
Conditions:

$$
\text { (1) } v_{G S} \geq V_{i} \Leftrightarrow v_{O V} \geq 0
$$

(1) $v_{G S} \geq V_{i} \Leftrightarrow v_{O V} \geq 0$
(2) $v_{G D} \geq v_{t} \Leftrightarrow v_{D S} \leq v_{G S}-V_{t} \Leftrightarrow v_{\nu S} \leq v_{O V}$
i-v Characteristics:
$i_{b}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(v_{G S}-V_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right]$
For $v_{D S}<2\left(v_{G S}-V_{t}\right) \Leftrightarrow v_{D S}<2 v_{O V}$
$r_{D S} \equiv \frac{v_{D S}}{i_{D}}=1 /\left[\mu_{n} C_{O X} \frac{W}{L}\left(v_{O S}-V_{t}\right)\right]$

Operation in the saturation region:

Conditions:
(1) $v_{G S} \geq V_{t} \Leftrightarrow v_{O V} \geq 0$
(2) $v_{G D} \leq V_{t} \Leftrightarrow v_{D S} \geq v_{G S}-V_{t} \Leftrightarrow v_{D S} \geq v_{O V}$
$i-\nu$ Characteristics:
$i_{D}=\frac{1}{2} \mu_{n} C_{0 \cdot} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2}\left(1+\lambda v_{D S}\right)$

- Large-signal equivalent circuit model:

$$
r_{o}=\left[\lambda \frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}\right]^{1}=\frac{V_{A}}{I_{B}}
$$

where
where
$I_{D}=\frac{1}{2} \mu_{n} C_{0, i} \frac{W}{l}\left(V_{G S}-V_{t}\right)^{2}$
Threshold voltage:
$\quad V_{V}=V_{t 0}+\gamma\left(\sqrt{2 \phi_{f}+V_{S B}^{-}}-\sqrt{2 \phi_{f}}\right)$

Process parameters:

$C_{o x}=\varepsilon_{o x} / \tau_{o x} \quad\left(\mathrm{H} / \mathrm{m}^{2}\right)$
$k_{n}^{\prime}=\mu_{n} C_{o x} \quad\left(\mathrm{~A} / \mathrm{V}^{2}\right)$
$k_{n}^{\prime}=\mu_{n} C_{o x}$
(V / m)
$V_{A}^{\prime}=\left(V_{A} / L\right)$
(V/m)
$\lambda=\left(1 / V_{A}\right)$
$\left(V^{1}\right)$
$\left(V^{1 / 2}\right)$
Constants:
$\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
$\varepsilon_{0 r}=3.9 \varepsilon_{0}=3.45 \times 10^{-11} \mathrm{~F} / \mathrm{m}$
$\varepsilon_{5}=11.7 \varepsilon_{0}=1.04 \times 10^{-10} \mathrm{~F} / \mathrm{m}$
$q=1.602 \times 10^{-19} \mathrm{C}$

PMOS Transistor

Symbel:

Overdrive voltage:

$$
v_{o v}=v_{G S}-v_{t}
$$

$$
v_{S G}=\left|V_{l}^{l}+\left|v_{o v}\right|\right.
$$

TABLE 4．1（Continued）

\hat{v} Characteristics
Same relationships as for NMOS transistors except：
（西 Replace μ_{n}, k_{n}^{\prime} ，and N_{A} with μ_{p}, k_{p}^{\prime} ，and N_{D} ，respectively．
3．$V_{b}, V_{n t}, V_{A}$ ，久，and γ are negativc．
\％Condilions for operation in the triode region：
（1）$v_{G S} \leq V_{t} \Leftrightarrow v_{O V} \leq 0 \Leftrightarrow v_{S G} \geq\left|V_{d}\right|$
（2）$v_{D G} \geq\left|V_{t}\right| \Leftrightarrow v_{D S} \geq v_{G S}-V_{t} \Leftrightarrow v_{S D} \leq\left|v_{O V}\right|$
4 Conditions for opcration in the saturation region：
（1）$v_{G S} \leq V_{t} \Leftrightarrow v_{O V} \leq 0 \Leftrightarrow v_{S G} \geq \mid V_{t}$
（2）$v_{D G} \leq\left|V_{t}\right| \Leftrightarrow v_{D S} \leq v_{G S}-v_{t} \Leftrightarrow v_{S D} \geq\left|v_{O v}\right|$
【 Large－signal equivalent circuit model：

$r_{o}=\left[\left\lfloor\lambda!\frac{1}{2} \mu_{p} C_{o x} \frac{W}{L}\left(V_{S G}-\left|V_{t}\right|\right)^{2}\right]^{-1}=\frac{\left|V_{A}\right|}{I_{D}}\right.$
where
$I_{D}=\frac{1}{2} \mu_{p} C_{O X} \frac{W}{L}\left(V_{S G}-\left|V_{i}\right|^{2}\right)$

4．3 MOSFET CIRCUITS AT DC

Having studied the current－voltage characteristics of MOSFETs，we now consider circuits in which only dc voltages and currents are of concern．Specifically，we shall present a series of design and analysis examples of MOSFET circuits at dc．The objective is to instill in the reader a familiarity with the device and the ability to perform MOSFET circuit analysis both rapidly and effectively
In the following examples，to keep matters simple and thus focus attention on the essence of MOSFET circuit operation，we will generally neglect channel－length modulation； that is，we will assume $\hat{\lambda}=0$ ．We will find it convenient to work in terms of the overdrive voltage；$V_{O V}=V_{G S}-V_{V}$ Recall that for NMOS，V and $V_{O V}$ are positive while，for PMOS，V_{t} and $V_{O V}$ are negative．For PMOS the reader may prefer to write $V_{S G}=\left|V_{G S}\right|=\left|V_{t}\right|+\left|V_{O V V}\right|$ ．

5xili 5

Design the circuit of Fig． 4.20 so that the transistor operatcs at $I_{D}=0.4 \mathrm{~mA}$ and $V_{D}=+0.5 \mathrm{~V}$ ．The Design the circuit or ${ }^{2} \mathrm{MOS}$ ransistor has $=0.7 \mathrm{~V}, \mu_{0} C_{0 x}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, L=1 \mu \mathrm{~m}$ ，and $W=32 \mu \mathrm{~m}$ ．Neglect the channel－length modulation effect（i．e．，assume that $\lambda=0$ ）．

FIGURE 4．20 Circuit for Example 4．2．

Solution

Since $V_{D}=0.5 \mathrm{~V}$ is greater than V_{G} ，this means the NMOS transistor is operating in the saturation region，and we use the saturation－region expression of i_{D} to determine the required value of $V_{C S}$ ，

$$
I_{\nu}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{i}\right)^{2}
$$

Substituting $V_{C S}-V_{\mathrm{t}}=V_{O V} I_{D}=0.4 \mathrm{~mA}=400 \mu \mathrm{~A}, \mu_{n} C_{o x}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ ，and $W / L=32 / 1$ gives

$$
400=\frac{1}{2} \times 100 \times \frac{32}{1} v_{O V}^{2}
$$

which results in

$$
V_{O V}=0.5 \mathrm{~V}
$$

Thus，

$$
V_{G S}=V_{t}+V_{O V}=0.7+0.5=1.2 \mathrm{~V}
$$

Referring to Fig． 4.20 ，we note that the gate is at ground potential．Thus the source must be at -1.2 V ， and the required value of R_{S} can be determined from

$$
\begin{aligned}
R_{S} & =\frac{V_{S}-V_{S S}}{I_{D}} \\
& =\frac{-1.2-(-2.5)}{0.4}=3.25 \mathrm{kS} 2
\end{aligned}
$$

To establish a de voltage of +0.5 V at the drain，we must select R_{D} as follows：

$$
\begin{aligned}
R_{D} & =\frac{V_{D D}-V_{D}}{I_{D}} \\
& =\frac{2.5-0.5}{0.4}=5 \mathrm{k} \Omega
\end{aligned}
$$

D4.10 Redesign the circuit of Fig. 4.20 for the following case: $V_{D D}=-V_{s S}=2.5 \mathrm{~V}, V_{F}=1 \mathrm{~V}, \mu_{\mathrm{a}} C_{\mathrm{or}}=60 \mu \mathrm{~A}$ V. WLL $=120 \mu \mathrm{~m} / 3 \mu \mathrm{~m} I_{D}=0.3 \mathrm{~mA}$, and $V_{D}=+0.4 \mathrm{~V}$

Ans. $R_{5}=3.3 \mathrm{k} \Omega ; R_{D}=7 \mathrm{k} \Omega$

Design the circuit in Fig. 4.21 to obtain a current I_{D} of $80 \mu \mathrm{~A}$. Find the value required for R, and find the dc voltage V_{D}. Let the NMOS transistor have $V_{t}=0.6 \mathrm{~V}, \mu_{n} C_{o x}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$,
$L=0.8 \mu \mathrm{~m}$, and $W=4 \mu \mathrm{~m}$. Neglect the channel-length modulation effect (i.e., assume $\hat{\lambda}=0$).

FIGURE 4.21 Circuit for Example 4.3
Solution
Because $V_{D C}=0, V_{D}=V_{G}$ and the FET is opcrating in the saturation region. Thus,

$$
\begin{aligned}
I_{D} & =\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2} \\
& =\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L} V_{O V}^{2}
\end{aligned}
$$

from which we obtain $V_{O V}$ as

$$
\begin{aligned}
V_{o v} & =\sqrt{\frac{2 I_{D}}{\mu_{n} C_{o x}(W / L)}} \\
& =\sqrt{\frac{2 \times 80}{200 \times(4 / 0.8)}}=0.4 \mathrm{~V}
\end{aligned}
$$

Thus,

$$
V_{G S}=V_{t}+V_{O V}=0.6+0.4=1 \mathrm{~V}
$$

and the drain voltage will be

$$
V_{D}=V_{G}=+1 V
$$

The required value for R can be found as follows:

$$
\begin{aligned}
R & =\frac{V_{D D}-V_{D}}{I_{D}} \\
& =\frac{3-1}{0.080}=25 \mathrm{k} \Omega
\end{aligned}
$$

EXERCISES

04.11 Redesign the circut in Example 43 to double the value of I_{D}, without changing V_{D}. Give new values for W / L and R
Ans. W II = 10. say $8 \mu \mathrm{~m} .08 \mu \mathrm{~m}: R=125 \mathrm{k} \Omega$
4.12 Consider the circul of Fit: 421 , which is designed in Example 43 (to which you should refer befor solving thi problem) Let the poltage V_{p} be applied to the gate of another transistor Q_{2} as shoun in Fig. E4 12. Assume that Q_{2} is identical to Q_{1}. Find the dran current and voltage of Q_{2}. Assume $\lambda=0)$

FIGURE E4.12

Ans. $80 \mu \mathrm{~A}: 1.4 \mathrm{~V}$

Design the circuit in Fig. 4.22 to establish a drain voltage of 0.1 V . What is the effectivc resistance
betwecn drain and source at this operating point? Let $V_{t}=1 \mathrm{~V}$ and $k_{n}^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}$
$V_{D D}=+5 \mathrm{~V}$
$\stackrel{V_{D D}}{\left.V_{D} \mid\right\}_{i}}$
$\longrightarrow V_{D}=+0.1 \mathrm{~V}$
$\stackrel{1}{=}$
FIGURE 4.22 Circuit for Example 4.4.
Solution
Since the drain voltage is lower than the gate voltage by 4.9 V and $V_{t}=1 \mathrm{~V}$, the MOSFET is operating in the triode region. Thus the current I_{D} is given by

$$
\begin{aligned}
I_{D} & =k_{n}^{\prime} \frac{W}{L}\left[\left(V_{G S}-V_{t}\right) V_{D S}-\frac{1}{2} V_{D S}^{2}\right. \\
I_{D} & =1 \times\left[(5-1) \times 0.1-\frac{1}{2} \times 0.01\right] \\
& =0.395 \mathrm{~mA}
\end{aligned}
$$

The required value for R_{D} can be found as follows:

$$
\begin{aligned}
R_{D} & =\frac{V_{D D}-V_{D}}{I_{D}} \\
& =\frac{5-0.1}{0.395}=12.4 \mathrm{k} \Omega
\end{aligned}
$$

In a practical discrete-circuit design problem one selects the closest standard value available
for, say, 5% resistors-in this for, say, 5% resistors-in this case, $12 \mathrm{k} \Omega$; see Appendix G. Since the transistor is operating in the triode region with a small $V_{D S}$, the effective drain-to-source resistance can be determined as follows

$$
\begin{aligned}
r_{D S} & =\frac{V_{D S}}{I_{D}} \\
& =\frac{0.1}{0.395}=253 \Omega
\end{aligned}
$$

ExERGISE

4.33 in the circul of Example 44 the vilue of R_{j} is doubled, (ind approximate values for t_{n} and V_{D} Ans. $02 \mathrm{~mA}, 0.05 \mathrm{~V}$

Analyze the circuit shown in Fig. 4.23(a) to determine che voltages at all nodes and the current through all branches. Let $V_{t}=1 \mathrm{~V}$ and $k_{n}^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}^{2}$. Neglect the channel-length modulation effect (i.e., assume $\lambda=0$).

(b)

FIGURE 4.23 (a) Circuit for Example 4.5. (b) The circuit with some of the analysis details shown.

Solution

Since the gate current is zero, the voltage at the gate is simply determined by the voilage divider formed by the two $10-\mathrm{M} \Omega$ resistors,

$$
V_{G}=V_{D D} \frac{R_{G 2}}{R_{G 2}+R_{G 1}}=10 \times \frac{10}{10+10}=+5 \mathrm{~V}
$$

With this positive voltage at the gate, the NMOS transistor will be turned on. We do not know, however, whether the transistor will be operating in the saturation region or in the triode region. We shall assume saturation-region operation, solve the problem, and then check the validity of our assumption. Obviously, if our assumption turns out not to be valid, we will have to solve the problem again for triode-region operation.
Refer to Fig. 4.23 (b). Since the voltage at the gate is 5 V and the voltage at the source is
$I_{D}(\mathrm{~mA}) \times 6(\mathrm{k} \Omega)=6 I_{D}$, we have

$$
V_{G S}=5-6 I_{D}
$$

Thus I_{D} is given by

$$
\begin{aligned}
I_{D} & =\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2} \\
& =\frac{1}{2} \times 1 \times\left(5-6 I_{D}-1\right)^{2}
\end{aligned}
$$

which results in the following quadratic equation in I_{D} :

$$
18 I_{D}^{2}-25 I_{D}+8=0
$$

This equation yields two values for $I_{D}: 0.89 \mathrm{~mA}$ and 0.5 mA . The first value results in a source voltage of $6 \times 0.89=5.34$, which is greater than the gate voltage and does not make physical sense as it would imply that the NMOS transistor is cut off. Thus,

$$
\begin{aligned}
I_{D} & =0.5 \mathrm{~mA} \\
V_{S} & =0.5 \times 6=+3 \mathrm{~V} \\
V_{G S} & =5-3=2 \mathrm{~V} \\
V_{D} & =10-6 \times 0.5=+7 \mathrm{~V}
\end{aligned}
$$

Since $V_{D}>V_{G}-V_{t}$, the transistor is operating iu saturation, as initially assumed.

Exiciss

4.14 For the circuit of Fig. 4.23 , what is the largest value that R_{D} cal have while the transistor temans in the saturation mode? Ans. 12 ks
Q4. 15 Redesin the circuit of Fig. 4.23 for the following requirements: $V_{D D}=5 \mathrm{~V} I_{D}=0.32 \mathrm{~mA}, I_{S}$ $1.6 \mathrm{~V}, V_{D}=3.4 \mathrm{~V}$, with a $1-\mu \mathrm{A}$ current through the voltage divider $R_{G 1}$. $R_{C r}$. Assame the saime MOSFET as in Example 4.5.
Ans. $R_{o 1}=16 \mathrm{M} \Omega ; R_{G 2}=3.4 \mathrm{M} \Omega, R_{s}=R_{\nu}=5 \mathrm{k} \Omega$

Design the circuit of Fig. 4.24 so that the transistor operates in saturation with $I_{D}=0.5 \mathrm{~mA}$ an $V_{D}=+3 \mathrm{~V}$. Iet the enhancement-typc PMOS transistor have $V_{t}=-1 \mathrm{~V}$ and $k_{D}^{\prime}(W / L)=$ $V_{D}=+3 \mathrm{~V}$. .ef the enhancement-lype PMOS transistor have $V_{t}=-1 V_{D}$ and $k_{p}(1 / L)=$
$1 \mathrm{~mA} / \mathrm{V}^{2}$. Assume $\lambda=0$. What is the largest value that R_{D} can have while maintaining saturationregion operation?

RGURE 4.24 Circuit for Example 4.6.
Solution
Since the MOSFET is to be in saturation, we can write

$$
\begin{aligned}
I_{D} & =\frac{1}{2} k_{p} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2} \\
& =\frac{1}{2} k_{p} \frac{W}{L} V_{O V}^{2}
\end{aligned}
$$

Substituting $I_{\nu}=0.5 \mathrm{~mA}$ and $k_{p}^{\prime} W / L=1 \mathrm{~mA} / \mathrm{V}^{2}$ and recalling that for a PMOS transistor V_{O} is negative, we obtain

$$
V_{o v}=-1 \mathrm{~V}
$$

and

$$
V_{G S}=V_{t}+V_{O V}=-1-1=-2 \mathrm{~V}
$$

Since the source is at +5 V , the gate voltage must be set to +3 V . This can be achieved by he appropriate sclection of the values of $R_{G 1}$ and $R_{G 2}$. A possible selection is $R_{G 1}=2 \mathrm{M} \Omega$ and $R_{G 2}=3 \mathrm{M} \Omega$

The value of R_{D} can be found from

$$
R_{D}=\frac{V_{D}}{I_{D}}=\frac{3}{0.5}=6 \mathrm{k} \Omega
$$

Saturation-mode operation will be maintained up to the point that V_{D} exceeds V_{G} by $\mid V_{t} ;$ that is, until

$$
V_{D_{\text {max }}}=3+1=4 \mathrm{~V}
$$

This value of drain voltage is obtained with R_{D} given by

$$
R_{D}=\frac{4}{0.5}=8 \mathrm{k} \Omega
$$

The NMOS and PMOS transistors in the circuit of Fig. 4.25 (a) are matched with $k_{n}^{\prime}\left(W_{n} / I_{n}\right)=$ $\left.W_{p}^{\prime} / L_{\psi}\right)=1 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t}=-V_{t p}=1 \mathrm{~V}$. Assuming $\lambda=0$ for both deviccs, find the ($\left.p_{p}, L_{p}\right)$ and $i_{p e}$ as as the voltage v_{0}, for $v_{1}=0 \mathrm{~V},+2.5 \mathrm{~V}$, and -2.5 V .
$+25 \mathrm{~V}$

(a)

(c)

FIGURE 4.25 Circuis for Example 4.7

(b)
$+2.5 \mathrm{~V}$

(d)

Solution

Figure $4.25(\mathrm{~b})$ shows the circuit for the case $v_{J}=0 \mathrm{~V}$. We note that since Q_{N} and Q_{P} are periectly matched and are operating at equal $\left|V_{G S}\right|(2.5 \mathrm{~V})$, the circuit is symunctrical, which dictates that $v_{0}=0 \mathrm{~V}$. Thus both Q_{V} and Q_{p} are operating with $\left|V_{D G}\right|=0$ and, hence, in saturation. The drain currents can now be found from

$$
I_{D P}=I_{D N}=\frac{1}{2} \times 1 \times(2.5-1)^{2}
$$

$$
=1.125 \mathrm{~mA}
$$

Next, we consider the circuit with $v_{I}=+2.5 \mathrm{~V}$. Transistor Q_{P} will have a $V_{G i}$ of zero and thus will be cut off, reducing the circuil to that shown in Fig. $4.25(\mathrm{c})$. We note that v_{0} will be
negative, and thus $v_{G D}$ will be greater than V_{t}, causing Q_{N} to operate in the triode region. For simplicity wc shall assume that $v_{D S}$ is small and thus use

$$
I_{D N^{N}} \cong k_{n}^{\prime}\left(W_{n} / L_{n}\right)\left(V_{G S}-V_{t}\right) V_{D S}
$$

$$
=1[2.5-(-2.5)-1]\left[v_{0}-(-2.5)\right]
$$

From the circuit diagram shown in Fig. 4.25(c), we can also write

$$
I_{D N}(\mathrm{~mA})=\frac{0-v_{O}}{10(\mathrm{k} \Omega)}
$$

These two cquations can be solved simultaneously to yield

$$
I_{D N}=0.244 \mathrm{~mA} \quad v_{O}=-2.44 \mathrm{~V}
$$

Note that $V_{D S}=-2.44-(-2.5)=0.06 \mathrm{~V}$, which is small as assumed
Finally, the situation for the case $v_{t}=-2.5 \mathrm{~V}$ [Fig. 4.25(d)] will be the cxact complement of the case $v_{l}=+2.5 \mathrm{~V}$: Transistor Q_{N} will be off. Thus $I_{D N}=0, Q_{P}$ will be operating in the
triode region with $I_{D P}=2.44 \mathrm{~mA}$ and $v_{o}=+2.44 \mathrm{~V}$.
4.16 The NMOS and PMos transistors a the circuit of Fis. E4, 16 are matehed wilh $k t w$ it

FIGURE E4. 16
4.4 THE MOSFET AS AN AMPLIFIER AND AS A SWITCH

In this section we begin our study of the use of MOSFETs in the design of amplifier circuits. ${ }^{6}$ The basis for this important MOSFET application is that when operated iu the saturation region, the MOSFET acts as a voltage-controlled current source: Changes in the gate-to-source voltage

[^9] concepts to review some of this material before proceeding with the study of MOS amplifiers.
$v_{G S}$ give rise to changes in the drain current i_{D}. Thus the saturated MOSFET can be used to implement a transconductance amplifier (see Section 1.5). However, since we are intercsted in jinear amplification-that is, in amplifiers whose output signal (in this case, the drain current i_{D}) is linearly related to their input signal (in this case, the gate-to-source voitage $v_{C S}$)-we will have to find a way around the highly nonlinear (square-law) relationship of i_{D} to $z_{G S \text {. }}$.
The technique we will utilize to obtain linear amplification from a fundamentally non linear device is that of dc biasing the MOSFET to operate at a certain appropriate $V_{G S}$ and a corresponding I_{D} and then superimposing the voltage signal to be amplified, $v_{y s}$, on the dc bias voltage $V_{G S}$. By keeping the signal $v_{g s}$ "small," the resulting change in drain current, i_{d}, can be made proportional to χ_{g}. This technique was introduced in a general way in Section 1.4 and was applied in the case of the diode in Section 3.3.8. However, before considering the small-signal operation of the MOSFET amplificr, we will look at the "big picture": We will study the total or large-signal operation of a MOSFET amplifier. We will do this by deriving the voltage transfer characteristic of a commonly used MOSFET amplifier circuit. From the voltage transfer characteristic we will be able to clearly see the region over which the tran sistor can be biased to operate as a small-signal amplifier as well as those regions where i can be operated as a switch (i.e., being either fully "on" or fully "off"). MOS switches find application in both analog and digital circuits.

4.4.1 Large-Signal Operation-The Transfer Characteristic

Figure $4.26($ a) shows the basic structurc (skeleton) of the most commonly used MOSFET amplifier, the common-source (CS) circuit. The name common-source or grounded-source

FIGURE 4.26 (a) Basic structure of the common-source amplifier (b) Graphical construction to determin he transfer characteristic of the amplifier in (a).

(c)

FIGURE 4.26 (Continued) (c) Transfer characteristic showing operation as an amplifier biased at point Q
circuit arises because when the circuit is viewed as a two-port network, the grounded source terminal is common to both the input port, between gate and source, and the output port, between drain and source. Note that although the basic control action of the MOSFET is that changes in $v_{C S}$ (here, changes in v_{I} as $v_{G S}=v_{i}$) give rise to changes in i_{D}, we are using a resistor R_{D} to obtain an output voltage v_{0},

$$
v_{O}=v_{D S}=V_{D D}-R_{D} i_{D}
$$

In this way the transconductance amplifier is converted into a voltage amplifier. Finally, note that of course a de power supply is needed to turn the MOSFET on and to supply the
necessary power for its operation necessary power for its operation.
We wish to
ous values of its input voltage v_{1}, that is, to 26(a) to determine its output voltage v_{0} for various values of its input voltage v_{l}, that is, to determine the voltage transfer characteristic of
4.4 THE MOSFET AS AN AMPLIFIER AND AS A SWITCH
the CS amplifier. For this purpose, we will assume ν_{1} to be in the range of 0 to $V_{D D}$. To obtain greater insight into the operation of the circuit, we will derive its transfer characteristic in two ways: graphically and analytically

4.2 Graphical Derivation of the Transfer Characteristic

The operation of the common-source circuit is governed by the MOSFET's $i_{D^{-}-v_{D S}}$ characteristics and by the relationship between i_{D} and $v_{D S}$ imposed by connecting the drain to the power supply $V_{D D}$ via resistor R_{D}, namely

$$
\begin{equation*}
v_{D S}=V_{D D}-R_{D} i_{D} \tag{4.36}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
i_{D}=\frac{V_{D D}}{R_{D}}-\frac{1}{R_{D}} v_{D S} \tag{4.37}
\end{equation*}
$$

Figure $4.26(\mathrm{~b})$ shows a sketch of the MOSFET's $i_{D}-y_{D S}$ characteristic curves superimposed on which is a straight line representing the $i_{D}-v_{D S}$ relationship of Eq. (4.37). Observe that the straight line intersects the $v_{D S}$-axis at $V_{D D}$ [since from Eq. (4.36) $v_{D S}=V_{D D}$ at $\left.i_{D}=0\right]$ and has a slope of $-1 / R_{D}$. Since R_{D} is usually thought of as the load resistor of the auplifier (i.e., the resistor across which the amplifier provides its output voltage), the straight line in Fig. $4.26(b)$ is known as the load line.

The graphical construction of Fig. 4.26 (b) can now be used to determine v_{o} (equal to $\left.v_{D S}\right)$ for each given value of $v_{1}\left(v_{G S}=v_{I}\right)$. Specifically, for any given value of v_{l}, we locate the corresponding $i_{D}-v_{D S}$ curve and find v_{o} from the point of intersection of this curve with the load line.

Qualitatively, the circuit works as follows: Since $v_{G S}=v_{t}$, we see that for $v_{1}<V_{t}$, the transistor will be cut off, i_{D} will be zero, and $v_{O}=v_{D S}=V_{D D}$. Operation will be at the point labeled A. As v_{l} excceds v_{t}, the transistor turns on, i_{D} increases, and v_{o} decreases. Since v_{o} will initially be high, the transistor will be operating in the saturation region. This corresponds to points along the segment of the load line from A to B . We have identified a particular point in this region of operation and labeled it Q . It is obtained for $V_{G S}=V_{I Q}$ and has the coordinates $V_{O Q}=V_{D S Q}$ and $I_{D Q}$.

Saturation-region operation continues until i_{o} decreases to the point that it is below v_{l} by V_{t} volts. At this point, $v_{D S}=v_{G S}-V_{b}$ and the MOSFET enters its triode region of operation. This is indicated ini Fig. 4.26 (b) by point B, which is at the intersection of the load line and the broken-line curve that defines the boundary between the saturation and the triode regions. Point B is defined by

$$
V_{O B}=V_{I B}-V_{t}
$$

For $v_{l}>V_{I D}$, the transistor is driven deeper into the triode region. Note that because the characteristic curves in the triode region are bunched together, the output voltage decreases slowly towards zero. Here we have identified a particular operating point C obtained for $v_{l}=V_{D D}$. The corresponding output voltagc $V_{O C}$ will usually be very small. This point-bypoint determination of the transfer characteristic results in the transfer curve shown in Fig. $4.26(\mathrm{c})$. Observe that we have delineated its three distinct segments, each corresponding to one of the three regions of operation of MOSFET Q_{1}. We have also labeled the critical points of the transfer curve in correspondence with the points in Fig. 4.26(b).

4.4.3 Operation as a Switch

When the MOSFET is used as a switch, it is operated at the exireme points of the transfer curve. Specifically, the device is turned off by keeping $v_{t}<V_{t}$ resulting in operation somewhere on the segment XA with $v_{o}=V_{D D}$. The switch is turned on by applying a voltage close to $V_{D D}$, resulting in operation close to point C with v_{o} very small (at $\mathrm{C}, v_{o}=V_{O C}$). At this juncture we observe that the transfer curve of Fig. 4.26 (c) is of the form presented in Section 1.7 for the digital logic inverter. Indeed, the conmon-source MOS circuit can be used as a logic inverter with the "low" voltage level close to 0 V and the "high" Jevel close to $V_{D b}$. More elaborate MOS logic inverters are studied in Section 4.10.

4.4.4 Operation as a Linear Amplifier

To operate the MOSFET as an amplifier we make use of the saturation-mode segment of the transfer curve. The device is biased at a point located somewhere close to the middle of the curve; point Q is a good example of an appropriate bias point. The dc bias point is also called the quiescent point, which is the reason for labeling it Q. The voltage signal to be amplified v_{i} is then superimposed on the dc voltage $V_{I Q}$ as shown in Fig. 4.26(c). By keeping v_{i} sufficiently small to restrict operation to an almost linear segment of the transfer curve, the resulting output voltage signal v_{o} will be proportional to v_{i}. That is, the amplifier will be very nearly linear, and v_{0} will have the same waveform as v_{i} except that it will be larger by a factor equal to the voltage gain of the amplifier at Q, A_{v}, where

$$
\begin{equation*}
\left.A_{v} \equiv \frac{d v_{o}}{d v_{l}}\right|_{v_{l}=v_{T Q}} \tag{4.38}
\end{equation*}
$$

Thus the voltage gain is equal to the slope of the transfer curve at the bias point Q . Obscrve that the slope is negative, and thus the basic CS amplifier is inverting. This should be also evident from the waveforms of v_{i} and v_{o} shown in Fig. 4.26(c). It should be obvious that if the amplitude of the input signal v_{i} is increased, the output signal will become distorted since operation will no longer be restricted to an almost lincar segment of the transfer curve.

We shall return to the small-signal operation of the MOSFET in Section 4.6. For the time being, however, we wish to make an important observation about selecting an appropriate location for the bias point Q. Since the output signal will be superimposed on the de voltage at the drain $V_{O Q}$ or $V_{D S S}$, it is important that $V_{D S Q}$ be of such value to allow for the required output signal swing. That is, $V_{D S Q}$ should be lower than $V_{D D}$ by a sufficient amount and higher than $V_{O B}$ by a sufficient amount to allow for the required positive and negative output signal swing, respectively. If $V_{D S Q}$ is too close to $V_{D D}$ the positive peaks of the outoutput signal swing, respectively. If $V_{D S Q}$ is 100 close to $V_{D D}$: the positive peaks of the outpurn off for part of the cycle. We speak of this situation as the circuit not having sufficient "headroom." Similarly, if $V_{D s Q}$ is too close to the boundary of the triode region, the MOSFET "headroom." Similarly, if $V_{D S \text { So }}$ is too close to the boundary of the triode region, the MOSFET in a distorted output signal. We speak of this situation as the circuit not having sufficient "legroom." Finally, it is important to note that although we made our comments on the
in a dister "legroom." Finally, it is important to note that although we made our comments on the
selection of bias-point location in the context of a given transfer curve, the circuit designer also has to decide on a value for R_{D}, which of coursc determines the transfer curve. It is therefore more appropriate when considering the location of the bias point Q to do is therefore more appropriate when considering the location of the bias point Q io do
so with reference to the $i_{D^{-}}-v_{D s}$ planc. This point is further illustrated by the sketch in Fig. 4.27.

FIGURE 4.27 Two load lines and corresponding bias points. Bias point $Q_{\text {d }}$ does not leave sufficient room for positive sigual swing at the drain (too close to $V_{\text {DD }}$). Bias point Q_{2} is

24.5 Analytical Expressions for the Transfer Characteristic

The $i-v$ relationships that describe the MOSFET operation in the three regions-cutoff, saturation, and triode-can be easily used to derive analytical expressions for the three segments of the transfer characteristic in Fig. 4.26(a).
The Cutoff-Region Segment, XA Here, $v_{l} \leq V_{t}$, and $v_{o}=V_{D D}$.
The Saturation-Region Segment, AQB Here, $v_{t} \geq V_{r}$, and $v_{0} \geq v_{l}-V_{r}$. Neglecting channel-length modulation and substituting for i_{p} from

$$
i_{D}=\frac{1}{2}\left(\mu_{n} C_{o x}\right)\left(\frac{W}{L}\right)\left(v_{l}-V_{t}\right)^{2}
$$

into

$$
v_{O}=V_{D D}-R_{D} i_{D}
$$

gives

$$
\begin{equation*}
v_{o}=V_{D D}-\frac{1}{2} R_{D} \mu_{n} C_{o x} \frac{W}{L}\left(v_{l}-V_{t}\right)^{2} \tag{4.39}
\end{equation*}
$$

We cau use this relationship to derive an expression for the incremental voltage gain A_{v} at bias point Q at which $v_{I}=V_{R Q}$ as follows:

$$
\left.A_{v} \equiv \frac{d v_{\rho}}{d v_{l}}\right|_{v_{l}=v_{t g}}
$$

Thus,

$$
A_{v}=-R_{D} \mu_{n} C_{o x} \frac{W}{L}\left(V_{I Q}-V_{t}\right)
$$

Observe that the voltage gain is proportional to the values of R_{D}, the transconductance parameter $k_{n}=\mu_{n} c_{o x}$, the transistor aspect ratio W / L, and the overdrive voltage at the bi point $V_{O V}=V_{I G}-V^{\prime}$
Another simple and very useful expression for the voltage gain can be obtained by sub stituting $v_{I}=V_{I Q}$ and $v_{O}=V_{O Q}$ in Eq. (4.39), utilizing Eq. (4.40), and substituting $V_{I Q}-V_{t}=$ $V_{o v}$. The result is

$$
A_{v}=-\frac{2\left(V_{D D}-V_{O Q}\right)}{V_{O V}}=-\frac{2 V_{R D}}{V_{O V}}
$$

where $V_{R D}$ is the dc voltage across the drain resistor R_{D}; that is, $V_{R D}=V_{D D}-V_{O O}$. The end point of the saturation-region segment is characterized by

$$
V_{O B}=V_{t B}-V_{t}
$$

Thus its coordinates can be determined by substituting $v_{0}=V_{O B}$ and $v_{f}=V_{I B}$ in Eq. (4.39) and solving the resulting equation simultaneously with Eq. (4.42).

The Triode-Region Segment, BC Herc, $v_{l} \geq V_{t}$, and $v_{0} \leq v_{l}-V_{t}$. Substituting for i_{D} by the triode-region expression

$$
i_{D}=\mu_{n} C_{0, i} \frac{W}{L}\left[\left(v_{1}-V_{t}\right) v_{O}-\frac{1}{2} v_{0}^{2}\right]
$$

into

$$
v_{O}=V_{D D}-R_{D} i_{D}
$$

gives

$$
v_{O}=V_{D D}-R_{D} \mu_{n} C_{O t} \frac{W}{L}\left[\left(v_{l}-V_{t}\right) v_{O}-\frac{1}{2} v_{O}^{2}\right]
$$

The portion of this segment for which $v_{\mathcal{O}}$ is small is given approximately by

$$
v_{o} \cong V_{D D}-R_{D} \mu_{n} C_{o z} \frac{W}{L}\left(v_{I}-V_{t}\right) v_{o}
$$

which reduces to

$$
\begin{equation*}
\tilde{v}_{o}=V_{D D} /\left[1+R_{D} \mu_{n} C_{o x} \frac{W}{L}\left(v_{t}-V_{t}\right)\right] \tag{4.43}
\end{equation*}
$$

We can use the expression for $r_{D D}$, the drain-to-source resistance near the origin of the $i_{D}-v_{D S}$ plane (Eq. 4.13),

$$
r_{D D S}=1 /\left[\mu_{n} C_{a i} \frac{W}{L}\left(v_{l}-v_{i}\right)\right]
$$

together with Eq. (4.43) to obtain

$$
\begin{equation*}
w_{O}=V_{D D} \frac{r_{D S}}{r_{D S}+R_{D}} \tag{4.44}
\end{equation*}
$$

which makes intuitive sense: For small $\tau_{(O}$, the MOSFET operates as a resistance $r_{D S}$ (whose walue is determined by v_{l}), which forms with R_{D} a voltage divider across $V_{D D}$. Usually $r_{D S} \ll R_{D}$, and Eq. (4.44) reduces to

$$
\begin{equation*}
v_{o} \cong V_{D D} \frac{r_{D S}}{R_{D}} \tag{4,45}
\end{equation*}
$$

WWhusk

To make the above analysis more concrete we consider a numerical example. Specifically, con sider the CS circuit of Fig. 4.26(a) for the case $k_{n}^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{t}=1 \mathrm{~V}, R_{D}=18 \mathrm{k} \Omega$, and $V_{D D}=10 \mathrm{~V}$.

Solution
First. we determine the coordinates of important points on the transfer curve.
(a) Point X :
(b) Point A
(c) Point B: Substituting

$$
v_{l}=1 \mathrm{~V}, \quad v_{O}=10 \mathrm{~V}
$$

$$
v_{I}=V_{I B}=V_{O B}+V_{t}
$$

$$
=V_{O B}+1
$$

and $v_{O}=V_{O B}$ in Eq. (4.39) results in

$$
9 V_{O B}^{2}+V_{O H}-10=0
$$

which has two roots, only one of which makes physical sense, namely,

$$
V_{O R}=1 \mathrm{~V}
$$

Correspondingly,

$$
V_{I B}=1+1=2 \mathrm{~V}
$$

(d) Point C: From Eq. (4.43) we find

$$
V_{O C}=\frac{10}{1+18 \times 1 \times(10-1)}=0.061 \mathrm{~V}
$$

which is very small, justifying our usc of the approximate expression in Eq. (4.43)
Next, we bias the amplifier to operate at an appropriate point on the saturation-region seg ment. Since this segment extends from $v_{0}=1 \mathrm{~V}$ to 10 V , we choose to operate at $V_{O_{Q}}=4 \mathrm{~V}$. This point allows for reasonable signal swing in both directions and provides a higher voltage gain than available at the middle of the range (i.e., at $V_{O Q}=5.5 \mathrm{~V}$). To operatc at an output dc voltage
of 4 V , the dc drain current must be

$$
I_{D}=\frac{V_{D D}-V_{O Q}}{R_{D}}=\frac{10-4}{18}=0.333 \mathrm{~mA}
$$

We can find the required overdrive voltage $V_{o v}$ from

$$
\begin{aligned}
I_{D} & =\frac{1}{2} k_{n}^{\prime} \frac{W}{L} V_{O V}^{2} \\
V_{O} & =\sqrt{\frac{2 \times 0.333}{1}}=0.816 \mathrm{~V}
\end{aligned}
$$

Thus, we must operate the MOSFET at a dc gate-to-source voltage

$$
V_{G S Q}=V_{t}+V_{O V}=1.816 \mathrm{~V}
$$

The voltage-gain of the amplifier at his bias point can be found from Eq. (4.40) as

$$
A_{v}=-18 \times 1 \times(1.816-1)
$$

$$
=-14.7 \mathrm{~V} / \mathrm{V}
$$

To gain insight into the operation of the amplifier wc apply an input signal v_{i} of, say, 150 mV peak-to-peak amplitude, of, say, triangular waveform. Figure $4.28(a)$ shows such a signal supe imposed on the dc bias voltage $V_{G S Q}=1.816 \mathrm{~V}$. As shown, $v_{G S S}$ varies linearly between 1.741 V and 1.891 V around the bias value of 1.816 V . Corespondingly, i_{D} will be

$$
\begin{aligned}
& \text { At } v_{G S}=1.741 \mathrm{~V}, i_{D}=\frac{1}{2} \times 1 \times(1.741-1)^{2}=0.275 \mathrm{~mA} \\
& \text { At } v_{G S}=1.816 \mathrm{~V}, i_{D}=\frac{1}{2} \times 1 \times(1.816-1)^{2}=0.333 \mathrm{~mA} \\
& \text { At } v_{G S}=1.891 \mathrm{~V}, i_{D}=\frac{1}{2} \times 1 \times(1.891-1)^{2}=0.397 \mathrm{~mA}
\end{aligned}
$$

Note that the negative increment in i_{D} is $(0.333-0.275)=0.058 \mathrm{~mA}$ while the positive increment is $(0.397-0.333)=0.064 \mathrm{~mA}$, which are slightly different, indicating that the segment of the $i_{D}-v_{G S}$ curve (or, equivalently, of the $v_{0}-v_{l}$ curve) is not perfectly linear, as should be expected The output voltage will vary around the bias valuc $V_{O Q}=4 \mathrm{~V}$ and will have the following extremitics

$$
\begin{aligned}
& \text { At } v_{G S}=1.741 \mathrm{~V}, i_{D}=0.275 \mathrm{~mA} \text {, and } v_{O}=10-0.27 .5 \times 18=5.05 \mathrm{~V} \\
& \text { At } v_{G S}=1.891 \mathrm{~V}, i_{D}=0.397 \mathrm{~mA}, \text { and } v_{O}=10-0.397 \times 18=2.85 \mathrm{~V}
\end{aligned}
$$

Thus, while the positive increment is 1.05 V , the negative excursion is slightly larger at 1.15 V , again a result of the nonlinear transfer characteristic. The nonlinear distortion of v_{o} can be reduced by reducing the amplitude of the input signal.
Further insight into the operation of this amplifier can be gained by considering its graphical analysis shown in Fig. 4.28(b). Observe that as $v_{G S}$ varies, because of v_{i}, the instantaneou operating point moves along the load line, being at the intersection of the load liue and the $i_{D}-v_{D S}$ curve corresponding to the instantaneous value of $v_{C S}$
We note that by biasing the transistor at a quiescent point in the middle of the saturation region, we ensure that the instantaneous operating point always remains in the saturation region, and thus nonlinear distortion is minimized. Finally, we note that in this example we carried out our calculations to three decimal digits, simply to illustrate the concepts involved. In practice this degree of precision is not justified for approximate manual analysis.

(a)

FIGURE 4.28 Example 4.8

4.4.6 A Final Remark on Biasing

In the above example, the MOSFET was assumed to be biased at a constant $v_{G S}$ of 1.816 V Although it is possible to generate a constant bias voltage using an appropriate voltage divider network across the power supply $V_{D D}$ or across another reference voltage that may be availablc in the system, fixing the value of $v_{C S}$ is not a good biasing technique. In the next section we will explain why this is so and present superior biasing schemes.

EXERCISES

417 For the circuit stadied in E xample 48 ahove and with reference to the transfer charactenstio sketched in
 largest aflowable value of the ne gative peak of he outpat signal and the magnitude of the corresponding (c) Repeat (b) for the positive-output peak and the corred by the square taw MOSFET characteristic. results of (6) and (c), what is the maxinum amplitude of a sine wave that can be applied at the input the correspeniding output amplitude. What value of gain do these amplitudes innpty? Why is it different from the 14.7 V/V found in Example 48%
Ans (a) $1816 \mathrm{~V}, 2 \mathrm{~V}, 4 \mathrm{~V}, 1 \mathrm{~V}$ (b) $3 \mathrm{~V}, 0184 \mathrm{~V}$ (c) $6 \mathrm{~V}, 0.816 \mathrm{~V}$ (d) $0184 \mathrm{~V}, 3 \mathrm{~V}, 163 \mathrm{VV}$. because of the nonlinear transfer characteristic.
4.18 Derve the yotage -gain expression in Eq. (4.41) Use the cxpression to verify the gain value found in Example 4.8

5絞

4.5 BIASING IN MOS AMPLIFIER CIRCUITS

As mentioned in the previous section, an essential step in the design of a MOSFET amplifier circuit is the establishment of an appropriate dc operating point for the transistor. This is the step known as biasing or bias design. An appropriate dc operating point or bias point is characterized by a stable and predictable dc drain current I_{D} and by a dc drain-to-source voltage $V_{D S}$ that ensures operation in the saturation region for all expected input-signal levels.

4.5.1 Biasing by Fixing $V_{G S}$

The most straightforward approach to biasing a MOSFET is to fix its gate-to-source voltage $V_{G S}$ to the value required to provide the desired I_{D}. This voltage value can be derived from the power supply voltage $V_{D D}$ through the use of an appropriate voltage divider. Alternatively, it can be derived from another suitable reference voltage that might be available in the system, Independent of how the voltage $V_{G S}$ may be generated, this is not a good approach to biasing a MOSFET. To understand the reason for this statement, recall that

$$
I_{D}=\frac{1}{2} \mu_{n} C_{o r} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}
$$

and note that the values of the threshold voltage V_{t}, the oxide-capacitance $C_{e r}$, and (to a lesser extent) the transistor aspect ratio W / L vary widcly among devices of supposedly the same sizc and type. This is certainly the case for discrete devices, in which large spreads in the values of also large in integrated circuits, especially among manufacturer's part number. The spread is also large in integrated circuits, especially among devices fabricated on different wafers and ture, with the result that if we fix of walue of V. the drain curent I_{n} depend on temperature, with the result that if we fix the value of $V_{G G}$, the drain curent I_{D} becomes very much
temperature dependent.

FIGURE 4.29 The use of fixcd bias (constant $V_{G S}$) can result in a large variability in the value of I_{D}. Devices 1 and 2 rcpresent extremcs among units of the same type.

To emphasize the point that biasing by fixing $V_{G S}$ is not a good technique, we show in Fig. 4.29 two $i_{D}-v_{G S}$ characteristic curves representing exireme values in a batch of MOSFETs of the same type. Observe that for the fixed value of $V_{G S}$, the resultant spread in the values of the drain current can be substantial.

4.5.2 Biasing by Fixing V_{G} and Connecting a Resistance in the Source

An excellent biasing technique for discrete MOSFET circuits consists of fixing the dc voltagc at the gate, V_{G}, and corinecting a resistance in the source lead, as shown in Fig. 4.30(a). For this circuit we can write

$$
\begin{equation*}
V_{G}=V_{G S}+R_{S} I_{D} \tag{4.46}
\end{equation*}
$$

Now, if V_{G} is much greater than $V_{G S}, I_{D}$ will be mostly determined by the values of V_{G} and R_{S}. However, even if V_{G} is not much larger than $V_{C S}$, resistor R_{S} provides negative feedback, which acts to stabilize the value of the bias current I_{D}. To see how this comes about consider the case when I_{D} increases for whatever reason. Equation (4.46) indicatcs that since V_{G} is constant, $V_{G S}$ will have to decrease. This in turn results in a decrease in I_{D}, a change that is opposite to that initially assumed. Thus the action of R_{S} works to keep I_{D} as constant as possible. This negative feedback action of R_{S} gives it the name degeneration resistance, a name that we will appreciate much better at a later point iu this text.

Figure 4.30 (b) provides a graphical illustration of the effectiveness of this biasing scheme. Here we show the $i_{D}-v_{G S}$ characteristics for two devices that represent the extremes of a batch of MOSFETs. Superimposed on the device characteristics is a straight mue that rcpresents he constraint imposed by the bias circuit-namely, Eq. (4.46). The intersecion of this with the $i_{D}-v_{G S}$ characteristic curve provides the coordinates (I_{D} and $V_{G S}$) of the bias poin. Observe that compared to the case of fixed $V_{G S}$, here the variability obtained I_{D} is much smaller. Also, note that the variability decreases as V_{G} and R_{S} are made bias line that is less stcop)

(a)

(b)

(c)

(d)

(e)

FIGURE 4.30 Biasing using a fixed voltage at the gate, V_{c}, and a resistance in the source lead, R_{s} : (a) basic rrangement; (b) reduced variability in I_{D}; (c) practical implementation using a single supply; (d) coupling of innal source to the gate using a capacitor C_{C}; ; (c) practical implementation using two supplies.

Two possible practical discrete implementations of this bias scheme are shown in Fig. 4.30(c) and (e). The circuit in Fig. 4.30 (c) utilizes one power-supply $V_{D D}$ and derives V_{G} through a voltage divider ($R_{G 1}, R_{G i}$). Since $I_{G}=0, R_{G 1}$ and $R_{G Z}$ can be selected to be very large (in the $M \Omega$ range), allowing the MOSFET to present a large input resistance to a signal source that may be connected to the gate through a coupling capacitor, as shown in Fig. 4.30 (d). Here capacitor C_{C} blocks de and thus allows us to couple the signal $v_{\text {sig }}$ to he amplifier input without disturbing the MOSFET dc bias point. The value of C_{G} should be selected sufficiently large so that it approximates a short circuit at all signal frequencies f interest: We shall study capacitivcly coupled MOSFET amplifiers, which are suitable only in discrete circuit design, in Section 4.7. Finally, note that in the circuit of Fig. 4.30(c), resistor R_{D} is sclected to be as large as possible to obtain high gain but small cnough to allow for the desired signal swing at the drain while keeping the MOSFET in saturation at Whe

When two power supplies are available, as is often the case, the somewhat simpler bias arangement of Fig. $4.30(e)$ can be ulilized. This circuit is an implementation of. Eq. (4.46), with V_{G} replaced by $V_{S s}$. Resistor R_{G} establishes a dc ground at the gate and presents a high inp sistance to a signal source that may be connected to the gate through a coupling capacitor

Examadand

Lis required to design the circuit of Fig. 4.30(c) to establish a de drain curent $I_{D}=0.5 \mathrm{~mA}$. Th This requive is specified to have $V_{t}=1 \mathrm{~V}$ and $k_{n}^{\prime} W / L=1 \mathrm{~mA} / \mathrm{V}^{2}$. For simplicity, neglect the MOSFET is spccifed channe--nge change in the value of I_{ν}, obtained when the MOSFET is replaced wid ano the percentage same $k_{n}^{\prime} W / L$ but $V_{t}=1.5 \mathrm{~V}$.

Solution

at thumb for desigring this classical biasing circuit, we choose R_{D} and R_{s} to provid third of the power-supply voltage $V_{D D}$ as a drop across each of R_{D}, the transistor (i.e., $V_{D S}$) and R_{S}. For $V_{D D}=15 \mathrm{~V}$, this choice makes $V_{D}=+10 \mathrm{~V}$ and

$$
\begin{aligned}
& R_{D}=\frac{V_{D D}-V_{D}}{I_{D}}=\frac{15-10}{0.5}=10 \mathrm{k} \Omega \\
& R_{S}=\frac{V_{S}}{R_{S}}=\frac{5}{0.5}=10 \mathrm{kS}
\end{aligned}
$$

ruired value of $V_{C \text { c }}$ can be determined by first calculating the overdrive voltage $V_{o v}$ from

$$
\begin{aligned}
I_{D} & =\frac{1}{2} k_{n}^{\prime}(W / L) V_{O V}^{2} \\
0.5 & =\frac{1}{2} \times 1 \times V_{O V}^{2}
\end{aligned}
$$

which yields $v_{O V}=1 \mathrm{~V}$, and thus,

$$
V_{G S}=V_{t}+V_{O V}=1+1=2 \mathrm{~V}
$$

Now, since $V_{S}=+5 \mathrm{~V}, V_{\mathrm{C}}$ must he

$$
V_{G}=V_{S}+V_{G S}=5+2=7 \mathrm{~V}
$$

To establish this voltage at the gate we may sclect $R_{G 1}=8 \mathrm{M} \Omega$ and $R_{G 2}=7 \mathrm{M} \Omega$. The final circuit is shown in Fig. 4.31. Observe that the de voltage at the drain $(+10 \mathrm{~V})$ allows for a positive sigual swing of +5 V (i.e., up to $\left.V_{D D}\right)$ and a negative signal swing of -4 V (i.e., down to $\left(V_{F}-V_{i}\right)$.

If the NMOS transistor is replaced with another having $V_{r}=1.5 \mathrm{~V}$, the new value of l_{b} can be
found as follows: found as follows:

$$
\begin{align*}
I_{D} & =\frac{1}{2} \times 1 \times\left(V_{G S}-1.5\right)^{2} \tag{4.47}\\
V_{G} & =V_{G S}+I_{D} R_{S} \\
7 & =V_{G S}+10 I_{D} \tag{4.48}
\end{align*}
$$

Solving Eqs. (4.47) and (4.48) togcther yields

$$
I_{D}=0.455 \mathrm{~mA}
$$

Thus the change in I_{ν} is
$\Delta_{D}=0.455-0.5=-0.045 \mathrm{~mA}$
which is $\frac{-0.045}{0.5} \times 100=-9 \%$ change.

EXERGISES

419 Cansider the MOSFFT in Example 4.9 when tixed Y Gs bias is used Find the required value of V
to estabbish a de bias current $y_{p}=05 \mathrm{~mA}$. Recall that the device parameters are 1
 another havine $1,1 \% V_{2}$
ABS V_{G} : 2 V: 75%

 give the resilting values of f_{0}. V_{n}. nd V.
Ans. $R_{D}=R_{\mathrm{s}}=6.2 \mathrm{k} \Omega, I_{D}=0.49 \mathrm{~mA}, V_{s}=-1.96 \mathrm{~V}$,
$1 \mathrm{M} Q$ to 10 Ms .

4.5.3 Biasing Using a Drain-to-Gate Feedback Resistor

A simple and effective discrete-circuit biasing arrangement utilizing a feedback resisto connected between the drain and the gate is shown in Fig. 4.32. Here the large feedback he drain (because I_{G} in the $\mathrm{M} \Omega$ range) forces the dc voltage at the gate to be equal to that drain (because $I_{G}=0$). Thus we can write

$$
V_{G S}=V_{D S}=V_{D D}-R_{D} I_{D}
$$

which can be rewritten in the form

$$
V_{D D}=V_{G S}+R_{D} I_{D}
$$

which is identical in form to Eq. (4.46), which describes the operation of the bias scheme discussed above [that in Fig. 4.30(a)]. Thus, here too, if I_{D} for sorne reason changes, say increases, then Eq. (4.49) indicates that $V_{G S}$ must decrease. The decrease in $V_{G S}$ in turn causes a decrease in I_{D}, a chauge that is opposite in direction to the one originally assumed. Thus the negative feedback or degeneration provided by R_{G} works to keep the value of I_{D} as
constant as possible. constant as possible

The circuit of Fig. 4.32 can be utilized as a CS amplificr by applying the input voltage signal to the gate via a coupling capacitor so as not to disturb the dc bias conditions already established. The amplified output signal at the drain can be coupled to another part of the circuit, again via a capacitor. We shall consider such a CS amplifier circuit in Section 4.6. There we will learn that this circuit bas the drawback of a rather limited output voltage signal swing.

 04.21 It is required to design the circhit in lis 4.32 to operate it a de drait current of 0.5 mA Assume $V_{D D}=$

 actual values obtained for I_{D} and V_{D}. Ans. $R_{D}=6: 2 \mathrm{k} \Omega: I=0.49 \mathrm{~mA} V V_{D}$

$$
\mathrm{Ans} . R_{D}=62 \mathrm{k} \Omega, I_{D}=0.49 \mathrm{~mA} V_{D}=1.96 \mathrm{~V}
$$

4.5.4 Biasing Using a Constant-Current Source

The most effective scheme for biasing a MOSFET amplifier is that using a constant-current source. Figure 4.33(a) shows such an arrangement applied to a discrete MOSFET. Here R_{G} (usually in the $\mathrm{M} \Omega$ range) establishes a dc ground at the gatc and presents a large resistance to an input signal source that can be capacitively coupled to the gate. Resistor R_{D} establishes an appropriate dc voltage at the drain to allow for the required output signal swing while ensuring that the transistor always remains in the saturation region.

A circuit for implementing the constant-current source I is shown in Fig. 4.33(b). The heart of the circuit is transistor Q_{1}, whose drain is shorted to its gate and thus is operating in the saturation region, such that

$$
\begin{equation*}
I_{D 1}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{1}\left(V_{G S}-V_{t}\right)^{2} \tag{4.50}
\end{equation*}
$$

where we have neglected channel-length modulation (i.e., assumed $\lambda=0$). The drain current of Q_{i} is supplied by $V_{D D}$ through resistor R. Since the gate currents are zero

$$
\begin{equation*}
I_{D 1}=I_{\mathrm{REF}}=\frac{V_{D D}+V_{S S}-V_{G S}}{R} \tag{4.51}
\end{equation*}
$$

(a)

(b)

FIGURE 4.33 (a) Biasing the MOSFET using a constant-current source $/$. (b) Implementation of the
constant-current source I using a current
where the current through R is considered to be the reference current of the current source and is denoted $I_{\text {REF }}$. Given the parameter values of Q_{1} and a desired value for $I_{\text {RrF }}$, Eqs. (4.50) and (4.51) can be used to determine the value of R. Now consider transistor Q_{2} : It has the
same V_{CS} as Q_{1}; thus if we assume that it the desired current l of the current source, will be in saturation, its drain current, which is

$$
\begin{equation*}
I=I_{D 2}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{2}\left(V_{G S}-V_{t}\right)^{2} \tag{4.52}
\end{equation*}
$$

where we have neglected channel-length modulation. Equations (4.51) and (4.52) enable us to relate the current I to the reference current $I_{\text {REF }}$,

$$
\begin{equation*}
I=I_{\mathrm{REF}} \frac{(W / L)_{2}}{(W / L)_{1}} \tag{4.53}
\end{equation*}
$$

Thus I is related to $I_{\text {REF }}$ by the ratio of the aspect ratios of Q_{1} and Q_{2}. This circuit, known as a current mirror, is very popular in the design of IC MOS amplifiers and will be studied in great detail in Chapter 6
04.22 Using two transistors 0 .
 ind $t=0$ Find the eren olfase allowed at he drain ot O. R. What is the voltage at the gates of Q_{1} and Q_{2} ? What is the lowes ins $85 \mathrm{kO}, 3 \mathrm{~V}, 4 \mathrm{~W}, \mathrm{C}_{2}$ remann in the saturation region? Ans. $85 \mathrm{kO}:-3.5 \mathrm{~V}:-45 \mathrm{~V}$

4.5.5 A Final Remark

The bias circuits studied in this section are intended for discrete-circuit applications. The only ertion is the current mirror circuit of Fig. 4.33(b) which, as mentioned above, is extensively ed in IC design. Bias arrangements for IC MOS amplifiers will be studied in Chapter 6

23.6 SMALL-SIGNAL OPERATION AND MODELS

nour study of the large-signal operation of the common-source MOSFET amplifier in Section 4.4 we learned that linear amplification can be obtained by biasing the MOSFET to operate in the saturation region and by keeping the input signal small. Having studied methods for biasing the MOS transistor in the previous scction, we now turn our atcnconto exploring small-signal operation in some detail. For this purpose we utilize the conceptual common-source amplifier circuit shown in Fg. 4.34. Here the MOS transisor is biased by pplying a dc voltage $V_{G S}$, a clearly impractical anangement but one that is simple and use fil for our purposes. The inpun sigal to be antied, $v_{g s}$, ias voltage $V_{G s}$. The output voltage is taken at the drain

4.6.1 The DC Bias Point

The de bias current I_{D} can be found by setting the signal $v_{g s}$ to zero; thus,

$$
\begin{equation*}
I_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2} \tag{4.54}
\end{equation*}
$$

where we have neglected channel-length modulation (i.e., we have assumed $\lambda=0$). The de volage at the drain, $V_{D S}$ or simply V_{D} (since S is grounded), will be

$$
\begin{equation*}
V_{D}=V_{D D}-R_{D} I_{D} \tag{4.55}
\end{equation*}
$$

To ensure saturation-region operation, we must have

$$
V_{D}>V_{G S}-V_{t}
$$

Furthernore, since the total voltage at the drain will have a signal component superimposed on V_{D}, V_{D} has to be sufficiently greater than $\left(V_{G S}-V_{t}\right)$ to allow for the required signal swing.

FIGURE 434 Conceplul the MOSFET as a small-signal amplifier.

4.6.2 The Signal Current in the Drain Terminal

Next, consider the situation with the input signal $v_{g s}$ applied. The total instantaneous gate-tosource voltage will be

$$
\begin{equation*}
v_{G S}=V_{G S}+v_{g .} \tag{4.56}
\end{equation*}
$$

resulting in a total instantaneous drain current i_{D}

$$
\begin{align*}
i_{D} & =\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}+y_{g s}-V_{r}\right)^{2} \\
& =\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}+k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right) y_{g s}+\frac{1}{2} k_{n}^{\prime} \frac{W}{L} v_{g s}^{2} \tag{4.57}
\end{align*}
$$

The first term on the right-hand side of Eq. (4.57) can be recognized as the dc bias current I_{D} (Eq. 4.54). The second term represents a current component that is directly proportional to of the input signal. This last component is undesirabent that is proportional to the square tortion. To the last component is undesirable because it represents nonlinear disshould be kept small nonlinear distortion introduced by the MOSFET, the inpit signal

$$
\frac{1}{2} k_{n}^{\prime} \frac{W}{L} v_{r s}^{2} \ll k_{n}^{\prime} \frac{W}{L}\left(V_{G s}-V_{t}\right) v_{g s}
$$

resulting in

$$
\begin{equation*}
z_{g s} \ll 2\left(V_{C S}-V_{t}\right) \tag{4.58}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
v_{s s} \ll 2 V_{o v} \tag{4.59}
\end{equation*}
$$

where $V_{o v}$ is the overdrive voltage at which the transistor is operating.
If this small-signal condition is satisfied, we may neglect the last term in Eq . (4.57) and express i_{j} as

$$
\begin{equation*}
i_{D} \simeq I_{D}+i_{d} \tag{4.60}
\end{equation*}
$$

where

$$
i_{d}=k_{n}^{\prime} \frac{W}{L}\left(V_{G s}-V_{t}\right) v_{g s}
$$

The parameter that relates i_{d} and $v_{8 s}$ is the MOSFET transconductance g_{m},

$$
\begin{equation*}
g_{n} \equiv \frac{i_{d}}{v_{g s}}=k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right) \tag{4.61}
\end{equation*}
$$

or in terms of the overdrive voltage V_{O}

$$
\begin{equation*}
g_{m}=k_{n}^{\prime} \frac{W}{L} V_{O V} \tag{4.62}
\end{equation*}
$$

Figure 4.35 presents a graphical interpretation of the small-signal operation of the enhancement MOSFET amplifier. Note that $g_{n n}$ is equal to the slope of the $i_{D}-v_{G S}$ characteristic at the bias point,

$$
g_{m} \equiv \frac{\partial i_{D}}{\left.\partial v_{G S}\right|_{i_{G S}=v_{G S}}}
$$

FIGURE 4.35 Small-signal opcration of the enhancement MOSFET amplifier
This is the formal dcfinition of g_{m}, which can be shown to yicld the expressions given in Eqs. (4.61) and (4.62).

4.6.3 The Voltage Gain

Returning to the circuit of Fig. 4.34, we can express the total instantaneous drain voltage v_{D} as follows:

$$
v_{D}=V_{D D}-R_{D} i_{D}
$$

Under the small-signal condition, we have

$$
v_{D}=V_{D D}-R_{D}\left(I_{D}+i_{d}\right)
$$

which can be rewritten as

$$
v_{\nu}=V_{D}-R_{D} i_{d}
$$

Thus the signal component of the drain voltage is

$$
\begin{equation*}
v_{d}=-i_{d} R_{D}=-g_{m} v_{g} R_{D} \tag{4.64}
\end{equation*}
$$

which indicates that the voltage gain is given by

$$
\begin{equation*}
A_{v} \equiv \frac{v_{d}}{v_{g s}}=-g_{m} R_{D} \tag{4.65}
\end{equation*}
$$

The minus sign in Eq. (4.65) indicates that the output signal y_{d} is 180° out of phase with respect to the input signal $v_{g s}$. This is illustrated in Fig. 4.36, which shows $v_{G S}$ and v_{D}. The input signal is assumed to have a trangular waveform with an amplitude much smaller than $2\left(V_{G, s}-V_{V}\right)$, the small-signal condition in Eq. (4.58), to ensure linear operation. For operation in the saturation region at all times, the minimum value of i_{D} should not fall bclow the corresponding value of v_{G} by more than V_{i}. Also, the maximum value of v_{D} should be

FIGURE 4.36 Total instantaneous voltages $v_{G S}$ and v_{D} for the circuit in Fig. 4.34.
smaller than $V_{D D}$; otherwise the FET will enter the cutoff region and the peaks of the outpu signal waveform will be clipped off.
Finally, we note that by substituting for g_{m} from Eq. (4.61) the voltage gain expression in Eq. (4.65) becomes identical to that derived in Section 4.4-namely, Eq. (4.40).

4.6.4 Separating the DC Analysis and the Signal Analysis

From the preceding analysis, we see that under the small-signal approximation, signal quan tities are superimposed on dc quantities. For instance, the total drain current i_{D} equals the dc current I_{D} plus the signal current i_{d}, the total drain voltage $v_{D}=V_{D}+v_{d}$, and so on. It follows hat the analysis and design can be greatly simplified by separating de or bias calculations from small-signal calculations. That is, once a stable dc operating point has been established and all dc quantities calculated, we may then perform signal analysis ignoring de quantitics.

4.6.5 Small-Signal Equivalent-Circuit Models

From a signal point of view the FET behaves as a voltage-controlled current source. It accepts a signal $v_{s s}$ between gate and sousce and provides a current $g_{m} v_{s s}$ at the drain terminal. The input resistance of this controlled source is very high-ideally, infinite. The output resistance-that is, the resistance looking into the drain--also is high, and we have assumed
4.6 SMALL-SIGNAL OPERATION AND MODELS

(a)

(b)

FIGURE 4.37 Small-signal models for the MOSFET: (a) neglecting the dependence of i_{D} on $i_{D S}$ in saturation (the channel-length modulation effect); and (b) including the effect of channel-length modulation, ${ }_{\text {modeled by }}$ output resistance $r_{o}=\left|V_{A}\right| / I_{D}$.
it to be infinite thus far. Putting all of this together, we arrive at the circuit in Fig. 4.37(a), which represents the small-signal operation of the MOSFET and is thus a small-signal model or a small-signal equivalent circuit
In the analysis of a MOSFET amplifier circuit, the transistor can be replaced by the equivalent circuit model shown in Fig. 4.37(a). The rest of the circuit remains unchanged except that ideal constant dc voltage sources are replaced by short circuits. This is a result of the fact that the voltage across an ideal constant dc voltage source does not change, and thus there will always be a zero voltage signal across a constant dc voltage source. A dual statement applies for constant dc current sourccs; namely, the signal current of an ideal constant dc current source will always be zero, and thus an ideal constant dc current source can be replaced hy an open-circuit in the small-signal equivalent circuit of the amplifier. The circuit resulting can then be used to perform any required signal analysis, such as calculating voltage gain.

The most serious shortcoming of the small-signal model of Fig. 4.37(a) is that it assumes the drain current in saturation is independent of the drain voltage. From our study of the MOSFET characteristics in saturation, we know that the drain current does in fact depend on $v_{D S}$ in a linear manner. Such dependence was modeled by a finite resistance r_{o} between drain and source, whose value was given by Eq. (4.26) in Section 4.2.3, which we repeat here as

$$
\begin{equation*}
r_{0}=\frac{\left|V_{A}\right|}{I_{D}} \tag{4.66}
\end{equation*}
$$

where $V_{A}=1 / \lambda$ is a MOSFET parameter that either is specified or can be measured. It should be recalled that for a given process technology, V_{A} is proportional to the MOSFET channel length. The current I_{D}, is the value of the dc drain current without the channel-length modulation taken into account; that is,

$$
\begin{equation*}
I_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L} V_{O V}^{2} \tag{4.67}
\end{equation*}
$$

Typically, r_{o} is in the range of $10 \mathrm{k} \Omega$ to $1000 \mathrm{k} \Omega$. It follows that the accuracy of the smallsignal model can be improved by including r_{o} in parallel with the controlled source, as shown in Fig. 4.37(b)

It is important to note that the small-signal model parameters $g_{m t}$ and r_{o} depend on the dc bias point of the MOSFET.

Returning to the anplifier of Fig. 4.34, we find that replacing the MOSFET with the small-signal model of Fig. 4.37(b) results in the voltage-gain expression

$$
\begin{equation*}
A_{v}=\frac{v_{d}}{v_{g s}}=-g_{m}\left(R_{D} / / r_{o}\right) \tag{4.68}
\end{equation*}
$$

Thus the finite output resistance r_{0} results in a reduction in the magnitude of the voltage gain. Although the analysis above is performed on an NMOS transistor, the results, and the equivalent circuit models of Fig. 4.37, apply equally well to PMOS devices, excepl for using $\left|V_{C S}\right|,\left|V_{t \mid}\right|,\left|V_{O V}\right|$, and $\left|V_{A}\right|$ and replacing k_{n}^{\prime} with k_{p}^{\prime}.

4.6.6 The Transconductance g_{m}

We shall now take a closer look al the MOSFET transconductance given by Eq. (4.61), which we repeat here as

$$
g_{m}=k_{n}^{\prime}(W / L)\left(V_{G S}-V_{t}\right)=k_{n}^{\prime}(W / L) V_{O V}
$$

This relationship indicates that g_{m} is proportional to the process transconductance parameter $k_{n}^{\prime}=\mu_{n} C_{o x}$ and to the W / L ratio of the MOS transistor; hence to obtain relatively large trans conductance the device must be short and wide. We also observe that for a given device the transconductance is proportional to the overdrive voltage, $V_{O V}=V_{G S}-V_{t}$, the amount by which the bias voltage $V_{G s}$ exceeds the threshold voltage V_{r}. Note, however, that increasing g_{m} by biasing the device at a larger $V_{C S}$ has the disadvantage of reducing the allowable oltage signal swing at the drain.
Another uscful expression for g_{m} can be ohtained by substituting for ($V_{G S}-V_{t}$) in Eq. (4.69) by $\sqrt{2 I_{p} /\left(k_{n}^{\prime}(\bar{W} / \bar{L})\right.}$ [from Eq. (4.53)]

$$
g_{m}=\sqrt{2 k_{n}^{\prime}} \sqrt{W / L} \sqrt{I_{D}}
$$

This expression shows that

1. For a given MOSFET, $g_{\text {m }}$ is proportional to the square root of the de bias current.
2. At a given bias current, g_{m} is proportional to $\sqrt{W / L}$.

In contrast, the transconductance of the bipolar junction transistor (BJT) studied in Chapter 5 is proportional to the bias current and is independent of the physical size and geometry of the device.
To gain some insight into the values of g_{m} obtained in MOSFETs consider an integratedcircuit device operating at $I_{D}=0.5 \mathrm{~mA}$ and having $k_{n}^{\prime}=120 \mu \mathrm{~A} / \mathrm{V}^{2}$. Equation (4.70) shows that for $W / L=1, g_{n}=0.35 \mathrm{~mA} / \mathrm{V}$, whereas a device for which $W / L=100$ has $g_{m}=$ $3.5 \mathrm{~mA} / \mathrm{V}$. In contrast, a BJT operating at a collector current of 0.5 mA has $g_{m}=20 \mathrm{~mA} / \mathrm{V}$. Yet another useful expression for g_{n} of the MOSFET can be obtained by substituting for $k_{n}^{\prime}(W / L)$ in Eq. (4.69) by $2 I_{D} /\left(V_{G S}-V_{t}\right)$:

$$
\begin{equation*}
g_{m}=\frac{2 I_{D}}{V_{G S}-V_{t}}=\frac{2 I_{D}}{V_{O V}} \tag{4.71}
\end{equation*}
$$

In summary, there are three different relationships for determining $g_{m}-$ Eqs. (4.69), (4.70), and (4.71)-and there are three design parameters-(W / L),$V_{O V}$, and I_{j}, any two of which can be chosen independently. That is, the designer may choose to operate the MOSFET with a certain overdrive voltage $V_{O V}$ and at a particular current I_{D}; the required W / L ratio can hen be found and the resulting g_{m} determined.

ExATM

Fine 4 .38(a) shows a discrete common-source MOSFET amplifier utilizing the drain-to-gate Figur ack biasing arrangement. The input signal v_{i} is coupled to the gate via a large capacitor, and
feedbac feedoutput signal at the drain is coupled to the load resistance R_{2} via another large capacitor. We wish to analyze this amplifier circuit to determine its small-signal voltage gain, tance, and the largest allowable input ses. and $V_{A}=50 \mathrm{~V}$. Assume the coupling at the signal frequencies of interest.

$R_{\text {in }}$
(a)

(b)

IGUPE 438 Exal (a) (a) amplifier circuit; (b) equivalent-circuit model.

Solution

We first evaluate the dc operating point as follows

$$
I_{D}=\frac{1}{2} \times 0.25\left(V_{G S}-1.5\right)^{2}
$$

where, for simplicity, we have neglected the channel-length modulation effect. Since the dc gate where, for simplicity, we have neglected the chan across R_{G}; thus $V_{G S}=V_{D}$, which, when substitute in Eq. (4.72), yields

$$
I_{D}=0.125\left(V_{D}-1.5\right)^{2}
$$

$$
V_{D}=15-R_{D} I_{D}=15-10 I_{D}
$$

Solving Eqs. (4.73) and (4.74) together gives

$$
I_{D}=1.06 \mathrm{~mA} \text { and } V_{D}=4.4 \mathrm{~V}
$$

(Note that the other solution to the quadratic equation is not physically meaningful.) The value of g_{m} is given by

$$
g_{m}=k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)
$$

$$
=0.25(4.4-1.5)=0.725 \mathrm{~mA} / \mathrm{v}
$$

The output resistance r_{o} is given by

$$
r_{o}=\frac{V_{A}}{I_{D}}=\frac{50}{1.06}=47 \mathrm{k} \Omega
$$

Figure $4.38(b)$ shows the small-signal equivalent circuit of the aniplifier, where we observe that the coupling capacitors have been replaced with short circuits and the dc supply has been replaced with a short circuit to ground. Since R_{G} is vcry large ($10 \mathrm{M} \Omega$), the current through it can be neglecte compared to that of the controlled source $g_{m} v_{g s}$, enabling us to writc for the output voltagc

Since $v_{8 s}=v_{i}$, the voltage gain is

$$
\begin{aligned}
A_{v} & =\frac{v_{o}}{v_{i}}=-g_{m}\left(R_{D} / / R_{I} / / r_{o}\right) \\
& =-0.725(10 / / 10 / 47)=-3.3 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

To evaluate the input resistauce R_{in}, we note that the input current i_{i} is given by

$$
\begin{aligned}
i_{i} & =\left(v_{i}-v_{o}\right) / R_{G} \\
& =\frac{v_{i}}{R_{G}}\left(1-\frac{v_{o}}{v_{i}}\right) \\
& =\frac{v_{i}}{R_{G}}[1-(-3.3)]=\frac{4.3 v_{i}}{R_{G}}
\end{aligned}
$$

Thus,

$$
R_{\mathrm{in}} \equiv \frac{v_{i}}{i_{i}}=\frac{R_{G}}{4.3}=\frac{10}{4.3}=2.33 \mathrm{M} \Omega
$$

The largest allowable input signal \hat{v}_{i} is determined hy the need to keep the MOSFET in saturation at all times; that is,

$$
v_{D S} \geq v_{G S}-V_{t}
$$

Enforcing this coudition
minimum, we write

$$
\begin{aligned}
v_{D S \text { min }} & =v_{G S \text { max }}-V_{t} \\
V_{D S}-\mid A_{i l} \hat{v}_{i} & =V_{C S}+\hat{v}_{i}-V_{t} \\
4.4-3.3 \hat{v}_{i} & =4.4+\hat{v}_{i}-1.5
\end{aligned}
$$

4.6 SMALL-SIGNAL OPERATION AND MODELS

9295
which results in

$$
\hat{x}_{i}=0.34 \mathrm{~V}
$$

Note that in the negative direction, this input signal amplitude results in $v_{G S u n i n}=4.4-0.34=$ 4.06 V , which is larger than V_{t}, and thus the transistor remains conducting. Thus, as we have sur mised, the limitation on input signal amplitude is posed by the upper-end considerations, and the mised,
maximum allowablc input signal pcak is 0.34 V .
4.6.7 The T Equivalent-Circuit Model

Through a simple circuit transformation it is possible to develop an alternative equivalent circuit model for the MOSFET. The development of such a model, known as the T model, is illustrated in Fig. 4.39. Figure 4.39(a) shows the equivalent circuit studied above without r_{o} In Fig. 4.39 (b) we have added a second $g_{m} v_{g s}$ current source in series with the original conrolled source. This addition ohviously does not change the terminal currents and is thu dlowed. The newly created circuit node, labeled X , is joined to the gate terminal G in Fig $439(\mathrm{c}$) Observe that the gate current does not change-that is it remains equal to ero-and thus this connection does not alter the terminal characteristics. We now note that

GURE 4.39 Development of the T equivalent-circuit model for the MOSFET. For simplicity, r_{o} ha een omitted but can be added between D and S in the T model of (d).

(a)

(b)

FIGURE 4.40 (a) The T model of the MOSFET augmented with the drain-to-source resistance r_{o}. (b) An alternalive reprcsentation of the T model.
We have a controlled current source $g_{m} v_{8 s}$ connected across its control voltage $\gamma_{g s}$. We can replace this controlled source by a resistance as long as this resistance draws an equal cur rent as the source. (See the source-absorption theorem in Appendix C.) Thus the value of the resislance is $v_{2 s} / g_{m} v_{g s}=1 / g_{m}$. This replacement is shown in Fig. $4.39(\mathrm{~d})$, which depict all the same as in the original model in Fig 4.39(a). $g_{m} v_{g,}$, and $i_{s}=y_{g s} /\left(1 / g_{m}\right)=g_{m} v_{g,}$ the same as in the original model in Fig. 4.39(a).
The model of Fig. 4.39(d) shows that the resistance between gate and source looking into the source is $1 / g_{m}$. This observation and the T model prove useful in many applica In developing the T model we did not include r. If desired, this can be done hy inco
rating in the circuit of Fig. 4.39(d) a resistance $r_{\text {. }}$. If detwisen drain and source, ha sherpoFig. 4.40 (a). An alternative representation of the T model in which the voltage-controlled curent source is replaced with a current-controlled current source is sho vo in Fi -controlled
Finally, we should note that in order to distinguish the model of Fig 4.37 (b) from the equiv Tent T model, the former is sometimes referred to as the hybrid- π, bipolar

4.6.8 Modeling the Body Effect

As mentioned in Section 4.2, the body effect occurs in a MOSFET when the source is not tied to the substrate (which is always connected to the most-negative power supply in the integrated circuit for n-channel devices and to the most-positive for p-channel devices) Thus the substrate (body) will be at signal ground, but since the source is not, a signal volt age $v_{h s}$ develops between the body (B) and the source (S). In Section 4.2, it was mentioned hat the substrate acts as a "second gate" or a backgate for the MOSFET. Thus the signal v_{b} gives rise to a drain-current component, which we shall write as $g_{m b} v_{b s}$, where $g_{m b}$ is the body transconductance, defined as

$$
\begin{equation*}
\left.g_{m b} \equiv \frac{\partial i_{D}}{\partial v_{B S} S}\right|_{\substack{v_{i s S}=\text { conssist } \\ v_{2 s}=\text { constant }}} \tag{4.75}
\end{equation*}
$$

Recalling that i_{D} depends on $\pi_{B S}$ through the dependence of V_{t} on $V_{B S}$, Eqs. (4.20), (4.33), and (4.61) can be used to obtain

4.6 SMALL-SIGNAL OPERATION AND MODELS 297
 to the body.
where

$$
\begin{equation*}
\chi \equiv \frac{\partial V_{t}}{\partial V_{S B}}=\frac{\gamma}{2 \sqrt{2 \phi_{f}+V_{S B}}} \tag{4.77}
\end{equation*}
$$

Typically the value of χ lies in the range 0.1 to 0.3 .
Figure 4.41 shows the MOSFET model augmented to include the controlled source $r_{m b} v_{b s}$ that models the body effect. This is the model to be used whenever the source is not connected to the substrate
Finally, although the analysis above was performed on a NMOS transistor, the results and the equivalent circuit of Fig. 4.41 apply equally well to PMOS transistors, except for using $\left|V_{G s}\right|,\left|V_{f},\left|V_{o v}\right|,\left|V_{A}\right|,\left|V_{S t}\right|,|\gamma|\right.$, and $| \lambda \mid$ and replacing k_{n}^{\prime} with k_{p}^{\prime}.

4.6.9 Summary

We conclude this section by presenting in Table 4.2 a summary of the formulas for calculating the values of the small-signal MOSFET paramcters. Observe that for g_{m} we have three different formulas, each providing the circuit designer with insight regarding design choiccs. We shall make frequent comments on these in later sections and chapters.

TABLE 4.2. Small Signal Equivalent-Circuit Model for the MOSFET

Small-Signal Parameters

NMOS transistors:
管 Transconductance:
$g_{m}=\mu_{n} C_{o x} \frac{W}{L} V_{o v}=\sqrt{2 \mu_{n} C_{o x} \frac{W}{L} I_{D}}=\frac{2 I_{D}}{V_{O V}}$
Output resistance:
$r_{o}=V_{\lambda} / I_{D}=1 / \lambda I_{D}$

- Body transconductance

$$
g_{m b}=\chi g_{m}=\frac{\gamma}{2 \sqrt{2 \phi_{f}+V_{S B}}} g_{m}
$$

PMOS transistors:
Same formulas as for NMOS except using $\left|V_{o v},\left|V_{A}\right|,|\lambda|\right|,|\gamma|, \mid V_{s t \mid}$, and $|\chi|$ and replacing μ_{n} with μ_{p}.

299

TABLE 4.2 (Continued)
S.mall-Signal Equivalent Circuit Models when $\left|V_{s l}\right|=0$ (i.e., No Body Effect)

mall-Signal Circuit Model when $\left|V_{s b}\right| \neq 0$ (i.e., Including the Body Effect)

Hybrid- π model

EXERCISES

 y. 0.2 sit of volts tind y as suing that the smallsignal approximition holds. What ate the minimum and maximum values of v_{D} ' (e) Use Eq (4.57) to determine the various components of i_{D}. Using the identity $\left(\sin ^{2} \omega t=\cos 2 \omega t\right.$, show that there is a slight shifl in I_{0} (by how nuch? and that there is a sec ond hammone component (ice: a component with frequency 2ω) Fxpress wh ampliude of the secend harmoue component as a percemage of the anplitude of the fundamental. This valie is known as the
second-harmonic distortion.) Ans (a) 200410

4.24 An NMOS transistor has $\mu_{n} C_{00}=60 \mu \mathrm{~A} / \mathrm{V}^{2}, W / L=40, V_{t}=1 \mathrm{~V}$, and $V_{A}=15 \mathrm{~V}$. Find g_{n} and r_{0} when (a) the bias voltage $V_{i s}=1.5 \mathrm{~V}$, and when (b) the bias cuirrent $I_{D}=0.5 \mathrm{~mA}$.

Ans. (a) $12 \mathrm{mAV}, 50 \mathrm{k} \Omega$ (b) $1.55 \mathrm{mAV}, 30 \mathrm{k} \Omega$
425 A MOSFET is to operate at $I_{D}=0.1 \mathrm{~mA}$ and is to have $s_{m}=1 \mathrm{mAV}$. If $k_{\mu}^{\prime}=50 \mu \mathrm{AV}^{2}$, find the required W/L ratio and the overdrive voltage,
Ans. $100,0.2 \mathrm{~V}$
4.26 For a fabrication process for which $\mu=0.4 \mu$. find the ratio of the width of a PMOS transistor to the width of an NMOS transistor so that the two devices have equal g for the same bias conditions. The two devices have equal channel len th:
Ans. 25
 Ans 0:12.
4.28 A PMOS transistor has $V=-1 V_{i} k_{p}=60 \mu \mathrm{~A} V$, and $W L=16 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$. Find I_{p} and g_{m} when the device is biased at $V_{G S}=-16$ V Also, find the value of $F 11 \lambda(a t L-1 \mu \mathrm{~m})=0.04 \mathrm{~V}$. Ans $216 \mu \mathrm{~A}, 0.72 \mathrm{mAl}: 92.6 \mathrm{~kg}$
4.29 Use the formulas in Table 4.2 to derive an expression for $(2,1)$ in terms of V and V. As we shall see in Chapter 6, his is an impoitane ransitot parameter and is known as the intrinsic sain. Evallate the value
 nellensth. Let the device have niniminh hamiel legeth and be operated at an overdive veltage of 0.2 Y Ans. $s_{m} /=2 V_{4} / V_{o v} \cdot 100 \mathrm{VIV}$

4. 4.7 SINGLE-STAGE MOS AMPLIFIERS

Having studied MOS amplifier biasing (Section 4.5) and the small-signal operation and models of the MOSFET amplifier (Section 4.6), we are now ready to consider the various configurations utilized in the design of MOS amplifiers. In this section we shall do this for the case of discrete MOS amplifiers, leaving the study of integrated-circuit (IC) MOS amplifiers to Chapter 6 . Beside being useful in their own right, discrete MOS amplifiers are somewha asier to understand than their IC counterparts for two main reasons: The separation betwecn dc and signal quantities is more obvious in discrete circuits, and discrete circuits utilize resis ors as amplifier loads. In contrast, as we shall see in Chapter 6, IC MOS amplifiers employ onstant-current sources as amplificr loads, with these being implemented using additional MOSFETs and resulting in more complicated circuits. Thus the circuits studied in this section hould provide us with both an mtroduction to the subject of MOS amplifier configuration and a solid base on which to build during our study of IC MOS amplifiers in Chapter 6 .
Since in discrete circuits the MOSFET source is usually tied to the substrate, the body ffect will be absent. Therefore in this section we shall not take the body effect into account Also, in some circuits we will neglect r_{o} in order to keep the analysis simple and focus ou attention at this early stage on the salient features of the amplificr configurations studied.

4.7.1 The Basic Structure

Figure 4.42 shows the basic circuit we shall utilize to implement the various configurations of discretc-circuit MOS amplifiers. Among the various schemes for biasing discrete MOS

301

we have selected, for both its effectiveness and its simplicity, the one employing constant-current biasing. Figure 4.42 indicates the dc current and the dc volt ges resuling at various nodes.

ExERCISE

 4negatise signatswigof 4

, \#, \&

HGURE E430

TABLE 4.3. Characteristic Parameters of Amplifiers
Cirsuit

Definitions

Input resistance with no load:

$$
R_{i} \equiv \frac{v_{i}}{i_{i} \mid R_{t}-\infty}
$$

3 Input resistance.
$R_{\mathrm{in}} \equiv \frac{\partial_{i}}{i_{i}}$
Open-circuit voltage gain
$\left.A_{v o} \cong \frac{v_{o}}{v_{i}}\right|_{R_{t}-\infty}$
(s) Voltagc gain:
$A_{v} \equiv \frac{v_{o}}{v_{i}}$
K Short-circuit current gain:
$\left.A_{i s} \bar{i} \frac{i_{o}}{i_{i}}\right|_{R_{L}=0}$

* Current gain:
$A_{i} \equiv \frac{i_{o}}{i_{i}}$
Shor-circuit transconductance:
$\left.G_{m} \equiv \frac{i_{o}}{v_{i}}\right|_{R_{L}=0}$
- Output resistance of amplifier proper:
$\left.R_{o} \equiv \frac{v_{x}}{i_{x}}\right|_{v_{i}=0}$

8s Output resistance:
$\left.R_{\text {out }} \equiv \frac{v_{s}}{i_{x}}\right|_{v_{\mathrm{sif}}=0}$

\& Open-circuit overall voltage gain.

$$
\left.G_{v o} \equiv \frac{v_{o}}{v_{\text {sig }}}\right|_{R_{L}=0}
$$

Overall voltage gain:
$G_{v} \equiv \frac{v_{o}}{v_{\text {sigy }}}$

Equivalent Circuits

© A :

路 B :

\%

Relationships

g $\frac{v_{i}}{v_{\text {sig }}}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}}$
$G_{v}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}} A_{v o} \frac{R_{L}}{R_{L}+R_{o}}$

* $A_{v}=A_{v 0} \frac{R_{L}}{R_{L}+R_{o}}$
** $\quad G_{v o}=\frac{R_{i}}{R_{i}+R_{\text {sig }}} A_{v o}$
* $A_{v o}=G_{m} R_{o}$
器 $\quad G_{v}=G_{v v} \frac{R_{L}}{R_{L}+R_{\text {out }}}$

5. When evaluating the gain A_{v} from the open-circuit value $A_{v o}, R_{o}$ is the output resis tance to use. This is because A_{v} is based on feeding the amplifier with an ideal voltage signal v_{i}. This should be evident from Equivalent Circuit A in Table 4.3. On the other hand, if we are evaluating the overall voltage gain G_{v} from its open-circuit value G_{v} the output resistance to use is $R_{\text {out }}$. This is because G_{v} is based on fecding the amplificr with $v_{\text {sig }}$, which has an internal resistance $R_{\text {sig. }}$. This should be evident from Equivalent Circuit C in Table 4.3
6. We urge the reader to carefully examine and reflect on the definitions and the six relationships presented in Table 4.3. Example 4.11 should help in this regard.

A transistor amplifier is fed with a signal source having an open-circuit voltage $v_{\text {sig }}$ of 10 mV and an internal resistance $R_{\text {sig }}$ of $100 \mathrm{k} \Omega$. The voltage v_{i} at the amplifier input and the output voltage v_{o} are measured both wiithout and with a load resistance $R_{I}=10 \mathrm{k} \Omega$ connected to the amplifier output. The measured results are as follows:

Find all the amplifier parameters.

Solution

First, we use the data obtained for $R_{l}=\infty$ to determinc

$$
A_{v o}=\frac{90}{9}=10 \mathrm{~V} / \mathrm{V}
$$

and

$$
G_{v o}=\frac{90}{10}=9 \mathrm{~V} / \mathrm{V}
$$

Now, since

$$
G_{v o}=\frac{R_{i}}{R_{i}+R_{\mathrm{sig}}} A_{v o}
$$

which gives

$$
9=\frac{-R_{i}}{R_{i}+100} \times 10
$$

$$
R_{i}=900 \mathrm{k} \Omega
$$

Next, we use the data obtained when $R_{L}=10 \mathrm{k} \Omega$ is connected to the amplifier output to determine

$$
A_{v}=\frac{70}{8}=8.75 \mathrm{~V} / \mathrm{V}
$$

and

$$
G_{v}=\frac{70}{10}=7 \mathrm{~V} / \mathrm{V}
$$

The values of A_{v} and $A_{p o}$ can be used to determine R_{o} as follows:

$$
\begin{aligned}
A_{v} & =A_{v o} \frac{R_{L}}{R_{L}+R_{o}} \\
8.75 & =10 \frac{10}{10+R_{o}}
\end{aligned}
$$

which gives

$$
R_{o}=1.43 \mathrm{k} \Omega
$$

Similarly, we use the values of G_{v} and $G_{v o}$ to determine $R_{\text {out }}$ from

$$
\begin{aligned}
G_{v} & =G_{v o} \frac{R_{L}}{R_{L}+R_{\text {out }}} \\
7 & =9 \frac{10}{10+R_{\text {out }}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Without } R_{b} \\
\text { With } R_{L} \text { con }
\end{array} \\
& \text { With } R_{L} \text { connected } \quad 8 \\
& \begin{array}{l}
90 \\
70 \\
\hline
\end{array}
\end{aligned}
$$

resulting in

$$
R_{\text {out }}=2.86 \mathrm{k} \Omega
$$

The value of R_{in} can be determined from

$$
\begin{aligned}
& \frac{v_{i}}{v_{\text {sig }}}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}} \\
& \frac{8}{10}=\frac{R_{\text {in }}}{R_{\text {in }}+100} \\
& R_{\text {in }}=400 \mathrm{k} \Omega
\end{aligned}
$$

The short-circuit transconductance G_{m} can be found as follows:

$$
G_{m}=\frac{A_{v o}}{R_{o}}=\frac{10}{1.43}=7 \mathrm{~mA} / \mathrm{V}
$$

and the current gain A_{i} can be determined as follows:

$$
\begin{aligned}
A_{i} & =\frac{v_{o} / R_{L}}{v_{i} / R_{\text {in }}}=\frac{v_{o}}{v_{i}} \frac{R_{\text {in }}}{R_{L}} \\
& =A_{v} \frac{R_{\text {in }}}{R_{L}}=8.75 \times \frac{400}{10}=350 \mathrm{~A} / \mathrm{A}
\end{aligned}
$$

Finally, we determine the short-circuit current gain $A_{i s}$ as follows. From Equivalent Circuit A in Table 4.3, the short-circuit output current is

$$
i_{o s c}=A_{v o} v_{i} / R_{o}
$$

However, to determine v_{i} we need to know the value of R_{in} obtained with $R_{L}=0$. Toward that
end, note that from Equivalent Circuit C , the output short-circuit current can be found as

$$
i_{o s c}=G_{v o} v_{\text {siz }} / R_{\text {oun }}
$$

Now, equating the two expressions for $i_{o s c}$ and substituting for $G_{v o}$ by

$$
\begin{aligned}
& G_{w o}=\frac{R_{i}}{R_{i}+R_{\text {sig }}} A_{z o} \\
& v_{i}=v_{\text {sil }} \frac{\left.R_{\text {in }}\right|_{R_{l}=0}}{\left.R_{\text {in }}\right|_{R_{i}=0}=R_{\text {sig }}}
\end{aligned}
$$

and for ν_{i} from
results in

$$
\begin{aligned}
\left.R_{\text {in }}\right|_{R_{L}=0} & =R_{\text {sig }} /\left[\left(1+\frac{R_{\text {sis }}}{R_{i}}\right)\left(\frac{R_{\text {out }}}{R_{o}}\right)-1\right] \\
& =81.8 \mathrm{k} \Omega \\
i_{\text {oss }} & =\left.A_{v o} i_{i} R_{\text {in }}\right|_{R_{L}=0} / R_{o} \\
\Lambda_{i s}=\frac{i_{o s c}}{i_{i}} & =10 \times 81.8 / 1.43=572 \mathrm{~A} / \mathrm{A}
\end{aligned}
$$

We now cau use
to obtain

EXERCSE

4.31 (a) If in the amplifier of Example $4.11 ; R_{\mathrm{si}}$ is doubled, find the values for $R_{\mathrm{i},}, G_{i j}$ and $R_{\text {cur }}$. (b) Repeat for R_{μ} doubled (but $R_{\text {sig }}$ uichanged; i.e, 100 k). (c) Repeat for both $R_{\text {sig }}$ and R_{t} doubled. Ars. (a) $400 \mathrm{k} \Omega, 583 \mathrm{~V} / \mathrm{V}, 4.03 \mathrm{k} \Omega$; (b) $538 \mathrm{k} \Omega, 7.87 \mathrm{~V} / \mathrm{V}, 2.86 \mathrm{kS}$: (c) $538 \mathrm{kS}, 6,8 \mathrm{~V} / \mathrm{V}, 4.03 \mathrm{kS}$

4.7.3 The Common-Source (CS) Amplifier

The common-source (CS) or grounded-source configuration is the most widely used of all MOSFET amplifier circuits. A common-source amplifier realized using the circuit of Fig. 4.42 is shown in Fig. 4.43(a). Observe that to establish a signal ground, or an ac ground as it is sometimes called, at the source, we have connected a large capacitor, C_{s}, between the source and ground. This capacitor, usually in the $\mu \mathrm{F}$ range, is required to provide a very small impedance (ideally, zero impedance; i.e., in effect, a short circuit) at all signal frequencies of interest. In this way, the signal current passes through C_{s} to ground and thus bypasses the output resistance of current source I (and any other circuit component that might be connected to the MOSFET source); hence, C_{S} is called a bypass capacitor. Obviously, the lower the signal frequency, the less effective the bypass capacitor becomes. This issue will be studied in Section 4.9. For our purposes here we shall assume that C_{S} is acting as a perfect short circuit and thus is establishing a zcro signal voltage at the MOSFET source.

In order not to disturb the dc bias current and voltages, the signal to be amplified, shown as voltage source $v_{\text {sis }}$ with an internal resistance $R_{\text {sig }}$, is connected to the gate through a large capacitor C_{C}. Capacitor $C_{C l}$, known as a coupling capacitor, is required to act as a perfect short circuit at at signal frequencies of intcrest while blocking dc. Here again, we note that as the sigual Irequency is lowered, the impedance of $C_{C 1}$ (i.e., $1 / j \omega C_{C 1}$) will increase and will be cones in Section 49 when the dependence of the will be considered in Section 4.9 when the dependence of the amplifier operation on frequency is studied. For our purposes here we stall assume $C_{C l}$ is accing as a perfect short circuit as far as the signal is concerned. Before leaving $C_{C 1}$, we should point out that in situatis. where the slgnal source can provide an appropriate de pahn to ground, the gale can The voltared
 frequencies of interest and thus that the output voltage $\psi^{\prime}=$ cual load recintor to which the ariplifier is required to provide its output voltage signl it an be in f mplificatio is (We will study mult To determine
To determine the terminal characteristics of the CS amplifier-that is, its input resismodel. The galting circuit is shown in Fig 443 (b) At the outset we observe thit thi mplifier is unilateral. Therefore $R_{\text {a }}$ does not depend on R, and this R Also $R_{\text {a }}$ will not doner on R, $R_{\text {in }}=R$,
 proceeds in a step-by-step manner,

$$
\begin{gather*}
R_{\mathrm{in}}=R_{G} \\
v_{i}=v_{\text {sisg }} \frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}}=v_{\text {sil }} \frac{R_{G}}{R_{G}+R_{\text {sig }}} \tag{4.78}
\end{gather*}
$$

FIGURE 4.43 (a) Common-source amplifier based on the circuit of Fig. 4.42. (b) Equivalent circuit of the amplifier for small-signal analysis. (c) Small-signal analysis perforned directly on the amplificr circuit with he MOSFET model implicity utilyed.

Usually R_{C} is selected very large (e.g., in the $\mathrm{M} \Omega$ range) with the result that in many appli cations $R_{G} \gg R_{\text {sig }}$ and

Now
and
$v_{g s}=v_{i}$
.

$$
v_{o}=-g_{m} v_{g s}\left(r_{0}\left\|R_{D}\right\| R_{t}\right)
$$

Thus the voltage gain A_{v} is

$$
A_{v}=-g_{m}\left(r_{o}\left\|R_{D}\right\| R_{L}\right)
$$

and the open-circuit voltage gain $A_{v o}$ is

$$
\begin{equation*}
A_{i o}=-g_{m}\left(r_{o} \| R_{D}\right) \tag{4.8}
\end{equation*}
$$

The overall voltage gain from the signal-source to the load will be

$$
\begin{align*}
G_{v} & =\frac{R_{\mathrm{in}}}{R_{\mathrm{in}}+R_{\mathrm{sig}}} A_{v} \\
& =-\frac{R_{G}}{R_{G}+R_{\mathrm{sig}}} g_{m}\left(r_{a}\left\|R_{D}\right\| R_{L}\right) \tag{4.82}
\end{align*}
$$

Finally, to determine the amplifier output resistance $R_{\text {out }}$ we set $v_{\text {sig }}$ to 0 ; that is, we replace the signal generator $\tau_{\text {sig }}$ with a short circuit and look back into the output terminal, as indi cated in Fig. 4.43. The result can be found by inspection as

$$
\begin{equation*}
R_{\text {out }}=r_{o} \| R_{D} \tag{4.83}
\end{equation*}
$$

As we have secn, including the output resistance r_{o} in the analysis of the CS amplifier is straightforward: Since r_{0} appeairs between drain and source, it in effect appears in paralle wihh R_{D}. Since it is usually the case that $r_{o} \gg R_{D}$, the effect of r_{o} will be a sligbt decrease in the voltage gain and a decrease in $R_{\text {out }}$-the latter being a beneficial effect!

Although small-signal equivalent circuit models provide a systematic process for the analysis of any amplifier circuit the effort involved in drawing the equivalent circuit sometimes not jucified. That is in the small-signal analycis directly on the original circuit In such pitation, one sull MOSFET model is cmployed implicitly rather than explicilly In order to started in this direction, we show in Fig 4.43 (c) the small-signal analysis of the CS amplifie performed on a somewhat simplified version of the circuit We urge the cs amplifin this analysis and to correlate it with the analysis using the cquivalent circuit of Fig. 4.43(b).

EXERCISE

 I

 voltage of +25 V .

We conclude our study of the CS amplifier by noting that it has a very high input resistance, a moderately high voltage gain, and a relatively high oulput resistance.

4.7.4 The Common-Source Amplifier with a Source Resistance

It is often bencficial to insert a resistance R_{S} in the source lead of the common-source amplifier, as shown in Fig. 4.44(a). The corresponding small-signal equivalent circuit is shown in

(a)

(b)

IGURE 4.44 (a) Common-source amplifier with a resistance R_{s} in the source lead. (b) Small-signal quivalent circuit with r_{s} neglected.

Fig. 4.44(b) where we note that the transistor has been replaced by its T equivalent-circuit model. The T model is used in preference to the π model because it makes the analysis in this case somewhat simpler. In general, whenever a resistance is connccted in the source lead, as for instance in the source-follower circuit we shall consider shortly, the T model is preferred: The source resistance then simply appears in series with the resistance $1 / g_{p}$, which represents the resistance between source and gate, looking into the source.
It should be noted that we have not included r_{o} in the cquivalent-circuit model. Including r_{o} would complicate the analysis considerably; r_{o} would connect the output node of the amplifier to the input side and thus would make the amplifier nonunilateral. Fortunately, it turns out that the effect of r_{n} on the operation of this discrete-circuit amplifier is not important. This can be verified using SPICE simulation (Section 4.12). This is not the case, however, for the integrated-circuit version of the circuit where r_{0}, plays a major role and must be taken into account in the analysis and design of the circuit, which we shall do in Chapter 6.

From Fig. 4.44(b) we see that as in the case of the CS amplificr,

$$
\begin{equation*}
R_{\mathrm{in}}=R_{i}=R_{G} \tag{4.84}
\end{equation*}
$$

and thus,

$$
\begin{equation*}
v_{i}=v_{\text {siig }} \frac{R_{G}}{R_{G}+R_{\text {sig }}} \tag{4.85}
\end{equation*}
$$

Unlike the CS circuit, however, here $y_{g y}$ is only a fraction of v_{i}. H can be determined from the voltage divider composed of $1 \% g_{\text {in }}$ and R_{S} that appears across the amplifier input as follows:

$$
\begin{equation*}
v_{g, s}=v_{i} \frac{\frac{1}{g_{m}}}{\frac{1}{g_{m}}+R_{S}}=\frac{v_{i}}{1+g_{m} R_{S}} \tag{4.86}
\end{equation*}
$$

Thus we can use the value of R_{S} to control the magnitude of the signal $v_{g s}$ and thus ensure that $v_{g s}$ does not become too large and cause unacceptably high nonlinear distortion. (Recall the constraint on $v_{\text {gs }}$ given by Eq. 4.59). This is the first benefit of including resistor R_{S}. by SPICE simulation in Section 4.12 that R_{s} couss the hapters. For instance, we will show be extended. The mechanism by which R_{s} causes such imperul bandwidth of the amplifier to be extended. The mechanism by which R_{S} causes such improvements in amplifier perfor-
mance is that of negative feedback. Unfortunately, the price paid for these improvements is mance is that of negative feedback. Unfortunately, the price paid for these improvements is
a reduction in voltage gain, as we shall now show. a reduction in voltage gain, as we shall now show.

The current i_{d} is equal to the current i flowing in the source lead; thus,

$$
\begin{equation*}
i_{d}=i=\frac{\tilde{v}_{i}}{\frac{1}{g_{m}}+R_{S}}=\frac{g_{m} v_{i}}{1+g_{m} R_{S}} \tag{4.87}
\end{equation*}
$$

Thus including R_{S} reduces i_{d} by the factor $\left(1+g_{m} R_{S}\right)$, which is hardly surprising since this is the factor relating $v_{s s}$ to v_{i} and the MOSFET produces $i_{d}=g_{m} v_{s s}$. Equation (4.87) indicates also that the effect of R_{S} can be thought of as reducing the effective g_{m} by the factor $\left(1+g_{n} R_{s}\right)$. The output voltage can now be found from

$$
v_{o}=-i_{d}\left(R_{D} \| R_{L}\right)
$$

$$
=-\frac{g_{m}\left(R_{D} \| R_{L}\right)}{1+g_{m} R_{S}} v_{i}
$$

Thus the voltage gain is

$$
\begin{equation*}
A_{v v}=-\frac{g_{m}\left(R_{D} \| R_{t,}\right)}{1+g_{t n} R_{S}} \tag{4.88}
\end{equation*}
$$

and setiing $R_{L}=\infty$ gives

$$
\begin{equation*}
A_{v o}=-\frac{g_{n} R_{D}}{1+g_{m} R_{S}} \tag{4.89}
\end{equation*}
$$

The overall voltage gain G_{v} is

$$
\begin{equation*}
G_{v}=-\frac{R_{G}}{R_{G}+R_{\mathrm{sig}}} \frac{g_{m}\left(R_{D} \| R_{L}\right)}{1+g_{m} R_{S}} \tag{4.90}
\end{equation*}
$$

Comparing Eqs. (4.88), (4.89), and (4.90) with their counterparts without R_{S} indicates that including R_{S} results in a gain reduction by the factor $\left(1+g_{m} R_{S}\right)$. In Chapter 8 we shall study negative feedback in some detail. There we will learn that this factor is called the amount of feedback and that it determines hoth the magnitude of performance improvements and, as a trade-off, the reduction in gain. At this point, we should recall that in Section 4.5 we saw that a resistance R_{S} in the source lead increases dc bias stability; that is, R_{S} reduces the variability in I_{D}. The action of R_{S} that reduces the variability of I_{D} is exactly the same action we are observing here: R_{S} in the circuit of Fig. 4.44 is reducing i_{d}, which is, after all, just a variation in I_{D}. Because of its action in reducing the gain, R_{S} is called source degeneration resistance.

Another nsetul interpretation of the gain expression in Eq. (4.88) is that the gain from gate to drain is simply the ratio of the total resistance in the drain, $\left(R_{D} \| R_{L}\right)$, to the total resistance in the source, $\left\lfloor\left(1 / g_{m}\right)+R_{s}\right]$.

Finally, we wish to direct the reader's attention to the small-signal analysis that is performed and indicated directly on the circuit in Fig. 4.44(a). Again, with some practice, the reader should be able to dispense, in simple situations, with the extra work involved in drawing a complete equivalent circuit model and use the MOSFET model implicitly. This also has the added advantage of providing greater insight regarding circuit operation and, furthermore, reduces the probability of making manipulation errors in circuit analysis.

EXGमGIS

433 in Exercise 432 we applied an inpul signal of $0.4 V$ peak-to-peak. which resulted in at output signal of the CS amplifiet of 2.8 Y peak-to-peak. Assume that for some reason we now have an input signal three times as large as before (i e. 1.2 V P-p) and that we wish to modify the citcult to keep the output is inal level unchanged. What value should we use for $R s^{?}$?
Ans. 215 kg .

4.7.5 The Common-Gate (CG) Amplifier

By establishing a signal ground on the MOSFET gate terminal, a circuit configuration aply named common-gate ($\mathbf{C G}$) or grounded-gate amplifier is obtained. The input sig nal is applied to the source, and the output is taken at the drain, with the gate forming a
common terminal between the input and output ports. Figure 4.45(a) shows a CG amplifier obtained from the circuit of Fig. 4.42. Observe that since both the dc and ac voltages at the gate are to be zero, we have connceted the gate drectly to ground, thus elimiuating resistor R_{0} altogether. Coupling capacitors $C_{C 1}$ and $C_{C_{2}}$ perform similar functions to those in the CS circuit. The small-signal equivalent circuit model of the CG amplifier is shown in Fig. 4.45(b). Since resistor $R_{\text {sig }}$ appears directly in series with the MOSFET source lead we have selected the T model for the transistor. Either model, of course, can be used and yields identical

(a)

(b)
ent circu. ent circuit of the amplifier in (a)

(c)

FIGURE 4.45 (Continued) (c) The common-gate amplifier fed with a current-signal input.
results; however, the T model is more convenient in this case. Observe also that we have not included r_{o}. Including r_{0}, here would complicate the analysis considerably, for it would appear between the output and input of the amplifier. We will consider the effect of r when we study the IC form of the CG amplifier in Chapter 6
From inspection of the equivalcnt-circuil model in Fig. 4.45 (b) we see that the input resistance is

$$
\begin{equation*}
R_{\mathrm{in}}=\frac{1}{g_{m}} \tag{4.91}
\end{equation*}
$$

This should have been expected since we are looking into the source terminal of the MOSFET and the gate is grounded. ${ }^{7}$ Furthermore, since the circuit is unilateral, R_{in} is independent of R_{L}, and $R_{\text {in }}=R_{i}$. Since g_{m} is of the order of $1 \mathrm{~mA} / \mathrm{V}$, the input resistance of the CG ampli fier can be relatively low (of the order of 1 kS) and certainly much lower than in the case of the CS amplificr. It follows that significant loss of signal strength can occur in coupling the signal to the input of the CG amplifier, since

$$
\begin{equation*}
v_{i}=v_{\mathrm{sig}} \frac{R_{\mathrm{in}}}{R_{\mathrm{in}}+R_{\mathrm{sig}}} \tag{4.92}
\end{equation*}
$$

Thus

$$
\begin{equation*}
v_{i}=v_{\text {siz }} \frac{\frac{1}{g_{m}}}{\frac{1}{g_{m i}}+R_{\text {sig }}}=v_{\text {sis }} \frac{1}{1+g_{m} R_{\text {sig }}} \tag{4.93}
\end{equation*}
$$

 different from $1 / g_{m}$.
from which we see that to kcep the loss in signal strength small, the source resistance $R_{\text {sis }}$ should be small,

$$
R_{\text {sig }} \ll \frac{1}{g_{m}}
$$

The current i_{i} is given by

$$
i_{i}=\frac{v_{i}}{R_{\text {in }}}=\frac{v_{i}}{1 / g_{m}}=g_{m} v_{i}
$$

and the drain current i_{d} is

$$
i_{d}=i=-i_{i}=-g_{m} v_{i}
$$

Thus the output voltage can be found as

$$
v_{o}=v_{d}=-i_{d}\left(R_{D} \| R_{\mathcal{L}}\right)=g_{m}\left(R_{D} \| R_{L}\right) v_{i}
$$

resulting in the voltage gain

$$
\begin{equation*}
A_{i j}=g_{m}\left(R_{D} \| R_{L}\right) \tag{4.94}
\end{equation*}
$$

from which the open-circuit voltage gain can be found as

$$
\begin{equation*}
A_{v o}=g_{m} R_{D} \tag{4.95}
\end{equation*}
$$

The overall voltage gain can be obtained as follows:

$$
G_{v}=\frac{R_{\mathrm{in}}}{R_{\mathrm{iti}}+R_{\mathrm{sig}}} A_{v}=\frac{\frac{1}{g_{m}}}{\frac{1}{g_{i n}}+R_{\mathrm{sig}}} \Lambda_{v i}=\frac{A_{v}}{1+g_{m} R_{\mathrm{sig}}}
$$

resulting in

$$
G_{v i}=\frac{g_{i m}\left(R_{D} \| R_{L}\right)}{1+g_{m} R_{\text {sig }}}
$$

Finally, the output resistance is found by inspection to be

$$
\begin{equation*}
R_{\mathrm{out}}=R_{o}=R_{D} \tag{4.97}
\end{equation*}
$$

Comparing these expressions with those for the common-source amplifier we make the following observations:

1. Unlike the CS amplifier, which is inverting, the CG amplifier is noninverting. This, however, is seldom a significant consideration.
2. While the CS amplifier has a very high input resistance, the input resistance of the CC amplifier is low.
3. While the A_{v}, values of both CS and CG amplifiers are nearly identical, the overal voltage gain of the CG amplificr is smaller by the factor $1+g_{m} R_{\text {sig }}$ (Eq. 4.96b), which is due to the low input resistance of the CG circuit.
The observations above do not show any parlicular advantage for the CG circuit; to explore this circuit further we take a closer look at its operation. Figure 4.45 (c) shows the CG amplifier fed with a signal current-source $i_{\text {sig }}$ having an internal resistancc $R_{\text {sig. }}$. This can, of course, be the Norton equivalent of the signal source used in Fig. 4.45(a). Now, using
$R_{\mathrm{in}}=1 / g_{m}$ and the current-divider rule we can find the fractiou of $i_{\text {sig }}$ that flows into the MOSFET source, i_{i},

$$
\begin{equation*}
i_{i}=i_{\text {sig }} \frac{R_{\text {sig }}}{R_{\text {sig }}+R_{\text {in }}}=i_{\text {sig }} \frac{R_{\text {sig }}}{R_{\text {sig }}+\frac{1}{g_{m}}} \tag{4.98}
\end{equation*}
$$

Normally, $R_{\text {sig }} \geqslant 1 / g_{m}$, and

$$
\begin{equation*}
i_{i} \cong i_{\text {sig }} \tag{4.98a}
\end{equation*}
$$

Thus we see that the circuit presents a relatively low input resistance $1 / g_{m}$ to the input signalcurrent source, resulting in very little signal-current attenuation at the input. The MOSFET then reproduces this current in the drain terminal at a much higher output resistance. The circuit thus acts in effect as a unity-gain current amplifier or a current follower. This view of the operation of the common-gate amplificr has resulted in its most popular application, in a configuration known as the cascode circuit, which we shall study in Chapter 6 .

Another area of application of the CG anplifier makes use of its superior high-frequency performance, as compared to that of the CS stage (Scction 4.9). We shall study wideband amplifier circuits in Chapter 6 . Here we should note that the low input-resistance of the CG amplifier can be an advantage in some very-high-frequency applications where the input signal connection can be thought of as a transmission line and the $1 / g_{m}$ input resistance of the CG amplifier can be made to function as the terminution resistunce of the transmission line (see Problem 4.86).

EXERCISE

434 Consider a CG amplifier desigied using he erreat of Fig 4.42. Which is analy eit in Exercise 4,30 with the analysis resulis displayed in tig. E4 30 . Note that $g_{\text {g }}=11$ mA V and $R_{s}=15 \mathrm{kS}$. Find $R_{\text {io }} R_{\text {all }}$

Ans. 1 kN . $15 \mathrm{k} \Omega$

4.7.6 The Common-Drain or Source-Follower Amplifier

The last single-stage MOSFET amplifier configuration we shall study is that obtained by establishing a signal ground at the drain and using it as a terminal common to the input port, between gate and drain, and the output port, between source and drain. By analogy to the CS and CG amplifier configurations, this circuit is called common-drain or grounded-drain amplifier. However, it is known more popularly as the source follower, for a reason that will become apparent shortly.

Figure 4.46(a) shows a common-drain amplificr based on the circuit of Fig. 4.42. Since the drain is to function as a signal ground, there is no need for resistor R_{D}, and it has therefore been eliminated. The input signal is coupled via capacitor $C_{C 1}$ to the MOSFET gate, and the output sigual at the MOSFET source is coupled via capacitor $C_{C 2}$ to a load resistor R_{L}

Since R_{L} is in effect connected in series with the source terminal of the transistor (current source I acts as an open circuit as far as signals are concerned), it is more convenient to use the MOSFET's T model. The resulting small-signal equivalent circuit of the common-drain
 model. (c) Small-signal analysis performed directly on the circuit. (d) Circuit for determining the ouput resistance $R_{\text {oun }}$ of the source follower.
4.7 SINGLE-STAGE MOS AMPLIFIERS
amplifier is shown in Fig. 4.46(b). Analysis of this circuit is straightforward and proceeds as follows: The input resistance R_{in} is given by

$$
R_{\mathrm{in}}=R_{G}
$$

Thus,

$$
v_{i}=v_{\mathrm{siz}} \frac{R_{\mathrm{in}}}{R_{\mathrm{in}}+R_{\mathrm{jizy}}}=\tilde{v}_{\mathrm{sig}} \frac{R_{G}}{R_{G}+R_{\text {siy }}}
$$

Usually R_{G} is selected to be much larger than $R_{\text {sig }}$ with the result that

$$
v_{i} \cong v_{\text {sig }}
$$

To proceed with the analysis, it is important to note that r_{o} appears in effect in parallel with R_{L}, with the result that between the gate and ground we have a resistance $\left(1 / g_{m}\right)$ in series R_{L}, with the result that between the gate and ground we have a tesistance $\left(1 / g_{m}\right)$ in series
with $\left(R_{I} \| r_{o}\right)$. The signal v_{i} appears across this total resistance. Thus we may use the voltage divider rule to determine v_{0}

$$
v_{o}=v_{i} \frac{R_{L} \| r_{o}}{\left(R_{L} \| r_{o}\right)+\frac{1}{g_{m}}}
$$

from which the voltage gain A_{y} is obtained

$$
A_{v j}=\frac{R_{L .} \| r_{o}}{\left(R_{L} \| r_{o}\right)+\frac{1}{g_{n}}}
$$

and the open-circuit voltage gain $A_{y o}$ as

$$
\begin{equation*}
\Lambda_{v o}=\frac{r_{o}}{r_{o}+\frac{1}{g_{m}}} \tag{4.103}
\end{equation*}
$$

Normally $r_{o} \gg 1 / g_{m}$, causing the open-circuit voltage gain from gate to source, $A_{i r n}$ in Eq. (4.103), to become nearly unity. Thus the voltage at the source follows that at the gate, giving the circuit its popular name of source follower. Also, in many discrete-circui applications, $r_{o} \gg R_{L}$, which enables Eq. (4.102) to be approximated by

$$
\begin{equation*}
A_{v} \cong \frac{R_{L}}{R_{L}+\frac{1}{g_{m}}} \tag{4.102a}
\end{equation*}
$$

The overall voltage gain G_{ν} can be found by combining Eqs. (4.100) and (4.102), with the result that

$$
G_{v}=\frac{R_{G}}{R_{G}+R_{\text {dig }}} \frac{R_{L} \| r_{o}}{\left(R_{L} \| r_{o}\right)+\frac{1}{g_{m}}}
$$

which approaches unity for $R_{G} \gg R_{\text {sip }}, r_{o} \gg 1 / g_{m}$, and $r_{o} \gg R_{L}$.
To emphasize the fact that it is usually faster to perform the small-signal analysis irectly on the circuit diagram with the MOSFET small-signal model utilized only implic dly, we show such as analysis in Fig. 4.46(c). Once again, obscrve that to separate the intrinsic action of the MOSFET from the Early effect. we have extracted the output resistance r_{o} and shown it scparatcly

The circuit for determining the output resistance $R_{\text {out }}$ is shown in Fig. 4.46(d). Because the gate voltage is now zero, looking back into the source we see between the source and ground a resistance $1 / g_{m}$ in parallel with r_{o}; thus,

$$
R_{\mathrm{out}}=\frac{1}{g_{n t}} \| r_{0}
$$

Normally, $r_{o} \gg 1 / g_{m}$, reducing $R_{\text {out }}$ to

$$
\begin{equation*}
R_{\mathrm{out}} \cong \frac{1}{g_{m}} \tag{4.106}
\end{equation*}
$$

which indicates that $R_{\text {out }}$ will be moderatcly low.
We observe that although the source-follower circuit has a large amount of internal feedWe observe that although the source--follower circuit has a large amount of internal feed$R_{\text {out }}$ is independent of $R_{\text {sig }}$ (and thus $R_{\rho}=R_{\text {ouv }}$. The reason for this, however, is the zero gate current.

In conclusion, the source follower features a very high input resistance, a relatively low output resistance, and a voltage gain that is less than but close to unity. It finds application in siluations in which we need to connect a voltage-signal source that is providing a signal resistance-that is as a unity-gain voltage buffer amplifier. The need for such omplifiers was discussed in Section 15 . The source follower is also used as the output stage in a multistage amplifier where its function is to equip the overall amplifier wilh a low output resi tance thus erabing to coply relatively 1 orge little reduction of output signal level.) The design of output stages is studied in Chapter 14.

EXERCISE

TABLE 4.4 Characteitistics of Single Stage Discrete MOS Amplifiers:

(Continued)
. CS conflguration is the best suited for obtaining the bulk of the gain required in an amplifier. Depending on the magnitude of the gain required, either a single CS stage or a cascade of two or three CS stages can be used.
2. Including a resistor R_{S} in the source lead of the $C S$ stage provides a number of improvements in its performance, as will be seen in later chapters, at the expense of reduced gain.

TABLE 4.4 (Continued)

Common-Drain or Source Follow

$$
\begin{aligned}
R_{\text {in }} & =R_{G} \\
A_{i v} & =\frac{r_{o} \| R_{L}}{\left(r_{o} \| R_{L}\right)+\frac{1}{g_{m}}} \\
R_{\text {out }} & =r_{o} \| \frac{1}{g_{m}} \cong \frac{1}{g_{m}} \\
G_{u} & =\frac{R_{G}}{R_{G}+R_{\text {sig }}} \frac{r_{o} \| R_{L}}{\left(r_{o} \| R_{L}\right)+\frac{1}{g_{m}}}
\end{aligned}
$$

3. The low input resistance of the CG amplifier makes it useful only in specific applications. These include voltage amplifiers that do not require a high input resistance and that take advantage of the excellent high-frequency performance of the CG configuration (see Chapter 6) and as a unity-gain current amplifier or curtent follower. This atter application gives rise 10 the most figuration, the cascode amplifier (sec Chapter 6)
4. The source follower finds application as a voltage buffer for connecting a high-resistance source to a low-resistance load and as the output stage in a multistage amplifier

4. 4.8 THE MOSFET INTERNAL CAPACITANCES

From our study of the physical operation of the MOSFET in Section 4.1, we know that the device has internal capacitances. In fact, we used one of these, the gate-to-channel capacitance, in our derivation of the MOSFET $i-v$ characteristics. We did, however, implicitly assume that the steady-state charges on these capacitances are acquired instantaneously. In other words, we did not account for the finite time required to charge and discharge the varous internal capacitances. As a result, the device models we derived, such as the small-signal ndi, not the case- in fact the oin feyry MOSFET amplifier falls off at is (and Similarly the MOSFET digital logic inverter exhibits finit non ac To be able to predict these recults, the MOSFET model must be augmented by including internal capacitances. This is subect of tis sectiono visur section
To visualize the physical origin of the various internal capacitances, the reader is referred to Fig. 4.1. There are basically two types of internal capacitances in the MOSFET:

1. The gate capacitive effect: The gate electrode (polysilicon) forms a parallel-plate capacitor with the channel, with the oxide layer serving as the capacitor dielectric. We discussed the gate (or oxidc) capacitance in Section 4.1 and denoted its value per unit area as $C_{o x}$
2. The source-body and drain-body depletion-layer capacitances: These are the capaci tances of the reverse-biased $p n$ junctions formed by the n^{+}source region (also called the source diffusion) and the p-type substrate and by the n^{+}drain region (the drain dffusion) and the substrate. Evaluation of these capacitances will ulilize the materia studied in Chapter 3.
These two capacitive effects can be modeled by including capacitances in the MOSFET model between its four terminals, G, D, S, and B. There will be five capacitances in total $C_{g s}, C_{g^{d}}, C_{g b}, C_{s b}$, and $C_{d b}$, where the subscripts indicate the location of the capacitances in the model. In the following, we show how the values of the five model capacitances can be determined. We will do so by considering cach of the two capacitive effects separately

4.8.1 The Gate Capacitive Effect

The gate capacitive effect can be modeled by the three capacitances $C_{85} C_{g d}$, and $C_{3^{b}}$. The values of these capacitances can be determined as follows

1. When the MOSFET is operating in the triode region at small $v_{D S}$, the channel will be of uniform depth. The gate-channel capacitance will be $W L C_{o x}$ and can be modeled by dividing it equally between the source and drain ends; thus,

$$
\begin{equation*}
C_{g s}=C_{g d}=\frac{1}{2} W L C_{o x} \quad \text { (triode region) } \tag{4.107}
\end{equation*}
$$

This is obviously an approximation (as all modeling is) but works well for trioderegion operation even when $v_{D S}$ is not small.
2. When the MOSFET operates in saturation, the channel has a tapered shape and is pinched off at or near the drain end. It can be shown that the gate-to-channel capaci tance in this case is approximately $\frac{2}{3} W L C_{o x}$ and can be modeled by assigning this entire amount to $C_{2 s}$, and a zero amount to $C_{8 d}$ (because the channel is pinched off a the drain); thus,

$$
\left.\begin{array}{l}
C_{g s}=\frac{2}{3} W L C_{o x} \\
C_{g d}=0
\end{array}\right\} \quad \text { (saturation region) }
$$

3. When the MOSFET is cut off, the channel disappears, and thus $C_{g s}=C_{g d}=0$. How ever, we can (after some rather complex reasoning) model the gatc capacitive effect by assigning a capacitance $W L C_{o x}$ to the gate-body model capacitance; thus,

$$
\left.\begin{array}{l}
C_{g s}=C_{g d}=0 \tag{4.110}\\
C_{a b}=W L C_{o x}
\end{array}\right\} \quad \text { (cutoff) }
$$

4. There is an additional small capacitive component that should be added to $C_{g s}$ and $C_{\text {gd }}$ in all the preceding formulas. This is the capacitance that results from the fac that the source and drain diffusions extend slightly under the gate oxide (refer to Fig. 4.). If the overlap length is denoted $L_{\text {orn }}$ we see that the overlap capacitanc component is

$$
\begin{equation*}
C_{o v}=W L_{o v} C_{o x} \tag{4.112}
\end{equation*}
$$

Typically, $L_{o i z}=0.05$ to $0.1 L$

4.8.2 The Junction Capacitances

The depletion-laycr capacitances of the two reverse-biased $p n$ junctions formed between each of the source and the drain diffusions and the body can be determined using the formula developed in Section 3.7.3 (Eq. 3.56). Thus, for the source diffusion, we have the sourcebody capacitance, $C_{s b}$,

$$
\begin{equation*}
C_{s b}=\frac{C_{s b 0}}{\sqrt{1+\frac{V_{S B}}{V_{0}}}} \tag{4.113}
\end{equation*}
$$

where $C_{s t o}$ is the value of $C_{s b}$ at zero body-source bias, $V_{S B}$ is the magnitude of the reversehias voltage, and V_{0} is the junction built-in voltage (0.6 V to 0.8 V). Similarly, for the drain diffusion, we have the drain-body capacitance $C_{d b}$,

$$
\begin{equation*}
C_{d b}=\frac{C_{d b 0}}{\sqrt{1+\frac{V_{D B}}{V_{0}}}} \tag{4.114}
\end{equation*}
$$

where $C_{i b 0}$ is the capacitance value at zero reverse-bias voltage and $V_{D B}$ is the magnitude of this reverse-bias voltage. Note that we have assumed that for both junctions, the grading coefficient $m=\frac{1}{2}$

It should be noted also that each of these junction capacitances includes a component arising from the bottom side of the diffusion and a component arising from the side walls of the diffusion. In this regard, observe that each diffusion has three side walls that are in contact with the substrate and thus contribute to the junction capacitance (the fourth wall is in contact with the channel). In more advanced MOSFET modeling, the two components of each of the junction capacilances are calculated separately.

The formulas for the junction capacitances in Eqs. (4.113) and (4.114) assume smallsignal operation. These fornulas, however, can be modified to obtain approximate average values for the capacitances when the transistor is operating under large-signal conditions such as in logic circuits. Finally, typical values for the various capacitances exhibited by an n-channel MOSFET in a relatively modern ($0.5 \mu \mathrm{~m}$) CMOS process are given in the following exercise.

 tor toperthe fhystral constants.

4.8.3 The High-Frequency MOSFET Mode

Figure 4.47 (a) shows the small-signal model of the MOSFET, including the four capacitances $C_{s,}, C_{g d}, C_{s b}$, and $C_{d b}$. This model can be used to predict the high-frequency response of MOSFET amplifiers. It is, however, quite complex for manual analysis, and its use is
4.8 THE MOSFET INTERNAL CAPACITANCES AND HIGH-FREQUENCY MODEL

(c)

FIGURE 4.47 (a) High-frequency cquivalent circuit model for the MOSFET. (b) The equivalent circuit for the case in which the source is connected to the substrate (body). (c) The equivalent circuit model of (b) with $C_{\text {dib }}$ ncglceted (to simplify analysis).
lumited to computer simulation using, for example, SPICE. Fortunately, for the case when the source is connected to the body, the model simplifies considerably, as shown in Fig. 4.47(b). In this model, $C_{y d}$, although small, plays a significant role in determining the high-frequency response of amplifiers (Section 4.9) and thus must be kept in the model. Capacitance $C_{d b}$, on the other hand, can usually be neglected, resulting in significant simplification of manual analysis. The resulting circuit is shown in Fig. 4.47(c).

FIGURE 4.48 Determining the shor-circuit current gain I_{o} / I_{i}.

4.8.4 The MOSFET Unity-Gain Frequency $\left(f_{T}\right)$

A figure of merit for the high-frequency operation of the MOSFET as an amplifier is the unity-gain frequency, f_{T}. This is defined as the frequency at which the shor-circuit currentgain of the conmmon-source configuration becomes unity. Figure 4.48 shows the MOSFET hy To detcrmine the short-circuit corr-c gain, 8 he input is fed what and the output tern circuit is given by

$$
I_{o}=g_{m} V_{g s}-s C_{g d} V_{g s}
$$

Recalling that $C_{g d}$ is small, at the frequencies of interest, the second term in this equation can be neglected,

$$
I_{o} \simeq g_{m} V_{y s}
$$

From Fig. 4.48, we can express $V_{g s}$ in terms of the input current I_{i} as

$$
\begin{equation*}
V_{g s}=I_{i} / s\left(C_{g s}+C_{z d}\right) \tag{4.116}
\end{equation*}
$$

Equations (4.115) and (4.116) can be combined to obtain the short-circuit current gain,

$$
\begin{equation*}
\frac{I_{o}}{I_{i}}=\frac{g_{m}}{s\left(C_{g s}+C_{g d}\right)} \tag{4.117}
\end{equation*}
$$

For physical frequencies $s=j \omega$, it can be secn that the magnitude of the current gain becomes unity at the frequency

$$
\omega_{T}=g_{m s} /\left(C_{g s}+C_{g d}\right)
$$

Thus the unity-gain frequency $f_{T}=\omega_{T} / 2 \pi$ is

$$
\begin{equation*}
f_{T}=\frac{g_{m}}{2 \pi\left(C_{g, s}+C_{g d}\right)} \tag{4.118}
\end{equation*}
$$

Since f_{T} is proportional to g_{m} and inversely proportional to the FET internal capacitances, the higher the value of f_{T}, the more effective the FET becomes as an amplifier. Substituting for g_{m} using Eq. (4.70), we can express f_{T} in terms of the bias current I_{D} (see Problem 4.92).
${ }^{8}$ Note that since we are now dealing with quantities (curcents, in this case) that are functions of frccucncy, wercase subscripts for our

Alternatively, we can substitute for g_{m} from Eq. (4.69) to express f_{T} in terms of the overdrive voltage $V_{O V}$ (see Problem 4.93). Both expressions yield additional insight into the high requency operation of he MOSET.
Typically, f_{T} ranges from about 100 MHz for the older technologies (e.g., a $5-\mu \mathrm{m}$ CMOS process) to many GHz for newer high-speed technologies (e.g., a $0.13-\mu \mathrm{m}$ CMOS process).

Pxtuty

 TH BTIT

4.8.5 Summary

We conclude this section by presenting a summary in Table 4.5.

TABLE 4.5 The MOSFET High-frequency Mode

Model

Model Parameters

$$
\begin{aligned}
g_{n t} & =\mu_{n} C_{o x} \frac{W}{L} V_{O V}=\sqrt{2 \mu_{n} C_{o x} \frac{W}{L} I_{D}}=\frac{2 I_{D}}{V_{O V}} & C_{s b} & =\frac{C_{s b 0}}{\sqrt{1+\frac{V_{S B}}{V_{0}}}} \\
g_{m b} & =\chi g_{m t}=\frac{\gamma}{2 \sqrt{2 \phi_{f}+V_{S B}}} g_{n t} & C_{d b} & =\frac{C_{d b 0}}{\sqrt{1+\frac{V_{D B}}{V_{0}}}} \\
r_{o} & =V_{A} / I_{D} & f_{T} & =\frac{g_{m}}{2 \pi\left(C_{g s}+C_{g d}\right)}
\end{aligned}
$$
 4.9 FREQUENCY RESPONSE OF THE CS AMPLIFIER ${ }^{9}$}

In this section we study the dependence of the gain of the MOSFET common-source amplifier of Fig. 4.49(a) on the frequency of the input signal. Before we begin, however, a note on crminology is in order: Since we will be dealing with voltages and currents that are functions of frequency or, more generally, the complex-frequency variable s, we will use uppercase letters with lowercase subscripts to represent them (e.g., $V_{g s}, V_{d}, V_{o}$).

4.9.1 The Three Frequency Bands

When the circuit of Fig. 4.49(a) was studied in Section 4.7.3, it was assumed that the coupling capacitors $C_{C 1}$ and $C_{C 2}$ and the bypass capacitor C_{S} were acting as perfect short circuits at all signal frequencies of interest. We also neglected the internal capacitances of the MOSFET; that is, $C_{k s}$ and $C_{y d}$ of the MOSFET high-frequency model shown in Fig. 4.47(c) were assumed to be sufficiently small to act as open circuits at all signal frequencies of interest. As a result of ignoring all capacitive effects, the gain expressions derived in Section 4.7.3 As a result of ignoring an capacitive effects, the gain expressions derived in Section 4.7 .3
were independent of frequency. In reality, however, this situation applies over only a limited, though normally wide, band of frequencies. This is illustrated in Fig. 4.49(b), which shows a sketch of the magnitude of the overall voltage gain, $\left|G_{v}\right|$, of the CS amplifier versus frequency. We observe that the gain iss almost constant over a wide frequency band, called the midband. The value of the midband gain A_{M} corresponds to the overall voltage gain G_{v} that we derived in Section 4.7.2, namely,

$$
\begin{equation*}
A_{M} \equiv \frac{V_{o}}{V_{\text {sig }}}=-\frac{R_{G}}{R_{G}+R_{\text {sig }}} g_{m}\left(r_{o}\left\|R_{D}\right\| R_{L}\right) \tag{4.119}
\end{equation*}
$$

Figure 4.49 (b) shows that the gain falls off at signal frequencies below and above the midband. The gain falloff in the low-frequency band is due to the fact that even though $C_{C 1}, C_{C 2}$, and C_{S} are large capacitors (in the $\mu \mathrm{F}$ range), as the signal frequency is reduced, their impedances increase, and they no longer behave as short circuits. On the other hand, the gain falls off in the high-frequency band as a result of C_{8} and C, which though very mall (in the pF or fraction of pF range for discrete devices and much lower for IC devices), their impedances at high frequencies decrease and thus can no longer be considered as open their imped an ars it is our objective in this section to study the mechanisms by which these two sets f capacitances affect the amplifier gain in the low-frequency and the high-frequency bands. of capacitances affect the amplifier gain in the low-frequency and the high-frequency bands. the midband, as shown in Fig. 4.49 (b).

The midband is obviously the useful frequency band of the amplifier. Usually, f_{L} and f_{H} are the frequencies at which the gain drops by 3 dB below its value at midband. The amplifier bandwidth or 3 -dB bandwidth is defined as the difference between the lower $\left(f_{L}\right)$ and the upper or higher $\left(f_{H}\right) 3$-dB frequencies,

$$
B W \equiv f_{l l}-f_{l}
$$

and since, usually, $f_{l} \ll f_{l}$
$B W \cong f_{h}$
(4.121)
${ }^{9}$ We strongly urge the reader to review Section 1.6 before proceeding with the study of this section.

(a)
$\left|\frac{V_{0}}{V_{\text {sig }}}\right|(d B)$

(b)

FIGURE 4,49 (a) Capeitively coupled commen of the amplifier in (a) delineating the three frequency bands of interest.

A figure-of-merit for the amplifier is its gain-bandwidth product, which is defined as

$G B \equiv\left|A_{M}\right| B W$

It will be shown at a later stage that in amplifier design it is usually possible to trade-off gain for bandwidth. One way to accomplish this, for instance, is by adding a source degeneration resistance R_{s}, as we have done in Section 4.7.4.

4.9.2 The High-Frequency Response

To determine the gain, or the transfer function, of the amplifier of Fig. 4.49(a) at high frequencies, and particularly the upper $3-\mathrm{dB}$ frequency f_{H}, we replace the MOSFET with its high-frequency model of Fig. 4.47 (c). At these frequencies, $C_{C 1}, C_{C 2}$, and C_{S} will be behaving as perfect short circuits. The result is the high-frequency amplifier equivalent circuit shown in Fig. 4.50(a).
The equivalent circuit of Fig. 4.50(a) can be simplified by utilizing the Thévenin theorem at the input side and by combining the three parallel resistances at the output side. The resulting simplified circuit is shown in Fig. 4.50 (b). This circuit can be further simplified if we can find a way to deal with the bridging capacitor $C_{g d}$ that connects the outpnt node to the input side. Toward that end, consider first the output node. It can be seen that the load current is $\left(g_{m} V_{8 s}-I_{g d}\right)$, where $\left(g_{m m} V_{g s}\right)$ is the output current of the transistor and $I_{g d}$ is the current supplied through the very small capacitance $C_{g d}$. At frequencies in the vicinity of f_{G}. which defines the edge of the midband, it is reasonable to assume that $I_{g d}$ is still much
smaller than $\left(g_{g} V_{s g}\right)$, with the result that V_{0} cau be given approximately by smaller than $\left(g_{m} V_{g .5}\right)$, with the result that V_{o} cau be given approximately by

$$
V_{o} \cong-\left(g_{m} V_{g s}\right) R_{L}^{\prime}=-g_{m} R_{L}^{\prime} V_{g s}
$$

(4.123)

(a)

(b)

FIGURE 4.50 Determining the high-frequency response of the CS amplifier: (a) equivalent circuit; (b) the circuit of (a) simplified at the input and the output;
4.9 FREQUENCY RESPONSE OF THE CS AMPLIFIER 329

(c)

(d)

FIGURE 4.50 (Continued) (c) the equivalent circuit with $C_{\text {s }}$ replaced at the input side with the cquivalent capacitance $C_{\text {eq }}$; (d) the frequency response plot, which is that of a low-pass single-time-constant circuit.
where

$$
R_{L}^{\prime}=r_{o}\left\|R_{D}\right\| R_{L}
$$

Since $V_{o}=V_{d s}$, Eq. (4.123) indicates that the gain from gate to drain is $-g_{\mu} R_{\dot{L}}^{\prime}$, the same value as in the midband. The current $I_{g d}$ can now be found as

$$
\begin{aligned}
I_{g d} & \left.=s C_{g d} d V_{g s}-V_{o}\right) \\
& \left.=s C_{g d} d V_{g s}-\left(-g_{m} R_{L}^{\prime} V_{g s}\right)\right] \\
& =s C_{g d}\left(1+g_{m} R_{L}^{\prime}\right) V_{g s}
\end{aligned}
$$

Now, the left-hand side of the circuit in Fig. 4.50(b), at $X X^{\prime}$, knows of the existence of C only through the current $I_{g d}$. Therefore, we can replace $C_{g^{d}}$ by an equivalent capacitance $C_{e q}$ between the gate and ground as long as C draws a current equal to $I_{g d}$. That is,

$$
s C_{e q} V_{g s}=s C_{g d}\left(1+g_{m} R_{L}^{\prime}\right) V_{g s}
$$

which results in

$$
\begin{equation*}
C_{e q}=C_{夕 d}\left(1+g_{m} R_{L}^{\prime}\right) \tag{4.124}
\end{equation*}
$$

Using $C_{e q}$ enables us to simplify the equivalent circuit at the input side to that shown in Fig. 4.50 (c). We recognize the circuit of Fig. 4.50 (c) as a single-time-constant (STC) circuit of the low-pass type (Section 1.6 and Appendix D). Reference to Table 1.2 enables us to express the output voltage $V_{g s}$ of the STC circuit in the form

$$
\begin{equation*}
V_{\chi s}=\left(\frac{R_{G}}{R_{G}+R_{\text {sig }}} V_{\text {sig }}\right) \frac{1}{1+\frac{s}{\omega_{0}}} \tag{4.125}
\end{equation*}
$$

where ω_{0} is the corner frequency or the break frequency of the STC circuit,

$$
\omega_{0}=1 / C_{\text {in }} R_{\text {sig }}^{\prime}
$$

with
and

$$
\begin{equation*}
R_{\text {sig }}^{\prime}=R_{\text {sig }} \| R_{G} \tag{4.128}
\end{equation*}
$$

Combining Eqs. (4.123) and (4.125) results in the following expression for the high-frequency gain of the CS amplifier,

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {sig }}}=-\left(\frac{R_{G}}{R_{G}+R_{\text {sig }}}\right)\left(g_{m} R_{L}^{\prime}\right) \frac{1}{1+\frac{s}{\omega_{0}}} \tag{4.129}
\end{equation*}
$$

which can be expressed in the form

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {sig }}}=\frac{A_{M}}{1+\frac{s}{\omega_{H}}} \tag{4.130}
\end{equation*}
$$

where the midband gain A_{M} is given by Eq. (4.119) and ω_{H} is the upper 3-dB frequency,

$$
\begin{equation*}
\omega_{H}=\omega_{0}=\frac{1}{C_{\mathrm{in}} R_{\mathrm{sig}}^{\prime}} \tag{4.131}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{H}=\frac{\omega_{H}}{2 \pi}=\frac{1}{2 \pi C_{\text {in }} R_{\text {sig }}^{\prime}} \tag{4.132}
\end{equation*}
$$

We thus see that the high-frequency response will be that of a low-pass STC network with a $3-\mathrm{dB}$ frequency f_{H} determined by the time constant $C_{\text {in }} R_{\text {sig }}^{\prime}$. Figure 4.50 (d) shows a sketch of the magnitude of the high-frequency gain.

Before leaving this section we wish to make a number of observations:

1. The upper $3-\mathrm{dB}$ frequency is determined by the interaction of $R_{\text {sig }}^{\prime}=R_{\text {sig }} \| R_{G}$ and $C_{\text {in }}=C_{g s}+C_{g d}\left(1+g_{m} R_{L}^{\prime}\right)$. Since the bias resistance R_{G} is usually very large, it can be neglected, resulting in $R_{\text {sig }}^{\prime} \cong R_{\text {sig }}$, the resistance of the signal source. It follows that a large value of $R_{\text {stig }}$ will cause f_{H} to be lowered.
2. The total input capacitance C_{in} is usually dominated by $C_{e q}$, which in turn is made large by the multiplication effect that $C_{g d}$ undergocs. Thus, although $C_{g d}$ is usually a very small capacitance, its effect on the amplifier frequency response can be very significant as a result of its multiplication by the factor $\left(1+g_{\text {in }}^{\prime} R_{L}^{\prime}\right)$, which is approximately equal to the midband gain of the amplifier.
3. The multiplication effect that $C_{g d}$ undergocs comcs about because it is connected between two nodes whose voltages are related by a large negative gain $\left(-g_{n} R_{L}^{\prime}\right)$. Thiseffect is known as the Miller effect, and ($1+\rho R_{B}^{\prime}$) is known as the Miller multiplier. It is the Miller effect that causes the CS amplifier to have a large total input capacitance $C_{\text {in }}$ and hence a low f_{H}
4. To extend the high-frequency response of a MOSFET amplifier, we have to find configurations in which the Miller effect is absent or at least reduced. We shall recturn to this subject at great length in Chapter 6 .
5. The above analysis, resulting in an STC or a single-pole response, is a simplified one. Specifically, it is based on neglecting $I_{g d}$ relative to $g_{m} V_{g s}$, an assumption that applies well at frequencies not too much higher than $f_{I I}$. A more exact analysis of the circuit in Fig. 4.50(a) will be carried out in Chapter 6. The results above, however, are more than sufficient for our current needs.

4nMu2 $=58$

Find the midband gain A_{M} and the upper 3-dB frequency f_{H} of a CS amplifier fed with a signal source having an intemal resistance $R_{\text {sig }}=100 \mathrm{kS} \Omega$. The amplifier tas $R_{G}=4.7 \mathrm{M} \Omega, R_{D}=R_{l}=$ $15 \mathrm{k} \Omega, g_{m}=1 \mathrm{~mA} / \mathrm{V}, r_{o}=150 \mathrm{k} \Omega, C_{g s}=1 \mathrm{pF}$, and $C_{g d}=0.4 \mathrm{pF}$.
Solution
where

$$
A_{M}=-\frac{R_{G}}{R_{G}+R_{\text {silq }}} g_{m} R_{L .}^{\prime}
$$

$$
R_{L}^{\prime}=r_{,}\left\|R_{D}\right\| R_{L}=150\|15\| 15=7.14 \mathrm{k} \Omega 2 .
$$

$$
g_{m} R_{i .}^{\prime}=1 \times 7.14=7.14 \mathrm{~V} / \mathrm{V}
$$

Thus,

$$
A_{M}=-\frac{4.7}{4.7+0.1} \times 7.14=-7 \mathrm{~V} / \mathrm{V}
$$

The equivalent capacilance, $C_{e q}$, is found as

$$
\begin{aligned}
C_{e q} & =\left(1+g_{m} R_{L}^{\prime}\right) C_{g d} \\
& =(1+7.14) \times 0.4=3.26 \mathrm{pF}
\end{aligned}
$$

The total input capacitance C_{in} can be now obtained as

$$
C_{\mathrm{in}}=C_{g^{v}}+C_{e q}=1+3.26=4.26 \mathrm{pF}
$$

The upper 3-dB frequency $f_{I I}$ is found from

$$
\begin{aligned}
f_{I I} & =\frac{1}{2 \pi C_{\text {in }}\left(R_{\text {sig }} \| R_{G}\right)} \\
& =\frac{1}{2 \pi \times 4.26 \times 10^{-12}(0.1 \| 4.7) \times 10^{6}} \\
& =382 \mathrm{kHz}
\end{aligned}
$$

EXERCISES

438 For the CS amplifiee specified in Example 412 find the values of A. and f that tesutt when the signalsource res istance is rediled to 10 k. Ans. $7.12 \mathrm{~V} \mathrm{~N}: 3.17 \mathrm{MHz}$
439 If it is possible to replace he MOSFET ised in the amplifier in Example 4.12 with atother having the same $C_{\text {, }}$ but a maller C.t, what is the maximum value that its $C_{\text {sit }}$ can he in order to wban an 1 of at least 1 MH:
Ans. 0.08 pF

4.9.3 The Low-Frequency Response

To determine the low-frequency gain or transfer function of the common-source amplifier we show in Fig. 4.51(a) the circuit with the dc sources eliminated (current source I open circuited and voltage source $V_{D D}$ short-circuited). We shall perform the small-signal analysi directly on this circuit. However, we will ignore r_{0}. This is done in order to keep the analysi simple and thus focus attention on significant issues. The effect of r_{0} on the low-frequency operation of this amplifier is minor, as can be verified by a SPICE simulation (Section 4.12) The analysis begins at the signal generator by finding the fraction of $V_{\text {sig }}$ that appears at the transistor gate,

$$
V_{g}=V_{\text {sig }} \frac{R_{G}}{R_{G}+\frac{1}{s C_{C 1}}+R_{\text {sig }}}
$$

which can be written in the alternate form

$$
\begin{equation*}
V_{s}=V_{\text {sig }} \frac{R_{G}}{R_{G}+R_{\text {sig }}} \frac{s}{s+\frac{1}{C_{C 1}\left(R_{G}+R_{\text {sig }}\right)}} \tag{4.133}
\end{equation*}
$$

Thus we see that the expression for the signal transmission from signal generator to ampli fier input has acquired a frequency-dependent factor. From our study of frequency response
4.9 frequency response of the cs amplifien

FIGURE 4.51 Analysis of the CS amplifier to determine its low-frequency transfer function. For simplicity, r_{0} is neglected.

Section 1.6 (see also Appendix D), we recognize this factor as the transfer function of an STC network of the high-pass type with a break or corner frequency $\omega_{0}=1 / C_{C 1}\left(R_{G}+R_{\text {sig }}\right)$. Thus the effect of the coupling capacitor $C_{C 1}$ is to introduce a high-pass STC response with a break frequency that we shall denote $\omega_{P 1}$,

$$
\begin{equation*}
\omega_{P 1}=\omega_{0}=\frac{1}{C_{C 1}\left(R_{G}+R_{\text {sig }}\right)} \tag{4.134}
\end{equation*}
$$

Continuing with the analysis, we next determine the drain current I_{d} by dividing V_{g} by the total impedance in the source circuit which is $\left[\left(1 / g_{m}\right)+\left(1 / s C_{s}\right)\right]$ to obtain

$$
I_{d}=\frac{V_{g}}{\frac{1}{g_{n n}}+\frac{1}{s C_{s}}}
$$

which can be written in the alternate form

$$
\begin{equation*}
I_{d}=g_{m} V_{g} \frac{s}{s+\frac{g_{n 2}}{C_{S}}} \tag{4.135}
\end{equation*}
$$

We observe that C_{S} introduces a frequency-dependent factor, which is also of the STC highpass type. Thus the amplifier acquires another break frequency,

$$
\begin{equation*}
\omega_{P 2}=\frac{g_{m}}{C_{S}} \tag{4.136}
\end{equation*}
$$

To complete the analysis, we find V_{o}, by first using the current-divider rule to determine the fraction of I_{d} that flows through R_{L},

$$
I_{o}=-I_{d} \frac{R_{D}}{R_{D D}+\frac{1}{s C_{C 2}}+R_{L}}
$$

and then multiplying I_{o} by R_{L} to obtain

$$
\begin{equation*}
V_{o}=I_{o} R_{L}=-I_{d} \frac{R_{D} R_{L}}{R_{D}+R_{L}} \frac{s}{s+\frac{1}{C_{C 2}\left(R_{D}+R_{L}\right)}} \tag{4.137}
\end{equation*}
$$

from which we sce that $C_{C 2}$ introduces a third STC high-pass factor, giving the amplifier a third break frequency at

$$
\begin{equation*}
\omega_{P 3}=\frac{1}{C_{C 2}\left(R_{D}+R_{L}\right)} \tag{4.138}
\end{equation*}
$$

The ovcrall low-frequency transfer function of the amplifier can be found by combining Eqs. (4.133), (4.135), and (4.137) and replacing the break frequencies by their symbols from Eqs. (4.134), (4.136), and (4.138),

$$
\begin{equation*}
\left.\frac{V_{o}}{V_{\text {sig }}}=-\left(\frac{R_{G}}{R_{G}+R_{\text {sig }}}\right) \lg g_{m z}\left(R_{D} \| R_{L}\right)\right]\left(\frac{s}{s+\omega_{P 1}}\right)\left(\frac{s}{s+\omega_{P 2}}\right)\left(\frac{s}{s+\omega_{P 3}}\right) \tag{4.139}
\end{equation*}
$$

The low-frequency magnitude response can be obtained from Eq. (4.139) by replacing s by $j \omega$ and finding $\left|V_{o} / V_{\text {cig }}\right|$. In many cases, however, one of the three break frequencies can be much higher than the other two, say by a factor greater than 4. In such a case, it is this highest frequency break point that will determine the lower 3 - dB frequency, f_{L}, and wic do not have to do any additional hand analysis. For instance; because the expression for $\omega_{P 2}$ includes g_{v} (Eq. 4.136), $\omega_{P 2}$ is usually higher than $\omega_{P 1}$ and $\omega_{p, 3}$. If $\omega_{P 2}$ is sufficiently separated from ω_{p} and $\omega_{P 3}$, then

$$
f_{L} \cong f_{P 2}
$$

which means that in such a case, the bypass capacitor determines the low end of the mid band. Figure 4.52 shows a sketch of the low-frequency gain of a CS amplifier in which the three break frequencics are sufficiently separated so that their effects appear distinct Observe that at each break frequency, the slope of the asymptotes to the gain function increases by $20 \mathrm{~dB} /$ decade. Readers familiar with poles and zeros will recognize $f_{P_{1}}, f_{P 2}$, and $f_{P 3}$ as the frequencies of the three real low-frequency poles of the amplifier. We will use poles and zeros and related s-plane concepts later on in Chapter 6 and beyond.

Before leaving this section, it is essential that the reader be able to quickly find the time constant and hence the break frequency associated with each of the three capacitors. Th procedure is simple:

1. Reduce $V_{\text {sig }}$ to zero.
2. Consider each capacitor separately; that is, assume that the other two capacitors are acting as perfect short circuits.
3. For cach capacitor, find the total resistance seen between its terminals. This is the resistance that determines the time constant associated with this capacitor.
The reader is encouraged to apply this procedure to $C_{C 1}, C_{s}$, and $C_{C 2}$ and thus see that Eqs. (4.134), (4.136), and (4.138) can be written by inspection.

Selecting Values for the Coupling and Bypass Capacitors We now address the desig issue of selecting appropriate values for $C_{C 1}, C_{S}$, and $C_{C 2}$. The design objective is to place the lower $3-\mathrm{dB}$ frequency f_{L} at a specified value while minimizing the capacitor values,

FIGURE 4.52 Sketch of the low-frequency magnitude response of a CS amplificr for which the three break frequencies are sufficiently scparated for their effects to appear distinct.

Since as mentioned above C_{S} results in the highest of the three break frequencies, the total capacitance is minimized by selecting C_{S} so that its break frequency $f_{P 2}=f_{L}$. We then decide on the location of the other two break frequencies, say 5 to 10 times lower than the frequency of the dominant one, $f_{p 2}$. However, the values selected for $f_{p 1}$ and $f_{p 3}$ should not be too low, for that would require larger values for $C_{C 1}$ and $C_{C 2}$ than may be necessary. The design procedure will be illustrated by an example.

We wish to select appropriate values for the coupling capacitors $C_{C 1}$ and $C_{C 2}$ and the bypass capacitor \mathcal{C}_{S} for the CS amplifier whose high-frequency response was analyzed in Example 4.12 The amplifier has $R_{G}=4.7 \mathrm{M} \Omega, R_{D}=R_{L}=15 \mathrm{k} \Omega, R_{\text {sig }}=100 \mathrm{k} \Omega$, and $g_{m}=1 \mathrm{~mA} / \mathrm{N}$. It is required to have f at 100 Hz and that the nearest break frequency be at least a decade lower.

Solution

We select \mathcal{C}_{s} so that

$$
f_{P_{2}}=\frac{1}{2 \pi\left(C_{S} / g_{m}\right)}=f_{L}
$$

Thus,

$$
C_{S}=\frac{g_{m}}{2 \pi f_{L}}=\frac{1 \times 10^{-3}}{2 \pi \times 100}=1.6 \mu \mathrm{~F}
$$

For $f_{P_{1}}=f_{P 3}=10 \mathrm{~Hz}$, we obtain

$$
10=\frac{1}{2 \pi C_{C 1}(0.1+4.7) \times 10^{6}}
$$

which yields

$$
C_{C 1}=3.3 \mathrm{nF}
$$

and

$$
10=\frac{1}{2 \pi C_{C_{2}}(15+15) \times 10^{3}}
$$

which results in
$C_{C 2}=0.53 \mu \mathrm{~F}$

EXERCISE

4.40 \& CS amplifier has $C_{c}=C_{s}=C_{C 2}=1 \mu R_{G}=10 M \Omega, R_{s i q}, 100 \mathrm{k}, s_{m}=2 \mathrm{mAN}, R_{D}=R_{\mathrm{L}}=10 \mathrm{k} \Omega$ Find A_{4}, f_{p}. $f_{2,2} f_{f 3}$, and f_{1}.
Ans. - 9.9 VV: $0.016 \mathrm{~Hz} .318 .3 \mathrm{~Hz}, 8 \mathrm{~Hz}_{7} 318.3 \mathrm{~Hz}_{7}$

4.9.4 A Final Remark

The frequency response of the other amplifier configurations will be studied in Chapter 6

4絯 4.10 THE CMOS DIGITAL LOGIC INVERTER

Complementary MOS or CMOS logic circuits have been available as standard packages for use in conventional digital system design since the early 1970s. Such packages contain logic gates and other digital system building blocks with the number of gates per package ranging from a few (small-scale integrated or SSI circuits) to few tens (medium-scale integrated or MSI circuits).

In the late 1970s, as the era of large- and very-Iarge-scale integration (LSI and VLSI; hundreds to hundreds of thousands of gates per chip) began, circuits using only n-channel MOS transistors, known as NMOS, became the fabrication technology of choice. Indeed. early VLSI circuits, such as the early microprocessors, employed NMOS technology. Althongh at that time the design flexibility and other advantages that CMOS offers were known, the CMOS technology available then was too complex to produce such high-density VLSI chips cconomically. However, as advances in processing technology were made, this state of affairs changed radically. In fact, CMOS technology has now completely replaced NMOS at all levels of integration, in both analog and digital applications.
For any IC technology used in digital circuit design, the basic circuit element is the logic inverter. ${ }^{10}$ Once the operation and characteristics of the inverter circuit are thoroughly
${ }^{10} \mathrm{~A}$ study of the digital logic inverrer as a circuit building block was presented in Section 1.7. A review of this material before proceeding with the current section should prove helpful.

FIGURE 4.53 The CMOS inverter
understood, the results can be extended to the design of logic gates and other more complex circuits In this section we provide such a sudy for the CMOS inverter. Our study of the CMOS inverter and logic circuits will continue in Chapter 10.
The basic CMOS inverter is shown in Fig. 4.53. It utilizes two matched enhancementtype MOSFETs: one, O_{x} with an n channel and the other, Q_{ν}, with a p channel. The body of each device is connected to its source and thus no body effect arises. As will be scen shortly, the CMOS circuit realizes the conceptual inverter implementation studied in Chapter 1 Fig. 132), where a pair switches are operated in a complementary fashion by the input voltage v_{r}.

4.10.1 Circuit Operation

We first consider the two extreme cases: when v_{l} is at logic-0 level, which is approximately 0 V ; and when v_{l} is at logic-- level, which is approximately $V_{D D}$ volts. In both cases, for ease of exposition we shall consider the n-channel device Q_{N} to be the driving transistor and the p-channel device Q_{P} to be the load. However, since the circuit is completely symmetric, this assumption is obviously arbitrary, and the reverse would lead to identical results.

Figure 4.54 illustrates the case when $v_{1}=V_{D D}$, showing the $t_{D}-v_{D S}$ characteristic curve for Q_{N} with $v_{G S N}=v_{D D}$. (Note that $i_{D}=i$ and $v_{D S N}=v_{O}$). Superimposcd on the Q_{N} character istic curve is the load curve, which is the $i_{D}-v_{S D}$ cuirve of Q_{P} for the case $v_{S G P}=0 \mathrm{~V}$. Sincc $v_{S G P}<\left|V_{\|}\right|$, the load curve will be a horizontal straight line at almost zero current level. The operating point will be at the intersection of the two curves, where we note that the output voltage is nearly zero (typically less than 10 mV) and the current through the two devices is also nearly zero. This means that the power dissipation in the circuit is very small (typically a fraction of a microwatt). Note, however, that although Q_{N} is operating at nearly zero current and zero drain-source voltage (i.e., near the origin of the $i_{D}-v_{D S}$ plane), the operating point is on a steep segment of the $i_{D}-v_{D S}$ characteristic curve. Thus Q_{N} provides a low-resistance path between the output terminal and ground, with the resistance obtained using Eq. (4.13) as

$$
\begin{equation*}
r_{D S N}=1 /\left[k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{D D}-V_{t n}\right)\right] \tag{4.140}
\end{equation*}
$$

Figure 4.54(c) shows the equivalent circuit of the inverter when the input is high. This circuit confirms that $v_{O} \equiv V_{O L}=0 \mathrm{~V}$ and that the power dissipation in the inverter is zero.

FIGURE 4.54 Opcration of the CMOS inverer when v_{l} is high: (a) circuit with $v_{i}=V_{D D}$ (logic- 1 levcl, or $V_{\text {oll }}$; (b) graphical construction to deternine the operating point; (c) equivalent circuit.

(a)

(b)
(c)

FIGURE 4.55 Opcration of the CMOS inverter when v_{3} is low: (a) circuit with $v_{l}=0 \mathrm{~V}$ (logic-1) level, of $\left.V_{O I}\right)$; (b) graphical construction to determine the operating point; (c) equivalent circuit.

The other extreme case, when $v_{3}=0 \mathrm{~V}$, is illustrated in Fig. 4.55. In this case Q_{N} is oper ating at $v_{C S N}=0$; hence its $i_{D}-v_{S S}$ characteristic is almost a horizontal straight line at zero current level. The load curve is the $i_{D}-v_{S D}$ characteristic of the p-channel device with $v_{S G P}=$ $V_{D D}$. As shown, at the operating point the output voltage is almost equal to $V_{D D}$ (typically less than 10 mV below $V_{D D}$), and the current in the two devices is still nearly z.cro. Thus the Figure 4.55 (c) shows the equivalent cireit of the ine stacs,
Figure 4.5 (c) shows the equivalent circuit of the inverter when the input is low. Here we see that Q_{P} provides a low-resistance path between the output terminal and the dc supply
$V_{D D}$, with the resistance given by

$$
\begin{equation*}
r_{D S P}=1 /\left[k_{p}^{\prime}\left(\frac{W}{L}\right)_{p}\left(V_{D D}-\left|V_{t p}\right|\right)\right] \tag{4.141}
\end{equation*}
$$

The equivalent circuit confirms that in this case $v_{O} \equiv V_{O H}=V_{D D}$ and that the power dissipation in the inverter is zero.

It should be noted, however, that in spite of the fact that the quiescent current is zero, the oad-driving capability of the CMOS inverter is high. For instance, with the input high, as in the circuit of Fig. 4.54, transistor Q_{N} can sink a relatively large load current. This current can quickly discharge the load capacitance, as will be seen shortly. Because of its action in sinking load current and thus pulling the output voltage down toward ground, transistor Q_{N} is known as the "pull-down" device. Similarly, with the input low, as in the circuit of Fig. 4.55 , transistor Q_{p} can source a relatively large load current. This current can quickly charge up a load capacitance, thus pulling the output voltage up toward $V_{D D}$. Heuce, Q_{P} is known as the "pull-up" device. The reader will recall that we used this terminology in connection with the conceptual inverter circuit of Fig. 1.32.
From the above, we conclude that the basic CMOS logic inverter behaves as an ideal inverter. In summary:

1. The output voltage levels are 0 and $V_{D D}$, and thus the signal swing is the maximum possible. This, coupled with the fact that the inverter can be designed to provide a symmetrical voltage-transfer characteristic, results in wide noise margins.
2. The static power dissipation in the inverter is 7ero (neglecting the dissipation due to leakage currents) in both of its statcs. (Recall that the static power dissipation is so named so as to distinguish it from the dynamic power dissipation arising from the repcated switching of the inverter, as will be discussed shortly.)
3. A low-resistance path exists between the output terminal and ground (in the lowoutput state) or $V_{D D}$ (in the high-output state). These low-resistance paths ensure that the output voltage is 0 or $V_{D D}$ independent of the exact values of the (W/L) ratios or ther device parameters. Furthermore, the low output resistance makes the inverter less sensitive to the effects of noise and other disturbances
4. The active pull-up and pull-down devices provide the inverter with high outputdriving capability in both directions. As will be seen, this specds up the operation considerably.
5. The input resistance of the inverter is infinite (because $I_{G}=0$). Thus the inverter can drive an arbitrarily large number of similar inverters with no loss in signal level. Of course, each additional inverter increases the load capacitance on the driving inverter and slows down the operation. Shorily, we will consider the inverter switching times.

4.10.2 The Voltage Transfer Characteristic

The complete voltage-transfer chatacteristic (VTC) of the CMOS inverter can be obtained by repeating the graphical procedure, used above in the two extreine cascs, for all intermediate values of v_{μ}. In the following, we shall calculate the critical points of the resulting voltage transfer curve. For this we need the $i-v$ telationships of Q_{N} and Q_{P}. For Q_{N}

$$
\begin{equation*}
i_{D N}=k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left[\left(v_{l}-V_{t n}\right) v_{O}-\frac{1}{2} v_{O}^{2}\right] \quad \text { for } v_{O} \leq v_{I}-V_{t n} \tag{4.142}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{D N}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(v_{I}-V_{t n}\right)^{2} \quad \text { for } v_{0} \geq v_{1}-V_{t n} \tag{4.143}
\end{equation*}
$$

For Q_{P},

$$
i_{D P}=k_{p}^{\prime}\left(\frac{W}{L}\right)_{p}\left[\left(V_{D D}-v_{I}-\left|V_{t P}\right|\right)\left(V_{D D}-v_{O}\right)-\frac{1}{2}\left(V_{D D}-v_{O}\right)^{2}\right]
$$

and

$$
\begin{equation*}
i_{D P}=\frac{1}{2} k_{p}^{\prime}\left(\frac{W}{L}\right)_{p}\left(V_{D D}-v_{l}-\left|V_{t p}\right|\right)^{2} \quad \text { for } v_{O} \leq v_{l}+\left|V_{t p}\right| \tag{4.145}
\end{equation*}
$$

The CMOS inverter is usually designed to have $V_{t_{n}}=\left|V_{t p}\right|=V_{v}$, and $k_{n}^{\prime}(W / L)_{n}=$ $k_{p}^{\prime}(W / L)_{p}$. It should be noted that since μ_{p} is 0.3 to 0.5 times the value of μ_{n}, to tnake $k^{\prime}(W / L)$ of the (wo devices equal, the width of the p-channel device is made two to three times that of the n-channcl device. More specifically, the two devices are designed to have equal lengths, with widths related by

$$
\frac{W_{p}}{W_{n}}=\frac{\mu_{n}}{\mu_{p}}
$$

This will result in $k_{n}^{\prime}(W / L)_{n}=k_{p}^{\prime}(W / L)_{p}$, and the inverter will have a symmetric transfer haracteristic and equal curent-driving capability in both directions (pull-up and pull-down). With Q_{N} and Q_{P} matched, the CMOS inverter has the voltage transfer characteristic hown in Fig. 4.56. As indicated, the transfer characteristic has five distinct segments corresponding to different combinations of modes of operation of Q_{N} and Q_{P}. The vertical

FIGURE 4.56 The voltage transfer characteristic of the CMOS inverter.
segment BC is obtained when both Q_{N} and Q_{P} are operating in the saturation region. Because we are neglecting the finite ouput resistance in saturation, the inverter gain in this region is infinitc. From symmetry, this vertical segment occurs at $v_{I}=V_{D D} / 2$ and is bounded by $v_{0}(\mathrm{~B})=V_{D D} / 2+V_{t}$ and $v_{0}(\mathrm{C})=V_{D D} / 2-V_{t}$.

The reader will recall from Section 1.7 that in addition to $V_{O L}$ and $V_{\text {OII }}$, two other points on the transfer curve determine the noise margins of the inverter. These are the maximum permitted logic-0 or "low" level at the input, V_{h}, and the minimum pernitted logic-1 or "high" level at the input, $V_{Y H}$. These are formally defined as the two points on the transfer curve at which the incremental gain is unity (i.e., the slope is $-1 \mathrm{~V} / \mathrm{V}$).
To determine $V_{I H}$, we note that Q_{N} is in the triode region, and thus its current is given by Eq. (4.142), while Q_{P} is in saturation and its current is given by Eq. (4.145). Equating $i_{D N}$ and $i_{\nu P}$, and assuming matched devices, gives

$$
\left(v_{I}-V_{t}\right) v_{O}-\frac{1}{2} v_{O}^{2}=\frac{1}{2}\left(V_{D D}-v_{I}-V_{t}\right)^{2}
$$

Differentiating both sides relative to v_{l} results in

$$
\left(v_{1}-V_{t}\right) \frac{d v_{O}}{d v_{l}}+v_{O}-v_{O} \frac{d v_{O}}{d v_{l}}=-\left(V_{D D}-v_{1}-V_{i}\right)
$$

in which we substitute $v_{I}=V_{I H}$ and $d v_{0} / d v_{1}=-1$ to obtain

$$
\begin{equation*}
v_{O}=V_{I I I}-\frac{V_{D D}}{2} \tag{4.147}
\end{equation*}
$$

Substituting $v_{l}=V_{H H}$ and for v_{o} from Eq. (4.147) in Eq. (4.146) gives

$$
\begin{equation*}
V_{I H}=\frac{1}{8}\left(5 V_{D D}-2 V_{1}\right) \tag{4.148}
\end{equation*}
$$

$V_{I L}$ can be determined in a manner similar to that used to find $V_{I H}$. Alternatively, we can use the symmetry relationship

$$
V_{I H}-\frac{V_{D D}}{2}=\frac{V_{D D}}{2}-V_{I L}
$$

together with $V_{I H}$ from Eq. (4.148) to obtain

$$
V_{I L}=\frac{1}{8}\left(3 V_{D D}+2 V_{t}\right)
$$

The noise margins can now be deterinined as follows:

$$
\begin{aligned}
N M_{H} & =V_{O H}-V_{I H} \\
& =V_{D D}-\frac{1}{8}\left(5 V_{D D}-2 V_{t}\right) \\
& =\frac{1}{8}\left(3 V_{D D}+2 V_{t}\right) \\
N M_{L} & =V_{I L}-V_{O L} \\
& =\frac{1}{8}\left(3 V_{D D}+2 V_{t}\right)-0 \\
& =\frac{1}{8}\left(3 V_{D D}+2 V_{t}\right)
\end{aligned}
$$

(4.150)

As expected, the symmetry of the voltage transfer characteristic results in equal noise margins. Of course, if Q_{N} and Q_{P} are not matched, the voltage transfer characteristic will no longer be symmetric, and the noise inargins will not be equal (see Problem 4.107).

XERCISES

4.10 the CMOS digital logic inverter

343
4.41 For a CMOS inventer wif inathed MOSFE TS having $V=I V$, lind $V_{i /}, V_{H}$ and the noise margins For a
$Y_{D D}=5 \%$. Ans. $2.1 \mathrm{~V}, 2.9 \mathrm{~V}: 2.1 \mathrm{~V}$

 of remains $\leq 0.5^{V}$
Ans. 1.55 mA
4.43 An nevetrer fabricated in a $1.2 \neq \mathrm{m}$ CMOS technology uscs the minimum possible channellengths (i.e. $L_{r} L_{p}=12 \mu \mathrm{~m}$, If $W_{V}=18 \mu \mathrm{~m}$, find the value of W, that would result in Q_{v} and Q_{P} being matched he value of the supuresiste of the P, he value of the output resstance of the nverter when $y_{0}=V$
Ans $5.4 \mu \mathrm{~m}, 2 \mathrm{ks}$
4.44 Show that the threshold voltage Y_{h} of a CMOS inverter (see fig. 4.56) is given by

where

$$
=\frac{k_{p}^{\prime}(W \&)_{p}}{k_{h}^{\prime}(W \angle L)_{n}}
$$

4.10.3 Dynamic Operation

As explained in Section 1.7, the speed of operation of a digital system (e.g., a computer) is determined by the propagation delay of the logic gates used to construct the system. Since the inverter is the basic logic gate of any digital IC technology, the propagation delay of the inverter is a fundamental parameter in characterizing the technology. In the following, we analyze the switching operation of the CMOS inverter to determine its propagation delay. Figure 4.57 (a) shows the inverter with a capacior C between the output node and ground Figure 4.57 (a) shows the inverter with a capacior C between the output node and ground.
Here C represents the sum of the appropriate internal capacitances of the MOSFETs Q and Here C represents the sum of the appropriate internal capacitances of the MOSFETS Q_{N} and
Q_{p}, the capacitance of the interconnect wire between the inverter ontput node and the input(s) Q_{P}, the capacitance of the interconnect wire between the inverter ontput node and the input(s)
of the other logic gates the inverter is driving, and the total input capacitance of these load of the other logic gates the inverter is driving, and the total input capacitance of these load
(or fan-out) gates. We assume that the inverter is driven by the ideal pulse (zero rise (or fan-out) gates. We assume that the inverter is driven by the ideal pulse (zero rise
and fall times) shown in Fig. 4.57 (b). Since the circuit is symmetric (assuming matched MOSFETs), the rise and fall times of the output waveform should be equal. It is sufficient, therefore, to consider either the turn-on or the tum-off process. In the following we consider the first.

Figure 4.57(c) shows the trajectory of the operating point obtained when the input pulse goes from $V_{O L}=0$ to $V_{O H}=V_{D D}$ at time $t=0$. Just prior to the leading edge of the input pulse (that is, at $t=0-$) the output voltage equals $V_{D D}$ and capacitor C is chatged to this voltage. At $t=0, v_{l}$ rises to $V_{D D}$, causing Q_{P} to turn off immediately. From then on, the circuit is At $t=0, v_{r}$ rises to $V_{D D}$, causing Q_{P} to turn off immediately. From then on, the circuit is
equivalent to that shown in Fig. 4.57 (d) with the initial value of $v_{o}=V_{D D}$. Thus the operating point at $t=0+$ is point E , at which it can be seen that Q_{N} will be in the saturation region and poind at $t=0+$ is point E , at which it can be seen that Q_{N} will be in the saturation region and
conducting a large current. As C discharges, the current of Q_{N} remains constant until $v_{O}=$ $V_{D D}-V_{t}$ (point F). Denoting this porion of the discharge interval $t_{P H L 1}$ (where the subscript

FIGURE 4.57 Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) trajectory of the operating point as the input goes high and C discharges through Q_{N}; (d) equivalent circuit during the capacitor discharge,
$H L$ indicates the high-to-low output transition), we can write

$$
\begin{align*}
t_{P H L 1} & =\frac{C\left[V_{D D}-\left(V_{D D}-V_{t}\right)\right]}{\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{D D}-V_{t}\right)^{2}} \\
& =\frac{C V_{t}}{\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{D D}-V_{t}\right)^{2}} \tag{4.152}
\end{align*}
$$

Beyond point F , transistor Q_{N} operates in the triode region, and thus its current is given by Eq. (4.142). This portion of the discharge interval can bc described by

$$
i_{D N} d t=-C d v_{0}
$$

- 34

Substituting for $i_{D N}$ from Eq. (4.142) and rearranging the differential equation, we obtain

$$
\begin{equation*}
\frac{k_{n}^{\prime}(W / L)_{n}}{C} d t=\frac{1}{\left(V_{D D}-V_{t}\right)} \frac{d v_{O}}{\frac{1}{2\left(V_{D D}-V_{t}\right)} v_{O}^{2}-v_{O}} \tag{4.153}
\end{equation*}
$$

To find the component of the delay time $t_{\text {PFLi }}$ during which v_{O} decreases from $\left(V_{D D}-V_{t}\right)$ to the 50% point, $v_{O}=V_{D D} / 2$, we integrate hoth sides of Eq. (4.153). Denoting this component of delay time $t_{\text {PIII } 2}$, we find that

$$
\begin{equation*}
\frac{k_{n}^{\prime}(W / L)_{n}}{C} t_{P H L 2}=\frac{1}{\left(V_{D D}-V_{t}\right)} \int_{v_{o}=V_{D D}=V_{D D} / 2}^{\frac{d v_{O}}{2\left(V_{D D}-V_{t}\right)} v_{O}^{2}-v_{O}} \tag{4.154}
\end{equation*}
$$

Using the fact that

$$
\int \frac{d x}{a x^{2}-x}=\ln \left(1-\frac{1}{a x}\right)
$$

enables us to evaluate the integral in Eq. (4.154) and thus obtain

$$
\begin{equation*}
t_{P H L 2}=\frac{C}{k_{n}^{\prime}(W / L)_{n}\left(V_{D D}-V_{t}\right)} \ln \left(\frac{3 V_{D D}-4 V_{t}}{V_{D D}}\right) \tag{4.155}
\end{equation*}
$$

The two components of $t_{P H L}$ in Eqs. (4.152) and (4.155) can be added to obtain

$$
t_{P H L}=\frac{2 C}{k_{n}^{\prime}(W / L)_{n}\left(V_{D D}-V_{t}\right)}\left[\frac{V_{t}}{V_{D D}-V_{t}}+\frac{1}{2} \ln \left(\frac{3 V_{D D}-4 V_{t}}{V_{D D}}\right)\right]
$$

For the usual case of $V_{t} \approx 0.2 V_{D D}$, this equation reduces to

$$
\begin{equation*}
t_{P H L}=\frac{1.6 C}{k_{n}^{\prime}(W / L)_{n} V_{D D}} \tag{4.157}
\end{equation*}
$$

Similar analysis of the turn-off process yields an expression for $t_{P l, H}$ identical to that in Eq. (4.157) except for $k_{n}^{\prime}(W / L)_{n}$ replaced with $k_{p}^{\prime}(W / L)_{p}$. The propagation delay t_{p} is the average of $t_{P H L}$ and $t_{P L H}$. From Eq. (4.157), we note that to obtain lower propagation delays and hence faster operation, C should be minimized, a higher process transconductance parameter k^{\prime} should be utilized, the transistor W / L ratio should be increased, and the power-supply voltage $V_{D D}$ should be increased. There are, of course, design trade-offs and physical limits involved in making choices for these parameter values. This subject, however, is too advanced for our present needs.

EXERGISES

 eqatiance is 01 pr: tind t nit tith and t_{f}
Ans, 0.8 ns: 0.8 ns: 08 ns
4.46 For the CMOS invetter of Exccise 4.42 , which is intended for SSI ind MSI circuit applications, find t_{p} if the load capacitance is 15 pF .
Ans. 6 ns

4.10.4 Current Flow and Power Dissipation

As the CMOS inverter is switched, current flows through the series connection of Q_{N} and Q_{p}. Figure 4.58 shows the inverter current as a function of v_{r}. We note that the current peak at the switching threshold, $V_{t h}=v_{l}=v_{0}=V_{D D} / 2$. This current gives rise to dynamic power dissipation in the CMOS inverter. However, a more significant component of dynamic powe dissipation results from the current that flows in Q_{N} and Q_{P} when the inverter is loaded by a capacitor C.

An expression for this later component can he derived as follows: Consider once more he circuit in Fig. 4.57(a). At $t=0-, v_{O}=V_{D D}$ and the energy stored on the capacitor $C V_{D D}^{2}$. At $t=0, v_{I}$ goes high to $V_{D D}, Q_{P}$ turns off, and Q_{N} turns on. Transistor Q_{N} then dis harges the capacitor, and at the end or the discharge interval, the capacitor voltage is reduced to zero. Thus during the discharge interval, energy of $\frac{1}{2} C V_{D D}$ is removed from C and dissipated in Q_{N}. Next consider the other half of the cycle when v_{I} goes low to zero Transistor Q_{N} tums off, and Q_{P} conducts and charges the capacitor. Let the instantaneou arrent supplied by Q_{P} to C be denoted l. This current is, of course, coming from the powe supply $V_{D D}$. Thus the energy drawn from the supply during the charging period will b $V_{D D}{ }^{i} d t=V_{D D} J i d t=V_{D D} Q$, where Q is the charge supplied to the capacitor; that is, Q $C V_{D D}$. Thus the energy drawn from the supply during the charging interval is $C V_{D D}^{2}$. At the end of the charging interval, the capacitor voltage will be $V_{D D}$, and thus the energy stored in it will be $\frac{1}{2} C V_{D D}^{2}$. It follows that during the charging interval, half of the energy drawn from he supply, $\frac{1}{2} C V_{D D}^{2}$, is dissipated in Q_{P}
From the above, we see that in every cycle, $\frac{1}{2} C V_{D D}^{2}$ of cnergy is dissipated in Q_{N} and $\frac{1}{2} C V_{D D}^{2}$ dissipated in Q_{P}, for a total energy dissipation in the inverter of $C V_{D D}^{2}$. Now if the inverter is switched at the rate of f cycles per second, the dynamic power dissipation in it will be

$$
P_{D}=f C V_{D D}^{2}
$$

Observe that the frequency of operation is related to the propagation delay: The lower the propagation delay, the higher the frequency at which the circuit can be operated and, accord ing to Eq. (4.158), the higher the power dissipation in the circuit. A figure of merit or a quality measure of the particular circuit technology is the delay-power product $(D P)$,

$$
D P=P_{D} t_{P}
$$

The delay-power product tends to be a constant for a particular digital circuit technology and can be used to compare different technologies. Obviously the lower the value of $D P$ the more effective is the technology. The delay-power product has the units of joules, and is in effect a measure of the energy dissipated per cycie of operation. Thus for CMOS where most of the power dissipation is dynamic, we can take $D P$ as simply $C V_{D D}^{2}$

EXLCISES

44) For the mivetter spectifed in Exercise 44 , thid the peak curent drawn from $V_{D D}$ duitigs switching

Ans. 18 mA
448 Let the inverter specified in Exercise 4.42 be loaded by a 15 pF capaciance. Find the dynamic power dissipation that results when the inverter is switched at a frequency of 2 MHz . What is the average current drawn fram the power supply?
Ans. 3 mW .03 mA
4.49 Consider a CMOS VLSI chip having 100,000 gates fabticated in $31.2-\mu \mathrm{m}$ CMOS tectinology Let the load capaetance per gate be 30 ff. If the chip is operated from a $5-V$ supply and is switched at a rate of $100 \mathrm{MH} /$, tind (a) the power dissipation per gate and (b) the total power dissipated in the chip assuming. that only 30% of the gates are switchef at any one time.
Ans. $75 \mu \mathrm{~W} .2 .25 \mathrm{~W}$

4.10.5 Summary

In this section, we have provided an introduction to CMOS digital circuits. For convenient reference, Table 4.6 provides a summary of the important characteristics of the inverter. We shall return to this subject in Chapter 10, where a variety of CMOS logic circuits are studied.

94 4.11 THE DEPLETION-TYPE MOSFET

In this section we briefly discuss another type of MOSFET, the depletion-type MOSFET: Its structure is similar to that of the enhancement-type MOSFET with one important difference The deplction MOSFET has a physically implanted channel. Thus an n-channel depletiontype MOSFET has an n-type silicon region connecting the n source and the n dran regions at the top of the p-type snbstrate. Thus if a voltage $v_{D s}$ is applied belween drain and onlike a ${ }^{2}$. unlike the case of the enhancement MOSFET

The channel depth and hence its conductivity can be controlled by $\psi_{G S}$ in exactly the same manncr as in the enhancernent-type device. Applying a positive $v_{G S}$ enhances the channel by attracting more clectrons into it. Here, however, we also can apply a negative $v_{G S}$, lower and its eocruns ivity decreases. The the channel, and hus the chamel becomes shal or charge carrers, and nel is completely depleted of charse cariers and i is rediced to zero even

TABLE 4.6 Summary of Important Characteristics of the CMOS Logic Inverter

Gate Output Resistance

When v_{0} is low (current sinking) (Fig. 4.54)

$$
r_{D S N}=1 /\left[k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{D D}-V_{t h}\right)\right]
$$

¥ When v_{o} is high (current sourcing) (Fig. 4.55):

$$
r_{D S P}=1 /\left[k_{p}^{\prime}\left(\frac{W}{L}\right)_{p}\left(V_{D D}-\left|V_{t p}\right|\right)\right]
$$

```
Gate Threshold Voltage
Point on VTC at which \(v_{0}=v_{j}\).
    \(V_{i h}=\frac{r\left(V_{D D}-\left|V_{t p}\right|\right)+V_{t n}}{1+r}\)
where
\[
r=\sqrt{\frac{k_{p}^{\prime}(W / L)_{p}}{k_{n}^{\prime}(W / L)_{n}}}
\]
```


Switching Current and Power Dissipation (Fig. 4.58)

$$
\begin{aligned}
I_{\text {peak }} & =\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(\frac{V_{D D}}{2}-V_{t n}\right)^{2} \\
P_{D} & =f C V_{D D}^{2}
\end{aligned}
$$

Noise Margins (Fig. 4.56)

For matched devices, that is, $\mu_{n}\left(\frac{W}{L}\right)_{n}=\mu_{p}\left(\frac{W}{L}\right)_{p}$;

$$
\begin{aligned}
& V_{t h}=V_{D D} / 2 \\
& V_{I L}=\frac{1}{8}\left(3 V_{D D}+2 V_{t}\right) \\
& V_{I H}=\frac{1}{8}\left(5 V_{D D}-2 V_{t}\right)
\end{aligned}
$$

$$
N M_{H}=N M_{L}=\frac{1}{8}\left(3 V_{D D}+2 V_{t}\right)
$$

Propagation Delay (Fig. 4.57)

For $V_{1} \cong 0.2 V_{D D}$:

$$
\begin{aligned}
& t_{P H L} \cong \frac{1.6 C}{k_{n}^{\prime}(W / L)_{n} V_{D D}} \\
& t_{P L H} \cong \frac{1.6 C}{k_{p}^{\prime}(W / L)_{p} V_{D D}}
\end{aligned}
$$

FIGURE 4.59 (a) Circuit symbol for the n-channe depletion-type MOSFET. (b) Sinplified circuit
symbol applicable for the case the subsratc (B) is comected to the source (S)
may be still applied. This negative value of $v_{G S}$ is the threshold voltage of the n-channe depletion-type MOSFET
The description above suggests (correctly) that a depletion-type MOSFET can be operated in the enhancernent mode by applying a positive $v_{C S}$ and in the depletion mode by ated in the enhancement mode by applying a posilive $v_{C S}$ and in the depletion mode by evice except that V of the n-channel depletion device is nertive.
Figure 4.59 (a) shows the circuit symbol for the n-channel depletion-type MOSFET. This Figure 4.59 (a) shows the circuit symbol for the n-channel depletion-type MOSFET. This symaded area next to the vertical line representing the channel, signifying that a physical hannel exists. When the body (B) is connected to the source (S), the simplified symbol hown in Fig. 4.59(b) can be used.
The $i_{D}-v_{D S}$ characteristics of a depletion-type n-channel MOSFET for which $V_{t}=-4 \mathrm{~V}$ and $k_{n}^{\prime}(W / L)=2 \mathrm{~mA} / \mathrm{V}^{2}$ are sketched in Fig. $4.60(\mathrm{~b})$. (These numbers are typical of discrete devices.) Although these characteristics do not show the dependence of i_{D} on $v_{D S}$ in saturation, such dependence exists and is identical to the case of the enhancement-type device. Observe that because the threshold voltage V_{t} is negative, the depletion NMOS will operate in the triode region as long as the drain voltage does not exceed the gate voltage by more than $|V|$. For it to operate in saturation, the drain voltage must be greater than the gate voliage by at least $|V|$ volts. The chart in Fig. 4.61 shows the relative levels of the terminal voltages of the depletion NMOS transistor for the two regions of operation
Figure 4.60 (c) shows the $i_{D}-v_{C S}$ characteristics in saturation, indicating both the depletion and enhancement modes of operation.
The current-voltage characteristics of the depletion-type MOSFET are described by the equations identical to those for the enhancement device except that, for an n-channel depletion device, V_{I} is negative.

A special parameter for the depletion MOSFET is the valuc of drain current obtained in saturation with $v_{G S}=0$. This is denoted $I_{D S S}$ and is indicated in Fig. 4.60(b) and (c). It can be shown that

$$
I_{D S S}=\frac{1}{2} k_{n}^{W} \frac{W}{L} V_{t}^{2}
$$

Depletion-type MOSFETs can be fabricated on the same IC chip as enhancement-type devices, resulting in circuits with improved characteristics, as will be shown in a later chapter.

(b)

FIGURE 4.60 The current-voltage characteristics of a depletion-type n-channel MOSFET for which $V_{1}=-4 \mathrm{~V}$ and $k^{\prime}(W / L)=2 \mathrm{~mA} / \mathrm{V}^{2}$: (a) transistor with current and voltage polarities indicated; (b) the $i_{D}-\tau_{D S}$ characteristics: (c) the $i_{p-v_{\text {l }}}$ characteristic in saturaion

FIGURE 4.61 The relative levels of termina voltages of a depletion-type NMOS transisto regions. The casc shown is for operation in the enhancement mode ($v_{G S}$ is positive).

IGURE 4.62 Sketches of the $i_{D}-v_{G S}$ characteristics for MOSFETs of enhancement and depletion types, of both polaritics (opcrating in saturation). Note that the characteristic curves intersect the $v_{c S}$ axis at V, devices.

In the above, we have discussed only n-channel depletion devices. Depletion PMOS ransistors are available in discrete form and operate in a manner similar to their n-channel ransistors are available in discrete form and operate in a manner similar to their n-channe counterparts except that the polarities of all voltages (including $V_{\text {, }}$) are reversed. Also, in p-channel device, i_{D} flows from source to drain, entering the source terminal and leaving by way of the drain tern. As a summary, we show s. 4.62 kehes of the $i_{D^{-}} v_{G}$ characteristic
4.51 The depletion-type MOSFET in Fig. E4.51 has $k_{n}^{\prime}(W / L)=4 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t}=-2 \mathrm{~V}$ What is the value of $I_{D S}$? veglecting the effect of $\eta_{\text {in }}$ in the saturation region find the voltage that will appear al th source terminal

FIGURE E4.51

Ans. $8 \mathrm{~mA}:+1 \mathrm{~V}$
4.52 Find i as a function of u for the circhit in Fic. F4.52. Neolect the effect of ton on to the the sanitation region

54.12 THE SPICE MOSFET MODEL

We conclude this chapter with a discussion of the models that SPICE uses to simulate the MOSFET. We will also illustrate the use of SPICE in the simulation of the CS amplifier circuit.

4.12.1 MOSFET Models

To simulate the operation of a MOSFET circuit, a simulator requires a mathematical model to represent the characteristics of the MOSFET. The model we have derived m this chapter to represent the MOSFET is a simplificd or first-order model. This model, called the squarelaw model because of the quadratic $i-v$ relationship in saturation, works well for transistors with relatively long channels. However, for devices with short channels, especially submicron transistors, many physical effects that we have neglected come into play, with the result that the derived first-order model no longer accurately represents the actual operation of the MOSFET.

The simple square-law model is useful for understanding the basic operation of the MOSFET as a circuit element and is indeed used to obtain approximate pencil-and-paper circuit designs. However, more elaborate models, which account for short-channel effects, are required to be able to predict the performance of integrated circuits with a certain degree of precision prior to fabrication. Such models have indeed been developed and continue to through a mix of physical relationships and empirical data. Examples include the Berkeley short-channel IGFET model (BSIM) and the EKV model popular in Europe Currently, semiconductor manacturers rely on such sophisticated models to accurately represent the fabrication proces. These manufacturers select a MOSFET model and then extract the values for the coresponding model parameters using both their knowledge of the details of the fabrithe on process and extensive measurements on a variety of fabricated MOSFETs. A great deal of effort is expended on extracting the model paramcer values. Such cffort pays off in deal fabricated circuits exhibiting performance very close to that predicted by simulation, thus reducing the need for costly redesign.

An the subject of MOSFET modeling and short-chamel effects, it it important that the rcader be aware of the limitations of the square-law model and of the availability of more accurate but, unfortunately, more complex MOSFET models. In fact, the power of computer simulation is more apparent when one
SPICE-based simulators, like PSpice, provide the user with a choice of MOSFET
The corresponding SPICE model parameters (whose values are provided by the semiconductor manufacturer) include a parameter, called LEVEL, which selects the MOSFET model to be manufacturer) include a parameter, called LEVEL, which selects the MOSFET model to be
used by the simulator. Although the value of this parameter is not always indicative of the ased by the simulator. Although the value of the complexity of the corresponding MOSFET model, LEVEL $=1$ correaccuracy, nor of the complexity of the corrcsponding MOSFET model, LEVEL $=1$ corre-
sponds to the simplest first-order model (called the Shichman-Hodges model) wbich is based on the square-law MOSFET equations presented in this chapter. For simplicity, we will use this model to illustrate the description of the MOSFET model parameters in SPICE and to simulate the example circuit in PSpice. Howevcr, the reader is again reminded of the need to use a more sophisticated model than the level-1 model to accurately predict the circuit performance, especially for submicron transistors.

4.12.2 MOSFET Model Parameters

Table 4.7 provides a listing of some of the MOSFET model parameters used in the Level-1 model of SPICE. The reader should already be familiar with these parameters, except for a few, which arc described nex 1 .

MOSFET Diode Parameters For the two reverse-biased diodes formed between each of the source and drain diffusion regions and the body (see Fig. 4.1) the saturation-current density is modeled in SPICE by the parameter JS. Furthermore, based on the parameters specified in Table 4.7, SPICE will calculate the depletion-layer (junction) capacitances discussed in Section 4.8.2 as

$$
\begin{aligned}
& C_{d b}=\frac{\mathrm{CJ}}{\left(1+\frac{V_{D B}}{\mathrm{~PB}}\right)^{\mathrm{MI}}} \mathrm{AD}+\frac{\mathrm{CJSW}}{\left(1+\frac{V_{D B}}{\mathrm{~PB}}\right)^{\mathrm{MJSW}}} \mathrm{PD} \\
& C_{s b}=\frac{C \mathrm{CI}}{\left(1+\frac{V_{S B}}{\mathrm{~PB}}\right)^{\mathrm{M}}} \mathrm{AS}+\frac{\mathrm{CJSW}}{\left(1+\frac{V_{S B}}{\mathrm{~PB}}\right)^{\mathrm{MJSW}}} \mathrm{PS}
\end{aligned}
$$

where $A D$ and $A S$ are the arcas while PD and PS are the perimeters of, respectively, the drain and source regions of the MOSFET. The first capacitance term in Eqs. (4.161) and (4.162) represents the depletion-laycr (junction) capacitance over the bottom plate of the capacitance along the sidewall (periphery) of these term accounts for the depletion-layer the formula doved in Scetion 3 (Eq 356). The be specified by the be specified by the user based on the dimensions of the device being used

MOSFET Dimension and Gate-Capacitance Parameters In a fabricated MOSFET, the effective channel length $L_{\text {eff }}$ is shorter than the nominal (or drawn) channel length L (as specified by the designer) because the source and drain diffusion regions extend slighly
nder the gate oxide during fabrication. Furthermore, the effective channel width $W_{\text {eff }}$ of the MOSFET is shorter than the nominal or drawn channel width W because of the sideways diffuion into the channel from the body along the width. Based on the parameters specified in Table 4.7,

$$
\begin{align*}
& L_{\text {eff }}=L-2 \mathrm{LD} \tag{4.163}\\
& W_{\text {eff }}=W-2 \mathrm{WD}
\end{align*}
$$

(4.164)

In a manner analogous to using $L_{o v}$ to denote LD, we will use the symbol $W_{o v}$ to denote WD Consequently, as indicated in Section 4.8.1, the gate-source capacitance C_{85} and the gatedrain capacitance $C_{8 d}$ must be increased by an overlap component of, respectively,

$$
\begin{equation*}
C_{8 s, o v}=W \mathrm{CGSO} \tag{4.165}
\end{equation*}
$$

and

$$
C_{g d, o v}=W \text { CGDO }
$$

Similarly, the gate-body capacitance $C_{y b}$ must be increased by an overlap component of

$$
\begin{equation*}
C_{g \dot{b}, o v}=L \mathrm{CGBO} \tag{4.167}
\end{equation*}
$$

The reader may have observed that there is a built-in redundancy in specifying the MOSFET model parameters in SPICE. For example, the user may specify the value of KP or a MOSFET or, alternatively, specify TOX and UO and let SPICE compute KP as UO TOX. Similarly, GAMMA can be directly specified, or the physical parameters that enable SPICE to determine it can be specified (e.g., NSUB). In any case, the user-specified values will always take precedence over (i.e., override) those values calculated by SPICE. As anocher example, note that the user has the option of either directly specifying the overlap capacitances CGBO, CGDO, and CGSO or letting SPICE compute them as $\mathrm{CGDO}=\mathrm{CGSO}=$ D COX and CGBO = WD COX

Table 4.8 provides typical values for the Level-1 MOSFET model parameters of a modern $0.5-\mu \mathrm{m}$ CMOS technology and, for comparison, those of an old (even obsolete) $5-\mu \mathrm{m}$ CMOS technology. The corresponding values for the minimum channel length $L_{\text {min }}$, minimum channel width $W_{\text {min }}$, and the maximum supply voltage $\left(V_{D D}+\left|V_{S S}\right|\right)_{\text {max }}$ are as follows:

Technolosy	I_{min}	W_{mmn}	$\left(V_{D 0}+V_{S S}\right)_{\text {max }}$
$5-\mu \mathrm{m}$ CMOS	$5 \mu \mathrm{~m}$	$12.5 \mu \mathrm{~m}$	10 V
$0.5-\mu \mathrm{m}$ CMOS	$0.5 \mu \mathrm{~m}$	$1.25 \mu \mathrm{~m}$	3.3 V

Because of the thinner gate oxide in modern CMOS technologies, the maximum supply voltage must be reduced to ensure that the MOSFET terminal voltages do not cause a breakdown of the oxide dielecrric under the gate. The shrinking supply voltage is one of the most challenging design aspects of analog integrated circhs in ads in CMOS Forses. Formple, as L. he reader may have observed some other trends in CMOS processes. For example, as $L_{\text {niu }}$ is f λ in, .
 smafler intrinsic gains (Chapter 6). Another exanple is the decrease in surface mobily μ,

TABLE 4.8 Values of the Level 1 Moset Model Parameters for Two cmios Technologies

	5-um CMOS Process		$0.5-\mu \mathrm{m}$ CMOS Process	
	NMOS	PMOS	NMOS	PMOS
LEVEL	1	1	1	1
TOX	$85 \mathrm{c}-9$	85-9 9	9.5e-9	9.5e-9
UO	750	250	460	115
LAMBDA	0.01	0.03	0.1	0.2
GAMMA	1.4	0.65	0.5	0.45
VTO	1	-1	0.7	-0.8
PHI	0.7	0.65	0.8	0.75
LD	0.7e-6	$0.6 \mathrm{e}-6$	$0.08 \mathrm{e}-6$	$0.09 \mathrm{e}-6$
JS	1e-6	1e-6	$10 \mathrm{e}-9$	$5 \mathrm{e}-9$
CJ	0.4e-3	$0.18 \mathrm{e}-3$	$0.57 \mathrm{e}-3$	$0.93 \mathrm{e}-3$
MJ	0.5	0.5	0.5	0.5
CJSW	$0.8 \mathrm{e}-9$	$0.6 \mathrm{e}-9$	0.12e-9	$0.17 \mathrm{e}-9$
MJSW	0.5	0.5	0.4	0.35
PB	0.7	0.7	0.9	0.9
CGBO	0.2e-9	$0.28-9$	0.38e-9	$0.38 \mathrm{e}-9$
CGDO	0.4e-9	0.4e-9	$0.4 \mathrm{e}-9$	0.35-9
CGSO	0.4e-9	0.4e-9	0.4e-9	0.35e-9

In PSpice, we have created MOSFET parts corresponding to the above models. Reuders can find these pats in the
SEDRA.olb library, which is available on the CD accompanying this beok well The NMOS and PMOS Parts for the 0.5 - $\mu \mathrm{ml}$ CMOS technology are labelled NYOSOP5 BODY and PMOSNP5 BODY respectively. The NMOS and PMOS pats for the $5-\mu \mathrm{m}$ CMOS सochnology are Labelled NMOSSPO_BODY in MOSSPO BODY, rcspectively. Futhernare, parts NMOSOP5 and PMOSOPS are created to correspond to, respectively part NMOSOP5_BODY with is body connected to nel 0 and part PMOsOPS_BODY with its body conncteded to net $V_{D D}$
close to 5. The impact of this and other trends on the design of integrated circuits in advanced CMOS technologies are discussed in Chapter 6 (see in particular Section 6.2).
When simulating a MOSFET circuit, the user needs to specify both the values of the model parameters and the dimensious of each MOSFET in the circuit being simulated. At least, the channel length L and width W must be specified. The areas AD and AS and the perimeters PD and PS need to be specified for SPICE to model the body-junction capacitances (otherwise, zero capacitances would be assumed). The exact values of these geometry parameters depend on the actual layout of the device (Appendix A). However, to estimate these dimensions, we will assume that a metal contact is to be made to each of the source and drain regions of the MOSFET. For this purpose, typically, these diffusion regions must be extended past che end of the channcl (i.e., in the L-direction in Fig. 4.1) by at least $2.75 L_{\text {min }}$. Thus, the minimum area and perimeter of a drain/source diffusion region with a contact are, respectively,

$$
\begin{equation*}
\mathrm{AD}=\mathrm{AS}=2.75 L_{\min } W \tag{4.168}
\end{equation*}
$$

$\mathrm{PD}=\mathrm{PS}=2 \times 2.75 L_{\text {min }}+W$
Unless otherwise specified, we will use Eqs. (4.168) and (4.169) to estimate the dimensions of the drain/source regions in our examples.

Finally, we note that SPICE computes the values for the parameters of the MOSFET small-signat model based on the dc operating point (bias point). These are then used by
SPICE to perform the small-signal analysis (ac analysis).

THE CS AMPLIFIER

In this cxample, we will use PSpice to compute the frequency response of the CS amplificr whose Capture schenatic is shown in Fig. 4.63. ${ }^{11}$ Ohserve that the MOSFET has its source and body connected in order to cancel the body effect. We will assume a $0.5-\mu \mathrm{m}$ CMOS lechnology for the MOSFET and use the SPICE level-1 model parameters listed in Table 4.8. We will also assume a signal-source resistance $R_{\text {sig }}=10 \mathrm{k} \Omega$, a load resistance $R_{L}=50 \mathrm{~L} \Omega$, and byiss and coupling capacitors of $10 \mu \mathrm{~F}$. The largeted specifications $P=1.5 \mathrm{~mW}$. As would always be the case with $10 \mathrm{~V} / \mathrm{V}$ and a maximum power consumption $P=1.5 \mathrm{~mW}$. As computer simulation, we wir ben wh an use PSpice to fine-tune our design, and to way, maximum advantage and insight can be obtained from simulation.

With a $3.3-\mathrm{V}$ power supply, the drain current of the MOSFET must be limited to $I_{D}=$ $P / V_{D D}=1.5 \mathrm{~mW} / 3.3 \mathrm{~V}=0.45 \mathrm{~mA}$ to meet the power consumption specification. Choosing $V_{O V}=0.3 \mathrm{~V}$ (a typical value in low-voltage designs) and $V_{D S}=V_{D D} / 3$ (to achieve a large signal swing at the output), the MOSFET can now be sized as

$$
\begin{equation*}
\frac{W}{L_{\text {eff }}}=\frac{I_{D}}{\frac{1}{2} k_{n}^{\prime} V_{O V}^{2}\left(1+\lambda V_{D S}\right)}=\frac{0.45 \times 10^{-3}}{\frac{1}{2}\left(170.1 \times 10^{-6}\right)(0.3)^{2}[1+0.1(1.1)]} \cong 53 \tag{4.170}
\end{equation*}
$$

where $k_{n}^{\prime}=\mu_{n} C_{o x}=170.1 \mu \mathrm{~A} / \mathrm{V}^{2}$ (from Table 4.8). Here, $L_{\text {eff }}$ rather than L is used to more accurately compule I_{D}. The effect of using $W_{\text {eff }}$ rather than W is much less important because typically $W \gg W_{o v}$ Thus, choosing $L=0.6 \mu \mathrm{~m}$ results in $L_{\text {eff }}=L-2 L_{p y}=0.44 \mu \mathrm{~m}$ and $W=23.3 \mu \mathrm{~m}$. Note that we chose L slightly larger than $L_{\text {min }}$. This is a common practice in the design of analog ICs to minimize the effects of fahrication nonidcalities on the actual valuc of L. As we will study in later chapters, this is particularly important when the circuit performance depends on the matching between the dimensions of two or more MOSFETs (c.g., in the current-mirror circtits we will study in Chapter (6).

Next, R_{D} is calculated based on the desired voltage gain:

$$
\begin{equation*}
\left|A_{z}\right|=g_{m}\left(R_{p}\left\|R_{L}\right\| r_{o}\right)=10 \mathrm{~V} / \mathrm{V} \Rightarrow R_{D} \approx 4.2 \mathrm{k} \Omega \tag{4.171}
\end{equation*}
$$

where $g_{m}=3.0 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=22.2 \mathrm{k} \Omega$. Hence, the output bias voltage is $V_{O}=V_{D D}-I_{D} K_{D}=$ 1.39 V . An $R_{S}=\left(V_{O}-V_{D D} / 3\right) / I_{D}=630 \Omega$ is needed to hias the MOSFET at a $V_{D S}=V_{D D} / 3$. Finally, resistors $R_{G 1}=2 \mathrm{M} \Omega$ and $R_{G 2}=1.3 \mathrm{M} \Omega$ are chosen to set the gate bias voltage at $V_{G i}=I_{D} R_{S}+V_{O V}+V_{t u} \approx 1.29 \mathrm{~V}$. Usmg large values for these gate resistors ensures that both their power consumption and the loading effect on the input signal source are ncgligible. Note that we neglected the body effect in the expression for V_{G} to simplify our hand calculations.

We will now use PSpice to verify our design and investigate the performauce of the CS amplifier. We begin by performing a bias-point simulation to verify that the MOSFET is properly

[^10] corresponding parameter values.

FIGURE 4.63 Capture schematic of the CS amplifier in Examplc 4.14.
biased in the saturation region and that the de voltages and currents are within the desired specifications. Based on this simulation, we have decreased the valuc of W to $22 \mu \mathrm{~m}$ to limit I_{D} to about 0.45 mA . Next, to measure the midhand gain A_{M} and the $3-\mathrm{dB}$ frequencies f_{L} and f_{H}, we apply a 1-V ac volage at the input, perform an ac-analysis simulation, and plot the output voltage magnitude (in dB) versus frequency as shown in Fig. 4.64. This corresponds to the magnitude response of he CS amplifier because we chose a $1-\mathrm{V}$ input signal. ${ }^{12}$ Accordingly, the midband gain is A_{M}
$9.55 \mathrm{~V} / \mathrm{V}$ and the $3-\mathrm{dB}$ handwidth is $B W=f_{H}-f_{1} \simeq 122.1 \mathrm{MHz}$. the gain begins to fall off at ahout 300 Hz but flattens out again at about 10 Hz . This flattening in the gain at low frequencies is duc to a real transmission zero ${ }^{13}$ introduced in the transfor function or the ampliticr by R_{S} together with C_{S}. This zero occurs at a frequency $f_{Z}=1 /\left(2 \pi R_{S} C_{S}\right)=$ 25.3 H 7 , which is typically between the break frequencies $f_{p 2}$ and $f_{p 3}{ }^{2} f_{Z}=1$ (Fig. 4.52). So, let us now verify this phenomenon hy resimulating the CS amplifier with a $C_{S}=0$ (i.e., removing C_{s}) in order to move f_{z} to infinity and remove its effect. The correspond ing frequency response is plotted also in Fig. 4.64. As expected, with $C_{\delta}=0$, we do no obscrve any flattening in the low-frequency response of the amplifier, which now looks simi lar to that in Fig. 4.52. However, because the CS amplifier now includes a source resistor R_{S} A_{M} has dropped by a factor of 2.6 . This factor is approximately cqual to $\left(1+g_{m} R_{s}\right)$, as expected from our study of the CS amplifier wilh a source-degeueration resistance in Section 4.7.4. Note that the bandwidth $B W$ has increased by approximately the same factor as the drop in gain A_{M}. As we will learn in Chapter 8 when we study negative feedback, the sourcedegencration resistor R_{S} provides negative fcedhack, which allows us to trade off gain for wider bandwidth.

The reader should not be alarmed about the use of a such a large signal amplitude. Recall (Scc tion 2.9.1) that in a small-signal (ac) simulation, SPICE first finds the small-signal equivalent circuil at the bias point and then analyzes this linear circuit. Such ac analyssis can, of course, be done with any ac signal amplitude. However, a $1-\mathrm{V}$ ac input is convenient to use as the resulting ac output corre ${ }^{3}$ sponds to the voltage gain of the circuit.
and zeros can either refer to Λ ppendix E or skip these few sentences.

FIGURE 4．64 Frequency responsc of the CS amplifier in Example 4.14 with $C_{S}=10 \mu \mathrm{~F}$ and $C_{s}=0$（i．e．， C_{s} removed）．

To conclude this example，we will demonstrate thc improved bias stability achicved when a source resistor R_{S} is used（see the discussion in Section 4．5．2）．Specifically，we will change（in the MOSFET level－1 model for part NMOSOPS）the value of the zero－bias threshold yoltage parame－ ter VT0 by $\pm 15 \%$ and perform a bias－point simulation in PSpice．Table 4.9 shows the correspond－ ing variations in I_{D} and V_{O} for the case in which $R_{S}=630 \Omega$ ．For the case without source degeneration，we use an $R_{S}=0$ in the schematic of Fig．4．63．Furthermore，to obtain the same I_{D} and V_{o} in both cases（for the nominal threshold voltage $V_{t 0}=0.7 \mathrm{~V}$ ），we use an $R_{G 2}=0.88 \mathrm{M} \Omega$ to reduce V_{G} to around $V_{O V}+V_{i n}=1 \mathrm{~V}$ ．The corresponding variations in the bias point are shown in Table 4．9．Accordingly，we see that the source degeneration resistor makes the bias point of the CS amplifier less sensitive to changes in the threshold voltage．In fact，the reader can show for the values displayed in Table 4.9 that the variation in hias current（ $\Delta I / I$ ）is reduced by approxi－ matcly the same factor，$\left(1+g_{m} R_{S}\right)$ ．However，unless a large bypass capacitor C_{S} is used，this reduced sensitivity comes at the expense of a reduction in the midband gain（as we observed in this example when we simulated the frequency respouse of the CS amplifier with a $C_{s}=0$ ）．

TABLE 49 Vaibtions it the Bias Point with the MOSFEI Ihreshold Volizge

	$R_{5}=630 \Omega$			$R_{5}=0$	
$V_{D 0}(\mathrm{~mA})$	$V_{0}(V)$	0.962	0.71	$V_{0}(\mathrm{~V})$	
0.60	0.56	0.39	0.30		
0.7	0.46	1.81	0.45	1.40	
0.81	0.36	1.81	0.21	2.40	

SUMMARY

The enhancement－type MOSFET is currently the mos widely used semiconductor device．It is the basis of CMOS technology，which is the most popular IC fabri－ cation technology at this time．CMOS provides boih $n-$ channel（NMOS）and p－channel（PMOS）transistors，which ncreases design flcxibility．The minimum MOSFE channel length achievable with a given CMOS process is used to cbaracterize the process．This figure has been con－ inually reduced and is currently about $0.1 \mu \mathrm{~m}$ ．

The current－voltage characteristics of the MOSFET are presented in Section 4.2 and are summarized in Table 4．1．
（5．Techniques for analyzing MOSFET circuits at dc are illustrated in Section 4.3 via a number of examples．

箖 The large－signal operation of the basic common－source （CS）rcsistively loaded MOSFET is studied in Section 4. The voltage transfer characteristic is derived，both graphi－ cally and analytically，and is used to show the three regions of opcration：culoff and triode，which are usefu digital logic inverter，and saturation，which is the region for amplificr operation．To obtain linear amplification，the transistor is biased to operate somewherc near the middlo of the saturation region，and the signal is superimposed on the dc bias $V_{G S}$ and kept small．The small－signal gain is equal to the slope of the transfer characteristic at the bias point（see Fig．4．26）
A key step in the design of transistor amplifiers is to bias the transistor to operate at an appropriate point in the sat uration region．A good bias design ensures that the param－ eters of the bias point，$I_{D}, V_{O V}$ ，and $V_{D S}$ ，are predictable and stable，and do not vary by a large amount when the tran－ sistor is replaced by another of the sarne type．A variet f biasing methods suitable for discrete－circuit design are presented in Section 4.5
迢 The small－signal operation of the MOSFET as well as cir－ cuit models thal represent it are covered in Section 4.6 A summary of the relationships for deermining the values of MOSFET model parametcrs is provided is Tabie 4．2．
Grounding one of the three terminals of the MOSFET re sults in a two－port network wilh the grounded termina serving as a common terminal betwecn the input and out－ put ports．Accordingly，there are three basic MOSFET amplificr configurations：the CS configuration，which i the most widcly used；the common－gate（CG）configuration， which has special applications and is particularly useful at
high frcquencies：and the common－drain or source－follower high frcquencies；and the common－drain or source－follower the output stage of a multistage amplifier．Refer to the summary at the end of Section 4.7 ，and in particular to Table 4.4 ，which provides a summary and a comparison of the attributes of the various singlc－stagc MOSFET ampli－ fier contigurations．
－For the MOSFET high－frequency model and the formulas for dctermining the model parametcrs，refcr to Table 4.5 ．

The internal capacitances of the MOSFET cause the gain of MOS amplifiers to fall off at high frequencies．Also，the MOS amplifiers causc the gain to fall off at low frequen－ cies．The frequency band over which both sets of capaci－ tors can be neglected，and hence over which the gain is constant，is known as the midband．The amplifier frequency response is characterized by the midband gain A_{M} and the lower and upper 3 －dB frequencies f_{L} and f_{H} ，respectively， and the bandwidth is $\left(f_{H}-f_{L}\right)$
（\％Analysis of the frequency response of the common source amplifier（Section 4.9 ）shows that its high－frequency rc－ sponse is determined by the interaction of the tolal input capacilance $C_{\text {in }}$ and the cffective resistancc of the signal source，$R_{\text {sig }}^{\prime} ; f_{H}=1 / 2 \pi C_{\text {in }} R_{\text {sit }}$ ．The inpui capacitance $C_{\text {in }}=C_{88}+\left(1+g_{g} R_{L}\right) C_{k d}$ ，which can be dominated by the
sccond term．Thus，while $C_{g d}$ is small，its effect can be sccond term．Thus，while $C_{g \text { g }}$ is small，its effect can be
very significant because it is multiplied by a factor ap－ very significant because it is muttiplied by a factor ap－
proximately equal to the midband gain．This is the Miller effect．
－The CMOS digital logic inverter provides a near－ideal implementation of the logic inversion function．Its charac－ teristics are studied in Scction 4.10 and summarized in Table 4．6．
露 The depletion－type MOSFET has an implanted clannel and thus can be operated in either the depletion or cn－ hancement modes．It is characterized by the same equa－ Lions used for the enhancement device except for having a － f positive $V_{\text {，for depletion }}$ MMOs
Although there is no substitute for pencil－and－paper cir－ cuit design employing simplified device models，computer simulation using SPICE with more elaborate，and hence more precise，models is essential
tuning the design before fabrication

Onr study of MOSFET amplifiers continues in Chapter 6 and that of digital CMOS circuiis in Chapter 10.

PROBLEMS

SECTION 4.1: DEVICE STRUCTURE AND

 physical operation4.1 MOS technology is used to fabricate a capacitor, utili ing the gate metallization and the substrate as the capacitor electrodes. Find the area required per $1-\mathrm{pF}$ capacitance for oxide thickness ranging from 5 nm to 40 nm . For a squar piate capacitor of 10 pF , what maximum dimensions aro needed?
4.2 A particular MOSFET using the same gate structure and channel length as the transistor whose $i_{0,}-$ - $_{\text {DS }}$ characteristic greater. How should the vertical axis be relabelled to repre sent this change? Find the new constant of proportionality relating i_{D} and $\left(v_{G S}-V_{t}\right) v_{D S}$. What is the range of drain-tosource resistance, $r_{I S}$, corresponding to an overdrive voltage $\left(v_{G S}-V_{t}\right)$ ranging from 0.5 V to 2 V ?
4.3 With the knowledge that $\mu_{p} \simeq 0.4 \mu_{n}$, what must be the relative width of n-channel and p-channel devices in thcy are to have equal drain currents when operated in th saturation mode with overdrive voltages of the sam magnitude?
4.4 An n-channel device has $k_{n}^{\prime}=50 \mu A / V^{2}, V_{t}=0.8 \mathrm{~V}$ and $W / I=20$. The device is to operate as a swith,$V_{t}=0.8$ v_{0} utilizing a control voltage $v_{c s}$ in the range 0 V to 5 V . Find the switch closurc resistance, $r_{0 c}$ and closure voltage, $V_{D S}$, obtained when $v_{C S}=5 \mathrm{~V}$ and $i_{D}=1 \mathrm{~mA}$. Recalling that $\mu_{p} \simeq 0.4 \mu_{n}$, what nust W / L be for a p-channel device that provides thc same performance as the n-channcl device is this application?
4.5 An n-channel MOS device in a technology for which oxide thickness is 20 nm , minimumn gate length is $1 \mu \mathrm{~m}$, $k_{n}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $V_{t}=0.8 \mathrm{~V}$ operates in the triod region, with small $v_{D S}$ and with the gate-source voltage in the range 0 V to +5 V . What device width is needed to ensure that the minimum available resistance is $1 \mathrm{k} \Omega$?
4.6 Consider a CMOS process for which $L_{\text {min }}=0.8 \mu \mathrm{~m}, t_{o x}=$ $15 \mathrm{~nm}, \mu_{n}=550 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$, and $V_{t}=0.7 \mathrm{~V}$.
(a) Find $C_{o x}$ and k_{n}^{\prime}
(b) For an $\Lambda M O S$ transistor with $W / L=16 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$, calcu late the values of $V_{o w}, V_{G S}$, and $V_{D S \text { min }}$ needed to operare the (c) For the device in (b), find the valuc of V_{0} and V_{0} required to cause the device to operate as a $1000-\Omega$ resisto for very small $v_{D S}$.
4.7 Consider an n-channel MOSFET with $t_{o r}=20 \mathrm{~nm}, \mu_{n}=$ $650 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}, V_{t}=0.8 \mathrm{~V}$, and $W / L=10$. Find the drain current
in the following cases:
(a) $v_{G S}=5 \mathrm{~V}$ and $v_{D S}=1 \mathrm{~V}$
(b) $v_{G S}=2 \mathrm{~V}$ and $v_{D S}=1.2 \mathrm{~V}$
(c) $v_{C S}=5 \mathrm{~V}$ and $v_{D S}=0.2$

SECTION 4.2: CURRENT-VOLTAGE CHARACTERISTICS

4.8 Consider an NMOS transistor that is identical to, except for having half the width of, the transistor whose $i_{D}-v_{D S}$ characteristics are shown in Fig. 4.11(b). How should the vertical axis be rclabelcd so that the charactcristics corrcspond to the narrower device? If the narrower device is operated in saturation
with an overdrive votugre of 1.5 V , with an overdrive votage of 1.5 V , what value of i_{D} results?
4.9 Explain why the graphs in Fig. 4.11(b) do not change as V, is changed. Can you devise a more general (i.e., V_{t} independent) representation of the characterislics presented in Fig. 4.12?
4.10 For the transistor whose $i_{D}-v_{G S}$ characteristics are depicted in Fig. 4.12, sketch i_{1} versus the overdive voltagc $v_{o v}=$ $v_{G S}-V_{\text {t }}$ for $v_{D S} \geq v_{O V}$. What is the advantage of this graph over
that in Fig. 4.12? Sketch, on the same diagram, the graph for a that in Fig. 4.12? Sketch, on the same diagram, the grap.
device that is identical except for having half the width.
4.11 An NMOS iransistor having $V_{1}=1 \mathrm{~V}$ is operated in the Iriode region with $v_{l J S}$ small. With $V_{G S}=1.5 \mathrm{~V}$, it is found to have a resistance $r_{D S S}$ of $1 \mathrm{k} \Omega$. What value of $V_{G S}$ is reqnired to obtain $r_{\nu S}=200 \Omega$? Find the corresponding resistance valucs obtained with a devicc having twice thc value of W.
4.12 A particular cnhancement MOSFET for which $V_{t}=$ 1 V and $k_{n}^{\prime \prime}(W / L)=0.1 \mathrm{~mA} / \mathrm{V}^{2}$ is to be operated in the saturation region. If i_{D} is to be 0.2 mA , find the required. $v_{G S}$ and the minimum required $v_{p s}$. Repeat for $i_{D}=0.8 \mathrm{~mA}$.
4.13 A particular n-channel enhancement MOSFET is measured to have a drain current of 4 mA at $V_{G S}=V_{D S}=5 \mathrm{~V}$ and of 1 mA at $V_{G S}=V_{D S}=3 \mathrm{~V}$. What are the values of $k_{n}^{\prime}(W / L)$ and V. for this device?

D4.14 For a particular IC-fabrication process, the transconductance parameter $k_{n}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $V_{1}=1 \mathrm{~V}$. In an application in which $v_{G S}=v_{D S}=V_{\text {supply }}=5 \mathrm{~V}$, a drain current of 0.8 mA is required of a device of minimnm length of $2 \mu \mathrm{~m}$.
What value of channel width must the design usc?
4.15 An NMOS transistor, operating in the hinear-resistance region with $i_{\text {OD }}=0.1 \mathrm{~V}$, is found to conduct $60 \mu \mathrm{~A}$ for $v_{C S}=$ 2 V and $160 \mu \mathrm{~A}$ for $v_{c S}=4 \mathrm{~V}$. What is the apparent value of threshold voltage V_{t} ? If $k_{n}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$, what is the device W/L ratio? What current would you expect to flow with $v_{G S}=$
3 V and $v_{D S}=0.15 \mathrm{~V}$? If the device is operated at $v_{C S}=3 \mathrm{~V}$, at
what value of $v_{D S}$ will the drain end of the MOSFET channel just reach pinch off, and what is the corresponding drai current?
4. 16 For an NMOS transistor, for which $V_{t}=0.8 \mathrm{~V}$, operaling with $v_{G S}$ in the range of 1.5 V to 4 V , what is the larges value of $v_{\text {ISS }}$ for which the channel remains continuous.
4.17 An NMOS transistor, fabricated with $W=100 \mu \mathrm{~m}$ and $L=5 \mu \mathrm{~m}$ in a technology for which $k_{n}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{t}=$ V , is to be operated at very low values of $v_{D S}$ as a linear resis values can be obtained? What is the available range if
(a) the device width is halved?
(b) the device length is halved?
(c) both the width and length are halved?
A. 18 When the drain and gate of a MOSFET are connected logether, a two-terminal device known as a "diode-connected anstor" results. Figure P4.18 shows such devices obtain from MOS transistors of both polarities. Show that
(a) the $i-\nu$ relationship is given by

$$
i=k^{\prime} \frac{W}{L}\left(v-\left|V_{t}\right|\right)^{2}
$$

b) the incremental resistance r for a device biased to operate at $v=\left|V_{t}\right|+V_{o v}$ is given by

$$
r \equiv 1 /\left\lceil\frac{\partial i}{\partial z}\right]=1 /\left(k^{\prime} \frac{W}{L} V_{O V}\right)
$$

(a)

(b)

FIGURE P4.18

4.19 For a particular MOSFET operating in the satura tion region at a constant $v_{G S}, i_{D}$ is found to be 2 mA for $v_{D S}=$ 4 V and 2.2 mA for $v_{p S}=8 \mathrm{~V}$. What values of r_{o}, V_{A}, and λ correspond?
4.20 A particular MOSFET has $V_{1}=50$ V. For operation at 0.1 mA and 1 mA , what are the expected oulpul resistances? in each case, for a change in $\psi_{D S}$ of 1 V , what percentage changc in drain current would you expect?

D4.21 In a particular IC design in which the standard channe ength is $2 \mu \mathrm{~m}$, an NMOS device with W / L of 5 operating
$100 \mu \mathrm{~A}$ is found to have an output resistance of $0.5 \mathrm{M} \Omega$, about $\frac{1}{4}$ of that nceded. What dimensional change can be made to solve the prohlem? What is the new device length? The
©4. 22 For a particular n-channel MOS technology, in which the mininuum channel length is $1 \mu \mathrm{~m}$, the associated value of λ is $0.02 \mathrm{~V}^{-1}$. If a particular device for which L is $3 \mu \mathrm{~m}$ operates at $v_{D S}=1 \mathrm{~V}$ widh a drain current of $80 \mu \mathrm{~A}$, what does the drain current become if $v_{D S}$ is raised to 5 V ? What reduce the percentage hy a factor of 2 ?
4. 23 An NMOS transistor is fabricated in a $0.8-\mu \mathrm{m}$ process having $k_{n}^{\prime}=130 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{A}^{\prime}=20 \mathrm{~V} / \mu \mathrm{m}$ of channel length. If $L=1.6 \mu \mathrm{~m}$ and $W=16 \mu \mathrm{~m}$, find V_{A} and λ. Find the value of I_{D} that results when the device is operated with
an overdrive voltage of 0.5 V and $V_{D S}=2 \mathrm{~V}$. Also, find the value of r at this operating point. If $V_{D S}$ is increased by 1 V , what is the corresponding change in I_{D} ?
4.24 Complete the missing entries in the following table, which describes characteristics of suitably biased NMOS transistors:

MOS	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\lambda(\mathrm{V})$		0.01		
$V_{A}(\mathrm{~V})$	50		0.1	200
$I_{0}(\mathrm{~mA})$	5	30	100	1000
$r_{u}(\mathrm{k} \Omega)$				

4.25 An NMOS transistor with $\lambda=0.01 \mathrm{~V}^{-1}$ is opcrating at a dc current $I_{D}=1 \mathrm{~mA}$. If the channel length is doubled, find the new values of λ, V_{A}, I_{D}, and r_{n} for cach of the following two cases:
(a) $V_{G S}$ and $V_{D S}$ are fixed
(b) I_{D} and $V_{D S}$ are fixed.
4.26 An enhancement PMOS transistor has $k_{p}^{\prime}(W / L)$ $80 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t}=-1.5 \mathrm{~V}$, and $\lambda=-0.02 \mathrm{~V}^{-1}$. The gatc is connected to ground and the source to +5 V . Find the drain current
4.27 A p-channel transistor for which $\left|V_{d}\right|=1 \mathrm{~V}$ and $\left|V_{A}\right|=$ 50 V operates in saturation with $\left|v_{G S S}=3 \mathrm{~V},\left|v_{D S}\right|=4 \mathrm{~V}\right.$, and $i_{D}=3 \mathrm{~mA}$. Find corresponding signed values for $v_{G S}, v_{S G}: v_{D S}$, $v_{S D}, V_{b}, V_{A}, \lambda$, and $k_{p}^{\prime}(W / L)$.
4.28 In a technology for which the gate-oxide hickness is 20 nm , find the valuc of N_{A} for which $\gamma=0.5 \mathrm{~V}^{1 / 2}$. If the doping level is maintained but the gate oxide thickness is increased to 100 nm , wbat does γ become? γ is $05 \mathrm{~V}^{1 / 2}$, to what valuc must the doping level be changed?
4.29 In a particular application, an n-channel MOSFET operates with $V_{S S}$ in the range 0 V to 4 V . If $V_{\text {D }}$ is nominally 1.0 V , find the range of V_{t} that results if $\gamma=0.5 \mathrm{~V}^{1 / 2}$ and $2 \phi_{f}=$ 0.6 V . If the gate oxide thickness is increased by a factor of 4 what does the threshold voltage becone?
4.30 A p-channel transistor operates in saturation with it source voltage 3 V lower than its substrate. For $\gamma=0.5 \mathrm{~V}^{1 / 2}$ 0.75 V and $V_{0}=07 \mathrm{~V}$ find V
4.31 (a) Using the expression for i_{D} in saturation and reglecting the channel-length modulation effect (i.c., let $\lambda=0$), derive an expression for the per unit change in i_{D} per ${ }^{\circ} \mathrm{C}$ $\left[\left(\partial i_{D} / i_{D}\right) / \partial T\right]$ in terms of the per unit change in k_{n}^{\prime} per ${ }^{\circ} \mathrm{C}$ $\left[\left(\partial k_{n}^{\prime} / k_{n}^{\prime}\right) / \partial T\right]$ he temperature cocfficient of V_{t} in $\mathrm{V} /{ }^{\circ} \mathrm{C}$ $(\partial V, / \partial T)$, and $V_{G s}$ and V
(b) If V_{t} decreases by 2 mV for every ${ }^{\circ} \mathrm{C}$ rise in temperature ind the temperature coefficient of k_{n}^{\prime} that results in i^{\prime} decreasing by $0.2 \% /{ }^{\circ} \mathrm{C}$ when the NMOS transistor with $V_{+}=1 \mathrm{~V}$ is operated at $V_{G S}=5 \mathrm{~V}$.
4.32 Various NMOS and PMOS transistors are measured in operation, as shown in the table at the bottom of the page. For each transistor, find the value of $\mu C_{o x} W / L$ and V_{t} that pply and complete the table, with V in volts, I in $\mu \mathrm{A}$, and
4.33 All the transistors in the circuits shown in Fig. P4.3 have the same values or $\mid V_{1}, k, W / L$, and λ. Moreover, λ is negligibly small. All operate in saturation at $I_{D}=I$ and $\left|V_{G s}\right|=\left|V_{D s}\right|=3 \mathrm{~V}$. Find the voltages V_{1}, V_{2}, V_{3}, and V_{4}. If $\left|V_{:}\right|=1 \mathrm{~V}$ and $I=2 \mathrm{~mA}$, how large a resistor can be inserted in series with each drain conncction while maintaining saturation? What is thc largest resistor that can be placed least 2 V between its terminals to operate properly, what is the largest resistor that can be placed in series with each MOSFET source while ensuring saturated-mode operation of cach transistor at $I_{D}=r$? In the later limiting situation, what do V_{1}, V_{2}, V_{3}, and V_{4} become?

Case	Transistor	v_{s}	V_{6}	v_{0}	1.	Type	Mode	wC_{0}.W/
a	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 100 \\ & 400 \end{aligned}$			
b	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3 2	${ }_{-0.5}^{-4.5}$	$\begin{array}{r} 50 \\ 450 \\ 40 \end{array}$			
c	3 3	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3	4 0	$\begin{aligned} & 200 \\ & 800 \end{aligned}$			
d	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & -2 \\ & -4 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 -3	$\begin{gathered} 72 \\ 270 \end{gathered}$			

4.35 Consider the circuit of Fig. E4.12. Let Q_{1} and Q_{2} have $=0.6 \mathrm{~V}, \mu C_{2}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, L_{1}=L_{2}=0.8 \mu \mathrm{~m}, W_{1}=8 \mu \mathrm{~m}$, $\lambda=0$.
(a) Find the value of R required to establish a current of 0.2 mA in Q_{1}
(b) Find W_{2} and a new value for R_{2} so that Q_{2} operates in the aturation region with a current of 0.5 mA and a drain voltag of 1 V .

D4.36 The PMOS transistor in the circuit of Fig. P4.36 has $V_{t}=-0.7 \mathrm{~V}, \mu_{p} C_{o x}=60 \mu \mathrm{~A} / \mathrm{V}^{2}, L=0.8 \mu \mathrm{~m}$, and $\lambda=0$. Find he values required for W and R in order to establish a drain current of $115 \mu \mathrm{~A}$ and a voltage V_{D} of 3.5 V

FIGURE P4.36
4.37 The NMOS transistors in the circuil of Fig. P4.37
4.37 The NMOS transistors in the circuin of Fig. P4.37 and $V_{2}=1 \vee, \mu_{n} C_{n x}=120 \mu \mathrm{~A}, ~ \lambda=0$, and $L_{1}=L_{2}=1 \mu \mathrm{~m}$.
Find the required values of gate widtb for cach of Q_{1} and Q_{2}. and the value of R, to obtain the voltage and current values indicated.

FIGURE P4.37

Q4.38 The NMOS transistors in the circuit of Fig. P4. 38 have $V_{1}=1 \mathrm{~V}, \mu_{n} C_{a x}=120 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0$, and $L_{1}=L_{2}=L_{3}=1 \mu \mathrm{~m}$.

Find the required values of gate width for each of Q_{1} Q_{2}, and Q_{3} to obtain the voltage and current value indicated.

IGUREP4.38

4.39 Consider the circuil of Fig. 4.23(a). In Example 4.5 was found that when $V_{t}=1 \mathrm{~V}$ and $k_{n}^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}^{2}$, the drain current is $0.5 \mathrm{~m} \Lambda$ and the drain voltage is +7 V . If the transistor is replaced with another having $v_{t}=2 \mathrm{~V}$ and $k_{n}^{\prime}(W / L)$ $2 \mathrm{~mA} / \mathrm{V}^{2}$, find the new values of I_{p} and V_{D}. Comment on ho tolerant (or intolerant) the circuit is to changes in device paramelers.
4.40 Using an enhancement-ype PMOS transistor with $V_{t}=$ $-1.5 \mathrm{~V}, k_{\rho}^{\prime}(W / L)=1 \mathrm{~mA} / \mathcal{N}^{2}$, and $\lambda=0$, design a circuit that resembles that in Fig. 4.23(a). Using a 10 -V supply design for gate voltage of +6 V , a drain current of 0.5 mA , and a drai la +5 V Find the values of R_{5} and R_{D}
4.41 The MOSFET in Fig. P4.41 has $V_{t}=1 \mathrm{~V}, k_{n}=100 \mu \mathrm{~A}$ V^{2}, and $\lambda=0$. Find the requircd values of W / L and of R so hat when $v_{I}=V_{D D}=+5 \mathrm{~V}, r_{D S}=50 \Omega$, and $v_{O}=50 \mathrm{mv}$.

FIGURE P4.41

42 In the circuits shown in Fig. P4.42. transistors characterized by $\left|V_{t}\right|=2 \mathrm{~V}, k^{\prime} W / L=1 \mathrm{~mA} / \mathrm{V}^{2}$, and $\lambda=0$.
(a) Find the labelled voltages V_{1} itrough V_{7}
b) In each of the circuits, replace the current source with a esistor. Selcet the resistor value to yield a current as close to that of the current source as possible, while using resistors specificd in the 1% table provided in Appendix G. Find the new values of V_{1} to V_{7}.

(a) $+10 \mathrm{~V}$

$=$
$\rightarrow-\infty V_{5}$
(c)

FIGURE P4. 42

4.43 For each of the circuits in Fig. P4.43, find the labeled node voltages. For all transistors, $k_{n}^{\prime}(W / L)=0.4 \mathrm{~mA} / V^{2}, V_{t}=$ 1 V , and $\lambda=0$.

(b)

(d)

FIGURE Pa. 43
4.44 For each of the circuits shown in Fig. P4444, find th labeled node voltages. The NMOS transistors have $V_{t}=1 \mathrm{~V}$ and $k_{n}^{\prime} W / L=2 \mathrm{~mA} / V^{2}$. Assume $\lambda=0$.

(c)

FIGURE P4.46

*4.47 For the devices in the circuits of Fig. P4.47, $\left|V_{f}\right|=$ $\mathrm{V}, \lambda=0, \gamma=0, \mu, C_{\omega x}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, L=1 \mu \mathrm{~m}$, and $W=10 \mu \mathrm{~m}$ Find V_{2} and I_{2}. How do these values change if Q_{3} and Q_{4} are made to have $W=100 \mu \mathrm{~m}$?

FIGURE P4.47

(a)
*4.45 For the PMOS transistor in the circuit shown in
*4.45 For the PMOS transistor in the circuit shown in
Fig. P4.45, $k_{p}^{\prime}=8 \mu \mathrm{~A} / \mathrm{V}^{2}, W / L=25$, and $\left|V_{t}\right|=1 \mathrm{~V}$. For Fig. P4.45, $k_{p}=8 \mu \mathrm{AV}, W L=25$, and $V_{t p}=1 \mathrm{~V}$. For
$I=100 \mu \mathrm{~A}$, find the voltages $V_{S D}$ and $V_{S G}$ for $R=0,10 \mathrm{k} \Omega$, $30 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$. For what value of R is $V_{S D}=V_{S C}$? $V_{S D}=$ $V_{S G} / 2 ? V_{S D}=V_{S G} / 10$?
4.46 For the circuits in Fig. P4.46, $\mu_{n} C_{a x}=2.5 \mu_{\rho} C_{a x}=$ $20 \mu \mathrm{~A} / \mathrm{V}^{2},\left|V_{d}\right|=1 \mathrm{~V}, \lambda=0, \gamma=0, L=10 \mu \mathrm{~m}$, and $W=$ m,

(b)
$=$
(h)

FIGURE P4.45

 and voltages.volages.
4.48 In the circuit of Fig. P4.48, transistors Q_{1} and Q_{2} have $V_{t}=1 \mathrm{~V}$, and the process transconductance parameter $k_{n}^{\prime}=$, $\mu \mathrm{A},{ }^{2}$. Assuming $\lambda=0$, find V_{1}, V_{2}, and V_{3} for each of he following cases:
(a) $(W / L)_{1}=(W / L)_{2}=20$
(b) $(W / L)_{1}=1.5(W / L)_{2}=20$

FIGURE P4.48

SECTION 4.4: THE MOSFET AS AN AMPLIFIER AND AS A SWITCH
4.49 Consider the CS amplificr of Fig. 4.26(a) for the case
$V_{D D}=5 \mathrm{~V}, R_{D}=24 \mathrm{k} \Omega, k^{\prime}(W /)=1 \mathrm{~mA} / \mathrm{V}^{2}$, and $V_{1}=1 \mathrm{~V}$ (a) Fin te coordinates of the two . and $V_{t}=1 \mathrm{~V}$. (a) Find the coordinates of the two end points of the saturationregion scgment of the amplifirier transfer char
points A and B on the sketch of Fig. 4.26 (c).
(b) If the amplifier is biased to operate wilh an overdrive voltage $V_{O V}$ of 0.5 V , find the coordinates of the bias point Q_{1} on the transfer characteristic. Also, find the value of I_{j} and of the incremental gain Λ_{v} at the bias point.
(c) For the situation in (b), and disrcgarding the distortion caused by the MOSFET's square-law characteristic, what is the largest amplitude of a sine-wave voltage signal that can be What is the amplitude of the oulput voltage signal that resuls? What gain value does the combination of thesc amplitudcs imply? By what percentage is this gain value different from the incremental gain value calculated above? Why is there a difference?
*4.50 We wish to investigate the operation of the CS amplificr circuit studied in Example 4.8 for various bias conditions, that is, for bias at various points along the saturationregion segment of the transfer characteristic. Prepare a table
giving the values of $I_{D}(\mathrm{~mA}), V_{O V}(\mathrm{~V}), V_{G S}=V_{I Q}(\mathrm{~V}), A_{v}(\mathrm{~V} / \mathrm{V})$ the magniude of the largest allowable positive-output signal v_{0}
(V) and the magnitude of the lotyent ollowate (V), and the magnitude of the largest allowable negative-out put signal $v_{o}^{-}(\mathrm{V})$ for values of $V_{D S}=V_{O Q}$ in the range of 1 V to
10 V , in increments of 1 V (i.e., there should be table rows $f o$ $\left.V_{D S}=1 \mathrm{~V}, 2 \mathrm{~V}, 3 \mathrm{~V}, \ldots, 10 \mathrm{~V}\right)$. Note that v^{+}is determined by the MOSFET entering cutoff and v_{a} by the MOSFET enter ing the triode region.
4.51 Various measurements arc made on an NMOS amph fier for which the drain resistor R_{D} is $20 \mathrm{k} \Omega$. First, dc measurements show the voltage across the drain resistor, $V_{R D}$, to ac measurements with small sionals show the voltage ghen, be $-10 \mathrm{~V} / \mathrm{V}$. What is the value of V, for this transistor? If th process transconductance parameter k^{\prime} is $50 \mu \lambda / V^{2}$ what the MOSFET'S WL?

D4.52 Rcfer to the expression for the incremental voltage gain in Eq. (4.41). Various design considerations place a lowe limit on the value of the overdrive vollage $V_{o v}$. For our purposes

(a) Wihout allowing any room for output voltage swing what is the maxinum voltage gain achievable?
(b) If we are required to allow for an output voltagc swing of $\pm 0.5 \mathrm{~V}$, what dc bias voltage should bc established at the drain o obtain maximum gain? What gain value is achievable? What input signal results in a $\pm 0.5-\mathrm{V}$ output swing?
lish a dc drain current of 100μ. For the given proestab ish a dc drain current of $100 \mu \mathrm{~A}$. For the given process tech nology, $k_{n}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$.
(d) Find the required valu
4.53 The expression for the incremental voltage gain A given in Eq. (4.41) can be written in as

$$
A_{v}=-\frac{2\left(V_{D D}-V_{D S}\right)}{V_{O V}}
$$

where $V_{D S}$ is the bias voltage at the drain (called $V_{O Q}$ in the ext). This expression indicates that for given valucs of $V_{D D}$ and $V_{o v}$, the gain magnitude can be increased by biasing the iransistor at a lower $V_{D S}$. This, however, reduces the allowable output signal swing in the negative direction. Assuming linear operation around the bias point, show that the largest possible egative output signal peak \hat{y}_{y} that is achievable while th tansistor remains saturated is

$$
\hat{v}_{o}=\left(V_{D S}-V_{O V}\right) /\left(1+\frac{1}{A_{v}}\right)
$$

For $V_{D D}=5 \mathrm{~V}$ and $V_{O V}=0.5 \mathrm{~V}$, provide a table of values for A_{v}, \hat{v}_{0}, and the corresponding \hat{v}_{i} for $V_{D S}=1 \mathrm{~V}, 1.5 \mathrm{~V}, 2 \mathrm{~V}$ for which $V_{D S}=1 \mathrm{~V}$. $\mathrm{mA} /$, find I_{D} and R_{D} for the desig
4.54 Figure P4.54 shows a CS amplificic in which the load resistor R_{D} has been replaced with another NMOS transistor Q^{\prime} connected as a will be operating in saturation at all times, even Q_{2} is zero, and $i_{D 2}=i_{01}=0$. Note also that the two transistors conduct equal drain curents. U'sing $i_{D 1}=i_{D_{2}}$, show that for the range of v_{l} over which Q_{1} is operating in saturation, that is, for

$$
V_{t 1} \leq v_{1} \leq v_{0}+v_{t 1}
$$

the output voltage will he given by

$$
v_{O}=V_{D D}-V_{t}+\sqrt{\frac{(W / L)_{1}}{(W / L)_{2}}} V_{t}-\sqrt{\frac{(W / L)_{1}}{(W / L)_{2}}} v_{t}
$$

where we have assumed $V_{n 1}=V_{n 2}=V_{r}$. Thus the circuit functions as a linear amplifier, even for large input signals. For $(W / L)_{1}=(50 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m})$ and $(W / L)_{2}=(5 \mu \mathrm{~m} / 0.5$ $\mu \mathrm{m}$), find the voltage gain.

FIGURE P4.54
SECTION 4.5: BIASING IN MOS AMPLIFIER

circuits

04.55 Consider the classical biasing scheme shown in Fig. 4.30(c), using a 15-V supply. For the MOSFET, $V_{i}=1.2 \mathrm{~V}$, $\lambda=0, k_{n}^{\prime}=80 \mu \mathrm{~A} / V^{2}, W=240 \mu \mathrm{~m}$, and $L=6 \mu \mathrm{~m}$. Arrange that the drain current is 2 mA , with about one-third of the supply voliage across each of R_{S} and R_{D}. sc $22 \mathrm{M} \Omega$ for the latger of $R_{G 1}$ and $\kappa_{G 2} \cdot$. hate are thosen? Specify them to two sieniticant digits. For your design, how far is the drain voltage from the edge of saturation?

D4.56 Using the circuit topology displayed in Fig. 4.30(e), arrange to bias the NMOS transistor at $I_{D}=2 \mathrm{~mA}$ with V_{D} midway between cutoff and the beginning of triode operaion. The available supplies arc $\pm 15 \mathrm{~V}$. For the NMOS trausistor, $V_{t}=0.8 \mathrm{~V}, \lambda=0, k_{n}=50 \mu \lambda \mathrm{~N}$, Secify R_{s} and R_{D} to two significant digits.
*D4.57 In an electronic instrument using the biasing schemc shown in Fig. 4.30(c), a manufacturing error reduces R_{S} to zero. Let $V_{D D}=12 \mathrm{~V}, R_{G 1}=5.6 \mathrm{M} \Omega$, and $R_{G 2}=2.2 \mathrm{M} \Omega$ allow $k^{\prime}(W / L)$ to vary from 220 to $380 \mu \mathrm{~A} / \mathrm{V}^{2}$ and V_{V} to vary from 1.3 to 2.4 V , what are the extreme values of I_{p}, that may result? What value of R_{s} should have been installed to himit the maximum value of I_{D} to 0.15 mA ? Choose an appropriate standard 5% resistor value (rcfer to Appendix G). What extreme values of current now result?
4.58 An enhancement NMOS transistor is connected in the bias circuit of Fig. $4.30(\mathrm{c})$, with $V_{G}=4 \mathrm{~V}$ and $R_{s}=1 \mathrm{k} \Omega$. The transistor has $V_{t}=2 \mathrm{~V}$ and $k_{n}^{\prime}(W / L)=2 \mathrm{~mA} / V^{2}$. What bias current results? If a transistor for which $k_{n}^{\prime}(W / L)$ is 50% higher is used, what is the resulting percenlage increase in l_{D} ?
4.59 The bias circuit of Fig. 4.30 (c) is used in a design with 4.59 The bias circuit of Fig. 4.30 (c) is used in a design with
$V_{G}=5 \mathrm{~V}$ and $R_{S}=1 \mathrm{kS}$. For an enhanccmen MOSFET with $V_{G}=5 \mathrm{~V}$ and $R_{S}=1 \mathrm{kS}$. For an enhancemenl
$k^{\prime}(W / L)=2 \mathrm{~mA} / \mathrm{V}^{2}$, the source voltage was measured and $k_{n}^{\prime}(W / L)=2 \mathrm{~mA} / \mathrm{N}^{2}$, the source
found to be 2 V . What nust V_{t} be for this device? If a device found to be 2 V . What must $V_{\text {, be for this device? If a dee }}$
for which V, is 0.5 V less is used, what docs V_{s} become? What for which $v_{\text {, }}$ is 0.5 V ,
D4.60 Design the circuit of Fig. 4.30(e) for an enhancement MOSFET having $V_{1}=2 \mathrm{~V}$ and $k_{n}^{\prime}(W / L)=2 \mathrm{~mA} / V^{2}$. Let $V_{D D}=V_{S S}=10 \mathrm{~V}$. Design for a dc bias current of 1 mA and for
the largcst possible voltage gain (and thus the largest possible R_{D}) consistent with allowing a 2 - V peak-to-peak voltage swing ${ }_{D}$ the drain. Assume that the signal voltage on the source terminal of the FET is zero.
D4.61 Design the circuit in Fig. P4.61 so that the transistor operates in saturation with V_{D} biased I V from the edge of the triode region, with $I_{D}=1 \mathrm{~mA}$ and $V_{D}=3 \mathrm{~V}$, for each of the following two devices (use a $10-\mu \mathrm{A}$ current in the volage divider):
(a) : $V_{f}=1 \mathrm{~V}$ and $k_{\rho}^{\prime} W /=0.5 \mathrm{~mA} / \mathrm{V}^{2}$
(b) $\mid V_{l}=2 \mathrm{~V}$ and $k_{p}^{\prime} W / L=1.25 \mathrm{~mA} / \mathrm{V}^{2}$

For each case, specify the values of $V_{G}, V_{D}, V_{S}, R_{1}, R_{2}, R_{5}$, and R_{D}

FIGURE P4.61
**D4.62 A very uscful way to characterize the stability of the bias current I_{D} is to cvaluate the sensitivity of I_{D} relative to a particular transistor parameter whose variability might be largc. The sensitivity of I_{D} relative to the MOSFET parameter $K \equiv \frac{1}{2} k^{\prime}(W / L)$ is defined as

$$
S_{K}^{T_{D}} \equiv \frac{\delta I_{D} / I_{D}}{\delta K / K}=\frac{\delta I_{D}}{\delta K} \frac{K}{I_{D}}
$$

and its value, when multiplied by thc variability (or tolerance) of K, provides the corrcsponding expected variability of I_{D}. The purpose of this problem is to investigate the use of he sensitivity function in the design of the bias circuit of Fig. 4.30(e).
(a) Show that for V_{t} constant,

$$
S_{K}^{I_{D}}=1 /\left(1+2 \sqrt{K I_{D}} R_{S}\right)
$$

(b) For a MOSFET having $K=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ with a variability of $\pm 10 \%$ and $V_{t}=1 \mathrm{~V}$, tind the value of R_{s} that would result the required value of $V_{s s}$.
$I_{0}=100$ available supply $V_{s s}=5 \mathrm{~V}$, find the value of R_{s} for $I_{D}=100 \mu \mathrm{~A}$. Evaluate the sensitivity function, and give the expected variability of I_{D} in this case.
4.63 For the circuit in Fig. 4.33(a) with $I=1 \mathrm{~mA}, R_{G}=0$, $R_{D}=5 \mathrm{k} \Omega$, and $V_{D D}=10 \mathrm{~V}$, consider the behavior in each of the following two cascs. In each case, find the voltages V_{S}, V_{p}, and $V_{D s}$ that result.
(a) $V_{t}=1 \mathrm{~V}$ and $k_{n}^{\prime} W /=0.5 \mathrm{~mA} / \mathrm{V}^{2}$
(b) $V_{t}=2 \mathrm{~V}$ and $k_{n}^{\prime} W / L=1.25 \mathrm{~mA} / \mathrm{V}^{2}$
4.64 In the circuit of Fig. 4.32, let $R_{G}=10 \mathrm{M} \Omega, R_{D}=10 \mathrm{k} \Omega$, and $V_{D D}=10 \mathrm{~V}$. For each of the following two transistors, find V and V
(a) $V_{i}=1 \vee$ and $k_{n} W / L=0.5 \mathrm{~mA} \wedge^{2}$
(b) $V_{l}=2 \mathrm{~V}$ and $k_{n}^{\prime} W / L=1.25 \mathrm{~mA} / V^{2}$

D4.65 Using the feedhack bias arrangement shown in Fig. 4.32 with a 9 -V supply and an NMOS device for which $V_{t}=1 \mathrm{~V}$ and $k_{n}^{\prime}(W / L)=0.4 \mathrm{~mA} / \mathrm{V}^{2}$, find R_{D} to estahlish a drain current of 0.2 mA . If resistor values are limited to those on the 5% resistor scale (see Appendix G), what
you choose? What values of current and V_{D} result?

D4.66 Figure P4.66 shows a variation of the feedlack-hias circuit of Fig. 4.32. Using a $6-\mathrm{V}$ supply with an NMOS Cransistor for which $V_{t}=1.2 \mathrm{~V}, k_{n}^{\prime} W / L=3.2 \mathrm{~mA} / \mathrm{V}^{2}$ and $\lambda=0$, provide a design which biases the transistor at $I_{D}=2 \mathrm{~mA}$, with $V_{D S}$ large enough to allow saturation operation for a $2-\mathrm{V}$ negative signal swing at the drain. Use 22 MS as the largest resistor in the feedback-bias network. What values of $R_{D}, R_{G 1}$, and $R_{G 2}$ have you chosen? Specity all resistors to two significant digits.

IGURE P4.66

SECTION 4.6: SMALL-SIGNAL OPERATION

 AND MODELS4.67 This problein investigates the nonlinear distortion intro duced by a MOSFET amplifier. Let the signal $v_{g s}$ be a sine wav with amplitude $V_{s s}$, and substiute $v_{s s}=V_{s s} \sin \omega t$ in Eq. (4.57).
Using the trigonometric identity $\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta$, show that the ratio of the signal at frequency 2ω to that at frequency ω, expressed as a percentage (known as the asequency ω, expressed as a pereenage (known as the nonic distortion) is

$$
\text { Second-harmonic distortion }=\frac{1}{4} \frac{V_{g s}}{V_{O V}} \times 100
$$

If in a particular application $V_{g s}$ is 10 mV , find the minimun verdrive voltage at which the transistor should he operated so that the second-harmonic distortion is kept to less than 1%
4.68 Consider an NMOS ransistor having $k_{n}^{\prime} W / L=2 \mathrm{~mA} \mathrm{~V}^{2}$ Let the transistor be biascd at $V_{o v}=1 \mathrm{~V}$. For operation i saturation, what dc bias current I_{D} results? If a $+0.1-\mathrm{V}$ signa is superimposed on $V_{\text {Css }}$ ind the corresponding increment in and subiracting the dc bias current $I_{\text {p }}$. Repeat for a $-0.1-\mathrm{V}$ simnal. Use these results to estimate $g_{\text {m }}$ of the FET at his bia point. Compare widh the value of g_{m} obtained using Eq. (4.62),
6.69 Consider the FET amplifier of Fig. 4.34 for the cas $V_{t}=2 \mathrm{~V}, k^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{C S}=4 \mathrm{~V}, V_{D D}=10 \mathrm{~V}$, and $R_{\nu}=3.6 \mathrm{k} \Omega$.
(a) Find the de quantities I_{D} and V_{D}.
b) Calculate the valuc of g_{m} at the bias point.
(c) Calculate the value of the voltage gain.
d) If the MOSFET has $\lambda=0.0 \mathrm{I} \mathrm{V}^{-1}$, find r_{o} at the bias point d calculate the voltage gain

D4.70 An NMOS amplifier is to be designed to provide $0.50-\mathrm{V}$ peak outpul stgnal across a $50-\mathrm{k} \Omega$ load that can be used as a drain resistor. If a gain of at least $5 \mathrm{~V} / \mathrm{is}$ needed,
what g_{m} is requircd? Using a dc supply of 3 V , what values of I_{D} and $V_{O V}$ would you choose? What W / L ratio is required if $\mu_{t} C_{o r}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$? If $V_{t}=0.8 \mathrm{~V}$, find $V_{G B}$
*©4.71 In this problem we investigatc an optimum desi of the CS amplifier circuit of Tig. 4.34. First, use the voltage gain expression $A_{i v}=-g_{m} R_{D}$ together with Eq. (4.71) for g_{n} to show that

$$
\Lambda_{v}=-\frac{2 I_{D} R_{D}}{V_{O V}}=-\frac{2\left(V_{D D}-V_{D}\right)}{V_{O V}}
$$

which is the expression we obtained in Section 4.4 (Eq. 4.41). Next, let the maximum positive input signal be $\hat{\hat{v}}_{i}$. To keep the second-harmonic distortion to an acceptable level, we bias the MOSFET to operate at an overdrive voltage $V_{O V}>\hat{v}_{i}$. Let $\hat{V}_{o V}=m \hat{\vartheta}_{V}$. Now, to maximizc the voltage gain $\left|A_{\tau}\right|$, wc design for the lowest possible V_{D}. Show that hel veltage swing the drain of $|A| \hat{\jmath}$, while maintaining saturation-mode operation is given by

$$
V_{D}=\frac{V_{O V}+\hat{v}_{i}+2 V_{D D}\left(\hat{v}_{i} / V_{O V}\right)}{1+2\left(\hat{v}_{i} / V_{O V}\right)}
$$

Now, find $V_{O V}, V_{D}, A_{i}$, and \hat{v}_{o} for the case $V_{D D}=3 \mathrm{~V}, \hat{v}_{i}=$ 20 mV , and $m=10$. If it is desired to opprate this transistor at this process technology $k_{n}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$
4. 72 In the tahle helow, for enhancement MOS Iransistors operating under a variety of conditions, complete as many
entries as possible, Atto entries as possible. Although some data is not available, it is always possihle to calculate g_{m} using one of Eqs. (4.69):
(4.70) or (4.71). In the cable, currcnt is m mA. voltage in V , and dimensions in $\mu \mathrm{m}$. Assumc $\mu_{\mathrm{n}}=500 \mathrm{~cm}^{2} / \mathrm{Vs} . \mu_{\mathrm{p}}=250 \mathrm{~cm}^{2} / \mathrm{Vs}$, and $C_{o r}=0.4 \mathrm{fF} / \mathrm{mm}^{2}$.
4.73 An NMOS technology wa $\mu_{n} C_{0}$ 0.7 V . For a transistor with $L=1 \mu \mathrm{~m}$, find the value of W that results in $g_{m}=1 \mathrm{~mA} / V$ at $I_{D}=0.5 \mathrm{mAA}$. Also, find the required $V_{C S}$.

Case	Type	10.	$V_{\text {gs }}$	Vta	Vor	w	\downarrow	W/L	k(W/L)	$9 m$
a	N	1	3	,			1			
b	N	1		0.7	0.5	50				
c	N	10			2		1			
d	N	0.5			0.5					
e	N	0.1				10	2			
f	N		1.8	0.8		40	4			
g	P	1	3	1	2			25	500	
i	P	10				4000	2			
j	P	10			4					
${ }_{1}^{\mathrm{k}}$	P				$\frac{1}{5}$	30	3		8	
1	P	0.1			5				8	

.74 For the NMOS amplifier in Fig. P4.74, replace the nnsistor with its T cquivalent circuit of Fig. 4.39 (d). Derive expressions for the voltage gains v_{s} / v_{i} and v_{d} / v_{i}.

FIGURE P4. 74
4. 75 In the circuit of Fig. P4.75, the NMOS transistor ha $V_{\lambda}=0.9 \mathrm{~V}$ and $V_{A}=50 \mathrm{~V}$ and operates with $V_{D}=2 \mathrm{~V}$. What the voltage gain v_{o} / v_{i} ? What do V_{D} and the gain becom for l increased to 1 mA ?

4.76 For a $0.8-\mu \mathrm{m}$ CMOS fabrication process: $V_{m}=0.8 \mathrm{~V}$, $V_{t p}=-0.9 \mathrm{~V}, \mu_{n} C_{o x}=90 \mu \mathrm{~A} / \mathrm{V}^{2} \mu_{p} C_{o x}=30 \mu \mathrm{~A} / \mathrm{V}^{2}, C_{o x}=$ $8 L$ ($\mu \mathrm{m})$ and $\mid V \downharpoonleft(p$-channcl devices $)=12 L(\mu \mathrm{~m})$. Find the small-signal model parameters (g_{m}, r_{o}, and $g_{m b}$) for hoth an NMOS and a PMOS transistor having $W / L=20 \mu \mathrm{~m} /$ $2 \mu \mathrm{~m}$ and opcrating at $I_{D}=100 \mu \mathrm{~A}$ with $V_{s b i}=1 \mathrm{~V}$. Also, find the overdrive voltage at which cach device must be operating.
4.77 Figure P4.77 shows a discrete-circuit CS amplifier cmploying the classical biasing scheme studied in Section 4.5. The input signal $v_{\text {sig }}$ is coupled to the gate through a very large capacitor (shown as infinitc). The transistor source is connected to ground at signal frequencies via a very large capacitor (shown as infinite). The oulput voltage signal that develops at the drain is coupled to a load resistance via a very large capacitor (shown as infinite).
(a) If the Iransistor has $V_{\mathrm{s}}=1 \mathrm{~V}$, and $k_{n}^{2} W / L=2 \mathrm{~mA} V^{2}$, verify that the bias circuit establishes $V_{G S S}=2 \mathrm{~V}, I_{D}=1 \mathrm{~mA}$, and $V_{D}=+7.5 \mathrm{~V}$. That is, assume these values, and verify that they are consistent with the values of the circuit components and the device parameters.
(b) Find g_{m} and r_{o} if $V_{A}=100 \mathrm{~V}$
(c) Draw a complete small-signal equivalent circuit for the amplificr assuming all capacitors behave as short circuits at (d) Find $R_{i, 1}, v_{s s}$
(d) Find $R_{i n} v_{s} v_{\text {sis }}, v_{o} / v_{z s}$, and $v_{o} / v_{\text {sil }}$
4.78 The fundamental relationship that describes MOSFET operation is the parabolic relationship between $V_{O V}$ and i_{D},

$$
i_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L} v_{O V}^{2}
$$

Sketch this parabolic curve together with the tangent at point whose coordinates are ($V_{o v}, I_{D}$). The slope of this tan gent is $g_{t_{n}}$ at this bias point. Show that this tangent intersects he $v_{o v}$-axis at $V_{o v} / 2$ and thus that $g_{m}=2 I_{D} / V_{o v}$.

SECTION 4.7: SINGLE-STAGE MOS AMPLIFIERS

4.79 Calculate the overall voltage gain G_{v} of a commonsource amplificr for which $g_{m}=2 \mathrm{~mA} / \mathrm{V}, r_{o}=50 \mathrm{k} \Omega, R_{p}=$ $10 \mathrm{k} \Omega$. and $R_{C}=10 \mathrm{M} \Omega$. The amplifier is fed from a signal source with a Théverin resistance of $0.5 \mathrm{M} \Omega$, and the amplifier output is coupled to a load resistance of $20 \mathrm{k} \Omega$.

D4.80 This problem investigates a redesign of the commonsource amplifier of Exercise 4.32 whose bias design was don in Exercisc 4.30 and shown in Fig. E4.30. Please refer to these two exercises.
(a) The open-circuit voltage gain of the CS amplifier can be written as

$$
A_{i o}=-\frac{2\left(V_{D D}-V_{D}\right)}{V_{O V}}
$$

Verify that this expression yields the results in Exercise 4.32 (i.e., $A_{v o}=-15 \mathrm{~V} / \mathrm{V}$).
(b) $A_{v o}$ can be doubled by reducing $V_{o v}$ by a factor of 2. (i.c. from 1 V to 0.5 V) while V_{D} is kept unchanged. What corresponding values for I_{p}, R_{D}, g_{m}, and r_{o} apply.
(c) Find $A_{z o}$ and $R_{\text {out }}$ with f_{01} taken into account.
(d) For the same value of signal-generator resistance $R_{\text {sig }}=$ $100 \mathrm{k} \Omega$. the same value of gate-bias resistance $R_{G}=4.8 \mathrm{M} \Omega$, and the same value of load resistance $R_{l}=15 \mathrm{k} \Omega$, cvaluate the new value of overall voltage gain G_{v} with r_{o} taken into account.
(e) Comparc your results to those obtained in Exercises 4.30 and 4.32, and comment.
4.81 A common-gate amplifier using an n-channel enhanccment MOS transistor for which $g_{m}=5 \mathrm{~mA} / \mathrm{V}$ has a $5-\mathrm{k} \Omega$ drain resistance (R_{D}) and a $2-\mathrm{k} \Omega$ load resistance (R_{L}). The amplifier is driven by a voltage sourcc having a $200-\Omega$ rcsistance. What is the input resistance of the amplifier? What is the overall voltage gain G_{v} ? If the circuit allows a hias-current increase by a factor of 4 while maintaising linear oper
what do the input resistance and voltage gain hecomc?
4.82 A CS amplifier using an NMOS transistor biased in the manner of Fig. 4.43 for which $g_{n}=2 \mathrm{~mA} / \mathrm{N}$ is found to have an overall voltage gain G_{v} of $-16 \mathrm{~V} / \mathrm{N}$. What value should a resistance R_{S} inserted in the source lead have to reduce the voltage gain by a factor of 4 ?
4.83 The overall vollage gain of the amplifier of Fig. 4.44(a) was measured with a resistance R_{s} of $1 \mathrm{k} \Omega$ in place and found to be $-10 \mathrm{~V} / \mathrm{V}$. When R_{S} is shorted, but the circuit opcration of R_{s} is needed to obtain an overall vollage gain of $-8 \mathrm{~V} / \mathrm{V}$?
4.84 Careful measurements performed on the source follower of Fig. 4.46(a) show that the open-circuit voltage gain is $0.98 \mathrm{~V} / \mathrm{V}$. Also, when R_{L} is connected and its value is varied, it is found that the gain is halved for $R_{L}=500 \Omega$. If the must the values of g_{m} and r_{o} be?
4.85 The source follower of Fig. 4.46(a) uses a MOSFET biased to have $g_{m}=5 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=20 \mathrm{k} \Omega$. Find the opencircuit vottage gain $A_{v o}$ and thc oulput resistance. What will the解
4.86 Figure P 4.86 shows a scheme for coupling and amplifying a high-Irequency pulse signal. The circuit utilizes two
coaxial cable. Transistor Q_{1} operates as a CS amplifier and Q_{2} as a CG amplifier. For proper operation, transistor Q_{2} is required to present a $50-\Omega$ resistance to the cahle. This situa tion is known as "proper termination" of the cable and asures that there will be no signal reflection coming hack on the cable. When the cahle is propcrly terminated, its inpu resistance is 50Ω. What must om2 be? If Ω_{1} is biased at the same point as Q_{2}, what is the amplitude of the current puls in the drain of Q_{1} ? What is the amplitude of the voltag pulses at the drain of Q_{1} ? What value of R_{D} is required to pro1 -V pulses at the drain of Q_{2} ?

D4.87 The MOSFET in the circuit of Fig. P4. 87 has $V_{l}=$ $1 \mathrm{~V}, k_{n}^{\prime} W / L=0.8 \mathrm{~mA} / \mathrm{V}^{2}$, and $V_{A}=40 \mathrm{~V}$
a) Find the values of R_{s}, R_{D}, and R_{G} so that $I_{n}=0.1 \mathrm{~mA}$, the largest possible value for R_{D} is used while a maximum signal the gate is $10 \mathrm{M} \Omega$.
(c) II terminal Z is grounded termial point. -ed to ignal source having a resistancc of $1 \mathrm{M} \Omega$, and terminal Y is signal source having a resistancc of $\mathrm{M} \Omega$, and terminal Y a
connected to a load resistance of $40 \mathrm{k} \Omega$, find the voltage gain rom signal source to load
If tcrminal Y is grounded, find the volage gain from X Z with Z open-circuited. What is the ourput resistance of the surce follower?
(e) If terminal X is grounded and terminal Z is connected to current source delivering a signal current of $10 \mu \mathrm{~A}$ and havg a resistance of $\mathrm{k} \Omega$, find the volkage signat uhat can measured at Y. For simplicity, neglect the effect of $r_{r,}$.

*4.88 (a) The NMOS transistor in the source-follower cir cuit of Fig. P4.88(a) has $g_{m}=5 \mathrm{~mA} / \mathrm{V}$ and a large r_{o}. Find th pen-circuit voltage gain and the output resistance.

FIGURE P4.77

(b) The NMOS transistor in the common-gate amplifier of Fig. P4.88(h) has $g_{m}=5 \mathrm{~mA} / \mathrm{V}$ and a large r_{r}. Find the input resistance and the voltage gain.
(c) If the output of the source follower in (a) is connected to the input of the common-gate amplifier in (h), use the results
*2.39 In this problen we investigate the large-signal operation of the source follower of Fig. 4.46 (a). Specifically, consider the situation when negative input signals are applicd.
Let the negative signal voltage at the output be $-V$. The current in R_{l} will flow away from ground and will have a value of V / R_{L}. This current will subtract from the bias current I, resulting in a transistor current of $\left(I-V / R_{\nu}\right)$. One can use this current value to determinc $v_{c s}$. Now the signal at the transistor source terminal will be $-V$, superimposed on the de voltage, which is $-V_{G S}$ (corresponding to a drain current of I). We can thus find the signal voltage at the gate v_{i}. For the circuit analyzed in Exercise 4.34 , find v_{i} for $v_{o}=-1 \mathrm{~V},-5 \mathrm{~V},-6 \mathrm{~V}$, and -7 V . At each point find the voltage gain v_{c} / v_{i} and compare to the small-signal value found in Exercise 4.34: What i the largest possible negative-output signal?

SECTION 4.8: THE MOSFET INTER
AND HIGH-FREQUENCY MODEL
4.90 Refer to the MOSFET high-frequency model in Fig. 4.47(a). Evaluate the model paramelers for an NMOS The MOSFET has $W=20 \mu \mathrm{~m}, L=1 \mu \mathrm{~m}, t_{s}=8 \mathrm{~nm}, \mu_{n}=$ $450 \mathrm{~cm}^{2} / \mathrm{vs}, \gamma=0.5 \mathrm{~V}^{1 / 2}, 2 \phi_{f}=0.65 \mathrm{~V}, \lambda=0.05 \mathrm{~V}^{-1}, V_{0}=0.7 \mathrm{~V}$, $C_{s t 0}=C_{d b 0}=15 \mathrm{fF}$, and $L_{o v}=0.05 \mu \mathrm{~m}$. (Recall that $g_{m b}=\chi g_{m}$, where $\chi=\gamma /\left(2 \sqrt{2 \phi_{f}+V_{S B}}\right)$.)
4.91 Find f_{T} for a MOSFET operating at $I_{D}=100 \mu \mathrm{~A}$ and $V_{O V}=0.25 \mathrm{~V}$. The MOSFET has $C_{g s}=20 \mathrm{fF}$ and $C_{g d}=5 \mathrm{fF}$.

figure pa.es

A. 22 Starting from the definition of f_{τ} for a MOSFET

$$
f_{T}=\frac{g_{m}}{2 \pi\left(C_{g s}+C_{g d}\right)}
$$

and making the approximation that $C_{8 s} \gg C$ and that the overlap component of C_{85} is negligibly small, show that

$$
f_{T} \simeq \frac{1.5}{\pi L} \sqrt{\frac{\mu_{n} I_{D}}{2 C_{o x} W L}}
$$

Thus note that to obtain a high f_{T} from a given device it mus be operated at a high current. Also note that faster opcration is obtained from smaller devices.
4.93 Starting from the expression for the MOSFET unitygain frequency,

$$
\int_{T}=\frac{g_{m}}{2 \pi\left(C_{k s}+C_{g, t}\right)}
$$

and making the approximation that $C_{s s} \gg C_{k d}$ and that the overlap component of $C_{s i}$ is negligibly small, show that for an n-channel device

$$
f_{T}=\frac{3 \mu_{n} V_{O V}}{4 \pi L^{2}}
$$

Observe that for a given device, f_{r} can be increased by operat ing the MOSFET at a higher overdrive voltage. Evaluate f_{7} for deviccs with $L=1.0 \mu \mathrm{~m}$ operated at overdrive voltages of 25 V and 05 V Use $\mu_{2}=450 \mathrm{~cm}^{2} / \mathrm{V}$ s.

SECTION 4.9: FREQUENCY RESPONSE

OF THE CS AMPLIFIER

4.94 In a particular MOSFET amplifier for which the mid band voltage gain between gate and drain is $-27 \mathrm{~V} / \mathrm{V}$, the input capaciance would you expect? For what range of
signal-source resistances can you expect the 3 -dB frequency to exceed 10 MHz ? Ncglect the cffect of R_{σ}
04.95 In a FET amplifier, such as that in Fig. $4.49(a)$, the resistance of the source $R_{\text {sig }}=100 \mathrm{kS}$, amplifice inpul , 2 lance (which is due to the biasing network) $R_{\mathrm{n}}=100 \mathrm{kS}, \mathrm{C}_{8}=$ $1 \mathrm{pF} . C_{8 d}=0.2 \mathrm{pF}, g_{m}=3 \mathrm{~mA} / \mathrm{V}, r_{o}=50 \mathrm{k} \Omega, R_{D}=8 \mathrm{kS} \Omega$, and $R_{L}=10 \mathrm{kS} \Omega$. Determine the expected 3 -dB cutofff frequency f_{H} and the midband gain. In evaluating ways to douhle f_{H}, a designer considers the allematives of changing either $R_{\text {out }}$ or $R_{\text {itr }}$ To raise f_{ξ} as described, what separate change in cach would be required? What midband voltage gain results in each case?
4. 05 A discrete MOSFET common-source amplitier has $R_{\text {in }}=$ $2 \mathrm{M} \Omega, g_{m}=4 \mathrm{~mA} / \mathrm{V}, r_{o}=100 \mathrm{k} \Omega, R_{D}=10 \mathrm{kS} \Omega, C_{g s}=2 \mathrm{pF}$, and $C_{g d}=0.5 \mathrm{pF}$. The amplificr is fed from a voltage source with an internal resistance of $500 \mathrm{k} \Omega$ and is connected to a 10-kSZ load. Find:
(a) the overall midband gain A_{M}
(b) the upper 3 -dB frequency f_{H}
Q.08 The analysis of the high-frequency response of the common-source amplifier, presented in the text, is based on the assumption that the resistance of the signal source, R_{sij} is large and, thus, that its interaction with the input capacilance $C_{\text {in }}$ produces the "dominant pole" that determines the upper 3-dB frequency $f_{l l}$. There are situations, however, when the CS amplifier is fcd with a very low $R_{\text {sis }}$. To investigate the high-frequency response of the annpliner in such
a case, Fiy. P4.97 shows the equivalent circuit when the CS amplifier is fed with an idcal voltage source $V_{\text {w }}$ having $R_{\text {sif }}=0$. Note that C_{L} denotes the total capacitance at the output node. By writing a node equation at the output, show that the transfer function $V_{0} N_{\text {sig }}$ is given by

$$
\frac{V_{o}}{V_{\text {sig }}}=-g_{m} R_{L}^{\prime} \frac{1-s\left(C_{z d} / g_{m}\right)}{1+s\left(C_{L}+C_{g d}\right) R_{L}^{\prime}}
$$

At frcquencies $\omega \ll\left(g_{m} / C_{g d}\right)$, the s term in the numerator can be neglected. In such case, what is the upper 3-dB fre quency resulting? Compute the values of A_{M} and f_{H} for th case: $C_{k^{d}}=0.5 \mathrm{pF}, C_{L}=2 \mathrm{pF}, g_{m}=4 \mathrm{~mA} / \mathrm{V}$, and $R_{l}^{\prime}=5 \mathrm{k} \Omega$.

For a situation in which $R=1 \mathrm{MQ}$ and $R=1 \mathrm{M}$, wher For a situation in which $R_{\text {siq }}=1 \mathrm{M} \Omega$ and $R_{G}=1 \mathrm{M} \Omega$, what

FIGURE P4.97

valuc of $C_{C 1}$ must be chosen to place the corresponding hreak frequency at 10 Hz ? What valuc would you choose if available capacitors are specified to only one significant digit and the break frequency is not to exceed 10 Hz ? What is the break frequency, $f_{p l}$, obtained with your choice? II a denigner wishes to lower this by raising R_{G}, what is the most that he or she can expect if availahle resistors are limited to 10 times those now used?
D4.95 The amplifier in Fig. P4.99 is biased to operatc at $I_{p}=1 \mathrm{~mA}$ and $g_{m}=1 \mathrm{~mA} / \mathrm{V}$. Neglecting r_{r}, find the midband g_{p} gain. Find the value of C_{s} that places δ_{L} at 10 Hz

FIGUREP4.99

100 Consider the amplifier of Fig. 4.49(a). Let $R_{i)}=$ $15 \mathrm{k} \Omega, r_{a}=150 \mathrm{k} \Omega$, and $R_{L}=10 \mathrm{k} \Omega$. Find the valuc of $C_{C 2}$, specificd to one significant digit, to ensure that the associpower design results in doubling $l_{\text {, }}$ with both R_{D} and r_{0} reduced by a factor of 2 , what does the corner frequency (duc to $C_{C_{2}}$) become? For increasingly higher-power designs, what is the highest corner frequency that can be associated with $C_{C 2}$
Q.008 The NMOS transistor in the discrete CS amplifier circuit of Fig. P4. 101 is biased to have $g_{m}=1 \mathrm{~mA} / \mathrm{V}$. Find $A_{M}, f_{P 1}, f_{F_{2}}, f_{F_{3}}$, and f_{L}.

IGURE P4.10

4.102 The NMOS transistor in the discrete CS amplifier circuit of Fig P4. 101 is hiased to have $g_{n}=1 \mathrm{~mA} / \mathrm{V}$ and $r_{0}=$ $00 \mathrm{k} \Omega$. Find $A_{s k}$. If $C_{g s}=1 \mathrm{pF}$ and $C_{8 d}=0.2 \mathrm{pF}$, find f_{t}
4.103 Consider the low-frequency response of the Cs amplifier of Fig. 4.49(a). Let $R_{\text {sis }}=0.5 \mathrm{M} \mathrm{\Omega}, R_{C}=2 \mathrm{MS}, g_{m}=$ $3 \mathrm{~mA} / \mathcal{V}, R_{D}=20 \mathrm{k} \Omega$, and $R_{l}=10 \mathrm{k} \Omega$. Find A_{M}. Also, design frequency poles at $50 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 3 Hz . Use a minimum otal capacitance, with capacitors specified only to a single significant digit. What valuc of f, results?
4.104 Figure P4.104 shows a MOS amplifier whose bias design and midband analysis were performed in Example 4.10 secifically, the MOSFET is biased at $I_{D}=1.06 \mathrm{~mA}$ and has $=0.725 \mathrm{~mA} / \mathrm{V}$ and $r_{0}=47 \mathrm{k} \Omega$. The midband analysis showed that $V_{c} N_{i}=-3.3 \mathrm{~V} / \mathrm{V}$ and $R_{\text {in }}=2.33 \mathrm{M} \Omega$. Select appropriate values for the two capacitors so that the low-frequency rcsponse is dominated by a poie at 10 Hz with the other pole

IGURE P4. 104
at least a decade lower. (Hint: In determining the pole due to $C_{C 2}$, rcsistance R_{G} can be neglected.)

SECTION 4.10: THE CMOS DIGITAL LOGIC

 INVERTER4.105 For a digital logic inverter fabricated in a $0.8-\mu$ CMOS technology for which $k_{n}^{\prime}=120 \mu \mathrm{~A} \mathrm{~N}^{2}, k_{p}^{\prime}=60 \mu \mathrm{~A}$ $\mathrm{V}^{2}, V_{t n}=V_{t p}=0.7 \mathrm{~V}, V_{D D}=3 \mathrm{~V}, I_{n}=L_{p}=0.8 \mu \mathrm{~m}, W_{n}$ $.2 \mu \mathrm{~m}$, and $W_{r}=2.4 \mu \mathrm{~m}$, find
(a) the output resistance for $v_{O}=V_{O L}$ and for $v_{O}=V_{O H}$ (b) the maximum current that the inverter can sink or sourc while the output remains within 0.1 V of ground or V_{D} c) $V_{m} V_{X}$
(c) $V_{I H}, V_{L L}, N M_{t:}$ and $N M_{\iota}$
4.106 For the technology specified in Prohlem 4.105 investigate how the threshold voltagc of the inverter, $V_{l \text {, }}$ var leviccs. Use the formula given in Exercise 4.44 , and find V for the cases $(W /)_{p}=(W / L)_{w}(W / L)_{p}=2(W / L)_{\text {, }}$, thc matehe case), and ($W / L)_{p}=4(W / L)_{n}$.
4.107 For an inverter designed with equal-sized NMO and PMOS transistors and fahricated in the technology spec fed in Probl 4.105 above, find $V_{t h}$ and $V_{T H}$ and hence the noise inargins.
4.108 Repeat Exercisc 4.41 for $V_{D D}=10 \mathrm{~V}$ and 15 V
4.109 Repeat Exercise 4.42 for $V_{t}=0.5 \mathrm{~V}, 1.5 \mathrm{~V}$, and 2 V .
4.110 For a technology in which $V_{t n}=0.2 V_{D D}$, show that the maximum current that the CMOS inverter can sink while it bw output level does nut exceed $0.1 V_{m p}$ is $0.075 k_{n}^{\prime}(W / L)_{n} V_{D D}$ For $V_{D D}=3 \mathrm{~V}, k_{n}^{\prime}=120 \mu \mathrm{~A} \mathcal{V}^{2}$, and $L_{n}=0.8 \mu \mathrm{~m}$, find the equired transistor width to ohtain a current of 1 mA .
4.11 For the inverter specificd in Problem 4.105, find peak current drawn from the $3-\mathrm{V}$ supply during switching.
4.112 For the inverter specified in Problem 4.105, find th value of $t_{\text {PHL }}$ when the inverter is loaded with a capacitance $C=$ 0.05 pF . Use both Eq. (4.156) and the approximate expression Eq. (4.157), and compare the results.
4.113 Consider an inverter fabricated in the CMOS technolgy specified in Problem 4.105 and having $L_{n}=L_{p}=0.8 \mu \mathrm{~m}$ and $(W / L)_{p}=2(W /)_{n}$. It is required to limit the propagation delay to 60 ps when the inverter is loaded with $0.05-\mathrm{pF}$ capac ance. Find the required device widths, W_{n} and W_{p}.
4.114 (a) In the transfer characteristic shown in Fig. 4.36 the segment BC is vertical because the Early effiect neglected. Taking the Early effect into account, use small-signal analysis to show that the slope of the transfer characteristic at
$v_{I}=v_{O}=V_{D D} / 2$ is

$$
\frac{-2\left|V_{A}\right|}{\left(V_{D D} / 2\right)-V_{t}}
$$

where V_{A} is the Early voltage for Q_{N} and Q_{P}. Assume Q_{N} and Q_{P} to bc matched.
$\left.{ }^{\prime}\right)^{\prime}(W / L)$ is biased by with devices having $k_{n}^{\prime}(W / L)_{n}=$ $k_{p}\left(\right.$ A $_{p}$ is biased by connecting a resistor $R_{C}=10 \mathrm{M} \Omega$
betwecn input and output. What is the dc voltage at input and output? What is the small-signal voltage gain and input resistance of the resulting amplifier? Assume the inverter to have the characteristics spccificd in Problem 4.105 with $\left|V_{A}\right|=50 \mathrm{~V}$.

SECTION 4.11: THE DEPLETION-TYPE MOSFET

4.115 A depletion-type n-channel MOSFET with $k_{n}^{\prime} W / L=$ $2 \mathrm{~mA} \mathrm{~V}^{2}$ and $V_{t}=-3 \mathrm{~V}$ has its source and gate grounded. Find 3 V and 5 V Neglect the channel-length-modulation effect
4.116 For a particular deplction-mnode NMOS device, $V_{t}=$ $-2 \mathrm{~V}, k_{n}^{\prime} W / L=200 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $\lambda=0.02 \mathrm{~V}^{-1}$. When operated at $v_{G S}=0$, what is the drain current that flows for $v_{D S}=1 \mathrm{~V}, 2 \mathrm{~V}$,
3 V and 10 V ? Whar does each of these currents becme if the device width is doubled with L the same? With L aso douled?
4.117 Neglecting the channel-length-modulation elfect show that for the deplction-type NMOS transistor of Fig. P4.117 the $i-v$ relationship is given by

$$
i=\frac{1}{2} k_{n}^{\prime}(W / L)\left(v^{2}-2 V_{t} v\right), \quad \text { for } v \geq V_{1}
$$

$$
i=-\frac{1}{2} k_{n}^{\prime}(W / L) V_{t}^{2}, \quad \text { for } v \leq V_{t}
$$

(Recall that V_{t} is negative.) Sketch the i-vy relationship for the casc: $V_{1}=-2 \mathrm{~V}$ and $k_{n}^{\prime}(W / L)=2 \mathrm{~mA} / \mathrm{V}$

FIGURE P4.117
4.118 For the circuit analyzed in Exercise 4.51 (refer to Fig. E4.51), what docs the vottage at the source become when
the drain voltage is lowered to +1 v?
4.119 A depletion-type NMOS transistor operating in the saturation region with $\eta_{D S}=5 \mathrm{~V}$ conducts a drain curent of 1 mA at $v_{G S}=-1 \mathrm{~V}$, and 9 mA at $v_{G S}=+1 \mathrm{~V}$. Find $I_{D S S}$ and V_{r}. Assume $\lambda=0$.

D4.120 Consider the circuit shown in Fig. P4.120 in which Q_{1} with R_{1} cstablishes the bias current for $Q_{2} \cdot R_{2}$ has no effect
on the bias of Q_{2} but provides an interesting function. R_{3} act load resistor in the drain of $Q_{\text {, }}$ Assume that $Q_{\text {and }}$ and fabricated together (as a matched pair, or as patt of an IC) and are identical. For each depletion NMOS, $I_{\text {DSS }}=4 \mathrm{~mA}$ and $\left|V_{d}\right|=2 \mathrm{~V}$. The voltage at the input is some value, say 0 V that keeps Q_{1} in saturation. What is the value of $k_{t}^{\prime}(W / L)$ fo hese transistors?
Now, design R_{1} so that $I_{D 1}=I_{D 2}=1 \mathrm{~mA}$. Makc $R_{2}=R_{1}$ Choose R_{3} so that $v_{v}=6 \mathrm{~V}$. For $v_{A}=0 \mathrm{~V}$, what is the voltage v_{C} ? esting bechavior, namely, that node C follows node A. This cir cuit can be called a source follower, hut it is a special one, on with zero offsee! Note also that R_{2} is not essential. since node B also follows node A but with a positive offset. In many applica tions, R_{2} is short-circuited. Now, recognize that as the voltage on A rises, Q_{2} will eventually enter the triode region. At what value of v_{A} docs this occur? Also, as v_{A} lowers, Q_{1} will enter it riode region. Δt what value of v_{A} ? (Note that betwecn thes wo values of v_{A} is the linear signal range of both v_{A} and v_{C}.)

FIGURE P4.120

GENERAL PROBLEMS:

**4.121 The circuits shown in Fig. P4. 121 employ ncgativc feedback, a subject we shall study in detail in Chapter 8 . Assume that each transistor is sized and biased so that $g_{m}=$ $1 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=100 \mathrm{kS}$. Otherwise, ignore all dc biasing detail and concentrate on sinall-signal opcration resulting in response to the input signal $v_{\text {sig }}$. For $R_{L}=10 \mathrm{k} \Omega, R_{1}=500 \mathrm{k} \Omega$,
and $R_{2}=1 \mathrm{M} \Omega$, find the overall voltage gain $v_{c} v_{\text {sid }}$ and the input resistance R. for each circuit. Neglect the body cffect.

Do these circuils remind you of op-amp circuits? Comment.

(a)

(b)

FIGURE P4. 121
4.122 For the two circuits in Problem 4.121 (shown in Fig. P4.121), we wish to consider their dc bias design. Simce $v_{\text {si }}$ has a zero de component, we short circuit its gencrator

For NMOS transistors with $V_{t}=0.6 \mathrm{~V}$, find $V_{O V}, k_{n}^{\prime}(W / L)$, and V_{A} to bias each device at $I_{D}=0.1 \mathrm{~mA}$ and to obtain the values of g_{m} and r_{o} specificd in Problem 4.121; namely, $g_{m}=$ $1 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=100 \mathrm{k} \Omega$. For $R_{1}=0.5 \mathrm{M} \Omega, R_{2}=1 \mathrm{M} \Omega$, and $R_{L}=10 \mathrm{k} \Omega$, find the required value of $V_{D D}$.
4.123 In the amplifier shown in Fig. P4.123, transistors having $V_{t}=0.6 \mathrm{~V}$ and $V_{A}=20 \mathrm{~V}$ are operated at $V_{G S}=0.8 \mathrm{~V}$ using the appropriate choice of W/L ratio. In a particular application, Q_{1} is to be sized to operate at $10 \mu \mathrm{~A}$. while Q_{2} i intended to operate at 1 mA . For $R_{L}=2 \mathrm{k} \Omega$, the (R_{1}, R_{2}) net work sized to consume only 1% ol he current in $R_{t}, v_{\text {sig }}$, having vero dc component, and $I_{1}=10 \mu \mathrm{~A}$, find the values of R_{1} an R_{2} that satisfy all the requirements. (Hint: V_{0} must be +2 V .) known as Miller's thercm (Chapter 6) find the imput resi ance $R_{\text {in }}$ as $R_{2} /\left(1-v_{0} / v_{i}\right)$. Now, calculate the value of the verall volage gain $v / v_{\text {is }}$. Does this result remind you of the inverting configuration of the op amp? Comment. How would you modify the circuit at the input using an additional resisto and a very large capacitor to raise the gaia $v_{\theta} / v_{\text {sig }}$ to $-5 \mathrm{~V} / \mathrm{V}$ Neglect the body effect.

FIGURE P4.123
.124 Consider the bias design of the circuit of Problem 4.12 shown in Fig. P4.123). For $k_{n}^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{D D}=3.3 \mathrm{~V}$ find $(W / L)_{1}$ and $(W / L)_{2}$ to obtain the operating condition ecified in Problem 4.123

Bipolar Junction

 Transistors (BJTs)
Introduction 377

5.1. Device Structure and Physical Operation 378
5.2. Current Voltage Characteristics 392
5.3 The BJT as an Amplifier and as a Switch: 407
5.4 But Circuits at DC . 421
5.5. Biasing in BIT Amplifier Circuits: 436
56. Simall Signal Operation and Models 443
5.7. Single Stage BIT Amplifiers 460
5.8. The BT Internal Capacitances: and High Frequency Model 485
5.9. Frequency Response of the Common Emitter Amplifier: 49
5.10 The Basic EIT Digital Logic Inverter 503
5.11 The SPICE BIT Model and Simulation Examples: 507 Sumnary 516
Problems 517

INTRODUCTION

In this chapter, we study the other major three-terminal device: the bipolar junction transisto (BJT). The presentation of the material in this chapter parallels but does not rely on that for the MOSFET in Chapter 4; thus, if desired, the BJT can be studied before the MOSFET

Three-terminal devices are far more useful than two-terminal ones, such as the diodes sudied in Chapter 3 , because they can be used in a multitude of applications, ranging from signal amplification to the design of digital logic and memory circuits. The basic principle involved is the use of the voltage between two terminals to control the current flowing in the third terminal. In this way, a three-terminal device can be used to realize a controlled source, which as we learned in Chapter 1 is the basis for amplifier design. Also, in th extreme, the control signal can be used to cause the current in the third terminal to chang from zero to a large value, thus allowing the device to act as a switch. As we learned also in

Chapter 1, the switch is the basis for the realization of the logic inverter, the basic element of digital circuits.
The invention of the BJT in 1948 at the Bell Telephone Laboratories ushered in the era of solid-state circuits, which led to electronics changing the way we work, play, and indeed live. The invention of the BJT also eventually led to the dominance of information technology and the emergence of the knowledge-based economy.

The bipolar transistor enjoyed nearly three decades as the device of choice in the design of both discrete and integrated circuits. Although the MOSFET had been known very early on, it was not until the 1970s and 1980s that it became a serious competitor to the BJT. At the time of this writing (2003), the MOSFET is undoubtedly the most widel used electronic device, and CMOS technology is the technology of choice in the design of integrated circuits. Nevertheless, the BJT remains a significant device that excels in cer tain applications. For instance, the reliability of BJT circuits under severe environnental conditions makes them the dominant device in automotive electronics, an important and still-growing area.

The BJT remains popular iu discrete-circuit design, in which a very wide selection of BJT types are available to the desiguer. Here we should mention that the characteristics of the bipolar transistor are so well undersitool that one is able to design transistor circuits whose performance is remarkably predictable and quite insensilive to variations in device parametcrs.
The BJT is still the preferred device in very deınanding analog circuit applications, bot tegrated and discrete. This is especially true in very-high-frequency applications, such as radio-frequency (RF) circuits for wireless systems. A very-high-speed digital logic-circuit family based on bipolar transistors, namely emitter-coupled logic, is still iu use. Finally, bipolar transistors can be combined with MOSFETs to create innovative circuits that take advantage of the high-input-impedance and low-power operation of MOSFETs and the yery-high-frequency operation and high-current-driving capability of hipolar transistors The resulting technology is known as BiMOS or BiCMOS, and it is finding increasingly larger areas of application (sec Chapters 6, 7, 9, and 11).
In this chapter, we shall start with a simple description of the physical operation of the BJT Though simple, this physical description provides considerable insight regarding the performance of the transistor as a circuit element. We then quickly move from describing current flow in terms of clectrons and holes to a study of the transistor terminal characteristics. Circuit models for transistor operation in different modes will be devcloped and utilized in the analysis and design of transistor circuits. The main objective of this chapter is to develop in the reader a high degree of familiarity with the BJT. Thus, by the end of the chapter, the reader should be able to perform rapid first-order analysis of transistor circuits and to design single-stage transistor amplifiers and simple logic inverters.

24 5.1 DEVICE STRUCTURE AND PHYSICAL OPERATION

5.1.1 Simplified Structure and Modes of Operation

Figure 5.1 shows a simplified structure for the BJT. A practical transistor structure will be shown later (see also Appendix A, which deals with fabrication technology)
As shown in Fig. 5.1, the BJT consists of three semiconductor regions: the emitter region (n type), the base region (p type), and the collector region (n type). Such a transistor is called an $n p n$ transistor. Another transistor, a dual of the $n p n$ as shown in Fig. 5.2, has a p-type emitter, an n-type base, and a p-type collector, and is appropriately called a $p n p$ transistor,

FIGURE 5.1 A simplified structure of the $n p n$ transistor.

FIGURE 5.2 A simplified structure of the php transistor.

A terminal is connected to each of the three semiconductor regions of the ransistor, with the terminals labeled emitter (E), base (B), and collector (C).
terminals labeled emitter (E), base (B), and collector (C).
The transistor consists of two pn junctions, the emitter-base junction (EBJ) and the collector-base junction (CBJ). Depending on the bias condition (forward or reverse) of each of these junctions, different modes of operation of the BJT are obtained, as shown im Table 5.1
The active mode, which is also called forward active mode, is the one used if the transistor is to operate as an amplifier. Switching applications (e.g., logic circuits) utilize both the cutoff mode and the saturation mode. The reverse active (or inverse active) mode has very limited application but is conceptually important

As we will see shortly, charge carriers of both polarities-that is, electrons and holesparticipate in the current-conduction process in a bipolar transistor, which is the reason for the name bipolar.

TABLE S.1 BIT Modes of Operation	EBJ	CBJ
Mode	Reverse	Reverse
Cutoff	Forward	Reverse
Active	Feverse	Forward
Reverse active	Forward	Forward

FIGURE 5.3 Current flow in an npn transistor biased to operate in the active mode. (Reverse current components due to drift of thermally generated minority carriers are not shown.)

5.1.2 Operation of the npn Transistor in the Active Mode

Let us start by considering the physical operation of the transistor in the active mode. This situ ation is illustrated in Fig. 5.3 for the npn transistor. Two external voltage sources (shown as batteries) are used to establish the required bias conditions for active-mode operation. The voltage $V_{B i l}$ causes thc p-type base to be higher in potential than the n-type emitter, thus forward-biasing the cmitter-base junction. The collector-base voltage $V_{C B}$ causes the n-ype collector to be at a higher potential than the p-type basc, thus reverse-biasing the collector-basc junction.
Current Flow In the following description of current flow only diffusion-current compo nents are considered. Drift currents, due to thermally generated minority carriers, arc usually very small and can be neglected. Neverthcless, we will have more to say about these reversecurrent components at a later stage.
The forward bias on the emitter-base junction will cause current to flow across this junction. Current will consist of two components: electrons injected from the emituer into the base, and holes injected from the base into the emiter. As will hecome apparent shorty it is highly desirable to have the lirst component (electrons from emitter to base) at a much higher level than he second conponent (holes rom base to emiter). This can be accom plished by fabricating the device with a heavily dopcd emitter and a lightly doped base; thal is, the device is designed to have a high density of electrons in the emitter and a low density of holes in the hase.
The current that flows across the emitler-base junction will constitute the emitter curren i_{E}, as indicated in Fig. 5.3. The direction of i_{E} is "out of" the emitter lead, which is in the dircction of the hole current and opposite to the direction of the clectron current, with the mitter current i_{l} being equal to the sum of hicse two componens. However, since he electro
 he electron component.

[^11]

FIGURE 5.4 Profilics of minority-carrier concentrations in the base and in the cmiter of an npn transistor operating in the active mode: $v_{s \varepsilon}>0$ and $v_{C R} \geq 0$.

Let us now consider the electrons injected from the emitter into the basc. Thesc electrons will be minority carriers in the p-type basc region. Because the base is usually very thin, in the steady state the excess minority-carricr (electron) concentration in the base will have an almost-straight-line profile, as indicated by the solid straight line in Fig. 5.4. The electron concentration will be highest [denoted by $n_{p}(0) \mid$ at the emitter side and lowest (zero) at the collector side. ${ }^{2}$ As in the case of any forward-hiased $p n$ junction (Section 3.7.5), the concentration $n_{p}(0)$ will be proportional to $e^{u_{B E} N_{T}}$,

$$
\begin{equation*}
n_{p}(0)=n_{p 0} e^{z_{B E} / v_{T}} \tag{5.1}
\end{equation*}
$$

where $n_{p 0}$ is the thermal-equilibrium value of the minority-carrier (electron) concentration in the base region, $v_{B D}$ is the forward base-emitter bias voltage, and V_{τ} is the thermal voltage, which is equal in approximately 25 mV at room temperature. The reason for the zero concentration at the collector side of the base is that the positive collector voltage $v_{C B}$ causes the electrons at that end to be swept across the CBJ depletion region.

The tapered minority-carrier concentration profile (Fig. 5.4) causes the electrons injected into the base to diffuse through the base region toward the collector. This electron diffusion current I_{n} is directly proportional to the slope of the straight-line concentration profile,

$$
\begin{align*}
I_{n} & =A_{\Sigma} q D_{n} \frac{d n_{p}(x)}{d x} \tag{5.2}\\
& =A_{E} q D_{n}\left(-\frac{n_{y}(0)}{W}\right)
\end{align*}
$$

[^12] the base to be zero.
where A_{y} is the cross-sectional area of the base-emitter junction (in the direction perpend cular to the page), q is the magnitude of the electron charge, D_{n} is the electron diffusivity in the base, and W is the effective width of the base. Observe that the negative slope of the minority-carrier concentration results in a negative current I_{n} across the base; that is, I_{n} flow from right to left (in the negative direction of x)
Some of the electrons that are diffusing through the base region will combine with holes, which are the majority carriers in the base. However, since the base is usually very thin, the proportion of electrons "lost" through this recombination process will be quite small. Never theless, the recombination in the base region causes the excess minority-carrier concentration profile to deviate from a straight line and take the slightly concave shape indicated by the broken line in Fig. 5.4. The slope of the concentration profile at the EBJ is slightly higher an that at CBJ , with the difference accountiug for the small number of electrons lost the base region through recombination.

The Collector Current From the description above we see that most of the diffusing elec trons will reach the boundary of the collector-base depletion region. Because the collector is more positive than the base (by $v_{C B}$ volts), these successful electrons will be swept acros he CBJ deplction region into the collector. They will thus get "collected" to constitute the collector current i_{C}. Thus $i_{C}=I_{n}$, which will yield a negative value for i_{C}, indicating that i_{C} flows in the negative direction of the x axis (i.e., from right to left). Since we will take this be the positive direction of i_{C}, we can drop the negative sign in Eq. (5.2). Doing this and substituting for $n_{p}(0)$ from Eq. (5.1), we can thus express the collector current i_{c} as

$$
\begin{equation*}
i_{C}=I_{S} e^{v_{B E} / V_{T}} \tag{5.3}
\end{equation*}
$$

where the saturation current I_{S} is given by

$$
I_{S}=A_{E} q D_{n} n_{p 0} / W
$$

Substituling $n_{p 0}=n_{i}^{2} / N_{A}$, where n_{i} is the intrinsic carrier density and N_{A} is the doping concentration in the base, we can express I_{s} as

$$
\begin{equation*}
I_{S}=\frac{A_{G} q D_{n} n_{i}^{2}}{N_{A} W} \tag{5.4}
\end{equation*}
$$

An important observation to make here is that the magnitude of i_{C} is independent of $v_{C B}$ That is, as long as the collector is positive with respect to the base, the electrons that reach the collector side of the base region will be swept into the collector and register as collector current.
The saturation current I_{S} is inversely proportional to the base width W and is directly proportioual to the area of the EBJ. Typically I_{S} is in the range of $10^{-12} \mathrm{~A}$ to $10^{-18} \mathrm{~A}$ depending on the size of the devicc). Because I_{s} is proportional to n_{i}^{2}, it is a strong function of temperature, approximately doubling for every $5^{\circ} \mathrm{C}$ rise in temperature. (For the dependence of n_{i}^{2} on temperature, refer to Eq. 3.37.)
Since I_{s} is directly proportional to the junction area (i.e., the device size), it will also bc referred to as the scale current. Two transistors that are identical except that one has an EBJ area, say, twice that of the other will have saturation currents with that same ratio (i.e., 2). Thus for the same value of $\eta_{D E}$ the larger device will have a collector current wice that in the smaller device. This concept is frequently employed in integrated-circuit design.

The Base Current The base current i_{B} is composed of two components. The first component $i_{B 1}$ is duc to the holes injected from the base region into the emitter region. This current component is proportional to $e^{v_{B E} / V_{T}}$,

$$
\begin{equation*}
i_{B 1}=\frac{A_{E} q D_{p} n_{i}^{2}}{N_{D} L_{p}} e^{v_{B R} / V_{T}} \tag{5.5}
\end{equation*}
$$

where D_{p} is the hole diffusivity in the emitter, L_{p} is the hole diffusion length in the emitter, and N_{D} is the doping concentration of the emitter.
The second component of base current, $i_{p 2}$, is due to holes that have to be supplied by the external circuit in order to replace the holes lost from the base through the recombination process. An expression for $i_{B 2}$ can be found by noting that if the average time for a minority lectron to recombine with a majority hole in the base is denoted $\tau_{\text {(called minority-carrier }}$ ifetime), then in τ_{3} seconds the minority-carrier charge in the base, Q recombines wilh holes. Or course in the steady state, Q is replenished by electron injection from the emitter. es. Q_{n} every τ_{b} seconds,

$$
i_{B 2}=\frac{Q_{n}}{\tau_{b}}
$$

The minority-carricr charge stored in the base region, Q_{n}, can be found by reference to Fig. 5.4, Specifically, Q_{n} is represented by the area of the triangle under the straight-line distribution in the base, thus

$$
Q_{n}=A_{E} q \times \frac{1}{2} n_{p}(0) W
$$

Substituting for $n_{p}(0)$ from Eq. (5.1) and replacing $n_{p 0}$ by n_{i}^{2} / N_{A} gives

$$
\begin{equation*}
Q_{n}=\frac{A_{E} q W n_{i}^{2}}{2 N_{A}} e^{v_{B E} / V_{T}} \tag{5.7}
\end{equation*}
$$

which can be substituted in Eq . (5.6) to obtain

$$
\begin{equation*}
i_{B 2}=\frac{1}{2} \frac{A_{E} q W n_{i}^{2}}{\tau_{b} N_{A}} e^{v_{B E} / V_{T}} \tag{5.8}
\end{equation*}
$$

Combining Eqs. (5.5) and (5.8) and utilizing Eq. (5.4), we obtain for the total base current i_{B} the expression

$$
\begin{equation*}
i_{B}=I_{S}\left(\frac{D_{p}}{D_{n}} \frac{N_{A}}{N_{p}} \frac{W}{L_{p}}+\frac{1}{2} \frac{W^{2}}{D_{n} \tau_{b}}\right) e^{v_{v_{B E}} / V_{1}} \tag{5.9}
\end{equation*}
$$

Comparing Eqs. (5.3) and (5.9), we see that i_{b} can be expressed as a fraction of i_{C} as follows:

$$
\begin{equation*}
i_{B}=\frac{i_{C}}{\beta} \tag{5.10}
\end{equation*}
$$

That is,

$$
\begin{equation*}
i_{B}=\left(\frac{I_{S}}{\beta}\right) e^{v_{B E} / V_{T}} \tag{5.11}
\end{equation*}
$$

where β is given by

$$
\begin{equation*}
\beta=1 /\left(\frac{D_{v}}{D_{n}} \frac{N_{n}}{N_{D}} \frac{W}{L_{p}}+\frac{1}{2} \frac{W^{2}}{D_{n} \tau_{b}}\right) \tag{5.1}
\end{equation*}
$$

from which we see that β is a constant for a particular transistor For modern npn transis tors, β is in the range 50 to 200, but it can be as high as 1000 for special devices. For reasons that will become clear later, the constant β is called the common-emitter current gain.

Equation (5.12) indicates that the value of β is highly influenced by two factors: the width of the base region, W, and the relative dopings of the base region and the emitter region, $\left(N_{A} / N_{D}\right)$. To obtain a high β (which is highly desirable since β represents a gain parameter) the base should be thin (W small) and lightly doped and the emitter heavily doped (making $N_{\alpha} / N_{\mathrm{D}}$ small). Finally, we note that the discussion thus far assumes an idealized situation, where β is a constant for a given transistor.

The Emitter Current Since the current that enters a transistor must leave it, it can bc seen from Fig. 5.3 that the emitter current i_{k} is equal to the sum of the collector current i_{C} and the base current i_{B}; that is,

$$
\begin{equation*}
i_{R}=i_{C}+i_{B} \tag{5.13}
\end{equation*}
$$

Use of Eqs. (5.10) and (5.13) give

$$
\begin{equation*}
i_{E}=\frac{\beta+1}{\beta} i_{C} \tag{5.14}
\end{equation*}
$$

That is,

$$
\begin{equation*}
i_{F}=\frac{\beta+1}{\beta} I_{S} e^{v_{B E} / v_{T}} \tag{5.15}
\end{equation*}
$$

Alternatively, we can express Eq. (5.14) in the form

$$
i_{C}=\alpha i_{E}
$$

where the constant α is related to β by

$$
\begin{equation*}
\alpha=\frac{\beta}{\beta+1} \tag{5.17}
\end{equation*}
$$

Thus the emitter current in Eq. (5.15) can be written

$$
\begin{equation*}
i_{E}=\left(I_{S} / \alpha\right) e^{v_{R E} / V_{T}} \tag{5.18}
\end{equation*}
$$

Finally, we can use Eq. (5.17) to express β in terms of α; that is,

$$
\begin{equation*}
\beta=\frac{\alpha}{1-\alpha} \tag{5.19}
\end{equation*}
$$

It can he secn from Eq . (5.17) that α is a constant (for a particular transistor) that is less than but very close to unity. For instance, if $\beta=1.00$, then $\alpha \simeq 0.99$. Equation (5.19) reveals an important fact: Small changes in α correspond to very large changes in β. This mathematical observation manifests itself physically, with the result that transistors of the same type may have widely different values of β. For reasons that will become apparent later, α is called the common-base current gain.
Finally, we should note that because α and β characterize the operation of the BJT in the "forward-active" mode (as opposed to the "reverse-active" mode, which we shall discuss shortly), they are often denoted α_{F} and β_{F}. We shall use α and α_{F} interchangeably and, similarly, β and β_{F}.

(a)

(b)

FIGURE 5.5 Large-signal equivalent-circuit models of the npn BJT operating in the forward active mode

Recapitulation and Equivalent-Circuit Models We have presented a first-order model for the operation of the npn transistor in the active (or "forward" active) mode. Basically, the forward-bias voltage $v_{B E}$ causes an exponentially related current i_{C} to flow in the collector terminal. The collector current i_{C} is independent of the value of the collector voltage as long as the collector-base junction remains reverse-biased; that is, $v_{C B} \geq 0$. Thus in the active mode the collector terminal behaves as an ideal constant-current source where the value of the current is determined by ψ_{∞}. The base current i_{B} is a factor $1 / \beta_{r}$ of the collector current, and the emitter current is equal to the sum of the collector and base currents. Since $i_{\text {i }}$ is much smaller than i_{C} (i.e, $\beta_{\Gamma} \gtrdot 1$), $i_{\Gamma} \approx i_{C}$. More precisely, the collector curent is a fraction α_{Γ} of the emitter current, with α_{F} smaller than, but close to, unity.
This first-order model of transistor operation in the forward active mode can be represented by the cquivalent circuit shown in Fig. 5.5 (a). Here diode D_{k} has a scale current $I_{S E}$ cqual to (I_{S} / α_{F}) and thus provides a current $i_{\text {, related to }} z_{10}$ according to Eq (5.18). The current of the controlled source, which is equal to the collector current. is controlled by current of the controlled source, which is equal to the collector current, is controlled by $i_{B P}$ according to the exponential rclationship indicated, a restatement of Eq. (5.3). This
model is in essence a nonlinear voltage-controlled current source. It can be converted 10 the current-controlled current-source model shown in Fig. 5.5(b) by expressing the curthe current-controlled current-source model shown in Fig. $5.5(\mathrm{~b})$ by expressing the cur-
rent of the controlled source as $\alpha_{\mu} i_{i}$. Note that this model is also nonlinear because of the rent of the controlled source as $\alpha_{L} i_{E}$. Note that this model is also nonlinear because of the
exponential relationship of the cuirent i_{E} through diode D_{F} and the voltage $\gamma_{B E}$. From this exponential relationship of the current i_{E} through diode D_{F} and the voltage $\gamma_{B E}$. From this
model we observe that if the transistor is used as a two-port network with the input port model we observe that if the transistor is used as a two-port network with the input port
between E and B and the output port between C and B (i.e., with B as a conumon termibetween E and B and the output port betwcen C and B (i.e., with B as a conumon termicurrent gain.
 Ans. 0.64 V .0 .76 V
5.1 device structure and physical operation

4
387

FIGURE 5.7 Modcl for the $n p n$ transistor when operated in the reverse
active mode (fi.e., with the CBI forward biased and the

The large scale current $I_{S C}$ has the cffect that for the same current, the CBJ exhibits a lower voltage drop when forward biased than the forward voltage drop of the EBJ, $V_{B E}$. This point will have implications for the BJT's operation in the saturation mode.

```
WHimaHz
```


5.1.4 The Ebers-Moll (EM) Model

The model of Fig. 5.5(a) can be combined with that of Fig. 5.7 to obtain the circuit model shown in Fig. 5.8. Note that we have relabelled the currents through D_{T} and D_{C}, and the corresponding control currents of the controlled sources, as $i_{D E}$ and $i_{D C}$. Ebers and Moll, two

FIGURE 5.8 The Ebers-Moll (EM) model of the
npn transistor.
arly workers in the area, have shown that this composite model can be used to predict the en peration of the BJT in all of its possible modes. To see how this can be done, we derive xpressions for the terminal currents i_{E}, i_{C}, and i_{B} in terms of the junction voltages $v_{B E}$ and $v_{B C}$. Tewar in . 5 . 5.8 as follows:
model

$$
\begin{align*}
& i_{E}=i_{D E}-\alpha_{R} i_{D C} \tag{5.2}\\
& i_{C}=-i_{D C}+\alpha_{F} i_{D E} \tag{5.22}\\
& i_{B}=\left(1-\alpha_{F}\right) i_{D E}+\left(1-\alpha_{R}\right) i_{D C}
\end{align*}
$$

ion to express $i_{D E}$ and $i_{D C}$ as

$$
i_{D E}=I_{S E}\left(e^{v_{B E} / V_{T}}-1\right)
$$

and

$$
i_{D C}=I_{S C}\left(e^{v_{B C} / V_{T}}-1\right)
$$

Substituting for $i_{D E}$ and $i_{D C}$ in Eqs. (5.21), (5.22), and (5.23) and using the relationship in Eq. (5.20) yield the required expressions:

$$
\begin{aligned}
& i_{E}=\left(\frac{I_{S}}{\alpha_{F}}\right)\left(e^{v_{B E} / V_{T}}-1\right)-I_{S}\left(e^{v_{B C} / V_{T}}-1\right) \\
& i_{C}=I_{S}\left(e^{v_{B E} / V_{T}}-1\right)-\left(\frac{I_{S}}{\alpha_{R}}\right)\left(e^{v_{B C} / v_{t}}-1\right) \\
& i_{B}=\left(\frac{I_{S}}{\beta_{F}}\right)\left(e^{v_{B E} / V_{T}}-1\right)+\left(\frac{I_{S}}{\beta_{R}}\right)\left(e^{v_{B C} / V_{T}}-1\right)
\end{aligned}
$$

where

$$
\begin{equation*}
\beta_{F}=\frac{\alpha_{F}}{1-\alpha_{F}} \tag{5.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{R}=\frac{\alpha_{R}}{1-\alpha_{R}} \tag{5.30}
\end{equation*}
$$

As a first application of the EM model, we shall use it to predict the terminal currents of a transistor operating in the forward active mode. Here $v_{B E}$ is positive and in the range of 0.6 V to 0.8 V , and $v_{B C}$ is negative. One can easily see that terms containing $e^{v_{B C} / V_{T}}$ will be negligibly small and can be neglected to obtain

$$
\begin{align*}
& i_{E} \cong\left(\frac{I_{S}}{\alpha_{F}}\right) e^{v_{B E} / V_{T}}+I_{S}\left(1-\frac{1}{\alpha_{F}}\right) \tag{5.31}\\
& i_{C} \cong I_{S} e^{v_{B E} / V_{T}}+I_{S}\left(\frac{1}{\alpha_{R}}-1\right) \tag{5.32}\\
& i_{B} \cong\left(\frac{I_{S}}{\beta_{F}} e^{v_{B E} / V_{T}}-I_{S}\left(\frac{1}{\beta_{F}}+\frac{1}{\beta_{R}}\right)\right. \tag{5.33}
\end{align*}
$$

$\underset{\substack{\text { Expanded }}}{\text { scale }}$
FIGURE 5.9 The $i_{C}-v_{c B}$ characteristic of an npn transistor fed with a constant emitter current I_{E} The transistor enters the saturation mode of operation for $\nu_{C B}<-0.4 \mathrm{~V}$, and the collector current liminishes.

In each of these three equations, one can normally neglect the second term on the right-hand side. This results in the familiar current-voltage relationships we derived earlier, namely, Eqs. (5.18), (5.3), and (5.11), respectively.

Thus far, we have stated the condition for forward active mode operation as $v_{C B} \geq 0$ to ensure that the CBJ is reverse biased. In actual fact, however, a pn junction does not become effectively forward biased until the forward voltage across it exceeds approximately 0.5 V . It follows that one can maintain active mode operation of an $n p n$ transision for negative $v_{C B}$ down to approximately -0.4 V or so. This is illustrated in Fig. 5.9, which shows a sketch of i_{C} versus $v_{C B}$ for an npn transistor operated with a constant-emitter current I_{E}. Obsetve that i_{C} remains constant at $\alpha_{F} I_{E}$ for $v_{C B}$ going negative to approximately -0.4 V . Below this value of $v_{C B}$, the CBJ begins to conduct sufficiently that the transistor leaves the active mode and enters the saturation mode of operation, where i_{C} decreases. We shall study BJT saturation next. For now, however, note that we can use the EM equations to verify that the terms containing $e^{v_{B C} C_{T}}$ remain negligibly small for $v_{B C}$ as high as 0.4 V .

SXERCISE

5.6 For a BTT yith $\alpha_{r}=0.99, \alpha_{R}=0.02$, and $t_{s}=50^{45} \mathrm{~A}$, catculate the second term on the right hand side
 for $t_{55}-07 \mathrm{~V}$
Ans. $10^{17} \mathrm{~A} \cdot 49 \times 10^{-15} \mathrm{~A}: 3 \times 10^{-17} \mathrm{~A} ; 1.461 \mathrm{~mA} ; 1.46 \mathrm{~mA} ; 00145 \mathrm{~mA}$

FIGURE 5.10 Concentration profile of the minority carriers (electrons) in the base of an npn transistor operating in the saturation mode.

5.1.5 Operation in the Saturation ${ }^{3}$ Mode

Figure 5.9 indicates that as $v_{C B}$ is lowered below approximately 0.4 V , the BJT enters the saturation mode of operation. Ideally, $v_{C B}$ has no effect on the collector current in the active mode, but the situation changes dramatically in saturation: Increasing $v_{C B}$ in the negative direction-that is, increasing the forward-bias voltage of the CBJ-reduces i_{C}. To see this analytically, consider the Ebers-Moll expression for i_{C} in Eq. (5.27) and, for simplicity, neglect the terms not involving exponentials to obtain

$$
\begin{equation*}
i_{C}=I_{S} e^{v_{B E} / V_{T}}-\left(\frac{I_{S}}{\alpha_{R}}\right) e^{v_{B C} / V_{T}} \tag{5.34}
\end{equation*}
$$

The first term on the right-hand side is a result of the forward-biased EBJ, and the second term is a result of the forward-biased CBJ. The second term starts to play a role wben $v_{B C}$ exceeds approximately 0.4 V or so. $\mathrm{As} v_{B C}$ is increased, this terin becomes larger and subtracts from tbe first term, causing i_{c} to reduce, eventually reaching zero. Of course, one can operate the saturated transistor at any value of i_{C} lower than $\alpha_{F} I_{E}$. We will have more to say about saturation-mode operation in subsequent sections. Here, however, it is instructive to examin Fig. 5.10. Observe that because the CBJ is now forward biased, the electron concentration at the collector edge of the base is no longer zero; rather, it is a value proportional to $e^{\nu_{B C} V_{T}}$. Also note that the slope of the concentration profile is reduced in correspondence with the reduction in i_{C}.

[^13]
EXHCISE

5.7 (a) Use the EM expressions in Eqs 5.26 and (5.27) to show that the $i_{C}-v_{\epsilon B}$ relationship sketched
 exporentials.
(b) For the case $l_{S}=10^{-3} \mathrm{~A}, I_{E}=1 \mathrm{~mA}, \alpha_{F}=1$, and $\alpha_{R}=0.01$, find l_{C} for $v_{B C}=1 \mathrm{~V}, 40.4 \mathrm{~V}, 4.5 \mathrm{~V}$ +0.54 V , and +0.57 V . Also find the value of v_{B} at which $i_{c}=0$
(c) At the value of $v_{B C}$ that makes I_{C} Eero, what do you think i_{1}, hould be? Verify using Eq, $5: 28$ Ans. (b) $1 \mathrm{~mA}, 1 \mathrm{~mA} ; 0.55 \mathrm{~mA}, 0.76 \mathrm{~mA}, 0.20 \mathrm{~mA}, 576 \mathrm{mV}$ (c) 1 mA

5.1.6 The pnp Transistor

The $p n p$ transistor operates in a manner similar to that of the $n p n$ device described above Figure 5.11 shows a pnp transistor biased to operate in the active mode. Here the voltare V_{b} causes the p-type emitter to be higher in potential than the n-type base, thus forward-biasing the base-emitter junction. The collector-base junction is reverse-biased by the voltage V_{u} which keeps the ρ-type collector lower in potential than the n-type base

Unlike the $n p n$ transistor, current in the $p n p$ device is mainly conducted by holes injected from the emitter into the base as a result of the forward-bias voltage $V_{E B}$. Since the component of emitter current contributed by electrons injected from base to emitter is kept small by using a lightly doped base, most of the emitter current will be due to holes. The electrons injected from base to emitter give rise to the first component of base current, $i_{B 1}$. Also, a number of the holes injected into the base will recombine with the majority carriers in the base (electrons) and will thus be lost. The disappearing base electrons will have to be replaced from the external circuit, giving rise to the second component of base current, $i_{B 2}$. The holes that succeed in reaching the boundary of the depletion region of the collectorbase junction will be attracted by the negative voltage on the collector. Thus these holes will be swept across the depletion region into the collector and appear as collector current.

FIGURE 5.11 Current flow in a pnp transistor biased to operate in the active mode.

FIGURE 5.12 Large-signal model for the $p n p$ transistor operating in the active mode.

It can easily be seen from the above description that the current-voltage relationships of he $p n p$ transistor will be identical to those of the $n p n$ transistor except that $v_{B E}$ has to be replaced by $z_{T E B}$. Also, the large-signal active-mode operation of the $p n p$ transistor can be modeled by the circuit depicted in Fig. 5.12. As in the npn case, another version of this cquivalent circuit is possible in which the current source is replaced with a current controlled current source $\alpha_{F} i_{F}$. Finally, we note that the $p n p$ transistor can operate in the saturation mode in a manner analogons to that described for the npn device.

EXERCISES

18. Consider the rioder in Frg. 512 applied in the case of a pip tan stion whose base is stounded the emit ter is fed by a constatt-current source that supplies a $2-\mathrm{m} A$ chitent into the emitier terminal, and the collector is comnected to $\mathrm{a}-10-\mathrm{V}$ de supply. Find the emitter soltage, the base current and the collecto current if for his transistor $\beta=50$ and $I_{s}=10^{14} \mathrm{~A}$. Ans. 0.650 V: $39.2 \mu \mathrm{~A}, 1.96 \mathrm{~mA}$
5.9. For a pap transistor having $1_{s}=10^{-11} \mathrm{~A}$ and $\beta=100$, calculate $v_{\text {se }}$ for $l_{C}=15 \mathrm{~A}$ Ans, 0.643 V

5.2 CURRENT-VOLTAGE CHARACTERISTICS

5.2.1 Circuit Symbols and Conventions

The physical structure used thus far to explain transistor operation is rather cumbersome to employ in drawing the schematic of a multitransistor circuit. Fortunately, a very descriptive and convenient circuit symbol exists for the BJT. Figure 5.13(a) shows the symbol for the $n p n$ transistor; the pnp symbol is given in Fig. 5.13(b). In both symbols the emitter is distin guished by an arrowhead. This distinction is important because, as we have seen in the las section, practical BJTs are not symmetric devices.

The polarity of the device-npn or pnp-is indicated by the direction of the arrowhead on the emitter. This arrowhead points in the direction of normal current flow in the emitter which is also the forward dircction of the base-emitter junction. Since we have adopted a

(a)

(a)

pup
FIGURE 5.13 Circuit symbols for BIT

(b)

FIGURE 5.14 Voltage polarities and current flow in transistors biased in the active mode.
drawing convention by which currents flow from top to bottom, we will always draw pnp transistors in the manner shown in Fig. 5.13 (i.e., with their emitters on top).

Figure 5.14 shows $n p n$ and $p n p$ transistors biased to operate in the active mode. It should be mentioned in passing that the biasing arrangement shown, utilizing two dc voltage sources, is not a usual one and is used here merely to illustrate operation. Practical biasing schemes will be presented in Section 5.5. Figure 5.14 also indicates the reference and actual directions of current flow thronghout the transistor. Our convention will be to take the reference direction to coincide with the normal direction of current flow. Hence, normally, we should not encounter a negative value for i_{B}, i_{B}, or i_{C}.
The convenience of the circuit drawing convention that we have adopted should be obvious from Fig. 5.14. Note that currents flow from top to bottom and that voltages are higher at the top and lower at the bottom. The arrowhead on the emitter also implies the polarity of the emitter-base voltage that should be applied in order to forward bias the emitter-base junction. Just a glance at the circuit symbol of the pnp transistor, for example, indicates that we should make the emitter higher in voltage than the basc (by $\psi_{E B}$) in order to cause current to flow into the emitter (downward). Note that the symbol $v_{E B}$ means the voltage by which the emitter (E) is higher than the base (B). Thus for a pnp transistor operating in the active mode $v_{E B}$ is positive, while in an $n p n$ transistor $v_{b E}$ is positive.

From the discussion of Section 5.1 it follows that an npn transistor whose EBJ is forward biased will operate in the active mode as long as the collector voltage does not fall below that of the base by more than approximately 0.4 V . Otherwise, the transistor leaves the active mode and enters the saturation region of operation.

TABLE 5.2 Summary of the Bit Current Votage Relationships in the Active Mode
$i_{C}=I_{S} e^{v_{E E} / V_{T}}$
$i_{B}=\frac{i_{C}}{\beta}=\left(\frac{I_{S}}{\beta}\right) e^{v_{B F} / v_{T}}$
$i_{E}=\frac{i_{C}}{\alpha}=\left(\frac{I_{S}}{\alpha}\right) e^{v_{B E L} / \gamma_{T}}$
Note: For the pnp transistor, replace $v_{B E}$ with $v_{L B}$.
$i_{C}=\alpha i_{E} \quad i_{B}=(1-\alpha) i_{E}=\frac{i_{E}}{\beta+1}$
$i_{C}=\beta i_{\beta} \quad i_{E}=(\beta+1) i_{H}$
$\beta=\frac{\alpha}{1-\alpha} \quad \alpha=\frac{\beta}{\beta+1}$
$V_{T}=$ thermal volage $=\frac{k T}{q} \cong 25 \mathrm{mV}$ at room temperature

In a parallcl manner, the pnp transistor will operate in the active mode if the EBJ is forward biased and the collector voltage is not allowed to rise above that of the base by more than 0.4 Vor so. Otherwise, the CBJ becomes forward biased, and the pnp transistor enters the saturation region of operation.

For easy reference, we present in Table 5.2 a summary of the BJT current-voltage relationships in the active mode of operation. Note that for simplicity we use α and β rather than α_{F} and β_{F}.

The Constant n In the diode cquation (Chapter 3) we used a constant n in the exponential and mentioned that its value is between 1 and 2. For modern bipolar junction transistors the constant n is close to unity except in special cases: (1) at high currents (i.e., high relative to the normal current range of the particular transistor) the $i_{C}-v_{B F}$ relationship exhibits a value for n that is close to 2 , and (2) at low currents the $i_{B}-v_{B E}$ relationship shows a value for n of approximately 2 . Note that for our purposes we shall assume always that $n=1$.
The Collector-Base Reverse Current ($\left(_{\text {CBO }}\right.$) In our discussion of current flow in transistors we ignored the small reverse currents carried by thermally generated minority carriers. Although such currents can be safely neglected in modern transistors, the reverse current across the collector-base junction deserves some mention. This current, denoted $I_{\text {CBO }}$, is the reverse current flowing from collector to base with the emitter open-circuited (hence the subscript O). This current is usually in the nanoampere range, a value that is many times higher than its theoretically predicted value. As with the diode reverse current, $I_{C B O}$ contains a substantial leakage component, and its value is dependent on $v_{C B} . I_{C B O}$ depends strongly on temperature, approximately doubling for every $10^{\circ} \mathrm{C}$ rise. ${ }^{4}$

${ }^{4}$ The temperature coefficient of $I_{C B O}$ is dilferent from that of I_{S} because $I_{C B O}$ contains a substantial leakage componcrit

(3) M M

The transistor in the circuit of Fig. $5.15(\mathrm{a})$ has $\beta=100$ and exhibits a $\nabla_{B E}$ of 0.7 V at $i_{C}=1 \mathrm{~mA}$. Design the circuit so that a current of 2 mA flows through the collector and a voltage of +5 V appears at the collector

(a)

(b)
figure 5.15 Circuit for Example 5.1.

Solution

Refer to Fig. 5.15(b). We note at the outset that since we are required to design for $V_{C}=+5 \mathrm{~V}$, the CBJ will be reverse biased and the BJT will be operating in the active mode. To obtam a voltage $V_{C}=+5 \mathrm{~V}$ the voltage drop across R_{C} must be $15-5=10 \mathrm{~V}$. Now, since $I_{C}=2 \mathrm{~mA}$, the value of R_{C} should be selected according to

$$
R_{C}=\frac{10 \mathrm{~V}}{2 \mathrm{~mA}}=5 \mathrm{k} \Omega
$$

Since $v_{\text {RE }}=0.7 \mathrm{~V}$ at $i_{C}=1 \mathrm{~mA}$, the value of $v_{B E}$ at $i_{C}=2 \mathrm{~mA}$ is

$$
V_{B E}=0.7+V_{T} \ln \left(\frac{2}{1}\right)=0.717 \mathrm{~V}
$$

Since the base is at 0 V , the emiter voltage should be

$$
V_{E}=-0.717 \mathrm{~V}
$$

For $\beta=100, \alpha=100 / 101=0.99$. Thus the emitter current should be

$$
I_{E}=\frac{I_{C}}{\alpha}=\frac{2}{0.99}=2.02 \mathrm{~mA}
$$

Now the valuc requircd for R_{E} can be determined from

$$
\begin{aligned}
R_{E} & =\frac{V_{E}-(-15)}{I_{E}} \\
& =\frac{-0.717+15}{2.02}=7.07 \mathrm{k} \Omega
\end{aligned}
$$

This completes the design. We should note, however, that the calculations above were made with a degree of accuracy that is usually neither necessary nor justified in practice in view, for instance, of the expected tolerances of component valucs. Nevertheless, we chose to do the design precisely in
order to illustrate the various steps involved. order to illustrate the various steps involved

BXERCISES
5.10 In the circui shown in Fig. E5. 10. the volage at the emitter was measured and found $\beta=50$ find $I_{f} I_{B} I_{C}$ and V_{C}

figure E5.10

Ans: $0.93 \mathrm{~mA}: 18: 2,2$ A. $0.91 \mathrm{~mA}:+5.45 \mathrm{y}$
511 in the circuit showi in Fig E5 i1. ineasurement ndicates th to be 110 V and th to be +1.7 V . What ate α and β for his transistor? What woltage V. do you expect at the collector?

FIGURE ES, 11
Ans 0.994. 165, -1.75 V
 transistor

5.22 Graphical Representation of Transistor

 CharacteristicsIt is sometimes useful to describe the transistor $i-v$ characteristics graphically. Figure 5.16 shows the $i_{C}-\gamma_{B E}$ characteristic, which is the exponential relationship

$$
i_{C}=I_{S} e^{v_{B E} / v_{T}}
$$

which is identical (except for the value of constant n) to the diode $i-v$ relationship. The $i_{E}-v_{B E}$ and $i_{D-v_{B E}}$ characteristics are also exponential but with different scale currents: I_{S} / α for i_{E}, and I_{S} / β for i_{B}. Since the constant of the exponential characteristic, $1 / V_{T}$, is quite high $(\simeq 40)$, the curve rises very sharpiy. For $v_{B E}$ smaller than about 0.5 V , the current is negligibly small. ${ }^{5}$ Also, over most of the normal current range $v_{B E}$ lies in the range of 0.6 V to 0.8 V . In performing rapid first-order dc calculations we normally will assume that $V_{B E} \simeq 0.7 \mathrm{~V}$, which is similar to the approach used in the analysis of diode circuits (Chapter 3). For a pnp transistor, the $i_{\mathcal{C}}-v_{E B}$ characteristic will look identical to that of Fig. 5.16 with $v_{B E}$ replaced with $v_{E B}$

As in silicon diodes, the voltage across the emitter-base junction decreases by about 2 mV for each rise of $1^{\circ} \mathrm{C}$ in temperature, provided that the junction is operating at a constant current. Figure 5.17 illustrates this temperature dependence by depicting $i_{C}-v_{B E}$ curves at three different temperatures for an npn transistor.

The Common-Base Characteristics One way to describe the operation of a bipolar transistor is to plot i_{C} versus $v_{C B}$ for various values of i_{E}. We have already encountered one such graph, in Fig. 5.9, which we used to introduce the saturation mode of operation. A conceptual experimental setup for measuring such characteristics is shown in Fig. 5.18(a). Observe that in these measurements the base voltage is held constant, here at ground potential, and thus the base serves as a common terminal between the input and output ports. Consequently, the resulting set of characteristics, shown in Fig. 5.18(b), are known as common-base characteristics.

[^14] of transconductancc g_{m} realized with each device.

FIGURE 5.17 Effect of temperature on the $i_{C}-v_{B E}$ characteristic. At a constant emitter current (broken
line); $v_{D E}$ changes by $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$

FIGURE 5.18 The $i_{C}-v_{C B}$ characteristics of an $n p n$ transistor.

In the active region of operation, obtained for $v_{C B} \geq-0.4 \mathrm{~V}$ or so, the $i_{C}-v_{C B}$ curves deviate from our expectations in two ways. First, the curves are not horizontal straight lines but show a small positive slope, indicating that i_{C} depends slightly on $v_{C B}$ in the active inode. We shall discuss this phenomenon shortly. Second, at relatively large values of $v_{C B}$, the collector current shows a rapid increasc, which is a breakdown phenomenon that we will consider at a later stage.

As indicated in Fig. 5.18(b), each of the characteristic curves intersects the vertical axis at a current level equal to αI_{E}, where I_{E} is the constant emitter current at which the particular curve is measnred. The resulting value of α is a total or large-signal α; that is, $\alpha=i_{C} / i_{E}$, where i_{C} and i_{E} denote total collector and emitter currents, respectively. Here we recall that α is appropriately called the common-hase current gain. An incremental or small-signal α can be determined by measuring the change in $i_{C}, \Delta i_{C}$, obtained as a result of changing i_{E} by an increment $\Delta i_{E}, \alpha \equiv \Delta i_{C} / \Delta i_{E}$. This measurement is usually made at a constant $v_{C B}$, as indicated in Fig. 5.18(b). Usually, the values of incremental and total α differ slightly, but we shall not make a distinction between the two in this book.

Finally, turning to the saturation region, the Ebers-Moll equations can be used to obtain he following expression for the $i_{C}-v_{C B}$ curve in the saturation region (for $i_{E}=I_{E}$),

$$
\begin{equation*}
i_{C}=\alpha_{F} I_{E}-I_{S}\left(\frac{1}{\alpha_{R}}-\alpha_{F}\right) e^{v_{B C} C V_{T}} \tag{5.35}
\end{equation*}
$$

We can use this equation to determine the value of $v_{B C}$ at which i_{C} is reduced to zero. Recalling that the CBJ is much larger than the EBJ, the forward-voltage drop $v_{n C}$ will be smaller than $v_{B E}$ resulting in a collector-emitter voltage, $v_{C E}$, of 0.1 V to 0.3 V in saturation.

SyEBGISES

 2 mA constant-current source, and the collector be comnected to a -5 - V stpply hrough a 1 kS resis ance If the temperature inereases by $30^{\circ} \mathrm{C}$, find the changes in emitter ind collictor voltages. Meglect the effect of $\Psi_{\text {cho }}$
Ans. 60 mV : 0 V
5.13 Find the wathe of ccs at whichic. of an ipn transistor operated in the CB configuration with $1=1$ mA reduced (o) to hat its achee mode value and for to zero. Assume $\alpha_{F}=1$ and $\alpha_{R}=01$. The value of V_{R} was ineasured for $\theta_{C B}=0$ [see measuring setup in Fig 518 (a)] and found lo bc 0.70 V Repeat a) an (b) for $\alpha_{R}=0.01$

Ans. $0.628 \mathrm{~V},-0.645 \mathrm{~V},-0.568 \mathrm{~V}-0.585 \mathrm{~V}$

5.2.3 Dependence of i_{C} on the Collector Voltage-The Early Effect

When operated in the active region, practical BJTs show some dependence of the collector current on the collector voltage, with the result that their $i_{C}-v_{C B}$ characteristics are not perfectly horizontal straight lines. To see this dependence more clearly, consider the conceptual circuit shown in Fig. 5.19(a). The transistor is connected in the common-emitter configuration; that is, here the emitter serves as a common terminal between the input and output ports. The voltage $V_{B E}$ can be set to any desired value by adjusting the dc source connected between base and emitter. At each value of $V_{B E}$, the corresponding $i_{C}-v_{C E}$ characteristic curve can be measured point-by-point hy varying the de source connected between collector and emitter and measuring the corresponding collector current. The result is the family of $i_{C}-v_{C E}$ characteristic curves shown in Fig. 5.19(b) and known as common-emitter characteristics.

At low values of $v_{C E}$, as the collector voltage goes below that of the base by more than 0.4 V , the collector-base junction becomes forward biased and the transistor leaves the active mode and enters the saturation mode. We shall shortly look at the details of the $i_{C}-v_{C E}$ curves in the saturation region. At this time, however, we wish to examine the characteristic curves in the active region in detail. We observe that the characteristic curves, though still straight lines, have finite slope. In fact, when extrapolated, the characteristic lines meet at a point on the negative $v_{C E}$ axis, at $v_{C E}=-V_{A}$. The voltage V_{A}, a positive number, is a parameter for the particular BJT, with typical values in the range of 50 V to 100 V . It is called the Early voltage, after J. M. Early, the engineering scientist who first studied this phenomenon.

At a given value of $v_{B E}$, increasing $v_{C E}$ increases the reverse-bias voltage on the collectorbase junction and thus increases the width of the depletion region of this junction (refer to Fig. 5.3). This in turn results in a decrease in the effective base width W. Recalling that I_{S} is inversely proportional to $W(\mathrm{Eq} .54)$, we see that I_{s} will increase and that i_{C} increases proportionally. This is the Early effect.

(b)

FIGURE 5.19 (a) Conceptual circuit for measuring the $i_{C}-v_{C E}$ characteristics of the BIT. (b) The $i_{C}-v_{C E}$ characteristics of a practical BJT.

The linear dependence of i_{C} on $v_{C E}$ can be accounted for by assuming that I_{S} remains constant and including the factor $\left(1+v_{C H} / V_{A}\right)$ in the equation for i_{C} as follows:

$$
\begin{equation*}
i_{C}=I_{S} e^{v_{B E} / V_{X}}\left(1+\frac{v_{C E}}{V_{A}}\right) \tag{5.36}
\end{equation*}
$$

The nonzero slope of the $i_{C}-v_{C E}$ straight lines indicates that the output resistance looking into the collector is not infinite. Rather, it is finite and defined by

$$
\begin{equation*}
r_{o} \equiv\left[\left.\frac{\partial i_{C}}{\partial v_{C W}}\right|_{v_{B E}=\text { consshmı }}\right]^{-1} \tag{5.37}
\end{equation*}
$$

Using Eq. (5.36) we can show that

$$
\begin{equation*}
r_{o}=\frac{V_{A}+V_{C E}}{I_{C}} \tag{5.38}
\end{equation*}
$$

where I_{C} and $V_{C E}$ are the coordinates of the point at which the BJT is operating on the particular $i_{C}-v_{C E}$ curve (i.e., the curve obtained for $v_{B E}=V_{B E}$). Alternatively, we can write

$$
\begin{equation*}
r_{o}=\frac{V_{A}}{I_{C}^{\prime}} \tag{5.38a}
\end{equation*}
$$

where $I_{\mathcal{C}}^{\prime}$ is the value of the collector cuirent with the Early effect neglected; that is

$$
I_{C}^{\prime}=I_{S} e^{V_{B E} / V_{T}}
$$

It is rarely necessary to include the dependence of i_{C} on $v_{C E}$ in dc bias design and analysis. Howevcr, the finite output resistance r_{0} can have a significant effect on the gain of transistor amplifiers, as will be seen in later sections and chapters

The output resistance r_{0} can be included in the circuit model of the transistor. This is illustrated in Fig. 5.20, where we show large-signal circuit models of a common-emittcr npn transistor operating in the active mode. Observe that diode D_{β} models the exponential dependence of i_{B} on $v_{B E}$ and thus has a scale current $I_{S B}=I_{S} / \beta$. Also note that the two models

FIGURE 5.20 Large-signal equivalent-circuil models of an $n p n$ BJT operating in the active mode in the common-emitter configuration.
differ only in how the control function of the transistor is expressed: In the circuit of Fig. 5.20(a) voltage $v_{\text {SE }}$ controls the collector current source, while in the circuit of Fig. 5.20 (b), the base current i_{B} is the control parameter for the current source βi_{β}. Here we note that β represents the ideal current gain (i.e., when r_{o} is not present) of the common-emitter configuration, which is the reason for its name, the common-emitter current gain

```
4-4x+5
```


5.2.4 The Common-Emitter Characteristics

An altemative way of expressing the transistor common-emitter characteristics is illustrated in Fig. 5.21. Here the base current i_{B} rather than the base-emiter voltage $v_{B E}$ is used as a parameter. That is, each $i_{C}-v_{C E}$ curve is measured with the base fod with a constant current I_{B}. The resulting characteristics look similar to those in Fig. 5.19 except that here we show the breakdown phenomenon, which we shall discuss shortly. We should also mention that although it is not obvious from the graphs, the slope of the curves in the active region of operation differs from the corresponding slope in Fig. 5.19. This, however, is a rather subtle point and beyond our interest at this moment.

The Common-Emitter Current Gain β An important transistor parameter is the commonmitter current gain β_{F} or simply β. Thus far we have defined β as the ratio of the total current in the collector to the total current in the base, and we have assumed that β is contant for a given transistor, independent of the operating conditions. In the following we examine those two points in some detail
Consider a transistor operating in the active region at the point labeled Q in Fig. 5.21 that is, at a collector current $I_{C Q}$, a base current $I_{R Q}$, and a collector-emitter voltage $V_{C R E}$. The

FIGURE 5.21 Common-emiter characteristics. Note that the horizontal scale is expanded around the origin to show the saturation region in some detail.
ratio of the collector current to the base current is the large-signal or dc β,

$$
\begin{equation*}
\beta_{\mathrm{dc}} \equiv \frac{I_{C Q}}{I_{B Q}} \tag{5.39}
\end{equation*}
$$

which is the β we have been using in our description of transistor operation. It is commonly referred to on the manufacturer's data sheets as $h_{F E}$, a symbol that comes from the use of the hybrid, or h, two-port parameters to characterize transistor operation (see Appendix B). One can define another β based on incremental or small-signal quantitics. Referring to Fig. 5.21 we see that while keeping $v_{C E}$ constant at the value $V_{C E Q}$, changing i_{B} from $I_{B Q}$ to $\left(I_{B Q}+\Delta i_{B}\right)$ results in i_{C} increasing from $I_{C Q}$ to ($I_{C Q}+\Delta i_{C}$). Thus we can define the incremental or ac β, $\beta_{a c}$, as

$$
\begin{equation*}
\beta_{\mathrm{ac}}=\left.\frac{\Delta i_{c}}{\Delta i_{B}}\right|_{v_{C E}=\text { constant }} \tag{5.40}
\end{equation*}
$$

The magnitudes of β_{ac} and β_{dc} differ, typically by approximately 10% to 20%. In this book we shall not normally make a distinction between the two. Finally, we should mention that the small-signal β or β_{ic} is also known hy the alternate symbol $h_{j e}$. Because the small-signal β or z_{5} is defined and measured at a constant z_{CE} - that is, with a 7ero signal component between collector and emitter-it is known as the short-circuit common-emitter current gain.

The value of β depends on the current at which the transistor is operating, and the relation ship takes the form shown in Fig. 5.22. The physical processes that give rise to this relationship are beyond the scope of this book. Figure 5.22 also shows the temperalure dependence of β.

The Saturation Voltage $V_{\text {CEsat }}$ and Saturation Resistance $R_{\text {CEsat }}$ An expanded view of the common-emitter characteristics in the saturation region is shown in Fig. 5.23. The fact that the curves are "bunched" together in the saturation region implies that the incremental β is lower there than in the active region. A possible operating point in the saturation region is tbat labeled X . It is characterized by a base current I_{B}, a collector current $I_{\text {Csar }}$, and a collector-emitter voltage $V_{C \text { satt }}$. Note that $I_{\text {csat }}<\beta_{F} I_{p}$. Since the value of $I_{\text {satt }}$ is established

FIGURE 5.22 Typical dependence of β on I_{c} and on termperature in a modern integrated-circuit $n p n$ silicon transistor intended for operation around 1 mA .

FIGURE 5.23 An expanded view of the common-emitter characteristics in the saturation region.
by the circuit designer, a saturated transistor is said to be operating at a forced β given by

$$
\beta_{\text {forceet }} \equiv \frac{I_{C_{\text {sal }}}}{I_{z}}
$$

Thus,

$$
\begin{equation*}
\beta_{\text {forreal }}<\beta_{F} \tag{5.42}
\end{equation*}
$$

The ratio of β_{l} to $\beta_{\text {iorreet }}$ is known as the overdrive factor. The greater the overdrive factor the deeper the transistor is driven into saturation and the lower $V_{c \text { Esat }}$ becomes.

The $i_{C}-v_{C E}$ curves in saturation are rather steep, indicating that the saturated transistor xhibits a low collector-to-emitter resistance $R_{C \text { Esaa }}$,

$$
\begin{equation*}
\left.R_{C E \text { sat }} \equiv \frac{\partial v_{C E}}{\left.\partial i_{C}\right|_{C}}\right|_{i_{i=1}=I_{B}} ^{i_{c}=I_{c \mathrm{cu}}} \tag{5.43}
\end{equation*}
$$

Typically, $R_{C \text { crat }}$ ranges from a few ohms to a few tens of ohms.
Figure $5.24(\mathrm{~b})$ shows one of the $i_{C}-v_{C E}$ characteristic curves of the saturated transis or shown in Fig. 5.24(a). It is interesting to note that the curve intersects the $v_{C E}$ axis at $V_{T} \ln \left(1 / \alpha_{R}\right)$, a value common to all the $i_{C}-v_{C E}$ curvcs. We have also shown in Fig. 5.24(b) the tangent at operating point X of slope $1 / R_{C F \text { sat }}$. When extrapolated, the tangent inter sccts the $v_{C E}$-axis at a voltage $V_{\text {CEuff }}$ typically approximately 0.1 V . It follows that the $i_{C}-v_{C}$ characteristic of a saturated Iransistor can be approximately represented by the equivalent circui shown in Fig. 5.24 (c). At the collector side, the transistor is represented hy a resistance $R_{C E s a t}$ in

(a)
(b)

(c)

(d)

IGURE 5.24 (a) An $n p n$ transistor operated in saturation mode with a constant base current I_{B}. (b) Th $i_{C}-v_{C E}$ characteristic curve corresponding to $i_{B}=I_{B}$. The curve can be approximated by a straight line of lope $1 / R_{C E \text { sat }}$. (c) Equivalen-circuit representation of the saturated transistor. (d) A simplified equivalent circuit model of the saturated transistor.
series with a battery $V_{C E \text { off }}$. Thus the saturation voltage $V_{C \text { Csat }}$ can be found from

$$
\begin{equation*}
V_{C E \text { sat }}=V_{C E \text { off }}+I_{C \text { sal }} R_{C E \text { sat }} \tag{5.44}
\end{equation*}
$$

Typically, $V_{C E \text { Eat }}$ falls in the range of 0.1 V to 0.3 V . For many applications the even simpler model shown in Fig. 5.24(d) suffices. The offset voltage of a saturated transistor though model shown in Fig. 5.24(d) suffices. The offset voltage of a saturated transistor, though istics go right through the origin of the $i_{D}-v_{D S}$ plane.
It is interesting and instuctive to use the Ebers-Moll

It is interesting and instuctive to use the Ebers-Moll model to derive analytical expressions for the characteristics of the saturated transistor. Toward that end we use Eqs. (5.28) and
(5.27), substitute $i_{B}=I_{B}$, and neglect the small terms that do not include exponentials; thus, (.27), sabstitate $i_{B}=l_{B}$, and neglect the small terms that do not include exponentials; thus,

$$
I_{B}=\frac{I_{S}}{\beta} e^{v_{B E} / V_{T}}+\frac{I_{S}}{\beta_{e}} e^{v_{B C} / V_{T}}
$$

$$
\begin{align*}
& I_{B}=\frac{I_{S}}{\beta_{F}} e^{v_{B E} / V_{T}}+\frac{I_{S}}{\beta_{R}} e^{v_{B C} / V_{T}} \tag{5.45}\\
& i_{C}=I_{S} e^{v_{B_{B E}} / v_{T}}-\frac{I_{S}}{\alpha_{R}} e^{v_{B C} / v_{T}} \tag{5.46}
\end{align*}
$$

Dividing Eq. (5.46) by Eq. (5.45) and writing $v_{B E}=v_{B C}+v_{C E}$ enables us to cxpress i_{C} in the forn

$$
\begin{equation*}
i_{C}=\left(\beta_{F} I_{B}\right)\left(\frac{e^{v_{C E} / V_{T}}-\frac{1}{\alpha_{R}}}{e^{v_{C L_{L}} / V_{T}}+\frac{\beta_{F}}{\beta_{R}}}\right) \tag{5.47}
\end{equation*}
$$

This is the equation of the $i_{C}-v_{C E}$ characteristic curve obtained when the base is driven with a constant current I_{n}. Figure 5.25 shows a typical plot of the normalized collector current $i_{C} / /\left(\beta_{f} I_{B}\right)$,

FIGURE 5.25 Plot of the normalized i_{C} versus $v_{C E}$ for an $n p n$ transistor with $\beta_{F}=100$ and $\alpha_{R}=0.1$. This is a plot of Eq. (5.47), which is derived using the Ebcrs-Moll model.
which is equal to ($\beta_{\text {forred }} / \beta_{F}$), versus v_{CE}. As shown, the curve can be approximated by a straigh line coincident with the tangent at the point $\beta_{\text {forced }} / \beta_{F}=0.5$. It can be shown that this tangen has a slope of approximately $10 \mathrm{~V}^{-1}$, independent of the transistor parameters. Thus,

$$
R_{C E \text { sat }}=1 / 10 \beta_{F} I_{B}
$$

Other important parameters of the normalized plot are indicated in Fig. 5.25. Finally, we can obtain an expression for $V_{\text {CEsal }}$ by substituting $i_{C}=I_{\text {Csat }}=\beta_{\text {forceid }} I_{B}$ and $v_{C E}=V_{C E \text { sat }}$ in Eq. (5.47),

$$
V_{C E \text { sit }}=V_{T} \ln \frac{1+\left(\beta_{\text {forred }}+1\right) / \beta_{R}}{1-\left(\beta_{\text {finved }} / \beta_{F}\right)}
$$

EXERCISES

5.16 An npn transistor charactertzd by $\beta_{F}=100$ and $\alpha_{R}=01$ is operated in saturation with a constant base cu rent of 01 mA and a forced B of 10 Find the values of V_{C} at $t=0 R$ and V, Se the later the Ggures to obtain an approximate value for $V_{C \text { w }}$, Ii.e, using the equivailent cricuit model of fig $.5 .24(\mathrm{c})$ I Find a more accirate value tor $V_{\text {Lr. }}$ using Eq, (5.49) and compare resilts. Repeat for a $\beta_{\text {foroted }}$ of 20. Ans. 58 mV . 10 2: 120 mV : 130 mV and $118 \mathrm{mV}, 140 \mathrm{mV}$ and 137 mV
5.17 Measurements made on a BIT operated in saturation wilh a constant base-curtent dive provide the followins data at $t=5 \mathrm{~mA},=170 \mathrm{mV}$ at $i_{c}=2 \mathrm{~mA},=110 \mathrm{mV}$ what ir the provide the offset volitige V_{I} m ind saturation rcsistance $R_{\text {CEsat }}$ in his situation? Ans. 70 ml : 20Ω

5.2.5 Transistor Breakdown

The maximum voltages that can be applied to a BJT are limited by the EBJ and CBJ break down effects that follow the avalanche multiplication mechanism described in Section 3.74 Consider first the common-hase configuration. The $i_{C}-i_{C B}$ characteristics in Fig. 5.18(b) indicate that for $i_{E}=0$ (i.e., with the emitter open-circuited) the collector-base junction break own at a voltage denoted by $B V_{C B O}$. For $i_{k}>0$, breakdown occurs at voltages smaller than $B V_{C B O}$. Typically, $B V_{C B O}$ is greater than 50 V

Next consider the common-emitter characteristics of Fig. 5.21, which show breakdown occurring at a voltage $B V_{c E i}$. Here, although breakdown is still of the avalanche type, the effects on the characteristics are more complex than in the common-base configuration. W will not explain these in detail; it is sufficient to point out that typically $B V_{\text {CEO }}$ is about half $B V_{C B O}$. On fransistor data sheets, $B V_{C E O}$ is sometimes referred to as the sustaining voltag $V_{C F O}$.
Breakdown of the CBJ in either the common-base or common-emitter configuration is not destructive as long as the power dissipation in the device is kept within safe limits. This, how ver, is not the case with the breakdown of the enitter-base junction. The EBJ breaks down in an avalanche manner at a voltage $B V_{E B O}$ much smaller than $B V_{C B O}$. Typically, $B V_{E B O}$ is in the range of 6 V to 8 V , and the breakdown is destructive in the sense that the β of the transistor is permanently reduced. This does not prevent use of the EBJ as a zener diode to generate refer ence voltages in IC design. In such applications one is not concerned with the β-degradatio

A circuit arrangement to prevent EBJ breakdown in IC amplifiers will be discussed in Chapter 9. Transistor breakdown and the maximum allowable power dissipation are . Fhameters in the design of power amphifiers (Chapter 14)

EXERGSE
18. What is the output :oltage of the cifcut in Fis. E5. 18 it the transistor $B V_{\text {aco }}=70$ V

FIGUREESAB
Ans: 60 V

526 Summary

We conclude our study of the current-voltage characteristics of the BJT wilh a summary of mportant results in Table 5.3

25 5.3 THE BJT AS AN AMPLIFIER AND AS A SWITCH

Having studicd the terminal characteristics of the BJT, we are now ready to consider its two major areas of application: as a signal amplifier, ${ }^{\text {b }}$ and as a digital-circuit switch. The basis for the amplifier application is the fact that when the BJT is operated in the active mode, acts as a voltage-controlled current source: Changes in the base-emitter voltage $v_{B E}$ give rise to changes in the collector cuirent i_{c}. Thus in the active mode the BJT can be used to implement a transconductance amplifier (see Section 1.5). Voltage amplification can be obtained simply by passing the collector current through a resistance R_{C}, as will be sce shortly.
${ }^{6}$ An introduction to amplifiers from an external-terminals point of view is presented in Sections 1.4

uhis material before procceding with the study of BJT amplificics.

TABLE 5．3 Summary of the BJT Current－voltage Characteristics

Circuit Symbol and Directions of Current flow
pnp Transistor

Operation in the Active Mode
（for Amplifier Application）
Conditions：
．EBJ Forward Biased

2．CBJ Reversed Biased

Current－Voltage Relationship

$$
\begin{aligned}
& \text { Typically, } v_{B E}=0.7 \mathrm{~V} \\
& v_{B C} \leq V_{B C o n} ; V_{B C_{0 n}} \cong 0.4 \mathrm{~V}
\end{aligned}
$$

gi $i_{C}=I_{S} e^{v_{U E} / v_{T}}$
$v_{E B}>V_{\text {EBon }} ; V_{E B o n} \cong 0.5 \mathrm{~V}$
Typically，$v_{E B}=0.7 \mathrm{~V}$
$v_{\text {CB }} \leq V_{\text {CBon }} ; V_{\text {CBоп }} \cong 0.4 \mathrm{~V}$

$$
\Rightarrow v_{C E} \geq 0.3 \mathrm{~V}
$$

$$
\Rightarrow v_{E C} \geq 0.0 \mathrm{v}
$$

$$
\text { 承 } \quad i_{C}=I_{s} e^{v_{E A} / V_{1}}
$$

$$
\begin{array}{ll}
\text { 曷 } & i_{B}=i_{C} / \beta \quad \Leftrightarrow \quad i_{C}=\beta i_{B} \\
\text { y } & i_{E}=i_{C} / \alpha \quad \Leftrightarrow \quad i_{C}=\alpha i_{E} \\
\text { g } & \beta=\frac{\alpha}{1-\alpha} \Leftrightarrow \quad \Leftrightarrow=\frac{\beta}{\beta+1}
\end{array}
$$

Large－Signal Equivalent－Circuit
Model（Including the Early

$i_{B}=\left(\frac{I_{S}}{\beta}\right) e^{v_{B E} / v^{\prime}}$
$i_{B}=\left(\frac{I_{S}}{\beta}\right) e^{v_{E B} / V_{T}}$
$i_{C}=I_{S} e^{v_{B E} / V_{T}}\left(1+\frac{v_{C E}}{V_{A}}\right)$
$i_{C}=I_{S} e^{v_{E B} / V_{T}}\left(1+\frac{v_{E C}}{: V_{A} \mid}\right)$
$r_{o}=V_{A} /\left(I_{S} e^{V_{B E} / V_{T}}\right)$
$r_{o}=\left|V_{A}\right| /\left(I_{S} e^{\left.{ }^{E_{B} V_{T}}\right)}\right.$

$$
\begin{array}{cl}
i_{D E}=I_{S E}\left(e^{v_{S E} / V_{T}}-1\right) & i_{D E}=I_{S E}\left(e^{v_{E B} / v_{T}}-1\right) \\
i_{D C}=I_{S C}\left(e^{v_{B C} / v_{T}}-1\right) & i_{D C}=I_{S C}\left(e^{v_{C B} / V_{T}}-1\right) \\
\alpha_{F} I_{S E}=\alpha_{R} I_{S C}=I_{S} \\
\frac{I_{S C}}{l_{C C}}=\frac{\alpha_{F}}{\alpha_{0}}=\frac{\text { CBJ Area }}{\text { EBJ Arca }}
\end{array}
$$

Operation in the Saturation Mod

1．EBJ Forward－Biased
2．CBJ Forward－Biased

Currents

Equivalent Circuils

$$
\left|V_{C E \text { Eatal }}\right|=V_{T} \ln \left[\frac{1+\left(\beta_{\text {forcuad }}+1\right) / \beta_{F}}{1-\beta_{\text {forceca }} / \beta_{F}}\right]
$$

For $\quad \beta_{\text {fored }}=\beta_{F} / 2: \quad R_{C E_{\text {sat }}}=1 / 10 \beta_{F} I_{B}$

Since we are particularly interested in linear amplification, we will have to devise a way to achieve it in the face of the highly nonlinear behavior of the transistor, namely, that the collector current i_{C} is exponentially related to $v_{B E}$. We will use the approach described in general terms in Section 1.4. Specifically, we will bias the transistor to operwill superite the signal to be amplified, v_{b} on the dc voltage $V_{B E}$. By keeping the will superimpose the signal to be amplified, $v_{b e}$, on the dc voltage $V_{B E}$. By keeping the short, almost liner segment of the $i_{c-\psi}$ characteristic; thus, the change in collector cursent, i will be linearly telated to $i{ }_{c}$ We will study the small-signal operation of the BIT
 "big picure": We will sidy the tor or lare-signal operation of BIT amplifier From the transfer charalic of the circuit, we will be able to see clearly the region over the transer circit can BJT can be employed as a switch.

5.3.1 Large-Signal Operation-The Transfer Characteristic

Figure $5.26(a)$ shows the basic structure (a skeleton) of the most commonly used BJT amplifier, the grounded-emitter or common-emitter (CE) circuit. The total input voltage v_{I} (bias + signal) is applied between base and emitter; that is, $v_{B E}=v_{r}$. The total output voltage v_{O} (bias + signal) is taken between collector and ground; that is, $v_{O}=v_{C E}$. Resistor R_{C} has
 bias Hi BTT as well as to supply the wower $c_{c e}$. ${ }_{c}$. The operation of the amplifier.
Figure $5.26(\mathrm{~b})$ shows the
To understand how this characteristic arises, we first express v_{0} as

$$
\begin{equation*}
v_{O}=v_{C E}=V_{C C}-R_{C} i_{C} \tag{5.50}
\end{equation*}
$$

Next, we observe that since $v_{B E}=v_{l}$, the transistor will be effectively cutoff for $v_{f}<0.5 \mathrm{~V}$ or so. Thus, for the range $0<v_{l}<0.5 \mathrm{~V} ; i_{C}$ will be negligibly small, and v_{O} will be equal to the supply voltage $V_{C C}$ (segmeut $X Y$ of the transfer curve).

As ν_{T} is increased above 0.5 V , the transistor begins to conduct, and i_{C} increases. From Eq. (5.50), we see that v_{o} decreases. However, since initially v_{o} will be large, the BJT will be operating in the active mode, which gives tise to the sharply descending segment $Y Z$ of the voltage transfer curve. The equation for this scement can be obtained by substituting in Eq. (5.50) the active-mode expression for i_{C}, namely,

$$
\begin{aligned}
i_{C} & \cong I_{S} e^{\gamma_{R E} / V_{7}} \\
& =I_{S} e^{\eta_{1} / V_{T}}
\end{aligned}
$$

where we have, for simplicity, neglected the Early effect. Thus wc obtain

$$
\begin{equation*}
v_{O}=V_{C C}-R_{C} I_{S} e^{v_{/} / v_{T}} \tag{5.51}
\end{equation*}
$$

We observe that the exponential term in this equation gives rise to the steep slope of the $Y Z$ segment of thc transfer curve. Active-mode opcration ends when the collcctor voltage (v_{O} or $v_{C E}$) falls by 0.4 V or so below that of the base (v_{I} or $v_{b E}$). At this point, the CBJ turns on, and the transistor enters the saturation region. This is indicated by point Z on the transfer curve.

FIGURE 5.26 (a) Basic common-emitter amplifier circuit. (b) Transfer characteristic of the circuit in (a). The amplifier is biascd at a point Q , and a small voltage signal v_{i} is superimposed on the dc bias voltage. $V_{B_{B}}$ larger than that of v_{i} by the voltage gain A_{w}.

Obscrve that a further increase in $v_{B E}$ causes $v_{C E}$ to decrease only slightly: In the saturation region, $v_{C E}=V_{C E \text { sat }}$ which falls in the narrow range of 0.1 V to 0.2 V . It is the almost constant $V_{\text {Ctsaa }}$ that gives this regiou of BJT operation the name saturation. The collecto
curent will also remain nearly constant at the value $I_{\text {Csat }}$,

$$
\begin{equation*}
I_{C \text { sat }}=\frac{V_{C C}-V_{C E \text { sat }}}{R_{C}} \tag{5.52}
\end{equation*}
$$

We recall from our study of the saturation region of operation in the previous section that the saturated BJT exhibits a very small resistance $R_{\text {CFsar }}$ between its collector and emitter. Thus, when saturated, the transistor in Fig. 5.26 provides a low-resistance path between the collector node C and ground and hence can be thought of as a closed switch. On the other hand, when the BJT is cut off, it conducts negligibly small (ideally zero)
current and thus acts as an open switch, effectively disconnecting node C from ground The status of the switch (i.e., open or closed) is determined by the value of the control voltage $v_{B E}$. Very shortly, we will show that the BJT switch can also be controlled by the base current.

5.3.2 Amplifier Gain

To operate the BJT as a linear amplifier, it must be biased at a point in the active region Figure 5.26 (b) shows such a bias point, labeled Q (for quiescent point), and characterized by a dc base-emitter voltage $V_{B E}$ and a dc collector-emitter voltage $V_{C E}$. If the collector current at this value of $V_{B E}$ is denoted I_{C}, that is,

$$
\begin{equation*}
I_{C}=I_{S} e^{V_{B E} / V_{T}} \tag{5.53}
\end{equation*}
$$

then from the circuit in Fig. 5.26(a) we can write

$$
\begin{equation*}
V_{C E}=V_{C C}-R_{C} I_{C} \tag{5.54}
\end{equation*}
$$

Now, if the signal to be amplified, v_{i}, is superimposed on $V_{B E}$ and kept sufficiently small, as indicated in Fig. 5.26 (b), the instantaneous operating point will be constrained to a relatively short, almost-linear segment of the transfer curve around the bias point Q . The slope of this linear segment will be equal to the slope of the tangent to the transfer curve at Q . This slope is the voltage gain of the anplifier for small-input signals around Q. An expression for the small-signal gain A_{v} can be found by differentiating the expression in Eq. (5,51) and evaluating the derivative at point Q ; that is, for $v_{I}=V_{B E}$,

$$
\left.A_{v} \equiv \frac{d v_{o}}{d v_{I}}\right|_{v_{i}=V_{k t}}
$$

Thus,

$$
A_{v}=-\frac{1}{V_{T}} I_{S} e^{V_{B E} / V_{\gamma}} R_{C}
$$

Now, using Eq. (5.53) we can express A_{v} in compact form:

$$
\begin{equation*}
A_{v}=-\frac{I_{C} R_{C}}{V_{T}}=-\frac{V_{R C}}{V_{T}} \tag{5.56}
\end{equation*}
$$

where $V_{R C}$ is the de voltage drop across R_{C},

$$
\begin{equation*}
V_{R C}=V_{C C}-V_{C E} \tag{5.57}
\end{equation*}
$$

Observe that the CE amplifier is inverting; that is, the output signal is 180° out of phase relative to the input signal. The simple expression in Eq. (5.56) indicates that the voltag gain of the common-emitter amplifier is the ratio of the dc voltage drop across R_{C} to the ther mal voltage $V_{T}(\cong 25 \mathrm{mV}$ at room temperature). It follows that to maximize the voltage gain we should use as large a voltage drop across \dot{R}_{C} as possible. For a given value of $V_{C C}$, Eq. (5.57) indicates that to increase $V_{R C}$ we have to operate at a lower $V_{C E}$. However, reference to Fig. 5.26(b) shows that a lower $V_{C E}$ means a bias point Q close to the end of the activeregion segment, which might uot leave sufficient room for the negative-output signal swing
vithout the amplifier entering the saturation region. If this happens, the negative peaks of the waveform of u will be flattened Indeed, it is the need to allow sufficient room for our put signal swing that detcrmines the most effective placement of the bias point Q on the active-region segment, YZ , of the transfer curve. Placing Q too high on this segment not only results in reduced gain (because $V_{P C}$ is lower) but could possibly limit the available range of positive signal swing. At the positive end, the limitation is imposed by the BJT cut ting off, in which event the positive-output peaks would be clipped off at a level equal to Finally it is uscrul to note that the theoretical maximum gain A is obtained by hiasin ce BJT at the edge of saturation which of course would not leavc any room for negative signal swing. The resulting gain is given by

$$
A_{n}=-\frac{V_{C C}-V_{C E s a t}}{V_{T}}
$$

Thus,

$$
A_{v \max } \equiv-\frac{V_{C C}}{V_{T}}
$$

Although the gain can be increased by using a larger supply voltage, other consideration come into play when determining an appropriate value for $V_{C C}$. In fact, the trend has been toward using lower and lower supply voltages, currently approaching 1 V or so. At such low supply voltages, large gain values can be obtained by replacing the resistance R_{C} with a constant-cnrrent source, as will be seen in Chapter 6.

3HMP

Consider a common-emitter circuit using a BJT having $I_{S}=10^{-15} \mathrm{~A}$, a collector resistance $R_{C}=$ $6.8 \mathrm{k} \Omega$, and a power supply $V_{C C}=10 \mathrm{~V}$.
(a) Detenmine the value of the bias voltage $V_{B E}$ required to operate the transistor at $V_{C E}=3.2 \mathrm{~V}$ What is the corresponding value of I_{C} ?
(b) Find the voltage gain A_{v} at this bias point. If an input sine-wave signal of $5-\mathrm{mV}$ peak amplitude is superimposed on $V_{B E}$, find the amplitude of the output sine-wave signal (assume linea operation).
(c) Find the positive increment in $v_{B E}$ (above $V_{B E}$) that drives the transistor to the edge of saturation, where $v_{C E}=0.3 \mathrm{~V}$.
(d) Find the negative increment in $v_{B E}$ that drives the transistor to within 1% of cutoff (i.e., to $v_{0}=0.99 V_{C C}$.

Solution

(a)

$$
\begin{aligned}
I_{C} & =\frac{V_{C C}-V_{C E}}{R_{C}} \\
& =\frac{10-3.2}{6.8}=1 \mathrm{~mA}
\end{aligned}
$$

The value of $V_{B E}$ can be determined from

$$
1 \times 10^{-3}=10^{-15} e^{\gamma_{B E^{\prime}} / V_{T}}
$$

which results in

$$
V_{B E}=690.8 \mathrm{mV}
$$

(b)

$$
\begin{aligned}
A_{v} & =-\frac{V_{C C}-V_{C E}}{V_{T}} \\
& =-\frac{10-3.2}{0.025}=-272 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

$$
\hat{V}_{0}=272 \times 0.005=1.36 \mathrm{~V}
$$

(c) For $v_{C E}=0.3 \mathrm{~V}$,

$$
i_{C}=\frac{10-0.3}{6.8}=1.617 \mathrm{~mA}
$$

To increase i_{C} from 1 mA to $1.617 \mathrm{~mA}, v_{D E}$ must be increased by

$$
\begin{aligned}
\Delta v_{B E} & =V_{T} \ln \left(\frac{1.617}{1}\right) \\
& =12 \mathrm{mV}
\end{aligned}
$$

(d) For $v_{o}=0.99 V_{C C}=9.9 \mathrm{~V}$,

$$
i_{C}=\frac{10-9.9}{6.8}=0.0147 \mathrm{~mA}
$$

To decrease i_{C} from 1 mA to $0.0147 \mathrm{~mA}, v_{B E}$ must change by

$$
\begin{aligned}
\Delta v_{B E} & =V_{T} \ln \left(\frac{0.0147}{1}\right) \\
& =-105.5 \mathrm{mV}
\end{aligned}
$$

EXERCISE

5.if For the situation described in Example 5.2, while keeping 1 a unchanged at 1 mA find the value of R hat wil resulv in volage gan ol -320 V H . What is the largest negative signal swing allowed at the output (assume that v er is not to decrease below 03 V)? What (approximately) is the corresponding input signal amplitude? (Assume linear operationi), Ans. $8 \mathrm{k} \Omega, 1.7 \mathrm{~V}, 5.3 \mathrm{mV}$

5.3.3 Graphical Analysis

Although formal graphical methods are of little practical valuc in the analysis and design of most transistor circuits, it is illustrative to portray graphically the operation of a simple transistor amplifier circuit. Consider the circuit of Fig. 5.27, which is similar to the circuit we have been studying except for an added resistance in the base lead, R_{B}. A graphical analysis of the operation of this circuit can be performed as follows: First, we have to determine the dc bias point. Toward that end we set $v_{i}=0$ and use the technique illustrated in Fig. 5.28 to determine the dc base current I_{B}. We next move to the $i_{C} C^{-y_{C E}}$ characteristics, shown in Fig. 5.29. We know that the operating point win he on the $i_{C}-v_{C E}$ curve corresponding the value of base current we have detrmine (he curve $i_{s} I_{B}$). Whes its on curve will be determined by the collector circuit. Specifically, the collector circuit impose he constraint

$$
v_{C E}=V_{C C}-i_{C} R_{C}
$$

which can be rewritten as

$$
i_{C}=\frac{V_{C C}}{R_{C}}-\frac{1}{R_{C}} v_{C E}
$$

which represents a linear relationship between $v_{C E}$ and i_{C}. This relationship can be represented by a straight line, as shown in Fig. 5.29. Since R_{C} can be considered the amplifier load,

FIGURE 5.28 Graphical construction for the determination of the dc base current in the circuit of Fig. 5.27.

Chapter 5 bipolar junction transistors (bjts)

FIGURE 5.29 Graphical construccion for determining the de collector current I_{c} and the collector-toemitter voltage $V_{C E}$ in the circuit of Fig. 5.27.
the straight line of slope $-1 / R_{C}$ is known as the load line.' The dc bias point, or quiescent
 base current I_{B}. The coordinates of point Q give the dc collector current I_{C} and the dc collector-to-emitter voltage $V_{C E}$. Observe that for amplifier operation, Q should be in the active region and furthermore should be located so as to allow for a reasonable signal swing as the input signal v_{i} is applied. This will become clearer shortly.

The situation when v_{i} is applied is illustrated in Fig. 5.30. Consider first Fig. 5.30(a), which shows a signal v_{i} having a tirangular waverorm being superimposed on the do voltage $V_{B B}$. Corresponding to each instantaneous value of $V_{B B}+v_{i}(t)$, one can draw a straight line with slope $-1 / R_{B}$. Such an "instantaneous load line" intersects the $i_{B}-v_{B E}$ curve at a point whose coordinates give the total instantaneous values of i_{B} and $v_{B E}$ corresponding to the particular value of $V_{B B}+v_{i}(t)$. As an example, Fig. 5.30 (a) shows the straight lines corresponding to $v_{i}=0, v_{i}$ at its positive peak, and v_{i} at its negative peak. Now, if the amplitude of v_{i} is sufficiently small so that the instantaneous operating point is confined to an almost-linear segment of the $i_{\beta}-v_{B B}$ curve, then the resulting signals i_{b} and $v_{b c}$ will be triangular in waveform, as indicated in the figure. This, of course, is the small-signal approximation. In summary, the graphical construction in Fig. 5.30(a) can be used to determine the total instantaneous value of i_{B} corresponding to each value of v_{i}.
Next, we move to the $i_{C}-v_{C E}$ characteristics of Fig. $5.30(\mathrm{~b})$. The operating point will move along the load line of slope $-1 / R_{C}$ as i_{B} goes through the instantaneous values determined from Fig. 5.30(a). For cxample, when ν_{i} is at its positive peak, $i_{B}=i_{S 2}$ (from Fig. 5.30(a)), and the instantaneous operating point in the $i_{C}-v_{C E}$ plane will bc at the intersection of the load line and the curve corresponding to $i_{B}=i_{\text {B2 }}$. In this way, one can determine the waveforms of i_{C} and $v_{C F}$ and hence of the signal components i_{c} and $v_{C e}$, as indicated in Fig. 5.30(b).
Effects of Bias-Point Location on Allowable Signal Swing The location of the dc bias point in the $i_{C}-v_{C E}$ plane significantly affects the maximum allowable signal swing at the collector. Refer to Fig. 5.30 (b) and observe that the positive peaks of $v_{\text {ce }}$ cannot go beyond

FIGURE 5.30 Graphical deternination of the signal components $i_{b e} i_{b}, i_{c}$, and $v_{c e}$ when a signal component v_{i} is superimposed on the dc voltage $V_{B B}$ (see Fig. 5.27).

FIGURE 5.31 Effect of bias-point location on allowable signal swing: Load-linc A results in bias point Q with a corresponding $V_{C E}$ which is too close ro $V_{C C}$ and thus limits the positive swing of $v_{C E}$. At the other extreme, load -linc B results in an operating point too close to the saturation region, tlus limiting the negatiy swing of $\nu_{C E}$.
$V_{C C}$, otherwise the transistor enters the cutoff region. Similarly, the negative peaks of v_{t} cannot extend below a few tenths of a volt (usually, 0.3 V), otherwise the transistor enter the saturation region. The location of the bias point in Fig. 5.30(b) allows for an approximately equal swing in cach direction.
Next consider Fig. 5.31. Here we show load lines corresponding to two values of R_{C}. Line A corresponds to a low value of R_{C} and results in the opcrating point Q_{A}, where the value of $V_{C E}$ is very close to $V_{C C}$. Thus the positive swing of $v_{c e}$ will be severely limited; in this situation, it is said that there iss't sufficient "head room" On the other hand line B , which corresponds to arge R_{C} results in the bias point Q_{B} whose V_{C+} is too low. Thus for line B , although there is ample room for the positive excursion of y (there is a lot of head room), the negative signal anple is severely limited by the proximity to the saturation region (there is not sufficient "leg is not sufficient "le room"). A compromise between these two situations is obviously called for. transistor $\beta=160$ The inputsignal it a thangular waye of 04 V peak-to-peak Refer to Fig. 530 an transistor $\beta=100$. The nput signal weometry of the graphical construction shown waye of to ans wer the following questions. (a) If $V_{B E}=$ 07 V , find $I_{\text {s. }}$ (b). Assuming operation on a straight line segment of the exponectial $i_{B} v_{B E}$ curve show that the inverse of its slope is V_{T}. I_{F}. and compute is talle (c) Find approximate values for the peak-to-peak amplitute of t_{h} and of $\psi_{b_{e}}$ (d) Assuming the t_{c} - $t_{c t}$, curves to be horzontal ife, ignorth the Eatl) effect hind t, and 1 , (e) Find the peak-to-peak anplitide of t, and of the (f) What is in voltage gann of this amplifier?
Ans. (a) $10 \mu \mathrm{~A}$, (b) $25 \mathrm{k} \Omega$, (c) $4 \mu \mathrm{~A}, 10 \mathrm{nV}$. (d) $1 \mathrm{~mA}, 5 \mathrm{~V}$, (e) $04 \mathrm{~mA}, 2 \mathrm{~V}$ (f) $-5 \mathrm{~V} V$

FGURE 5.32 A simple circuit used to illustrate the different modes of operation of the BJT

5.3.4 Operation as a Switch

To operate the BJT as a switch, we utilize the cutoff and the saturation modes of opera tion. To illustrate, consider once more the common-emitter circuit snown in Fig. 5.32 he input v_{1} is varied. For v_{l} less than about 0.5 V the transistor will be cut off: thus $i_{s}=0$ $i_{C}=0$, and $v_{C}=V_{C C}$. In this state, node C is disconnected from ground; the switch is in the open position.

To turn the transistor on, we have to increase v_{l} above 0.5 V . In fact, for appreciable currents to flow, $v_{B E}$ should be about 0.7 V and v_{I} should be higher. The base curren will be

$$
\begin{equation*}
i_{B}=\frac{v_{I}-V_{B E}}{R_{B}} \tag{5.60}
\end{equation*}
$$

and the collector current will be

$$
\begin{equation*}
i_{C}=\beta i_{B} \tag{5.61}
\end{equation*}
$$

which applies only when the device is in the active mode. This will be the case as long as the CBJ is not forward biased, that is, as long as $v_{C}>v_{B}-0.4 \mathrm{~V}$, where v_{C} is given by

$$
\begin{equation*}
v_{C}=V_{C C}-R_{C} i_{C} \tag{5.62}
\end{equation*}
$$

Obviously, as v_{I} is increased, i_{B} will increase (Eq. 5.60), i_{C} will correspondingly increas Eq. 5.61), and v_{C} will decrease (Eq. 5.62). Eventually, v_{C} will become lower than v_{B} by 0.4 V t which point the transistor leaves the active region and enters the saturation region. This edge-of-saturation (EOS) point is defined by

$$
\begin{equation*}
I_{C(\mathrm{EOS})}=\frac{V_{C C}-0.3}{R_{C}} \tag{5.63}
\end{equation*}
$$

where we have assumed that $V_{B E}$ is approximately 0.7 V , and

$$
I_{B(\mathrm{EOS})}=\frac{I_{C(\mathrm{EOS})}}{\beta}
$$

The corresponding value of v_{l} required to drive the transistor to the edge-of-saturation can be found from

Increasing v_{l} above $V_{I \text { HOS }}$ increases the base current, which drives the transistor deeper into saturation. The collector-to-emitter voltage, however, decreases only slightly. As a reasonable approximation, we shall usually assume that for a saturated transistor, $\dot{V}_{C \text { Esal }} \cong 0.2 \mathrm{~V}$. The collector current then remains nearly constant at $I_{C s 3}$,

$$
I_{C \text { sat }}=\frac{V_{C C}-V_{C E s}}{R_{C}}
$$

Forcing more current into the base has very little effect on $I_{\text {sat }}$ and $V_{C E \text { sut }}$. In this state the switch is closed, with a low closure resistance $R_{\text {CEsat }}$ and a small offset voltage $V_{\text {CEoff }}$ (see Fig. 5.24c). Finally, recall that in saturation one can force the transistor to operate at any desired β below the normal value; that is, the ratio of the collector current $I_{\text {csit }}$ to the base current can be set at will and is therefore called the forced β,

$$
\beta_{\text {farred }} \equiv \frac{I_{C_{\text {sat }}}}{I_{B}}
$$

Also recall that the ratio of I_{B} to $I_{B(E O S)}$ is known as the overdrive factor.

The transistor in Fig. 5.33 is specified to have β in the range of 50 to 150 . Find the value of R_{B} tha results in saturation with an overdrive factor of at least 10

FIGURE 5.33 Circuit for Example 5.3

Solution

When the transistor is saturated, the collector voltage will be

$$
V_{C}=V_{C E \mathrm{sat}} \simeq 0.2 \mathrm{~V}
$$

Thus the collector current is given hy

$$
I_{C_{\mathrm{sat}}}=\frac{+10-0.2}{1}=9.8 \mathrm{~mA}
$$

To saturate the transistor with the lowest β, we need to provide a base current of at least

$$
I_{B, \mathrm{EOS})}=\frac{I_{C_{\mathrm{sat}}}}{\beta_{\mathrm{min}}}=\frac{9.8}{50}=0.196 \mathrm{~mA}
$$

For an overdrive factor of 10 , the base current should be

$$
I_{B}=10 \times 0.196=1.96 \mathrm{~mA}
$$

Thus we require a value of R_{B} such that

$$
\begin{gathered}
\frac{+5-0.7}{R_{B}}=1.96 \\
R_{B}=\frac{4.3}{1.94}=2.2 \mathrm{k} \Omega
\end{gathered}
$$

EXERGSE

5.27 Consider the circuit in Fig. 532 for the case $V_{C C}=+5 V_{y_{1}}=+5$ V $R_{B}=R_{C}=1 \mathrm{kS}$ and $\beta=100$ Calcolate the base current, the collector current, and the collector voltage. It the transistor is saturated, find $\beta_{\text {onecd. What }}$ Whatue should R_{B} be raised to in order to bring the transistor to the edge of saturation? Ans, $4,3 \mathrm{~mA} ; 4.8 \mathrm{~mA}, 0.2 \mathrm{~V} .11,91.5 \mathrm{ks}$

We are now ready to consider the analysis of BJT circuits to which only dc voltages arc applied. In the following examples we will usc the simple model in which, $\left|V_{B E}\right|$ of a conducting transistor is 0.7 V and $\left|V_{C E}\right|$ of a saturated transistor is 0.2 V , and we will neglect the Early effcct. Better models can, of course, be used to obtain more accurate results. This, however, is usually achieved at the expense of speed of analysis, and more importantly, it could impede the circuit designer's ability to gain insight regarding circuit behavior. Accurate results using elaborate models can be obtained using circuit simulation with SPICE as rate results using elaborate models can be obtained using circuit simulation with SPICE, as
wc shall see in Section 5.11 . This is almost always done in the final stages of a design and wc shall see in Section 5.11. This is almost always done in the final stages of a design and
certainly before circuit fabrication. Computer simulation, however, is not a substitute for quick pencil-and-paper circuit analysis, an essential ability that aspiring circuit designers must muster. The following series of examples is a step in that dircction.
As will be seen, in analyzing a circuit the first question that one must answer is: In
which mode is the trausistor operating? In some cases, the answer will be obvious. In many cases, however, it will not. Needless to say, as the reader gains practice and experience in transistor circuit analysis and design, the answer will be obvious in a much larger proportion of problems. The answer, however, can always be dctermined by utilizing the following procedure:

Assume that the transistor is opcrating in the active mode, and proceed to determine the various voltages and currents that correspond. Then check for consistency of the results with the assumption of active-mode operation; that is, is $v_{C B}$ of an $n p n$ transistor greater than -0.4 V (or $v_{C B}$ of a pnp transistor lower than 0.4 V)? If the answer is yes, then our task is complete. If the answer is no, assume saturation-mode operation, and proceed to determine currents and voltages and then to check for consistency of the results with the assumption of saturationmode operation. Here the test is usually to compute the ratio I_{C} / I_{B} and to verify that it is
lower than the transistor β; i.c., $\beta_{\text {forced }}<\beta$. Since β for a given transistor varies over a wide range, onc should use the lowest specified β for this test. Finally, note that the order of these two assumptions can be reversed.

wruey fit

Consider the circuit shown in Fig. 5.34(a), which is redrawn in Fig. 5.34(b) to remind the reader of the convention cmployed throughout this book for indicating connections to de sources. We wish to analyze this circuit to determine all node voltages and branch currents. We will assume that β is specified to be 100 .

(a)

(b)
(3) $0.99 \times 1=0.99 \mathrm{~mA} \downarrow \sum_{4.7 \mathrm{k} \Omega}^{+10 \mathrm{~V}}$
(5) $1.00-0.99=0.01$

(c) FIGURE 5.34 Analysis of the circuit for Fxample 5.4: (a) circuit; (b) circuit redrawn to remind the reader
of the convention used in this book to show connctions to the power supply; (c) analysis wilh the steps numbered.

Solution

Glancing at the circuit in Fig. 5.34(a), we note that the base is connected to +4 V and the emitter
is connected to ground through a resistance R_{E}. It therefore is safe to conclude that the baseemitter junction will be forward biased. Assuming that this is the case and assuming that $V_{B E}$ is approximately 0.7 V , it follows that the emituer voltage will be

$$
V_{E}=4-V_{B E} \simeq 4-0.7=3.3 \mathrm{v}
$$

We are now in an opportune position; we know the voltages at the two ends of R_{E} and thus can determine the current I_{t} through it,

$$
I_{E}=\frac{V_{E}-0}{R_{E}}=\frac{3.3}{3.3}=1 \mathrm{~mA}
$$

Since the collector is connected through R_{C} to the $+10-\mathrm{V}$ power supply, it appears possible that the collector voltage will be higher than the base vollage, which is essential for aclive-mode operation. Assuming that this is the case, we can evaluate the collector current from

$$
I_{C}=\alpha I_{t}
$$

The value of α is obtained from

$$
\alpha=\frac{\beta}{\beta+1}=\frac{100}{101} \simeq 0.99
$$

Thus I_{C} will be given by

$$
I_{C}=0.99 \times 1=0.99 \mathrm{~mA}
$$

We are now in a position to use Ohm's law to deternine the collector voltage V_{C}

$$
V_{C}=10-I_{C} R_{C}=10-0.99 \times 4.7 \simeq+5.3 \mathrm{~V}
$$

Since the base is at +4 V , the collector-hase junction is reverse biased by 1.3 V , and the transistor is indeed in the active mode as assumed.

It remains only to determine the base current I_{B}, as follows:

$$
I_{B}=\frac{I_{E}}{\beta+1}=\frac{1}{101} \simeq 0.01 \mathrm{~mA}
$$

Beforc leaving this example we wish to emphasize strongly the value of carrying out the analysis directly on the circuit diagram. Only in this way will onc be able to analyze complex circuits in a reasonable length of time. Figure $5.34(\mathrm{c})$ illustrates the above analysis on the circuit diagram, with the order of the analysis steps indicated by the circled numbers.

PMy

We wish to analyze the circuit of Fig. 5.35(a) to determine the voltages at all nodes and the currents through all branches. Note that this circuil is identical to that of Fig. 5.34 except that the voltage at the base is now 16 V . Assume that the ransistor β is specified to be $a t$ least 50.

(a)
(3) $\cong 1.6 \mathrm{~mA} \not\}_{\leqslant}^{+10 \mathrm{~V}} 4.7 \mathrm{k} \Omega$
$+6 \mathrm{~V} \quad \longrightarrow 10-1.6 \times 4.7=3$ Impossible, not in active mode
$3.3 \mathrm{k} \Omega\}$ $\left\{\downarrow \frac{5.3}{3.3}=1.6 \mathrm{~mA}\right.$ (2
(b)

(c)

FIGURE 5.35 Analysis of che circuit for Example 5.5. Notc that the circled numbers indicate the order of the analysis steps.

Solution

Assuming active-mode operation, we have

$$
\begin{aligned}
V_{E} & =+6-V_{B E} \simeq 6-0.7=5.3 \mathrm{~V} \\
I_{E} & =\frac{5.3}{3.3}=1.6 \mathrm{~mA} \\
V_{C} & =+10-4.7 \times I_{C} \approx 10-7.52=2.48 \mathrm{~V}
\end{aligned}
$$

The details of the analysis performed above are illustrated in Fig. 5.35(b).

Since the collector voltage calculated appcars to bc less than the base voltage by 3.52 V , it follows that our original assumption of active-mode operation is incorrect. In fact, the transistor has to be in the saturation mode. Assuming this to he the case, we have

$$
\begin{aligned}
& V_{F}=+6-0.7=+5.3 \mathrm{~V} \\
& I_{E}=\frac{V_{E}}{3.3}=\frac{5.3}{3.3}=1.6 \mathrm{~mA} \\
& V_{C}=V_{E}+V_{C E \text { sat }}=+5.3+0.2=+5.5 \mathrm{~V} \\
& I_{C}=\frac{+10-5.5}{4.7}=0.96 \mathrm{~mA} \\
& I_{B}=I_{E}-I_{C}=1.6-0.96=0.64 \mathrm{~mA}
\end{aligned}
$$

Thus the transistor is operating at a forced β of

$$
\beta_{\mathrm{foreced}}=\frac{I_{C}}{I_{B}}=\frac{0.96}{0.64}=1.5
$$

Sincc $\beta_{\text {forred }}$ is less than the minimum specified value of β, the transistor is indeed saturated. We should emphasize here that in testing for saturation the minimum value of β should be used. By the same token, if we are designing a circuit in which a transistor is to be saturated, the design should be based on the minimum specified β. Obviously, if a transistor with this minimum β is saturated, then transistors with higher values of β will also be saturated. The details of the anal ysis are shown in Fig. 5.35 (c), where the order of the steps used is indicated by the circled numbers.

2x 2 MiPRe53

We wish to analyze the circuit in Fig. 5.36(a) to determinc the voltages at all nodes and the currents through all branches. Note that this circuit is identical to that considered in Examples 5.4 and 5.5 except that now the hase voltage is zero.
$=3$
$R_{E}=3.3 \mathrm{k} \Omega$
(a)
(a)

FIGURE 5.36 Example 5.6: (a) circuit; (b) analysis with the order of the analysis steps indicaled by circled numbers.

Solution

Since the base is at zero volts and the emitter is connected to ground through R_{E}, the emitter-base junction cannot conduct and the emitter current is zero. Also, the collector-base junction canno conduct since the n-type collector is connected through R_{C} to the positive power supply while the p-type base is at ground. It follows that the collector current will be zero. The base current will lso have to be zero, and the transistor is in the cutoff mode of operation.
The emitter voltage will obviously be zero, while the collector voltage will be equal to +10 V since the voltage drop across R_{C} is zero. Figure 5.36 (b) shows the analysis details.

dxarcises

05.22 For the circult in Fig : $34(\mathrm{a})$, find the highest voltage to which the base can be taised while the transisor remains in the active mode: Assume $\alpha=1$. Ans. 4.7 V
D5.23 Redesign the circuit of Fig. 5.34 (a) (i.e., find new values for R_{E} and R e to establish a collector curren of 0.5 mA and a reverse bias voltage on the collcetor-base junction of 2 V. As sume $\alpha=1$. Ans. $R_{E}=6.6 \mathrm{k} \Omega \mathrm{R}=8 \mathrm{k} \Omega$
5.24 For the circuit in Fis. 535 (a), find the value to which the base voltage should be changed to so that the transistor operites in saturation with a forced β of 5
Ans. 4518 V
Thw M
We desire to analyze the circuit of Fig. 5.37(a) to deternine the voltages at all nodes and the currents through all branches.

(a)

(b)

FIGURE 5.37 Example 5.7: (a) circuit; (b) analysis witb the steps indicated by circled numbers.

Solution

The base of this pnp transistor is grounded, while the emitter is connected to a positive supply $\left(V^{+}=+10 \mathrm{~V}\right)$ through R_{E}. It follows that the emitter-base junction will be forward biased with

$$
V_{E}=V_{E B} \approx 0.7 \mathrm{~V}
$$

Thus the emitter current will be given by

$$
I_{E}=\frac{V^{+}-V_{E}}{R_{E}}=\frac{10-0.7}{2}=4.65 \mathrm{~mA}
$$

Since the collector is connected to a negative supply (more negative than the base voltage) through R_{C}, it is possible that this transistor is operating in the active mode. Assuming this to be the case, we obtain

$$
I_{C}=\alpha I_{E}
$$

Since no value for β has been given, we shall assume $\beta=100$, which results in $\alpha=0.99$. Since large variations in β result in small differences in α, this assumption will not be critical as far as determining the value of I_{C} is concerned. Thus,

$$
I_{C}=0.99 \times 4.65=4.6 \mathrm{~mA}
$$

The collector voltage will be

$$
\begin{aligned}
V_{C} & =V^{-}+I_{C} R_{C} \\
& =-10+4.6 \times 1=-5.4 \mathrm{~V}
\end{aligned}
$$

Thus the collector-base junction is reverse biased by 5.4 V , and the transistor is indeed in the active mode, which supports our original assumption.

It remains only to calculate the base current,

$$
I_{B}=\frac{I_{E}}{\beta+1}=\frac{4.65}{101} \simeq 0.05 \mathrm{~mA}
$$

Obviously, the value of β critically affects the base current. Notc, however, that in this circuit the valuc of β will have no effect on the mode of operation of the transistor. Since β is generally an ill-specified parameter, this circait represents a good design. As a rule, one should strive to design the circuit such that its performance is as insensitive to the value of β as possible. The analysis details arc illustrated in Fig. 5.37(b).

EXERGSES

05.25 For the cichit in Fif S.37(i). Find the largest value io which R. can be faised whic the transtion remains th the active mode. Ans 2.26 ks
D5.26 Redesign the circuit of Fiy 537 (a) (ie., find new values for R, and R) to establish a collector cunent 1 mA and a reversc bias on the collector-base juiction of 4 V Assime $\alpha=1$
Ans. $R_{E}=9.3 \mathrm{k} \Omega ; R_{C}=6 \mathrm{k} \Omega$

3WMumy

We want to analyze the circuit in Fig. 5.38(a) to determine the voltages at all nodes and the currents in all branches. Assume $\beta=100$.

(a)
(2) $\begin{aligned} I_{B} & =\frac{5-0.7}{100}+0.7 \mathrm{~V} \\ & =0.043 \mathrm{~mA} \text { (1) } \downarrow^{I_{E}=4.3+0.043}=4.343 \mathrm{~mA} \text { (5) }\end{aligned}$
(b)

FIGURE 5.38 Example 5.8: (a) circuit; (b) analysis with he steps indicated by the circled numbers.

Solution

The base-emitter junction is clearly forward biased. Thus,

$$
I_{B}=\frac{+5-V_{B E}}{R_{B}} \simeq \frac{5-0.7}{100}=0.043 \mathrm{~mA}
$$

Assume that the transistor is operating in the active mode. We now can write

$$
I_{C}=\beta I_{H}=100 \times 0.043=4.3 \mathrm{~mA}
$$

The collector voltage can now be determined as

$$
V_{C}=+10-I_{C} R_{C}=10-4.3 \times 2=+1.4 \mathrm{~V}
$$

Since the base voltage V_{B} is

$$
V_{B}=V_{B E} \approx+0.7 \mathrm{~V}
$$

it follows that the collector-base junction is reverse-biased by 0.7 V and the transistor is indeed in the active mode. The emitter current will be given by

$$
I_{E}=(\beta+1) I_{B}=101 \times 0.043 \approx 4.3 \mathrm{~mA}
$$

We note from this example that the collector and emitter curents depend critically on the value of β. In fact, if β were 10% higher, the transistor would leave the active mode and enter saturation. Therefore this clearly is a bad design. The analysis details are illustrated in Fig. 5.38(b).

SYERASE

D5.27 The circuit of Fig. 538(a) is fo be fabricated using a transistof type whose β is specified to be in the range of 50 to 150 . That is indiydual unit of this same transistor type car have β y lues any , where ithis ringe Redes ig the circuil by selective anew vatue tor R so that all fabricate circtits ine guaranted to bc anithe actuc mode. What is the range of collector yoltages that the fabricoted circuits may exhibit?
Ans. $R_{C}=1 \mathrm{SkS} Y_{c}-0.3 \mathrm{~V}$. 68 Y

4kiky

We want to analy\%c the circuit of Fig. 5.39 to determine the voltages at all nodes and the currents
through all branches. The minimum value of β is specified to be 30 .

(a)

(b)

FIGURE 5.39 Example 5.9 : (a) circuil; (b) analysis wilh steps numbered.

Solution

A quick glance at this circuit reveals that the transistor will be cither active or saturated. Assuming active-mode opcration and neglecting the base current, we see that the base voltage will be approximately zero volts, the emitter voltage will be approximately +0.7 V , and the emitter current will be approximately 4.3 mA . Since the maximum current that the collector can support while the transistor remains in the active mode is approximately 0.5 mA , it follows that the tran-
sistor is definitely saturated.
Assuming that the transistor is saturated and denoting the voltage at the base by V_{B} (refer to
Fig. 5.39 b), it follows that

$$
\begin{aligned}
& V_{E}=V_{B}+V_{E B} \simeq V_{B}+0.7 \\
& V_{C}=V_{F}-V_{E C \text { sat }} \simeq V_{B}+0.7-0.2=V_{B}+0.5
\end{aligned}
$$

CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS (BJTS)

$$
\begin{aligned}
& I_{E}=\frac{+5-V_{E}}{1}=\frac{5-V_{B}-0.7}{1}=4.3-V_{B} \mathrm{~mA} \\
& I_{B}=\frac{V_{B}}{10}=0.1 V_{B} \mathrm{~mA} \\
& I_{C}=\frac{V_{C}-(-5)}{10}=\frac{V_{B}+0.5+5}{10}=0.1 V_{B}+0.55 \mathrm{~mA}
\end{aligned}
$$

Using the relationship $I_{E}=I_{B}+I_{C}$, we ohtain

$$
4.3-V_{B}=0.1 V_{B}+0.1 V_{B}+0.55
$$

which results in

$$
V_{B}=\frac{3.75}{1.2}=3.13 \mathrm{~V}
$$

Substituting in the equations above, we obtain

$$
\begin{aligned}
V_{E} & =3.83 \mathrm{~V} \\
V_{C} & =3.63 \mathrm{~V} \\
I_{E} & =1.17 \mathrm{~mA} \\
I_{C} & =0.86 \mathrm{~mA} \\
I_{b} & =0.31 \mathrm{~mA}
\end{aligned}
$$

It is clear that the transistor is saturated, since the value of forced β is

$$
\beta_{\text {forced }}=\frac{0.86}{0.31} \simeq 2.8
$$

which is much smaller than the specified minimum β.

shanpis s.in

We want to analyze the circuit of Fig. 5.40(a) to determine the voltages at all nodes and the currents through all branches. Assume $\beta=100$.

Solution

The first step in the analysis consists of simplifying the base circuit using Thévenin's theorem. The result is shown in Fig. 5.40(b), where

$$
\begin{aligned}
& V_{B B}=+15 \frac{R_{B 2}}{R_{B 1}+R_{B 2}}=15 \frac{50}{100+50}=+5 \mathrm{~V} \\
& R_{B B}=\left(R_{B 1} / / R_{B 2}\right)=(100 / / 50)=33.3 \mathrm{k} \Omega
\end{aligned}
$$

To evaluate the base or the emitter current, we have to write a loop equation around the loop marked L in Fig. 5.40 (b). Note, though, that the current through $R_{B B}$ is dilferent from the current through R_{E}. The loop equation will be

$$
V_{B B}=I_{E} R_{B B}+V_{B E}+I_{E} R_{E}
$$

FIGURE 5.40 Circuits for Example 5.10.
Substituting for I_{B} by

$$
I_{B}=\frac{I_{E}}{\beta+1}
$$

and rearranging the equation givcs

$$
I_{E}=\frac{V_{B B}-V_{B E}}{R_{E}+\left[R_{B B} /(\beta+1)\right]}
$$

For the numerical values given we have

$$
I_{E}=\frac{5-0.7}{3+(33.3 / 101)}=1.29 \mathrm{~mA}
$$

The base current will be

$$
I_{B}=\frac{1.29}{101}=0.0128 \mathrm{~mA}
$$

$$
\begin{aligned}
& \text { The base voltage is given by } \\
& V_{B}=V_{B E} \dagger I_{E} R_{E} \\
& =0.7+1.29 \times 3=4.57 \mathrm{~V}
\end{aligned}
$$

Assume active-mode operation. We can evaluate the collector current as

$$
I_{C}=\alpha I_{F}=0.99 \times 1.29=1.28 \mathrm{~mA}
$$

The collector voltage can now be evaluated as

$$
V_{C}=+15-I_{C} R_{C}=15-1.28 \times 5=8.6 \mathrm{~V}
$$

It follows that the collector is higber in potential than the base by 4.03 V , which means that the transistor is in the active mode, as had been assumed. The results of the analysis are given in Figs. $5.40(\mathrm{c}$ and d$)$.

EXERCISE

S:28 If the transistor in the circuit of Fig. $340(a)$ is replaced with mother having half the waltue of β (i.c., $\beta=50$), find the new value of I_{6} and copress the change in $I /$ as a percentage. Ans. $t_{C}=1.15 \mathrm{~mA} .10 \%$

We wish to analyze the circuit in Fig. 5.41(a) to determine the voltages at all nodes and the currents through all branches.

Solution

We first recognize that part of this circuit is identical to the circuit we analyzed in Example 5.10namely, the circuit of Fig. 5.40(a). The difference, of course, is that in the new circuit we have an additional transistor Q_{2} together with its associated resistors $R_{E 2}$ and $R_{C 2}$. Assume that Q_{1} is still in the active mode. The following values will be identical to those oblained in the previous example:

$$
\begin{array}{ll}
V_{B 1}=+4.57 \mathrm{~V} & I_{E 1}=1.29 \mathrm{~mA} \\
I_{B 1}=0.01 .28 \mathrm{~mA} & I_{C 1}=1.28 \mathrm{~mA}
\end{array}
$$

However, the collector voltage will be different than previously calculated since part of the collector current $I_{C 1}$ will flow in the base lead of $Q_{2}\left(I_{B 2}\right)$. As a first approximation we may assume that $I_{B 2}$ is much smaller than $I_{C 1}$; that is, we may assume that the current through $R_{C 1}$ is almost equal to I_{G}. This will enable us to calculate $V_{C 1}$:

$$
\begin{aligned}
V_{C 1} & \simeq+15-I_{C 1} R_{C l} \\
& =15-1.28 \times 5=+8.6 \mathrm{~V}
\end{aligned}
$$

Thus Q_{1} is in the active mode, as had been assumed.

(b)

FIGURE 5.41 Circuits for Example 5.11

As far as Q_{2} is concerned, we note that its emitter is connected to +15 V through $R_{k 2}$. It is As lar as Q_{2} is concerned, we note that its emitter is connected to $+15 V$ through R_{62}. If is
therefore safe to assume that the emitter-base junction of Q_{2} will be forward biased. Tbus the emitter of Q_{2} will be at a voltage $V_{E 2}$ given by

$$
V_{E 2}=V_{C 1}+V_{\left.E B\right|_{Q_{2}}}=8.6+0.7=+9.3 \mathrm{~V}
$$

The emitter current of Q_{2} may now be calculated as

$$
I_{E 2}=\frac{+15-V_{E 2}}{R_{E 2}}=\frac{15-9.3}{2}=2.85 \mathrm{~mA}
$$

Since the collector of Q_{2} is returned to ground via $R_{C 2}$, it is possible that Q_{2} is operating in the active mode. Assume this to be the case. We now find $I_{C 2}$ as

$$
I_{C 2}=\alpha_{2} I_{F ; 2}
$$

$=0.99 \times 2.85=2.82 \mathrm{~mA} \quad$ (assuming $\left.\beta_{2}=100\right)$
The collector voitage of Q_{2} will be

$$
V_{C 2}=I_{C 2} R_{C 2}=2.82 \times 2.7=7.62 \mathrm{~V}
$$

which is lower than $V_{B 2}$ by 0.98 V . Thus Q_{2} is in the active mode, as assumed.
It is important at this stage to find the magnitude of the error incurred in our calculations by the assumption that $I_{B 2}$ is negligible. The value of $I_{B 2}$ is given by

$$
I_{B 2}=\frac{I_{E 2}}{\beta_{2}+1}=\frac{2.85}{101}=0.028 \mathrm{~mA}
$$

which is indeed much smaller than $I_{C 1}(1.28 \mathrm{~mA})$. If desired, we can obtain mare accurate results by iterating one more time, assuming $I_{B 2}$ to be 0.028 mA . The new values will be

$$
\text { Current in } R_{C 1}=I_{C 1}-I_{B 2}=1.28-0.028=1.252 \mathrm{~mA}
$$

$$
V_{C 1}=15-5 \times 1.252=8.74 \mathrm{~V}
$$

$$
V_{E 2}=8.74+0.7=9.44 \mathrm{~V}
$$

$$
I_{E 2}=\frac{15-9.44}{2}=2.78 \mathrm{~mA}
$$

$$
I_{C 2}=0.99 \times 2.78=2.75 \mathrm{~mA}
$$

$$
V_{C 2}=2.75 \times 2.7=7.43 \mathrm{~V}
$$

$$
I_{B 2}=\frac{2.78}{101}=0.0275 \mathrm{~mA}
$$

Note that the new valuc of $I_{s 2}$ is very close t the value used in our iteration, and no further iterations are warranted. The final results arc indicated in Fig. 5.41(b).

The reader justifiably might be wondering about the uccessity for using an iterative scheme in solving a linear (or linearized) problem. Indeed, we can obtain the exact solution (if we can call anything we are doing with a first-order model exact!') by writing appropnate equations. The reader is encouraged to find this solution and then compare the resuls with those ohtained above. It is imporlant to emphasize, however, that in most such problems it is quite sufficient to obtain an approximate solution, provided that we can obtain it quickly and, of course, correctly.

In the above examples, we frequently used a precise value of α to calculate the collector current. Since $\alpha \simeq 1$, the error in such calculations will be very small if one assumes $\alpha=1$ and $i_{C}=i_{E}$. Therefore, except in calculations that depend critically on the value of α (c.g., the calculation of base current), one usually assumes $\alpha \simeq 1$.

EXERCISES

dissipated in the circuil.
Ans 485 mA 62 mW
5.30 The circuil in Fig E5 30 is to be connected to the circuit in Fig. 5.41 (a) as indicated: specifically the hase of Q_{3} is to be connected to the collector of Q_{2} If Q_{3} thas $\beta=100$. find the nev value of V_{2} and the vase of Q_{3} is to be con

FIGURE E5.30
Ans. $1306 \mathrm{~V} \%+6.36 \mathrm{y}: 13.4 \mathrm{~mA}$
S. W. W E K

We desire to evaluate the voltages at all nodes and the currents througn all branches in the circui of Fig. 5.42(a). Assume $\beta=100$.

(a)

(b)

FIGURE 5.42 Example 5.12: (a) circuit: (b) analysis with the steps numbered.

Solution

By examining the circuit we conclude that the two transistors Q_{1} and Q_{2} cannot be simulta neously conducting. Thus if Q_{1} is on, Q_{2} will be off, and vice versa. Assume that Q_{2} is on. It
follows that current will flow from ground through the $1-k \Omega$ load resistor into the emitter of Q_{2}. Thus the base of Q_{2} will be at a negative voltage, and base current will be flowing out of the base through the $10-\mathrm{k} \Omega$ resistor and into the +5 -V supply. This is impossible, since if the base is negative, current in the $10-\mathrm{k} \Omega$ resistor will have to flow into the base. Thus we con clude that our original assumption-that Q_{2} is on-is incorrect. It follows that Q_{2} will be off and Q_{1} will be on
The question now is whether Q_{1} is active or saturated. The answer in this case is obvious Since the base is fed with a $+5-\mathrm{V}$ supply and since base current flows into the base of Q_{1}, it follows that the base of Q_{1} will be at a voltage lower than +5 V . Thus the collector-base junc tion of Q_{1} is reverse biased and Q_{1} is in the active mode. It remains only to determine the currents and voltages using techniques already described in detail. The results are given in Fig. 5.42(b)

EXERCISE
537 Solve the problem in Eximpte 5.12 with the voluage feeding the bases: chanied in +10 V A sume that $\beta_{\text {min }}=30$ and find $V_{F} l_{1}$ I $1 /$ and $/$ Ans $+48 \mathrm{~V}, 55 \mathrm{~V}: 4.35 \mathrm{~mA}: 0$

3. 5.5 BIASING IN BJT AMPLIFIER CIRCUITS

The biasing problem is that of establishing a constant dc current in the collector of the B.IT This current has to be calculable, predictable, and insensitive to variations in temperature and to the large variations in the value of β encountered among transistors of the same type. Another important consideration in bias design is locating the dc bias point in the $i_{c}-\psi_{c}$ plane to allow for maximum output signal swing (sce the discussion in Section 5.3.3). In this section, we shall deal with various approaches to solving the bias problem in transistor circuits designed with discrete devices. Bias methods for integrated-circuit design are presented in Chapter 6.

Before presenting the "good" biasing schemes, we should point out why two obvious arrangements are not good. First, attempting to bias the BJT by fixing the voltage $V_{B E}$ by, fo instance, using a voltage divider across the power supply $V_{C C}$, as shown in Fig. 5.43(a), is not a viable approach: The very sharp exponential relationship $i_{C}-v_{B E}$ means that any small and inevitable differences in $V_{B E}$ from the desired value will result in large differences in I_{C} and in $V_{C E}$. Second, biasing the BJT by establishing a constant current in the base, as show in Fig. 5.43(b), where $I_{B} \cong\left(V_{C C}-0.7\right) / R_{B}$, is also not a recommended approach. Here the typically large variations in the value of β among units of the same device type will result in correspondingly large variations in I_{C} and hence in $V_{C E}$

5.5.1 The Classical Discrete-Circuit Bias Arrangement

Figure 5.44(a) shows the arrangement most commonly used for biasing a discrete-circuit transistor amplifier if only a single power supply is avallable. The technique consists of supplyiug the base of the transistor with a fraction of the supply voltage $V_{c c}$ through the voltage divider R_{1}, R_{2}. In addition, a resistor R_{E} is connected to the emitter

(a)

(b)

FIGURE 5.43 Two obvious schemes for biasing the BJT: (a) by fixing $V_{\text {PF }}$; (b) by fixing I_{g}. Both result wide variations in I_{C} and hence in $V_{C E}$ and therefore arc considered to be "bad." Neither scheme is reconmended.

(a)

(b)

FIGURE 5.44 Classical biasing for BJTs using a single power supply: (a) circuit; (b) circuit with the voltage divider supplying the base replaced with its Thévenin equivalent.

Figure 5.44(b) shows the same circuit with the voltage-divider network replaced by its Thévenin equivalent,

$$
\begin{align*}
V_{B B} & =\frac{R_{2}}{R_{1}+R_{2}} V_{C C} \tag{5.68}\\
R_{B} & =\frac{R_{1} R_{2}}{R_{1}+R_{2}}
\end{align*}
$$

The current I_{E} can be detcrmined by writing a Kirchhoff loop equation for the basc-emitterground loop, labeled L , and substituting $I_{B}=I_{L} /(\beta+1)$

$$
I_{E}=\frac{V_{B B}-V_{B E}}{R_{K}+R_{B} /(\beta+1)}
$$

To make I_{E} insensitive to temperature and β variation, ${ }^{8}$ we design the circuit to satisfy the following two constraints:

$$
\begin{align*}
V_{B B} & >V_{B E} \tag{5.71}\\
R_{F} & \gg \frac{R_{B}}{\beta+1} \tag{5.72}
\end{align*}
$$

Condition (5.71) ensures that small variations in $V_{D E}(\approx 0.7 \mathrm{~V})$ will be swamped by the much larger $V_{B B}$. There is a limit, however, on how large $V_{B B}$ can be: For a given value of the supply voltage $V_{C C}$, the higher the value we use for $V_{B B}$, the lower will be the sum of voltages across R_{C} and the collector-base junction $\left(V_{C B}\right)$. On the other hand, we want the voltage across R_{C} to be large in order to obtain high voltage gain and large signal swing (before transistor cutoff). We also want $V_{C B}$ (or $V_{C R}$) to be large to provide a large signal swing (before transistor saturation). Thus, as is the case in any design, we have a set of conflicting requirements, and the solution must be a compromise. As a rule of thumb, one designs for $V_{B B}$ about $\frac{1}{3} V_{C C}, V_{C B}$ (or $\left.V_{C B}\right)$ about $\frac{1}{3} V_{C C}$, and $I_{C} R_{C}$ about $\frac{1}{3} V_{C C}$.

Condition (5.72) makes I_{E} insensitive to variations in β and could be satisfied by selecting R_{B} small. This in turn is achieved by using low values for R_{1} and R_{2}. Lower values for R_{1} and R_{2}, however, will mean a higher current drain from the power supply, and will result in a lowering of the input resistance of the amplifier (if the input signal is coupled to the base), which is the trade-off involved in this part of the design. It should be noted that Condition (5.72) means that we want to make the base voltage independent of the value of β and determined solely by the voltage divider. This will obviously be satisfied if the current in the divider is made much larger than the base current. Typically one selects R_{1} and R_{2} such that their current is in the range of I_{E} to $0.1 I_{E}$.
Further insight regarding the mechanism by which the bias arrangement of Fig. 5.44(a) stabilizes the de emitter (and hence collector) current is obtained by considering the feedback action provided by R_{E}. Consider that for some reason the emitter current increases. The voltage drop across R_{E}, and hence V_{E} will increase correspondingly. Now, if the base voltage is determined primarily by the voltage divider R_{1}, R_{2}, which is the case if R_{B} is small, it will remain constant, and the increase in V_{E} will result in a corresponding decrease in $V_{B F}$. This in turn reduces the collector (and emitter) current, a change opposite to that originally assumed. Thus R_{F} provides a negative feedback action that stabilizes the bias current. We shall study negative feedback formally in Chapter 8.

3 4hind 5 sess

We wish to design the bias network of the amplifier in Fig. 5.44 to establish a current $I_{E}=1 \mathrm{~mA}$ using a power supply $V_{C C}=+12 \mathrm{~V}$. The transistor is specified to have a nominal β value of 100 .

Solution

We shall follow the rule of thumb mentioned above and allocate one-third of the supply voltage to the voltage drop across R_{2} and another one-third to the voltage drop across R_{C}, leaving one-third

[^15] will result in an cqually stable I_{c}, and vice versa.
for possible signal swing at the collector. Thus,
\[

$$
\begin{aligned}
& V_{B}=+4 \mathrm{~V} \\
& V_{E}=4-V_{B K} \simeq 3.3 \mathrm{~V}
\end{aligned}
$$
\]

and R_{E} is dclermined from

$$
R_{E}=\frac{V_{E}}{I_{E}}=\frac{3.3}{1}=3.3 \mathrm{k} \Omega
$$

From the discussion above we select a voltage-divider current of $0.11_{t}=0.1 \times 1=0.1 \mathrm{~mA}$. Neglecting the base current, we find

$$
R_{1}+R_{2}=\frac{12}{0.1}=120 \mathrm{kS}
$$

and

$$
\frac{R_{2}}{R_{1}+R_{2}} V_{c C}=4 \mathrm{~V}
$$

Thus $R_{2}=40 \mathrm{k} \Omega$ and $R_{1}=80 \mathrm{k} \Omega$.
Thus R_{2} this point, it is desirable to find a more accurate estimate for I_{k}, taking into account the non7ero base current. Using Eq. (5.70),

$$
I_{E}=\frac{4-0.7}{3.3(\mathrm{k} \Omega)+\frac{(80 / / 40)(\mathrm{k} \Omega)}{101}}=0.93 \mathrm{~mA}
$$

This is quitc a bit lower than the value we are aiming for of 1 mA . It is casy to see from the above cquation that a simple way to restore I_{E} to its nominal value would be to reduce R_{E} from 3.3 kS 2 by the magnitude of the second term in the denominator $(0.267 \mathrm{k} \Omega)$. Thus a more suilable value for R_{E} in this case would be $R_{E}=3 \mathrm{k} \Omega$, which results in $I_{E}=1.01 \mathrm{~mA} \simeq 1 \mathrm{~mA}$.

It should be noted that if we are willing to draw a bigher current from the power supply and to accept a lower input resistance for the amplifier, then we may use a voltage-divider current equal, say, to I_{E} (i.c., 1 mA), resulting in $R_{1}=8 \mathrm{k} \Omega$ and $R_{2}=4 \mathrm{k} \Omega$. We shall rcfer to the circuit using these latter values as design 2 , for which the actual valuc of I_{E} using the initial value of R_{E} of $3.3 \mathrm{k} \Omega$ will be

$$
I_{E}=\frac{4-0.7}{3.3+0.027}=0.99 \simeq 1 \mathrm{~mA}
$$

In this case, design 2, we need not change the valuc of R_{E}.
Finally, the value of R_{C} can be determined from

$$
R_{C}=\frac{12-V_{C}}{I_{C}}
$$

Substituting $I_{C}=\alpha I_{E}=0.99 \times 1=0.99 \mathrm{~mA} \simeq 1 \mathrm{~mA}$ results, for both designs, in

$$
R_{C}=\frac{12-8}{1}=4 \mathrm{k} \Omega
$$

ExERCISE

5.32 For tesign 1 in Example 513 calculate the expected range of f_{E} if the transistor used has β nn the range - 50 to 150 Express thic range of $~ I$ as a percentave of the nominal value $\left(U_{2}=I \mathrm{~mA}\right.$) ohtained for $\beta=100$ Repeat for design 2.
Ans. For design 1. 0.94 mA to 1.04 mA a 10% range, for design $2: 0.984 \mathrm{~mA}$ to 0.995 mA , a 1.1% rance:
5.5.2 A Two-Power-Supply Version of the Classical Bias Arrangement
A somewhat simpler bias arrangement is possible if two power supplies are available, as shown in Fig. 5.45. Writing a loop cquation for the loop labeled L gives

$$
\begin{equation*}
I_{E}=\frac{V_{E E}-V_{B E}}{R_{E}+R_{B} /(\beta+1)} \tag{5.73}
\end{equation*}
$$

This equation is identical to Eq. (5.70) except for $V_{E E}$ replacing $V_{B B}$. Thus the two constraints of Eqs. (5.71) and (5.72) apply here as well. Note that if the transistor is to be used with the base grounded (i.e., in the common-base configuration), then R_{B} can be eliminated altogcther. On the other hand, if the input signal is to be coupled to the base, then R_{B} is needed. We shall study the various BJT amplifier configurations in Section 5.7.

FIGURE 5.45 Biasing the BJT using two power supplics. Resistor R_{B} is needed only if the signal is to be capacitively coupled to the base. Otherwise. he base can be connected dircctly to ground, or to a grounded signal source. resulting in almost total β-independence of the bias current.

EXERCISE

D5.33 The bias arrangement of Fi 5.45 is to be used for a common base amplifer. Design the circuit to establish a de enitter current of 1 mA and provide the highest possible voltage gain while allowing lor a maximum signal swing at he collector of 12 V Use +10 V ani- $5 . \mathrm{V}$. onwer upple Ans. $R_{B}=0 ; R_{E}=4.3 \mathrm{k} \Omega ; R_{c}=8.4 \mathrm{k} \Omega$

(a)

(b)

FIGURE 5.46 (a) Aconmon-emitter transistor amplificr biased by a feedback resistor R_{B}. (b) Analysis of the circuit in (a).

5.5.3 Biasing Using a Collector-to-Base Feedback Resistor

Figure 5.46 (a) shows a simple but effective alternative biasing arrangement suitable for common-emitter amplifiers. The circuit employs a resistor R_{B} connected between the collector and the base. Resistor R_{B} provides negative feedback, which helps to stabilize the bias point of the BJT. We shall study feedhack formally in Chapter 8 .

Analysis of the circuit is shown in Fig. 5.46(b), from which we can write

$$
\begin{aligned}
V_{C C} & =I_{L} R_{C}+I_{B} R_{B}+V_{B E} \\
& =I_{L} R_{C}+\frac{I_{E}}{\beta+1} R_{B}+V_{B E}
\end{aligned}
$$

Thus the emitter bias current is given by

$$
\begin{equation*}
I_{E}=\frac{V_{C C}-V_{B E}}{R_{C}+R_{B} /(\beta+1)} \tag{5.74}
\end{equation*}
$$

It is interesting to note that this cquation is identical to Eq. (5.70), which governs the operation of the traditional bias circuit, except that $V_{C C}$ replaces $V_{B B}$ and R_{C} replaces R_{F}. It follow that to obtain a value of I_{E} that is insensitive to variation of β, we select $R_{B} /(\beta+1) \ll R_{C}$. Note, however, that the value of R_{B} detcrmines the allowable signal swing at the collector since

$$
\begin{equation*}
V_{C B}=I_{B} R_{B}=I_{E} \frac{R_{B}}{\beta+1} \tag{5.75}
\end{equation*}
$$

EXERCISE

D5:34 Design the circuit of Fig 5.46 to obtain a de emitter current of 1 mA and to ensure a $\frac{2}{2} 2 \mathrm{~V}$ signial swing at the collector: that is, design for $\mathrm{Cf}=72.3 \mathrm{~V}$. Let $\mathrm{cc}=10 \mathrm{y}$ and $\beta=100$ Ans. $R_{s}=162 \mathrm{k} \Omega: R_{c}=7.7 \mathrm{k} \Omega$ Note that it standard $\%$ eresistor xatues are ased (Appendix (G) we select $R_{B}=160 \mathrm{k} \Omega$ and $R_{C}=7.5 \mathrm{k} \Omega$ This results in $l_{E}=1.02 \mathrm{~mA}$ and $V_{C}=+2.3 \mathrm{~V}$.
 FIGURE 5.47
current source I.

5.5.4 Biasing Using a Constant-Current Source

The BJT can be biased using a constant-current source I as indicated in the circuit of Fig. 5.47(a). This circuit has the advantage that the emitter current is independent of the val ues of β and R_{B}. Thus R_{B} can be made large, enabling an increase in the input resistance at the base without adversely affecting bias stability. Furthcr, current-source biasing leas significant design simplification, as will become obvious in later sections and chapters A simple implementation of the contant-cirs $Q_{\text {a }}$ and $Q_{\text {w }}$ connected as diode by incuit uilizes a pair of mach. If Q_{1} the Q_{2} and Q_{2} have high β values, we horting its collector to its base. If wa neglect their hase currents. Thus the current throug

$$
I_{\mathrm{REF}}=\frac{V_{C C}-\left(-V_{E E}\right)-V_{B E}}{R}
$$

Now, since Q_{1} and Q_{2} have the same $V_{B E}$, their collector currents will be equal, resulting in

$$
\begin{equation*}
I=I_{\mathrm{KEF}}=\frac{V_{C C}+V_{E E}-V_{B E}}{R} \tag{5.77}
\end{equation*}
$$

Neglecting the Early effect in Q_{2}, the collector current will remain constant at the value given by this equation as long as Q_{2} remains in the active region. This can be guaranteed by keeping the voltage at the collector, V, greater than that at the base $\left(-V_{E E}+V_{B E}\right)$. The con nection of Q_{1} and Q_{2} in Fig. 4.47 (b) is known as a current mirror. We will study curren mirrors in detail in Chapter 6

5.6 SMALL-SIGNAL OPERATION AND MODELS

Having learned how to bias the BJT to operate as an amplifier, we now take a closer look at the small-signal operation of the transistor. Toward that end, consider the conceptual circuit shown in Fig. 5.48(a). Here the base-emitter junction is forward biased by a dc voltage $V_{B E}$ (battery). The reverse bias of the collector-base junction is established by connecting the collector to another power supply of voltage $V_{C C}$ through a resistor R_{C}. The input signal to be amplified is represented by the voltage source $v_{b e}$ that is superimposed on $V_{B E}$

We consider first the dc bias conditions by setting the signal $v_{b e}$ to zero. The circuit reduces to that in Fig. 5.48(b), and we can write the following relationships for the dc currents and voltages:

$$
\begin{align*}
I_{C} & =I_{S} e^{V_{B E} / V_{T}} \tag{5.78}\\
I_{E} & =I_{C} / \alpha \tag{5.79}\\
I_{B} & =I_{C} / \beta \tag{5.80}\\
V_{C} & =V_{C E}=V_{C C}-I_{C} R_{C} \tag{5.81}
\end{align*}
$$

Obviously, for active-mode operation, V_{C} should be greater than $\left(V_{B}-0.4\right)$ by an amount that allows for a reasonable signal swing at the collector

5.6.1 The Collector Current and the Transconductance

If a signal $v_{b e}$ is applied as shown in Fig. 5.48(a), the total instantaneous base-emitter voltage $\tau_{B E}$ become

$$
v_{B E}=\dot{V}_{B E}+v_{b e}
$$

Correspondingly, the collector current becomes

$$
\begin{aligned}
i_{C} & =I_{S} e^{\gamma_{B E} / V_{T}}=I_{S} e^{\left(V_{B E}+v_{b S} / V_{T}\right.} \\
& =I_{S} e^{\left(V_{B E} / V_{T}\right)} e^{\left(v_{b e} / V_{T}\right)}
\end{aligned}
$$

IGURE 5.48 (a) Concentual circuit to illuster the operation (b) The circuit of (a) with the signal source v_{b} e eliminated for dc (bias) analysis.

Use of Eq. (5.78) yield

$$
\begin{equation*}
i_{C}=I_{C} e^{v_{v_{e f}} / v_{T}} \tag{5.82}
\end{equation*}
$$

Now, if $v_{b e} \ll V_{T}$, we may approximate Eq. (5.82) as

$$
\begin{equation*}
i_{C} \simeq I_{C}\left(1+\frac{v_{b e}}{V_{T}}\right) \tag{5.83}
\end{equation*}
$$

Here we have expanded the exponential in Eq. (5.82) in a series and retained only the first two terms. This approximation, which is valid only for $v_{b e}$ less than approximately 10 mV , is referred to as the small-signal approximation. Under this approximation the total collector current is given by Eq. (5.83) and can be rewritten

$$
i_{C}=I_{C}+\frac{I_{C}}{V_{T}} v_{b e}
$$

Thus the collector current is composed of the dc bias value I_{C} and a signal component i_{c}

$$
\begin{equation*}
i_{c}=\frac{I_{C}}{V_{T}} v_{b e} \tag{5.85}
\end{equation*}
$$

This equation relates the signal current in the collector to the conesponding base-emitter signal voltage. It can be rewritten as

$$
i_{c}=g_{i n} v_{b e}
$$

where g_{m} is called the transconductance, and from Eq. (5.85), it is given by

$$
\begin{equation*}
g_{t h}=\frac{I_{C}}{V_{T}} \tag{5.87}
\end{equation*}
$$

We observe that the transconductance of the BJT is directly proportional to the collector bias current I_{C}. Thus to obtain a constant predictable value for g_{m}, we need a constant predictahle I_{C}. Finally, we note that BJTs have relatively high transconductance (as compared to MOSFETs, which we studied in Chapter 4); for instance, at $I_{C}=1 \mathrm{~mA}, g_{m} \simeq 40 \mathrm{~mA} / \mathrm{V}$.
A graphical interpretation for g_{m} is given in Fig. 5.49, where it is shown that g_{m} is equal to the slope of the $i_{C}-v_{B E}$ characteristic curve at $i_{C}=I_{C}$ (i.e., at the bias point Q). Thus,

$$
\begin{equation*}
g_{m}=\left.\frac{\partial i_{c}}{\partial \vartheta_{B E}}\right|_{i_{C}=I_{C}} \tag{5.88}
\end{equation*}
$$

The small-signal approximation implies keeping the signal amplitude sufficiently small so that operation is restricted to an almost-linear segment of the $i_{C}-v_{B E}$ exponential curve. Increasing the signal amplitude will result in the collector current having components nonlinearly related to $v_{b e}$. This, of course, is the same approximation that we discussed in the context of the amplifier transfer curve in Section 5.3
The analysis above suggests that for small signals ($v_{b e} \ll V_{T}$), the transistor behaves as a voltage-controlled current source. The input port of this controlled source is between base and emitter, and the output port is between collector and emitter. The transconductance of the controlled source is g, and the output resistance is infiuite. The latter ideal property is a result of our first-order model of transistor operation in which the collector voltage has no effect on the collector current in the active mode. As we have seen in Section 5.2, practical

FIGURE 5.49 Linear operation of the transistor under the small-signal condition: A small signal $v_{b e}$ wit a triangular waveform is superimposcd on the dc voltage $V_{B E}$. It gives rise to a collector signal current i_{c} a also of triangular waveform, superimposed on the de current I_{c}. Here, $i_{c}=g_{m} \tau_{b}$, where $g_{k_{m}}$ is ite slope of the $i_{c}-v_{s}$ curve at the bias point Q.

BJTs have finite output resistance because of the Early effect. The effect of the output resis tance on anplifier performance will be considered later.

Extrass

5.36 UHe Fq. (5.88) to derive the expression for : 8 in Eq (5.87)
5.6.2 The Base Current and the Input Resistance at the Base

To determine the resistance seen by $\boldsymbol{t}_{b e}$, we first evaluate the total base current i_{B} using q. (5.84), as follows:

$$
i_{B}=\frac{i_{C}}{\beta}=\frac{I_{C}}{\beta}+\frac{1}{\beta} \frac{I_{C}}{V_{T}} v_{b c}
$$

Thus,

$$
i_{B}=I_{B}+i_{b}
$$

where I_{B} is equal to I_{C} / β and the signal component i_{b} is given by

$$
i_{b}=\frac{1}{\beta} \frac{I_{C}}{V_{T}} v_{b e}
$$

Substituting for I_{C} / V_{T} by g_{m} gives

$$
i_{b}=\frac{g_{m}}{\beta} v_{b c}
$$

The small-signal input resistance between basc and emitter, looking into the base, is denoted by r_{π} and is defined as

$$
\begin{equation*}
r_{\pi} \equiv \frac{v_{b e}}{i_{b}} \tag{5.92}
\end{equation*}
$$

Using Eq. (5.91) gives

$$
\begin{equation*}
r_{\pi}=\frac{\beta}{g_{m}} \tag{5.93}
\end{equation*}
$$

Thus r_{π} is directly dependent on β and is inversely proportional to the bias current l_{C}. Substituting for g_{m} in Eq. (5.93) from Eq. (5.87) and replacing I_{C} / β by I_{B} gives an alternative expression for r_{π},

$$
r_{\pi}=\frac{V_{T}}{I_{B}}
$$

5.6.3 The Emitter Current and the Input Resistance

 at the EmitterThe total emitter current i_{E} can be deternined from

$$
i_{E}=\frac{i_{C}}{\alpha}=\frac{l_{C}}{\alpha}+\frac{i_{c}}{\alpha}
$$

Thus,

$$
i_{E}=I_{E}+i_{e}
$$

where I_{E} is equal to I_{C} / α and the signal current i_{e} is given by

$$
\begin{equation*}
i_{e}=\frac{i_{c}}{\alpha}=\frac{I_{C}}{\alpha V_{T}} v_{b e}=\frac{I_{E}}{V_{T}} v_{b e} \tag{5.96}
\end{equation*}
$$

If we denote the small-signal resistance between base and emitue, looking into the emitter, by r_{e}, it can be defined as

$$
\begin{equation*}
r_{e} \equiv \frac{v_{b e}}{i_{e}} \tag{5.97}
\end{equation*}
$$

Using Eq. (5.96) we find that r_{e}, called the emitter resistance, is given by

$$
r_{e}=\frac{V_{T}}{I_{E}}
$$

Comparison with Eq. (5.87) reveals that

$$
\begin{equation*}
r_{e}=\frac{\alpha}{g_{m}} \simeq \frac{1}{g_{m}} \tag{5.99}
\end{equation*}
$$

The relationship between r_{π} and r_{e} can be found by combining their respective definitions in Eqs. (5.92) and (5.97) as

$$
v_{b e}=i_{b} r_{\pi}=i_{e} r_{e}
$$

Thus,
which yields

$$
r_{\pi}=\left(i_{c} / i_{b}\right) r_{e}
$$

$$
\begin{equation*}
r_{\pi}=(\beta+1) r_{e} \tag{5.100}
\end{equation*}
$$

EHTHET

 THIT...il

5.6.4 Voltage Gain

In the preceding section we have established only that the transistor senses the base-emitter signal $v_{b e}$ and causes a proportional current $g_{m} v_{b c}$ to flow in the collector lead at a high (idcally infinite) impedance level. In this way the transistor is acting as a voltage-controlled current source. To obtain an output voltage signal, we may force this current to flow through a resistor, as is done in Fig. 5.48(a). Then the total collector voltage v_{C} will be

$$
\begin{align*}
v_{C} & =V_{C C}-i_{C} R_{C} \\
& =V_{C C}-\left(I_{C}+i_{c}\right) R_{C} \\
& =\left(V_{C C}-I_{C} R_{C}\right)-i_{c} R_{C} \tag{5.101}\\
& =V_{C}-i_{C} R_{C} .
\end{align*}
$$

Here the quantity V_{C} is the dc bias voltage at the collector, and the signal voltage is given by

$$
\begin{equation*}
v_{c}=-i_{c} R_{C}=-g_{m} v_{b e} R_{C} \tag{5.102}
\end{equation*}
$$

$$
=\left(-g_{m} R_{C}\right) v_{b e}
$$

Thus the voltage gain of this amplifier A_{v} is

$$
\begin{equation*}
A_{v} \equiv \frac{v_{c}}{v_{b e}}=-g_{m} R_{C} \tag{5.103}
\end{equation*}
$$

Here again we note that because g_{n} is directly proportional to the collector bias current, the gain will be as stable as the collector bias current is made. Substituting for $g_{t m}$ from Eq. (5.87) enables us to express the gain in the form

$$
A_{v}=-\frac{I_{C} R_{C}}{V_{T}}
$$

which is identical to the expression we derived in Section 5.3 (Eq. 5.56).

- Minta

5.6.5 Separating the Signal and the DC Quantities

The analysis above indicates that every current and voltage in the amplifier circuit of Fig. 5.48(a) is composed of two components: a dc component and a signal component. Fo instance, $v_{B E}=V_{B E}+v_{b e}, I_{C}=I_{C}+i_{c}$, and so on. The dc components are determined from the dc circuit given in Fig. 5.48(b) and from the relationships imposed by the transistor (Eqs. 5.7 through 5.81). On the other hand, a representation of the signal operation of the BJT can be obtained by eliminating the dc sources, as shown in Fig. 5.50 . Observe that since the voltage of an ideal dc supply does not change, the signal voltage across it will be zero. For this reason we have replaced $V_{C C}$ and $V_{B E}$ with short circuits. Had the circuit contained ideal dc current sources, these would have been replaced by open circuits. Note, however, that the circuit of Fig. 5.50 is uscful only in so far as it shows the various signal currents and voltages; it is not an actual amplifier circuit since the dc bias circuit is not shown.

Figure 5.50 also shows the expressions for the current increments (i_{c}, i_{b}, and i_{e}) obtained when a small signal $v_{b e}$ is applicd. These relationships can be represented by a circuit. Such a cir cuit should have threc terminals-C, B, and E-and should yield the same terminal curreuts indi cated in Fig. 5.50. The resulting circuit is then equivalent to the transistor as far as small-signal operation is concerned, and thus it can be considered an equivalent small-signal circuit model.

5.6.6 The Hybrid- π Model

An equivalent circuil model for the BJT is shown in Fig. 5.51(a). This model represents the BJT as a voltage-controlled current source and explicitly includes the input resistance looking into

FIGURE 5.50 Thc amplifier circuit of Fig. $5.48($ a) with the dc sourccs $\left(V_{g E}\right.$ and $V_{C C}$) eliminated (short circuited).
Thus only the signal components are present Note that Thus only the signal components are present. Note that
this is a representation of the signal operation of the BJT and not an actual amplifier circuit.

FIGURE 5.51 Two slightly different versions of the simplified hybrid- π model for the small-signal operation of the BJT. The cquivalcot circuit in (a) roprescnts thc BJT as a volage controllcd current source (a transconduc tance amplificr), and that in (b) represents the BJT as a current-controlled current source (a current amplifier).
the base, r_{r}. The model obviously yields $i_{c}=\rho_{r} v_{b c}$ and $i_{b}=v_{b e} / r_{\pi}$. Not so obvious, however is the fact that the model also yields the correct expression for i_{e}. This can be shown as follows: At the emitter node we have

$$
\begin{aligned}
i_{c} & =\frac{v_{b e}}{r_{\pi}}+g_{m} v_{b e}=\frac{v_{b e}}{r_{\pi}}\left(1+g_{m} r_{\pi}\right) \\
& =\frac{v_{b e}}{r_{\pi}}(1+\beta)=v_{b e} /\left(\frac{r_{\pi}}{1+\beta}\right) \\
& =v_{b e} / r_{e}
\end{aligned}
$$

A slightly different equivalent circuit model can be obtained by expressing the current of the controlled source ($g_{m} v_{b e}$) in terms of the base current i_{b} as follows:

$$
\begin{aligned}
g_{m} v_{b e} & =g_{m}\left(i_{b} r_{\pi}\right) \\
& =\left(g_{m} r_{\pi}\right) i_{b}=\beta i_{b}
\end{aligned}
$$

This results in the alternative equivalent circuit model shown in Fig. 5.51 (b). Here the transistor is represented as a current-controlled current source, with the control current being i_{b}.

The two models of Fig. 5.51 are simplified versions of what is known as the hybrid- π model. This is the most widely used model for the BJT.

It is important to notc that the small-signal equivalent circuits of Fig. 5.51 model the operation of the BJI at a given bias point. This should be obvious from the fact that the model parameters g_{m} and r_{π} depend on the value of the dc bias current I_{C}, as indicated in Fig. 5.51. Finally, although the models have been developed for an npn transistor, they apply equally well to a pnp iransistor with no change of polarities.

5.6.7 The T Model

Although the hybrid- π model (in one of its two variants shown in Fig. 5.51) can be used to cany out small-signal analysis of all transistor circuits, there are situations in which an alternative model, shown in Fig. 5.52, is mucb more convenient. This model, called the T model, is shown

(a)

(b)

FIGURE 5.52 Two slightly different versions of what is known as the T model of the BJT. The circuit in (a) is a voltage-controlled current source representation and that in (b) is a current-controlled current sour featured in the hyhrid $-\pi$ model.
in two versions in Fig. 5.52. The model of Fig. 5.52(a) represents the BJT as a voltage-controlled current source with the control voltage being $v_{b e}$. Here, however, the resistance between base and emitter, looking into the emitter, is explicitly shown. From Fig. 5.52(a) we see clearly that the model yields the correct expressions for i_{c} and i_{e}. For i_{b} we note that at the base node we have

$$
\begin{aligned}
i_{b} & =\frac{v_{b e}}{r_{e}}-g_{m} v_{b e}=\frac{v_{b e}}{r_{e}}\left(1-g_{m} r_{e}\right) \\
& =\frac{v_{b e}}{r_{e}}(1-\alpha)=\frac{v_{b e}}{r_{e}}\left(1-\frac{\beta}{\beta+1}\right) \\
& =\frac{v_{b e}}{(\beta+1) r_{e}}=\frac{v_{b e}}{r_{\pi}}
\end{aligned}
$$

as should be the case.
If in the model of Fig. 5.52(a) the current of the controlled source is expressed in terms of the emitter current as follows.

$$
\begin{aligned}
g_{m} v_{b c} & =g_{m}\left(i_{e} r_{e}\right) \\
& =\left(g_{m} r_{e}\right) i_{e}=\alpha i_{e}
\end{aligned}
$$

we obtain the alternative T model shown in Fig. 5.52(b). Here the BJT is represented as a cuirent-controlled current source but with the control signal being i_{e}.

5.6.8 Application of the Small-Signal Equivalent Circuits

The availability of the small-signal BJT circuit models makes the analysis of transistor The availability of the small-signal BJT circuit models makes he analysis of

1. Determine the dc operating point of the BJT and in particular the dc collector current I_{c}.
2. Calculate the values of the small-signal model parameters: $g_{m}=I_{C} / V_{T}, r_{\pi}=\beta / g_{m}$, and $r_{e}=V_{T} / I_{E}=\alpha / g_{m}$.
3. Eliminate the dc sources by replacing each dc voltage source with a short circuit and each dc current source with an open circuit.
4. Replace the BJT with one of its small-signal equivalent circuit models. Although any one of the models can be used, one might be more convenient than the others for the particular circuit being analyzed. This point will be made clearer later in this chapter
5. Analyze the resulting circuit to determine the required quantities (e.g., voltage gain, input resistance). The process will be illustrated by the following examples.

3WMr 53:

We wish to analyze the transistor amplifier shown in Fig. 5.53 (a) to determine its voltage gain. Assume $\beta=100$.

Solution

The first step in the analysis consists of determining the quiescent operating point. For this purpose we assume that $v_{i}=0$. The dc base current will be

$$
\begin{aligned}
I_{B} & =\frac{V_{B B}-V_{B E}}{R_{B B}} \\
& \simeq \frac{3-0.7}{100}=0.023 \mathrm{~mA}
\end{aligned}
$$

5.6 SMALL-SIGNAL OPERATION AND MODELS

(a)

(b)

(c)

FIGURE 5.53 Example 5.14: (a) circuil; (b) dc analysis: (c) small-signal model.

The de collcctor curent will be

$$
I_{C}=\beta I_{B}=100 \times 0.023=2.3 \mathrm{~mA}
$$

The de voltage at the collector will be

$$
\begin{aligned}
V_{C} & =V_{C C}-I_{C} R_{C} \\
& =+10-2.3 \times 3=+3.1 \mathrm{~V}
\end{aligned}
$$

Since V_{B} at +0.7 V is less than V_{C}, it follows that in the quiescent condition the transistor will be opcrating in the active mode. The dc analysis is illustrated in Fig. 5.53(b).
Having determined the operating point, we may now proceed to determine the small-signal model parameters:

$$
\begin{aligned}
& r_{e}=\frac{V_{T}}{I_{E}}=\frac{25 \mathrm{mV}}{(2.3 / 0.99) \mathrm{mA}}=10.8 \Omega \\
& g_{m}=\frac{I_{C}}{V_{T}}=\frac{2.3 \mathrm{~mA}}{25 \mathrm{mV}}=92 \mathrm{~mA} / \mathrm{V} \\
& r_{\pi}=\frac{\beta}{g_{m}}=\frac{100}{92}=1.09 \mathrm{k} \Omega
\end{aligned}
$$

To carry out the small-signal analysis it is equally convenient to employ either of the two rid- π equivalent circuit models of Fig. 5.51 . Using the first results in the amplifier equivalent
circuit given in Fig. 5.53(c). Note that no de quantiies are included in this equivalent circuit. It is most important to note that the dc supply voltage $V_{C C}$ has been replaced by a short circuit in the signal equivalent circuit because the circuit terminal connceted to $V_{C C}$ will always have a con stant voltage; that is, the sigual voltage at this terminal will be zero. In other words, a circuit terminal connected to a constant dc source can always be considered as a signal ground.

Analysis of the eqnivalent circuit in Fig. 5.53(c) proceeds as follows:

$$
\begin{aligned}
v_{b e} & =v_{i} \frac{r_{\pi}}{r_{\pi}+R_{B B}} \\
& =v_{i} \frac{1.09}{101.09}=0.011 v_{i}
\end{aligned}
$$

The output voltage v_{0} is given by

$$
\begin{aligned}
v_{o} & =-g_{n} v_{b e} R_{C} \\
& =-92 \times 0.011 v_{i} \times 3=-3.04 v_{i}
\end{aligned}
$$

Thus the voltage gain will be

$$
A_{v}=\frac{v_{o}}{v_{i}}=-3.04 \mathrm{~V} / \mathrm{V}
$$

where the minus sign indicates a phase reversal

mampert

To ganı more insight into the operation of rransistor amplifiers, we wish to consider the waveforms at various points in the circuit analyzed in the previous example. For this purpose assume that $v_{\text {h }}$ has at varimus points in the circuit analyzed in the previous example. For this purpose assume that ψ_{i} has
a triangular waveform. First detcrmine the maxinnm amplitude that $v_{\text {i }}$ is allowed to have. Then, with the anplitude of v_{i} set to this value, give the waveforms of $i_{B}(t)$, $v_{B E}(t), i_{C}(t)$, and $v_{C}(t)$.

Solution

One constraint on signal amplitude is the small-signal approximation, which stipulates that $v_{b e}$ should not exceed about 10 mV . If we take the triangular waveform $v_{b e}$ to be 20 mV peak-to-peak and work backward, Eq. (5.105) can be used to determine the maximnm possible peak of v_{i},

$$
\hat{V}_{i}=\frac{\hat{V}_{b e}}{0.011}=\frac{10}{0.011}=0.91 \mathrm{~V}
$$

o check whether or not the transistor remains in the active mode with v_{i} having a peak valu $\hat{V}_{i}=0.91 \mathrm{~V}$, we have to evaluate the collector voltage. The voltage at the collector will consis of a triangular wave v_{c} superimposed on the dc valne $V_{c}=3.1 \mathrm{~V}$. The peak voltage of the triangular wavefornm will be

$$
\hat{V}_{c}=\hat{V}_{i} \times \text { gain }=0.91 \times 3.04=2.77 \mathrm{~V}
$$

It follows that when the output swings negative, the collcetor voltage reaches a minimum of $3.1-2.77=0.33 \mathrm{~V}$, which is lower than the base voltage by less than 0.4 V . Thus the transistor will remain in the active mode with ν_{i} having a peak value of 0.91 V . Nevertheless, we will use a somewhat lower value for \hat{V}_{i} of approximately 0.8 V , as shown in Fig. 5.54(a), and complete the analysis of this problem. The signal current in the base will be triangular, with a peak value \hat{I}_{b} of

$$
\hat{I}_{b}=\frac{\hat{V}_{i}}{R_{B B}+r_{\pi}}=\frac{0.8}{100+1.09}=0.008 \mathrm{~mA}
$$

(a)

(b)

(c)
$i_{c}(\mathrm{~mA}) 4$

(d)

GGURE 5.54 Signal waveforms in the circuit of Fig. 5.53.

This triangular-wave current will be superimposed on the quiescent base current J_{B}, as shown in Fig. 5.54(b). The base-emitter volage will consist of a triangular-wave component superimposed on the dc $V_{B E}$ that is approximately 0.7 V . The peak value of the triangular waveform will be

$$
\hat{V}_{b e}=\hat{V}_{i} \frac{r_{\pi}}{r_{\pi}+R_{B B B}}=0.8 \frac{1.09}{100+1.09}=8.6 \mathrm{mV}
$$

The total $v_{B I}$ is sketched in Fig. $5.54(\mathrm{c})$.
The signal current in the collector will be triangular in waveform, with a peak value \hat{I}_{c} given by

$$
\hat{I}_{c}=\beta \hat{I}_{b}=100 \times 0.008=0.8 \mathrm{~mA}
$$

This current will be superimposed on the quiescent collector current $I_{C}(=2.3 \mathrm{~mA})$, as shown in Fig. 5.54(d).

Finally, the signal voltage at the collector can be obtained by multiplying v_{i} by the voltage gain; that is,

$$
\hat{V}_{c}=3.04 \times 0.8=2.43 \mathrm{~V}
$$

Figure 5.54(e) shows a skctch of the total collector voltage v_{C} versus time. Note the phase reversal between the input signal v_{i} and the oulput signal v_{c}

We need to analyze the circuit of Fig. 5.55(a) to determine the voltage gain and the signal wavc forms at various points. The capacitor C is a coupling capacitor whose purpose is to couple the signal v_{i} to the emitter while blocking dc. In this way the dc bias established by V^{+}and V his is \quad. hort cory lage capacior is used couple the output signal v_{o} to other parts of the system

(a)

(b)

IGURE 5.55 Example 5.16: (a) circuit; (b) dc analysis,

FIGURE 5.55 (Contimued) (c) smail-signal model; (d) small-signal analysis performed directly on the circuit.

Solution

We shall start by determining the dc operating point as follows (see Fig. 5.55b):

$$
I_{E}=\frac{+10-V_{E}}{R_{E}}=\frac{+10-0.7}{10}=0.93 \mathrm{~mA}
$$

Assuming $\beta=100$, then $\alpha=0.99$, and

$$
\begin{aligned}
I_{C} & =0.99 I_{E}=0.92 \mathrm{~mA} \\
V_{C} & =-10+I_{C} R_{C} \\
& =-10+0.92 \times 5=-5.4 \mathrm{~V}
\end{aligned}
$$

Thus the transistor is in the active mode. Furthermore, the collector signal can swing from -5.4 V to +0.4 V (which is 0.4 V above the base voltage) without the transistor going into saturation. However, a negative 5.8 - V swing in the collector voltage will (theoretically) cause the minimum collector voltage to be -11.2 V , which is more negative than the power-supply voltage. It follows that if we attempt to apply an input that results in such an output signal, the transistor will cut off and the negative peaks of the output signal will be clipped off, as illustrated in Fig. 5.56. The waveform in Fig. 5.56, however, is shown to be linear (except for the chipped peaks); that is, the effect of the nonlinear $i_{C}-v_{B E}$ characteristic is not taken into account. This is not correct, since if we are driving the transistor into cutoff at the negative signal peaks, then we will surely be exceeding the small-signal limit, as will be shown later.

Let us now proceed to determine the small-signal voltage gain. Toward that end, we eliminate the dc sources and replace the BJT with its T equivalent circuit of Fig. 5.52 (b). Note that because the base is grounded, the T model is somewhat more convenicnt than the hybrid- π model. Nevertbeless, identical results can be obtained using the latter.

Figure 5.55 (c) shows the resulting small-signal equivalent circuit of the amplifier. The model parameters are

$$
\begin{aligned}
\alpha & =0.99 \\
r_{e} & =\frac{V_{T}}{I_{E}}=\frac{25 \mathrm{mV}}{0.93 \mathrm{~mA}}=27 \Omega
\end{aligned}
$$

FIGURE 5.56 Distortion in output signal due to transistor cutoff. Note that it is assumed that no distorion duc to the transistor nonlinear characteristics is occurring.

Analysis of the circuit in Fig. 5.55 (c) to determine the output voltage v_{o} and hence the voltage gain v_{ρ} / v_{i} is straightforward and is given in the figure. The result is

$$
A_{v}=\frac{v_{o}}{\tilde{v}_{i}}=183.3 \mathrm{~V} / \mathrm{V}
$$

Note that the voltage gain is positive, indicating that the output is in phase with the input signal. This property is due to the fact that the input signal is applied to the emitler rather than to the base, as was done in Example 5.14. We should emphasize that the positive gain has nothing to do with the fact that the transistor used in this example is of the pnp type
Returning to the question of allowable signal magnitude, we observe from Fig. 5.55 (c) that $v_{e b}=v_{i}$. Thus, if small-signal operation is desired (for linearity), then the pcak of v_{i} should be limited to approximately 10 mV . With \hat{V}_{i} set to this value, as shown for a sinc-wave input in Fig. 5.57,

FIGURE 5.57 Input and output wavciorms or he cirat of Fig. 5.55. Observe that this amplifier is noninverting, a property of the common-base confliguration.
the peak amplitude at the collector, \hat{V}_{c}, will be

$$
\hat{V}_{c}=183.3 \times 0.01=1.8 .33 \mathrm{~V}
$$

and the total inslantancous collector voltage $v_{c}(t)$ will be as depicted in Fig. 5.57.

Funcigs

$4 \mathrm{~m} \square \mathrm{I}$ IIIU.!
5.6.9 Performing Small-Signal Analysis Directly on the Circuit Diagram
In most cases one should explicitly replace each BJT with its small-signal model and analyze the resulting circuil, as we have done in the examples above. This systematic procedure is particularly recommended for beginning students. Experienced circuil designers, however, often perform a first-order analysis directly on the circuit. Figure 5.55 (d) illustrates this process for the circuit we have just analyzed. The reader is urged to follow this direct analysis procedure (the steps are numbered). Obscrve that the cquivalent circuit model is implicitly utilized; we are only saving the step of drawing the circuit with the BJT replaced with its model. Dircet analysis, however, has an additional very important benefit: It provides insight regarding the signal transmission through the circuit. Such insight can prove invaluable in design, paticularly at the stage of selecting a circuit configuration appropriate for a given application.

5.6.10 Augmenting the Small-Signal Models to Account

for the Early Effect
The Early effect, discussed in Section 5.2, causes the collector current to depend not only on $v_{B E}$ but also on $v_{C E}$. The dependence on $v_{C E}$ can be modeled by assigning a finite output resistance to the controlled current-source in the hybrid- π model, as shown in Fig. 5.58. The output resistance r_{o} was defined in Eq. (S.37), its value is given by $r_{o}=\left(V_{A}+V_{C E}\right) / I_{C}=V_{A} / I_{C}$, the V_{i}. in the models of Fig. 5.58 we have renamed $v_{k e}$ as v_{π}, in order to conform with the literature

(a)

(b)

FIGURE 5.58 The hybrid- π small-signal model, in its two versions, with the resistance r_{0} included.

The question arises as to the effect of r_{o} on the operation of the transistor as an amplifier. In amplifier circuits in which the emitter is grounded (as in the circuit of Fig. 5.53), r_{0}, simply appears in parallel with R_{C}. Thus, if we include r_{o} in the equivalent circuit of Fig. 5.53 (c), for example, the output voltage v_{o} becomes

$$
v_{o}=-g_{m} v_{b e}\left(R_{C} / / r_{o}\right)
$$

Thus the gain will be somewhat reduced. Obviously if $r_{o} \gg R_{C}$, the reduction in gain will be negligible, and one can ignore the effect of r_{0}. In general, in such a configuration r_{o} can be neglected if it is greater than $10 R_{C}$

When the emitter of the transistor is not grounded, including r_{o} in the model can complicate the analysis. We will make comments regarding r_{o} and its inclusion or exclusion on frequent occasions throughout the book. We should also note that in integrated-circuit BJT amplifiers, r_{o} plays a dominant role, as will be seen in Chapter 6 . Of coursc, if one is performing an accurate analysis of an almost-final design using computer-aided analysis, then r_{o} can be easily included (see Section 5.11)
Finally, it should be noted that either of the T inodels in Fig. 5.52 can be augmented to account for the Early effect by including r_{o} between collector and emitter.

5.6.11 Summary

The analysis and design of BJT amplifier circuits is greatly facilitated if the relationships between the various small-signal model parameters are at your fingertips. For easy reference, these are summarized in Table 5.4. Over time, however, we expect the reader to be able to recall these from memory.
5.40 Tire fransistor in Fig E5:40 is biased with a constant cturent sourcel $=1$ mA and has $\beta=100$ and $V_{A}=100 \mathrm{~V}$. (a) Find the de voltages at the base emiter, and cotlector. (o) Find s_{m}, r_{r} : and $r_{\text {, (e) }}$ If ter
 $8-\mathrm{k} /$ load resistance: use the hy brid π model of Fig $5.58(4)$, to daw the small signal equivalent tircuit of the implifer. Note that the curen since t should be replaced with at open ericuil) Catcuate the averah votage sain $v / v_{i c}$ It is neflected what is he cror in estimating the gain magmtude? (Note: An infinite capacilance is used io ndicate that the capacitance is sutficienty large that it atts as a shon circuit at all signal frequences of interest Howeyce the capacitor still blocks dc.)

FIGURE E5.40
Ans, (a) $01 \mathrm{~V},-0.8 \mathrm{~V}, 2 \mathrm{~V}$, , 6) $40 \mathrm{mANV} 25 \mathrm{kN}, 100 \mathrm{ks}$ (c) -7IVN. $+3 \%$
5.6 SMALL-SIGNAL OPERATION AND MODELS

459

TABLE 5.4 Small Signal Models of the BIT,$~ \&$,

Hybrid- π Model

Model Parameters in Terms of DC Bias Currents

$$
g_{m}=\frac{I_{C}}{V_{T}} \quad r_{e}=\frac{V_{T}}{I_{E}}=\alpha\left(\frac{V_{T}}{I_{C}}\right) \quad r_{\pi}=\frac{V_{T}}{I_{B}}=\beta\left(\frac{V_{T}}{I_{C}}\right) \quad r_{o}=\frac{\left|V_{A}\right|}{I_{C}}
$$

In Terms of g_{m}

$r_{e}=\underline{g_{m}} \quad r_{\pi}=\frac{\beta}{g_{m}}$

In Terms of r_{e}

$$
g_{m}=\frac{\alpha}{r_{e}} \quad r_{\pi}=(\beta+1) r_{e} \quad g_{m}+\frac{1}{r_{\pi}}=\frac{1}{r_{e}}
$$

Relationships Between α and β

$\beta=\frac{\alpha}{1-\alpha} \quad \alpha=\frac{\beta}{\beta+1} \quad \beta+1=\frac{1}{1-\alpha}$

5.7 SINGLE-StAGE BJT AMPLIFIERS

We have studied the large-signal operation of BJT amplifiers in Section 5.3 and identified the region over which a properly biased transistor can be operated as a linear amplifier for small signals. Methods for dc biasing the BJT were studied in Section 5.5, and a detailed study of small-signal amplifier operation was presented in Section 5.6. We are now ready to consider practical transistor amplifiers, and we will do so in this section for circuits suitable for discrete-circuit fabrication. The design of integrated-circuit BJT amplifiers will be studied in Chapter 6.

There are basically three configurations for implementing single-stage BJT amplifiers: the common-emitter, the common-base, and the common-collector configurations. All three are studied below, utilizing the same basic structure with the same biasing arrangement.

5.7.1 The Basic Structure

Figure 5.59 shows the basic circuit that we shall ucilize to implement the various configurations of BJT amplifiers. Among the various biasing schemes possible for discrete BJT amplifiers (Section 5.5), we have selccled, for simplicity and effectiveness, the one employing constant-current biasing. Figure 5.59 indicates the dc currents in all branches and the dc voltages at all nodes. We should note that one would want to sclect a large value for R_{b} in order to keep the imput resistance at the base large. However, we also want to limit the dc voltage drop across R_{B} and even more importantly the variability of this de voliage resulting from the variation in β values among transistors of the same type. The dc voltage V_{B} determines the allowable signal swing at the collector.

FIGURE 5.59 Basic structurc of the circuit used to rcalize single-stage, discretc-circuit B.TT amplifier
configurations.

WRRCISE

 small stignal patametets at the hias point with $\beta=100$. The Earty: Voltage $V:=100 \mathrm{~V}$:
Ans. Sce Tig E5. 41 Signd wing for $\beta=100$ + $\mathrm{V},-3.4 \mathrm{~V}$; for $\beta=50$, $8 \mathrm{~V},-4 \mathrm{~V}$ Vifo $\beta=200,+8 \mathrm{~V},-2.2 \mathrm{~V}$:

5.7.2 Characterizing BJT Amplifiers ${ }^{9}$

As we begin our study of BJT amplifier circuits, it is important to know how to characterize the performance of amplifiers as circuit building blocks. An introduction to this subject was presented in Section 15 . However, the material of Section 1.5 was limited to unilateral amplifiers. A number of the amplifier circuits we shall study in this book are not unilateral; that is, they have internal feedbek that may cause their input resis book are not unilateral; that is, they have internal feedback that may cause their input resistance to depend on the load resistance. Similarly, internal feedback may cause the output resistance to depend on the value of the resistance of the signal source feeding the amplifier. To accommodate nonunilateral amplifiers, we present in Table 5.5 a general set of parameters and equivalent circuits that we will employ in characterizing and comparing transistor amplifiers. A number of remarks are in order:

1. The amplitier in Table 5.5 is shown fed with a signal source having an open-circuit voltage $\tau_{\text {sig }}$ and an internal resistance $R_{\text {sig }}$. These can be the parameters of an actual sigual source or the Thévenin equivalent of the output circuit of another amplifier stage preceding the one under study in a cascade amplifier. Similarly, R_{L} can be an actual load resistance or the input resistance of a succeeding amplifier stage in a cascade amplifier
[^16]TABLE 5.5 Characteistic Parameters of $A_{\text {mpinfint }}$
Circult

Definitions

2 Input resistance with no load:
Output resistance:

$$
\left.R_{i} \equiv \frac{v_{i}}{i_{i}}\right|_{R_{2}=\infty}
$$

$$
\left.R_{\text {out }} \equiv \frac{w_{x}}{i_{x}}\right|_{w_{\text {siq }}=0}
$$

20. Input rcsistance:

$$
R_{\mathrm{in}} \equiv \frac{v_{i}}{\bar{i}_{i}}
$$

Q Open-circuit voltage gain

$$
\left.A_{v_{o}} \equiv \frac{v_{o}}{v_{i}}\right|_{i_{L}=\infty}
$$

${ }^{24}$ Voltage gain:
$A_{v}=\frac{v_{o}}{v_{i}}$
Short-circuit current gain:
$\Lambda_{i s}=\left.\frac{i_{a}}{i_{i}}\right|_{R_{l}=0}$
Current gain:
$A_{i} \equiv \frac{i_{o}}{i_{i}}$

Open-circuit ovcrall voltage gain:
$\left.G_{z o} \equiv \frac{v_{o}}{v_{\text {sig }}}\right|_{R_{J}=\infty}$
읎 Overall voltage gain:
$G_{v} \equiv \frac{v_{o}}{v_{\text {sig }}}$

Shor-circuit transconductance: $G_{m} \equiv \frac{i_{o}}{\left.v_{i}\right|_{R_{l}=0}}{ }^{\prime}$

- Output resistance of amplifier proper:
$\left.R_{o} \equiv \frac{v_{x}}{i_{x}}\right|_{v_{i}-0}$

Equivalent Circuits

(A :

(B :

풊 C

Relationships
(5i) $\frac{z_{i}}{v_{\text {sig }}}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}}$
(3) $G_{v}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}} A_{v n} \frac{R_{L}}{R_{L}+R_{o}}$
g $A_{v}=A_{v o} \frac{R_{L}}{R_{L}+R_{o}}$
K $G_{z o}=\frac{R_{i}}{R_{i}+R_{\text {sig }}} A_{\text {vo }}$
罝 $A_{v o}=G_{m} R_{o}$
($G_{v}=G_{v o} \frac{R_{L}}{R_{L}+R_{\text {out }}}$
2. Parameters $R_{i}, R_{o}, A_{v o}, A_{i s}$, and G_{m} pertain to the amplifier proper; that is, they do not depend on the values of R_{sig} and R_{L}. By contrast, $R_{\mathrm{in}}, R_{\mathrm{vu}}, A_{v}, A_{i}, G_{v v}$, and G_{v} may depend on the values of $R_{\text {sig }}$ and R_{L}. By contrast, $R_{\text {in }}, R_{\text {oui }}, A_{v,} A_{i,} G_{v v}$, and G_{v} may
depend on one or both of $R_{\text {gig }}$ and R_{L}. Also, obscrve the relationships of related pairs of these parameters; for instance, $R_{i}=\left.R_{\text {in }}\right|_{R_{L}}=\infty$, and $R_{o}=\left.R_{\text {out }}\right|_{p}$
3. As mentioned above, for nonunilateral amplifiers, R_{in} may depend on R_{L}, and R_{ou} As mentioned above, for nonunilateral amplifiers, $R_{\text {in }}$ may depend on R_{L}, and $R_{\text {not }}$
may depend on $R_{\text {sig }}$. One such amplifier circuit is studied in Section 5.7.6. No such nay depend on $R_{\text {sig. }}$. One such amplifier circuit is studied in section
dependencies exist for unilateral amplifiers, for which $R_{\text {in }}=R_{i}$ and $R_{\text {out }}=R_{o}$.
4. The loading of the amplifier on the signal source is determined by the input resistance R_{in}. The value of R_{in} determines the current i_{i} that the amplifier draws from the ignal source. It also determines the proportion of the signal $v_{\text {sig }}$ that appears at the input of the amplifier proper, that is, v_{i}.
5. When evaluating the gain A_{v} from the open-circuit value $A_{v o}, R_{o}$ is the output resistance to use. This is because $A_{\text {, }}$ is based on feeding the amplifier with an ideal voltage signal τ_{1}. This should be evident from Equivalent Circuit A in Table 5.5. On the other hand, if we are evaluating the overall voltage gain G_{y} from its open-circuit value G the output resistance to use is $R_{\text {out }}$. This is because G_{v} is based on feeding the amplifier with $y_{i j}$, which has an internal resistance $R_{\text {we }}$. This should be evident from Equivaient Circuit C in Table 5.5.
6. We urge the reader to carefully examine and reflect on the definitions and the six relationships presented in Table 5.5. Example 5.17 should help in this regard.

EKMETEstik

A transistor amplifier is fed with a signal source having an open-circuit voltage $v_{\text {sig }}$ of 10 mV and an internal resistance R_{sig} of $100 \mathrm{k} \Omega$. The voltage v_{t} at the amplifier input and the output voltage v_{o} are measured both without and with a load resistance $R_{L}=10 \mathrm{k} \Omega$ connected to the amplifier output. The measured results are as follows:

\because	$\mathrm{V}(\mathrm{mv})$	$v_{0}(\mathrm{mV})$
Without R_{L}	9	90
With R_{L} connected	8	70

Find all the amplifier paramcters,

Solution

First, we use the data ohtained for $R_{L}=\infty$ to determin

$$
A_{v v}=\frac{90}{9}=10 \mathrm{~V} / \mathrm{V}
$$

and

$$
G_{i v}=\frac{90}{10}=9 \mathrm{~V} / \mathrm{V}
$$

Now, since

$$
\begin{aligned}
G_{v o} & =\frac{R_{i}}{R_{i}+R_{\text {sig }}} A_{v o} \\
9 & =\frac{R_{i}}{R_{i}+100} \times 10
\end{aligned}
$$

which gives

$$
R_{i}=900 \mathrm{k} \Omega
$$

Ncxt, we use the data obtained when $R_{L}=10 \mathrm{kS}$ is connected to the amplifier output to determine

$$
A_{v}=\frac{70}{8}=8.75 \mathrm{v} / \mathrm{V}
$$

and

$$
G_{\eta}=\frac{70}{10}=7 \mathrm{~V} / \mathrm{V}
$$

The values of A_{v} and $A_{v v}$ can be used to determine R_{θ} as follows:

$$
\begin{aligned}
A_{v} & =A_{z o} \frac{R_{L}}{R_{L}+R_{o}} \\
8.75 & =10 \frac{10}{10+R_{o}}
\end{aligned}
$$

which give

$$
R_{o}=1.43 \mathrm{k} \Omega
$$

Similarly, we use the values of G_{r} and G_{ws} to determine R_{uut} from

$$
\begin{aligned}
G_{v} & =G_{v o} \frac{R_{L}}{R_{L}+R_{\text {out }}} \\
7 & =9 \frac{10}{10+R_{\text {out }}}
\end{aligned}
$$

resulting in

$$
R_{\mathrm{out}}=2.86 \mathrm{k} \Omega
$$

The value of R_{in} can be determined from

$$
\frac{v_{i}}{v_{\text {sisi }}}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}}
$$

Thus,

$$
\frac{8}{10}=\frac{R_{\mathrm{in}}}{R_{\mathrm{in}}+100}
$$

which yields

$$
R_{\mathrm{in}}=400 \mathrm{k} \Omega
$$

The short-circuit transconductance G_{m} can be found as follows:

$$
G_{m}=\frac{A_{w o}}{R_{o}}=\frac{10}{1.43}=7 \mathrm{~mA} / \mathrm{V}
$$

and the current gain A_{i} can be determined as follows:

$$
\begin{aligned}
A_{t} & =\frac{v_{c} / R_{L}}{v_{i} / R_{\text {in }}}=\frac{v_{o}}{v_{i}} \frac{R_{\text {in }}}{R_{L}} \\
& =A_{v} \frac{R_{\text {in }}}{R_{L}}=8.75 \times \frac{400}{10}=350 \mathrm{~A} / \mathrm{A}
\end{aligned}
$$

Finally, we determinc the short-circuit current gain $A_{i s}$ as follows. From Equivalent Circuit A, the hort-circuit output current is

$$
\begin{equation*}
i_{o s c}=A_{i o s} v_{i} / R_{o} \tag{5.107}
\end{equation*}
$$

However, to detcrmine v_{i} we need to know the value of $R_{i \mathrm{in}}$ obtained with $R_{L}=0$. Toward this end, notc that from Equivalent Circuit C , the output short-circuit current can be found as

$$
i_{o s c}=G_{v o} \tau_{\text {sigg }} / R_{\text {out }}
$$

Now, equating the two expressions for $i_{\text {ssc }}$ and substituting for $G_{v p}$ by

$$
G_{v o}=\frac{R_{i}}{R_{i}+R_{\text {sig }}} A_{v o}
$$

and for v_{i} from

$$
v_{i}=v_{\mathrm{sis}} \frac{\left.R_{\mathrm{in}}\right|_{R_{L}}=0}{\left.R_{\mathrm{in}}\right|_{R_{t}=0}+R_{\mathrm{sig}}}
$$

results in

$$
R_{\mathrm{in} \mid R_{L}=0}=R_{\text {sil }} /\left[\left(1+\frac{R_{\text {sig }}}{R_{i}}\right)\left(\frac{R_{\text {out }}}{R_{o}}\right)-1\right]
$$

$$
=81.8 \mathrm{k} \Omega
$$

We now can use

$$
i_{o s c}=\left.A_{v o} i_{i} R_{\mathrm{in}}\right|_{R_{L}=0} / R_{o}
$$

to obtain

$$
A_{i s}=\frac{i_{a s c}}{i_{i}}=10 \times 81.8 / 1.43=572 \mathrm{~A} / \mathrm{A}
$$

EXERCSE

 Ans (a) 400 kS . 83 , unchanged, i.e, 100 kS) (c) Repeat for both $R_{\text {sp }}$ and R_{L} doubled.

5.7.3 The Cornmon-Emitter (CE) Amplifier

The CE configuration is the most widely used of all BJT amplifier circuits. Figure 5.60(a) shows a CE amplifier implemented using the circuit of Fig. 5.59. To establish a signal ground (or an ac ground, as it is sometimes called) at the emitter, a large capacitor C_{F}, usually in the $\mu \mathrm{F}$ or tens of $\mu \mathrm{F}$ range, is connected between emitter and ground. This capacitor is required to provide a very low impedance to ground (ideally, zero impedance; i.e., in effect, a short circuit) at all signal frequencies of interest. In this way, the enitter signal current passes through C_{E} to ground and thus bypasses the output resistance of the current source I (and any other circuit component that might be connected to the emitter); hence C_{E} is called a bypass capacitor. Ohviously, the lower the signal frequency, the less effective the bypass capacitor becomes. This issue will be studied in Section 5.9. For our purposes here we shall assume that C_{E} is acting as a perfect short circuit and thus is establishing a zero signal voltage at the emitter.

(a)

$\overline{=}$
(b)

FIGURE 5.60 (a) A corrmon-cmitter amplifier using the structure of Fig. 5.59. (b) Equivalent circui oblained by replacing the transistor with its hybrid $-\pi$ model.

In order not to disturb the de bias currents and voltages, the signal to be amplified, shown as a voltage source $v_{\text {sig }}$ with an internal resistance $R_{\text {sig }}$, is connected to the base through a large capacitor $C_{C 1}$. Capacitor $C_{C 1}$, known as a coupling capacitor, is required to act as a perfect short circuit at all signal frequencies of interest while blocking dc. Here again we shall assume this to be the case and defer discussion of imperfect signal coupling, arising as a result of the rise of the impedance of $C_{C 1}$ at low frequencies, to Section 5.9. At this juncture, we should point out that in situations where the signal source can provide a dc path for the dc base current I_{B} without significantly changing the bias point we may connect the source directly to the base, thus dispensing with $C_{C 1}$ as well as R_{B}. Eliminating R_{B} has the added beneficial effect of raising the input resistance of the amplifier.

The voltage signal resulting at the collector, v_{c}, is coupled to the load resistance R_{L} via another coupling capacitor $C_{C 2}$. We shall assume that $C_{C 2}$ also acts a perfect short circuit at all signal frequencies of interest; thus the output voltage $v_{o}=v_{c}$. Note that R_{I} can be an actual load resistor to which the amplifier is required to provide its output voltage signal, or it can be the input resistance of a subsequent amplifier stage in cases where more than one stage of amplification is needed. (We will study multistage amplificrs in Chapter 7).

To determine the terminal characteristics of the CE amplifier, that is, its input resistance, voltage gain, and output resistance, we replace the BJT with its hybrid- π small-signal model. The resulting small-signal equivalent circuit of the CE amplifier is shown in Fig. 5.60(b). We observe at the outset that this amplifier is umilateral and thus $R_{\text {in }}=R_{i}$ and $R_{\text {out }}=R_{\theta}$. Analysis of this circuit is straightforward and proceeds in a step-by-step manner, from the signal source to the amplifier load. At the amplifier input we have

$$
\begin{equation*}
R_{\mathrm{in}} \equiv \frac{v_{i}}{i_{i}}=R_{B} \| R_{i b} \tag{5.109}
\end{equation*}
$$

where $R_{i b}$ is the input resistance looking into the base. Since the emitter is grounded,

$$
\begin{equation*}
R_{i b}=r_{\pi} \tag{5.110}
\end{equation*}
$$

Normally, we select $R_{B} \gg r_{\pi}$, with the result that

$$
\begin{equation*}
R_{\mathrm{in}} \cong r_{\pi} \tag{5.1.11}
\end{equation*}
$$

Thus, we note that the input resistance of the CE arnplifier will typically be a few kilohms, which can be thought of as low to moderate. The fraction of source signal $\nu_{\text {sig }}$ that appears across the input terminals of the amplifier proper can be found from

$$
\begin{align*}
v_{i} & =v_{\text {sig }} \frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}} \\
& =v_{\text {sig }} \frac{\left(R_{B} \| r_{\pi}\right)}{\left(R_{B}+r_{\pi}\right)+R_{\text {sig }}} \tag{5.113}
\end{align*}
$$

which for $R_{B} \gg r_{\pi}$ becomes

$$
v_{i} \cong v_{\text {sisi }} \frac{r_{\pi}}{r_{\pi}+R_{\text {sig }}}
$$

Next we note that

$$
v_{\pi}=v_{i}
$$

At the output of the amplifier we have

$$
v_{o}=-g_{n} v_{\pi}\left(r_{0}\left\|R_{C}\right\| R_{L}\right)
$$

Replacing v_{π} by v_{i} we can write for the voltage gain of the amplifier proper; that is, the voltage gain from base to collector,

$$
\begin{equation*}
A_{v}=-g_{m}\left(r_{o}\left\|R_{C}\right\| R_{L}\right) \tag{5.116}
\end{equation*}
$$

This equation simply says that the voltage gain from base to collector is found by multiplying g_{m} by the total resistance between collector and ground. The open-circuit voltage gain ing $g_{m o}$ can be ohtained by setting $R_{L}=\infty$ in Eq. (5.116); thus,

$$
\begin{equation*}
A_{v o}=-g_{m}\left(r_{o} \| R_{C}\right) \tag{5.117}
\end{equation*}
$$

from which we note that the effect of r_{o} is simply to reduce the gain, usually only slightly since typically $r_{o} \geqslant R_{C}$, resulting in

$$
\begin{equation*}
A_{v o} \cong-g_{m} R_{C} \tag{5.118}
\end{equation*}
$$

The output resistance $R_{\text {out }}$ can be found from the equivalent circuit of Fig. 5.60 (b) by looking back into the output terminal while short-circuiting the source $v_{\text {sig. }}$. Since this will result in $v_{\pi}=0$, we see that

$$
\begin{equation*}
R_{\text {out }}=R_{C} \| r_{o} \tag{5.119}
\end{equation*}
$$

Thus r_{o} reduces the output resistance of the amplifier, again usually only slightly since typically $r_{o} \gg R_{C}$ and

$$
R_{\mathrm{out}} \cong R_{C}
$$

Recalling that for this unilateral amplifier $R_{o}=R_{\text {out }}$, we can utilize $A_{z o}$ and R_{o} to obtain the voltage gain A_{ν} corresponding to any particular R_{L},

$$
A_{v}=A_{v o} \frac{R_{L}}{R_{L}+R_{o}}
$$

The reader can easily verify that this approach does in fact lead to the expression for A_{v} in Eq. (5.116), which we have derived directly.

The overall voltage gain from source to load, G_{i}, can be obtained by multiplying $\left(v_{i} / v_{\text {sig }}\right)$ from Eq. (5.113) by A_{v} from Eq. (5.116),

$$
\begin{equation*}
G_{v}=-\frac{\left(R_{b} \| r_{\pi}\right)}{\left(R_{b} \| r_{\pi}\right)+R_{\text {sig }}} g_{m}\left(r_{o}\left\|R_{C}\right\| R_{L}\right) \tag{5.121}
\end{equation*}
$$

For the case $R_{B}>r_{\pi}$, this expression simplifies to

$$
\begin{equation*}
G_{v} \cong-\frac{\beta\left(R_{C}\left\|R_{L}\right\| r_{o}\right)}{r_{\pi}+R_{\text {sig }}} \tag{5.122}
\end{equation*}
$$

From this expression we note that if $R_{\text {sig }} \gg r_{\pi}$, the overall gain will be highly dependent on β. This is not a desirable property since β varies considerably between units of the same transistor type. At the other extreme, if $R_{\text {sig }} \ll r_{\pi}$, we see that the expression for the overal
voltage gain reduces to

$$
\begin{equation*}
G_{v} \cong-g_{m}\left(R_{C}\left\|R_{L}\right\| r_{o}\right) \tag{5.123}
\end{equation*}
$$

which is the gain A_{v}; in other words, when $R_{\text {sig }}$ is small, the overall voltage gain is almost equal to the gain of the CE circuit proper, which is independent of β. Typically a CE amplifier can realize a voltage gain on the order of a few hundred, which is very significant. It follows that the CE amplifier is uscd to realize the bulk of the voltage gain required in a usual amplifier design. Unfortunately, however, as we shall see in Section 5.9, the high-frequency esponse of the CE amplifier can be rather limitcd.
Beforc leaving the CE amplificr, we wish to evaluate its short-circuit current gain, A_{i} This can be easily done by referring to the amplifier equivalent circuit in Fig. 5.60(b). When R_{L} is short circuited, the current through it will he equal to $-g_{m} v_{n}$,

$$
i_{u s}=-g_{m} v_{\pi}
$$

Since v_{π} is related to i_{i} by

$$
v_{n}=v_{i}=i_{i} K_{\mathrm{in}}
$$

the short-circuit current gain can be found as

$$
\begin{equation*}
A_{i s} \equiv \frac{i_{o s}}{i_{i}}=-g_{m} R_{\mathrm{in}} \tag{5.124}
\end{equation*}
$$

Substituting $R_{\text {in }}=R_{B}\| \| r_{\pi}$ we can see that in the case $R_{B} \gg r_{n},\left|A_{i s}\right|$ reduces to β, which is to be expected since β is, by definition, the sbort-circuit current gain of the common-emilter configuration.
In conclusion, the common-emitter configuration can provide large voltage and curren gains, but $R_{\text {in }}$ is relatively low and $R_{\text {uut }}$ is relatively high.

EXERCISE

 49. 5 .

 1 mV:0\%\%
5.7.4 The Common-Emitter Amplifier with an Emitter Resistance

Including a resistance in the signal path between emitter and ground, as shown in Fig. 5.61(a), can lead to significant changes in the amplifier characteristics. Thus such a resistor can be utilized by the designcr as an effective design tool for tailoring the amplifier characteristic of fit the design requircments.

(a)

FIGURE 5.61 (a) A common-emitter amplifier with an emiter resistance R_{c} (b) Equivalent circuil obtained by replacing the transistor wilh its T model.

Analysis of the circuit in Fig. 5.61(a) can be performed by replacing the BJT with one of its small-signal models. Although any one of the models of Figs. 5.51 and 5.52 can be used, the most convenient for this application is onc of the two T models. This is because a resis ance R_{e} in the emitter will appear in series with the emitter resistance r_{e} of the T model and can thus be added to it, simplifying the analysis considerably. In fact, whenever there is

473
resistance in the emitter lead, the T model should prove more convenient to use than the hybrid- π model.
Replacing the BJT with the T model of Fig. 5.52(b) results in the amplifier small-signal equivalent-circuit model shown in Fig. 5.6 l (b). Note that we have not included the B.JT output resistance r_{o}; including r_{o} complicates the analysis considerably. Since for the discrete amplifier at hand it turns out that the effect of r_{o} on circuit performance is small, we shall not include it in the analysis bere. This is not tbe case, however, for the IC version of this circuit, and we shall indeed take r_{o} into account in the aualysis in Chapter 6.
To deternine the amplifier iuput resistance R_{i}, we note from Fig. 5.61(b) that R_{in} is the parallel equivalent of R_{B} and the input resistance at the base $R_{i b}$,

$$
\begin{equation*}
R_{\mathrm{in}}=R_{B} \| R_{i b} \tag{5.125}
\end{equation*}
$$

The input resistance at the base $R_{i b}$ can be found from

$$
R_{i b} \equiv \frac{v_{i}}{i_{b}}
$$

where

$$
i_{b}=(1-\alpha) i_{e}=\frac{i_{e}}{\beta+1}
$$

and

$$
i_{e}=\frac{v_{i}}{r_{e}+R_{e}}
$$

(5.126)

Thus,

$$
\begin{equation*}
R_{i b}=(\beta+1)\left(r_{e}+R_{e}\right) \tag{5.127}
\end{equation*}
$$

This is a very important result. It says that the input resistance looking into the base is ($\beta+1$) times the total resistance in the emitter. Multiplication by the factor $(\beta+1)$ is known as the resistance-reflection rule. The factor $(\beta+1)$ arises because the base current is $1 /(\beta+1)$ times the emitter current. The expression for $R_{i b}$ in Eq. (5.127) shows clearly that including resistance R_{e} in the emitter can substantially increase R_{b}. Indeed the value of R_{b} is increased by the ratio

$$
\begin{align*}
\frac{R_{i b}\left(\text { with } R_{e} \text { included }\right)}{R_{i b}\left(\text { without } R_{e}\right)} & =\frac{(\beta+1)\left(r_{e}+R_{e}\right)}{(\beta+1) r_{e}} \\
& =1+\frac{R_{e}}{r_{e}} \cong 1+g_{m} R_{e} \tag{5.128}
\end{align*}
$$

Thus the circuit designer can use the value of R_{e} to control the value of $R_{i b}$ and hence $R_{\text {in }}$. Of course, for this control to be effective, R_{B} must be much larger than $R_{i b}$; in other words, $R_{i b}$ must dominate the input resistance.

To determine the voltage gain A_{v}, we see from Fig. 5.61(b) that

$$
\begin{aligned}
v_{o} & =-i_{c}\left(R_{C} \| R_{L}\right) \\
& =-\alpha i_{e}\left(R_{C} \| R_{L}\right)
\end{aligned}
$$

Substituting for i_{e} from Eq. (5.126) givès

$$
\begin{equation*}
A_{v} \equiv \frac{v_{o}}{v_{i}}=-\frac{\alpha\left(R_{C} \| R_{L}\right)}{r_{e}+R_{e}} \tag{5.129}
\end{equation*}
$$

Since $\alpha \cong 1$,

$$
\begin{equation*}
A_{v} \cong-\frac{R_{C} \| R_{L}}{r_{e}+R_{e}} \tag{5.130}
\end{equation*}
$$

This simple relationship is very useful and is definitely worth remembering: The voltage gain from base to collector is equal to the ratio of the total resistance in the collector to the total resistance in the emitter. This statement is a general one and applies to any amplifier circuit. The open-circuit voltage gain $A_{v o}$ can be found by setting $R_{L}=\infty$ in Eq. (5.129),

$$
\begin{equation*}
A_{v o}=-\frac{\alpha R_{C}}{r_{e}+R_{e}} \tag{5.131}
\end{equation*}
$$

which can be expressed alternatively as

$$
\begin{gather*}
A_{v o}=-\frac{\alpha}{r_{e}} \frac{R_{C}}{1+R_{e} / r_{e}} \\
A_{v o}=-\frac{g_{m} R_{C}}{1+\left(R_{e} / r_{e}\right)} \cong-\frac{g_{m} R_{C}}{1+g_{m} R_{e}} \tag{5.132}
\end{gather*}
$$

Including R_{c} thus reduces the voltage gain by the factor $\left(1+g_{m} R_{e}\right)$, which is the same factor by which R_{i} is increased. This points out an interesting trade-off between gain and input by which $R_{i,}$ is increased. This points out an interesting trade-off between gain and input
resistance, a tradc-off that the designer can exercise through the choice of au appropriate value for R_{e}.

The output resistance $R_{\text {ou }}$ can be found from the circuit in Fig. 5.61(b) by inspection

$$
\begin{equation*}
R_{\text {out }}=R_{C} \tag{5.133}
\end{equation*}
$$

At this point we should note that for this amplifier, $R_{\mathrm{in}}=R_{i}$ and $R_{\text {out }}=R_{o}$
The short-circuit current gain $A_{i s}$ can be found from the circuit in Fig. 5.61(b) as follows:

$$
\begin{aligned}
i_{o s} & =-\alpha i_{e} \\
i_{i} & =v_{i} / R_{\mathrm{in}}
\end{aligned}
$$

Thus,

$$
A_{i s}=-\frac{\alpha R_{\text {in }} i_{e}}{v_{i}}
$$

Substituting for i_{e} from Eq. (5.126) and for $R_{\text {in }}$ from Eq. (5.125),

$$
\begin{equation*}
A_{i s}=-\frac{\alpha\left(R_{B} \| R_{i b}\right)}{r_{e}+R_{e}} \tag{5.134}
\end{equation*}
$$

which for the case $R_{B} \geqslant R_{i b}$ reduces to

$$
A_{i s}=\frac{-\alpha(\beta+1)\left(r_{e}+R_{e}\right)}{r_{e}+R_{e}}=-\beta
$$

the same valuc as for the CE circuit.

The overall voltage gain from source to load can be obtained by multiplying A_{v} by $\left(v_{i} / v_{\text {sig }}\right)$,

$$
G_{v}=\frac{v_{i}}{v_{\text {sig }}} \cdot A_{v}=-\frac{R_{\text {in }}}{R_{\text {sig }}+R_{\text {in }}} \frac{\alpha\left(R_{C} \| R_{L}\right)}{r_{e}+R_{e}}
$$

Substituting for R_{in} by $R_{B} \| R_{i b}$, assuming that $R_{B} \gg R_{i b}$, and substituting for $R_{i b}$ from Eq. (5:127) results in

$$
\begin{equation*}
G_{v} \cong-\frac{\beta\left(R_{C} \| R_{L}\right)}{R_{\text {sip }}+(\beta+1)\left(r_{e}+R_{e}\right)} \tag{5.135}
\end{equation*}
$$

We note that the gain is lower than that of the CE amplifier because of the additional term $(\beta+1) R_{e}$ in the denominator. The gain, however, is less sensitive to the value of β, a desir able result.
Another importaut consequence of including the resistance R_{e} in the emitter is that it enables the amplifier to handle larger input signals without incurring nonlinear distortion This is because only a fraction of the input signal at the base, v_{i}, appears between the base and the emitter. Specifically, from the circuit in Fig. 5.61(b), we see that

$$
\frac{v_{\pi}}{v_{i}}=\frac{r_{e}}{r_{e}+R_{e}} \cong \frac{1}{1+g_{m} R_{e}}
$$

Thus, for the same v_{π}, the signal at the input terminal of the amplificr, v_{i}, can be greater that for the CE amplifier by the factor $\left(1+g_{m} R_{e}\right)$.
To summarize, including a resistance R_{e} in the emitter of the CE amplifier results in the following characteristics:

1. The input resistance $R_{i b}$ is increased by the factor $\left(1+g_{m} R_{e}\right)$.
2. The voltage gain from base to collector, A_{ν}, is reduced by the factor $\left(1+g_{m} R_{e}\right)$.
3. For the same nonlinear distortion, the input signal v_{i} can be increased by the factor $\left(1+g_{m} R_{e}\right)$.
4. The overall voltage gain is less dependant on the value of β.
5. The high-frequency response is significantly improved (as we shall see in Chapter 6) With the exception of gain reduction, these characteristics represent perfornance improvements. Indeed, the reduction in gain is the price paid for obtaining the other performance mprovements. In many cases this is a good bargain; it is the underlying motive for the use of negative feedback. That the resistance R_{e} introduces negative feedback in the amplifie circuit can be seen by reference to Fig. 561(a). If for some reason the collector current increases, the emitter current also will increase, resulting in an increased voltage drop across R Thus the enitter voltage rises, and the base-emitter voltage decreases. The latter effect causes the collector current to decrease, counteracting the initially assumed cbange, an indication of the presence of ncgative feedback. In Chapter 8 where we shall study negative feedback formally, we will find that the factor $\left(1+g R_{y}\right)$ which appears repeatedly, is the "amount of negative feedback" introduced by R Finally, we note that the negative feedback action of R_{e} gives it the name emitter degeneration resistance.
Before leaving this circuit we wish to point out that we have shown a number of the cirit analysis steps directly on the circuit diagram in Fig. 5.61(a). With practice, the reader should be able to do all of the small-signal analysis directly on the circuil diagram, thus dis pensing with the task of drawing a complete small-signal equivalent-circuit model.

SXIRCISE

5.44 Consider the emitterdegenerated CE circuit of Fif 5.61 when based as in Exercise 5.41 . In particular refer to fyg: E5:41 for the bras currents and for the values of the elements of the BII moder at he bias
 that resulis in $R_{\text {in }}$ equat fo lour limes the sourtee tesistance $R_{\text {if }}$ For this walue of $R_{\text {. }}$ find A. $R_{\text {oit }}$
 included. Find the corresponding v_{o}.
Ans. 225Ω. $32 \mathrm{VN}: 8 \mathrm{kN} .12 .3 \mathrm{VNV},-9.8 \mathrm{~V} V: .79 .2 \mathrm{~A} / \mathrm{A}: 62.5 \mathrm{mV} \cdot 15 \mathrm{mV}: 0.6 \mathrm{~V}$

5.7.5 The Common-Base (CB) Amplifier

By establishing a signal ground on the base terminal of the BJT, a circuit configuration aptly named common-base or grounded-base amplifier is obtained. The input signal is applied to the emitter, and the output is taken at the collector, with the base forming a common ter minal between the input and output ports. Figure 5.62 (a) shows a CB amplifier based on the circuit of Fig. 5.59. Observe that since both the dc and ac voltages at the base are zero, we have connected the base directly to ground, thus eliminating resistor R_{B} altogether. Coupling capacitors $C_{C 1}$ and $C_{C 2}$ perform similar functions to those in the $C E$ circuit.

The small-signal equivalent circuit model of the amplifier is shown in Fig. 5.62(b). ince resistor $R_{\text {sig }}$ appcars in series with the emitter terminal, we have elected to use the T model for the transistor. Although the hybrid- π model would yield identical results, the model is more convenient in this case. We have not included r_{o}. This is because including r_{0} would complicate the analysis considerably, for it would appear between the output and input of the amplifier. Fortunately, it turns out that the effect of r_{o} on the performance of a discrete CB amplifier is very small. We will consider the effect of r_{o} when we study the IC form of the CB amplifier in Chapter 6.
From inspection of the equivalent circuit model in Fig. 5.62(b), we see that the input resistance is

$$
\begin{equation*}
R_{\mathrm{in}}=r_{e} \tag{5.137}
\end{equation*}
$$

This should have been expected since we are looking into the emitter and the base is rounded. Typically r_{e} is a few ohms to a few tens of ohms; thus the CB amplifier has a low input resistance

To determine the voltage gain, we write at the collector node

$$
v_{o}=-\alpha i_{e}\left(R_{C} \| R_{L}\right)
$$

and substitute for the emitter current from

$$
i_{e}=-\frac{v_{i}}{r_{e}}
$$

to obtain

$$
\begin{equation*}
A_{v i} \equiv \frac{v_{o}}{v_{i}}=\frac{\alpha}{r_{e}}\left(R_{C} \| R_{L}\right)=g_{m}\left(R_{C} \| R_{L}\right) \tag{5.138}
\end{equation*}
$$

which except for its positive sign is identical to the expression for A_{v} for the CE amplifier

FIGURE 5.62 (a) A common-base amplifier using the structure of Fig. 5.59. (b) Equivalent circuit oblained by replacing the transistor with its T model

The open-circuit voltage gain $A_{v o}$ can be found from Eq. (5.138) by setting $R_{L}=\infty$

$$
\begin{equation*}
A_{v i}=g_{m} R_{C} \tag{5.139}
\end{equation*}
$$

Again, this is identical to $A_{v o}$ for the CE amplifier except that the CB amplifier is noninvert ing. The output resistance of the CB circuit can be found by iuspection from the circuit in

Fig. 5.62(b) as

$$
R_{\text {out }}=R_{C}
$$

which is similar to the case of the CE amplifier. Here we should note that the CB amplifier with r_{o} neglected is unilateral, with the result that $R_{\text {in }}=R_{i}$ and $R_{\text {oun }}=R_{o}$.

The short-circuit current gain $A_{i s}$ is given by

$$
\begin{equation*}
A_{i s}=\frac{-\alpha i_{e}}{i_{i}}=\frac{-\alpha i_{e}}{-i_{e}}=\alpha \tag{5.140}
\end{equation*}
$$

which corresponds to our definition of α as the short-circuit current gain of the CB configuration. Although the gain of the CB amplifier proper has the same magnitude as that of the CE amplifier, this is usually not the case as far as the overall voltage gain is concerned. The low input resistance of the CB amplifier can cause the input signal to be severely attenuated, specifically

$$
\begin{equation*}
\frac{v_{i}}{v_{\text {sig }}}=\frac{R_{i}}{R_{\text {sig }}+R_{i}}=\frac{r_{e}}{R_{\text {sig }}+r_{e}} \tag{5.141}
\end{equation*}
$$

from which we see that except for situations in which $R_{\text {sig }}$ is on the order of r_{e}, the signal transmission factor $y_{i} / v_{\text {sig }}$ can be very small. It is useful at this point to mention that one of the applications of the CB circuit is to amplify high-frequency signals that appear on a coaxial cable. To prevent sigual reflection on the cable, the CB amplifier is required to have an input resistance equal to the characteristic resistance of the cable, which is usually in the range of 50Ω to 75Ω.
The overall voltage gain G_{v} of the CB amplifier can be obtained by multiplying the ratio $v_{i} / v_{\text {sig }}$ of Eq. (5.141) by A_{v} from Eq. (5.138),

$$
\begin{align*}
G_{v} & =\frac{r_{e}}{R_{\text {sig }}+r_{e}} g_{m}\left(R_{C} \| R_{I}\right) \\
& =\frac{\alpha\left(R_{C} \| R_{L}\right)}{R_{\text {sig }}+r_{e}} \tag{5.142}
\end{align*}
$$

Since $\alpha \cong 1$, we see that the overall voltage gain is simply the ratio of the total resistance in the collector circuit to the total resistance in the emitter circuit. We also note that the overall voltage gain is almost independent of the value of β (except through the small dependence of α on β), a desirable property. Observe that for $K_{\text {iig }}$ of the same order as R_{C} and R_{L}, the gain will be very small.
In summary, the CB amplifier exhibits a very low input resistance (r_{e}), a short-circuit current gain that is nearly unity (α), an open-circuit voltage gain that is positive and equal in magnitude to that of the CE amplifier $\left(g_{n} R_{c}\right)$, and like the CE amplifier, a relatively high output resistance $\left(R_{C}\right)$. Because of its very low input resistance, the CB circuit alone is not attractive as a voltage amplifier except in specialized applications, such as the cable amplifier mentioned above. The CB amplifier has excellent high-frequency performance as well, which as we shall see in Chapter 6 makes it useful together with other circuits in as well, which as we shall see in Chapter 6 makes it useful together with other circuits in
the implementation of high-frequency amplifiers. Finally, a very significant application of the CB circuit is as a unity-gain current amplifier or current buffer: It àcepts an input signal current at a low input resistance and delivers a nearly equal current at very high output resistance at the collector (the output resistance excluding R_{C} and neglecting r_{c} is infinite). We shall study such an application in the context of the IC version of the CB circuit in Chapter 6.

EXERCISES

5.45 Consider the CB anpplitier of Fie $5.62(a)$ when designced using, the BJT and component values spec fied in Exercice 5.41 . Specifically, refer to Fig. F5 41 for the bias quantities ind the values of the com
 and G. To what value should $R_{\text {, }}$ be redteed to obtain an overall woltage gain equal to that found for the CE amplifier in Exercise 543, that is -39 Y/
Ans. $25 \Omega 2+320 \mathrm{~V} \mathrm{~V}: 8 \mathrm{k} \Omega$; $+123 \mathrm{~V} / \mathrm{V} .0005 \mathrm{~V} / \mathrm{V}: .6 \mathrm{~V} / \mathrm{V} .54 \Omega$
05.46 It is required to design a CB amplifier for a signat dclivered by a $50-\Omega \mathrm{Sc}$ caxial cable The amplifier is to provide a proper termination" for the cable and to provide an overall voltage gain of $100 \mathrm{~V} / \mathrm{V}$ Specify the value of the bias current t_{1} and the tonal resistance in the collector circtit.
Ans. $0.5 \mathrm{~mA}, 10 \mathrm{k} \Omega$

5.7.6 The Common-Collector (CC) Amplifier

or Emitter Follower

The last of the basic BJT amplificr configurations is the common-collector (CC) circuit, very important circuit that finds frequent application in the design of both small-signal and arge-signal amplifiers (Chapter 14) and even in digital circuits (Chapter 11). The circuit is more commonly known by the alternate name emitter follower, the reason for which wil shortly become apparent
An emitter-follower circuit based on the structure of Fig. 5.59 is shown in Fig. 5.63(a) Observe that since the collector is to be at signal ground, we have eliminated the collecto resistance R_{C}. The input signal is capacitively coupled to the base, and the output signal is capacitively coupled from the emitter to a load resistance R_{L}
Since, as far as signals are concemed, resistance R_{L} is connected in series with the emit ter, the T model of the BJT would be the more convenient one to use. Figure $5.63(\mathrm{~b})$ shows the small-signal equivalent circuit of the emitter follower with the BJT replaced by it he small-signal equivalent circuit of the emitter follower with the BJT replaced by its shall do so. Inspection of the circuit in Fig. 5.63(b) reveals that $r_{\text {a }}$ appears in effect in paral el with R_{L}. Therefore the circuit is redrawn to emphasize this point and indeed to simplif the analysis, in Fig. 5.63 (c) . Unlike the CE and CB
Unlike the CE and CB circuits we studied above, the emitter-follower circuit is not uni Care therefore must he exercised in depends on R_{L}, and the output resistance depends on $R_{\text {sig }}$ Care therefore must be exercised in characterizing the emitter follower. In the following we
shall derive expressions for $R_{\mathrm{i}}, G_{v}, G_{w}$, and $R_{\text {out }}$ The expressions that we derive will shed shall derive expressions for R_{i}, G_{v}, G_{v}, and $R_{\text {out }}$. The expressions that we derive will shed
light on the operation and characteristics of the emitter follower. More important than the ligh on the operation and characteristics of the emitter follower. More important than the
actual expressions, however, are the methods wc use to obtain them. It is in these that we hope the reader will become proficient.
Reference to Fig. 5.63 (c) reveals that the BJT has a resistance ($r_{o} \| R_{L}$) in series with the emitter resistance r_{ϵ}. Thus application of the resistance reflection rule results in the equivalent circuit shown in Fig. 5.64(a). Recall that in reflecting resistances to the base side, we multiply all resistances in the emitter by $(\beta+1)$, the ratio of i_{e} to i. In this way the volt ages remain unchanged.

Inspection of the circuit in Fig. 5.64(a) shows that the input resistance at the base, $R_{i b}$, is

$$
R_{i b}=(\beta+1)\left[r_{e}+\left(r_{o} \| R_{L}\right)\right]
$$

FIGURE 5.53 (a) An emitter-fullower circuit based on the structure of Fig. 5.59 . (b) Small-signal equivalen circuit of the emitter follower with the transistor replaced by its T model augmented with $f_{c, c}$. (c) The circuit in (b) redrawn to emphasize that r_{θ} is in parallel with R_{L}. This simplifies the analysis considerably.

$$
R_{\mathrm{in}}=R_{B} / /(\beta+1)\left[r_{e}+\left(r_{o} / / R_{b}\right)\right]
$$

$$
G_{v}=\frac{v_{o}}{v_{\text {sig }}}=\frac{R_{B}}{R_{\text {dig }}-R_{B}} \frac{(\beta+1)\left(r_{l} / / R_{L}\right)}{\left.\left(R_{\text {sig }} / / R_{B}\right)+(\beta+1) \mid r_{e}+\left(r_{o} / / / R_{L}\right)\right]}
$$

(a)
(b)

FIGURE 5.64 (a) An equivalent circuit of the emitter follower obtaincd from the circuit in Fig. 5.63 (c) by reflecting all resistances in the emilter to the base side. (b) The circuit in (a) after application of Thévenin theorem to the input circuit composed of $\nu_{\text {sij }} R_{\text {siy }}$ and R_{B}.
from which we see that the emitter follower acts to raise the resistance level of $R_{I \text {. }}$ (or $R_{L} \| r_{0}$ to be exact) by the factor $(\beta+1)$ and presents to the source the increased resistance. The total input resistance of the follower is

$$
R_{\text {in }}=R_{B} \| R_{i b}
$$

from which we see that to realize the full effect of the increased $R_{i b}$, we have to choose as large a value for the bias resistance R_{B} as is practical (i.e., from a bias design point of view), Also, whenever possible, we should dispense with R_{β} altogether and connect the signal source directly to the base (in which case we also dispense with $C_{C 1}$).

To find the overall voltage gain G_{v}, we first apply Thévenin theorem at the input side of the circuit in Fig. 5.64(a) to simplify it to the form shown in Fig. 5.64(b). From the latter circuit we see that $\%_{\%}$ can he found hy utilizing the voltage divider rule; thus,

$$
\begin{equation*}
G_{v}=\frac{R_{B}}{R_{\text {sig }}+R_{B}} \frac{(\beta+1)\left(r_{o} \| R_{L}\right)}{\left(R_{\text {sig }} \| R_{B}\right)+(\beta+1)\left[r_{e}+\left(r_{o} \| R_{L}\right)\right]} \tag{5.144}
\end{equation*}
$$

We observe that the voltage gain is less than unity; however, for $R_{B} \gg R_{\text {sig }}$ and $(\beta+1)\left[r_{e}+\right.$ $\left.\left(r_{0} \| R_{L}\right)\right] \gg\left(R_{\text {sig }} \| R_{n}\right)$, it becomes very close to unity. Thus the voltage at the emitter $\left(v_{o}\right)$ follows very closely the voltage at the input, which gives the circuit the name emitter follower.

Rather than reflecting the emitter resistance network into the base side, we can do the converse: Reflect the base resistance network into the emitter side. To keep the voltages unchanged, we divide all the base-side resistances by $(\beta+1)$. This is the dual of the resistance reflection rule. Doing this for the circuit in Fig. 5.63(c) results in the alternate emitterfollower equivalent circuit, shown in Fig. 5.65(a). Here also we can simplify the circuit by applying Thévenin theorem at the input side, resulting in the circuit in Fig. 5.65(b). Inspection

(a)

$$
G_{v}=\frac{v_{o}}{v_{\text {sis }}}=\frac{R_{B}}{R_{\text {sig }}+R_{B}} \frac{\left(r_{o} / / R_{L}\right)}{\frac{\left(R_{\text {sig }} / / R_{B}\right)}{\beta+1}+r_{e}+\left(r_{o} / / R_{t}\right)}
$$

(b)

FIGURE 5.65 (a) An alternate equivalent circuit of the eniter follower obtained by ceflecting all
taue-circuit resistances to the enuiter side. (b) The circuit in (a) a fler application of Thývenin theorem to the input circuit composed of $\nu_{\text {tis }}, R_{\text {sig }} /(\beta+1)$, and $R_{B} /(\beta+1)$.
of the latter reveals that the output voltage and hence $v_{o} / v_{\text {sig }}$ can be found by a simple applica ion of the voltage-divider rule, with the result that

$$
\begin{equation*}
G_{v}=\frac{R_{B}}{R_{\text {sig }}+R_{E}} \frac{\left(r_{o} \| R_{L}\right)}{\frac{R_{\text {sig }} \| R_{B}}{\beta+1}+r_{e}+\left(r_{o} \| R_{L}\right)} \tag{5.145}
\end{equation*}
$$

which, as expected, is identical to the expression in Eq. (5.144) except that both the numerator and denominator of the second factor on the right-hand side have been divided by tor and denominator of the second factor on the right-hand side tave been eqt's simplify
$(\beta+1)$. To gain further insight regarding the operation of the emitter follower, let this expression for the usual case of $R_{B} \gg R_{\text {sig }}$ and $r_{o} \gg R_{L}$. The result is

$$
\begin{equation*}
\frac{v_{o}}{v_{\text {sigg }}} \cong \frac{R_{L}}{\frac{R_{\text {sif }}}{\beta+1}+r_{e}+R_{L}} \tag{5.146}
\end{equation*}
$$

which clearly indicates that the gain approaches unity when $R_{\text {sig }} /(\beta+1)$ becomes much smaller than R_{L} or alternatively when $(\beta+1) R_{L}$ becomes much larger than $R_{\text {sig }}$. This is the buffering action of the emitter follower, which derives from the fact that the circuit has a short-circuit current gain that is approximately equal to $(\beta+1)$.
It is also useful to represent the output of the emitter follower by its Thévenin equivalent
crcuit. The open-circuit output voltage will be G where G can be obtained from circuit. The open-circuit output voltage will be $G_{v i o} v_{\text {sig }}$ where $G_{v o}$ can be obtained from Eq. (5.145) by setting $R_{L}=\infty$,

$$
\begin{equation*}
G_{v o}=\frac{R_{B}}{R_{\mathrm{sig}}+R_{B}} \frac{r_{o}}{\frac{R_{\mathrm{sig}} \| R_{B}}{\beta+1}+r_{\varphi}+r_{o}} \tag{5.147}
\end{equation*}
$$

Note that r_{o}, usually is large and the second factor becomes almost unity. The first factor approaches unity for $R_{B} \gg R_{\text {sig }}$. The Thévenin resistance is the output resistance $R_{\text {out }}$. It can be determined by inspection of the circuit in Fig. 5.65(b): Reduce $v_{\text {sig }}$ to zero, "grab hold" of the emitter terminal, and look back into the circuit. The result is

$$
\begin{equation*}
R_{\text {out }}=r_{o} \|\left(r_{e}+\frac{R_{\text {sig }} \| R_{B}}{\beta+1}\right) \tag{5.148}
\end{equation*}
$$

Usually r_{o} is much larger than the parallel component between the parentheses and can be neglected, leaving

$$
\begin{equation*}
R_{\text {out }} \cong r_{e}+\frac{R_{\text {sig }} \| R_{B}}{\beta+1} \tag{5.149}
\end{equation*}
$$

Thus the output resistance of the emitter follower is low, again a result of its impedance transformation or buffering action, which leads to the division of $\left(R_{\text {sig }} \| R_{B}\right)$ by $(\beta+1)$. The Thévenin equivalent circuit of the emitter follower is shown together with the formulas for $G_{v o}$ and $R_{o u}$ in Fig. 5.66. This circuit can be used to find v_{o} and hence G_{v} for any value of R_{L}.
In summary, the emitter follower exhibits a high input resistance, a low output resistance, a voltage gain that is smaller than but close to unity, and a relatively large current gain. It is therefore ideally suited for applications in which a high-resistance source is to bc connected to a low-resistance load-namely, as the last stage or output stage in a multistage amplifier, where its purpose would be not to supply additional voltage gain but rather to give the cascade amplifier a low output resistance. We shall study the design of amplifier output stages in Chapter 14

Before leaving the emitter follower, the question of the maximum allowed signal swing deserves comnnent. Since ouly a small fraction of the input signal appears between the base and the emitter, the emitter follower exhibits linear operation for a wide range of input-signal amplitude. There is, however, an absolute upper limit imposed on the value of the output-signal amplitude by transistor cutoff. To see how this comes about, consider the circuit of Fig. 5.63 (a) when the input signal is a sine wave. As the input goes negative,

$$
G_{v o}=\frac{R_{B}}{R_{\text {sig }}+R_{B}} \frac{r_{o}}{\frac{\left(R_{\text {sis }} / / R_{B}\right)}{(\beta+1)}+r_{e}+r_{o}}
$$

$$
R_{\mathrm{cut}}=\tau_{o} / /\left(r_{e}+\frac{R_{\text {sity }} / / R_{B}}{\beta+1}\right)
$$

FIGURE 5.66 Thevenin equivalent circuit of the output of the emitter follower of Fig. 5.63 (a). This voltage gain $v_{o} / v_{\text {sig }}$ for any desired K_{L}.
the output v_{0} will also go negative, and the current in R_{L} will be flowing from ground into the emitter terminal. The transistor will cut off when this current becomes equal to the bias current I. Thus the peak value of v_{o} can be found from

$$
\frac{\hat{V}_{o}}{R_{L}}=I
$$

or

$$
\hat{V}_{0}=I R_{L}
$$

The corresponding value of $v_{\text {sig }}$ will be

$$
\hat{V}_{\mathrm{sig}}=\frac{I R_{L}}{G_{v}}
$$

Increasing the amplitude of $v_{\text {sig }}$ above this value results in the transistor becoming cut off and the negative peaks of the output-signal waveform being clipped off.

EXERCISE

5.47 The enifter follower in Fig, 5.63 (a) is used to connect a soirce with $R_{\text {siz }}=10 \mathrm{k} \Omega$ to a load $R_{L}=1 \mathrm{k} \Omega$ The transistox is biased at $\mathcal{L}=5 \mathrm{~mA}$, utilizes a resistance $R_{H}=40 \mathrm{k} \Omega$ and tas $\beta=100$ and $V_{A}=100 \mathrm{y}$ find $R_{i n} R_{\text {se }}$. G_{v}, $G_{\text {vor }}$, and $R_{\text {out }}$ What is the largest peak amphitude of an output sinusoid that can be used Find $R_{\text {ih }} R_{\text {in }} G_{v,}, G_{\text {wo }}$ and $R_{\text {out }}$ What is the largest peak amphttude of an output sinusoid that can be used is limited to 10 mV peak, what is the corresponding amplitude at the output? What will the overall vollage gain becone if R_{L} is changed to $2 \mathrm{k} \Omega$? To 500Ω ?
Ans. $967 \mathrm{k} \Omega: 28.3 \mathrm{k} \Omega ; 0.735 \mathrm{~V} / \mathrm{V} ; 0.8 \mathrm{~V} / \mathrm{V} ; 84 \Omega, 5 \mathrm{~V} ; 1: 9 \mathrm{~V} ; 0768 \mathrm{VIV} ; 0.685 \mathrm{~V} / \mathrm{V}$

5.7.7 Summary and Comparisons

For easy reference and to enable comparisons, we present in Table 5.6 the formulas for determining the characteristic parameters of discrete single-stage BJT amplifiers. In addiion to the remarks already made throughout this section about the characteristics and areas of applicability of the various configurations, we make the following concluding points:

1. The CE configuration is the best suited for realizing the bulk of the gain required in an amplifier. Depending on the magnitude of the gain required, either a single stage or a cascade of two or three stages can be used.
2. Including a resistor R_{e} in the emitter lead of the CE stage provides a number of performance improvements at the expense of gain reduction.
3. The low input resistance of the CB amplifier makes it useful only in specific applica tions. As we shall see in Chapter 6, it has a much better high-frequency response than the CE amplifier. This superiority will make it useful as a high-frequency amplifier, especially when combined with the CE circuit. We shall see one such combination in Chapter 6.
4. The emitter follower finds application as a voltage buffer for connecting a highresistance sourec to a low-resistauce load and as the output stage in a multistage amplifier.
Finally, we should point out that the Exercises in this section (except for that relating to the raiter follower) used the same component values to allow numerical comparisons.

TABLE 5.6. Eharacteristics of Single-stage Discrete Byt Amplifiers

Common Emitter

$$
R_{\text {in }}=R_{B}\left\|r_{r \pi}=R_{B}\right\|(\beta+1) r_{c}
$$

$$
\Lambda_{v}=-g_{m}\left(r_{o}\left\|R_{C}\right\| R_{t}\right)
$$

$R_{\text {out }}=r_{\rho} \| R_{C}$
$G_{v}=-\frac{\left(R_{B} \| r_{\pi}\right)}{\left(R_{B} \| r_{\pi}\right)+R_{\text {sig }}} g_{m}\left(r_{0}\left\|R_{C}\right\| R_{L}\right)$
$\cong-\frac{\beta\left(r_{o}\left\|R_{C}\right\| R_{t}\right)}{r_{\square}+R_{s i n}}$
$A_{i s}=-g_{\text {min }} R_{\text {in }} \cong-\beta$

Common Emitter with Emitter Resistance

Common Base

Comman Collector ar Emitter Follower

Y紋 5.8 THE BJT INTERNAL CAPACITANCES

A.. AND HIGH-FREQUENCY MODEL

Thus far we have assumed transistor action to be instantaneous, and as a result the transistor models we have developed do not include any elements (i.e., capacitors or inductors) that would cause time or frequency dependence. Actual transistors, however, exhibit chargestorage phenomena that limit the speed and frequency of their operation. We have already encountered such effects in our study of the $p n$ junction in Chapter 3 and learned that they can be modeled using capacitances. In the following we study the charge-storage effects that take place in the BJT and take them into account by adding capacitances to the hybrid- π
model. The resulting augmented BJT model will be able to predict the observed dependence of amplifier gain on frequency and the time delays that transistor switches and logic gates exhibit.

5.8.1 The Base-Charging or Diffusion Capacitance $C_{d e}$

When the transistor is operating in the active or saturation modes, minority-carrier charge is stored in the base region. In fact, we have already derived an expression for this charge, Q_{n}, in the case of an npn transistor operating in the active mode (Eq. 5.7). Using the result in Eq. (5.7) together with Eqs. (5.3) and (5.4), we can express Q_{n} in terms of the collector current i_{c} as

$$
\begin{equation*}
Q_{n}=\frac{W^{2}}{2 D_{n}} i_{C}=\tau_{F \cdot} i_{C} \tag{5.150}
\end{equation*}
$$

where τ_{F} is a device constant,

$$
\begin{equation*}
\tau_{i}=\frac{W^{2}}{2 D_{n}} \tag{5.151}
\end{equation*}
$$

with the dimension of time. 11 is known as the forward base-transit time and represents the average time a charge carrier (clectron) spends in crossing the base. Typically, τ_{F} is in the range of 10 ps to 100 ps . For operation in the reverse active mode, a corresponding constant τ_{R} applies and is many orders of magnitude larger than τ_{τ}.
Equation (5.150) applies for large signals and, since i_{C} is exponentially related to $v_{B E}$, \mathcal{Q}_{n} will similarly depend on $v_{B E}$. Thus this charge-storage mechanism represents a nonlinear capacitive effect. However, for small signals we can define the small-signal diffusion eapacitance $C_{d e}$,

$$
\begin{aligned}
C_{d e} & \equiv \frac{d Q_{n}}{d v_{B E}} \\
& =\tau_{F} \frac{d i_{C}}{d v_{B E}}
\end{aligned}
$$

resulting in

$$
\begin{equation*}
C_{d e}=\tau_{F} g_{m}=\tau_{F} \frac{I_{C}}{V_{T}} \tag{5.153}
\end{equation*}
$$

5.8.2 The Base-Emitter Junction Capacitance $C_{j e}$

Using the development in Chapter 3, and im particular Eq. (3.58), the base-emitter junction or depletion-layer capacitance $C_{j e}$ can be expressed as

$$
\begin{equation*}
C_{j e}=\frac{C_{j e 0}}{\left(1-\frac{V_{B E}}{V_{0 e}}\right)^{m}} \tag{5.154}
\end{equation*}
$$

where $C_{j e 0}$ is the value of $C_{j e}$ at zero voltage, $V_{0 \mathrm{e}}$ is the EBJ built-in voltage (typically, 0.9 V), and m is the grading coefficient of the EBJ junction (typically, 0.5). It turns out, however, that because the EBJ is forward biased in the active mode, Eq. (5.154) does not provide an accurate prediction of $C_{j e}$. Alternatively, one typically uses an approximate value for $C_{j e}$,

$$
C_{j e} \cong 2 C_{j e 0}
$$

(5.155)
5.8.3 The Collector-Base Junction Capacitance \mathcal{C}_{μ}

In active-mode operation, the CBJ is reverse biased, and its junction or depletion capacitance, usually denoted C_{μ}, can bc found from

$$
\begin{equation*}
C_{\mu}=\frac{C_{u(}}{\left(1+\frac{V_{C B}}{V_{0 c}}\right)^{m}} \tag{5.156}
\end{equation*}
$$

where $C_{\mu 0}$ is the value of C_{μ} at zero voltage, $V_{0 .}$ is the CBJ built-in voltage (typically, 0.75 V), and m is its grading coefficient (typically, 0.2-0.5).

5.8.4 The High-Frequency Hybrid- π Model

Figure 5.67 shows the hybrid- π model of the BJT, including capacitive effects. Specifically, there are two capacitances: the emitter-base capacitance $C_{\pi}=C_{d e}+C_{j e}$ and the collector-base capacitance C_{μ}. Typically, C_{π} is in the range of a fow picofarads to a few tens of picofarads, and
C_{μ} is in the range of a fraction of a picofarad to a few picofarads. Note that we have also added C_{μ} is in the range of a fraction of a picofarad to a few picofarads. Note that we have also added a resistor r_{x} to model the resistance of the silicon material of the base region between the basc terminal B and a fictitious internal, or intrinsic, base terminal B^{\prime} that is right under the emitter region (refer to Fig. 5.6). Typically, r_{x} is a few tens of ohms, and its value depends on the current level in a rather complicated manner. Since (usually) $r_{x} \ll r_{\pi}$, its effect is negligible at low frequencies. lts presence is felt, however, at high frequencies, as will become apparent later.

The valucs of the hybrid- π equivalent circuit paramcters can be determined at a given bias point using the formulas prescnted in this chapter. They can also be found from the terminal measurements specified on the BJT data sheets. For computer simulation, SPICE
uses the parameters of the given IC technology to evaluate the BJT model parameters uses the param
(Section 5.11).

Before proceeding, a note on notation is in order. Since we are now dealing with voltages and currents that are functions of frequency, we have reverted to using symbols that are uppercase letters with lowercase subscripts (e.g., V_{π}, I_{c}). This conforms to the notation system used throughout this book

5.8.5 The Cutoff Frequency

The transistor data sheets do not usually specify the value of C_{π}. Rather, the behavior of β (or $h_{f e}$) versus frequency is normally given. In order to determine C_{π} and C_{μ} we shall derive an expression for $h_{f e}$, the CE short-circuit current gain, as a function of frequency in terms of

FIGURE 5.67 The high-frequency hybrid- π model.

FIGURE 5.68 Circuit for deriving an cxpression for $h_{f_{f}(s)} \equiv I_{c} / I_{b}$.
the hybrid- π components. For this purpose consider the circuit shown in Fig. 5.68 , in which the collector is shorted to the emitter. A node equation at C provides the short-circuit collector current I_{c} as

$$
\begin{equation*}
I_{c}=\left(g_{m}-s C_{\mu}\right) V_{n} \tag{5.157}
\end{equation*}
$$

A relationship between V_{π} and I_{b} can be established by multiplying I_{b} by the impedance seen between B^{\prime} and E :

$$
\begin{equation*}
V_{\pi}=I_{b}\left(r_{\pi} / / C_{\pi} / / C_{\mu}\right)=\frac{I_{b}}{1 / r_{\pi}+s C_{\pi}+s C_{\mu}} \tag{5.158}
\end{equation*}
$$

Thus $h_{f_{e}}$ can be obtained by combining Eqs. (5.157) and (5.158)

$$
h_{f e} \equiv \frac{I_{c}}{I_{b}}=\frac{g_{m}-s C_{\mu}}{1 / r_{\pi}+s\left(C_{\pi}+C_{\mu}\right)}
$$

At the frequencies for which this model is valid, $g_{m} \gg C_{\mu}$; thus we can neglect the $s C_{\mu}$ term in the numerator and write

$$
h_{f e} \simeq \frac{g_{m} r_{\pi}}{1+s\left(C_{\pi}+C_{\mu}\right) r_{\pi}}
$$

Thus,

$$
\begin{equation*}
h_{f e}=\frac{\beta_{0}}{1+s\left(C_{\pi}+C_{\mu}\right) r_{\pi}} \tag{5.159}
\end{equation*}
$$

where β_{0} is the low-frequency value of β. Thus $h_{j e}$ has a single-pole (or STC) response ${ }^{10}$ with a $3-\mathrm{dB}$ frequency at $\omega=\omega_{\beta}$, where

$$
\omega_{\beta}=\frac{1}{\left(C_{\pi}+C_{\mu}\right) r_{\pi}}
$$

Figure 5.69 shows a Bode plot for $\left|h_{f e}\right|$. From the $-6-\mathrm{dB} /$ octave slope it follows that the frequency at which $\mid h_{f e}$ drops to unity, which is called the unity-gain bandwidth ω_{7}, is given by

$$
\omega_{T}=\beta_{0} \omega_{\beta}
$$

[^17]

FIGURE 5.69 Bode plot for $\left|h_{j c l}\right|$.

Thus,

$$
\omega_{T}=\frac{g_{\text {in }}}{C_{\pi}+C_{\mu}}
$$

(5.162)
and

$$
\begin{equation*}
f_{T}=\frac{g_{m}}{2 \pi\left(C_{\pi}+C_{u}\right)} \tag{5.163}
\end{equation*}
$$

The unity-gain bandwidth f_{T} is usually specified on the data sheets of a transistor. In some cases f_{T} is given as a function of I_{C} and $V_{C E}$. To see how f_{T} changes with I_{C}, recall that g_{m} is directly proportional to I_{C}, but only part of C_{π} (the diffusion capacitance $C_{d e}$) is drectly proportional to I_{C}. It follows that f_{T} decreases at low currents, as shown in Fig. 5.70. However, the decrease in f_{T} at high currents, also shown in Fig. 5.70, cannot be ex plained by this argument; rather it is due to the same phenomenon that causes β_{0} to decrease at high currents. In the region where f_{T} is almost constant, C_{π} is dominated by th diffusion part.
Typically, f_{T} is in the range of 100 MHz to tens of GHz . The value of f_{T} can be used in Eq. (5.163) to determine $C_{\pi}+C_{\mu}$. The capacitance C_{μ} is usually determined separately by measuring the capacitance between base and collector at the desired reverse-bias voltage $V_{C B}$

FIGURE 5.70 Variation of f_{T} with I_{C}.

Before leaving this section, we should mention that the hybrid- π model of Fig. 5.68 characterizes transistor operation fairly accurately up to a frequency of about $0.2 \int_{T}$. At higher frequencies one has to add other parasitic elements to the model as well as refine the model to account for the fact that the transistor is in fact a distributed-parameter network that we are trying to model with a lumped-component circuit. One such refinement consists of splitting r_{x} into a number of parts and replacing C_{μ} by a number of capacitors, each connected between the collector and one of the taps of r_{x}. This topic is beyond the scope of this book.

An important observation to make from the high-frequency model of Fig. 5.68 is that at frequencies above 5 to $10 f_{\beta}$, one may ignore the resistance r_{π}. It can be seen then that r_{x} becomes the only resistive part of the input impedance at high frequencies. Thus r_{x} plays an important role in determining the frequency response of transistor circuits at high frequencies. It follows that an accurate determination of r_{x} should be made from a high-frequency measurement.

EXERCISES
 5.48 Find $C_{k} C_{C} C_{H} C_{\mu}$.nd f for a BII operating at a dc collector current $T_{C}=1 \mathrm{~mA}$ and: CBJ reverse Ans. $0.8 \mathrm{pF} ; 40 \mathrm{FF} ; 0.84 \mathrm{pF}, 12 \mathrm{HF}, 7.47 \mathrm{GHz}$
 5.49 Fora BIT eperated at $l_{c}-1 \mathrm{nA}$ deternine $f f_{y}$ and $C_{4} 1 f C_{\mu}=2 \mathrm{pF}$ and $h_{t e}=10$ at 50 MHz . Ans, $500 \mathrm{MHz}, 10.7 \mathrm{pF}$
 5501 C of the BTT in Exercise 549 includes relatively constant depletion layer capacitance of 2 pF find f_{f} of the BJT wher operated at $I_{C}=0.1 \mathrm{~mA}$
 Ans. 130.7 MH ?

5.8.6 Summary

For convenient reference, Table 5.7 provides a summary of the relationships used to determine the values of the parameters of the BJT high-frequency model.

TABLE 5.7. The BIT High Frequency Model

W罍 5.9 FREQUENCY RESPONSE OF THE - COMMON-EMITTER AMPLIFIER

In this section we study the dependence of the gain of the BJT common-emitter amplifier of Fig. 5.71(a) on the frequency of the input signal.

5.9.1 The Three Frequency Bands

When the common-emitter amplifier circuit of Fig. 5.71(a) was studied in Section 5.7.3, it was assumed that the coupling capacitors $C_{C 1}$ and $C_{C 2}$ and the bypass capacitor C_{E} were

(a)

(b)
(log scale)
HGURE 5.71 (a) Capacitively coupled common-cmitter amplifier. (b) Sketch of the magniude of the gain of the CE amplifier versus frequency. The graph dclineates the three frequency bands relevant to frequencyresponse delermination.
acting as perfect short circuits at all signal frequencies of interest. We also neglected the internal capacitances of the BIT. That is $C_{\text {a }}$ and C of the BIT high-frequency model (Fis 5.67) were assumed to be sufficiently small to act as open circuits at all signal frequencies finterest. As a result of ignoring all capacitive effects, the gain expressions derived in Section 5.73 were independent of frequency In reality, however this situation only applie over a limited, though usually wide, band of frequencies. This is illustrated in Fig. 5.71 (b), over a limited, though usually wide, band of frequencies. This is illustrated in Fig. 5.71 (b), which shows a sketch of the magnitude of the overall voltage gain, $\left|G_{v}\right|$, of the commonmitter amplifier versus frequency. We observe that the gain is almost constant over a wide overall voltage gain G_{v} that we derived in Section 5.7.3, namely,

$$
\begin{equation*}
A_{M}=\frac{V_{o}}{V_{\text {sig }}}=-\frac{\left(R_{B} \| r_{\pi}\right)}{\left(R_{B} \| r_{\pi}\right)+R_{\text {sig }}} g_{\text {tm }}\left(r_{o}\left\|R_{C}\right\| R_{L}\right) \tag{5.164}
\end{equation*}
$$

Figure 5.71 (b) shows that the gain falls off at signal frequencies below and above the midband. The gain falloff in the low-frequency band is due to the fact that even though $C_{C 1}, C_{C 2}$, and C_{E} are large capacitors (typically, in the $\mu \mathrm{F}$ range), as the signal frequency is reduced their impedances increase and they no longer behave as short circuits. On the othe hand, the gain falls off in the high-frequency band as a result of $C_{g s}$ and $C_{g d}$, which though very small (in the fraction of a pF to the pF range), their impedances at sufficiently high frequencies decrease; thus they can no longer be considered as open circuits. Our objective in this section is to study the mechanisms by which these two sets of capacitances affect the amplifier gain in the low-frequency and the high-frequency bands. In this way we will be able to determine the frequencies f and \mathcal{f} which define the extent of the midband as shown in Fig. 5.71(b).

The midband is obviously the useful frequency band of the amplifier. Usually, f_{I} and $f_{I I}$ are the frequencies at which the gain drops by 3 dB below its value at midband; that is, at f and f_{I}, \mid gain $\left|=\left|A_{M}\right| / \sqrt{2}\right.$. The amplifier bandwidth or 3 - dB bandwidth is defined as the difference between the lower (f_{L}) and upper or higher (f_{H}) 3-dB frequencies:

$$
\begin{equation*}
B W \equiv f_{H}-f_{L} \tag{5.165}
\end{equation*}
$$

Since usually $\int_{L} \ll f_{H}$,

$$
B W \cong f_{l}
$$

A figure-of-merit for the amplifier is its gain-bandwidth product, defined as

$$
\begin{equation*}
G B=\left|A_{M}\right| B W \tag{5.166}
\end{equation*}
$$

It will be shown at a later stage that in amplifier design, it is usually possible to trade off gain for bandwidth. One way of accomplishing this, for instance, is by including an emitterdegeneration resistance R_{e}, as we have done in Section 5.7.4.

5.9.2 The High-Frequency Response

To determine the gain, or the transfer function, of the amplifier of Fig. 5.71(a) at high fre quencies, and in particular the upper 3 - dB frequency f_{H}, we replace the BJT with the highfrequency model of Fig. 5.67. At these frequencies $C_{C 1}, C_{C 2}$, and C_{E} will be behaving as perfect short circuits. The result is the high-frequency amplifier equivalent circuit shown in Fig. 5.72(a).

The equivalent circuit of Fig. 5.72(a) can be simplified by utilizing Thévenin theorem at the input side and by combining the three parallel resistances at the output side Specifically, the reader should be able to show that applying Thévenin theorem twice simplifies the resistive network at the input side to a signal gencrator $V_{\text {sig }}^{\prime}$ and a resistance $R_{\text {sig }}^{\prime}$,

(a)

$$
V_{\text {sigg }}^{\prime}=V_{\text {sig }} \frac{R_{B}}{R_{B}+R_{\text {sig }}} \frac{r_{\pi}}{r_{\pi}+r_{x}+\left(R_{\text {sig }} / / R_{B}\right)}
$$

$$
R_{L}^{\prime}=r_{o} / / R_{C} / / R_{l .}
$$

$R_{\text {sig }}^{\prime}=r_{\pi} / /\left[r_{x}+\left(R_{B} / / R_{\text {sig }}\right)\right]$
(b)

$$
=C_{\pi}+C_{\mu}\left(1-g_{m} R_{L}^{\prime}\right)
$$

(c)

FIGURE 5.72 Determining the high-frequency response of the CE amplifier: (a) equivalent circuit b) the circuit of (a) simplified at both the input side and the output side; (c) cquivalent circuit with C replaced at the input side with the equivalent capacitance C_{e}

(d)

FIGURE 5.72 (Continued) (d) sketch of the frequency-response plot, which is that of a low-pass STC circuit.
where

$$
\begin{align*}
& V_{\text {sig }}^{\prime}=V_{\text {sig }} \frac{R_{B}}{R_{B}+R_{\text {siig }}} \frac{r_{\pi}}{r_{\pi}+r_{x}+\left(R_{\text {sig }} \| R_{B}\right)} \tag{5.167}\\
& \left.R_{\text {sig }}^{\prime}=r_{\pi}\| \| r_{x}+\left(R_{B} \| R_{\text {sig }}\right)\right] \tag{5.168}
\end{align*}
$$

Observe that $R_{\text {sig }}^{\prime}$ is the resistance seen looking back into the resistive network between nodes B^{\prime} and E.

The circuit in Fig. 5.72(b) can be simplified further if we can find a way to deal with the bridging capacitance C_{μ} that connects the output node to the "input" node, B . Toward that end consider first the output node. It can be seen that the load current is ($g_{m} V_{\pi}-I_{\mu}$), where $g_{m} V_{\pi}$ is the output cuncent of the transistor and I_{μ} is the current supplied through the very small capacitance C_{μ}. In the vicinity of f_{H}, which is close to the edge of the midband, it is reasonable to assume that I_{μ} is still much smaller than $g_{m} V_{\pi}$, with the result that V_{o} can be given approximatcly by

$$
V_{o} \cong-g_{m} V_{\pi} R_{L}^{\prime}=-g_{m} R_{L}^{\prime} V_{\pi}
$$

Since $V_{o}=V_{c e}$, Eq. (5.169) indicates that the gain from B^{\prime} to C is $-g_{m} R_{L}^{\prime}$, the same value as in the midband. The current I_{μ} can now be found from

$$
\begin{aligned}
I_{\mu} & =s C_{\mu}\left(V_{\pi}-V_{0}\right) \\
& =s C_{\mu}\left[V_{\pi}-\left(-g_{m} R_{L}^{\prime} V_{\pi}\right)\right] \\
& =s C_{\mu}\left(1+g_{m} R_{L}^{\prime}\right) V_{\pi}
\end{aligned}
$$

Now, in Fig. 5.72(b), the left-hand-side of the circuit, at XX^{\prime}, knows of the existence of C^{μ} only through the current I_{μ}. Therefore we can replace C_{μ} by an equivalent capacitance $C_{e q}$ between \mathbf{B}^{\prime} and ground as long as $C_{e q}$ draws a curtent equal to I_{μ}. That is,

$$
s C_{e q} V_{\pi}=I_{\mu}=s C_{\mu}\left(1+g_{m} R_{l}^{\prime}\right) V_{\pi}
$$

which results in

$$
\begin{equation*}
C_{t q}=C_{\mu}\left(1+g_{m} R_{L}^{\prime}\right) \tag{5.170}
\end{equation*}
$$

Using $C_{c y}$ enables us to simplify the equivalent circuit at the input side to that shown in Fig. 5.72 (c), which we recognize as a single-time-constant (STC) network of the low-pass type (see Section 1.6 and Appendix D). Therefore we can express V_{π} in terms of $V_{\text {sig }}^{\prime}$ as

$$
V_{\pi}=V_{\text {sig }}^{\prime} \frac{1}{1+s / \omega_{0}}
$$

where ω_{0} is the corner frequency of the STC network composed of $C_{\text {in }}$ and $R_{\text {sig }}^{\prime}$,

$$
\begin{equation*}
\omega_{0}=1 / C_{\text {in }} R_{\text {sig }}^{\prime} \tag{5.172}
\end{equation*}
$$

wherc C_{in} is the total input capacitance at B^{\prime}

$$
\begin{equation*}
C_{\mathrm{in} 1}=C_{\pi}+C_{e q}=C_{\pi}+C_{\mu}\left(1+g_{m} R_{L}^{\prime}\right) \tag{5.173}
\end{equation*}
$$

and $R_{\text {sig }}^{\prime}$ is the effective source resistance, given by Eq. (5.168). Combining Eqs. (5.169), (5.171), and (5.167) give the voltage gain in the high-frequency band as

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {sig }}}=-\left[\frac{R_{B}}{R_{B}+R_{\text {sig }}} \frac{r_{\pi} \cdot g_{n} R_{k}^{\prime}}{r_{\pi}+r_{x}+\left(R_{\text {sig }} \| R_{B}\right)}\right]\left(\frac{1}{1+\frac{s}{\omega_{0}}}\right) \tag{5.174}
\end{equation*}
$$

The quantity between the square brackets of Eq. (5.174) is the midband gain, and except for the fact that here r_{x} is taken into account, this expression is the same as that in E4. (5.164). Thus,

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {sig }}}=\frac{A_{M}}{1+\frac{s}{\omega_{0}}} \tag{5.175}
\end{equation*}
$$

from which we deduce that the upper $3-\mathrm{dB}$ frequency f_{H} must be

$$
\begin{equation*}
f_{H}=\frac{\omega_{0}}{2 \pi}=\frac{1}{2 \pi C_{\text {in }} R_{\text {siv }}^{\prime}} \tag{5.176}
\end{equation*}
$$

Thus we see that the high-frequency response will be that of a low-pass STC network with a 3-dB frequency f_{H} determined by the time constant $C_{\text {in }} R_{\text {sig. }}^{\prime}$ Fig. 5.72(d) shows a sketch of the magnitude of the high-frequency gain.

Before leaving this section we wish to make a number of observations:

1. The upper 3 -dB frequency is determined by the interaction of $R_{\text {siz }}^{\prime}$ and $C_{\text {in. }}$. If $R_{B} \geqslant$ $R_{\text {sig }}$ and $r_{x} \ll R_{\text {sig }}$, then $R_{\text {sig }}^{\prime} \cong R_{\text {sig }} \| r_{\pi}$. Thus the extent to which $R_{\text {sig }}$ determines depends on its value relative to r_{π} : If $R_{\text {sig }} \gg r_{\pi}$, then $R_{\text {sig }}^{\prime} \cong r_{\pi}$; on the other hand, if $R_{\text {sig }}$ is on the order of or snaller than r_{π}, then it has much greater influence on the value of f_{H}.
2. The input capacitance $C_{\text {in }}$ is usually dominated by $C_{e q}$, which in turn is made large by the mulliplication effect that C_{μ} undergoes. Thus, although C_{μ} is usually very small, its effect on the amplifier frequency response can be significant as a result of its
multiplication by the factor $\left(1+g_{n} R_{L}^{\prime}\right)$, which is approximately equal to the midband gain of the anmplifier
3. The multiplication effect that C_{μ} undergoes comes about because it is connected between two nodes (B^{\prime} and C) whose voltages are related by a large negative gain $\left(-g_{m} R_{L}^{\prime}\right)$. This effect is known as the Miller effect, and $\left(1+g_{m} R_{L}^{\prime}\right)$ is known as the Miller multiplier. It is the Miller effect that causes the CE amplifier to have a large input capacitance $C_{\text {in }}$ and hence a low f_{H}.
4. To extend the high-frequency response of a BJT amplifier, we have to find configura tions in which the Miller effect is absent or at least reduced. We shall return to this subject at great length in Chapter 6 .
5. The above analysis, resulting in an STC or a singlc-pole response, is a simplified one. Specifically, it is based on neglecting I_{μ} relative to $g_{m} V_{\pi}$, an assumption that applie well at frequencies not too much higher than f_{H}. A more exact analysis of the circuit in Fig. 5.72(a) will be considered in Chapter 6. The results above, however, arc more than sufficient for our current needs.

3timityst:

It is required to find the midband gain and the upper 3-dB frequency of the common-emitter amplifier of Fig. 5.71 (a) for the following case: $V_{C C}=V_{E E}=10 \mathrm{~V}, I=1 \mathrm{~mA}, R_{D}=100 \mathrm{k} \Omega, R_{C}=$ $8 \mathrm{k} \Omega, R_{\text {sig }}=5 \mathrm{k} \Omega, R_{L}=5 \mathrm{k} \Omega, \beta_{0}=100, V_{A}=100 \mathrm{~V}, C_{u}=1 \mathrm{pF}, f_{T}=800 \mathrm{MHz}$, and $r_{x}=50 \Omega$.

Solution

The transistor is biased at $I_{C} \cong 1 \mathrm{~mA}$. Thus the values of its hybrid- π model parameters are

$$
\begin{aligned}
g_{m} & =\frac{I_{C}}{V_{T}}=\frac{1 \mathrm{~mA}}{25 \mathrm{mV}}=40 \mathrm{~mA} / \mathrm{V} \\
r_{\pi} & =\frac{\beta_{0}}{g_{m}}=\frac{100}{40 \mathrm{~mA} / \mathrm{V}}=2.5 \mathrm{k} \Omega \\
r_{o} & =\frac{V_{A}}{I_{C}}=\frac{100 \mathrm{~V}}{1 \mathrm{~mA}}=100 \mathrm{k} \Omega \\
C_{\pi}+C_{\mu} & =\frac{g_{m}}{\omega_{T}}=\frac{40 \times 10^{-3}}{2 \pi \times 800 \times 10^{6}}=8 \mathrm{pF} \\
C_{\mu} & =1 \mathrm{pF} \\
C_{\pi} & =7 \mathrm{pF} \\
r_{x} & =50 \Omega
\end{aligned}
$$

The midband voltage gain is

$$
\Lambda_{M}=-\frac{R_{B}}{R_{B}+R_{\mathrm{sig} / \mathrm{g}}} \frac{r_{\pi}}{r_{\pi}+r_{x}+\left(R_{B} \| R_{\mathrm{sig}}\right)} g_{R_{i}} R_{L}^{\prime}
$$

wherc

$$
R_{L}^{\prime}=r_{o}\left\|R_{C}\right\| R_{L}
$$

$$
=(100\|8\| 5) \mathrm{k} \Omega=3 \mathrm{k} \Omega
$$

Thus,

$$
g_{m} R_{L}^{\prime}=40 \times 3=120 \mathrm{~V} / \mathrm{V}
$$

and

$$
A_{M}=-\frac{100}{100+5} \times \frac{2.5}{2.5+0.05+(100 \| 5)} \times 120
$$

$$
=-39 \mathrm{~V} / \mathrm{V}
$$

and

$$
20 \log \left|A_{M}\right|=32 \mathrm{~dB}
$$

To determine f_{H} we first find C_{in},

$$
C_{\mathrm{in}}=C_{\pi}+C_{p}\left(\mathrm{I}+g_{m} R_{V}^{\prime}\right)
$$

$$
=7+1(1+120)=128 \mathrm{pF}
$$

and the effective source resistance $R_{\text {sig }}^{\prime}$,

$$
\begin{aligned}
R_{\text {sigg }}^{\prime} & =r_{\pi} \|\left[r_{x}+\left(R_{B} \| R_{\text {sig }}\right)\right] \\
& =2.5 \|[0.05+(100 \| 5)] \\
& =1.65 \mathrm{k} \Omega
\end{aligned}
$$

Thus,

$$
\int_{H}=\frac{1}{2 \pi C_{\text {in }} R_{\text {sig }}^{\prime}}=\frac{1}{2 \pi \times 128 \times 10^{-12} \times 1.65 \times 10^{3}}=754 \mathrm{kHz}
$$

EXERCISE

5.51 For the amplifiet in Example S. 18 , tind the value of R, that reduces the midband gain to haff the value round What value of f_{H} results? Note the trade-off between gain and bandwidth. Ans. $19 \mathrm{kN}, 1.42 \mathrm{MHz}$

5.9.3 The Low-Frequency Response

To determine the low-frequency gain (or transfer function) of the common-emitter amplifier circuit, we show in Fig. 5.73(a) the circuit with the dc sources eliminated (current source I open circuited and voltage source $V_{c c}$ short circuited). We shall perform the small-signal analysis directly on this circuit. We will, of course, ignore C_{π} and C_{μ} since at such low frequencies their impedances will be very high and thus can be considered as open cirfrequencies their impedances will be very high and thus can be considered as open cir-
co the analysis simple and thus focus attention on the mechanisms that limit the amplifier gain at low frequencies, we will neglect r_{0}. The reader can verify through SPICE simulation that the effect of r_{o} on the low-frequency amplifier gain is small. Finally, we shall also neglect r_{r}, which is usually much smaller than r_{D} with which it appears in series.

(c)

FIGURE 5.73 Analysis of the low-frequency response of the CF amplifier: (a) amplifier circuit with de sources removed; (b) the effiect of $C_{C 1}$ is dectrmined with C_{E} and $C_{C C}$ assumed to be acting as perfect short circuits; (c) the effect of C_{E} is determined with $C_{C 1}$
and $C_{C P}$ assumed to be acting as perfect short cirvuits; and $C_{C 2}$ asstimed to be acting as perfect short cirvits;
498

(d)

(e)

FIGURE 5.73 (Continued) (d) the effect of C_{C} is determined with $C_{C 1}$ and C_{E} assumed to be acting as perfect short circuits; (e) sketch of the low-frequency gain under the assumptions that C_{C}, C_{E}, and $C_{C 2}$ do not interact and that their break (or polc) frequencies are widely separated.

Our first cut at the analysis of the circuit in Fig. 5.72(a) is to consider the effect of the hree capacitors $C_{C_{1}}, C_{E}$ and $C_{C_{2}}$ one at a time. That is, when finding the effect of C_{C} we shall assume that C_{E} and $C_{C 2}$ are acting as perfect short circuits, and when considering we shall assume that C_{E} and $C_{C 2}$ are acting as perfect short circuits, and when considering C_{E}, we assume that $C_{C 1}$ and $C_{C 2}$ arc perfect short circuits, and so on. This is obviously major simplifying assumption-and one that might not be justified. However, it should serve as a first cut at the analysis enabling us to gain insight into the effect of thes Figure 57
Figure 5.72 (b) shows the circuit with C_{E} and $C_{C 2}$ replaced with short circuits. The volt age V_{π} at the base of the transistor can be written as

$$
V_{\pi}=V_{\text {sig }} \frac{R_{B} \| r_{\pi}}{\left(R_{B} \| r_{\pi}\right)+R_{\text {sig }}+\frac{1}{s C_{C 1}}}
$$

and the output voltage is obtained as

$$
V_{o}=-g_{n} V_{\pi}\left(R_{C} \| R_{l}\right)
$$

These two equations can be combined to obtain the voltage gain $V_{\rho} / V_{\text {sig }}$ including the effect of $C_{C 1}$ as

$$
\begin{equation*}
\frac{V_{o}}{V_{\mathrm{sig}}}=-\frac{\left(R_{B} \| r_{\pi}\right)}{\left(R_{B} \| r_{\pi}\right)+R_{\text {sig }}} g_{m}\left(R_{C} \| R_{f}\right)\left[\frac{s}{s+\frac{1}{C_{C 1}\left[\left(R_{B} \| r_{\pi}\right)+R_{\text {sig }}\right]}}\right] \tag{5.177}
\end{equation*}
$$

from which we observe that the effect of $C_{C 1}$ is to introduce the frequency-dependent facto between the square brackets on the right-hand side of Eq. (5.177). We recognize this factor as the transfer fraction of a single-time-constant (STC) network of the high-pass type (see Section 1.6 and Appendix D) with a comer (or break) frequency $\omega_{P 1}$,

$$
\omega_{P_{1}}=\frac{1}{\left.C_{C 1} I\left(R_{B} \| r_{\pi}\right)+R_{\mathrm{siq}}\right]}
$$

Note that $\left[\left(R_{B} \| r_{\pi}\right)+R_{\text {sig }}\right]$ is the resistance seen between the terminals of $C_{C 1}$ when $V_{\text {sig }}$ is set to zero. The STC high-pass factor introduced by $C_{C 1}$ will cause the amplifier gain to roll off at low frequencies at the rate of $6 \mathrm{~dB} /$ oclave ($20 \mathrm{~dB} /$ decade) with a $3-\mathrm{dB}$ frequency at $f_{P 1}=\omega_{P_{1}} / 2 \pi$, as indicated in Fig. 5.73(b).

Next, we consider the effect of C_{E}. For this purpose we assume that $C_{C 1}$ and $C_{C 2}$ are acting as perfect short circuits and thus obtain the circuit in Fig. 5.73(c). Reflecting r and C_{E} into the base circuit and utilizing. Thevenin theorem enables us to obtain the base current as

$$
I_{b}=V_{\mathrm{sig}} \frac{R_{B}}{R_{B}+R_{\mathrm{sig}}} \frac{1}{\left(R_{B} \| R_{\mathrm{sig},}\right)+(\beta+1)\left(r_{e}+\frac{1}{s C_{E}}\right)}
$$

The collector current can then be found as βI_{b} and the output voltage as

$$
V_{o}=-\beta I_{b}\left(R_{C} \| R_{L}\right)
$$

$$
=-\frac{R_{B}}{R_{B}+R_{\text {sig }}} \frac{\beta\left(R_{C} \| R_{l}\right)}{\left(R_{B} \| R_{\text {sig }}\right)+(\beta+1)\left(r_{e}+\frac{1}{s C_{E}}\right)} V_{\text {sig }}
$$

Thus the voltage gain including the effect of C_{E} can be expressed as

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {sig }}}=-\frac{R_{B}}{R_{B}+R_{\text {sig }}} \frac{\beta\left(R_{C} \| R_{L}\right)}{\left(R_{B} \| R_{\text {sig }}\right)+(\beta+1) r_{e}} \frac{s}{s+\left[1 / C_{E}\left(r_{e}+\frac{R_{B} \| R_{\text {sig }}}{\beta+1}\right)\right.} \tag{5.179}
\end{equation*}
$$

We observe that C_{E} introduces the STC high-pass factor on the extreme right-hand side Thus C_{E} causes the gain to fall off at low frequency at the rate of 6 dB /octave with a $3-\mathrm{dB}$ frequency equal to the corner (or break) frequency of the high-pass STC factor; that is,

$$
\omega_{P 2}=\frac{1}{C_{E}\left[r_{e}+\frac{R_{B} \| R_{\text {sig }}}{\beta+1}\right]}
$$

Observe that $\left[r_{e}+\left(\left(R_{B} \| R_{\text {siq }}\right) /(\beta+1)\right) \mid\right.$ is the resistance seen between the two terminals of C_{E} when $V_{\text {sig }}$ is set to zero. The effect of C_{E} on the amplifier frequency response is illustrated by the sketch in Fig. 5.73(c).

Finally, we consider the effect of C_{C}. The circuit with $C_{C 1}$ and C_{E} assumed to be acting as perfect short circuits is shown in Fiy. $5.73(\mathrm{~d})$, for which we can write

$$
V_{\pi}=V_{\mathrm{sis}} \frac{R_{B} \| r_{\pi}}{\left(R_{B} \| r_{\pi}\right)+R_{\text {sig }}}
$$

and

$$
V_{\prime \prime}=-g_{m} V_{\pi} \frac{R_{C}}{R_{C}+\frac{1}{s C_{C 2}}+R_{I .}} R_{I}
$$

These two equations can be combined to obtain the low-fréquency gain including the effect of $C_{C 2}$ as

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {sig }}}=-\frac{R_{B} \| r_{\pi}}{\left(R_{D} \| r_{\pi}\right)+R_{\text {sig }}} g_{\text {in }}\left(R_{C} \| R_{l}\right)\left[\frac{s}{s+\frac{1}{C_{C 2}\left(R_{C}+R_{L}\right)}}\right. \tag{5.181}
\end{equation*}
$$

We observe that $C_{C 2}$ introduces the frequency-dependent factor between the square brackets, which we recognize as the transfer function of a high-pass STC network with a break frequency $\omega_{P 3}$,

$$
\begin{equation*}
\omega_{P 3}=\frac{1}{C_{C 2}\left(R_{C}+R_{L}\right)} \tag{5.182}
\end{equation*}
$$

Here we note that as expected, $\left(R_{C}+R_{L}\right)$ is the resistance seen between the terminals of $C_{C 2}$ when $V_{\text {sig }}$ is set to zero. Thus capacitor C_{C}, causes the low-frequency gain of the amplifier to decrease at the rate of $6 \mathrm{~dB} /$ octave with a $3-\mathrm{dB}$ frequency at $f_{P 3}=\omega_{p 3} / 2 \pi$, as illustrated by the sketch in Fig. 5.73(d)

Now that we have determined the effects of each of $C_{C 1}, C_{F}$, and $C_{C 2}$ acting alone, the question becomes what will happen when all three are present at the same time. This question has two parts: First, what happens when all three capacitors are present but do not interact? The answer is that the amplifier low-frequency gain can be expressed as

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {sig }}}=-A_{M}\left(\frac{s}{s+\omega_{P 1}}\right)\left(\frac{s}{s+\omega_{P 2}}\right)\left(\frac{s}{s+\omega_{P 3}}\right) \tag{5.183}
\end{equation*}
$$

from which we see that it acquires three break frequencies at $f_{P 1}, f_{P 2}$, and $f_{P 3}$, all in the lowfrequency band. If the three frequencies are widely separated, their effects will be distinct, as indicated by the sketch in Fig. 5.73(e). The important point to note here is that the 3-dB frequency f_{L} is determined by the highest of the three break frequencies. This is usually the break frequency caused by the bypass capacitor C_{k}, simply because the resistance that it sees is usually quite small. Thus, even if one uses a large value for $C_{F}, \int_{p 2}$ is usually the highest of the three break frequencics.

If $f_{P 1} . f_{P 2}$, and $f_{P 3}$ are close together, none of the three dominates, and to determine f_{L}, we have to evaluate $\mid V_{o} / V_{\text {sig }}$ in Eq. (5.183) and calculate the frequency at which it drops to $\left|A_{M}\right| / \sqrt{2}$. The work involved in doing this, however, is usually too great and is rarely justified in practice, particularly because in any case, Eq. (5.183) is an approximation based on the assumption that the three capacitors do not interact. This leads to the second part of the question: What happens when all three capacitors are present and interact? We do know that C_{C} and C_{E} usually interact and that their combined effect is two poles at frequencies that will differ somewhat from $\omega_{P_{1}}$ and $\omega_{p 2}$. Of course, one can derive the overall transfer function taking this interaction into account and find more precisely the low-frequency response. This, however, will be too complicated to yield additional insight. As an alternative, for hand
calculations we can obtain a reasonably good estimate for f_{L}. using the following formul (which we will not derive here) ${ }^{11}$.

$$
f_{\llcorner } \equiv \frac{1}{2 \pi}\left[\frac{1}{C_{C, 1} R_{C, 1}}+\frac{1}{C_{F} R_{F}}+\frac{1}{C_{C} R_{C,}}\right]
$$

or equivalently.

$$
f_{L}=f_{P 1}+f_{P 2}+f_{P 3}
$$

where $R_{C 1}, R_{F}$, and $R_{C 2}$ are the resistances seen by $C_{C 1}, C_{E}$, and $C_{C 2}$, respectively, whien $V_{\text {si, }}$ is set to zero and the other two capacitances are replaced with short circuits. Equations (5.184) and (5.185) provide insight regarding the relative contrihutions of the three capacitors to f_{L}. Fiually, we note that a far more precise determination of the low-frequency gain and the $3-\mathrm{dB}$ frequency f_{L} can be obrained using SPICE (Section 5.11).

Selecting Values for $C_{C 1}, C_{E}$, and $C_{C 2}$ We now address the design issue of selecting appropriate valucs for $C_{C 1}, C_{F}$, and $C_{C 2}$. The design objective is to place the lower 3 -dB fre quency f_{L} at a specified location while minimizing the capacitor values. Since as mentioned above C_{R} usually sees the lowest of the three resistances, the total capacitance is minimized by selecting C_{E} so that its contribution to f_{L} is dominant. That is, by reference to Eq. (5.184), w may select C_{E} such that $1 /\left(C_{F} R_{R}\right)$ is, say, 80% of $\omega_{L}=2 \pi f_{L}$, leaving each of the other capac itors to contribute 10% to the value of ω_{L}. Example 5.19 should help to illustrate this process.

3wnhes xe:

Wc wish to selcet appropriate values for $C_{C 1}, C_{C 2}$, and C_{E} for the common-ennitter amplifier whos high-frequency response was analyzcd iu Example 5.18. Thc amplifier has $R_{B}=100 \mathrm{k} \Omega, R_{C}=8 \mathrm{k} \Omega$, $R_{L}=5 \mathrm{k} \Omega, R_{\text {sig }}=5 \mathrm{k} \Omega, \beta_{0}=100, g_{m}=40 \mathrm{~mA} / \mathrm{V}$, and $r_{\pi}=2.5 \mathrm{k} \Omega$. It is requircd to have $f_{L}=100 \mathrm{~Hz}$.

Solution

We first determine the resistances seen by the three capacitors $C_{C_{1}}, C_{k^{4}}$ and $C_{C_{2}}$ as follows:

$$
\begin{aligned}
R_{C 1} & =\left(R_{B} \| r_{\pi}\right)+R_{\mathrm{sig}} \\
& =(100 \| 2.5)+5=7.44 \mathrm{k} \Omega \\
R_{E} & =r_{e}+\frac{R_{B} \| R_{\mathrm{sig}}}{\beta+1} \\
& =0.025+\frac{100 \| 5}{101}=0.072 \mathrm{k} \Omega=72 \Omega \\
R_{C 2} & =R_{C}+R_{L}=8+5=13 \mathrm{k} \Omega
\end{aligned}
$$

Now, selecting C_{E} so that it contributes 80% of the value of ω_{L} gives

$$
\begin{aligned}
\frac{1}{C_{E} \times 72} & =0.8 \times 2 \pi \times 100 \\
C_{E} & =27.6 \mu \mathrm{~F}
\end{aligned}
$$

[^18]Next, if $C_{C 1}$ is to contribute 10% of f_{L}

$$
\begin{aligned}
\frac{1}{C_{C 1} \times 7.44 \times 10^{3}} & =0.1 \times 2 \pi \times 100 \\
C_{C 1} & =2.1 \mu \mathrm{~F}
\end{aligned}
$$

Similarly, if $C_{C 2}$ is to contribute 10% of f_{L}, its value should be selected as follows:

$$
\begin{aligned}
\frac{1}{C_{C 2} \times 13 \times 10^{3}} & =0.1 \times 2 \pi \times 100 \\
C_{C 2} & =1.2 \mu \mathrm{~F}
\end{aligned}
$$

In practice, we would select the nearest standard values for the three capacitors whilc cnsuring that $f_{L} \leq 100 \mathrm{~Hz}$.

2) C R

 2. $5 \mathrm{k} \Omega R_{C}=8 \mathrm{k} \Omega$ and $R_{L}=5 \mathrm{k} \Omega$. Assuming that the three capacitor do not interact hind f_{P}, I_{R}, and $f_{f 3}$ and hence estimate f.
 what better estimate for f_{c} is obtained as 2.24 kltz

5.9.4 A Final Remark

The frequency response of the other amplifier configurations will be studied in Chapter 6.

5.10 THE BASIC BJT DIGITAL LOGIC INVERTER

The most fundamental component of a digital system is the logic inverter. In Section 1.7, the logic inverter was studied at a conceptual level, and the realization of the inverter using voltagecontrolled switches was presented. Having studied the BJT, we can now consider its application in the realization of a simple logic inverter. Such a circuit is shown in Fig. 5.74. The reader will note that we have already studied this circuit in some detail. In fact, we used it in Section 5.3.4 to illustrate the operation of the BJT as a switch. The operation of the circuit as a

FIGURE 5.74 Basic BJT digitał logic inverter
logic inverter makes use of the cutoff and saturation modes. In very simple terms, if the input voltage v_{1} is "high," at a value close to the power-supply vollage $V_{C C}$, (reprcsenting a logic 1 in a positive-logic system) the transistor will be conducting and, with appropriate choice of val ues for R_{B} and R_{C}, saturated. Thus the output voltage will be $V_{C E \text { sat }} \approx 0.2 \mathrm{~V}$, representing a "Iow" logic level or logic 0 in a positive logic system. Conversely, if the input voltage is "low," at a value close to ground (e.g., $V_{\text {CEsat }}$), then the transistor will be cut off, i_{C} will be zero, and
The choice of cutoff and saturation as the two modes of operation of the BJTT in this inverter circuit is notivated hy the following two factors:

1. The power dissipation in the circuit is relatively low in both cutoff and saturation: In cutoff all currents are zero (except for very small leakage currents), and in saturatio the voltage across the transistor is very small ($V_{C \text { Essat }}$).
2. The output voltage levels ($V_{C C}$ and $V_{C E s a t}$) are well defined. In conirast, if the transis tor is operated in the active region, $v_{O}=V_{C C}-i_{C} R_{C}=V_{C C}-\beta i_{B} R_{C}$, which is highly dependent on the rather ill-controllcd transistor parameter β.

5.10.1 The Voltage Transfer Characteristic

As mentioned in Section 1.7, the most useful characterization of an inverter circuit is in erms of its vollage transfer characteristic, v_{O} versus v_{T}. A sketch of the voltage transfer chat acteristic (VTC) of the inverter circuit of Fig. 5.74 is presented in Fig. 5.75. The transfe charace BIT in approximated by hree staight-line segments corresponding to the operation characteristic will obviously be a smooth curve but will closely follow the straight-linc asymptotes indicated. We shall now compute the coordinates of the breakpoints of the transfe

FIGURE 5.75 Sketch of the voltage transfer characteristic of the inverter circuit of Fig. 5.74 for the case R_{B} $10 \mathrm{k} \Omega . R_{C}=1 \mathrm{kS} \Omega, \beta=50$, and $V_{C C}=5 \mathrm{~V}$. For the calculation of the coordinates of X and Y, refcr to thc text
characteristic of Fig. 5.75 for a representative case $-R_{B}=10 \mathrm{k} \Omega, R_{C}=1 \mathrm{k} \Omega, \beta=50$, and $V_{C C}=$ 5 V -as follows

1. At $v_{I}=V_{O L}=V_{C E s \mathrm{sa}}=0.2 \mathrm{~V}, v_{O}=V_{O H}=V_{C C}=5 \mathrm{~V}$.
2. At $v_{l}=V_{I I}$, the transistor begins to tum on; thus,

$$
V_{B L} \cong 0.7 \mathrm{~V}
$$

3. For $V_{I L}<v_{l}<V_{I H}$, the transistor is in the active region. It operates as an amplifier whose small-signal gain is

$$
A_{v} \equiv \frac{v_{o}}{v_{i}}=-\beta \frac{R_{C}}{R_{B}+r_{\pi}}
$$

The gain depends on the value of r_{π}, which in turn is determined by the collector cur rent and hence by the value of v_{r}. As the current through the transistor increases, r_{t} decreases and we can neglect r_{π} relative to R_{B}, thus simplifying the gain expression to

$$
A_{v} \equiv-\beta \frac{R_{C}}{R_{B}}=-50 \times \frac{1}{10}=-5 \mathrm{~V} / \mathrm{V}
$$

4. At $v_{l}=V_{I H}$, the rransistor enters the saturation region. Thus $V_{I H}$ is the value of v_{t} that results in the transistor being at the edge of saturation,

$$
I_{B}=\frac{\left(V_{C C}-V_{C E s \mathrm{at}}\right) / R_{C}}{\beta}
$$

For the values we are using, we obtain $I_{B}=0.096 \mathrm{~mA}$, which can be used to find $V_{I I}$,

$$
V_{I I I}=I_{B} R_{B}+V_{B E}=1.66 \mathrm{~V}
$$

5. For $v_{f}=V_{O H}=5 \mathrm{~V}$, the transistor will be deep into saturation with $v_{\Omega}=V_{\text {CEsat }} \cong 0.2 \mathrm{~V}$, and

$$
\begin{aligned}
\beta_{\text {forced }} & \left.=\frac{\left(V_{C C}-V_{C E}\right)}{\left(V_{\text {SHI }}-R_{C E}\right.}\right) / R_{B} \\
& =\frac{4.8}{0.43}=11
\end{aligned}
$$

6. The noise margins can now be computed using the formulas from Section 1.7,

$$
\begin{aligned}
& N M_{I I}=V_{O H}-V_{I I I}=5-1.66=3.34 \mathrm{~V} \\
& N M_{L}=V_{I L}-V_{O L}=0.7-0.2=0.5 \mathrm{~V}
\end{aligned}
$$

Obviously, the two noise margins are vastly different, making this inverter circuit less han ideal.
7. The gain in the transition region can be computed from the coordinates of the breakpoints X and Y,

$$
\text { Voltage gain }=-\frac{5-0.2}{1.66-0.7}=-5 \mathrm{~V} / \mathrm{V}
$$

which is equal to the approximate value found above (the fact that it is exactly the same value is a coincidence).

5.10.2 Saturated Versus Nonsaturated BJT Digital Circuits

The inverter circuit just discussed belongs to the saturated variety of BJT digital circuits. A historically significant family of saturated BJT logic circuits is transistor-transistor logic

(TTL). Although some versions of TTL remains in use, saturated bipolar digital circuits eneratly are no longer the technology of choice in digital system design. This is because their speed of operation is severely limited by the relatively long time delay required to turn off a saturated transistor, as we will now explain, briefly.

In our study of BJT saturation in Section 5.1.5, we made use of the minority-carrier disbution in the base region (see Fig. 5.10). Such a distribution is shown in Fig. 5.76, where he minority carrier charge stored in the base has been divided into two components: The component represented by the blue trangle produces the gradient that gives rise to the diffuion cuutent across the base; the other component, represented by the gray rectangle, causes he transistor to be driven deeper into saturation. The deeper the transistor is driven into sat uration (1.e., the greater is the base overdrive factor), the greater the amount of the "gray" omponent of the stored charge will be. Its tis extra stored base charge that represents a serious problem when it comes to turning off the transistor: Before the collector current can begin to decrease, all of the extra stored charge must first be removed. This adds a relatively large component to the turn-off time of a saturated transistor.
From the above we conclude that to achieve high operating speeds, the BJT should not be allowed to saturate. This is the case in current-mode logic in general and for the particular form called emitter-coupled logic (ECL), which will be studied briefly in Chapter 11. There, we will show why ECL is currently the highest-speed logic-circuit family available. It is based on the current-switching arrangement that was discussed conceptually in Section 1.7 (Fig. 1.33).

EXERGSE

5.53 Consider the inverter of Fiy 574 when ψ_{l} is tow Let the output be contected to the mput terminals of N identical inveriers. Convince yourself that the output level V of can be decernined asing the cumvalent circuit shown in Fi: E5 53 . Hence show that

$$
V_{o f}=V_{c c} R_{C} \frac{V_{C c}-V_{B L}}{R_{C}+R_{B} / N}
$$

5.11 The spice but model and simulation examples \qquad 507

> For $N=5$, calculate V on ising the component values of the example circult discussed earlier $\left(\right.$ Le,$R_{p}=$ $10 \mathrm{k} \Omega R_{C}=1 \mathrm{k} \Omega Y_{c C}=5 \mathrm{~V}$. Note that this arrangement is historically important as a precursor to the TIL logic form. th is called Resistor-Transistor Logic or RTI.

$7 V_{B F}=01 \mathrm{~V}$

figure es. 53
Ans. 3.6 V

5.11 THE SPICE BJT MODEL AND SIMULATION

As we did in Chapter 4 for the MOSFET, we conclude this chapter with a discussion of the models that SPICE uses to simulate the BJT. We will also illustrate the usc of SPICE in computing the dependence of β on the bias current and in simulating a CE amplifier

5.11.1 The SPICE Ebers-Moll Model of the BJT

In Section 5.1.4, we studied the Ebers-Moll model of the BJT and showed a form of this model, known as the injection form, in Fig. 5.8. SPICE uses an equivalent form of the EbersMoll model, known as the transport form, which is shown in Fig. 5.77. Here, the currents of

FIGURE 5.77 The transport form of the Ebers-Moll model for an mpn BJT.
the base-emitter diode ($D_{B E}$) and the base-collector diode ($D_{B C}$) are given, respectively, by

$$
i_{B E}=\frac{I_{S}}{\beta_{F}}\left(e^{v_{B E} / h_{F} v_{T}}-1\right)
$$

and

$$
\begin{equation*}
i_{B C}=\frac{I_{S}}{\beta_{R}}\left(e^{v_{B C} / n_{R} V_{T}}-1\right) \tag{5.187}
\end{equation*}
$$

where n_{F} and n_{R} are the emission coerficients of the BEJ and BCJ, respectively. These cocfficients are generalizations of the constant n of the $p n$-junction diode. (We have so far assumed $n_{F}=n_{R}=1$). The controlled current-source $i_{C E}$ in the transport model is defined as

$$
\begin{equation*}
i_{C E}=I_{S}\left(e^{v_{B R} / n_{F} V_{T}}-e^{v_{B C} / \pi_{R} V_{T}}\right) \tag{5.188}
\end{equation*}
$$

Observe that $i_{C E}$ represents the current component of i_{C} and i_{E} that arises as a result of the minority-carrier diffusion across the base, or carrier transport across the base (hence the name transport model). The reader can easily show that, for $n_{F}=n_{R}=1$, the relations

$$
\begin{align*}
& i_{B}=i_{B E}+i_{B C} \tag{5.189}\\
& i_{C}=i_{C E}-i_{B C} \tag{5.190}\\
& i_{E}=i_{C P}+i_{B E} \tag{5.191}
\end{align*}
$$

for the BJT currents in the transport model result in expressions identical to those derived in Eqs. (5.23), (5.26), and (5.27), respectively. Thus, the transport form (Fig. 5.77) of the Ebers-Moll model is exactly equivalent to its injection form (Fig. 5.8). Moreover, it has the advantage of being simpler, requiring only a single controlled source from collector to emitter. Hence, it is preferred for computer simulation.

The transport model can account for the Early effect (studied in Section 5.2.3) in a forward-biased BJT by including the factor $\left(1-v_{B C} / V_{A}\right)$ in the expression for the transport current $i_{C E}$ as follows:

$$
\begin{equation*}
i_{C E}=I_{S}\left(e^{v_{B E} /_{F} V_{T}}-e^{v_{B C} / n_{R} V_{T}}\right)\left(1-\frac{v_{B C}}{V_{A}}\right) \tag{5.192}
\end{equation*}
$$

Figure 5.78 shows the large-signal Ebers-Moll BJT model used in SPICE. It is based on the transport form of the Ebers-Moll model shown in Fig. 5.77. Here, resistors r_{x}, r_{F}, and r_{C} are added to represent the ohmic resistance of, respectively, the base, emitter, and collector regions. The dynamic operation of the BJT is modeled by two nonlinear capacitors, $C_{B C}$ and $C_{B E}$. . . and a depletion or junction component (i.e., $C_{J C}$ and $C_{J E}$) to account for the charge-storage effects within the BJT (as described in Section 5.8). Furthermore, the BJT model includes a depletion junction capacitance $C_{J S}$ to account for the collcctor-substrate junction in integratedcircuit BJTs, where a reverse-biased $p n$-junction is formed between the collector and the substrate (which is common to all components of the IC)
For small-signal (ac) analysis, the SPICE BJT model is equivalent to the hybrid- π model of Fig. 5.67, but augmented with r_{E}, r_{C}, and (for IC BJTs) $C_{J S}$. Furthermore, the

FIGURE 5.78 The SPICE large-signal Ebers-Moll model for an npn BJT.
model includes a large resistance r_{μ} between the base and collector (in parallel with C_{μ}) to account lor the dependence of i_{B} on $v_{C B}$. This dependence can be noted from the CB characteristics of the BJT in Fig. 5.19(b), where i_{C} is observed to increase with $v_{C B}$: since each $i_{C}-v_{C B}$ curve in Fig. 5.19(b) is measured at a constant i_{E}, an increase in i_{C} with $v_{C B}$ implies a corresponding decrease in i_{B} with $v_{C B}$. The resistance r_{u} is very large, typically greater than $10 \beta r_{0}$

Although Fig. 5.77 shows the SPICE model for the npn BJT, the corresponding model for the pnp BJT can be obtained by reversing the direction of the currents and the polarity of the diodes and terminal voltages.

5.11.2 The SPICE Gummel-Poon Model of the BJT

Tbe large-signal Ebers-Moll BJT model described in Section 5.11.1 lacks a representation of somc second-order effects present in actual devices. Onc of the most important such effect is the variation of the current gains, β_{F} and β_{R}, with the current i_{C}. The Ebers-Moll model assumes β_{F} and β_{R} to be constant, thereby neglecting their current dependence (as depicted in Fig. 5.23). To account for this, and other second-order effects, SPICE uses a more accurate, yet more complex, BJ. Gummel and Poon, two pionecrs in this ficld). This model is based on the relationship between the electrical tem. characteristics of a BJT and scope of this book to delve into the model be awn in ex or such a model.

In SPICE, the Gummel-Poon model automatically simplifies to the Ebers-Moll model when certain model parameters are not specificd. Consequently, the BJT model to be used by SPICE need not be explicitly specified by the user (unlike the MOSFET case in which
 model pared (if needed) by For instance, in Example 520 (Section 5.114) we will use the Q2N3904 npn BJT (from Fairchild Semiconductor) whose SPICE model is
available in PSpice. In fact, the PSpice library already includes the SPICE model parameters for many of the commercially available discrete BJTs. For IC BJTs, the values of the SPICE model parametcrs are determined by the IC manufacturer (using both measurements on the model paramectrs are determined by the IC manufacturer (using both measurements on the Tabricated devices a
to the IC designers.

5.11.3 The SPICE BJT Model Parameters

Table 5.8 provides a listing of some of the BJT model parameters used in SPICE. The reader should be already familiar with these parameters. In the absence of a user-specified value for a particular paraneter, SPICE uses a default value that typically results in the corresponding effect being ignored. For example, if no value is specified for the forward Early voltage VAF, SPICE assumes that VAF $=\infty$ and does not account for the Early effect. Although ignoring the forward Early voltage VAF can be a serious issuc in some circuits, the same is not true, for example, for the value of the reverse Early voltage VAR.

5.11.4 The BJT Model Parameters BF and BR in SPICE

Before leaving the SPICE model, a comment on β is in order. SPICE interprets the userspecified model parameters BF and BR as the ideal maximum values of the forward and reverse dc current gains, repectively, versus the operating current. These parameters are not equal to the

SPICE Parameter	Book Symbol	Description	Units
IS	I_{s}	Saturation current	A
BF		Ideal maximum forward current gain	
BR		Ideal maximum reverse current gain	
NF	n_{F}	Forward current emission coefficient	
NR	n_{R}	Reverse current emission coefficient	
VAF	V_{A}	Forward Early voltage	V
VAR		Reverse Early voltage	v
RB	r_{x}	Zero-bias base ohmic resistance	Ω
RC	r_{C}	Collector ohmic resistance	Ω
RE	r_{k}	Emitter ohmic resistance	Ω
TF	τ_{F}	Ideal forward transit time	s
TR	$\tau_{\text {R }}$	Ideal reverse transit time	s
CJC	$C_{u 0}$	Zero-bias base-collector depletion (junction) capacitance	F
MJC	$m_{\text {BCJ }}$	Base-collector grading coefficient	
VJC	$V_{0 \mathrm{c}}$	Base-collector built-in potential	V
CJE	$C_{j t 0}$	Zero-bias base-emitter depletion (junction) capacitance	F
MJE	$m_{\text {BIJ }}$	Base-emitter grading coefficient	
VJE	$V_{0 \text { e }}$	Base-emitter built-in potential	v
CJS		Zero-bias collector-substrate depletion (junction) capacilance	F
MJS		Collector-substrate grading coefficient	
VJS		Collector-substrate built-in potential	v

constant current-independent parameters $\beta_{F}\left(\beta_{\mathrm{dc}}\right)$ and β_{R} used in the Ebers-Moll model (and throughout this chapter) for the forward and reverse dc current gains of the BJT. SPICE use a current-dependent model for β_{F} and β_{R}, and the user can specify other paramcters (not shown in Table 5.8) for this model. Only when such parameters are not specified, and the Early effect is neglected, will SPICE assume that β_{F} and β_{k} are constant and equal to BF and BR, respectively. Furthermore, SPICE computes values for both β_{dc} and β_{ac}, the two parameters that we generally assume to be approximately equal. SPICE then uses β_{ac} to perform small-signal (ac) analysis.

4ㄴNyPy
 DEPENDENCE OF β ON THE BIAS CURRENT

In this example, we use PSpice to sinnulate the dependence of β_{uc} on the collector bias current for the Q2N3904 discrcte BJT (from Fairchild Semiconductor) whose model parameters are listed in Table 5.9 and are available in PSpicc. ${ }^{12} \mathrm{As}$ shown in the Capture schematic ${ }^{13}$ of Fig. 5.79, the $V_{C E}$ of the BJT is fixed using a constant voltage source (in this example, $V_{C E}=2 \mathrm{~V}$) and a dc cur-
ren source $I_{\text {I }}$ is applied at the base. To illustrate the dependence of $\beta_{\text {, }}$ on the collector current $I_{\text {- }}$ rent source I_{B} is applied at the base. To illustrate the dependence of β_{sc} on the collector current I_{C} we perform a dc-analysis simulation in which the sweep variable is the current source I_{B}. The β_{do} of the BJT, which corresponds to the ratio of the collector current I_{C} to the base current I_{B}, can We be ploted versus f_{C} using Probe (the graphical interface of PSpice), as shown in Fig. 5.80 We see that to operate at the maximum value of β_{dd} (i.e., $\beta_{\mathrm{dc}}=163$), at $V_{C E}=2 \mathrm{~V}$, the BJT must
be hiased at an $I_{C}=10 \mathrm{~mA}$. Since increasing the bias current of transistor increases the power be hiased at an $I_{C}=10 \mathrm{~mA}$. Since increasing the bias current of a transistor increases the power mpin, B is cear fong. s.80 that the chice of current f_{C} is a trade-of between the currean $\beta_{\text {dc }}$ and
 decreasing I_{c} by a factor of 20 (from 10 mA to 0.5 mA) results in a drop in $\beta_{\text {ic }}$ of about 25% from 163 to 123).

-S=6.73 ≤ 1	XTI=3	$\mathrm{EC=1.1}$	$\mathrm{VAF}=74.03$	BF=416.4	NE: $=1.259$	TSE $=5.734 \mathrm{~F}$
IKF $=66.78 \mathrm{~m}$	XTE -1.5	$\mathrm{BR}=.7371$	$\triangle C=2$	ISC=0	IKR=0	RC=1
CJC=3.638p	MJC=. 3085	VJC=. 75	$\mathrm{FC}=.5$	CJE-4.493p	$\mathrm{MLEE}=.2593$	$\mathrm{VJJ}=.75$
$\mathrm{TR}=239.5 \mathrm{n}$	TF $=302.20$	ITF $=.4$	$\mathrm{VTF}=4$	XTF=2	R. $B=10$	

[^19]

FIGURE 5.80 Dependence of β_{dc} on I_{C} (at $V_{C R}=2 \mathrm{~V}$) in the Q2N3904 discrete BJT (Example 5.20).

FivMPESE1

THE CE AMPLIFIER WITH EMITTER RESISTANCE

In this example, we use PSpice to compute the frequency response of the CE amplifier and investigate its bias-point stability. A capture schematic of the CE amplifier is shown in Fig. 5.81. We will use part Q2N3904 for the BJT and a ± 5-V power supply. We will also assume a signal source resistor $R_{\text {sig }}=10 \mathrm{k} \Omega$, a load resistor $R_{L}=10 \mathrm{k} \Omega$, and bypass and coupling capacitors of

FIGURE 5.81 Capture schematic of the CE amplifier in Example 5.21.
$10 \mu \mathrm{~F}$. To enable us to investigate the effect of including a resistance in the signal path of th emitter, a resistor $R_{c e}$ is connected in series with the emitter bypass capacitor C_{E}. Note that the rolcs of R_{E} and $R_{c e}$ are different. Resistor R_{E} is the de emitter degencration resistor because in
 bias point on the a round and helps stabilize the ain of the amplifier In this example, we will investizute

 he chin 1 ,

Based on the plot of $\beta_{\mathrm{d} \text { c }}$ versus i_{C} in Fig. 5.80 , a collector bias curent I_{C} of 0.5 mA is selected dissipation,
 result is that $V_{E}=-2 \mathrm{~V}$ requires bias resistors with values

$$
R_{C}=\frac{V_{C C}-V_{C}}{I_{C}}=10 \mathrm{k} \Omega
$$

and

$$
R_{E}=\frac{V_{E}-V_{E E}}{I_{C}}=6 \mathrm{k} \Omega
$$

Assuming $V_{B R}=0.7 \mathrm{~V}$ and using $\beta_{\mathrm{dc}}=123$, we can determine

$$
R_{B}=-\frac{V_{B}}{I_{B}}=-\frac{V_{B E}+V_{E}}{I_{C} / \beta_{\mathrm{dc}}}=320 \mathrm{k} \Omega
$$

Next, the formulas of Section 5.7 .4 can be used to determine the input resistance $R_{\text {in }}$ and the midband voltage gain $\left|A_{M}\right|$ of the CE amplifier:

$$
\begin{align*}
R_{\mathrm{in}} & =R_{B} \|\left(\beta_{\mathrm{ac}}+1\right)\left(r_{e}+R_{e}\right) \tag{5.193}\\
\left|A_{M}\right| & =\left|-\frac{R_{\mathrm{in}}}{R_{\mathrm{sig}}+R_{\mathrm{in}}} \times \frac{R_{C} \| R_{L}}{r_{e}+R_{e}}\right|
\end{align*}
$$

(5.194)

For simplicity, wc will assume $\beta_{\mathrm{ac}} \approx \beta_{\mathrm{dc}}=123$, resulting in

$$
r_{e}=\left(\frac{\beta_{\mathrm{ac}}}{\beta_{\mathrm{ac}}+1}\right)\left(\frac{V_{T}}{I_{C}}\right)=49.6 \Omega
$$

Thus, with no small-signal emitter degeneration (i.e., $R_{c e}=0$), $R_{\text {in }}=6.1 \mathrm{k} \Omega$ and $\left|A_{M}\right|=$ 38.2 V/V. Using Eq. (5.194) and assuming R_{B} is large enough to have a uegligible effect on $R_{\text {in }}$, it can be shown that the emitter degeneration resistor R_{e} decreases the voltage gain $\left|A_{M}\right|$ by a factor of

$$
\frac{1+\frac{R_{e}}{r_{e}}+\frac{R_{\mathrm{sjj}}}{r_{\pi}}}{1+\frac{R_{\mathrm{sig}}}{r_{\pi}}}
$$

Therefore, to limit the reduction in voltage gain to a factor of 2 , we will select

$$
\begin{equation*}
R_{e}=r_{e}+\frac{R_{\mathrm{sij},}}{\beta_{\mathrm{ac}}+1} \tag{5.195}
\end{equation*}
$$

Thus, $R_{c e} \approx R_{e}=130 \Omega$. Substituting this value in Eqs. (5.193) and (5.194) shows that $R_{\text {in }}$ increases from $6.1 \mathrm{k} \Omega$ to $20.9 \mathrm{k} \Omega$ while $\mid A_{M}$ drops from $38.2 \mathrm{~V} / \mathrm{V}$ to $18.8 \mathrm{~V} / \mathrm{V}$.

We will now use PSpicc to verify our design and investigate the performance of the CE amplificr. We begin by performing a bias-point simulation to verify that the BJT is properly biased in the active regiou and that the dc voltages and currents are within the desired specifications. Based on this simulation, we have increased the value of R_{B} to $340 \mathrm{kS} \Omega$ in order to limit I_{C}. to about 0.5 mA while using a standard 1% resistor value (Appendix G). Next, to measure the midband gain A_{M} and the 3-dB frequencies f_{L} and f_{H}, we apply a 1-V ac voltage at the input, perform an ac-analysis simulation, and plot the output voltage magnitude (in dB) versus frequency as shown in Fig. 5.82. This corresponds to the unagnitude response of the CE amplifier because we chose a 1-V input signal. ${ }^{14}$ Accordingly, with no emitter degeneration, the midband gain is $\left|A_{M L}\right|=38.5 \mathrm{~V} / \mathrm{V}=31.7 \mathrm{~dB}$ and the $3-\mathrm{dB}$ bandwidth is $B W=f_{H}-f_{L}=145.7 \mathrm{kHz}$. Using an $R_{c e}=130 \Omega$ results in a drop in the midband gain $\left[A_{M}\right\rfloor$ by a factor of 2 (i.e., 6 dB). Interestingly, however, $B W$ has now increased by approximately the same factor as the drop in $\left|A_{\text {wp }}\right|$. As we will learn in Chapter 8 when we study negative feedback, the emitter-degeneration resistor $R_{c e}$ provides negative feedback, which allows us to trade off gain for other desirable properties such as a larger input resistance, and a wider bandwidth.
To conclude this example, we will demonstrate the improved bias-point (or dc operatingpoint) stability achieved when an emitter resistor R_{E} is used (sce the discussion in Section 5.5.1). Specifically, we will increase/decrease the value of the parameter BF (i.e., the ideal maximum
${ }^{14}$ The reader should not be alarmed about the use of such a large signal amplitude. Recall (Section 2.9.1) that, in a small-signal (ac) simulation, SPICE first finds the small-signal cquivalent circuit at any ac signal amplitude. However, a 1-V ac input is convenient to use as the resulting ac output corresponds to the voltage gain of the circuit.

FIGURE 5.82 Frequency respouse of the CE amplifier in Example 5.21 with $R_{c e}=0$ and $R_{c e}=130 \Omega$
forward current gain) in the SPICE model for part Q2N3904 by a factor of 2 and perforin a biaspoiut simulation. The corresponding change in BJT parameters (β_{dc} and β_{ac}) and bias-poim (including I_{C} and $V_{C E}$) are presented in Tablc 5.10 for the case of $R_{E}=6 \mathrm{k} \Omega$. Note that β_{ac} is not

TABLE 5.10 Varrations in the Bias Point of the CE Amplifier with the SPICE Model Parameter BF of BJT

BF (in SPICE)	$R_{E}=6 \mathrm{kS} 2$				$\mathrm{R}_{\mathrm{E}}=0$			
	β_{ac}	$\beta_{\text {dc }}$	$1 \mathrm{c}(\mathrm{mA})$	$V_{c}(\mathrm{~V})$	$\beta_{\text {ac }}$	$\beta_{\text {dc }}$	$I_{c}(\mathrm{~mA})$	$V_{c}(\mathrm{~V})$
208	106	94.9	0.452	0.484	109	96.9	0.377	1.227
416.4 (nominal value)	143	123	0.494	0.062	148	127	0.494	0.060
832	173	144	0.518	-0.183	181	151	0.588	-0.878

equal to β_{dc} as we assumed, but is slightly larger. For the case without emitter degeneration, we will use $R_{E}=0$ in the schematic of Fig. 5.81. Furthermore, to maintain the same I_{C} and V_{C} in both cases at the values obtained for nominal BF, we use $R_{B}=1.12 \mathrm{M} \Omega$ to limit I_{C} to approximately 0.5 mA . The corresponding variations in the BJT bias point are also shown in Table 5.10. Accordingy, we see that eniter degeneration makes the bias point of the CE amplifier much les sensitive to changes in β. However, unless a large bypass capacitor C_{E} is used, this reduced bia sensitivity comes at the expense of a reduction in the midband gain (as we observed in this example when we simulated the frequency response of the CE amplifier with an $R_{\varepsilon}=130 \Omega$).

SUMMARY

Depending on the bias conditions on its two junctions, the BJT can operate in one of four possible modes: cutoff (both junctions reverse biased), active (the EBJ forward biased and the CBJ reverse biased), saturation (both junc biased and the CBI forward biased).

* For amplifier applications, the B.TT is operated in the active mode. Switching applications make use of the culof and saturation modes. The reversc-active mode of opcration is of conceptual interest only
A BJT opcrating in the active mode provides a collector current $i_{C}=I_{s} e^{\varepsilon_{B}| |^{\prime N} V_{T}}$. The base current $i_{B}=\left(i_{C} / \beta\right)$, nd the emitter current $i_{E}=i_{C}+i_{B}$. Also, $i_{C}=\alpha i_{E}$, and thu
$\beta=\alpha /(1-\alpha)$ and $\alpha=\beta /(\beta+1)$. See Table 5.2.

27 To ensure operation in the active mode, the collector volt age of an $n p n$ transistor must be kept higher than approxi-
matcly 0.4 V bclow the base voltagc. For a pnp transistor the collector voltage must bc lower than approximately 0.4 V above the base voltage. Otherwise, the CBJ becomes forward hiased, and the transistor enters the sauration region.
A convenient and intuitively appealing model for the arge-signal operation of the BJT is the Ebcrs-Moll model hown in Fig. 5.8. A fundamental relationship between its parameters is $\alpha_{F} I_{S E}=\alpha_{R} I_{S C}=I_{S}$. While α_{F} is close to unity, parameters is $\alpha_{F} s_{S E}=\alpha_{R} l_{S C}=I_{S}$. Whin α_{F} is close to unity,
α_{R} is very small ($(.01-0.2)$, and β_{R} is correspondingly small. Use of the EM model cnables expressing the terminal currents in terms of the voltages $v_{B E}$ and $v_{B C}$. The resulting relationships are given in Eqs. (5.26) to (5.30).
既 In a saturated transistor, $\left|V_{C E \text { sal }}\right|=0.2 \mathrm{~V}$ and $I_{\text {(san }}=$ $\left(V_{C C}-V_{C E s a t}\right) / R_{C}$. The ratio of $I_{\text {Cast }}$ to the base current is the forced β, which is lower than β. The collector-to-emitter esistance, $R_{\text {CFsast }}$ is snall (few tens of ohms).
* At a constant collector current, the magnitude of the bascemiller voltage decreases by about 2 mV for every $1^{\circ} \mathrm{C}$ ise in temperature.
. With the emitter open-circuited ($i_{E}=0$), the CBJ breaks down at a reverse volage $B V_{C B O}$ that is typically $>50 \mathrm{~V}$ or $i_{E}>0$, the breakdown voltage is less than $B V_{C B O}$. In the common-emitter configuration the breakdown voltage specified is $B V_{C B O}$, which is about half $B V_{C D D}$. The emitter-
base junction breaks down at a reverse bias of 6 V to 8 V . This breakdown usually has a permanent adverse effecton β.
嘘 A summary of the current-voltage characteristics and large-signal nodels of the BJTs in both the active and saturation modes of operation is presented in Table 5.3.
The dc analysis of transistor circuits is greally simplified by assuming that $V_{B E}[\simeq 0.7 \mathrm{~V}$.

To operate as a linear amplifier, the BJT is biased in the active region and the signal $v_{b c}$ is kept small $\left(v_{b e}<V_{T}\right)$,
gis For small signals, the BJT functions as a linear voltage controlled current source with a transconductance $g_{m}=$ looking into the base, is $r_{\pi}=\beta / g$. Simplificd low frequency equivalent-circuit models for the BIT are show in Figs. 5.51 and 5.52 . These models can be augmented by including the output resistance $r_{o}=\left|V_{t}\right| / I_{c}$ between the collector and the emitter. Table 5.4 provides a summary of the equations for determining the model parameters.
(\%ias dcsign seeks to establish a dc collector current that is as independent of the value of β as possible.

2 In the common-emiller configuration, the emitter is at sig. nal ground, the input signal is applied to the base, and the output is taken at the collector. A high volage gain and
reasonably high inpul resistance are obtained, but the high-fricquency response is limited.

* The input resistance of the common-emitter amplificr can be increased by including an unbypassed resistance in th emitter lcad. This cmitter-degeneration resistance proreduced volaye ain expense ta
In the common-base configuratiou, the base is at signa ground, the input signal is applied to the emitter, and th output is taken at the collector. A high voltage gain (froun emitter to colleestor) and an excellent high-frequency The CB amplifier is useful as a current buffer.
*3 In the emitter follower the collector is at signal ground the input signal is applied to the base, and the output tal en at the emitter. Although the voltage gain is less than unity, the input resistance is very high and the output re

Table 5.5 shows the parameters utilized to characteriz amplifiers.
For a summary of the characteristics of discrete single stage BJT amplifiers, refer to Table 5.6
The high-frequency model of the BJT together with th formulas for determining its parameter values are show in Table 5.7.
(Analysis of the high-frequency gain of the CE amplifier in Section 5.9 shows that the gain rolls off at a slope of $-6 \mathrm{~dB} /$ octave with the 3 -dB frequency $f_{H}=1 / 2 \pi C_{\text {in }} R_{\text {sis }}^{\prime}$ Herc $R_{\text {sis }}$ is a modified value of $R_{\text {sipe }}$ approximatcly
equal to $R_{\text {sig }} \| r_{T J}$, and $C_{\text {in }}=C_{\Gamma}+\left(1+g_{m} R_{L}^{\prime}\right) C_{H}$. The
nultiplication of C_{μ} by $\left(1+g_{m} R_{L}\right)$, known as the Miller
ffect, is the most significant factor limiting the highrequency response of the CE amplifier.
5. For the analysis of the cffect of $C_{C 1}, C_{C 2}$, and C_{E} on the low-frequency gain of the CE ampin
ion 5.9 .3 and in particular to Fig. 5.73

The basic BJT logic inverter utilizes the cutoff and saturz tion modes of transistor operation. A saturated transistor has a large amount of minority-carrier charge storcd in it base region and is thus slow to turn off.

PROBLEMS

SECTION 5.1: DEVICE STRUCTURE

AND PHYSICAL OPERATION

5.1 The terminal voltages of various npn transistors are measured during operation in their respective circuils with the following results:

Cose	E	B	C	Mode
1	0	0.7	0.7	
2	0	0.8	0.1	
3	-0.7	0	0.7	
4	-0.7	0	-0.6	
5	0.7	0.7	0	
6	-2.7	-2.0	0	
7	0	0	5.0	
8	-0.10	5.0	5.0	

In Ulis table, where the entries are in volts, 0 indicates the reference terminal to which the black (ncgative) probe of the voltmeler is connected. For each case, identify the mode of operation of the transistor.
5.2 An npn transistor has an emitter area of $10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$. The doping concentrations arc as follows: in the emitter N_{D}
$10^{19} / \mathrm{cm}^{3}$, in the base $N_{\mathrm{s}}=10^{17} \mathrm{~cm}^{3}$ and in the collecto N_{D} $10^{15} / \mathrm{cm}^{3}$. The transistor is operating at $T=300 \mathrm{~K}$. Whe $n_{i}=1.5 \times 10^{10} / \mathrm{cm}^{3}$. For electrons diffusing in the base, L_{n} $19 \mu \mathrm{~m}$ and $D_{n}=21.3 \mathrm{~cm}^{2} / \mathrm{s}$. For holes diffusing in the emitfer, $L_{p}=0.6 \mu \mathrm{~m}$ and $D_{p}=1.7 \mathrm{~cm}^{2} / \mathrm{s}$. Calculate I_{s} and β assuming that the base-width W is:
(a) $1 \mu \mathrm{~m}$
(c) $5 \mu \mathrm{~m}$

For case (b), if $I_{C}=1 \mathrm{nIA}$, find $I_{D}, I_{E}, V_{B E}$, and the minority cartier charge stored in the basc. (Hint: $\tau_{b}=L_{n}^{2} / D_{n}$. Recall hat the electron charge $q=1.6 \times 10^{-19}$ Coulomb.)
5.3 Two transistors, fabricatcd with the same technology but having different junction areas, when operated at a base-emitter Find I_{s} for each device. What are the relative junction areas?
5.4 In a particular BJT, the base current is $7.5 \mu \mathrm{~A}$, and th collector current is $400 \mu \mathrm{~A}$. Find β and α for this device
indicated by the cable. $i_{C}=10 \mu \mathrm{~A}$?
5.5 Find the values of β that correspond to α values of 0.5 , $0.8,0.9,0.95,0.99,0.995$, and 0.999
5.6 Find the valucs of α that correspond to β values of 1,2 $0,20,100,200,1000$, and 2000 .
5.7 Mcasurement of $V_{B E}$ and two terminal currcents taken on a number of $n p n$ transistors are tabulated below. For each calculate the missing current value as well as α, β, and I_{s} a

Iransisto	a	b	¢	d	e
$V_{b t}(\mathrm{mV})$	690	690	580	780	820
$I_{C}(\mathrm{~mA})$	1.000	1.000		10.10	
$I_{B}(\mu \mathrm{~A})$	50		7	120	1050
$I_{E}(\mathrm{~mA})$		1.070	0.137		75.00

5.8 Consider an npn transistor whosc base-cmitter drop is 0.76 V at a collector current of 10 mA . What current will it conduct at $v_{B E}=0.70 \mathrm{~V}$? What is its base-emitter voltagc for
5.9 Show that for a transistor with α close to unity, if α the correspond ing per-unit change in β is given approximately by

$$
\frac{\Delta \beta}{\beta} \simeq \beta\left(\frac{\Delta \alpha}{\alpha}\right)
$$

5.10 An npn transistor of a type whose β is speciilied to range from 60 to 300 is connected in a circuit with emittcr grounded collector at +9 V , and a current of $50 \mu \mathrm{~A}$ injected into the base. Calculate the range of collector and emiller currents that can result. What is the maximum power dissipated in the ramsistor? (Note: Perhaps you can see why this is a bad way to establish the operating current in the collector of a BJT
5.11 A particular BJ when conducting a collector current of 10 mA is known to have $v_{B E}=0.70 \mathrm{~V}$ and $i_{B}=100 \mu \mathrm{~A}$. Use shown in Figs. 5.5 (a) and (b)

\% . (a) and (b)
5.12 Using the npn transistor model of Fig. 5.5(b), consider the case of a transistor for which the base is connected to round, the colliector is connected to a $10-\mathrm{V}$ de source throug a $2-\mathrm{k} \Omega 2$ resistor, and a $3-\mathrm{mA}$ current source is connecled to the mitter with the polarity so that current is drawn out of the mitter terminal. If $\beta=100$ and $I_{s}=10$ A, find the voltage the emitter and the collector and calculate the base current.
. 13 Consider an npn transistor for which $\beta_{F}=100, \alpha_{R}=0.1$ and $I_{S}=10^{-15} \mathrm{~A}$.
(a) If the transistor is operated in the forward active mode with $I_{B}=10 \mu \mathrm{~A}$ and $V_{C B}=1 \mathrm{~V}$, find $V_{B E}, I_{C}$, and I_{E}
b) Now, operate the transistor in the reverse active mod with a forward-bias voltage $V_{B C}$ cqual to the value of $V_{B H}$ found in (a) and with $V_{E B}=1 \mathrm{~V}$. Find I_{C}, I_{B}, and I_{E}.
.14 A transistor characterized by the Ebers-Moll model shown in Fig. 5.8 is operated with both emitter and collector grounded and a base current of 1 mA . If the collector junction is 10 times larger than the emitter junction and $\alpha_{F} \equiv 1$, find i_{C} and i_{E}.
5.15 (a) Use the Ebcrs-Moll expressions in Eqs. (5.26) and (5.27) to show that the $i_{C}-v_{C B}$ relationship skctched in Fig. 5.9 can be described by

$$
i_{C}=\alpha_{F} I_{E}-I_{S}\left(\frac{1}{\alpha_{R}}-\alpha_{F}\right) e^{V_{R C} V_{T}}
$$

Calculate and sketch $i_{c}-v_{c 3}$ curves for a transistor for which $I_{s}=10^{-15} \mathrm{~A}, \alpha_{F} \cong 1$, and $\alpha_{R}=0.1$. Sketch graphs for $v_{B}=0.1 \mathrm{~mA}, 0.5 \mathrm{~mA}$, and 1 mA . For each, give the values
5.16 Consider the $p n p$ large-signal model of Fig. 5.12 applied to a rransistor having $I_{s}=10^{-13} \mathrm{~A}$ and $\beta=40$. If the

(a)
emitter is connected to ground, the base is connecled to a current source that pulls $20 \mu \mathrm{~A}$ out of the base terminal, and the collector is connected to a negative supply of -10 V via a $10-\mathrm{k} \Omega$ resistor, find the collector voltage, the emitter current,
and the base voltage. and the base voltage.
5.17 A $p n p$ transistor has $\vartheta_{\text {Eg }}=0.8 \mathrm{~V}$ at a collector current of 1. A. What do you expect $v_{s B}$ to become at $i_{C}=10 \mathrm{~mA}$? At
5.18 A pnp transistor modeled widh the circuit in Fig. 5.12 is connected wilh its base at ground, collector at -1.5 V , and a $10-\mathrm{mA}$ current injected into its cmitter. If it is said to hav $\beta=10$, what are its base and collector currens? In the emitter? What does the collector current become if a transistor with $\beta=1000$ is substituted? (Note: The fact that the collector current changes by less than 10% for a large change of β illustrates that this is a good way to establish a specific collector current.)
5.19 A pnp powcr transistor operates with an emitter-tocollector voltage of 5 V , an emitter current of 10 A , and $V_{n}=$ 0.85 V . For $\beta=15$, what base current is required? What is I_{s} for this transistor? Compare the emitter-base junction area of this transistor with that of a small-signal transistor that conducts $i_{C}=1 \mathrm{~mA}$ with $v_{k B}=0.70 \mathrm{~V}$. How much larger is it?

SECTION 5.2: CURRENT-VOLTAGE

 CHARACTERISTICS5.20 For the circuits in Fig. P5.20, assume that the transistors have very large β. Some measurements have been made

(c)

(d)

FIGURE P5.20

FIGREP5. 26

5.27 The current $I_{C B O}$ of a small transistor is measured to be 50 nA at $25^{\circ} \mathrm{C}$. If the emperaturc of the device is raised to $85^{\circ} \mathrm{C}$, what do you expect $I_{C B O}$ to bccome.
5.28 Augment the model of the npn BJT shown in Fig. $5.20(\mathrm{a})$ by a current source representing $I_{C B B}$. Assume that r_{o} is very large and thus can be neglected. In terms of this addition, what do the terminal currents $i_{\mathcal{B}}, i_{C}$, and i_{E} become? If the base lead is open-circuited while the emitter is connected to ground and the collector is connected to a positive supply ind the emitter and collector currents.
5.29 An npn transistor is accidentally connected with col lector and emitter leads interchanged. The resulting currents in the nomual emitter and base leads are 0.5 mA and 1 mA espectivety. What are the values of α_{k} and β_{R} ?
5.30 A BJT whose emitter current is fixed at 1 mA has base-emitter voltage of 0.69 V at $25^{\circ} \mathrm{C}$. What base-ernitter oitage would you expect at $0^{\circ} \mathrm{C}$? At $100^{\circ} \mathrm{C}$.
5.31 A parucular pmp transistor operating at an ennititer curicn of 0.5 mA at $20^{\circ} \mathrm{C}$ has an emitter-base voltage of 692 mV .
What does $\tau_{\text {re }}$ become if the junction temperaure rise
b) If the transistor has $n=1$ and is operated at a fixed mitter-base voltage of 700 inV , what emitter current flow C. Atsol.
5.32 Consider a transistor for which the base-emitter volt age drop is 0.7 V at 10 mA . What current flows for $V_{B E}=0.5 \mathrm{~V}$
5.33 In Problem 5.32, the stated voltages are measured a $25^{\circ} \mathrm{C}$. What values correspond at $-25^{\circ} \mathrm{C}$? At $125^{\circ} \mathrm{C}$?
5.34 Use the Ebers-Moll expressions in Eqs. (5.26) and (5.27) derive Eq. (5.35). Note that the emitter current is set to 5.35 Use Eq. (5.35) to plot the $i_{C}-v_{C B}$ characteristics of an $n p n$ transistor having $\alpha_{F} \cong 1, \alpha_{R}=0.1$, and $I_{s}=10^{-1 .}$ A. Plo
graphs for $I_{E}=0.1 \mathrm{~mA}, 0.5 \mathrm{~mA}$, and 1 mA . Use an expanded scale for the negative values of $v_{B C}$ in order to show the details of the saturation region. Neglect the Early effect.
*3.36 For the saturated transistor shown in Fig. P5.36, use the EM expressions to show that for $\alpha_{F} \cong 1$,

$$
V_{C E \mathrm{sat}}=V_{T} \ln \left(\frac{\frac{1}{\alpha_{R}}-\frac{I_{C \text { sat }}}{I_{E}}}{1-\frac{I_{c_{\text {sat }}}}{I_{E}}}\right)
$$

For a BJT with $\alpha_{R}=0.1$, evaluate $V_{C E \text { ast }}$ for $I_{C \text { sal }} / I_{\varepsilon}=0.9$ 0.5 .0 .1 , and 0 .

F FIGURE P5. 36

5.37 Use Eq (5.36) to plot i_{C} versus $\nu_{c c}$ for an npn trans tor having $I_{s}=10^{-15} \mathrm{~A}$ and $V_{A}=100 \mathrm{~V}$. Provide curves fo $v_{B E}=0.65,0.70,0.72,0.73$, and 0.74 volts. Show the charac for $v_{C E}$ up to 15 V
5.38 For a particular npn transistor operating at a $\nu_{B E}$ of 670 mV and $I_{C}=3 \mathrm{~mA}$, the $i_{C}-v_{C F}$ characteristic has a slope of $3 \times 10^{-5} \mathrm{v}$. To what value of output resistance docs this transistor? For operation at 30 mA what would the outp ransistor? For opcration at 30 mA , what would the output resistance become?
5.39 For a BJT having an Early voltagc of 200 V , what is its output resistance at 1 mA ? $\mathrm{At} 100 \mu \mathrm{~A}$?
5.40 Measurements of the $i_{c}-v_{C F}$ characteristic of a small signal transistor operating at $v_{B E}=720 \mathrm{mV}$ show that i_{C} 1.8 mA at $v_{C E}=2 \mathrm{~V}$ and that $i_{C}=2.4 \mathrm{~mA}$ at $v_{C E}=14 \mathrm{~V}$. What is the corresponding value of i_{C} near saturation? At what value of $v_{C E}$ is $i_{C}=2.0 \mathrm{~mA}$? What is the value of the Early oltage for this transistor? What is the outp resistance th $=720 \mathrm{mV}$?
5.41 Give the $p n p$ equivalent circuit models that corre spond to those shown in Fig. 5.20 for the $n p n$ case.
5.42 A BJT operating at $i_{B}=8 \mu \mathrm{~A}$ and $i_{C}=1.2 \mathrm{~mA}$ under goes a reduction in base current of $0.8 \mu \mathrm{~A}$. It is found that $v_{C E}$ is held constant, he cortesponang reduction in col that apply? if 0.1 mA . What we the values of $h_{F E}$ and h_{A} hat apply. If hie basc current is increased from $8 \mu \mathrm{~A}$ to $10 \mu \mathrm{~A}$
and $v_{C E}$ is increased from 8 vio 10 V , what coliector current results? Assume $V_{A}=100 \mathrm{~V}$
5.43 For a transistor whose β characteristic is sketched in Fig, 5.22 , estimate values of β at $-55^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $125^{\circ} \mathrm{C}$ for $t_{C}=100 \mu \mathrm{~A}$ and 10 mA . For each current, estimate the temperature coefficient for temperatures above and below room temperature (four values nceded)
5.44 Figure P5.44 shows a diode-connected npn transistor. Since $v_{c \beta 3}=0$ results in aclive mode operation, the B.IT will internally opcrate in the active mode; that is, ils basc and collec tor curients will be related by β_{F}. Usc the EM equations to sho that the diode-connected tansistor has the $i-\eta$ characteristics,

$$
i=\frac{I_{S}}{\alpha_{F}}\left(e^{v / V_{T}}-1\right) \equiv I_{S} e^{v / V_{T}}
$$

FIGURE P5.44

5.45 A BJT for which $\alpha_{R}=0.2$ operates with a constan base current but with the collector open. What value of $V_{C E}$ d you measure?
5.46 Find the saturation voltage $V_{\text {Ctisa }}$ and the saturation resistance $R_{c: \text { siat }}$ of an $n p n$ BJT operated al a constant bas current of 0.1 mA and a forced β of 20 . The transistor ha $\beta_{F}=50$ and $\beta_{R}=0.2$.
5.47 Usc Eq. (5.47) to show that the saturation resistance $R_{C E \text { sal }} \equiv \partial v_{C E} / \partial i_{C}$ of a transistor operated with a constant base current I_{θ} is given by
where

$$
R_{C E \text { sut }}=\frac{V_{T}}{\beta_{F} I_{B}} \frac{1}{x(1-x)}
$$

where

$$
x=\frac{I_{C \text { sat }}}{\beta_{F} I_{B}}=\frac{\beta_{\text {givered }}}{\beta_{F}}
$$

Find $R_{\text {CEsat }}$ for $\beta_{\text {foreced }}=\beta_{F} / 2$.
5.48 For a transistor for which $\beta_{F}=70$ and $\beta_{R}=0.7$, find a estimate of $R_{C \text { Cisar }}$ and $V_{C \text { Evif }}$ for $I_{B}=2 \mathrm{~mA}$ by evaluating $V_{C E \text { asa }}$ a $i_{c}=3 \mathrm{~mA}$ and at $i_{C}=0.3 \mathrm{~mA}$ (using Eq. 5.49). (Note: Because value of R_{C} will be much larger than that given by $\mathrm{Eq}_{5} 548$)
5.49 A transistor has $\beta_{F}=150$ and the collector junction

0 limes larger than the emitter junction. Evaluate $V_{\text {Ctian }}$ for $\beta_{\text {roored }} / \beta_{\psi}=0.99,0.95,0.9,0.5,0.1,0.01$, and 0
5.50 A particular npn BJT with $\nu_{B E}=720 \mathrm{mV}$ at $i_{C}=600 \mu \mathrm{~A}$ and having $\beta=150$, has a collector-base junction 20 time larger than the emitter-base junction.
(a) Find α_{F}, α_{R}, and β_{R}.

放 a collector current of 5 mA and nonsaturated opcraon, what is the base-emittcr voltage and the base current? (c) For the situation in (b) but wilh double the calculiated basc current, what is the value of forced β ? What are the baseemitter and base-collector voltagcs? What are $V_{C \text { craa }}$ and $R_{\text {CiEan }}$? *5.51 A BJT with fixed base current has $V_{\text {CEEat }}=60 \mathrm{mV}$ with the emitter grounded and the collector open-circuited When the collector is grounded and the eniitter is opencircuited, $V_{C \text { Ead }}$ becomes -1 mV . Estimate values for β_{R} and β_{f} for this transistor
5.52 A BJT for which $I_{b}=0.5 \mathrm{~mA}$ has $V_{C \text { tsat }}=140 \mathrm{mV}$ at $I_{C}=10 \mathrm{~mA}$ and $V_{C \text { ssa }}=170 \mathrm{mV}$ at $I_{C}=20 \mathrm{~mA}$. Estimate the values of its saturation resistance, $R_{C \text { Esel }}$, and its offset voltage, $V_{C \text { E.fof }}$. Also, determinc the valucs of β_{F} and β_{R}
5.53 A BJT for which $B V_{C B O}$ is 30 V is connected as shown in Fig. P5.53. What voltages would you measure on the collictor, base. and emitter?

figure ps. 53

SECTION 5.3: THE BJT AS AN AMPLIFIER

AND AS A SWITC

5.54 A common-emitter amplifier circuit operated with $V_{C C}=+10 \mathrm{~V}$ is biased at $V_{C E}=+1 \mathrm{~V}$. Find the voltage gain, the maximum allowed output negative swing without the transistor entering saturation, and the corresponding maximum input signal permitted.
5.55 For the common-emitter circuit in Fig. 5.26(a) with $V_{C c}$ " +10 V and $K_{C}=1 \mathrm{k}$, lind $V_{C E}$ and the volage gain at the following dc collector bias currents: $1 \mathrm{~mA}, 2 \mathrm{~mA}, 5 \mathrm{~mA}, 8 \mathrm{~mA}$, and 9 mA . For each, give the maximum possible positive- and
negative-output signal swing as determined by the need to keep
the transistor in the active region. Present your results in a table.
D5.56 Consider the CE amplifier circuit of Fig. 5.26(a) when operated with a dc supply $V_{c c}=+5 \mathrm{~V}$. It is required to find the point at which the transistor should be biased; that
is find the value of $V_{\text {CF }}$ so that the output sine-wave signal is, find the value of $V_{C E}$ so that the output sine-wave signal $v_{c e}$ resulting from an input sine-wave signal $v_{b b}$ of $5-\mathrm{mV}$ peak amplitude has the maximum possible magnitude. What is the peak amplitude of the output sine wave and the value bias point. (Hint: To obtain the maxinum possible output bias point. (Hint: To obtain the maxinum possible output
amplitude for a given input, you need to bias the transistor as close to the edge of saturation as possible without entering saturation at any time, that is, without $v_{C E}$ decreasing below 0.3 V .)
5.57 The rransistor in the circuit of Fig. P5 57 is hiased at de collector current of 0.5 mA . What is the voltage gain? (Hint: Use Thévenin theorem to convert the circuit to the form in Fig. 5.26a).

FIGURE P5.57
5.58 Sketch and labcl the voltage transfer characteristics of the pap common-emitter amplifiers shown in Fig. P5.58

FIGURE P5.58
*5.59 In deriving the expression for small-signal voltage gain A_{v} in Eq. (5.56) we neglected the Early effect. Deriv this expression including the Early cffect, by substituting

$$
i_{C}=I_{S} e^{v_{B_{1}} / v_{y}}\left(1+\frac{v_{C R}}{V_{A}}\right)
$$

in Eq. (5.50). Show that the gain expression changes 10

$$
A_{v}=\frac{-I_{C} R_{C} / V_{T}}{\left[1+\frac{C_{C} \mathcal{R}_{C}}{V_{A}+V_{C E}}\right.}=-\frac{\left(V_{C C}-V_{C E}\right) / V_{T}}{\left[1+\frac{V_{C C}-V_{C E}}{V_{A}+V_{C E}}\right]}
$$

For the case $V_{C C}=5 \mathrm{~V}$ and $V_{C F}=2.5 \mathrm{~V}$, what is the gain without and wiht the Early effect taken into account? Le $V_{A}=100 \mathrm{~V}$.
5.60 When the common-emitter amplifier circuit of Fig. 5.26 (a) is biased with a certain $V_{B S}$, the dc vollage at the collector is found to be +2 V . For $V_{C l}=+5 \mathrm{~V}$ and R_{c} $1 \mathrm{k} \Omega$, find I_{C} and the small-signal voltage gain. For change $\Delta v_{B E}=+5 \mathrm{mV}$, calculate the resulting Δi°. Calculate it two ways: by finding Δi_{C} using the transistor exponential characteristic and approximately using the small-signal voltage gain. Repeat for $\Delta v_{B E}=-5 \mathrm{mV}$. Summarize your results in table
5.61 Consider the common-enitter amplifier circuit of Fig. 5.26 (a) when operated with a supply voltage $V_{C c}=+5 \mathrm{~V}$
a) What is the theorctical maximum voltage gain that thi mplificicr can provide?
b) What value of $V_{C E}$ must this amplificer bc biased at to pro ain of $-100 \mathrm{~V} / \mathrm{V}$?
(c) If the de collector clurrent $t^{\text {at }}$ the bias point in (b) is to be 0.5 mA , what value of R_{C} should be used?
d) What is the valuc of $V_{B E}$ required to provide the bias point mentioned above? Assume that the BJT has $I_{s}=10^{-15} \mathrm{~A}$. (e) If a sine-wave signal $v_{\text {be }}$ having a $5-\mathrm{mV}$ peak amplitude is perimposed on $\vartheta_{B E}$, find the corresponding output voltage ignal $v_{\text {re }}$ that will be superimposed on $V_{C F}$ assuming linea operation around the bias poimt.
(f) Characterize the signal current i_{c} that will he super g) What is the value of the c_{c}.
point. Assume $\beta=100$. Characte base current I_{8} at the bias point. Assume $\beta=100$. Characterize the signal current $i_{\text {, }}$ that il he superimposed on the base current I^{\prime}
(h) Dividing the amplitude of $v_{b e}$ by the amplitude of i_{b}, evaluate the incremental (or small-signal) input resistance of the amplifier.
(1) Sketch and clearly label correlated graphs for $v_{D E}, v_{C E}, i_{C}$ and i_{B}. Note that each graph consists of a dc or average value and a superimposed sine wave. Be careful of the phase rela tionships of the sine waves.
5.62 The essence of transistor operation is that a change in 5.62 The cssoduces a change in $i_{c} \Delta i$. By keeping Δv^{\prime} $v_{\text {sil }}$ snall, Δi_{C} is approximately linearly related to $\Delta v_{B E}, \Delta i_{C}=$ $g_{m} \Delta \ddot{v i g}_{B F}$, where g_{m} is known as the transistor transconductance. By passing Δi_{C} through R_{C}, an output voltage signal $\Delta \pi_{o}$ is obtained. Use the expression for the small-signal voltage gain in Eq. (5.56) to derive an expression for g Find the value of $g_{m \text { 仡 }}$ for a transistor biased at $l_{c}=1 \mathrm{~mA}$.
5.63 Consider the characteristic curves shown in Fig. 5.2 with the following additional calibration data: Label, from the lowest colured line, $i_{B}=1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 20 \mu \mathrm{~A}, 30 \mu \mathrm{~A}$, and $40 \mu \mathrm{~A}$. Assume the lincs to be horizontal, and let $\beta=100$ For $V_{C C}=5 \mathrm{~V}$ and $R_{C}=1 \mathrm{k} \Omega$, what peak-to-peak collecto voltage swing will resulc for i_{B} varying over the range $10 \mu \mathrm{~A}$
to $40 \mu \mathrm{~A}$? If, at a new bias point (not the one shown in the figure) $V_{C E}=1$ figure) $V_{C E}=\frac{2}{2}$ and if $R_{D}=100 \mathrm{kQ}$, find the required value of V
*5.64 Sketch the $i_{C}-v_{C E}$ characteristics of an npn transisto having $\beta=100$ and $V_{A}=100 \mathrm{~V}$. Sketch characteristic curves for $i_{D}=20 \mu \mathrm{~A}$. $50 \mu \mathrm{~A}, ~$
tho $\mu \mathrm{A}$, and $100 \mu \mathrm{~A}$. For the purpose of
this sketch, assume that $i_{C}=\beta i_{B}$ at $v_{C R}=0$. Also, sketch the load lime obtained for $V_{C C}=10 \mathrm{~V}$ and $R_{C}=1 \mathrm{kS}$. If the de bias current into the base is $50 \mu \mathrm{~A}$, write the equation for the corresponding $i_{C}-v_{C F}$ curve. Also, write the equation for the load line, and solve the two equations to obtain $V_{C E}$ and I_{C}. If the input signal causes a sinusoidal signal of $30-\mu \mathrm{A}$ peak amplitude to be superimposed on I_{D}, find the corresponding signal components of i_{C} and $v_{C E}$.
D5.65 For the circuit in Fig. P5. 65 selcct a value for R_{B} so that the transistor saturates with an overdrive factor of 10 . The BJT is specified to have a minimum β of 20 and $V_{\text {CEasa }}=$ 0.2 V . What is the value of forced β achieved?

05.66 For the circuit in Fig. P5. 66 select a value for R_{E} so that the transistor sanurates with a forced β or 10 . Assumie $V_{E B}=$ 0.7 V and $V_{E C \mathrm{CsIt}}=0.2 \mathrm{~V}$

FIGURE P5.66

5.67 For each of the saturated circuits in Fig. P5.67, find i_{B}, i_{C}, and i_{E} : Use $\left|V_{B E}\right|=0.7 \mathrm{~V}$ and $\left|V_{C E \text { sal }}\right|=0.2 \mathrm{~V}$

FIGURE P5. 67
*5.68 Consider the operation of the circuit shown in Fig. P5. 68 as v_{r} rises slowly from zero. For this transistor, assume $\beta=50$, $v_{D E}$ at which the rransistor conducts is $0.5 \mathrm{~V}, v_{B E}$ when fully conducting is 0.7 V , saturation begins at $v_{B C}=0.4 \mathrm{~V}$, and the transistor is deeply in saturation at $v_{R C}=0.6 \mathrm{~V}$. Sketch and laber $\nu_{,}$, and v_{C} versts v_{p}. For what range of v_{B} is i_{C} essen-
tially zero? What are the values of v_{E}, i_{G}, i_{C}, and v_{C} for $v_{k}=1 \mathrm{~V}$ and 3 V' For what value of v_{s} docs saturation begin? What is i_{E} at this point? For $v_{B}=4 \mathrm{~V}$ and 6 V , what are the values of v_{E}, v_{C}, i_{E}, i_{C} and i_{B} ? Augment your skelch by adding a plot of i_{B}.

FIGURE P5.68

SECTION 5.4: BJT CIRCUITS AT DC
5.69 The transistor in the circuit of Fig. P5.69 has a very high β. Find V_{E} and V_{C} for $V_{B}($ a) +2 V , (b) +1 V , and (c) 0 V . Assume $V_{B E} \simeq 0.7 \mathrm{~V}$.

FIGURE P5. 69

5.70 The transistor in the circuit of Fig. P5.69 has a very high β. Find the highest valuc of V_{B} for which the transistor still operates in thc active mode. Also, find the value of V_{B} for which the rransistor operates in saturation with a forced β of 1 .
5.71 Consider the operation of the circuit shown in Fig. P5.71 for V_{B} at $-1 \mathrm{~V}, 0 \mathrm{~V}$, and +1 V . Assume that $V_{B r}$ is 0.7 V for usual currents and chat β is very high. What values of V_{E} and V_{c} result? At what value of V_{b} does the cmitter current
reduce to one-tenth of its value for $V_{B}=0 \mathrm{~V}$? For what valui of V_{B} is the transistor just at the edge of conduction? What
values of V_{E} and V_{C} correspond? For what value of V_{B} does the transistor reach saturation (when the base-to-collector junction reaches 0.5 V of forward bias)? What values of V and V_{E} correspond? Find the value of V_{B} for which the tran sistor operates in saturation with a forced β of 2 .

Figure P5.71

5.72 For the transistor shown in Fig. P5.72, assume $\alpha \cong 1$ and $v_{B E}=0.5 \mathrm{~V}$ at the edge of conduction. What are the values of V nd V_{C} for $V_{B}=0 \mathrm{~V}$? For what value of V_{B} does the transistor cut off? Saturate? In each case, what values of V_{E} and V_{C} result?

IGURE P5.72

5.73 Consider the circuit in Fig. P5.69 with the base volt age V_{B} obtained using a voltage divider across the 5 - V supply. Assurring the transistor β to be very large (i.c.. ignoring the base current), design the voltage divider to obtain $V_{B}=$ fhe BIT β n or a $0.2-\mathrm{mA}$ current in the voltage divider. L . current and the collector voltage.
5.74 A single measurement indicates the emitter voltage of the transistor in the circuit of FIg. P5.74 to be 1.0 V . Unde the assumption that $\left|V_{B E}\right|=0.7 \mathrm{~V}$, what are $V_{B}, I_{B}, I_{E}, I_{C}, V_{C}$ β, and α ? (Note: Isn't it surprising what a little measureme can lead io?

IGURE P5.74

5. 75 Design a circuit using a pnp transistor for which α 1 and $V_{E B}=0.7 \mathrm{~V}$ using two resistors connected appropriatel to $\pm 9 \mathrm{~V}$ so that $I_{E}=2 \mathrm{~mA}$ and $V_{B C}=4.5 \mathrm{~V}$. What exact value of R_{E} and R_{C} would be needed? Now, consult a table of stan-
dard 5% resistor values (e.g., that provided in Appendix G) to select suitable practical values. What are the values of I_{E} and $V_{B C}$ that result?
5.76 In the circuit shown in Fig. P5.76, the transistor ha $\beta=30$. Find the values of V_{B}, V_{E}, and V_{C}. If R_{B} is raised to $70 \mathrm{k} \Omega$, what voltages result? With $R_{B}=270 \mathrm{k} \Omega$, what valu of β would return the voltages to the values first calculated?

FIGURE P5.76
5.77 In the circuit shown in Fig. P5.76, the transistor has $\beta=30$. Find the values of V_{B}, V_{E}, and V_{C}, and venily that the transistor is operating in the active mode. What is the largest value that R_{C} can have whilc the transistor remains in the active mode?
5.78 For the circuit in Fig. P5.78, find V_{B}, V_{E}, and V_{C} for $R_{B}=100 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$, and $1 \mathrm{k} \Omega$. Let $\beta=100$.

FIGURE P5.78

5.79 For the circuits in Fig. P5.79, find values for the labeled node voltages and branch currents. Assume β to be very high and $\left|V_{B E}\right|=0.7 \mathrm{~V}$.
*5.80 Repeat the analysis of the circuits in Problem 5.79 using $\beta=100$. Find all the labeled node voltages and branch currents. Assume $\left|V_{B E}\right|=0.7 \mathrm{~V}$
*D5.81 It is required to design the circuit in Fig. P5.81 so that a current of 1 mA is established in the emitter and a voltage of +5 V appears at the collector. The transistor type used has a nominal β of 100 . However, he β value can be as low as 50 and as high as 150 . Your design should ensure that the speciified enuiter current is obtained when $\beta=100$ and that at the extreme values of β the emituer current does not change by more than 10% of its nominal value. Also, design for as
large a value for R_{B} as possible. Give the values of R_{s}, R_{5} and R_{c} to the ncarest kilohin. What is the expected range of collector current and collector voltage corresponding to the full range of β values? D5.82 The pnp transistor in the circuit of Fig. P5.82 has
$\beta=50$. Find the value for R_{C} to obtain $V_{C}=+5 \mathrm{~V}$. What happens if the transistor is replaced with another having $\beta=100$?

(c)

(d)

IGURE P5. 79

FIGURE P5.81

FIGURE P5.82
**5.83 Consider the circuit shown in Fig. P5.83. It resembes that in Fig. 5.41 but includes other features. First, not diodes D_{1} and D_{2} are included to make design (and analysis) easier and to provide temperature compensation for the cmitter-base voltages of Q_{1} and Q_{2}. Second, note resistor R, whose propose is provide negative feedback (morc on this ofer in the book!.). Using $V_{B E}$ and $V_{D}=0.7, ~$ indepcnden and $V_{C_{2}}$, initially with R open-circuited and then with R con nected. Repeat for $\beta=100$, snitially wilh R open-circuited then connected.

FIGURE P5.83
*5.84 For the circuit shown in Fig. P5.84, find the labeled node voltages for:
(a) $\beta=\infty$
(b) $\beta=100$
**D5.85 Using $\beta=\infty$, design the circuit shown in Fig. P5.85
So that the bias currents in Q, design tircuit shown in Fig. P5.85 so that the bias currents in Q_{1}, Q_{2}, and Q_{3} are $2 \mathrm{~mA}, 2 \mathrm{~mA}$
and 4 mA , respectively, and $V_{3}=0, V_{5}=-4 \mathrm{~V}$, and $V_{7}=2 \mathrm{~V}$. For each resistor, select the nearcst standard value utilizing the table of standard values for 5% resistors in Appendix G Now, for $\beta=100$, find the values of $V_{3}, V_{4}, V_{5}, V_{6}$, and V_{7}.
5.86 For the circuit in Fig. P5.86, find V_{B} and V_{ε} for $v_{l}=0 \mathrm{~V}$ $+3 \mathrm{~V},-5 \mathrm{~V}$, and -10 V . The BJTs have $\beta=100$.
5.87 Find approximate values for the collector voltages in the circuits of Fig. P5.87. Also, calkulate forced β for cach of the transistors. (Hint: Initially, assume all transistors are operating in saturation, and verify the assumption.)
problems

FIGURE P5.84

FIGURE P5.85

FIGURE P5.86

528

(a)

(b)

FIGURE P5.87

SECTION 5.5: BIASING IN BJT AMPLIFIE

 CIRCUITSD5.88 For the circuit in Fig. 5.43(a), neglect the base cur rent I_{g} in comparison with the current in the voltage divider It is required to bias the tansistor in the voltage divider. requires selecting $R_{B 1}$ and $R_{R_{2}}$ so that $V_{B P}=0.690 \mathrm{~V}$, If V 5 V , what must the ratio $R_{B 1} / R_{B 2}$ be? Now, if R_{8} and R^{2} are 1% resistors, that is, each can be in the range of 0.99 to 1.01 of its nominal value, what is the range obtained for $V_{B E}$? What is the corresponding range of I_{C} ? If $R_{C}=3 \mathrm{k} \Omega$, what is the range obtained for $V_{C E}$? Comment on the efficacy of this biasing arrangemen

D5.89 It is required to bias the transistor in the circuit of ig. 5.43 (b) at $I_{C}=1 \mathrm{~mA}$. The transistor β is the circuit nominally 100 , hut it can fall in the range of 50 to 150 to $V_{C C}=+5 \mathrm{~V}$ and $R_{C}=3 \mathrm{kS}$, find the required value of R_{B} to aclieve $I_{C}=1 \mathrm{~mA}$ for the "nominal" transistor. What is the expected range for I_{C} and $V_{C E}$? Comment on the efficacy of this bias design.
5.90 Consider the single-supply bias nctwork shown in Fig. $5.44(\mathrm{a})$. Provide a design using a 9 -V supply in which the supply vollage is equally split between $R_{C}, V_{C F}$, and R^{\prime} with a collector current of 3 mA . The transistor β is specific o have a nnimmunn value of 90 . Use a voltage-divider current of $I_{V} / 10$. or slightly higher. Since a reasonable desig hould operate for the best transistors for which β is very high, do your initial design with $\beta=\infty$. Then choose suitablc 5% resistors (see Appcndix 6), naking the choice in a way hat will result in a $\vartheta_{B B}$ that is slightly higher than the ideal value. Speciry the values you have chosen for R_{E}, R_{C}, R_{1}, and your final design using $\beta=90$.

(c)

D5.91 Repeat Problem 5.90, but use a voltage-divider current which is $I_{E} / 2$. Check your design at $\beta=90$. If you have the data available, find how low β can be while the value of I_{C} does not fall below that obtained with the design of Problem 5.90 for $\beta=90$.
**D5.92 It is required to design the bias circuit of Fig. 5.44 for a BJT whose nominal $\beta=100$.
(a) Find the largest ratio $\left(R_{B} / R_{E}\right)$ that will guarantee I_{E} remain within $\pm 5 \%$ of its nominal value for β as low as 50 and as high as 150 .
(b) If the resistance ratio found in (a) is used, find an expression for the voltage $V_{B B} \equiv V_{C C} R_{2} /\left(R_{1}+R_{2}\right)$ that will result (c) For $V_{C C}=10 \mathrm{~V}$, find the reguircd values of R_{1}, R_{2}, and R_{E} to obtain $I_{E}=2 \mathrm{~m} \wedge$ and to satisfy the requirement for stability of \mathcal{I}_{E} in (a).
(d) Find R_{C} so that $V_{C I}=3 V$ for β cqual to its nominal value. Check your design by evaluating the resulting range of J
*D5.93 Consider the two-supply bias arrangement shown in Fig. 5.45 using $\pm 3-\mathrm{V}$ supplies. It is required to design the circuit so that $I_{C}=3 \mathrm{~mA}$ and V_{C} is placed midway between $V_{C C}$ and V_{E}.
(a) For $\beta=\infty$, what values of R_{E} and R_{C} are required? (b) If the BJT is specified to have a minnnum β of 90 , find thc largest value for R_{B} consistent with the need to linit the volage drop across it to one-tenth the voltage drop across R_{E} (c) What standard 5\%-resistor values (see Appendix G) would omewhat lower valucs in R_{c} ? In making your sclection, uselfects.
(d) For the values you selected in (c), find I_{C}, V_{B}, V_{k}, and V_{C}
for $\beta=\infty$ and for $\beta=90$ for $\beta=\infty$ and for $\beta=90$.
*D5.94 Utilizing +5 - V power supplies, it is required to design a version of the circuit in Fig. 5.45 in which the signal will be coupled to the emitter and thus R_{B} can be set to zero. Find values for R_{E} and R_{C} so that a dc emitter current of 1 mA is obtained and so that the gain is maximized while allowing $\pm 1 \mathrm{~V}$ of signal swing at the collector. If temperature increases from the nominal value of $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, estimate the percentage change in collector bias current. In addition to the $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ changc in $V_{B B}$, assume that the transistor β changes over this temperature range from 50 to 150

D5.95 Using a $5-\mathrm{V}$ power supply, design a version of the circuit of Fig. 5.46 to provide a de emitter current of 0.5 mA and to allow a $\pm 1-\mathrm{V}$ signal swing at the collector. The BJT has a nominal $\beta=100$. Use standard 5%-resistor values (see Appendix G). If the actual BJT used has $\beta=50$, what emitter current is obtained? Also, what is the allowable signal swing at the collector? Repeat for $\beta=150$.
*D5.96 (a) Using a 3-V power supply, design the feedback bias circuit of Fig. 5.46 to provide $I_{c}=3 \mathrm{~mA}$ and $V_{c}=V_{c C} / 2$ for $\beta=90$.
(b) Select standard 5% resistor values, and reevaluate V_{C} and I_{c} for $\beta=90$.
(c) Find V_{c} and I_{C} for $\beta=\infty$
(d) To improve the situation that ohtains when high- β transistors are used, we have to anange for an additional current to flow through R_{B}. This can be achicved by connecting a
resistor bctween hase and cmitter, as shown in Fig. P5.96. Design this circuit for $\beta=90$. Usc a current through $R_{B} \geqslant$ equal the base current. Now, what values of V_{c} and I_{c} resull with $\beta=\infty$?

FIGURE P5.96

for a high-resis that can provide a very large voltage gain
values of J and R_{β} to bias the BJT at $I_{C}=3 \mathrm{~mA}$ and $V_{C}=1.5 \mathrm{~V}$. Let $\beta=90$.

FIGURE P5.97
5.98 The circuit in Fig. P5.98 provides a constant current l_{0} as long as the circuit to which the collector is connected maintains the BJT in the active mode. Show that

$$
I_{o}=\alpha \frac{V_{C C[}\left[R_{2} /\left(R_{1}+R_{2}\right)\right]-V_{B E}}{R_{t}+\left(R_{1} / / R_{2}\right) /(\beta+1)}
$$

FIGURE P5.98
*D5.99 The current-hias circuit shown in Fig. P5.99 pio vides bias current to Q_{1} that is independent of R_{B} and nearly independent of the valuc of β_{1} (as long as Q_{2} operates in th active mode). Prcpare a design meeting the fotlowing specifi-
cations: Use $\pm 5-\mathrm{V}$ supplies: $J_{C 1}=0.1 \mathrm{~mA}, V_{R E}=2 \mathrm{~V}$ for $\beta=$ ∞ the voltage across R_{F} decreases by at most 5% for $\beta=50$ $c_{c 1}=1.5 \mathrm{~V}$ for $\beta=\infty$ and 2.5 V for $\beta=50$. Use standar 5%-resistor values (see Appendix G). What values for R_{1}, R_{2} R_{E}, R_{B}, and R_{C} do you choose? What values of $I_{C 1}$ and $V_{C E}$ result for $\beta=50,100$, and 200 ?

$-V_{E E}$

FIGURE P5.99
*D5.100 For the circuit in Fig. P5.100, assuming all transistors to be identical with β infinitc, derive an expression for the output current I_{o}, and show that by selecting

$$
R_{1}=R_{2}
$$

and keeping the current in each junction the same, the current I_{O} will b

$$
I_{o}=\frac{\alpha V_{C C}}{2 R_{E}}
$$

which is indcpendent of $V_{B E}$. What must the relationship of R_{E} to R_{1} and R_{2} be? For $V_{C C}=10 \mathrm{~V}$ and assuming $\alpha \simeq 1$ and $V_{B E}=0.7 \mathrm{~V}$, design the circuit to obtain an output current of
$V_{C C}$

FIGURE P5. 100
0.5 mA . What is the lowest voltage that can be applied to the collector of Q_{3} ?
D5.101 For the circuit in Fig. P5. 101 find the valuc of R that will rcsult in $I_{o}=2 \mathrm{~mA}$. What is the largest voltage that can bc applied to the collector? Assume $\mid V_{B E}=0.7 \mathrm{~V}$.

IGURE P5.101

SECTION 5.6: SMALL-SIGNAL OPERATION

 and models. 102 Consider a transistor biased to opcrate in the active mode at a dc collector current I_{c}. Calculate the collector sig. nal current as a fraction of $I_{c}\left(\right.$ i.e., i_{c} / I_{c}) for input signals $v_{b s}$ of $+1 \mathrm{mV},-1 \mathrm{mV},+2 \mathrm{mV},-2 \mathrm{mV},+5 \mathrm{mV},-5 \mathrm{mV},+8 \mathrm{mV}$ $-8 \mathrm{mV},+10 \mathrm{mV},-10 \mathrm{mV},+12 \mathrm{mV}$, and -12 mV . In each case do the calculation two ways:
(a) using the exponencial characteristic, and
(b) using the small-signal approximation.

Present your results in the form of a table that includes a col umn for the error introduced by the small-signal approximation. Comment on the range of validity of the small-signal approximation
S.103 An npn BJT with grounded emitter is opcrated with $\gamma_{B E}=0.700 \mathrm{~V}$, at which the collector current is 1 mA . A $10-\mathrm{k} \Omega$ resistor connects the collector to a $+15-\mathrm{V}$ supply. What is the resulting collector voltage V_{c} ? Now, if a signal applied to the base raises $v_{B E}$ to 705 mV , find the resulting total collector current i_{C} and total collicctor voltage v_{c} using the exponencial $i_{C}-v_{b E}$ relationship. For this situalion, what are $v_{b b}$ and v_{c} ? Calculate thc vottage gain $v_{c} / v_{b e}$. Compare with the signal approximation, that is, $-g_{m} R_{C}$.
5.104 A transistor with $\beta=120$ is biased to operate at a dc collector current of 1.2 mA . Find the values of g_{m}, r_{T} and r_{e}. Repeat for a bias current of $120 \mu \mathrm{~A}$.
5.105 $\mathrm{A} p n p \mathrm{BJT}$ is hiased to operatc at $I_{C}=2.0 \mathrm{~mA}$. What is the associatcd value of g_{m} ? If $\beta=50$, what is the value of
the suall-signal resistance seen looking into the emitter $\left(r_{e}\right)$? Into the base $\left(r_{\pi}\right)$? f the collector is connecied to a 5 -kS 2 load, with a signal of 5 -mV peak applied betwecn base and cmitter, what output signal voltage results?

D5.106 A designer wishes to create a BJT amplier with a $g_{\text {min }}$ of $50 \mathrm{~mA} / V$ and a base input resistance of 2000Ω or more. What emitter-bias current should he choose? What is the minimum β he can toleratc for the transistor used?
5.107 A transistor operating with nominal g_{m} of $60 \mathrm{~mA} / \mathrm{V}$ has a β that ranges from 50 to 200 . Also, the bias circuit heing less than ideal, allows $\mathrm{a} \pm 20 \%$ variation in I_{c}. What are the extreme values found of the resistance looking into the base?
5.108 In the circuit of Fig. 5.48, $V_{B E}$ is adjusted so that $V_{C}=$ 5.108 In the circuit of Fig. $5.48, v_{B E}$ is adjusted so that $V_{C}=$
2 V . If $V_{C C}=5 \mathrm{~V}, R_{C}=3 \mathrm{k} \Omega$, and a signal $v_{b e}=0.005$ sin ωt . , and $i_{D}(t)$. The transistor has $\beta=1.00$ What is the voltage gain?
*D5. 109 We wish to design the amplifier circuit of Fig. 5.48 under the constraint that $V_{c c}$ is fixed. Let the input signal $v_{b c}=$ $\hat{V}_{b e} \sin \omega t$, where $\hat{V}_{b e}$ is the maximum value for acceptable linearity. For the design that results in the largest signal at that

$$
R_{C} I_{C}=\left(V_{c C}-0.3-\hat{V}_{b e}\right) /\left(1+\frac{\hat{V}_{b c}}{V_{T}}\right)
$$

and find an expression for the voltage gain obtained. For $V_{c c}$ 5 V and $\hat{V}_{b e}=5 \mathrm{mV}$, find thc dc voltage at the collector, the amplitude of the output voltage signal, and the voltage gain.
5.110 The following table summarizes some of the basic attributes of a number of B.ITs of differcht types, operating a mpifiers under various conditions. Provide the missing entric
5.111 A BJT is biascd to operate in the active mode at a dc collector current of 1.0 mA . It has a β of 120 . Give the four small-signal models (Figs. 5.51 and 5.52) of the BJT complete with the values of their paramcters.
5.112 The transistor amplifier in Fig. P5. 112 is biased wilh a current source I and has a very hugh β. Find the dc voltage at the collector, V_{C}. Also, find the valuc of $g_{m \text {. }}$ Replace the transistor with the simplified hybrid- π model of Fig. 5.51(a) (note that the de current source I should be replaced wilh an open circuit). Hence find the voltage gain v_{c} / v_{i}

FIGURE P5.112
5.113 For the conceptual circuit shown im Fig. 5.50, $k_{C}=$ $2 \mathrm{k} \Omega, g_{m}=50 \mathrm{~mA} / \mathrm{V}$, and $\beta=100$. If a peak-to-peak output voitage of 1 V is measured at the collector, what ac input
voltage and current must be associated with the base?
5.114 A biased BJT operiates as a grounded-emitter anplilier between a signal source, with a source resistance of $10 \mathrm{k} \Omega$, connected to the base and a $10-\mathrm{k} \Omega$ load connected as a collector resistance R_{C}. In the corresponding model, g_{m} is $40 \mathrm{~mA} / \mathrm{V}$

[^20]and r_{π} is $2.5 \mathrm{k} \Omega$. Draw the complete amplifier model using the hybrid- π BJT equivalent circuit. Calculate the overall voltage gain (v_{C} / v_{s}). What is the value of BJT β implied by the values creased to double the overall volage gin?
5.115 For the circuit shown in Fig. P5.115, draw a complete small-signal equivalent circuit utilizing an appropriate T model for the BJT (use $\alpha=0.99$). Your circuil should show the values of all components, including che model paramevoltage gain ($v_{o} / v_{\text {vig }}$).

FIGURE P5.115

5.116 In che circuit shown in Fig. P5.116, the transistor has a of 200 . What is the dc voltage at the collector? Find the input resistances $R_{i b}$ and $R_{\text {in }}$ and the overall voltage gain

FIGURE P5.116
($v_{o} / v_{\text {sig }}$). For an output signal of $\pm 0.4 \mathrm{~V}$, what values of $v_{\text {siti }}$ and v_{b} are required?
5.117 Consider the augmented hybrid- π model shown in Fig. 5.58(a). Disregarding how biasing is to be done, what is the largest possible voltage gain available for a signal source connected directly to the base and a very-high-resiscance load? Calculate the value of the maximum possible gain for $V_{A}=25 \mathrm{~V}$ and $V_{A}=250 \mathrm{~V}$.
5.118 Reconsider the amplifier shown in Fig. 5.53 and analyzed in Example 5.14 under the condition that β is not well controlled. For what value of β does the circuit begin to saturate? We can conclude that large β is dangcrous in this circuit. Now, consider the effect of reduced β, say, to $\beta=25$. What values of $r_{e}, g_{m,}$ and r_{π} result? What is the overall voltage gain? (Note: You can see that this circuit, using basecirrent control of bias, is very β-sensitive and usually not recommended.)
5.119 Reconsider the circuit shown in Tig. 5.55(a) under the condition that the signal source has an internal resistanco of 100Ω. What does the overall voltage gain become? What is the largest input signal voltage that can bc used without outpit-signal clipping?
D5.120 Redesign the circuit of Fig. 5.55 by raising the resistor values by a factor n to increase the resistance seen by the input v_{i} to 75Ω. What value of voltage gain results? Grounded-base circuits of this kind arc used in systems such as cable TV, in which, for highest-quality signaling, load rcsistances need to be "macched" to the equivalent resistances of the interconnecting cables.
5.121 Using the BJT equivalent circuit model of Tig. 5.52(a), sketch the equivalent circuit of a transistor amplifier for which a resistance R_{c} is connecled between the emitter and ground, the collector is groundcd, and an input signal source v_{b} is connected between the base and ground. (It is assuned that the Iransistor is properly biased to operate in the active region.) Show that:
(a) the voltage gam between base and emitter, that is, v_{e} / v_{b},
is given by is given by
(b) the input resistance,

$$
R_{\mathrm{in},} \equiv \frac{v_{b}}{i_{b}}=(\beta+1)\left(R_{e}+r_{e}\right)
$$

Find the numcrical values for $\left(v_{e} / v_{b}\right)$ and $R_{i n}$ for the case $R_{c}=$ $1 \mathrm{k} \Omega, \beta=100$, and the emitter bias current $I_{i}=1 \mathrm{~mA}$.
5.122 When the collector of a transistor is connected to its base, the transistor still operates (internally) in the active region because the collector-base junction is stul in effect
cremenal (smail-signal) resistance of the resulting two incremenal (se (known as a diode-connected transistor.)
** D5.123 Design an amplifier using the configuration of Fig. 5.55 (a). The power supplies available are $\pm 10 \mathrm{~V}$. Th input signal source has a resistance of $100 \Omega 2$, and it equired that the ampilicr mput restance mis is this
 isnal but retaim small-signal linear operation (i.e, the signal component across the base-emilter junction should be limited o no more than 10 mV). Find appropriate values for R_{F} and R_{C}. What is the value of voltage gain realized?
*5.124 The transistor in the circuit shown in Fig. P5.124 is iased to operate in the active mode. Assuming that β is very large, find the collector bias current I. Replace the transistor with the small-signal equivalent circuit model of Fig. 5.52 (b) (remember to replace the dc power supply with a short circuit) Analyze the resulting amplifier equivalent circuit to show that

$$
\begin{aligned}
& \frac{v_{o 1}}{v_{i}}=\frac{R_{E}}{R_{E}+r_{\epsilon}} \\
& \frac{v_{o 2}}{v_{i}}=\frac{-\alpha R_{C}}{R_{E}+r_{\epsilon}}
\end{aligned}
$$

Find the values of these voltage gains (for $\alpha \sim 1$). Now, if th erminal labeled v_{01} is come to ground, what does the voltag

IGURE P5. 124
SECTION 5.7: SINGLE-STAGE BJT AMPLIFIERS
5.125 An amplifier is measured to have $R_{i}=10 \mathrm{k} \Omega, A_{\text {po }}=$ $100 \mathrm{~V} / \mathrm{V}$, and $R_{o}=100 \Omega$. Also, when a load resistance R_{L} of $\mathrm{K} \Omega$ is connected between the output terminals, the inpu with a sienal source having an internal resistance of $2 \mathrm{k} \Omega$ ind $G_{m p}, \Lambda_{v}, G_{z o}, G_{v}, R_{\text {out }}$ and Λ_{i}.
5.126 Figure P 5.126 shows an allernative equivalent circuit represenling any hinear two-port network including volug
amplifiers. This non-unilateral equivalent circuil is based on the g-parameter two-port representation (sec Appendix B).
(a) Using the values of $R_{i}, A_{v o}$, and R_{o} found in Example 5.17 together with the measured value of $R_{\text {in }}$ of $400 \mathrm{k} \Omega$ obtained when a load R_{f} of $10 \mathrm{k} \Omega$ is conneth (b) Now use the equilent
mine the value of R ohtained when the amplifier is fed with a signal generator laving $R_{\text {cis }}=100 \mathrm{k} \Omega$. Check your result against that found in Example 5.17

FIGURE P5.126
5.127 Refer to Table 5.5. By equating the expression for G_{v} obtained from Equivalent Circuit A to that obtained from Equivalent Circuit C with $G_{v o}=\left[R_{i} /\left(R_{i}+R_{\text {sig }}\right)\right] A_{v o}$, show that

$$
\frac{R_{\text {in }}}{R_{i}} \frac{R_{\text {sig }}+R_{i}}{R_{\text {sig }}+R_{\text {in }}}=\frac{R_{L}+R_{o}}{R_{L}+R_{\text {out }}}
$$

Now, use this expression to:
(a) Sbow that for $R_{L}=\infty, R_{\text {in }}=R_{i}$.
(b) Show that for $R_{\text {sis }}=0, R_{\text {out }}=R_{o r}$
(c) Find $R_{\text {out }}$ when $R_{\text {siv }}=\infty$ (i.e., the amplifier input is opencircuited), and evaluate its valuc for the amplifice specified in Example 5.17.
5.128 \AA common-emitter amplificr of the type shown in Fig. 5.60 (a) is hiased to operate at $I_{C}=0.2 \mathrm{~mA}$ and has a collector resistance $R_{C}=24 \mathrm{kS} 2$. The transistor has $\beta=100$ and a large V_{A}. The signal source is directly coupled to the base, and $C_{C 1}$ and R_{B} are eliminated. Find $R_{\text {in }}$, the voltage gain $\Lambda_{v o}$, when a 10 - $\mathrm{k} \Omega$ load resistor is conncected to the collector and the source resistance $R_{\text {sig }}=10 \mathrm{k} \Omega$.
5.129 Rcpcat Problem 5.128 with a $125-\Omega$ resistance includded in the signal patb in the emitter. Furthermore, conrast the maximum amplitude of the input sinc wave that can bc applicd with and wilhout R_{e} assuming that to limit distor.130
5.130 For the common-cmitter anplifier shown in Fig. P5. 130 , lee $V_{C C}=9 \mathrm{~V}, R_{1}=27 \mathrm{kS}, R_{2}=15 \mathrm{kS} \Omega, R_{V}=1.2 \mathrm{k} \Omega$,
and $R_{C}=2.2 \mathrm{k} \Omega$. The transistor has $\beta=100$ and $V_{A}=100 \mathrm{~V}$.

Calculate the dc bias current I_{E}. If the amplifier operate between a source for which $R_{\text {sig }}=10 \mathrm{k} \Omega$ and a load o , values of R the voltage zain u and the cure gain i_{o} / i_{i}

figure ps. 130
D5.131 Using the topology of Fig. P5.130, design an mplifier to operate between a $10-\mathrm{k} \Omega$ source and a $2-\mathrm{k} \Omega$ loa with a gain $v_{a} / v_{\text {sig }}$ of $-8 \mathrm{~V} / \mathrm{V}$. The power supply available is V . Use an emitter current of approximately 2 mA and current of about one-tenth of that in the vollage divider that eeds the base, with the dc voltage at the basc about one-thiu ff the supply. The transistor available has $\beta=100$ and V_{A} 50 V Use standard 5% resistor (see Appendix G)
5.132 A designer, having examined the situation described in Problem 5.130 and estimaling the available gain to b approximatcly -8 VN , wishes to explore the possibility of mprovement by reducing the loading of the source by the amplifier input. As an experiment, the designer varies the $R_{\text {tos }}$ to 47 kQ , R_{E} to 3.6 kS and R_{C} to $6.8 \mathrm{k} \Omega$ (standard valu 5%-tolerance resistors) With $V_{c c}=9 \mathrm{~V} R_{s}=10 \mathrm{k} \Omega R_{L}$ $2 \mathrm{k} \Omega . \beta=100$, and $V_{4}=100 \mathrm{~V}$, what does the gain become? Conment.
5.133 Consider thc CE amplifier circuit of Fig. 5.60 (a) is required to design the circuit (i.e., find values for I. R_{B}, and) to meet the following specifications:
$R_{\text {in }} \cong 5 \mathrm{k} \Omega$
b) the de voltage drop across R_{B} is approximately 0.5 V
c) the open-circuit volage gain from base to collector is th
collector voltage never falls hy more than approximately 0.5 V
below the base voltage with the signal between base and mitter being as high as 5 mV .

Assume that $v_{\text {sis }}$ is a sinusoidal source, the available supply $V_{c c}=5 \mathrm{~V}$, and the transistor has $\beta=100$ and a very large
Early voltage Use tandard 5\% Early voltage. Use standard 5\%-resistance values, and specify open-circuit voltage gain does your dcsign provide? If R $R_{L}=10 \mathrm{k} \Omega$ what is the overall voltage gain?

D5.134 In the circuit of Fig. P5.134, $v_{\text {sig }}$ is a small sis wave signal with zero average. The transistor β is 100 . (a) Find the value of R_{E} to establish a dc emitter current of about 0.5 mA .
(b) Find R_{c} to establish a dc collector voltage of about +5 V . (c) For $R_{L}=10 \mathrm{k} \Omega$ and the transistor $r_{o}=200 \mathrm{k} \Omega$, draw the circuit of the amplifier and determin its ovcrall voitage gain

FIGURE P5. 134

*5.135 The amplilier of Fig. P5. 135 consists of two identical common-emitter amplifiers connected in cascade. Observe that load resistance of the first stage
(a) For $V_{C C}=15 \mathrm{~V}, R_{1}=100 \mathrm{k} \Omega, R_{2}=47 \mathrm{k} \Omega, R_{E}=3.9 \mathrm{k} \Omega, R_{C}=$ $6.8 \mathrm{k} \Omega$, and $\beta=100$, dctermine the dc collector current and dc collector voltagc of each transistor.
(b) Draw the small-signal equivalent circuit of the entire amplifier and give the values of all its components. Neglect r_{01} and r_{12}.
(c) Find $R_{\text {inl }}$ and $v_{b_{1}} / v_{\text {sig }}$ for $R_{\text {sig }}=5 \mathrm{k} \Omega$.
(e) For $R_{L}=2 \mathrm{k} \Omega$ find v.
(f) Find the overall voltage gain v_{1} / v_{s}

FIGURE P5. 135
5.136 In thc circuit of Fig. P5.136, $v_{\text {sig }}$ is a small sine-wave signal. Find $R_{\text {in }}$ and the gain $v_{o} o v_{\text {iif }}$. Assume $\beta=100$. If the nplitucte of the signal $\tau_{b e}$ is to be limited to 5 mV , what is signal at the output?

FIGURE P5. 136
*5.137 The BJT in the circuit of Fig. P5. 137 has $\beta=100$.
(a) Find the dc collector current and the dc voltage at the (b)
(b) Replacing the transistor by its \mathbf{T} model, draw the smallsignal equivalent circuit of the amplifier. Analyze the resulling circuit to determine the voltage gain v / v_{r}

IGURE P5. 137

5.138 Refer to the voltage-gain expression (in terms of fansistor β) given in Eq. (5.135) for the CE amplifier with esistance R_{e} in the emitter. Let the BJT be biased at an emit er current of 0.5 mA . The source resistance $R_{\text {sig }}$ is $10 \mathrm{k} \Omega$. The BJT β is specified to lie in the range of 50 to 150 with nominal value of 100 ,
(a) What is the ratio of maximum to minimum voltage gain btained without R_{e} ?
What value of R_{e} should be used to limit the ratio of max num to minimum gain to 1.2 ?
(c) If the R_{e} found in (b) is used, by what factor is the gain reduced (compared to the casc without R_{e}) for a BJT with nominal ρ ?
5.139 Consider the CB amplifier of Fig. 5.62 (a) with $R_{L}=$ $10 \mathrm{k} \Omega, R_{C}=10 \mathrm{k} \Omega, V_{C C}=10 \mathrm{~V}$, and $R_{\text {siq }}=100 \Omega$. To what valuc must I be set in order that the input resistance at E is equal to that of the source (i.c., 100Ω)? What is the resulting ollage sain frum the source to the load? Assume $\alpha \simeq 1$
** ©5.146 Consider the CB amplifier of Fig. 5.62(a) wit the collector voltage signal coupled to a $1-\mathrm{k} \Omega$ load resistance lhrough a large capacitor. Let the power supplics be $\pm 5 \mathrm{~V}$ The source has a resistance of 50Ω. Design the circuit so that the amplifire input resistance is matched to that of the source tively low distortion (v_{0} limited to 10 mV) Find I and P_{C} and calculate the overall voltage gain obtained and the outputs nal swing. Assume $\alpha \simeq 1$.
S. 148 For the circuit in Fig. P5.141, find the input resis ance R_{in} and the voltage gain v_{o} / v_{sig}. Assume that the source provides a small signal $v_{\text {sig }}$ and that $\beta=100$.

FIGURE P5.141

3. 182 Consider the emitter follower of Fig. 5.63 (a) for the case: $I=1 \mathrm{~mA}, \beta=100, V_{A}=100 \mathrm{~V}, R_{B}=100 \mathrm{k} \Omega, R_{\text {siq }}$ $20 \mathrm{kS} \Omega$, and $R_{L}=1 \mathrm{k} \Omega$.
(a) Find $R_{\text {in }}, v_{b} / v_{\text {sig }}$, and v_{d} / v
b) If $v_{\text {sif }}$ is a sinc-wave signal, to what value should it amplitude be limited in order that the transistor remain conducting at all times? For this amplitude, what is the correponding amplitude across the base-emitter junction?
(c) If the signal amplitude across the basc-emiter junction is
to be limited to 10 mV , what is the corresponding amplitude of $\psi_{\text {sig }}$ and of v_{s} ?
(d) Find the open-circuit voltage gain $v_{o} / v_{\text {sig }}$ and the outpu resistance. Use these values to determine the value of $v_{o} / v_{\text {sify }}$
oblained with $R_{L}=500 \Omega$.
5.143 For the emitter-foliower circuil shown in Fig. P5.143, the BJT used is spccified to have β values in che range of 40 to 200 (a distrcssing situation for the circuit designer). For the two extreme values of $\beta(\beta=40$ and $\beta=200)$, find:
(a) I_{E}, V_{E}, and V_{B}
(b) the input resistance $R_{\text {in }}$.
(c) the voltage gain $v_{o} / \gamma_{\text {sig }}$

FIGURE P5. 143
5.144 For the emitter follower in Fig. P5.144, the signal source is directly coupled to the transistor base. If the do component of $v_{\text {sigs }}$ is zero, find the dc emitter current. Assume $\beta=100$. Neglecting r_{o}, find R_{i}, the voltage gain $v_{o} / v_{\text {sig }}$, the
cuirent gain i_{o} / i_{i}, and the output resistance $R_{\text {out }}$

FIGURE P5. 144

.145 In the emitter follower of Fig. 5.63(a), the sigmal source is directly coupled to the base. Thus, $C_{C 1}$ and R_{B} ar eliminated. The source has $R_{\text {sig }}=10 \mathrm{kS}$ and a dc component of rero. The transistor has $\beta=100$ and $V_{A}=125 \mathrm{~V}$. The bias cur ent $I=2.5 \mathrm{~mA}$, and $V_{C C}=3 \mathrm{~V}$. What is the output resistance
f the follower? Find the gain $v_{0} / v_{\text {s }}$ with no load and with and of $1 k \Omega$. With the $1-k \Omega$ load connected find the largest oossible negative output signal. What is the largest possible positive output signal if operation is satisfactory up to the poin that the base-collector junction is forward hiased by 0.4 V ?
5.146 The emitter follower of Fig. 5.63(a), when drive from a $10-\mathrm{k} \Omega$ source, was found to have an open-circuit volt age gain of 0.99 and an output resistance of 200Ω. The output resistace increased to $20 \mathrm{k} \Omega$. Find the overall voltage gain whe tollower is diven by a $30-\mathrm{k} \Omega$ source and loaded by a $1-\mathrm{k} \Omega$ resistor. Assume r_{0} is very large.
*5.147 For the circuit in Fig. P5.147, called a boot strapped follower:
(a) Find the de emitter current and g_{m}, r_{e}, and r_{r}. Use $\beta=100$ (b) Replace the BJT with its T model (neglecting r_{ρ}), and analyze the circuit to deterninc the input resistance $R_{\text {in }}$ and he voltage gain $v_{o} / v_{\text {sitg }}$
(c) Repcat (b) for the casc when capacitor C_{β} is open-circuited. Compare the results with those obtained in (b) to find the advantages of bootstrapping.

FIGURE P5. 147

**5.148 For the follower circuit in Fig. P5. 148 let transistor Q_{1} have $\beta=50$ and transistor Q_{2} lave $\beta=100$, and neglect the effect of r_{o}. Use $V_{B E}=0.7 \mathrm{~V}$
(a) Find the de emitter currents of Q_{1} and Q_{2}. Also, lind the dc voltages $V_{B 1}$ and $V_{B 2}$
terminal, (ind the voltage gain
$Q_{2}, v_{o} / v_{b 2}$, and find the input resistance $R_{i b 2}$ looking into the base of Q_{2}. (Hint: Consider Q_{2} as an emitter follower fed by a voltage v_{62} at its base
(c) Replacing Q_{2} with its input resistance $R_{i b 2}$ found in (b), analyze the circuit of emitter follower Q_{1} to determine its ${ }^{2}$ e $v_{e l} / v_{b l}$.
(d) If the circuit is fed with a source having a $100-\mathrm{k} \Omega$ resistance, find the transmission to the base of $Q_{1}, v_{b 1} / v_{\text {sig }}$
(e) Find the overall voltage gain $v_{o} / v_{\text {sig }}$

FIGURE P5. 148
SECTION 5.8: THE BJT INTERNAL CAPACITANCES AND HIGH-FREQUENCY MODEL
5.149 An npn transistor is operated at $I_{C}=0.5 \mathrm{~mA}$ and $V_{C B}=$
 $30 \mathrm{fF}, V_{0 c}=0.75 \mathrm{~V}, m_{c \Omega}=0.5$, and $r_{s}=100 \Omega$. Sketch the complete byhrid- π model, and specify the values of all its components. Also, find f_{T}
5.150 Measurement of $h_{j e}$ of an $n p n$ transistor at 500 MHZ shows that $\left|h_{f f}\right|=2.5$ at $I_{C}=0.2 \mathrm{~mA}$ and 11.6 at $I_{C}=1.0 \mathrm{~mA}$ Furthermore, \mathcal{C}_{μ} was measured and found to be 0.05 pF . Find and $C_{j \epsilon}$ bc?
5.151 A particular BJT operating at $I_{C}=2 \mathrm{~mA}$ has $C_{\mu}=$ $1_{\mathrm{pF}}, C_{\pi}=10 \mathrm{pF}$, and $\beta=150$. What are f_{T} and f_{β} for this situation?
5.152 For the transistor described in Problem 5.151, C_{π} ill cludes a relatively constant depletion-layer capacitance of 2 pF .

Transisfor	(mA)	r_{e} (Ω)	$\stackrel{g_{\mathrm{f}}}{ } / \mathrm{V}$	$(\mathrm{k}(2)$	β_{0}	$\begin{aligned} & \text { It } \\ & (\mathrm{MHZ}) \end{aligned}$	$\begin{gathered} c_{i} \\ \text { (pF) } \end{gathered}$	$\mathrm{C}_{\mathrm{n}}^{\mathrm{c})}$	$\underset{(\mathrm{MH})}{\mathrm{f}_{\beta}}$
(a)	1				100	400	2		
(b)		25					2	10.7	4
(c)				2.525		400		13.84	
(d)	10				100	400	2		
(e)	0.1				100	100	2		
(f)	1				10	400	,		
(g)						800	1	9	80

If the device is operated at $I_{C}=0.2 \mathrm{~mA}$, what does its f_{T} become?
5.153 A particular small-geomerry BJT has f_{T} of 5 GHz and $C_{l i}=0.1 \mathrm{pF}$ when operated at $I_{C}=0.5 \mathrm{~mA}$. What is C_{π} in this situation? Also, find g_{m}. For $\beta=150$, find r_{π} and f_{β}.
5.154 For a BJT whose unity-gain bandwidth is 1 GHz and $\beta_{2}=200$, at what frequency does the magnitudc of $h_{\text {s }}$ becom 20? What is f_{β} ?
*5.155 For a sufficiently high frequency, measurement of the complex input inpedance of a BJT having (ac) grounded mitter and collector yields a real part approximating r. what frequency, defined in terms of ω_{β}. is such an estinate of r_{x} good to within 10% under the condition thal $r_{x} \leq r_{x} / 10$? Neglect C_{μ}.
*5.156 Complete the table entries above for:transistors (a) through (g), under the conditions indicated. Neglect r_{x}.

SECTION 5.9: FREQUENCY RESPONSE

5.157 A designer wishes to investigate the effect of changing the bias current I on the midband gain and high-frequency rcsponse of the CE amplifier considered in Example 5.18. Le be doubled to 2 mA , and assume that β_{0} and f_{T} remain changed at 100 and 800 MHz , respectively. To kecp the and R_{C} by a factor of 2 , to $50 \mathrm{k} \Omega$ and $4 \mathrm{k} \Omega$, respectively. Assumc $r_{x}=50 \Omega$ and recall that $V_{4}=100 \mathrm{~V}$ and that C crmains constant at 1 pF . As before, the amplifier is fed with a source having $R_{\text {sig }}=5 \mathrm{k} \Omega$ and feeds a load $R_{L}=5 \mathrm{k} \Omega$ prodact, $\left|A_{A}\right| f_{l}$ Comment on the resulis. Note that the price paid for whatever improvement in perfornance is achieved is an increase in power. By what faclor does the power dissipation increase?
*5.158 The purpose of this prohlen is to investigate the high-frequency response of the CE amplificr when it is fed are fig scy large source resislance $R_{\text {sip }}$. Refer to the amp fier in Fig. 5.71(a) and to its high-frequency equivalent-circuit
model and the analysis shown in Fig. 5.72. Let $R_{B} \gg R_{\text {sig }}$, $r_{x} \ll R_{\text {sig }}, R_{\text {sig }} \gg r_{\pi}, g_{m} R_{L}^{\prime} \Rightarrow 1$, and $g_{m} R_{L}^{\prime} C_{\mu} \geqslant C_{\pi}$.
Under these conditions, sbow that:
(a) the midband gain $A_{M} \cong-\beta\left(R_{L}^{\prime} / R_{\text {sig }}\right)$ (b) the upper $3-\mathrm{dB}$ frequency $f_{H} \cong 1 /\left(2 \pi C_{\mu} \beta R^{\prime}\right)$ (c) the gain-bandwidth product $A_{M} f_{H} \cong 1 /\left(2 \pi C_{\mu} R_{\text {sig }}\right)$.

Evaluate this approximate value of the gain-bandwidth product for the case $R_{\text {sig }}=25 \mathrm{k} \Omega$ and $C_{\mu}=1 \mathrm{pF}$. Now, if the transistor is biased at $I_{C}=1 \mathrm{~mA}$ and has $\beta=100$, find the $R_{L}^{\prime}=2.5 \mathrm{k} \Omega$. On the same coordinates, skcteh $\mathrm{k} \Omega$ and for the gain magnitude versus frequency for the two pors What f_{H} is obtained when the gain is unity? What value of R^{\prime} corresponds?
5.159 Consider the commun-cmitter amplifier of Fig. P5. 159 under the following conditions: $R_{\text {siq }}=5 \mathrm{k} \Omega, R_{1}=33 \mathrm{k} \Omega, R_{2}=$ $22 \mathrm{k} \Omega, R_{E}=3.9 \mathrm{k} \Omega, R_{C}=4.7 \mathrm{k} \Omega, R_{l}=5.6 \mathrm{k} \Omega, V_{C C}=5 \mathrm{~V}$ The dc emitter current can bc shown to be $I_{E} \cong 0.3 \mathrm{~mA}$, at which $\beta_{0}=120, r_{o}=300 \mathrm{k} \Omega$, and $r_{r}=50 \Omega$. Find the input resistance R_{in} and the midband gain A_{4}. If the transistor is specified to have $f_{T}=700 \mathrm{MHz}$ and $C_{\mu}=1 \mathrm{pF}$, find the upper 3 -dB frcquency $f_{I I}$.

FIGURE P5.159
5.160 For a version of the CE amplifier circuit in Fig. P5.1s, $R_{\text {sig }}=10 \mathrm{k} \Omega, R_{1}=68 \mathrm{k} \Omega, R_{2}=27 \mathrm{k} \Omega, R_{E}=2.2 \mathrm{k} \Omega, R_{C}=4.7 \mathrm{k} \Omega$, and $R_{L}=10 \mathrm{k} \Omega$. The collector current is $0.8 \mathrm{inA}, \beta=200, f_{T}=$ 1 GHz , and $C_{\mu}=0.8 \mathrm{~F}$. Nellacher the midband voltage gai
*5.161 The amplifier shown in Fig. P5.161 has $R_{\text {sig }}=R_{L}=$ $1 \mathrm{k} \Omega, R_{C}=1 \mathrm{k} \Omega, R_{B}=47 \mathrm{k} \Omega, \beta=100, C_{\mu}=0.8 \mathrm{pF}$, and $f_{T}=$ 600 MHz .
(a) Find the de collector current of the transisto
(b) Find g_{m} and r_{π}.
(c) Ncglecting r_{o}, find the midband voltage gain from base to collector (ncglect the effect of R_{B}).
(d) Usc the gain obtained in (c) to find the component of R_{i} Hence find $R_{i n}$
(f) Find $C_{\text {in }}$.
(g) Find f_{H}
(g) $\mathrm{Fin} f^{2}$

FIGURE P5.161
*5.162 Refer to Fig. P5.162. Utilizing the BJT highfrequency hybrid- π model with $r_{\mathrm{s}}=0$ and $r_{o}=\infty$, derive an expression for $Z_{i}(s)$ as a function of r_{e} and C_{π}. Find the frequency at which the impedance has a phase angle of 45° or the case in which the BJT has $f_{T}=400 \mathrm{MHz}$ and the bias current is reduced so that $C_{\pi} \simeq C_{\mu}$? Assume $\alpha=1$.

IGURE P5. 162

5.163 For the amplifier in Fig. P5.159, whose component alues were specified in Problem 5.159, let $C_{C 1}=C_{C 2}=1 \mu \mathrm{~F}$ and $C_{E}=10 \mu \mathrm{~F}$. Find the break frequencies $f_{P 1}, f_{P 2}$, and f_{P}
sulting from $C_{C_{1}}, C_{E}$, and $C_{C 2}$, respectively. Note that R_{E} has to bc taken into account in evaluating $f_{P_{2}}$. Hence, estimate value of the lower $3-\mathrm{dB}$ frequency f
5.164 For the amplifier described in Problem 5.16 design the coupling and bypass capacitors for a lower 3 -dB requency of 100 Hz . Design so that the contribution of eac of $C_{C 1}$ and $C_{C 2}$ to determining f_{L} is only 5%
5.165 Consider the circuit of Fig. P5.159. For $R_{s, 5}=10 \mathrm{kS}$ $R_{B} \equiv R_{1} / / / R_{2}=10 \mathrm{k} \Omega, r_{x}=100 \Omega, r_{\pi}=1 \mathrm{k} \Omega, \beta_{0}=100$, and $R_{E}=1 \mathrm{k} \Omega$, what is the ratio $C_{F} / C_{C_{1}}$ that makes their contributions to the determination of f_{L} equal?
*D5.166 For the common-emitter amplifier of Fig. P5. 166 neglect r_{r} and r_{u}, and assume the current source to be ideal.

FIGURE P5.166
(a) Derive an expression ior the midband gain.
b) Derive expressions for the break frequencies caused by C_{E} and C_{C}.
(c) Give an expression for the amplificr voltage gain $A(s)$ (d) For $R_{\text {sig }}=R_{C}=R_{L}=10 \mathrm{k} \Omega, \beta=100$, and $I=1 \mathrm{~mA}$, find he valuc of the midband gain.
) Select values for C_{E} and C_{C} to place the two brcak fre 100 H decade apart and to obtain a lower 3-dB frequenc Sketch a Bodc plot for the total capacitance. (f) Sketch a Bode plot for the gain magnitude
the frequency at which the gain becomes unity (g) Find the phase shift at 100 Hz .
5.167 The BJT common-emitter amplifier of Fig. P5. 167 includes an emitter degeneration resistance R_{e}.
(a) Assuming $\alpha \cong 1$, neglecting r_{x} and r_{o}, and assuming the current source to be ideal, derive an expression for the smallband and the low frequency band. Hence find the midban gain A_{M} and the lower 3-dB frequency f_{L}
(b) Show that including R_{e} reduces the magnitude of $A_{M 1}$ by a certain factor. What is this factor?
(c) Show that including R_{e} reduces f_{l} by the same factor as in (b) and thus one can use R_{e} to trade-off gain for bandwidth.
(d) For $I=1 \mathrm{~mA}, R_{C}=10 \mathrm{k} \Omega$, and $C_{E}=100 \mu \mathrm{~F}$, find $\mu \mathrm{A}$ f_{t} with $R_{e}=0$. Now find the value of R_{e} that lowers f_{L} by a factor of 5 . What will the gain become?

FIGURE P5.167
SECTION 5.10: THE BASIC BJT DIGITAL LOGIC INVERTER
5.168 Consider the inverter circuit in Fig. 5.74. In Exercise 5.53 , the following expression is given for $V_{O H}$ when the
inverter is driving N identical inverters:

$$
V_{O H}=V_{C C}-R_{C} \frac{V_{C C}-V_{B E}}{R_{C}+R_{B} / N}
$$

For the same component values used in the analysis in the text (i.e., $V_{C C}=5 \mathrm{~V}, R_{C}=1 \mathrm{k} \Omega, R_{B}=10 \mathrm{k} \Omega$, and $V_{H E}=0.7 \mathrm{~V}$), find the maximum valuc of N that will still guarantee a high noise margin, $N M_{H}$, of at least 1 V . Assume $\beta=50$ and $V_{C \text { Casa }}=$ 0.2 V .
5.169 The purpose of this problem is to find the power dis sipation of the inverter circuit of Fig. 5.74 in each of its two states. Assume that the component values are as given in the text (i.e., $V_{C C}=5 \mathrm{~V}, R_{C}=1 \mathrm{k} \Omega, R_{B}=10 \mathrm{k} \Omega$, and $V_{B t}=0.7 \mathrm{~V}$. (a) With the inpnt low at 0.2 V , the transistor is cut off. Let the inverter be driving 10 identical inverters. Find the total current supplied by the inverer and hence the power dissipated in R_{C}.
b) With the input high and the transistor saturated, find the power dissipated in the inverter, neglecting the power dissiated in the base circuit
(c) Use the results of (a) and (b) to find the average power
dissipation in the inverter.

D5.170 Dcsign a transistor inverter to opcrate from a $1.5-\mathrm{V}$ supply. With the input connected to the $1.5-\mathrm{V}$ supply through a resistor equal to R_{C}, the total power dissipated should be 1 mW and forced β should be 10 . Use $V_{B F}=0.7 \mathrm{~V}$ and $V_{C E \text { exa }}=0.2 \mathrm{~V}$,
5.171 For the circuit in Fig. P5.171, considcr the application of inputs of 5 V and 0.2 V to X and Y in any combination, and find the outpui voltage for each combination. Tabulate your rcsults. How many input combinations are thcre? What happens when any input is high? What happens when both inputs foin: $Z=\bar{X}+Y$. This logic-gate structure is called finccally Resistor Transistor Logic (RTL))

FIGURE P5.171

5.172 Consider the inverter of Fig. 5.74 with a load capac itor C connected hetween the output node and ground. We wish to find the contribution of C to the low-to-high delay inverter delays, refer to Fig 135) Toward that end assume that prior to $t=0$, the transistor is on and saturaled and $v_{0}=$ $V_{O L}=V_{C E \text { ar }}$. Then, at $t=0$, let the input fall to the low level, and assume that the transistor turns off instantaneously. Note that neglecting the turn-off time of a saturated transistor is an unrealistic assumption, but one that will help us concentrate on the effect of C. Now, with the transistor cut off, the capacitor will charge through R_{C}, and the output voltage will rise exponentially from $V_{O L}=V_{C \text { Fsat }}$ to $V_{O H}=V_{C C}$. Find an expression for $v_{o}(t)$. Calculate the value of $t_{P L H}$, which in this case is $0.2 \mathrm{~V}, R_{C}=1 \mathrm{k} \Omega$, and $C=10 \mathrm{pF}$. Hint: The step response of $R C$ circuits is reviewed in Section 1.7 and in greater detail in Appendix D.)
*5.173 Consider the inverter circuit of Fig. 5.74 with a bad capacitor C connected between the output node and ground. We wish to find the contribution of C to the high-tolow delay time of the inverter, $t_{\text {PILL }}$. (For the formal definition of the inverter delays, refer to Fig. 1.35.) Toward that end, assume that prior to $t=0$, the transistor is off and $v_{O}=V_{O H}=$ $V_{c c}$. Then, at $t=0$, let the input rise to the high level, and assume ting the delay time of the transistor is unrealistic but will help us concentrate on the effect of the load capacitance C. Now, because C cannot discharge instantaneously, the transistor cannot saturate immediately. Rather, it will operate in the active mode, and its collector will supply a constant current
($\left.\mathcal{V}_{(C-}-V_{B E}\right) / R_{D}$. Find the Thevenin equivalent circuit or disclarging the capacitor, and show that the voltage will fall exponentially, starting at $v_{c c}$ and heading toward a larg egaive voltage of $\left[V_{C C}-\beta\left(V_{C C}-V_{B E}\right) R_{C} / R_{B}\right]$. Find an expression for $v_{o}(t)$. This exponential discharge will sto when v_{O} reaches $V_{O L}=V_{C \text { Esaa }}$ and the transistor saturates. Ca culate the value of $t_{P L L}$, which in this case is the time for $\frac{1}{2}\left(V_{O H}+V_{0}\right)$. Use $V_{C C}=5 \mathrm{~V}, V_{C}=2 \mathrm{l}$ $0.7 \mathrm{~V}, R_{B}^{2}=10 \mathrm{k} \Omega, R_{C}=1 \mathrm{k} \Omega, \beta=50$, and $C=10 \mathrm{pF}$. If have solved Problem 5.172 , compare the value of $t_{\text {a }}$ to that of $t_{P_{L H}}$ found there, and find the inverter delay, t_{p}. (Hint: The step response of $R C$ circuits is reviewed in Section 1.7 and in greater detail in Appendix E).

ANALOG AND DIGITAL INTEGRATED CIRCUITS

CHAPTER 6

Single-Stage Integrated-Circuit Amplifiers 545
CHAPTER 7
Differential and Multistage Amplifiers 687

CHAPTER 8

Feedback 791

CHAPTER 9

Op-Amp and Data-Converter Circuits 871

CHAPTER 10

CMOS Logic Circuits 949

INTRODUCTION

Having studied the major electronic devices (the MOSFET and the BJT) and their basic circuit applications, we are now ready to consider the design of more complex analog and digital intcgrated circuits and systems. The five chapters of Part II are intended for this purpose. They provide a carefully selected set of topics suitable for a second course in electronics. Nevertheless, the flexibility inherent in this book should permit replacing some of the topics included with a selection from the special topics presented in Part III. As well, if desired, Chapter 10 on CMOS logic circuits can be studied at the beginning of the course.

Study of Part Il assumes knowledge of MOSFET and BJT characteristics, models, and basic applications (Chapters 4 and 5). To review and consolidate this material and differences between the two devices, Section 6.2 with its chree tables (6.1-6.3) is a must read. The remainder of Chapter 6 provides a systematic study of the circuit building blocks utilized in the design of analog ICs. In cach case, both low-frequency and high-frequency operations are considered. Chapter 7 continues this study, concencrating on the most widely used configuration in analog IC design, the differential pair. It concludes with a section on multistage amplifiers. In both chapters, MOSFET circuits are presented first, simply because the MOSFET is now the device that is used in over 90% of integrated circuits. Bipolar transistor circuits are presented with the same depth but presented second and, on occasion, more briefly

A formal study of the pivotal topic of feedback is presented in Chapter 8. Such a study is essential for the proper application of feedback in the design of amplifiers, to effect desirable properties such as more precise gam value, and to avoid problems such as instability. The analog material of Part $I 1$ is integrated together in Chapter 9 in the study of op-amp circuits. Chapter 9 also presents an introduction to analog-to-digital and digital-to-analog converters, and thus acts as a bridge to the sudy of CMOS digital logic circuits in Chapter 10. Here again we concentrate on CMOS because it represents the technology in which the vast majority of digital systems are implemented.

The second course, based on Part II, is intended to prepare the reader for the practice of electronic design, and; if desired, to pursue more advanced courses on analog and digital IC design.

Single-Stage IntegratedCircuit Amplifiers

Introduction 545

6.1. IC Design Philosophy: 546
6.2 Comparison of the MOSFET and the BJT 547

63 TC Blasing - Curteni Sources, Current Mirrors, and Current? Steering Citcuits 562
6.4 High. Frequency Response-: General Considerations 571
6.5 The Common-Sounce and Gommon-Emitter Amplifiers with Active Loads 582
6.6 Tighfrequency Response of the CS and CE Amplifiers :588
67 The Common. Gate and Common-Base Amplifiers with Active Loads 600
6.8 The Cascode Amplifier 613
6.9. The CS and CEAmplifiers with Source (Emitter) Degeneration. 629
6. 10 The Source and Emitter. Followers: 635

6111 Some Useful Transistor: Pairings 641
6.12 Curent-Mirfor Circuits with Improved Performance 649
6.13 SPICE Simulation Examples: 656

Summary 665
Problems 666

introduction

Having studied the two major transistor types, the MOSFET and the BJT, and their basic discrete-circuit amplificr configurations, we are now ready to begin the study of integratedcircuit amplifiers. This chapter and the next are devoted to the design of the basic building blocks of IC amplifiers.

In this chapter, we begin with a brief section on the design philosophy of integrated circuits, and how it differs from that of discrete circuits. Throughout this chapter, MOS and
bipolar circuits are presented side-by-side, which allows a certain economy in presentation and, more importantly, provides an opportunity to compare and contrast the two circuit types. Toward that end, Section 6.2 provides a comprehensive comparison of the attributes of the two transistor types. This should serve both as a review as well as a guide to very interesting imilarities and differences between the two devices.
Following the study of IC biasing, the various contigurations of single-stage IC amplifiers are presented. This material builds on the study of basic discrete-amplifier configurations in Sections 4.7 and 5.7.

In addition to classical single-stage amplifiers, we also study some configurations that utilize two amplifying transistors. These "compound configurations" are usually treated as single-stage amplifiers (for reasons that will become clear later).

Current mirrors and current-source circuits play a major role in the design of IC amplifiers, where they serve both as biasing and load clements. For this reason, we return to the subject of current mirrors later in the chapter and consider some of their advanced (and indeed, ingenious) forms.

Although CMOS circuits are the most widely used at present, there arc applications in which the addition of hipolar transistors can result in superior performance. Circuits that combine MOS and bipolar transistors, in a technology known as BiMOS or BiCMOS, are presented at appropriate locations throughout the chapter. The chapter concludes with SPICE sinulation examples.

36 6.1 IC DESIGN PHILOSOPHY

Iutegrated-circuit fabrication technology (Appendix A) poses constraints on--and provides opportunities to- the circuit designer. Thus, while chip-area considcrations dictate that large- and even moderate-valuc resistors are to be avoided, constant-current sources are readily available. Large capacitors. such as those we used in Scctions 4.7 and 5.7 for signal coupling and bypass, are not available to be used, except perhaps as components external to the IC chip. Even then, the number of such capacitors has to be kept to a minimum; otherwise the number of chip terminals and hence its cost increase Very small capacitors, in the picofarad and fraction of a picofarad range, however, are easy to fabricate in IC MOS technology and can be combined with MOS amplifiers and MOS switches to realize a wide range of signal processing functions, both analog (Chapter 12) and digital (Chapter 11).
As a general rule, in designing IC MOS circuits, one should strive to realize as many of the functions required as possible using MOS transistors only and, when needed, small MOS capacitors. MOS transistors can be sized; that is, their W and L values can be selected, to fit a wide rangc of design requirements. Also, arrays of transistors can be matched (or, more generally, made to have desired size ratios) to realize such useful circuit building blocks as currens. me IC chip, the trend has been to reduce the device dimensions. At the time of this writing (2003), CMOS process technologies capable of producing devices with a $0.1-\mu \mathrm{n}$ m minimum channel length are in use. Such small devices need to operate with dc voltagc supplies close to 1 V . While low-voltage operation can help to reduce power dissipation, it poses a host of challenges to the circuit designer. For instance, such MOS transistors must be operated with ovcrdrive voltages of only 0.2 V or so. In our study of MOS amplifiers, we will make frequent comments on such issues.

The MOS-amplifier circuits that we shall study will be designed almost entirely using MOSFETs of both polarities-that is, NMOS and PMOS - as are readily available in CMOS
technology. As mentioned earlier, CMOS is currently the most widely used IC technology for both analog and digital as well as combined analog and digital (or mixed-signal) applications. Nevertheless, bipolar integrated circuits still offer many exciting opportunities to the analog design engineer. This is especially the case for general-propose circuit packages, such as high-quality op amps that are intended for assembly on printed-circuit (pc) boards (as opposed to being part of a system-on-chip). As well, bipolar circuits ean provide much higher output currents and are favoured for certain applications, such as in the automotive industry, for their high reliability under seyere envirommental conditions. Finally, bipolar circuits can be combined with CMOS in innovative and exciting ways.

6.2 COMPARISON OF THE MOSFET AND THE BJT

In this section we present a comparison of the characteristics of the two major electronic devices: the MOSFET and the BJT. To facilitate this comparison, typical values for the important parameters of the two devices are first presented.

6.2.1 Typical Values of MOSFET Parameters

Typical values for the important parameters of NMOS and PMOS transistors fabricated in a number of CMOS processes are shown in Table 6.1. Each process is characterized by the minimuin allowed channel length, $L_{\text {min }}$; thus, for example, in a $0.18-\mu \mathrm{m}$ process, the smallest transistor has a channel length $L=0.18 \mu \mathrm{~m}$. The lechnologies presented in Table 6.1 are in descending order of channel length, with that having the shortest channel length being the most modern. Although the $0.8-\mu \mathrm{m}$ process is now obsolete, its data are included to show trends in the values of various parameters. It should also be mentioned that although Table 6.1 stops at the $0.18-\mu \mathrm{m}$ process, at the time of this writing (2003), a $0.13-\mu \mathrm{m}$ fabrication process is commercially available and a $0.09-\mu \mathrm{m}$ process is in the advanced stages of development. The $0.18-\mu$ m process, howevcr; is currently the most popular and the one for which data are widely available. An important caution, however, is in order: The data presented in Table 6.1 do not pertain to any particular commercially available process. Accordingly, these generic see, help to illurre fer une in an actual ie cesign, rather, hey show ticnds and, as we shal see, help to ilhatrae design trade-ofs as well as enable us to work out design examples and problems with parameter values that are as realistic as possible

Parameter	$0.8 \mu \mathrm{~m}$		$0.5 \mu \mathrm{~m}$		$0.25 \mu \mathrm{~m}$		$0.18 \mu \mathrm{~m}$	
	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS
$t_{0 C}(\mathrm{~nm})$	15	15	9	9	6	6	4	4
$C_{o x}\left(\mathrm{fF} / \mu^{2} \mathrm{~m}^{2}\right)$	2.3	2.3	3.8	3.8	5.8	5.8	8.6	8.6
$\mu\left(\mathrm{cm}^{2} / \mathrm{V} \cdot \mathrm{s}\right)$	550	250	500	180	460	160	450	100
$\mu C_{0 x}\left(\mu \mathrm{~A} / \mathrm{V}^{2}\right)$	127	58	190	68	267	93	387	86
$V_{00}(\mathrm{~V})$	0.7	-0.7	0.7	-0.8	0.43	-0.62	0.48	-0.45
$V_{D D}(\mathrm{~V})$	5	5	3.3	3.3	2.5	2.5	1.8	1.8
$\left\|V_{A}^{\prime}\right\|$ ($\mathrm{V} / \mu \mathrm{m}$)	25	20	20	10	5	6	5	6
$C_{o i z}(\mathrm{FF} / \mu \mathrm{m})$	0.2	0.2	0.4	0.4	0.3	0.3	0.37	0.33

As indicated in Table 6.1, the trend has been to reduce the minimum allowable channel length. This trend has been motivated by the desire to pack more transistors on a chip as well as to operate at higher speeds or, in analog terms, over wider bandwidths.
Ohserve that the oxide thickness, $t_{0,5}$, scales down with the channel length, reaching 4 nm for the $0.18-\mu \mathrm{m}$ process. Since the oxide capacitance $C_{o x}$ is inversely proportional to $t_{o x}$, we see that $C_{o x}$ increases as tbe technology scales down. The surface mobility μ decreases as the technology minimum-feature size is decreased, and μ_{p} decreases much faster than μ_{n}. As a result, the ratio of μ_{p} to μ_{n} has been decreasing with each generation of technology, falling from about 0.5 for older technologies to 0.2 or so for the newer ones. Despite the reduction of μ_{n} and μ_{p}, the transconductance parameters $k_{n}^{\prime}=\mu_{n} C_{o x}$ and $k_{p}=\mu_{p} C_{e x}$, ower overdrive volta , modem shor-channel deve higher transconductance, a major advantage.
Although the magnitudes of the threshold voltages $V_{t,}$ and $V_{t p}$ have been decreasing with $L_{\text {min }}$ from about $0.7-0.8 \mathrm{~V}$ to $0.4-0.5 \mathrm{~V}$, the reduction has not been as large as that of the power supply $V_{D D}$. The latter has been reduced dramatically, from 5 V for older technologies to 1.8 V for the $0.18-\mu \mathrm{m}$ process. This reduction has been necessitated by the need to keep the elccrric fields in the smaller devices from reaching very high values. Another reason for reducing $V_{D D}$ is to keep power dissipation as low as possible given that the IC chip now has a much larger number of transistors.

The fact that in modem short-channel CMOS processes $\left|V_{t}\right|$ has become a much larger proportion of the powcr-supply voltage poses a serious challcnge to the circuit design engineer. Recalling that $\left|V_{G S}\right|=\left|V_{t}\right|+\left|V_{O V}\right|$, where $V_{O V}$ is the overdrive voltage, to keep $\mid V_{G S}$ reasonably small, $\left|V_{o V}\right|$ for modern technologies is usually in the range of 0.2 V to 0.3 V . To appreciatc this point further, recall that to operate a MOSFET in the saturation region, $\mid V_{D S}$ must exceed $\left|V_{O V}\right|$; hus, to be able to have a number of devices stacked between the powersupply rails in a regime in which $V_{D D}$ is only 1.8 V or lower, we need to keep $\left|V_{O V}\right|$ as low as possible. We will shortly see, however, that operating at a low $\left|V_{o v}\right|$ has some drawbacks.
Another significant though undesirable feature of modern submicron CMOS technologies is that the channel length modulation effect is very pronounced. As a result, V_{A}^{\prime} has been steadily decreasing, which combined with the decreasing values of L has caused the Early voltage $V_{A}=V_{A}^{\prime} L$ to become very small. Correspondingly, short-channel MOSFETs exhibit low ontput resistances.
From our study of the MOSFET high-frequency equivalent circuit model in the saturation mode in Section 4.8 and the high-frequency response of the common-source amplifier in Section 4.9, we know that two major MOSFET capacitances are $C_{g s}$ and $C_{g d}$. While $C_{8 s}$ has an overlap component, $C_{g d}$ is entirely an overlap capacitance. Both $C_{g d}$ and the overlap compohent of $C_{g s}$ are almost equal and are denoted $C_{o r r}$. The last line of Table 6.1 provides the value of $C_{o u}$ per micron of gate width. Although the normalized $C_{o v}$ has been staying more or less constant with the reduction in $L_{\text {min }}$, we will shortly see that the shorter devices exhibit much higher operating speeds and wider amplifier bandwidths than the longer devices. Specifically, we will, for example, see that f_{T} for a $0.25-\mu \mathrm{m}$ NMOS transistor can be as high as 10 GHz .

6.2.2 Typical Values of IC BJT Parameters

Table 6.2 provides typical values for the major parameters that characterize intcgrated-circuit bipolar transistors. Data are provided for devices fabricated in two different processes: the
${ }^{1}$ At the present time, chip power dissipation has become a very serious issue, with some of thc reccnlly
reported ICs dissipating as much as 100 W . As a result, an imporlani current area of research concerns what is termed "power-aware design."

TABLE 6.2 Typiral Parameter Values for $B J$ Ts'

Parameter	Standard High-Voltage Process		Advanced Low-Voltage Process	
	npn	Lateral pnp	npn	Lateral pmp
$\widehat{A_{E}\left(\mu \mathrm{~m}^{2}\right)}$	500	900	2	2
$I_{S}(\mathrm{~A})$	5×10^{-15}	2×10^{-15}	6×10^{-18}	6×10^{-18}
$\beta_{0}(\mathrm{~A} / \mathrm{A})$	200	50	100	50
$V_{A}(\mathrm{~V})$	130	50	35	30
$V_{C E 0}(\mathrm{~V})$	50	60	8	18
τ_{F}	0.35 ns	30 ns	10 ps	650 ps
$C_{j e \theta}$	1 pF	0.3 pF	5 fF	14 FF
$C_{\mu 0}$	0.3 pF	${ }^{1} \mathrm{pF}$	5 fF	15 fF
$r_{x}(\Omega)$	200	300	400	200

standard, old process, known as the "high-voltage process"; and an advanced, modern process, referred to as a "low-voltage process." For each process we show the parameters of the standard $n p n$ transistor and those of a special type of $p n p$ transistor known as a lateral (as opposed to vertical as in the npn case) pnp (see Appendix A). In this regard we shonld mention that a major drawback of standard bipolar integrated-circuit fabrication processes has been the lack of $p n p$ transistors of a quality equal to that of the $n p n$ devices. Rather, there are a number of $p n p$ implementations for which the lateral $p n p$ is the most economical to fabricate. Unfortunately, however, as should be evident from Table 6.2, the lateral pnp has characteristics that are much inferior to those of the npn. Note in particular the lower value of β and the much larger value of the forward transit time τ_{F} that determines the emitter-base diffusion capacitance $C_{d e}$ and, hence, the transistor speed of operation. The data in Table 6.2 can be used to show that the unity-gain frequency of the lateral pnp is two orders of magnitude lower than that of the npn transistor tabricated in the same process. Another important difference between the lateral pnp and the corresponding npn transistor is the value of collector current at which their β values reach their maximums: For the high-voltage process, for example, this current is in the tens of microamperes range for the $p n p$ and in the milliampere range for the $n p n$. On the positive side, the problem of the lack of high-quality $p n p$ transistors has spurred analog circuit designers to come up with highly innovative circuit topologies that either minimize the use of pnp transistors or minimize the dependence of circuit performance on that of the pnp. We shall encounter some of these ingenious circuits later in this book.
The dramatic reduction in device size achieved in the advanced low-voltage process should be evident from Table 6.2. As a result, the scale current I_{S} also has been reduced by ahout three orders of magnitude. Here we should note that the base width, W_{B}, achieved in the advanced process is on the order of $0.1 \mu \mathrm{~m}$, as compared to a few microns in the standard highvoltage process. Note also the dramatic increase in speed; for the low-voltage npn transistor, $\tau_{F}=10 \mathrm{ps}$ as opposed to 0.35 ns in the high-voltage process. As a result, f_{T} for the modern $n p n$ transistor is 10 GHz to 25 GHz , as compared to the 400 MHz to 600 MHz achicved in the high-voltage process. Although the Early voltage, V_{A}, for the modern process is lower than its value in the old high-voltage process, it is still rcasonably high at 35 V . Another feature of the advanced process - and one that is not obvious from Table 6.2 -is that β for the npn peaks at a collector current of $50 \mu \mathrm{~A}$ or so. Finally, note that as the name implies, $n p n$ transistors
fabricated in the low-voltage process brcak down at collector-emitter voltages of 8 V , a compared to 50 V or so for the high-voltage process. Thus, while circuits designcd with th standard high-voltage process utilize power supplies of $\pm 15 \mathrm{~V}$ (e.g., in commercially available op amps of the 741 type), the tocal power-supply voltage utilized with modern bipolar device is 5 V (or even 3.3 V to achieve compatibility with some of the submicron CMOS processes)

6.2.3 Comparison of Important Characteristics

Table 6.3 provides a compilation of the important characteristics of the NMOS and the $n p$ n transistors. The material is presented in a manner that facilitates comparison. In the follow ing, we provide comments on the various items in Table 6.3. As well, a number of numerical examples and exercises are provided to illustrate how the wealth of infornation in Table 6. can be put to use. Before proceeding, note that the PMOS and the pnp transistors can b compared in a similar way

TABLE 6.3 Comparison of the MOSFET and the BJT

	NMOS	npn
Low-Frequency T Model		
Transconductance $g_{\text {m }}$	$\begin{aligned} & g_{m}=I_{D} /\left(V_{O V} / 2\right) \\ & g_{m}=\left(\mu_{n} C_{o x}\right)\left(\frac{W}{L}\right) V_{O V} \\ & g_{m}=\sqrt{2\left(\mu_{n} C_{o x}\right)\left(\frac{W}{L}\right) I_{D}} \end{aligned}$	$g_{m}=I_{C} / V_{T}$
Output Resistance r_{0}	$r_{o}=V_{A} / I_{D}=\frac{V_{A}^{\prime} L}{I_{D}}$	$r_{o}=V_{A} / I_{C}$
$\begin{aligned} & \text { Intrinsic Gain } \\ & A_{0} \equiv g_{m} r_{o} \end{aligned}$	$\begin{aligned} & A_{0}=V_{A} /\left(V_{O V} / 2\right) \\ & A_{0}=\frac{2 V_{A}^{\prime} L}{V_{O V}} \\ & A_{0}=\frac{V_{A}^{\prime} \sqrt{2 \mu_{n} C_{O X} W L}}{\sqrt{I_{D}}} \end{aligned}$	$A_{0}=V_{A} / V_{T}$
Input Resistance with Source (Emitter) Grounded	∞	$r_{\pi}=\beta / g_{m}$
High-Frequency Model		

TABLE 6.3 Comparsan of the MOsFET and the Bit Continued)

	nMOS	npn
Capacitances	$\begin{aligned} & C_{g s}=\frac{2}{3} W L C_{o x}+W L_{o v} C_{o x} \\ & C_{g d}=W L_{o v} C_{o x} \end{aligned}$	$\begin{aligned} & C_{n}=C_{d e}+C_{j e} \\ & C_{d e}=\tau_{F} g_{m} \\ & C_{j e} \cong 2 C_{j e 0} \\ & C_{\mu}=C_{\mu 0} /\left[1+\frac{V_{C B}}{V_{C 0}}\right]^{m \prime} \end{aligned}$
Transition Frequency f_{T}	$f_{T}=\frac{g_{m}}{2 \pi\left(C_{g s}+C_{g d}\right)}$ For $C_{g s} \geqslant C_{g d}$ and $C_{g s} \approx \frac{2}{3} W L C_{o x}$, $f_{T} \cong \frac{1.5 \mu_{n} V_{O V}}{2 \pi L^{2}}$	$f_{T}=\frac{g_{n i}}{2 \pi\left(C_{\pi}+C_{\mu}\right)}$ For $C_{\pi} \gg C_{\mu}$ and $C_{\pi} \cong C_{d e}$, $f_{r} \cong \frac{2 \mu_{n} V_{r}}{2 \pi W_{B}^{2}}$
Design Parameters	$I_{D}, V_{\text {OV }}, L, \frac{W}{L}$	$I_{C}, V_{B E}, A_{t}\left(\right.$ (or $\left.I_{S}\right)$
Good Analog Switch?	Yes, because the devicc is symmetrical and thus the $i_{D}-v_{D S}$ characteristics pass directly through the origin.	No, because the device is asymmetrical with an offset voltage $V_{\text {CFoff }}$.

Operating Conditions At the outset, note that we shall use active mode or active region to denotc bolh the active miode of operation of the BJT and the saturation-mode of operation of the MOSFET.

The conditions for operating in the active mode are very similar for the two devices: The explicit threshold $V_{\text {t }}$ of the MOSFET has $V_{B E_{m}}$ as its implicit counterpart in the BJT Furthermore, for modern processes, $V_{B E \mathrm{~m}}$ and $V_{\text {, are almost equal. }}$

Also, pinching off the channcl of the MOSFET at the drain end is very similar to reverse biasing the CBJ of the B.IT. Note, however, that the asymmetry of the BJT results in $V_{B C \text { on }}$ and $V_{\text {RFon }}$ bcing unequal, while in the symmetrical MOSFET the operative threshold voltages at the source and the drain ends of the channel are identical (V_{t}). Finally, for both the MOSFET and the BJT to operate in the active mode, the voltage across the device $\left(v_{D S}, v_{C E}\right)$ must be at least 0.2 V to 0.3 V .
Current-Voltage Characteristics The square-law control characteristic, $i_{D}-v_{G S}$, in the MOSFET should be contrasted with the exponential control characteristic, $i_{\mathcal{C}}-v_{B E}$, of the BJT. Obviously, the latter is a much more sensitive relationship, with the result that i_{c} can vary over a very wide range (five decades or more) within the same BJ.. In the MOS the range of l_{D} achieved in the same device is much more limited. To appreciate this point further, consider the parabolic relationship between i_{D} and $v_{O V}$, and recal our discussion above that $v_{O v}$ is usually kept in a narrow range (0.2 V to 0.4 V).

Next we consider the effect of the device dimensions on its current. For the bipolar transistor the control parameter is the area of the emitter-base junction (EBJ), A_{E}, which
determines the scale current $I_{\text {. }}$. t can be varied over a relatively narrow range, such as 10 to 1 . determines the scale current I_{s}. It can be varied over a relatively narrow range, such as 10 all 1 . Thus, tion reduces its significance as a design parameter. This is particularly so if we compare A_{E}
with its counterpart in the MOSFET, the aspect ratio W/L. MOSFET devices can be designed with W / L ratios in a wide range, such as 0.1 to 100 . As a result W / L is a very significant MOS design parameter. Like A_{E}, it is also used in current scaling, as we shall see in the next section. Combining the possible range of variation of $v_{O V}$ and W / L, one can design MOS transistors to operate over an i_{D} range of four decades or so.

The channel-length modulation in the MOSFET and the base-width modulation in the BJT are similarly modeled and give rise to the dependence of $i_{D}\left(i_{C}\right)$ on $v_{D S}\left(v_{C E}\right)$ and, hence, to the finite output resistance r_{o} in the active region. Two important differences, however, exist. In the BJT, V_{A} is solely a process-technology parameter and does not depend on the dimensions of the BJT. In the MOSFET, the situation is quite different: $V_{A}=V_{A}^{\prime} L$, where V_{A}^{\prime} is a process-technology parameter and L is the channel length used. Also, in modern submicron processes, V_{A}^{\prime} is very low, resulting in V_{A} values much lower than the corresponding values for the BJT.

The last, and perhaps most important, difference between the current-voltage characteristics of the two devices concerns the input current into the control terminal: While the gate current of the MOSFET is practically zero and the input resistance looking into the gate is practically infinite, the BJT draws base current i_{B} that is proportional to the collector current; that is, $i_{B}=i_{C} / \beta$. The finite base current and the corresponding finite input resistance looking into the base is a definite disadvantage of the BJT in comparison to the MOSFET. Indeed, it is the infinite input resistance of the MOSFET that has made possible analog and digital circuit applications thal are not feasible with the BJT. Examples include dynamic digital memory (Chapter 11) and switched-capacitor fillers (Chapter 12).

2x

(a) For an NMOS transistor with $W / L=10$ fabricated in the $0.18-\mu \mathrm{m}$ process whose data are given in Table 6.1, find the values of $V_{O V}$ and $V_{G S}$ required to operate the device at $I_{D}=100 \mu \mathrm{~A}$. Ignore channel-length modulation
(b) Find $V_{B E}$ for an $n p n$ transistor fabricated in the low-voltage process specified in Table 6.2 and operated at $I_{C}=1.00 \mu \mathrm{~A}$. Ignore base-width modulation.

Solution

(a) $\quad I_{D}=\frac{1}{2}\left(\mu_{n} C_{O X}\right)\left(\frac{W}{L}\right) V_{O V}^{2}$

Substituting $I_{D}=100 \mu \mathrm{~A}, W /=10$, and, from Table 6.1, $\mu_{n} C_{o x}=387 \mu \mathrm{~A} / \mathrm{V}^{2}$ results in

$$
\begin{aligned}
100 & =\frac{1}{2} \times 387 \times 10 \times V_{o v}^{2} \\
V_{\text {oV }} & =0.23 \mathrm{~V}
\end{aligned}
$$

Thus,

$$
V_{G S}=V_{t n}+V_{O V}=0.48+0.23=0.71 \mathrm{~V}
$$

$$
I_{C}=I_{S} e^{V_{B E} / V_{T}}
$$

$$
V_{B E}=0.025 \ln \frac{100 \times 10^{-6}}{6 \times 10^{-18}}=0.76 \mathrm{~V}
$$

6. (a) For NMOS tianistorts fabricated in the 0.18 - μ M techrology specified it Tate 61 find the tange of I_{0} obtained for $V_{\text {o }}$ ranging from $0.2 V$ to 0.4 and $Y /=01$ to 100 Neglect channet length modufation (b) If a sinilar range of current is required in an iph transistor fabricated in the low voltage process specified in Table 6.2 , find the corresponding change in its $V_{B E}$
Ans. (a) $I_{D \min }=0.8 \mu \mathrm{~A}$ and $I_{\text {Dmax }}=3.1 \mathrm{~mA}$ for a range of about $4000: 1$; (b) For $I_{\text {c }}$ warying over a $4000: 1$ range, $\Delta V_{B E}=207 \mathrm{mV}$

Low-Frequency Small-Signal Models The low-frequency models for the two devices are very similar except, of course, for the finite base current (finite β) of the BJT, which gives rise to r_{π} in the hybrid- π model and to the unequal currents in the emitter and collector in the T models $(\alpha<1)$. Here it is interesting to note that the low-frequency small-signal models become identical if one thinks of the MOSFET as a BJT with $\beta=\infty(\alpha=1)$.

For both devices, the hybrid- π model indicates that the open-circuit voltage gain o tained from gate to drain (base to collector) with the source (emitter) grounded is $-g_{m} r_{o}$, It follows that $g_{m} r_{o}$ is the maximum gain available from a single transistor of either type. This important transistor parameter is given the varne intrinsic gain and is denoted A_{0}. We will have more to say about the intrinsic gain shortly

Although not included in the MOSFET low-frequency model shown in Table 6.3, the body effect can have a significant implication for the operation of the MOSFET as an amplifier. In simple terms, if the body (substrate) is not connected to the source, it can act as a second gate for the MOSFET. The voltage signal that develops between the body and the source, $v_{b s}$, gives rise to a drain current component $g_{m b} v_{b s}$, where the body transconductance $g_{m b}$ is proportional to g_{m}; that is, $g_{m b}=\chi g_{m}$, where the factor γ is in the range of 0.1 to 0.2 . We shall take the body effect into account in the study of IC MOS amplifiers in the succeeding sections. The body effect has no counterpart in the BJT
The Transconductance For the BJT, the transconductance g_{m} depends only on the de collector current I_{C}. (Recall that V_{τ} is a physical constant $\cong 0.025 \mathrm{~V}$ at room temperature). It is interesting to observe that g_{m} does not depend on the geometry of the BJT, and its. dependence on the EBJ area is only through the effect of the area on the total collector current I_{C}. Similarly, the dependence of g_{m} on $V_{D E}$ is only through the fact that $V_{B E}$ determines the total current in the collector. By contrast, g_{m} of the MOSFET depends on $I_{D}, V_{o v}$, and W/L. Therefore, we use three different (but equivalent) formulas to express g_{m} of the MOSFET.

The first formula given in Table 6.3 for the MOSFET's g_{m} is the most directly comparable with the formula for the B.IT. It indicates that for the same operating current, g_{m} of the MOSFET is much smaller than that of the BJT. This is because $V_{o v} / 2$ is the range of 0.1 V. 0.2 V , which is four to eight times the corresponding term in the BJT's formula, namely V_{T}.

The second formula for the MOSFET's g_{n} indicates that for a given device (i.e., given $W / L), g_{m}$ is proportional to $V_{O V}$. Thus a higher g_{m} is obtained by operating the MOSFET at a higher overdrive voltage. However, we should recall the limitations innposed on the magnitude of $V_{O V}$ by the limited value of $V_{D D}$. Put differently, the need to obtain a reasonably high g_{m} constrains the designer's interest in reducing $V_{O V}$.
The third g_{m} formula shows that for a given transistor (i.e., given W / L), g_{m} is proportional to $\sqrt{I_{D}}$. This should be contrasted with the bipolar case, where $g_{n t}$ is directly proportional to I_{C}. Output Resistance The output resistance for both devices is determined by similar for mulas, with r_{o} being the ratio of V_{A} to the bias current (I_{D} or I_{C}). Thus, for both transistors,
is inversely proportional to the bias current. The difference in nature and magnitude of r_{0} is inven the two devices has already been discussed.
V,

Intrinsic Gain The intrinsic gain A_{0} of the BJT is the ratio of V_{A}, which is solely a proeess parameter (35 V to 130 V), and V_{T}, which is a physical parameter (0.025 V at room cemperature). Thus A_{0} of a BJT is independent of the device junction area and of the operattempeurrent, and its value ranges from $1000 \mathrm{~V} / \mathrm{V}$ to $5000 \mathrm{~V} / \mathrm{N}$. The situation in the MOSFET is very different: Table 6.3 provides three different (but equivalent) formulas for expressing the MOSFET's intrinsic gain. The first formula is the one most directly cormparable to that of the BJT. Here, however, we note the following

1. The quantity in the denominator is $V_{O V} / 2$, which is a design parameter, and although it is becoming smaller in designs using short-channel technologies, it is still much larger than V_{T}. Furthermore, as we have seen earlier, there are reasons for selecting larger values for $V_{O V}$
2. The numerator quantity V_{A} is both process- and device-dependent, and its value has been steadily decreasing.

As a result, the intrinsic gain realized in a single MOSFET amplifier stage fabricated in a modern short-channel technology is only $20 \mathrm{~V} / \mathrm{V}$ to $40 \mathrm{~V} / \mathrm{V}$, almost two orders of magnitude lower than that for a BJT.

The third formula given for A_{0} in Table 6.3 points out a very interesting fact: For a given process technology (V_{A}^{\prime} and $\mu_{n} C_{o r}$) and a given device (W / L), the intrinsic gain is inversely proportional to $\sqrt{I_{D}}$. This is illustrated in Fig. 6.1, which shows a typical plot of A_{0} versus the bias current I_{D}. The plot confirms that the gain increases as the bias current is lowered. The gain, however, levels off at very low currents. This is because the MOSFET enters the subthreshold region of operation (Section 4.1.9), where it becomes very much like a BJT with an exponential current-voltage characteristic. The intrinsic gain then hecomes constant, just like that of a BJT. Note, however, that altbough a higher gain is achieved at lower bias currents, the price paid is a lower g_{m} and less ability to drive capacitive loads and thus a decrease in bandwidth. This point will be further illustrated shortly.

FIGURE 6.1 The intrinsic gain of the MOSFET versus bias current $I_{D .}$. Outside the subthreshold region this is a plot of $A_{0}=V_{A}^{\prime} \sqrt{2 \mu_{n} C_{o x} W L / I_{D}}$ for the case: $\mu_{\mu} C_{0 x}=20 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{A}^{\prime}=20 \mathrm{~V} / \mu \mathrm{m}, L=2 \mu \mathrm{~m}$, and
$W=20 \mathrm{~m}$.

symy E s?

We wish to compare the values of g_{m}, input resistance at the gate (base), r_{o}, and A_{0} for an .NMOS transistor fabricated in the $0.25-\mu \mathrm{m}$ technology specified in Table 6.1 and an npn transistor fabricated in the low-voltage technology specified in Tablc 6.2. Assumc both devices are operating at a drain (collector) current of $100 \mu \mathrm{~A}$. For the MOSFET, let $L=0.4 \mu \mathrm{~m}$ and $W=4 \mu \mathrm{~m}$, and specify the required $V_{O V}$.

Solution

For the NMOS transistor,

$$
\begin{aligned}
& I_{D}=\frac{1}{2}\left(\mu_{n} C_{o x}\right)\left(\frac{W}{L}\right) V_{O V}^{2} \\
& 100=\frac{1}{2} \times 267 \times \frac{4}{0.4} \times V_{O V}^{2}
\end{aligned}
$$

Thus,

$$
V_{\text {ov }}=0.27 \mathrm{~V}
$$

$$
g_{m}=\sqrt{2\left(\mu_{n} C_{o x}\right)\left(\frac{W}{L}\right) I_{D}}
$$

$=\sqrt{2 \times 267 \times 10 \times 100}=0.73 \mathrm{~mA} / \mathrm{V}$

$$
R_{\mathrm{in}}=\infty
$$

$$
r_{o}=\frac{V_{\Lambda}^{\prime} L}{I_{D}}=\frac{5 \times 0.4}{0.1}=20 \mathrm{k} \Omega
$$

$$
A_{0}=g_{m} r_{o}=0.73 \times 20=14.6 \mathrm{~V} / \mathrm{V}
$$

For the $n p n$ transistor,

$$
\begin{aligned}
& g_{m}=\frac{I_{C}}{V_{T}}=\frac{0.1 \mathrm{~mA}}{0.025 \mathrm{~V}}=4 \mathrm{~mA} / \mathrm{V} \\
& R_{\text {in }}=r_{\pi}=\beta_{0} / g_{m}=\frac{100}{4 \mathrm{~mA} / \mathrm{V}}=25 \mathrm{k} \Omega \\
& r_{o}=\frac{V_{A}}{I_{C}}=\frac{35}{0.1 \mathrm{~mA}}=350 \mathrm{k} \Omega \\
& A_{0}=g_{m} r_{o}=4 \times 350=1400 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

High-Frequency Operation The simplified high-frequency equivalent circuits for the MOSFET and the BJT are very similar, and so are the formulas for determining their mity-gain frequency (also called transition frequency) f_{τ}. Recall that f_{τ} is a measure of the intrinsic bandwidth of the transistor itself and does nol take into account the effects of capacitive loads. We shall address the issue of capacitive loads shortly. For the time being, note the striking similarity between the approxinate formulas given in Table 6.3 for the value of f_{T} of the two devices. In both cases f_{τ} is inversely proportional to the square of the critical dimension of the device: the channel length for the MOSFET and the base width for the BJT. These formulas also clearly indicate that shorter-channel MOSFETs ${ }^{2}$ and narrowerbase BJTs are inherently capable of a wider bandwidth of operation. It is also important to note that while for the BJT the approximate expression for f_{T} indicates that it is entirely process determined, the corresponding expression for the MOSFET shows that f_{T} is proportional to the overdrive voltage $V_{O v}$. Thus we have conflicting requirements on $V_{O V}$: While a higher low-frequency gain is achieved by operating at a low $V_{O V}$, wider bandwidth requires an increase in $V_{O V}$. Therefore the selection of a value for $V_{O V}$ involves, among other considerations, a trade-off between gain and bandwidth.

For npn transistors fabricated in the modern low-voltage process, f_{τ} is in the range of 10 GHz to 20 GHz as compared to the 400 MHz to 600 MHz obtained with the standard highvoltage process. In the MOS case, NMOS transistors fabricated in a modern submicron technology, such as the $0.18-\mu \mathrm{m}$ process, achieve f_{T} values in the range of 5 GHz to 15 GHz .

Before leaving the subject of high-frequency operation, let's look into the effect of a capacitive load on the bandwidth of the common-source (common-emitter) amplifier. For this purpose we shall assume that the frequencies of interest are much lower than f_{T} of the transistor. Hence we shall not take the transistor capacitances into account. Figure 6.2(a) shows a common-source amplifier with a capacitive load C_{L}. The voltage gain from gate to drain can be found as follows:

$$
\begin{align*}
V_{o} & =-g_{m} V_{g s}\left(r_{o} \| C_{L}\right) \\
& =-g_{n} V_{g s} \frac{r_{o} \frac{1}{s C_{L}}}{r_{o}+\frac{1}{s C_{L}}} \\
A_{v} & =\frac{V_{o}}{V_{g s}}=-\frac{g_{m} r_{o}}{1+s C_{L} r_{o}} \tag{6.1}
\end{align*}
$$

Thus the gain has, as expected, a low-frequency value of $g_{m} r_{0}=A_{0}$ and a frequency response of the single-time-constant (STC) low-pass type with a break (polc) frequency at

$$
\begin{equation*}
\omega_{P}=\frac{1}{C_{L} r_{o}} \tag{6.2}
\end{equation*}
$$

Obviously this pole is formed by r_{o} and C_{L}. A sketch of the magnitude of gain versus frequency is shown in Fig. 6.2(b). We observe that the gain crosses the $0-\mathrm{dB}$ liue at frequency ω_{t}

$$
\omega_{t}=A_{0} \omega_{P}=\left(g_{m} r_{o}\right) \frac{1}{C_{L} r_{o}}
$$

[^21]
(a)

(b)

FIGURE 6.2 Frcquency response of a CS amplifier loaded with a capacitance C_{L} and fed with an ideal voltage source. It is assumed that the transistor is operating at frequencies much lower than f_{T}, and thus the Thus,

$$
\begin{equation*}
\omega_{r}=\frac{g_{m}}{C_{L}} \tag{6.3}
\end{equation*}
$$

That is, the unity-gain frequency or, equivalently, the gain-bandwidth product ${ }^{3} \omega_{f}$ is the ratio of g_{m} and C_{L}. We thus clearly see that for a given capacitive load C_{L}, a larger gainbandwidth product is achieved by operating the MOSFET as a higher C_{L}, a larger gainand conclusions apply to the case of the BJT. In each case, bandwisth increase as analys rent is increased.
Design Parameters For the BJT there are three design parameters- $I_{C}, V_{B L}$, and I_{S} (or cquivalently, the area of the ennitter-base junction)-of which any two can be selected by the designer. However, since I_{C} is exponentially related to $V_{B E}$ and is very sensitive to the value of $V_{B E}$ ($V_{B E}$ changes by only 60 mV for a factor of 10 change in I_{C}), I_{C} is much more useful than $V_{B E}$ as a design parameter. As mentioned earlier, the utility of the EBJ area as a
${ }^{3}$ The unity-gain frequency and the gain-bandwidth product of an amplifier arc the same when the frequency response is of the single-pole type; otherwisc the two parampters may differ.

FIGURE 6.3 Increasing I_{D} or W / L increases the bandwidth of a MOSFET amplifier loaded by a conslant capacitance C_{L}.
design parameter is rather limited because of the narrow range over which A_{E} can vary. It follows that for the BJT there is only one effective design parameter: the collector current I_{C}. Finally, note that we have not considered $V_{C E}$ to be a design parameter, since its effect on I_{C} is only secondary. Of course, as we learned in Chapter $5, V_{C E}$ affects the output signal swing.

For the MOSFET there are four design parameters- $I_{D}, V_{O V}, L$, and W-of which any three can be selected by the designer. For analog circuit applications the trade-off in selecting a value for L is between the higher speeds of operation (wider amplifier bandwidth) ing a value for L is between the higher speeds of operation (wained at lower valucs of L and the higher intrinsic gain obtained at larger values of L. Usually one selects an L of about 25% to 50% greater than $L_{\text {inin }}$.
The second design parameter is $V_{\text {ov }}$. We have alrcady made numerous remarks about the effect of the value of $V_{O V}$ on performance. Usually, for submicron technologies, $V_{O V}$ is selected in the range of 0.2 V to 0.4 V .

Once values for L and $V_{o v}$ are selected, the designer is left with the selection of the value of I_{D} or W (or, equivalently, W / L). For a given process and for the selected values of L and $V_{O V}, I_{D}$ is proportional to W / L. It is important to note that the choice of I_{D} or, equivalently, of W / L has no bearing on the value of intrinsic gain A_{0} and the transition frequency f_{T}. However, it affects the value of g_{n} and hence the gain-band Figure 63 . operated at a constant $V_{O V}$ varies with I_{D} (or, equivalently, W / L). Note that while the dc gain remains unchanged, increasing W / L and, correspondingly, I_{D} increases the bandwidth proportionally. This, however, assumes that the load capacitance C_{L} is not affected by the device size, an assumption that may not be entirely justified in some cases.

FWhrists

In this example we investigate the gain and the high-frequency response of an $n p n$ transistor and an NMOS transistor. For the npn transistor, assume that it is fabricated in the low-voltage process specified in Table 6.2, and assume that $C_{\mu} \cong C_{\mu 0}$. For $I_{C}=10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, and 1 mA , find g_{m}, $r_{o}, A_{0}, C_{d e}, C_{j e}, C_{\pi}, C_{\mu}$, and f_{Γ}. Also, for each value of I_{C}, find the gain-bandwidth product f_{t} of a common-emitter amplifier loaded by a $1-\mathrm{pF}$ capacitance, neglecting the internal capacitances
of the transistor. For the NMOS transistor, assume that it is labricated in the $0.25-\mu \mathrm{m}$ CMOS process with $L=0.4 \mu \mathrm{~m}$. Let the transistor be operated at $V_{\text {oV }}=0.25 \mathrm{~V}$. Find W / L that is required to obtain $I_{D}=10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, and 1 mA . At each value of I_{D}, find $g_{n}, r_{n}, A_{0}, C_{p s}, C_{p d}$, and f_{T} Also, for each value of I_{D}. determine the gain-bandwidth product f_{t}, of a common-source amplifier loaded by a $1-\mathrm{pF}$ capacitance, neglecting the internal capacitances of the transistor.

Solution

For the $n p n$ transistor,

$$
\begin{aligned}
& g_{m}=\frac{I_{C}}{V_{T}}=\frac{I_{C}}{0.025}=40 I_{C} \mathrm{~A} / \mathrm{V} \\
& r_{n}=\frac{V_{d}}{I_{C}}=\frac{35}{I_{C}} \Omega \\
& A_{0}=\frac{V_{A}}{V_{T}}=\frac{35}{0.025}=1400 \mathrm{~V} / \mathrm{V} \\
& C_{d e}=\tau_{F} g_{m i}=10 \times 10^{-12} \times 40 I_{C}=0.4 \times 10^{-9} I_{C} \mathrm{~F} \\
& C_{j e} \cong 2 C_{j e 0}=10 \mathrm{fF} \\
& C_{\pi}=C_{d e}+C_{j e} \\
& C_{\mu} \cong C_{\mu 0}=5 \mathrm{fF} \\
& f_{T}=\frac{g_{m}}{2 \pi\left(C_{\pi}+C_{\mu}\right)} \\
& f_{t}=\frac{g_{m}}{2 \pi C_{L}}=\frac{g_{m}}{2 \pi \times 1 \times 10^{-12}}
\end{aligned}
$$

We thus obtain the following results:

For the NMOS transistor,

$$
\begin{aligned}
I_{D} & =\frac{1}{2} \mu_{n} C_{b x} \frac{W}{L} V_{O V}^{2} \\
& =\frac{1}{2} \times 267 \times \frac{W}{L} \times \frac{1}{16}
\end{aligned}
$$

Thus,
$\frac{W}{L}=0.12 I_{D}$
$y_{t m}=\frac{I_{D}}{V_{O V} / 2}=\frac{I_{D}}{0.25 / 2}=8 I_{D} \mathrm{~A} / \mathrm{V}$
$r_{o}-\frac{V_{A}^{\prime} L}{I_{D}}-\frac{5 \times 0.4}{I_{D}}=\frac{2}{I_{D}} \Omega$
$A_{0}=g_{m} r_{o}=16 \mathrm{~V} / \mathrm{V}$

$$
\begin{aligned}
C_{g, s} & =\frac{2}{3} W I C_{o x}+C_{o v}=\frac{2}{3} W \times 0.4 \times 5.8+0.6 \mathrm{~W} \\
C_{g d} & =C_{o v}=0.6 \mathrm{~W} \\
f_{T} & =\frac{g_{m}}{2 \pi\left(C_{g, s}+C_{g d}\right)} \\
f_{t} & =\frac{g_{m}}{2 \pi C_{L}}
\end{aligned}
$$

We thus obtain the following results:

1_{0} \%	W\%	$g_{m}(\mathrm{mAN})$	k $\times 1$	A_{0} (VN)	c. ${ }^{\text {4Fl }}$	$\mathrm{C}_{9}(\mathrm{FF})$	$\mathrm{f}_{7} \mathrm{CH}$	(t)(MHz)
$10 \mu \mathrm{~A}$	1.2	0.08	200	16	1.03	0.29	9.7	12.7
$100 \mu \mathrm{~A}$	12	0.8	20	16	10.3	2.9	9.7	127
1 mA	120	8	2	16	103	29	9.7	1270

EXERGSE

6.2.4 Combining MOS and Bipolar Transistors-BiCMOS Circuits

From the discussion above it should be evident that the BJT has the advantage ove the MOSFET of a much higher transconductance $\left(g_{n}\right)$ at the same value of dc bias cur rent. Thus, in addition to realizing much higher voltage gains per amplifier stagc, bipolar transistor amplifiers have superior high-frequency performance compared to their MOS ounterparts.
On the other hand, the practically infinite input resistance at the gate of a MOSFET makes it possible to design amplifiers with extremely high input resistances and an almos fero input bias curtent. Also, as mentioned earlicr, the MOSFET provides an excellent implementation of a switch, a fact that has made CMOS technology capable of realizing ost of analog circuit functions that are not possible with. bipolar transistors.
It can thus be seen that each of the two transistor types has its own distinct and unique advantages: Bipolar technology has been extremely uscful in the design of very-high-quality general-purpose circuit building blocks, such as op amps. On the other hand, CMOS, with its very high packing density and its suitability for both digital and analog circuits, has become the technology of choice for the implementation of very-large-scale integrated cirain. Nevertheless, the performance of CMOS circuits can be improved if tesigner has a lable (on the same chip) bipolar transistors that can be employed in functions that require heir hign g_{m} and excellent corrent-driving capability. A lechnology that allows the lled HiCMOS A L alled and useful BiCMOS circuit blocks.

6.2.5 Validity of the Square-Law MOSFET Model

We conclude this section with a comment on the validity of the simple square-law model we have been using to describe the operation of the MOS transistor. While this simple model works well for devices with relatively long channels ($>1 \mu \mathrm{~m}$) it does not provide an accurate representation of the operation of short-channel devices. This is because a number of physical phenomena come into play in these submicron devices, resulting in what are called short-channel effects. Although the study of short-channel effects is beyond the scope of this book, it should be mentioned that MOSFET models have been developed that take these effects into account. However, they are understandably quite complex and do not lend themsclves to hand analysis of the type needed to develop insight into circuit operation. Rather, these models are suitable for computer simulation and are indeed used in SPICE (Section 6.13). For quick, manual analysis, however, we will continue to use the square-law model which is the basis for the comparison of Table 6.3.

6.3 IC BIASING-CURRENT SOURCES, CURRENT MIRRORS, AND CURRENT-STEERING CIRCUITS

Biasing in integrated-circuit design is based on the use of constant-current sources. On an-IC chip with a number of amplifier stages, a constant dc current (called a reference current) is generated at one location and is then replicated at various other locations for biasing the vargenerated at onplifier stages through a process known as current steering. This approach has the advantage that the effort expended on generating a predictable and stable reference current, usually utilizing a precision resistor external to the chip, need not be repeated for every amplifier stage. Furthermore, the bias currents of the various stages track each other in case of changes in power-supply voltage or in temperature.

In this section we study circuit building blocks and techniques employed in the bias design of IC amplifiers. These circuits are also utilized as amplifier load elements, as will be seen in Section 6.5 and beyond.

6.3.1 The Basic MOSFET Current Source

Figure 6.4 shows the circuit of a simple MOS constant-current source. The heart of the circuil is transistor Q_{1}, the drain of which is shorted to its gate, ${ }^{4}$ thereby forcing it to operate in the saturation mode with

$$
\begin{equation*}
I_{D 1}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{1}\left(V_{G S}-V_{n n}\right)^{2} \tag{6.4}
\end{equation*}
$$

where we have neglected channel-length modulation. The drain current of Q_{1} is supplied by $V_{D D}$ through resistor R, which in most cases would be outside the IC chip. Since the gate curreuts are zero,

$$
\begin{equation*}
I_{D 1}=I_{\text {REF }}=\frac{V_{D D}-V_{G S}}{R} \tag{6.5}
\end{equation*}
$$

where the current through R is considered to be the reference current of the current source and is denoted $I_{\text {REFF }}$. Equations (6.4) and (6.5) can be used to deternine the value required for R.
${ }^{4}$ Such a transistor is said to be diode connected.

FIGURE 6.4 Circuit for a basic MOSFET constant current source.

Now consider transistor Q_{2} : It has the same $V_{G S}$ as Q_{1}; thus, if we assume that it is operat ng in saturation, its drain current, which is the output current I_{o} of the current source, will be

$$
\begin{equation*}
I_{O}=I_{D 2}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{2}\left(V_{G S}-V_{t n}\right)^{2} \tag{6.6}
\end{equation*}
$$

where we have neglected channel-length modulation. Equations (6.4) and (6.6) enable us to relate the output current I_{O} to the reference current $I_{\text {REF }}$ as follows:

$$
\begin{equation*}
\frac{I_{0}}{I_{\text {RIF }}}=\frac{(W / L)_{2}}{(W / L)_{1}} \tag{6.7}
\end{equation*}
$$

This is a simple and attractive relationship: The special connection of Q_{1} and Q_{2} provides an output current I_{o} that is related to the reference current $I_{\text {REF }}$ by the ratio of the aspect ratios of the transistors. In other words, the relationship between I_{o} and $I_{\text {REF }}$ is solely deter mined by the geometries of the transistors. In the spccial case of identical transistors $I_{O}=I_{\mathrm{REF}}$, and the circuit simply replicates or mirrors the reference current in the output terminal. This has given the circuit composed of Q_{1} and Q_{2} the name current mirror, a name hat is used irrespective of the ratio of device dimensions
Figure 6.5 depicls the current mirror circuit with the input reference current shown as bcing supplied by a current source for both simplicity and generality. The current gain of current transfer ratio of the current mirror is given by Eq. (6.7).

Effect of V_{0} on I_{0} In the description above for the operation of the current source of Fig. 6.4 we assumed Q_{2} to be operating in saturation. This is obviously essential if Q_{2} is to supply a

constant-current output. To ensure that Q_{2} is saturated, the circuit to which the drain of Q_{2} is to be connected must establish a drain voltage V_{O} that satisfies the relationship

$$
V_{O} \geq V_{G S}-V,
$$

or, equivalently, in terms of the overdrive voltage $V_{O V}$ of Q_{1} and Q_{2},

$$
V_{O} \geq V_{O V}
$$

In other words, the current source will operate properly with an output voltage V_{O} as low as $V_{O V}$, which is a few tenths of a volt.

Although thus far neglected, channel-length modulation can have a significant effect on the operation of the current source. Consider, for simplicity, the case of identical devices Q and Q_{2}. The drain current of Q_{2}, I_{O}, will equal the current in $Q_{1}, I_{\text {REF }}$, at the value of V_{O} that causes the two devices to have the same $V_{D S}$, that is, at $V_{O}=V_{G S}$. As V_{O} is increased above this value, I_{0} will increase according to the incremental output resistance $r_{o 2}$ of Q_{2} This is illustrated in Fig. 6.6, which shows I_{0} versus V_{0}. Observe that since Q_{2} is operating at a constant $V_{G S}$ (determined by passing $I_{\text {REt }}$ through the matchcd device Q_{1}), the curve in Fig. 6.6 is simply the $i_{D}-v_{D S}$ characteristic curve of Q_{2} for $v_{G S}$ equal to the particular value $V_{G S}$

In summary, the current source of Fig. 6.4 and the current mirror of Fig. 6.5 have a finite output resistance R_{o},

$$
R_{o} \equiv \frac{\Delta V_{O}}{\Delta I_{O}}=r_{\Delta 2}=\frac{V_{\mathrm{A} 2}}{I_{O}}
$$

where I_{0} is given by Eq. (6.6) and $V_{A 2}$ is the Early voltage of Q_{2}. Also, recall that for a given process technology, V_{Δ} is proportional to the transistor channel length; thus, to obtain given process technology, V_{A} is proportional to the transistor channel length; thus, to obtain
high output-resistance values, current sources are usually designcd using transistors with relatively long chamels. Finally, note that we can express the current I_{0} as

$$
I_{O}=\frac{(W / L)_{2}}{(W / L)_{1}} I_{\text {REF }}\left(1+\frac{V_{O}-V_{G S}}{V_{A 2}}\right)
$$

FIGURE 6.6 Ouput chatereristic of the current source in Fig. 6.4 and the carrent mirror of Fig. 6.5 f the case Q_{2} is matched to Q_{1}.

2W \%hy

Given $V_{D D}=3 \mathrm{~V}$ and using $I_{\text {REF }}=100 \mu \mathrm{~A}$, it is required to design the circuit of Fig. 6.4 to obtain an output current whose nominal value is $100 \mu \mathrm{~A}$. Find R if Q_{1} and Q_{2} are matched and have channet lengths of $1 \mu \mathrm{~m}$, channel widths of $10 \mu \mathrm{~m}, V_{t}=0.7 \mathrm{~V}$, and $\kappa_{n}=200 \mu \mathrm{~A} /{ }^{\prime}$. Wh is the lowest possible value of V_{o} ? Assuming that for this process technology the Early voluag $V_{A}^{\prime}=20 \mathrm{~V} / \mu \mathrm{m}$, find the output resistance of the current source. Also, find the change in output current rcsulting from a $+1-\mathrm{V}$ change in V_{0}.

Solution

$$
\begin{aligned}
& I_{D 1}=I_{\text {REF }}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{1} V_{O V}^{2} \\
& 100=\frac{1}{2} \times 200 \times 10 V_{O V}^{2}
\end{aligned}
$$

Thus,

$$
V_{O V}=0.316 \mathrm{~V}
$$

and

$$
\begin{aligned}
& V_{G S}=V_{1}+V_{O V}=0.7+0.316 \cong 1 \mathrm{~V} \\
& R=\frac{V_{D D}-V_{G S}}{I_{\text {RE: }}}=\frac{3-1}{0.1 \mathrm{~mA}}=20 \mathrm{k} \Omega
\end{aligned}
$$

$$
V_{o \min }=V_{O V} \cong 0.3 \mathrm{~V}
$$

For the transistors used, $L=1 \mu \mathrm{~m}$. Thus,

$$
\begin{aligned}
V_{A} & =20 \times 1=20 \mathrm{~V} \\
r_{o 2} & =\frac{20 \mathrm{~V}}{100 \mu \mathrm{~A}}=0.2 \mathrm{M} \Omega
\end{aligned}
$$

The output current will be $100 \mu \mathrm{~A}$ at $V_{O}=V_{G S}=1 \mathrm{~V}$. If V_{O} changes by +1 V , the corresponding change in I_{O} will be

$$
\Delta I_{o}=\frac{\Delta V_{o}}{r_{o 2}}=\frac{1 \mathrm{~V}}{0.2 \mathrm{M} \Omega}=5 \mu \mathrm{~A}
$$

Exencise

D6.4 In the current source of Example 6.4 , it is teguircd to reduee the change in output circat: Ψ_{0}. conre sponding to a chinge in output voltage. $\Delta V_{\text {. }}$ of 1 V to 1% of I_{2}. What should the dimensions of Q_{2} and Q_{2} be changed to? Assume that Q_{1} and Q_{2} are to remain natched.
Ans. $L=5 \mu \mathrm{~m}, W=50 \mu \mathrm{~m}$

6.3.2 MOS Current-Steering Circuits

As mentioned earlier, once a constant current is generated, it can be replicated to provide dc bias currents for the various amplifier stages in an IC. Current mirrors can obviously be used to implement this current-steering function. Figure 6.7 shows a simple current-steering circuit.

FIGURE 6.7 A current-steering circuit.

Here Q_{1} together with R determine the refcrence current $I_{\text {REI. }}$. Transistors Q_{1}, Q_{2}, and Q_{3} form a two-output current mirror,

$$
\begin{align*}
& I_{2}=I_{\mathrm{REF}} \frac{(W / L)_{2}}{(W / L)_{1}} \tag{6.12}\\
& I_{3}=I_{\mathrm{REFF}} \frac{(W / L)_{3}}{(W / L)_{1}}
\end{align*}
$$

To ensure operation in the saturation region, the voltages at the drains of Q_{2} and Q_{3} are constrained as follows:
or, equivalently,

$$
\begin{equation*}
V_{D 2}, V_{D 3} \geq-V_{S S}+V_{O V 1} \tag{6,15}
\end{equation*}
$$

where $V_{o V_{1}}$ is the overdrive voltage at which Q_{1}, Q_{2}, and Q_{3} are operating. In other words, the drains of Q_{2} and Q_{3} will have to remain higher than $-V_{S S}$ by at least the overdrive voltage, which is usually a few tenths of a volt
Continuing our discussion of the circuit in Fig. 6.7, we see that current I_{3} is fed to the input side of a current mirror formed by PMOS transistors Q_{4} and Q_{5}. This mirror provides

$$
\begin{equation*}
I_{5}=I_{4} \frac{(W / L)_{5}}{(W / L)_{4}} \tag{6.16}
\end{equation*}
$$

where $I_{4}=I_{3}$. To keep Q_{5} in saturation, its drain voltage should be

$$
\begin{equation*}
V_{D S} \leq V_{D D}-\left|V_{O V S}\right| \tag{6.17}
\end{equation*}
$$

where $V_{\text {OVS }}$ is the overdrive voltage at which Q_{5} is operating
Finally, an important point to note is that while Q_{2} pulls its current I_{2} from a load (not shown in Fig. 6.7), Q_{5} pushes its current I_{5} into a load (not shown in Fig. 6.7). Thus Q_{5} is
appropriately called a current source, whereas Q_{2} should more properly be called a current sink. In an IC, both current sources and current sinks are usually needed.

WSRCSE

 drain of Q s be atowed to go tp to within 02 V if the positivi stppl)

6.3.3 BJT Circuits

The basic BJT cultent mirror is shown in Fig. 6.8. It works in a fashion very similar to that of the MOS mirror. However, there are two important differences: First, the nonzero base current of the BJT (or, equivalently, the finite β) causes an crror in the current transfer ratio of the bipolar mirror. Second, the current transfer ratio is determined by the relative areas of the emitter-base junctions of Q_{1} and Q
Let us first consider the case when β is sufficiently high so that we can neglect the base currents. The reference current $I_{\text {REF }}$ is passed through the diode-connected transistor Q_{1} and thus establishes a conesponding voltage $V_{b j}$, which in turn is applied between base and emitter of Q_{2}. Now, if Q_{2} is matched to Q_{1} or, more specifically, if the EBJ area of Q_{3} is the same as that of Q_{1} and thus Q_{2} has the same scale current I_{s} as Q_{1}, then the collector current of Q_{2} will be equal to that of Q_{1}; that is,

$$
I_{O}=I_{\text {RE: }}
$$

For this to happen, however, Q_{2} must be operating in the active mode, which in turn is achieved so long as the collector voltage V_{O} is 0.3 V or so higher than that of the emitter.
To obtain a current transfer ratio other than unity, say m, we simply arrange that the area of the EBJ of Q_{2} is m times that of Q_{1}. In this case

$$
I_{O}=m I_{\mathrm{R} \mathrm{EI}}
$$

FIGURE 6.8 The basic BJT current mirror

FIGURE 6.9 Analysis of the current mirro taking into account the finite β of the BJTs.

In general, the current transfer ratio is given by

$$
\begin{equation*}
\frac{I_{0}}{I_{\text {REF }}}=\frac{I_{S 2}}{I_{S 1}}=\frac{\text { Area of EBJ of } Q_{2}}{\text { Area of EBJ of } Q_{1}} \tag{6.20}
\end{equation*}
$$

Alternatively, if the area ratio m is an integer, one can think of Q_{2} as equivalent to m transis ors, each matched to Q_{1} and connected in parallel.

Next we consider the effect of finite transistor β on the current transfer ratio. The analysis
for the case in which the current transfer ratio is nominally unity-that is, for the case in which Q_{2} is matched to Q_{1}-is illustrated in Fig. 6.9. The key point here is that since Q_{1} an Q_{2} are matched and have the same $V_{B E}$, their collector currents will be equal. The rest of the analysis is straightforward. A node equation at the collector of Q_{1} yields

$$
I_{\mathrm{REF}}=I_{C}+2 I_{C} / \beta=I_{C}\left(1+\frac{2}{\beta}\right)
$$

Finally, since $I_{O}=I_{C}$, the current transfer ratio can be found as

$$
\begin{equation*}
\frac{I_{0}}{I_{\mathrm{REF}}}=\frac{I_{C}}{I_{C}\left(1+\frac{2}{\beta}\right)}=\frac{1}{1+\frac{2}{\beta}} \tag{6.2}
\end{equation*}
$$

Note that as β approaches $\infty, I_{o} / I_{\mathrm{REF}}$ approaches the nominal value of unity. For typical values of β, however, the error in the current cransfer ratio can be significant. For instance $\beta=100$ results in a 2% error in the current transfer ratio. Furthermore, the error due to the finite β increases as the nominal current transfer ratio is increased. The reader is encouraged to show that for a mirtor with a nominal current transfer ratio m-that is, one in which $I_{s 2}=m I_{s 1}$ - the actual current transfer ratio is given by

$$
\frac{I_{o}}{I_{\mathrm{REF}}}=\frac{m}{1+\frac{m+1}{\beta}}
$$

In common with the MOS curreni mirror, the BJT nirror has a finite output resistance R^{\prime}

$$
\begin{equation*}
R_{o} \equiv \frac{\Delta V_{O}}{\Delta I_{O}}=r_{o 2}=\frac{V_{A 2}}{I_{O}} \tag{6.23}
\end{equation*}
$$

where $V_{A 2}$ and $r_{o 2}$ are the Early voltage and the output resistance, respectively, of Q_{2} Thus, even if we neglect the error due to finite β, the output current I_{O} will be at its
nominal value only when ℓ_{2} has the same $V_{C E}$ as ℓ_{1}, haty at $V_{O}=V_{B E}$. As V_{O} increased, I_{o} will correspondingly increasc. Taking both the finite β and the finite R_{o} int account, we can express the output current of a BJT mirror with a nominal current transfer atio m a

$$
\begin{equation*}
I_{O}=I_{\mathrm{REF}}\left(\frac{m}{1+\frac{m+1}{\beta}}\right)\left(1+\frac{V_{O}-V_{B E}}{V_{A 2}}\right) \tag{6.24}
\end{equation*}
$$

where we note that the error term due to the Early effect is expressed so that it reduces to zero for $V_{O}=V_{B E}$

EXERCISE
 6.6. Considet Bit Cutrent niriof widr a nomnal current transfer ratio of unty. Let the trisistors have Is $=10^{-13} \mathrm{~A}, \beta=100$ and $\, 100 \mathrm{~V}$. For $I_{\text {Rer }}=1 \mathrm{~mA}$, ind I_{o} when $1 ., 5 \mathrm{~V}$ Also find the oul put resistance
 Ans $1.02 \mathrm{hal}, 100 \mathrm{~K} \mathrm{~h}$

A Simple Current Source In a manner analogous to that in the MOS case, the basic BJT A the reference current is

$$
\begin{equation*}
I_{\mathrm{REF}}=\frac{V_{C C}-V_{B E}}{R} \tag{6.25}
\end{equation*}
$$

where $V_{B E}$ is the base-emitter voltage cortesponding to the desired value of output current I_{O},

$$
I_{O}=\frac{I_{\mathrm{REF}}}{1+(2 / \beta)}\left(1+\frac{V_{O}-V_{B E}}{V_{A}}\right)
$$

The output resistance of this current source is r_{0} of Q_{2}

$$
\begin{equation*}
R_{o}=r_{o 2} \cong \frac{V_{A}}{I_{O}} \cong \frac{V_{A}}{I_{\text {REF }}} \tag{6.27}
\end{equation*}
$$

FIGURE 6.10 A simple BJT cuirent source.

Exerass:

06.7 A suming the availabitity of BJTs with scale currents $t_{s}=10^{-15} A, \beta=100$ and $V_{A}=50 \mathrm{~V}$. design be curtent-soutce circut of Fig. 6.10 to provide an output curtert $I_{0}=0.5 \mathrm{~mA}$ at $V_{O}=2 У$ The powe supply $V_{C C}=5 V$. Give the walues of $T_{\text {RE }} R$, and $V_{0 \text { min }}$. Also, find I_{U} at $V_{O}=5 V$
Ans. $0.497 \mathrm{~mA}, 8.71 \mathrm{kQ} .03 \mathrm{Y}, 0.53 \mathrm{~mA}$

Current Steering To generate bias currents for different amplifier stages in an IC, the current-steering approach described for MOS circuits can be applied in the bipolar case. As an example, consider the circuit shown in Fig. 6.11. The dc reference current $I_{\text {REF }}$ is generated in the branch that consists of the diode-connected transistor Q_{1}, resistor R, and the diode-connected transistor Q_{2} :

$$
\begin{equation*}
I_{\mathrm{REF}}=\frac{V_{C C}+\dot{V}_{E E}-V_{E B 1}-V_{B E 2}}{R} \tag{6.28}
\end{equation*}
$$

Now, for simplicity, assume that all the transistors have high β and thus that the base currents are negligibly small. We will also neglect the Early effect. The diode-connected transistor Q_{1} forms a current mirror with Q_{3}; thus Q_{3} will supply a constant current l equal to $I_{\text {REF }}$. Transistor Q_{3} can supply this current to any load as long as the voltage that develops at the collector does not exceed ($V_{C C}-0.3 \mathrm{~V}$); otherwise Q_{3} would enter the saturation region.

FIGURE 5.11 Generation of a number of constant currents of various mnagniludes.

To generate a dc current twice the value of $I_{\text {R }}$, two transistors, Q_{5} and Q_{0}, each of which is matched to Q_{1}, are connected in parallel, and the combination forms a mirror with Q_{1}.Thus $I_{3}=2 I_{\text {ReF }}$. Note that the parallel combination of Q_{5} and Q_{6} is equivalent to a tranQ_{1}. with an EBJ area double that of Q_{1}, which is precisely what is done when this circuit is fabricated in IC form.

Transistor Q_{4} forms a mirror with Q_{2}; thus Q_{4} provides a constant current I_{2} equal to $I_{\text {REF }}$. Note that while Q_{3} sources its current to parts of the circuit whose voltage should not exceed $\left(V_{C C}-0.3 \mathrm{~V}\right), Q_{4}$ sinks its current from parts of the circuit whose voltage should not decrease below $-V_{E E}+0.3 \mathrm{~V}$. Finally, to generate a current three times I_{REF}, three transistors, Q_{7}, Q_{8}, and Q_{9}, each of which is matched to Q_{2}, are connected in parallel, and the combination is placed in a mirror configuration with Q_{2}. Again, in an IC implementation, Q_{7}, Q_{8}, and Q_{9} would be replaced with a transistor having a junction area three times that of Q_{2}.

WERGIS

 β and finorins the effect of finit outpur resistance: show that

$$
I_{1}-I_{2}=\|-I_{1}-\frac{1}{1+(N, 1) / \beta}
$$

Fof $\beta=100$, ind the maximum number of outputs for an enfor not exceeding 10%

3* 6.4 HIGH-FREQUENCY RESPONSE-GENERAL CONSIDERATIONS

The amplifier circuits we shall study in this chapter and the next are intended for fabrication using IC technology. Therefore they do not employ bypass capacitors. Moreover, the various stages in an integrated-circuit cascade amplifier are directly coupled; that is, they do not utilize

FIGURE 6.12 Frequency response of a direct-coupled (dc) amplifier. Observe that the gain does not fall off at low frequencies, and the midband gain A_{M} extends down to zero frequency.
large coupling capacitors, such as those we cmployed in Chapters 4 and $5 .{ }^{5}$ The frequency response of these direct-coupled or dc amplifiers takes the gencral form shown in Fig. 6.12, from which we note that the gain remains constant at its midband value A_{M} down to zero frequency (dc). That is, compared to the capacitively coupled amplifiers that utilize bypass capacitors (Sections 4.9 and 5.9), direct-coupled IC amplifiers do not suffer gain reduction at low frequencies. The gain, however, falls off at the high-frequency end due to the internal capacitances of the transistor. These capacitances, which are included in the high-frequency device models in Table 6.3, represent the charge storage phenomena that take place inside he transistors

The high-frequency responses of the CS and CE amplifiers were studied in Sections 4.9 and 5.9. In this chapter and the next, as we study a variety of IC-amplifier configurations, we shall also consider their high-frequency operation. Some of the tools needed for such a stud are presented in this section.

6.4.1 The High-Frequency Gain Function

The amplifier gain, taking into account the internal transistor capacitances, can be expressed as a function of the complex-frequency variable s in the general form

$$
\begin{equation*}
A(s)=A_{M} F_{H}(s) \tag{6.29}
\end{equation*}
$$

where A_{M} is the midband gain, which for the IC amplifiers we are studying here is equal to the low-frequency or dc gain. The value of A_{M} can be determined by analyzing the amplifier equivalent circuit while neglecting the effect of the transistor internal capacitances--ihat is, by assuming that they act as perfect open circuits. By taking these capacitances into account,

In some cases there might be one or two off-chip coupling capaciturs to connect the entire IC amplifie to a signal source and/or a load.
the gain acquires the factor $F_{H}(s)$, which can be expressed in terms of its poles and zeros, ${ }^{6}$ which are usually real, as follows:

$$
\begin{equation*}
F_{B}(s)=\frac{\left(1+s / \omega_{Z_{1}}\right)\left(1+s / \omega_{Z_{2}}\right) \ldots\left(1+s / \omega_{Z_{n}}\right)}{\left(1+s / \omega_{P_{1}}\right)\left(1+s / \omega_{P_{2}}\right) \ldots\left(1+s / \omega_{P_{n}}\right)} \tag{6.30}
\end{equation*}
$$

where $\omega_{P 1}, \omega_{P 2}, \ldots, \omega_{P n}$ are positive numbers representing the frequencies of the n real poles and $\omega_{71}, \omega_{7.2}, \ldots, \omega_{Z,}$ are positive, negative, or infinite numbers representing the frequencies of the n real transmission zeros. Note from Eq. (6.30) that, as should be expected, as s approaches $0, F_{H}(s)$ approaches unity and the gain approaches A_{M}

6.4.2 Determining the $3-\mathrm{dB}$ Frequency f_{h}

The amplifier designer usually is particularly interested in the part of the high-frequency band that is close to the midband. This is because the dosigncr needs to estimate-and if need be modify-the value of the upper $3-\mathrm{dB}$ frequency \int_{H} (or $\omega_{H} ; f_{H}=\omega_{H} / 2 \pi$). Toward that end it should be mentioned that in many cases the zeros are either at infinity or such higb frequencies as to be of little significance to the detemmination of ω_{F}. If in addition one of the poles, say $\omega_{P_{1} 1}$, is of nuch lower frequency than any of the other poles, then this pole will have the greatest effect on the value of the amplifier ω_{H}. In other words, this pole will dominate the high-frequency response of the amplifier, and the amplifier is said to have a dominant-pole response. In such cases the function $F_{I I}(s)$ can be approximated by

$$
\begin{equation*}
F_{H}(s) \cong \frac{1}{1+s / \omega_{P 1}} \tag{6.31}
\end{equation*}
$$

which is the transfer function of a first-order (or STC) low-pass network (Appendix D). It follows that if a dominant pole exists, then the determination of $\omega_{I I}$ is greatly simplified;

$$
\omega_{H} \cong \omega_{P 1}
$$

(6.32)

This is the situation we encountered in the case of the common-source amplificr analyzed in Section 4.9 and the common-emitter annplifier analyzed in Section 5.9. As a rule of thumb, a dominant pole exists if the lowest-frequency pole is at least two octaves (a factor of 4) away from the nearest pole or zero.

If a dominant pole does not exist, the 3 -dB frequency ω_{H} can be determined from a plot of $\left|F_{H}(j \omega)\right|$ Alternatively, an approximate formula for ω_{H} can be derived as follows: Consider, for simplicity, the case of a circuit having two poles and two zeros in the high-frequency band; that is,

$$
\begin{equation*}
F_{H}(s)=\frac{\left(1+s / \omega_{z_{1}}\right)\left(1+s / \omega_{Z_{2}}\right)}{\left(1+s / \omega_{P 1}\right)\left(1+s / \omega_{P 2}\right)} \tag{6.33}
\end{equation*}
$$

Substituting $s=j \omega$ and taking the squared magnitude gives

$$
\left|F_{H}(j \omega)\right|^{2}=\frac{\left(1+\omega^{2} / \omega_{Z 1}^{2}\right)\left(1+\omega^{2} / \omega_{Z 2}^{2}\right)}{\left(1+\omega^{2} / \omega_{P 1}^{2}\right)\left(1+\omega^{2} / \omega_{P 2}^{2}\right)}
$$

[^22] in Appendix E .

575

By definition, at $\omega=\omega_{H},\left|F_{H}\right|^{2}=\frac{1}{2}$; thus,

$$
\begin{aligned}
\frac{1}{2} & =\frac{\left(1+\omega_{H}^{2} / \omega_{Z 1}^{2}\right)\left(1+\omega_{H}^{2} / \omega_{Z 2}^{2}\right)}{\left(1+\omega_{H}^{2} / \omega_{P 1}^{2}\right)\left(1+\omega_{H}^{2} / \omega_{P 2}^{2}\right)} \\
& =\frac{1+\omega_{H}^{2}\left(\frac{1}{\omega_{Z 1}^{2}}+\frac{1}{\omega_{Z 2}^{2}}\right)+\omega_{H}^{4} / \omega_{21}^{2} \omega_{22}^{2}}{1+\omega_{H}^{2}\left(\frac{1}{\omega_{P 1}^{2}}+\frac{1}{\omega_{P 2}^{2}}\right)+\omega_{H}^{4} / \omega_{P 1}^{2} \omega_{P 2}^{2}}
\end{aligned}
$$

Since ω_{H} is usually smaller than the frequencics of all the poles and zeros, we may neglect the terms containing ω_{H}^{4} and solve for ω_{H} to obtain

$$
\begin{equation*}
\omega_{H} \cong 1 / \sqrt{\frac{1}{\omega_{P 1}^{2}}+\frac{1}{\omega_{P_{2}}^{2}}-\frac{2}{\omega_{Z 1}^{2}}-\frac{2}{\omega_{72}^{2}}} \tag{6.35}
\end{equation*}
$$

This relationship can be extended to any number of poles and zeros as

$$
\omega_{H} \cong 1 / \sqrt{\left(\frac{1}{\omega_{P_{1}}^{2}}+\frac{1}{\omega_{P_{2}}^{2}}+\cdots\right)-2\left(\frac{1}{\omega_{z_{1}}^{2}}+\frac{1}{\omega_{Z_{2}}^{2}}+\cdots\right)}
$$

Note that if onc of the poles, say P_{1}, is dominant, then $\omega_{P 1} \ll \omega_{P 2}, \omega_{P 3}, \ldots, \omega_{21}, \omega_{22}, \ldots$, and Eq. (6.36) reduces to Eq. (6.32).

The high-frequency response of an amplifier is characterized by the transfer function

$$
F_{H}(s)=\frac{1-s / 10^{5}}{\left(1+s / 10^{4}\right)\left(1+s / 4 \times 10^{4}\right)}
$$

Determine the 3 -dB frequency approximately and exactly.

Solution

Noting that the lowesi-frequency pole at $10^{4} \mathrm{rad} / \mathrm{s}$ is two octaves lower than the second pole and a decade lower than the zero, we find that a dominant-pole situation almost exists and $\omega_{H} \simeq 10^{4} \mathrm{rad} / \mathrm{s}$. A better estimate of $\omega_{I I}$ can be obtained using Eq. (6.35), as follows:

$$
\begin{aligned}
\omega_{H} & =1 / \sqrt{\frac{1}{10^{8}}+\frac{1}{16 \times 10^{8}}-\frac{2}{10^{10}}} \\
& =9800 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

The exact value of $\omega_{l l}$ can be determined from the given transfer function as $9537 \mathrm{rad} / \mathrm{s}$. Finally, we show in Fig. 6.13 a Bode plot and an exact plot for the given transfer function. Note that this is a plot of the high-位quency response of the amplificr normalized relative to its midband gain. That is, if the midband gain is, say, 100 dB , then the entire plot should be shilted upward by 100 dB .

IGURE 6.13 Normalized high-frequency response of the amplificr in Example 6.5

6.4.3 Using Open-Circuit Time Constants for the Approximate

 Determination of f_{H}If the poles and zeros of the amplifier transfer function can be determined easily, then we If the poles and zeros of the amplifier transfer function can be determined easily, then we
can determine f_{H} using the techniques above. In many cases, however, it is not a simple matter to determine the poles and zeros by quick hand analysis. In such cases an approximate value for f_{H} can be obtained using the following method
$\mathrm{r} f_{H}$ can be obtained using the following method.
Consider the function $F_{B}(s)$ (Eq. 6.30), which determines the high-frequency response of the amplifier. The numerator and denominator factors can be multiplied out and $F_{H}(s)$ expressed in the alternative form

$$
\begin{equation*}
F_{H}(s)=\frac{1+a_{1} s+a_{2} s^{2}+\cdots+a_{n} s^{n}}{1+b_{1} s+b_{2} s^{2}+\cdots+b_{n} s^{n}} \tag{6.37}
\end{equation*}
$$

where the coefficients a and b are related to the frequencies of the zeros and poles, respec tively. Specifically, the coefficient b_{1} is given by

$$
\begin{equation*}
b_{1}=\frac{1}{\omega_{P 1}}+\frac{1}{\omega_{P 2}}+\cdots+\frac{1}{\omega_{P_{n}}} \tag{6.38}
\end{equation*}
$$

It can be shown [see Gray and Searle (1969)] that the value of b_{1} can be obtained by considering the various capacitances in the high-frequency equivalent circuit one at a time while reducing all other capacitors to zero (or, equivalently, replacing her wis circuis) That is, to obtain the contribution of capacitance C, we reduce all other capacitances to zero,
reduce the input signal source to zero, and determine the resistance $R_{i o}$ seen by C_{i}. This process is then repeated for all other capacitors in the circuit. The value of b_{1} is computed by summing the individual time constants, called open-circuit time constants,

$$
b_{1}=\sum_{i=1}^{n} C_{i} R_{i n}
$$

where we have assumed that there are n capacitors in the high-frequency equivalent circuit. This method for determining b_{1} is exact; the approximation comes about in using the value of b_{1} to determine $\omega_{f f}$. Specifically, if the zeros are not dominant and if one of the poles, say P_{l}, is dominant, then from Eq. (6.38),

$$
b_{1} \approx \frac{1}{\omega_{P_{1}}}
$$

But, also, the upper $3-\mathrm{dB}$ frequency will be approximately equal to ω_{p}, leading to the approximation

$$
\omega_{I I} \simeq \frac{1}{b_{1}}=\frac{1}{\left[\sum_{i} \bar{C}_{i} R_{i o}\right]}
$$

Here it should be pointed out that in complex circuits we usually do not know whether or no a doninant pole exists, Nevertheless, using Eq. (6.41) to determine $\omega_{l l}$ norinally yields remarkably good results ${ }^{7}$ even if a dominant pole does not exist. The method will be illustrated by an example.

Figure 6.14(a) shows the high-frequency equivalent circuit of a common-source MOSFET amplifier. The amplifier is fed with a signal generator $V_{\text {sig }}$ having a resistance $R_{\text {sisg }}$. Resistance $R_{\text {in }}$ is due to the biasing network. Resistance R_{L}^{\prime} is the parallel equivalent of the load resistance R_{L}, the rain bias resistance R_{D}, and the F output resistance r_{o}. Capacitors $C_{g s}$ and $C_{g d}$ are the MOSFE internal capacitances. For $R_{\mathrm{sig}}=100 \mathrm{k} \Omega, R_{\mathrm{in}}=420 \mathrm{k} \Omega, C_{g s}=C_{k d}=1 \mathrm{pF}, g_{m}=4 \mathrm{~mA} / \mathrm{N}$, and $R_{L}^{\prime}=$ $3.33 \mathrm{k} \Omega$, find the midband voltage gain, $A_{M}=V_{o} / V_{\text {sig }}$ and the upper 3-dB frequency, f_{H}.

Solution

The midband voltage gain is determined by assuming that the capacitors iu the MOSFET model are perfect open circuits. This results in the midband equivalent circuit shown in Fig. 6.14(b),
from which we find

$$
\begin{aligned}
A_{M} & \equiv \frac{V_{o}}{V_{\text {sig }}}=-\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}}-\left(g_{m} R_{L}^{\prime}\right) \\
& =-\frac{420}{420+100} \times 4 \times 3.33=-10.8 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

We shall detcrmine $\omega_{h l}$ using the method of open-circuit time constants. The resistance $R_{s s}$ secn by $C_{g s}$ is found by selting $C_{g d}=0$ and short-circuiting the signal generator $V_{\text {sie }}$. This results in the circuit

FIGURE 6.14 Circuits for Example 6.6: (a) high-frequency equivalent circuit of a MOSFET amplifier; (b) the equivalent circuit at midband frequencies; (c) circuit for determining the resistance seen by $C_{\text {gs }}$; and (d) circuit for detcrmining the resistance seen by $C_{k d}$.
of Fig. 6.14(c), from which we find th

$$
R_{g s}=R_{\text {in }}\left\|R_{\text {sig }}=420 \mathrm{k} \Omega\right\| 100 \mathrm{k} \Omega=80.8 \mathrm{k} \Omega
$$

Thus the open-circuit time constant of $C_{g:}$ is

$$
\tau_{g s} \equiv C_{8 s} R_{3 s}=1 \times 10^{-12} \times 80.8 \times 10^{3}=80.8 \mathrm{~ns}
$$

The resistance $R_{g d}$ seen by $C_{g i}$ is found hy setting $C_{g s}=0$ and short-circuiting $V_{\text {sie. }}$. The result is the circuit in Fig. 6.14 (d), to which we apply a test current I_{x}. Writing a node equation at G gives

$$
I_{x}=-\frac{V_{g s}}{R_{\text {in }}}-\frac{V_{g s}}{R_{\text {sig }}}
$$

Thus,

$$
V_{g s}=-I_{x} R^{\prime}
$$

where $R^{\prime}=R_{\text {in }} \| R_{\text {sig }}$. A node equation at D provides

$$
I_{x}=g_{m} V_{s s}+\frac{V_{k s}+V_{x}}{R_{L}^{\prime}}
$$

Substituting for $V_{s s}$ from Eq. (6.42) and rearranging terms yields

$$
R_{g d} \equiv \frac{V_{x}}{I_{x}}=R^{\prime}+R_{L}^{\prime}+g_{m} R_{L}^{\prime} R^{\prime}=1.16 \mathrm{M} \Omega
$$

Thus the open-circuit time constant of $C_{g d}$ is

$$
\tau_{g d} \equiv C_{g d} R_{g d}
$$

$$
=1 \times 10^{-12} \times 1.16 \times 10^{6}=1160 \mathrm{~ns}
$$

The upper $3-\mathrm{dB}$ frequency ω_{H} can now he determined from

$$
\begin{aligned}
\omega_{H} & \simeq \frac{1}{\tau_{8 s}+\tau_{g d}} \\
& =\frac{1}{(80.8+1160) \times 10^{-9}}=806 \mathrm{krad} / \mathrm{s}
\end{aligned}
$$

Thus,

$$
f_{H}=\frac{\omega_{H}}{2 \pi}=128.3 \mathrm{kHz}
$$

The method of open-circuit time constants has an important advantage in that it tells the circuit designer which of the various capacitances is significant in determining the amplifier frequency response. Specifically, the relative contribution of the various capacitances to the effective time constant b_{1} is immediately obvious. For instance, in the above example we see that $C_{g d}$ is the dominant capacitance in determining $f_{t t}$. We also note that, in effect to increase f_{H} either we use a MOSFET with smaller $C_{g d}$ or, for a given MOSFET, we reduce $R_{g d}$ by using a smaller R^{\prime} or R_{L}^{\prime}. If R^{\prime} is fixed, then for a given MOSFET the only way to increase bandwidth is by reducing the Ioad resistance. Unfortunately, this also decreases the midband gain. This is an example of the usual trade-off between gain and bandwidth, a common circumstance which was mentioned earlier.

6.4.4 Miller's Theorem

In our analysis of the high-frequency response of the common-source amplifier (Section 4.9), and of the common-ennitter amplitier (Section 5.9), we employed a technique for replacing the bridging capacitance ($C_{g s}$ or C_{μ}) by an equivalent input capacitance. This very useful and effective techniquc is based on a general theorem known as Miller's theorem, which we now present.
Consider the situation in Fig. 6.15(a). As part of a larger circuit that is not shown, we have isolated two circuit nodes, labeled 1 and 2, between which an impedance Z is connected. Nodes 1 and 2 are also connected to other parts of the circuit, as signified by the broken lines emanating from the two nodes. Furthermore, it is assumed that somehow it has been determined that the voltage at node 2 is related to that at node 1 by

$$
\begin{equation*}
V_{2}=K V_{1} \tag{6.43}
\end{equation*}
$$

6.4 HIGH-FREQUENCY RESPONSE-GENERAL CONSIDERATIONS \qquad 579

$$
Z_{1}=Z /(1-K), \quad Z_{2}=Z /\left(1-\frac{1}{K}\right)
$$

(a)
(b)

FIGURE 6.15 The Miller equivalent circui

In typical situations K is a gain factor that can be positive or negative and that has a magnitude usually larger than unity. This, however, is not an assumption for Miller's theorem.
Miller's theorem states that impedance Z can be replaced by two impedances: Z_{1} con nected between node 1 and ground and Z_{2} connected between node 2 and ground, where

$$
Z_{1}=Z /(1-K)
$$

(6.44a)
and

$$
Z_{2}=Z /\left(1-\frac{1}{K}\right)
$$

to obtain the equivalent circuit shown in Fig. 6.15(b).
The proof of Miller's theorem is achieved by deriving Eq. (6.44) as follows: In the original circuit of Fig. 6.15(a), the only way that node 1 "feels the existence" of impedance Z is through the current I that Z draws away from node 1 . Thercfore, to keep this current unchanged in the equivalent circuil, we must choose the value of Z_{1} so that it draws an equal current,

$$
I_{1}=\frac{V_{1}}{Z_{1}}=I=\left(\frac{V_{1}-K V_{1}}{Z}\right)
$$

which yields the value of Z_{1} in Eq. (6.44a). Similarly, to keep the current into node 2 unchanged, we must choose the value of Z_{2} so that

$$
I_{2}=\frac{0-V_{2}}{Z_{2}}=\frac{0-K V_{1}}{Z_{2}}=I=\frac{V_{1}-K V_{1}}{Z}
$$

which yiclds the expression for Z_{2} in Eq. (6.44b).
Although not highlighted, the Miller equivalent circuit derived above is valid only as ong as the rest of the circuil remains unchanged; otherwise the ratio of V_{2} to V_{1} might change. It follows that the Miner equivalent circuil cannot be used directly to determine the output resistance of an amplifier. This is because in determining output resistances it is implicitly assumed that the source signal is reduced to zero and that a test-signal source (volage or current) is applied to the output terminals-obviously a major change in the circuit, rendering the Miller equivalent circuit no longer valid.

Figure 6.16 (a) shows an ideal voltage amplifier having a gain of $-100 \mathrm{~V} / \mathrm{V}$ with an impedance Z connected between its output and input terminals. Find the Miller equivalent circuit when Z is (a) a I-M Ω resistance, and (b) a 1-pF capacitance. In cach case, use the equivalent circuit detcrmine $V_{0} / V_{\text {sig }}$.

(a)

(c)

IGURE 6.16 Circuit for Example 6.7.

Solution

(a) For $Z=1 \mathrm{M} \Omega$, employing Miller's theorem results in the equivalent circuit in Fig. 6.16(b), where

$$
\begin{aligned}
& Z_{1}=\frac{Z}{1-K}=\frac{1000 \mathrm{k} \Omega}{1+100}=9.9 \mathrm{k} \Omega \\
& Z_{2}=\frac{Z}{1-\frac{1}{K}}=\frac{1 \mathrm{M} \Omega}{1+\frac{1}{100}}=0.99 \mathrm{M} \Omega
\end{aligned}
$$

The voltage gain can be found as follows

$$
\begin{aligned}
\frac{V_{o}}{V_{\text {sig }}} & =\frac{V_{o}}{V_{i}} \frac{V_{i}}{V_{\text {sig }}}=-100 \times \frac{Z_{1}}{Z_{1}+R_{\text {sig }}} \\
& =-100 \times \frac{9.9}{9.9+10}=-49.7 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

(b) For Z as a $1-\mathrm{pF}$ capacitance--that is, $Z=1 / s C=1 / s \times 1 \times 10^{-12}$-applying Miller's theorem allows us to replace Z by Z_{1} and Z_{2}, wher

$$
\begin{aligned}
& Z_{1}=\frac{Z}{1-K}=\frac{1 / s C}{1+100}=1 / s(101 C) \\
& Z_{2}=\frac{Z}{1-\frac{1}{K}}=\frac{1}{1.01} \frac{1}{s C}=\frac{1}{s(1.01 C)}
\end{aligned}
$$

If follows that Z_{1} is a capacitance $101 C=101 \mathrm{pF}$ and that Z_{2} is a capacitance $1.01 C=1.01 \mathrm{pF}$ The resulting equivalent circuit is shown in Fig. 6.16(c), from which the voltage gain can be found as follows:

$$
\begin{aligned}
\frac{V_{o}}{V_{\text {sig }}} & =\frac{V_{o}}{V_{i}} \frac{V_{i}}{V_{\text {sig }}}=-100 \frac{1 / s C_{1}}{1 /\left(s C_{1}\right)+R_{\text {sig }}} \\
& =\frac{-100}{1+s C_{1} R_{\text {sig }}} \\
& =\frac{-100}{1+s \times 101 \times 1 \times 10^{-12} \times 10 \times 10^{3}} \\
& =\frac{-100}{1+s \times 1.01 \times 10^{-6}}
\end{aligned}
$$

This is the transfer function of a first-order low-pass network with a de gain of -100 and a 3 -dB frequency $f_{3 a B}$ of

$$
f_{3 \mathrm{BB}}=\frac{1}{2 \pi \times 1.01 \times 10^{-6}}=157.6 \mathrm{kHz} .
$$

From Example 6.7, we observe that the Miller replacement of a feedback or bridging resistance results, for a negative K, in a smaller resistance [by a factor ($1-K$)] at the input. If the feedback element is a capacitance, its value is multiplied by $(1-K)$ to obtain the equivalent capacitance at the input side. The multiplication of a feedback capacitance by $(1-K)$ is referred to as Miller multiplication or Miller effect. We have encountered the Miller effect in the analysis of the CS and CE amplifiers in Sections 4.9 and 5.9 , respectively.

Exsheises

6.9. A direct coupled amplifier has a di saill of $1000 \mathrm{~V} / \mathrm{V}$ and an upper 3 -ab freppency of 100 kHz . Find The transfer flanction and the gain-bandwidtli product in heriz
Ans, $\frac{1000,10^{8} H_{2}}{1+\frac{s}{2 \pi \times 10^{5}}}$
6.10 The high-frequency response of an amplifier is characterized by two zeros at $s=\infty$ and two poles at $\omega_{p 1}$ and $\omega_{p_{2}}$ For $\omega_{p 2}=k \omega_{p 1}$, find the value of k that results in the exact value of ω_{1} being $0.9 \omega_{p}$ Repeat for $\omega_{\mu}=0.99 \omega_{r}$
Ans. 278.988
6.11 For the amplifier described in Exercise 6.10, find the exact and approximate values (using Eq. 636) of ω_{H} (as a function of $\omega_{P 1}$) for the cases $k=1,2$, and 4
Ans. $0.64,0.71 .0 .84,0.89,0.95,0.97$
6:12 For the amplifier in Example 6.6 . find the gain-bandwidth product in megahert. Find the value of R_{t} that will resulf in $f_{11}=180 \mathrm{kHz}$. Find the sew :alues of fle midband gain and of the gain-band cidith product.
Ans $1.39 \mathrm{MHF}, 2.23 \mathrm{k} \Omega$; $-7.2 \mathrm{VIV}: 1.30 \mathrm{MHz}$
6.13 Use Miller's the orem to nevestigate the performance of the Inverting op amp circuit shown in Fig, E6.13 Assume the op anp to be ideal except for having a finite diffirential gain, A, Without using any knowl

Ans.

HCUREE6:13

63 6.5 THE COMMON-SOURCE AND COMMON-EMITTER AMPLIFIERS WITH ACTIVE LOADS

6.5.1 The Common-Source Circuit

Figure 6.17(a) shows the most basic IC MOS amplifier. It consists of a grounded-source MOS transistor with the drain resistor R_{D} replaced by a constant-current source I. As we shall see shortly, the current-source load can be implemented using a PMOS transistor and is there called an active load, and the CS amplifier of Fig. 6.17(a) is said to be active-loaded.
Before considering the small-signal operation of the active-loaded CS amplifier, a word on its dc bias design is in order. Obviously, Q_{1} is biased at $I_{D}=I$, but what determines the do which negative feedback is utilized to fix the values of $V_{D S}$ and $V_{G S}$. We shall encounter

(b)

FIGURE 6.17 (a) Active-loaded common-ssurce amplifier. (b) Small-signal analysis of the amplifier in (a), performed both directly on the circuit diagram and using the small-signal model explicilly.
examples of such circuits in later chapters. For the fime-being, however, we shall assume that the MOSFET is biased to operate in the saturation region.
Small-signal analysis of the current-source-loaded CS amplifier is straightforward and is illustrated in Fig. 6.17(b). Here, along with the equivalent circuit model, we show the transistor with its r_{o} extracted and displayed separately and with the analysis performed directly on the circuit. From Fig. 6.17(b) we see that for this CS amplifier,

$$
\begin{aligned}
R_{i} & =\infty & (6.45 \mathrm{a}) \\
A_{v o} & =-g_{m} r_{o} & (6.45 \mathrm{~b}) \\
R_{o} & =r_{u} & (6.45 \mathrm{c})
\end{aligned}
$$

 source amplifier, namely the intrinsic gain of the MOSFET,

$$
A_{0}=g_{m} r_{o}
$$

Recall that in Section 6.2 we discussed in some detail the intrinsic gain A_{0} and presented in Table 6.3 formulas for its determination.

ExERGISE

6.14 Find A_{0} for an NMOS transistor fabricated in a 0.4 um CMOS process for which $k_{k}^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{A}^{\prime}=20 \mathrm{~V} / \mathrm{mim}$. The transistor has a 0.4 am channel lengtir and is operated with an averdrive voltage of 0.25 V . What must Y be for the NMOS transistor to operate at $l_{D}=100 \mu \mathrm{~A}$? Also, find the values of δ_{n} and r_{0}. Repeat for $L=0.8 \mu \mathrm{~m}$.

6.5.2 CMOS Implementation of the Common-Source Amplifier

A CMOS circuit implementation of the common-source amplifier is shown in Fig. 6.18(a). This circuit is based on that shown in Fig. 6.17(a) with the load current-source I implemented using transistor Q_{2}. The latter is the output transistor of the current mirror formed by Q_{2} and Q_{3} and fed with the bias current $I_{\text {REF }}$. We shall assume that Q_{2} and Q_{3} are matched; thus the

[^23]

(c)

(d)

FIGURE 6.18 The CMOS common-source amplificr: (a) circuit; (b) i i-v characteristic of the active-Ioad Q_{2} (c) graphical construction to determine the transfer characteristic; and (d) transfer characteristic.
i-y characteristic of the load device will be that shown in Fig. 6.18(b). This is simply the $i_{D}-v_{s D}$ characteristic curve of the p-channel transistor Q_{2} for a constant source-gate voltage $V_{S G}$. The value of $V_{S G}$ is set by passing the reference bias current $I_{\text {RE: }}$ through Q_{3}. Observe expected, Q_{2} behaves as a current source when it operates in saturation, whic turn is obtained when $v=v_{s D}$ excecds $\left(V_{S C}-\left|V_{t p}\right|\right)$, which is the magnitude of the overdriv voltage at which Q_{2} and Q_{3} are operating. When Q_{2} is in saturation, it exhibits a finite incre mental resistance r_{02}.

$$
\begin{equation*}
r_{o 2}=\frac{\left|V_{A 2}\right|}{I_{\text {REI }} \mid} \tag{6.47}
\end{equation*}
$$

wherc V_{42} is the Early voltage of Q_{2}. In other words, the current-source load is not ideal but has a finite output resistance equal to the transistor r_{o}

Before proceeding to determine the small-signal voltage gain of the amplifier, it is instructive to examine its transfer characteristic, v_{o} versus v_{x}. This can be determined using the graphical construction shown in Fig. 6.18(c). Here we have sketched the $i_{D}-v_{D S}$ charac teristics of the amplifying transistor Q_{1} and superimposed the load curve on them. The latte is simply the $i-v$ curve in Fig. 6.18(b) "flipped around" and shifted $V_{D D}$ volts along the horizontal axis. Now, since $\tilde{v}_{G S 1}=v_{1}$, each of the $i_{D}-v_{\nu S}$ curves corresponds to a particular value of v_{1}. The intersection of each particular curve with the load curve gives the corresponding value of $v_{D S}$, which is equal to v_{0}. Thus, in this way, we can obtain the $v_{0}-v_{l}$ characteri fic, point by point. The resulting transfer characteristic is sketched in Fig. 6.18(d). As indicated, it has four distinct segunents, labeled I, II, III, and IV, each of which is obtained for one of the four combinations of the modes of operation of Q_{1} and Q_{2}, which are also indicated in the diagram. Note also that we have labeled two important breakpoints on the transfer charac teristic (A and B) in correspondence with the intersection points (A and B) in Fig. 6.18(c) We urge the reader to carefully study the transfer characteristic and its various details.
Not surprisingly, for amplifier operation segment III is the one of interest. Observe that in region III the transfer curve is almost linear and is very stcep. indicating large voltage gain. In region III both the amplifying transistor Q_{1} and the load transistor Q_{2} are opcrating in saturation. The end points of region III are A and $\mathrm{B}:$ At A , defined by $v_{0}=V_{D \nu}-V_{0}$ Q_{2} enters the triode region, and at B , defined by $v_{o}=v_{1}-V_{t n}, Q_{1}$ enters the triode region, When the amplifier is biased at a point in region III, the small-signal voltage gain can be determined by replacing Q_{1} with its small-signal model and Q_{2} with its output resistance r_{22}. The output resistance of O_{2} constitutes the load resistance of Q_{1}. The voltage gain A can be found by substituting the results from Eqs. (6.45) into

$$
A_{v} \equiv \frac{v_{v}}{v_{i}}=A_{t o w} \frac{R_{L}}{R_{L}+R_{v}}
$$

oobtain

$$
A_{i v}=-\left(g_{m 1} r_{o 1}\right) \frac{r_{o 2}}{r_{o 2}+r_{o 1}}=-g_{m 1}\left(r_{o 1} \| r_{o 2}\right)
$$

indicating that, as expected, Λ_{v} will be lower in magnitude than the intrinsic gain of Q_{1}, $g_{m 1} r_{o 1}$. For the case $r_{o 2}=r_{o 1}, \Lambda_{v}$ will be $g_{m 1} r_{o 1} / 2$. The result in Eq. (6.49) could, of ourse, have been obtained directly by multiplying $g_{1}, v_{\text {}}$, by the total resistance betwecn the The CMe ground, $r_{o 1} \| r_{o z}$
The CMOS common-source amplifier can be designed to provide voltage gains of 15 to
100. It exhibits a very high input resistance; however, its output resistance is also high

Two final comments need to be made before leaving the common-source amplifier:

1. The circuit is not affected by the body effect since the source terminals of both Q and Q_{2} are at signal ground.
2. The circuit is usually part of a larger amplifier circuit (as will be shown in Chaptcts 7 and 9), and negative feedback is utilized to ensure that the circuit in fact operates in region III of the amplifier transfer characteristic.

Consider the CMOS common-source amplifier in Fig. 6.18(a) for the case $V_{D D}=3 \mathrm{~V}, V_{t n}$ $\left|V_{t p}\right|=0.6 \mathrm{~V}, \mu_{n} C_{o x}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $\mu_{p} C_{o x}=65 \mu \mathrm{~A} / \mathrm{V}^{2}$. For all transistors, $L=0.4 \mu \mathrm{~m}$ and $W=4 \mu \mathrm{~m}$. Also, $V_{A n}=20 \mathrm{~V},\left|V_{A P}\right|=10 \mathrm{~V}$, and $I_{\mathrm{REF}}=100 \mu \mathrm{~A}$. Find the small-signal voltage gain Also, find the coordinates of the extremities of the amplifier region of the transfer characteristicthat is, points A and B.

Solution

$$
\begin{aligned}
g_{m 1} & =\sqrt{2 k_{n}^{\prime}\left(\frac{W}{L}\right)_{i} I_{\mathrm{REF}}} \\
& =\sqrt{2 \times 200 \times \frac{4}{0.4} \times 100}=0.63 \mathrm{~mA} / \mathrm{V} \\
r_{o 1} & =\frac{V_{A n}}{I_{D 1}}=\frac{20 \mathrm{~V}}{0.1 \mathrm{~mA}}=200 \mathrm{k} \Omega \\
r_{o 2} & =\frac{V_{A p}}{I_{D 2}}=\frac{10 \mathrm{~V}}{0.1 \mathrm{~mA}}=100 \mathrm{k} \Omega
\end{aligned}
$$

Thus,

$$
A_{v}=-g_{m 1}\left(r_{o 1} \| r_{o 2}\right)
$$

$$
=-0.63(\mathrm{~mA} / \mathrm{V}) \times(200 \| 100)(\mathrm{k} \Omega)=-42 \mathrm{~V} / \mathrm{V}
$$

The extremities of the amplifier region of the transfer characteristic (region III) are found as follows (refer to Fig. 6.18): First, we determine $V_{S G}$ of Q_{2} and Q_{3} corresponding to $I_{D}=I_{\text {REF }}=$ $100 \mu \mathrm{~A}$ using

$$
I_{D}=\frac{1}{2} k_{p}^{\prime}\left(\frac{W}{L}\right)_{3}\left(V_{S G}-\left|V_{t p}\right|\right)^{2}\left(1+\frac{V_{S D}}{\left|V_{\Delta p}\right|}\right)
$$

Thus,

$$
\begin{equation*}
100=\frac{1}{2} \times 65\left(\frac{4}{0.4}\right)\left|V_{O V 3}\right|^{2}\left(1+\frac{0.6+\left|V_{O V 3}\right|}{10}\right) . \tag{6.50}
\end{equation*}
$$

where $\left|V_{O V 3}\right|$ is the magnitude of the overdrive voltage at which Q_{3} and Q_{2} are operating, and we have used the fact that, for $Q_{3} . V_{S D}=V_{S G}$. Equation (6.50) can be manipulated to the form

$$
0.29=\left|V_{\text {OV3 }}\right|^{2}\left(1+0.09\left|V_{O V 3}\right|\right)
$$

which by trial-and-error yields

$$
\left|V_{o v 3}\right|=0.53 \mathrm{~V}
$$

Thus,

$$
v_{S G}=0.6+0.53=1.13 \mathrm{~V}
$$

and

$$
V_{O A}=V_{D D}-V_{O V 3}=2.47 \mathrm{~V}
$$

To find the corresponding value of $v_{i}, V_{I A}$, we derive an expression for v_{0} versus v_{1} in region III. Noting that in region III Q_{1} and Q_{2} are in saturation and obviously conduct equal currents, we can write

$$
\begin{gathered}
i_{D 1}=i_{D 2} \\
\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{1}\left(v_{I}-V_{t n}\right)^{2}\left(1+\frac{v_{O}}{i V_{A n} \mid}\right)=\frac{1}{2} k_{p}^{\prime}\left(\frac{W}{L}\right)_{2}\left(V_{S G}-\left|V_{t p}\right|\right)^{2}\left(1+\frac{V_{D D}-v_{O}}{\mid V_{A p_{1}}}\right)
\end{gathered}
$$

Substituting numerical values, we obtain

$$
8.55\left(v_{1}-0.6\right)^{2}=\frac{1-0.08 v_{0}}{1+0.05 v_{0}} \cong 1-0.13 v_{0}
$$

which can be manipulated to the form

$$
\begin{equation*}
v_{0}=7.69-65.77\left(v_{1}-0.6\right)^{2} \tag{6.51}
\end{equation*}
$$

This is the equation of segment III of the transfer characteristic. Although it includes ν_{1}^{2}, the reader should not be alarmed: Because region $I I$ is very narrow, v_{l} changes very little, and the characteristic is nearly linear. Substituting $v_{O}=2.47 \mathrm{~V}$ gives the corresponding value of v_{V}; that is, $V_{I A}=$ 0.88 V . To determine the coordinates of B , we note that they are related by $V_{O B}=V_{I B}-V_{t n}$. Sub-
stituting in Eq. (6.51) and solving gives $V_{I B}=0.93 \mathrm{~V}$ and $V_{O B}=0.33 \mathrm{~V}$. The width of the amplifier region is therefore

$$
\Delta v_{l}=V_{I B}-V_{I A}=0.05 \mathrm{~V}
$$

and the corresponding output range is

$$
\Delta v_{O}=V_{O B}-V_{O A}=-2.14 \mathrm{~V}
$$

Thus the "large-signal" voltage gain is

$$
\frac{\Delta v_{O}}{\Delta v_{l}}=-\frac{2.14}{0.05}=42.8 \mathrm{~V} / \mathrm{V}
$$

which is very close to the small-signal value of -42 , indicating that segment III of the transfer characteristic is quite linear

THELET

 U.

(a)

(b)

FIGURE 6.19 (a) Active-loaded common-emitter amplifier. (b) Serall-signal analysis of the amplifier in (a), performed both directly on the circiut and using the hybrid- π model explicitly.

6.5.3 The Common-Emitter Circuit

The active-loaded common-emitter amplifier, shown in Fig. 6.19(a), is similar to the activeloaded common-source circuit studied above. Here also, the bias-stabilizing circuit is not shown. Small-signal analysis is similar to that for the MOS case and is illustrated in Fig. 6.19(b) The results are

$$
\begin{aligned}
R_{i} & =r_{\pi} \\
A_{y o} & =-g_{{ }_{m}} r_{o} \\
R_{i} & =r_{o}
\end{aligned}
$$

which except for the rather low input resistance r_{π} are similar to the MOSFET case. Recall, however, from the comparison of Section 6.2 that the intrinsic gain $g_{m} r_{c}$ of the BJT is much higher than that for the MOSFET. This advantage, however, is counterhalanced by the practically infinite input resistance of the common-source amplifier. Further comparisons of the two amplifier types were presented in Section 6.2.

EXERCISE

6.16 Consider the active foaded CE amplifier when the constant current source I Is implemented with a $p m$ Consider the active 1 oaded CE amplifier whin the constant curent source $/$ is implemented with a $p \eta p$
transistor Let $/=0.1 \mathrm{~mA}$, $V A=50$ V (for both the npn and the pnp transistors), and $\beta=100$. Find R_{i} σ_{0} (for each transistor): $8_{i n}$. A and the anplifier voltage gain.
Ans. $25 \mathrm{k} \Omega: 0.5 \mathrm{MI}: 4 \mathrm{mAlV}: 2000 \mathrm{~V} / \mathrm{V},-1000 \mathrm{VIV}$

6.6 HIGH-FREQUENCY RESPONSE OF THE CS

 - AND CE AMPLIFIERSWe now consider the high-frequency response of the active-loaded common-source and conunon-emitter amplifiers. Figure 6.20 shows the high-frcquency equivalent circuit of the common-source amplifier. This cquivalent circuit applies equally well to the CE amplific with a simple relabeling of components: $C_{g s}$ would be replaced by $C_{\pi}, C_{g d}$ by C_{p}, and obviously $V_{s s}$ by V_{π}.

FIGURE 6.20 High-frequency equivalent-circuit model of the common-source amplifier. For the common miter amplifier the values of $V_{\text {e }}$ and R_{S} arc modified to include the effects of r_{π} and $r: C_{8}$ is replaced by $C_{\pi}, V_{3^{s}}$ by V_{π}, and $C_{8^{d}}$ by C_{μ}.

The input-signal source is represented by $V_{\text {sig }}$ and $R_{\text {sig. }}$. In some cases, however, $V_{\text {sig }}$ and $R_{\text {sig }}$ would be modified values of the signal-source voltage and internal resistance, taking into account other resistive components such as a bias resistor R_{G} or R_{B}, the BJT resistance r_{x} and r_{π}, ctc. We have seen examples of this kind of circuit simplification in Sections 4.9 and 5.9. The load resistance R_{L} represents the combination of an actual load resistance (if one is connected) and the output resistance of the current-source load. To avoid loss of gain R_{L} is usually on the same order as r_{θ}. We combine R_{L} with r_{θ} and denote their paralle equivalent R_{L}^{\prime}. The load capacitance C_{L}. represents the total capacitance between drain (o collector) and ground; it includes the drain-to-body capacitance $\zeta_{d b}$ (collector-to-substrate capacitance), the input capacitance of a succeeding amplifier stage, and in some cases, as we shall see in later chapurs, a deliberately introduced capacitance. In IC MOS amplifiers, $C_{\text {, }}$ can be relatively substantial.

6.6.1 Analysis Using Miller's Theorem

In situations when $R_{\text {sig }}$ is relativcly large and C_{L} is relatively small, Miller's theorem can be used to obtain a quick but approximate estimate of the $3-\mathrm{dB}$ frequency f_{H}. We have already done this in Section 4.9 for the CS amplifier and in Section 5.9 for the CE amplifier. There fore, here we will only state the results. Figure 6.21 shows the approximate equivalent circuit obtained for the CS case, from which we see that the amplifier has a dominant pole formed

FIGURE 6.21 Approximatc cquivalent circuit obtained by applying Miller's theorem while neglecting C and the load current componcnt supplied by $C_{g d}$. This model works reasonably well when $R_{\text {sig }}$ is large and he amplifier high-frequency response is dominated by the pole formed by $R_{\text {si }}$ and $C_{\text {in }}$
by $R_{\text {sig }}$ and $C_{\text {in }}$ Thus,

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {sig }}} \cong \frac{A_{M}}{1+\frac{s}{\omega_{U}}} \tag{6.53}
\end{equation*}
$$

where

$$
A_{M}=-g_{m} R_{L}^{\prime}
$$

and the $3-\mathrm{dB}$ frequency $f_{H}=\omega_{H} / 2 \pi$ is given by

$$
f_{I I}=\frac{1}{2 \pi C_{\text {in }} R_{\text {sig }}}
$$

where

$$
C_{\text {in }}=C_{g s}+C_{g d}\left(1+g_{n k} R_{t,}^{\prime}\right)
$$

6.6.2 Analysis Using Open-Circuit Time Constants

The method of open-circuit time constants presented in Section 6.4 .3 can be directly applied to the CS equivalent circuit of Fig. 6.20, as illustrated in Fig. 6.22, from which we see that the resistance seen by $C_{R s}, R_{g s}=R_{s i g}$ and that seen by C_{L} is R_{L}^{\prime}. The resistance $R_{g d}$ seen by $C_{8 d}$ can be found by analyzing the circuit in Fig. $6.22(\mathrm{~h})$ with the result that

$$
R_{R d}=R_{\text {sig }}\left(1+g_{m} R_{L}^{\prime}\right)+R_{L}^{\prime}
$$

(a)
(b)

(c)

FIGURE 6.22 Application of the open-circuit time-constants method to the CS equivalenc circuit of Fig. 6.20.

Thus the effective time-constant b_{1} or τ_{H} can be found as

$$
\begin{align*}
\tau_{H} & =C_{g s} R_{2 s}+C_{g d} R_{g d}+C_{L} R_{C_{L}} \\
& =C_{g s} R_{\text {siq }}+C_{g d}\left[R_{\text {sig }}\left(1+g_{m} R_{L}^{\prime}\right)+R_{L}^{\prime}\right]+C_{I} R_{L}^{\prime} \tag{6.57}
\end{align*}
$$

nd the 3 - dB frequency f_{H} is

$$
\begin{equation*}
f_{H} \cong \frac{1}{2 \pi \tau_{I I}} \tag{6.58}
\end{equation*}
$$

For situations in which C_{L} is substantial, this approach yields a better estimate of $f_{I I}$ than that obtained using the Miller equivalence (simply because in the latter case we completely neglected C_{L}).

6.6.3 Exact Analysis

The approximate analysis presented above provides insight regarding the mechanism by which and the extent to which the various capacitances limit the high-frequency gain of the CS (and CE) amplifiers. Nevertheless, given that the circuit of Fig. 6.20 is relatively simple, it is instructive to also perform an cxact analysis. ${ }^{9}$ This is illustrated in Fig. 6.23. A node equation at the drain provides

$$
s C_{8 d}\left(V_{g s}-V_{b}\right)=g_{m} V_{g s}+\frac{V_{o}}{R_{L}^{\prime}}+s C_{L} V_{o}
$$

which can be manipulated to the form

$$
\begin{equation*}
V_{g s}=\frac{-V_{o}}{g_{m} R_{L}^{\prime}} \frac{1+s\left(C_{L}+C_{g d}\right) R_{L}^{\prime}}{1-s C_{g d} / g_{m}} \tag{6.59}
\end{equation*}
$$

A loop cquation at the input yields

$$
V_{\mathrm{sig}}=I_{i} R_{\mathrm{sig}}+V_{g s}
$$

in which we can substitute for I_{i} from a node equation at G ,

$$
I_{i}=s C_{g s} V_{g s}+s C_{g d}\left(V_{g s}-V_{o}\right)
$$

FIGURE 6.23 Analysis of the CS high-frequency equivalent circuit

9 "Exact" only in the sense that we are not making approximations in the circuil-analysis process. The reader is reminded, however, that the high-frequency model itself represents an approximation of the device performance.
to obtain

$$
V_{\text {sig }}=V_{g s}\left[1+s\left(C_{g s}+C_{y d}\right) R_{\text {sig }}\right]-s C_{y d} R_{\text {sig }} V_{o}
$$

We can now substitute in this equation for $V_{s s}$ from Eq . (6.59) to obtain an equation in V and $V_{\text {sig }}$ that can be arranged to yicld the amplificr gain as
$\frac{V_{o}}{V_{\text {sig }}}=\frac{-\left(g_{m t} R_{t}^{\prime}\right)\left[1-s\left(C_{g d} / g_{m}\right)\right]}{1+s\left\{\left\{C_{g_{s}}+C_{g_{d}}\left(1+g_{m} R_{L}^{\prime}\right)\right] R_{\text {sig }}+\left(C_{L}+C_{g d}\right) R_{L}^{\prime}\right\}+s^{2}\left[\left(C_{L}+C_{g d}\right) C_{g_{s}}+C_{L} C_{g d}\right] R_{\text {sig }} R_{L}^{\prime}}$

The transfer function in Eq. (6.60) indicates that the amplifier has a second-order denominator, and hence two poles. Now, since the numerator is of the first order, it follows that one of the two transmission zeros is at infinite frequency. This is readily verifiable by noting that as s approaches $\infty,\left(V_{o} / V_{\text {sig }}\right)$ approaches zero. The second zero is at

$$
\begin{equation*}
s=s_{Z}=\frac{g_{m}}{C_{z d}} \tag{6.01}
\end{equation*}
$$

That is, it is on the positive real axis of the s-plane and has a frequency ω_{Z},

$$
\omega_{z}=g_{m} / C_{g d}
$$

Since g_{m} is usually large and $C_{p d}$ is usually small, f_{7} is normally a very high frequency and thus has negligible effect on the value of f_{H}
It is useful at this point to show a simple method for finding the value of s at which $V_{o}=0$-that is, s_{z}. Figure 6.24 shows the circuit at $s=s_{z}$. By definition, $V_{o}=0$ and node equation at D yields

$$
s_{Z} C_{g d} V_{g s}=g_{n t} V_{g s}
$$

Now, since $V_{8 s}$ is not zero (why not?), we can divide both sides by $V_{8 s}$ to obtain

$$
\begin{equation*}
s_{Z}=\frac{g_{m}}{C_{y d}} \tag{6.63}
\end{equation*}
$$

Beforc considering the poles, we should note that in Eq. (6.60), as s goes toward 7.ero, $V_{o} / V_{\text {sig }}$ approaches the dc gain $\left(-g_{m} R_{L}\right)$, as should be the case. Let's now take a closer look at the denominator polynomial. First, we observe that the coefficient of the s term is equal to the elfective time-constant τ_{H} obtained using the open-circuit time-constants method as given by Eq. (6.57). Again, this should have been expected since it is the basis for the open-circuit

FIGRE 6.24 The CS circuit at $s=s_{z}$. The output voltağ $V_{n}=0$, enabling us to deccrmine s_{z} from a node equation al D .
time-constants method (Section 6.4.3). Next, denoting the frequencies of the two poles $\omega_{P 1}$ and $\omega_{p 2}$, we can express the denominator polynomial $D(s)$ as

$$
\begin{align*}
D(s) & =\left(1+\frac{s}{\omega_{P 1}}\right)\left(1+\frac{s}{\omega_{P 1}}\right) \\
& =1+s\left(\frac{1}{\omega_{P 1}}+\frac{1}{\omega_{P 2}}\right)+\frac{s^{2}}{\omega_{P 1} \omega_{P 2}} \tag{6.64}
\end{align*}
$$

Now, if $\omega_{P 2} \gg \omega_{P 1}$-that is, the pole at $\omega_{P 1}$ is dominant-we can approximate $D(s)$ as

$$
\begin{equation*}
D(s) \cong 1+\frac{s}{\omega_{P 1}}+\frac{s^{2}}{\omega_{P 1} \omega_{P_{2}}} \tag{6.65}
\end{equation*}
$$

Equating the coefficients of the s term in denominator polynomial of $\mathbf{E q}$. (6.60) to that of the term in Eq. (6.65) gives

$$
\begin{equation*}
\omega_{P 1} \cong \frac{1}{\left[C_{g s}+C_{g_{d} d}\left(1+g_{m} R_{L}^{\prime}\right)\right] R_{\text {sig }}+\left(C_{L}+C_{g d}\right) R_{l}^{\prime}} \tag{6.66}
\end{equation*}
$$

here the approximation is chat involved in Eq. (6.65). Note that the expression in Eq. (6.66) is dentical to the result obtained using open-circuit time constants and a little different from the result obtained using the Miller cquivalence, the difference being the term $\left(C_{I .}+C_{g_{d} d}\right) R_{l}$ lated to the capacitance at the output, which was ignored in the original (simple) Miller deri ation. Equating the coefficients of $s^{\text {i }}$ in Eqs. (6.60) and (6.65) and using Eq. (6.66) gives the fequency of the sccond pole.

$$
\omega_{l^{\prime}, 2}=\frac{\left.\mid C_{g s}+C_{g d}\left(1+g_{m} R_{L}^{\prime}\right)\right] R_{\mathrm{sig}}+\left(C_{L}+C_{g s}\right) R_{L}^{\prime}}{\left[\left(C_{L}+C_{g d}\right) C_{Q s}+C_{L} C_{g d}\right] R_{L}^{\prime} R_{\mathrm{sig}}}
$$

(6.67)

A CMOS common-source amplificr of the type shown in Fig. 6.18(a) has $W / L=7.2 \mu \mathrm{~m} / 0.36 \mu \mathrm{~m}$ for all transistors, $\mu_{n} C_{o x}=387 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=86 \mu \mathrm{~A} / \mathrm{V}^{2}, I_{\mathrm{R} A: 1}=100 \mu \mathrm{~A}, V_{A n}^{\prime}=5 \mathrm{~V} / \mu \mathrm{m}$ and $\left|V_{A p}^{\prime}\right|=6 \mathrm{~V} / \mu \mathrm{m}$. For $Q_{1}, C_{p s}=20 \mathrm{fF}, C_{8, d}=5 \mathrm{fF}, C_{L}=25 \mathrm{fF}$, and $R_{\text {sig }}=10 \mathrm{k} \Omega$ Assume that C_{l} includes all the capacitances introduced by Q_{2} at the output node. Find $f_{l l}$ ing both the Miller equivalence and the open-circuit time consiants. Also, determinc the exact values of $\int_{P 1}, f_{P 2}$, and f_{Z} and hence providc another estimatc for f_{H}.

Solution

$$
I_{D}=I_{\text {RI: }}=100 \mu \mathrm{~A}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right) V_{O V}^{2}
$$

Thus,

$$
100=\frac{1}{2} \times 387 \times\left(\frac{7.2}{0.36}\right) V_{O V}^{2}
$$

which results in

$$
V_{O V}=0.16 \mathrm{v}
$$

Thus,

$$
\begin{aligned}
& g_{m}=\frac{I_{D}}{V_{O V} / 2}=\frac{100 \mu \mathrm{~A}}{(0.16 / 2) \mathrm{V}}=1.25 \mathrm{~mA} / \mathrm{V} \\
& r_{o 1}=\frac{V_{A n}}{I_{D}}=\frac{5 \times 0.36}{0.1}=18 \mathrm{k} \Omega \\
& r_{o 2}=\frac{\left|V_{A,}\right|}{I_{D}}=\frac{6 \times 0.36}{0.1}=21.6 \mathrm{k} \Omega \\
& R_{L L}^{\prime}=r_{o 1}\left\|r_{o 2}=18\right\| 21.6=9.82 \mathrm{k} \Omega \\
& A_{M}=-g_{m} R_{L}^{\prime}=-1.25 \times 9.82=-12.3 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

Using the Miller equivalence

$$
\begin{aligned}
C_{\mathrm{in}} & =C_{g,}+C_{g d}\left(1+g_{m 2} R_{L}^{\prime}\right) \\
& =20+5(1+12.3) \\
& =86.5 \mathrm{fF} \\
f_{H} & =\frac{1}{2 \pi C_{\text {in }} R_{\text {sig }}} \\
& =\frac{1}{2 \pi \times 86.5 \times 10^{-15} \times 10 \times 10^{3}}=184 \mathrm{MHz}
\end{aligned}
$$

Using the open-circuit time-constants method:

$$
\begin{aligned}
R_{g s} & =R_{\mathrm{sig}}=10 \mathrm{k} \Omega \\
R_{g d} & =R_{\mathrm{sig}}\left(1+g_{m g} R_{L}^{\prime}\right)+R_{L}^{\prime}
\end{aligned}
$$

$$
=10(1+12.3)+9.82=142.8 \mathrm{k} \Omega
$$

$$
R_{C_{L}}=R_{L}^{\prime}=9.82 \mathrm{k} \Omega
$$

Thus,

$$
\begin{aligned}
\tau_{g s} & =C_{g s} R_{g s}=20 \times 10^{-15} \times 10 \times 10^{3}=200 \mathrm{ps} \\
\tau_{g d} & =C_{g d} R_{g d}=5 \times 10^{-15} \times 142.8 \times 10^{3}=714 \mathrm{ps} \\
\tau_{C_{L}} & =C_{L} R_{C_{L}}=25 \times 10^{-15} \times 9.82 \times 10^{3}=246 \mathrm{ps}
\end{aligned}
$$

which can be surnmed to obtain τ_{H} as

$$
\tau_{H}=\tau_{8 s}+\tau_{g d}+\tau_{C_{L}}=1160 \mathrm{ps}
$$

from which we find the $3-\mathrm{dB}$ frequency f_{H},

$$
f_{H}=\frac{1}{2 \pi \tau_{H}}=\frac{1}{2 \pi \times 1160 \times 10^{-12}}=137 \mathrm{MHz}
$$

We note that this is about 25% lower than the estimate obtained using the Miller equivalence The discrepancy is mostly a result of neglecting C_{L} in the Miller approach. Note that C_{L} here ha a substantial magnitude and that its contribution to τ_{H} is significant (246 ps of the total 1160 ps or 21%).

To determine the exact locations of the zero and the poles, we use the transfer function in
Eq. (6.60). The frequency of the zcro is given by Eq. (6.62).

$$
f_{z}=\frac{1}{2 \pi} \frac{g_{m}}{C_{g d}}=\frac{1}{2 \pi} \frac{1.25 \times 10^{-3}}{5 \times 10^{-15}}=40 \mathrm{GHz}
$$

The frequencies $\omega_{P 1}$ and $\omega_{P 2}$ are found as the roots of the equation obtained by equating the denominator polynomial of Eq. (6.60) to zero

$$
1+1.16 \times 10^{-9} s+0.0712 \times 10^{-18} s^{2}=0
$$

The result is

$$
f_{P 1}=145.3 \mathrm{MHz}
$$

and

$$
f_{\mu_{2}}=2.45 \mathrm{GHz}
$$

Since $f_{Z}, f_{P_{2}} \gg f_{P_{1} 1}$, a good estimate for f_{H} is

$$
f_{H} \cong f_{P 1}=145.3 \mathrm{MHz}
$$

Finally, we note that the estimate of $f_{P_{1}}$ obtained using Eq: (6.66) is about 5% lower than the exact value. Similarly, the estimate of f_{H} obtained using open-circuit time constants is 5% lower than the estimate found using the exact value of $f_{P 1}$.

ExERCSES

617. For the CS amplifier in Example 6.9 , ustry the value of $f \%$ determined by the exact analy yis, tind the gain-bandwidh product: Also, convince yourself that this is the frequency at which the gain magnituc educes to unity.
Ans. GBW $=1.79 \mathrm{GHz}$; since this is lower than f_{p}, then $f=179 \mathrm{GHz}$
6.38 As a way to trade sain for bandwidth, the destrner of the CS amplifier in Example 6.9 connects a loac resistor at the cutput that recuits in batying the value of R_{y}^{\prime} Find the new valtes of A_{M}. fir (using $f_{i j}=f_{p l}$ of $E 4.6 .66$, and f.
Ans 6.15 V/V: $226 \mathrm{MHz}: 1.39 \mathrm{GHz}$
6.19. As another way to trade de gain for bandwidith the designer of the CS amplifier in Example 6.9 decides to operate the amplifying transistor at double the value of V_{O} by fncreasing the bias curtent fourfola to operate the amplifying transistor at double the value of ov by mereasing the bras current ourtof $f_{P 1}$ given in Eq. (6,66).
Ans: 2.5 mAV , $2.46 \mathrm{k} \Omega .6 .15 \mathrm{VN}: 252 \mathrm{MHz}: 252 \mathrm{MHz}: 1.55 \mathrm{GHz}$

6.6.4 Adapting the Formulas for the Case of the CE Amplifier

Adapting the formulas presented above to the case of the CE amplifier is straightforward. First, note from Fig. 6.25 how $V_{\text {sig }}$ and $R_{\text {sigi }}$ are modified to take into account the effect of r_{x} and r_{π}

$$
\begin{aligned}
& V_{\text {sig }}^{\prime}=V_{\text {sig }} \frac{r_{\pi}}{R_{\text {sig }}+r_{x}+r_{n}} \\
& R_{\text {sig }}^{\prime}=r_{\pi} \|\left(R_{\text {sig }}+r_{x}\right)
\end{aligned}
$$

(a)

(b)

FIGURE 6.25 (a) High-frequency equivalent circuit of the common-emitter amplifier. (b) Equivalent circuit obtained after the Thévcnin theorem is employed to simplify the resistive circuil at the input.

Thus the dc gain is now given by

$$
A_{M}=-\frac{r_{\pi}}{R_{\text {sig }}+r_{x}+r_{\pi}}\left(g_{i m} R_{z}^{\prime}\right)
$$

Using Miller's theorem we obtain

$$
\begin{equation*}
C_{\text {in }}=C_{\pi}+C_{\mu}\left(1+g_{m} R_{L}^{\prime}\right) \tag{6.71}
\end{equation*}
$$

Correspondingly, the $3-\mathrm{dB}$ frequency f_{H} can be estimated from

$$
\begin{equation*}
f_{I I} \cong \frac{1}{2 \pi C_{\mathrm{in}} R_{\text {sig }}^{\prime}} \tag{6.72}
\end{equation*}
$$

Alternatively, using the method of open-circuit time constants yields

$$
\begin{aligned}
\tau_{H} & =C_{\pi} R_{\pi}+C_{\mu} R_{\mu}+C_{L} C_{C_{L}} \\
& =C_{\pi} R_{\text {sig }}^{\prime}+C_{\mu}\left[\left(1+g_{m} R_{L}^{\prime}\right) R_{\text {sig }}^{\prime}+R_{I}^{\prime}\right]+C_{L} R_{L}^{\prime}
\end{aligned}
$$

from which f_{H} can be estimated as

$$
\begin{equation*}
f_{H} \cong \frac{1}{2 \pi \tau_{H}} \tag{6.74}
\end{equation*}
$$

The exact analysis yields the following zcro frequency

$$
f_{L}=\frac{1}{2 \pi} \frac{g_{m}}{C_{\mu}}
$$

and assuming that a dominant pole cxists,

$$
\begin{align*}
& f_{P_{1}} \cong \frac{1}{2 \pi} \frac{1}{\left[C_{\pi}+C_{\mu}\left(1+g_{m} R_{L}^{\prime}\right)\right] R_{\text {sig }}^{\prime}+\left(C_{L}+C_{\mu}\right) R_{L}^{\prime}} \tag{6.76}\\
& f_{P_{2}} \cong \frac{1}{2 \pi} \frac{\left[C_{\pi}+C_{\mu}\left(1+g_{m} R_{L}^{\prime}\right)\right] R_{\text {sig }}^{\prime}+\left(C_{L}+C_{\mu}\right) R_{L}^{\prime}}{\left[C_{\pi}\left(C_{L}+C_{\mu}\right)+C_{L} C_{\mu}\right] R_{\text {sig }}^{\prime} R_{L}^{\prime}} \tag{6.77}
\end{align*}
$$

For $f_{Z}, f_{P 2} \Rightarrow f_{P 1}$
$f_{H} \cong f_{P 1}$

ExERGME

6.20 Consider a bipolar active loaded CF amplifier having the load current-source implemented with a ppp transistof. Let the circuit be operating at a l-n A bias curtent. The transitors are specified is 0 on (a) A F (b) C, and f, usine the Miller equivalence, (c) f usins open-circtit time constants. (d) I f_{f}, f_{P}, and hence f_{H} (use the approximate expressions in Eqs, 6.76 and 677). and (e) $f_{i}:$ Ans (a) 175 V V , (b) $448 \mathrm{pF}, 82.6 \mathrm{kHz}$, (c) 75.1 kHz , (d) $21.2 \mathrm{GHz}, 75,1 \mathrm{kHz}, 25.2 \mathrm{MHz}, 75 . \mathrm{kHz}$ (e) 13.1 MHz

6.6.5 The Situation When $R_{\text {sig }}$ Is Low

There are applications in which the CS amplifier is fed with a low-resistance signal source Obviously, in such a case, the high-frequency gain will no longer be limited by the interac tion of the source resistance and the input capacitance. Rather, the high-frequency limitation happens at the amplifier output, as we shall now show.
Figure 6.26(a) shows the high-frequency equivalent circuit of the common-source amplifier in the limiting case when $R_{\text {sig }}$ is zero. The voltage transfer function $V_{o} / V_{\text {sig }}=V_{o} / V_{g s}$ can be found by setting $R_{\text {sie }}=0$ in Eq. (6.60). The result is

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {sig }}}=\frac{\left(-g_{m} R_{L}^{\prime}\right)\left[1-s\left(C_{g d} / g_{m}\right)\right]}{1+s\left(C_{L}+C_{g d}\right) R_{L}^{\prime}} \tag{6.78}
\end{equation*}
$$

Thus, while the dc gain and the frequency of the zero do not change, the high-frequency response is now determined by a pole formed by $C_{L}+C_{g d}$ together with R_{L}^{\prime}. Thus the 3-dB frequency is now given by

$$
\begin{equation*}
f_{H}=\frac{1}{2 \pi\left(C_{L}+C_{s d}\right) R_{L}^{\prime}} \tag{6.79}
\end{equation*}
$$

To see how this pole is formed, refer to Fig. 6.26(b), which shows the equivalent circuit with the input signal source reduced to zero. Observe that the circuit reduces to a capacitance $\left.C_{L}+C_{g d}\right)$ in parallel with a resistance R_{L}.
As we have seen above, the transfer-function zero is usually at a very high frequenc and thus does not play a significant role in shaping the high-frequency response. The gain of he CS amplifier will therefore fall off at a rate of $-6 \mathrm{~dB} /$ octave ($-20 \mathrm{~dB} /$ decade) and reache

(a)

(b)

Gain (dB)

(c)

FIGURE 6.26 (a) High-frequency equivalent circuit of a CS amplifier fcd with a signal source having a very low (effectively rero) resistance. (b) The circuit with $V_{\text {siq }}$ reduced to \%ero. (c) Bode plot for the gain of the circuit in (a)
unity $(0 \mathrm{~dB})$ at a frequency f_{l}, which is equal to the gain-bandwidth product,

$$
\begin{aligned}
f_{t} & =\left|A_{M}\right| f_{H} \\
& =g_{m} R_{L}^{\prime} \frac{1}{2 \pi\left(C_{L}+C_{g d}\right) R_{I}^{\prime}}
\end{aligned}
$$

$$
f_{l}=\frac{g_{m}}{2 \pi\left(C_{L}+C_{\mathrm{g} d}\right) R_{L}^{\prime}}
$$

Figure $6.26(\mathrm{c})$ shows a sketch of the high-frequency gain of the CS amplifier.

Consider the CS amplifier specified in Examplc 6.9 when fed with a signal source having a negligible resistance (i.e., $R_{\mathrm{sig}}=0$). Find $A_{M}, f_{3 \mathrm{~dB}}, f_{t}$, and f_{7}. If the amplifying transistor is to be ligible resistan (i.e., $R_{\text {sig }}=$). I_{REF} is needed? What are the new values of $A_{M}, f_{3 \mathrm{~dB}}, f_{t}$, and f_{7} ?

Solution
In Example 6.9 wc found that

$$
A_{M}=-12.3 \mathrm{~V} / \mathrm{V}
$$

The 3-dB frequency can be found using Eq. (6.79),

$$
\begin{aligned}
f_{H} & =\frac{1}{2 \pi\left(C_{L}+C_{g d}\right) R_{L}^{\prime}} \\
& =\frac{1}{2 \pi(25+5) \times 10^{-15} \times 9.82 \times 10^{3}} \\
& =540 \mathrm{MHz}
\end{aligned}
$$

and the uuity-gain frequency, which is equal to the gain-bandwidth product, can be determined as

$$
f_{t}=\left|A_{M}\right| f_{H}=12.3 \times 540=6.6 \mathrm{GHz}
$$

The frequency of the zero is

$$
\begin{aligned}
f_{Z} & =\frac{1}{2 \pi} \frac{g_{m}}{C_{g d}} \\
& =\frac{1}{2 \pi} \frac{1.25 \times 10^{-3}}{5 \times 10^{-15}} \cong 40 \mathrm{GHz}
\end{aligned}
$$

Now, to increase $V_{O V}$ from 0.16 V to $0.32 \mathrm{~V}, I_{D}$ must be quadrupled by changing $I_{\text {REF }}$ to

$$
I_{\mathrm{REF}}=400 \mu \mathrm{~A}
$$

The new values of $g_{m}, r_{o 1}, r_{o 2}$, and $R_{\dot{L}}^{\prime}$ can be found as follows:

$$
\begin{aligned}
& g_{m}=\frac{I_{D}}{V_{O V} / 2}=\frac{400}{0.32 / 2}=2.5 \mathrm{~mA} / \mathrm{V} \\
& r_{o 1}=\frac{5 \times 0.36}{0.4 \mathrm{~mA}}=4.5 \mathrm{k} \Omega \\
& r_{o 2}=\frac{6 \times 0.36}{0.4 \mathrm{~mA}}=5.4 \mathrm{k} \Omega \\
& R_{L}^{\prime}=(4.5 \| 5.4)=2.45 \mathrm{k} \Omega
\end{aligned}
$$

Thus the new value of Λ_{M} becomes

$$
A_{M}=-g_{m} R_{L}^{\prime}=-2.5 \times 2.45=-6.15 \mathrm{~V} / \mathrm{V}
$$

That of f_{H} becomes

$$
\begin{aligned}
f_{H} & =\frac{1}{2 \pi\left(C_{L}+C_{\mathrm{Rd}}\right) R_{L}^{\prime}} \\
& =\frac{1}{2 \pi(25+5) \times 10^{-15} \times 2.45 \times 10^{3}} \\
& =2.16 \mathrm{GHz}
\end{aligned}
$$

and the unity-gain frequency (i.c., the gain-handwidth product) becomes

$$
f_{t}=6.15 \times 2.16=13.3 \mathrm{GHz}
$$

We note that doubling $V_{O V}$ results in reducing the de gain by a factor of 2 and increasing the bandwidth by a factor of 4 . Thus, the gain-bandwidth product is doubled-a good bargain!

EXERGISES

 Ans. 94.4 If
6.22 Show that the CS amplifier when fed with $R_{\text {sig }}=0$ tas a transfer-function zero whose frequency is related to f by

$$
\frac{f_{Z}}{f_{l}}=1+\frac{C_{L}}{C_{\mathrm{p}}}
$$

6.7 THE COMMON-GATE AND COMMON-BASE 2. AMPLIFIERS WITH ACTIVE LOADS

6.7.1 The Common-Gate Amplifier

Figure 6.27(a) shows the basic IC MOS common-gate amplifier. The transistor has its gate grounded and its drain connected to an active load, shown as an ideal constant-cuirent source I. The input signal source $\psi_{\text {sig }}$ with a generator resistance R_{s} is connected to the source terminal. Since the MOSFET source is not connected to the substrate, we show the substrate terminal, B , explicitly and indicate that it is connected to the lowest voltage in the circuil, in this case ground. Finally, obscrve that except for showing the current-source 1 , which determines the dc bias current $I_{\mathcal{D}}$ or the transistor, we have not shown any other bia detail. How the de voltage $V_{G S}$ will be established and how $V_{D S}$ is determined are not o concern to us here. As mentioned before, however, bias stability is usually assured through the application of negative feesback to the larger circuit of which the CG amplifier is a part For our purposes here, we shall assume that the MOSFET is operating in the saluration region and concentrate exclusively on its small-signal operation
The Body Effect Since the substrate (i.e., body) is not connected to the source, the bod cffect plays a role in the operation of the common-gate amplifier. It turns out, however, that

FIGURE 5.27 (a) Active-loaded common-gate anplifier. (b) MOSFET equivalent circuit for the CG case in which the body and gate terminals are connected to ground. (c) Small-signal analysis performed directly
taking the body effect into account in the analysis of the CG circuit is a very simple matter. To sce how this can be done, recall that the body terminal acts, in effect, as a second gate for the MOSFET. Thus, just as a signal voltage $v_{g s}$, between the gate and the source gives rise to a drain current signal $g_{m} v_{g}$, a signal voltage $v_{s s}$ between the body and the source gives rise to a drain current signal $g_{m b} v_{b s}$. Thus the drain signal current becomes $\left(g_{m m} v_{s s}+g_{m b} v_{b s}\right)$, where the body transconductance $g_{m b}$ is a small fraction χ of $g_{m} ; g_{m b}=\chi g_{m}$ and $\chi=0.1$ to 0.2 .

Now, since in the CG circuit of Fig. 6.27(a) both the gate and the body terminals are connected to ground, $v_{b s}=v_{g s}$, and the signal current in the drain hecomes $\left(g_{m}+g_{m b}\right) v_{s}$ It follows that the body effect in the common-gate circuit can be fully accounted for b simply replacing g_{m} of the MOSFET by $\left(g_{m}+g_{m b}\right)$. As an example, Fig. 6.27 (b) shows

Small-Signal Analysis The small-signal analysis of the CG amplificr can be performe either on an equivalent circuit obtained by replacing the MOSFET with its T model of Fig. 6.27 (b) or directly on the circuit diagram with the model used implicitly. We shall of for the latter approach in order to gain greater insight into circuit operation. Figure 6.27 (c) shows the CG circuit prepared for small-signal analysis. Note that we have "extracted"" r_{0} the MOSFET and shown it separately from the device. As well, we have indicated the resis tance $1 /\left(g_{m}+g_{m b}\right)$, which appears in effect hetween gate and source looking into the source. Finally, note that a resistance R_{L} is shown at the output; it is assumed to include the outpur resistance of the current-source load I as well as any load resistance if one is connected.

We now proceed to analyze the circuit of Fig. 6.27(c) to determine the various parame that characterize the CG amplifier. At this point we strongly urge the reader to consult Table 43 for a review of the definitions of amplifier characteristic parameters. This is especially useful here because the CG amplifier is not a unilateral circuit; the resistance r_{0} connects the output node to the input node, thus destroying unilateralism. As a result we should expect the amplifier input resistance R_{in} to depend on R_{L} and the output resistance $R_{\text {out }}$ to depend on R_{s}

Input Resistance To determine the input resistance $R_{\text {in }}$, we must find a way to express i in terms of v_{i}. Inspection of the circuit in Fig. 6.27(c) reveals a key observation. The input cur rent i_{i} spilts at he source node into two components. the source current $i=\left(g_{m}+g_{m b}\right) v_{i}$ and the current through $r_{o}, i_{r o}$. These two components combine at the drain to constitute the curren i_{o} supplied to R_{L}; thus $i_{o}=i_{i}$ and $v_{o}=i_{o} R_{L}=i_{i} R_{L}$. Now we can write at the source node

$$
\begin{equation*}
i_{i}=\left(g_{m}+g_{m b}\right) v_{i}+i_{r o} \tag{6.81}
\end{equation*}
$$

and express $i_{r o}$ as

$$
\begin{equation*}
i_{r o}=\frac{v_{i}-v_{o}}{r_{o}}=\frac{v_{i}-i_{i} R_{L}}{r_{o}} \tag{6.82}
\end{equation*}
$$

Equations (6.81) and (6.82) can be combined to yield

$$
i_{i}=\left(g_{m}+g_{m b}+\frac{1}{r_{o}}\right) v_{i} /\left(1+\frac{R_{L}}{r_{o}}\right)
$$

from which the input resistance $R_{\text {in }}$ can be found as

$$
R_{\mathrm{in}} \equiv \frac{v_{i}}{i_{i}}=\frac{r_{o}+R_{L}}{1+\left(g_{m}+g_{m b}\right) r_{o}}
$$

Observe that for $r_{o}=\infty, R_{\text {in }}$ reduces to $1 /\left(g_{m}+g_{m b}\right)$, which is indeed the input resistance that we found for the discrete CG amplifier analyzed in Section 4.7 .5 with r_{0} neglected (there w also neglected $g_{m b}$). When r_{o} is taken into account, this value of input resistance is obtained ingly for large values of R_{L}, ingly, for large values of R_{L} approaching infinity, $R_{\text {in }}=\infty$. This somewhat surprising resul
peration with $R_{L}=\infty \quad$ Figure 6.27 (d) shows the CG amplifier with R_{L} removed; that is, $R_{L}=\infty$ and the amplifier is operating with the output open-circuited. We immediately
that since $i_{i}=0, i_{i}$ must also be zero; the current i in the source terminal, $i=$ $\left.\left(g_{m}+g_{m b}\right)\right)_{i}$,

$$
R_{i}=\infty
$$

We can also use the circuit in Fig. 6.27 (d) to determine the open-circuit voltage gain $A_{\text {an }}$ tween the input (source) and output (drain) terminals as follows:

$$
\begin{align*}
v_{o} & =i r_{o}+v_{i} \\
& =\left(g_{m}+g_{m b}\right) r_{o} v_{i}+v_{i} \tag{6.84}
\end{align*}
$$

Thus,

$$
\begin{equation*}
A_{y o}=1+\left(g_{m}+g_{m b}\right) r_{o} \tag{6.85}
\end{equation*}
$$

This is a very important quantity that appears in almost all formulas that charactenize the C mlifier. We observe that $A_{y o}$ differs from the intrinsic gain of the MOSFET in two mino respects: First, there is an additional
$A_{v o}$ is 10% to 20% larger than A_{0}. mplifier, the CG amplifier is noninverting.
Utilizing Eqs. (6.83) and (6.85), we can express the input resistance of the CG amplifie the compact and attractive form

$$
\begin{equation*}
R_{\mathrm{in}}=\frac{r_{o}+R_{L}}{A_{y o}} \tag{6.86}
\end{equation*}
$$

That is the CG circuit divides the total resistance $\left(r_{o}+R_{L}\right)$ by the open-circuit voltage gain, mose Furthermore, since .

$$
\begin{equation*}
R_{\text {in }} \cong \frac{1}{g_{m}+g_{m b}}+\frac{R_{L}}{A_{0}} \tag{6.87}
\end{equation*}
$$

的 This expression simply says menent becomes significant only when R_{L} is large. put resistance. Testing result follows directly from the fact that $i_{i}=0$ in the circuit of 6.27 (d): The voltage drop across R_{s} will be zero. Thus $v_{i}=v_{\text {sig }}$, and the open-circuit overall voltage gain, $v_{o} / v_{\text {sig }}$, will be equal to $A_{v o}$,

$$
G_{z o}=A_{v o}=\mathrm{I}+\left(g_{m}+g_{m b}\right) r_{o}
$$

Voltrage Gain The voltage gains A_{v} and G_{v} of the loaded CG amplificr of Fig. 6.27(c) voltage Gain The voltage gains A_{v} and G_{v} direct approach is to make usc, once more f the fact that $i_{o}=i_{i}$ and express v_{o} a

$$
v_{o}=i_{o} R_{L}=i_{i} R_{L}
$$

The voltage v_{i} can be expressed in terms of i_{i} as

$$
v_{i}=i_{i} R_{\mathrm{in}}
$$

6.7 THE COMMON-GATE AND COMMON-BASE AMPLIFIERS WITH ACTIVE LOADS

絃

Dividing Eq. (6.89) by Eq. (6.90) yields, for the voltage gain A_{v},

$$
\begin{equation*}
A_{v}=\frac{v_{o}}{v_{i}}=\frac{R_{L}}{R_{\mathrm{in}}} \tag{6.91}
\end{equation*}
$$

Substifuting for $R_{\text {in }}$ from Eq. (6.86) provides

$$
A_{v}=A_{v u} \frac{R_{L}}{R_{L}+r_{o}}
$$

In a similar way we can derive an expression for the overall voltage gain, $G_{v}=v_{o} / v_{\text {sig }}$,

$$
\begin{gathered}
v_{o}=i_{o} R_{L}=i_{i} R_{L} \\
v_{\mathrm{sig}}=i_{i}\left(R_{s}+R_{\mathrm{in}}\right)
\end{gathered}
$$

Thus,

$$
\begin{equation*}
G_{v}=\frac{R_{L}}{R_{s}+R_{\mathrm{in}}} \tag{6.93}
\end{equation*}
$$

in which we can substitute for $R_{\text {in }}$ from Eq. (6.86) to obtain

$$
\begin{equation*}
G_{v}=A_{v o} \overline{R_{L}+r_{o}+A_{v v}} \frac{R_{s}}{} \tag{6.94}
\end{equation*}
$$

Recalling that $G_{v o}=A_{v o}$, we can express G_{v} as

$$
\begin{equation*}
G_{v v}=G_{v v} \frac{R_{L}}{R_{L}+r_{o}+A_{v o} R_{s}} \tag{6.95}
\end{equation*}
$$

Output Resistance To complete our characterization of the CG amplifier, we find its output resistance. From the study of amplifier characterization in Section 4.7.2 (Table 4.3), we recall that there are two different output resistances: R_{0}, which is the output resistance when v_{i} is set to zero, and $R_{\text {oub }}$, which is the output resistance when $v_{\text {sig }}$ is set to zero. Both are illustrated in Fig. 6.28. Obviously R_{o} can be obtained from the expression for $R_{\text {out }}$ by sctting $R_{s}=0$. It is important to be clear on the application of R_{0} and of $R_{\text {out }}$. Since R_{ν} is the output resistance when the amplifier is fed with an idcal source v_{i}, it follows that it is the applicablc output resistance for determining A_{v} from $A_{v o}$,

$$
\begin{equation*}
A_{y}=A_{v o} \frac{R_{l}}{R_{L l}+R_{o}} \tag{6.96}
\end{equation*}
$$

On the other hand, $R_{\text {out }}$ is the output resistance when the amplifier is fed with $v_{\text {sis }}$ and its resistance R_{s}; thus it is the applicable output resistance for determining G_{v} from $G_{v o}$,

$$
\begin{equation*}
G_{v v}=G_{v v} \frac{R_{L}}{R_{L}+R_{\mathrm{ou}}} \tag{6.97}
\end{equation*}
$$

Returning to the circuit in Fig. 6.28(a), we see by inspection that

$$
\begin{equation*}
R_{o}=r_{o} \tag{6.98}
\end{equation*}
$$

A quick verification of this result is achieved by substituting $R_{o}=r_{o}$ in Eq. (6.96) and then observing that the resulting expression for A_{v} is identical to that in Eq. (6.92), which we derived directly from circuit analysis.

An expression for $R_{\text {vut }}$ can be derived using the cireuit in Fig, 6.28(b) where a test voltage v_{x} is applied at the output. Our goal to find the current i_{x} drawn from v_{x}. Toward that

(a)

(b)

FIGURE 6.28 (a) The output resistance R_{o} is found by setting $v_{i}=0$. (b) The output resistance $R_{o \mathrm{oix}}$ is obtained by setting $\tilde{u}_{\text {sig }}=0$.
nd note that the current through R_{s} is equal to i_{r}; thus we can express the voltage v at the MOSFET source as

$$
v=i_{x} R_{s}
$$

Utilizing the analysis indicated on the circuit diagram in Fig. 6.28(b), we can write for v_{x}

$$
v_{\mathrm{r}}=\left[i_{x}+\left(g_{m}+g_{m b}\right) v\right] r_{o}+v
$$

Equations (6.99) and (6.100) can be combined to eliminate v and obtain v_{x} in terms of i_{x} and hence $R_{\text {out }} \equiv v_{x} / i_{x}$,

$$
R_{\mathrm{out}}=r_{o}+\left[1+\left(g_{m}+g_{m i}\right) r_{o}\right] R_{s}
$$

We recognize the term multiplying R_{s} as the open-circuit voltage gain $A_{v o}$; thus $R_{\text {out }}$ can be expressed in an altermative, more compact form as

$$
R_{\text {out }}=r_{o}+A_{v o} R_{s}
$$

A quick verification of the formula for $R_{\text {out }}$ in Eq. (6.102) can be obtained by substituting it in Eq. (6.97) The rcsult will be seen to be identieal to the gain expression in Eq. (6.95) which we derived by direct circuit analysis.
The expressions for $R_{\text {out }}$ in Eqs. (6.101) and (6.102) are very useful results that we will mploy frequently throughout the rest of this book. These formulas give the output resistance not only of the CG amplifier but also of a CS amplifier with a resistance R_{s} in the emitter We will have more to say about this shortly. At this point, however, it is useful to interpret Eqs. (6.101) and (6.102). A first interpretation, immediately available from Eq. (6.102), is that the CG transistor increases the output resistance by adding to r_{o} a component $A_{v o} R_{s}$. In many cases the latter component would dominate, and one can think of the CG MOSFET
as multiplying the resistance R_{s} in its source by A_{20}, which is approximately equal to $g_{i n} r_{0}$. Note that this action is the coimplement of what we saw earlier in regard to $R_{\text {in }}$ where the
MOSFET acts to divide R_{L} by MOSFET acts to divide R_{L} by $A_{z o}$. This impedance transformation action of the CG MOSFET is illustrated in Fig. 6.29 and is key to a number of applications of the CG circuit. One such application involves the use of the CG amplifier as a current buffer. Figure 6.30 sbows equivalent circuit that is suitable for such an application. The reader is urged to show that overall short-circuit current gain $G_{i s}$ is given by

$$
G_{i s}=G_{i o g} \frac{R_{s}}{R_{\text {out }}} \cong 1
$$

The near-unity current gain together with the low input resistance and high output resistance are all characteristics of a good current buffer.
Yet another interprctation of the formula for $R_{\text {out }}$ can be obtained by expressing Eq. (6.101)
in the form

$$
R_{\text {out }}=R_{s}+\left[1+\left(g_{m}+g_{m b}\right) R_{s}\right] r_{o}
$$

FIGURE 6.29 The impedance transformation property of the CG configuration.

FIGURE 6.30 Equivaleat circuit of the CG amplificr illustrating its application as a current buffer. R_{in} and $R_{\text {out }}$ are given in Fig. 6.29, and $G_{i s}=A_{\text {vo }}\left(R_{s} / R_{\text {out }}\right) \simeq$

This expression the second term often dominates, enabling the following approximation:

$$
R_{\text {out }} \simeq\left[1+\left(g_{m}+g_{m b}\right) R_{s}\right] r_{o}
$$

$$
\begin{equation*}
\simeq\left(1+g_{m} R_{s}\right) r_{o} \tag{6.104}
\end{equation*}
$$

Thus placing a resistance R_{s} in the source lead results in multiplying the transistor output esistance r_{o} by a factor that we recognize from our discussion of the effect of source degenration in Section 4.7.4. We will have more to say about Eq. (6.104) later.

High-Frequency Response Figure 6.31(a) shows the CG amplifier with the MOSFET nternal capacitances $C_{g s}$ and $C_{g d}$ indicated. For generality, a capacitance C_{L} is included he output node to represent the input capacitance of a succeeding amplifier stage. Capacitance C_{L} also includes the MOSFET capacitance $C_{d b}$. Note the C_{L} appears in effect in paralle with $C_{q d}$, therefore, in the following discussion we will lump the two capacitances togethcr
It is imporiant to note at the outset that cach of the three capacilances in the circuit of fig. 6.31 (a) has a grounded node. Therefore none of he capacitances nidergoes the Miller nultiplication effect observed in the CS stage. It follows that the CG circuit can be designed oh have a much wider bandwidth than that of the CS circuit, especially when the resistance of the signal generator is large

(b)

AGURE 6.31 (a) The common-gate amplifier with the transistor internal capaciiances shown. A load capacitance C_{T} is also included. (b) Equivalent circuit for the case in which r_{G} is neglected.

Analysis of the circuit in Fig. 6.31(a) is greatly simplified if r_{0} can be neglected. In such case the input side is isolated from the output side, and the high-frequency equivalent circuit akes the form shown in Fig. 6.31(b). We immediately observe that there are two poles: one the input side with a frequency $f_{P_{1}}$;

$$
f_{P 1}=\frac{1}{2 \pi C_{g s}\left(R_{s} \| \frac{1}{g_{n}+g_{m b}}\right)}
$$

and the other at the output side with a frequency $f_{P 2}$,

$$
f_{P 2}=\frac{1}{2 \pi\left(C_{g d}+C_{L}\right) R_{L}}
$$

The relative locations of the two poles will depend on the specific situation. However, $f_{P_{2}}$ is usually lower than $f_{p_{1}}$; thus $f_{p_{2}}$ can be dominant. The important point to note is that hoth $f_{P 1}$ and $f_{P 2}$ are usually much higher than the frequency of the dominant input pole in the CS stage.
In situations when r_{o} has to be taken into account (because R_{s} and R_{L} are large), the method of open-circuit time constants can be employed to obtain an estimate for the $3-\mathrm{dB}$ frequency f_{H}. Figure 6.32 shows the circuits for deternining the resistances $R_{g s}$ and $R_{g d}$ seen by $C_{g s}$ and ($C_{g d}+C_{L}$), respectively. By inspection we obtain

$$
R_{g s}=R_{s} \| R_{\mathrm{in}}
$$

and

$$
\begin{equation*}
R_{g d}=R_{l, \|} \| R_{\text {out }} \tag{6.108}
\end{equation*}
$$

which can be used to obtain f_{H},

$$
f_{H}=\frac{1}{2 \pi\left[C_{g s} R_{g s}+\left(C_{g d}+C_{L}\right) R_{g d t}\right]}
$$

(a)
(b)

FIGURE 6.32 Circuits for determining $R_{g s}$ and $R_{g d t}$

Consider a common-gate amplifier specified as follows: $W / L=7.2 \mu \mathrm{~m} / 0.36 \mu \mathrm{~m}, \mu_{n} C_{o x}=$ $387 \mu \mathrm{~A} / \mathrm{V}^{2}, r_{o}=18 \mathrm{k} \Omega, I_{D}=100 \mu \mathrm{~A}, g_{m}=1.25 \mathrm{~mA} / \mathrm{V}, \chi=0.2, R_{s}=10 \mathrm{k} \Omega, R_{l}=100 \mathrm{k} \Omega$, $C_{g s}=20 \mathrm{fF}, C_{g d}=5 \mathrm{fF}$, and $C_{L}=0$. Find $A_{v o}, R_{\text {in }}, R_{\text {out }}, G_{v}, G_{i s}, G_{i}$, and S_{H}

Solution
$g_{m}+g_{m b}=1.25+0.2 \times 1.25=1.5 \mathrm{~mA} / \mathrm{V}$
$A_{v o}=1+\left(g_{m}+g_{m b}\right) r_{o}=1+1.5 \times 18=28 \mathrm{~V} / \mathrm{V}$
$R_{\mathrm{in} 2}=\frac{r_{o}+R_{L}}{\Lambda_{v o}}=\frac{18+100}{28}=4.2 \mathrm{k} \Omega$
$R_{\text {out }}=r_{o}+A_{t v} R_{s}=18+28 \times 10=298 \mathrm{k} \Omega$
$G_{v}=G_{v o} \frac{R_{L}}{R_{L}+R_{\text {out }}}=A_{v o} \frac{R_{L}}{R_{L}+R_{\text {out }}}=28 \frac{100}{100+298}=7 \mathrm{~V} / \mathrm{V}$
$G_{i s}=\frac{A_{v p} R_{s}}{R_{\text {out }}}=\frac{28 \times 10}{298}=0.94 \mathrm{~A} / \mathrm{A}$
$G_{i}=G_{i s} \frac{R_{\text {out }}}{R_{\text {out }}+R_{L}}=0.94 \frac{298}{298+100}=0.7 \mathrm{~A} / \mathrm{A}$
$R_{g s}=R_{s}\left\|R_{\text {in }}=10\right\| 4.2=3 \mathrm{kS} \Omega$
$R_{\mathrm{g}^{d} d}=R_{I}\left\|R_{\text {out }}=100\right\| 298=75 \mathrm{k} \Omega$
$\tau_{H}=C_{g s} R_{g s}+C_{g d} R_{g d}$

$$
=20 \times 3+5 \times 75
$$

$$
=60+375=435 \mathrm{ps}
$$

$$
f_{H} \cong \frac{1}{2 \pi \tau_{H}}=\frac{1}{2 \pi \times 435 \times 10^{12}}=366 \mathrm{MHz}
$$

We note that this circuit performs well as a current bulfer. raising the resistance level from $R_{\text {in }}=$ $4 \mathrm{k} \Omega$ to $R_{\text {out }} \cong 300 \mathrm{k} \Omega$ and having an overall short-circuit current gain of $0.94 \mathrm{~A} / \mathrm{A}$. Because of the high output resistance, the amplificr bandwidth is determined primarily by the capacitance at the output node. Thus additioual load capacitance can lower the handwidth significantly.

EXERCISES

6.23 For the CG aimplifier considered in Example 6.11 , ind the value of f_{H} when a capacitance $C_{L}=5 \mathrm{ff}$ is comected at the output:
Ans $106 \mathrm{MH}_{2}$
6.24 Repeat the problem in Example 6.11 for the case $R_{s}=1 \mathrm{kS} 2$ and $R_{L}=10 \mathrm{kS}$. Ans, $A=28 \mathrm{VV} ; R_{\mathrm{n}}=1 \mathrm{k} \Omega, R_{\text {out }}=46 \mathrm{k} 2, G_{v}=5 \mathrm{VV}, G_{i s}=0.61 \mathrm{AAA}, G_{i}=0.5 \mathrm{~A} / \mathrm{A}, f_{n}=261 \mathrm{GHz}$

6.7.2 The Common-Base Amplifier

Analysis of the common-base amplifier parallels that of the common-gate circuit that w signal current, which gives rise to the resist The BJT has a finite β, and its base conduct into the base. Figure 6.33 (a) shows the basic circuit for the base and emitter, looking

(2)

(c) circuit diagram with hetive BJT T model used implicity. (c) Small-signal analysis with the output open-circuited
amplifier without the bias details. Note that resistance R_{L} represents the combination of a load resistance, if any, and the output resistance of the cnrrent source that realizes the active load I.

Figure $6.33(\mathrm{~b})$ shows the small-signal analysis performed directly on the circuit with the T model of the BJT used implicitly. The analysis is very similar to that for the MOS case except that, as a result of the finite base current, v_{i} / r_{π}, the current i_{o} is related to i_{i} by

$$
i_{o}=i_{i}-v_{i} / r_{\pi}
$$

(6.110)

The reader can show that, neglecting r_{x}, the input resistance at the emitter $R_{\text {in }}$ is given by

$$
\begin{equation*}
R_{\mathrm{in}}=\frac{r_{o}+R_{L}}{1+\frac{r_{o}}{r_{e}}+\frac{R_{L}}{(\beta+1) r_{e}}} \tag{6.111}
\end{equation*}
$$

We immediately observe that setting $\beta=\infty$ reduces this expression to that for the MOS case (Eq. 6.83) except that here $g_{m i}=0$. Note that for $\beta=\infty, \alpha=1$, and $r_{e}=\alpha / g_{m}=1 / / g_{m}$ With a slight approximation, the expression in Eq. (6.111) can be written as

$$
\begin{equation*}
R_{\mathrm{in}} \cong r_{e} \frac{r_{o}+R_{L}}{r_{o}+R_{L} /(\beta+1)} \tag{6.112}
\end{equation*}
$$

Note that setting $r_{o}=\infty$ yields $R_{\text {in }}=r_{e}$, which is consistent with what we found in Section 5.7.5. Also, for $R_{L}=0, R_{\mathrm{in}}=r_{\epsilon}$. The value of R_{in} increases as R_{L} is raised, reaching a maximum of $(\beta+1) r_{e}=r_{\pi}$ for $R_{L}=\infty$, that is, with the amplifier operating open-circuited (see Fig. 6.33c). For $R_{L} /(\beta+1) \ll r_{0}$, Eq. (6.112) can be approximated as

$$
\begin{equation*}
R_{\mathrm{inf}} \cong r_{e}+\frac{R_{L}}{A_{0}} \tag{6.113}
\end{equation*}
$$

where A_{0} is the intrinsic gain $g_{m} r_{o}$. This equation is very similar to Eq . (6.87) in the MOSFET case.

The open-circuit voltage gain and inpnt resistance can be easily found from the circuit in Fig. 6.33(c) as

$$
\begin{equation*}
A_{v o}=1+g_{m} r_{o}=1+A_{0} \tag{6.114}
\end{equation*}
$$

which is identical to Eq. (6.85) for the MOSFET except for the absence of $g_{m b}$. The input resistance with no load, R_{i}. is

$$
R_{i}=r_{\pi}
$$

(6.115)
as we have already found out from Eq. (6.112)
As in the MOSFET case, the output resistance R_{ρ} is given by

$$
\begin{equation*}
R_{o}=r_{o} \tag{6.116}
\end{equation*}
$$

The output resistance including the source resistance R_{e} can be found by analysis of the circuit in Fig. 6.34 to be

$$
\begin{equation*}
R_{\text {out }}=r_{o}+\left(1+g_{g_{m}} r_{o}\right) R_{e}^{\prime} \tag{6.117a}
\end{equation*}
$$

where $R_{e}^{\prime}=R_{e} \| r_{\pi}$
Note that the formula in Eq. (6.117a) is very similar to that for the MOS case, namely Eq. (6.101). However, there are two differences: First, $g_{m b}$ is missing, and second, $R_{e}^{\prime}=R_{e} \| r_{\pi}$

FIGURE 6.34 Analysis of the CB circuit determine $R_{\text {out }}$ Observe that the current $i_{\text {s }}$ tha currents v / r_{x} and v / R that leave the transistor, that is, $i_{x}=v / r_{\vec{T}}+v / R_{e}$.
eplaces R. The reason r_{T} appears in the BJT formula is the finite β of the BJT. The expres ion in Eq. (6.117a) can also be written in terms of the open-circuit voltage gain $A_{y /}$ as

$$
R_{\text {out }}=r_{o}+A_{v o} R_{e}^{\prime}
$$

(6.117b)
which is the BJT counterpart of the MOS expression in Eq. (6.102). Another useful form for $R_{\text {out }}$ can be obtained from (6.117a),

$$
\begin{equation*}
R_{\mathrm{out}}=R_{e}^{\prime}+\left(1+g_{m} R_{e}^{\prime}\right) r_{o} \tag{6.117c}
\end{equation*}
$$

which is the BJT counterpart of the MOS expression in Eq. (6.103). In Eq. (6.117c) the second erm is much larger than the first, resulting in the approximate expression

$$
R_{\mathrm{out}} \cong\left(1+g_{m} R_{e}^{\prime}\right) r_{o}
$$

which corresponds to Eq. (6.104) for the MOS case
Equation (6.118) clearly indicates that the inclusion of an emitter resistance R_{e} increases he CB output resistance by the factor $\left(1+g_{m} R_{e}^{\prime}\right)$. Thus, as R_{ρ} is increased from 0 to ∞, the utput resistance increases from r_{0} to $\left(1+g_{m} r_{\pi}\right) r_{0}=(1+\beta) r_{o} \cong \beta r_{o}$. This upper limit on the value of $R_{\text {oul }}$, dictated by the finite β of the BJT, has no counterpart in the MOS case and, as will be seen later, has important implications for circuit design. Finally, we note that for $R_{e} \preccurlyeq r_{\pi}$, Eq. (6.118) can be approximated by

$$
R_{\text {out }} \cong\left(1+g_{m} R_{e}\right) r_{o}
$$

A useful summary of the formulas for R_{in} and $R_{\text {out }}$ is provided in Fig. 6.35. The results above can be used to obtain the overall voltage gain G_{v} as

$$
G_{v}=G_{v 0} \frac{R_{L}}{R_{L}+R_{\text {out }}}
$$

where

$$
G_{v o}=\frac{R_{i}}{R_{i}+R_{e}} A_{v o}=\frac{r_{\pi}}{r_{\pi}+R_{e}} A_{v o}
$$

The high-frequency response of the common-base circuit can be cvaluated in a manner similar to that used for the MOSFET.

Bxercise

6.25 Consider hie CB inplifier of Fig. 6.33 (a) for the case $\mathrm{I}=1 \mathrm{~mA}, \beta=100, V=100 \bigvee, R=1 \mathrm{M} \Omega$ and $R_{e}=1 \mathrm{k} \Omega$ Find $R_{\text {int }} A_{w}, R_{v}, A_{v}, R_{\text {onn }}$, and G Also find v if v, is a 5 -mV peak sine wave
Ans. 250Ω. $4001 \mathrm{~V} / \mathrm{V} ; 100 \mathrm{k} \Omega ; 3637 \mathrm{~V} / \mathrm{V} ; 2.97 \mathrm{Y} \Omega ; 722 \mathrm{~V} / \mathrm{V} ; 3.61 \mathrm{~V}$ peak

6.7.3 A Concluding Remark

The common-gate and common-base circuits have open-circuit voltage gains $A_{z o}$ almost equal to those of the common-source and common-emitter circuits. Their input resistance, however, is much smaller and their output resistance much larger than the corresponding valucs for the CS and CE amplifiers. These two properties, though not usually desirable in valuess for the CS and CE amplifiers. These two properties, though not ussally desirable in
voltage amplifiers, make the CG and CB circuits suitable as current buffers. The absence of the Miller effect makes the high-frequency response of the CG and CB circuits far superior to that of the CS and CE amplificrs. The most significant application of the CG and CB circuits is in a configuration known as the cascode amplifier, which we shall study next.

By placing a common-gate (common-base) amplifier stage in cascadc with a common-source (common-cmitter) amplifier stage, a very useful and versatile amplifier circuit results. It is known as the cascode configuration ${ }^{11}$ and has been in use for nearly three quarters of a century, obviously in a wide variety of technologies.

[^24]The basic idea behind the cascode amplifier is to combine the high input resistance and large transconductance achieved in a common-source (common-emitter) amplifier with the current-buffering property and the superior high-frequency response of the common-gate (common-base) circuit. As will be seen shortly, the cascode amplifier can be designed to obtain a wider bandwidur but equa da gain as compared to the common-source (commo emitter) amplifier. Alternatively, it can be designed to increase the dc gain while leaving the gain-bandwidth product unchanged. Of course, there is a continuum of possibilities between hese two extremes.
Although the cascode amplifier is formed by cascading two amplifier stages, in many applications it is thought of and treated as a single-stage amplifier. Therefore it belongs in this chapter.

6.8.1 The MOS Cascode

Figurc 6.36(a) shows the MOS cascode amplifier. Here transistor Q_{1} is connected in the common-source configuration and provides its output to the input terminal (i.e., source) of transistor Q_{2}. Transistor Q_{2} has a constant dc voltage, $V_{\text {BIAS }}$, applied to its gate. Thus the signal voltage at the gate of Q_{2} is zero, and Q_{2} is operating as a CG amplifier with a constantcurrent load, I. Obviously both Q_{1} and Q_{2} will be operating at dc drain currents equal to I. As in previous cases, feedback in the overall circuit that incorporates the cascode amplifier Also, the value of $V_{\text {a }}$ has to be chosen so that both Q_{1} and Q_{2} operatc in the saturation region at all times.

Small-Signal Analysis We begin with a qualitative description of the operation of the cascode circuit. In response to the input signal voltage v_{i}, the common-source transistor Q_{1} conducts a current signal $g_{m 1} \nu_{i}$ in its drain terminal and feeds it to the source terminal of the common-gate transistor Q_{2}, called the cascode transistor. Transistor Q_{2} passes the sigual current $g_{m 1} v_{i}$ on to its drain, where it is supplied to a load resistance R_{L} (not shown in Fig. 6.36) at a very high output resistance, $R_{\text {ou. }}$. The cascode transistor Q_{2} acts in effect as a buffer, presenting a low input resistance to the drain of Q_{1} and providing a high resistance at the amplifier output.

Next we analyze the cascode amplifier circuit to determine its characteristic parameters. Toward that end Fig. 6.36(b) shows the cascode circuit prepared for small-signal analysis and with a resistance R_{L}, shown at the output. R_{L} is assumed to include the output resistance of current source I as well as an actual load resistance, if any. The diagram also indicates various input and output resistances obtained using the results of the analysis of the CS and CG amplifiers in previous sections. Note in particular that the CS transistor Q_{1} provides the cascode amplifier with an infinite input resistance. Also, at the drain of Q_{1} looking "downward," we see the outpnt resistance of the CS transistor $Q_{1}, r_{o 1}$. Looking "upward," we see the input resistance of the CG transistor Q_{2},

$$
\begin{equation*}
R_{\text {in } 2}=\frac{1}{g_{m 22}+g_{m b 2}}+\frac{R_{L}}{\Lambda_{v o 2}} \tag{6.122}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{v o 2}=1+\left(g_{m 22}+g_{m b 2}\right) r_{o 2} \tag{6.123}
\end{equation*}
$$

Thus the total resistance between the drain of Q_{1} and ground is

$$
R_{d 1}=r_{o!}!!\left[\frac{1}{g_{m+2}+g_{m b 2}}+\frac{R_{L}}{A_{v o 2}}\right]
$$

(c)
6.36 (a) The MOS cascode amplifier. (b) The circuit prepared for smal-signal andesis wiu various input and output resistances indicaled. (c) The cascode with the output open-circuited

Figure $6.36\left(\right.$ b) also indicates that the output resistance of the cascode amplifier, $R_{\text {out }}$, is given by

$$
\begin{equation*}
R_{\text {out }}=r_{o 2}+A_{v v 2} r_{01} \tag{6.125}
\end{equation*}
$$

wich has been obtained using the formula in Eq. (6.102) and noting that the resistance R_{3} the source of the CG transistor Q_{2} is the output resistance $r_{o 1}$ of Q_{1}. Substituting for
$\Lambda_{v o 2}$ from Eq. (6.123) into Eq. (6.125) yields

$$
R_{\text {out }}=r_{o 2}+\left[1+\left(g_{m 2}+g_{m b 2}\right) r_{o 2} J r_{o 1}\right.
$$

which can be approximated as

$$
R_{\mathrm{out}} \cong\left(g_{m 2} r_{o 2}\right) r_{o 1}=A_{0} r_{o 1}
$$

Thus the cascode transistor raises the level of output resistance by a factor equal to its intrinsic gain, from $r_{o 1}$ of the CS amplifier to $A_{0} r_{01}$.
Another observation to make on the cascode amplifier circuit in Fig. 6.36(b) is that when a signal source $v_{\text {sis }}$ with an internal resistance $R_{\text {sig }}$ is connected to the input, the infinite
input resistance of the amplifier causes input resistance of the amplifier causes

Thus,

$$
v_{i}=v_{\text {sig }}
$$

$G_{v}=$
Also, note that the amplifier is unilateral; tbus,

$$
R_{o}=R_{\mathrm{out}}
$$

The open-circuit voltage gain $A_{\text {vo }}$ of the cascode amplitier can be easily determined from the circuit in Fig. 6.36 (c), which shows the amplifier operating with the output open-circuited. Since $R_{\mathrm{in} 2}$ will be infinite, the gain of the CS stage Q_{1} will be

$$
\frac{v_{o 1}}{v_{i}}=-g_{m 1} r_{o 1}=-A_{01}
$$

The signal v_{01} will be amplified by the open-circuit voltage gain $A_{t o 2}$ of the CG transistor Q_{2} to obtain

$$
v_{\rho}=A_{v o 2} v_{o 1}
$$

Thus,

$$
\begin{align*}
A_{v o} & =-A_{01} A_{v o 2} \tag{6.128}\\
& \cong-A_{01} A_{02}
\end{align*}
$$

which for the usual case of equal intrinsic gains becomes

$$
\begin{equation*}
A_{z o}=-\Lambda_{0}^{2}=-\left(g_{\pi} r_{o}\right)^{2} \tag{6.129}
\end{equation*}
$$

We conclude that cascoding increases the magnitude of the open-circuit voltage gain from A_{0} of the CS amplifier to A_{0}^{2}.
We are now in a position to derive an expression for the short-circuit transconductance $\boldsymbol{G}_{\boldsymbol{m}}$ of the cascode amplifier. From the definitions and the equivalent circuits in Table 4.3,

$$
A_{v o}=-G_{m} R_{o}
$$

Substituting for $A_{y o}$ from Eq. (6.128) and for $R_{o}=R_{\text {out }}$ from Eq. (6.125) gives, for G_{m},

$$
\begin{aligned}
G_{m i} & =\frac{A_{01} A_{v o 2}}{r_{o 2}+A_{v o 2} r_{o 1}} \\
& =\frac{g_{m 1} r_{o 1}\left[1+\left(g_{m 2}+g_{m b 2}\right) r_{o 2}\right]}{r_{o 2}+\left[1+\left(g_{m 2}+g_{m b 2}\right) r_{o 2}\right] r_{o 1}}
\end{aligned}
$$

$$
\cong g_{m 1}
$$

which confirms the value obtained earlier in the qualitative analysis.

The operation of the cascode amplifier should now be apparent: In response to \tilde{v}_{i} the CS ransistor provides a drain current $g_{m 1} v_{i}$, which the CG transistor passes on to R_{L} and, in he process, increases the output resistance by A_{0}. It is the increase in $R_{\text {opl }}$ to $\Lambda_{0} r_{0}$ that increatses the open-circuit voltage gain to $\left(g_{m}\right)\left(A_{0} r_{o}\right)=A_{0}^{2}$. Figure 6.37 provides a uscfu umnary of the operation: Two oulput equivalent circuits are shown in Fig. 6.37(a) and (b) and an equivalent circuit for determining the voltage gain of the $C S$ stage Q_{1} is presented in Fig. 6.37 (c). The voltage gain Λ_{v} can be found from either of the two equivaient circuits in Fig. 6.37(a) and (b). Using that in Fig. 6.37(a) gives

$$
\begin{equation*}
A_{v}=-A_{0}^{2} \frac{R_{t}}{R_{L}+A_{0} r_{o}} \tag{6.131}
\end{equation*}
$$

We immediately see that if we are to realize the large gain of which the cascode is capable, resistance R_{L} should be large. At the very least, R_{L}, should be of the order of $A_{0} r_{c}$. For $R_{L}=A_{0} r_{\theta}, A_{v}=-A_{0}^{2} / 2$.
The gain of the CS stage is important because its value determines the Miller effect in that stage. From the equivalent circuit in Fig. 6.37 (c),

$$
\begin{equation*}
\frac{v_{o 1}}{v_{i}}=-g_{n}\left[r_{0} \|\left(\frac{1}{g_{n}}+\frac{R_{L}}{A_{0}}\right)\right] \tag{6.132}
\end{equation*}
$$

For $R_{L}=A_{0} r_{\omega}$,

$$
\begin{align*}
\frac{v_{o 1}}{v_{i}} & =-g_{m}\left[r_{o} \|\left(\frac{1}{g_{m}}+r_{o}\right)\right] \\
& \cong-\frac{1}{2} g_{m} r_{o}=-\frac{1}{2} A_{1}
\end{align*}
$$

(a)
(b)

(c)

FIGURE 6.37 (a and b) Two equivalent circuiss for the output of the cascode amplificr. Either circuit can be uscd to detemine the gain $A=v / v_{\text {, wh }}$, which is equal to C, because $R_{\text {in }}=\infty$ and thus $v_{i}=v_{\text {spe }}$. (c) Equivalent circuit for determining the voltage gain of the CS stage, Q_{1}.

Thus we see that when R_{l}. is large and the cascode amplifier is realizing a substantial gain, a good part of the gain is obtained in the CS stage. This is not good news considering the Miller effect, as we shall see shortly. To keep the gain of the CS stage relatively low, R_{L} has to be lowered. For instance, for $R_{L}=r_{o}$, Eq. (6.132) indicates that

$$
\begin{aligned}
\frac{v_{o 1}}{v_{i}} & =-g_{m}\left[r_{0} \|\left(\frac{1}{g_{m}}+\frac{1}{g_{m}}\right)\right] \\
& \cong-2 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

Unfortunatcly, however, in this case the dc gain of the cascode is drastically reduced, as can be seen by substituting $R_{L}=r_{o}$ in Eq. (6.131),

$$
\begin{equation*}
A_{\nu}=-A_{0}^{2} \frac{r_{o}}{r_{o}+A_{0} r_{o}} \cong-A_{0} \tag{6.134}
\end{equation*}
$$

That is, the gain of the cascode becomes equal to that realized in a single CS stage! Does this mean that the cascode configuration (in this case) is not useful? Not at all, as we shall now see

6.8.2 Frequency Response of the MOS Cascode

Figure 6.38 shows the cascode amplifier with all transistor internal capacitances indicated Also included is a capacitance C_{L} at the output node to represent the combination of $C_{d b 2}$, the input capacitance of a succeeding amplifier stage (if any), and a load capacitance (if any). Note hat $C_{d b 1}$ and $C_{2 s 2}$ appear in parallel, and we shall combine them in the following analysis imilarly, C_{L} and $C_{\text {gd }}$ appear in parallel and will be combined.
The easiest and, in fact, quite insightful approach to determining the $3-\mathrm{dB}$ frequency f_{B} is to employ the open-circuit time-constants method. We shall do so and, in the process, utiliz the formulas derived in Sections 6.6.2 and 6.7.1 for the various resistances:

1. Capacitance $C_{g s 1}$ sees a resistance $R_{\text {sig }}$.
2. Capacitance $C_{g^{d} 1}$ sees a resistance $R_{g^{d} 1}$, which can be obtained by adapting the formul in Eq. (6.56) to

$$
\begin{equation*}
R_{g d 1}=\left(1+g_{m 1} R_{d 1}\right) R_{\text {sig }}+R_{d 1} \tag{6.135}
\end{equation*}
$$

where $R_{d 1}$, the total resistance at D_{1}, is given by Eq. (6.124).

3. Capacitance $\left(C_{d b 1}+C_{g s 2}\right)$ secs a resistance $R_{d 1}$.
4. Capacitance ($C_{I}+R_{g+2}$) sees a resistance ($R_{L} \| R_{\text {ou }}$).

With the resistances determined, the effective time constant $\tau_{l l}$ can be computed as

$$
\begin{align*}
\tau_{H}= & C_{g 51} R_{\text {sig }}+C_{g d 1}\left[\left(1+g_{m 1} R_{d 1}\right) R_{\text {sig }}+R_{d 1}\right] \\
& +\left(C_{d b 1}+C_{g g^{\prime} 2}\right) R_{d 1}+\left(C_{L}+C_{g d 2}\right)\left(R_{L} \| R_{\text {out }}\right) \tag{6.136}
\end{align*}
$$

and the $3-\mathrm{dB}$ frequency f_{H} as

$$
f_{H} \cong \frac{1}{2 \pi \tau_{H}}
$$

To gain insight regarding what limits the high-frequency gain of the MOS cascode amplifier, we rewrite Eq. (6.136) in the form

$$
\begin{align*}
\tau_{H}= & R_{\text {sig }}\left\lfloor C_{g s 1}+C_{g d 1}\left(1+g_{m 1} R_{d 1}\right)\right]+R_{d 1}\left(C_{g d 1}+C_{d b 1}+C_{8 s 2}\right) \\
& +\left(R_{L} \| R_{\text {out }}\right)\left(C_{L}+C_{g d 2}\right) \tag{6.137}
\end{align*}
$$

In the case of a large $R_{\text {sig }}$, the first term can dominate, especially if the Miller multiplier $\left(1+g_{m 1} R_{d 1}\right)$ is large. This in tumn happens when the load resistance R_{L} is large (on the order of $A_{0} r_{o}$), causing $R_{\text {in }}$ to be large and requiring the first stage, Q_{1}, to provide a large proporof $A_{0} r_{o}$, causing $R_{\text {in }}$ to be large and requiring the first stage, Q_{1}, to provide a large propor-
tion of the gain. It follows that when $R_{\text {sig }}$ is large. to extend the bandwidth we have to lower tion of the gain. It follows that when $R_{\text {sig }}$ is large, to extend the bandwidth we have to lower insignificant. Note, however, that the dc gain of the cascode will then be A_{0}. Thus, while the dc gain will be the same as (or a little higher than) that achieved in a CS amplifier, the bandwidth will be greater.

In the case when $R_{\text {sig }}$ is small, the Miller effect in Q_{1} will not be of concern. A large value of R_{L} (on the order of $A_{0} r_{o}$) can then be used to realize the large dc gain possible with a cascode anplifier-that is, a dc gain on the order of A_{0}^{2}. Equation (6.137) indicates that in this case the third term will usually be dominant. To pursue this point a little further, cousider the case $R_{\mathrm{sig}}=0$, and assume that the middle term is much smaller than the third term. It follows that

$$
\tau_{H} \cong\left(C_{L}+C_{\text {gd } \left.^{2}\right)}\right)\left(R_{L} \| R_{\text {out }}\right)
$$

and the $3-\mathrm{dB}$ frequency becomes

$$
\begin{equation*}
f_{H}=\frac{1}{2 \pi\left(C_{L}+C_{\text {gd } 2}\right)\left(R_{L} \| R_{\text {out }}\right)} \tag{6.138}
\end{equation*}
$$

which is of the same form as the formula for the CS amplifier with $R_{\text {sig }}=0$ (Eq. 6.79). Here, however, ($R_{L} \| R_{\text {out }}$) is larger that R_{L}^{\prime} by a factor of about A_{0}. Thus the f_{H} of the cascode will be lower than that of the CS amplifier by the same factor A_{0}. Figure 6.39 shows a sketch of the frequicncy response of the cascode and of the corresponding common-source amplifier. We observe that in this case cascoding increases the dc gain by a factor A_{0} while keeping the unity-gain frequency unchanged at

$$
f_{t} \cong \frac{1}{2 \pi} \frac{g_{m}}{C_{L}+C_{g d 2}}
$$

	Common Source	Cascode
Circuit		
DC Gain	$-g_{m} R_{L}^{\prime}$	$-A_{0} g_{n} R_{t}^{\prime}$
$\gamma_{3 \mathrm{~dB}}$	$\frac{1}{\frac{1}{2 \pi\left(C_{L}+C_{g d}\right) R_{L}^{\prime}}}$	$\frac{1}{2 \pi\left(\overline{\left.C_{L}+C_{8 d}\right) A_{0} R_{l}^{\prime}}\right.}$
f_{t}	$\frac{g_{m}}{2 \pi\left(C_{L}+C_{g d}\right)}$	$\frac{g_{m}}{2 \pi\left(C_{L_{L}}+C_{g d d}\right)}$

FIGURE 6.39 Effect of cascoding on gain and bandwidth in the casc $\kappa_{\text {sik }}=0$. Cascoding can increase th dc gain by the factor A_{0} whilc kecping the unity-gain frequency constant. . ote that to achieve the ligh gain the load resistance must be increased by thc factor A_{0}

HFMMC=

This cxample illustrates the advantages of cascoding by comparing the performance of a cascode amplifier with that of a cominon-source amplifier in two cases:
(a) The resistance of the signal source is significant, $R_{\text {sig }}=10 \mathrm{k} \Omega$.
(b) $R_{\text {sig }}$ is negligibly smafl.

Assume all MOSFETs have W / L of $7.2 \mu \mathrm{~m} / 0.36 \mu \mathrm{~m}$ and are operating at $I_{D}=100 \mu \mathrm{~A}, g_{m}=$ $1.25 \mathrm{~mA} / \mathrm{V}, \chi=0.2, r_{s}=20 \mathrm{k} \Omega, C_{g s}-20 \mathrm{fF}, C_{g i}=5 \mathrm{fF}, C_{d b}=5 \mathrm{fF}$, and C_{L} (cxcluding $\left.C_{d b}\right)=5 \mathrm{fF}$. For case (a), let $R_{l}=r_{o}=20 \mathrm{kS}$ for the CS amplificr and $R_{l,}=R_{\mathrm{vult}}$ for the cascodc amplifier. For all cases, determine A_{v}, f_{H}, and f_{t}.

Solution
(a) For the CS amplificr:
$A_{0}=g_{m} r_{o}=1.25 \times 20=25 \mathrm{~V} / \mathrm{V}$
$A_{v}=-g_{m}\left(R_{L} \| r_{a}\right)=-g_{m}\left(r_{o} \| r_{n}\right)$
$=-\frac{1}{2} A_{0}=-12.5 \mathrm{~V} / \mathrm{V}$
$\tau_{H}=C_{g s} R_{\text {sig }}+C_{g d}\left[\left(1+g_{m} R_{J,}^{\prime}\right) R_{\text {sig }}+R_{L}^{\prime}\right]+\left(C_{L}+C_{d b}\right) R_{L}^{\prime}$
where

$$
R_{L}^{\prime}=r_{o}\left\|R_{L}=r_{o}\right\| r_{o}=10 \mathrm{k} \Omega
$$

$$
\tau_{l l}=20 \times 10+5\lfloor(1+12.5) 10+10]+(5+5) 10
$$

$=200+725+100=1025 \mathrm{ps}$
Thus,

$$
f_{H}=\frac{1}{2 \pi \times 1025 \times 10^{-12}}=1.55 \mathrm{MHZ}
$$

$$
f_{t}=\left|A_{z}\right| f_{H I}=12.5 \times 155=1.94 \mathrm{GHz}
$$

For the cascode amplificr:
$A_{01}=g_{m 1} r_{o 1}=1.25 \times 20=25 \mathrm{~V} / \mathrm{V}$
$A_{v o 2}=1+\left(g_{m 2}+g_{m b 2}\right) r_{o 2}=1+(1.25+0.2 \times 1.25) \times 20$

$$
=1+1.5 \times 20=31 \mathrm{v} / \mathrm{V}
$$

$R_{\text {out1 }}=r_{o 1}=20 \mathrm{k} \Omega$
$R_{\mathrm{in} 2}=\frac{1}{g_{m 2}+g_{m b 2}}+\frac{R_{L}}{A_{v o 2}}=\frac{1}{1.5}+\frac{20}{31}=1.3 \mathrm{k} \Omega$
$R_{d!}=R_{\text {out } 1}\left\|R_{\text {in } 2}=20\right\| 1.3=1.22 \mathrm{k} \Omega$
$R_{\text {vut }}=r_{o 2}+A_{\text {vo2 }} r_{\text {cl }}=20+31 \times 20=640 \mathrm{k} \Omega$
$\frac{v_{o 1}}{v_{i}}=-g_{m 1} R_{d 1}=-1.25 \times 1.22=-1.5 \mathrm{~V} / \mathrm{V}$
$A_{i v}=A_{v o} \frac{R_{L}}{R_{L}+R_{\text {out }}}=-25 \times 31 \times \frac{20}{640+20}=-23.5 \mathrm{~V} / \mathrm{V}$
$\tau_{H}=R_{\mathrm{sig}}\left[C_{g s 1}+C_{g d i}\left(1+g_{m 1} R_{d 1}\right)\right]+R_{d 1}\left(\dot{C}_{g d 1}+C_{d b 1}+C_{g s 2}\right)$

$$
+\left(R_{L} \| R_{\text {out }}\right)\left(C_{l},+C_{d b 2}+C_{g, d 2}\right)
$$

$\tau_{H}=10[20+5(1+1.5)]+1.22(5+5+20)+(20 \| 640)(5+5+5)$
$=325+36.6+290.9$
$=653 \mathrm{ps}$
$f_{H I}=\frac{1}{2 \pi \times 653 \times 10^{-12}}=244 \mathrm{MHz}$
$f_{t}=23.5 \times 244=5.73 \mathrm{GHz}$
Thus cascoding has increased f_{t}, by a factor of about 3 .
(b) For the CS amplifier:

$$
\begin{aligned}
A_{\nu} & =-12.5 \mathrm{~V} / \mathrm{V} \\
\tau_{H} & =\left(C_{g d}+C_{L}+C_{d b}\right) R_{L}^{\prime} \\
& =(5+5+5) 10=150 \mathrm{ps} \\
f_{H} & =\frac{1}{2 \pi \times 150 \times 10^{-12}}=1.06 \mathrm{GHz} \\
f_{t} & =12.5 \times 1.06=13.3 \mathrm{GHz}
\end{aligned}
$$

For the cascode amplificr:

$$
\begin{aligned}
A_{v} & =\Lambda_{v o} \frac{R_{L}}{R_{L}+R_{\text {out }}} \\
& =-25 \times 31 \times \frac{640}{640+640}=-388 \mathrm{~V} / \mathrm{V} \\
R_{\text {in } 2} & =\frac{1}{g_{m 2}+g_{m b 2}}+\frac{R_{L}}{A_{\text {vop } 2}}=\frac{1}{1.5}+\frac{640}{31}
\end{aligned}
$$

$$
=21.3 \mathrm{k} \Omega
$$

$R_{d 1}=21.3 \| 20=10.3 \mathrm{k} \Omega$
$\tau_{H}=R_{d 1}\left(C_{8 d 1}+C_{d b 1}+C_{g ; 22}\right)+\left(R_{L} \| R_{\text {out }}\right)\left(C_{L}+C_{g d 2}+C_{d b 2}\right)$
$=10.3(5+5+20)+(640 \| \mid 1640)(5+5+5)$
$=309+4800=5109 \mathrm{ps}$

$$
f_{H}=\frac{1}{2 \pi \times 5109 \times 10^{-12}}=31.2 \mathrm{MHz}
$$

$$
f_{t}=388 \times 31.2=12.1 \mathrm{GHz}
$$

Thus cascoding increases the dc gain from 12.5 to $388 \mathrm{~V} / \mathrm{V}$. The unity-gain frequency (i.e., gain-bandwidth product), however, remains nearly constant.
6.26 What is the minimum value of UBAS requited for a cascode anplifier operating at $I-1$ oh $\mu \mathrm{A}$. Let $\mu_{t} C_{n}=300 \mu A V^{2}, W / H=10$, and $V_{t}=0.6 \mathrm{~V}$
Ans. $1 / 2 \mathrm{~V}$.
6.27 Consider a cascode amplifier operation at bis tart $t=100$ in tor 4 . 1 .
 A. f and R_{t}, ous and t_{t},
 42 MHz

6.8.3 The BJT Cascode

Figure 6.40(a) shows the BJT cascode amplifier. The circuit is very simular to the MOS cas code, and the small-signal analysis follows in a similar fashion, as indicated in Fig. 6.40(b) Here we have shown the various input and output resistances. Obscrve that unlike the MOSFET cascode, which has an infinite input resistance, the BJT cascode has an input resistance of $r_{\pi 1}$ (neglecting r_{x}). The formula for $R_{\mathrm{in} 2}$ is the one we found in the analysis

of the common-base circuit (Eq. 6.112). The output resistance $R_{\text {out }}=\beta_{2} r_{02}$ is found by substituting $R_{e}=r_{o 1}$ in Eq. (6.119) and making the approximation that $g_{m} r_{o} \gg \beta$. Recal that βr_{o} is the largest output resistance that a CB transistor can provide.
The open-circuit voltage gain $A_{v o}$ and the no-load input resistance R_{i} can be found from the circuit in Fig. 6.40(c), in which the output is open-circuited. Observe that $R_{\text {in } 2}=r_{r 2}$, which is usually much smaller than $r_{o 1}$. As a result the total resistance between the collector of Q_{1} and ground is approximately $r_{\pi 2}$; thus the voltage gain realized in the CE transistor Q_{1} is $-g_{m 1} r_{\pi 2}=-\beta$. Recalling that the open-circuit voltage gain of a CB amplifier is $\left(1+g_{m} r_{o}\right) \cong A_{0}$, we see that the voltage gain $A_{i o}$ is

$$
A_{v o}=-\beta A_{0}
$$

Putting all of these results together we obtain for the BJT cascode amplifier the equiva lent circuit shown in Fig. 6.41(a). We note that compared to the common-emitter amplifier cascoding increases both the open-circuit voltage gain and the output resistance by a facto equal to the transistor β. This should be contrasted with the factor A_{0} encountered in the
MOS cascode. The equivalent circuit can be easily converted to the transconductance form shown in Fig. 6.41(b). It shows that the short-circuit transconductance G of the cascod smplifier is equal to the shows ince $Q_{\text {prow }}$ provides a mas Q_{1} pror process the cascode transistor raises the resistance level from r at the collector of Q_{1} to βr at the casco Q_{2} This is the by $\mathrm{Br}_{o_{0}}$ The voltage gain of
The voltage gain of the CE transistor Q_{1} can be determined from the equivalent circuit in Fig. 6.41(c). The resistance between the collector of Q_{1} and ground is the parallel equivalent

(c)

FIGURE 6.41 (a) Equivalent circuit for the cascode amplifier in terms of che open-circuit voltage gain $A_{s o}=$ $-\beta A_{0}$. (b) Equivalent circuit in terrns of the overall short-circuit transconductance $G_{m}=g_{m \text { : }}$. (c) Equivalent circuit for determining the gain of the CF. stage, Q

FIGURE 6.42 Deternining the frequency response of the B.JT cascode amplifier. Note chat in additiou to the GGURE 6.42 DCtenming the frequetince between the collector and the subsirate $C_{\text {cs }}$ for each transistor are also included.
of the output resistance of Q_{1}, r_{o}, and the input resistance of the CB transistor, Q_{2}, namely $R_{\text {. Note that }} R_{L} \ll r_{0}$ the latter reduces 1o r_{0} as expected. However, $R_{i n}$ increases $R_{\text {in } 2}$. No as R_{L} is increased. Of particular interest is the value of $R_{\text {in }}$ obtained $10 R_{L}=\beta r_{o}$, $R_{\mathrm{in} 2} \cong r_{\pi} / 2$. It follows that for this value of R_{L} the CE stage has a voltage gain of - $\beta / 2$. Finally, we present in Fig. 6.42 the circ. The alysis parallels that studied in the freqnency resp

extreISE

6.28 The objective of this excretse is to evaluate the effect of chtcoding on the perfornance of the CE ampifier
 $C_{1}=0.3 \mathrm{pF}, r_{x}=200 \Omega, C_{o 1}=C_{c, 2}=0 . C_{1}=5 \mathrm{pr}, R_{\text {sis }}=36 \mathrm{k} \Omega, R_{t}=50 \mathrm{k} \Omega$. Find $R_{i /} A_{0}$. $R_{\text {out }}, R_{\text {in } 2}, R_{\text {sin }}, A_{M}, f_{H}$ and f. Compare A_{M}, f_{A}, and f, with the cortesponding watues obbained in Exercise 620 for the CE anplifier, What should C_{t} be reduced to in order to have fil $=1$. 1 Hz Ans $52 \mathrm{k} \mathrm{\Omega}: 5200 \mathrm{~V} / \mathrm{V}: 130 \mathrm{kR}, 35 \Omega, 26 \mathrm{MQ}, 238 \mathrm{VIV} ; 469 \mathrm{kHz}: 116 \mathrm{MHz}$ An has increasect from 175 VJV to $238 \mathrm{VN} ; f_{H}$ has increased from 75 kHz to 469 kHz , f has ifcreased from 13.1 MHz to $111.6 \mathrm{MHz}_{2} C_{t}$ must be reduced to 1.6 pF .

68.4 A Cascode Current Source

Cap high voltage gain of which the cascode amplifier is capable, As mosFET cascode or βr, the load resistance R_{L} must be at least on the order or $A_{0}{ }_{o}$, for the bipolar cascode. Recall, however, that R_{L} includes the output resistance of the have an that implements the current-sorrce load out using the simple current-source circuits of Section 6.2 since their output resistances are

equal to r_{o}. Fortunately, there is a conceptually simple and effective solution-namely,
applying the cascoding applying the cascoding principle to the current-source implementation. The idea is illustrated in
Fig. 6.43 , where Q_{1} is the current-sourcely Fig. 6.43, where Q_{1} is the current-source transistor and Q_{2} is the cascode transistor. The dc
voltage $V_{\text {Bras }}$ is chosen so that $Q_{\text {l }}$ and Q_{1} in saturation at all times. While the resistance loo valuc of I. $V_{\text {BIAS2 }}$ is chosen to keep Q_{2} code transistor Q_{2} multiplies this resistance by (${ }^{2}$. ${ }^{2}$. the current source given approximately by by $\left(g_{m 2} r_{o 2}\right)$ and provides an output resistance for

$$
R_{o} \cong\left(g_{n 22} r_{o 2}\right) r_{o 1}
$$

A similar arrangement can be used
rent sources and current mirrors with improved performance in Section 6.12 .

6.8.5 Double Cascoding

The essence of the operation of the MOS cascode is that the CG cascode transistor Q_{2} A_{02} to provide anstance in its source, which is r_{o} of the CS transistor Q_{1}, by its intrinsic gain further by adding (asher another level of cascoding, as illustrated in Fig. 6.44. Here another CG

ransistor Q_{3} is added, with the result that the output resistance is increased by the factor A_{03} Thus the output resistance of this double-cascode amplifier is $A_{0}^{2} r_{0}$. Note that an additional bias voltage has to be generated for the additional cascode transistor Q_{3}.

A drawback of double cascoding is that an additional transistor is now stacked between he power supply rails. Furthermore, since we are now dealing with output resistances on the order of $A_{0}^{2} r_{o}$, the current source I will also need to be implemented using a double cascode which adds yet one more transistor to the stack. The difficulty posed by stacking additiona ransistors is appreciated by recalling that in modern CMOS process technologies $V_{D D}$ is only a little more than 1 V .
Finally, note that since the largest output resistance possible in a bipolar cascode is βr_{o}, adding another level of cascoding does not provide any advantage.

6.8.6 The Foided Cascode

To avoid the problem of stacking a large number of transistors across a low-voltage powe supply, one can use a PivOS transistor for the cascode device, as shown in Fig. 6.45. Here, as before, the NMOS transistor Q_{1} is operating in the CS configuration, but the CG stage is mplemented using the PMOS transistor Q_{2}. An additioual current-source I_{2} is needed to bia Q_{2} and provide it with its active load. Note that Q_{1} is now operating at a bias current of $I_{1}-I_{2}$). Finally, a dc voltage $V_{\text {BIAs }}$ is needed to provide an appropnate dc level for the gate of the cascode transistor Q_{2}. Its value has to be selected so that Q_{2} and Q_{1} operate in the saturation region.
The small-signal operation of the circuit in Fig. 6.45 is similar to that of the NMOS cas code. The difference here is that the signal current $g_{m} v_{i}$ is folded down and made to flow into the source terminal of Q_{2}, which gives the circuit the name folded cascode. ${ }^{12}$ The folded cascode is a very popular building block in CMOS amplifiers.

FIGURE 6.45 Thc folded cascode.

[^25]
EXERCISE

6.29 Consider the folded-cascode aiplifier of Fig. 6.45 for the case: $V_{D}=18 \mathrm{~V}, \mathrm{~V}=\mathrm{S}^{5}$. $V_{p}=05 \mathrm{~V}$ To operate Q_{1} and Q_{2} at equal bias currents I, $I_{1}^{D D}=21$ and $I_{p}^{\prime}=I$ 数 and $V_{\text {In }}=$ using a cascoded cemented using the simple circuit stadied in Section 6.2 , current source I_{2} is realized are selected so that each operat NMOS version of the circuit in Fig 6.43). The transistor MII fation are selected so that each operates at an overdrive voltage of 0.2 V ,
(a) What nust the relationstiop of (W/L), to (W/L), be?
(b) What is the minimun de voltage requred for the proper operation of current-source $I ? N$ Now, it
0.1 - V peak-to-peak siunal that can be used at that node?. is to be atlowed at the drain of Q_{1}, What is the highest de bias voltage
(c) What is the value of $V_{S C}$ of $Q_{\text {, }}$, and hence what is the largest value to which $V_{\text {Bit }}$ can be set? (d) What is the minimum dc yoltage required for the proper operation of current source l ? (e) Given the results of (c) and (d), what is the anowable range of signal swing at the ouput? Ans, (a) $M_{L L}$) 4 (W/L), (b) $0.2 \mathrm{~V}, 1.55 \mathrm{~V}$ (c) $0.7 \mathrm{~V}, 0.85 \mathrm{~V}$; (d) 0.4 V ; (e) 0.4 V to 1.35 V

6.8.7 BiCMOS Cascodes

and MOS transistors, if the technology permits, the circuit designer can combine bipolar ach. As an the cascode amplifier. In the circuit of Fig 6.46 (a) a Mor the BiCMOS implementation of thus providing the cascode with an intinite input ins in device. transistor is used for the cascode device, thus providing a larger other hand, a bipolar

(a)
(b)
possible with a MOSFET cascode. This is because β of the BJT is usually larger than A_{0} of the MOSFET and, more importantly, because r_{o} of the BJT is much larger than r_{o} of modern submicron MOSFETs. Also, the bipolar CB transistor provides a lowcr input resistance $R_{\mathrm{in} 2}$ than is usually obtained with a CG transistor, especially when R_{L} is low. The resull is a lower total resistance between the drain of Q_{1} and ground and hence a reduced Miller effect in Q_{1}.

The circuit in Fig. 6.46(b) utilizes a MOSFET to implement the second level of cascoding in a bipolar cascode amplifier. The need for a MOSFET stems from the fact that while the maximum possible output resistance obtained with a BJT is $\beta r_{\text {o }}$, there is no such limit with the MOSFET, and indeed, Q_{3} raises the output resistance by the factor $A_{0.3}$.

EnHCISE

6.30 For I = $100 \mu A$ ind $G_{m}, R_{\text {otit }}$ and the open-circuit yoltage gain A_{i}. of the BicMOS cascode ampli fiers in Fig 6:46. For the BITs, $V,=50 V$ and $\beta=100$. For the MOSFETs, $V A=5 V \mu_{n} C_{o t}=$ $200 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $W / L=25$
Ans. For the circutin Fig. 6.46 (a): $1 \mathrm{~mA} / \mathrm{V}$, $50 \mathrm{M} \Omega, 5 \times 10^{4} \mathrm{VN}$: for the circuit in Fig. 6.46 (b): $4 \mathrm{mAN} .2500 \mathrm{MS}-10^{\circ} \mathrm{V} / \mathrm{V}$

67 6.9 THE CS AND CE AMPLIFIERS WITH SOURCE (EMITTER) DEGENERATION

Inserting a relatively small resistance (i.e., a small multiple of $1 / g_{m}$) in the source of a CS amplifier (the emitter of a common-emitter amplifier) introduces negative feedback into the amplifier stage. As a result this resistance provides the circuit designer with an additional parameter that can be effectively utilized to obtain certain desirable propertics as a trade-off for the gain reduction that source (emitter) degeneration causes. We have already seen some of this in Sections 4.7 and 5.7. In this section we consider source and emitter degeneration in IC amplifiers where r_{o} and $g_{m b}$ have to be taken into account. We also demonstrate the use of source (emitter) degeneration to extend the amplifier bandwidth.

6.9.1 The CS Amplifier with a Source Resistance

Figure 6.47(a) shows an active-loaded CS amplifier with a source resistance R_{s}. Note that a signal $v_{b s}$, will develop between body and source, and hence the body effect should be taken into account in the analysis. The circuit, prepared for small-signal analysis and with a resistance R_{I} shown at the output, is presented in Fig. 6.47 (h). To determine the output resistance $R_{\text {out }}$ we reduce v_{i} to zcro, which makes the circuit identical to that of a CG amplifier. Therefore we can obtain $R_{\text {out }}$ by using Eq. (6.101) as

$$
\begin{equation*}
R_{\mathrm{uut}}=r_{o}+\left[1+\left(g_{m}+g_{m b}\right) r_{o}\right] R_{s} \tag{6.142}
\end{equation*}
$$

which for the usual situation $\left(g_{m}+g_{m b}\right) r_{o} \gg 1$ reduces to

$$
\begin{equation*}
R_{\text {out }} \cong r_{o}\left[1+\left(g_{m}+g_{m b}\right) R_{s}\right] \tag{6.143}
\end{equation*}
$$

The open-circuit voltage gain can be found from the circuit in Fig. 6.47(c). Noting that the current in R_{s} must be zero, the voltage at the source, v_{s}, will be zero and thus $v_{s s}=v_{i}$ and $v_{b s}=0$, resulting in
$i=g_{m} v_{g s}$

(d)

(e)

FIGURE 6.47 (a) A CS amplifier with a source-dcgeneration resistance R_{s} (b) Circuit for small-signal equivalent circuit in ternus of G_{m}.

$$
v_{o}=-i r_{o}=-g_{m} r_{o} v_{s s}=-g_{m} r_{o} v_{i}
$$

$$
A_{w o}=-g_{m} r_{o}=-A_{0}
$$

In other words, the resistance R_{s} has no effect on $A_{\text {, }}$,
Utilizing $A_{z o}=-A_{0}$ and $R_{\text {oul }}$ from Eq. (6.143) enables us to obtain the amplifier output equivalent circuit shown in Fig. 6.47 (d). An alternative equivalent circuit in terms of the short-circuit transconductance G_{m} is shown in Fig. 6.47(e), where G_{m} can be found from

Thus,

$$
G_{m}=\frac{\left|A_{v o i}\right|}{R_{\text {out }}}=\frac{g_{m} r_{o}}{r_{o}\left[1+\left(g_{m}+g_{m b}\right) R_{s}\right]}
$$

$$
G_{m}=\frac{g_{m}}{1+\left(g_{n}+g_{m b}\right) R_{s}}
$$

The effect of R_{s} is thus obvious: R_{s} reduces the amplifier transconductance and increases its output resistance by the same factor: $\left[1+\left(g_{m}+g_{m b}\right) R_{s}\right]$. We will find in Chapter 8 when we study negative feedback formally that this factor is the amount of negative feedback introduced by R_{s}.

The voltage gain $A_{"}$ can be found as

$$
\begin{equation*}
A_{v}=-A_{v o} \frac{R_{L}}{R_{J .}+R_{\text {out }}} \tag{6.145}
\end{equation*}
$$

Thus, if R_{L} is kept unchanged, A_{v} will decrease, which is the price paid for the performance improvements obtained when R_{s} is introduced. One such improvement is in the linearity of the amplifier. This comes about because only a fraction $v_{s s}$ of the input signal v_{i} now appears between gate and source. Derivation of an expression for v_{55} / v_{i} is significantly complicated by the inclusion of r_{o}. The derivation should be done with the MOSFET equivalentcircuit model cxplicitly used. The result is

$$
\frac{v_{g s}}{v_{i}} \cong \frac{1}{1+\left(g_{m}+g_{m b}\right)} R_{s} \frac{R_{L} \| R_{\text {out }}}{R_{L} \| r_{o}}
$$

(6.146)
which for $r_{o} \Rightarrow R_{L}$ reduces to the familiar relationship

$$
\begin{equation*}
\frac{v_{g s}}{v_{i}} \cong \frac{1}{1+\left(g_{m}+g_{m b}\right) R_{s}} \tag{6.147}
\end{equation*}
$$

Thus the value of R_{s} can be used to control the magnitude of $v_{g_{s}}$ so as to obtain the desired linearity-at the expense, of course, of gain reduction
Frequency Response Another advantage of source degeneration is the ability to broaden the amplifier bandwidth. Figure 6.48(a) shows the amplifier with the internal capacitances $C_{p s}$ and $C_{\text {ed }}$ indicatcd. A capacitance C_{L} that includes the MOSFET capacicapacitances $C_{g s}$ and $C_{g d}$ indicatcd. A capacitance C_{L} that includes the MOSFET capacitance $C_{d b}$ is also shown at the output. The method of open-circuit time constants can be
employed to obtain an estimate of the 3 -dB frequency $f_{I I}$. Toward that end we show in employed to oblain an estimate of the 3 -dB frequency $f_{I I}$. Toward that end we show in
Fig. 6.48 (b) the circuit for determining R, which is the resistance seen by C. We observe that $R_{\text {d }}$ can be determined by simply adapting the formula in Eq. (6.56) to the case with source degeneration as follows:

$$
\begin{equation*}
R_{g^{d}}=R_{\text {sig }}\left(1+G_{m} R_{L}^{\prime}\right)+R_{L}^{\prime} \tag{6.148}
\end{equation*}
$$

where

$$
R_{L}^{\prime}=R_{L} \| R_{\text {out }}
$$

(6.149)

The formula for $R_{C_{L}}$ can be seen to be simply

$$
R_{C_{L}}=R_{L} \| R_{\text {out }}=R_{L}^{\prime}
$$

The formula for $R_{g s}$ is the most difficult to derive, and the derivation should be performed with the hybrid- π model explicitly utilized. The result is

$$
\begin{equation*}
R_{g s} \equiv \frac{R_{\mathrm{sig}}+R_{s}}{1+\left(g_{m}+g_{m b}\right) R_{s}\left(\frac{r_{o}}{r_{o}+R_{L}}\right)} \tag{6.151}
\end{equation*}
$$

When $R_{\text {sig }}$ is relatively large, the frequency response will be dominated by the Millcr multiplication of $C_{8 d}$. Another way for saying this is that $C_{g d} R_{g d}$ will be the largest of the

(a)

(b)

FIGURE 6.48 (a) The CS amplifier circuit, with a source resistancc R_{s}, prepared for frequency-response
analysis. (b) Determining the resistance $R_{\text {se }}$ seen by analysis. (b) Determining the resistance $R_{g d}$ seen by the capacitance $C_{g d}$.
hree open-circuit time constants that make up τ_{H},

$$
\tau_{H}=C_{g s} R_{g s}+C_{g d} R_{g d}+C_{L} R_{C_{t}}
$$

enabling us to approximate τ_{H} as

$$
\begin{equation*}
\tau_{H} \cong C_{\underline{g} d} R_{g d} \tag{6.153}
\end{equation*}
$$

and correspondingly to obtain f_{H} as

$$
\begin{equation*}
f_{H} \cong \frac{1}{2 \pi C_{g d} R_{g d}} \tag{6.154}
\end{equation*}
$$

Now, as R_{s} is increased, the gain magnitude, $\left|A_{M}\right|=G_{m} R_{L}^{\prime}$, will decrease, causing $R_{g d}$ to decrease (Eq. 6.148), which in turn causes f_{H} to increase (Eq. 6.154). To highlight the trade-off between gain and bandwidth that R_{s} affords the designer, let us simplify the expres-
sion for R_{g} in Eq. (6.148) by assuming that $G^{\prime} R^{\prime} \Rightarrow 1$. sion for $R_{g d}$ in Eq. (6.148) by assuming tbat $G_{m} R_{L}^{\prime} \geqslant 1$ and $G_{m} R_{s i g} \geqslant>1$

$$
R_{g d} \cong G_{m} R_{L}^{\prime} R_{\text {sig }}=\left|A_{M}\right| R_{\text {sig }}
$$

which can be substituted in Eq. (6.154) to obtain

$$
\begin{equation*}
f_{H}=\frac{1}{2 \pi C_{g d} R_{\mathrm{sig}}\left|A_{\mathcal{M}}\right|} \tag{6.155}
\end{equation*}
$$

which very clearly shows the gain-bandwidth trade-off. The gain-bandwidth product remains constant at

$$
\text { Gain-bandwidth product, } f_{t}=\left|A_{M \mid}\right| f_{H}=\frac{1}{2 \pi C_{g d} R_{\text {sig }}}
$$

In practice, however, the other capacitances will play a rolc in determining f_{H}, and f, will decrease somewhat as R_{s} is increased

5xercise
 method sd open circuit time constants) and hence the gan-handwidth product (b) Repeat (2) for the case in which a rcsistance R_{y} is connected in series with the source termint with a value selected so What $\left(g_{m}+p_{m b}\right) R=2$
 Ans. (a) -20 VNV $61.2 \mathrm{MH}, 1.22 \mathrm{GHz}$; (b) $10 \mathrm{VN}, 109 . \mathrm{MHz}_{3} 1.1 \mathrm{GHz}$

6.9.2 The CE Amplifier with an Emitter Resistance

Emitter degeneration is even more useful in the CE amplificr than source degeneration is in the CS amplificr. This is because emitter degeneration increases the input resistance of the CE amplifier. The input resistance of the CS amplifier is, of course, practically infinite to start with. Figure 6.49(a) shows an active-loaded CE amplifier with an emitter resistance R_{e}, usually in the range of 1 to 5 times r_{e}. Figure $6.49(\mathrm{~b})$ shows the circuit for determining the

(a)

(b)

(c)

FIGURE 6.49 A CE amplificr with emitter degeneration: (a) circuit; (b) analysis to determine R_{in}; and (c) analysis to determine $A_{\text {co }}$.
input resistance $R_{i n}$, which due to the presence of r_{o} will depend on the value of R_{L}. With the aid of the analysis shown in Fig. 6.49(b), we can express the output voltage v_{o} as

$$
v_{o}=\left[(1-\alpha) i-\frac{v_{i}-i r_{e}}{R_{e}}\right] R_{L}
$$

Alternatively, we can express v_{o} as

$$
v_{o}=\left(v_{i}-i r_{e}\right)-r_{o}\left[i-\frac{v_{i}-i r_{e}}{R_{e}}\right]
$$

Equating these two expressions of v_{o} yields an equation in v_{i} and i, which can be rearranged

$$
\begin{aligned}
R_{\mathrm{in}} & =\frac{v_{i}}{i /(\beta+1)} \\
& =(\beta+1) r_{e}+(\beta+1) R_{e} \frac{r_{0}+\frac{R_{l}}{\beta+1}}{r_{n}+R_{L}+R_{e}}
\end{aligned}
$$

Usually $R_{l,}$ is on the order of r_{o}; thus $R_{L \cdot} /(\beta+1) \ll r_{r}$. Also, $R_{e} \ll r_{\theta}$. Taking account of these two conditions cnables us to simplify the expression for $R_{\text {in }}$ to

$$
\begin{equation*}
R_{\mathrm{in}} \cong(\beta+1) r_{e}+(\beta+1) R_{e} \frac{1}{1+R_{L} / r_{o}} \tag{6.158}
\end{equation*}
$$

This expression indicates that the presence of r_{o} reduces the effect of R_{e} on increasing R_{in} This is because r_{o} shunts away some of the current that would have flowed through R_{e}. For To determine the open-circuit voltage gain A
Analysis of this circuit is straiohtforage gain $A_{\text {zo }}$, we utilize the circuit shown in Fig. 6.49 (c)

$$
\Lambda_{v o} \cong-g_{n} r_{o}
$$

That is, the open-circuit voltage gain obtained with a relatively small R_{e} (i.e., on the order of r_{e}) remains very close to the value without R_{e}.
The output resistance R_{o} is identical to the value of $R_{\text {out }}$ that we derived for the CB circuit

$$
\begin{equation*}
R_{o} \cong r_{o}\left(1+g_{m} R_{e}^{\prime}\right) \tag{6.160}
\end{equation*}
$$

where $R_{e}^{\prime}=R_{e} \| r_{\pi}$. Since R_{e} is on the order of r_{e}, R_{e} is much smaller than r_{π} and $R_{e}^{\prime} \cong R_{e}$. Thus,

$$
\begin{equation*}
R_{o} \cong r_{o}\left(1+g_{m} R_{e}\right) \tag{6.161}
\end{equation*}
$$

The expressions for $R_{\text {in }}, A_{v o}$, and R_{o} in Eqs. (6.158), (6.159), and (6.161), respectively, can be used to determine the overall voltage gain for given values of source resistance and load short-circuit transconductance G_{m} of the emitter-degencran be used to find the effective short-circuit transconductance G_{m} of the emitter-degenerated $C E$ amplifier as follows:

$$
G_{m}=-\frac{A_{v o}}{R_{o}}
$$

Thus,

$$
\begin{equation*}
G_{m}=\frac{g_{m}}{1+g_{n 2} R_{e}} \tag{6.162}
\end{equation*}
$$

The high-frequency response of the CE amplifier with emitter degeneration can be found in a manner similar to that presented above for the CS amplifier.

In summary, including a relatively small resistance R_{e} (i.e., a small multiple of r_{e}) in the emitter of the active-loaded CE amplifier reduces its effective transconductance by the factor $\left(1+g_{m} R_{e}\right)$ and increases its output resistance by the same factor, thus leuving the open-circuit depends on R_{L} and that is somewhat lower than ($1+g_{m} R_{e}$). Also, including R_{e} reduces the severity of the Miller effect and correspondingly increases the amplifier bandwidth. Finally, an emitter-degeneration resistance R_{e} increases the linearity of the amplifier.

EXERCIS

6.32 Consider the active loaded CE amplifier with emitter degeneration. Let $1=1 \mathrm{~mA}, V_{1}=100$. and $\beta=100$ Find $R_{i n}, R_{o}, A_{m}$. G_{m}, and the overall voltage gain $\left.y_{\nu}\right\rangle_{s, t}$, wen $R_{s}=75 \Omega . R_{s i s}=5 \mathrm{kS}$ and $R_{L}=2_{I_{D}}$.
Ans. $5 \mathrm{ks} \% 400 \mathrm{kS}=4000 \mathrm{VV} .10 \mathrm{mAVV}, 667$ V/V

6.10 THE SOURCE AND EMITTER FOLLOWERS

The discrete-circuit source follower was presented in Section 4.7 .6 and the discrete-circuit emitter follower in Section 5.7.6. In the following discussion we consider their IC versions, paying special attention to their high-frequency response.

6.10.1 The Source Foilower

Figure 6.50(a) shows an IC source follower biased by a constant-current source I, which is usually implemented using an NMOS current mirror. The source follower would generally be part of a larger circuit that determines the de voltage at the transistor gate. We will encounter such circuits in the following chapters. Here we note that v_{i} is the input signal appearing at the gate and that R_{L} represents the combination of a load resistance and the output resistance of the current-source I.
The low-frequency small-signal model of the source follower is shown in Fig. 6.50 (b). Observe that r_{o} appears in parallel with R_{f} and thus can be combined with it. Also, the controlled current-source $g_{m b} v_{b s}$ feeds its current into the source terminal, where the voltage is $-v_{b s}$. Thus we can use the source-absorption theorem (Appendix C) to replace the current source with a resistance $1 / g_{m b}$ between the source and ground, this can then be combined with R_{L} and r_{o}. With these two simplifications, the equivalent circuit takes the form shown in Fig. 6.50(c), where

$$
\begin{equation*}
R_{L}^{\prime}=R_{L}\left\|r_{o}\right\| \frac{1}{g_{m b}} \tag{6.163}
\end{equation*}
$$

We now can write for the output voltage v_{o},

$$
\begin{equation*}
v_{o}=g_{m} v_{g s} R_{L}^{\prime} \tag{6.164}
\end{equation*}
$$

and for $v_{g s}$
$v_{g s}=v_{i}-v_{0}$
(6.165)

FIGURE 6.50 (a) An IC source follower. (b) Small-signal equivalent-circuil modcl of the source followe. (c) A simplified version of the equivalent circuit. (d) Deternining the output resistance of the sourcd
follower.

Equations (6.164) and (6.165) can be combined to obtain the voltage gain

$$
A_{v} \equiv \frac{v_{Q}}{v_{i}}=\frac{g_{m} R_{L}^{\prime}}{1+g_{m} R_{L}^{\prime}}
$$

which, as expected, is less than unity. To obtain the open-circuit voltage gain, we set R_{L} in Eq. (6.163) to ∞, which reduces R_{L}^{\prime} to $r_{o} \|\left(1 / g_{m b}\right)$. Substituting this value for R_{L}^{\prime} in Eq. (6.166) gives

$$
\begin{equation*}
A_{v o}=\frac{g_{m} r_{o}}{1+\left(g_{m}+g_{m b}\right) r_{o}} \tag{6.167}
\end{equation*}
$$

which, for the usual case where $\left(g_{m}+g_{m b}\right) r_{o} \gg 1$, simplifies to

$$
\begin{equation*}
A_{v o} \cong \frac{g_{m}}{g_{m}+g_{m b}}=\frac{1}{1+\chi} \tag{6.168}
\end{equation*}
$$

Thus the highest value possible for the voltage gain of the source follower is limited to $1 /(1+\chi)$, which is typically $0.8 \mathrm{~V} / \mathrm{V}$ to $0.9 \mathrm{~V} / \mathrm{V}$.

Finally, we can find the output resistance R_{o} of the source follower either using the equivalent circuit of Fig. 6.50(c) or by inspection of the circuit in Fig. 6.50(d) as

$$
R_{o}=\frac{1}{g_{m i}+g_{m h}} \| r_{0}
$$

which can be approximated as

$$
R_{o} \cong 1 /\left[(1+\chi) g_{m}\right]
$$

Similar to the discrete source follower, the IC source follower can be used as the output stage of a multistage amplifier to provide a low output resistance for driving low-impedance loads. It is also used to shift the dc level of the signal by an amount equal to $V_{G S}$.

EXERCISE

06.33 A source follower for which $k^{\prime}=200 \mu \mathrm{AV}, V^{\prime}=20$ V $\mu \mathrm{m}, ~ Y=0.2, L=0.5 \mathrm{um}, W-20 \mathrm{um}$, and $V_{t}=0.6 \mathrm{~V}$ is required to provide a dc level shift of 0.9 V . What must the bias current I be? Find s $g_{m b}, r_{o}, A_{b}$, and R_{o}. Also, Find the voltage gain when a load resistance of $1 \mathrm{k} \Omega$ is connected to the output.
Ans: $360 \mu \mathrm{~A}, 2.4 \mathrm{mAN}: 0.48 \mathrm{mAN}: 27.8 \mathrm{kS}, 0.82$ VN: $343 \Omega: 0.61 \mathrm{VN}$

6.10.2 Frequency Response of the Source Follower

A major advantage of the source follower is its excellent high-frequency response. This comes about because, as we shall now see, none of the internal capacitances suffers from the Miller effect. Figure 6.51 (a) shows the high-frequency equivalent circuil of a source follower fed with a signal $V_{\text {sis }}$ from a source having a resistance $R_{\text {sid }}$. In addition to the MOSFET capacitances C and C a a capacitance $C_{\text {}}$ is included between the output node and ground to account for the source-to-body capacitance $C_{s b}$ as well as any actual load capacitance.
The simplifications performed above on the low-frequency equivalent circuit can be polied to the high-frequency model of Fig. 6.51(a) to obtain the equivalent circuit in Fig. 6.51(b), where R_{L}^{\prime} is given by Eq. (6.163). Although one can derive an expression for the transfer function of this circuit, the resulting expression will be too complicated to yield insight regarding the role that each of the three capacitances plays. Rather, we shall first deter mine the location of the transmission zeros and then use the method of open-circuit time constants to estimate the 3 - dB frequency, $f_{\text {3ar }}$.
Although there are three capacitances in the circuit of Fig. 6.51(b), the transfer function is of the second order. This is because the three capacitances form a continuous loop. To determine the location of the two transmission zeros, refer to the circuit in Fig. 6.51(b), and note that V_{o} is zero at the frequency at which C_{L} has a zero impedance and thus acts as short circuit across the output, which is ω or $s=\infty$. Also, V_{o} will be zero at the value of s that causes the current into the impedance $R_{L}^{\prime} \| C_{L}$ to be zero. Since this current is $\left(g_{m}+s C_{8 s}\right) V$ the transmission zero will he at $s=s_{Z}$, where

$$
\begin{equation*}
s_{Z}=-\frac{g_{m}}{C_{g s}} \tag{6.17}
\end{equation*}
$$

That is, the zero will be on the negative real-axis of the s-plane with a frequency

$$
\omega_{z}=\frac{g_{m}}{C_{8 s}}
$$

(6.172)

We note that the factor $\left(1+g_{m} R_{L}^{\prime}\right)$ in the denominator will result in reducing the effective resistance with which $C_{8 s}$ interacts. In the absence of the two other capacitances, $C_{8 s}$ together with $R_{g s}$ introduce a pole with frequency $1 / 2 \pi C_{2 s} R_{s}$
Finally, it is easy to see from the circuit in Fig. 6.51(b) that C_{L} interacts with $R_{L} \| R$ hat is,

$$
R_{C_{L}}=R_{L} \| R_{0}
$$

Usually. R_{o} (Eq. 6.169) is low. Thus R_{C} will be low, and the effect of C_{L} will be small Neverthelcss, all threc time constants can be added to obtain $\tau_{I I}$ and hence f_{H},

$$
f_{H}=\frac{1}{2 \pi \tau_{H}}=1 / 2 \pi\left(C_{g d} R_{\mathrm{sig}}+C_{g s} R_{g s}+C_{L} R_{C_{L}}\right)
$$

EXERCISE

 $\chi=f_{1}$ and f_{z} Also thd $R_{\text {, }}, R_{\text {a }}, R_{c}$, and hence the time constant associated with each of the thee
 capactances. Find f_{1}.
 730 MHz

6.10.3 The Emitter Follower

Figure 6.52(a) shows an emitter follower suitable for IC fabrication. It is biased by a constantcurrent source 1 . However, the circuit that sets the de voltage at the base is not shown. The emitter follower is fed with a signal $V_{\text {siig }}$ from a source with resistance $R_{\text {sig }}$. The resistance R_{L} shown at the output, includes the output resistance of current source I as well as any actual load resistance.
Analysis of the emitler follower of Fig. 6.52(a) to determine its low-frequency gain, input resistance, and output resistance is identical to that performed on the capacitively cou pled version in Section 5.7.6. Indeed, the formulas given in Table 5.6 can be easily adapted for the circuit in Fig. 6.52(a). Therefore we shafl concentrate here on the analysis of the high-frequency response of the circuit.
Figure 6.52 (b) shows the high-frequency equivalent circuit. Lumping r_{o} together with R_{L} and r_{x} together with $R_{\text {sig }}$ and making a slight change in the way the circuit is drawn results in the simplified equivalent circuit shown in Fig. 6.52(c). We will follow a procedure for the analysis of this circuit similar to that used above for the source follower. Specifically, to obtain the location of the transmission zero, note that V_{o} will be zero at the frequency s_{z} for which the current fed to R_{L}^{\prime} is zero:

$$
g_{m} V_{\pi}+\frac{V_{\pi}}{r_{\pi}}+s_{Z} C_{\pi}=0
$$

Thus

$$
\begin{equation*}
s_{Z}=-\frac{g_{m}+\left(1 / r_{\pi}\right)}{C_{\pi}}=-\frac{1}{C_{\pi} r_{e}} \tag{6,177}
\end{equation*}
$$

(a)

(b)

(c)

FIGURE 6.52 (a) Emitter follower. (b) High-frequency equivalent circuit. (c) Simplified equivalent circu
which is on the negative real-axis of the s-plane and has a frequency

$$
\begin{equation*}
\omega_{L}=\frac{1}{C_{\pi} r_{e}} \tag{6.178}
\end{equation*}
$$

This frequency is very close to the unity-gain frequency ω_{T} of the uransistor. The other trans mission zero is at $s=\infty$. This is because at this frequency, C_{μ} acts as a short circuit, makin V_{π} zero, and hence V will be zero.
Next, we determine the resistances seen by C_{μ} and C_{π}. For C_{μ} the reader should be able to how that the resistance it sees, R_{μ}, is the parallel equivalent of $R_{\text {sig }}^{\prime}$ and the input resistance

$$
R_{\mu}=R_{\text {sig }}^{\prime} \|\left[r_{\pi}+(\beta+1) R_{L}^{\prime}\right]
$$

Equation (6.179) indicates that R_{μ} will be smaller than $R_{\text {sig }}^{\prime}$, and since C_{μ} is usually very The resistance R
$R_{\mu} R_{\mu}$ will be correspondingly small ,
The resistance R_{π} seen by C_{π} can be determined using an analysis similar to that
nployed for the determination of R_{R} in the MOSFET employed for the determination of $R_{g s}$ in the MOSFET case. The result is

$$
\begin{equation*}
R_{\pi}=\frac{R_{\text {sig }}^{\prime}+R_{L}^{\prime}}{1+\frac{R_{\text {sig }}^{\prime}}{r_{\pi}}+\frac{R_{L}^{\prime}}{r_{e}^{\prime}}} \tag{6.180}
\end{equation*}
$$

e observe that the term $R_{t /}^{\prime} / r_{e}$ will usually make the denominator much greater than unity Wus rendering R_{π} rather low. Thus, the time constant $C_{\pi} R_{\pi}$ will be small. The end result is hat the 3 - dB frequency f_{H} of the emitter follower,

$$
\begin{equation*}
f_{H}=1 / 2 \pi\left[C_{\mu} R_{\mu}+C_{\pi} R_{\pi}\right] \tag{6.181}
\end{equation*}
$$

ill usually be very high. We urge the reader to solve the following exercise to gain familiarity with typical values of the various parameters that determine f_{H}.

EXERESE

6.35 For an cmitter tollower brased at $L_{C}=1 \mathrm{~m}$ and having $R_{\text {si }}=R_{L}=1 \mathrm{k} \Omega_{0}=100 \mathrm{k} \Omega_{0} \beta=100$ $C_{\mu}=2 \mu \mathrm{~F}$ and $f_{t}=400 \mathrm{MH}$, find the low frequency gain, $f_{7}, R_{1} . R_{H}$, and f_{H} Ans. 0.962 VNO 458 MH7, $109 \mathrm{k} \Omega .51 \mathrm{\Omega}, 55$ MH

,

6.11 SOME USEFUL TRANSISTOR PAIRINGS

The cascode configuration studied in Section 6.8 combines CS and CG MOS transistors (CE and CB bipolar transistors) to great advantage. The key to the superior performance of the resulting combination is that the transistor pairing is done in a way that maximizes the advantages and minimizes the shortcomings of each of the two individual configurations. In this section we study a number of other such transistor pairings. In each case the transistor ar can be thought of a a compound device: thus the resulting amplifier may be considered as a single stage.

6.11.1 The CD-CS, CC-CE and CD-CE Configurations

Figure 6.53 (a) shows an amplifier formed by cascading a common-drain (source-follower) transistor Q_{1} with a common-source transistor Q_{2}. As should be expected, the voltage gain of the circuit will be a little lower than that of the CS amplifier. The advantage of this circuit

(a)

(b)

(c)

FIGURE 6.53 (a) CD-CS amplifier. (b) CC-CE amplifier. (c) CD-CE amplifier
configuration, however, lies in its bandwidth, which is much wider than that obtained in a CS amplifier. To see how this comes about, note that the CS transistor Q_{2} will still exhibit a Miller effect that results in a large input capacitance, $C_{\text {in } 2}$, between its gate and ground. However, the resistance that this capacitance interacts with will be much lower than $R_{\text {sig }}$; the buffering action of the source follower causes a relatively low resistance, approxiniately equal to a $1 /\left(g_{m 1}+g_{m b 1}\right)$, to appear between the source of Q_{1} and ground across $C_{\text {in2 }}$.

The bipolar counterpart of the CD-CS circuit is shown in Fig. 6.53(b). Beside achieving a wider bandwidth than that obtained with a CE amplifier, the CC-CE configuration has an important additional advantage: The input resistance is increased by a factor equal to $\left(\beta_{1}+1\right)$. Finally, we show in Fig. 6.53(c) the BiCMOS version of this circuit type. Observe that Q_{1} provides the amplifier with an infinite input resistance. Also, note that Q_{2} provides the amplifier with a high g_{m} as compared to that obtained in che MOSFET circuit in Fig. 6.53(a) and hence high gain.

Fividezed

Consider a CC-CE amplifier such as that in Fig. 6.53(b) with the following specifications: $I_{1}=I_{2}=$ 1 mA and identical transistors with $\beta=100, f_{T}=400 \mathrm{MHz}$, and $C_{\mu}=2 \mathrm{pF}$. Let the anplifier be fed with a source $V_{\text {sig }}$ having a resistance $R_{\text {sig }}=4 \mathrm{k} \Omega$, and assume a load resistance of $4 \mathrm{k} \Omega$. Find the voltage gain A_{M}, and estimate the $3-\mathrm{dB}$ frequency, $f_{l l}$. Compare the results with those obtained with a CE amplifier operating under the same conditions. For simplicity, neglect r_{o} and r_{x}.
Solution
At an emitter bias current of $1 \mathrm{~mA}, Q_{1}$ and Q_{2} have

$$
\begin{aligned}
g_{m} & =40 \mathrm{~mA} / \mathrm{V} \\
r_{e} & =25 \Omega \\
r_{\pi} & =\frac{\beta}{g_{m}}=\frac{100}{40}=2.5 \mathrm{k} \Omega \\
C_{\pi}+C_{\mu} & =\frac{g_{m}}{\omega_{T}}=\frac{g_{m}}{2 \pi f_{T}} \\
& =\frac{40 \times 10^{-3}}{2 \pi \times 400 \times 10^{6}}=15.9 \mathrm{pF} \\
C_{\mu} & =2 \mathrm{pF} \\
C_{\pi} & =13.9 \mathrm{pF}
\end{aligned}
$$

The voltage gain A_{M} can be determined from the circuit shown in Fig. 6.54(a) as follows:

$$
\begin{aligned}
R_{\text {in } 2} & =r_{\pi 2}=2.5 \mathrm{k} \Omega \\
R_{\text {in }} & =\left(\beta_{1}+1\right)\left(r_{\epsilon 1}+R_{\text {in2 }}\right) \\
& =101(0.025+2.5)=255 \mathrm{k} \Omega \\
\frac{V_{b 1}}{V_{\text {sis }}} & =\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {siq }}}=\frac{255}{255+4}=0.98 \mathrm{~V} / \mathrm{V} \\
\frac{V_{b 2}}{V_{b 1}} & =\frac{R_{\text {in2 }}}{R_{\text {in } 2}+r_{c 1}}=\frac{2.5}{2.5+0.025}=0.99 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

$$
\frac{V_{o}}{V_{b 2}}=-g_{m 2} R_{L}=-40 \times 4=-160 \mathrm{~V} / \mathrm{V}
$$

Thus,

$$
A_{M}=\frac{V_{o}}{V_{\text {sig }}}=-160 \times 0.99 \times 0.98=-155 \mathrm{~V} / \mathrm{V}
$$

To detcrmine f_{1} we use the method of open-circuit time constants. Figure 6.54(b) shows the To determine $f_{l \prime}$ we use the method of open-circuit ime with $V_{\text {sig }}$ set to zero and the four capacitances indicated. Capacitance $C_{\mu 1}$ sces a resistance $R_{\mu \mathrm{i}}$,
$R_{\mu 1}=R_{\text {sig }} \| R_{\text {in }}$
$=4 \| 255=3.94 \mathrm{k} \Omega$

(a)

(b)

(c)

FIGURE 6.54 Circuits for Example 6.13: (a) The CC-CE circuit prepared for low-frequency small-signa anaiysis; (b) the circuit at high frequencies, with $V_{\text {sis }}$ set to zero to enable determination of the open-circuit time conslants; and (c) a CE amplifier for comparison

To find the resistance $R_{\pi 1}$ seen by capacitance $C_{\pi 1}$ we rcfer to the analysis of the high frequency response of the emitter follower in Section 6.10.3. Specifically, we adapt Eq. (6.180) to the situation here as follows

$$
\begin{aligned}
R_{\pi} & =r_{\pi}\left\|R_{\text {sig }}=2.5\right\| 4=1.54 \mathrm{k} \Omega \\
R_{\mu} & =\left(1+g_{m m} R_{L}\right)\left(R_{\text {sig }} \| r_{\pi}\right)+R_{L} \\
& =(1+40 \times 4)(4 \| 2.5)+4 \\
& =251.7 \mathrm{k} \Omega
\end{aligned}
$$

Thus,

$$
\tau_{H}=C_{\pi} R_{\pi}+C_{\mu} R_{\mu}
$$

$=13.9 \times 1.54+2 \times 251.7$
$=21.4+503.4=524.8 \mathrm{~ns}$
Observe the dominant role played by C_{μ}. The $3-\mathrm{dB}$ frequency f_{H} is

$$
f_{H}=\frac{1}{2 \pi \tau_{H}}=\frac{1}{2 \pi \times 524.8 \times 10^{-9}}=303 \mathrm{kHz}
$$

Thus, including the buffering transistor Q_{1} increases the gain, $\left|A_{M}\right|$ from $61.5 \mathrm{~V} / \mathrm{V}$ to $155 \mathrm{~V} / \mathrm{V}$ -
a factor of 2.5 -and increases the bandwidth from 303 kHz to 4.2 MHz -a factor of 13.9 ! The
gain-bandwidth product is increased from 18.63 MHz to 651 MHz -a factor of 35 !
Capacitance $C_{\mu 2}$ sees a resistance $R_{\mu 2}$. To determine $R_{\mu 2}$ we refer to the analysis of the frequency response of the CE amplifier in Section 6.6 to obtain

$$
\begin{aligned}
R_{\mu 2} & =\left(1+g_{m 2} R_{l}\right)\left(R_{\text {in } 2} \| R_{\text {out } 1}\right)+R_{L} \\
& \left.=(1+40 \times 4)-2500 \|\left(25+\frac{4000}{101}\right)\right]+4000 \\
& =14,143 \Omega \cong \cong 14.1 \mathrm{k} \Omega
\end{aligned}
$$

We now can determine $\tau_{l /}$ from

$$
\begin{aligned}
\tau_{H} & =C_{\mu 1} R_{\mu 1}+C_{\pi 1} R_{\pi 1}+C_{\mu 2} R_{\mu 2}+C_{\pi 2} R_{\pi 2} \\
& =2 \times 3.94+13.9 \times 0.0634+2 \times 14.1+13.9 \times 0.063 \\
& =7.88+0.88+28.2+0.88=37.8 \mathrm{~ns}
\end{aligned}
$$

Wc observe that $C_{\pi 1}$ and $C_{\pi 2}$ play a very minor role in determining the high-frequency response. As expected, $C_{u 2}$ through the Miller effect plays the most significant role. Also, C_{μ}, which inter acts directly with ($R_{\text {sig }} \| R_{\mathrm{in}}$), also plays an important role. The $3-\mathrm{dB}$ frequency f_{H} can be found as follows:

$$
f_{l l}=\frac{1}{2 \pi \tau_{H}}=\frac{1}{2 \pi \times 37.8 \times 10^{-9}}=4.2 \mathrm{MHz}
$$

For comparison, we evaluate $\Lambda_{M C}$ and f_{H} of a CE amplifier operating undcr the same conditions. Refer to Fig. 6.54(c). The voltage gain A_{M} is given by

$$
\begin{aligned}
A_{M} & =\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}}\left(-g_{m} R_{l,}\right) \\
& =\left(\frac{r_{\pi}}{r_{\pi}+R_{\text {sil }}}\right)\left(-g_{m} R_{l,}\right) \\
& =\left(\frac{2.5}{2.5+4}\right)(-40 \times 4) \\
& =-61.5 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

6.11.2 The Darlington Configuration

Figure 6.55 (a) shows a popular BJT circuit known as the Darlington configuration. It can be thought of as a variation of the CC-CE circuit with the collector of Q_{1} connected to that of Q_{2}. Alternatively, the Darlington pair can be thought of as a composite transistor with $\beta=\beta_{1} \beta_{2}$. It can therefore be used to implement a high-performance voltage follower, as illustrated in Fig. 6.55(b). Note that in this application the circuit can be considered as the cascade connection of two common-collector transistors (i.c., a CC-CC configuration).

FIGURE 6.55 (a) The Darlington conliguration; (b) voltage follower using the Darlington configuration and (c) the Dartington follower with a bias current I applied to Q_{1} to ensure that its β remains high.

Since the transistor β depends on the de bias current, $i t$ is possible that Q_{1} will be operating at a very low β, rendering the β-multiplication effect of the Darlington pair rather ineffective. A simple solution to this problem is $i o$ provide a bias current for Q_{1}, as shown in Fig. 6.55(c).

6.11.3 The CC-CB and CD-CG Configurations

Cascading an emitter follower with a common-base amplifier, as shown in Fig. 6.56(a) results in a circuit with a low-frequency gain approximately cqual to that of the CB but with the problem of the low input resistance of the CB solved by the buffering action of the CC stage. Since neither the CC nor the CB amplifier sullers from the Miller effect, the $\mathrm{CC}-\mathrm{CB}$

(a)

(b)

(c)
 using a prp transistor. (c) The MOSFET version of the circuit in (a)
configuration has excellent high-frequency performance. Note that the biasing current sources shown in Fig. 6.56(a) ensure that each of Q_{1} and Q_{2} is operating at a bias current I. We are not showing, however, how the de voltage at the base of Q_{1} is set or the circuit that determines the de voltage at the collector of Q_{2}. Both issues are usually looked after in the larger circuit of which the $\mathrm{CC}-\mathrm{CB}$ amplifier is part.
An intercsting version of the CC-CB configuration is shown in Fig. 6.56(b). Here the CB stage is implemented with a pnp transistor. Although only one current source is now needed, observe that we also need to establish an appropriate voltage at the base of Q_{2}. This circuit is part of the internal circuit of the popular 741 op amp, which will be studied in Chapter 9 .

The MOSFET version of the circuit in Fig. 6.56(a) is the CD-CG amplifier shown in Fig. 6.56 (c)
We now b

We now briefly analyze the circuit in Fig. 6.56(a) to determine its gain A_{M} and its highfrequency response. The analysis applies directly to the circuit in Fig. 6.56 (b) and, with appropriate change of component and parameter names, to the MOSFET version in Fig. 6.56(c). For simplicity we shall neglect r_{x} and r_{o} of both transistors. The input resistance $R_{\text {in }}$ is given by

$$
\begin{equation*}
R_{\mathrm{in}}=\left(\beta_{1}+1\right)\left(r_{e 1}+r_{e 2}\right) \tag{6.182}
\end{equation*}
$$

which for $r_{e 1}=r_{e 2}=r_{e}$ and $\beta_{1}=\beta_{2}=\beta$ becomes

If a load resistance R_{L} is connected at the output, the voltage gain V_{o} / V_{i} will be

$$
\begin{equation*}
\frac{V_{o}}{V_{i}}=\frac{\alpha_{2} R_{L}}{r_{t 1}+r_{e 2}}=\frac{1}{2} g_{m} R_{L} \tag{6.184}
\end{equation*}
$$

Now, if the amplifier is fed with a voltage signal $V_{\text {sig }}$ from a source with a resistance $R_{\text {sige }}$, the overall voltage gain will be

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {sig }}}=\frac{1}{2}\left(\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}}\right)\left(g_{m_{m}} R_{t .}\right) \tag{6.185}
\end{equation*}
$$

The high-frequency analysis is illustrated in Fig. 6.57(a). Here we have drawn the hybrid- π equivalent circuit for each of Q_{1} and Q_{2}. Recalling that the two transistors are operating at equal bias currents, their corresponding inodel components will be equal (i.e., $r_{\pi 1}=r_{\pi 2}, C_{\pi 1}=C_{\pi 2}$, etc.). With this in mind the reader should be able to see that $V_{\pi 1}=$ the circuit redues to that in Fig 6.57 (b) This is a very attractive outcome becanse the circuit wows clealy the two poles 1). Thine the high-frequency response: The pole at the input, with a frequency $f_{p 1}$, is

$$
f_{P 1}=\frac{1}{2 \pi\left(\frac{C_{\pi}}{2}+C_{\mu}\right)\left(R_{\text {sig }} \| 2 r_{\pi}\right)}
$$

and the pole at the output, with a frequency $f_{P_{2}}$, is

$$
f_{P 2}=\frac{1}{2 \pi C_{\mu} R_{L}}
$$

This result is also intuitively obvious: The input impedance at B_{1} of the circuit in Fig. 6.57(a) consists of the series connection of $r_{\pi 1}$ and $r_{\pi 2}$ in parallel with the serics connection of $C_{n 1}$ and $C_{\pi 2}$. Then there is C_{μ} in parallel. At the output, we simply have R_{L} in parallel with C_{μ}.

(a)

(b)

FIGURE 6.57 (a) Equivalent circuit for the amplifier in Fig. 6.56 (a). (b) Simplified equivalent circuit Note that the equivalent circuits in (a) and (b) also apply to the cireuit shown in Fig. 6.5f(b). In addition Note that the equivalcont circuits in (a) and (b) also apply to the cireuit shown in Fig. 6.56 (b). In addition
they can be easily adapled for the MOSFET circuit in Fig. $6.56(\mathrm{c})$, with $2 r_{\pi}$ eliminated, C_{π} replaced wilh C^{8} C_{μ} replaced with $C_{s p}$, and V_{π} replaced with $V_{s p}$

Whether one of the two poles is dominant will depend on the relative values of $R_{\text {sig }}$ and R_{L}. If the two poles are close to each other, then the $3-\mathrm{dB}$ frequency f_{H} can be determined ther by exact analysis-that is, finding the frequency at which the gain is down by 3 dB or by using the approximate formula in Eq. (6.36),

$$
\begin{equation*}
f_{H} \cong 1 / \sqrt{\frac{1}{f_{P_{1}}^{2}}+\frac{1}{f_{P 2}^{2}}} \tag{6.188}
\end{equation*}
$$

Finally, we note that the circuits in Fig. 6.56(a) and (c) are special forms of the differential amplifier, perhaps the most important circuit building block in analog IC design and the
major topic of study in Chapter 7 . major topic of study in Chapter 7.

6.12 CURRENT-MIRROR CIRCUITS

 15 WITH IMPROVED PERFORMANCEAs we have seen throughout this chapter, current sources play a major role in the design of IC amplifiers: The constant-current source is used both in biasing and as active load. Simple forms of both MOS and bipolar current sources and, more generally, current mirrors were studied in Section 6.3. The need to improve the characteristics of the simple sources and mirrors has already been demonstrated. Specifically, two performance paramcters need to be addressed: the accuracy of the current transfer ratio of the mirror and the output resistance of the current source.

The reader will recall from Section 6.3 that the accuracy of the current transfer ratio suffers particularly from the finite β of the BJT. The output resistance, which in the simple circuits is limited to r_{o} of the MOSFET and the BJT, also reduces accuracy and, much morc seriously, severely limits the gain available from cascode amplifiers. In this section we suldy MOS and bipolar current mirrors with more accurate current transfer ratios and higher output resistances.

6.12.1 Cascode MOS Mirrors

A brief introduction to the use of the cascoding principle in the design of current sources was presented in Section 6.8.4. Figure 6.58 shows the basic cascode cuirent mirror. Obscrve that in addition to the diodc-connected transistor Q_{1}, which forms the basic mirror $Q_{1}-Q_{2}$, another diode-connected transistor, Q_{4}, is used to provide a suitable bias voltage for the gate of the cascode transistor Q_{3}. To determine the oulput resistance of the cascode mirror at the drain of Q_{3}, we set $I_{\text {REF }}$ to zero. Also, since Q_{1} and Q_{4} have a relatively small incremental recistance $Q_{3}, l_{\text {REF }}$, ras will be that of the CG transistor Q_{3}, which has a resistance $r_{o 1}$ in its source. Equation (6.101) can be adapted to obtain

$$
\begin{aligned}
R_{o} & =r_{o 3}+\left[1+\left(g_{m 3}+g_{m b 3}\right) r_{o 3}\right] r_{o 2} \\
& \cong y_{m 3} r_{o 3} r_{o 2}
\end{aligned}
$$

(6.189)
(6.190) $g_{m 3} r_{\mu 3}$, which is the intrinsic gain of the cascode transistor

FIGURE 6.58 \AA cascode MOS current mirror

A drawback of the cascode current mirror is that it consumes a relatively large portion of the steadily shrinking supply voltage $V_{D D}$. While the simple MOS mirror operates properly with a voltage as low as $V_{O V}$ across its output transistor, the cascode circuit of Fig. 6.58 requires a minimum voltage of $V_{t}+2 V_{O V}$. This is because the gate of Q_{3} is at $2 V_{\text {s }}$. $2 V_{t}+2 V_{o v}$. Thus the minimum voltage required across the output of the cascode mirror is V or so. This obviously limits the signal swing at the output of the mirror (i.e., at the out put of the amplifier that utilizes this current source as a load). In Chapter 9 we shall study wide-swing cascode mirror.

EXERCISE

6.38 For a cascode MOS mirtor utilizing devices with $V=0.5 \mathrm{~V}, \mu_{n} C_{o x}=387 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t}=5 \mathrm{~V} \mu \mathrm{~m}$ $W /=3.6 \mu \mathrm{~m} / 56 \mu \mathrm{~m}$, and $I_{\mathrm{REF}}=100 \mu \mathrm{~A}$, hind the minimim de voltase tequired at the outpul and the oufput resistance.
Ans. $0.95 \mathrm{~V} ; 285 \mathrm{k} \Omega$

6.12.2 A Bipolar Mirror with Base-Current Compensation

Figure 6.59 shows a bipolar current mirror with a current transfer ratio that is much less dependent on β than that of the simple current mirror. The reduced dependence on β is achieved by including transistor Q_{3}, the emitter of which supplies the base currents of Q_{1} achieved by including transistor Q_{3}, the emitter of which supplies the base currents of Q_{1} and Q_{2}. The sum of the base currents is then divided by $\left(\beta_{3}+1\right)$, resulting in a much smaller diagram; it is based on the assumption that Q_{1} and Q_{2} are matched and thus have equa collector currents, I_{C}. A node equation at the node labeled x gives

$$
I_{\mathrm{REF}}=I_{C}\left[1+\frac{2}{\beta(\beta+1)}\right]
$$

Since
$I_{o}=I_{C}$

FIGURE 6.59 A current mirror with base-curreni compensation.
the current transfer ratio of the mirror will be

$$
\begin{aligned}
\frac{I_{O}}{I_{\text {REF }}} & =\frac{1}{1+2 /\left(\beta^{2}+\beta\right)} \\
& \cong \frac{1}{1+2 / \beta^{2}}
\end{aligned}
$$

(6.191)
which means that the error due to finite β has been reduced from $2 / \beta$ in the simple mirror to $2 / \beta^{2}$, a tremendous improvement. Unfortunately, however, the output resistance remains mproximately equal to that of the simple mirror, namely r_{o}. Finally, note that if a reference curent $I_{\text {REF }}$ is not available, we simply connect node x to the power supply $V_{C C}$ through a resistance R. The result is a reference current given by

$$
\begin{equation*}
I_{\mathrm{REF}}=\frac{V_{C C}-V_{\text {nE1 }}-V_{B E 3}}{R} \tag{6.192}
\end{equation*}
$$

6.12.3 The Wilson Current Mirror

A simple but ingenious modification of the basic bipolar mirror results in both reducing the β dependence and increasing the output resistance. The resulting circuit, known as the Wilson mirror after its inventor, George Wison, an lC desigo engincer or ing in shown in Fig. 6.60(a). The analysis

(a)

(b)

FIGURE 6.60 The Wilson bipolar current mirror: (a) circuit showing analysis to determine the current transfer ratio; and (b) determining the output resistance. Note that the current i, that enters Q_{3} must equal the sum of the currents that lcave it, $2 i$.
ratio is shown in Fig. 6.60(a), from which we can write

$$
\begin{align*}
\frac{I_{O}}{I_{\mathrm{REF}}} & =\frac{I_{C}\left(1+\frac{2}{\beta}\right) \beta /(\beta+1)}{I_{C}\left[1+\left(1+\frac{2}{\beta}\right) /(\beta+1)\right]} \\
& =\frac{\beta+2}{\beta+1+\frac{\beta+2}{\beta}}=\frac{\beta+2}{\beta+2+\frac{2}{\beta}} \\
& =\frac{1}{1+\frac{2}{\beta(\beta+2)}} \\
& \cong \frac{1}{1+2 / \beta^{2}} \tag{6.193}
\end{align*}
$$

This analysis assumes that Q_{1} and Q_{2} conduct equal collector currents. There is, however, a slight problem with this assumption: The collector-to-emitter voltages of Q_{1} and Q_{2} are not equal, which introduces a current offset or a systematic error. The problem can be solved by adding a diode-connected transistor in series with the collector of Q_{2}, as we shall shortly show for the MOS version.

Analysis to determine the output resistance of the Wilson mirror is illustrated in Fig. 6.60(b), from which we see that

$$
R_{o}=\beta r_{o} / 2
$$

(6.194)

Finally, we note that the Wilson minror is preferred over the cascode circuil because the latter has the same dependence on β as the simple mirror. However, like the cascode miitor, the Wilson mirror requires an additional $V_{B E}$ drop for its operation; that is, for proper operation we must allow for 1 V or so across the Wilson-minor output.

Hentist

6.12.4 The Wilson MOS Mirror

Figure 6.61 (a) shows the MOS version of the Wilson mirror. Obviously there is no β error to reduce here, and the advantage of the MOS Wilson lies in its enhanced output resistance. The analysis shown in Fig. 6.61(b) provides

$$
\begin{aligned}
R_{o} & \cong r_{o 3}\left(g_{m 3} r_{o 2}+2\right) \\
& \cong g_{m 3} r_{o 3} r_{o 2}
\end{aligned}
$$

where we have neglected, for simplicity, the body effect in Q_{3}. We observe that the output resistance is approximately the same as that achieved in the cascode circuit. Finally, to balance

(c)

GURE 6.61 The Wilson MOS mirror: (a) circuit; (b) analysis to determine output resistance; and (c) modified circuit.
the two branches of the mirror and thus ayoid the systematic curnent error resulting from the difference in $V_{D S}$ berween Q_{1} and Q_{2}, the circuit can be modified as shown in Fig. 6.61(c).

6.12.5 The Widlar Current Source

Our final current-source circuit, known as the Widlar current source, is shown in Fig. 6.62. It differs from the basic current mirror circuit in an important way: A resistor R_{E} is included in the emitter lead of Q_{2}. Neglecting base currents we can write

$$
V_{B E 1}=V_{T} \ln \left(\frac{I_{\mathrm{REF}}}{I_{S}}\right)
$$

FIGURE 6.62 The Widlar current source.
and

$$
\begin{equation*}
V_{B E 2}=V_{T} \ln \left(\frac{I_{O}}{I_{S}}\right) \tag{6.196}
\end{equation*}
$$

where we have assumed that Q_{1} and Q_{2} are matched devices. Combining Eqs. (6.195) and 6.196) gives

$$
V_{B E 1}-V_{B E 2}=V_{T} \ln \left(\frac{I_{\mathrm{REF}}}{I_{O}}\right)
$$

But from the circuit we see that

$$
V_{B E 1}=V_{B E 2}+I_{O} R_{L}
$$

Thus,

$$
I_{O} R_{E}=V_{T} \ln \left(\frac{I_{\mathrm{REF}}}{I_{O}}\right)
$$

The design and advantages of the Widlar current source arc illustrated in the following example.

Figure 6.63 shows two circuits for generating a constant current $I_{o}=10 \mu \mathrm{~A}$ which operate from a $10-\mathrm{V}$ supply. Dcterminc the values of the required resistors assuming tbat $V_{B E}$ is 0.7 V at a current of 1 mA and neglecting the effect of finite β

Solution

For the basic current-source circuit in Fig. 6.63(a) we choose a value for R_{1} to result in $I_{\text {REF }}=$ $10 \mu \mathrm{~A}$. At this current, the voltage drop across Q_{1}, will he

$$
V_{\text {BE1 }}=0.7+V_{T} \ln \left(\frac{10 \mu \mathrm{~A}}{1 \mathrm{~mA}}\right)=0.58 \mathrm{~V}
$$

FIGURE 6.63 Circuits for Example 6.14

Thus,

$$
R_{1}=\frac{10-0.58}{0.01}=942 \mathrm{k} \Omega
$$

For the Widlar circuit in Fig. 6.63(b) we must first decide on a suitable value for $I_{\text {RFF }}$. If we select $I_{\text {REF }}=1 \mathrm{~mA}$, then $V_{B E 1}=0.7 \mathrm{~V}$ and R_{2} is given by

$$
R_{2}=\frac{10-0.7}{1}=9.3 \mathrm{k} \Omega
$$

The valuc of R_{3} can be determined using Eq. (6.199) as follows

$$
10 \times 10^{-6} R_{3}=0.025 \ln \left(\frac{1 \mathrm{~mA}}{10 \mu \mathrm{~A}}\right)
$$

$$
R_{3}=11.5 \mathrm{k} \Omega
$$

From the above example we observe that using the Widlar circuit allows the generation of a small constant current using relatively small resistors. This is an important advantage that esults in considerable savings in chip area. In fact the circuit of Fig. 6.63(a), requiring a $42-\mathrm{k} \Omega$ resistance, is totally impractical for implementation in IC form.

Another important characteristic of the Widlar current source is that its output resis Ance, is high. The increase in the output resistance, above that achieved in the basic current source, is due to the emitter degeneration resistance R_{F} : To determine the output resistance of Q_{2}, we assume that since the base of Q_{2} is connected to ground via the small resistance r_{e} of Q_{1}, the incremental voltage at the basc will be small. Thus we can use the formula derived in Section 6.7.2 for the CB amplifier, namely Eq. (6.118), and adapt it for our purposes here as follows:

$$
R_{o} \cong\left[1+g_{m}\left(R_{E} \| r_{\pi}\right) \mid r_{o}\right.
$$

Thus the output resistance is increased above r_{o} by a factor that can be significant.

EXERCISE

6.40 Find the output resistance of eich of the into current sources designed in Example 6.14 Let $V /-100 \mathrm{~V}$ and $\beta=100$
Ans: Mo. 54 Ms

6.13 SPICE SIMULATION EXAMPLES

We conclude this chapter by presenting two SPICE simulation examples. In the first example, we will use SPICE to investigate the operation of the CS amplifier circuit (studied in Section 6.5.2). In the second example, we will use SPICE to compare the high-frequency response of the CS amplifier (studied in Section 6.6) to that of the folded-cascode amplifier
(studied in Section 6.8.6).

2xMmyEt 25:

THE CMOS CS AMPLIFIER

In this example, we will use PSpice to compute the dc transfer characteristic of the CS amplifict whose Capture schematic is shown in Fig. 6.64. We will assume a 5 - $\mu \mathrm{m}$ CMOS technology for the MOSFETs and usc parts NMOSSPO and PMOS 5 P0 whose SPICE level-1 paramcters age fist in Table 4.8. To specify the dimensious of the MOSFETs in PSpice, we will use the multiplicative factor m together with the channel length L and the channel width W. The MOSFET parameter m,

FIGURE 6.64 Capture schematic of the CS amplifier in Example 6.15

FIGURE 6.65 Transistor equivalency.
whose deflaul value is 1 , is used in SPICE to specify the number of MOSFETs connected in paral lel. As depicted in Fig. 6.65, a wide transistor with chamnel length L and channel width $m \times W$ can be implemented using m narrower transistors in parallet, each having a channel length L and a channel width W. Thus, neglecting the channel-length modulation effect, the drain current of a MOSFET operating in the saturation region can be expressed as

$$
\begin{equation*}
I_{D}=\frac{1}{2} \mu C_{o x} m \frac{W}{L_{\mathrm{eff}}} V_{o v}^{2} \tag{6.201}
\end{equation*}
$$

where $L_{\text {eff }}$ rather than L is used to more accurately estimate the drain current (refer to Section 4.12.2).

The CS amplifier in Fig. 6.64 is designed for a bias current of $100 \mu \mathrm{~A}$ assuming a reference current $I_{\text {eff }}=100 \mu \mathrm{~A}$ and $V_{D D}=1.0 \mathrm{~V}$. The current-mirror transistors M_{2} and M_{3} are sized for $V_{O V 2}=$ $V_{o n 3}=1 \mathrm{~V}$, while the input transistor M_{1} is sized for $V_{o v 1}=0.5 \mathrm{~V}$. Note that a smaller overdrive voltage is selected for M_{1} to achieve a larger voltage gain G_{v} for the CS amplificr, since

$$
G_{v}=-g_{m 1} R_{i .}^{\prime}=-g_{m 1}\left(r_{o 1} \| r_{o 2}\right)=-\frac{2}{V_{o v 1}}\left(\frac{V_{A n} V_{A p}}{V_{A n}+V_{A p}}\right)
$$

(6.202)
where $V_{A n}$ and $V_{A p}$ are the magnitudes of the Early voltages of, respectivcly, the NMOS and PMOS transistors. Unit-size transistors are used with $W / L=12.5 \mu \mathrm{~m} / 6 \mu \mathrm{~m}$ for the NMOS devices and $W / L=37.5 \mu \mathrm{~m} / 6 \mu \mathrm{~m}$ for the PMOS devices. Thus, using Eq. (6.201) together with the $5-\mu \mathrm{m}$ CMOS process parameters in Table 4.8 , we find $m_{1}=10$ and $m_{2}=m_{3}=2$ (rounded to the nearest integer). Furthermore, Eq. (6.202) gives $G_{v}=-100 \mathrm{~V} / \mathrm{V}$.
To compute the de transfer characteristic of the CS amplifier, we perform a dc analysis in PSpice with $V_{\text {IN }}$ swept over the range 0 to $V_{D D}$ and plot the corresponding output voltage $V_{\text {OUT }}$. Figure $6.66(a)$ shows the resulting transfer characteristic. The slope of this characteristic ci.c., $V_{\text {oun }} / d V_{\text {IN }}$ corresponds to the gain of the amplifier. Thic high-gain segment is clearly visible
for $V_{\text {IN }}$ around 1.5 V . This corresponds to an overdrive voltage for M_{1} of $V_{\text {ovi }}=V_{\text {IN }}-V_{t n}=0.5 \mathrm{~V}$, as desired. To examine the high-gain region more closely, we repeat the dc sweep for $V_{\text {IN }}$ between 1.3 V and 1.7 V . The resulting transfer characteristic is plotted in Fig. 6.66 (b, middle curve). Using the Probe graphical interface of PSpicc, we find that the lincar region of this de transfer characteristic is bounded approximately by $V_{\mathbb{T N}}=1.465 \mathrm{~V}$ and $V_{\mathrm{K}}=1.539 \mathrm{~V}$. The corresponding values of $V_{\text {OUT }}$ are 8.838 V and 0.573 V . Thesc results arc close to the expected values. Specifically, transistors M_{1} and M_{2} will remain in the saturation region and, hence, the anplificr will operate in its linear region if $V_{O V 1} \leq V_{O M T} \leq V_{D D}-V_{O V 2}$ or $0.5 \mathrm{~V} \leq V_{O U T} \leq 9 \mathrm{~V}$. From the results above,

(a)

(b)

FIGURE 6.66 (a) Voltage iransfer characteristic of the CS amplificr in Example 6.15. (b) Expanded view of the tranisfer characteristic in the hish-vain region. Also shown are the transter chancteristics where procecs variations cause the width of transistor M_{1} to change by $+15 \%$ and -15% fromi its nominal value of $W_{1}=12.5 \mu \mathrm{~m}$.
a matcly -112 V , which is reasonably close to the valuc obtanned by hand analysis.
Note, from the de transfer characteristic in Fig. 6.66 (b), that for an input de bias of $V_{\mathrm{IN}}=1.5$ V , the output dc bias is $V_{\text {Our }}=4.88 \mathrm{~V}$. This choicc of $V_{\mathbb{N}}$ maximizes the available signal swing at the out-put by sctting $V_{\text {Out }}$ at the middle of the linear segment of the de transfer characteristic.

However, because of the high resistance at the output node (or, cquivalently, because of the high voltage gain), this valuc of $V_{\text {our }}$ is highly sensitive to the effect of process and temperature variations on the characteristics of the transistors. To illustrate this point, consider what happen ing dc transfer characteristics arc shown in Fig. $6.66(\mathrm{~b})$. Accordingly. when $V_{\mathrm{IN}}=1.5 \mathrm{~V}, V_{\text {our }}$ will drop to 0.84 V if W_{1} increases by 15% and will rise to 9.0 V if W_{1} decreases by 15%. In practical circuit implementations, this problem is circumvented by using negative feedback to accurately sct the dc bias voltage at the output of the amplifier and, hence, to reduce the sensitivity of the circuit to process variations. The topic of negative feedback will be studied in Chapter 8 .

WWMETEM 6

freauency response of the cs and
THE FOLDED-CASCODE AMPLIFIERS
In this example, we will use PSpice to compute the freciucncy response of both the CS and the folded-cascode amplifiers whose Capture schematics are shown in Figs. 6.67 and 6.69 , respecdively. We will assume that the de bias levels at the output of the amplifiers arc stabilizcd using negative feedback. However, before performg a small will perfon (an a do tion) in SPICE to measire he frequency response, we wil pron de alys (a bias-poin imulation) to verify tha that the amplifier is operating in its linear region.

FIGURE 6.67 Capture schematic of the CS amplifier in Example 6.16.

In the following, we will assume a $0.5-\mu \mathrm{m}$ CMOS technology for the MOSFETs and use parts NMOSOPS and PMOSOP5 whose SPICE level-1 model parameters are listed in Table 4.8 To specify the dimensions of the MOSFETs in PSpice, we will use the multiplicative factor m, together with the channcl length L and channel width W (as we did in Example 6.15)

THE CS AMPLIFIER

The CS amplifier circuit in Fig. 6.67 is identical to the one shown in Fig. 6.18, except that a current source is connected to the source of the input transistor M_{1} to set its drain current $I_{D_{1}}$ independenly of its drain voltage $V_{p \text { I }}$. Furthermore, in our PSpice simulations, we used an impractically large bypass capacitor $C_{\text {s }}$ of 1 F . This sets the source of M_{1} at approximately signal ground during the ac-analysis simulation. Accordingly, the CS amplifiercircuits in Figs. 6.18 and 6.67 are equivalent for the purpose of fiequency-response analysis. In Chapter 7 , we will find out, in the context of studying the differcnial pair, how the goals of this biasing approach for the CS amplifice are realized in practical IC implementations.
The CS amplifier in Fig. 6.67 is designed assuming a reference current $I_{\text {re }}=100 \mu \mathrm{~A}$ and $V_{D D}=$ 3.3 V. The current-mirror transistors, M_{2} and M_{3}, are sized for $V_{\text {OV2 }}=V_{O V 3}=0.3 \mathrm{~V}$, while the input transistor M_{1} is sized for $V_{O V 1}=0.15 \mathrm{~V}$. Unit-size transistors are used with $W / L=1.25 \mu \mathrm{~m} /$ $0.6 \mu \mathrm{~m}$ for the NMOS devices and $W / L=5 \mu \mathrm{~m} / 0.6 \mu \mathrm{~m}$ for the PMOS deviccs. Thus, using Eq. (6.201) logether with the $0.5-\mu \mathrm{mm}$. . $m_{2}=m_{3}=4$. Furthermore, Eq. (6.202) gives $\sigma_{v}=-44.4 \mathrm{~V}$ for the CS amplifice.
In the PSpice simulations of the CS amplifier in Fig. 6.67, the de bias voltage of the signal level of $V_{\text {s }}$ to be V
 M_{1}. The reasoning behnd ${ }^{\text {current }}$ choice or $V_{s 1}$ is hat, in a practical circuit impleme ation, the one in Fig 6.58. In this case the minimum voltage required across the currcn mimror such as the inum V is $V+2 V=13 \mathrm{~V}$ assuming $V=03 \mathrm{~V}$ for the current minor sance (ics., the
a bias-point nimution is perforg is PSice to vily hill MOSPETs
Abias-posion Next to of the signal source to 1 V perform an ac-analysis simulation and plot the output voltage magnitudc versus frequency. Figurc 6.68 (a) shows the resulting frequency response for $R=100 \mathrm{~S}$ and $R_{s}=1 \mathrm{MO}$ In both cases, a load canacitance of $C \quad=0.5 \mathrm{pF}$ is used. The corresponding

from our study of the highfrequency response of the CS amplifier in Section 6.6. Specifically, as $R_{\text {sig }}$ increases, the pole

$$
f_{p, \text { in }}=\frac{1}{2 \pi} \frac{1}{R_{\text {sig }} C_{\text {in }}}
$$

formed at the amplifier input will have an increasingly significant effect on the overall frequency response of the amplifier. As a result, the effective time constant τ_{H} in Eq. (6.57) increases and $f_{l l}$ decreases. When $R_{\text {sig }}$ hecomes very large, as it is when $R_{\text {sig }}=1 \mathrm{M} \Omega$. a dominant pole is formed by $R_{\text {sig }}$ and $C_{\text {ill }}$. This results in
(6.204)

To estnnate $\int_{p \text {. in }}$, we need to calculate the input capacitance $C_{\text {in }}$ of the amplifier. Using Miller's theorem, we have

$$
\begin{aligned}
C_{\mathrm{in}} & =C_{z_{3,3}}+C_{\text {gdt }}\left(1+g_{m 1} R_{L}^{\prime}\right) \\
& =\left({ }_{3}^{2} m_{1} W_{1} L_{1} C_{o x}+C_{g s, ~ o v 1 ~}\right)+C_{g h .0 v 11}\left(1+g_{m 1} R_{L}^{\prime}\right)
\end{aligned}
$$

FIGURE 6.68 Frequency response of (a) the CS amplifier and (b) the folded-cascode amplifier in Exampie 6.16, with $R_{\text {sig }}=100 \Omega$ and $R_{\text {siq }}=1 \mathrm{M} \Omega$.

\qquad

Thus, C_{in} can be calculated using the values of $C_{g_{51}}$ and $C_{g d 1}$ which are computed hy PS picc and can be found in the output file of the bias-point simulation. Allena C, calculated using the Eq. (6.205) with the values of the overlap capacitances $C_{g s, \text { onl }}$ and $C_{g d, \text { ovil }}$ calculated using the

and

$$
G_{v} \cong-g_{m 1} r_{o 5}=-2 \frac{V_{A n}}{V_{O V 1}}
$$

Esing the $0.5-\mu \mathrm{m}$ CMOS parameters, this gives $R_{\text {out }}=100 \mathrm{k} \Omega$ and $G_{v}=-133 \mathrm{~V} / \mathrm{V}$. Therefo $R_{\text {nut }}$ and, hence, $\left|G_{\nu}\right|$ of the folded-cascode amplifier in Fig. 6.69 arc larger than those of the CS mplifter in Fig. 6.67 by a factor of 3 .
Figure 6.68 (b) shows the frequency response of the folded-cascode amplifier as computed by PSpice for the cases of $R_{\text {sig }}=100 \Omega$ and $R_{\text {sig }}=1 \mathrm{M} \Omega$. The corresponding valucs of the $3-\mathrm{dB}$ fre quency f_{H} of the amplifier arc given in rable 6.4. Observe that, when $R_{\text {sig }}$ is small, f_{y} of the olded-cascode amplifier is lower than that of the CS amplifier by a factor of approximately 26 pproximately equal to the factor by which the gain is increased. This is bccause, when R is mall, the frequency response of both amplifiers is dominated by the pole formed at the outpue node, that is,

$$
\begin{equation*}
f_{H} \cong f_{p, \text { out }}=\frac{1}{2 \pi} \frac{1}{R_{\text {out }} C_{\text {out }}} \tag{6.216}
\end{equation*}
$$

Since the output resistance of the folded-cascode amplifier is larger than that of the CS amplifier (by a factor of approximately 3 , as found through the hand analysis above) while their outpu On the other hand, when R is large f_{f} of the folded-cascode amplifier is f_{A} in this case.
hat of CS amplifier. This is because, in this case, the effect of the pole at $f_{\text {, }}$ on the overall fre quency response of the amplifier becomes significant. Since, due to the Miller effect C overall freamplifier is much larger than that of the folded-cascode amplifier its $f_{\text {in }}$ is much lower in this CS To confirm this point, observe that C_{i} of the folded-cascode amplifier can be estimated by rease ing R_{L}^{\prime} in Eq. (6.205) with the total resistance $R_{d 1}$ between the drain of M_{1} and ground. Here,

$$
R_{d 1}=r_{o 1}\left\|r_{o 3}\right\| R_{\mathrm{in} 2}
$$

(6.217)
where $R_{\mathrm{in} 2}$ is the input resistance of the common-gate transistor M_{2} and can be obtained using an approximation of the relationship in Eq. (6.83) as

$$
R_{\text {in } 2} \cong \frac{r_{o 2}+r_{o 5}}{g_{m 2} r_{o 2}}
$$

(6.218)

Thus,

$$
\begin{equation*}
R_{d 1} \cong r_{o 1}\left\|r_{o 3}\right\| \frac{r_{o 2}+r_{o s}}{g_{m 2} r_{o 2}} \cong \frac{2}{g_{m 2}} \tag{6.219}
\end{equation*}
$$

Therefore, $R_{d 1}$ is much smaller than R_{L}^{\prime} in Eq. (6.206). Hence, $C_{\text {in }}$ of the folded-cascode amplifier in Fig. 6.69 is indeed much smaller than that of the CS amplifier in Fig. 6.67. This confirms that the folded-cascode amplifier is much less impacted by the Miller effect and therefore, can achicve a much higher f_{H} when $R_{\text {sig }}$ is large.
The mindband gain of the folded cascode amplifier can be significantly increased by replacing thc current mirror $M_{5}-M_{6}$ with a current mirror having a larger output resistance, such as the cascode current mirror in Fig. 6.58 whose output resistance is approximately $g_{m} r_{o}^{2}$. In this case, reduction in $f_{H \text {. }}$.

Finally, it is interesting to observe that the frequency response of the folded-cascode amplifier, shown in Fig. 6.68(b), drops heyond f_{t} at approximialely $-20 \mathrm{~dB} /$ decade when $R_{\text {sig }}=100 \Omega$ and at approximately $-40 \mathrm{~dB} /$ dccade when $R_{\text {siy }}=1 \mathrm{M} \Omega$. This is because, when $R_{\text {sig }}$ is small, the frequency rcsponse is dominated by the pole at $f_{p \text {.out }}$. However, when $R_{\text {sig }}$ is increased, $f_{p \text {, in }}$ is moved closer to $\int_{p \text {.out }}$ and both poles, contribute to the gain lalloff.

SUMMARY

- Integrated-circuit fabrication technology offers the circuit - designer many cxciting npportunities, the most important of which is large numbers of incxpensivc small-area MOS transistors. An overriding concern for IC designers, now ever, is the minnt, large-vatued resistors and capacitors estate." As a result, large-valued resistors and capacitors are viritually absent.
A review and comparison of the characteristics of the MOSEET and the BJT is presented in Section 6.2. Of p ticular interest is the summary provided in Table 6.3.
\# Biasing in integrated circuits utiiizes current sources. Typically an accurate and stable reference current is generated and then replicated to provide bias currents for the various amplifier stages on the chip. The hcari of the is the current mirror. The basic MOS and bipolar mirrors are studied in Section 6.3. Improved mirtor circuits with more precise current transfer ratios. reduced dependence on the β value of the BJT, and higher outpui resistances are siudicd in Section 6.12.
(I IC amplifiers are usually direct-coupled; thus their midband gain A_{M} cxtends to zero frequency (dc). Their highfrequency response is limited by the transistor internal capacitanccs, mainly $C_{g s}$ and $C_{g d}$ in the MOSFET and C_{π} and C_{μ} in the BJT. There usualify is also a capacitance C_{L} between the output node and ground. These capacitances cause the amplificr gain (or transfer function) to acquire a number of poles on the negative real-axis of the s-plane. In addition, there may be one transmission zero on the mission zeros at infinite frequency.
mif If lowest-frequency polc is at least two octavcs away from the nearest pole or zero, this pole, say at frequency $f_{f 1}$, will play a on the other hand, none of the poles is dominant, an estimatc of f_{H} can be ohtained from

$$
f_{H}=1 / \sqrt{\frac{1}{f_{P 1}^{2}}+\frac{1}{f_{P 2}^{2}}+\cdots-2\left(\frac{1}{f_{Z 1}^{2}}+\frac{1}{f_{Z 2}^{2}}+\cdots\right)}
$$

(If the poles and zcros camnot be easily determined, on can use che open-circuit time constants to obtain an estimatc of $f_{\text {H }}$ as follows:

$$
f_{H} \cong 1 / 2 \pi \tau_{H}
$$

where
here $C_{\text {}}$ is a capacitance that determines the high frcquency response of ihe amplifier and R_{i} is the resislance that capacitance C_{i} "sces". To determine R_{i}, set $V_{\text {siy }}$ and capacitances to zero. Then apply a signal v_{x} be current $i_{\text {}}$, hat the circuit draws from $v_{\text {w }}$, and calculate $R_{i}=v_{x} / i_{x}$.
(国 Millcr's theorem stales that an impedance Z connected between two circuit nodes 1 and 2 , whosc voltages are re ated by $V_{2}=K V_{1}$ can be replaced by two impedances: $Z_{1}=Z /(1-K)$ bctwcen node 1 and ground and $Z_{2}=$ $7 /(1-(1 / K))$ betwcen node 2 and ground. Miller's the orem is very useful in the analysis of the high-frequency responsc of the CS and CE amplifiers.
IC amplifiers employ constant-current sources in place of the resistances $R_{p}\left(R_{C}\right)$ that connect the drain (coilcctor) to the power supply. These active ioads enable the realiza tion of reasonably large voitagc gains while using lowvoltage supplies (as low as 1 V or so).

- The largest voltage gain available from a CS or a CE amplifier is equal to the intrinsic gain of the transisto $A_{0}=g_{w} r_{0}$, which for a BJT is 2000 to $4000 \mathrm{~V} / \mathrm{V}$ and F amplifier has an infinite input resistance while the inpu resistance of the CE amplifier is limited by the finite β to r_{π}. Buih CS and CE amplificrs have output resistances equal to the transistor τ_{φ}.
The high-frequency response of the CS amplificr is usually limited by the Miller multiphication of $C_{k d}$, which results in an input capacilance $C_{\text {in }}$ of

$$
C_{\mathrm{in}}=C_{g s}+C_{g d}\left(1+g_{m} R_{L}^{\prime}\right)
$$

which interacts with the resistance $R_{\text {sig }}$ of the signa source to form a dominant pole; thus $f_{H} \cong 1 / 2 \pi C_{\text {in }} R_{\text {sil }}$ Allernatively, the method of open-circuit time constants can be used to obtaim an estimatc of f_{H} as $\cong 1 / 2 \pi \tau_{H}$, whe

$$
\tau_{H}=C_{g 9} R_{\text {sig }}+C_{g d}\left|R_{\text {sig }}\left(1+g_{m} R_{L}^{\prime}\right)+R_{f, 1}^{\prime}\right|+C_{L} R_{.}^{\prime} .
$$

留 Exact analysis of the high-frequency response of the CS amplilier yields the second-order transfer function given by Eq. (6.60), which can be used to determine the poles and zeros and hence f_{H}.
The high-firequency response of the CE amplifier can be The high-frequency response of the CE anplifier can be
found by adapting the CS equations as follows: Replace $R_{\text {sig }}$ by $R_{\text {sig }}^{\prime}=R_{\text {sig }} \| r_{\pi}, C_{k s}$ by C_{π}, and $C_{g d}$ by C_{μ}.
When the CS amplifier is fed with a low-resistance signal source, it has the frequency response shown in Fig. 6.26(c).

2 The CG and CB amplifiers act as current buffers．Their impedance transformation properties are displayed Fig． 6.29 （CG）and Fig． 6.35 （CB）．
The CG and CB amplifiers do not suffer CG and CB amplifiers do not suffer from the Mille excellent hish－frequency response In as a result have can bc neglected，the CG amplifier has two poles：on produced at the input node with a frequency f_{P} $1 / 2 \pi C_{s s}\left(R_{s} \|\left(1 /\left(g_{m}+g_{m b}\right)\right)\right)$ and the other formed at the output node with a frequency $f_{P 2}=1 / 2 \pi\left(C_{L}+C_{2 d}\right) R_{L}$ ． The $3-\mathrm{dB}$ frequency f_{H} can be determined using $f_{P_{1}}$ and $f_{P 2}$ ．When r_{o} is taken into account，an estimatc of $f_{I I}$ can be obtained from

$$
f_{H}=1 / 2 \pi\left[C_{g s}\left(R_{s} \| R_{\mathrm{in}}\right)+\left(C_{L}+C_{\text {gd } d}\right)\left(R_{L} \| R_{\text {out }}\right)\right]
$$

In the cascode amplifier the CG（CB）transistor huffer the drain（collector）of Q_{1} from the load．The result is a smailer signal at the drain（collector）of Q_{1} and hence a re－ we can think of the $\mathrm{CG}(\mathrm{CB})$ transistor as raising the out－ put resistance and hcnce the open－circcitt voltage pain by a factor of $g_{m 2} r_{o 2}$（ β_{2} for the BJT）．Refer to the output equivalent circuits shown in Fig．6．37（a）and（b）for the MOS cascode and in Fig．6．41（a）and（b）for the bipolar cascode．

絡 A summary of the characteristics of che MOS cascode for case of low signal－source resistance is provided in Fig． 6.39 ．
雷 A summary of the frequency－response analysis of the BJT cascode is provided in Fig． 6.42 ．

路 Including a small resistance in the source（emitter）of a CS（CE）amplifier provides the designer with a tool to effect some performance improvements（e．g．，wider bandwidth）， in return for gain reduction（a trade－off characteristic of egative feedback）．
\％．The source and emilter followers are free of the negative effects of Miller capacitance multiplication and thus hieve very wide bandwidth
－Combining a source（or enitter）follower with a CS（or CE）amplifier results in amplifiers with gains equal to（or greater than）that of the CS（or CE）amplifier alone and， of the buffcring action of the input follower and the atten－ dant reduction in the Miller effect that takes place ot the input of the CS（or CE）stage．
虹 Both the cascode and thc Wilson MOS current mirrors achieve an increase in output resistance by a factor of $g_{m^{\prime}} r_{0}$ ．The Wilson hipolar mirror increases the output re－ current transfer－ratio error due to finite β ．

PROBLEMS

SECTION 6．2：COMPARISON OF THE MOSFET

AND THE BJT

6．1 Find the range of I_{i} ，obtained in a particular NMOS transistor as its overdrive voltage is increased from 0.15 V to 0.4 V ．If the same current range is required in I_{C} of a BJT，
what is the corresponding change in $V_{B E}$ ？

6．2 What range of t_{C} is oblained in an $n p n$ transistor as a result of changing the area of the emitter－basc junction by a factor of 10 while kceping $V_{B E}$ constant？If I_{C} is to be kept constant．by what amount must $V_{b y}$ change？

6．3 For each of the CMOS technologies specified in Table 6．1， find the $\mid V_{o v}$ ，and bence the $\left|V_{G \cdot}\right|$ required to operate a．devicc with a $W L$ of 10 at a drain current $I_{D}=100 \mu \mathrm{~A}$ ．Ignore channel－ length moduation
6．4 Consider NMOS and PMOS devices fabricated in the $0.25-\mu \mathrm{m}$ process specified in Table 6．1．If both devices are to
operate at $\left|V_{O V}\right|=0.25 \mathrm{~V}$ and $I_{D}=100 \mu \mathrm{~A}$ ，what must their W／L ratios bc？

6．5 Consider NMOS and PMOS transistors fabricated in the $0.25-\mu \mathrm{m}$ process specinied in Tablc 6．1．If the two devices are to be opcrated at equal drain currents，what must the ratio of $(W / L)_{\varphi}$ to $(W / L)_{n}$ bc to achieve equal valucs of g_{m} ？
6．6 An NMOS transistor fabricated in the $0.18-\mu \mathrm{m}$ CMOS process specified in Table 6.1 is operated at $V_{\text {ov }}=0.2 \mathrm{~V}$ Find the required W / L and I_{j} ，to obtain a g_{m} of $10 \mathrm{~mA} / \mathrm{V}$ ．Al what value of I_{C} must an npn transistor he operated to achiev this value of g_{m} ？
6．7 For each of the CMOS process technologies spccified in Table 6．1，find the $g_{u m}$ of an NMOS and a PMOS transistor with $w / L=10$ operated at $I_{D}=100 \mu \mathrm{~A}$ ．
6．8 An NMOS transistor opcrated with an overdrive volt agc of 0.25 V is required to have a g equal to that of an np
nsistor operated at $I_{C}=0.1 \mathrm{~mA}$ ．What must I_{l} ，be？What value of g_{m} is realized？

6．9 It is required to find the incremental（1．e．，snali－signal） resistance of cach of the diode－connected transistors shown in ig．P6．9．Assume that the dc bias current $I=0.1 \mathrm{~mA}$ ．For th OSSET，let $\mu_{2} C_{=2}=200 \mu \mathrm{~A} / \mathrm{v}^{2}$ and $W / L=10$

（a）
（b）

FIGURE P6．9

．10 For an NMOS transistor with $L=1 \mu \mathrm{~m}$ fabricated he $0.8-\mu \mathrm{m}$ process specified in Table 6．1，find g_{m}, r_{o} ，and A if the device is operated with $V_{O V}=0.5 \mathrm{~V}$ and $I_{D}=100 \mu \mathrm{~A}$ Also，tind the required device width W ．

6．11 For an NMOS transistor with $L=0.3 \mu \mathrm{~m}$ fabricated in the $0.18-\mu \mathrm{m}$ process specified in Table 6．1，find g_{m}, r_{o} ，and A_{0} obtained when the device is operated at $I_{D}=100 \mu \mathrm{~A}$ with $V_{O V}=0.2 \mathrm{~V}$ ．Also，find W
6．12 Fill in the table below．For the BJT，let $\beta=100$ and $V_{A}=$ 100 V ．For the MOSFET，let $\mu_{n} C_{o x}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, W / L=40$ and $V_{A}=10 \mathrm{~V}$ ．Note that R_{i} refers to the input resistance at the control input terminal（gate，base）with the（source，emitter） grounded．

6.13 For an NMOS transistor fabricaled in the $0.18-$ process specified in Table 6.1 with $L=0.3 \mu \mathrm{~m}$ and $w=6 \mu \mathrm{~m}$ ， find the value of f_{T} obained when the ransis C is operate $V_{o r}$ approximate formula．Why does the approximate for inula overestimate f_{T} ？

6．14 An NMOS transistor fabricated in the 0.18 －$\mu \mathrm{m}$ proces pecified in Table 6.1 and having $L=0.3 \mu \mathrm{~m}$ and $W=6 \mu \mathrm{~m}$ operated at $V_{O V}=0.2 \mathrm{~V}$ and used to drive a capacitive load of 100 fF ．Find A_{0}, f_{p}（or $f_{\text {sidB }}$ ），and f_{1} ．At what I_{D} value is the transistor operating？If it is required to double f_{t} ，what must I_{D} bccome？What happens to A_{0} and f_{F} in this case？

6．15 For an n ipn transistor fabricated in the high－voltage process specified in Table 6．2，evaluate f_{T} at $I_{C}=10 \mu \mathrm{~A}$ $100 \mu \mathrm{~A}$ ，and 1 mA ．Assume $C_{u} \cong C_{\mu 0}$ ．Repcat for the low－ voltage process．
6．16 Consider an NMOS transistor fabricated in the $0.8-\mu \mathrm{mm}$ process specified in Table 6．1．Let the transistor have $L=$ $1 \mu \mathrm{~m}$ ，and assume it is operated at $I_{D}=100 \mu \mathrm{~A}$ ．
（a）For $V_{O V}=0.25 \mathrm{~V}$ ，find $W, g_{m}, r_{0}, A_{0}, C_{g s}, C_{g d}$ ，and f_{T} （b）To what must $V_{o v}$ be changed to double f_{T} ？Find the new values of $W, g_{m}, r_{\rho}, A_{p}, C_{s s}$ and $C_{s c}$

6．17 For a lateral pnp transistor fabricated in the high－ volage process specinied in Table 6.2 ，and f_{T} if the device is operated at a collector bias current of 1 mA ．Compare to the value obraincd for a vertical npn．

6．18 Show that for a MOSFET the selection of ℓ and $V y$ determines A_{0} and f_{T} ．In other words，show that A_{0} and f_{T} will not depend on I_{D} and W
6．19 Consider an NMOS transistor fabricated in the $0.18-\mu \mathrm{m}$ teehnology specified in Table 6．1．Let the transistor be oper－ ated at $V_{o v}=0.2 \mathrm{~V}$ ．Find A_{0} and f_{Y} for $L=0.2 \mu \mathrm{~m}, 0.3 \mu \mathrm{~m}$ ， and $0.4 \mu \mathrm{~m}$ ．
D6．20 Consider an NMOS rransistor fabricated in the $0.5-\mu \mathrm{m}$ process specified in Tablc 6．1．Lee $L=0.5 \mu \mathrm{~m}$ and $V_{o v}=0.3 \mathrm{~V}$ ． with a load capacitance $C_{1}=1 \mathrm{pF}$（as in Fig．6．2a），find the required transistor width W and bias curreni I_{D} to obtain a wuity－wain handwidth of 100 MHz ．Also，find A_{0} and $f_{33 \mathrm{D}}$ ．

SECTION 6．3：IC BIASING－CURRENT SOURCES，CURRENT MIRRORS，AND

 CURRENT－STEERING CIRCUITSD6．21 For $V_{D D}=1.8 \mathrm{~V}$ and using $I_{\text {REF }}=50 \mu \mathrm{~A}$ ，it is required to design the circuit of Fig． 6.4 to obtain an output are matched with channel lengths of Q .5 m m，channel widths of $5 \mu \mathrm{~m}, V_{t}=0.5 \mathrm{~V}$ ，and $k_{n}^{\prime}=250 \mu \mathrm{~A} / \mathrm{V}^{2}$ ．What is the low－ est possible value of V_{0} ？Assuming that for this process tech－ nology the Early voltage $V_{A}=20 \mathrm{~V} / \mu \mathrm{m}$ ，find the output resistance of the current source．Also，find the change in out－ put current resulting from a $+1-\mathrm{V}$ change in V_{O} ．
D6．22 Using $V_{D D}=1.8 \mathrm{~V}$ and a pair of matched MOSFETs， design the current－source circuit of Fig．6．4 to provide an output
current of $100-\mu \mathrm{A}$ nominal value. To simplify matters, assume that the nominal value of the output current is obtained at $V_{o} \cong V_{C S}$. It is further required that the circuit operate for V_{O} in the range of 0.25 V to $V_{D D}$ and that the change in I_{0} over this range be limited to 5% of the nominal value of I_{l}. Find the required value of R and the devicc
dimensions. For the fabrication-process technology utilized, $\mu_{n} C_{o x}=250 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{A}^{\prime}=20 \mathrm{~V} / \mu \mathrm{m}$, and $V_{t}=0.6 \mathrm{~V}$.
6.23 Sketch the p-channel counterpart of the current-source circuit of Fig. 6.4. Note that while the circuit of Fig. 6.4 should more appropriately he called a current sink, the corresponding PMOS circuit is a cuncnt source. Let $V_{D D}=1.8 \mathrm{~V}$, $|V|=0.6 \mathrm{~V}, Q_{1}$ and Q_{2} be matched, and $\mu_{p} C_{o x}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$. Find the device (W / L) ratios and the value of the resistor that sets the value of $I_{\text {REF }}$ so that a nominally $80-\mu \mathrm{A}$ output current is high as 16 V Neglect channel-length modulation
6.24 Consider the current-mirror circuit of Fig. 6.5 with two transistors having equal channel lengths but with Q_{2} having a width four limes that of Q_{1}. If $I_{\text {REF }}$ is $20 \mu \mathrm{~A}$ and the transistors arc operating at an overdrive voltage of 0.3 V , for proper operation of the curcent source? If $V=0.5 \mathrm{~V}$ at what value of V_{0} will the nominal value of I_{0} be ohtained? If V_{o} increases by 1 V , what is the corresponding increase in I_{o} ? Let $V_{A}=25 \mathrm{~V}$.
6.25 For the current-steering circuit of Fig. P6.25, find I_{o} in terms of $I_{\text {REF }}$ and device (W/L) ratios.

FIGURE P6. 25

D6.26 The current-steering circuit of Fig. P6.26 is fabri cated in a CMOS lechnology for which $\mu_{n} C_{o x}=200 \mu \mathrm{~A} / \mathrm{V}$ $\mu_{p} C_{o x}=80 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=0.6 \mathrm{~V}, V_{t p}=-0.6 \mathrm{~V}, V_{A n}^{\prime}=10 \mathrm{~V} / \mu \mathrm{m}$, he circuit so that $I_{\text {DFF }}=20 \mu \mathrm{~A}, I_{2}=100 \mu \mathrm{~A}$, desig $20 \mu \mathrm{~A}$, and $I_{5}=50 \mu \mathrm{~A}$. Use the minimum possible devic widths while achieving proper operation of the current source Q_{2} for volages at its drain as high at +1.3 V and proper operation of the curent sink Q_{5} with voltages at it drain as low as -1.3 V . Specify the widths of all devices and
he value of R. Find the output resistance of the current source

1.5 V

IGURE P6. 26

6.27 A PMOS current mirror consists of three PMOS ransistors, one diode-connected and two used as current outputs. All transistors have $v!=0.7 \mathrm{~V}, k_{p}=80 \mu \mathrm{~N} / \mathrm{V}^{2}$, and $L=1.0 \mu \mathrm{~m}$ but three different widhs. namely $10 \mu \mathrm{~mm}, 20 \mu \mathrm{~m}$, and $40 \mu \mathrm{~m}$. When the diode-connected transistor is supplied fron a $100-\mu \mathrm{A}$ source, how many diffcrent output currents are available? Rcpeat with two of the transistors diode each possible input-diode used of provide current output. For output currents and of the $V_{S G}$ that results.
6.28 Although thus far we havc focussed only on the application of current mirmors in dc biasing, they can also be used as signal-ciurrent amplitiers. One such application is illustrated in Fig. P6.28. Here Q_{1} is a common-source amplifier fed with $v_{l}=V_{G S}+v_{1}$, where $V_{G S}$ is the gate-to-source dc bias voitage of Q_{1} and v_{i} is a small signal to be amplified. Find the signal componcnt of the output voltage v_{o} and hence the small-signal voltage gain v_{o} / v_{i}

FIGURE P6.2

6.29 Consider the basic bipolar current mirror of Fig. 6.8 $I_{s}=10^{-15} \mathrm{~A}$.
(a) Assuming the transistor β is very high, find the range of $V_{S E}$ and I_{O} corresponding to $I_{\text {REF }}$ increasing fiom $10 \mu \mathrm{~A}$ to 10 mA . Assuarly effec
(b) Find the range of I_{o} corresponding to $I_{\text {ReF }}$ in the range $10 \mu \mathrm{~A}$ to 10 mA , taking into account the finite β. Assume that β remains constant at 100 over the current rangc 0.1 mA to 5 mA but $=10 \mu \mathrm{~A}, 0.1 \mathrm{~mA}, 1 \mathrm{~mA}$, and 10 mA . Note that ing to $T_{\text {REF }}$ ith current causes the current transfer ratio to vary with current. with curren.
6.30 Consider the basic BJT current mirror of Fig. 6.8 for the case in which Q_{2} has m times the area of Q_{1}. Show that fied to be a nimimum of 80 , what is the largest current trans fer ratio possible while keeping the error introduced hy the finite β limited to 5% ?
6.31 Give the circuit for the $p n p$ version of the basic currcn mirror of Fig. 6.8. If β of the pnp transistor is 20 , what is the current gain (or transfer ratio) $I_{O} / I_{\text {Rer, }}$, neglecting thc Early effect
6.32 Consider the basic BJT current mirror of Fig. 6.8 when Q_{1} and Q_{2} are matched and $I_{\text {REF }}=2 \mathrm{~mA}$. Neglecting value and as a percentage, corresponding to V_{0} changing fom I 啨 10 V . The Early voltage is 90 V .

D6.33 The curren-source circuit of Fig. P6.33 utilizes a pair of matched pnp transistors having $I_{s}=10^{-1-2} \mathrm{~A}, \beta=50$, and $V_{A} \mid=50 \mathrm{~V}$. It is required to design the circuit to provide an output cuirrent $I_{o}=1 \mathrm{~mA}$ at $V_{o}=2 \mathrm{~V}$. What values of $I_{\text {REF }}$ and R are needed? What is the maximum allowed valuc of V_{o} while the current sourcc continues to operate properly? What change occurs in I_{o} corresponding to V_{o} changing from the maximum positive value to -5 V ?

FIGURE P6.33

6.34 Find the voltages at all nodes and the currents through all branchcs in the circuit of Fig. P6.34. Assume $\mid V_{B \in i}=0.7 \mathrm{~V}$ and $\beta=\infty$.

6.35 For the circuit in Fig. P6.35, let $\left|V_{B E}\right|=0.7 \mathrm{~V}$ and (a) Assuming that Y is connected to a voltage V, a current $\beta=\infty$. Find $I, V_{1}, V_{2}, V_{3}, V_{4}$, and V_{5} for (a) $R=10 \mathrm{k} \Omega$ and (b) $R=100 \mathrm{k} \Omega$.

FIGURE P6.35
D6.36 Using the ideas embodied in Fig. 6.11, design a multiplc-mirror circuit using power supplies of +5 V to create source currents of $0.2 \mathrm{~mA}, 0.4 \mathrm{~mA}$, and 0.8 mA and sink currents of $0.5 \mathrm{~mA}, 1 \mathrm{~mA}$, and 2 mA . Assume that the BJTs have $V_{B E} \cong 0.7 \mathrm{~V}$ and large β.
*6.37 The circuit shown in Fig. P6. 37 is known as a current conveyor.

FIGURE P6.37
is forced into X, and terminal Z is connected to a voltage th keeps Q_{S} in the active region show that a current equal to flows through tcrminal Y , that a voitage equal in V appears at torminal X, and that a current equal to I flows through terninal Z. Assume β to bc large. Corresponding transistors are b) With Y connccted to ground, show that a virtual ground appears at X . Now, if X is connected to a +5 - V supply through a $10-\mathrm{k} \Omega$ resistor, what current flows through Z ?

SECTION 6.4: HIGH-FREQUENCY RESPONSE-

GENERAL CONSIDERATIONS

6.38 A dircet-coupled amplifier has a low-ifequency gaiu of 40 dB , poles at 1 MHz and 10 MHz , a zero on the negative real-axis at 100 MHz , and anothcr zero at infinite frequency Express the amplifier gain function in the form of Eqs. (6.29) and (6.30), and sketch a Bode plot for the gain magnituc
.39 An amplifier with a dc gain of 60 dB has a single-po high-frequency response with a $3-\mathrm{dB}$ frequency of 10 kHz .
(a) Givc an expression for the gain function $A(s)$. b) Sketch Bode diagrams for the gain magnitude and phase. c) What is the gain-bandwidth product?
(a) What is the unity-gain Irequency?
(e) a change in the amplifier circuit causes its transfer y an acquire another pole at 100 kHz , sketch the result ing gain magnitude and specify the unity-gain frequency. Note that this is an example of an amplifier with a unity-gai andwidth that is different from its gain-bandwidth product 6.40 Consider an amplifice whose $F_{I I}(s)$ is given by

$$
F_{H}(s)=\frac{1}{\left(1+\frac{s}{\omega_{r 1}}\right)\left(1+\frac{s}{\omega_{P 2}}\right)}
$$

with $\omega_{P_{1}}<\omega_{P_{2}}$. Find thc ratio $\omega_{P_{2}} / \omega_{P 1}$ for which the value f the $3-\mathrm{dB}$ frequency ω_{n} calculated using the dominant-pol um-of-squares formula (Eq. 6.36) by
(a) 10%.
(b) 1%.
6.41 The high-frequency response of a direct-coupled mplificic having a dc gain of - $100 \mathrm{~V} / \mathrm{V}$ incorporates zeros a - and $10^{6} \mathrm{rad} / \mathrm{s}$ (one at each frequency) and poles at $10^{5} \mathrm{rad} / \mathrm{s}$ ad $10 \mathrm{rad} / \mathrm{s}$ (one at each frequency). Write an expression for he amplifier transfer function. Find ω_{H} using
, the dominant-polc approximation.
) the root-sum-of-squares approximation (Eq. 6.36)
If a way is found to lower the frequency of the finite zero to $105^{5} \mathrm{rad} / \mathrm{s}$, what docs the transfer function become? What is
the $3-\mathrm{dB}$ frequency of the resulting amplifier?
6.42 A direct-coupled amplifier has a dominant pole at $100 \mathrm{rad} / \mathrm{s}$ and threc coincident poles at a much higher frequency. These nondominant poles cause the phase lag of the amplifier at high frequencies to exceed the 90° angle due to the domnant pole. It is requircd 30° (ie to 30° (...., to mit the

D6.43 Refer to txample 6.6. Give an expression for $\left(\omega_{H}\right.$ in lerms of $C_{g s}, R^{n}$ (note that $\left.R=R_{\text {in }} / R_{\text {sig }}\right), C_{g d}, R_{t}$, and g_{m} If all component values except for the gencrator resistance $R_{\text {sis are }}$ left unchanged, to what value must $R_{\text {sig }}$ be reduced i order to raise f_{H} to 150 kllz ?
6.44 In a particular amplificr design, two internal nodes having Thevenin equivalent resistances of $10 \mathrm{k} \Omega$ and $20 \mathrm{k} \Omega$ are expected to have node capacitances (to ground) of 5 P and 2 pF , respectively, due to component and wiring capacimodular form, connections associated with each node ad capacitances of 10 pF to each. What arc the associated pole frequencies and overall 3 - dB frequency in Hz for both thc original and the manufactured designs?
6.45 A FET amplifier resembling that in Example 6.6, when opcrated at lower currents in a higher-impedance application, has $R_{\text {iig }}=100 \mathrm{k} \Omega, R_{\mathrm{in}}=1.2 \mathrm{M} \Omega, g_{1 m}=2 \mathrm{~mA} / \mathrm{V}$ $R_{L}^{\prime}=12 \mathrm{kS} 2$, and $C_{5 s}=C_{g d}=1 \mathrm{pF}$. Find the midhand voltage gain A_{M} and the $3-\mathrm{dB}$ frequency f_{H}.
*6.46 Figure P6. 46 shows the high-frequency equivalen circuit of a MOSFET amplifier with a resistance $R_{\text {s }}$ connected in the source lead. The purpose of this problem is to show hat the value of R_{s} can be used to control the gain and bandrade gain for incrcased bandwidth.
a) Derive an expression for the low-frequency voltage gain set $C_{g s}$ and $C_{g d}$ to zero).
(b) To be able to determine ω_{H} using the open-circuit time constants method, derive expressions for $R_{g s}$ and $R_{g d}$
(c) Let $R_{\text {sig }}=100 \mathrm{k} \Omega, g_{n i}=4 \mathrm{~mA} / V, R_{L}^{\prime}=5 \mathrm{k} \Omega$, and $C_{k s}=$
$C_{g d}=1 \mathrm{pF}$. Use the expressions found in
$C_{g^{d}}=1 \mathrm{pF}$. Use the expressions found in (a) and (b) to
dclerminc the low-frequency gain and the 3 -dB frequency f_{H} for three cascs: $R_{s}=0 \Omega, 100 \Omega$, and 250Ω. In cach casc so evaluate the gain-bandwidh product.
6.47 A common-source MOS amplifier, whose equivalent circuil resembles that in Fig. 6.14(a), is to be evaluated for its high-frequency response. For this particular design, $R_{\text {sis }}=$ $1 \mathrm{M} \Omega, R_{\mathrm{jil}}=5 \mathrm{M} \Omega, R_{L}^{\prime}=100 \mathrm{k} \Omega, C_{g s}=0.2 \mathrm{pF}, C_{8 d}=0.1 \mathrm{pF}$, and $g_{m m}=0.3 \mathrm{~mA} / \mathrm{V}$. Estimate the midband gain and the $3-\mathrm{dB}$ frequency.
6.48 For a particular amplificr modeled by the circuit of Fig. $6.14(\mathrm{a}), g_{m}=5 \mathrm{~mA} / \mathrm{V}, R_{\text {sig }}=150 \mathrm{k} \Omega, R_{\text {in }}=0.65 \mathrm{M} \Omega$, $R_{l}^{\prime}=10 \mathrm{k} \Omega, C_{g s}=2 \mathrm{pF}$, and $C_{3 d}=0.5 \mathrm{pF}$. Therc is also an midband voltage gain the open-circuit time constants, and an estimate of the 3 - dB frequency.
6.49 Consider the high-frequency response of an amplilici consisting of two identical stages, each with an input resis tance of $0 \mathrm{k} \Omega$ and an outpul resistance of $2 \mathrm{k} \Omega$. The twostage amplifier is driven from a $5-\mathrm{k} \Omega$ source and drives a $1-\mathrm{k} \Omega$ load. Associated with each slage is a parasilic input capacitance (to ground) of 10 pF and a parasitic output capacicance (to ground) of 2 pF . Parasitic capacitances of 5 pF and nections, respectivcly. For this arrangement, find the three polcs and estimate the 3 - dB frequency f_{1}
6.50 Using the method of open-circuit lime constants, a set of amphifiers are found to be characterized by the following time constants and/or frequencies. For each case, estimale the $3-\mathrm{dB}$ cutoff frequency in rad/s and in Hz :
(a) $20 \mathrm{~ns}, 5 \mathrm{~ns}, 1 \mathrm{~ns}$.
(c) $50 \mathrm{MHz}, 200 \mathrm{MHz}, 1 \mathrm{GHz}$.
(c) $50 \mathrm{Mrad} / \mathrm{s}, 200 \mathrm{Mrad} / \mathrm{s}, 1 \mathrm{Gra}$
(d) $1 \mu \mathrm{~s}, 200 \mathrm{~ns}, 200 \mathrm{~ns}$.
(e) $1 \mu \mathrm{~s}, 0.4 \mu \mathrm{~s}$.
(f) $1 \mu \mathrm{~s}, 200 \mathrm{~ns}, 150 \mathrm{~ns}$.
(g) $1 \mathrm{GHz}, 2 \mathrm{GHz}, 5 \mathrm{GHz}, 5 \mathrm{GHz}$

FIGUREP6.46
6.31 Consider an ideal volage amplifier with a gain of $0.95 \mathrm{~V} / \mathrm{N}$ and a resistance $R=100 \mathrm{k} \Omega$ connected in the feedback path-that is, between the output and input terminals. U
6.52 An ideal voltage amplifier with a voltage gain $-1000 \mathrm{~V} / \mathrm{V}$ has a $0.1-\mathrm{pF}$ capacitance connected between it output and input terminals. What is the input capacitance of the amplifier? If the amplifier is fed from a voltage source $V_{\text {si }}$ having a resistance $R_{\text {sig }}=1 \mathrm{k} \Omega$, find the transfer function $V_{0} \mathcal{s i g}^{\text {sig }}$ as a function of the complex-frequency variable s and
.53 The amplifiers listed below are characterized by the escriptor (A, C), where A is the voltage gain from ingut to output and C is an internal capacitor connected between inpu nd output. For each, find the equivalent capacitances the input and at the output as provided by the use of Miller's heorem
(a) $-1000 \mathrm{~V} / \mathrm{V}, 1 \mathrm{pF}$
(c) $-10 \mathrm{~V} / \mathrm{V}, 10 \mathrm{pF}$.
(d) $+1 \mathrm{~V} / \mathrm{V}, 10 \mathrm{pF}$.
(e) $+10 \mathrm{~V} / \mathrm{V}, 10 \mathrm{pF}$.

Note that the input capacitances found in case (c) can bc uscd cancel the effect of other capacitancc connected from ind to ground. In (c), what capacitance can be cancelled?
. 54 Figure P6.54 shows an ideal voltage amplifier with gin of +2 VN (usually implemented with an op anp connected in the noninverting contiguration) and a resistance connected between outpul and input.

FIGURE P6.54

(a) Using Miller's theorem, show that the input resistance $R_{\mathrm{in}}=-R$.
(b) Use Nortun's theorem to replace $V_{\text {si, }}, R_{\text {sin }}$, and $R_{\text {in }}$ with a signal current source and an equivalent parallel resistance. Show that by selecting $R_{\text {sig }}=R$ the equivalent parallel resisance becomes intinite and the current I_{L} into the load imped voltage-controlled current source with an output current I_{t} (c) If Z_{L} is a capacitor C, find the transfer function $V_{o} / V_{\text {, }}$ (c) If Z_{L} is a capacitor C, find the transfer function $V_{o} / V_{\text {sig }}$ and show it is that of an ideal noninverting integrator

SECTION 6.5: THE COMMON-SOURCE AND

 COMMON-EMITTER AMPLIFIERS WITHD6.55 Find the intrinsic gain of an NMOS transistor fab cated in a process for which $k_{n}^{\prime}=125 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{A}^{\prime}=$ $10 V / \mu \mathrm{m}$. The transistor has a $1-\mu \mathrm{m}$ channel length and perated at $V_{O V}=0.2 \mathrm{~V}$. If a $2-\mathrm{mA} / \mathrm{V}$ transconductance required, what must I_{D} and W be
6.56 An NMOS transistor fabricated in a certain process found to have an intrinsic gain of $100 \mathrm{~V} / \mathrm{V}$ when operated a I_{D} of $100 \mu \mathrm{~A}$. Find the incrinsic gain for $I_{D}=25 \mu \mathrm{~A}$ and I_{D} $400 \mu \mathrm{~A}$. For each of these currents, find the ratio by which from its value $a l_{D}=100 \mu \mathrm{~A}$.
6.57 The NMOS transistor in the circuit of Fig. P6. 57 h $V_{\mathrm{t}}=0.5 \mathrm{~V}, k_{n}^{\prime} W / L=2 \mathrm{~mA} / \mathrm{V}^{2}$, and $V_{A}=20 \mathrm{~V}$.

FIGURE P6.57

(a) Neglecting the de current in the feedback nework and the effect of r_{r}, find $V_{G s}$ and $V_{D s}$. Now, find the de current in the feedback network, and verify thal you were justified is neglecting it.
(b) Find the small-signal voltage gain, v_{o} / v_{i}. What is the peak of the largest output sine-wave signal that is possible hile the NMOS remains in saturation? What is the corre ponding input signal?
06.58 Consider the CMOS amplifier of Fig. 6.18(a) when abricated with a process for which $k_{n}^{\prime}=2.5 k_{p}^{\prime}=250 \mu \mathrm{~A} / \mathrm{V}^{2}$ $\left|V_{t}\right|=0.6 \mathrm{~V}$, and $\left|V_{A}\right|=10 \mathrm{~V}$. Find $I_{\text {REF }}$ and $(W / L)_{1}$ to htain a voltage gain of $-40 \mathrm{~V} / \mathrm{V}$ and an output resistance of $100 \mathrm{k} \Omega$. If Q_{2} and Q_{3} are to be operated at the same overdrive
.59 Consider the CMOS amplifier analyzed in Example 6.8 If v_{l} consists of a de bias component on which is super imposed a sinusoidal signal, find the value of the de compo nent that will result in the maximum possible signal swing at
the output with almost-inear operation. What is the amph tude of the output sinusuid resulting? (Note: In practice, amplifier would have a feedback circuit that causes it to opc ate at a point near the middje of its linear region).
6.60 The power supply of the CMOS anplitier analyzed in Exmple 6.8 is increased to 5 V . What will the extent of the linear region at the output become?
6.61 Figure P6.61 shows an IC MOS amplitier formed by cascading two commun-source stages. Assuming th $V_{A n}=V_{A p}$ and the biasing current-sources have output resi taneses ell

FIGURE P6.6

*6.62 Considcr the circuit shown in Fig. 6.18(a), using a 3.3-V supply and transistors for which $\mid V_{t}=0.8 \mathrm{~V}$ and $L=1 \mu \mathrm{~m}$. For $Q_{1}, k_{n}^{\prime}=100 \mu A / V^{2}, V_{A}=100 \mathrm{~V}$, and $W=$ $20 \mu \mathrm{~m}$. For Q_{2} and $Q_{3}, k_{p}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $\left|V_{A}\right|=50 \mathrm{~V}$. For $Q_{2}, W=40 \mu \mathrm{~m}$. For $Q_{3}, W=10 \mu \mathrm{~m}$.
(a) If Q_{I} is to be biased at $100 \mu \mathrm{~A}$, find $I_{\text {Rer }}$. For sirinplicily, ignore the effect of V_{λ}
(b) What arc the extreme values of v_{0} for which Q_{1} and Q_{2} just remain in saturation?
(c) What is the large-signal voltage gain?
(d) Find the slope of the transfer characteristic at $v_{0}=$ $V_{D D} / 2$.
(e) For
point at operation as a small-signal amplifier around a bias output resistance.
*6.63 The MOSFETs in the circuit of Fig. P6.63 aro matched, having $k_{n}(W / L)_{1}=k_{p}(W / L)_{2}=1 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t} \mid=0.5 \mathrm{~V}$. The resistance $R=1 \mathrm{M} \Omega$
(a) For G and D open, what are the drain currents $I_{D 1}$ and $I_{D 2}$? (b) For $r_{o}=\infty$, what is the voltage gain of the amplifier from G to D ?
(c) For finite $\digamma_{0}\left(\left|V_{A}\right|=20 \mathrm{~V}\right)$, what is the voltage gain from G to D and the input resistance at G .
(d) If G is driven (through a large coupling capacitor) from a source $v_{\text {sig }}$ having a resistance of $100 \mathrm{k} \Omega$, find the voltage gain $v_{d} v_{\text {sige }}$
(e) For what
of output signals do Q_{1} and $Q_{\text {r }}$ remain in the saturation region?

FIGURE P6.63

D6.64 Consider the active-loaded CE amplifier circuit of Fig. 6.19(a) for the case $I=1 \mathrm{~mA}, \beta=100$ and $V_{A}=100 \mathrm{~V}$. Find $R_{i}, \Lambda_{i p}$, and R_{v}. If it is required to raise R_{i} by a factor of assuming that β reinains unchanged? What are the new valyes of A and R ? If the amplifier is fed with a signal source having $R_{\text {siz }}=5 \mathrm{k} \Omega$ and is connected to a load of $100-\mathrm{k} \Omega$ resistance, find the overall voltage gain v_{o} / v_{s} in both cases.
6.65 Transistor Q_{1} in the circuit of Fig. P6.65 is operating as a CE amplifier with an active load provided by transistor Q_{2}, which is the output transistor in a current mirror formed by Q_{2} and Q_{3}. (Note that the biasing arrangeinent for Q_{1} is not shown.)

FIGURE P6.65
(a) Neglecting the finite base currents of Q_{2} and Q_{3} and assuming that their $V_{B E} \cong 0.7 \mathrm{~V}$ and that O_{2} has five times th (h) If Q_{3}, and $Q_{\text {a }}$ ve value of I. to have $V_{4}=50 \mathrm{~V}$, find r and $r_{o 2}$ and hence the total resistance at the collector of Q_{1}. (c) Find $r_{\pi 1}$ and $g_{m 1}$ assuming that $\beta_{1}=50$.
(d) Find $R_{\text {in }}, A_{v}$, and R_{o}.

SECTION 6.6: HIGH-FREQUENCY RESPONS

 OF THE CS AND CE AMPLIFIERS6.66 A CS amplifier that can he represented by the equivalent circuit of Fig. 6.20 has $C_{3 s}=2 \mathrm{pF}, C_{\text {gd }}=0.1 \mathrm{pF}, C_{L}=1 \mathrm{pF}$, $g_{m}=5 \mathrm{nAA} / \mathrm{V}$, and $R_{\text {sig }}=R_{L}^{\prime}=20 \mathrm{k} \Omega$. Find the midband lence, and hence an estimate of the $3-\mathrm{dB}$ frequency f
6.67 A CS amplifier that can he represented by the equivalent circuit of Fig. 6.20 has $C_{g_{s}}=2 \mathrm{pF}, C_{z d}=0.1 \mathrm{pF}, C_{L}=1 \mathrm{pF}$, $g_{m}=5 \mathrm{~mA} / \mathrm{V}$, and $R_{\text {iig }}=R_{L}^{\prime}=20 \mathrm{k} \Omega$. Find the midband A_{M} gain, and estimate the $3-\mathrm{dB}$ frequency f_{H} using the method of open-circuit time constants. Also, give the percentage contrithe same amplifier considered in Problem 6.66; if you have solved Problem 6.66, compare your results.)
6.68 A CS amplifier represented by the equivalent circuit of Fig. 6.20 has $C_{g s}=2 \mathrm{pF}, C_{\text {g }}=0.1 \mathrm{pF}, C_{l}=1 \mathrm{pF}, g_{m}=$
$5 \mathrm{~mA} / \mathrm{V}$ and $=$
$=R^{\prime}=20 \mathrm{k}$ $5 \mathrm{~mA} / \mathrm{V}$, and $R_{\text {sig }}=R_{L}^{\prime}=20 \mathrm{k} \Omega$. Find the exact values of f_{Z}, $f_{P 1}$, and $f_{P_{2}}$ using Eq. (6.60), and hence estimate $f_{H^{\prime}}$. Compare
the values of f_{1} and $f_{P 2}$ to the approximate values obtained using Eqs. (6.66) and (6.67). (Note that this is the same amplifier considered in Problems 6.66 and 6.67; if you have solved either or both of these problems, compare your results.)
6.69 A CS amplifier reprcsented by the eqnivalent circuit of Fig. 6.20 has $C_{g s}=2 \mathrm{pF}, C_{g^{d}}=0.1 \mathrm{pF}, C_{L}=1 \mathrm{pF}, g_{m}=$ $5 \mathrm{~mA} / \mathrm{V}$, and $R_{\text {sig }}=R_{L}^{\prime}=20 \mathrm{k} \Omega$. It is rcquired to find A_{M} vaiues of $R_{L}^{\prime}: 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$, and $20 \mathrm{k} \Omega$. Use the approximate expression for $f_{P 1}$ in Eq. (6.66). However, in each case, also evaluate $f_{p_{2}}$ and f_{2}, to ensure that a dominant pole exists, and in each case, state whether the unity-gain frequency is equal to the gain-bandwidth product. Present your results in tabular form, and comment on the gain-bandwiddl trade-off.
6.70 A cornmon-emitter amplifier that can be represented by the equivalent circuit of Fig. 6.25 (a) has $C_{\pi}=10 \mathrm{pF}, C_{\mu}=$ $0.5 \mathrm{pF}, C_{L}=2 \mathrm{pF}, g_{m}=20 \mathrm{~mA} / \mathrm{V}, \beta=100, r_{x}=200 \Omega$, $R_{L}^{\prime}=5 \mathrm{k} \Omega$, and $R_{\mathrm{sig}}=1 \mathrm{k} \Omega$. Find the midband gain A_{W}, and an estimate of the $3-\mathrm{dB}$ frequency f_{H} using the Miller
equivalence. equivalence
6.71 A common-emitter amplifier that can be represented by the equivalent circuit of Fig. 6.25(a) has $C_{\pi}=10 \mathrm{pF}, C_{\mu}=$
$0.5 \mathrm{pF}, C_{i}=2 \mathrm{pF}, g_{\omega}=20 \mathrm{~mA} / \mathrm{V}, \beta=100, r_{s}=200 \Omega$ $R_{r}^{\prime}=5 \mathrm{k} \Omega$, and $R_{\mathrm{sig}}=1 \mathrm{k} \Omega$. Find the midband gain A_{μ}, the frequency of the zero f_{2}, and the approximate values of the pole frequencies $f_{P 1}$ and $f_{P_{2}}$. Hencc, estimate the 3 -dB tre quency f_{H}. Note that this is the same anplifier considered in Problem 6.70; if you have solved Problem 6.70, compare your resuits.)
*6.72 Reler to Fig. P6.72. Utiiizing the BJT high-frequenc hybrid- π model with $r_{x}=0$ and $r_{o}=\infty$, derive an expressio or $Z_{i}(s)$ as a function of $r_{\text {e }}$ and C_{π}. Find the frequency which the BJT has $f_{T}=400 \mathrm{MHz}$ and the bias current is telatively high. What does this frequency become if the bias cucrent is reduced so that $C_{\pi} \cong C_{\mu}$? (Assume $\alpha=1$).

FIGURE P6.72

6.73 For the current mirror in Fig. P6.73, derive an expression for the current transter function $I_{o}(s) / I_{i}(s)$ taking into account the BJT internal capacitances and neglecting r_{x} and r_{o}. Assume the BJIs to be identical. Observe that a signa 1 mA and the BJTT at this operating point are characterized by $f_{T}=400 \mathrm{MHz}, C_{\mu}=2 \mathrm{pF}$, and $\beta_{0}=\infty$, find the frequencie of the pole and zero of the transfer function

FIGURE P6. 73
6.74 A CS amplifier modeled with the equivalent circuit of Ii. 6.26(a) is specified to have $C_{g s}=2 \mathrm{pF}, C_{g d}=0.1 \mathrm{pF}, g_{m}$
6.75 It is required to analyze the high-frequency response of he CMOS amplifier shown in Fig. P6.75. The dc bias current is $100 \mu \mathrm{~A}$. For $Q_{1}, \mu_{n} C_{o s}=90 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{A}=12.8 \mathrm{~V}, W / L=$ $100 \mu \mathrm{~m} / 1.6 \mu \mathrm{~mm}, C_{85}=0.2 \mathrm{pF}, C_{g d}=0.015 \mathrm{pF}$, and $C_{d b}=20 \mathrm{fF}$ For $Q_{2} . C_{g d}=0.015 \mathrm{pF}, C_{d b}=36 \mathrm{fF}$, and $V_{A}=19.2 \mathrm{~V}$ Assume that the resistance of the input signal generator is negligibly smail. Also, for simplicity assume that the signal vollage at the gate of Q_{2} is zero. Find the low-frequency gain he frequency of the pole, and the frequency of the zero

FIGURE P6. 75
D**6.76 This problem investigates the use of MOSFETs in the design of wideband amplifiers (Steininger, 1990). Such amplifiers can be realized hy cascading low-gain stages.
(a) Show that for the case $C_{g d} \ll C_{g s}$ and the gain of thc common-source amplifier is low so that the Miller effect is negligible, the MOSFET can be modcled by the approxinate nity-gain frequency of the MOSFET
unty-gain frequency of the MOSFET.
ealization of low gain and wide band stage suitable for the Q, have the same channel bandwidth. Transistors Q_{1} W_{1} and W_{2}. They are biased at the same $V_{G S}$ and have the amine f_{T}. Sse the MOSFET equivalent cịcuit of Fig. P6.76(a) to model this amplifier stage assuming that its output is connected to the input of an identical stage. Show that the voltage gain V_{o} / V_{i} is given by
where

$$
\frac{V_{o}}{V_{i}}=-\frac{G_{0}}{1+\frac{s}{\omega_{I} /\left(G_{0}+1\right)}}
$$

$$
G_{0}=\frac{g_{m 1}}{g_{m 2}}=\frac{W_{1}}{W_{2}}
$$

(c) For $L=0.5 \mu \mathrm{~m}, W_{2}=25 \mu \mathrm{~m}, f_{T}=12 \mathrm{GHz}$, and $\mu_{n} C_{o r}=$ $200 \mu \mathrm{~A} / \mathrm{V}^{2}$, design the circuit to obtain a gain of $3 \mathrm{~V} / \mathrm{V}$ per stage. Bias the MOSFETs at $V_{O v}=0.3 \mathrm{~V}$. Speciif the reguircd values of W_{1} and I. What is the $3-\mathrm{dB}$ frequency achieved?

(b)

FIGURE P6.76
6.77 Consider an active-loaded cominon-emitter annpifier Let the amplifier be fcd with an ideal voltage sourcc V_{i}, and neglect the effect of r_{x}. Assume that the bias cnirent source ha a very ${ }^{2}$ hiresistance ad between the oupput node and ground. This capacitance rcpre-
sents the sum of the input capacitance of the subsequent stage sents the sum of the input capacitance of the subsequent stag ground. Show that the voltage gain is given by

$$
\begin{aligned}
\frac{V_{o}}{V_{i}} & =-g_{m} r_{o} \frac{1-s\left(C_{\mu} / g_{m}\right)}{1+s\left(C_{L}+C_{\mu}\right) r_{o}} \\
& \simeq-\frac{g_{m} r_{o}}{1+s\left(C_{L}+C_{\mu}\right) r_{o}}, \text { for sinall } C_{\mu}
\end{aligned}
$$

If the transistor is biascd at $I_{C}=200 \mu \mathrm{~A}$ and $V_{A}=100 \mathrm{~V}, C_{\mu}=$ 0.2 pF , and $C_{L}=1 \mathrm{pF}$, find the dc gain, the 3 - dB frequeuc, and the frequency at which the gain reduces to unity. Sketch a Bode plot for the gain magnitude.
6.78 A common-source amplifier fed with a low-resistance signal source and operating with $g_{m}=1 \mathrm{~mA} / \mathrm{V}$ has a unityain frequency of 2 GHz . What additional capacitancc must be connected to the drain node to reduce $f_{\text {t }}$ to 1 GHz ?

SECTION 6.7: THE COMMON-GATE AND
COMMON-BASE AMPLIFIERS WITH
active loads
6.79 Consider a CG amplifier for which $k_{n}^{\prime}=160 \mu \mathrm{~A} / \mathrm{N}^{2}$ $\lambda=0.1 \mathrm{~V}^{-1} \quad W / L=50 \mu \mathrm{~m} / \mathrm{m}^{2}, \chi=0.2, I=0.5 \mathrm{~mA}$ and $R_{l}=R_{s}=r_{0}$. Find $g_{m,}, g_{w b} . r_{o}, R_{0}, \Lambda_{w o}, R_{o u}, R_{\text {in }}, v_{o} / v_{i}$, and $v_{0} / v_{\text {siel }}$ If the amplifier is instead fed with a current source $i_{\text {sig }}$ having a source resistance R_{s} equal to r_{o}, find $\psi_{o} / i_{\text {sig }}$ and $i_{o} / i_{\text {sig }}$, where i_{n} is the current through R_{L}.
6.80 Consider an NMOS CG amplifier for which the currentsource load is implemented with a PMOS transistor having an output resistance r_{0} equal to that of the NMOS transistor Design the circuit to obtain $v_{\rho} / v_{i}=1$
Assume $\mid V_{d}=20 \mathrm{~V}, \chi=0.2$, and $k_{n}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$. Specify I and W / L of the NMOS transistor.
6.81 Derive an expression for the overall short-circuit current gain of a CG amplifier, $G_{i s} \equiv i_{o c c} / i_{\text {sig }}$ in terms of $A_{v o} R_{s}$, and r Under what condition dos (Hint: Refer to the equivalent circuit in Fig. 6.30).
6.82 What is the approximate input resistance $R_{\text {in }}$ of a CG amplifier loaded by a resistance $R_{L}=A_{0} r_{o}$
D6.83 The MOSFET curren-source shown in Fig. P6.83 is required to deliver a dc current of 1 mA with $V_{G S}=0.8 \mathrm{~V}$. If the MOSFET has $V_{i}=0.55 \mathrm{~V}, V_{A}=20 \mathrm{~V}$, and the hody transconductance factor $\chi=0.2$, find the valuc of R_{s} that results in a current-source outpm-resistance of 200 kS . Also, detcrmune the refuired dc voltagc $v_{\text {BiA }}$

FIGURE P6.83

6.84 Figure P6. 84 shows the CG amplifier with the output shor-circuited. Use this circuit to obtain an expression for $i_{\text {ose }}$ in terms of $v_{\text {ig }}$, and verify that this result is the same as that obtained using $G_{w o}$ and $R_{\text {out }}$ (i.e., using $i_{o s c}=G_{z o} v_{\text {sig }} / R_{\text {out }}$).
6.85 In the common-gate amplifier circuil of Fig. P6.85 Q_{2} and Q_{3} are matched, $k_{n}^{\prime}(W / L)_{n}=k_{p}^{\prime}(W / L)_{p}=4 \mathrm{~mA} / \mathrm{V}^{2}$, and all transistors have $\left|V_{t}\right|=0.8 \mathrm{~V}$ and $\left|V_{A}\right|=20 \mathrm{~V}$.

GGURE P6.84

Transistor Q_{1} has $\chi=0.2$. The signal $\eta_{\text {sig }}$ is a small sinusoidal signal with no dc component.
a) Neglecting the effect of V_{A}, find the dc drain current of Q_{1} and the required value of $V_{\mathrm{BI}, \mathrm{a}}$
b) Find the valucs of $g_{m 1}$ and $g_{m b i b}$ and of r_{o} for all transistors. (d) Find the value of R in
(c) Calculate the voltage gains v_{o} / v_{i} and $v_{o} / v_{\text {sig }}$
(c) Calculate the voltage gains v_{o} / v_{i} and $v_{o} / v_{\text {sig' }}$
(f) How large can $v_{\text {sig }}$ be (peak-to-peak) while maintaining saturation-mode operation for Q_{1} and Q_{2} ?
6.86 A CG amplifier is specified to have $C_{g s}=2 \mathrm{\rho F}, C_{g d}=$ $0.1 \mathrm{pF}, C_{L}=2 \mathrm{pF}, g_{m}=5 \mathrm{~mA} / \mathrm{V}, \chi=0.2, R_{\text {sig }}=1 \mathrm{k} \Omega$, and $R_{L}^{\prime}=20 \mathrm{k} \Omega$. Neglecting the cffects of r_{o}, find the low f_{n}. and hence an cstinate of the 3 -dB frequency f_{A}
. 87 For the CG amplificr considered in Problcm 6.86, we wish to determine the low-frequency voltage gain $v_{o} / v_{\text {sig }}$ and
an estimate of f_{H}, this time taking into account the finite MOSFET r_{0} of $20 \mathrm{k} \Omega$. If you have solved Problem 6.86 compare your results.
6.88 Use Fig. 6.33(b) together with Eq. (6.110) to derive .8e expression in Eq . (6.111).
6.89 Use Eq. (6.112) to explore the variation of the input resistance $R_{\text {in }}$ with the load resistance R_{L}. Specifically, find R_{In} as a multiple of r_{e} for $R_{L} / r_{o}=0,1,10,100,1000$, and ∞. Let $\beta=100$. Present your results in tabular form
6.90 Consider an active-loaded BJT connected in the common-base configuration with $I=1 \mathrm{~mA}$. It the intrinsic gain of the BJT is 2000 , what value of R_{L} causcs the input resistance $R_{\text {in }}$ to he double the value of r_{c} ?
6.91 Use Fig. 6.34 to derive the expression in Eq. (6.117a) 6.92 Use Eq. (6.118) to explore chc variation of the output resistance of the $C B$ amplificr with the signal-gcnerator resis-
 of β and m, where $m=R_{e} / r_{e}$. Then use this expression to
generate a table for $R_{\text {out }} / r_{u}$ vcrsus R_{e} with entrics for $R_{c}=r_{e}$ $2 r_{e}, 10 r_{e},(\beta / 2) r_{e}, \beta r_{e}$, and $1000 r_{r_{e}}$. Let $\beta=100$.
6.93 As mentioned in the text, the CB amplifier functions as a current buffer. That is, when fed with a current signal, it passes it to the collector and supplies the output collector current at a high output resistance. Figure P6. 93 shows a CB tance $R_{\text {sig }}=10 \mathrm{k} \Omega$. The BJT is specified to have $\beta=100$ and $V_{A}=50 \mathrm{~V}$. (Note that the bias arrangement is not shown.) The output at the collector is represented by its Norton equivalent circuit. Find the value of the current gain k and the oulput resistance $R_{\text {out }}$.

FIGURE P6.93

6.94 Skctch the high-firecuency equivalent circuit of a CB amplificr fed from a signal generator characterized by V
and R_{e} and feeding a R_{L} in parallcl capacitance C_{L}.
(a) Show that for $r_{o}=\infty$ the circuit can be separated into two parls: an input part that produces a pole at

$$
f_{P 1}=\frac{1}{2 \pi C_{\pi}\left(R_{e} \| r_{e}\right)}
$$

and an output part that forms a pole at

$$
f_{P 2}=\frac{1}{2 \pi\left(C_{\mu}+C_{L}\right) R_{L}}
$$

Note that thesc are the bipolar counterparts of the MO expressions in Eqs. (6.105) and (6.106).
b) Evaluate $f_{p_{1}}$ and $f_{p_{2}}$ and hence obtain an estimate for f or the case $C_{\pi}=14 \mathrm{pF}, C_{C}=2 \mathrm{pF}, C_{L}=1 \mathrm{pF}, I_{C}=1 \mathrm{~mA}$ $R_{\mathrm{sig}}=1 \mathrm{k} \Omega$, and $R_{L}=10 \mathrm{k} \Omega$. Also, find f_{T} of the transistor.
6.95 Adapt the expressions in Eqs. (6.107), (6.108), and 6.109) for the case of the CB amplifier
6.96 For the constant-current source circuit shown in Fig. P6.96, find the collector current $/$ and the output resisfancc. The BJT is specified to have $\beta=100$ and $V_{A}=100 \mathrm{~V}$. If the collector voltage undergoes a change of 10 V while the BJT remains in the active mode, what is the corresponding changc in collector current?

FIGURE P6.96

SECTION 6.8: THE CASCODE AMPLIFIER

6.97 For the cascode amplificr of Fig. 6.36(a), let Q_{1} and Q_{2} be identical wilh $V_{t}=0.6 \mathrm{~V}, k_{n}^{\prime}=160 \mu \mathrm{~A}$
(a) What must the bias current I be?
(b) Calculate the values of $g_{m 11}, g_{m 22}, g_{\text {mbi2 }}, r_{01}, r_{02}, A_{0}$, and $A_{\text {vo } 2}$. (d) Calculate the value of the effective sho uit transcon-
(e) If the constan1-current source I is implemented with a cascode circuit like that in Fig. 6.43 with an output resistance of $10 \mathrm{M} \Omega$, find the voltage gain A
(f) Igroring the small signal swing at the input and at the drain of Q_{1}. tind the lowest value that $V_{\text {BIAs }}$ should have in
6.98 The cascode transistor can be thought of as providing a "shicld" Cor the input transistor from the vollage variations code, consider the siluation in Fig. P6.98. Here we have grounded the input terminal (i.e., reduced v_{i} to zero), applicd a small change v, to the output node, and denoted the voltage change that resulls at the drain of Q_{1} by y_{r}. By what factor is v_{y} smaller than v_{z} ?

FIGURE P6.98

6.99 In his problem we investigate whether, as an allema
 of the CS MOSFET. Specifically, we wish to compare the two circuils shown in Fig. P6.99(b) and (c). The circuit in Fig. P6.99(b) is a CS amplifier in which the channel length has been quadrupled relative to that of the original CS amplifier in Fig. P6.99(a) while the drain bias current has been ke
(a) Show that for this circuit $V_{O V}$ is double that of the original ircuit, $g_{n \prime}$ is half that of the original circuit, and A_{0} is double b) Compare these values

Fig. 6.99 (c), which is operating at the same cascode circuit in has the same minimum voltage requirement at the drain as in the circuit of Fig. P6.99(b).
*6.100 (a) Consider a CS amplificr having $C_{g d}=0.2 \mathrm{pF}$, $R_{\text {sig }}=R_{L}=20 \mathrm{kS}$, $g_{m}=5 \mathrm{~mA} / \mathrm{V}, C_{g s}=2 \mathrm{pF}, C_{L}$ (including frequency paid $=0.2 \mathrm{pF}$, and $r_{o}=20 \mathrm{k} \Omega$. Find the low constants. Hence determine the gain-bandwidth product.
(b) If a CG stage is cascaded with the CS (ransistor in (a) to create a cascode amplifier, determine the new values of A_{k}, f_{h} and gain-bandwidth product. Assume $R_{L L}$, remains unchanged
and $\chi=0.2$.

D6.101 It is required to design a cascode amplifier to provide a de gain of 66 dB when driven with a low-resistance generator and utilizing NMOS transistors for which $V_{A}=10 \mathrm{~V}, \mu_{n} C_{\Delta x}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, W / L=10, C_{g d}=0.1 \mathrm{pF}$, and $C_{L}=1 \mathrm{pF}$. Assuming that $R_{L}=R_{\text {oul }}$. deternine the overdrive voltage and the drain current at which the MOSFETs
should be operated. Neglect the body effect. Find the unitygain frequency and the 3 - dB frequency. If the cascode transistor is removed and $R_{\text {r }}$, remains unchanged, what will the dc gain become? (Hint: The result is different than what can be inferred from Fig. 6.39. Be carcful!)
6.102 Consider a bipolar cascode amplifier in which the current-source load is implemented with a circuit having an current-source load is implemented with a circuit having an
output resistance of βr_{r}. Let $\beta=100,\left|V_{A}\right|=100 \mathrm{~V}$, and $I=$ 0.1 mA . Find $R_{\text {in }}, G_{m}, R_{\text {out }}$ and v_{o} / v_{i}. Also, find the gain of the CE stage.
6.103 Consider a bipolar cascode amplifier biased at a current of 1 mA . The ransistors used have $\beta=100, r_{o}=100 \mathrm{k} \Omega$,
$C_{\pi}=14 \mathrm{pF}, C_{\mu}=2 \mathrm{pF}, C_{c s}=0$, and $r_{x}=50 \Omega$. The amplifier

(a)

FIGURE P6.99

is fed with a signal source having $R_{\text {sig }}=4 \mathrm{k} \Omega$. The load resistance $R_{t}=2.4 \mathrm{k} \Omega$. Find the low-frequency gain A_{μ}, and de the value of the 3 -dB frequency f_{ψ}
*6.104 In this problem we consider the frequency response of the bipolar cascode amplifier in the case that r_{0} can be neglected.
(a) Refer to the circuit in Fig. 6.42, and note that the total fessistance between the collector of Q_{1} and ground will be equal to $r_{\text {e2 }}$, which is usually very small. It follows that the pole introduced at this node will typically be at a very high frequency and thus will have negligible effcet on f_{H}.
 base the capacitance at the input of Q_{1} and hence show that the pole introduced at the input nocle will have a frequency

$$
\int_{P_{1}} \cong \frac{1}{2 \pi R_{\text {sig }}^{\prime}\left(C_{\pi 1}+2 C_{\mu 1}\right)}
$$

Ther show that the pole introduced at the output node will have a frequency
$f_{P 2} \cong \frac{1}{2 \pi R_{L}\left(C_{L}^{\prime}+C_{c o 2}+C_{u 2}\right)}$

Evaluate f_{p} and f_{p}, and use the sum-of-the-squares formula to estimate f_{B} for the amplifier with $I=1 \mathrm{~mA}$ $C_{\tau}=5 \mathrm{pF}, C_{\mu}=1 \mathrm{pF}, C_{\mathrm{cs}}=C_{L}=0, \beta=100$, and $r_{x}=0$ in the following two cases:
(i) $R_{\text {sig }}-1 \mathrm{k} \Omega$.
(ii) $R=10 \mathrm{k} \Omega$.
(ii) $R_{\text {sig }}=10 \mathrm{k} \Omega$

D6.105 Design the circuit of Fig. 6.43 to provide an outpu current of $100 \mu \mathrm{~A}$. Usc $V_{D D}=3.3 \mathrm{~V}$, and assume the PMOS $V_{d}=5 \mathrm{~V}$. The current source is to have the widest possibl signal swing at its output. Design for $V_{O V}=0.2 \mathrm{~V}$, and spcc ify the values of the transistor W / L ratios and of $V_{\text {RIASI }}$ and $V_{\text {BIAS2 }}$. What is the highest allowable voltage at the output? What is the value of R_{o} ?
6.106 Find the output resistance of a double-cascoded PMOS current source operating at $I_{D}=0.2 \mathrm{~mA}$ with each ransistor having $V_{O V}=0.25 \mathrm{~V}$. The PMOS transistors are ccified to have $\left|V_{A}\right|=5 \mathrm{~V}$
*6.107 Figurc P6. 107 shows four possible realizations of th
 and $\left|V_{A}\right|=100 \mathrm{~V}$ and for the MOSLETs $k^{\prime} W / L=2 \mathrm{~mA} / \mathrm{V}^{2}$

(a)

(h)

(d)
(c)
$\left|V_{A}\right|=5 \mathrm{~V}$, and $\left|V_{d}\right|=0.6 \mathrm{~V}$. Also, let $I=100 \mu \mathrm{~A}$ and $V_{\text {Bias }}=+1 \mathrm{~V}$, and assume that the output resistance of curren source $/$ is equal to the output resistance of its connccted cir cuit. Current-source $2 I$ should be assumed to be ideal. For each circuit, find:
(a) che bias current in Q_{1}.
b) the voltage at the node between Q_{1} and Q_{2} (assume $\left.V_{B E}=0.7 \mathrm{~V}\right)$.
(c) g_{n} and r_{o} for each device.
(d) the maximum allowable value of v_{o}
(e) the input resistance.
(f) the output resistance

Docs the current-source $2 I$ have to be a sophisticated one For this generator, what output resistance would reduce the overall gain by 1% ?

SECTION 6.9: THE CS AND CE AMPLIFIERS

WITH SOURCE (EMITTER) DEGENERATION

. 108 A common-source amplifier with $g_{m}=2 \mathrm{~mA} / \mathrm{N}$ ${ }_{0}=50 \mathrm{k} \Omega, \chi=0.2$, and $R_{L}=50 \mathrm{k} \Omega$ has a $500-\Omega$ resis ance connected in the source lead. Find $R_{\text {ouv }}, \Lambda_{v o}, A_{i p} G_{m}$, and the fraction of v_{i} that appcars hetween gate and source
D6.109 A common-source amplifier has $g_{m}=2 \mathrm{~mA} / \mathrm{V}$ $r_{n}=50 \mathrm{k} \Omega, \chi=0.2$, and $R_{L}=50 \mathrm{k} \Omega$. Find the value of the resistance R_{s} that, when connected in the source, reduces the senal $\nu_{k s}$ by a factor of 3 (i.c., with R_{s} connected $v_{g s} / v_{i}=\frac{1}{3}$), a
6.110 A CS amplificr is specified to have $g_{n}=5 \mathrm{~mA} / \mathrm{V}$ $r_{o}=40 \mathrm{k} \Omega, C_{g s}=2 \mathrm{pF}, C_{g d}=0.1 \mathrm{pF}, C_{l}=1 \mathrm{pF}, R_{\text {sig }}=$ $20 \mathrm{k} \Omega$, and $R_{L}=40 \mathrm{k} \Omega$.
(a) Find the low-frequency gain A_{M}, and use open-circuit time constants to estimate the $3-\mathrm{dB}$ frequency \int_{H}. Hence ctermine the gain-bandwidth product
b) If a $500-\Omega$ resistance is connected in the source lead, find the new values of $\left|A_{m}\right|, f_{I}$, and the gain-bandwidth product. Assumc $g_{m i}=1 \mathrm{~mA} / \mathrm{V}$
6.111 For the CS amplifier with a source-degeneration resistance R_{s} show for $R_{\text {sig }} \gg R_{s}$ and $R_{L}=r_{o}$ that
$\tau_{H H}=\frac{C_{g R} R_{\text {sis }}}{1+(k / 2)}+C_{g d} R_{\text {sis }}\left(1+\frac{\Lambda_{0}}{2+k}\right)+\left(C_{L}+C_{g d}\right) r_{n}\left(\frac{1+k}{2+k}\right)$
where $k=\left(g_{m}+g_{m b}\right) R_{s}$
B*6.112 It is required to generate a tahle of $\left|A_{s k}\right|, f_{k}$, and f_{t} versus $k \equiv\left(g_{m}+g_{m b}\right) R_{s}$ for a CS amplifier with a sourcedegeneration resistance R_{r}. The table should have entries
for $k=0,1,2, \ldots, 15$. The amphifier is specified to have $g_{m}=5 \mathrm{~m} / / \mathrm{v}, \quad g_{m b}=1 \mathrm{~mA} / \mathrm{V}, \quad r_{o}=40 \mathrm{k} \Omega, \quad R_{L}=40 \mathrm{k} \Omega$,
$R_{\text {sig }}=20 \mathrm{k} \Omega, C_{g s}=2 \mathrm{pF}, C_{g d}=0.1 \mathrm{pF}$, and $C_{L}=1 \mathrm{pF}$. U the formula for τ_{H} given in the statement for Problem 6.11]. corresponding value of $\left|A_{s}\right|$. value nceded for R_{s} and the

D6.113 (a) Use the approximate expression in Eq. (6.156) to delcrmine the gain-bandwid a source-duct of a CS amplifier and $R_{\text {sig }}=10 \mathrm{kS}$. (b) If a low-freq
uency gain of $20 \mathrm{~V} / \mathrm{V}$ is required, what f
20 kS , find the required value or R_{s}.
6.114 A CE amplifier operating at a collector bias curren of 0.5 mA has an emittcr-degencration resistance of 100Ω $\beta=100, V_{A}=100 \mathrm{~V}$, and $R_{L}=r_{o}$, determine $R_{\mathrm{i},}, R_{o}, \Lambda_{i o}, G$ A_{v}, and the overall voltage gain $v_{\theta} / v_{\text {sig }}$ when $R_{\text {sig }}=10 \mathrm{k} \Omega$.
*6.115 In this prohlem wc investigate the effect of emitter degeneration on the frequency response of a common-emitte amplifier.
(a) Convince yourself that the MOSFET formulas in Equa tions (6.148) through (6.152) can be adapted to the BJT case to obtain the following

$$
\begin{aligned}
R_{\mu} & =\left[\left(R_{\text {sig }}+r_{x}\right) \| R_{\text {in }}\right]\left(1+G_{m} R_{L}^{\prime}\right)+R_{t}^{\prime} . \\
R_{L}^{\prime} & =R_{L} \| R_{\text {out }} \\
R_{C_{L}} & =R_{L} \| R_{\text {out }}=R_{L}^{\prime} \\
R_{\pi} & =r_{\pi} \|-\frac{R_{\text {sig }}+r_{x}+R_{e}}{1+g_{m} R_{e}\left(\frac{r_{o}}{r_{o}+R_{L}}\right)} \\
\tau_{I I} & =C_{\pi} R_{\pi}+C_{\mu} R_{\mu}+C_{L} R_{C_{L}}
\end{aligned}
$$

(b) Find A_{M} and f_{H} of a common-emitter amplifier having $C_{n}=10 \mathrm{pF}, C_{\mu}=0.5 \mathrm{pF}, C_{r}=2 \mathrm{pF}, g_{m}=20 \mathrm{~mA} / \mathrm{V}, \beta=$ $100, r_{x}=200 \Omega, r_{o}=100 \mathrm{k} \Omega, R_{L}=5.3 \mathrm{k} \Omega$, and $R_{\mathrm{syg}}=1 \mathrm{k} \Omega$ for the following two cases:
(i) $R_{e}=0$.
(ii) $R_{e}=200 \Omega$

For simplicity, assume $R_{\text {en }} \cong R_{0}$

SECTION 6.10: THE SOURCE AND EMITTER

OLLOWERS

6.116 Consider a source follower for which the NMOS tran istor has $k_{n}^{\prime}=160 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0.05 \mathrm{~V}^{-1}, \chi=0, \mathrm{~W} / L$ 100 , and $V_{O V}=0.5 \mathrm{~V}$.
(a) What must the bias current I be?
(b) Calculate the values of $g_{m}, g_{m b}$, and r_{0}.
d) Find $A_{w o}$ and R_{e}
esistor is connected voltage gain become when a $1-\mathrm{k} \Omega$ load esistor is connected?
6.117 A source follower has $g_{m}=5 \mathrm{~mA} / \mathrm{N}, g_{m b}=1 \mathrm{~mA} / \mathrm{V}$, $r_{o}=20 \mathrm{k} \Omega, R_{\text {isi }}=20 \mathrm{k} \Omega, R_{L}=20 \mathrm{k} \Omega, C_{8 s}=2 \mathrm{pF}, C_{k d}=$ 0.1 pF , and $C_{L}=1 \mathrm{pF}$. percentage conlribution of each of the three capacitances to
6.118 For the source follower, the term $C_{i,\left(R_{L} \| R_{0}\right) \text { is }}$ usually very smail and can be neglected in the determination of $\tau_{\text {If }}$.ff this is the case and, in addition, $R_{\text {sis }}>R_{h}^{\prime}$, show that

$$
f_{H} \equiv 1 / 2 \pi R_{\operatorname{sig}}\left(C_{g d}+\frac{C_{g: s}}{1+g_{m} R_{L}^{\prime}}\right)
$$

where $R_{L}^{\prime}=R_{L}\left\|r_{o}\right\|\left(1 / g_{m b}\right)$. For given values of $C_{g i d} C_{s, s}$ and $R_{\text {sig }} f_{f}$ can be increased hy reducing the tern involving $C_{g^{5}}$. This in turn can be done by increasing $g_{m} R_{l}^{\prime}$. Note, however, that $g_{R} R_{L}$ cannot x_{0}, \mathcal{X}. What What is the correspaximum for for the source follower specified in Problem 6.117.
6.119 For an emitter follower biased at $I_{C}=5 \mathrm{~mA}$ and having $R_{\text {sig }}=10 \mathrm{k} \Omega, R_{L}=1 \mathrm{k} \Omega, r_{o}=20 \mathrm{k} \Omega, \beta=100, C_{\mu}=$ $2 \mathrm{FF}, r_{x}=200 \Omega$, and $f_{\tau}=800 \mathrm{MHz}$, find the low-frequency gain, f_{2}, R_{μ}, R_{π}, and f_{H}.
6.120 For an cmitter follower biased at $l_{C}=1 \mathrm{~mA}$ and having $R_{\text {sig }}=R_{L}=1 \mathrm{kS}$, and using a transistor specified to have $f_{T}=2 \mathrm{GHz}, C_{\mu}=0.1 \mathrm{pF}, r_{x}=100 \Omega, \beta=100$, and $V_{\mathrm{A}}=20 \mathrm{~V}$, evaluare the low-frequency gain Λ_{3} and the $3-\mathrm{dB}$ frequency $f_{I I}$.
*. 121 For the emitter follower shown in Fig. P6. 121 find the low-frequency gain and the 3 -dB frequency f_{H} for the following three cases
(a) $R_{\text {sigy }}=1 \mathrm{kS}$.
(b) $R_{\text {siq }}=10 \mathrm{k} \Omega$.

Let $\beta=100 . f_{\tau}=400 \mathrm{MHz}$, and $C_{\mu}=2 \mathrm{pF}$.

IGURE P6. 122

FIGURE P6.121
SECTION 6.11: SOME USEFULTRANSISTOR AIRINGS
*6.122 The transistors in the cirevit of Fis P6. 122 have $\beta_{0}=100 . V_{A}=100 \mathrm{~V}, C_{u}=0.2 \mathrm{pF}$, and $C_{i e}=0.8 \mathrm{pF}$. At a bia ${ }^{2}=100, C_{\mu}=0.2 \mathrm{pF}$, and $C_{j e}=0.8 \mathrm{pr}$. Ata a not shown.)
(a) Find R_{in} and the midband gain.
(b) Find an estimate of the upper $3-\mathrm{dB}$ frequency f_{B}. Which capacitor dominates? Which one is the second most significant? c) What are the effects of mosec the bias currents by factor of 10 ?

D**6.123 Consider the BiCMOS amphifier shown in Fig. P6.123. The BJT has $V_{B E}=0.7 \mathrm{~V}, \beta=200, C_{\mu}=0.8 \mathrm{pF}$ and $f_{T}=600 \mathrm{MHz}$. Thc NMOS transistor has $V_{t}=1 \mathrm{~V}$ $k_{r i}^{\prime} W / L=2 \mathrm{~mA} / \mathrm{V}^{2}$. and $C_{p s}=C_{g t}=1 \mathrm{p}^{\mathrm{t}}$.
a) Consider the dc bias circuit. Neglect the base current of Q_{2} in determining the culrrent in Q_{1}, find the de bias current in Q_{1} and Q_{2}, and show that they are approximately $100 \mu \mathrm{~A}$ and 1 mA , respcctively
(b) Evaluate the snall-signal parameters of Q_{1} and Q_{2} at their bias points.
c) Consider the circuit al midband frequencies. First, deter(c) Consider the circuit al midoand frequencies. Fats, deter

FIGURE P6. 123

neglected in this process.) Then use Miller's cheorem on R_{G} to determine the amplifier input resistance $R_{\text {in }}$. Finally, deter mine the overall voltage gain $V_{o} / V_{\text {sig }}$
eque the poles die to C_{1} frequencies. Determine th ower 3-dB frequency, f_{l}.
(c) Consider the circuit at higher frequencies. Use Miller heorem to replace R_{G} with a resistance at the input. (The on at the output will bc too large to matter.) Use open-circuit ime constants to estimate f_{H}.
(f) To considerably reduce the effcct of R_{G} on $R_{\text {in }}$ and hence on amplificr performance, consider the effect of adding nother $10-\mathrm{M} \Omega$ resistor in series with the existing one an placing a large bypass capacitor betwecn their joint node and rround. What will $R_{\text {in }}, A_{M}$, and f_{H} become?
6.124 The BJTs in the Darlington follower of Fig. P6. 12 have $\beta_{0}=100$. If the follower is fed wilh a source having a

FIGURE PG. 124
$100-\mathrm{k} \Omega$ resistance and is loaded with $1 \mathrm{k} \Omega$ find the inper resis tance and the output resistance (excluding the load) Also find the overall voltage gain, both open-circuited and with load.
6.125 For the anplifier in Fig. $6.56(\mathrm{a})$, let $I=1 \mathrm{~mA}, \beta=120$, $f_{T}=700 \mathrm{MHz}$, and $C_{\mu}=0.5 \mathrm{pF}$, and neglect r_{x} and r_{0}. Assume that a load tesistance of $10 \mathrm{k} \Omega$ is connected to the output terminal. If the amplifier is fed with a signal $V_{\text {sig }}$ having a source resistance $R_{\text {sig }}=20 \mathrm{k} \Omega$, find A_{M} and f_{H}
6.126 Consider the CD-CG amplifier of Fig. 6.56(c) for the case $g_{m}=5 \mathrm{~mA} / \mathrm{V}, C_{g s}=2 \mathrm{pF}, C_{g d}=0.1 \mathrm{pF}, C_{L}$ (at the output nodc) $=1 \mathrm{pF}$, and $R_{\text {sig }}=R_{L}=20 \mathrm{k} \Omega$. Neglecting r_{o} and the body effect, find A_{M} and f_{f}
*6.127 In each of the six. circuits in Fig. P6.127, let $\beta=$ $100, C_{\mu}=2 \mathrm{pF}$, and $f_{T}=400 \mathrm{MHz}$, and neglect r_{x} and r_{0}. Calculate the midband gain A_{M} and the $3-\mathrm{dB}$ frcquency f_{H}.

SECTION 6.12: CURRENT-MIRROR CIRCUITS WITH IMPROVED PERFORMANCE

6.128 For the cascode current mirror of Fig. 6.58 with $V_{t}=$ $0.5 \mathrm{~V}, k_{n}^{\prime} W / L=4 \mathrm{~mA} / \mathrm{V}^{2}, V_{A}=8 \mathrm{~V}, I_{\mathrm{REF}}=80 \mu \mathrm{~A}$, and $V_{O}=$ +5 V , what value of I_{0} results? Specify the output resistance and the miniunum allowable voltage at the output.
6.129 In a patticular cascoded current mirror, such as that hown in Fig. 6.58 , all transistors have $V=0.6 \mathrm{~V}, C_{0}$ $200 \mu \mathrm{~A} / \mathrm{V}^{2}, L=1 \mu \mathrm{~m}$, and $V_{A}=20 \mathrm{~V}$. Width $W_{1}=W_{4}=$ $2 \mu \mathrm{~m}$, and $W_{2}=W_{3}=40 \mu \mathrm{~m}$. The refercnce current I_{REF} is $25 \mu \mathrm{~A}$. What output current results? What are the voltages at the gatcs of Q_{2} and Q_{3} ? What is the lowest voltage at the output for which current-source operation is possible? What are the values of g_{m} and r_{0} of Q_{2} and Q_{3} ? What is the ontput resistance of the mirror?

(a)
(d)

(c)

(f)

FIGURE P6. 127
6.130 Find the output resistance of the double-cascode current mirror of Fig. P6. 130.

FIGURE P6. 130

6.131 For the base-current-compensated mirror of Fig . 6.59 let the three cransistors be matched and specified to have a
 $I_{\text {RIf: }}$ is increased to 1 mA , what is the change in V_{t} ? What is the value of I_{O} obtained with $V_{O}=V_{x}$ in both cases? Give the percentage difference between the actual and ideal value of I_{o}. What is the lowest voltage at the output for which proper current-source operation is maintained?
D6.132 Extend the current-mirror circuit of Fig. 6.59 to n outputs. What is the resulting current transfer ratio from the input to each output, $I_{O} / I_{\text {Rer }}$? If the deviation from unity is to be kept at 0.1% or less, what is the maximum possible number of outputs for BJTs with $\beta=100$?
*6.133 For the base-current-compensated mirror of Fig. 6.59, show that the incremental input resistance (scen by the reference current source) is approximately $2 V_{T} / l_{\text {prer }}$. Evaluate R for $I_{\text {REF }}=100 \mu \mathrm{~A}$.
(1)6.134 (a) The circuit in Fig. P6. 134 is a modified ver sion of the Wilson current mirror. Herc the output transistor is "split" into two matched transistors, Q and Q Find J_{0} and I_{02} in terms of $I_{\text {Rer }}$. Assume all transistors to be matched with current gain β.
Use this idea to design a circuit that generates currents of $\mathrm{mA}, 2 \mathrm{~mA}$, and 4 mA using a reference current source of for $\beta=50$?

FIGURE P6. 134
06.135 Use the pnp version of the Wilson curtent mifror to design a $0.1-\mathrm{mA}$ current source. The current source is required to opcratc with the voltage at its output terminal as low as -5 V . If the power supplies available are $\pm 5 \mathrm{~V}$, what is the hishest voltage possiblc at the output terminal?
*6.136 For the wilson current mirror of Fig. 6.60. show that the incremental input resistance seen by $I_{\text {RIF }}$ is approximately $2 V_{T} / I_{\text {Ref }} ;$ (Ncglect the Early cffect in this derivation.) Evaluate $R_{\text {in }}$ for $I_{\text {REF }}=100 \mu \mathrm{~A}$.
6.137 Consider the Wilson current-mirror circuit of Fig. 6.60 when supplied with a reference current $I_{\text {REF }}$ of 1 mA . What is the change in I_{0} corresponding to a change of +10 V in the voltage at the collector of Q_{3} ? Give both the absolute value and the percentage change. Let $\beta=100, V_{A}=100 \mathrm{~V}$,作斯 that the output resistance of the Wilson circuit is $\beta r_{o} / 2$
6.138 For the Wilson current mirror of Fig, 6.61(a), all transistors have $V_{1}=0.6 \mathrm{~V}, \mu_{n} C_{o x}=200 \mu \mathrm{~A} \mathrm{~N}_{2}, L=1 \mu \mathrm{~m}$, and $V_{A}=20 \mathrm{~V}$. Width $W_{1}=2 \mu \mathrm{~m}$, and $W_{2}=W_{3}=40 \mu \mathrm{~m}$. The refercnce current is $25 \mu \mathrm{~A}$. What output current results? What are the voltages at the gates of Q_{2} and Q_{3} ? What is the lowest value of V_{o} for which current-source operation is posthe output resiscance of the mitror? Q_{2}, Q_{5} ?
6.139 Show that the input resistance of the Whison current mirror of Fig. $6.61(\mathrm{a})$ is approximately equal to $2 / g_{m 1}$ under the assumption that Q_{2} and Q_{3} are identical devices.
*6.140 A Wilson current mirror, such as that in Fig. $6.61(\mathrm{a})$, uses devices for which $V_{t}=0.6 \mathrm{~V}, k_{n}^{\prime} W / L=2 \mathrm{~mA} / \mathrm{V}^{2}$, and
$V_{A}=20 \mathrm{~V} . I_{\text {REE }}=100 . \mu \mathrm{A}$. What value of I_{0} results? If the
 results'?
D*6.141 (a) Ltilizing a reference current of $100 \mu \mathrm{~A}$, desigr a Widlar current source to provide an output current of 10 $\mu \mathrm{A}$. Let the Bifs have $\tau_{D E}=0.7 \mathrm{~V}$ at $\mathrm{I}-\mathrm{mA}$ current, and
(b) If $\beta=200$ and $V_{A}=100 \mathrm{~V}$, find the value of the output resistance, and find the change in output current corresponding a-V change in output voltage.

D6.142 Design threc Widlar current sources, each having a $100-\mu \mathrm{A}$ reference current: one with a current transfer ratio of 0.9 , one with a ratio of 0.10 , and one with a ratio or 0.01 , all assuming high β. For cach, find the output resistance, and contrast it with r_{o} of the basic unity-ratio source for which $R_{E}=0$. Use $\beta=\infty$ and $V_{A}=100 \mathrm{~V}$.
6.143 The BJT in the circuit of Fig. P6. 143 has $V_{B I}=0.7 \mathrm{~V}$, $\beta=100$, and $V_{A}=100 \mathrm{~V}$. Find R_{C}

FIGURE P6. 143
D6. 144 (a) For the circuit in Fig. P6.144, assume BJTs
with high β and $\nu_{H}=0.7 \mathrm{~V}$ at 1 mA . Find the value of R that will result in $I_{o}=10 \mu \mathrm{~A}$.
(b) For the design in (a), find R_{o} assunning $\beta=100$ and $V_{A}=$ 100 V .

FGURE P6. 144

*6. 14.5 If the pnp transistor in the circuit of Fig. P6. 14 is characterized by its exponential relationship with a scal current I_{S}, show that the dc current $/$ is determined by $I R$ $V_{T} \ln \left(I / I_{S}\right)$. Assume Q_{1} and Q_{2} to be matched and Q_{3}, Q_{4}, and Q_{5} to be matched. Find the valuc of R that yields a current $I=$ $10 \mu \mathrm{~A}$. For the BJT, $V_{F, B}=0.7 \mathrm{~V}$ at $I_{E}=1 \mathrm{~mA}$.

Differential and Multistage Amplifiers

Introduction

The differential-pair or differencial-amplifier configuration is the most widely used building block in analog integrated-circuit design. For instance, the input stage of every op amp is a differential amplificr. Also, the BJT differential amplifier is the basis of a very-high-speed logic circuit family, studied briefly in Chapter 11, called emitter-coupled logic (ECL).

Initially invented for use with vacium tubes, the basic differential-amplifier configuration was subsequently implemented with discrete bipolar transistors. However, it was the advent of integrated circuits that has made the differential pair extremely popular in both bipolar and MOS technologies. There are two reasons why differential amplifiers are so well suited for IC fabrication: First, as we shall shortly see, the performance of the differential pair depends critically on the matching between the two sides of the circuit. Integrated-circuit fabrication is capable of providing matched devices whose parameters track over wide ranges of changes in environmental conditions. Second, by their very nature, differential amplifiers utilize more components (approaching twice as many) than single-ended circuits. Here again, the reader will recall from the discussion in Section 6.1 that a significant
advantage of integrated-circuit technology is the availability of large numbers of transistor at relatively low cost
We assunne that the reader is familiar with the basic concept of a differential amplifier as presented in Section 2.1. Nevertheless it is worthwhile to answer the question: Why differ ntial? Basically, therc are two reasons for using differential in preference to single-ended amplifiers. First, differential circuits are much less sensitive to noise and interference than ingle-ended circuits. To appreciate this point, consider two wires carrying a small differential ignal as the voltage difference between the two wircs. Now, assume that there is an inte ference signal that is coupled to the two wires, either capacitively or inductively. As the tw ach of the two erence signal between the two wires is sensed, it will contain ro interference component!
The second reason for preferring differential amplifiers is that the differential configura tion enables us to bias the amplificr and to couple amplifier stages together without the nee or bypass and coupling capacitors such as those utilized in the design of discrete-circuit amplifiers (Sections 4.7 and 5.7). This is another reason why differential circuits are ideally suited for IC fabrication where large capacitors are impossible to fabricate economically
The major topic of this chapter is the differential amplifier in both its MOS and bipola mplementations. As will he seen the design and analysis of differential amplifiers makes extensive use of the material on single-stage amplifiers presented in Chapter 6 . We will follow the study of differential amplifiers with examples of multistage amplifiers, again in both MOS and bipolar technologies. The chapter concludes with two SPICE circuit simulation examples

3 7.1 THE MOS DIFFERENTIAL PAIR

Figure 7.1 shows the basic MOS differential-pair configuration. It consists of two matched ransistors, Q_{1} and Q_{2}, whose sources are joined together and hiased by a constant-current source I. The latter is usually implemented by a MOSFET circuit of the type studied in Sections 6.3 and 6.12. For the time being, we assume that the current source is ideal and that has infinite outpul resistance. Although each drain is shown connected to the positive supply

FIGURE 7.1 The basic MOS differential-pair configuratio
hrough a resistance R_{D}, in most cases active (current-source) loads are employed, as will be seen shortly. For the time being, however, we will explain the essence of the differential sair operation utilizing simple resistive loads. Whatever type of load is used, it is essential hat the MOSFETs not enter the triode region of operation.

71.1 Operation with a Common-Mode Input Voltage

To sec how the differential pair works, consider first the case of the two gate terminals joined togcther and connected to a voltage $v_{C M}$, called the common-mode voltage. That is, as shown in Fig. 7.2(a), $v_{G 1}=v_{G 2}=v_{C M}$. Since Q_{1} and Q_{2} are matched, it follows from symmetry that the current I will divide equally between the two transistors. Thus, $i_{D 1}=i_{D 2}=I / 2$ ad the voltage at the sources, v_{s}, will he

$$
v_{S}=v_{C M}-V_{G S}
$$

where $V_{G S}$ is the gate-to-source voltage corresponding to a drain current of $I / 2$. Neglecting channel-length modulation, $V_{G S}$ and $I / 2$ arc related hy

$$
\begin{equation*}
\frac{I}{2}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2} \tag{7.2}
\end{equation*}
$$

or in terms of the overdrive voltage $V_{O V}$,

$$
\begin{align*}
V_{O V} & =V_{C S}-V_{t} \\
\frac{I}{2} & =\frac{1}{2} k_{n}^{\prime} \frac{W}{L} V_{O V}^{2} \tag{7.4}\\
V_{O V} & =\sqrt{I / k_{n}^{\prime}(W / L)} \tag{7.5}
\end{align*}
$$

The voltage at each drain will be

$$
\begin{equation*}
v_{D 1}=v_{D 2}=V_{D D}-\frac{I}{2} R_{D} \tag{7.6}
\end{equation*}
$$

Thus, the difference in voltage between the two drains will be zero.

FIGURE 7.2 The MOS differential pair with a common-mode input voltage $v_{C i}$

Now, let us vary the value of the common-mode voltage $v_{\text {ch }}$. Obviously, as long as Q and Q_{2} remain in the saturation region, the current I will divide equally between Q_{1} and Q_{2} and the voltages at the draims will not change. Thus the differential pair does not respond to e., it rejects) common-mode input signals.

An impstan anplifier is its input common-mode range his is the range of $v_{C_{M}}$ over which the differential pair operates properly. The highest value of $v_{C U}$ is limitcd by the requirement that Q_{1} and Q_{2} remain in saturation, thus

$$
\begin{equation*}
v_{C M \text { max }}=V_{t}+V_{D D}-\frac{I}{2} R_{D} \tag{7.7}
\end{equation*}
$$

The lowest value of $v_{C M}$ is determined by the need to allow for a sufficient voltage across current source $/$ for it to opcrate properly. If a voltage $V_{C S}$ is needed across the current source, then

$$
\begin{equation*}
v_{C M \text { min }}=-V_{S S}+V_{C S}+V_{\imath}+V_{O V} \tag{7.8}
\end{equation*}
$$

ExeRGSE

 $V_{S S}=1.5 V k_{n}^{\prime}($ W/L $)=4 \mathrm{mAV}^{2}, V=0.5 \mathrm{~V}, 1=0.4 \mathrm{~mA}$ and $R_{B}=2.5 \mathrm{k} \Omega$ and neglect channellength miodulation.
(a) Find $V_{S v}$ arid $V_{O S}$ for each transistor

(c) Repeat (b) for $v_{\text {cin }}=+1 \mathrm{~V}$
(4) Repeat b) for tor $=0,2 \mathrm{~V}$.

 vatue allowed for v_{s} and hence for $v \mathrm{cy}$.

FIGURE 7.3 Circurs for txercise: 7.1. Eftects of varying \% C_{CM} on the operation of the difterential pair

FIGURE 7.3

 0.48. Vis sufficicni for the cuirem-source to operate properly), (e) -1.5 V (f) $-11 \mathrm{~V}=0.28 \mathrm{~V}$

7.1.2 Operation with a Differential Input Voltage

Next we apply a difference or differential input voliage by grounding the gate of Q_{2} (i.c. setting $v_{c_{2}}=0$) and applying a signal $v_{i d}$ to the gate of Q_{i}, as shown in Fig. 7.4. It is easy to sec that since $v_{i d}=v_{G S 1}-v_{G S 2}$, if $v_{i d}$ is positive, $v_{G S 1}$ will be grcaler than $v_{G S 2}$ and hence $i_{D 1}$

FIGURE 7.4 The MOS differential pair with a dificrential input signal $v_{i d}$ applied. Wint $v_{i d}$ Positive. $v_{\text {iS1 }}>$ $v_{C S 2}, i_{D 1}>i_{D 2}$, and $v_{D 1}<v_{D 2}$; thus $\left(v_{D 2}-v_{D 2}\right)$ will be positive. With $v_{i d}$ negative. $v_{C S 1}<v_{G 52}, i_{D 1}<i_{D 2}$, an ${ }_{D_{1}}>v_{p 2}$; hhus $\left(v_{D 2}-y_{D 1}\right)$ will be negative.
will be greater than $i_{D 2}$ and the difference output voltage $\left(v_{D 2}-v_{D 1}\right)$ will be positive. On the other hand, when $v_{i d}$ is negative, $v_{G S 1}$ will be lower than $v_{G S 2}, i_{D 1}$ will be smaller than $i_{D 2}$, and correspondingly $v_{D 1}$ will be higher than $v_{D 2}$; in other words, the difference or differential output voltage $\left(v_{D 2}-v_{D 1}\right)$ will be negative.

From the ahove, we see that the differential pair responds to differencc-mode or differential input signals by providing a corresponding differential output signal between the two drains. At this point, it is useful to inquire about the value of $v_{i d}$ that causes the entire bias current I to flow in onc of the two transistors. In the positive direction, this happens when $v_{G S 1}$ reaches the value that corresponds to $i_{D 1}=I$, and $v_{C S 2}$ is reduced to a value equal to the threshold voltage V_{t}, at which point $v_{S}=-V_{t}$. The value of $v_{G S 1}$ can be found from

$$
I=\frac{1}{2}\left(k_{n}^{\prime} \frac{W}{L}\right)\left(v_{G S 1}-V_{t}\right)^{2}
$$

as

$$
\begin{aligned}
v_{G S 1} & =V_{t}+\sqrt{2 I / k_{n}^{\prime}(W / L)} \\
& =V_{t}+\sqrt{2} V_{O V}
\end{aligned}
$$

where $V_{O V}$ is the overdrive voltage corresponding to a drain current of $I / 2$ (Eq. 7.5). Thus, the value of $\tau_{i d}$ at which the entire bias current I is stecred into $Q_{\text {, }}$ is

$$
\begin{aligned}
v_{i d \mathrm{max}} & =v_{G S I}+v_{S} \\
& =V_{t}+\sqrt{2} V_{O V}-V_{t} \\
& =\sqrt{2} V_{O V}
\end{aligned}
$$

if $v_{i d}$ is increased beyond $\sqrt{2} V_{O V}, i_{D 1}$ remains equal to I, $v_{G S 1}$ remains equal to $\left(V_{+}+\sqrt{2} V_{O V}\right)$, and v_{s} rises correspondingly, thus keeping Q_{2} off. In a similar manner we can show that in the negative direction, as $\psi_{i d}$ reaches $-\sqrt{2} V_{o v}, Q_{1}$ turns off and Q_{2} conducts the entire bias current I. Thus the current I can be steered from one transistor to the other by varying $v_{i d}$ in the range

$$
-\sqrt{2} V_{O V} \leq v_{i d} \leq \sqrt{2} V_{O V}
$$

which defines the range of differential-mode operation. Finally, observe that we have assumed that Q_{1} and Q_{2} remain in saturation even when one of them is conducting the entire current I.

EXERCISE

72 For the MOS differentiat pair specified in Exercise 71 find fa) the value of y_{i} that causes 2 , to conduct The entite curtent, and the corresponding values of se, and $v_{p 2}$; b) the value of tia that causes $Q_{\text {, to }}$ conduct the entire current $\}$, and the corresponding values of i_{m} and $>_{2 n}$; (c) the corresponding range of the differential output voltage ($p_{p 2}-7_{o n}$)
Ans. (a) $+0.45 \mathrm{~V}, 0.5 \mathrm{~V}, 1.5 \mathrm{~V}$; (b) $-0.45 \mathrm{~V}, 1.5 \mathrm{~V}, 05 \mathrm{~V}$; (c) +1 V to -1 V

To use the differential pair as a linear amplifier, we keep the differential input signal $v_{i d}$ small. As a result, the current in one of the transistors $\left(Q_{1}\right.$ when $v_{i d}$ is positive) will increase by an increment ΔI proportional to $\tau_{i d}$, to $(I / 2+\Delta I)$. Simultaneously, the current in the other transistor will decrease by the same amount to become $(I / 2-\Delta l)$. A voltage signal $-\Delta I R_{D}$ develops at one of the drains and an opposite-polarity signal, $\Delta I R_{D}$, develops at the other drain. Thus the output voltage taken between the two drains will be $2 \Delta I R_{D}$, which is proportional

FIGURE 7.5 The MOSFET differential pair for the purpose of deriving the tran. er characteristics, $i_{D 1}$ and $i_{D 2}$ versus $i_{i d}=$ $v_{C_{1}}-v_{G_{2}}$
the differential studied in detail in Section 7.2

7.1.3 Large-Signal Operation

We shall now derive expressions for the drain currents $i_{D 1}$ and $i_{D n}$ in terms of the input differ ential signal $v_{i d} \equiv v_{\mathcal{C l}_{1}-}-v_{c_{2}}$. Since these expressions do not depend on the details of the circuit which the drains are connected we do not show these connections in Fig. 7.5; we simply assume that the circuit maintains Q_{1} and Q_{2} out of the triode region of operation at all times. The following derivation assumes that the differential pair is perfectly matched and neglects Thennel-length modulation ($\lambda=0$) and the body effcct.
To begin with, we express the drain currents of Q_{1} and Q_{2} as

$$
\begin{align*}
& i_{D 1}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(v_{G S 1}-V_{t}\right)^{2} \tag{7.11}\\
& i_{D 2}=\frac{1}{2} k_{r}^{\prime} \frac{W}{L}\left(v_{G S 2}-V_{t}\right)^{2} \tag{7.12}
\end{align*}
$$

Taking the square roots of both sides of each of Equations (7.11) and (7.12), we obtain

$$
\begin{align*}
& \sqrt{i_{D 1}}=\sqrt{\frac{1}{2} k_{n}^{\prime} \frac{W}{L}}\left(v_{G S 1}-V_{t}\right) \tag{7.13}\\
& \sqrt{i_{D 2}}=\sqrt{\frac{1}{2} k_{n}^{\prime} \frac{W}{L}}\left(v_{C S 2}-V_{t}\right) \tag{7.14}
\end{align*}
$$

Subtracting Eq. (7.14) from Eq. (7.13) and substituting

$$
\begin{equation*}
v_{G S 1}-v_{G S 2}=v_{G 1}-v_{G 2}=v_{i d} \tag{7.15}
\end{equation*}
$$

results in

$$
\begin{equation*}
\sqrt{i_{D 1}}-\sqrt{i_{D 2}}=\sqrt{\frac{1}{2} k_{n}^{\prime} \frac{W}{L}} v_{i d} \tag{7.16}
\end{equation*}
$$

The constant-current bias imposes the constraint

$$
i_{D 1}+i_{D 2}=I
$$

Equations (7.16) and (7.17) are two equations in the two unknowns $i_{D 1}$ and $i_{D 2}$ and can be solved as follows: Squaring both sides of (7.16) and substituting for $i_{D 1}+i_{D 2}=I$ gives

$$
2 \sqrt{i_{D 1} i_{D 2}}=I-\frac{1}{2} k_{n}^{\prime} \frac{W}{L} v_{i d}^{2}
$$

Substituting for $i_{D 2}$ from Eq. (7.17) as $i_{D 2}=I-i_{D 1}$ and squaring both sides of the resulting equation provides a quadratic equation in $i_{D 1}$ that can be solved to yield

$$
i_{D 1}=\frac{I}{2} \pm \sqrt{k_{n}^{\prime} \frac{W}{L} I}\left(\frac{v_{i d}}{2}\right) \sqrt{1-\frac{\left(v_{i d} / 2\right)^{2}}{I / k_{n}^{\prime} \frac{W}{L}}}
$$

Now since the increment in $i_{D 1}$ above the bias value of ($I / 2$) must have the same polarity as $v_{i d}$, only the root with the " + " sign in the second term is physically meaningful; thus

$$
\begin{equation*}
i_{D 1}=\frac{I}{2}+\sqrt{k_{n}^{\prime} \frac{W}{L} I}\left(\frac{v_{i d}}{2}\right) \sqrt{1-\frac{\left(v_{i d} / 2\right)^{2}}{I / k_{n}^{\prime} \frac{W}{L}}} \tag{7.18}
\end{equation*}
$$

The corresponding value of $i_{D 2}$ is found from $i_{D 2}=I-i_{D 1}$ as

$$
\begin{equation*}
i_{D 2}=\frac{I}{2}-\sqrt{k_{n}^{\prime} \frac{W}{L} l}\left(\frac{v_{i d}}{2}\right) \sqrt{1-\frac{\left(v_{i d} / 2\right)^{2}}{I / k_{n}^{\prime} \frac{W}{L}}} \tag{7.19}
\end{equation*}
$$

At the bias (quiescent) point, $v_{i d}=0$, leading to

$$
\begin{equation*}
i_{D 1}=i_{D 2}=\frac{I}{2} \tag{7.20}
\end{equation*}
$$

Correspondingly,

$$
\begin{equation*}
v_{G S 1}=v_{G S 2}=V_{G S} \tag{7.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{I}{2}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L} V_{O V}^{2} \tag{7.22}
\end{equation*}
$$

This relationship enables us to replace $k_{n}^{\prime}(W / L)$ in Egs. (7.18) and (7.19) with $I / V_{o v}^{2}$ to express $i_{D 1}$ and $i_{D 2}$ in the alternative form

$$
\begin{align*}
& i_{D 1}=\frac{I}{2}+\left(\frac{I}{V_{O V}}\right)\left(\frac{v_{i d}}{2}\right) \sqrt{1-\left(\frac{v_{i d} / 2}{V_{O V}}\right)^{2}} \tag{7.23}\\
& i_{D 2}=\frac{I}{2}-\left(\frac{I}{V_{O V}}\right)\left(\frac{v_{i d}}{2}\right) \sqrt{1-\left(\frac{v_{i d} / 2}{V_{O V}}\right)^{2}} \tag{7.24}
\end{align*}
$$

These two equations describe the effect of applying a differential input signal $v_{i d}$ on the currents $i_{D 1}$ and $i_{D 2}$. They can be used to obtain the normalized plots, $i_{D 1} / I$ and $i_{D 2} / I$ versus $v_{i d} / V_{O V}$, shown in Fig. 7.6. Note that at $v_{i d}=0$, the two currents are equal to $l / 2$. Making $v_{i d}$ positive causes $i_{D 1}$ to increase and $i_{D 2}$ to decrease by equal amounts so as to keep the sum constant, $i_{p 1}+i_{D 2}=I$. The current is stecred entirely into Q_{1} when $v_{i d}$ reaches the value $\sqrt{2} V_{o v}$, as we found out earlier. For $v_{i d}$ negative, identical statements can be made by interchanging $i_{D 1}$ and $i_{D 2}$. In this case, $v_{i d}=-\sqrt{2} V_{O V}$ stecrs the current entirely into Q_{2}.

FIGURE 7.6 Normalized plots of the currents in a MOSFET differential pair, Note that $V_{\text {ov }}$ is the ove drive voltage at which Q_{1} and Q_{2} operale when conducting drain currents equal to $I / 2$

The transfer characteristics of Eqs. (7.23) and (7.24) and Fig. 7.6 are obviously nonlinear. This is due to the term involving $v_{i d}^{2}$. Since we are intcrested in obtaining linear amplification from the differential pair, we will strive to make this term as small as possible For a given value of $V_{O V}$, the only thing we can do is keep ($v_{i d} / 2$) much smaller than $V_{O V}$ which is the condition for the small-signal approximation. It results in

$$
\begin{align*}
& i_{D 1} \cong \frac{I}{2}+\left(\frac{I}{V_{O V}}\right)\left(\frac{v_{i d}}{2}\right) \tag{7.25}\\
& i_{D 2} \cong \frac{I}{2}-\left(\frac{I}{V_{O V}}\right)\left(\frac{v_{i d}}{2}\right) \tag{7.26}
\end{align*}
$$

which, as expected, indicate that $i_{D 1}$ increases by an increment i_{d} and $i_{D 2}$ decreases by the same amount, i_{d}, where i_{d} is proportional to the differential input signal $v_{i d}$,

$$
\begin{equation*}
i_{d}=\left(\frac{I}{V_{O V}}\right)\left(\frac{v_{d i}}{2}\right) \tag{7.27}
\end{equation*}
$$

Recalling from our study of the MOSFET in Chapter 4 and Section 6.2 (refer to Table 6.3), that a MOSFET biased at a current I_{D} has a transconductance $g_{m}=2 I_{D} / V_{o v}$, we recognize the factor ($I / V_{O V}$) in Eq. (7.27) as g_{m} of each of Q_{1} and Q_{2}, which are biased at $I_{D}=1 / 2$. Now, why $v_{i d} / 2$? Simply because $\tau_{i d}$ divides equally between the two devices with $v_{s s 1}=$ $v_{i d} / 2$ and $v_{s, 2}=-v_{i d} / 2$, which causes Q_{1} to bave a current increment i_{d} and Q_{2} to have a cur rent decrement i_{d}. We shall return to the small-signal operation of the MOS differential pair shortly. At this time, however, we wish to return to Eqs. (7.23) and (7.24) and note that inearity can be increased by increasing the overdrive voltage $V_{O v}$ at which each of Q_{1} and Q_{2} is operating. This can be done hy using smaller (W / L) ratios. The price paid for the increased linearity is a reduction in g_{m} and hence a reduction in gain. In this regard, we observe that the

FIGURE 7.7 The linear range of operation of the MOS diffcrential pair can be extended by operating the (ransistor at a higher value of $V_{v v}$.
normalized plot of Fig. 7.6, though compact, masks this desigu degree-of-freedom. Figure 7.7 shows plots of the transfer characteristics $i_{D 12} / I$ versus $v_{i d}$ for various values of $V_{0 v}$ assuming that the current I is kept constant. These graphs clearly illustrate the linearitytransconductance trade-off obtained by changing the value of $V_{O r}$: The linear range of operation can be extended by operating the MOSFETs at a higher $V_{O V}$ (by using smaller W / L ratios) at the expense of reducing g_{m} and hence the gain. This trade-off is based on the assumption that the bias current I is kept constant. The bias current can, of course, he increased to obtain a higher g_{m}. The expense for doing this, however, is increased power dissipation, a serious limitation in IC design.

 Ahs.
प॥
$Y_{o v}$,

Ind minv

॥

3 7.2 SMALL-SIGNAL OPERATION OF

In this section we build on the understanding gained of the basic operation of the differential pair and consider in some detail its opcration as a linear amplifier
7.2.1 Differential Gain

Figure 7.8 (a) shows the MOS differential amplifier with input voltages

$$
\begin{equation*}
v_{G 1}=V_{C M}+\frac{1}{2} v_{i d} \tag{7.28}
\end{equation*}
$$

and

$$
v_{G 2}=V_{C M}-\frac{1}{2} v_{i d}
$$

Here, $V_{C H}$ denotes a common-mode dc voltage within the input common-mode range of the differential amplifier. It is needed in order to set the dc voltage of the MOSFET gates.

FIGURE 7.8 Smail-signal analysis of the MOS differential amplifier: (a) The circuit with a common-mode voltage applied to set the de bias volage at the gates and with $\bar{v}_{i d}$ applied in a complementary (or balanced)
manner. (b) The circuit prepared for small-signal analysis. (c) An alternative way of looking at the small-signal operation of the circuit.

Typically $V_{C M}$ is at the middle value of the power supply. Thus, for our case, where two complementary supplies are utilized, $V_{C M}$ is typically 0 V

The differential input signal $\tilde{j}_{i d}$ is applied in a complementary (or balanced) manner that is, $v_{G 1}$ is increased by $v_{i d} / 2$ and $v_{G 2}$ is decreased by $v_{i d} / 2$. This would be the case, fo instance, if the differential amplifier were fed from the output of another differential ampli fier stage. Sometimes, however, the differential input is applied in a single-ended fashion, a we saw earlier in Fig. 7.4. The difference in the performance resulting is too subtle a point for our current needs.
As indicated in Fig. 7.8(a) the amplifier output can be taken either between one of th drains and ground or between the two drains. In the first case, the resulting single-ended outputs $v_{v 1}$ and $v_{o 2}$ will be riding on top of the dc voltages at the drains ($V_{D D}-\frac{1}{2} R_{D}$). This is not the case when the output is taken between the two drains; the resulting differential out put v_{o} (having a 0 V dc component) will be entirely a signal component. We will sce shortly hat there arc other significant advantages to taking the output voltage differentially.
Our objective now is to analyze the small-signal operation of the differential amplifier of ig. 7.8(a) to determine its voltage gain in response to the differcntial input signal v Toward that end we show in Fig. 7.8(b) the circuit with the power supplies removed and $V_{C M}$ eliminated. For the time being we will neglect the effect of the MOSFET r_{o}, and as we have been doing since the beginning of this chapter, continue to neglect the body effect (i.e.
 of $/ 2$ and is operating at an overdrive voltage $V_{O V}$.
From the symmetry of the circuit as well as because of the balanced manner in which v_{i} is applied, we observe that the signal voltage at the joint source connection must be zero ang as a sort of virtual ground. Thus Q_{1} has a gate-to-source voltage signal $v_{s, 1}=v_{i d} / 2$ and Q_{2} has $v_{g s 2}=-v_{i d} / 2$. Assuming $v_{i d} / 2 \ll V_{o v}$, the condition for the small-signal approximation, the changes resulting in the drain currents of Q_{1} and Q_{2} will be proportional to $v_{s s 1}$ and $v_{8 s 2}$, respectively. Thus Q_{1} will have a drain current increment $g_{m}\left(v_{i d} / 2\right)$ and Q_{2} will have device

$$
g_{n}=\frac{2 I_{D}}{V_{O V}}=\frac{2(I / 2)}{V_{O V}}=\frac{I}{V_{O V}}
$$

These results correspond to those obtained carlicr using the large-signal transfer characteristics and imposing the small-signal condition, Eqs. (7.25) to (7.27).
It is useful at this point to observe again that a signal ground is established at the source terminals of the transistors without resorting to the use of a large bypass capacitor, clearly major advantage of the differential-pair configuration.
The essence of differential-pair operation is that it provides complementary current signals in the drains; wbat we do with the resulting pair of complementary current signals is, in a sense, a separate issue. Here, of course, we are simply passing the two current signal through a pair of matched resistors, R_{D}, and thus obtaining the drain voltage signals

$$
v_{o 1}=-g_{m} \frac{v_{i d}}{2} R_{D}
$$

and

$$
\begin{equation*}
v_{a 2}=\div g_{m} \frac{v_{i d}}{2} R_{D} \tag{7.32}
\end{equation*}
$$

If the output is taken in a single-ended fashion, the resulting gain becomes

$$
\begin{equation*}
\frac{v_{o l}}{v_{i d}}=-\frac{1}{2} g_{m} R_{D} \tag{7,33}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{v_{o 2}}{v_{i d}}=\frac{1}{2} g_{m} R_{D} \tag{7.34}
\end{equation*}
$$

Alternatively, if the output is taken differentially, the gain becomes

$$
\begin{equation*}
A_{d} \equiv \frac{v_{o 2}-v_{o 1}}{v_{i d}}=g_{m} R_{D} \tag{7.35}
\end{equation*}
$$

Thus, another advantage of taking the output differentially is an increase in gain by a factor of $2(6 \mathrm{~dB})$. It should be noted, however, that although differential outputs are preferred, a single$2(6 \mathrm{~dB})$. It should be noted,
ended outputis and and and and
An altemative and response to a differential input sigual $v_{i d}$ is illustrated in Fig. 7.8(c). Here we are making use of the fact that the resistance between gate and source of a MOSFET, looking into the source, is $1 / g_{m}$. As a result, between G_{1} and G_{2} we have a total resistance, in the source cirsource, is $1 / g_{m}$. As a resut, be we can obtain the current i_{d} simply by dividing $v_{i d}$ by $2 / g_{m}$, as indicated in the figure.
Effect of the MOSFET'S r_{0} Next we refine our analysis by considering the effect of the finite output resistance r_{v} of each of Q_{1} and Q_{2}. As well, we make the realistic assumption that the bias current source $/$ has a finite output resistance $R_{s,}$. circuit, prepared for small-signal analysis, is shown remains perfectly symmetric, and as a result v

EIGURE 7.9 (a) MOS differential amplifier with r, and R ss laken into account. (b) Equivalent circuiif for (the two halves of the differential amplificr circuit is a common source amplifier, known as its differentia! "hall-circuit."
connection will be zero. Thus the signal current through $R_{S S}$ will be zero and $R_{S S}$ plays no role in determining the differential gain.

The virtual ground on the cominon source connection enables us to obtain the equivalen circuit shown in Fig. 7.9(b). It consists of two identical common-source amplifiers, one fed with $+v_{i d} / 2$ and the other led with $-v_{i d} / 2$. Obviously we need only one of the two circuils to per form any analysis we wish (including finding the frequency response, as we shall do shortly) Thus, cither of the two common-source circuits is known as the differential half-circuit.

From the equivalent circuit in Fig. 7.9(b) we can write

$$
\begin{aligned}
v_{o 1} & =-g_{m}\left(R_{D} \| r_{o}\right)\left(v_{i d} / 2\right) \\
v_{o 2} & =g_{m}\left(R_{D} \| r_{o}\right)\left(v_{i d} / 2\right) \\
v_{o} & =v_{o 2}-v_{o 1}=g_{m}\left(R_{D} \| r_{o}\right) v_{i d}
\end{aligned}
$$

EXERCISE

74. A MOS dilferential part is operated at atotal bias current of 0.8 mA using transistors with a Whe ratio
 Ans. $0.2 \mathrm{~V}: 4$ MATV: $50 \mathrm{kR}: 18.2 \mathrm{~V} / \mathrm{V}$

7.2.2 Common-Mode Gain and Common-Mode

 Rejection Ratio (CMRR)We next consider the operation of the MOS differential pair when a common-mode input signal $v_{\text {lcm }}$ is applied, as shown in Fig. 7.10(a). Here $v_{i c m}$ represents a disturbance or interfer ence signal that is coupled somehow to both input terminals. Although not shown, the dc voltage of the input terminals must still be detined by a voltage $V_{C M}$ as we have seen before
The symmetry of the circuit enables us to break it into two identical halves, as shown in Fig. 7.10(b). Each of the two halves, known as a CM half-circuit, is a MOSFET biased at $I / 2$ and having a source degeneration resistance $2 R_{S S}$. Neglecting the effect of r_{o}, we can express the voltage gain of each of the two identical half-circuits as

$$
\begin{equation*}
\frac{v_{o 1}}{v_{i c m}}=\frac{v_{o 2}}{v_{\text {icm }}}=-\frac{R_{D}}{\frac{1}{g_{m}}+2 R_{S S}} \tag{7.39}
\end{equation*}
$$

Usually, $R_{S S} \gg 1 / g_{m}$ enabling us to approximate Eq. (7.39) as

$$
\frac{v_{o 1}}{v_{i c m}}=\frac{v_{o 2}}{v_{i c m}} \cong-\frac{R_{D}}{2 R_{S S}}
$$

Now, consider two cases:
(a) The output of the differential pair is taken single-endedly;

$$
\begin{align*}
& \left|A_{C m}\right|=\frac{R_{D}}{2 R_{S S}} \\
& \left|A_{d}\right|=\frac{1}{2} g_{m} R_{D} \tag{7.42}
\end{align*}
$$

Thus, the conmmon-mode rejection ratio is given by

$$
\begin{equation*}
\mathrm{CMRR} \equiv\left|\frac{\Lambda_{d}}{A_{c m}}\right|=g_{m} R_{S S} \tag{7.4}
\end{equation*}
$$

FIGURE 7.10 (a) The MOS differential amplitier with a common-mode input signal $v_{\text {kaw }}$ (b) Equivalen ercuit for determining the cos wis (with n circuit for delermining the common-mode gain (with r_{o} ignored). Each half of the circuit is known as the
(b) The output is taken differentially:

$$
\begin{align*}
& A_{c m}=\frac{v_{o 2}-v_{o 1}}{v_{i c m}}=0 \tag{7.44}\\
& A_{d}=\frac{v_{o 2}-v_{o 1}}{v_{i d}}=g_{m} R_{D} \tag{7.45}
\end{align*}
$$

Thus,
CMRR $=\infty$
(7.46)

Thus, even though $R_{S S}$ is finite, taking the output differentially results in an infinite CMRR However, this is true only when the circuit is perfectly matched.

Effect of R_{D} Mismatch on CMRR When the two drain resistances exhibit a mismatch of ΔR_{D} as they inevitably do, the common-mode rejection ratio will be finite even if the output is take differentially. To see how this comes about, consider the circuit in Fig. 7.10(b) for the case the load of Q_{1} is R_{D} and that of Q_{2} is $\left(R_{n}+\Delta R_{D}\right)$. The drain signal voltages arising from $v_{c m} w$ will be

$$
\begin{align*}
& v_{o 1} \cong-\frac{R_{D}}{2 R_{S S}} v_{\text {cocm }} \tag{7.47}\\
& v_{o 2} \cong-\frac{R_{D}+\Delta R_{D}}{2 R_{S S}} v_{\text {kcm }}
\end{align*}
$$

Thus,

$$
v_{o 2}-v_{o 1}=-\frac{\Delta R_{D}}{2 R_{S S}} v_{i c n}
$$

In other words, the misnatch in R_{D} causes the common-mode input signal v_{icm} to be converted into a differential output signal; clcarly an undesirable situation! Equation (7.49) indicates that the common-mode gain will be

$$
A_{c m}=-\frac{\Delta R_{D}}{2 R_{s s}}
$$

which can be expressed in the alternative form

$$
\begin{equation*}
A_{c m}=-\frac{R_{D}}{2 R_{\mathrm{ss}}}\left(\frac{\Delta R_{p}}{R_{D}}\right) \tag{7.51}
\end{equation*}
$$

Since the mismatch in R_{D} will have a negligible effect on the differential gain, we can write

$$
A_{d} \cong-g_{m} R_{D}
$$

and combine Eqs. (7.51) and (7.52) to obtain the CMRR resulting from a mismatch $\left(\Delta R_{D} / R_{p}\right)$ as

$$
\begin{equation*}
\mathrm{CMRR}=\left|\frac{A_{d}}{A_{c n}}\right|=\left(2 g_{m} R_{S S}\right) /\left(\frac{\Delta R_{D}}{R_{D}}\right) \tag{7.53}
\end{equation*}
$$

EXERGISE

 the output is taken ingle-endedly and the criculis. perfecty mitehed.
it) Repeat (a) When the output is taken differentiafl:
(c) Repeat a) When the outpuis taken differentitity but the drain resistances have ito mismatch.

Effect of g_{m} Mismatch on CMRR Next we inquire into the effect of a mismatch between the values of the transconductance g_{w} of the two MOSFETs on the CMRR of the differential pair. Since the circuit is no longer matehed, we cannot employ the common-mode halfcircuit. Rather, we refer to the circuit showu in Fig. 7.11, and write

$$
\begin{align*}
& i_{d 1}=g_{m 1} v_{g s 1} \tag{1.54}\\
& i_{d 2}=g_{m 2} v_{s, 2}
\end{align*}
$$

(7.55)

Since $\tau_{s s 1}=v_{\text {ss } 2}$ we can combine Eqs. (7.54) and (7.55) to obtain

$$
\begin{equation*}
\frac{i_{d 1}}{i_{d 2}}=\frac{g_{m 1}}{g_{m 2}} \tag{7,56}
\end{equation*}
$$

The two drain currents sum together in $R_{S S}$ to provide

$$
v_{s}=\left(i_{d 1}+i_{d 2}\right) R_{S s}
$$

Thus

$$
\begin{equation*}
i_{d 1}+i_{d 2}=\frac{v_{s}}{R_{S S}} \tag{7.57}
\end{equation*}
$$

7.2 SMALL-SIGNAL OPERATION OF THE MOS DIFFERENTIAL PAIR

FIGURE 7.11 Analysis of the MOS differential amplificr to deternine the common-mode gain resulting from
a mismatth in the ξ_{m} values of Q_{4} and Q_{2}.

Since Q_{1} and Q_{2} are in effect operating as source followers with a source resistance $R_{S S}$ that is typically much larger than $1 / g_{m}$,

$$
v_{s} \cong v_{i c m}
$$

enabling us to writc Eq. (7.57) as

$$
\begin{equation*}
i_{d 1}+i_{d 2} \cong \frac{v_{i c m}}{R_{S S}} \tag{7.59}
\end{equation*}
$$

We can now combine Eqs. (7.56) and (7.59) to obtain

$$
\begin{aligned}
& i_{d 1}=\frac{g_{m 1} v_{i c m}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}} \\
& i_{d 2}=\frac{g_{m 2} v_{i c m}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}}
\end{aligned}
$$

If $g_{m 1}$ and $g_{m 2}$ exhibit a small mismatcb Δg_{m} (i.e., $g_{m 1}-g_{m 2}=\Delta g_{m}$), we can assume that $g_{m 1}+g_{m 2} \cong 2 g_{m}$, where $g_{m n}$ is the nominal value of $g_{m 1}$ and $g_{m 2}$; thus

$$
i_{d 1}=\frac{g_{m 1} v_{i c m}}{2 g_{m} R_{S S}}
$$

and

$$
\begin{equation*}
i_{d 2}=\frac{g_{m 2} v_{i c m}}{2 g_{m} R_{S S}} \tag{7.63}
\end{equation*}
$$

The differential output voltage can now be found as

$$
\begin{aligned}
v_{d 2}-v_{l 11} & =-i_{d 2} R_{D}+i_{d 1} R_{D} \\
& =R_{D}\left(i_{d 1}-i_{d 2}\right)=\frac{\Delta g_{m} R_{D}}{2 g_{m n} R_{S S}} v_{\text {ichn }}
\end{aligned}
$$

from which the common-mode gain can be obtained as

$$
A_{c m}=\left(\frac{R_{D}}{2 R_{S S}}\right)\left(\frac{\Delta g_{m}}{g_{m}}\right)
$$

Since the g_{m} mismatch will have a negligible effect on A_{d}
and the CMRR resulting will be

$$
\begin{equation*}
\mathrm{CMRR} \equiv\left|\frac{A_{d}}{A_{c m}}\right|=\left(2 g_{m} R_{S S}\right) /\left(\frac{\Delta g_{m}}{g_{m}}\right) \tag{7.66}
\end{equation*}
$$

The similarity of this expression to that resulting from the R_{D} misinatch (Eq. 7.53) should be noted.

ExERCISE

7.6. For the MOs anmlifier secified in Exercise 15 with the output taken differentilly conpute CVRR that resulls from 1% mismateh hing
Ans. 86 dB

数

7.3 THE BJT DIFFERENTIAL PAIR

Figure 7.12 shows the basic BJT differential-pair configuration. It is very similar to the MOSFET circuit and consists of two matched transistors, Q_{1} and Q_{2}, whose emitters are joined together and biased by a constant-current source I. The latter is usually implemented by a transistor circuit of the type studied in Sections 6.3 and 6.12. Although each collector is shown connected to the positive supply voltage $V_{c C}$ through a resistance R_{C}, this connection is not essential to cheugh though, that the collector circuits be such that Q_{1} and Q_{2} never enter saturation.

7.3.1 Basic Operation

To see how the BJT differential pair works, consider first the case of the two bases joined together and connected to a common-mode voltage $\psi_{\text {CM }}$. That is, as shown in Fig. 7.13(a),

FIGURE 7.12 The basic BJT differentialpair configuration.

FIGURE 7.13 Different modes of operation of the BJT differential pair: (a) The differential pair with a conmon-mode inpul signal $v_{C M}$. (b) The differential pair with ""laree" differential inpul signal. (c) The diffier-conmon-mode inpul
cntial pair with a large differential input signal of polarity opposite to that in (b). (d) The differcntial pair wilh a
and minall differential input signal v_{2}. Note that we have assumed the hias current source I to be idcal (i.e., it has an infinite ouput resislance) and thus l remains constant with the change in $v_{C M}$.
$\tau_{B 1}=v_{B 2}=v_{C M}$. Since Q_{1} and Q_{2} are matched, and assuming an ideal bias current source I with infinice output resistance, it follows that the current I will remain constant and from symmetry that I will divide equally between the two devices. Thus $i_{E 1}=i_{E 2}=I / 2$, and the vollage a be emitters will be $v_{C M}-V_{B E}$, where $V_{B / \prime}$ is the base-emiter voltage (assumed in fir 7.13 a to be
approximately 0.7 V) corresponding to an emitter current of $L / 2$. The voltage at each collecto will be $V_{C C}-\frac{1}{2} \alpha I R_{C}$, and the difference in voltage between the two collectors will be zero. Now let us vary the value of the common-mode input signal $v_{C M}$. Obviously, as long Q_{1} and Q_{2} remain in the active region the current I will still divide equally between Q_{1} and Q_{2}, and the voltages at the collectors will not change. Thus the differential pair does not respond to (i.e., it rejects) common-modc input signals.

As another experiment, let the voltage $v_{B 2}$ be set to a constant value, say, zero (by grounding B_{2}), and let $\tau_{B 1}=+1 \mathrm{~V}$ (see Fig. 7.13b). With a bit of reasoning it can be seen th Q_{1} will be on and conducting all of the current I and that Q_{2} will be off. For Q_{1} to be (with $V_{B F 1}=0.7 \mathrm{~V}$, the emitter has to be at approximately +0.3 V , which keeps the EB , Q_{2} reversc-biased. The collector voltages will be $v_{C 1}=V_{C C}-\alpha I R_{C}$ and $v_{C 2}=V_{C C}$.
Let us now change $v_{B 1}$ to -1 V (Fig. 7.13c). Again with some reasoning it can be seen that Q_{1} will turn off, and Q_{2} will carry all the current I. The common emitter will be at -0.7 V which means that the EBJ of Q_{1} will be reverse-biased by 0.3 V . The collector voltages will be $v_{C 1}=V_{C C}$ and $v_{C 2}=V_{C C}-\alpha I R_{C}$.
From the foregoing, we see that the differential pair certainly responds to large differencemode (or differential) signals. In fact, with relatively small difference voltages we are able to seer the entire bias current from one side of the pair to the other. This current-steering property of the differential pair allows it to be used in logic circuits, as will be demonstrated in Chapter 11 Indeed, the reader can easily see that the differential pair implements the single-pole double throw switch that we employed in the realization of the current-mode inverter of Fig. 1.33.
To use the BJT differential pair as a linear amplifier we apply a very small differential signal (a few millivolts), which will result in one of the transistors conducting a current of $I / 2+\Delta I$; the current in the other transistor will be $I / 2-\Delta I$, with ΔI being proportional to the difference input voltage (see Fig. 7.13d). The output voltage taken between the two collectors will be $2 \alpha \Delta I R_{C}$, which is proportional to the differential input signal v_{i}. The small-signal operation of the differential pair will be studied next, in Section 7.3.
 mate fy $07 V$ and that $\alpha=1$

3.2 Large-Signal Operation

Ne now present a general analysis of the BJT differential pair of Fig. 7.12. If we denote the oltage at the common emitter by v_{E}, the exponential relationship applied to each of the two ransistors may be written

$$
\begin{aligned}
& i_{E 1}=\frac{I_{S}}{\alpha} e^{\left(v_{B 1} 1-v_{E}\right) / V_{T}} \\
& i_{E 2}=\frac{I_{S}}{\alpha} e^{\left(v_{E_{2}}-v_{E}\right) / V_{T}}
\end{aligned}
$$

These two equations can be combined to oblain

$$
\frac{i_{E 1}}{i_{E 2}}=e^{\left(i_{B 1}-v_{B 2}\right) / V_{T}}
$$

$$
\frac{E 1}{i_{E 2}}=
$$

which can be manipulated to yield

$$
\begin{align*}
& \frac{i_{E 1}}{i_{E 1}+i_{E 2}}=\frac{1}{1+e^{\left(v_{22}-v_{E 1}\right) / V_{T}}} \tag{7.69}\\
& \frac{i_{E 2}}{i_{E 1}+i_{E 2}}=\frac{1}{1+e^{\left(v_{B 1}-v_{B 2}\right) / V_{T}}}
\end{align*}
$$

The circuit imposes the additional constraint

$$
i_{E 1}+i_{E 2}=I
$$

Using Eq. (7.71) together with Eqs. (7.69) and (7.70) and substituting $v_{B 1}-v_{B 2}=v_{i d}$ gives

$$
\begin{align*}
& i_{E 1}=\frac{I}{1+e^{-v_{i d /} / V_{T}}} \tag{7.72}\\
& i_{E 2}=\frac{I}{1+e^{v_{i d} / V_{T}}} \tag{7.73}
\end{align*}
$$

The collector currents $i_{C 1}$ and $i_{C^{\prime 2}}$ can be obtained simply by multiplying the emitter currents in Eqs. (7.72) and (7.73) by α, which is nornally very close to unity.
The fundanental operation of the differential amplifier is illustrated by Eqs. (7.72) and (7.73). First, note that the amplifier responds only to the difference voltage $v_{i d}$. That is, if $v_{B 1}=v_{B 2}=v_{C M}$, the current I divides equally between the two transistors irrespective of the tion, which also gives rise to its name,

Another important observation is that a relatively small difference voltage $v_{i d}$ will cause the current I to flow almost entirely in one of the two transistors. Figure 7.14 shows a plot of the two collector currents (assuming $\alpha \simeq 1$) as a function of the differential input signal. This is a normalized plot that can be used universally. Note that a difference voltage of about $4 V_{T}$ $(=100 \mathrm{mV})$ is sufficient to switch the current almost entirely to one side of the BJT pair. Note that this is much smaller than the corresponding voltage for the MOS pair, $\sqrt{2} \mathrm{~V}$ or. The fact that such a small signal can switch the current from one side of the BJT differential pair to the other means that the BJT differential pair can be used as a fast current switch. Another reason for the high speed of operation of the differential device as a switch is that neither of the transistors saturates. The reader will recall from Chapter 5 that a saturated transistor stores charge in its base that must be removed before the device can turn off, generally a slow process that results in

FIGURE 7.14 Transfer characteristics of the BJT differential pair of Fig. 7.12 assuming $\alpha \approx 1$.
slow inverter. The absence of saturation ${ }^{1}$ in the normal operation of the BJT differential pair makes the logic family based on it the fastest form of logic circuits available (see Chapter 11). The nonlinear transfer characteristics of the differential pair, shown in Fig. 7.14, will not be utilized any further in this chapter. Rather, in the following we shall be interested specifically in the application of the differential pair as a small-signal amplificr. For this purpose the difference input signal is limited to less than about $V_{T} / 2$ in order that we may operate on a linear segment of the characteristics around the midpoint x (in Fig. 7.14).

Before leaving the large-signal operation of the differential BJT pair, we wish to point out au cffective technique frequently employed to extend the linear range of operation. It consists au cfective technique frequently employed to extend the linear range of operation. It consists Fig. 7.15(a). The resulting transfer characteristics for three different values of R_{e} are sketched Fig. 7.15(a). The resulting transfer characteristics for three different values of R_{e} are sketched
in Fig. 7.15 (b). Observe that expansion of the linear range is obtained at the expense of reduced $g_{m \text { (}}$ (which is the slope of the transfer curve at $v_{i f}=0$) and hence reduced gain. This reduced g_{m} (which is the slope of the transicr curve at $v_{i l}=0$) and hence reduced gain. This
result should come as no surprisc; R_{e} here is performing in cxactly the same way as the emitter result should come as no surprisc; R_{e} here is performing in exactly the same way as the emitter
resistance R_{e} does in the CE amplifier with emitcr degeneration (see Scction 6.9.2). Finally, we also note that this linearization technique is in effect the bipolar counterpart of the technique employed for the MOS differential pair (Fig. 7.7). In the latter case, however, $V_{O V}$ was varied by changing the transistors' W / L ratio, a design tool with no counterpart in the BJT.

EXERCISE

 cause ${ }^{2}=0.991$
Ans: 18 m .

[^26]
(b)

IGURE 7.15 The transfer characteristics of the BJT differential pair (a) can be linearized (b) (i.e... ihe linear range of operation can be extended) by including resistances in the emitters.

7.3.3 Small-Signal Operation

In this section we shall study the application of the BJT differential pair in small-signal amplification. Figure 7.16 shows the BJT differential pair with a difference voltage signal $v_{i d}$ applied between the two bases. Implied is that the de level at the inpul-that is, the common mode input voltagc-has been somehow established. For instance, one of the two input erminals can be grounded and $y_{i d}$ applied to the other input terminal. Alternaively, the differential amplificr may be fed from the output of another differential amplifier. In the latter case, the voltage at one of the input terminals will be $V_{C M}+v_{i d} / 2$ while that a the other input terminal will be $V_{C M}-v_{i d} / 2$. We will consider common-mode operatio subsequently.

FIGURE 7.16 The cunents and voltages in the differential amplifier when a small differential inpul signal $v_{i d}$ is applied.

The Collector Currents When $v_{i d}$ Is Applied For the circuit of Fig. 7.16, we may use Eqs. (7.72) and (7.73) to write

$$
\begin{align*}
& i_{C 1}=\frac{\alpha I}{1+e^{-v_{d i} / V_{T}}} \tag{7.74}\\
& i_{C 2}=\frac{\alpha I}{1+e^{-i_{d i} / V_{T}}}
\end{align*}
$$

Multiplying the numerator and the denominator of the right-hand side of Eq. (7.74) by $e^{t_{i d} / 2 V_{T}}$ gives

$$
\begin{equation*}
i_{C 1}=\frac{\alpha I e^{v_{i d} / 2 v_{T}}}{e^{v_{i d} / 2 V_{T}}+e^{-v_{i, i} / 2 V_{T}}} \tag{7.76}
\end{equation*}
$$

Assume that $v_{i d} \ll 2 V_{T}$. We may thus expand the exponential $e^{\left(\pm v_{i d} / 2 V_{T}\right)}$ in a series, and retain only the furst two terns

$$
i_{C 1} \simeq \frac{\alpha I\left(1+v_{i d} / 2 V_{T}\right)}{1+v_{i d} / 2 V_{T}+1-v_{i d} / 2 V_{T}}
$$

Thus

$$
\begin{equation*}
i_{C 1}=\frac{\alpha I}{2}+\frac{\alpha I}{2 V_{T}} \frac{v_{i d}}{2} \tag{7.77}
\end{equation*}
$$

Similar manipulations can be applied to Eq. (7.75) to obtain

$$
i_{c 2}=\frac{\alpha I}{2}-\frac{\alpha I}{2 V_{T}} \frac{v_{i d}}{2}
$$

Equations (7.77) and (7.78) tell us that when $v_{i d}=0$, the bias current I divides equally between the two transistors of the pair. Thus each transistor is hiased at an emitter current of

When " "small-signal" y_{1} is applied differentially (i.e, between the two bases), the col $1 / 2$. When a lector current or Q_{1} in crems of the total currents in Q_{1} and Q_{2} remains constant, as constrained this the current-source bias. The incremental (or signal) current component i_{c} is given by

$$
\begin{equation*}
i_{c}=\frac{\alpha I}{2 V_{T}} \frac{v_{i d}}{2} \tag{7.79}
\end{equation*}
$$

Equation (7.79) has an easy intcrpretation. First, note from the symmetry of the circuit Equation (7.79) has an easy interpretation. First, note from the symmetry of the circuit
(Fig. 7.16) that the differential signal $v_{i d}$ should divide equally between the basc-emitter junctions of the two transistors. Thus the total basc-emitter voltages will be

$$
\begin{aligned}
& \left.v_{B E}\right|_{Q 1}=V_{B E}+\frac{v_{i d}}{2} \\
& \left.v_{B E}\right|_{Q 2}=V_{B E}-\frac{v_{i d}}{2}
\end{aligned}
$$

where $V_{B E}$ is the dc BE voltage corresponding to an emitter current of $I / 2$. Therefore, the collector curcent of Q_{1} will increase by $g_{m} v_{i d} / 2$ and the collector current of Q_{2} will decrease by $g_{m} v_{i d} / 2$. Here g_{m} denotes the transconductance of Q_{1} and of Q_{2}, which are equal and given by

$$
\begin{equation*}
g_{m}=\frac{I_{C}}{V_{T}}=\frac{\alpha I / 2}{V_{I}} \tag{7.80}
\end{equation*}
$$

Thus Eq. (7.79) simply states that $i_{c}=g_{m} v_{i d} / 2$.
An Alternative Viewpoint There is an extremely useful alternative interpretation of the results above. Assume the current source $/$ to be ideal. Its incremental resistance then will be infinite. Thus the voltage $v_{i d}$ appears across a total resistance of $2 r_{e}$, where

$$
\begin{equation*}
r_{e}=\frac{V_{T}}{I_{E}}=\frac{V_{T}}{I / 2} \tag{7.81}
\end{equation*}
$$

Correspondingly there will be a signal current i_{e}, as illustrated in Fig. 7.17, given by

$$
\begin{equation*}
i_{e}=\frac{v_{i d}}{2 r_{e}} \tag{7.82}
\end{equation*}
$$

Thus the collector of Q_{1} will exhibit a current increment i_{c} and the collector of Q_{2} will exhibit a current decrement i

$$
\begin{equation*}
i_{c}=\alpha i_{e}=\frac{\alpha v_{i d}}{2 r_{e}}=g_{m} \frac{v_{i d}}{2} \tag{7.83}
\end{equation*}
$$

Note that in Fig. 7.17 we have shown signal quantities only. It is implied, of course, that each transistor is biased at an emitter current of $I / 2$.

This method of analysis is particularly useful when resistances are included in the emitters, as shown in Fig. 7.18. For this circuit we have

$$
\begin{equation*}
i_{e}=\frac{v_{i d}}{2 r_{e}+2 R_{e}} \tag{7.84}
\end{equation*}
$$

Input Differential Resistance Unlike the MOS differential amplifier, which has an infinite input resistance the bipolar differcntial pair exhibits a finite input resistance, a result of the finite β of the BJT.

FIGURE 7.17 A simple techniquc for determining the signal currenss in a differential amplifier excited by a differential voltage signal $z_{i d}$ de de quantities are nol shown.

FIGURE 7.18 A differential amplifier with cmitter resistances. Only signal quantities are shown (in color).
The input differential resistance is the resistance seen between the two bases; that is, it is the resistance seen by the differential input signal $v_{i d}$. For the differential amplifier in Figs. 7.16 and 7.17 it can be seen that the base current of Q_{1} shows an increment i_{b} and the base current of Q_{2} shows an equal decrement,

$$
\begin{equation*}
i_{b}=\frac{i_{e}}{\beta+1}=\frac{v_{i d} / 2 r_{e}}{\beta+1} \tag{7.85}
\end{equation*}
$$

Thus the differential input resistance $R_{i d}$ is given by

$$
R_{i d} \equiv \frac{v_{i d}}{i_{b}}=(\beta+1) 2 r_{e}=2 r_{\pi}
$$

-i result is just a restatement of the familiar resistance-reflection rule; namely, the resistance This between the two bases is equal to the total resistance in the emitter circuit multiplied b): $(\beta+1)$. seen berween hhe wis rule to find the input differential resistance for the circuit in Fig. 7.18 as
We can employ

$$
\begin{equation*}
R_{i d}=(\beta+1)\left(2 r_{e}+2 R_{e}\right) \tag{7.87}
\end{equation*}
$$

Differential Voltage Gain We have established that for small difference input voltages. $\left(v_{i d} \ll 2 V_{7} ;\right.$ i.e., $v_{i d}$ smaller than about 20 mV$)$ the collector currents are given by

$$
\begin{align*}
& i_{C 1}=I_{C}+g_{m} \frac{v_{i d}}{2} \tag{7.88}\\
& i_{C 2}=I_{C}-g_{m} \frac{v_{i d}}{2} \tag{7.89}
\end{align*}
$$

where

$$
\begin{equation*}
I_{C}=\frac{\alpha I}{2} \tag{7.90}
\end{equation*}
$$

Thus the total voltages at the collectors will be

$$
\begin{align*}
& v_{C 1}=\left(V_{C C}-I_{C} R_{C}\right)-g_{m} R_{C} \frac{v_{i d}}{2} \tag{7.9}\\
& v_{C 2}=\left(V_{C C}-I_{C} R_{C}\right)+g_{m} R_{C} \frac{v_{i d}}{2} \tag{7.92}
\end{align*}
$$

The quantities in parentheses are simply the dc voltages at each of the two collectors
As in the MOS case, the output voltage signal of a hipolar differential amplifier can be taken ither differentially (i.e., between the two collcctors) or single-endedly (i.e., between one col lector and ground). If the output is taken differentially, then the differential gain (as oppose o the common-mode gain) of the differential amplifier will be

$$
\begin{equation*}
A_{d}=\frac{v_{c 1}-v_{c 2}}{v_{d}}=-g_{m} R_{C} \tag{7.93}
\end{equation*}
$$

On the other hand, if we take the output single-endedly (say, between the collector of Q_{\mid}and ground), then the differential gain will be given by

$$
\begin{equation*}
A_{d}=\frac{v_{C l}}{v_{d}}=-\frac{1}{2} g_{m} R_{C} \tag{7.94}
\end{equation*}
$$

For the differential amplifier with resistances in the emitter leads (Fig. 7.18) the diflerntial gain with the output is taken differentially is given by

$$
\begin{equation*}
\Lambda_{d}=-\frac{\alpha\left(2 R_{C}\right)}{2 r_{e}+2 R_{e}} \simeq-\frac{R_{C}}{r_{e}+R_{e}} \tag{7.95}
\end{equation*}
$$

This equation is a familiar onc: It states that the voltage gain is equal to the ratio of the total resistance in the collector circuit ($2 R_{C}$) to the total resistance in the emitter circuit $\left(2 r_{e}+2 R_{e}\right)$.

FIGURE 7.19 Equivalence of the BJT differential amplifier in (a) to the two common-emitter amplifiers in (b). This equivalence applies only for differential input signals. Either of the two common-emitter amplifiers (b). This equivalence applies only for differential input signals. Either of the two common-enmitter amplifier the differential amplifier.

Equivalence of the Differential Amplifier to a Common-Emitter Amplifier The analysis and results on the previous page are quite similar to those obtained in the case of common-emitter amplifier stage. That the differential amplifier is in fact equivalent to common-emitter amplifier is illustrated in Fig. 7.19. Figure 7.19(a) shows a differential amplifier fed by a differential signal $v_{i d}$ which is applied in a complementary (push-pull o balanced) manner. That is, while the base of Q_{1} is raised by $v_{i d} / 2$, the base of Q_{2} is lowered by $v_{i d} / 2$. We have also included the output resistance $R_{E E}$ of the bias current source. From symmetry, it follows that the signal voltage at the emitters will be zero. Thus the circuit is equivalent to the two common-emitter amplifiers shown in Fig. 7.19(b), wbere each of the two transistors is biased at an emitter current of $I / 2$. Note that the finite output resistance $R_{E E}$ of the current source will have no effect on the operation. The equivalent circuit in Fig. 7.19(b) is valid for differential operation only

In many applications the diffcrential amplifier is not fed in a complementary fashion rather, the input signal may be applied to one of the input terminals while the other termina is grounded, as shown in Fig. 7.20. In this case the signal voltage at the emitters will not be zero, and thus the resistance $R_{E E}$ will have an effect on the operation. Nevertheless, if $R_{E E}$ is arge ($R_{E E} \gg r_{e}$), as is usually the case, ${ }^{2}$ then $\gamma_{i d}$ will still divide equally (approximately) between the two junctions, as shown in Fig. 7.20. Thus the operation of the differential mplifier in this case will be almost identical to that in the case of symmetric feed, and the common-emitter equivalence can still be employed
since in Fig. 7.19 $v_{c 2}=-v_{c 1}$, the two common-emitter transistors in Fig. 7.19(b) yield imilar results about the performance of the differential amplifier. Thus only one is needed 0 analyze the differential small-signal operation of the differential amplifier, and it known as the differential half-circuit. If we take the common-emitter transistor fed with $+v_{i d} / 2$ as the differential half-circuit and replace the transistor with its low-frequency equivalent

FIGURE 7.21 (a) The differential half-circuit and (b) its cquivalent circuit model
circuit model, the circuit in Fig. 7.21 results. In evaluating the model parameters $r_{\pi}, g_{m,}$, and circuit model, the circuit in Fig. 7.21 results. In evaluating the model parameters r_{π}, g_{m}, and amplifier (with the output taken differentially) is equal to the voltage gain of the half cricuit- that is, $v_{1} /(v, / 2)$. Here, we note that including r_{o} will modify the gain expression in Eq. (7.93) to

$$
\begin{equation*}
A_{d}=-g_{m}\left(R_{C} \| r_{o}\right) \tag{7.96}
\end{equation*}
$$

The input differential resistance of the differential amplificr is twice that of the half-circuitthat is, $2 r_{\pi}$. Finally, we note that the differential hall-circuit of the amplifier of Fig. 7.18 is common-emitter transistor with a resistance R_{e} in the emitter lead.
Common-Mode Gain and CMRR Figure 7.22(a) shows a differential amplifier fed by common-mode voltage signal $v_{i c i n}$. The resistance $R_{E E}$ is the incremental output resistance of the bias current source. From symmetry it can be seen that the circuit is equivalent to that shown in Fig. 7.22(b), where each of the two transistors Q_{1} and Q_{2} is biased at an emitter current $I / 2$ an has a resistance $2 R_{E E}$ in its emitter lead. Thus the common-mode output voltage $v_{c l}$ will be

$$
\begin{equation*}
v_{c 1}=-v_{i c m} \frac{\alpha R_{C}}{2 R_{E E}+r_{e}} \simeq-v_{i c m} \frac{\alpha R_{C}}{2 R_{R E}} \tag{7.97}
\end{equation*}
$$

At the other collector we have an equal common-mode signal $v_{c 2}$,

$$
\begin{equation*}
v_{c 2} \simeq-v_{i c m} \frac{\alpha R_{C}}{2 R_{F E}} \tag{7.98}
\end{equation*}
$$

*

(b)

FIGURE 7.22 (a) The differential amplifier fed by a common-mode voltage signal $v_{\text {com }}$ (b) Equivalen "hall-circuits" for common-mode calculations.

Now, if the output is taken differentially, then the output common-mode voltage $v_{o} \equiv$ $\left(v_{c 1}-v_{c 2}\right)$ will be zero and the common-mode gain also will be zero. On the other hand, if the output is taken single-endedly, the common mode gain $A_{v m n}$ will be finite and given by ${ }^{3}$

$$
A_{c m}=-\frac{\alpha R_{C}}{2 R_{E E}}
$$

Since in this case the diffcrential gain is

$$
A_{d}=\frac{1}{2} g_{m} R_{C}
$$

the common-mode rejection ratio (CMRR) will be

$$
\begin{equation*}
\mathrm{CMRR}=\left|\frac{A_{d}}{A_{c m}}\right| \simeq g_{m} R_{E E} \tag{7.101}
\end{equation*}
$$

Normally the CMRR is expressed in decibels,

$$
\begin{equation*}
\mathrm{CMRR}=20 \log \left|\frac{A_{d}}{A_{c m}}\right| \tag{7.102}
\end{equation*}
$$

Each of the circuits in Fig. 7.22(b) is called the common-mode half-circuit.
${ }^{3}$ The expressions in Eqs. (7.97) and (7.98) are obtained by neglecting r_{0}. A detailed derivation using the results of Section 6.4 shows that $v_{c 1} / v_{v i m}$ and $v_{c 2} / v_{u m}$ are approximately

$$
\frac{-\alpha R_{C}}{2 R_{E E}}\left(1-\frac{2 R_{E E}}{\beta r_{o}}\right)
$$

where it is assumed that $R_{C} \ll \beta r_{c}$ and $2 R_{E E} \gtrdot r_{\pi}$ This expression reduces to those in Eqs. (7.97) and

The analysis on the facing pare assumes that the circuit is perfectly synumetrical. However practical circuits are not perfectly symmetrical, with the result that the common-mode gain practical circuers even if the output is taken differentially. To illustrate, consider the case ferfect symmetry except for a mismatch ΔR_{C} in the collector resistances. That is, let of perfilcetor of Q_{1} have a load resistance R_{C}, and Q_{2} have a load resistance $R_{C}+\Delta R_{C}$. It follows that

$$
\begin{aligned}
& v_{c 1}=-v_{\text {lcrm }} \frac{\alpha R_{C}}{2 R_{E E}+r_{t}} \\
& v_{c 2}=-v_{i c m} \frac{\alpha\left(R_{C}+\Delta R_{C}\right)}{2 R_{F E}+r_{e}}
\end{aligned}
$$

Thus the signal at the output due to the common-mode input signal will be

$$
v_{o}=v_{c 1}-v_{c 2}=v_{i c m} \frac{\alpha \Delta R_{C}}{2 R_{E E}+r_{e}}
$$

and the common-mode gain will be

$$
A_{c m}=\frac{\alpha \Delta R_{C}}{2 R_{E E}+r_{e}} \simeq \frac{\Delta R_{C}}{2 R_{E E}}
$$

This expression can be rewritten as

$$
\begin{equation*}
A_{c m}=\frac{R_{C}}{2 R_{E E}} \frac{\Delta R_{C}}{R_{C}} \tag{7.103}
\end{equation*}
$$

Compare the common-mode gain in Eq. (7.103) with that for single-ended output in Eq. (7.99). We see that the common-mode gain is much smaller in the case of differential output. Therefore the input differential stage of an op amp, for example, is almost always a balanced one, with the output taken differentially. This ensures that the op amp will have the lowest possible common-mode gain or, equivalently, a high CMRR.

The input signals \tilde{v}_{1} and v_{2} to a differential amplifier usually contain a common-mode component, $v_{i c m}$,

$$
\begin{equation*}
v_{i c m} \equiv \frac{v_{1}+v_{2}}{2} \tag{7.104}
\end{equation*}
$$

and a differential component $v_{i d}$

$$
\begin{equation*}
v_{i d} \equiv v_{1}-v_{2} \tag{7.105}
\end{equation*}
$$

Thus the output signal will be given in gencral by

$$
\begin{equation*}
v_{o}=A_{d}\left(v_{1}-v_{2}\right)+A_{c m}\left(\frac{v_{1}+v_{2}}{2}\right) \tag{7.106}
\end{equation*}
$$

Input Common-Mode Resistance The definition of the common-mode input resistance $R_{c i m m}$ is illustrated in Fig. 7.23(a). Figure 7.23(b) shows the equivalent common-mode half-circuit; its input resistance is $2 R_{\text {crr }}$. The value of $2 R_{\text {com }}$ can be determined using the expression we derived in Section 6.9 for the input resistance of a CE amplifier with a resistance in the emitter. Specifically, we can use Eq. (6.157) and substitute $R_{e}=2 R_{\text {IE }}$ and $R_{t}=R_{C}$ to obtain for the case $R_{C} \ll r_{o}$ and $2 R_{E E} \gg r_{e}$ the approximate expression

$$
2 R_{i c m} \simeq(\beta+1)\left(2 R_{E E} \| r_{o}\right)
$$

FIGURE 7.23 (a) Definition of the input conmon-mode resistance $R_{k c m}$. (b) The equivalent cormmonmode half-circuit.

Thus,

$$
\begin{equation*}
R_{c c m} \simeq(\beta+1)\left(R_{E E} \| \frac{r_{o}}{2}\right) \tag{7.107}
\end{equation*}
$$

Equation (7.107) indicates that since $R_{E E}$ is typically of the order of $r_{o}, R_{i c m}$ will be very large.

Whury

The differential amplifier in Fig. 7.24 uses transistors with $\beta=100$. Evaluate the following
(a) The input differential resistance $R_{i d}$.
(b) Thc overall diffcrential voltage gain $v_{o} / v_{\text {sig }}$ (neglect the effect of r_{o})
(c) The worst-case common-mode gain if the two collector resistances are accurate to within $\pm 1 \%$.
(d) The CMRR, in dB.
(e) The input common-mode resistance (assuming that the Early voltage $V_{A}=100 \mathrm{~V}$).

Solution

(a) Each transistor is biased at an emitter current of 0.5 mA . Thus

$$
r_{e 1}=r_{e 2}=\frac{V_{T}}{I_{E}}=\frac{25 \mathrm{mV}}{0.5 \mathrm{~mA}}=50 \Omega
$$

The input differential resistance can now be found as

$$
R_{i d}=2(\beta+1)\left(r_{e}+R_{E}\right)
$$

$=2 \times 101 \times(50+150) \cong 40 \mathrm{k} \Omega$

FIGURE $\mathbf{7 . 2 4}$ Circuii for Example 7.1
(b) The voltage gain from the signal source to the bases of Q_{1} and Q_{2} is

$$
\begin{aligned}
\frac{v_{i d}}{v_{\text {sig }}} & =\frac{R_{i d}}{R_{\text {sig }}+R_{i d}} \\
& =\frac{40}{5+5+40}=0.8 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

The voltage gain from the bases to the output is

$$
\begin{aligned}
\frac{v_{o}}{v_{i d}} & \cong \frac{\text { Total resistance in the colleclors }}{\text { Total resistance in the emitters }} \\
& =\frac{2 R_{C}}{2\left(r_{e}+R_{E}\right)}=\frac{2 \times 10}{2(50+150) \times 10^{-3}}=50 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

The overall differential voltage gain can now be found as

$$
A_{d}=\frac{v_{o}}{v_{\text {sig }}}=\frac{v_{\text {id }}}{v_{\text {sig }}} \frac{v_{o}}{v_{i d}}=0.8 \times 50=40 \mathrm{~V} / \mathrm{V}
$$

(c) Ușing Eq. (7.103),

$$
A_{c n n}=\frac{R_{C}}{2 R_{E E}} \frac{\Delta R_{C}}{R_{C}}
$$

where $\Delta R_{C}=0.02 R_{C}$ in the worst case. Thus,

$$
A_{c m}=\frac{10}{2 \times 200} \times 0.02=5 \times 10^{-4} \mathrm{~V} / \mathrm{V}
$$

$$
\begin{aligned}
\mathrm{CMRR} & =20 \log \frac{A_{d}}{A_{c m}} \\
& =20 \log \frac{40}{5 \times 10^{-4}}=98 \mathrm{~dB} \\
r_{n} & =\frac{V_{A}}{1 / 2}=\frac{100}{0.5}=200 \mathrm{k} \Omega
\end{aligned}
$$

(e)
Using Eq. (7.107),

$$
R_{i c m}=(\beta+1)\left(R_{E E} \| \frac{r_{g}}{2}\right)
$$

$=101(200 \mathrm{k} \Omega \| 100 \mathrm{k} \Omega)=6.7 \mathrm{M} \Omega$

EXERCISE

79 For the eircuit n Fig 7. 16. tet $I=1 \mathrm{~mA}, V_{c},-15$ V. R_{C}. 10 kR , wifh $\alpha=1$, and let the input voltages
 specified to have 1 c of 0.7 V at a collector current of 1 mA find the voltage at the enitters. Obscke the symmety of the cicuil) (b) Find s_{m} for each of hic two tiansistors. (c) Find ic tor each of the wo transistors. (d) Find y for cach of the two transistors. (e) Find the soltage between the woo coltectors, (Find hic sane experienced by the 100011 signal.
Ans: (a) 4.317 V: (b) $20 \mathrm{mAV}:$ (c) $l_{\mathrm{ct}}=05+01 \mathrm{sin} 2 \pi \times 10000$, MA and $1 \mathrm{c}_{2}=05-01 \sin 2 \pi \times 1000 \mathrm{t}, \mathrm{MA}$

(f) $200 \mathrm{~V} / \mathrm{V}$

7.4 OTHER NONIDEAL CHARACTERISTICS OF THE DIFFERENTIAL AMPLIFIER

7.4.1 Input Offset Voltage of the MOS Differential Pair

Consider the basic MOS differential amplifier with both inputs grounded, as shown in Fig. $7.25\left(\right.$ a). If the two sides of the differential pair were perfectly matched (i.c., Q_{1} and Q_{2} identical and $R_{D 1}=R_{D 2}=R_{D}$), then current I would split equally between Q_{1} and Q_{2}, and V_{O} would be zero. Practical circuits exhibit mismatches that result in a dc output voltage V_{O} even with both inputs grounded. We call V_{o} the output dc offset voltage. More commonly, we divide V_{O} by the diffcrential gain of the amplifier, A_{d}, to obtain a quantity known as the input offset voltage, $V_{O S}$,

$$
\begin{equation*}
V_{O S}=V_{O} / \Lambda_{d} \tag{7.108}
\end{equation*}
$$

Obviously, if we apply a voltage $-V_{O S}$ between the input (erminals of the differential amplifier, then the output voltage will be reduced to zero (sce Fig. 7.25 b). This observation gives rise to the usual definition of the input offset voltage. It should be noted, however, that since the offset voltage is a result of device mismatches, its polarity is not known a priori.

Three factors contribute to the dc offset voltage of the MOS differential pair: mismatch in load resistances, mismatch in W / L, and mismatch in V_{t}. We shall consider the three contributing factors one at a time

FIGURE 7.25 (a) The MOS differential pair with both inputs grounded. Owing to device and resistor mismatchcs, a linite de output voltage V_{o} resellts. (b) Application of a voltage cqual to the input offset voltage V_{0} to thc input terminals with opposite polarity reduces V_{o} to zero.

For the differential pair shown in Fig. 7.25(a) consider lirst the case where Q_{1} and Q_{2} are perfectly matched but $R_{D 1}$ and $R_{p 2}$ show a mismatch ΔR_{D}; that is,

$$
\begin{align*}
& R_{D 1}=R_{D}+\frac{\Delta R_{D}}{2} \tag{7.109}\\
& R_{D 2}=R_{D}-\frac{\Delta R_{D}}{2} \tag{7.110}
\end{align*}
$$

Because Q_{i} and Q_{2} are matched, the current I will split equally between them. Neverthe${ }^{2}$, Q_{i} and Q_{2} are mata,

$$
\begin{aligned}
& V_{D 1}=V_{D D}-\frac{I}{2}\left(R_{D}+\frac{\Delta R_{D}}{2}\right) \\
& V_{D 2}=V_{D D}-\frac{I}{2}\left(R_{D}-\frac{\Delta R_{D}}{2}\right)
\end{aligned}
$$

Thus the differential output voltage V_{o} will bc

$$
\begin{align*}
V_{O} & =V_{D 2}-V_{D} \\
& =\left(\frac{I}{2}\right) \Delta R_{D} \tag{7.111}
\end{align*}
$$

The corresponding input offset voltage is obtained by dividing V_{O} by the gain $g_{m} R_{D}$ and sub stituting for g_{m} from Eq. (7.30). The result is

$$
V_{o s}=\left(\frac{V_{O V}}{2}\right)\left(\frac{\Delta R_{D}}{R_{D}}\right)
$$

Thus the offset voltage is directly proportional to $V_{o v}$ and, of course, to $\Delta R_{D} / R_{D}$. As example, consider a differential pair in which the two transistors are operating at an overdrive vollage of 0.2 V and each drain resistance is accurate to within $\pm 1 \%$. It follows that th worst-case resistor mismatch will be

$$
\frac{\Delta R_{D}}{R_{D}}=0.02
$$

and the resulting input offset voltage will be

$$
\left|V_{O S}\right|=0.1 \times 0.02=2 \mathrm{mV}
$$

Next, consider the effect of a mismatch in the W / L ratios of Q_{1} and Q_{2}, expressed as

$$
\begin{align*}
& \left(\frac{W}{L}\right)_{1}=\frac{W}{L}+\frac{1}{2} \Delta\left(\frac{W}{L}\right) \tag{7.113}\\
& \left(\frac{W}{L}\right)_{2}=\frac{W}{L}-\frac{1}{2} \Delta\left(\frac{W}{L}\right) \tag{7.114}
\end{align*}
$$

Such a mismatch causes the current I to no longer divide equally between Q_{1} and Q_{2}. Rather it can be shown that the currents I_{1} and I_{2} will be

$$
\begin{align*}
& I_{1}=\frac{I}{2}+\frac{1}{2}\left(\frac{\Delta(W / L)}{2(W / L)}\right) \tag{7.115}\\
& I_{2}=\frac{I}{2}-\frac{I}{2}\left(\frac{\Delta(W / L)}{2(W / L)}\right) \tag{7.116}
\end{align*}
$$

Dividing the current increment

$$
\frac{I}{2}\left(\frac{\Delta(W / L)}{2(W / L)}\right)
$$

by $g_{i n}$ gives half the input offset voltage (due to the mismatch in W / L values). Thus

$$
\begin{equation*}
V_{O S}=\left(\frac{V_{O V}}{2}\right)\left(\frac{\Delta(W / L)}{(W / L)}\right) \tag{7.117}
\end{equation*}
$$

Here again we note that $V_{O S}$, resulting from a (W / L) mismatch, is proportional to $V_{O V}$ and, as expected, $\Delta(W / L)$.

Finally, we consider the effect of a mismatch ΔV_{t} between the two threshold vollages,

$$
\begin{align*}
& V_{t 1}=V_{t}+\frac{\Delta V_{t}}{2} \tag{7:118}\\
& V_{t 2}=V_{t}-\frac{\Delta V_{t}}{2} \tag{7.119}
\end{align*}
$$

The current I_{1} will be given by

$$
\begin{aligned}
I_{1} & =\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{C S}-V_{t}-\frac{\Delta V_{t}}{2}\right)^{2} \\
& =\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}\left[1-\frac{\Delta V_{t}}{2\left(V_{U S}-V_{t}\right)}\right]^{2}
\end{aligned}
$$

which, for $\Delta V_{t} \ll 2\left(V_{G S}-V_{t}\right)$ |that is, $\Delta V_{t} \ll 2 V_{O V}$], can be approximated as

$$
I_{1}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}\left(1-\frac{\Delta V_{t}}{V_{G S}-V_{t}}\right)
$$

Similatly
tfollows that

$$
I_{2} \simeq \frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}\left(1+\frac{\Delta V_{t}}{V_{G S}-V_{t}}\right)
$$

$$
\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}=\frac{1}{2}
$$

and the current increment (decrement) in $Q_{2}\left(Q_{1}\right)$ is

$$
\Delta I=\frac{I}{2} \frac{\Delta V_{t}}{V_{G S}-V_{t}}=\frac{I}{2} \frac{\Delta V_{t}}{V_{O V}}
$$

Dividing ΔI by $g_{w i}$ gives half the input offset voltage (due to $\Delta V_{\text {) }}$). Thus,

$$
\begin{equation*}
V_{O S}=\Delta V_{t} \tag{7.120}
\end{equation*}
$$

a very logical result! For modern MOS technology ΔV_{t} can be easily as high as 2 mV . Finally, we note that since the three sources for offset voltage are not correlated, an estimate of the total input offset voltage can be found a

$$
\begin{equation*}
V_{O S}=\sqrt{\left(\frac{V_{O V}}{2} \frac{\Delta R_{D}}{R_{D}}\right)^{2}+\left(\frac{V_{O V}}{2} \frac{\Delta(W / L)}{W / L}\right)^{2}+\left(\Delta V_{i}\right)^{2}} \tag{7.121}
\end{equation*}
$$

Exercise

 of the totat $\% \mathrm{~s}$:
Ans. $4 \mathrm{mV}: 4 \mathrm{mV} / 2 \mathrm{mV}: 6 \mathrm{mV}$

7.4.2 Input Offset Voltage of the Bipolar Differential Pair

The offset voltage of the hipolar differential pair shown in Fig. 7.26(a) can be determined in a manner analogous to that used above for the MOS pair. Note, however, that in the bipolar case there is no analog to the V, mismatch of the MOSFET pair. Here the output offset results from mismatches in the load resistances $R_{C 1}$ and $R_{C 7}$ and from junction area, β, and other mismatches in Q_{1} and Q_{2}. Consider first the effect of the load mismatch. Let

$$
\begin{align*}
R_{C 1} & =R_{C}+\frac{\Delta R_{C}}{2} \tag{7.122}\\
R_{C 2} & =R_{C}-\frac{\Delta R_{C}}{2} \tag{7.123}
\end{align*}
$$

and assume that Q_{1} and Q_{2} are perfectly matched. It follows that current $/$ will divide equally between Q_{1} and Q_{2}, and thu

$$
\begin{aligned}
& V_{C 1}=V_{C C}-\left(\frac{\alpha I}{2}\right)\left(R_{C}+\frac{\Delta R_{C}}{2}\right) \\
& V_{C 2}=V_{C C}-\left(\frac{\alpha I}{2}\right)\left(R_{C}-\frac{\Delta R_{C}}{2}\right)
\end{aligned}
$$

FIGURE 7.26 (a) The BJT differencial pair with both inputs grounded. Device mismatches result in finitc dc output V_{o}. (b) Application of the input offser voltage $V_{O S} \equiv V_{o} / A_{d}$ to the input terminals with oppositc polarity reduces V_{o} to zcro.

Thus the output voltage will be

$$
V_{O}=V_{C 2}-V_{C 1}=\alpha\left(\frac{I}{2}\right)\left(\Delta R_{C}\right)
$$

and the input offsct voltage will be

$$
V_{O S}=\frac{\alpha(I / 2)\left(\Delta R_{C}\right)}{\Lambda_{d}}
$$

Substituting $A_{d}=g_{m} R_{C}$ and

$$
g_{m}=\frac{\alpha I / 2}{V_{T}}
$$

gives

$$
\left|V_{O S}\right|=V_{T}\left(\frac{\Delta R_{C}}{R_{C}}\right)
$$

An important point to note is that in comparison to the corresponding expression for the MOS pair (Eq. 7.113) here the offset is proportional to V_{T} rather than $V_{O V} / 2 . V_{T}$ at 25 mV is to 10 times lower than $V_{o v} / 2$. Hence bipolar differential pairs exhibit lower offsets tha a match will be

$$
\frac{\Delta R_{C}}{R_{C}}=0.02
$$

and the resulting input offset voltage will be

$$
\left|V_{O S}\right|=25 \times 0.02=0.5 \mathrm{mV}
$$

Next consider the effect of mismatches in transistors Q_{1} and Q_{2}. In particular, let the rransistors have a mismatch in their emitter-base junction areas. Such an area mismatch

- res rise to a proportional mismatch in the scale currents I_{S}.

$$
\begin{align*}
& I_{s 1}=I_{S}+\frac{\Delta I_{S}}{2} \\
& I_{s 2}=I_{S}-\frac{\Delta I_{S}}{2} \tag{7.127}
\end{align*}
$$

Refer to Fig. 7.26(a) and note that $V_{B E 1}=V_{B E 2}$. Thus, the current I will split between Q_{1} and Q_{2} in proportion to their I_{S} values, resulting in

$$
\begin{aligned}
& I_{E 1}=\frac{I}{2}\left(1+\frac{\Delta I_{S}}{2 I_{S}}\right) \\
& I_{E 2}=\frac{1}{2}\left(1-\frac{\Delta I_{S}}{2 I_{S}}\right)
\end{aligned}
$$

follows that the output offset voltage will be

$$
V_{o}=\alpha\left(\frac{I}{2}\right)\left(\frac{\Delta I_{S}}{I_{S}}\right) R_{C}
$$

and the corresponding input offset voltage will be

$$
\left|V_{O S}\right|=V_{T}\left(\frac{\Delta I_{S}}{I_{S}}\right)
$$

As an example, an area mismatch of 4% gives rise to $\Delta I_{S} / I_{S}=0.04$ and an input offset voltage of 1 mV . Here again we note that the offset voltage is proportional to V_{T} rathe than to the much larger $V_{O V}$, which determines the offset of the MOS pair due to $\Delta(W / L)$ mismatch
Since the two contributions to the input offset voltage are not correlated, an estimate of the total input offset voltage can be found as

$$
\begin{align*}
V_{O S} & =\sqrt{\left(V_{T} \frac{\Delta R_{C}}{R_{C}}\right)^{2}+\left(V_{T} \frac{\Delta I_{S}}{I_{S}}\right)^{2}} \\
& =V_{T_{T}} \sqrt{\left(\frac{\Delta R_{C}}{R_{C}}\right)^{2}+\left(\frac{\Delta I_{S}}{I_{S}}\right)^{2}}
\end{align*}
$$

There are other possible sources for input offset voltage such as mismatches in the values of β and r_{0}. Some of these are investigated in the end-of-chaptcr problems. Finally, it should be noted that there is a popular scheme for compensating for the offset voltage. It involves introducing a deliberate mismatch in the values of the two collector resistance such that the differential ouiput voltage is reduced to zero when both input terminals are grounded. Such an offset-nulling scheme is explored in Problem 7.57.

7.4.3 Input Bias and Offset Currents of the Bipolar Pair

In a perfectly symmetric differential pair the two input terminals carry equal dc currents that is,

$$
I_{B 1}=I_{B 2}=\frac{I / 2}{\beta+1}
$$

This is the input bias current of the differential amplifier.

Mismatches in the amplifier circuit and most importautly a mismatch in β make the two input dc currents unequal. The resulting difference is the input offset current, $I_{o s}$, given as

$$
I_{O S}=\left|I_{B 1}-I_{B 2}\right|
$$

Let

$$
\begin{aligned}
& \beta_{1}=\beta+\frac{\Delta \beta}{2} \\
& \beta_{2}=\beta-\frac{\Delta \beta}{2}
\end{aligned}
$$

then

$$
\begin{align*}
& I_{B 1}=\frac{I}{2} \frac{1}{\beta+1+\Delta \beta / 2} \simeq \frac{I}{2} \frac{1}{\beta+1}\left(1-\frac{\Delta \beta}{2 \beta}\right) \tag{7.134}\\
& I_{B 2}=\frac{I}{2} \frac{1}{\beta+1-\Delta \beta / 2} \simeq \frac{I}{2} \frac{1}{\beta+1}\left(1+\frac{\Delta \beta}{2 \beta}\right) \tag{7.135}\\
& I_{O S}=\frac{I}{2(\beta+1)}\left(\frac{\Delta \beta}{\beta}\right)
\end{align*}
$$

Formally, the input bias current I_{B} is defined as follows:

$$
\begin{equation*}
I_{B} \equiv \frac{I_{B 1}+I_{B 2}}{2}=\frac{I}{2(\beta+1)} \tag{7.137}
\end{equation*}
$$

Thus

$$
\begin{equation*}
I_{O S}=I_{B}\left(\frac{\Delta \beta}{\beta}\right) \tag{7.138}
\end{equation*}
$$

As an example, a $10 \% \beta$ mismatch results in an offset that is current one-tenth the value of the input bias current.
Finally note that obviously a great advantage of the MOS differential pair is that it does not suffcr from a finite input bias current or from mismatches thereof:

7.4.4 Input Common-Mode Range

As mentioned earlier, the input common-mode range of a differential amplifier is the range of the input-voltage $v_{C M}$ over which the differential pair hehaves as a linear amplifier for differential input signals. The upper limit of the common-mode range is determined by Q_{1} and Q_{2} leaving the active mode and entering the saturation mode of operation in the BJT case or the triode mode of operation in the MOS case. Thus, for the bipolar case the upper limnit is approximately equal to 0.4 V above the dc collector voltage of Q_{1} and Q_{2}. For the MOS case, the upper limit is equal to V_{2} volts above the voltage at the drams of Q_{1} and Q_{2}. The lower limit is determined by the transistor that supplies the biasing current I leaving its active region of operation and thus no longer functioning as a constant-current source. Current-source circuits were studied in Sections 6.3 and 6.12.

7.4.5 A Concluding Remark

We conclude this section by noting that the definitions presented here are identical to those presented in Chapter 2 for op amps. In fact, as will be seen in Chapter 9, it is the input
differential stage in an op-amp circuit that primarily determines the op-amp dc offsct voltage, input bias and offset currents, and input common-mode range.

EXERCS

7.11 For a BIT differential amplifier utilizing transistors having $\beta=100$ mathed to 10% or better. an areas that are matched to 10% or better, atong with collector resistors that arc matched to 2% or better find $V_{o S} I_{B}$, and $I_{o s}$. The de bias current I is $100 \mu \mathrm{~A}$
Ans. $2.55 \mathrm{mV}, 05 \mu \mathrm{~A}, 50 \mathrm{~mA}$

2

7.5 THE DIFFERENTIAL AMPLIFIER WITH ACTIVE LOAD

As we learned in Chapter 6, replacing the drain resistance R_{D} with a constant-current source results in a much higher voltage gain as well as savings in chip area. The same, of course, applies to the differential amplitier. In this section we study an ingenious circuit for implernenting an active-loaded differential amplifier and at the same time converting the output Irom differential to single-ended. We shall study both the MOS and bipolar forms of this popular circuit.

75.1 Differential-to-Single-Ended Conversion

In the previous sections we found that taking the output of the differential amplifier as the voltage between the two drains (or collectors) results in double the value of the differential gain as well as a much reduced common-mode gain. In fact, the only reason a small fraction of an input common-mode signal appears between the differential outpul terminals is the mismatches inevitably.present in the circuit. Thus if a multistage amplifier (such as an op amp) is to achieve a high CMRR, the output of its first stage must be taken differentially. Beyond the first stage, however, unless the system is fully differential, the signal is converted from differential to single-ended.
Figure 7.27 illustrates the simplest most-basic approach for differential-to-single-ended conversion. It consists of simply ignoring the drain current signal of Q_{1} and eliminating its drain

FIGURE 7.27 A simple but inefficient aproach for differential to single-ended conversion.
resistor altogether, and taking the output between the drain of Q_{2} and ground. The obvious drawback of this scheme is that we lose a factor of 2 (or 6 dB) in gain as a result of "wasting" the drain signal current of Q_{1}. A much better approach would be to find a way of utilizing the drain-
current signal of Q, current signal of Q_{1}, and that is exactly what the circuit we are about to discuss accomplishes.

7.5.2 The Active-Loaded MOS Differential Pair

Figure $7.28\left(\right.$ a) shows a MOS differential pair formed by transistors Q_{1} and Q_{2}, loaded in a current mirror fonned by transistors Q_{3} and Q_{4}. To see how this circuit operates consider
first the quiescent state with the two input termial first the quiescent state with the two input terminals connected to a dc voltage equal to the common-mode equilibrium value, in this case 0 V , as shown in Fig. 7.28(b). Assuming perfect matching, the bias current I divides equally between Q_{1} and Q_{2}. The drain current of Q_{1} $U 2$, is fed to the input transistor of the mirror, Q_{3}. Thus, a replica of this current is provided by the output transistor of the mirror, Q_{4}. Observe that at the output node the two currents $I / 2$ balance each other out, leaving a zero current to flow out to the next stage or to a load (not shown). If Q_{4} is perfectly matched to Q_{3}, its drain voltage will track the voltage at the drain

(a)

(c)

FIGURE 7.28 (a) The active-loaded maching. (c) The circuit with a differential input signal applied, ncglecting the r_{0} or all transistors
f Q_{3}; thus in equilibrium the voltage at the output will be $V_{D D}-V_{S G 3}$. It should be noted, \underline{Q}_{3};ev, that in practical implementations, there will always be mismatches. Tesulting in net dc current at the output. In the absence of a load resistance, this current will flow into the output resistances of Q_{2} and Q_{4} and thus can cause a large deviation in the output voltage from the ideal value. Therefore, this circuit is always designed so that the de bias voltage a the output node is defined by a feedback circuit rather than by simply relying on the matchin of Q_{4} and Q_{3}. We shall sce how his is done later.
Next, consider the circuit with a differential input signal $i_{i d}$ applied to the input, a shown in Fig. 7.28(c). Since we are now investigating the small-signal operation of the circuit, we have removed the de supplies (including the cuirent source 1). Also, for the time being et us ignore r_{o} of all transistors. As Fig. 7.28(c) shows, a virtual ground will develop at the conumon-source terininal of Q_{1} and Q_{2}. Transistor Q_{1} will conduct a drain signal current $g_{m 1} v_{i d} / 2$, and transistor Q_{2} will conduct an equal but opposite current i. The drain signal cur rent i of Q_{1} is fed to the input of the $Q_{3}-Q_{4}$ mirror, which responds hy providing a replica in the drain of Q_{4}. Now, at the output node we have two currents, each equal to i, which sum ogether to provide an output current $2 i$. It is this factor of 2 , which is a result of the curren mirror action, that makes it possible to convert the signal to single-ended form (i.c., betwee he output node and ground) with no loss of gain! If a load resistance is connected to the ouput node, the current $2 i$ flows tbrough it and thus determines the ouput voltage v_{o}. In the absence of a load resistance, the output voltage is determined by the output current $2 i$ and the output resistance of the circuit, as we shall shortly see.

7.5.3 Differential Gain of the Active-Loaded MOS Pair

As we have learned in Chapter 6, the output resistance r_{o} of the transistor plays a significant role in the operation of activc-loaded amplifiers. Therefore, we shall now take r_{o} into acouut and derive an expression for the differential gain $v_{o} / v_{i d}$ of the active-loaded MO differential pair. Unfortunately, because the circuit is not symmetrical we will not be able to use the differential half-circuit technique. Rather, we shall perform the derivation from firs principles: We will first find the short-circuit transconductance G_{m} and the output resistance R Then, the gain will be determined as $G_{m} R_{o}$.

Determining the Transconductance G_{m} Figure 7.29 (a) shows the circuit prepared fo determining G_{m}. Note that we have short-circuited the output to ground in order to find G_{m} a $i_{o} \tau_{i d}$. Although the original circuit is not perfectly symmetrical, when the output is shorted o ground, the circuit becomes almost symmetrical. This is bccause the voltage between the drain of Q_{1} and ground is very small. This in turn is due to the low resistauce between that node and ground which is almost equal to $1 / g_{m 3}$. Thus, we can invoke symmetry and assum hat a virtual ground will appear at the source of Q_{1} and Q_{2} and in this way obtain the equivalen ircuit shown in Fig. 7.29(b). Here we have replaced the diode-connected transistor Q_{3} by it equivalent resistance $\left[\left(1 / g_{m 3}\right) \| r_{o 3}\right]$. The voltage v_{83} that develops at the common-gate line of the mirror can be found as

$$
\begin{equation*}
v_{s 3}=-g_{m 1}\left(\frac{v_{i d}}{2}\right)\left(\frac{1}{g_{m 3}}\left\|r_{o 3}\right\| r_{o 1}\right) \tag{7.139}
\end{equation*}
$$

which for the usual case of $r_{o 1}$ and $r_{o 3} \geqslant\left(1 / g_{m i 3}\right)$ reduces to

$$
\begin{equation*}
v_{s 3}=-\left(\frac{g_{m 1}}{g_{m 3}}\right)\left(\frac{v_{i d}}{2}\right) \tag{7.140}
\end{equation*}
$$

This voltage controls the drain current of Q_{4} resulting in a current of $g_{m 4} v_{83}$. Note that the ground at the output node causes the currents in r_{02} and r_{04} to be zero. Thus the output curren

(a)

(b)

FIGURE 7.29 Determining the shor-circuit transconductance $G_{n} \equiv i / \nu_{j i}$ of the active-loaded MO differential pair.
i will be

$$
i_{o}=-g_{m 4} v_{k_{3}}+g_{m 2}\left(\frac{v_{i d}}{2}\right)
$$

Substituting for $v_{s, 3}$ from (7.140) gives

$$
i_{o}=g_{m 1}\left(\frac{g_{m 4}}{g_{m 3}}\right)\left(\frac{v_{i d}}{2}\right)+g_{m 2}\left(\frac{v_{i d}}{2}\right)
$$

Now, since $g_{m 3}=g_{m 4}$ and $g_{m 1}=g_{m 2}=g_{m}$, the current i_{o} becomes

$$
i_{o}=g_{m} v_{i d}
$$

from which $G_{m 1}$ is found to be

$$
G_{n n}=g_{n}
$$

Thus the short-circuit transconductance of the circuit is equal to g_{m} of each of the two transistors of the differential pair. Here we should note that in the absence of the current-mirror action, G_{n} would be equal to $g_{n} / 2$.

Determining the Output Resistance R_{0} Figure 7.30 shows the circuil for determining R_{v}. Obscrve that the current i that enters Q_{2} must exil at its source. It then enters Q_{1}, exiting at the drain to feed the $Q_{3}-Q_{4}$ mirror. Since for the diode-connected transistor $Q_{3}, 1 / g_{m 3}$ in much smaller than r_{03}, most of the current i will flow into the drain of Q_{3}. The mirro responds by providing an equal current i in the drain of Q_{4}. It now remains to determine the relationship between i and v_{x}. From Fig. 7.30 we see that

$$
i=v_{x} / R_{o 2}
$$

where R_{n} is the output resistance of Q_{2}. Now, Q_{2} is a CG transistor and has in its source lead the input resistance of Q_{1}. The latter is connected in the CG configuration with a small resistance in the drain (approxinnately equal to $1 / g_{m 3}$), thus its input resistance is approximately $1 / g_{m 1}$. We

FIGURE 7.30 Circuit for determining R_{o}. The circied numbers indicate the order of the analysis steps.
an now use Eq. (6.101) to determine $R_{o 2}$ by substituting $g_{m b}=0$ and $R_{s}=1 / g_{m 1}$ to obtain

$$
R_{o 2}=r_{o 2}+\left(1+g_{m 2} r_{o 2}\right)\left(1 / g_{m 1}\right)
$$

which for $g_{m 1}=g_{m 2}=g_{m}$ and $g_{m 2} r_{o 2} \gg 1$ yields

$$
R_{o 2} \cong 2 r_{o 2}
$$

Returning to the circuit in Fig. 7.30, we can write at the output node

$$
\begin{aligned}
i_{x} & =i+i+\frac{v_{x}}{r_{o 4}} \\
& =2 i+\frac{v_{x}}{r_{o 4}}=2 \frac{v_{x}}{R_{o 2}}+\frac{v_{x}}{r_{o 4}}
\end{aligned}
$$

Substituting for $R_{o 2}$ from Eq. (7.144) we obtain

$$
i_{x}=\frac{v_{x}}{r_{o 2}}+\frac{v_{x}}{r_{o 4}}
$$

Thus,

$$
\begin{equation*}
R_{o} \equiv \frac{v_{x}}{i_{x}}=r_{o 2} \| r_{o 4} \tag{71451}
\end{equation*}
$$

which is an intuitively appealing result
Determining the Differential Gain Equations (7.142) and (7.145) can be combined to obtain the differential gain A_{d} as

$$
\begin{equation*}
A_{d} \equiv \frac{v_{o}}{v_{i d}}=G_{m 1} \ddot{R}_{v}=g_{m}\left(r_{o 2} \| r_{o 4}\right) \tag{7.146}
\end{equation*}
$$

For the case $r_{o 2}=r_{o 4}=r_{o}$,

$$
\begin{equation*}
A_{d}=\frac{1}{2} g_{m} r_{o}=\frac{A_{0}}{2} \tag{7.147}
\end{equation*}
$$

where A_{0} is the intrinsic gain of the MOS transistor

FIGURE 7.31 Analysis of the active-loaded MOS differential amplifier to determine its common-mode gain.

75.4. Common-Mode Gain and CMRR

Although iss output is single-ended, the active-loaded MOS differential amplifier has a low common-mode gain and, correspondingly, a high CMRR. Figure 7.31(a) shows the circuit with $y_{i o m}$ applied and with the power supplies eliminated except, of course, for the output ${ }_{\text {we }}$ cannot use the common-mode balf-circuit we can split R equally between $Q_{\text {a }}$ and $Q_{\text {a }}$ shown in Fig. 731 b . It can now be seen that each of Q_{1} and Q_{2} is a CS transistor with a larse source degeneration resistance $2 R$ We can use the formulas derived in Section 691 to sotermine the currents i_{1} and i_{2} that result from the application of an input signal ${ }_{u}$ Alter
 natively, we ohserve han the signa and r_{02} can be shown to be negligible. Thus, we can write

$$
i_{1}=i_{2} \cong \frac{v_{i c m}}{2 R_{s s}}
$$

The output resistance of each of Q_{1} and Q_{2} is given by Eq. (6.101) which for $R_{s}=2 R_{S S}$ and $g_{m b}=0$ yields

$$
\begin{equation*}
R_{o 1}=R_{o 2}=r_{o}+2 R_{S S}+2 g_{m} r_{o} R_{S S} \tag{7.149}
\end{equation*}
$$

where $r_{o 1}=r_{o 2}=r_{o}$ and $g_{m 1}=g_{m 2}=g_{m}$. Note that $R_{o 1}$ will be much greater than the paralled resistance introduced by ℓ_{3}, namely ($r_{03} \|\left\{\left(1 / g_{m 3}\right)\right.$). Similarly, $R_{o 2}$ will be much greater than $r_{o 4}$ - Thus, we can easily neglect $R_{o 1}$ and $R_{o 2}$ in finding the total resistance between each of the drain nodes and ground.

The current i_{1} is passed through $\left(\left(1 / g_{m 3}\right) \| r_{o 3}\right)$ and as a result produces a voltage v_{83},

$$
\begin{equation*}
v_{y 3}=-i_{1}\left(\frac{1}{g_{m 3}} \| r_{o 3}\right) \tag{7.150}
\end{equation*}
$$

Transistor r_{04} senses this voltage and hence provides a drain current i_{4},

$$
\begin{align*}
i_{4} & =-g_{m 4} \eta_{z 3} \\
& =i_{1} g_{m 4}\left(\frac{1}{g_{m 3}} \| r_{o 3}\right) \tag{7.151}
\end{align*}
$$

Now, at the output node the current difference betwcen i_{4} and i_{2} passes through r_{04} (since $\left.R_{o 2} \gg r_{04}\right)$ to provide ψ_{c},

$$
\begin{aligned}
v_{o} & =\left(i_{4}-i_{2}\right) r_{o 4} \\
& =\left[i_{1} g_{m 4}\left(\frac{1}{g_{m 3}} \| r_{o 3}\right)-i_{2}\right]_{o 4}
\end{aligned}
$$

Substituting for i_{1} and i_{2} from Eq. (7.148) and setting $g_{m \hat{3}}=g_{m 4}$ we obtain after some straightforward manipulations

$$
\begin{equation*}
A_{c m} \equiv \frac{v_{o}}{v_{i c m}}=-\frac{1}{2 R_{S S}} \frac{r_{o 4}}{1+g_{m 3} r_{o 3}} \tag{7.152}
\end{equation*}
$$

Usually, $g_{m 3} r_{o 3} \gg 1$ and $r_{o 3}=r_{o 4}$, yielding

$$
\begin{equation*}
A_{c m} \cong-\frac{1}{2 g_{m 3} R_{S S}} \tag{7.153}
\end{equation*}
$$

Since R_{ss} is usually large, at least equal to $r_{o}, A_{c m}$ will be small. The common-mode rejection ratio (CMRR) can now be obtained by utilizing Eqs. (7.146) and (7.153),

$$
\begin{equation*}
\mathrm{CMRR} \equiv \frac{\left|A_{d}\right|}{\left|A_{c m 1}\right|}=\left[g_{n n}\left(r_{o 2}| | r_{o 4}\right)\right]\left[2 g_{m 3} R_{S S}\right] \tag{7.154}
\end{equation*}
$$

which for $r_{o>}=r_{o 4}=r_{o}$ and $g_{m 3}=g_{m}$ simplifies to

$$
\begin{equation*}
\text { CMRR }=\left(g_{m} r_{o}\right)\left(g_{m} R_{S S}\right) \tag{7.155}
\end{equation*}
$$

We observe that to obtain a large CMRR we select an implementation of the biasing current Wource I that features a high output resistance. Such circuits include the cascode current source and the Wilson current source studied in Scction 6.12.
1.12 An zctive-loaded Mos differential anplifier of the type shown in Fis 728 (a) is specified as follows: 7.12 An active-loaded MOS differentid amplifier of the type shown in Fig 728 (a) is specitied as collowys $(W / L)=100(W / L)_{r}=200, \mu_{1} C_{0}=2 \mu_{t} C_{a r}=0.2 \mathrm{~mA} / V_{4}=V_{A p}=20 \mathrm{~V}, \mathrm{l}=0.8 \mathrm{~mA} R_{s S}=25 \mathrm{k} \Omega$ Calculate G, R. A Y and CMRR.
Ans. $4 \mathrm{mAV}: 25 \mathrm{k} \Omega .100 \mathrm{~V} / \mathrm{V} ; 0.005 \mathrm{~V} / \mathrm{V}, 20,000 \mathrm{or} 86 \mathrm{~dB}$

7.5.5 The Bipolar Differential Pair with Active Load

The bipolar version of the active-loaded differential pair is shown in Fig. 7.32(a). The circuit structure and operation are very similar to those of its MOS counterpart except that here we have to contend with the effects of finite β and the resulting finite input resistance at the

(a)

(b)
(c)

IGURE 7.32 (a) Active-loaded bipolar differential pair. (b) Small-signal cquivalent circuit for deterwining the transconduclance $G_{r}=i_{o} / v_{i d}$. (c) Equivalent circuit for determining the output resistance $R_{o} \equiv \nabla_{x} / i_{i}$.
base, r_{τ} For the time being, however, we shall ignore the effect of finite β on the dc bias of the four transistors and assume that in cquilibrium all transistors are operating at a dc current of $I / 2$.

Differential Gain To obtain an expression for the differcntial gain, we apply an input differ ential signal $v_{i d}$ as shown in the cquivalent circuit in Fig. 7.32(b). Note that the oupput is connected to ground in order to determine the overall short-circuit transconductance $G_{m} \equiv i_{o} / v_{i d}$ Also, as in the MOS case, we have assumed that the circuit is sufficiently balanced so that a vir tual ground develops on the common emitter terninal. This assumption is predicated on the fact
that the voltage signal at the collector of Q_{1} will be small as a result of the low resistance between that node and ground (approximately equal to $r_{c i}$). The voltage $\nu_{b 3}$ can be found from

$$
\begin{align*}
v_{b 3} & =-g_{m 1}\left(\frac{v_{i d}}{2}\right)\left(r_{e 3}\left\|r_{r 3}\right\| r_{o 1} \| r_{\pi 4}\right) \\
& \cong-g_{m 1} r_{e 3}\left(\frac{v_{i d}}{2}\right) \tag{7.156}
\end{align*}
$$

Since $v_{b 4}=v_{b 3}$, the collector curtent of Q_{4} will be

$$
\begin{equation*}
g_{m 4} v_{p 4}=-g_{m 4} g_{m 1} r_{e 3}\left(\frac{v_{i d}}{2}\right) \tag{7.157}
\end{equation*}
$$

The output current i_{0} can be found from a node equation at the output as

$$
\begin{equation*}
i_{o}=g_{n 2}\left(\frac{v_{i d}}{2}\right)-g_{m 4} v_{b 4} \tag{7.158}
\end{equation*}
$$

Using Eq. (7.157) we obtain

$$
\begin{equation*}
i_{o}=g_{m 2}\left(\frac{v_{i d}}{2}\right)+g_{m 4} \xi_{m 1} r_{e 3}\left(\frac{v_{i d}}{2}\right) \tag{7.159}
\end{equation*}
$$

Since all devices are operating at the same bias current, $g_{m 1}=g_{m i 2}=g_{m 4}=g_{m}$, where

$$
\begin{equation*}
g_{m} \cong \frac{I / 2}{V_{T}} \tag{7.160}
\end{equation*}
$$

and $r_{e 3}=\alpha_{3} / g_{m 3}=\alpha / g_{m} \cong 1 / g_{m}$. Thus, for G_{m}, Eq. (7.159) yields

$$
\begin{equation*}
G_{m}=g_{m} \tag{7.161}
\end{equation*}
$$

which is identical to the result found for the MOS pair.
Next we determine the output resistance of the amplifier utilizing the equivalent circuit shown in Fig. 7.32(c). We urge the reader to carefully examine this circuit and to note that the analysis is very similar to that for the MOS pair. The output resistance R_{02} of transistor Q_{2} can be found using Eq. (6.160) by noting that the resistance R_{e} in the emitter of Q_{2} is approximately equal to $r_{e l}$, thus

$$
\begin{align*}
R_{n 2} & =r_{o 2}\left[1+g_{m 2}\left(r_{e 1} \| r_{\pi 2}\right)\right] \\
& \cong r_{o 2}\left(1+g_{m 2} r_{e 1}\right) \\
& \cong 2 r_{o 2}
\end{align*}
$$

where we made use of the fact that corresponding parameters of all four transistors are equal. The current i can now be found as

$$
i=\frac{v_{x}}{R_{v 2}}=\frac{v_{x}}{2 r_{p 2}}
$$

and the curent i_{s} can be obtained from a node equation at the output as

$$
i_{x}=2 i+\frac{v_{x}}{r_{o 4}}=\frac{v_{x}}{r_{r 2}}+\frac{v_{x}}{r_{r 4}}
$$

Thus,

$$
\begin{equation*}
R_{o} \equiv \frac{v_{x}}{i_{x}}=r_{o 2} \| r_{o 4} \tag{7.164}
\end{equation*}
$$

This expression simply says that the output resistance of the amplifier is equal to the paralle equivalent of the outpnt resistance of the differential pair and the output resistance of the current mirror; a result identical to that obtained for the MOS pair
Equations (7.161) and (7.164) can now be combined to obtain the diffcrential gain,

$$
A_{d} \equiv \frac{v_{o}}{v_{i d}}=G_{m} R_{o}=g_{m i}\left(r_{02} \| r_{o 4}\right)
$$

and since $r_{o 2}=r_{o 4}=r_{o}$, we can simplify Eq. (7.165) to

$$
A_{d}=\frac{1}{2} g_{m} r_{o}
$$

Although this expression is identical to that found for the MOS circuit, the gain here is much larger because $g_{w} r_{0}$ for the BJT is more than an order of magnitude greater than $g_{u} r_{0}$ of a MOSFET. The downside, however, lies in the low input resistance of BJT amplifiers Indeed, the equivalent circuit of Fig. 7.32 (b) indicates that, as expected, the differential input resistance of the differential amplifier is equal to $2 r_{\pi}$,

$$
\begin{equation*}
R_{i d}=2 r_{\pi} \tag{7.167}
\end{equation*}
$$

in sharp contrast to the infinite input resistance of the MOS amplifier. Thus, while the voltage gain realized in an active-loaded amplifier stage is large, when a subsequent stage is connected to the output, its inevitably low input resistance will drastically reducc the overall voltage gain.

Common-Mode Gain and CMRR The common-mode gain $A_{c m}$ and the common-mode rejection ratio (CMRR) can be found following a procedure identical to that utilized in the MOS casc. Figure 7.33 shows the circuit prepared for common-mode signal analysis. The collector currents of Q_{1} and Q_{2} are given by

$$
i_{1} \cong i_{2} \cong \frac{v_{i c m}}{2 R_{E E}}
$$

7.168)

FIGURE 7.33 Analysis of the bipolar active-loaded differential amplifice to delermine the common mode gain

It can be shown that the output resistances of Q_{1} and $Q_{2}, R_{o 1}$ and $R_{0,}$, are very large and hence It can be neglected. Then, the voltage τ_{63} at the common base connection of Q_{3} and Q_{4} can be found by nultiplying i_{1} by the total

$$
v_{b 3}=-i_{1}\left(\frac{1}{g_{m 3}}\left\|r_{\pi 3}\right\| r_{o 3} \| r_{\pi 4}\right)
$$

In response to $v_{b 3}$ transistor Q_{4} provides a collector current $g_{m 4} v_{b 3}$. At the output node we bave

$$
\begin{equation*}
v_{o}=\left(-g_{m 4} v_{b 3}-i_{2}\right) r_{o 4} \tag{7.170}
\end{equation*}
$$

Substituting for $i_{b 3}$ from Eq. (7.169) and for i_{1} and i_{2} from Eq. (7.168) gives

$$
\begin{align*}
A_{c m m} & \equiv \frac{v_{o}}{v_{i c k m}}=\frac{r_{o 4}}{2 R_{v E E}}\left[g_{m 4}\left(\frac{1}{g_{m 3}}\left\|r_{\pi 3}\right\| r_{o 3} \| r_{\pi 4}\right)-1\right] \\
& =-\frac{r_{o 4}}{2 R_{E E}} \frac{\frac{1}{r_{\pi 3}}+\frac{1}{r_{\pi 4}}+\frac{1}{r_{o 3}}}{g_{m 3}+\frac{1}{r_{\pi 3}}+\frac{1}{r_{\pi 4}}+\frac{1}{r_{o 3}}} \tag{7.171}
\end{align*}
$$

where we have assumed $g_{m 3}=g_{m 4}$. Now, for $r_{\pi 4}=r_{\pi 3}$ and $r_{o 3} \Rightarrow r_{\pi 3}, r_{\pi 4}$, Eq. (7.171) gives

$$
\begin{align*}
A_{c m} & \cong-\frac{r_{o 4}}{2 R_{E E}} \frac{\frac{2}{r_{\pi 3}}}{g_{m 3}+\frac{2}{r_{\pi 3}}} \\
& \cong-\frac{r_{b 4}}{2 R_{E E}} \frac{2}{\beta_{3}}=-\frac{r_{o 4}}{\beta_{3} R_{E F}} \tag{7.172}
\end{align*}
$$

Using A_{d} from Eq. (7.165) enables us to obtain the CMRR as

$$
\begin{equation*}
\mathrm{CMRR} \equiv \frac{\left|A_{d}\right|}{\left|A_{c m p}\right|}=g_{m}\left(r_{o 2}| | r_{o 4}\right)\left(\frac{\beta_{3} R_{E 1}}{r_{o 4}}\right) \tag{7.173}
\end{equation*}
$$

For $r_{o 2}=r_{o 4}=r_{\varphi,}$,

$$
\begin{equation*}
\mathrm{CMRR}=\frac{1}{2} \beta_{3} g_{m} R_{E R} \tag{7.174}
\end{equation*}
$$

from which we observe that to obtain a large CMRR, the circuit implementing the bias curren source should have a large oulpul resistance $R_{R / L}$. This is possible with, say, a Wilson current nirror (Section 6.12.3).

3XERCISE

 and CMMR:

FIGURE 7.34 The active--loaded BJT differential pair suffers from a systematic input offset voltage of the current mirror.

Systematic Input Offset Voltage In addition to the random offset voltages that result from the mismatches inevitably present in the differential amplifier, the active-loaded bipolar differential pair suffers from a systematic offset voltage. This is due to the error in the current transfer ratio of the current-mirror load caused by the finite β of the $p n p$ transistors that make up the mirror. To see how this comes about, refer to Fig. 7.34. Here the inputs are grounded and the transistors are assumed to be perfectly matched. Thus, the bias current I will divide equally between Q_{1} and Q_{2} with the result that their two collectors conduct equal currents of $\alpha / / 2$. The collector current of Q_{1} is fed to the input of the current mirror. From Section 6.3 we know that the current-transfer ratio of the mirror is

$$
\begin{equation*}
\frac{I_{4}}{I_{3}}=\frac{1}{1+\frac{2}{\beta_{P}}} \tag{7.175}
\end{equation*}
$$

where β_{p} is the value of β of the $p n p$ transistors Q_{3} and Q_{4}. Thus the collector current of Q_{4} will be

$$
\begin{equation*}
I_{4}=\frac{\alpha I / 2}{1+\frac{2}{\beta_{P}}} \tag{7.176}
\end{equation*}
$$

which does not exactly balance the collector current of Q_{2}. It follows that the current difference Δi will flow into the output terminal of the amplifier with

$$
\begin{aligned}
\Delta i & =\frac{\alpha I}{2}-\frac{\alpha I / 2}{1+\frac{2}{\beta_{P}}} \\
& =\frac{\alpha I}{2} \frac{2 / \beta_{P}}{1+\frac{2}{\beta_{P}}} \\
& \equiv \frac{\alpha I}{\beta_{P}}
\end{aligned}
$$

To reduce this output current to zero, an input voltage $V_{O S}$ has to be applied with a value of

$$
V_{O S}=-\frac{\Delta i}{G_{m i}}
$$

Substituting for Δi from Eq. (7.177) and for $G_{m}=g_{m}=(\alpha I / 2) / V_{T}$, we obtain for the input offset voltage the expression

$$
\begin{equation*}
V_{O S}=-\frac{\alpha I / \beta_{P}}{\alpha I / 2 V_{T}}=-\frac{2 V_{T}}{\beta_{P}} \tag{7.178}
\end{equation*}
$$

As an example, for $\beta_{P}=50, V_{o S}=-1 \mathrm{mV}$. To reduce $V_{O S}$, an improved current mirror such as the Wilson circuit studied in Section 6.12 should be used. Such a circuit provides he added advantage of increased oupput resistance and hence voltage gain. However, to realize the full advantage of the higher output resistance of the active load, the outpn resistance of the differential pair should be raised by utilizing a cascode stage. Figure 7.35 shows such an arrangement: A folded cascode stage formed by pnp transistors Q_{3} and Q_{4} is utilized to raise the output resistance looking into the collector of Q_{4} to $\beta_{4} r_{04}$. A Wilson mirror formed by transistors Q_{5}, Q_{6}, and Q_{7} is used to implement the active oad. From Section 6.12 .3 we know that the output resistance of the Wilson mirror (i.e. looking into the collector of Q_{5}) is $\beta_{5}\left(r_{o 5} / 2\right)$. Thus the output resistance of the amplifier

FIGURE 7.35 An active-loaded bipolar differential amplifier employing a folded cascode stage (Q_{3} and Q_{4}) and a Wilson current mirror load (Q_{5}, Q_{6}, and Q_{7}).
is given by

$$
\begin{equation*}
R_{o}=\left[\beta_{4} r_{o 4} \| \beta_{5} \frac{r_{o 5}}{2}\right] \tag{7.179}
\end{equation*}
$$

The transconductance $G_{m i}$ remains equal to g_{m} of Q_{1} and Q_{2}. Thus the differential voltage gain becomes

$$
\begin{equation*}
A_{d}=g_{m}\left[\beta_{4} r_{o 4} \| \beta_{5} \frac{r_{o 5}}{2}\right] \tag{7.180}
\end{equation*}
$$

which can be very large. Further examples of improved-performance differential amplifiers will be studied in Chapter 9 .

EXERCISE

 tions. $1=1 \mathrm{~mA} . \beta_{0}=50 . \beta_{1}=100$ and $V_{1}=100 \mathrm{~V}$:

紋 7.6 FREQUENCY RESPONSE OF THE DIFFERENTIAL AMPLIFIER

In this section we study the frequency response of the differential amplifier. We will consider the variation with frequency of both the differential gain and the common-mode gain and hence of the CMRR. We will rely heavily on the study of frequency response of singleended amplifiers presented in Chapter 6. Also, we will only consider MOS circuits; the bipolar case is a straightforward extension, as we saw on a number of occasions in Chapter 6.

7.6.1 Analysis of the Resistively Loaded MOS Amplifie

We begin with the basic, resistively loaded MOS differential pair shown in Fig. 7.36(a) Note that we have explicitly shown the transistor Q_{s} that supplies the bias current I Although we are showing a dc bias voltage $V_{\text {BIAS }}$ at its gate, usually Q_{S} is part of a current mirror. This detail, however, is of no consequence to our present needs. Most importantly we are interested in the total impedance between node S and ground, $Z_{S S}$. As we shall shortly see, this impedance plays a significant role in determining the common-mode gain and the CMRR of the differential amplifier. Resistance $R_{S S}$ is simply the output resistance of current source Q_{S}. Capacilance $C_{S S}$ is the total capacitance between node S and ground and includes $C_{d b}$ and $C_{g d}$ of Q_{s}, as well as $C_{s b 1}$, and $C_{\mathrm{s} b 2}$. This capacitance can be significant, especially if wide transistors are used for Q_{s}, Q_{1}, and Q_{2}
The differential half-circuit shown in Fig. 7.36(b) can be used to determine the frequency dependence of the differential gain $V_{o} / V_{i d}$. Indeed the gain function $A_{d}(s)$ of the differential amplifier will be identical to the transfer function of this common-source amplifier. We studied the frequency response of the common-source amplifier at great length in Section 6.6 and will not repeat this material here

FIGURE 7.36 (a) A resistively loaded MOS differential pair with the transistor supplying the bias current explicitly shown. It is assumed that the total impedance between node S and ground, $Z_{\text {Ss }}$ consists of a resistance $R_{\text {s }}$ in parallel with a capacitance $C_{s \text { s }}$ (b) Differential half-circuit. (c) Common-mode half-circuit.

ExERCISE

715. A MOSFET differental amplifier such as that in Fig: 7.36(a) is biased with a curent $1=0.8 \mathrm{~mA}$. The

(a) Fhad Viv and $\xi_{\text {w }}$ tof each transitor:
(b) Find he diffrential gain A.
 phantil by the output pole. estimate the 3 an frequency f. (Hint Refer to Section 6.05 and specif: calyito con . 679 .
(d). I. in a different sitiation the amplifict is fel symmetrically with a signal source of 20 isf resistance (1.). 10 kS in serles whench gate fermital), ise the open-circhit time-constants nethod to estimate f: Hink Refer t. Section 6.6 .2 and specifically to Eqs. 0.5 and 6.58 .

The common-mode half-circuit is shown in Fig 7.36(c). Although this circuit has othe capacitancess, namery $C_{g s}, C_{g d}$, and $C_{d b}$ of the transistor in addition to other stray capaciances, we have chosen to show only $C_{S S} / 2$. This is because ($C_{S S} / 2$) together with ($2 R_{S S}$ orms a real-axis zero in the common-mode gain function at a frequency much lower than hose of the other poles and zeros of the circuit. This zero then dominates the frequency epenclence of $\Lambda_{c m}$ and CMRR
If the output of the differential amplifier is taken single-cndedly, then the common-mode gain of interest is $V_{\text {ocm }} / V_{\text {ion }}$. More typically, the output is taken differentially. Nevertheless,

743
as we have seen in Section $7.2, V_{\text {ocm }} / V_{\text {icm }}$ still plays a major role in determining the common mode gain. To be specific, consider what happens when the output is taken differentially and there is a mismatch ΔR_{D} between the two drain resistances. The resulting common-mode gain was found in Section 7.2 to be (Eq. 7.51)

$$
A_{c m}=-\left(\frac{R_{D}}{2 R_{S S}}\right) \frac{\Delta R_{D}}{R_{D}}
$$

which is simply the product of $V_{o c m} / V_{\text {icm }}$ and the per-unit mismatch ($\Delta R_{D} / R_{D}$). Similar expressions can be found for the effects of other circuit mismatches. The important point to note is that the factor $R_{D} /\left(2 R_{S S}\right)$ is always present in these expressions. Thus, the frequency dependence of $A_{c m}$ can be obtained by simply replacing $R_{S S}$ by $Z_{S S}$ in this factor. Doing so for the expression in Eq. (7.181) gives

$$
\begin{aligned}
A_{c m}(s) & =-\frac{R_{D}}{2 Z_{S S}}\left(\frac{\Delta R_{D}}{R_{D}}\right) \\
& =-\frac{1}{2} R_{D}\left(\frac{\Delta R_{D}}{R_{D}}\right) Y_{S S} \\
& =-\frac{1}{2} R_{D}\left(\frac{\Delta R_{D}}{R_{D}}\right)\left(\frac{1}{R_{S S}}+s C_{S S}\right), \\
& =-\frac{R_{D}}{2 R_{S S}}\left(\frac{\Delta R_{D}}{R_{D}}\right)\left(1+s C_{S S} R_{S S}\right)
\end{aligned}
$$

from which we see that $A_{c n \prime}$ acquires a zero on the negative real-axis of the s-plane with frequency ω_{z},

$$
\begin{equation*}
\omega_{Z}=\frac{1}{C_{S S} R_{S S}} \tag{7.183}
\end{equation*}
$$

or in hertz,

$$
\begin{equation*}
f_{Z}=\frac{\omega_{Z}}{2 \pi}=\frac{1}{2 \pi C_{S S} R_{S S}} \tag{7.184}
\end{equation*}
$$

As mentioned above, usually f_{z} is much lower than the frequencies of the other poles and zeros. As a result, the common-mode gain increases at the rate of $+6 \mathrm{~dB} /$ octave (20 dB / decade) starting at a relatively low frequency, as indicated in Fig. 7.37(a). Of course, $A_{c m}$ drops off at high frequencies because of the other poles of the common-mode half-circuit. It is, however, f_{z} that is significant, for it is the frequency at which the CMRR of the differential amplifier begins to decrease, as indicated in Fig. 7.37 (c). Note that if both A_{d} and $A_{c m}$ are expressed and plotted in dB , then CMRR in dB is simply the difference between A_{d} and $A_{c m}$.

Although in the foregoing we considered only the common-mode gain resulting from an R_{D} mismatch, it should be obvious that the results apply to the common-mode gain resulting from any other mismatch. For instance, it applies equally well to the case of a g_{m} mismatch, modifying Eq. 7.64 by replacing $R_{S S}$ by $Z_{S S}$, and so on.

Before leaving this section, it is interesting to point out an important trade-off found in the design of the current-source transistor Q_{s} : In order to operate this current source with a small $V_{D S}$ (to conserve the already low $V_{D D}$), we desire to operate the transistor at a low overdrive voltage $V_{o v}$. For a given value of the current I, however, this means using a large W / L ratio (i.e., a wide transistor). This in turn increases $C_{S S}$ and hence lowers $\delta_{\mathcal{Z}}$ with the result that the CMRR deteriorates (i.e., decreases) at a relatively low frequency. Thus there is a

FIGURE 7.37 Variation of (a) common-mode gain, (b) differential gain, and (c) common-mode rejection ratio with frequency.
trade-off between the need to reduce the dc voltage across Q_{s} and the need to keep the CMRR reasonably high at higher frequencies

To appreciate the need for high CMRR at higher frequencies, consider the situation illustrated in Fig. 7.38: We show two stages of a differential amplifier whose power-supply voltage $V_{D D}$ is corrupted with high-frequency noise. Since the quiescent voltage at each of

FIGURE 7.38 The second stage in a differential amplifier is relied on to suppress high-fiequency nois injected by the power supply of the first stage, and therefore must maintain a ligh CMRR at higher frequencies.
the drains of Q_{1} and Q_{2} is $\left[V_{D D}-(I / 2) R_{D}\right.$], we see that $v_{D 1}$ and $v_{D 2}$ will have the same high fequency noise as $V_{D D}$. This higi-frequency noise then constitutes a common-mode input signal to the second differential stage, formed by Q_{3} and Q_{4}. If the second differential stag is perfectly matched, its differential output voltage V_{o} should be free of high-frequency noise. However, in practice there is no such thing as perfect matching and the second stag will have a finite common-mode gain. Furthermore, because of the zero formed by $R_{S S}$ and $C_{s s}$ of the second stage, the common-mode gain will increase with frequency, causing some of the noise to make its way to V_{o}. With careful design, this undesirable component of V_{o} can be kept small.

EXERCISE
 frequency of the CMRR.
Ans. 15.9 MHz

7.6.2 Analysis of the Active-Loaded MOS Amplifier

We next consider the frequency response of the current-mirror-loaded MOS diffcrential-pai circuit studied in Section 7.5. The circuit is shown in Fig. 7.39(a) with two capacitance indicated: C_{m}, which is the total capacitance at the input node of the current mirror, and C_{L} which is the total capacitance at the output node. Capacitance $C_{n 2}$ is mainly formed by $C_{s j}$ and $C_{g s 4}$ but also includes $C_{g / i /}, C_{d b 1}$, and $C_{d b 3}$,

$$
C_{m}=C_{g d 1}+C_{d b 1}+C_{d b 3}+C_{g s 3}+C_{g s 4}
$$

(a)

(b)

FIGURE 7.39 (a) Frequency-response analysis of the active-loaded MOS differential amplifier. (b) The overall transconductance G_{m} as a function of frequency.

Capacitance $C_{I L}$ includes $C_{g d 2}, C_{d d 2}, C_{d i d 4}, C_{g d 4}$ as well as an actual load capacitance and/or the input capacitance of a subsequent stagc (C_{x}),

$$
\begin{equation*}
C_{L}=C_{g d 2}+C_{d b 2}+C_{g d 4}+C_{d b 4}+C_{x} \tag{7.186}
\end{equation*}
$$

These two capacitances primarily determine the dependence of the differential gain of thi amplifier on frequency.

As indicated in Fig. 7.39(a) the input differential sigual $V_{i d}$ is applied in a balanced fashion. Transistor Q_{1} will conduct a drain current signal of $g_{m} V_{i d} / 2$, which flows through the diode connected transistor Q_{3} and thus through the parallel combination of $\left(1 / g_{m 3}\right)$ and C_{m}, wher we have neglected the resistances $r_{o 1}$ and $r_{o 3}$ which are much larger than $\left(1 / g_{m 3}\right)$, thus

$$
\begin{equation*}
V_{83}=-\frac{g_{m} V_{i d} / 2}{g_{m 3}+s C_{m}} \tag{7.187}
\end{equation*}
$$

In response to V_{83}, transistor Q_{4} conducts a drain curreni $I_{d 4}$,

$$
I_{d 4}=-g_{m 4} V_{g 3}=\frac{g_{m 4} g_{m} V_{i d} / 2}{g_{m 3}+s C_{m}}
$$

Since $g_{m 3}=g_{m 4}$, this equation reduces to

$$
\begin{equation*}
I_{d 4}=\frac{g_{m} V_{i d} / 2}{1+s \frac{C_{m}}{g_{m 3}}} \tag{7.181}
\end{equation*}
$$

Now, at the output node the total output current is

$$
\begin{aligned}
I_{o} & =I_{d 4}+I_{d 2} \\
& =\frac{g_{m} V_{i d} / 2}{1+s \frac{C_{m}}{g_{m 3}}}+g_{m m}\left(V_{i d} / 2\right)
\end{aligned}
$$

which flows through the parallel combination of $R_{o}=r_{o 2} \| r_{o t}$ and C_{L}, thus

$$
V_{o}=I_{o} \frac{1}{\frac{1}{R_{o}}+s C_{L}}
$$

Substituting for I_{o} from Eq. (7.189) gives

$$
V_{o}=g_{m} R_{o}\left(\frac{V_{i d}}{2}\right)\left[1+\frac{1}{1+s \frac{C_{n}}{g_{m 3}}}\right] \frac{1}{1+s C_{l} R_{o}}
$$

Which can be manipulated to yield

$$
\Lambda_{d}(s) \equiv \frac{V_{o}}{V_{i d}}=\left(g_{m} R_{o}\right)\left(\frac{1}{1+s C_{L} R_{o}}\right)\left(\frac{1+s \frac{C_{m}}{2 g_{m 3}}}{1+s \frac{C_{m}}{g_{m 3}}}\right)
$$

We recognize the first factor on the right-hand side as the de gain of the amplifier. The second factor indicates that C_{L} and R_{o} form a pole with frequency f_{p},

$$
\begin{equation*}
f_{P_{1}}=\frac{1}{2 \pi C_{L} R_{u}} \tag{7.192}
\end{equation*}
$$

This, of course, is an entirely expected result, and in fact this output pole is often dominant, especially when a large load capacitance is present. The third facior on the right-hand side of Eq. (7.191) indicates that the capacitance C_{m} at the input of the current mirror gives rise to a pole with frequency $f_{P ?}$,

$$
f_{P 2}=\frac{g_{m 3}}{2 \pi C_{m t}}
$$

and a zero with frequency f_{Z},

$$
\begin{equation*}
f_{z}=\frac{2 g_{m 3}}{2 \pi C_{m}} \tag{7.194}
\end{equation*}
$$

That is, the zero frequency is twice that of the pole. Since C_{m} is approxinately $C_{8,3}{ }^{+}$ $C_{k s 4}=2 C_{k, 3}$,

$$
f_{P 2} \cong \frac{g_{m 3}}{2 \pi\left(2 C_{g 19}\right)} \cong f_{T} / 2
$$

where f_{T} is the frequency at which the magnitude of the high-frequency current gain of the MOSFET becomes unity (see Sections 4.8 and 6.2). Thus, the mirror pole and zero occur at very high frequencies. Nevertheless, their effect can be significant

It is interesting and useful to observe that the path of the signal current produced by Q_{1} has a transfer function different from that of the signal current produced by Q_{2}. It is the first signal that encounters C_{m} and experiences the mirror pole. This observation leads to an interesting vicw of the cffect of C_{m} on the overall transconductance G_{m} of the differential amplifier: As we learned in Section 7.5 , at low frequencies $I_{d 1}$ is replicated by the mirror $Q_{3}-Q_{4}$ in the collecto of Q_{4} as $I_{d k}$, which adds to $I_{d 2}$ to provide a factor-of-2 increase in G_{m} (thus making $G_{m i}$ equal
to which is double the value available without the current nirror). Now, at high frequen ${ }^{\text {cies }} C_{m}$ acts as a short circuit causing $V_{g 3}$ to be zero and hence $I_{d 4}$ will be zero, reducing G_{m} to $g_{g} / 2$. Thus, if the output is shor-circuited to ground and the short-circuit transconductance G_{m} is plotted versus frequency, the plot will have the shape shown in Fig. 7.39(b)

1xyme

Consider an active-loaded MOS differential amplificr of the type shown in Fig. 7.28(a). Assume that for all transistors, $W /=7.2 \mu \mathrm{~m} / 0.36 \mu \mathrm{~m}, C_{g s}=20 \mathrm{fF}, C_{k i}=5 \mathrm{fF}$, and $C_{d p}=5 \mathrm{fF}$. Also, let that for all transistors, $w /=7.2 \mu \mathrm{~m} / 0.36 \mu \mathrm{~m}, C_{g s}=20 \mathrm{fF}, C_{g i}=5 \mathrm{fF}$, and $C_{d b}=5 \mathrm{fF}$. Also, let $\mu_{n} C_{\Delta r}=387 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{a s}=86 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{A n}^{\prime}=5 \mathrm{~V} / \mu \mathrm{m},\left|V_{A p}^{\prime}\right|=6 \mathrm{~V} / \mu \mathrm{m}$. The bias current $I=$ 0.2 mA , and the bias current soutce has an output resistance $R_{s S}=25 \mathrm{k} \Omega$ and an output capacitance
$C_{S 0}=0.2 \mathrm{pF}$. In addition to the capacitanccs introduced by the transistors at the output node, therc $C_{s s}$ in apacitancc $C_{\text {}}$ of 25 fF . It is required to determine the low-frequency values of $A^{\prime} A$ CMRR. It is also required to find the poles and 7 cro of A_{4} and the dominant pole of CMRR

Solution

Since $I=0.2 \mathrm{~mA}$, each of the four transistors is operating at a bias current of $100 \mu \mathrm{~A}$. Thus, for Q_{1} and Q_{2},

$$
100=\frac{1}{2} \times 387 \times \frac{7.2}{0.36} \times V_{o v}^{2}
$$

which leads to

$$
V_{O V}=0.16 \mathrm{~V}
$$

Thus,

$$
\begin{aligned}
& g_{m}=g_{m 1}=g_{m 2}=\frac{2 \times 0.1}{0.16}=1.25 \mathrm{~mA} / \mathrm{V} \\
& r_{o 1}=r_{o 2}=\frac{5 \times 0.36}{0.1}=18 \mathrm{k} \Omega
\end{aligned}
$$

For Q_{3} and Q_{4} we have

$$
100=\frac{1}{2} \times 86 \times \frac{7.2}{0.36} \times V_{O V 3.4}^{2}
$$

Thus,
and

$$
V_{O 03,4}=0.34 \mathrm{~V},
$$

$$
\begin{aligned}
& g_{m 3}=g_{m 4}=\frac{2 \times 0.1}{0.34}=0.6 \mathrm{~mA} / \mathrm{V} \\
& r_{o 3}=r_{o 4}=\frac{6 \times 0.36}{0.1}=21.6 \mathrm{k} \Omega
\end{aligned}
$$

The low-frequency value of the differential gain can be determined from
$A_{d}=g_{m}\left(r_{o 2} \| r_{n 4}\right)$
$=1.25(18 \| 21.6)=12.3 \mathrm{~V} / \mathrm{V}$

The low-frequency value of the common-mode gain can be determined from Eq. (7.153) as

$$
\begin{aligned}
A_{c m} & =-\frac{1}{2 g_{m 3} R_{S S}} \\
& =-\frac{1}{2 \times 0.6 \times 25}=-0.033 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

The low-frequency value of the CMRR can now be determined as

$$
\mathrm{CMRR}=\frac{A_{d} \mid}{\left|A_{c m}\right|}=\frac{12.3}{0.033}=369
$$

or,

$$
20 \log 369=51.3 \mathrm{~dB}
$$

To determine the poles and zero of A_{d} we first compute the values of the two pertinent capacilances C_{m} and C_{L}. Using Eq. (7.185),

$$
\begin{aligned}
C_{m} & =C_{q d 1}+C_{d b 1}+C_{d b 3}+C_{8 s, 3}+C_{s s^{s}} \\
& =5+5+5+20+20=55 \mathrm{IF}
\end{aligned}
$$

Capacitance C_{L} is found using Eq. (7.186) as

$$
\begin{aligned}
C_{L} & =C_{s d L}+C_{d b 2}+C_{g k 4}+C_{d b 4}+C \\
& =5+5+5+5+25=45 \mathrm{fF}
\end{aligned}
$$

Now, the poles and zero of Λ_{d} can be fround from Eqs. (7.192) to (7.194) as

$$
\begin{aligned}
f_{r 1} & =\frac{1}{2 \pi C_{l} R_{o}} \\
& =\frac{1}{2 \pi \times C_{l,}\left(r_{o 2} \| r_{o 4}\right)} \\
& =\frac{1}{2 \pi \times 45 \times 10^{-15}(18 \| 21.6) 10^{3}} \\
& =360 \mathrm{MHz} \\
f_{P 2} & =\frac{g_{m 3}}{2 \pi C_{m}}=\frac{0.6 \times 10^{-3}}{2 \pi \times 55 \times 10^{-15}}=1.74 \mathrm{GIIz} \\
f_{Z} & =2 f_{p 2}=3.5 \mathrm{GHz}
\end{aligned}
$$

Thus the dominant pole is that produced by C_{L} at the output node. As expected, the pole and zcro of the mirror are at much higher frequencies.

The dominant pole of the CMRR is at the location of the common-mode-gain zero introduced by $C_{S S}$ and $R_{S S}$, that is,

$$
\begin{aligned}
f_{Z} & =\frac{1}{2 \pi C_{S S} R_{S S}} \\
& =\frac{1}{2 \pi \times 0.2 \times 10^{-12} \times 25 \times 10^{3}} \\
& =31.8 \mathrm{MHz}
\end{aligned}
$$

Thus, the CMRR begins to decrease at 31.8 MHz , which is much lower than $f_{p 1}$.

ExERCISE


``` dc value and the frcquency of the donitian high frequenc) pete of the differential woftace gain. Ans 2000 VV \(\mathrm{V}, 08 \mathrm{MHz}\).
\(4 .{ }^{2}\).
```


7. 7.7 MULTISTAGE AMPLIFIERS

Practical transistor amplifiers usually consist of a number of stages connected in cascade. In addition to providing gain, the first (or input) stage is usually required to provide a high input resistance in order to avoid loss of signal level when the amplifier is fed from a high resistance source. In a differential amplifier the input stage must also provide large common mode rejection. The function of the middle stages of an amplifier cascade is to provide the bulk of the voltage gain. In addition, the middle stages provide such other functions as he conversion of the signal from differential mode to single-ended mode (unless, of course, the amplifier output also is differential) and the shifting of the de level of the signal in order to allow the output signal to swing both positive and negative. These two functions and others will be illustrated later in this section and in greater detail in Chapter 9

Finally, the main function of the last (or output) stage of an amplifier is to provide a low output resistance in order to avoid loss of gain when a low-valued load resistance is connected to the amplifier. Also, the output stage should be able to supply the current required by the load in an efficient manner-that is, without dissipating an unduly large amount of power in the output transistors. We have already studied one type of amplifier configuration suitable for implementing output stages, namely, the source follower and the enitter follower. It will be shown in Chapter 14 that the source and emitter followers are not optimum from the point of vicw of power efficiency and that other, more appropriate circuit configurations exist for output stages that are required to supply large amounts of output power. In fact, we will encounter some such output stages in the op-amp circnit examples studied in Chapter 9 .
To illustrate the circuit structure and the method of analysis of multistage amplifiers, wo will present two examples: a two-stage CMOS op amp and a four-stage bipolar op amp.

7.7.1 A Two-Stage CMOS Op Amp

Figure 7.40 shows a popular structure for CMOS op amps known as the two-stage configuration. The circuit utilizes two power supplies, which can range from $\pm 2.5 \mathrm{~V}$ for the $0.5-\mu \mathrm{m}$ technology down to $\pm 0.9 \mathrm{~V}$ for the 0.18 - $\mu \mathrm{m}$ technology. A reference bias current $I_{\text {PEF }}$ is generated either externally or using on-chip circuits. One such circuit will be discussed shortly. The current mirror formed by Q_{s} and Q_{5} supplies the differential pair $Q_{1}-Q_{2}$ with bias current. The W/L ratio of Q_{5} is selected to yield the desired value for the input-stage bias current I (or $I / 2$ for each of Q_{1} and Q_{2}. The input differential pair is actively loaded with the current mirror formed by Q_{3} and Q_{4}. Thus the input stage is identical to that studied in Section 7.5 (except that here the differential pair is implemented with PMOS (ransistors and the current mirror with NMOS).

The second stage consists of Q_{6}, which is a common-source amplifier actively loaded with the current-source transistor Q_{7}. A capacilor C_{C} is included in the nceqative-feedback path of the second stage. Its function is to enhance the Miller effect already present in Q_{6} (through the action of its $C_{R d}$) and thus provide the op amp with a dominant pole. By the careful placement of

FIGURE 7.40 Two-stage CMOS op-amp conliguration
this pole, the op amp can be made to have a gain that decreases with frequency at the rate of $-6 \mathrm{~dB} /$ octave. or, equivalently, $-20 \mathrm{~dB} /$ decade down to unity gain or 0 dB . Op amps wih such a gain function are guaranteed to operate in a stable fashion, as opposed to oscillating, with nearly all possible feedback connections. Such op amps are said to be frequency compensated. Wc shall study the subject of frequency compensation ${ }^{4}$ in Chapters 8 and 9 . Here, we will simply take C_{C} into account in the analysis of the frequency response of the circuit in Fig. 7.40.

A striking feature of the circuit in Fig. 7.40 is that it does not have a low-outputresistance stage. In fact, the output resistance of the circuit is equal to $\left(r_{\circ 6} \| r_{o 7}\right)$ and is thus rather high. This circuit, iherefore, is not suitable for driving low-impedance loads. Neverthecess, the circuit is very popular, and is used frequcnty for implementing op amps in 1 LS circuits where the op amp needs to drive only a small capacitive load, for example, in switched-capacitor circuits (Chapter 12). Te sinpheity of he circutresits in an op amp reasonably good quality realized in a very small chip area

Voltage Gain The voltage gain of the first stage was found in Section 7.5 to be given by

$$
A_{1}=-g_{m 1}\left(r_{o 2} \| r_{o 4}\right)
$$

(7.197)
where $g_{v 1}$ is the transconductance of each of the transistors of the first stage, that is, Q_{1} and Q_{2} The second stage is an actively loaded common-source amplifier whose low-frequency voltage gain is given by

$$
\begin{equation*}
A_{2}=-g_{m 6}\left(r_{o 6} \| r_{o 7}\right) \tag{7.198}
\end{equation*}
$$

The dc open-loop gain of the op amp is the product of A_{1} and A_{2}.

[^27] externally by the user. The $\mu \mathrm{A} 741 \mathrm{op}$ amp is an examplc of an internally compensated op amp.

Whylusk

Consider the circuit in Fig. 7.40 with the following device geometries (in $\mu \mathrm{m}$).

Let $J_{\mathrm{REF}}=90 \mu \mathrm{~A}, V_{m}=0.7 \mathrm{~V}, V_{t p}=-0.8 \mathrm{~V}, \mu_{n} C_{o x}=160 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=40 \mu \mathrm{~A} / \mathrm{V}^{2},\left|V_{A}\right|$ (for all devices) $=10 \mathrm{~V}, V_{D D}=V_{S S}=2.5 \mathrm{~V}$. For all devices evaluate $\Lambda_{p},\left|\nu_{O V}\right|,\left|V_{G S}\right|, g_{m}$, and r_{o}. Also find A_{1}, A_{2}, the dc open-loop voltage gain, the input common-mode range, and the output voltag range. Neglect the effect of V_{A} on bias current.

Solution

Refer to Fig. 7.40. Since Q_{8} and Q_{5} are matched, $I=I_{\text {Rer. }}$. Thus Q_{1}, Q_{2}, Q_{3}, and Q_{4} each conduct a current equal to $I / 2=45 \mu \mathrm{~A}$. Since Q_{7} is matched to Q_{5} and Q_{8}, the current in Q_{7} is equal to $I_{\text {REF }}$ $90 \mu \mathrm{~A}$. Finally, Q_{6} conducts an equal current of $90 \mu \mathrm{~A}$.

Wilh I_{D} of each device known, we use

$$
I_{D}=\frac{1}{2}\left(\mu C_{o x}\right)(W / L) V_{O V}^{2}
$$

to deternine $\left|V_{o v}\right|$ for each transistor. Then we find $\left|V_{G S}\right|$ from $\left|V_{G S}=\left|V_{t}\right|+\left|V_{O V}\right|\right.$. The results are given in Table 7.1

The transconductance of each device is determined from

$$
g_{m}=2 I_{D} /\left\{V_{O V}\right\}
$$

The value of r_{o} is determined from

$$
r_{o}=\left|V_{A}\right| / I_{D}
$$

The resulting values of g_{m} and r_{o} are given in Table 7.1.
The voltage gain of the first stage is determined from

$$
A_{1}=-g_{m 1}\left(r_{o 2} \| r_{o 4}\right)
$$

$$
=-0.3(222 \| 222)=-33.3 \mathrm{~V} / \mathrm{V}
$$

The voltage gain of the sccond slage is determined from

$$
\begin{aligned}
A_{2} & =-g_{m 6}\left(r_{o 6} \| r_{o 7}\right) \\
& =-0.6(111 \| 111)=-33.3 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

TABLE 7.

	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	Q_{7}	Q_{8}
$I_{D}(\mu \mathrm{~A})$	4.5	45	45	45	90	90	90	90
$V_{V V} \mid(\mathrm{V})$	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
$\mid V_{G S}(\mathrm{~V})$	1.1	1.1	1	1	1.1	1	1.1	1.1
$\delta_{m}(\mathrm{~mA} / \mathrm{V})$	0.3	0.3	0.3	0.3	0.6	0.6	0.6	0.6
$r_{0}(\mathrm{k} \Omega)$	222	222	222	222	111	111	111	111

Thus the overall dc open-loop gain is

$$
A_{0}=A_{1} A_{2}=(-33.3) \times(-33.3)=1109 \mathrm{~V} / \mathrm{V}
$$

or
$20 \log 1109=61 \mathrm{~dB}$
The lower limit of the input common-mode range is the value of input voltage at which Q_{1} and Q_{2} leave the saturation region. This occurs when the input voltage falls below the voltage the drain of Q_{s} by $\mid V_{t p}$ volts. Since the drain of Q_{1} is at $-2.5+1=-1.5 \mathrm{~V}$, then the lower limit of the input common-mode range is -2.3 V

The upper limit of the input common-mode range is the value of input voltage at which Q_{5} leaves the saturation region. Since for Q_{5} to operate in saturation the voltage across it (i.e., $V_{\text {s }}$) should at least be equal to the overdrive voltage at which it is operating (i.c., 0.3 V), the highest voltage permitled at tie drain of Q_{5} should be +2.2 V . I follows that the highest value of tow should be

$$
v_{I_{\text {Cinnax }}}=2.2-1.1=1.1 \mathrm{~V}
$$

The highest allowable output voltage is the value at which Q_{7} leaves the saturation region, which is $V_{D D}-V_{O V} \mid=2.5-0.3=2.2 \mathrm{~V}$. The lowest allowable output voltage is the value at which Q_{6} leaves saturation, which is $-V_{S S}+V_{O V G}=-2.5+0.3=-2.2 \mathrm{~V}$. Thus, the output voltage range is -2.2 V to +2.2 V .

Input Offset Voltage The deviee mismatches inevitably present in the input stage give rise to an input offset voltage. The components of this input offset voltage can be calculated using the methods developed in Section 7.4.1. Because device mismatches are random, the resulting offset voltage is referred to as random offset. This is to distinguish it from another type of input offset voltage that can be present even if all appropriate devices are perfectly matched. This predictable or systematic offset can be minimized by careful design. Although it occurs also in BJT op amps, and we have encountered it in Section 7.5.5, it is usually much more pronounced in CMOS op amps because their gain-per-stage is rather low.
To see how systematic offset can occur in the circuit of Fig. 7.40, let the two input tenninals be grounded. If the input stage is perfectiy balanced, then the voltage appearing at the drain of Q_{4} will be equal to that at the drain of Q_{3}, which is $\left(-V_{S S}+V_{G 44}\right)$. Now this is also the voltage that is fed to the gate of Q_{6}. In other words, a voltage equal to $V_{G S 4}$ appears between gate and source of Q_{6}. Thus the drain current of Q_{6}, I_{6}, will be related to the drain current of Q_{4}, which is equal to $1 / 2$, by the relationship

$$
I_{5}=\frac{(W / L)_{6}}{(W / L)_{4}}(I / 2)
$$

(7.199)

In order for no offset voltage to appear at the output, this current must be exactly equal to the current supplied by Q_{7}. The latter current is related to the cumrent / of the parallei transistor Q_{5} by

$$
\begin{equation*}
I_{7}=\frac{(W / L)_{7}}{(W / L)_{5}} I \tag{7.200}
\end{equation*}
$$

Now, the condition for making $I_{6}=I_{7}$ can be found from Eqs. (7.199) and (7.200) as

$$
\begin{equation*}
\frac{(W / L)_{6}}{(W / L)_{4}}=2 \frac{(W / L)_{7}}{(W / L)_{5}} \tag{7.201}
\end{equation*}
$$

If this condition is not met, a systematic offset will result. From the specification of the device 1romerries in Example 7.3, we can verify that condition (7.201) is satisfied, and, therefore, the gemp analyzed in that example should not exhibit a systematic input offset voltage.

EXERCISE


```
        c) Find g}\mp@subsup{g}{n}{\prime}\mathrm{ for }\mp@subsup{Q}{1}{},\mp@subsup{Q}{2}{},\mathrm{ and 的.
```



```
        (a) Find the poltage gains 4, and 4, , and the overall sant 4.
```


Frequency Response To detcrmine the frequency response of the two-stage CMOS op amp of Fig. 7.40, consider its simplified small-signal equivalent circuit shown in Fig. 7.41 Here $G_{m 1}$ is the transconductance of the input stage ($G_{m 1}=g_{m 1}=g_{m 2}$), R_{1} is the output resis ance of the first stage ($R_{1}=r_{o 2} \| r_{o 4}$), and C_{1} is the total capacitance at the interfacc between the first and second stages

$$
C_{1}=c_{g d 4}+C_{d b 4}+C_{y d 2}+C_{d b 2}+C_{g s 6}
$$

$G_{m 2}$ is the transconductance of the sccond stage $\left(G_{m 2}=g_{m 6}\right), R_{2}$ is the output resistance of he second stage ($R_{2}=r_{06} \| r_{\square 7}$), and C_{2} is the total capacitance at the output node of the op amp

$$
C_{2}=C_{d b 6}+C_{d b \tau}+C_{g d 7}+C_{L}
$$

where C_{L} is the load capacitance. Usually C_{l} is much larger than the iransistor capacitances with the result that C_{2} is much larger than C_{1}. Finally, note that in the equivalent circuit of Fig. 7.41 we should have included $C_{d d}$ in parallel with C_{C}. Usually, however, $C_{C} \gg C_{g d}$ which is the reason we have neglected $C_{\text {edr }}$.

FIGURE 7.41 Equivalent circuil of the op amp in Fig. 7.4

To determine V_{o}, analysis of the circuit in Fig. 7.41 proceeds as follows. Writing a node equation at node D_{2} yields

$$
G_{m 1} V_{i d}+\frac{V_{i 2}}{R_{1}}+s C_{1} V_{i 2}+s C_{C}\left(V_{i 2}-V_{e}\right)=0
$$

Writing a node equation at node D_{6} yields

$$
\begin{equation*}
G_{m 2} V_{i 2}+\frac{V_{o}}{R_{2}}+s C_{2} V_{o}+s C_{c}\left(V_{o}-V_{i 2}\right)=0 \tag{7.203}
\end{equation*}
$$

To eliminate $V_{i 2}$ and thus determine V_{o} in terins of $V_{i d}$, we use Eq. (7.203) to express $V_{i 2}$ in terms of V_{o} and substitute the resull into Eq. (7.202). After some straightforward manipulations we obtain the amplifier transier function

$$
\frac{V_{o}}{V_{i d}}=\frac{C_{n i 1}\left(G_{m 2}-s C_{C}\right) R_{1} R_{2}}{\left.1+s \mid C_{1} R_{1}+C_{2} R_{2}+C_{C}\left(G_{m 2} R_{1} R_{2}+R_{1}+R_{2}\right)\right]+s^{2}\left[C_{1} C_{2}+C_{c}\left(C_{1}+C_{0}\right) \mid R_{1} R\right.}
$$

First we note that for $s=0$ (i.e., dc), Eq. (7.204) gives $V_{o} / V_{i d}=\left(G_{m 1} R_{1}\right)\left(G_{m 2} R_{2}\right)$, which is what we should have expected. Second, the transfer function in Eq. (7.204) indicates that the amplitier has a transmission zero at $s=s_{z}$, which is determined from

$$
G_{i n 2}-s_{7} C_{C}=0
$$

Thus,

$$
s_{Z}=\frac{G_{m 2}}{C_{c}}
$$

In other words, the zcro is on the positive real axis with a frequency ω_{z} of

$$
\omega_{\%}=\frac{G_{m 2}}{C_{C}}
$$

Also, the amplifier has two poles that are the roots of the denominator polynomial of Eq. (7.204). If the frequencies of the two poles are denoted $\omega_{p_{1}}$ and $\omega_{p_{2}}$ then the denominator polynomial can be expressed as

$$
D(s)=\left(1+\frac{s}{\omega_{P 1}}\right)\left(1+\frac{s}{\omega_{P 2}}\right)=1+s\left(\frac{1}{\omega_{P 1}}+\frac{1}{\omega_{P 2}}\right)+\frac{s^{2}}{\omega_{P_{1}} \omega_{P 2}}
$$

can be approximated hy can be approximated by

$$
\begin{equation*}
D(s) \cong 1+\frac{s}{\omega_{P 1}}+\frac{s^{2}}{\omega_{P 1} \omega_{P 2}} \tag{7.207}
\end{equation*}
$$

The freguency of the dominant pole, $\omega_{p 1}$, can now be determined by equating the coefficients of the s terms in the denominator in Eq. (7.204) and in Eq. (7.207),

$$
\begin{aligned}
\omega_{P 1} & =\frac{1}{C_{1} R_{1}+C_{2} R_{2}+C_{C}\left(G_{m 2} R_{2} R_{1}+R_{1}+R_{2}\right)} \\
& =\frac{1}{R_{1}\left[C_{1}+C_{C}\left(1+G_{m 2} R_{2}\right)\right]+R_{2}\left(C_{2}+C_{C}\right)}
\end{aligned}
$$

We recognize the firsi term in the denominator as anising at the interface between the first and second stages. Here, R_{l}, the output resistance of the first stage, is interactiog with the total capacitance at the interface. The latter is the sum of C_{1} and the Miller capacilance $C_{C}\left(1+G_{w 2} R_{2}\right)$, itance whicsults from connecting C_{C} in the negative-feedback path of the second stage whose gain is $G_{2} R_{2}$. Now, since R_{1} and R_{2} are usually of comparable value, we see that the first term in the denominator will be much larger than the sccond and we can approximate $\omega_{P 1}$ as

$$
\omega_{\mu_{1}} \cong \frac{1}{R_{1}\left[C_{1}+C_{C}\left(1+G_{m 2} R_{2}\right)\right]}
$$

A further approximation is possible because C_{1} is usually much smaller than the Miller capacitance and $G_{m 2} R_{2} \gg 1$, thus

$$
\begin{equation*}
\omega_{P_{1}} \cong \frac{1}{R_{1} C_{C} G_{m 2} R_{2}} \tag{7.209}
\end{equation*}
$$

The frequency of the second, nondominant pole can be found by equating the coefficients of the s^{2} terms in the denominator of Eq. (7.204) and in Eq. (7.207) and substiuting for $\omega_{p_{1}}$ from Eq. (7.209). The result is

$$
\omega_{p_{2}}=\frac{G_{m 2} C_{C}}{C_{1} C_{2}+C_{C}\left(C_{1}+C_{2}\right)}
$$

Since $C_{1} \ll C_{2}$ and $C_{1} \ll C_{C}, \omega_{p 2}$ can be approximated as

$$
\begin{equation*}
\omega_{\rho_{2}} \cong \frac{G_{m 2}}{C_{2}} \tag{7.210}
\end{equation*}
$$

In order to provide the op amp with a uniform gain rolloff of $-20 \mathrm{~dB} /$ decade down to 0 dB , the value of the compensation capacitor C_{C} is sclected so that the resulting value of $\omega_{P 1}$ (Eq. 7.209) when muttiplicd by the de gain ($G_{m 1} R_{1} G_{m 2} R_{2}$) results in a unity-gain frequency ω_{i} lower than ω_{z} and $\omega_{r 2}$. Specifically

$$
\begin{aligned}
& \omega_{t}=\left(G_{m 1} R_{1} G_{m 2} R_{2}\right) \omega_{p_{1}} \\
& \omega_{i}=\frac{G_{m l}}{C_{C}}
\end{aligned}
$$

which must be lower than $\omega_{z}=\frac{G_{m 2}}{C_{C}}$ and $\omega_{P 2} \cong \frac{C_{m 2}}{C_{2}}$. We will have more to say about this
point in Section 9.1.

SXERCISE

 Find the value of C that results inff $/ 10 \mathrm{MHz}$ and venify that fis is lower than f and f_{22} Ans $C_{G}=4.8 \mathrm{pFF} \mathrm{f}_{2}=20 \mathrm{MHz}_{i} \mathrm{IF}_{\mathrm{F} 2}=48 \mathrm{MHz}$

A Bias Circuit That Stabilizes $\boldsymbol{g}_{\boldsymbol{m}}$ We conclude this section by presenting a bias circuit for the two-stage CMOS op amp. The circuit presented has the interesting and useful property of providing a bias current whose value is independent of both the supply voltage and the

FIGURE 7.42 Bias circuit for the CMOS op amp
MOSFET threshold voltagc. Furchermore, the transconductances of the transistors biascd by this circuit have values that are determinicd only hy a single resistor and the device dimensions. The bias circuit is shown in Fig. 7.42. It consists of two deliberately mismatched transis ors, Q_{12} and Q_{13}, with Q_{12} usually about four times wider than Q_{13} (Steininger, 1990; John. and Martin, 1997). A resistor R_{B} is connected in series with the source of Q_{12}. Since, as will be shown, R_{B} dctcrmincs hoth the bias current I_{B} and the transconductance $g_{m 12}$, its value der to minimize the channel-length modulation effect on Q_{1} a cascode transistor Q_{1}.
 Finally a p channel current mirror formed by a pair of mase for Q_{10}, is Q red

MOS op-amp circuit of Fig. 7.40.
The circuit operates as follows: The currnt mirror $\left(Q_{8}, Q_{9}\right)$ eauses Q_{13} to conduct a cur ent equal to that in Q_{12}, that is, I_{B}. Thus,

$$
\begin{equation*}
I_{B}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{12}\left(V_{G S \mid 2}-V_{t}\right)^{2} \tag{7.212}
\end{equation*}
$$

and,

$$
\begin{equation*}
I_{B}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{13}\left(V_{G S 13}-V_{t}\right)^{2} \tag{7.213}
\end{equation*}
$$

From the circuit, we sec that the gate-source voltages of Q_{12} and Q_{13} are related by

$$
V_{G S 13}=V_{G S 12}+I_{B} R_{B}
$$

Subtracting V_{t} from both sides of this equation and using Eqs. (7.212) and (7.213) to replace $\left.V_{G S 12}-V_{t}\right)$ and $\left(V_{C S 13}-V_{t}\right)$ results in

$$
\begin{equation*}
\sqrt{\frac{2 I_{B}}{\mu_{n} C_{o x}(W / L)_{13}}}=\sqrt{\frac{2 I_{B}}{\mu_{n} C_{o x}(W / L)_{12}}}+I_{B} R_{B} \tag{7.214}
\end{equation*}
$$

We denote the bias current of this circuit by I_{B}. If this circuit is utilized to bias the CMOS op amp of Fig. 7.40, then I_{B} becomss the reference current $I_{\text {REF }}$.

This equation can be rearranged to yield

$$
\begin{equation*}
I_{B}=\frac{2}{\mu_{n} C_{o x}(W / L)_{12} R_{B}^{2}}\left(\sqrt{\left.\frac{(W / L)_{12}}{(W / L)_{13}}-1\right)^{2}}\right. \tag{7.215}
\end{equation*}
$$

from which we observe that I_{B} is determined by the dimensions of Q_{12} and the value of R_{B} and by the ratio of the dimensions of Q_{12} and Q_{13}. Furthermore, Eq. (7.215) can be rearranged to the form

$$
R_{B}=\frac{2}{\sqrt{2 \mu_{n} C_{o x}(W / L)_{12} I_{B}}}\left(\sqrt{\frac{(W / L)_{12}}{(W / L)_{13}}}-1\right)
$$

in which we recognize the factor $\sqrt{2 \mu_{n} C_{o x}(W / L)_{12} I_{n}}$ as $g_{n: 12}$; thus,

$$
\begin{equation*}
g_{m 12}=\frac{2}{R_{B}}\left(\sqrt{\frac{(W / L)_{12}}{(W / L)_{13}}}-1\right) \tag{7.216}
\end{equation*}
$$

This is a very interesting result: $g_{m 22}$ is determined solely by the value of R_{B} and the ratio of the dimensions of Q_{12} and Q_{13}. Furthermore, since g_{m} of a MOSFET is proportional to $\sqrt{I_{D}(W / L)}$, each transistor biased by the circuit of Fig. 7.42; that is, each transistor whose bias current is derived from I_{B} will have a g_{m} value that is a multiple of $g_{m 12}$. Specifically, the i th n-channcl MOSFET will have

$$
g_{m i}=g_{m 12} \sqrt{\frac{I_{D i}(W / L)_{i}}{I_{B}(W / L)_{12}}}
$$

and the ith p-channel device will have

$$
g_{m i}=g_{m \mid 12} \sqrt{\frac{\mu_{p} I_{D i}(W / L)_{i}}{\mu_{n} I_{H}(W / L)_{12}}}
$$

Finally, it should be noted that the bias circuit of Fig. 7.42 employs positive feedback, and thus care should be exercised in its design to avoid unstable performance. Instability is avoided by making Q_{12} wider than $Q_{i 3}$, as has already been pointed out. Nevertheless, some form of stability may still occur; in fact, the circuit can operate in a stable state in which all current re zero. To get it out of this state, current needs to be injected into one of its nodes, to "kick start" its operation. Feedback and stability will be studied in Chapter 8.

EXERCISES

120 Considet the bias cicuit of Fig 7.42 tor the case: $(W / L)_{\mathrm{s}}=(W /)_{9}=(W /\rangle_{\mathrm{H}}=(W L)_{1}=(W L)_{1}=20$ and $(W / L)_{12}=80$ Find the value of R_{B} that resils ina bias current $A_{B}=10 \mu \mathrm{~A}$. Also in a process techology having $\mu_{n} C_{0 x}=91 \mu \mathrm{~A} / V^{2}$ find the tansconductance $s_{m i 2}$.
Ans. 5.27 ks 0.0379 mAlV
0721. Design the bias cifcit of Fig. 7.42 to operate with the CMOS op amp of Example 7.3. Use Q_{s} and Q_{0} as identich devices with Q_{0} hating the dimensions given in Example 73 , Transistors $Q_{10} Q_{1}$, and Q_{13} are th be itentiect: with the same s a is Q_{y} and O_{0} Iransisto Q_{1} is to be four times as wide as Q_{1}. Find the required value of What is the wotage drop across R_{B} ? Also give the values of the de voltases at the gates of Q_{20}, Q_{10}, and Q_{2}.
Ans. $1.67 \mathrm{ks} 2,50 \mathrm{my},-1.5 \mathrm{~V} ;-0.5 \mathrm{~V}, 4.4 \mathrm{~V}$

7.7.2 A Bipolar Op Amp

Our second example of multistage amplifiers is the four-stage bipolar op amp shown in Fig. 7.43. The circuit consists of four stages. The input stage is differential-in, differentialout and consists of transistors Q_{1} and Q_{2}, which are biased by current source Q_{3}. The econd stage is also a differential-input amplifier, but its output is taken single-endedly the collector of Q_{5}. This stage is formed by Q_{4} and Q_{5}, which are biased by the curren source Q_{6}. Note that the conversion from differential to single-ended as performed by the second stage results in a loss of gain by a factor of 2 . A more elaborate method for accom plishing this conversion was studied in Section 7.5; it involves using a current mirror as an active load.
In addition to providing some voltage gain, the third stage, consisting of the pnp transis tor Q_{7}, provides the essential function of shifting the dc level of the signal. Thus while the signal at the collector of Q_{5} is not allowed to swing below the voltage at the base of $Q_{5}(+10 \mathrm{~V})$ he signal at the collector of Q_{2} can swing negatively (and positively, of course). Fr tudy of op amps in Chapter 2 we know that the output terminal of the op anp should be capable of both positive and negative voltage swings. Therefore every op amp cirit cudes a level-shifting arrangement. Although the use of the comelementary pap tasit

FIGURE 7.43 A four-stage bipolar op amp.
provides a simple solution to the level-shifting problem, other forms of level shifter exist, one of which will be discussed in Chapter 9. Furthermore, note that level-shifting is accom plished in the CMOS op amp we have been studying by using complementary devices fo the two stages; that is, p-channel for the first stage and n-channel for the second stage
The output stage of the op amp consists of emitter follower Q_{8}. As we know from our tudy of op amps in Chapter 2, the output operates ideally around zero volts. This and othe features of the BJT op amp will be illustrated in Example 7.4

3.345:4t:4s:

In this example, we analyze the dc bias of the bipolar op-amp circuit of Fig. 7.43. Toward that . Fig 7.44 shows the circuit with the two input terminals connected to ground.
(a) Perform an approximate dc analysis (assuming $\beta>1,\left|V_{B E}\right| \simeq 0.7 \mathrm{~V}$, and neglecting the Early effect) to calculate the dc currents and voltages cverywhere in the circuit. Note that Q_{6} ha four times the area of each of Q_{9} and Q_{3}.
(b) Calculate the quiescent power dissipation in this circuit.
(c) If transistors Q_{1} and $Q_{\text {2 }}$ have $\beta=100$, calculate the input bias current of the op amp.
(d) What is the input common-mode range of this op amp?

FIGURE 7.44 Circuit for Example 7.4

761

Solution

(a) The values of all dc currents and voltagcs are indicated on the circuit diagram. These values were calculated by ignoring the base current of every transistor-that is, by assuming β to be very high. The analysis starts by determining the current through the diode-connected transistor Q_{Q} to be 0.5 mA . Then we see that transistor Q_{3} conducts 0.5 mA and transistor Q_{6} conducts 2 mA . The current-source transistor Q_{3} feeds the differential pair (Q_{1}, Q_{2}) with 0.5 mA . Thus each of Q_{1} and Q_{2} will be biased at 0.25 mA . The collectors of Q_{1} and Q_{2} will be at $[+15-0.25 \times 20]=+10 \mathrm{~V}$.
Proceeding to the second differential stage formed by Q_{4} and Q_{5}, we find the voltage at their emilters to be $[+10-0.7]=9.3 \mathrm{~V}$. This differential pair is biased by the current-source transistor Q_{6}, which supplies a cuitent of 2 mA ; thus Q_{4} and Q_{5} will each be biased at 1 mA . We can now calculate the voltage at the collector of Q_{s} as $\lfloor+15-1 \times 3\rfloor=+12 \mathrm{~V}$. This will cause the voltage at the cmitter of the $p n p$ transistor Q_{7} to he +12.7 V , and the emitter current of Q_{7} will be $(+15-12.7) / 2.3=1 \mathrm{~mA}$.
The collector current of $Q_{7}, 1 \mathrm{~mA}$, causes the voltage at the collector to be $[-15+1 \times 15.7]=$ +0.7 V . The emitter of Q_{8} will be 0.7 V below the base; thus output terminal 3 will be at 0 V . Finally, the emitter current of Q_{8} can be calculated to be $[0-(-15)] / 3=5 \mathrm{~mA}$.
(b) To calculate the power dissipated in the circuit in the quiescent state (i.e., with zero input signal) we simply evaluate the de current that the circuit draws from each of the two power supplies. From the +15 -V supply the de carrent is $1=0.25+0.25+1+1+1+5=8.5 \mathrm{~mA}$. Thus the power suppled by n posine pow supply is $P=15 \times 8.5$. This T^{-}. The $-1 . \mathrm{V}$ supply provides acnoly is $P^{-}=15 \times 9-135 \mathrm{~mW}$ adding P^{+}and P^{--}provides the polal power disipy negative supply $P^{-}=1 \times 2=135 \mathrm{~m}$. ${ }^{-}$ad he circuit P_{D} : $P_{D}=P^{+}+P_{\because}^{-}=262.5 \mathrm{~mW}$
(c) The inpul bias current of the op amp is the average of the de currents that flow in the two input terminals (i.e., in the bases of Q_{1} and Q_{2}). These two currents are equal (because we have the bias current is given by

$$
I_{B}=\frac{I_{E 1}}{\beta+1} \simeq 2.5 \mu \mathrm{~A}
$$

(d) The upper limit on the input common-mode voltage is determined by the voltage at which Q_{1} and Q_{2} leave the active mode and enter saturation. This will happen if the input voltage exceeds the collector voltage, which is +10 V , by about 0.4 V . Thus the upper limit of the common-mode rangc is +10.4 V .
The lower limit of the input common-mode range is determined by the voltage at which Q_{3} leaves the active mode and thus ceases to act as a constant-current source. This will happen if the If follows that the input Q_{3} goes below he votage atis base, which is -14.3 V, by more han 0.4 V h foll Thus the common-mode range is -14 V to +10.4 V

2xNMHET

Use the dc bias quantities evaluated in Example 7.4 to analyce the circuit in Fig. 7.43, to determine the input resistance, the voltagc gain, and the output resistance.

Solution

The input differential resistance $R_{d d}$ is given by

$$
R_{i d}=r_{\pi 1}+r_{\pi 2}
$$

FIGURE 7.45 Equivalent circuit for calculating the gain. fthe input stage of the amplifier in Fig. 7.43.

Since Q, and Q_{2} are each operating at an emitter current of 0.25 mA , it follows that

$$
r_{\epsilon 1}=r_{e 2}=\frac{25}{0.25}=100 \Omega
$$

Assume $\beta=100$; then

$$
r_{\pi 1}=r_{\pi 2}=101 \times 100=10.1 \mathrm{k} \Omega
$$

Thus

$$
R_{i d}=20.2 \mathrm{k} \Omega
$$

To evaluate the gain of the first stage we first find the input resistance of the second stage, $R_{i z}$

$$
R_{i 2}=r_{\pi 4}+r_{\pi 5}
$$

Q_{4} and Q_{5} are each operating at an cmitter current of 1 mA ; thus

$$
r_{e 4}=r_{e 5}=25 \Omega
$$

$$
r_{\pi 4}=r_{\pi 5}=101 \times 25=2.525 \mathrm{k} \Omega
$$

Thus $R_{i 2}=5.05 \mathrm{k} \Omega$. This resistance appears between the collectors of Q_{1} and Q_{2}, as shown in Fig. 7.45. Thus the gain of the first stage will be
$A_{1} \equiv \frac{v_{o f}}{v_{i d}} \simeq \frac{\text { Total resistance in collector circuit }}{\text { Total resistance in emitter circuit }}$
$=\frac{\left[R_{i 2} \|\left(R_{1}+R_{2}\right)\right]}{r_{c 1}+r_{e 2}}$

$$
=\frac{(5.05 \mathrm{k} \Omega \| 40 \mathrm{k} \Omega)}{200 \Omega}=22.4 \mathrm{~V} / \mathrm{V}
$$

$$
200 \Omega
$$

Figure 7.46 shows an equivalent circuit for calculating the gain of the second stage. As indicated, the input voltage to the second stage is the output voltage of the first stage, v_{0}. Also shown is the resistance $R_{\text {a }}$ which is the input resisianice of the third stage formed by Q_{7}. The value of R_{B} can be found by multiplying the total resistance in the emitter of Q_{7} hy $(\beta+1)$:

$$
R_{i 3}=(\beta+1)\left(R_{4}+r_{e 7}\right)
$$

Since Q_{7} is operating at an emitter current of 1 mA ,

$$
\begin{aligned}
& r_{e 7}=\frac{25}{1}=25 \Omega \\
& R_{i 3}=101 \times 2.325=2.34 .8 \mathrm{k} \Omega
\end{aligned}
$$

FIGURE 7.46 Equivalent circuit for calculating the gain of the second stage of the amplifier in Fig. 7.43.
We can now find the gain A_{2} of the second stage as the ratio of the total resistance in the collector circuit to the total resistance in the emitter circuit

$$
\begin{aligned}
A_{2} & \equiv \frac{v_{02}}{v_{v 1}} \approx-\frac{\left(R_{3} \| R_{i 3}\right)}{r_{e 4}+r_{e 5}} \\
& =-\frac{(3 \mathrm{kS} \| 234.8 \mathrm{k} \Omega)}{50 \Omega}=-59.2 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

To obtain the gain of the third stage we refer to the equivalent circuit shown in Fig. 7.47 where $R_{i 4}$ is the input resistance of the output stage formed by Q_{8}. Using the resistance-reflection rule, we calculate the value of R_{4} as

$$
R_{i 4}=(\beta+1)\left(r_{e 8}+R_{6}\right)
$$

where

$$
r_{e 8}=\frac{25}{5}=5 \Omega
$$

$$
R_{i 4}=101(5+3000)=303.5 \mathrm{k} \Omega 2
$$

FIGURE 7.47 Equivalent circuii for evaluating the gain of the hird stage in the amplifier circuit of Fig. 7.43.

FIGURE 7.48 Equivalent circuit of the output stare of the amplifie circuil of Fig. 7.43.

The gain of the third stage is given by

$$
\begin{aligned}
A_{3} & =\frac{v_{o 3}}{v_{o 2}} \simeq-\frac{\left(R_{5} \| R_{i 4}\right)}{r_{c 7}+R_{4}} \\
& =-\frac{(15.7 \mathrm{k} \Omega \| 303.5 \mathrm{k} \Omega)}{2.325 \mathrm{k} \Omega}=-6.42 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

Finally, to obtain the gain A_{4} of the output stage we rcfer to the equivalent circuit in Fig. 7.48 and write

$$
\begin{aligned}
A_{4} & \equiv \frac{v_{0}}{v_{o 3}}=\frac{R_{6}}{R_{6}+r_{e 8}} \\
& =\frac{3000}{3000+5}=0.998=1
\end{aligned}
$$

The overall voltage gain of the amplifier can then be obtained as follows

$$
\frac{y_{g}}{v_{i d}}=A_{1} A_{2} A_{3} A_{4}=8513 \mathrm{~V} / \mathrm{V}
$$

or 78.6 dB .
To obtain the omput resistance R we "grab hold" of the outpul terminal in Fig. 7.43 and look back into the circuit. By inspection we find

$$
R_{a}=R_{6} \|\left[r_{e 8}+R_{5} /(\beta+1)\right]
$$

which gives

$$
R_{o}=152 \Omega 2
$$

GXERCISE

 Ans 4943 VM

FIGURE 7.49 The circuit of the multistage amplifier of Hig, 7.43 prepared for small-signal analysis, Indicated are the signal currents throughout the amplifier and the input resistances of the four stages.

Analysis Using Current Gains There is an alternative method for the analysis of bipolar multistage amplifiers that can be somewhat easier to perform in some cases. The method makes use of current gains or more appropriately current transmission factors. In effect, one traces the transmission of the signal current throughout the amplifier cascade, evaluating all the current transmission factors in turn. We shall illustrate the method by using it to ang all the amplifier circuit of the preceding example.

Figure 7.49 shows the amplifier circuit prepared for small-signal analysis. We have indicated on the circuit diagram the signal currents through afl the circuit branches. Also indicatcd are the input resistances of all four stages of the amplifier. These should be evaluated before commencing the following analysis.

The purpose of the analysis is to determine the overall voltage gain ($\left.v_{o} / v_{i d}\right)$. Toward that end, we express v_{o} in terms of the signal current in the emitter of $Q_{8}, i_{c 8}$, and $v_{i d}$ in terms of the input signal current i_{i}, as follows.

$$
\begin{aligned}
v_{o} & =R_{6} i_{e 8} \\
v_{i d} & =R_{i 1} i_{i}
\end{aligned}
$$

Thus, the voltage gain can be expressed in terms of the current gain $\left(i_{e 8} / i_{i}\right)$ as

$$
\frac{v_{o}}{v_{i d}}=\frac{R_{6} i_{e 8}}{R_{i j}} i_{i}
$$

Next, we expand the current gain $\left(i_{e 8} i_{i}\right)$ in terms of the signal currents throughout the circuit as follows

$$
\frac{i_{c 8}}{i_{i}}=\frac{i_{e 8}}{i_{b 8}} \times \frac{i_{b 8}}{i_{c 7}} \times \frac{i_{c 7}}{i_{b 7}} \times \frac{i_{b 7}}{i_{c 5}} \times \frac{i_{c 5}}{i_{b 5}} \times \frac{i_{b 5}}{i_{c 2}} \times \frac{i_{c 2}}{i_{i}}
$$

Each of the current-transmission factors on the right-hand side is either the current gain of a transistor or the ratio of a current divider. Thus, reference to Fig. 7.49 enables us to find these factors by inspection,

$$
\begin{aligned}
& \frac{i_{e 8}}{i_{l 8}}=\beta_{8}+1 \\
& \frac{i_{b 8}}{i_{c 7}}=\frac{R_{5}}{R_{5}+R_{i 4}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{i_{c 7}}{i_{b 7}}=\beta_{7} \\
& \frac{i_{b 7}}{i_{c 5}}=\frac{R_{3}}{R_{3}+R_{i 3}} \\
& \frac{i_{c 5}}{i_{b 5}}=\beta_{5} \\
& \frac{i_{b 5}}{i_{c 2}}=\frac{\left(R_{1}+R_{2}\right)}{\left(R_{1}+R_{2}\right)+R_{i 2}} \\
& \frac{i_{c 2}}{i_{i}}=\beta_{2}
\end{aligned}
$$

These ratios can be easily evaluated and their values used to determine the voltage gain. With a little practice, it is possible to carry out such an analysis very quickly, forgoing explicitly labeling the signal currents on the circuit diagram. One simply "walks through" the circuit, from input to output, or vice versa, determining the current-transmission factors one at a time, in a chainlike fashion.

Ex+icte

 Hall

Frequency Response The bipolar op-amp circuit of Fig. 7.43 is rather complex. Never theless, it is possible to obtain an approximate estimate of its high-frequency response Figure 7.50 (a) shows an approximate equivalent circuit for this purpose. Note that we have utilized the equivalent differential half-circuit concept, with Q_{2} representing the input stage and Q_{5} representing the second stage. We observe, of course, that the second stage is not symmetrical, and strictly speaking the equivalent half-circuit does not apply. Nevertheless, we use it as an approximation so as to obtain a quick pencil-and-paper estimate of the dominant high-frequency pole of the amplifier. More precise results can of course be obtained using computer simulation with SPICE (Section 7.8)

Examination of the equivalent circuit in Fig.7.50(a) reveals that if the resistance of the source of signal V_{i} is small, the high-frequency limitation will not occur at the input but rather at the interface between the first and the second stages. This is because the total capacitance at node A will be high as a result of the Miller multiplication of C_{μ}. Also, the third stage, formed by transistor Q_{7}, should exhibit good high-frequency response, since Q_{7} has a large emitter-degeneration resistance, R_{3}. The same is also true for the emitterfollower stage, Q_{s}.

To determine the frequency of the dominant pole that is formed at the interface between Q_{2} and Q_{5} we show in Fig. $7.50(\mathrm{~b})$ the pertinent equivalent circuit. The total resistance

FIGURE 7.50 (a) Approximate equivalent circuit for determining the high-frequency response of the op amp of Fig. 7.43. (b) Equivalent circuit of the intorface between the output of Q_{2} and the input of Q_{s}.
between node A and ground can now be found as

$$
R_{\mathrm{eq}}=R_{2}\left\|r_{o 2}\right\| r_{\pi 5}
$$

and the total capacitance is

$$
C_{e q}=C_{\mu 2}+C_{\pi 5}+C_{\mu 5}\left(1+g_{m 5} R_{L, 5}\right)
$$

where

$$
R_{L S}=R_{3}\left\|r_{v S}\right\| R_{i 3}
$$

The frequency of the pole can be calculated from $R_{e q}$ and $C_{\text {eq }}$ as

$$
f_{P}=\frac{1}{2 \pi R_{\mathrm{eq}} C_{\mathrm{eq}}}
$$

\%

7.8 SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51. ${ }^{6}$ Observe the manner in which the differential signal input V_{d} and the commonmode input voltage $V_{C M}$ are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9. In the following simulations, we will use parts Q2N3904 and

FIGURE 7.51 Capture schematic of the op-amp circuit in Example 7.6 .

[^28]TABLE 7.2 SPICE Mode Parrometers of the 22N3904 and O2N3906 Discrete Bifs

Q2N3904 Discrete BJT						
IS S 6.734 f	XTI=3	$\mathrm{FG}=1.11$	$\mathrm{VAF}=74.03$	$\mathrm{Br}=416.4$	$\mathrm{NE}=1.259$	ISE=6.734t
IKF $=66.78 \mathrm{~m}$	$\mathrm{XTB}=1.5$	$\mathrm{BR}=.7371$	NC=2	ISC=0	MKR=0	$\mathrm{RC}=1$
CJC=3.638p	MJC= 3085	VJC= .75	$\mathrm{FC}=.5$	CJE=4.493p	MJE= 2593	VJE= 75
TR=239.5n	T $\mathrm{F}=301.2 \mathrm{p}$	ITF=. 4	$\mathrm{VTF}=4$	XTT $=2$	$\mathrm{RB}=10$	
Q2N3906 Discrete BJT						
$\mathrm{IS}=1.41 \mathrm{f}$	XTI=3	EG=1.11	$\mathrm{VAF}=18.7$	$\mathrm{BF}=180.7$	$\mathrm{NE}=1.5$	ISE=0
$1 \mathrm{KF}=80 \mathrm{~m}$	$\mathrm{XTB}=1.5$	$\mathrm{BR}=4.977$	$\mathrm{NC}=2$	$\mathrm{ISC}=0$	$1 \mathrm{KR}=0$	$\mathrm{RC}=2.5$
CJC=9.728p	$\mathrm{MJC}=.5776$	$\mathrm{VIC}=.75$	$\mathrm{FC}=.5$	CIE=8.063p	MJE $=3677$	$\mathrm{VJF}=.75$
TR=33.42n	TF=179.3p	ITF=. 4	$\mathrm{VTT}=4$	$\mathrm{XTF}=6$	$\mathrm{RB}=10$	

TABLE 7.3. De Cothector Curents of the Op Amp Citcuitin fig.7.51 as Computed by

Collector Currents (mA)

	Collector Currents (mA)		
Transistor	Hand Analysis (Example 7.4)	PSpice	Error (\%)
Q_{1}	0.25	0.281	-11.0
Q_{2}	0.25	0.281	-11.0
Q_{3}	0.5	0.567	-11.8
Q_{4}	1.0	1.27	-21.3
Q_{5}	1.0	1.21	-17.4
Q_{6}	2.0	2.50	-20.0
Q_{7}	1.0	1.27	-21.3
Q_{8}	5.0	0.17	-189
Q_{9}	0.5	0.48	+4.2

Q2N3906 (from Fairchild Semiconductor) for the npn and pnp BJTs, respectively. The model parameters of these discrete BJTs are listed in Table 7.2 and are available in PSpice.

In PSpice, the common-mode input voltage $V_{C M}$ of the op-amp circuit is set to 0 V (i.e., to the average of the de power-supply voltages $V_{C C}$ and $V_{E E}$) to maximize the available input signal swing. A bias-point simulation is performed to determine the dc operating point. Table 7.3 summarizes the values of the dc collector currents as computed by PSpice and as calculated by the hand analysis in Example 7.4. Recall that our hand analysis assumed β and the Early voltage V_{A} of the BJTs to be both infinite. However, our SPICE simulations in Examplc 5.21 (where we investigated the dependence of β on the collector current I_{c}) indicate that the Q 2 N 3904 has $\beta \approx 125$ at $I_{C}=0.25 \mathrm{~mA}$. Furthermore, its forward Early voltage (SPICE parameter VAF) is 74 V , as given in Table 7.2. Nevertheless, we observe from Table 7.3 that the laryest enor in the calculation of the de bias currents is on the order of 20%. Accordingly, we can conclude that a quick hand analysis using gross approximations can still yield reasonable results for a preliminary estimate and, of course, hand analysis yiclds much insight into the circuit operation. In addition to the de bias currents listed in Table 7.3, the bias-point simulation in PSpice shows that the output dc offset (i.e., $V_{\text {out }}$ when $V_{d}=0$) is 3.62 V and that the input bias current $I_{B 1}$ is $2.88 \mu \mathrm{~A}$.

To compute the large-signal differential transfer characteristic of the op-amp circuit, we perform a dc-analysis simulation in PSpice with the differential volage input V_{d} swept over the range $-V_{E E}$ to $+V_{C C}$, and we plot the corresponding output voltage $V_{\text {OUT }}$. Figure 7.52 (a) shows the

V_Vd (mV)
(b)

FIGURE 7.52 (a) The large-signal differential transfer characteristic of the op-ump circuit in Fig. 7.51 The common-mode input voltage $V_{C M}$ is set to 0 V . (b) An expanded view of the transfer characteristic in the high-gain region
resulting dc transfer characteristic. The slope of this characteristic (i.c., $D V_{\text {oi: }} / D V_{d}$) corre sponds to the differential gain of the amplifier. Note that, as expected, the high-gain region is in the vicinity of $V_{d}=0 \mathrm{~V}$. However, the resolution of the input-voltage axis is too gross to yield much information about the details of the high-gain region. Therefore, to examine this region more closely, the dc analysis is repeated with V_{d} swept over the range -5 mV to +5 mV at increments of $10 \mu \mathrm{~V}$. The resulting diffcrential dc transfer characteristic is plottcd in Fig .7 .52 (b) Accordingly, the linear region of the large-signal diffcrential characteristic is bounded ap proximately by $V_{d}=-1.5 \mathrm{mV}$ and $V_{d}=+0.5 \mathrm{mV}$. Over this region, the output level changes from $V_{\text {OUT }}=-15 \mathrm{~V}$ to about $V_{\text {OUT }}=+10 \mathrm{~V}$ in a linear fashion. Thus, the output voltage swing for this amplifier is between -15 V and +10 V , a rather asymmetrical range. A rough estimate for the differential gain of this amplifier can be obtained from the boundaries of the linear region as $\mathrm{A}_{d}=[10-(-15)] \mathrm{V} /[0.5-(-1.5)] \mathrm{mV}=12.5 \times 10^{\prime} \mathrm{V} / \mathrm{V}$. We also observe from Fig. 7.52(b) hat $V_{d} \cong-260 \mu \mathrm{~V}$ when $V_{\text {OUT }}=0$. Therefore, the amplifier has an input offset voltage V of $+260 \mu \mathrm{~V}$ (by convention, the negative value of the x-axis interccpt of the large-signal differcntial transfer characteristics). This corresponds to an output offset voltage of $A_{d} V_{0}$ $\left.12.5 \times 10^{3}\right)(260 \mu \mathrm{~V})=3.25 \mathrm{~V}$, which is close to the value found through the bias-poin simulation. It should be emphasized that this offset voltage is inherent in the design and is no the result of component or device mismatches. Thus, it is usually referred to as a systematic offset.
Next, to compute the frequency response of the op-amp circuit and to mcasure its differ ential gain A_{d} and its 3 - dB frequency f_{H} in PSpice, we set the differential input voltage V_{d} to be a $1-V$ ac signal (with $0-V$ de level), perform an ac-analysis simulation, and plot the output voltage magnitude $\mid \mathrm{V}_{\text {OuT }}$ versus frequency. Figure 7.53 (a) shows the resulting frequency responsc. Accordingly, $A_{d}=13.96 \times 10^{3} \mathrm{~V} / \mathrm{V}$ or 82.8 dB , and $f_{H}=256.9 \mathrm{kHz}$. Thus, this value of A_{d} is close to the value estimated using the large-signal differential transfer characteristic. An approximate value of f_{H} can also be obtained using the expressions derived in Section 7.6.2 Specifically,

$$
\begin{equation*}
\rho_{H} \cong \frac{1}{2 \pi R_{\mathrm{eq}} C_{\mathrm{eq}}} \tag{7.217}
\end{equation*}
$$

where

$$
C_{\mathrm{eq}}=C_{\mu 2}+C_{\pi 5}+C_{\mu 5}\left[1+g_{m 5}\left(R_{3}\left\|r_{o 5}\right\|\left(r_{\pi 7}+(\beta+1) R_{4}\right)\right)\right]
$$

and

$$
R_{e q}=R_{2}\left\|r_{o 2}\right\| r_{\pi j}
$$

The valnes of the small-signal parameters as computed by PSpice can be found in the output file of a bias-point (or an ac-analysis) simnlation. Using, these values results in $C_{\mathrm{cq}}=338 \mathrm{pF}$ $R_{e q}=2.91 \mathrm{k} \Omega$, and $f_{H}=161.7 \mathrm{kHz}$. Howcver, this approximate value of f_{H} is much smaller than the value computed by PSpice. The reason for this disagreement is that the foregeing expression for f_{H} was derived (in Section 7.6.2) using the equivalent differential half-circuit concept. How ver, the concept is aceurate only when it is applied to a symmetrical circuit. The op-amp circuit in Fig. 7.51 is not symmetrical because the second gain stage formed by the differential pair $Q_{4}-Q_{5}$ has a load resistor R_{3} in the collector of Q_{5} only. To verify that the expression for f_{H} in Eq. (7.217) givcs a closc approximation for f_{I} in the case of a symmetric circuit, we insert a resistor R_{3}^{\prime} (whose size is equal to R_{3}) in the collector of Q_{4}. Note that this will have only a minor effec on the dc operating point. The op-amp circuit with Q_{4} having a collector resistor R_{3}^{\prime} is then simu lated in PSpice. Figure 7.53 (b) shows the resulting frequency response of this symmetric op amp

(a)

(b)

FIGURE 7.53 Frequency response of (a) the op-amp circuit in Fig. 7.51 and (b) the op-amp circuit in Fig. 7.51 but with a resisiop $R_{3}^{\prime}=R_{3}$ insetted in the collcctor of Q_{4} to make ihe op-amp circuit symmerrical.

(a)

- $V(Q 3: B)-V(Q 3: C) \circ V(Q 1: B)-V(Q 1: C)$
V.VCM (V)
(b)

FIGURE 7.54 (a) The large-signal common-mode transfer characteristic of the op-amp circuit in Fig. 7.51. The differential input voltage $V_{\text {i }}$ is set to $-V_{o s}=-260 \mu \vee$ to prevent premature saturation. (b) Thic effcct of the common-mode input voltagc $V C M$ on the lincarity of the input stage of the op-amp circuit in Fig. 7.51. The base-
collector voltage of Q_{1} and Q_{3} is shown as a function of VCM. The input stage of the op-amp circuit leaves the acilive region when the base-collector junction of either Q_{1} or Q_{3} bcconces forward biased ((i.e., when $\vee B C \geq 0$).
where $f_{H}=155.7 \mathrm{kHz}$. Accordingly, in the case of a perfectly symmetric op-amp circuit, the value of $f_{l /}$ in Eq. (7.217) closely approximates the value computed by PSpice. Comparing the frequency responses of the nonsymmetric (Fig. 7.53a) and the symmetric. (Fig. 7.53b) op-amp circuils, we note that the 3 -dB frequency of the op amp drops from 256.9 kHz to 155.7 kHz when resistor R_{3}^{\prime} is inserted in the collector of Q_{4} to make the op-amp circuit symmetrical. This is because, with a resistor R_{3}^{\prime}, the collector of Q_{4} is no longer at signal ground and, hence, $C_{\mu 4}$ experiences the Miller effect. Consequently, the high-frequency response of the op-amp circuit is degraded.
Observe that in the preceding ac-analysis simulation, owing to the systematic offset inherent in the design, the op-amp circuit is operating at an output dc voltage of 3.62 V . However, in an actual circuit implementation (with $V_{C M}=0$), negative feedback is employed (sce Chapters 2 and 8) and the output dc voltage is stabilized at zero. Thus, the small-signal performance of the op-amp circuit can be more accurately simulated by biasing the circuit so a to force operation at this level of output voltage. This can be casily done by applying a differ ential dc input of $-V_{\text {os. }}$. Superimposcd on this dc input, we can apply an ac signal to perform an ac-analysis simulation for the purpose of, for example, computing the differential gain and the 3 -dB frequency.
Finally, to compute the input common-mode range of the op-amp circuit in Fig. 7.51, we perform a dc-analysis simulation in PSpice with the input common-mode voltage swept over the range $-V_{E E}$ to $V_{C C}$, while maintaining V_{d} constant at $-V_{O S}$ in order to cancel the output offset voltage (as discussed earlier) and, thus, prevent prenature saturation of the BJTs. The corresponding output voltage $V_{\text {Out }}$ is plotted in Fig. 7.54 (a). From this common-mode dc transle characteristic we lind hat the amplifier behaves inearly over $\mathrm{h}^{2} V_{c M}$ range -14.1 V to +8.9 V which is therefore the input common-mode range. In Example 7.4 , we noted that the upper himit of this range is detcrmincd by Q_{1} and Q_{2} saturating, whercas the lower imit is determined by Q_{3} saturating. To veriy ythis assertion, we requested $P S$ picc to plot the values of the collectorFis $754(\mathrm{~b})$, fom which we not in Fig. 7.S4(b), fin enters its saturation region when its base-collector junction becomes forward biased, i.e $V_{B C} \geq 0$).

SUMMARY

The differential-pair or differential-amplifier configuration is the most widely used building block in analog IC design. The input stage of every op amp is a differential amplifier.

There are two reasons for preferring differential to single ended amplifiers: Differential amplifiers are insensitive to
interference, and they do not need bypass and coupling capacitors.

For a MOS (bipolar) pair biased by a current source 1 eacb device operates at a drain (collector, assuming $\alpha=1$) current of $1 / 2$ and a corresponding overdrive voltag $V_{O V}$ (no analog in bipolar). Each device has $g_{m}=I / V_{o}$ ($\alpha I / 2 V_{T}$, for bipolar) and $r_{0}=\left|V_{\|}\right| /(I / 2)$

图 With the two input terminals connected to a suitable dc voltage $V_{C M}$ ，thc bias current I of a perfectly symmetri－ cal differential pair divides equally between the two iransistors of the pair，resulting in a zero voltage differ－ ence between the two drains（collectors）．To sleer the current completely to one side of the pair，a difference input voltage $v_{i d}$ of at least $\sqrt{2} V_{o v}$（ $4 V_{r}$ for bipolar）is needed．

郿 Superimposing a differential input signal $v_{i u}$ on the dc common－mode input voltage $v_{C M}$ such that $v_{11}=V_{C M}+$ $v_{i d} / 2$ and $v_{I 2}=V_{C M}-v_{i d} / 2$ causes a virtual signal cround to appear on the common source（emitter）connec－ ion．In response to $\tau_{i d}$ the current in Q_{1} increases by $g_{m m} v_{i d} / 2$ and the current in Q_{2} decreases by $g_{m} v_{u} / 2$ ． Thus，voltage signals of $\pm g_{m}\left(R_{D} \| r_{o}\right) v_{i d} / 2$ develop at the two drains（collectors，with R_{D} replaced by R_{C} ．
If the output voltage is taken single－cndedly，that is，be－ tween one of the drains（collectors）and ground，a differential gain of $\frac{1}{1} s\left(R_{D} \| r_{0}\right)$ is realized．Taking the output differentially，that is，hetween the two drains （collectors）the differential gain realized is twice as large： $g_{m i}\left(R_{D} \| r_{o}\right)$ ．
\％The analysis of a differential amplifier to determine differential gain，differential input resistance，fre－ quency response of differential gain，and so on is facilitated by employing the differential half－circuit， which is a common－source（common－emillcr）transistor biased at $/ / 2$ ．
＊An input common－mode signal $v_{\text {vicm }}$ gives rise to drain（col lector）voltage signals that are ideally equal and given by $-v_{\text {icm }}\left(R_{D D} / 2 R_{S S}\right)\left[-v_{i c t}\left(R_{C} / 2 R_{E E}\right)\right.$ for the bipolar pair］， source that supplies the bias current l When the output is taken single－endedly a conmon－mode gain of magnitude $\left|A_{c m}\right|=R_{D} / 2 R_{S S}\left(R_{C} / 2 R_{E E}\right.$ for the bipolar case）results． Taking the output differentially results in the perfectly matched case in zero $A_{c m}$（infinite CMRR）．Mismatches between the two sides of the pair make $A_{c m}$ finite even when the output is taken differentially：A mismatch ΔR_{D} causes $\left|A_{c m}\right|=\left(R_{D} / 2 R_{s s}\right)\left(\Delta R_{D} / R_{\nu}\right)$ ；a mismatch Δg_{m} causcs $\mid A_{\text {con }}=\left(R_{D} / 2 R_{s S}\right)\left(\Delta g_{m} / g_{m}\right)$ ．Corresponding expressions apply for the bipolar paii．

如 While the input diffcremtial resistance $R_{i d}$ of the MOS pair is infinite，that for the bipolar pair is only $2 r_{\pi}$ but can be increased to $2(\beta+1)\left(r_{c}+R_{t}\right)$ by including resis－ lowers A_{d} ．

Mismatches between the two sides of a differential pair rcsult in a differential dc oulput voltage V_{o} even when th two input terminals are lied together and connected to a dc voltage $V_{C N}$ ．This signifies the presence of an input offset vollage $V_{O S}=V_{0} / A_{d}$ ．In a MOS pair there are three main sources for $V_{O S}$ ．

$$
\begin{gathered}
\Delta R_{D} \Rightarrow V_{O S}=\frac{V_{O V}}{2} \frac{\Delta R_{D}}{R_{D}} \\
\Delta(W / L) \Rightarrow V_{o s}=\frac{V_{O V}}{2} \frac{\Delta(W / L)}{W / L}
\end{gathered}
$$

$$
\Delta V_{t} \Rightarrow V_{O S}=\Delta V_{t}
$$

For the bipolar pair there are two main sources：

$$
\begin{aligned}
\Delta R_{C} \Rightarrow V_{O S} & =V_{T} \frac{\Delta R_{C}}{R_{C}} \\
\Delta I_{S} \Rightarrow V_{O S} & =V_{T} \frac{\Delta I_{S}}{I_{S}}
\end{aligned}
$$

E A popular circuit in both MOS and bipolar analog ICS is the current－mirror－loaded differential pair．It realizes a high differential gain $A_{d}=g_{m}\left(R_{o}\right.$ pair $\mid R_{o}$ mirirar $)$ and a
low common－mode gain． low common－mode gain， $\left\lvert\, A_{\text {cm }}=\frac{1}{2} S_{m 3} R_{s s}\right.$ for the MOS
circuit $\left(r_{r 4} / \beta_{3} R_{E E}\right.$ for the bipolar circuit），as well as pcr－ forming the differential－to－single－ended conversion with no loss of gain．
．The common－mode gain of the differential amplifier exhibits a transmission zero caused by the finite output $f_{z}=\frac{1}{2} C_{S S} R_{S S}\left(\frac{1}{2} C_{\text {sc }} R_{\text {se }}\right.$ for bipolar）．Thus the CMRR $f_{z}=\frac{1}{2 \pi}$ a

A multistage amplifier usually consists of three stagcs：an input slage having a high input resistance，a reasonably high gain，and，if differential，a high CMRR；an inter－ mediate stage that realizes the bulk of the gain；and an output stage having a low output resistance．Many CMOS amplifiers serve to drive only strall on－chip capacitive and analyzing a multistage amplifier；＇he loading effect of cach stage on the one that precedes il must be taken into account．

PROBLEMS

SECTION 7．1：THE MOS DIFFERENTIAL PAIR

7．1 For an NMOS differential pair with a common－mode voltage $\nabla_{C M}$ applied，as shown in Fig．7．2，let $V_{D M}=V_{S S}=$
 $\mathbf{k} \Omega$ ．and neglect channel－length modulation．
（a）Find $V_{O V}$ and $V_{G S}$ for each iransistor
（b）For $v_{C M}=0$ ，find $v_{s}, i_{D 1}, i_{D_{2}}, v_{D}$ ，and $v_{p_{2}}$
（c）Repeat（b）for $v_{C M}=+1 \mathrm{~V}$
（c）What is the highest valuc of v_{CM} for which Q_{1} and Q remain in saturation？
f）If current source I requires a minimum voltage of 0.3 V to operate properly，what is the lowest valuc allowed for v_{s} and hence for $v_{C M}$ ？
7．2 For the PMOS differential amplifier shown in Fig．P7． 2 et $V_{t p}=-0.8 \mathrm{~V}$ and $k_{p}^{\prime} W / L=3.5 \mathrm{~mA} / \mathrm{V}^{2}$ ．Neglect channel ength modulation．
a）For $v_{G 1}=v_{G 2}=0 \mathrm{~V}$ ，fimd $V_{O V}$ and $V_{G S}$ for each of Q_{1} and Q_{2} ．Also find $v_{s,}, v_{p 1}$ ，and $v_{D 2}$ ．
（b）If the current source requires a minimum voltage of 0.5 V ，find the mput common－mode range．

FIGURE P7． 2

7．3 For the difiercntial amplifier specified in Problem 7.1 let $v_{C 2}=0$ and $v_{G 1}=v_{i d}$ ．Find the value of $v_{i /}$ that corre－ ponds to cach of the following situations：
（a）$i_{D 1}=i_{D 2}=0.1 \mathrm{~mA}$ ；（b）$i_{D 1}=0.15 \mathrm{~mA}$ and $i_{D 2}=0.05 \mathrm{~mA}$ ；（c） $D_{D 1}=0.2 \mathrm{~mA}$ and $i_{D 2}=0\left(Q_{2}\right.$ just cuts off $) ;(\mathrm{d}) i_{j 1}=0.05 \mathrm{~mA}$
and $i_{02}=0.15 \mathrm{~mA} ;(e) i_{p_{1}}=0 \mathrm{~mA}\left(Q_{1}\right.$ ，ust culs off $)$ and $i_{i n}=$ 0.2 mA ．For each case，find $v_{5}, v_{D_{1}}, v_{v_{22}}$ and $\left(v_{p_{2}}-v_{p_{1}}\right)$ ．

7．4 For the differential amplificr specified in Problem 7．2， let $v_{G 2}=0$ and $v_{G 1}=v_{i d}$ ．Find the range of $\nu_{i d}$ needed to stecr the bias current from one side of the pair to the other．At cach end of this range，give the value of the voltage at the common－source terminal and the drain voltages．
7．5 Consider the differential amplifier specified in Prob－ lem 7.1 with G_{2} grounded and $v_{G 1}=v_{i d d}$ Let $\gamma_{i d}$ be adjusted to the value that causes $i_{D 1}=0.11 \mathrm{~mA}$ and $i_{D 2}=0.09 \mathrm{~mA}$ ． Find the corrcsponding values of $v_{G S 2}, v_{s}, v_{G S 1}$ ，and hence $v_{i d}$ What is the differencc output voltage $v_{p 2}-v_{p 11}$ ？What is the voltage gain $\left(v_{D_{2}}-v_{D D}\right) / \tau_{i d}$ ？What value of $i_{i d}$ results in $i_{p 1}=0.09 \mathrm{~mA}$ and $i_{D 2}=0.11 \mathrm{~mA}$ ？
7．6 The table providing the answers to Exercise 7.3 shows that as the maximum input signal to be applied to the differ－ ential pair is increased，linearity is maintained at the same level by operating at a higher $V_{o v}$ ．If $v_{i d} l_{\text {max }}$ is to be 150 mV ， use the data in the table to determine the required $V_{o v}$ and he corresponding values of W / L and g_{π} ．
7．7 Use Eq．（7．23）to show that if the term involving $v_{i d}$ is to be kept to a maximum value of k then the maximum possible fractional change in the transistor current is given by

$$
\left(\frac{\Delta I_{\text {max }}}{I / 2}\right)=2 \sqrt{k(1-k)}
$$

and the corresponding maximum value of $v_{i d}$ is given by

$$
v_{i d \text { max }}=2 \sqrt{k} V_{o v}
$$

Evaluate both expressions for $k=0.01,0.1$ ，and 0.2
7．8 An NMOS differential amplifier utilizes a bias current of $200 \mu \mathrm{~A}$ ．The devices havc $V_{\mathrm{r}}=0.8 \mathrm{~V}, W=100 \mu \mathrm{~m}$ ，and $L=$ $1.6 \mu \mathrm{~m}$ ，in a technology for which $\mu_{n} C_{o x}=90 \mu \mathrm{~A} / \mathrm{V}^{2}$ ．Find $V_{G S}, g_{w,}$ ，and the value of $v_{i d}$ for full－current switching．To what value should the bias current be changed in order to double the value of $j_{i d}$ for full－current switching？
D7．9 Design the MOS differential amplifier of Fig． 7.5 to operate at $V_{O V}=0.2 \mathrm{~V}$ and to provide a transconductance g_{m} of $1 \mathrm{~mA} / \mathrm{V}$ ．Specify the W / L ratios and the bias current． $90 \mu \mathrm{~A} / \mathrm{V}^{2}$ ．
7．10 Consider the NMOS differential pair illustrated in Fig． 7.5 under the conditions that $I=100 \mu \mathrm{~A}$ ，using FETs for which $k_{n}^{\prime}(W / L)=400 \mu \mathrm{~A} / \mathrm{V}^{2}$ ，and $V_{t}=1 \mathrm{~V}$ ．What is the oftage on the common－source comnection for $v_{G 1}=v_{C_{22}}=0$ ？ 2 V ？What is the relation between the drain currents in each
of these situations? Now for $v_{G 2}=0 \mathrm{~V}$, at what voltages must $i_{G 1}$ be placed to reduce $i_{D 2}$ by 10% ? to increase $i_{D 2}$ by which the ratio of differential voltage, $v_{i d}=v_{G 2}-v_{G 1}$, for 0.99 ? For the curcn! ratio $i_{D 1} i_{D 2}=20.0$, what differential input is required?

SECTION 7.2: SMALL-SIGNAL OPERATION OF THE MOS DIFFERENTIAL PAIR

7.11 An NMOS differential amplifier is operated at a bia current I of 0.5 mA and has a W / L ratio of $50, \mu_{n} C_{o x}$ $250 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{A}=10 \mathrm{~V}$, and $R_{D}=4 \mathrm{k} \Omega$. Find $V_{o v}, g_{m}, r_{o}$ and A_{d}.
07.12 It is required to design an NMOS differential amplifier io operate with a differential input voltage that can be as high as 0.2 V while keeping the nonlinear term unde the square root in Eq. (7.23) to a maximum of 0.1 . A transconductance g_{m} of $3 \mathrm{~mA} / \mathrm{V}$ is needed. Find the required values of $V_{O V}, I$, and W / L. Assume that the technology A_{d} results when $R_{D}=5 \mathrm{k} \Omega$? Assume $\lambda=0$ what is th esulting output signal corresponding to 4 at its maximu resuling output signal corresponding to $y_{i d}$ at its naximum value?
*7.13 Figure P7.13 shows a circuit for a differentia amplifier with an active load. Herc Q_{1} and Q_{2} form the differform the active loads for $Q_{\text {a }}$ and Q_{2} respectively. The dc

FIGURE P7.13
bias circuil that establishes an appropriate dc voltage at the drains of Q_{1} and Q_{2} is not shown. Note that the cquivalent differential half-circuit is an active-loaded common-source
transistor of the type studied in Section 65. It is required to design the circuit to meet the following specifications:
(a) Differential gain $A_{d}=80 \mathrm{~V} / \mathrm{V}$.
(b) $I_{\text {REF }}=I=100 \mu \mathrm{~A}$.
(c) The dc voltage at the gates of Q_{6} and Q_{3} is +1.5 V (d) The dc voltage at the gates of Q_{7}, Q_{4}, and Q_{5} is -1.5 V .

The technology available is specified as follows: $\mu_{n} C_{o x}=$ $3 \mu_{\nu} C_{o x}=90 \mu \mathrm{~A} / \mathrm{V}^{2} ; V_{s n}=\left|V_{t o}\right|=0.7 \mathrm{~V}, V_{A n}=\left|V_{A p}\right|=20 \mathrm{~V}$. Spensistors. Also
(red valuc of R and the
the each transistor is operating. For dc bias calculations you may neglect channellength modulation.
7.14 A design error has resulted in a gross mismatch in the circuit of Fig. P7.14. Specifically, Q_{2} has twice the W / L ratio of Q_{1}. If $v_{i d}$ is a small sine-wave signal, find:
(a) $I_{D 1}$ and $I_{D 2}$
(b) $V_{o r}$ for each of Q_{1} and Q_{2}.
(c) The differential gain A_{d} in tcrms of R_{D}, I, and $V_{o v}$.

FIGURE P7.14
7.15 An NMOS differential pair is biased by a current source $l=0.2 \mathrm{~mA}$ having an output resistance $R_{\text {ss }}=100 \mathrm{k} \Omega$. The amplifier has drain resistances $R_{D}=10 \mathrm{k} \Omega$, using transistors with $k_{n}^{\prime} W / L=3 \mathrm{~mA} / \mathrm{V}^{2}$, and r_{o} that is large.
(a) If the oulput is taken single-endedly, find ! $A_{d} \mid A_{\text {a }}$, and CMRR.
b) If the output is taken diffcrentially and there is a 1% mis match between the drain resistances, find $\left|A_{d}\right|, A_{c m} \mid$, and CMRR.
7.1西 For the differential amplificr shown in Fig. P7.2, let Q_{1} and Q_{2} have $k^{\prime}(W / L)=35 \mathrm{~mA} / \mathrm{V}^{2}$ and assume that he bias current source has an output resistance of $30 \mathrm{k} \Omega$ Find $V_{o v}, g_{m},\left|A_{i}\right|,\left|A_{c i v}\right|$, and the CMRR (in dB) obtained with the output taken differentially. The drain resistances are known to have a mismatch of 2%.
*7.17 The differential amplifier in Fig. P7.17 utilizes a esistor $R_{s s}$ to establish a $1-\mathrm{mA}$ dc bias current. Note that resistor $R_{s s}$ to estabish a $1-\mathrm{mA}$ dc bias current. Note nat common-mode voltage $V_{C M}$. Transistors Q_{1} and Q_{2} have $k_{n}^{\prime} W / L=2.5 \mathrm{~mA} / \mathrm{V}^{2}, V_{t}=0.7 \mathrm{~V}$, and $\lambda=0$.
(a) Find the required value of v_{C}
(b) Find the value of R_{t} that results in a differential gain Λ_{d} of $8 \mathrm{~V} / \mathrm{V}$.
(c) Determine the dc voltage at the drains.
(d) Determine the common-mode gain $\Delta V_{D 1} / \Delta V_{C M}$. (Hint: You need to take $1 / g_{m}$ into account.)
(e) Use the common-mode gain found in (d) to determine the change in $V_{C M}$ that results in Q_{1} and Q_{2} entering the triod region.

Figure p7.17
7.18 The objective of this problem is to delermine the common-mode gain and hence the CMRR of the differe tial pair arising from a simultaneous mismatch in g_{m} and in R_{D}.
(a) Refer to the circuit in Fig. 7.11 and let the two drain resis tors be denoted $R_{D 1}$ and $R_{D 2}$ where $R_{D 1}=R_{D}+\left(\Delta R_{D} / 2\right)$ and
$R_{p 2}=R_{D}-\left(\Delta R_{D} / 2\right)$. Also let $g_{m 1}=g_{m}+\left(\Delta g_{m} / 2\right)$ and $g_{m 2}=$ $g_{m m}-\left(\Delta_{g_{m}} / 2 R_{0}\right.$.
to derive Eq. (7.64) to show that

$$
A_{c m} \cong\left(\frac{R_{D}}{2 R_{S S}}\right)\left(\frac{\Delta g_{m}}{g_{m}}+\frac{\Delta R_{p}}{R_{D}}\right)
$$

Note that this equation indicates that R_{D} can be deliberatcly varicd to compensate for the initial variability in g_{m} and R_{D}, that is, to minimize $A_{\text {cm: }}$.
(b) In a MOS differential amplifier for which $R_{D}=5 \mathrm{k} \Omega$ and $R_{\mathrm{SS}}=25 \mathrm{k} \Omega$. the common-mode gain is measured and found to be $0.002 \mathrm{~V} / \mathrm{V}$. Find the percentage change required in one of the two drain resistors so as to reduce $A_{\text {a }}$ to zero (or close to zero). 7.19 Recalling that g_{m} of a MOSFET is given by

$$
g_{m}=k_{n}^{\prime}\left(\frac{W}{L}\right)\left(V_{G S}-V_{t}\right)
$$

we observe that there are two potential sources for a mismatch between the g_{m} valucs in a differential pair: a nusmatch $\Delta(W / L)$ in the (W / L) values and a mismatch ΔV_{i} in the threshold voltage values. Hence show that

$$
\frac{\Delta g_{m}}{g_{m}}=\frac{\Delta(W / L)}{W / L}+\frac{\Delta V_{i}}{V_{O V}}
$$

Evaluate the worst-case fractional mismatch in y_{m} for a differential pair in which the (W / L) valnes have a tolerance of $\pm 1 \%$ and the largest mismatch in v_{t} is spccificd to bc 5 mV . Assume that the pair is operating at $V_{O V}=0.25 \mathrm{~V}$. If $R_{D}=5 \mathrm{k} \Omega$ and $R_{S S}=25 \mathrm{k} \Omega$, find the worst-case value of $\Lambda_{c m}$. If the bias current $I=1 \mathrm{~mA}$, find the corresponding worst-case CMRR.

SECTION 7.3: THE BJT DIFFERENTIAL PAIR

7.20. For the differential amplifier of Fig. 7.13(a) let $I=$ $1 \mathrm{~mA}, V_{c C}=5 \mathrm{~V}, v_{C H}=-2 \mathrm{~V}, R_{C}=3 \mathrm{k} \Omega$, and $\beta=100$. Assume that the BJTs have $v_{B E}=0.7 \mathrm{~V}$ at $i_{C}=1 \mathrm{~mA}$. Find the voltage at the emitters and at the outputs
7.23 For the circuit of Fig. 7.13(b) with an input of +1 V as indicated, and with $I=1 \mathrm{~mA}, V_{C C}=5 \mathrm{~V}, R_{C}=3 \mathrm{k} \Omega$, and $\beta=$ 100 , find the voltage at the emitters and the collcctor voltages. Assume that the BJTs have $v_{B E}=0.7 \mathrm{~V}$ at $i_{C}=1 \mathrm{~mA}$.
7.22 Repent Exercise 7.7 (page. X) for an input of -0.3 V .
7.23 For the BJT differential amplifier of Fig. 7.12 find the value of the input differential signal, $v_{i d} \equiv v_{B 1}-v_{k 2}$, that causes $i_{E 1}=0.80 \mathrm{I}$.

D7.24 Consider the differential amplifier of Fig. 7.12 and let the BJT β be very large:
(a) What is the largest input common-mode signal that can he applied while thc BJTs remain comfortably in the active region with $v_{C D}=0$?
(b) If an input difference signal is applicd that is large enough to steer the current entirely to one side of the pair, what is the change in voltage at each collector (from the con(c) If the available power supply $\nu_{c c}$ is 5 V , what value of $I R_{C}$ should you choose in order to allow a common-mode input signal of $\pm 3 \mathrm{~V}$.
(d) For thc value of $I R_{C}$ found in (c), sclect values for I and R_{C}. Use the largest possible value for I subject to the conlly) 10
7.25 To provide insight into the possibibity of nonlinear distortion resulting from large differential input signals apphied to the differential amplifier of Fig. 7.12, evaluate the normalized change in thc currcot $i_{51}, \Delta i_{E^{\prime}} / I=\left(i_{E_{1}}-(I / 2)\right) / I$, for diftabulation of the ratio $\left(\left(\Delta i_{1}, I\right) / v\right.$,) which represents the proportional transconductance gain of the differcntial pair, versus v_{2}. Comment on the linearity of the differential pair as an amplifier
D7.26 Design the circuit of Fig. 7.12 to provide a diffcren tial output voltage (i.e., one taken between the two collecfors) of 1 V when the differential input signal is 10 mV . A available. What is the largest possible input common-mode voltage for which opcration is as required? Assume $\alpha=1$.
D*7.27 One of the trade-offs availahle im the design of the basic differential amplifier circuit of Fig. 7.12 is hetween the value of the voltage gain and the range of commonmode input voltage. The purpose of this problem is to dem onstrate this trade-off.
(a) Use Eqs. (7.72) and (7.73) to obtain $i_{C \text { f }}$ and $i_{C 2}$ correspond ing to a differential input signal of 5 mV (i.e., $v_{B 1}-v_{k 2}=5 \mathrm{mV}$). between the two collectors ($y_{C O}-v_{C}$) and divide this value by 5 mV to obtain the voltage gain in tecms of $I R$
(b) Find the maximum permitted value for $v_{C O S}$ (Fig. 7.13a) while the transistors remain comfortably in the active mode with $v_{C L}=0$. Express this maximum in terms of $V_{C C}$ and the gain, and hence show that for a given value of $V_{C C}$, the higher the gain achieved, the lower the conmnon-mode range. Use this xpression to find $v_{\text {CHIMx }}$ conessponding to a gain magnitude of $100,200.300$, and $400 \mathrm{~V} / \mathrm{V}$. For each value, also give the required valuc of $I R_{C}$ and the value of R_{C} for $I=1 \mathrm{~mA}$.
*7.28 For the circiuit in Fig. 7.12, assuming $\alpha=1$ and $I R_{C}=$ 5 V , use Eqs. (7.67) and (7.68) to find $i_{C 1}$ and $i_{C 2}$, and hence determine $v_{0}=v_{c 2}-v_{c 1}$ for input differential signals $v_{i d} \Rightarrow$ $v_{B 1}-v_{B Z}$ of $5 \mathrm{mV}, 10 \mathrm{mV}, 15 \mathrm{mV}, 20 \mathrm{mV}, 25 \mathrm{mV}, 30 \mathrm{mV}$, 35 mV , and 40 mV . Plot v_{o} versus $v_{d d}$ and hence comment earity, determine the gain (w, v_{1}) versus ${ }^{1}$, Comment on the resulting graph.
7.29 In a differential amplifier using a 6 -mA emitter bia current source the two BJTs are not matched. Rather, on has one-and-a-half times the emitter junction area of the her. For a differential input sigual of zero volts, what do needed to equalize the collector currents? Assume $\alpha=1$.
7.30 Figure P7.30 shows a logic inverter based on the differential pair. Here, Q_{1} and Q_{2} form the differential pair whereas Q_{3} is an cmitter follower that performs two func tions: It shifts the level of the output voltage to make V_{o} and $V_{O L}$ centered on the reference voltage V_{R}, thus enabling one gate to drive another (this point will be explained in detail in Chapter 11), and it provides the inverter with a low output resistance. All transistors have $V_{B E}=0.7 \mathrm{~V}$ at I_{C} mA and have $\beta=100$
(a) For v_{l} sufficiently low that Q_{1} is cut off, find the value of he output volage i_{O}. This is $V_{O H}$.
(b) For v_{1} sufficiently high that Q_{1} is carrying all the current , find the output voltage v_{O}. This is $V_{O L}$.
c) Determine the value of v_{t} that results in Q_{1} conducting \% of I. This can be taken as $v_{I L}$.
D 1 Thi v_{t} that results in Q_{1} conducting (e) Sketcl and clearly tahel the
oltage transfer characteristic. Calcepoints of the inverter oise margins $N M_{H}$ and $N M_{\text {. . Vote the the the thes of the }}$ he value of the refercnce voltage V_{R}.
(For the delinitions of the parameters that are used to charac lerizc the inveiter VTC, refer to Scction 1.7.

FIGURE P7. 30
7.31 A BJT differential amplifier uses a $300-\mu \mathrm{A}$ bias current. What is the value of β of each device? If β is 150 , what is the differential input resistance?
D7.32 Design the basic BJT differential amplificr circuit of Fig. 7.16 to provide a differential input resistance of at Icas $10 \mathrm{k} \Omega$ and a differential vollage gain (with the output taken
between the two colleclors) of $200 \mathrm{~V} / \mathrm{V}$. The transistor β specified to be at least 100 . The available power supply is 10 V . 7.33 For a differential amplifier to which a total difference signal of 10 mV is applied, what is the equivalent signal to its corresponding is haf-ciculf-circuit? For a load resistance of $10 \mathrm{k} \Omega$ in each collector, what is the half-circuit gain? What magnitudc of signal output voltage would you expect at each collector?
7.34 A BJT differential arnplifier is biased from a $2-\mathrm{mA}$ constant-current source and includes a $100-\Omega$ resistor in each The collcctors are connected to $V_{C C}$ via 5 - $\Omega \Omega$ rcsistors. A differential input signal of 0.1 V is applied between the two bases. (a) Find the signal current in the emitters (i_{c}) and the signal voitage $v_{b e}$ for each BJT.
(b) What is the total emitter current in each BJT
(c) What is the signal voltage at each collector? Assume $\alpha=1$. (d) What is the voltage gain realized when the output is taken hetween the two collectors?
(17.35 Design a BJT differential ampitier to amplify a differential input signal of 02 V and provide a differential output signal of 4 V . To ensure adequate linearity, it is required to limit the signal amphitude across cach base-emitter junction to a maximum of 5 mV . Another design requircment is that the able are specified to have $\beta \geq 200$. Give the circuit conliguration and specify the values of all its components.
7.36 A particular differential amplifier operates from an emitter current source whose ouput resistance is $1 \mathrm{M} \Omega$. What resistance is associated with each common-mode hall-circuit? For collector resistors of $20 \mathrm{k} \Omega$, what is the resulting common-mode gain for output taken (a) differentially, (b) single-endedly?
7.37 Find the voltage gain and the input resistance of the amplificr shown in Fig. P7. 37 assuming $\beta=100$.

FIGURE P7.37
7.38 Find the voltage gain and input resistance of the amplifier in Fig. P7.38 assuming that $\beta=100$

FIGURE P7.38
7.39 Derive an expression for the small-signal voltage gain v_{o} / v_{i} of the circuit shown in Fig. P7. 39 in two different ways: a) as a differential amplificr b) as a cascade of a ommon-hase stage Q_{2}
Assume that thc BJTs are matched and have a current gain α Verify that hoth approaches lead to the same result.

FIGURE P7.39

7.40 The differential amplifier circuit of Fig. P7.40 utilizes istor connected to the negative power supply to establis the bias current I.
(a) For $v_{B 1}=v_{i d} / 2$ and $v_{B 2}=-v_{i d} / 2$, where v_{d} is a small sig nal with zero average, find the magnitude of the differential gain, $\left|v_{o} / v_{i d}\right|$.
b) For $v_{n}=v_{n N}=v_{i c m}$, find the magnitude of the common(c) Calculate the CMRR.

FIGURE P7. 40

(d) If $v_{B 1}=0.1 \sin 2 \pi \times 60 t+0.005 \sin 2 \pi \times 1000 t$ volts, $v_{B 2}=0.1 \sin 2 \pi \times 60 t-0.005 \sin 2 \pi \times 1000 t$, volts, find v_{σ}. 7.48 For the differential amplifier shown in Fig. P7.41, identify and sketch the differential half-circuit and the commonmode hall-circuit. Find the differcntial gain, the differential inpu hput resistance. For thesc transistors, $\beta=100$ and $V=100 \mathrm{~V}$.

FIGURE PT. 41

7.42 Consider the basic diffcrential circuit in which the transistors have $\beta=200$ and $V_{\mathrm{A}}=200 \mathrm{~V}$, with $I=0.5 \mathrm{~mA}$, $R_{t E}=1 \mathrm{M} \Omega$, and $R_{C}=20 \mathrm{k} \Omega$. Find
(a) the differential gain to a single-ended output (b) the differential gain to a differential output
(c) the differential input resistance
(d) the common-mode gain to a single-cnded output (e) the common-mode gain to a differential output
7.43 In a differential-amplifier circuit resembling that shown in Fig. 7.23(a), the current generator represented by ating at $100 \mu \mathrm{~A}$. For this transistor, and thosc used in the diffcrential pair, $V_{A}=200 \mathrm{~V}$ and $\beta=50$. What common-mod input resistance would apply?
D7.44 It is required to design a differential amphifier to provide the largest possible signal to a pair of $10-\mathrm{k} \Omega$ load peak amplitude which is applied to one input terminal while the other input terminal is grounded. The power supply availabe is 10 V . To determine the bias current required, I, derive a expression for the total voltage at each of the collectors in terms of $V_{C C}$ and I in the presence of the input signal. Then impose the condition that both transistors should remain well out of saturation with a minimum $v_{C B}$ of approximately 0 V . Thus determine the required value of I. For this design, what differential gaiin is achieved? What is the amplitude of the signal voltage obtaincd between the two collcetors? Assume $\alpha \equiv 1$.

D*7.45 Design a BJT differcntial amplifier that provides two single-ended outputs (at the collectors). The ampifiter is to have a differential gain (to each of the two outputs) of at least $100 \mathrm{~V} / \mathrm{N}$, a differential input resistance $\geq 10 \mathrm{k} \Omega$, and a common-mode gain (to each of the two outputs) no greater than $0.1 \mathrm{~V} / \mathrm{V}$. Use a $2-\mathrm{mA}$ current source for hasing. Give power supplies that allow for +2 V swing at each collcctor Spccify the minimum value that the output resistance of the bias current source must have. The BJTs available have $\beta \geq 100$. What is the valuc of the input common-mode rcsistance when the hias source has the lowest acceptable esistance?
7.46 When the output of a BJT differential amplifier is taken differentially, its CMRR is found to be 40 dB higher han when the output is taken single-cndedly. If the only source of common-mode gain when the output is taken differentially is the mismatch in collector resistances, what must this misismatch be (in percent)?
*7.47 In a particular BJT differential amplifier, a productio crror results in one of the transistors having an emitter-base grounded, how will the emittcr bias current split belween the two rransistors? If the output resistance of the current source is $1 \mathrm{M} \Omega$ and the resistance in each collector $\left(R_{c}\right)$ is $12 \mathrm{k} \Omega$, find the common-mode gair obtained when the output is taken differentially. Assume $\alpha \simeq 1$.

SECTION 7.4: OTHER NONIDEAL CHARACTERISTICS OF THE differential amplifier

D7.48 An NMOS differential pair is to be used in an mplifier whose drain resistors arc $10 \mathrm{k} \Omega \pm 1 \%$. For the pair, $k_{n} W / L=4 \mathrm{~mA} / \mathrm{V}^{2}$. A decision is to be made concerning the erential output, contrast the differential gain and input offse voitage for the two possibilities.

D7.49 An NMOS amplifier, whose designed operating point is at $V_{O v}=0.3 \mathrm{~V}$, is suspected to have a variability of V of $\pm 5 \mathrm{mV}$, and or V / L and R_{D} (independenty) of $\pm 2 \%$. What is the worst-case input ofserition to this total offset? If you used a variation of one of the drain resistors to reduce the eutput offset to zcro and thereby compensate for the uncerainties (including that of the other R_{y}), what percentage change from nominal would you require? If by selection you reduced the contribution of the worst cause of offset by a fac tor of 10 , what change in R_{D} would be needed?
7.SO An NMOS differential pair operating at a hias current of $100 \mu \mathrm{~A}$ uses transistors for which $k_{n}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and offset voltage under the conditions that $\Delta R_{D} / R_{D}=5 \%$, $\Delta(W / L) /(W / L)=5 \%$, and $\Delta V_{+}=5 \mathrm{mV}$. In the worst case, wha might the total offset be? For the usual case of the three effects being independent, what is the offset likely to be? (Hint: For the latter situation, usc a root-sum-of-squares computation.)
7.51 A differential amplifier using a $600-\mu \mathrm{A}$ crnitter bias source uses two well-matched transistors hut collector load socsistors that are mismatchcd by 10%. What input offset volt age is required to reduce the differential output voltage to 7ero?
7.52 Λ differential amplificr using a $600-\mu \mathrm{A}$ emitter bia source uses two transistors whose scale currents I_{s} differ by 10%. If the two collector resistors are well matched, find th esulting input offset voltagc.
7.53 Modify Eq. (7.125) for the case of a differential amplifier having a resistance R_{E} connected in the emitter of each transistor. Let the bias current source be I.
7.54 A differential amplifier uses two transistors whosc β values are β_{1} and β_{2}. If evcrything clsc is matched, show that the input offset voltage is approximately $V_{T}\left[\left(1 / \beta_{1}\right)-\left(1 / \beta_{2}\right)\right]$ Evaluate $V_{\text {os }}$ for $\beta_{1}=100$ and $\beta_{2}=200$. Assume the differen al source resistance to be zero.
7.55 A differential amplifier uses two transistors having vacs of 100 V and 300 V . If everything else is matched, find
the resulting input offset voltage. Assume that the two transis tors are intended to be biased at a $V_{C E}$ of about 10 V .
*7.56 Λ differcntial amplifier is fed in a balanccd or pushpull manner with the source resistance in series with each base being R_{s}. She that a mismat. ΔR_{s} between the values age of approximatcly $(I / 2 \beta) \Delta R$.
7.57 Onc approach to "offsel correction" involves the adjustment of the valucs of $R_{C 1}$ and $R_{C 2}$ so as to reduce the differential output voltage to 7 ero when both input terminals are groundce. This offset-nuling process can he accomplished by utilizing a potentioncterer in the collcctor circuit, as shown in Fig. P7.57. We wish to find the potentiometer setting, rep R_{C}, that is required for nulling the output uffeet voluse ${ }_{R_{C} \text { l }}$, tha tis from:
(a) $R_{C 1}$ heing 5% higher than nominal and $R_{C 2} 5 \%$ lower tha nominal
(b) Q_{1} having an area 10% larger than that of Q_{2}

FIGURE P7.57

1.58 A differential amplifier for which the total enituer bias current is $600 \mu \mathrm{~A}$ uses transistors for which β is specified to lie between 80 and 200 . What is the largest possible input bias current? The smallest possihle input bias current? The argest possiblc inpul offset current
7.59 A BJT differential amplifier, opcrating at a bias cur rent of $500 \mu \mathrm{\Lambda}$, employs collector resistors of $27 \mathrm{k} \Omega$ (each解 cmploys a B.JT whose emitter voltage is -5 V . What are th
positive and negative limils of the input common-mode range of the amplifier for differential signals of $\leq 20-\mathrm{mV}$ pe amphitude, applied in a halanced or push-pull fashion?
**7.60 In a particular BJT differential amplifier, a produc tion error results in one of the transistors having an emitterbase junction area twice that of the other With both inpu grounded, find the current in each of the two transistors and hence the dc offset voltage at the oulput, assuming that the ollector resistances are equal. Use small-signal analysis find the input voltage that would restore current balanco the diffcrential pair. Rcpeat using large-signal analysis and compare results. Also find the input bias and offset current assuming $I=0.1 \mathrm{~mA}$ and $\beta_{1}=\beta_{2}=100$.
07.61 A large fraction of mass-produced differential amplifier modules cmploying $20-\mathrm{k} \Omega$ collector resistors found to have an input offset voliagc ranging from +3 mV to -3 mV . If the gain of the input diffcrential stage is $90 \mathrm{~V} / \mathrm{V}$, by what amount must onc collector resistor be adjusted to reduce the input offset to zero? If an adjustument mechanism is ingly lowering the other, what resistance change is needed Suggest a suitable circuit using the existing collector resistors and a potentiometer whose moving element is connected to $v_{c c}$. What value of polentiometer resistance (specified to significant digit) is appropriate?

SECTION 7.5: THE DIFFERENTIAL AMPLIFIE

 WITH ACTIVE LOADD7.62 In an active-loaded differential amplifier of the form hown in Fig. 7.28(a), all transistors are characterized by $\mathrm{K}^{\prime} W / L=3.2 \mathrm{~m} \Lambda / \mathrm{V}^{2}$, and $\left|V_{A}\right|=20 \mathrm{~V}$. Find the bias curren
.63 In a version of the active-loaded MOS differentia mpluier shown in Fig. 7.28(a), all transistors have $k^{\prime} W / L=$ $0.2 \mathrm{~mA} \sqrt{ }$ and $\left|V_{A}\right|=20$. For $V_{D l}=5 \mathrm{~V}$, with the input ar ground, and (a) $I=1.00 \mu \mathrm{~A}$ or (b) $I=400 \mu \mathrm{~A}$, calculate the inear range of v_{o}, the g_{m} of Q_{1} and Q_{2}, the output resistances of Q_{2} and Q_{4}, the total output resistance, and the voltage gain
.64 Consider the active-loaded MOS diffcrcntial amplifier Fig. 7.28 (a) in two cases
(a) Current-source I is implemented with a simple curient пиiroo
b) Curient-source I is implemented with the modified Wilson current nuriur shown in Fig. P7.64.
Recalling that for the simple mirror $R_{S S}=\left.r_{o}\right|_{Q_{s}}$ and for the Wilson mirror $R_{S S} \equiv g_{m i} r_{07} r_{o s}$, and assuming that all transis ors have the same $|V|$ and $k^{\prime} W / L$, show that for case (a)

$$
\text { CMRR }=2\left(\frac{V_{A}}{V_{O K}}\right)^{2}
$$

FIGURE P7.64

and for case (b)

$$
\mathrm{CMRR}=\sqrt{2}\left(\frac{V_{A}}{V_{O V}}\right)^{3}
$$

where $V_{o v}$ is the overdrive voltage that corresponds to a drain current of $I / 2$. For $k^{\prime} W / L=10 \mathrm{~mA} / \mathrm{V}^{2}, I=1 \mathrm{~mA}$, and $V_{A}=10 \mathrm{~V}$, find CMRR for both cascs.
D*7.65 Consider an active-loaded differential amplifier such as that shown in Fig. 7.28(a) with the bias current source implemented with the modified Wilson mirror of Fig. P7. 64 with $I=100 \mu \mathrm{~A}$. The transistors have $\left|V_{t}\right|=0.7 \mathrm{~V}$ and $k^{\prime}(W / L)=800 \mu \mathrm{~A} / \mathrm{V}^{2}$. What is the lowest value of the total power supply $\left(V_{D D}+V_{S s}\right.$) that allows each transistor to operate with $\left|V_{D S}\right| \geq\left|V_{G S}\right|$?
7.66 (a) Skech the circuit of an active-loaded MOS dif ferential amplifier in which the input transistors are cascoded, and a cascode current nuirror is used for the load.
(b) Show that if all transistors are operated at an overdrive volt age $V_{O V}$ and have equal Farly voltages $\left|V_{A}\right|$, the gain is given by

$$
A_{d}=2\left(V_{A} / V_{O V}\right)^{2}
$$

Evaluate the gain for $V_{o y}=0.25 \mathrm{~V}$ and $V_{4}=20 \mathrm{~V}$.
7.67 The differential amplificr in Fig. 7.32(a) is operated with $I=100 \mu \mathrm{~A}$, with devices for which $V_{A}=160 \mathrm{~V}$ and $\beta=$ 100. What diferenial ippur resistance, ouput equivalent transconductance, and open-circuit voltage gain would you expect? What will the voltage gain be if the input resistance of the subsequent stage is $100 \mathrm{k} \Omega$?

D*7.68 Design the circuit of Fig. 7.32 (a) using a basic current minror to implement the current source I. It is required that the
equivalent transconductance be $5 \mathrm{~mA} / \mathrm{V}$. Use ± 5-V power supplies and BTTs that have $\beta=150$ and $V_{\mathrm{s}}=100 \mathrm{~V}$. Give the conplete circuit with component values and specify the differentia input resistance $R_{i d}$, the output resistance $R_{o r}$, the open-circuit voltage gain $A_{t b}$ the input bias current, the input common-mod range, and the common-mode input resistance.
*7.69 Repeat the design of the amplifier specified in Problem 7.68 utilizing a Widlar current source [Fig. 6.62] upply the hias current. Assume that the largest resistance available is $2 \mathrm{k} \Omega$.
D7.70 Modiify the design of the amplifier in Problem 7.68 by connecting emitter-degeneration resistances of values that by connecting emilier-degeneration resistances
7.71 An active-loaded bipolar differential amplifier such as that shown in Fig. 7.32 (a) has $\Lambda=0.5 \mathrm{~mA}, V_{A}=120 \mathrm{~V}$, and $\beta=150$. Find $G_{m,}, R_{o}, A_{d}$, and $R_{i d}$. If the bias-current source implemented with a simple npn current mirror, find $R_{E E}, A_{c m}$, and MR . F the anplicris (ic 5 kS in series with the ase lead of each of Q and O) find the overall differential voltage gain.
7.72 Consider the differential amplifier circuit of Fiy. 7.32(a) witb the two input terminals tied together and an input common-mode signal $\nu_{i c m}$ applied. Let the output resistance of the pup rawsistors be denoled β. Assuming that β of the mpansistors is high usc the current transfer ratio of the nirror to show that there will be an output current of $v_{\text {icm }} / \beta_{p} R_{E E}$. Thus, show that the common-mode transconductance is $1 / \beta_{p} R_{E E}$. Use this result together with thc differential transconductance G_{m} (derived in the text) to tind an alternative measure of the common-mode rejection. Observe that this result differs from the CMRR expression in Eq. (7.174) by a factor of 2 , which is simply the ratio of the output resistance for common-mpus (r) r) 7.73 Repar Problin
*.73 Repeat Problem 7.22 for the case in which the currenl mirror is replaced with a wison miror. Show that in this case the output current will be $v_{\text {ical }} / \beta_{p}^{2} R_{\text {RF }}$. Find the com-mon-mode transconduclance and the ratio $G_{m m o m} / G_{m}$.
7.74 Figure P 7.74 shows a differential cascode amplifier with an active load formed by a Wilson current misror. Utilizing the expressions derived in Chapter 6 for the outpul resistance of a bipolar cascode and the output resistance of the Wilson mirror, and assuming all transistors to be identical, show that the diffcrential voltage gain A_{d} is given by

$$
A_{d}=\frac{1}{3} \beta g_{g_{m}} r_{\theta}
$$

Evaluate A_{d} for the case $I=0.4 \mathrm{~mA}, \beta=100$, and $V_{A}=120 \mathrm{~V}$.

FIGURE P7.74

7.75 Consider the bias design of the Wilson-loaded casode diffcrential amplifier shown in Fig. P7.74.
(a) What is the largest signal voitage possible at the outpu without Q_{7} saturating? Assume that the CB junction conduct hen the volage across it exceeds 0.4 V
What should the de bias voltage established at the outpu of 1.5 V ?
Wative gative output signal swing of 1.5 V ?
, $v_{c i}$? the upper himit on the input common-mode voit
7.76 Гigure P7 76 shows a modified cascode differentia mplifier. Here \dot{Q}_{3} and Q_{4} arc the cascode transistors. However, the manner in which Q_{3} is connected with its base current feeding the current mirror $Q_{7}-Q_{8}$ resuits in very interesting input properties. Note that for simplicity the cir cuit is shown with the base of Q_{2} grounded.

FIGURE P7. 76

(a) With $v_{I}=0 \mathrm{~V}$ de, find the input bias current t_{B} assuming all transistors have equal value of β. Compare the case without the $Q_{7}-Q_{8}$ connection.
(b) With $v_{l}=0 \mathrm{~V}(\mathrm{dc})+v_{L^{\prime}}$, find the input signal current i_{b} and hence the input differential resistance $R_{i d}$. Compare with the case the emitter currents of Q_{1} and Q_{2} are very nearly the
7.77 Utilizing the expression for the current transfer ratio of the Wilson mirror derived in Section 6.12 .3 (Eq. 6.193) denive an expression for the systematic offset voltage of a BJT differential amplifier that utilizes a pnp Wilson current
mirror load. Evaluate $V_{o s}$ for $\beta_{p}=50$.
7.78 For the folded-cascode differential amplifier of Fig. 7.35, find the value of $V_{\text {mias }}$ that results in the largest possible positive output swing, while kecping Q_{3}, Q_{4}, and the pnp tranSistors, that reahize the current sources out of saturation. Assume $V_{C C}=V_{B l}=5 \mathrm{~V}$. If the dc level at the output is 0 V , find the $\beta_{P}=50, \beta_{v}=150$, and $V_{4}=120 \mathrm{~V}$ find $G_{2} \quad$ For $l=0.4 \mathrm{~mA}$.
7.79 For the BiCMOS differential amplifier in Fig. P7.79 let $V_{D D}=V_{S S}=3 \mathrm{~V}, I=0.4 \mathrm{nA}, k_{p}^{\prime} W / L=6.4 \mathrm{~mA} / \mathrm{V}^{2} ;\left|V_{A}\right|$
for p-channel MOSFETs is $10 \mathrm{~V},\left|V_{A}\right|$ for $n p n$ transistors is 120 V . Find G_{m}, R_{o}, and A^{\prime}

FIGURE P7.79

SECTION 7.6: FREQUENCY RESPONSE OF TH

 DIFFERENTIAL AMPLIFIER7.80 A MOSFET differential amplifier such as thal shown in Fig. 7.36 (a) is biased with a current source $I=200 \mu \mathrm{~A}$. The transistors have $W / L=25, k_{n}^{\prime}=128 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{\Lambda}=20 \mathrm{~V} . C_{g s}=$ each. Also, therc is a 90 - fF capacitive load between each drain and ground.
(a) Find $V_{o v}$ and g_{m} for each transistor
(b) Find the differential gain A
(b) If the input signal source has a small resistance $R_{\text {sig }}$ and thus the frequency response is determined primarily by the output pole, estimate the $3-\mathrm{dB}$ frequency f_{H}.
(d) If, in a different situation, the amplifier is fed symmetrically with a signal source of $40 \mathrm{k} \Omega$ resistance (i.e., $20 \mathrm{k} \Omega$ in series with each gate terminal), use the open-circuit timeconstants method to estimate f_{b}.
7.81 The amplifier specificd in Problem 7.80 has $R_{S S}=100 \mathrm{k} \Omega$ and $C_{55}=0.2 \mathrm{pF}$. Find the 3 -dB frequency of the CMRR.
7.82 A BJT differential amplifier operating with a 11 m mA current source uses transistors for which $\beta=100, f_{T}=600 \mathrm{MH}$ $C_{\mu}=0.5 \mathrm{pF}$, and $\tau_{2}=100 \Omega$. Each of the collector resistance is $10 \mathrm{kS} \Omega$, and r_{θ} is very large. The amplifier is fed in a symmetrical fashion with a source resistance of $10 \mathrm{k} \Omega$ in seric with each of the two input terminals.
(a) Sketch the differcntial half-circuit and its high-frequency equivalent circuit.
(h) Determinc the low-frequency value of the overall differ ential gain.
(c) Use Miler's theorem to determine the input capacilance and hence estimate the $3-\mathrm{dB}$ frequency f_{H} and the gain bandwidth produc
.83 The differential annplifier circuit specified in Prob lem 7.82 is modificd by including $100-\Omega$ resistor in each the emitters. Determine the low-frequency value of the over all differential volage gain. Also, use the method of opcn circuit time-constants to obtain an estimate for f_{H}. Toward that end. note that the resistance R_{μ} scen by C_{μ} is given by

$$
R_{\mu}=\left[\left(R_{\text {sig }}+r_{s}\right) \| R_{\text {in }}\left(1+G_{m} R_{C}\right)+R_{C}\right.
$$

where

$$
\begin{aligned}
& R_{\mathrm{iv}}=(\beta+1)\left(R_{e}+r_{e}\right) \\
& G_{i n}=\frac{g_{n i}}{1+g_{m} R_{e}}
\end{aligned}
$$

The resistance R_{π} seen by C_{π} is given by

$$
R_{\pi}=r_{\pi} \| \frac{R_{\mathrm{xy}}+r_{\varepsilon}+R_{e}}{1+g_{m} R_{e}}
$$

Also delermine the gain-bandwidth product.

D7. 84 It is required to increase the $3-\mathrm{dB}$ frequency of the differential amplificr specified in Problcm 7.82 to 1 MHz by adding an emitter resistance R_{e}. Use thc open-circuit timeconstants method to perform this design. Specifically, use the formulas for R_{μ} and R_{n} given in the statement for Problem 7.83 to determine the required valuc of the factor $\left(1+g_{m} R_{e}\right.$ and the calculations. Whal does the dc grain become? Also deter mine the reculting gin-bandwidth producl
7.85 A current-mitror-loaded MOS differential amplifier is biased with a current source $I=0.6 \mathrm{~mA}$. The two NMOS transistors of the differential paii are operating at $V_{o v}=0.3 \mathrm{~V}$, and
the PMOS devices of the mirror are operating at $V_{o v}=0.5 \mathrm{~V}$, The Early voltage $V_{n}=\left|V_{i}\right|=9 \mathrm{~V}$. The total capacitance at the input node of the mirror is 0.1 pF and that at the output node of the amplifier is 0.2 pF . Find the dc value and the frequencies of the poles and zero of the differential voltage gain.
7.86 A differential amplifier is biased by a curtent source having an 10 row 1 MQ and an tance or 10 pF . The differential urin extibits a dominant pole at 500 kHz . What are the poles of the CMRR?
7.87 For the differential amplifier specified in Problem 7.82 , find the dc gain and f_{H} when the circuit is modificd by climinating the collcctor resistor of the left-hand-side transistor and the input signal is fed to the base of the let-hand-side transistor Le the surce resistance be 20 kr ind nethet r_{x} (Hint Refer to Fig. 6.57.)
7.88 Consider the circuit of Fig. P7.88 for the case: $I=$ $200 \mu \mathrm{~A}$ and $V_{o \mathrm{v}}=0.25 \mathrm{~V}, R_{\mathrm{cig}}=200 \mathrm{k} \Omega, R_{D}=50 \mathrm{kS} \Omega, C_{g \mathrm{~s}}=$ $C_{\text {gd }}=1 \mathrm{pFF}$. Find the dc gain, the high-frequency poles, and an estimate of f_{H}.

FIGURE P7.88

FIGURE P7.89

7.89 For the circuit in Fig. P7.89, let the bias be such tha cach transistor is operailing at $100-\mu \mathrm{A}$ collector current. Let the BJTs have $\beta=200, f_{T}=600 \mathrm{MHz}$, and $C_{\mu}=0.2 \mathrm{pF}$, and negle r_{y} and r_{x} Also, $R_{s}=R_{c}=50 \mathrm{k} \Omega$. Find the low-trequency the input differential resistance, the high-frequency poles, an an estimate of $f_{H t}$

SECTION 7.7: MULTISTAGE AMPLIFIER

7.90 Consider the circuit in Fig. 7.40 with the device goometries (in $\mu \mathrm{m}$) shown at the hotom of this page
Let $I_{\text {REF }}=225 \mu \mathrm{~A},\left|V_{d}\right|=0.75 \mathrm{~V}$ for all devices, $\mu_{n} C_{o r}$ $180 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=60 \mu \mathrm{~A} / V^{2},\left|V_{A}\right|=9 \mathrm{~V}$ for all devices $V_{D D}=V_{s s}=1.5 \mathrm{~V}$. Determine thc width of Q_{6}, W, that wil age. Then, for all devices evaluate I |V $\left.|V| \frac{1}{} \right\rvert\,$ and r Provide your results in a table similar to Table 7.1. Also find A_{1}, A_{2}, the dc open-loop voltage gain, the input commonmode range, and the output voltage range. Neglect the effect of V_{A} on the bias current.
*7.91 In a particular dcsign of the CMOS op amp of Fis. 7.40 the designer wishes to investigate the effets
increasing the W/L ratio of hoth Q_{1} and Q_{2} by a factor of 4 . Assuming that all othcr parameters are kept unchanged, refer to Example 7.3 to help you answer the following questions:
(a) Find the resulting change in $\mid V_{O V}$ and in g_{m} of Q_{1} and Q_{2}. (b) What change results in the voltage gain of the input stage? In the overall voltage gain?
(c) What is the effect on the input offset voltages? (You might wish to refer to Section 7.4)
7.92 Consider the amplifier of Fig. 7.40 , whose parameters arc specified in Examplc 7.3. If a manufacturing error results in the W / L ratio of Q_{7} being $50 / 0.8$, find the current that Q_{7}
will now conduct. Thus find the systematic offset voltage that will now conduct. Thus find the systematic offset voltage chat
will appear at the output. (Use the results of Example 7.3) Assuming that the open-loop gain will remain approximately unchanged from the value found in Example 7.3, find the corresponding valuc of input offset voltage, $V_{0 S}$.
7.93 Consider the input stage of the CMOS op amp in Fig. 7.40 with both inputs grounded. Assume that the two threshold voltages of Q, perf Q have a mismatch ΔV Show

Transistor	O_{1}	Q_{2}	Q_{3}	0_{4}	Q_{5}	Q	Q ${ }_{7}$	\bigcirc_{B}
W/L	30/0.5	30/0.5	10/0.5	10/0.5	60/0.5	W/0.5	60/0.5	60/0.5

hat a current $g_{n 3} \Delta V_{t}$ appears at the output of the lirst slage What is the corresponding input olfset voltage? Evaluate this $V_{t}=2 \mathrm{mV}$. (Use Uhe resulis of Example 7.3.)
7.94 A CMOS op amp with the topology in Fig. 7.40 has $g_{m 1}=g_{m 2}=1 \mathrm{~mA} / \mathrm{V}, g_{m 6}=3 \mathrm{~mA} / \mathrm{V}$, the total capacilance between $g_{m 1}=g_{m 2}=1 \mathrm{~mA} /, g_{m 6}=3 \mathrm{~mA} /$, , the tota capacilance between
nocde D_{2} and ground $=0.2 \mathrm{pF}$, and the total capacitance between the output node and ground $=3 \mathrm{pF}$. Find the value of C_{C} that results in $f_{t}=50 \mathrm{MHz}$ and verify that f_{t} is lower than f_{z} and $f_{P_{2}}$
*7.95 Figure P7.95 shows a bipolar op-amp circuit that reambles the CMOS op amp of Fig 740. Here, the input ifferential pair $Q_{1}-Q_{2}$ is loaded in a current mirror formed by Q_{3} and Q. The second stage is formed by the current-sourcebaded common-emitter transistor Q_{5}. Unlike the CMOS circuit ere therc is an output stage formed by the emitter follower Q_{6} apacitor C_{C} is placed in the negative-feedback path of Q_{5} and hus is Miller-multiplied by the gain of Q_{s}. The resulting large apacitance forms a dominant low-frequency pole with $r_{\pi 5}$, thu roviding the required uniform $-20-\mathrm{dB} /$ decade gain rolloff. Al ansistors have $\beta=100,\left|V_{\text {Bf }}\right|=0.7 \mathrm{~V}$, and $\varepsilon_{o}=^{\circ} \infty$

For inputs grounded and output held ato (by negative alack, not shown) tind the emutter currenis of all ransistors. b) Calculate the dc gain of the amplifier with $R_{t .}=10 \mathrm{k} \Omega$. c) With R_{L} as in (b), find the value of C_{c} to obtain a 3-dB equency of 100 Hz . What is the value of f_{t} that results?
7.96 It is required to design the circuit of Fig. 7.42 to prode a bias current Λ_{B} of $225 \mu \mathrm{~A}$ with Q_{8} and Q_{9} as inatched devices having $W / L=60 / 0.5$. Transistors ℓ_{10}, Q_{11}, and ℓ_{13}
are to be identical and must have the samc g_{m} as Q_{s} and Q Transistor ℓ_{12} is to be for imes as wide as ℓ_{13}. Lat Q_{1} $3 k_{p}^{\prime}=180 \mu \mathrm{AV}$, and $V_{D D}=v_{S S}=1.5$. Find he requied value of K_{B}. What is the votage drop across κ_{B}. Kiso specif the W / L ratios of Q_{10}, Q_{11}, Q_{12}, and Q_{13} and give the expecte cc voltages at the gates of Q_{12}, Q_{10}, and Q_{8}
.97 A BJT diffcrential amplifier, blased to have $r_{c}=50 \Omega$ and uthizing two 100$)-\Omega$ emitter resistors and $5-\mathrm{k} \Omega$ loads, drives scond difercnial stage biased to have $r_{e}=20 \Omega$. All BJTs have $\beta=120$. What is the voltagc gain of the first stage? Also find the input resistance of the first stage, and the current gain fro the input of the fir
.98 in the mulistage amplifier of Fig. 7.43, cmitter resistons are to be introduced- 100Ω in the enititer lead of cach of he firt-stage transistors and 25Ω for each of the second voltage gain of the first the effct on anput resistance,
7.99 Considcr the circuit of Fig. 7.43 and its output resi tance. Which resistor has the most effect on the output resistance What shome this rasion he changed to the oupu resistanco to be reduced by a factor of 2 ? What will the amplifier gain become after this change? What other change can you make D 7.100 (a) If He
D*7.100 (a) If, in the multistage amplifier of Fig. 7.43 he resistor R_{5} is replaced by a constant-current source $=1 \mathrm{~mA}$ an the thation is essentilly unarfected, whe does the overall voltage gain of the amplifier becom

EIGURE P7. 101

Assume that the output resistance of the current source is very high. Use the results of Example 7.5.
(b) With the modification suggested in (a), what is the effect of the change on output resiscance? What is the overall gain hal amplifier (bcfore modification) has an output resictanc of 152 S and a voltage gain of $8513 \mathrm{~V} / \mathrm{V}$. What is its gain when loaded by 100 S? Comment. Use $\beta=100$.
7.101 Figure P7.101 shows a three-stage amplifier in which the stages are directly coupled. The amplifier, howwhich the slages are directly coupled. The amplifier, how response falls off at low frequencies. For our purposes here we shall assume that the capacitors arc large enough to act as perfect short circuits at all signal frequcncies of interest.
(a) Find the dc bias current in each of the thrce transistors Also find the dc voltage at the output. Assume $\left\langle V_{B E}\right|=0.7 \mathrm{~V}$ $\beta=100$, and neglcct the Early effect.
b) Find the input resistance and the output resistance
(c) Lse the current-gain method to evaluate the voltage gain $\%_{o} / \sigma_{\text {s. }}$.
(l) Find the frequency of the high-frequency pole formed at the interface between the first and the second stages. Assume at $C_{12}=2 \mathrm{pF}$ and $C_{i 2}=10 \mathrm{pF}$
***7.102 For the circuit shown in Fig. P7.102, which ases a folded cascode involving transistor $Q_{3 \text {, }}$, all transistors have $V_{B E}=0.7 \mathrm{~V}$ for the currents involved, $V_{A}=200 \mathrm{~V}$, and which operates in a Class B mode (we will study this in Chapter 14) to provide an increased negative output swing for low-resistance loads.
(a) Perform a bias calculation assuming $\left|V_{B E}\right|=0.7 \mathrm{~V}$, high $\beta, V_{s}=\infty, v_{1}=v_{v}=0 \mathrm{~V}$, and v_{0} is stabilized by feedback
about 0 V . Find R so that the reference current $I_{\text {REF }}$ is $100 \mu \mathrm{~A}$. What are the voitages at all the labeled nodes? (b) Provide in tabular form the bias currents in all transistors together with g_{m} and r_{o} for the signal transistors $\left(Q_{1}, Q_{2}, Q_{3}\right.$, Q_{1}, and Q_{5}) and $B=100$, $Q_{n, \text {, and }} Q_{G}$
(c) Now, using $\beta=10$, find the voltage gain $v, A v-v)$ and in the process, verify the polarity of the input terminals. (e) Find the input and output resistances.
(f) assuming $\left|V_{C \text { Crsal }}\right|=0.3 \mathrm{~V}$? from the output to ground. At the posinive resistance connected the output signal swing, find the -smallest load resistance to can be driven if one or the othcr of Q, or Q is allowed to cut off

D***7.103 In the CMOS op amp shown in Fig. P7.103, all MOS devices have $V_{t_{i}}^{\prime}=1 \mathrm{~V}, \mu_{n} C_{o x}=2 \mu_{p} C_{o x}=40 \mu \mathrm{~A} / \mathrm{V}^{2}$, $V_{A} \mid=50 \mathrm{~V}$, and $L=5 \mu \mathrm{~m}$. Device withs arc indicatcd on the diagram as multiples of W, where $W=5 \mu \mathrm{~m}$.
(a) Design R to provide a $10-\mu \mathrm{A}$ referencc current. (b) Assuming $v_{o}=0 \mathrm{~V}$, as established by external feedback, perform a bias analysis, finding all the labeled node voltages, $V_{G S}$ and $I_{\text {f }}$ for all transistors.
(c) Provide in table form I_{D}, V_{G}, g_{m}, and r_{θ} for all devices. (d) Calculate the voltage gain $v_{o} /\left(v_{-}-v\right)$, the input resistance, and the output resistance.
(c) What is the input common-mode range.
(f) What is the output signal range for no load?
(g) For what load resistance connected to ground is the output (h) For a load resistance one-tenth of that found in (g) what is the output signal swing?

FIGURE P7. 102

FIGURE P7.103

Feedback

Introduction 791
8.1 The General Feedback Structure 792
8.2 Some Properties of Negative Feedback 795
83 The Four Basic Feedback Topologies 798
8.4 The Seties-Shum Feedback Anplifier 802
8.5 The Series-Series Feedback. Amplifier 811
8.6 The Shunt-Shunt and Shunt-Sevies Feedback Amplifiers 818
8.7. Determining the loop

Gain 831
8.8 The Stability Problem 834

89 . Effect of Feedback on the Amplifier Poles 836
8. 10 Stability Study Using Bode Plots 845
8. 11 Frequency Compensation 849
8.12 SPICE Simulation

Example 855
Summary 859
Problems 860

Introduction

Most physical systems incorporate some form of feedback. It is interesting to note, though, that the theory of negative feedback has been developed by electronics engineers. In his search for methods for the design of amplifiers with stable gain for use in telephone repeaters, Harold Black, an electronics engineer with the Western Electric Company, invented the feedback amplifier in 1928. Since then the technique has been so widely used that it is almost impossible to think of electronic circuits without some form of feedback, either implicit or explicit. Furthermore, the concept of feedback and its associated theory are currently used in areas other than engineering, such as in the modeling of biological systems.

Feedback can be either negative (degenerative) or positive (regenerative). In amplifie design, negative feedback is applied to effect one or more of the following properties

1. Desensitize the gain: that is, make the value of the gain less sensitive to variations in the value of circuit components, such as might he caused by changes in temperature.
2. Reduce nonlinear distortion: that is, make the output proportional to the input (in other words, make the gain constant, independent of signal level).
3. Reduce the effect of noise: that is, minimize the contribution to the output of unwanted electric signals gencrated, either by the circuit components themselves, or by cxtraneou interference.
4. Control the input and output impedances: that is, raise or lower the input and output impedances by the selection of an appropriate feedback topology.
5. Extend the bandwidth of the amplifier.

All of the desirable properties above arc obtained at the expense of a reduction in gain. It will be shown that the gain-reduction factor, called the amount of feedback, is the factor by which the circuit is desensitized, by which the input impedance of a voltage amplifier is increased, by which the bandwidth is extended, and so on. In short, the basic idea of negative feedback is to trade off gain for other desirable properties. This chapter is devoted to the study of negative-fecdback amplifiers; their analysis, design, and characteristics.
Under certain conditions, the negative feedback in an amplifier can become positive and of such a magnitude as to cause oscillation. In fact, in Chapter 13 we will study the use of positive feedback in the dcsign of oscillators and bistable circuits. Here, in this chapter, however, wc are interested in the design of stable amplifiers. We shall therefore study the stability problem of negative-feedback amplifiers and their potential for oscillation.
It should not be implied, however, that positive feedback always leads to instability. In fact, positive feedback is quite useful in a number of nonregenerative applications, such as the design of active filters, which are studied in Chapter 12.

Before we begin our study of negative feedback, we wish to remind the reader that we have already encountered negative feedback in a number of applications. Almost all op-amp have already encountered negative fecdback in a number of applications. Almost all op-amp
circuits employ ncgative feedback. Another popular application of negative feedback is the use of the emitter resistance R_{F}. to stabilize the bias point of bipolar transistors and to the use of the emitter resistance R_{ℓ} to stabilize the bias point of bipolar transistors and to
increase the input resistance, bandwidth, and linearity of a BJT amplificr. In addition, the increase the input resistance, bandwidth, and linearity of a BJT amplificr. In addition, the
source follower and the emitter follower boih employ a large amount of negative feedback. The question then arises about the need for a formal study of negative feedback. As will be appreciated by the end of this chapter, the formal study of feedback provides an invaluable tool for the analysis and design of electronic circuits. Also, the insight gained by thinking in lerms of feedback can be extremcly profitable.

36 8. 8.1 THE GENERAL FEEDBACK STRUCTURE

Figure 8.1 shows the basic structure of a feedback amplifier. Rather than showing voltages and currents, Fig. 8.1 is a signal-flow diagram, where each of the quantities x can represent either a voltage or a current signal. The open-loop amplifier has a gain Λ; thus its output x_{o} is related to the input x_{i} hy

FIGURE 8.1 General structure of the feedback amplifier. This is a signal-flow diagram, and the quantitics x Fraresent either voltage or current signals.

The output x_{o} is fed to the load as well as to a feedback network, which produces a sample of the output. This sample x_{f} is related to x_{o} hy the feedback factor β,

$$
\begin{equation*}
x_{f}=\beta x_{o} \tag{8.2}
\end{equation*}
$$

The feedback signal x_{f} is subtracted from the source signal x_{s}, which is the input to the complete feedback amplifier, ${ }^{1}$ to produce the signal x_{i}, which is the input to the basic amplifier,

$$
\begin{equation*}
x_{i}=x_{s}-x_{j} \tag{8.3}
\end{equation*}
$$

Here we note that it is this subtraction that makes the feedback negative. In essence, negative feedback reduces the signal that appears at the input of the basic amplifier

Implicit in the description above is that the source, the load, and the feedback network do not load the basic amplifier. That is, the gain A does not depend on any of these three networks. In practice this will not be the case, and we shall have to find a method for casting a real circuit into the ideal structure depicted in Fig. 8.1. Figure 8.1 also implies that the forward transmission occurs entirely through the basic amplifier and the reverse transmission occurs entircly through che feedbaick nctwork.

The gain of the feedback amplifier can be obtained by combining Eqs. (8.1) through (8.3):

$$
\begin{equation*}
A_{f} \equiv \frac{x_{o}}{x_{s}}=\frac{A}{1+A \beta} \tag{8.4}
\end{equation*}
$$

The quantity $A \beta$ is called the loop gain, a name that follows from Fig. 8.1. For the feedback to be negative, the loop gain $A \beta$ should be positive; that is, the feedback signal x_{f} should have the same sign as x_{s}, thus resulting in a smaller difference signal x_{i}. Equation (8.4) indicates that for positive $A \beta$ the gain-with-feedback A_{f} will be smaller than the open-loop gain A by the quantity $1+A \beta$, which is called the amount of feedback.

If, as is the case in many circuits, the loop gain $A \beta$ is large, $A \beta \gg 1$, then from Eq. (8.4) it follows that $A_{f} \approx 1 / \beta$, which is a very interesting result: The gain of the feedback amplifier is almost entirely determined by the feedback network. Since the fecdback network usually consists of passive components, which usually can be chosen to be as accurate as one wishes, the advantage of negative feedback in obtaining accurate, predictable, and stable

[^29]gain should be apparent. In other words, the overall gain will have very little dependence on the gain of the basic amplifier, A, a desirable property because the gain A is usually a function of many manufacturing and application parameters, some of which might have wide tolerances. We have scen a dramatic illustration of all of these effects in op-amp circuits, where the closed-loop gain (which is another name for the gain-with-feedback) is almost entirely determined by the feedback elements.

Equations (8.1) through (8.3) can be combined to obtain the following expression for the feedback signal x_{f}

$$
\begin{equation*}
x_{f}=\frac{A \beta}{1+A \beta} x_{s} \tag{8.5}
\end{equation*}
$$

Thus for $A \beta \geqslant 1$ we see that $x_{f} \simeq x_{s}$, which implies that the signal x_{i} at the input of the basic amplificr is reduced to almost zero. Thus if a large amount of negative feedback is employed, the feedback signal x_{f} becomes an almost identical replicia of the input signal x_{s}. An outcome of this property is the tracking of the two input terminals of an op amp. The difference between x_{s} and x_{f}, which is x_{i}, is sometimes referred to as the "error signal." Accordingly, the input differencing circuit is often also called a comparison circuit. (It is also known as a
mixer.) An expression for x can be easily determined as mixer.) An expression for x_{i} can be easily determined as

$$
\begin{equation*}
x_{i}=\frac{1}{1+A \beta} x_{s} \tag{8.6}
\end{equation*}
$$

from which we can verify that for $A \beta \gg 1, x_{i}$ becomes very small. Observe that negative feedback reduccs the signal that appears at the input terminals of the basic amplifier by the amount of feedback, $(I+A B)$.
81. The notimverting op-amp configuration shown in Fis. E8 1 provides a diect implementation of the a feedback loop of Fig 8.1
(a) Assume that the op aimp has infinite inpultesittance and cro output resistance Find fan expression for the fectback factor β. (b) It the open loop witage gain $A=10^{4}$, find R, R to obtain a closed-loop
 (e) I A decreases by 20% what is the cortesponding decrease in A ?

FIGURE E8. 1
Ans. (a) $\beta=R_{1} /\left(R_{1}+R_{2}\right)$, (b) 9.01 , (c) 60 dB , (d) $10 \mathrm{~V}, 0.999 \mathrm{~V}, 0.001 \mathrm{~V}$; (e) 0.02%

3

8.2 SOME PROPERTIES OF NEGATIVE FEEDBACK

The properties of negative feedback were mentioned in the Introduction. In the following we shall consider some of these properties in more detail

8.2.1 Gain Desensitivity

The effect of negative feedback on descnsitizing the closed-loop gain was demonstrated in Exercise 8.1, where we saw that a 20% reduction in the gain of the basic amplifier gave rise Exer a 0.02% reduction in the gain of the closed-loop amplificr. This sensitivity-reduction property can be analytically estahlished as follows:

Assume that β is constant. Taking differentials of both sides of Eq. (8.4) results in

$$
\begin{equation*}
d A_{f}=\frac{d A}{(1+A \beta)^{2}} \tag{8.7}
\end{equation*}
$$

Dividing Eq. (8.7) by Eq. (8.4) yields

$$
\begin{equation*}
\frac{d A_{f}}{A_{f}}=\frac{1}{(1+A B)} \frac{d A}{A} \tag{8.8}
\end{equation*}
$$

which says that the percentage change in A_{f} (due to variations in some circuit parameter) is maller than the percentage change in A by the amount of feedback. For this reason the nount of fcedback, $1+A \beta$, is also known as the desensitivity factor.

8.2.2 Bandwidth Extension

Consider an amplifier whose high-frequency response is characterized by a single pole. It gain at mid and high frequencies can be expressed as

$$
\Lambda(s)=\frac{A_{M}}{1+s / \omega_{H}}
$$

where A_{M} denotes the midband gain and ω_{H} is the upper 3-dB frequency. Application of negative feedback, with a frequency-independent factor β, around this amplifier results in closed-loop gain $A_{j}(s)$ given hy

$$
A_{f}(s)=\frac{A(s)}{1+\beta A(s)}
$$

Substituting for $A(s)$ from Eq. (8.9) results, after a little mamipulation, in

$$
\begin{equation*}
A_{f}(s)=\frac{A_{M} /\left(1+A_{M} \beta\right)}{1+s / \omega_{I I}\left(1+A_{M} \beta\right)} \tag{8.1}
\end{equation*}
$$

Thus the feedback amplifier will have a midband gain of $\Lambda_{M} /\left(1+A_{M} \beta\right)$ and an upper $3-\mathrm{dB}$ frequency $\omega_{H /}$ given by

$$
\begin{equation*}
\omega_{H f}=\omega_{H}\left(l+A_{M} \beta\right) \tag{8.11}
\end{equation*}
$$

It follows that the upper $3-\mathrm{dB}$ frequency is increased by a factor equal to the anount of feedback.
Similarly, it can be shown that if the open-loop gain is characterized by a dominant low frequency pole giving rise to a lower $3-\mathrm{dB}$ frequency ω_{L}, then the feedback amplifier will
have a lower 3-dB frequency ω_{L},

$$
\omega_{l f}=\frac{\omega_{L .}}{1+A_{M} \beta}
$$

Note that the amplitier bandwidth is increased by the same factor by which its midband gain is decreased, maintaining the gain-bandwidth product at a constant value

EXERCISE

82. Consider the nonivietiing op armp circilt of Exercise 81 . Let the opca hoop gain it have a low frequenc Whlte of 10 and a uniform -6 - dB foctave rolloif at ligh frequencies with a 3 dB frequency of 100 Hz Find the low fregucncy gain and the upper 3 -dB frequency of a closed loop amplifer with $R_{=}=1 \mathrm{k} \Omega$ and $R_{2}=9 \mathrm{k} \Omega_{\text {. }}$.
Ans. 9.99 VIV: 100.1 kHz

8.2.3 Noise Reduction

Negative feedback can be cmployed to reduce the noise or interfcrence in an amplifier or more precisely, to increase the ratio of signal to noise. However, as we shall now explain, his noise-reduction process is possible only under certain conditions. Consider the situation illustrated in Fig. 8.2. Figure 8.2(a) shows an amplifier with gain A_{1}, an input signal V_{s}, and oise, or interference, V_{n}. It is assumed that for some reason this amplifier suffers from

(a)

${ }^{3}$ (b)
amplifiers.
ignal-to-noise ratio for this amplifier is
$S / N=V_{s} / V_{n}$
(8.13)

Consider next the circuit in Fig. 8.2(b). Here we assume that it is possible to build anothe amplifier stage with gain A_{2} that does not suffer from the noise problem. If this is the case hen we may precede our original amplifier A_{1} by the clean amplifier A_{2} and apply negativ The output voltage of the circuit in Fig. 8.2(b) can he found by superposition:

$$
\begin{equation*}
V_{o}=V_{s} \frac{A_{1} A_{2}}{1+A_{1} A_{2} \beta}+V_{n} \frac{A_{1}}{1+A_{1} A_{2} \beta} \tag{8.14}
\end{equation*}
$$

Thus the signal-to-noise ratio at the output becomes

$$
\begin{equation*}
\frac{S}{N}=\frac{V_{s}}{V_{n}} A_{2} \tag{8.15}
\end{equation*}
$$

which is A_{2} times higher than in the original case.
We emphasize once more that the improvement in signal-to-noise ratio by the applicaion of feedback is possible only if one can precede the noisy stage by a (relatively) noisefree stage. This situation, however, is not uncommon in practice. The best example is found problem known as power-supply hum. The problem arises because of the large currents that this stage draws from the power supply and the difficulty in providing adequate powersupply filtering inexpeusively. The power-output stage is required to provide large power gain but little or no voltage gain. We may therefore precede the power-output stage by a mall-signal amplifier that provides large voltage gain, and apply a large amount of negative feedback, thus restoring the voltage gain to its original value. Since the small-signal amplifier can be fed from another, less hefty (and hence better regulated) power supply, it will no suffer from the hum problem. The hum at the output will then be reduced by the amount of the voltage gain of this added preamplifier.

Ex enclise

83. Consider a power outpu stage with voltage gain $A_{1}=1$ an input signal $\mathrm{S}_{-}-1 \mathrm{~V}$, and a hum V_{n} of 1 Assume that this power stage is prcceded by a small-signal stage with gain $A_{2}=100 \mathrm{VN}$ and that overall feedhack with $\beta=1$ is applied if $1 /$ and V_{n} remath inchanged, find the signat and noise voltages at the outpul and hence the inprove inen in SAN
Ans. $T V=0.01 \mathrm{~V}: 100(40 \mathrm{~dB}$

8.2.4 Reduction in Nonlinear Distortion

Curve (a) in Fig. 8.3 shows the transfer characteristic of an amplifier. As indicated, the characteristic is piecewisc linear, wilh the voltage gain changing from 1000 to 100 and then to 0 This nonlinear transfer characteristic will result in this amplifier generating a large amount f nonlinear distortion.
The amplifier transfer characteristic can be considerably linearized (i.e., made less nonTcar) through the application of negative feedback. That this is possible should not be too surprising since we have already secn that negative feedback reduces the dependence of the overall closed-loop amplifier gain on the open-loop gain of the basic amplifier. Thus large

FIGURE 8.3 Illustrating the application of negative feedback to reduce the nonlinear distortion in amplifiers. Curve (a) shows the amplifier transfer characteristic without fecdback. Curve (b) shows the
characteristic with negative feedback ($\beta=0$. ol) applied characteristic with negative feedback ($\beta=0.01$) applied.
changes in open-loop gain (1000 to 100 in this case) give rise to much smaller corresponding changes in the closed-loop gain.
To illustrate, let us apply negative feedback with $\beta=0.01$ to the amplifier whose openloop voltage transfer characteristic is depicted in Fig. 8.3. The resulting transfer characteristic of the closed-loop amplifier is shown in Fig. 8.3 as curve (b). Here the slope of the steepest segment is given by

$$
A_{f 1}=\frac{1000}{1+1000 \times 0.01}=90.9
$$

and the slope of the next segment is given by

$$
A_{f 2}=\frac{100}{1+100 \times 0.01}=50
$$

Thus the order-of-magnitude change in slope has been considerably reduced. The price paid, of course, is a reduction in vollage gain. Thus if the overall gain has to be restored, then a preamplifier should be added. This preamplifier should not present a severe nonlinear-distortion problem, since it will be dealing with smaller signals.
Finally, it should be noted that negative feedback can do nothing at all about amplifier saturation, since in saturation the gain is very small (almost 7ero) and hence the amount of feedback is also very small (alnost zero).

8.3 THE FOUR BASIC FEEDBACK TOPOLOGIES

Based on the quantity to be amplified (voltage or current) and on the desired form of output (voltage or current), amplifiers can be classified into four categories. These categories were discussed in Chapter 1. In the following, we shall review this amplificr classification and point out the feedback topology appropriate in each case.

8.3.1 Voltage Amplifiers

Voltage amplifiers are intended to amplify an input voltage signal and provide an output voluge signal. The voltage amplifier is essentially a voltage-controlled voltage source. The input impedance is required to be high, and the output impedance is required to be low. Since the signial source is essentially a voltage source, it is convenient to represent it in terms of a Thévenin equivalent circuit. In a voltage amplifier the output quantity of interest is the output voltage. It follows that the feedback network should sample the output voltage. Also, because of the Thévenin representation of the source, the feedback signal x_{f} should be a voltage that can be mixed with the source voltage in series.

A suitable feedback topology for the voltage amplifier is the voltage-mixing voltagesampling one shown in Fig. 8.4(a). Because of the series connection at the input and the parallel or shunt connection at the output, this feedback topology is also known as seriesshunt fcedback. As will be shown, this topology not only stabilizes the voltage gain but also results in a higher input resistance (intuitively, a result of the series connection at the input) and a lower output resistance (intuitively, a result of the parallel connection at the output), which are desirable properties for a voltage amplifier. The noninverting op-amp configuration of Fig. E8. 1 is an example of series-shunt feedback.

8.3.2 Current Amplifiers

The input signal in a current amplifier is essentially a current, and thus the signal source is most conveniently represented by its Norton equivalent. The output quantity of interest is current; hence the feedback network should sample the output current. The feedback signal should be in current form so that it may be mixed in shunt with the source current. Thus the feedback topology suitable for a current amplifier is the current-mixing current-sampling topology, illustrated in Fig. 8.4(b). Because of the parallel (or shunt) connection at the input, and the serics connection at the output, this fecdback topology is also known as shuntseries feedback. As will be shown, this topology not only stabilizes the current gain but also results in a lower input resistance, and a higher output resistance, both desirable properties for a current amplifier.

An example of the shunt-scries feedback topology is given in Fig. 8.5. Note that the bias details are not shown. Also note that the current being sampled is not the output current, but the equal current flowing from the source of Q_{2}. This use of a surrogate is done for circuitdesign convenience and is quite usual in circuits involving current sampling.

The reference direction indicated in Fig. 8.5 for the feedback current I_{f} is such that it subtracts from $I_{s .}$. This reference notation will be followed in all circuits in this chapter, since it is consistent with the notation used in the general feedback structure of Fig. 8.1. positive. The reader is , for the feedback to be negative, the loop gain $A \beta$ should be Fig. 8.5, A is negative and β is negative.

It is of uimost importance to be able to ascertain qualitatively (and quickly) the feedback polarity (positive or negative). This can be done by "following the signal around the loop." For instance, let the current l_{s} in Fig. 8.5 increasc. We see that the gate voltage of Q_{ℓ} will increase, and thus its drain current will also increase. This will cause the drain voltage of Q_{1} (and the gate voltage of Q_{2}) to decrease, and thus the drain current of Q_{2}, I_{o}, will decrease. Thus the source current of Q_{2}, I_{o}, decreases. From the fecdback network we see that if I_{o} decreases, then I_{f} (in the direction shown) will increase. The increasc in I_{f} will subtract from I_{s}, causing a smaller increment to be seen by the amplifier. Hence the feedback is negative.

FIGURE 8.5 A transistor amplificr with shunt-series feedback. (Biasing not shown.)

8.3.3 Transconductance Amplifiers

In transconductance amplifiers the input signal is a veltage and the output signal is a current. It follows that the appropriate feedback topology is the voltage-mixing current-sampling topology, illustrated in Fig. 8.4(c). The presence of the serics connection at both the input and the output gives this feedback topology the alternative name series-series feedback

An example of this feedback topology is given in Fig. 8.6. Here, note that as in the circuit of Fig. 8.5 the current sampled is not the output current but the almost-equal emitter current of Q_{3}. In addition, the mixing loop is not a conventional one; it is not a simple series connection, since the feedback signal developed across $R_{E 1}$ is in the emitter circuit of Q_{1}, while the source is in the base circuil of Q_{1}. These two approximations are done for convenience of circuit design.

FIGURE 8.6 An example of the series-series fecdback topology. (Biasing not shown.)

FIGURE 8.7 (a) The inveriug op-amp configuration redrawn as (b) an example of shunt-shunt feedback.

8.3.4 Transresistance Amplifier

In transresistance amplifiers the input signal is current and the output signal is voltage. It follows that the appropriate feedback topology is of the current-mixing voltage-sampling ype, shown in Fig. 8.4(d). The presence of the parallel (or shunt) conncction at both the inpu and the output makes this feedback topology also known as shunt-shunt feedback.
An example of this feedback topology is found in the inverting op-amp configuration of Fig. 8.7(a). The circuit is redrawn in Fig. 8.7(b) with the source converted to Norton's forn.

第縎 8.4 THE SERIES-SHUNT FEEDBACK AMPLIFIER

8.4.1 The Ideal Situation

The ideal structure of the series-shunt feedback amplifier is shown in Fig. 8.8(a). It consists of a unilateral open-loop amplifier (the A circuit) and an ideal voltage-mixing voltagesampling feedback network (the β circuit). The A circuit has an input resistance R_{i}, a voltage gain A, and an output resistance R_{α}. It is assumed that the source and load resistances have been included inside the A circuit (more on this point later). Furthermore, note that the β circuit does not load the A circuit; that is, connecting the β circuit does not change the value of A (defined as $A \equiv V_{o} / V_{i}$).
The circuit of Fig. 8.8(a) exactly follows the ideal feedback model of Fig. 8.1. Thercfore the closed-loop voltage gain A_{f} is given by

$$
A_{f} \equiv \frac{V_{o}}{V_{s}}=\frac{A}{1+A \beta}
$$

Note that A and β have reciprocal units. This in fact is always the case, resulting in a dimen sionless loop gain $A \beta$

The equivalent circuit model of the series-shunt feedback amplifier is shown in Fig. 8.8(b) Here $R_{i f}$ and $R_{o f}$ denote the input and output resistances with feedback. The relationship between $R_{i f}$ and R_{i} can be established by considering the circuit in Fig. 8.8(a)

$$
\begin{aligned}
R_{i f} & \equiv \frac{V_{s}}{I_{i}}=\frac{V_{s}}{V_{i} / R_{i}} \\
& =R_{i} \frac{V_{s}}{V_{i}}=R_{i} \frac{V_{i}+\beta A V_{i}}{V_{i}}
\end{aligned}
$$

(b)

FIGURE 8.8 The series-shunt feedback amplifier: (a) ideal structure and (b) cquivalent circuit.

Thus,

$$
\begin{equation*}
R_{i f}=R_{i}(1+\Lambda \beta) \tag{8.17}
\end{equation*}
$$

That is, in this case the negative feedback increases the input resistance by a factor equal to the amount of feedback. Since the derivation above does not depend on the inethod of sam pling (shunt or series), it follows that the relationship between $R_{i f}$ and R_{i} is a function only of the method of mixing. We shall discuss this point further in later sections.
Note, however, that this result is not surprising and is physically inuitive: Since the feed ack voltage V subtracts from V not sofpring and is phy wite small $\left[V_{1}=V_{s} /(1+A \beta)\right]$ Thus the input current I_{i} beco R conespondingly smal nd the resis $V_{\text {sce }} / V_{\text {b }}$ becomes large. Finally, it should be pointed out Eq (8 I7) cau be generalized to the form

$$
Z_{i f}(s)=Z_{i}(s)[1+A(s) \beta(s)]
$$

FIGURE 8.9 Measuring the output resistance of
the fecdback amplifier of Fis 8.8 (a): R the fecdback amplifier of Fig. 8.8 (a): $R_{o f} \equiv V / / l$.

To find the output resistance, $R_{o f}$, of the feedback amplifier in Fig. 8.8(a) we reduce V to zero and apply a test voltage V at the output, as shown in Fig. 8.9,

$$
R_{a f} \equiv \frac{V_{i}}{I}
$$

From Fig. 8.9 we can write

$$
I=\frac{V_{t}-A V_{i}}{R_{a}}
$$

and since $V_{s}=0$ it follows from Fig. 8.8(a) that

$$
V_{i}=-V_{f}=-\beta V_{o}=-\beta V_{t}
$$

Thus

$$
I=\frac{V_{t}+A \beta V_{t}}{R_{o}}
$$

leading to

$$
\begin{equation*}
R_{o f}=\frac{R_{o}}{1+A \beta} \tag{8.19}
\end{equation*}
$$

That is, the negative feedback in this case reduces the output resistance by a factor equal to the amount of feedback. With a little thought one can see that the derivation of Eq. (8.19) does not depend on the method of mixing. Thus the relationship between $R_{o f}$ and R_{o} depends only on the method of sampling. Again, this result is not surprising and is physically intuitive: Since the feedback samples the output voltage V_{o}, it acts to stabilize the value of V_{o} : hat is, to reduce changes in the value of V_{o}. including changes that might be brought abo by changing the current drawn from the ampinier oxput terminals. This, in effect, means tha voltage-sampling feedback reduces the output resistance. Finally, we note that Eq. (8.19) can b generalized to

$$
Z_{o f}(s)=\frac{Z_{o}(s)}{1+A(s) \beta(s)}
$$

8.4.2 The Practical Situation

In a practical series-shunt feedback amplifier, the feedback network will not be an ideal voltagecontrolled voltage source. Rather, the feedback network is usually resistive and hence will oad the basic amplifier and thus affect the values of A, R_{i}, and K_{0}. In addition, the source and load resistances will affect these three parameters. Thus the problem we have is as follows: Given a series-shunt feedback amplifier represented by the block diagram of Fig. 8.10(a), find the A circuit and the β circuit

FIGURE 8.10 Derivation of the A circuit and β circuit for the serics-shunt feedback amplificr. (a) Block diagram of a practical series-shunt feedback amplifier. (b) The circuit in (a) with the feedback network represented by its h parameters. (c) The circuit in (b) with h_{21} neglected

Our problem essentially involves representing the amplifier of Fig. 8.10(a) by the ideal structure of Fig. 8.8(a). As a first step toward that end we observe that the source and load resistances should be lumped with the basic amplifier. This, together with representing the two-port feedback network in terms of its h parameters (see Appendix B), is illustraled in Fig. 8.10(b). The choice of h parameters is based on the fact that this is the only parameter sct that represents the feedback network by a series network at port 1 and a parallel network at port 2 . Such a represcntation is obviously convenient in view of the series connection at the input and the parallel connection at the output.

Examination of the circuit in Fig. 8.10(b) reveals that the current source $h_{21} l_{1}$ represents the forward transmission of the feedback network. Since the feedback network is usually passive, its forward transmission can be neglected in comparison to the much larger forward transmisssion of the basic amplifier. We will therefore assume that $\left|h_{21}\right|_{\text {frectlack }}^{\text {nenvork }} \ll\left|h_{21}\right|_{\text {basic }}$ ampifier and thus onit the controlled source $h_{21} I_{1}$ altogether.

Compare the circuit of Fig. 8.10(b) (after eliminating the current source $h_{21} I_{1}$) with the ideal circuit of Fig. 8.8(a). We see that by including h_{11} and h_{22} with the basic amplifier we obtain the circuit shown in Fig. 8.10(c), which is very similar to the ideal circuit. Now, if the basic amplifier is unilateral (or almost unilateral), a situation that prevails when
(8.21)
then the circuit of Fig. 8.10(c) is equivalent (or approximately cquivalent) to the ideal circuit. It follows then that the A circuit is obtained by augmenting the basic amplifier at the input with the source impedance R_{s} and the impedance h_{11} of the feedback network, and at the output with the load impedance R_{L} and the admittance h_{22} of the feedback network.
We conclude that the loading effect of the feedback network on the basic amplifier is represented by the components h_{11} and h_{22}. From the definitions of the h parametcrs in Appendix B we see that h_{11} is the impedance looking into port 1 of the feedback network with port 2 short-circuited. Since port 2 of the feedback network is connected in shunt with the output port of the amplifier, short-circuiting port 2 destroys the feedback. Similarly, h_{22} is the admittance looking into port 2 of the feedback network with port 1 open-circuited. Since port 1 of the feedback network is connected in series with the amplifier input, opencircuiting port 1 destroys the feedback.

These observations suggest a simple rule for finding the loading effects of the feedback network on the basic amplifier: The loading effect is found by looking into the appropriate port of the feedback network while the other port is open-circuited or short-circuited so as to destroy the feedback. If the connection is a shunt one, we short-circuit the port; if it is a series one, we open-circuit it. In Sections 8.5 and 8.6 it will be seen that this simple rule applies also to the other three feedback topologies. ${ }^{2}$
We next consider the determination of β. From Fig. 8.10(c), we see that β is equal to h_{12} of the feedback network

$$
\beta=\left.h_{12} \equiv \frac{V_{1}}{V_{2}}\right|_{l_{1}=0}
$$

Thus to measure β, one applies a voltage to port 2 of the feedback network and measures the voltage that appears at port 1 while the latter port is open-circuited. This result is intuitively appealing because the object of the feedback network is to sample the output voltage $\left(V_{2}=V_{0}\right)$ and provide a voltage signal ($V_{1}=V_{f}$) that is mixed in series with the input source. The serie

[^30]counection at the input suggests that (as in the case of finding the loading effects of the feedback network) β should be found with port I open-circuited

8.4.3 Summary

A summary of the rules for finding the A circuit and β for a given series-shunt feedback amplifier of the form in Fig. 8.10(a) is given in Fig. 8.11. As for using the feedback formulas in Eqs. (8.17) and (8.19) to detcrmine the input and output resistances, it is important to note that:

1. R_{i} and R_{o} are the input and output resistances, respectively, of the A circuit in Fig. $8.1(\mathrm{a})$
2. $R_{i f}$ and $R_{o f}$ are the input and oupput resistances, respectively, of the feedback amplifier, including R_{s} and R_{L} (see Fig. 8.10a).
3. The actual input and output resistances of thc feedback aunplifier usually exclude R_{s} and R_{L}. These are denoted $R_{\text {in }}$ and $R_{\text {out }}$ in Fig. 8.10(a) and can be easily determined as

$$
\begin{align*}
& R_{\text {in }}=R_{i f}-R_{s} \tag{8.23}\\
& R_{\text {out }}=1 /\left(\frac{1}{R_{o f}}-\frac{1}{R_{i}}\right) \tag{8.24}
\end{align*}
$$

(a) The A circuit is

where R_{11} is obtained from

R_{11}
R_{22}
and the gain A is defined $A \cong \frac{V_{o}}{V_{i}}$
(b) β is obtained from

$$
\left.\beta \equiv \frac{V_{f}}{V_{o}}\right|_{t_{1}=0}
$$

case of Fig. 8. 11 (a). .

Figure 8.12(a) shows an op amp connected in the noninverling configuration. The op amp has an open-loop gain μ, a differential input resistance $R_{i d}$, and an output resistance r_{o}. Recall that in our analysis of op-amp circuits in Chapter 2, we neglected the effects of $R_{i d}$ (assumed it to be infinite) and of r_{o} (assumed it to be zero). Here we wish to use the feedback method to analyze the circuit taking both $R_{i d}$ and r_{o} into account. Find expressions for Λ, β, the closed-loop gain V_{o} / V_{s}, the input resistance $R_{\text {in }}$ (see Fig. 8.12a), and the output resistance $R_{\text {out }}$. Also find numerical values, given $\mu=10^{4}, R_{i d}=100 \mathrm{kS}, r_{o}=1 \mathrm{k} \Omega, R_{l /}=2 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega, R_{2}=1 \mathrm{M} \Omega$, and $R_{s}=10 \mathrm{k} \Omega$.

Solution

We observe that the feedback network consists of R_{2} and R_{1}. This nctwork samples the output voltage V_{o} and provides a voltage signal (across R_{1}) tbat is mixed in series with the inpnt source V_{s}. The A circuit can be easily obtained following the rules of Fig. 8.11, and is shown in Fig. $8.12(b)$. For this circuit we can write by inspection

$$
A \equiv \frac{V_{o}}{V_{i}}=\mu \frac{\left[R_{L} / /\left(R_{1}+R_{2}\right)\right]}{\left[R_{L} / /\left(R_{1}+R_{2}\right)\right]+r_{o}} \frac{R_{i d}}{R_{i d}+R_{s}+\left(R_{1} \| R_{2}\right)}
$$

For the values given, we find that $A \simeq 6000 \mathrm{~V} / \mathrm{V}$.
The circuit for obtaining β is shown in Fig. 8.12(c), from which we obtain

$$
\beta \equiv \frac{V_{f}}{V_{o}}=\frac{R_{1}}{R_{1}+R_{2}} \simeq 10^{-3} \mathrm{~V} / \mathrm{V}
$$

The voltage gain with feedback is now obtained as

$$
A_{f} \equiv \frac{V_{o}}{V_{s}}=\frac{A}{1+A \beta}=\frac{6000}{7}=857 \mathrm{~V} / \mathrm{V}
$$

The input resistance $R_{i i}$ determined by the feedback equations is che resistance seen by the external source (see Fig. 8.12a), and is given by

$$
R_{i f}=R_{i}(1+A \beta)
$$

where R_{i} is the input resistance of the A circuit in Fig. 8.12(b)

$$
R_{i}=R_{s}+R_{i d}+\left(R_{1} \| R_{2}\right)
$$

For the values given, $R_{i} \simeq 111 \mathrm{k} \Omega$, resulting in

$$
R_{i f}=111 \times 7=777 \mathrm{k} \Omega
$$

This, however, is not the resistance asked for. What is required is $R_{\mathrm{i} \text {, }}$ indicated in Fig. 8.12(a). To obtain $R_{\text {in }}$ we sublract R_{s} from $R_{i /}$

$$
R_{\mathrm{in}}=R_{i f}-R_{s}
$$

For the values given, $R_{\mathrm{in}}=739 \mathrm{k} \Omega$. The resistance $R_{o f}$ given by the feedback equations is the output resistance of the feedback amplificr, including the load resistance R_{l}, as indicated in Fig. 8.12(a). $R_{o f}$ is given by

$$
R_{o f}=\frac{R_{o}}{1+\Lambda \beta}
$$

chapter 8 feedback

8.5 THE SERIES-SERIES FEEDBACK AMPLIFIER
where R_{o} is the output resistance of the A circuit. R_{θ} can be obtained by inspection of Fig. 8.12(b) as

$$
R_{o}=r_{o} / / R_{L} / /\left(R_{2}+R_{1}\right)
$$

For the values given, $R_{e} \sim 667 \Omega$, and

$$
R_{o f}=\frac{667}{7}=95.3 \Omega
$$

The resistance asked for, $R_{\text {our: }}$ is the output resistauce of the fcedback amplifier excluding R_{L}. From Fig. 8.12(a) we see that

Thus

$$
R_{o f}=R_{\text {out }} \| R_{L}
$$

$$
R_{\text {out }} \simeq 100 \Omega
$$

EXERCISES

84 ti the op amp of Exanple 8.1 has a uiform - 6 -dBloctave high frequency rolloff with $f_{3 . B}=1 \mathrm{kHz}$, find the 3 -dB frecueney of the ctosed-loop pain V / V Ans. 7 kHz

 and show that the do votage at the output approximitely zero Then find the vithes of A, β $\Lambda=V V, R_{\mathrm{in}}$, and $R_{\text {on }}$ A Assume that the tansistors have $\beta=100$

FIGURE E8.5

Ans. $85.7 \mathrm{~V} / \mathrm{V} ; 0.1 \mathrm{VN} ; 8.96 \mathrm{~V} / \mathrm{V}, 191 \mathrm{kS}, 19.1 \Omega$

54

8.5 THE SERIES-SERIES FEEDBACK AMPLIFIER

85.1 The Ideal Case

As mentioned in Section 8.3, the series-series feedback topology stabilizes I_{o} / V_{s} and is Aherefore best suited for transconductance amplifiers. Figure 8.13(a) shows the ideal structure for the series-series feedback amplificr. It consists of a unilateral open-loop amplifier (the A circuit) and an ideal feedback network. Note that in this case A is a transconductance,

$$
\begin{equation*}
A \equiv \frac{I_{o}}{V_{i}} \tag{8.25}
\end{equation*}
$$

while β is a transresistance. Thus the loop gain $A \beta$ remains a dimensionless quantity, as it should always be.

In the ideal structure of Fig. 8.13(a), the load and source resistances have been absorbed inside the A circuit, and the β circuit does not load the A circuit. Thus the circuit follows the ideal feedback model of Fig. 8.1, and we can write

$$
\begin{equation*}
A_{f} \equiv \frac{I_{o}}{V_{s}}=\frac{A}{1+A \beta} \tag{8.26}
\end{equation*}
$$

(b)

FIGURE 8.13 The reries seres feed

figure 8.14 Measuring the outpu resistance $R_{c f}$ of the series-series feedback amplificr

This transconductance-with-feedback is included in the equivalent circuit model of the feed back amplifier, shown in Fig. 8.13(b). In this model, $R_{i f}$ is the input resistance with feedback Using an analysis similar to that in Section 8.4, we can show that

$$
R_{i f}=R_{i}(1+A \beta)
$$

This relationship is identical to that obtained in the case of series-shunt feedback. This confirms our earlier observation that the relationship between $R_{i j}$ and R_{i} is a function only of the method of mixing. Voltage (or serics) mixing therefore always increases the input resistance To find the output resistance $R_{\text {of }}$ of the series-series feedback amplifier of Fig. 8.13(a) we reduce V, to zero and break the output circuit to apply a test curtent I_{l}, as shown in Fig 8.14

$$
R_{o f} \equiv \frac{V}{I_{i}}
$$

In this case, $V_{i}=-V_{f}=-\beta I_{o}=-\beta l_{t}$. Thus for the circuit in Fig. 8.14 we obtain

$$
V=\left(I_{t}-A V_{i}\right) R_{o}=\left(I_{t}+A \beta I_{i}\right) R_{o}
$$

Hence

$$
R_{o f}=(1+A \beta) R_{o}
$$

That is, in this case the negative feedback increases the output resistance. This should have been expected, since the negative feedback tries to make I_{o} constant in spite of changes in the output voltage, which means increased output resistance. This result also confirms our earlier observation: The relationship between $R_{o f}$ and R_{a} is a function only of the method of sampling. While voltage (shunt) sampling reduces the output resistance, current (scries) sampling increases it.

8.5.2 The Practical Case

Figure 8.15 (a) shows a block diagram for a practical series-scries fcedback amplifier. To be able to apply the feedback equations to this amplifier, we have to represent it by the idea structure of Fig. 8.13(a). Our objective therefore is to devise a simple method for findirig A and β. Observe the definition of the amplifier input resistance $R_{\text {in }}$ and output resistance $R_{\text {out }}$ It is important to note that these are different from $R_{i f}$ and $R_{o f}$, which are determined by the feedback equations, as will become clear shortly.
The series-series amplifier of Fig. 8.15(a) is redrawn in Fig. 8.15(b) with R_{s} and R_{2} hown closer to the basic amplifier, and the two-port feedback network represented by is z parameters (Appendix B). This parameter set has beeu chosen because it is the only on that provides a representation of the feedback network with a scries circuit at the input and

(b)

FIGURE 8.15 Derivation of the A circuit and the β circuif for series-series feedback amplifiers. (a) A scries(c) A redrawing of the circuit in (b) with z, neglected.
series circuit at the output. This is obviously convenient in view of the series connections at input and output. The input and output resistances with feedback, $R_{i f}$ and $R_{o f}$, are indicated on the diagram.

As we have done in the case of the series-shunt amplifier, we shall assume that the forward transmission through the feedback network is uegligible in comparison to that through the basic amplifier; that is, the condition
is satisfied. We can then dispense with the voltage source $z_{21} I_{1}$ in Fig. 8.15(b). Doing this, and redrawing the circuit to include z_{11} and z_{22} with the basic amplifier, results in the circuit in Fig. 8.15(c). Now if the basic amplificr is unilateral (or almost unilateral), a situation that is obtained when

$$
\left|z_{12}\right|_{\text {hasicic }}^{\text {anplifer }} \ll\left|z_{12}\right| \text { feechack } \begin{align*}
& \text { network } \tag{8.31}\\
& \text { and }
\end{align*}
$$

then the circuit in Fig. 8.15(c) is equivalent (or almost equivalent) to the ideal circuit of Fig. 8.13(a).
It follows that the A circuit is composed of the basic amplifier augmented at the input with R_{s} and z_{11} and augmented at the output with R_{L} and z_{22}. Sincc z_{11} and z_{22} are the impedances looking into ports 1 and 2 , respectively, of the feedback network with the othcr port open-circuited, we see that finding the loading effects of the feedback nctwork on the basic amplifier follows the rule formulated in Section 8.4. That is, we look into one port of the feedback network while the other port is open-circuited or shor-circuited so as to destroy the feedback (open if series and short if shunt).

From Fig. 8.15(c) we see that β is equal to z_{12} of the feedback network,

$$
\begin{equation*}
\beta=\left.z_{12} \equiv \frac{V_{1}}{I_{2}}\right|_{t_{1}=0} \tag{8.32}
\end{equation*}
$$

This result is intuitively appealing. Recall that in this case the feedback network samples the output current $\left[I_{2}=I_{0}\right]$ and provides a voltage $\left[V_{f}=V_{1}\right]$ that is mixed in series with the input source. Again, the series connection at the input suggests that β is measurcd with port 1 open.

8.5.3 Summary

For future reference we present in Fig. 8.16 a summary of the rules for finding A and β for a given series-series feedback annplifier of the type shown in Fig. 8.15(a). Note that R_{i} is the input resistance of the A circuit, and its output resistance is R_{o}, which can be determined by breaking the output loop and looking between Y and $Y . R_{i}$ and R_{o} can be used in Eqs. (8.27) and (8.29) to determine $R_{i f}$ and $R_{o f}$ (see Fig. 8.15b). The input and output resistances of the feedback amplifier can then be found by subtracting R_{s} from $R_{i j}$ and R_{L} from $R_{o f}$,

$$
\begin{align*}
R_{\text {in }} & =R_{i f}-R_{s} \tag{8.33}\\
R_{\text {out }} & =R_{o f}^{\prime}-R_{L}
\end{align*}
$$

(8.34)

FIGURE 8.16 Finding the A circuit and β for the voltage-mixing current-sampling (serics-series) case.

Mivelidz

Because negative feedback extends the amplifier bandwidth, it is commonly used in the design of broadband amplifiers. One such amplifier is the MC1553. Part of the circuit of the MC1553 i shown in Fig. 8.17(a). The circuit shown (called a feedback triple) is composed of three gain stages with series-series feedback provided by the network composed of $R_{E 1}, R_{F}$, and $R_{E 2}$. Assume that the bias circuit, which is not shown, causes $I_{C 1}=0.6 \mathrm{~mA}, I_{C 2}=1 \mathrm{~mA}$, and $I_{C 3}=$ 4 mA . Using these values and assuming that $h_{j e}=100$ and $r_{o}=\infty$, find the open-loop gain A, the eedback factor β, the closed-loop gain $A_{f} \equiv I_{o} / V_{s}$, the voltage gain V_{o} / V_{s}, the input resistance $R_{\text {in }}=R_{i f}$, and the output resistance $R_{o f}$ (between nodes Y and Y^{\prime}, as indicated). Now, if r_{0} of Q_{3} is $25 \mathrm{k} \Omega$, estimate an approximate valuc of the output resistance $R_{\text {our }}$.

Solution

Employing the loading rules given in Fig. 8.16, we obtain the A circuit shown in Fig. 8.17(b). To find $A \equiv I_{o} / V_{i}$ we first determine the gain of the first stage. This can be written by inspection as

$$
\frac{V_{c 1}}{V_{i}}=\frac{-\alpha_{1}\left(R_{C 1} / / r_{\pi 2}\right)}{r_{e 1}+\left[R_{E 1} / /\left(R_{F}+R_{t 2}\right)\right]}
$$

816 Chapter 8 feedback

Since Q_{1} is biased at $0.6 \mathrm{~mA}, r_{e 1}=41.7 \mathrm{~S}$. Transistor Q_{2} is biased as 1 mA ; thus $r_{\pi 2}=h_{f e} / g_{m 2}=$ $100 / 40=2.5 \mathrm{k} \Omega$. Substituting these values together with $\alpha_{1}=0.99, R_{C 1}=9 \mathrm{k} \Omega, R_{E 1}=100 \Omega$ $R_{F}=640 \Omega$, and $R_{E 2}=100 \Omega$ results in

$$
\frac{V_{c 1}}{V_{i}}=-14.92 \mathrm{~V} / \mathrm{V}
$$

Next, we determine the gain of the second stage, which can be written by inspection as (note that $V_{b 2}=V_{c 1}$)

$$
\frac{V_{c 2}}{V_{c 1}}=-g_{m 2}\left\{R_{C 2} / /\left(h_{f e}+1\right)\left[r_{e 3}+\left(R_{E 2} / /\left(R_{F}+R_{E 1}\right)\right)\right]\right\}
$$

Substituting $g_{m 2}=40 \mathrm{~mA} / \mathrm{V}, R_{C 2}=5 \mathrm{k} \Omega, h_{f e}=100, r_{e 3}=25 / 4=6.25 \Omega, R_{E 2}=100 \Omega, R_{F}=$ 640Ω, and $R_{E 1}=100 \Omega$, results in

$$
\frac{V_{c 2}}{V_{c 1}}=-131.2 \mathrm{~V} / \mathrm{V}
$$

Finally, for the third stage we can write by inspection

$$
\begin{aligned}
\frac{I_{o}}{V_{c 2}} & =\frac{I_{e 3}}{V_{b 3}}=\frac{1}{r_{e 3}+\left(R_{E 2} / /\left(R_{F}+R_{E 1}\right)\right)} \\
& =\frac{1}{6.25+(100 / / 740)}=10.6 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

Combining the gains of the three stages results in

$$
\begin{aligned}
A & \equiv \frac{I_{o}}{V_{i}}=-14.92 \times-131.2 \times 10.6 \times 10^{-3} \\
& =20.7 \mathrm{~A} / \mathrm{V}
\end{aligned}
$$

Thic circuit for determining the feedback facior β is shown in Fig. 8.17(c), from which we find

$$
\begin{aligned}
\beta & \equiv \frac{V_{f}}{I_{o}}=\frac{R_{V 2}}{R_{E 2}+R_{F}+R_{E 1}} \times R_{E 1} \\
& =\frac{100}{100+640+100} \times 100=11.9 \Omega
\end{aligned}
$$

The closed-loop gain Λ_{f} can now he found from

$$
\begin{aligned}
A_{f} & \equiv \frac{I_{o}}{V_{s}}=\frac{\Lambda}{1+A \beta} \\
& =\frac{20.7}{1+20.7 \times 11.9}=83.7 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

The voltage gain is found from

$$
\begin{aligned}
\frac{V_{o}}{V_{s}} & =\frac{-I_{c} R_{C 3}}{V_{s}} \simeq \frac{-I_{o} R_{C 3}}{V_{s}}=-\Lambda_{s} R_{C 3} \\
& =-83.7 \times 10^{-3} \times 600=-50.2 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

The input resistance of the fecdback anplificr is given by

$$
R_{i f}=R_{i}(1+A \beta)
$$

where R_{i} is the inpul resistance of the A circuit. The value of R_{i} can be found from the circuit in Fig. 8.17(b) as follows:

$$
\begin{aligned}
R_{i} & =\left(h_{f e}+1\right)\left[r_{\epsilon 1}+\left(R_{E 1} 1 /\left(R_{F}+R_{E 2}\right)\right)\right] \\
& =13.65 \mathrm{k} \Omega
\end{aligned}
$$

Thus,

$$
R_{i f}=13.65(1+20.5 \times 11.9)=3.34 \mathrm{M} \Omega
$$

To find the output resistance R_{μ} of the A circuit in Fig. 8.17(b), we brcak the circuit between Y and Y^{\prime}. The resistance looking between these two nodes can be found to be

$$
R_{o}=\left[R_{t: 2} / /\left(R_{F}+R_{E 1}\right)\right]+r_{e 3}+\frac{R_{C 2}}{h_{j e}+1}
$$

which, for the values given, yields $R_{o}=143.9 \Omega$. The output resistance $R_{o f}$ of the feedback anplificr can now be found as

$$
R_{o f}=R_{o}(1+A \beta)=143.9(1+20.7 \times 11.9)=35.6 \mathrm{k} \Omega
$$

Note that the fcedback stabilizes the emitter current of Q_{3}, and thus the ouput resistance that is determincd by the feedback formula is the resistance of the emitter loop (i.e., between Y and Y) which we have just found, and not the resistance looking into the collector of Q_{3}. This is because the output resistance r_{r} of Q_{3} is in cffect outside the feedback loop. We can, howcycr, use the value of $R_{o f}$ to oblain an approximate value for $R_{\text {out }}$ To do this, we assume that the effect of the feedback is to place a resistance $R_{o f}(35.6 \mathrm{k} \Omega)$ in the cmilter of Q_{3}, and find the output resis. tance from the equivalent circuit shown in Fig. 8.17(d). Using Eq. (6.117), $R_{\text {out }}$ can be found as

$$
R_{\text {out }}=r_{o}+\left(1+g_{m 3} r_{o}\right)\left(R_{o f} / / / r_{\pi 3}\right)
$$

$$
=25+(1+160 \times 25)(35.6 / / 0.625)=2.5 \mathrm{M} \Omega
$$

Thus, the output resistance at the collector increases, but not by $(1+A \beta)$.

ExERCISE

 case, the feedback can be considered to be ol the voltage-mixing voltage-sampling type Note, however.
 and the putpat resistance.
Ans. $1827 \mathrm{~V} / \mathrm{y} ; 7.4 \mathrm{~V} / \mathrm{V}=0.14 \Omega$

䙎 8.6 THE SHUNT-SHUNT AND SHUNT-SERIES FEEDBACK AMPLIFIERS

In this section we shall extend-without proof-the method of Sections 8.4 and 8.5 to the two remaining feedback topologies.
${ }^{3}$ This important point was first brought to the authors' attention by Gordon Roberts (see Roberts and Scdra, 1992).

FIGURE 8.19 Block diagram for a practical shunt-shunt feedback amplificr.

${ }^{K_{i}}$

and the gain A is defined $A \equiv \frac{V_{o}}{I_{i}}$
(b) β is obtained from

$$
\beta=\left.\frac{I_{1}}{V_{0}}\right|_{V_{1}=0}
$$

FIGURE 8.20 Finding the A circuit and β for the current-mixing voltage-sampling (shunt-shunt) feedback amplifier in Tig. 8.19.

The first assumption is justified when the reverse y parameters ${ }^{4}$ of the basic amplifier and of the feedback network satisfy the condition

$$
\left|y_{122}\right|_{\substack{\text { maic } \\ \text { unnplifier }}} \ll \mid y_{\substack{12 \\ \text { fecelback } \\ \text { netwack }}}
$$

${ }^{4}$ Herc, the y paramelers (Appendix B) are used because this is the only two-port parameter set that provides a representation of the feedback nctwork with a parallel circuit at the input and a paralle

The second assumption is justified when the forward y parameters satisfy the condition

$$
\begin{equation*}
\left|y_{21}\right|_{\text {fiedrackeck }} \ll\left|y_{21}\right|_{\text {basic }} \text { natiprer } \tag{8.39}
\end{equation*}
$$

Finally, we note that once $R_{i f}$ and $R_{o f}$ have been determined using the feedback formulas (Eqs. 8.36 and 8.37), the input and output resistances of the amplifier proper (see definitions in Fig. 8.19) can be obtained as

$$
\begin{align*}
& R_{\text {in }}=1 /\left(\frac{1}{R_{i f}}-\frac{1}{R_{s}}\right) \tag{8.40}\\
& R_{\text {out }}=1 /\left(\frac{1}{R_{o f}}-\frac{1}{R_{L}}\right) \tag{8.41}
\end{align*}
$$

Whim Mz

We want to analyze the circuit of Fig. 8.21 (a) to determinc the small-signal voltage gain V_{o} / V_{s}
the input resistancc R_{in}, and the output resistancc $R_{\text {out }}=R_{o f}$. The transistor has $\beta=100$.

Solution

First we deterninc the transistor dc operating point. The dc analysis is illustrated in Fig. 8.21(b) from which we can write

$$
V_{C}=0.7+\left(I_{B}+0.07\right) 47=3.99+47 I_{B} \text { and } \frac{12-V_{C}}{4.7}=(\beta+1) I_{B}+0.07
$$

These two equations can be solved to obtain $I_{B} \simeq 0.015 \mathrm{~mA}, I_{C} \simeq 1.5 \mathrm{~mA}$, and $V_{C}=4.7 \mathrm{~V}$.
To carry out small-signal analysis we first recognize that the feedback is provided by R_{R}
which samples the output voltage V_{0} and feeds back a current that is mixed with the source cur-
rent. Thus it is convenient to use the Norton source representation, as shown in Fig. 8.21(c). The A circuit can be easily obtained using the rules of Fig. 8.20, and it is shown in Fig. 8.21(d). For the A circuit we can write by inspection

$$
\begin{aligned}
& V_{\pi}=I_{i}\left(R_{s} / / R_{f} / / r_{\pi}\right) \\
& V_{o}=-g_{m} V_{\pi}\left(R_{f} / / / R_{C}\right)
\end{aligned}
$$

Thus

$$
A=\frac{V_{o}}{I_{i}}=-g_{m}\left(R_{f} / / R_{C}\right)\left(R_{s} / / R_{f} / / r_{\pi}\right)
$$

$=-358.7 \mathrm{k} \Omega$

The input and output resistances of the A circuit can be oblained from Fig. 8.21 (d) as

$$
\begin{aligned}
R_{i} & =R_{s} / / R_{f} / / / r_{\pi}=1.4 \mathrm{k} \Omega \\
R_{o} & =R_{C} / / R_{f}=4.27 \mathrm{k} \Omega
\end{aligned}
$$

The circuil for determining β is shown in Fig. $8.21(\mathrm{e})$, from which we obtain

$$
\beta \equiv \frac{I_{f}}{V_{o}}=-\frac{1}{R_{f}}=-\frac{1}{47 \mathrm{k} \Omega}
$$

IGURE 8.21 Circuits for Example 8.3
Note that as usual the reference direction for $I_{\text {s }}$ has been selected so that I_{f} subtracts from I_{s}. The resulting negative sign of β should cause no concern, since A is also negative, keeping the loo gain $A \beta$ positive, as it should be for the feedback to be negative

We can now obtain $A_{\text {(for the circuit in Fig } 8.21 \mathrm{c} \text {) as }}$

$$
\begin{aligned}
& A_{f} \equiv \frac{V_{o}}{I_{s}}=\frac{A}{1+A \beta} \\
& \frac{V_{o}}{I_{s}}=\frac{-358.7}{1+358.7 / 47}=\frac{-358.7}{8.63}=-41.6 \mathrm{k} \Omega
\end{aligned}
$$

To find the vollage gain V / V se note that

$$
V_{s}=I_{s} R_{s}
$$

Thus

$$
\frac{V_{o}}{V_{s}}=\frac{V_{o}}{I_{s} R_{s}}=\frac{-41.6}{10} \simeq-4.16 \mathrm{~V} / \mathrm{V}
$$

The input resistance with feedback (see Fig. 8.21c) is given by

$$
R_{i f}=\frac{R_{i}}{1+\Lambda \beta}
$$

Thus

$$
R_{i f}=\frac{1.4}{8.63}=162.2 \Omega
$$

This is the resistance secn by the current source 1_{s} in Fig. 8.21(c). To obtain the input resistance of the fecdback amplifier excluding R_{s} (i.e., the required resistance R_{in}) we subtract $1 / R_{s}$ from $1 / R_{i j}$ and invert the result; thus $R_{\mathrm{in}}=165 \Omega$. Finally, the amplifier output resistance $R_{o f}$ is evaluated using

$$
R_{o f}=\frac{R_{o}}{1+A \beta}=\frac{4.27}{8.63}=495 \Omega
$$

8.6.2 An Important Note

The method we have been employing for the analysis of feedback amplifiers is predicated on two premises: Most of the forward transmission occurs in the hasic amplifier, and most of the reverse transmission (feedback) occurs in the feedback network. For each of the three topologies considered thus far, these two assumptions were mathematically expressed as conditions on the relative magnitudes of the forward and reverse two-porl parameters of the basic amplifier and the feedback network. Since the circuit considered in Example 8.3 is simple, we have a good opportunity to check the validity of these assumptions.
Reference to Fig. 8.21(d) indicates clearly that the hasic amplifier is unilateral; thus all the reversc transmission takes place in the feedback network. The case with forward transmission, however, is not as clear, and we must evaluate the forward y parameters. For the A circuit in Fig. 8.21 (d), $y_{21}=g_{m}$. For the feedback network it can be easily shown that $y_{21}=$ $-1 / R_{f}$. Thus for our analysis method to be valid we must have $g_{m} \gg 1 / R_{f}$. For the numerical values in Example 8.3, $g_{m}=60 \mathrm{~mA} / \mathrm{V}$ and $1 / R_{f}=0.02 \mathrm{~mA} / \mathrm{V}$, indicating that thi assumption is more than justified. Nevertheless, in designing feedback amplifiers, care should be taken in choosing component values to ensure that the two hasic assumptions are valid.

8.6.3 The Shunt-Series Configuration

Figure 8.22 shows the ideal structure of the shunt-series feedback amplifier. It is a curren mplifier whose gain with feedback is defined as

$$
\begin{equation*}
A_{f} \equiv \frac{I_{o}}{I_{s}}=\frac{A}{1+A \beta} \tag{8.42}
\end{equation*}
$$

The input resistance with feedback is the resistance seen by the cuirent source I_{s} and is given by

$$
R_{i j}=\frac{R_{i}}{1+A \beta}
$$

FIGURE 8.22 Ideal structure for the shunl-series feedback ampilifier.

FIGURE 8.23 Block diagram for a practical shunt-series fecdhack amplifier.
Again we note that the shunt connection at the input reduces the input resistance. The output resistance with feedback is the resistance seeu by breaking the output circuit, such as between O and O^{\prime}, and looking between the two terminals thus generated (i.e., between O and O^{\prime}). This resistance, $R_{o f}$, is given by

$$
\begin{equation*}
R_{o f}=R_{o}(1+A \beta) \tag{8.44}
\end{equation*}
$$

where we note that the increase in output resistance is due to the current (series) sampling. Given a practical shunt-series feedback amplifier, such as tbat represented by the block diagram of Fig. 8.23, we follow the method given in Fig. 8.24 in order to obtain A and β. Herc again the analysis method is predicated on the assumption that most of the forward transmission occurs in the basic amplifier ${ }^{5}$

$$
\left|g_{21}\right|_{\text {neeldanak }} \ll\left|g_{21}\right|_{\text {hasic }}^{\text {naic }} \text { amporifie }
$$

${ }^{5}$ For this amplifier topology, the most convenicnt set of two-port parameters to use is the set of g parameters; it is the only sct that provides a representation that is composed of a parallel circuit at the input and a series circuit at the output (see Appendix B).

where R_{11} is obtained from

R_{11}
and the gain A is defined as $A \equiv \frac{I_{o}}{I_{i}}$
(b) β is oblained from

$$
\left.\beta \equiv \frac{I_{f}}{I_{o}}\right|_{v_{t}-0}
$$

IGURE 8.24 Finding the A circuit and β for the current-mixing current-sampling (shunt-scries) feedback amplifier of Fig. 8.23.
and that most of the reverse transmission takes place in the feedback network,

Finally, we note that once $R_{i f}$ and $R_{\text {of }}$ have been determined using the feedback equations (Eqs. 8.43 and 8.44), the input and output resistances of the amplifier proper, $R_{\text {in }}$ and $R_{\text {out }}$ (Fig. 8.23), can be found as

$$
\begin{aligned}
R_{\mathrm{in}} & =1 /\left(\frac{1}{R_{i J}}-\frac{1}{R_{s}}\right) \\
R_{\text {out }} & =R_{o f}-R_{L}
\end{aligned}
$$

324uniks 24

Figure 8.25 shows a feedback circuit of the shunt-series type. Find $I_{\text {out }} / I_{\mathrm{in}}, R_{\mathrm{in}}$, and $R_{\text {our }}$. Assume
the transistors to have $\beta=100$ and $V_{A}=75 \mathrm{~V}$

Solution

We hegin by determining the de operating points. In this regard we note that the feedback signal is capacitively coupled; thus the feedback has no effect on dc bias. Neglecting the effect

(a)
(b)

FIGURE 8.25 Circuits for Example 8.4.

(c)

(d)

(e)

FIGURE 8.25 (Continued)
finite transistor β and $V_{\bar{\prime}}$, the dc analysis proceeds as follows:

$$
\begin{aligned}
& V_{B 1} \simeq 12 \frac{15}{100+15}=1.57 \mathrm{~V} \\
& V_{E 1} \simeq 1.57-0.7=0.87 \mathrm{~V} \\
& I_{E 1}=0.87 / 0.87=1 \mathrm{~mA} \\
& V_{C 1} \simeq 12-10 \times 1=2 \mathrm{~V} \\
& V_{E 2} \simeq 2-0.7=1.3 \mathrm{~V} \\
& I_{E 2} \simeq 1.3 / 3.4 \simeq 0.4 \mathrm{~mA} \\
& V_{C 2} \simeq 12-0.4 \times 8=8.8 \mathrm{~V}
\end{aligned}
$$

The amplifier equivalent circuit is shown in Fig. $8.25(\mathrm{~b})$, from which we note that the feed back network is composed of $R_{t 2}$ and R_{f}. The feedback network sarmples the emitter current of Q_{2}, I_{p}, which is approximately equal to the collector current I_{c}. Also note that the required cuirent gain, $I_{\text {out }} / I_{\mathrm{in}}$, will he slightly different than the closed-loop current gain $A_{f} \equiv I_{o} / I_{s}$

The A circuit is shown in Fig. 8.25 (c), where we have obtained the loading effects of the feedback network using the rules of Fig. 8,24. For the Λ circuit we can write

$$
\begin{aligned}
V_{\pi 1} & =I_{i}\left[R_{s} / /\left(R_{E 2}+R_{f}\right) / / R_{B} / / r_{\pi 1}\right] \\
V_{b 2} & =-g_{m 1} V_{\pi 1}\left\{r_{o 1} / / R_{C 1} / /\left[r_{\pi 2}+(\beta+1)\left(R_{E 2} 1 / / R_{j}\right)\right]\right\} \\
I_{o} & \simeq \frac{V_{b 2}}{r_{e 2}+\left(R_{E 2} / / / R_{f}\right)}
\end{aligned}
$$

where we have neglected the effect of $r_{v 2}$. These equations can he combined to obtain the oper loop current gain A,

$$
A \equiv \frac{I_{o}}{I_{i}} \simeq-201.45 \mathrm{~A} / \mathrm{A}
$$

The input resistance R_{i} is given by

$$
R_{i}=R_{s} / /\left(R_{E 2}+R_{f}\right) / / R_{b} / / r_{\pi 1}=1.535 \mathrm{k} \Omega
$$

The output resistance R_{o} is that found by looking into the output loop of the A circuit between nodes Y and Y^{\prime} (see Fig. 8.25 c) with the input excitation I_{i} set to zero. Neglecting the small effect of $f_{o 2}$ it can be shown that

$$
\begin{aligned}
R_{o} & =\left(R_{i: 2} / / R_{f}\right)+r_{e 2}+\frac{R_{C 1} / / r_{o 1}}{\beta+1} \\
& =2.69 \mathrm{k} \Omega
\end{aligned}
$$

The circuil for determining β is shown in Fig. 8.25 (d), from which we find

$$
\beta \equiv \frac{I_{f}}{I_{o}}=-\frac{R_{E 2}}{R_{t 2}+R_{f}}=-\frac{3.4}{13.4}=-0.254
$$

Thus,
The input resistance $R_{i /}$ is given by

$$
R_{i f}=\frac{R_{i}}{1+\Lambda \beta}=29.5 \Omega
$$

The required inpul resistance $R_{\text {in }}$ is given by (see Fig. 8.25b).

$$
R_{\mathrm{in}}=\frac{1}{1 / R_{i f}-1 / R_{s}} \simeq 29.5 \Omega
$$

Sincc $R_{\text {in }} \simeq R_{i j}$, it follows from Fig. 8.25(b) that $I_{\text {in }} \simeq I_{s,}$. The current gain A_{f} is given by

$$
A_{f} \equiv \frac{I_{o}}{I_{s}}=\frac{A}{1+A \bar{\beta}}=-3.87 \mathrm{~A} / \mathrm{A}
$$

Note that because $A \beta \gg 1$ the closed-loop gain is approximately equal to $1 / \beta$
Now, the required current gain is given by

$$
\frac{I_{\text {out }}}{I_{\text {in }}} \simeq \frac{I_{\text {wut }}}{I_{s}}=\frac{R_{C 2}}{R_{l,}+R_{C 2}} \frac{I_{s}}{I_{s}} \simeq \frac{R_{C 2}}{R_{L}+R_{C 2}} \frac{I_{o}}{I_{s}}
$$

Thus,

$$
I_{\mathrm{out}} / I_{\mathrm{in}}=-3.44 \mathrm{~A} / \mathrm{A}
$$

The output resistance $R_{o f}$ is given by

$$
R_{o f}=R_{o}(1+A \beta) \simeq 140.1 \mathrm{k} \Omega
$$

An estimatc of the required output resistance $R_{\text {out }}$ can be obtained using the technique employed in Example 8.2, namely, by considering that the effect of feedback is to place a resistance $R_{o f}$ in the emitter of Q_{2} (see Fig. 8.25e). Thus, using Eq. (6.78), we can write

$$
R_{\text {out }}=r_{o 2}\left[1+g_{m 2}\left(r_{\pi 2} / / R_{o f}\right)\right]
$$

Substituting, $r_{02}=75 / 0.4=187.5 \mathrm{k} \Omega, g_{m 2}=16 \mathrm{~mA} / \mathrm{V}, r_{\pi 2}=6.25 \mathrm{k} \Omega$, and $R_{o f}=140.1 \mathrm{k} \Omega$, results in

$$
R_{\text {out }}=18.1 \mathrm{M} \Omega
$$

Thus, while negative feedback considcrably increases $R_{\text {uut }}$, the increase is not by the factor $(1+A \beta)$, simply because the feedback network samples the eminter current and not the collector current.
Thus, in effect, the feedback network "does not know" about the existence of $r_{o 2}$

Divex

Ha. In vilu a uil

Dollat Hay

			$\underset{\infty}{9} \underset{\infty}{\infty} \underset{\infty}{\infty}$
	¢	$\frac{2}{\frac{2}{4}}$	$\left.N\right\|_{ \pm} ^{+}$
$\begin{aligned} & E \\ & \stackrel{E}{E} \\ & \stackrel{+}{4} \end{aligned}$	$\left.\cdots\right\|_{ \pm} ^{\infty}$	$\stackrel{\text { ¢ }}{\substack{\text { en }}}$	$\left.\cdots\right\|_{\text {a }} ^{\substack{\text { a } \\ \pm+}}$

8.6.4 Summary of Results

Table 8.1 provides a summary of the rules and relationships employed in the analysis of the four types of feedback amplifier.

8.7 DETERMINING THE LOOP GAIN

We have already scen that the loop gain $A \beta$ is a very important quantity that characterizes a feedback loop. Furthermore, in the following sections it will be shown that $A \beta$ determines whether the feedback amplifier is stable (as opposed to oscillatory). In this section, we shall describe an alternative approach to the determination of loop gain.

8.7.1 An Alternative Approach for Finding $A \beta$

Consider first the general feedback amplifier shown in Fig. 8.1. Let the external source x_{s} be set to zero. Open the feedback loop by breaking the connection of x_{v} to the feedback network and apply a test signal x_{s}. We see that the signal at the output of the feedback network is $x_{f}=\beta x_{t}$; that at the input of the basic amplifier is $x_{i}=-\beta x_{i}$; and the signal at the output of the amplificr, where the loop was broken, will be $x_{o}=-A \beta x_{t}$. It follows that the loop gain $A \beta$ is given by the negative of the ratio of the returned signal to the applied test signal; that is, $A \beta=-x_{o} / x_{t}$. It should also be obvious that this applies regardless of where the loop is broken.

However, in breaking the feedback loop of a practical amplifier circuit, we must ensure that the conditions that existed prior to brcaking the loop do not change. This is achieved by terminating the loop where it is opened with an impedance equal to that seen before the loop was broken. To be specific, consider the conceptual feedback loop shown in Fig. 8.26(a). If we break the loop at XX^{\prime}, and apply a test voltage V_{t} to the terminals thus created to the left of XX^{\prime}, the terminals at the right of XX^{\prime} should be loaded with an impedance Z_{t} as shown in Fig. $8.26(b)$. The impedance Z, is equal to that previously seen looking to the left of X^{\prime}. The loop gain $A \beta$ is then determined from

$$
\begin{equation*}
A \beta=-\frac{V_{r}}{V_{t}} \tag{8.49}
\end{equation*}
$$

Finally, it should be noted that in some cases it may be convenient to determine $A \beta$ by applying a test current I_{t} and finding the retumed current signal I_{r}. In this case, $A \beta=-I_{r} / I_{t}$.

An alternative equivalent method for determining $A \beta$ (see Rosenstark, 1986) that is usually convenient to employ especially in SPICE simulations is as follows: As before, the loop is broken at a convenient point. Then the open-circuit transfer function $T_{o c}$ is determined as indicated in Fig. 8.26(c), and the short-circuit transfer function $T_{s c}$ is determined as shown in Fig. 8.26(d). These two transfer functions are then combined to obtain the loop gain $A \beta$,

$$
A \beta=-1 /\left(\frac{1}{T_{v c}}+\frac{1}{T_{s c}}\right)
$$

This method is particularly useful when it is not easy to determine the termination impedance Z.

To illustrate the process of determining loop gain, we consider the feedback loop shown in Fig. 8.27(a). This feedback loop represents both the inverting and the noninverting op-amp

(a)
(c)

$$
T_{o c} \equiv \frac{V_{o c}}{V_{t}}
$$

$A \beta=-V_{r} / V_{i}$
(b)

$$
A \beta=-1 /\left(\frac{1}{T_{o c}}+\frac{1}{T_{s c}}\right)
$$

FIGURE 8.26 A conceptual feedback loop is broken at XX^{\prime} and a test voltage V_{t} is applied. The impedance Z_{t} is equal to that previously seen looking to the left of XX^{\prime}. The loop gain $A \beta=-V_{l} / V_{n}$, where V_{r} is $T_{o c}$ as in (c), and the short-circuit transfer function $T_{s c}$, as in (d), and combining them as indicated.
configurations. Using a simple equivalent circuit model for the op amp we obtain the circuit of Fig. 8.27 (b). Examination of this circuit reveals that a convenient place to break the loop is of Fig. 8.27(b). Examination of this circuit reveals that a convenient place to break the loop is with a test signal V applied to the right-hand-side terminals and a resistance $R_{\text {s }}$ terminating the left-hand-side terminals. The returned voltage V_{r} is found by inspection as

$$
\begin{equation*}
V_{r}=-\mu V_{1} \frac{\left\{R_{L} / /\left[R_{2}+R_{1} / /\left(R_{i d}+R\right)\right]\right\}}{\left\{R_{L} / /\left[R_{2}+R_{1} / /\left(R_{i d}+R\right)\right]\right\}+r_{o}} \frac{\left[R_{1} / /\left(R_{i d}+R\right)\right]}{\left[R_{1} / /\left(R_{i d}+R\right)\right]+R_{2}} \frac{R_{i d}}{R_{i d}+R} \tag{8.51}
\end{equation*}
$$

This cquation can be used directly to find the loop gaiu $L=A \beta=-V_{r} / V_{t}=-V_{r} / V_{1}$ Since the loop gain L is generally a function of frequency, it is usual to call it loop transmission and denote it by $L(s)$ or $L(j \omega)$.

(a)

(b)

(c)

FIGURE 8.27 The loop gain of the feedback locp in (a) is deternined in (b) and (c).

8.7.2 Equivalence of Circuits from a Feedback-Loop Point of View

From the study of circuit theory we know that the poles of a circuit are independent of the external excitation. In fact the poles, or the natural modes (which is a more appropriate name), are determined by setting the external excitation to zero. It follows that the poles of a feedback amplifier depend only on the feedback loop. This will be confirmed in a later section, where we show that the characteristic equation (whose roots are the poles) is completely determined by the loop gain. Thus, a given feedback loop may be used to generate a number of circuits having the same poles but different transmission zeros. The closed-loop gain and the transmission zeros depend on how and where the input signal is injected into the loop.

As an example consider the feedback loop of Fig. 8.27(a). This loop can be used to generate the noninverting op-amp circuit by feeding the input voltage signal to the terminal of R that is connected to ground; that is, we lift this terminal off ground and connect it to V_{s}. The same feedback loop can be used to generate the inverting op-amp circuit by feeding the input voltage signal to the terminal of R_{1} that is connected to ground

Recognitiou of the fact that two or more circuits are equivalent from a feedback-loop point of view is very useful becausc (as will be shown in Section 8.8) stability is a function of the loop. Thus one needs to perform the stability analysis only once for a given loop.
In Chapter 12 we shall employ the concept of loop equivalence in the synthesis of active

Sing the component values in Example 8. 4 find hie value of $\beta \beta$ and ompare to with the value fourd. MExamples
Ans. 493 verims 521

Ans. 6589 V V .

8.8.1 Transfer Function of the Feedback Amplifier

In a feedback amplifier such as that represented by the general structure of Fig. 8.1, the open-loop gain A is generally a function of frequency, and it should thercfore be morc accurately called the open-loop transfer function, $A(s)$. Also, we have been assuming for the most part that the feedback network is resistive and hence that the feedback factor β is con stant, but this need not be always the case. We shall thercfore assume that in the general case the feedback transter function is $\beta(s)$. It follows that the closed-loop transfer function $\Lambda_{f}(s)$ is given by

$$
\begin{equation*}
\Lambda_{f}(s)=\frac{A(s)}{1+A(s) \beta(s)} \tag{8.52}
\end{equation*}
$$

To focus attention on the points central to our discussion in this section, we shall assume that the amplifier is direct-coupled with constant dc gain A_{0} and with poles and zeros occuring in the high-frequency band. Also, for the tine being let us assume that at low frequencies $\beta(s)$ reduces to a constant value. Thus at low frequencies the loop gain $A(s) \beta(s)$ becomes a constant, which should be a positive number; otherwise the feedback would no be negative. The question then is: What happens at higher frequencies?

For physical frequencies $s=j \omega$, Eq. (8.52) becomes

$$
A_{j}(j \omega)=\frac{\Lambda(j \omega)}{1+A(j \omega) \beta(j \omega)}
$$

Thus the loop gain $A(j \omega) \beta(j \omega)$ is a complex number that can be represented by its magni tude and phase,
$L(j \omega) \equiv \Lambda(j \omega) \beta(j \omega)$

It is the manner in which the loop gain varies with frequency that determines the stability or instability of the feedback amplifier. To appreciate this fact, consider the frequency at which the phase angle $\phi(\omega)$ becomes 180°. At this frequency, ω_{180}, the loop gain $A(j \omega) \beta(j \omega)$ will be a real number with a negative sign. Thus at this frequency the feedback will become postive. If at $\omega=\omega_{180}$ the magnitude of the loop gain is less than unity, then from Eq. (8.53) we see that the closed-loop gain $A_{f}(j \omega)$ will be greater than the open-loop gain $A(j \omega)$, since the denominator of Eq. (8.53) will be smaller than unity. Nevertheless, the feedback amplifier will be stable.
On the other hand, if at the frequency ω_{180} the magnitude of the loop gain is equal to unity, it follows from Eq. (8.53) that $A_{f}(j \omega)$ will be infinite. This means that the amplifier will have an output for zero input; this is by definition an oscillator. To visualize how this fecd back loop may oscilate, consider the general loop of Fig. 8.1 with the external input x set $\begin{aligned} & \text { zero. An disturbance in the circuit, such as the closure of the power-supply switch }\end{aligned}$ wide range of frequicies, and we wall $\omega=\omega_{1 s}$ that is the signal $X \sin \left(\omega_{10} t\right)$ This input sizal will mill in feed frequency $\omega=\omega_{180}$, that is, the signal $X_{i} \sin \left(\omega_{180} t\right)$. This input signal will result in a feedback signa given by

$$
X_{f}=A\left(j \omega_{180}\right) \beta\left(j \omega_{180}\right) X_{i}=-X_{i}
$$

Since X_{f} is further multiplied by -1 in the summer block at the input, we see that the feedback causes the signal X_{i} at the amplifier input to be sustained. That is, from this point on, here will be sinusoidal signals at the amplificr input and output of frequency ω_{180}. Thus the mplifier is said to oscillate at the frequency ω_{180}
The question now is: What happens if at ω_{180} the magnitude of the loop gain is greater han unity? We shall answer this question, not in general, but for the restricted yet very mportant class of circuits in which we are interested here. The answer, which is not obvious from Eq. (8.53), is that the circuit will oscillate, and the oscilations will grow in amplitude until some nonlinearity (which is always present in some form) reduces the magnitude of the loop gain to exactly unity, at which point sustained oscillations will be obtained. This mechnism for staring oscillations by using positive feedback with a loop gain greater than unity, and then using a nonlinearity to reduce the loop gain to unity at the desired amplitude, will be exploited in the design of sinusoidal oscillators in Chapter 13. Our objective here is jus he opposite: Now that we know how oscillations could occur in a negative-feedback amplifier, we wish to find methods to prevent their occurrence.

8.8.2 The Nyquist Plot

The Nyquist plot is a fornalized approach for testing for stability based on the discussion above. It is simply a polar plot of loop gain with frequency used as a parameter. Figure 8.28 The solid-line plot. Note that the radial distance is $|A \beta|$ and the angle is the phase angle ϕ. ain function of a physical network-has a magnitude that is an even function matter any and a phase that is an odd function of frequenge the $\alpha \beta$ por foncion of frequency (shown in Fig 828 as a broke line) can be drow a α pren
The Nyquist plot intersects the nccalive real axis at the frequency 0 he Re axis.
tersection occurs to the left of the point $(-1,0)$ we know qut gain at this frequency is greater than unity and the amplifier will be unvtable. On the or hand, if the intersection occurs to the right of the point $(-1,0)$ the amplifier will be stable. It follows that if the Nyquist plot encircles the point $(-1,0)$ then the amplifier will be

FIGURE 8.28 The Nyquist plot of an unstable amplifier
unstable. It should be mentioned, however, that this statement is a simplificd version of the Nyquist criterion; nevertheless, it applies to all the circuits in which we are interested. For the full theory behind the Nyquist method and for details of its application, consult Haykin (1970).

EXERGISE

10 Consider a feedback umplitier for which the opentoop transfer function $\{(s)$ is gien h

$$
A(s)=\left(\frac{10}{1+s \cdot 10^{4}}\right)
$$

Let the feedback factor β be a eonstant independent of frequency. Find the frequency ω_{180} at which the
 than a critcel value β. mind unstable if $\beta \geq \beta_{c s}$ and find the walue of $\beta_{\text {. }}$.
Ans, $\omega_{180}=\sqrt{3} \times 10^{4} \mathrm{rad} / \mathrm{s} ; \beta_{\mathrm{ct}}=0.008$

8.9 EFFECT OF FEEDBACK ON THE AMPLIFIER POLES

The amplifier frequency response and stability are determined directly by its poles. We shall therefore investigate the effect of feedback on the poles of the amplificr.
8.9 EfFECT OF FEEDBACK ON THE AMPLIFIER POLES

837

8.9.1 Stability and Pole Location

We shall begin by considering the relationship between stability and pole location. For an amplifier or any other system to be stable; its poles should lie in the left half of the s plane. A pair or complex-conjugate poles on the $j \omega$ axis gives rise to sustained sinusoidal oscillations. Poles in the right half of the s plane give rise to growing oscillations.

To verify the statement above, consider an amplifier with a pole pair at $s=\sigma_{0} \pm j \omega_{n}$. If this amplificr is subjected to a disturbance, such as that caused by closure of the powersupply switch, its transient response will contain terms of the form

$$
\begin{equation*}
v(t)=e^{\sigma_{0} t}\left[e^{+j \omega_{n} t}+e^{-j j \omega_{n} t}\right]=2 e^{\sigma_{0} t} \cos \left(\omega_{n} t\right) \tag{8.55}
\end{equation*}
$$

This is a sinusoidal signal with an cnvelope $e^{\sigma_{0} t}$. Now if the poles are in the left half of the s plane, then σ_{0} will be negative and the oscillations will decay exponentially toward zero, as shown in Fig. 8.29(a), indicating that the system is stable. If, on the other hand, the poles are in the right half-plane, then σ_{0} will be positive, and the oscillations will grow exponentially

(a)

(b)

(c)

FIGURE 8.29 Relationslip betwecn pole location and transient response.
until some nonlinearity limits their growth), as shown in Fig. 8.29(b). Finally, if the poles are on the $j \omega$ axis, then σ_{0} will be zero and the oscillations will be sustained, as shown in Fig. 8.29(c).

Although the discussion above is in terms of complex-conjugate poles, it can be shown hat the existence of any right-half-plane poles results in instability

8.9.2 Poles of the Feedback Amplifier

From the closed-loop transfer function in Eq. (8.52), we see that the poles of the feedback amplifier are the zeros of $1+A(s) \beta(s)$. That is, the feedback-amplifier poles are obtained by solving the equation

$$
1+A(s) \beta(s)=0
$$

which is called the characteristic equation of the feedback loop. It should therefore be pparent that applying feedback to an amplifier changes its poles.
In the following, we shall consider how feedback affects the amplifier poles. For this purpose we shall assume that the open-loop amplifier has real poles and no finite zeros (i.e, 11 the zeros are at $s=\infty$). This will simplify the analysis and enable us to focus our attentio the fundamental concepts involved We shall aso assume that the feedback factor β is independent of frequency.

8.9.3 Amplifier with a Single-Pole Response

Consider first the case of an amplifier whose open-loop transfer function is characterized by a single pole:

$$
A(s)=\frac{A_{0}}{1+s / \omega_{P}}
$$

The closed-loop transfer function is given by

$$
A_{f}(s)=\frac{A_{0} /\left(1+A_{0} \beta\right)}{1+s / \omega_{P}\left(1+A_{0} \beta\right)}
$$

Thus the feedback moves the pole along the negative real axis to a frequency $\omega_{P ;}$

$$
\begin{equation*}
\omega_{P f}=\omega_{P}\left(1+A_{0} \beta\right) \tag{8.59}
\end{equation*}
$$

This process is illustrated in Fig. 8.30(a). Figure 8.30(b) shows Bode plots for $|A|$ and $\left|A_{f}\right|$. Notc that while at low frequencies the difference between the two plots is $20 \log \left(1+\Lambda_{0} \beta\right)$, the two curves coincide at high frequencies. One can show that this indeed is the case by approximating Eq. (8.58) for frequencies $\omega \geqslant \omega_{P}\left(1+A_{0} \beta\right)$:

$$
\Lambda_{f}(s) \simeq \frac{A_{0} \omega_{p}}{s} \simeq A(s)
$$

Physically speaking, at such high frequencies the loop gain is much smaller than unity and the feedback is ineffective.
Figurc 8.30 (b) clearly illustrates the fact that applying negative feedback to an amplifier results in extending its bandwidth at the expense of a reduction in gaiu. Since the pole of the closed-loop amplifier never enters the right half of the s plane, the single-pole amplifier is stable for any value of β. Thus this amplifier is said to be unconditionally stable. This

(a)

(b)

FIGURE 8.30 Efrect of feedback on (a) having a single-pole open-loop response.
result, however, is hardly surpising, since the phase lag associated with a single-pole response can never be greater than 90°. Thus the loop gain never achieves the 180° phase shift required for the feedback to become positive.

2.3RCISE

8.11 Ar op amp having a single pole folloff at 100 Hz and a low-frequency gain of 10 is operated in a feedback loop with $\beta=0.01$. What is the factor by which feedback shifts the pole? To what frequency? If β is changed to a value that results in a closed-loop gain of +1 to what frequency does the pole shity? Ans. 1001 . $100.1 \mathrm{kHz}, 10 \mathrm{MMH}$

8.9.4 Amplifier with Two-Pole Response

Consider next an amplifier whose open-loop transfer function is characterized by two real axis poles:

$$
\begin{equation*}
A(s)=\frac{A_{0}}{\left(1+s / \omega_{P 1}\right)\left(1+s / \omega_{P_{2}}\right)} \tag{8.61}
\end{equation*}
$$

In this case, the closed-loop poles are obtained from $1+A(s) \beta=0$, which leads to

$$
s^{2}+s\left(\omega_{P_{1}}+\omega_{P_{2}}\right)+\left(1+A_{0} \beta\right) \omega_{P_{1}} \omega_{P 2}=0
$$

Thus the closed-loop poles are given by

$$
s=-\frac{1}{2}\left(\omega_{P 1}+\omega_{P 2}\right) \pm \frac{1}{2} \sqrt{\left(\omega_{P 1}+\omega_{P 2}\right)^{2}-4\left(1+A_{0} \beta\right) \omega_{P_{1}} \omega_{P 2}}
$$

From Eq. (8.63) we see that as the loop gain $A_{0} \beta$ is increased from zero, the poles are brought closer together. Then a value of loop gain is reached at which the poles become coincident. If the loop gain is further increased, the poles become complex conjugate and move along a vertical line. Figure 8.31 shows the locus of the poles for increasing loop gain. ins plot is called a root-locus diagram, where "root" refers to the fact that the poles are the roots of the characteristic equation.

FIGURE 8.31 Roor-locus diagram for a feedback mplifier whose open-loop transfer function has two real poles.

From the root-locus diagram of Fig. 8.31 we see that this feedback amplifier also is nconditionally stable. Again, this resull should come as no surprise; the maximum phas shift of $A(s)$ in this case is $180^{\circ}\left(90^{\circ}\right.$ per pole), but this value is reached at $\omega=\infty$. Thus ther is no finite frequency at which the phase shift reaches 180°.
Another observation to make on the root-locus diagram of Fig. 8.31 is that the open-loop amplifier might have a dominant pole, but this is not necessarily the case for the closed-loop amplifier. The response of the closed-loop amplifier can, of course, always be plotted once the poles have been found from Eq. (8.63). As is the case with second-order responses generally, the closed-loop response can show a peak (see Chapter 12). To be more specific, the characteristic equation of a second-order network can be written in the standard form

$$
s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}=0
$$

where ω_{0} is called the pole frequency and Q is called pole Q factor. The poles are complex Q is greater than 0.5 A geometric interpretation for ω and Q of a pair of complex-conjugate poles is given in Fig 8.32, from which we note that ω, is the radial distance of the pole from the origin and that Q indicates the distance of the poles from the $j \omega$ axis. Poles on the $j \omega$ axis have $Q=\infty$.
By comparing Eqs. (8.62) and (8.64) we obtain the Q factor for the poles of the feedback amplifier as

$$
Q=\frac{\sqrt{\left(1+A_{0} \beta\right) \omega_{P_{1}}} \omega_{P 2}}{\omega_{P_{1}}+\omega_{P_{2}}}
$$

FIGURE 8.32 Definition of ω_{0} and Q of a pair of complex. conjugate poles.
8.9 EFFECT OF FEEDbACK ON THE AMPLIFIER POLES

847

FIGURE 8.33 Nornalized gain of a two-pole feediback amplifier for various values of Q. Notc thal Q is
determined by the loop gain according to Eq. (8.65)

From the study of second-order network responses in Chapter 12, it will be seen that the response of the feedback amplifier under consideration shows no peaking for $Q \leq 0.707$. The boundary case corresponding to $Q=0.707$ (poles at 45° angles) results in the maxivalues of Q (or, correspondingly, various values of $A B$)

6xymicse

8.12 An amplifier, with the freterc negative feethack loop wilh feedback factor β For whith amplifer cenincide? What is the corrcspondins β. of β IS a maximally flat response achieved What is the low-frequend order ss sem? For what vatue mally liat ase?
Ans. 0245:0.5, 0.5,1.96 V/

2xiditss

shown in Fig . soot-locus ing. 8.34(a). Find the loop transmission $I(s)$ and the characteristic equation. Sketch and the value or K tharying K, and find the value of K that resulis in a maximally flat response, and the value of K that makes the circuit oscillate. Assume that the anplificr has infinite inpu
mpedance and zero ouput impedance.

Solution

To obtain the loop transmission, we short-circuit the signal source and break the loop at the aunplifier input. We then apply a test voltage V_{r} and find the returned vollage V_{r}, as indicated in

FIGURE 8.34 Circuits and plot for Example 8.5.
Fig. 8.34(b). The loop transmission $L(s) \equiv A(s) \beta(s)$ is given by

$$
L(s)=-\frac{V_{r}}{V_{t}}=-K T(s)
$$

where $T(s)$ is the transfer function of the two-port RC network shown inside the broken-line box in Fig. 8.34(b)

$$
T(s) \equiv \frac{V_{r}}{V_{1}}=\frac{s(1 / C R)}{s^{2}+s(3 / C R)+(1 / C R)^{2}}
$$

Thus,

$$
L(s)=\frac{-s(K / C R)}{s^{2}+s(3 / C R)+(1 / C R)^{2}}
$$

(8.68)

The characteristic equation is

$$
\begin{equation*}
1+L(s)=0 \tag{8.69}
\end{equation*}
$$

that is,

$$
\begin{align*}
s^{2}+s \frac{3}{C R}+\left(\frac{1}{C R}\right)^{2}-s \frac{K}{C R} & =0 \\
s^{2}+s \frac{3-K}{C R}+\left(\frac{1}{C R}\right)^{2} & =0 \tag{8.70}
\end{align*}
$$

By comparing this equation to the standard form of the second-order characteristic equation (Eq. 8.64) we see that the pole frequency ω_{0} is given by

$$
\begin{equation*}
\omega_{0}=\frac{1}{C R} \tag{8.71}
\end{equation*}
$$

and the Q factor is

$$
\begin{equation*}
Q=\frac{1}{3-K} \tag{8.72}
\end{equation*}
$$

Thus, for $K=0$ the poles have $Q=\frac{1}{3}$ and are therefore located on the negative real axis. As K is increased the poles are brought closer together and eventually coincide $(Q=0.5, K=1$). Further increasing K results in the poles becoming complex and conjugate. The root locus is then a circle because the radial distance ω_{0} remains constant (Eq. 8.71) independent of the value of K.

The maximally flat response is obtained when $Q=0.707$, which results when $K=1.586$. In this case the poles are at 45 angles, as indicated in Fig. 8.34(c). The poles cross the $j \omega$ axis into the right haif of the s plane at the value of K that results in $Q=\infty$, that is, $K=3$. Thus for $K \geq 3$ this circuit becomes unstable. This might appear to contradict our earlier conclusion that the feedback amplifier witb a second-order response is unconditionally stable. Note, however, that the circuit in this example is quite different from the negative-feedback amplificr that we have been studying. Here we have an amplifier with a positive gain K and a feedback network whose transfer function $T(s)$ is frequency dependent. This fcedback is in fact positive, and the circuit will oscillate at the frequency for whicb the phase of $T(j \omega)$ is zero.

Example 8.5 illustrates the use of feedback (positive fecdback in this case) to move the poles of an RC network from their ncgative real-axis locations to complex-conjugate locations. One can accomplish the same task using negative feedback, as the root-locus diagram of Fig. 8.31 demonstrates. The process of pole control is the essence of active-filter design, as will be discussed in Chapter 12 .

8.9.5 Amplifiers with Three or More Poles

Figure 8.35 shows the root-locus diagram for a feedback amplifier whose open-loop response is characterized by three poles. As indicated, increasing the loop gain from zero moves the highest-frequency pole outward while the two other poles are brought closer together. As $A_{0} \beta$ is increased furthcr, the two poles become coincident and then become complex and conjugate. A value of $A_{0} \beta$ exists at which this pair of complex-conjugate poles enters the right half of the s plane, thus causing the amplifier to become unstable.

FIGURE 8.35 Root－locus diagram for an amplifier with thrce poles．The arrow increased．

This result is not entirely unexpected，since an amplifier with three poles has a phase shift that reaches -270° as ω approaches ∞ ．Thus there exists a finite frequency ω_{180} ，at which the loop gain has 180° phase shift．

From the root－locus diagram of Fig．8．35，we obscrve that one can always maintain amplifier stability by keeping the loop gain $A_{0} \beta$ smaller than the value corresponding to the poles entering the right half－plane．In terms of the Nyquist diagram，the critical value of $A_{0} \beta$ is that for which the diagram passes through the $(-1,0)$ point．Reducing $A_{0} \beta$ below this valuc causes the Nyquist plot to shrink and thus intersect the negative real axis to the right of the $(-1,0)$ point，indicating stable amplifier performance．On the other hand，increasing $A_{0} \beta$ above the critical value causes the Nyquist plot to expand，thus encircling the $(-1,0)$ point and indicating unstable performance．

For a given open－loop gain A_{0} the conclusions above can be stated in terms of the feed－ back factor β ．That is，there exists a maximum value for β above which the feedback ampli－ fier becomes unstable．Alternatively，we can state that there exists a minimum value for the closed－loop gain $A_{f 0}$ below which the amplifier becomes unstable．To obtain lower values of closed－loop gain one needs therefore to alter the loop transfer function $L(s)$ ．This is the pro－ cess known as frequency compensation．We shall study the theory and techniques of fre－ quency compensation in Section 8．11．

Before leaving this section we point out that construction of the root－locus diagram for amplifiers having three or more poles as well as finite zeros is an involved process for which a systematic procedure exists．However，such a procedure will not be presented here，and the interested reader should consult Haykin（1970）．Although the root－locus diagram provides the amplifier designer with considerable insight，other，simpler techniques based on Bode plots can be effectively employed，as will be explained in Scction 8．10．
いルル

Let the feedback factor β be frequency indenendent．Find the closed－loop poles as functions of β ，and show that the root locis is that of Fis．E8．13．Also find the value of β at which the amplifier becomes unstable：（Note：This is the same amplifier that was considered in Exercise 8 ion

Figure er． 13

8．10 STABILITY STUDY USING BODE PLOTS

8．10．1 Gain and Phase Margins
From Sections 8.8 and 8.9 we know that one can determine whether a feedback amplifier is or is not stable by examining its loop gain $A \beta$ as a function of frequency．One of the sim－ plest and most effective means for doing this is through the use of a Bode plot for $A \beta$ ，sim plest and most effective means for doing this is through the use of a Bode plot for $A \beta$ ，such as
the one shown in Fig．8．36．（Note that hecause the phase approaches -360° ，the network exam－ ined is a fourth－order onc．）The feedback amplifier whose loop gain is plotted in Fig． 8.36 will be stable，since at the frequency of 180° phase shift，ω_{180} ，the magnitude of the loop gain is less than unity（negative dB）．The difference between the value of $|A \beta|$ at ω_{180} and unity，called the gain margin，is usually expressed in decibels．The gain margin represents the amount by which the loop gain can be increased while stability is maintained．Feedback amplificrs are usually designed to have sufficient gain margin to allow for the inevitable changes in are gain with temperature，time，and so on．
Another way to investigate the stability and to express its degrec is to examine the Bode lot at the frequency for which $|A \beta|=1$ ，which is the point at which the magnitude plot cosses the $0-\mathrm{dB}$ line．If at this frequency the phase angle is less（in magnitude）than 180° ， then the amplifier is stable．This is the situation illustrated in Fig．8．36．The difference between the phase angle at this frequency and 180° is termed the phase margin．On the

FIGURE 8.36 Bode plot for the loop gain $A \beta$ illustrating the definitions of the gain and phase margins.
other hand, if at the frequency of unity loop-gain magnitude, the phase lag is in excess of 180°, the amplifier will be unstable.

At ω_{1} the closed-loop gain is

$$
\begin{equation*}
A_{f}\left(j \omega_{1}\right)=\frac{A\left(j \omega_{1}\right)}{1+A\left(j \omega_{1}\right) \beta} \tag{8.74}
\end{equation*}
$$

Substituting from Eq. (8.73a) gives

$$
\begin{equation*}
A_{f}\left(j \omega_{1}\right)=\frac{(1 / \beta) e^{-j \theta}}{1+e^{-j \theta}} \tag{8.15}
\end{equation*}
$$

Thus the magnitude of the gain at ω_{1} is

$$
\left|A_{f}\left(j \omega_{1}\right)\right|=\frac{1 / \beta}{\mid 1+e^{-j \theta \mid}}
$$

For a phase margin of $45^{\circ}, \theta=135^{\circ}$; and we obtain

$$
\begin{equation*}
\left|A_{f}\left(j \omega_{1}\right)\right|=1.3 \frac{1}{\beta} \tag{8.77}
\end{equation*}
$$

That is, the gain peaks by a factor of 1.3 above the low-frequency value of $1 / \beta$. This peaking increases as the phase margin is reduced, eventually reaching ∞ when the phase margin ero. Zero phase margin, of course, implies that the amplifier can sustain oscillations (poles on the $j \omega$ axis; Nyquist plot passing through $(-1,0)$.

EXSRCISE

8.15 Find the closed toop gain at ω_{1} relative to the lovefrequency sain when the phase margin is 30.60%. and 90°
Ans. 1.93, 1. 0.707
8.14 Consider an op amp having a single-pole open-loop response with $A_{\rho}=10^{5}$ and $f_{\rho}=10 \mathrm{H}_{z}$ Let the op amp be ideat otherwise finfinite inpul impedance zero output intedance. th: If this atiotifist comiected in the nonimverting configuration with a nominal low-frequency closed-loon cain of 100 find the frequency at which $|A \beta|=1$. Also, find the phase margin. Ans. $10^{4} \mathrm{H}: 90^{\circ}$

8.10.2 Effect of Phase Margin on Closed-Loop Response

Feedback amplifiers are normally designed with a phase margin of at least 45°. The amoun of phase margin has a profound effect on the shape of the closed-loop gain response. To see this relationship, consider a fcedback amplifier with a large low-frequency loop gain, $A_{0} \beta \gg 1$. It follows that the closed-loop gain at low frequencies is approximatcly $1 / \beta$ Denoting the frequency at which the magnitude of loop gain is unity by ω_{1} we have (refer to
Fig. 8.36)

$$
A\left(j \omega_{1}\right) \beta=1 \times e^{-j \theta}
$$

where

8.10.3 An Alternative Approach for Investigating Stability

Investigating stability hy constructing Bode plots for the loop gain $A \beta$ can be a tedious and time-consuming process, especially if we have to investigate the stability of a given amplifier for a variety of feedback networks. An alternative approach, which is much simpler, is to construct a Bode plot for the open-loop gain $A(j \omega)$ only. Assuming for the time being that β is independent of frequency, we can plot $20 \log (1 / \beta)$ as a horizontal straight line on the same plane used for $20 \log |A|$. The difference between the two curves will be

$$
\begin{equation*}
20 \log |A(j \omega)|-20 \log \frac{1}{\beta}=20 \log |A \beta| \tag{8.78}
\end{equation*}
$$

whicb is the loop gain (in dB). We may therefore study stability by examining the difference between the two plots. If we wish to evaluate stability for a different feedback factor we simply draw another borizontal straight line at the level $20 \log (1 / \beta)$.
To illustrate, consider an amplifice whose open-loop transfer function is characterized by three poles. For simplicity let the three poles be widely separated-say, at 0.1 MHz MHz , and 10 MHz , as shown in Fig. 8.37. Note that because the poles are widely separated he phase is approximately -45° at the first pole frequency, -135° at the second, and -225 the third. The frequency at which the phase of $A(j \omega)$ is -180° lies on the $-40-\mathrm{dB} /$ decade segment, as indicated in Fig. 8.37

FIGURE 8.37 Stability analysis using Bode plot of $|A|$.

The open-loop gain of this amplifier can be expressed as

$$
A=\frac{10^{5}}{\left(1+j f / 10^{5}\right)\left(1+j f / 10^{6}\right)\left(1+j / / 10^{7}\right)}
$$

from which $|A|$ can be easily determined for any frequency $f($ in $H z)$, and the phase can be ohtained as

$$
\phi=-\left|\tan ^{-1}\left(f / 10^{5}\right)+\tan ^{1}\left(f / 10^{6}\right)+\tan ^{-1}\left(f / 10^{7}\right)\right|
$$

The magnitude and phase graphs shown in Fig. 8.37 are obtained using the method for constructing Bode plots (Appendix E). These graphs provide approximate values for important amplifier parameters, with more exact values obtainable from Eqs. (8.79) and (8.80). For example, the frequency f_{180} at which the phase angle is 180° can be found from Fig. 8.37 to be approximately $3.2 \times 10^{6} \mathrm{~Hz}$. Using this value as a starting point, a more exact valuc can be found by trial and error using Eq. (8.80). The result is $f_{180}=3.34 \times 10^{6} \mathrm{~Hz}$. At this
frequency. Eq. (8.79) gives a gain magnitude of 58.2 dB , which is reasonably close to the approximate value of 60 dB given by Fig. 8.37.
Consider next the straight line labcled (a) in Fig. 8.37. This line represents a feedback factor for which $20 \log (1 / \beta)=85 \mathrm{~dB}$, which corresponds to $\beta=5.623 \times 10^{-5}$ and a closedloop gain of 83.6 dB . Since the loop gain is the difficrence between the $A \mid$ curve and the $1 / \beta$
 exact value of 4.936×10^{s} can be obtained using the transfer-function equations. At this frequency the phase angle is approximately -108°. Thus the closed-loop amplifier, for which $20 \log (1 / \beta)=85 \mathrm{~dB}$, will be stable with a phase margin of 72°. The gain margin can be easily obtained from Fig. 8.37; it is 25 dB
Next, supposc that we wish to use this amplifier to obtain a closed-loop gain of $50-\mathrm{dB}$ nominal value. Since $A_{0}=100 \mathrm{~dB}$, we see that $A_{0} \beta \geqslant 1$ and $20 \log \left(A_{0} \beta\right) \simeq 50 \mathrm{~dB}$, resulting in $20 \log (1 / \beta) \simeq 50 \mathrm{~dB}$. To see whether this closed-loop aunplifier is or is not stable, we draw line (b) in Fig. 8.37 with a height of 50 dB . This line intersects the open-loop gain curve at point X_{2}, where the corresponding phase is greater than 180°. Thus the closed-loop amplifier with $50-\mathrm{dB}$ gain will be unstable.

In fact, it can easily be seen from Fig. 8.37 that the minimum valuc of $20 \log (1 / \beta)$ that can be used, with the resulting amplifier being stable, is 60 dB . In other words, the minimum value of stable closed-loop gain obtained with this amplificr is approximately 60 dB . At this value of gain, however, the amplifier may still oscillate, since no margin is left to allow for possible changes in gain.

Since the 180°-phase point always occurs on the $-40-\mathrm{dB} /$ decade segment of the Bode plot for $|A|$, a rule of thumb to guarantce stability is as follows: The closed-loop amplifier will be stable if the $20 \log (1 / \beta)$ tine intersects the $20 \log$ Al carve at a point on the $-20-\mathrm{dB}$ decade segment. Following this rule ensures that a phase margin of at least 45° is obtained For the example of Fig. 8.37, the rule implies that the maximunn value of β is 10^{-}, which corresponds to a closed-loop gain of approximately 80 dB .

The rule of thumb above can be generalized for the case in which β is a function of frequency. The general rule states that at the intersection of $20 \log [|/|\beta(j \omega)||$ and $20 \log \mid A(j \omega)$; the difference of slopes (called the rate of closure) should not exceed $20 \mathrm{~dB} /$ decade.

EXHCISE

 that for a diflerentiator, the Bode plot for $1 \nmid \beta(j \omega) \mid$ has a slope of $+20 \mathrm{~dB} /$ decade and intersects the

P繁 8.11 FREQUENCY COMPENSATION
In this section, we shall discuss methods for modifying the open-loop transfer function $A(s)$ of an amplificr having three or more poles so that the closed-loop amplifier is stable for any desired value of closed-loop gain.

FIGURE 8.38 Frequency compensation for $\beta=10^{-2}$. The response labeied Λ^{\prime} is oblaitred by introlucing an additional pole al f_{D}. The $A^{\prime \prime}$ response is obtained by moving the original low-frequency pole to f_{D}^{\prime}.

8.11.1 Theory

The simplest method of frequency compensation consists of introducing a new pole in the function $A(s)$ at a sufficiently low frequency, f_{D}, such that the modified open-loop gain, $A^{\prime}(s)$, intersects the $20 \log (1 /|\beta|)$ curve wirh a slope difference of $20 \mathrm{~dB} /$ decade. As an example, let it be required to compensate the amplifier whose $A(s)$ is shown in Fig. 8.38 such that closed-loop ainplifiers with β as high as 10^{-2} (i.e., closed-loop gains as low as approximately 40 dB) will be stable. First, we draw a horizontal straight line at the $40-\mathrm{dB}$ level to represent $20 \log (1 / \beta)$, as shown in Fig. 8.38. We then locate point Y on this line at the frequency of the first pole, $f_{p 1}$. From Y we draw a line with $-20-\mathrm{dB} /$ decade slope and determinc the point at which this line intersects the dc gain line, point Y^{\prime}. This latter point gives the frequency f_{D} of the new pole that has to be introduced in the open-loop transfer function.
The compensated open-loop response $A^{\prime}(s)$ is indicated in Fig. 8.38. It has four poles: at $f_{n}^{\prime}, f_{p_{1},}, f_{p_{2}}$, and $f_{p_{3}}$. Thus $\left|A^{\prime}\right|$ begins to roll off with a slope of $-20 \mathrm{~dB} /$ decade at f_{p}. At $f_{p 1}$ the slope changes to $-40 \mathrm{~dB} /$ decade, at $f_{P 2}$ it changes to $-60 \mathrm{~dB} /$ decade, and so on. Since the $20 \log (1 / \beta) \operatorname{line}$ intersects the $20 \log \left|A^{\prime}\right|$ curve at point Y on the $-20-\mathrm{dB} /$ decade segment, he closed-loop amplifier with this β value (or lower values) will be stable.
A serious disadvantage of this compensation method is that at nost frequencies the open loop gain has been drastically reduced. This means that at most frequencies the amount of cedback available will be small. Since all the advantages of negative fcedback arc directly proportional to the amount of feedback, the performance of the compensated amplifier has bcen impaired.

Careful examination of Fig. 8.38 shows that the gain $A^{\prime}(s)$ is low because of the pole at $f f_{p 1}$. If we can somehow eliminate this pole, then-rather than locating point Y, drawing $Y Y^{\prime}$, and so on--we can start from point Z (at the frequency of the second pole) and draw the line $Z Z^{\prime}$. This would result in the open-loop curve $A^{\prime \prime}(s)$, which shows considerably higher gain than $A^{\prime}(s)$.

Although it is not possible to eliminate the pole at $f_{P 1}$, it is usually possible to shift that ole from $f=f_{\mathrm{p}}$ to $f=f_{\mathrm{D}}^{\prime}$. This makes the pole dominant and eliminates the need for introducing an additional lower-frequency pole, as will be explained next.

8.11.2 Implementation

We shall now address the question of implementing the frequency-compensation scheme discussed above. The amplifier circuit normally consists of a number of cascaded gain stages, with each stage responsible for one or more of che transfer-function poles. Through manual and/or computer analysis of the circuit, one identifies which stage introduces each of the important poles $f_{P}, f_{P 2}$, and so on. For the purpose of our discussion, assume that the first pole $f_{P 1}$ is introduced at the interface between the two cascaded differential stages shown in Fig. 8.39(a). In Fig. 8.39(b) we show a simple small-signal model of the circuit at this interface. Current source I_{x} represents the output signal current of the $Q_{1}-Q_{2}$ stage. Resistance R_{x} and capacitance C_{x} represent the total resistance and capacitance between the two nodes B and B^{\prime}. It follows that the pole $f_{\rho 1}$ is given by

$$
\begin{equation*}
f_{P 1}=\frac{1}{2 \pi C_{x} R_{x}} \tag{8.81}
\end{equation*}
$$

(a)

(b)

(c)

FIGURE 8.39 (a) Two cascaded gain stages of a multistage amplifier. (b) Equivalent circuit for the interface bctween the two slages in (a). (c) Same circuit as in (b) but with a compensating capacitior C_{c} added. Nole that the analysis here applies equally well to MOS amplifiers.

Let us now connect the compensating capacitor C_{C} between nodes B and B^{\prime}. This wil result in the modified equivalent circuit shown in Fig. 8.39(c) from which we see that the pole introduced will no longer be at $f_{P} ;$ rather. the pole can be at any desired lower frequency f_{D}^{\prime} :

$$
\begin{equation*}
f_{D}^{\prime}=\frac{1}{2 \pi\left(C_{x}+C_{C}\right) R_{x}} \tag{8.82}
\end{equation*}
$$

We thus conclude that one can select an appropriate value for C_{C} to shift the pole frequency from $f_{P_{1}}$ to the value f_{D}^{\prime} determined by point Z^{\prime} in Fig. 8.38.

At this juncture it should be pointed out that adding the capacitor C_{C} will usually resul in changes in the location of the other poles (those at $f_{p 2}$ and $f_{p 3}$). One might therefore need to calculate the new location of $f_{P 2}$ and perform a few iterations to arrive at the required valuc for C_{C}.
A disadvantage of this implementation method is that the required value of C_{C} is usually quite large. Thus if the amplifier to be compensated is an IC op amp, it will be difficult, and probably impossible, to include this compensating capacitor on the IC chip. (As pointed out in Chapter 6 and in Appendix A, the maximum practical size of a monolithic capacitor is an 100 pF .) An clegant solution to this problem is to connect the compensating capacito macitance will be of an amplifier stage. Because of the Miller effect, the compensatio tance. Furthermore, as explained later, another unexpected benefit accrues.

8.11.3 Miller Compensation and Pole Splitting

fgure 8.40 (a) shows one gain stage in a multistage amplifier. For simplicity, the stage is hown as a common-emitter amplifier, but in practice it can be a more claborate circuil. In feedback path of this common-emitter stage we have placed a compensating capacitor C Figure 8.40(b) shows a simplified equivalent circuit of the gain stage of Fig. 8.40(a). Her ${ }_{1}$ and C_{1} represent the total resistance and total capacitance between node B and groun and ground. Furthermore, it is assumed that C_{1} includes the Miller component due to capacitance C_{μ}, and C_{2} includcs the input capacitance of the succeeding amplifier stage. Finally, J_{i} represents the output signal current of the preceding stage

(a)

(b)

FIGURE 8.40 (a) A gain stage in a multistage amplifier with a compensating capacitor connected in the feedback path and (b) an cquivalent circuit. Note that although a BJT is shown, the analysis applies equally well to the MOSFET case.

In the absence of the compensating capacitor C_{f}, we can see from Fig. 8.40(b) that there are two poles-onc at the input and one at the output. Let us assume that these two poles are $f_{P 1}$ and $f_{P 2}$ of Fig. 8.38; thus,

$$
\begin{equation*}
f_{P 1}=\frac{1}{2 \pi C_{1} R_{1}} \quad f_{P 2}=\frac{1}{2 \pi C_{2} R_{2}} \tag{8.83}
\end{equation*}
$$

With C_{f} present, analysis of the circuit yields the transfer function
$\frac{V_{o}}{I_{i}}=$

$$
\begin{equation*}
=\frac{\left(s C_{f}-g_{m}\right) R_{1} R_{2}}{1+s\left[C_{1} R_{1}+C_{2} R_{2}+C_{f}\left(g_{m} R_{1} R_{2}+R_{1}+R_{2}\right)\right]+s^{2}\left[C_{1} C_{2}+C_{f}\left(C_{1}+C_{2}\right)\right] R_{1} R_{2}} \tag{8.84}
\end{equation*}
$$

The zero is usually at a much higher frequency than the dominant pole, and we shall neglect its effect. The denominator polynomial $D(s)$ can be written in the form

$$
\begin{equation*}
D(s)=\left(1+\frac{s}{\omega_{P_{1}}^{\prime}}\right)\left(1+\frac{s}{\omega_{P_{2}}^{\prime}}\right)=1+s\left(\frac{1}{\omega_{P_{1}}^{\prime}}+\frac{1}{\omega_{P_{2}}^{\prime}}\right)+\frac{s^{2}}{\omega_{P_{1}}^{\prime} \omega_{P_{2}}^{\prime}} \tag{8.85}
\end{equation*}
$$

where $\omega_{p,}^{\prime}$ and ω_{p}^{\prime} are the new frcquencies of the two poles. Normally one of the poles will be dominant; $\omega_{p_{1}}^{\prime} \leqslant \omega_{p_{2}}^{\prime}$. Thus

$$
\begin{equation*}
D(s) \approx 1+\frac{s}{\omega_{P 1}^{\prime}}+\frac{s^{2}}{\omega_{P 1}^{\prime} \omega_{P_{2}}^{\prime}} \tag{8.86}
\end{equation*}
$$

Equating the coefficients of s in the denominator of Eq. (8.84) and in Eq. (8.86) results in

$$
\omega_{P 1}^{\prime}=\frac{1}{C_{1} R_{1}+C_{2} R_{2}+C_{f}\left(g_{n 1} R_{1} R_{2}+R_{1}+R_{2}\right)}
$$

which can be approximated by

$$
\begin{equation*}
\omega_{P 1}^{\prime} \approx \frac{1}{g_{m} R_{2} C_{f} R_{1}} \tag{8.87}
\end{equation*}
$$

To obtain $\omega_{P 2}^{\prime}$ we equate the coefficients of s^{2} in the denominator of Eq. (8.84) and in Eq. (8.86) and use Eq. (8.87)

$$
\begin{equation*}
\omega_{p 2}^{\prime} \simeq \frac{g_{m} C_{f}}{C_{1} C_{2}+C_{f}\left(C_{1}+C_{2}\right)} \tag{8.88}
\end{equation*}
$$

From Eqs. (8.87) and (8.88), we see that as C_{f} is increased, $\omega_{P 1}^{\prime}$ is reduced and $\omega_{P 2}^{\prime}$ is increased. This action is referred to as pole splitting. Note that the increase in $\omega_{P_{2}}^{\prime}$ is highly beneficial; it allows us to move point Z (see Fig. 8.38) further to the right, thus resulting in highcr compensated open-loop gain. Finally, note from Eq. (8.87) that C_{f} is multiplied by the Miller-effect factor $g R_{2}$ thus resulting in a much larger capacitance, $g_{v 1} R_{2} C_{f}$ In other words, the required value of C_{f} will be much smaller than that of C_{C} in Fig. 8.39

Consider an op amp whose open-loop transfer function is identical to that shown in Fig. 8.37. We wish to compensate this op amp so that the closed-loop amplifier with resistive feedback is stable for any gain (i.e., for β up to unity). Assume that the op-anp circuit includes a stage such as that of Fig. 8.40 with $C_{1}=100 \mathrm{pF}, C_{2}=5 \mathrm{pF}$, and $g_{m}=40 \mathrm{~mA} / \mathrm{N}$, that the pole at $f_{p 1}$ is caused by the input circuit of that stage, and that the pole at $f_{p 2}$ is introduced by the output circuit. Find the value of the compensating capacitor for two cases: either if it is connected between the input node B and ground or in the feedback path of the transistor.

Solution
First we determine R_{1} and R_{2} from

$$
f_{P 1}=0.1 \mathrm{MHz}=\frac{1}{2 \pi C_{1} R_{1}}
$$

Thus,

$$
\begin{gathered}
R_{1}=\frac{10^{5}}{2 \pi} \Omega \\
f_{P 2}=1 \mathrm{MHz}=\frac{1}{2 \pi C_{2} R_{2}}
\end{gathered}
$$

Thus,

$$
R_{2}=\frac{10^{5}}{\pi} \Omega
$$

If a compensating capacitor C_{C} is connected across the input terminals of the transistor stage, then the frequency of the first pole changes from $f_{\rho_{1}}$ to f_{D}^{\prime} :

$$
f_{D}^{\prime}=\frac{1}{2 \pi\left(C_{1}+C_{C}\right) R_{1}}
$$

The second polc remains unchanged. The requircd value for f_{D}^{\prime} is determined by drawing a $-20-\mathrm{dB} /$ decade line from the $1-\mathrm{MH} \angle$ frequency point on the $20 \log (1 / \beta)=20 \log 1=0 \mathrm{~dB}$ line. This line will intersect the $100-\mathrm{dB}$ dc gain line at 10 Hz . Thus,

$$
f_{D}^{\prime}=10 \mathrm{H} z=\frac{1}{2 \pi\left(C_{1}+C_{C}\right) R_{1}}
$$

which results in $C_{C} \simeq 1 \mu \mathrm{~F}$, which is quite large and certainly caunot be included on the IC chip. Next, if a compensating capacitor C_{f} is connected in the feedback path of the transistor, then both poles change location to the values given by Eqs. (8.87) and (8.88):

$$
\begin{equation*}
f_{P_{1}}^{\prime} \simeq \frac{1}{2 \pi g_{g_{n}} R_{2} C_{f} R_{1}} \quad f_{P_{2}}^{\prime} \simeq \frac{g_{m} C_{f}}{2 \pi\left[C_{1} C_{2}+C_{f}\left(C_{1}+C_{2}\right)\right]} \tag{8.89}
\end{equation*}
$$

To determine where we should locate the first pole, we need to know the value of $f_{P 2}^{\prime}$. As an approximation, lct us assume that $C_{f} \Rightarrow C_{2}$, which enables us to obtain

$$
f_{P_{2}}^{\prime} \simeq \frac{g_{m}}{2 \pi\left(C_{1}+C_{2}\right)}=60.6 \mathrm{MHz}
$$

Thus it appears that this pole will move to a frequency higher than $f_{P_{3}}$ (which is 10 MHz). Let us therefore assumc that the second pole will bc at $f_{P 3}$. This requires that thc first polc bc locatcd at

Thus,

$$
\int_{P_{1}}^{\prime}=\frac{f_{P 3}}{A_{0}}=\frac{10^{7} \mathrm{H} L}{10^{5}}=100 \mathrm{~Hz}
$$

$$
f_{P_{1}}^{\prime}=100 \mathrm{~Hz}=\frac{1}{2 \pi g_{m} R_{2} C_{f} R_{1}}
$$

which results in $C_{f}=78.5 \mathrm{pF}$. Although this value is indced much greater than C_{2}, we can determine the location of the pole $f_{p_{2}}^{\prime}$ from Eq. (8.89), which yields $f_{p_{2}}^{\prime}=57.2 \mathrm{MHz}$, confirming that this pole has indeed heen moved past $f_{\rho_{3}}$.
We couclude that using Miller compeusation not only results in a much smaller compensating capacitor but, owing to pole splitting, also enables us to place the dominant pole a decade higher in frequency. This results in a wider bandwidth for the compensated op amp.

ExCreises

 sated for closed loop edins as tow as 20 iB by the introduction of a hew dominant pole At what frequency must the nev pole be placed? Arequency 100 Hi
8.18 For the anplifier described in Exercise 817 . rather than introducing a new dominant pote, we can use additional capacitance at the circuit node at which the first pole is formed to reduce the frequency of the irst pole. If the frequency of the second pole is 10 MHz and if it remains unchanged while additiona apat the resulting anplifis mentioned, find the frequency to which the first pole must be lowered so capacitance at the controlling node be nicreased? Ans. $1000 \mathrm{~Hz}, 1000$

We conclude this chapter by presenting an example that illustrates the use of SPICE in the analysis of feedback circuits.

DETERMINING THE LOOP GAIN USING SPICE

This example illustrates the use of SPICE to compute the loop gain $A \beta$. To be able to compare results, we shall use the same shunt-series feedback amplifier considered in Example 8.4 and redrawn in Fig. 8.41. This, however, does not limit the generality of the methods described.

To compute the loop gain, we set the input signal V_{s} to zero, and we choose to break the fee back loop between the collector of Q_{1} and thc base of Q_{2}. However, in breaking the feedback loop, we must ensure that the following two condilions that existed prior to breaking the feedback loop do not change. (1) the dc bias situation and (2) the ac signal termination,
To break the feedback loop without disturbing the dc bias conditions of the circuit, we inser a large inductor $L_{\text {hreak }}$, as shown in Fig. 8.42(a). Using a value of, say, $L_{\text {hreak }}=1 \mathrm{GH}$ will ensure that the loop is opened for ac signals while keeping dc bias conditions unchanged.
To break the feedback loop without disturbing the signal termination conditions, we must load the loop output at the collector of Q_{1} with a termination impedance $Z_{\text {, whose value is equal to the }}$ dc bias conditions, Z must be connected to the collctor of Q via alarge coupling cap cturbing the ber, it is not x, Z, ever, 1 is not alwa $Z_{\text {a }}$.

Method 1 Using the open-circuit and short-circuil transfer functions
As described in Section 8.7, the loop gain can be expressed as

$$
\Delta \beta=-1 /\left(\frac{1}{T_{o c}}+\frac{1}{T_{s c}}\right)
$$

where $T_{o c}$ is the open-circuit voltage transfer function and $T_{s c}$ is the short-circuit current transfer function.

The circuit for determining $T_{o c}$ is shown in Fig. 8.42(a). Here, an ac test signal voltage V_{t} applied to the loop input at the base of Q_{2} via a large coupling capacitor (having a valuc of, say, 1 kF) to avoid disturbing the dc bias conditions. Then,

$$
T_{o c}=\frac{V_{o c}}{V_{t}}
$$

where $V_{o c}$ is the ac open-circuit output voltage at the collector of Q_{1}.
In the circuit for determining $T_{s c}$ (Fig. 8.42b), an ac test signal current I_{t} is applied to the loop input at the base of Q_{2}. Note that a coupling capacitor is not needed in this case because the ac current source appears as an open circuit at dc, and, hence, does not disturb the dc bia
conditions.
The loop output at the collector of Q_{1} is ac short-circuited to ground via a large capacito $C_{t 0}$. Then,

$$
T_{s c}=\frac{I_{s c}}{\tilde{I}_{t}}
$$

where $I_{s c}$ is the ac short-circuit output current at the collector of Q_{1}
Method 2 Using a replica circuit
As shown in Fig. 8.43, a replica of the feedback amplificr circuit can be simply used as a termination impedance. Here, the feedback loops of both the amplifier circuit and the replica circuit are broken using a large inductor $L_{\text {braka }}$ to avoid disturbing the de bias conditions. The loop output at the collector of Q_{1} in the amplifier circuit is then connected to the loop input at the has of Q_{2} in the replica circuit via a large coupling capacitor $C_{t o}$ (again, to avoid disturbing the d bias conditions). Thus, for ac signals, the loop output at the collector of Q_{1} in the amplifier circuit sees an impedance equal to that seen before the feedback loop is broken. Accordingly, we havc ensured that the conditions that existed in the amplifier circuit prior to breaking the loop have not cbanged

(a)

(b)

FIGURE 3.42 Circuis for simulating (a) the open-cirewit voltage transfer function T_{c} and (b) the short circuil current transler function $T_{s \text { se }}$ of the fecdback amplifier in Fig. 8.41 for the purpose of computing ics loop gain.

FIGURE 8.43 Circuit for simulating the loop gain of the feedback amplifier in Fig. 8.41 using the replica

Next, to determine the loop gain $A \beta$, we apply an ac test-signal voltage V_{t} via a large coupling capacitor $C_{i f}$ to the loop input at the base of Q_{2} in the amplifier circuit. Then, as described in Section 8.7.

$$
A \beta=-\frac{V_{r}}{V_{t}}
$$

where V_{r} is the ac returned signal at the loop output, at the collector of Q_{1} in the amplifier circuit. To compute the loop gain $A \beta$ of the feedback amplifier circuit in Fis 8.41 amplifier circuit choose to simulate the circuit in Fig. 8.43. In the PSpice simulations, we used part Q2N3904 (wbose SPICE model is given in Table 5.9) for the BJTs, and we set $L_{\text {we }}$ ased part Q2N3904 coupling and bypass capacitors to be 1 kF . The magnitude and phase of $A \beta$ are plotted in Fig. 8.44, from which we see that the feedback amplifier has a gain margin of 53.7 dB and a phase margin of 88.7°.

FIGURE 8.44 (a) Magnitude and (b) phase of the loop gain $A \beta$ of the feedback-amplifier circuit in Fig. 8.41.

SUMMARY

Negative feedback is employed to make the amplifier gain less sensitive to component variations; to control input and output impedances; to extend bandwidth; to reduce noniinear distortion; and to enhance signal-to-noise (and ignal-to-interference) ratio

* The advantages above are obtained at the expense of a reduction in gain and at the risk of the amplifier becoming unstable (that is, oscillating). The latter problem is solved y careful design.
\# For each of the four basic types of amplifier, there is an appropriate feedback topology. The four topologies, together with their analysis procedure and their effects on input and output impedances, are summarized in Table 8.1 on page 830 .
The key feedback parameters are the loop gain $(A \beta)$, which for negative fecdback must be a positive dimensionless number, and the amount of fecdback $(1+A \beta)$. The latter direclly determines gain reduction, gain desensitivity, bandwilth extension, and changes in Z_{i} and Z_{0}.
- ${ }^{\text {and }}$ Since A and β are in general frequency dependent, the poles of the feedback amplifier are obtained by solving he characteristic equation $i+A(s) \beta(s)=0$.

For the feedback amplifier to be stable, its poles must al be in the left half of the s plane.
Stability is guaranteed if at the frequency for which the phase angle of $A \beta$ is $180^{\circ}\left(\mathrm{i} . \mathrm{e}\right.$., $\left.\omega_{180}\right), A \beta$ is less than unty; the amount by which it is less than unity, expressed in decibels, is the gain margin. Alternatively, the amplifier is stable if, at the frequency at which $|A \beta|=1$, the phase angle is less than 180°; the difference is the phase margin.
The stability of a feedback amplifier can be analyzed by constructing a Bode plot for $|A|$ and superimposing on it plot for $1 /|\beta|$. Stability is guaranteed if the two plots inter sect with a difference in slope no greater than $6 \mathrm{~dB} /$ octave
To make a given amplifier stable for a given feedback fac tor β, the opeu-loop frequency response is suitably mod fied by a process known as frequency compensation.
A popular method for frequency compensation involve connecting a feedback capacitor across an inverting stage in the amplifier. This causes the pole formed at the input of the amplifier stage to shift to a lower frequency and thus become dominant, while the pole fortned at the ouput of the ampli fier stage is moved to a very high frequency and thus be comes unimporlant. This process is known as pole spliting

PROBEEMS

SECTION 8.1: THE GENERAL FEEDBACK

STRUCTURE

B. 1 A negative-feedback amplifier has a closed-loop gain $A_{f}=100$ and an open-loop gain $A=10^{3}$. What is the feedback factor β ? If a manufacturing error results in a reduction of A change in A_{s} corresponding to this farts? What is the pection in A ? 8.2 Repeat Exercise 8.1, parts (b) through (e), for $A=100$.
8.3 Repcat Exercise 8.1, parts (b) through (e), for $A_{f}=10^{3}$. For part (d) use $V_{s}=0.01 \mathrm{~V}$
8.4 The noninverting buffer op-amp configuration shown in Fig. P8. 4 provides a dircct implementation of the feedback loop of Fig. 8.1. Assuming that the op amp has infinite input
resistance and zero output resistance what is β ? Ir $A=100$. what is the closed-loop voltage gain? What is the amount of feedhack (in dB)? For $V_{s}=1 \mathrm{~V}$, find V_{s} and V_{t}. If A decreases by 10%, wbat is the corresponding decrease in A_{f} ?

FIGURE P8. 4

8.5 In a particular circuit represcnted by the block diagram of Fig. 8.1, a signal of 1 V from the source results in a difference signal of 10 mV beins provided to the amplifying element A and 10 V applied to thc load. For this aurangement, identify the values of A and β that apply.
8.6 Find the open-loop gain, the loop gain, and the amount of feedback of a voltage amplifier for which A_{f} and $1 / \beta$ differ by (a) 1%, (b) 5%, (c) 10%, (d) 50%.
8.7 In a particular amplifier design, the β network consists of a linear potentiometer for which β is 0.00 at one end, ometer is adjusted, find the three values of closed-loop gain that resuit when the amplifier open-loop gain is (a) $1 \mathrm{~V} / \mathrm{V}$, (b) $10 \mathrm{~V} / \mathrm{V}$, (c) $100 \mathrm{~V} / \mathrm{V}$, (d) $10,000 \mathrm{~V} / \mathrm{V}$.
8.8 A newly constructed feedback amplifier undergoes a performance test with the following results: With thc fecdto provide a $10-\mathrm{V}$ output to the foad; with the feedback connected, a $10-\mathrm{V}$ output requires a $200-\mathrm{mV}$ source signal. For this amplifier, identify values of $A, \beta, A \beta$, the closcd-loop gain, and the amount of feedback (in dB).

SECTION 8.2: SOME PROPERTIES OF NEGATIVE

 FEDBACK3.9 For the negative-feedback loop of Fig. 8.1, find the gain $A B$ for which the sensitivity of closed-loop gain to oper loop gain [i.e., $\left.\left(d A_{f} / A_{f}\right) /(d A / A)\right]$ is -20 dB . For what value does the sensitivity become $1 / 2$?
08.10 It is required to design an anplificr with a gain of 100 that is accurate to withim $\pm 1 \%$. You have available amplifier stages with a gain of 1000 that is accurate to within $+30 \%$. Provide a design that uses a number of these gain tages in cascade, with each stage cmploying negative feedshould use the lowest possible number of stages while meeting should use the
8.11 In a feedback amplifier for which $A=10^{4}$ and $A_{f}=10^{3}$ what is the gain-desensitivity factor? Find A_{f} exacty, and approximately using Eq. (8.8), in the two cases: (a) A drop by 10% and (b) A drops by 30%.
8.12 Consider an amplifier having a midband gain $A_{i k}$ and a ow-frequency response characterized by a pole at $s=-\omega_{0}$ and a zern at $s=0$. Let the amplifier be connccted in a negativeleedback loop with a feedback factor β. Find an expression for the midband gain and the lower 3 -dB frequency of the closed-loop amplifier. By what factor have both changed?
**8. 13 It is required to design an amplitier to have a nommal closed-loop gain of $10 \mathrm{~V} / \mathrm{V}$ using a battery-operatcd amplinier whose gain reduces to haif its normal full-battery value over the life of the battery. If only 2% drop in closedloop gain is desired, what nominal open-loop amplifier gain most be used in de design? (Notc that since the change in A should be chosen? If component-value variation in the β network may produce as much as a $\pm 1 \%$ variation in β, to wha value must A be raised to ensure the required minimum gain? 8.14 A capacitively coupled amplifier has a midband Eain of 100 , a single high-frequency pole at 10 kHz , and
 the uppcr and lower 3 -dB frequencies of the closed-loo gain?
***8. 15 It is required to design a dc amplifier with a low frequency gain of 1000 and a 3-dB frequency of 0.5 MHz ou have available gain stages with a gain of 1000 but wilh ominaant high-frequency polc at 10 kHz . Provide a desig hat cmploys a number of such stages in cascade, each stages. [Hint: When negative fecdback of an amount $(1+A \beta$
increased by the factor $(1+A B)$.]
D8.16 Design a supply-ripple-reduced power amplifier, for which an output stagc having a gain of $0.9 \mathrm{~V} / \mathrm{V}$ and ± 1 - V output supply ripple is uscd. A closed-loop gain of $10 \mathrm{~V} / \mathrm{N}$ desteduce the output ripple to $\pm 100 \mathrm{mV}$? To $\pm 10 \mathrm{mV}$? To +1 mV ? For each case, specify the value required for the feedback lactor β.
D8.17 Design a feedback amplifier that has a closed-loop gain of $100 \mathrm{~V} / \mathrm{V}$ and is relatively inscnsitive to change in basic-amplifier gain. In particular, it should provide a reducinal value. What is the required loop gain? What nominal value of A is required? What value of β should be used? What would the closed-loop gain become if A were incrcased tenfold? If A were madc infinite?
28.18 A feedback amplifier is to be designed using a feedD8.18 A feedback amplifier is two be designed using a
back toop conncted around a two-stage amplifier. The first stage is a direct-coupled small-signal amplifier with a high tage with a midband. gain of $10 \mathrm{~V} / \mathrm{V}$ and upper- and lower $3-\mathrm{dB}$ frequencies of 8 kHz and 80 Hz , respectively. The fcedback amplifier should have a mididand gain of $100 \mathrm{~V} / \mathrm{V}$ and an upper $3-\mathrm{dB}$ frequency of 40 kHz . What is the required gain of the small-signal amplifier? What value of β should be used? What does the lower $3-\mathrm{dB}$ frequency of the overal mplifier become?
8.19 The complementary BJT follower shown in Fig. P8.19(a) has the approximate transfer characteristic hown in Fig. P8.19(b). Observe thal for $-0.7 \mathrm{~V} \leq v_{t} \leq+0.7 \mathrm{~V}$ the output is zero. This "dead band" leads to crossover
istortion (see Section 14.3). Consider this follower drive y the output of a dilferential amplifier of gain 100 whos positivc-1npul terminal is connected to the input signa source ν_{s} and whose negative-input terminal is connected to he enutters of the follower. Skech the ranser charactersit he limis of the dcad band and what are the gais. Wi, the dead band?
8.20 A particular amplificr has a nonlinear tinsfer char cteristic that can be approximated as follows:
(a) For small input signals, $\left|v_{\|}\right| \leq 10 \mathrm{mV}, v_{o} / v_{t}=10^{3}$ (b) For intermediate input signals, $10 \mathrm{mV} \leq \mid v_{i} \leq 50 \mathrm{mV}$, $v_{0} / v_{i}=10^{2}$
(c) For large input signals, $\left|v_{f}\right| \geq 50 \mathrm{mV}$, the output saturate If the amplifier is connected in a negative-fcedback loo find the feedback factor β that reduces the factor-of-10 change in gain (occurring at $\left|v_{\|}\right|=10 \mathrm{mV}$) to only a 10% change. What is the transfer characteristic of the amplifie with feedback?

SECTION 8.3: THE FOUR BASIC FEEDBAC

 TOPOLOGIES8.21 A series-shunt feedback amplifier representable by Fig. 8.4(a) and using an ideal basic voltage amplifier operates ind $v_{s}=100 \mathrm{mV}, v_{f}=95 \mathrm{mV}$, and $V_{o}=10 \mathrm{~V}$. What are for each.
8.22 A shunt-series feedback anplifier representable by Fig. 8.4(b) and using an ideal basic current amplifier operate with $I_{s}=100 \mu \mathrm{~A}, I_{f}=95 \mu \mathrm{~A}$, and $I_{o}=10 \mathrm{~mA}$. What arc the for each

(a)

(b)

FIGURE P8.19
8.23 Consider the shunt-series feedback amplifier Fig. 8.5:
(a) For $k_{3}, r_{o 1}$, and $r_{o 2}$ assumed very large, use direct circuit analysis (as opposed to feedback analysis) to show thal the overall current gain is given by

$$
A_{f} \equiv \frac{I_{o}}{I_{s}}=-\frac{R_{1}+g_{m 1} R_{L 1}\left(R_{1}+R_{2}\right)}{R_{1}+\frac{1}{g_{m 2}}+g_{m 1} R_{L 1} R_{1}}
$$

and the input resistance is

$$
R_{\text {in }}=R_{1}+R_{2}+A_{f} R_{1}
$$

lence, lind approximate expressions for Λ_{f} and R_{in} for the case in which $g_{m 1} R_{t, 1} \geqslant 1$ and $\left(1 / g_{m 2}\right) \ll R_{1}$
E) Evaluate A_{f} and $R_{\text {in }}$, exactly and approximately, for the $=510 \mathrm{k}$. $g_{m 1} R_{L 1}=100, R_{1}=10 \mathrm{k} \Omega, R_{2}=90 \mathrm{k} \Omega$, and $g_{m 2}=5 \mathrm{~mA} / \mathrm{V}$.
mplifier toward ground, the forces the input terminal of the

approximately as the current divider ratio of the $\left(R_{1}, R_{2}\right)$ network. Find β and show that the approximate expression
for A_{f} found above is simply $1 / \beta$. 24 A

Fig. 84 series-series feedback circuit representahle by operates with $V=100 \mathrm{mV}, V=95 \mathrm{mV}$ and $I=10 \mathrm{mif}$ What are the corresponding values of A and β ? Include the correct units for each.
8.25 A shunt-shunt feedback circuit representahle by Fig. 8.4(d) and using an ideal transresistance amplifier oper atcs with $I_{s}=100 \mu \mathrm{~A}, I_{f}=95 \mu \Lambda$, and $V_{o}=10 \mathrm{~V}$. What are the corresponding values of Λ and β ? Include the correct units for each
8.26 For each of the op-amp circuits shown in Fig. P8. 26 identify the feedback topology and indicate the output variable being sampled and the feedback signal. In each case hence find A_{f}

(a)
(c)

FIGURE P8. 26

(b)

ECTION 8.4: THE SERIES-SHUNT FEEDBACK

 AMPLIFIER. 27 A series-shunt feedback amplifier employs a basi . mplifier with input and output resistances each of $1 \mathrm{k} \Omega$ and $\operatorname{sein} A=2000 \mathrm{~V} / \mathrm{N}$. The feedback factor $\beta=0.1 \mathrm{~V} / \mathrm{V}$. Find the gain A_{f}, the input resistance R_{i}, and the output resistance $R_{o f}$ of the closed-loop amplifier
8.28 For a particular amplifier connected in a feedback loop in which the output voltage is sampled, measurement of the output resistance before and after the loop is connected shows a change by a factor of 80 . Is the resistance with feedback higher or lower? What is the value of the loop gain $A \beta$ If $R_{o f}$ is 100Ω, what is R_{o} without feedback?
*8.29 A series-shunt feedhack circuit employs a basic voltage amplifier that has a dc gain of $10^{4} \mathrm{~V} / \mathrm{V}$ and an STC requency response with a unity-gain frequency of 1 MHz . The input resistance of the basic amplifier is $10 \mathrm{k} \Omega$, and its output resiscance is $1 \mathrm{k} \Omega$. If the feedback factor $\beta=0.1 \mathrm{~V} / \mathrm{V}$, find the input impcdance $Z_{i \text { is }}$ and thc output impedance $Z_{o f}$ of he teedback amplifier. Give equivalent alue of each impedance at $10^{3} \mathrm{~Hz}$ and at $10^{5} \mathrm{~Hz}$.
8.30 A series-shunt fecdback amplifier utilizes the feed back circuit shown in Fig. P8. 30 .
(a) Find expressions for the h parameters of the feedback circuit (see Fig. 8.10b).
b) If $R_{1}=1 \mathrm{k} \Omega$ and $\beta=0.01$, what are the values of all four
paramelers? Give the units of eacb parameler.
(c) For the case $R_{s}=1 \mathrm{kS}$ and $R_{L}=1 \mathrm{k} \Omega$, sketch and label a cquivalcent circuil following the model in Fig. 8.10(c).
(1) $\left\{R_{R_{2}}^{R_{1}}\right.$

FIGURE P8. 30

.31 A feedback amplifier utilizing voltage sampling and employing a basic voltage amplifier with a gain of $100 \mathrm{~V} / \mathrm{V}$ and an output resistance of 1000Ω has a closed-loop outp besic applifier is used to implement a unity-ain volta huffer, what output resistance do you expect?
*8.32 In the series-shunt amplifier shown in Fig. P8.32 the transistors operate at $V_{B E} \cong 0.7 \mathrm{~V}$ with $h_{F E}$ of 100 and an Early voltage that is very large
(a) Derive expressions for A, β, R_{i} and R
(b) For $I_{B 1}=0.1 \mathrm{~mA}, I_{B 2}=1 \mathrm{~mA}, R_{1}=1 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{\mathrm{s}}=$ 100Ω, and $R_{L}=1 \mathrm{k} \Omega$, find the de bias voluages at the input and at the output, and find $A_{f} \equiv v, v, R_{v}$ and $R_{\text {out }}$

D*8.33 Figure P 8.33 shows a scrics-shunt amplifier with feedback factor $\beta=1$. The amplifier is designed so that $v_{o}=$ for $v_{s}=0$, with small deviations in v_{o} from $0 \vee$ dc bcing minimized by the negative-feedback action. The technology utilized has $k^{\prime}=2 k^{\prime}=120 \mu \mathrm{~A} / \mathrm{V}^{2}, \mid V^{\prime}=0.7 \mathrm{~V}$, and $\left|V^{\prime}\right|^{\prime}=24 \mathrm{~V} / \mu \mathrm{m}$.

FiGURE P8.32
(a) With the feedback loop opened and the gate terminals of Q_{1} and Q_{2} grounded lind the dc currcnt and the overdrive voltage at which each of Q_{1} to Q_{5} is operating. Ignore the drain voltages. Also find the de voltage at the output. (b) Find g_{m} and r_{o} of each of the five transistors. (c) Find the values of A and R_{v}. Assume that the bias current sources are ideal.
(d) Find the gain-with-fcedback, A_{f}, and the oulput resistance $R_{\text {out }}$. loop voltageuld you modify the circuit to realize a closed ancc obecined? $5 \mathrm{~V} / \mathrm{V}$? What is the value of output resistancc obkuined?
**8.34 For the circuil in Fig. P8.34, $\left|V_{t}\right|=1 \mathrm{~V}, k^{\prime} W / L=$ $1 \mathrm{inA} / \mathrm{V}^{2}, h_{f c}=100$, and the Farly voltage magnitude for alf

FIGURE P8. 33

FIGURE P8. 34
devices (including those that implement the current sources) is 100 V . The signal source V_{s} has a zero dc component. Find de voltage at the output and at the base of Q_{3}. Find the values of $A, \beta, A_{f}, R_{\text {ix }}$, and $R_{\text {out }}$
D*8.35 Figure P8.35 shows a series-shunt. feedback amplifier without details of the bias circuit.
(a) Sketch the A circuit and the circuit for determining β. (b) Show that if $A \beta$ is large then the closed-loop voltage gain is given approximatety by

$$
A_{f} \equiv \frac{V_{g}}{V_{s}} \simeq \frac{R_{F}+R_{E}}{R_{F}}
$$

(c) If R_{E} is selected cqual 1050Ω, find R_{F} that will result in a closed-loop gain of approximately $25 \mathrm{~V} / \mathrm{N}$.
(d) If Q_{1} is biased at $1 \mathrm{~mA}, Q_{2}$ at 2 mA , and Q_{3} al 5 mA , and assuming that he transistors have $h_{f e}=100$, find approximatc
valucs for $R_{C 1}$ and $R_{C_{2}}$ to obtain gains from the stages of the A circuit as follows: a voltage gain of Q_{1} of about -10 and a voltage gain or Q_{2} of about -50.
(e) For your design, what is the closed-loop voltage gain realized?
(f) Calculate the inpui and output resistances of the closedloop amplifier designcd.

FIGURE P8. 35

SECTION 8.5: THE SERIES-SERIES

fEEDBACK AMPLIFIER
8.36 For the circuit in Fig. 8.17(a), find an approximate value for I_{o} / V_{s} assuning that the loop gain is large. Usce it to deternine the voltage gain V_{o} / V_{s}. Comparc your results with the values found in Example 8.2
8.37 A serics-series feedback amplifier employs cransconductance amplifier having $G_{m}=100 \mathrm{~mA} \mathcal{N}$, inpu resistance of $10 \mathrm{k} \Omega$, and output resistance of $100 \mathrm{k} \Omega$. Th feedback network has $\beta=0.1 \mathrm{~V} / \mathrm{mA}$, an input resistance (with port 1 open-circuited) of 100Ω, and an input resistance (with port 2 open-circuited) of $10 \mathrm{k} \Omega$. The amplifier operates with a signal source having a resistance of $10 \mathrm{k} \Omega$ and with a load resistance of $10 \mathrm{k} \Omega$. Find A_{f}, R_{in}, and $R_{\text {oxx }}$.
**8.38 Figure P 8.38 shows a circuit for a voltage-controlled curient source employing series-series feedback throuyh the resistor R_{E}. (The hias circuit for the transistor is not shown.) Show that if the loop gain $A \beta$ is large,

$$
\frac{I_{o}}{V_{s}}=\frac{1}{R_{E}}
$$

Then find the value of R_{E} to obtain a circuit transconductance of $1 \mathrm{~mA} / \mathrm{N}$. If the voltage amplifier has a differential inpur resislance of $100 \mathrm{k} \Omega$, a voltage gain of 100 , and an output resistance of $1 \mathrm{k} \Omega$, and if the ransistor is biased at a clurren or 1 mA , and has $h_{f_{c}}$ of 100 and r_{o} of $100 \mathrm{k} \Omega$, find the actual value of transconductance ($\left.l_{a} / V_{s}\right)$ rcalized. Use $R_{s}=10 \mathrm{k} \Omega$ Also find the input resistance $R_{\text {in }}$ and the output resistance $R_{\text {oul }}$ For calkulating $R_{\text {out }}$ recall that the output resistance of approximately $h_{8} r_{0}$

FIGURE P8. 38
*8.39 Figure P8. 39 shows a circuit for a voltage-to-current convcrler employing series-scries feedback via resistor R_{F} $20 \mu \mathrm{~A} / V^{2}|V|=1 \mathrm{~V}$ and $|V|=100 \mathrm{~V}$ What is he $\mu_{n} c_{o x}$ of I / V oblained for large ioop gain? Lse feedback analysis to find a more exact value for I_{u} / V_{c}. Also, if the output vollage is taken at the source of Q_{5}, what closed-loop voltage gain is realized?
8.40 For the series-scrics fecdback amplifier in Fig. P8.40 the op amp is characterized by an opcn-loop voltuge sain μ

FIGURE P8. 39

an input differential resistance $R_{i d}=10 \mathrm{k} \Omega$, and an output resistance $r_{o}=100 \Omega$. The amplifier supplies a current i_{o} to a load resistance $R_{L}=1 \mathrm{k} \Omega$. The feedback network is composcl of resistors $r=100 \Omega, R_{2}=10 \mathrm{kS} \Omega$, and R_{1}. It is required to find the gain-with-feedback $\Lambda_{f} \equiv i_{o} / v_{s}$, the input resistance
and the output resistance $R_{\text {win }}$ for
(a) $\mu=10^{5} \mathrm{~V}$ and $R_{1}=100 \Omega$
(b) $\mu=10^{4} \mathrm{~V} / \mathrm{V}$ and $R_{1}=\infty$

FIGURE P8.40
SECTION 8.6: THE SHUNT-SHUNT AND THE SHUNT-SERIES FEEDBACK AMPLIFIERS
D*8.41 For the amplifier topology shown in Fig. 8.21(a), show that for large loop gain.

$$
\frac{V_{o}}{V_{s}} \simeq-\frac{R_{j}}{R_{s}}
$$

Calculate this gain for the component values given on the circuit diagram, and compare the resull with that found in Example 8.3. Find a new vate for k_{f} to oblain a voluge gain of approximatcly $-7.5 \mathrm{~V} / \mathrm{V}$.
8.42 The shunt-shunt feedback amplifier in Fig. P8.42 has $I=1 \mathrm{~mA}$ and $V_{C S}=0.8 \mathrm{~V}$. The MOSFET has $V_{t}=0.6 \mathrm{~V}$ and $V_{A}=30 \mathrm{~V}$. For $R_{s}=10 \mathrm{k} \Omega, R_{1}=1 \mathrm{M} \Omega$, and $R_{2}=4.7 \mathrm{M} \Omega$, find the voltage gain v_{d} / v_{s}, the input resistance $R_{\text {in }}$, and the output resistance $R_{\text {out }}$.

FIGURE P8.42

8.43 A transresistance amplifier having an open-circuit "gain" of $100 \mathrm{~V} / \mathrm{mA}$, an input resistance of 1 kS 2 , and an output rcsistance of 1 kS is connccted in a negative-feedback loop employing a shunt-shunt topology. The feedback nel-
work has an input resistance (with port I sbort-circuited) of
$10 \mathrm{k} \Omega$ and as inpur resistance (with port 2 short-circuited) of $10 \mathrm{k} \Omega$ and provides a feedback factor $\beta=0.1 \mathrm{~mA} / \mathrm{V}$. The amplifier is fed will a current source having $R_{s}=10 \mathrm{k} \Omega$, and the transresistance A_{f} of the feedback amplifier, its input resistance $R_{\text {int }}$, and its output resistance $R_{\text {out }}$
8.44 For the shunt--series feedback amplifier of Fig. P8.44, derive expressions for $A, \beta, A_{f}, R_{i n}$ and $R_{o f}$ (the later between the terninals labeled XX). Neglect r_{o} and the body effect. $R_{0}=10 \mathrm{k} \Omega$ and $R_{f}=90 \mathrm{k} \Omega$. ered as a source-degeneration resistance for Q_{2}, find $R_{\text {wut }}$ for the case $r_{\varphi 2}=20 \mathrm{k} \Omega$ and neglecting the body effect. (Hint: A source-degeneration resistance R increascs $R_{\text {oot }}$ by approximately $g_{m} R$.)

FIGURE P8.44

8.45 Reconsider the circuit in Fig. P8.44. Now let the drain of Q_{2} be connected to $V_{D D}$ and let the output be taken as the volage at the source of Q_{2}. Now R_{s} should be considered as part of the A circuit, since the voltage $V_{\text {o }}$ devclops across it.
Convince yourself that now the amplifier can be viewed as a shunt-shunt topology wilh the feedback network composed of R_{F}. Find expressions for $A, \beta, A_{\theta}, R_{i}$, and $R_{\text {ow, }}$ where $R_{\text {w }}$ is the resistance looking back into the output terninal. Neglect r_{o} and the body effect. Find the values of all parameters for he case in which $g_{m \mathrm{ml}}=g_{m 2}=5 \mathrm{~mA} / \mathrm{V}, R_{D}=10 \mathrm{k} \Omega, R_{\mathrm{s}}=10 \mathrm{kS}$, and $R_{F}=90 \mathrm{kS}$.
D**8.46 (a) Sbow that for the circuit in Fig. P8.46(a) if the loop gain is large, the voltage gain V_{ρ} / V_{s} is given approximately hy

$$
\frac{V_{o}}{V_{s}} \simeq-\frac{R_{f}}{R_{s}}
$$

(b) Using three cascaded stages of the type shown in Fig. P8.46(b) to implement the amplificr μ, design a feedback amplifier with a voltage gain of approximately $-100 \mathrm{~V} / \mathrm{N}$ 10 kmplifier is to operate betwcen a source resistance $R_{s}=$ $10 \mathrm{k} \Omega$ and a load resistance $R_{L}=1 \mathrm{k} \Omega$. Calculate the actual value of V_{o} / V_{s} realized, the input resistance (excluding R_{s}), and the output resistance (excluding R_{L}). Assume that the BJTs have $h_{f e}$ of 100. (Note: In practice, the three amplifier stages are not made identical, for stability reasons.)

(a)

(b)

figure p8.4

D8.47 Negative feedback is to be used to modify the characteristics of a particular amplifier for various purposes. .
(a) Input resistance is to be lowered and output resistance raised.
(b) Both input and oulput resistances are to be raised. (c) Both inpul and oulipul resistances are to be lowcred.
*8.48 For the circuit of Fig. P8.48. usc the feedback $R_{\text {w }}$ and the output resistance R The , thc inpur resistance gain $\mu=10^{4} \mathrm{~V} / \mathrm{V}, R_{i d}=100 \mathrm{k} \Omega$, and $r_{o}=1 \mathrm{k} \Omega$.

FIGURE P8. 48

*8.49 Cousider the amphifier of Fig. 8.25(a) to have its outpul at the emitter of the rightmost transistor Q_{2}. Use the technique for a shunt-stunt feedback amplifier to calculat $\left(V_{\mathrm{oum}} / I_{\mathrm{in}}\right)$ and R_{in}. Using this result, calculate $I_{\text {oun }} / I_{\text {in }}$. Com pare this with the resuits obtained in Example 8.4.
B.50 A current amplifier wilh a shot-circuit current gain of $100 \mathrm{~A} \Omega$, an input resistance of $1 \mathrm{k} \Omega$, and an output resislance of 10 kS is connecled in a negative-feedback loop employing the shunt-series topology. The feedhack nctwor provides a fecdback factor $\beta=0.1 \mathrm{~A} / \mathrm{A}$. Lacking complet ana abe and ouput resistance of the feedback amplifier
8.51 For the amplifer circuit in Fig. P8.51, assuming the V_{s} has a tero dc component, find the dc voltages at all node and the dc cmitter carrens of Q_{i} and Q_{2}. Let the BJTs hav $\beta=100$. Use feck

FIGURE P8. 51
8.52 The feedback amplifier of Fig. P8. 52 consists of a conmmon-gate amplifier formed by Q_{l} and R_{D}, and a fecdback circuit formed by the capacitive divider (C_{1}, C_{2}) and the comiuon-source transistor Q_{f}. Note that the bias circuit for $Q_{f} \equiv V$, R. cienly small that their loading effect on the basic amplifier can be neglected. Also ncglect r, and the body efifect. Find the values of A_{5}, R_{iv}, and $R_{\text {cut }}$ for the casc in which $g_{m l}=5 \mathrm{~mA} / \mathrm{N}$, $R_{D}=10 \mathrm{k} \Omega, C_{1}=0.9 \mathrm{pl}^{\mathrm{F}}, C_{2}=0.1 \mathrm{pF}$, and $\mathrm{g}_{m \mathrm{~F}}=1 \mathrm{~mA} / \mathrm{V}$

FIGURE P8.52
SECTION 8.7: DETERMINING THE LOOP GAIN
8.53 Determine the loop gain of the amplifier in Fig. P8. 34 by breaking the loop at the gatc of Q_{2} and linding the returned voltagc across the $100-\mathrm{k} \Omega$ resistor (while setting V s to zero). 100 The Early voltage inagnitude for all devices (including those that implement the current sources) is 100 V . The
gnal source V has zcro dc component. Detcrmine the outpu esistance $R_{\text {ou }}$
B.54 It is required to determine the loop gain of the amplifier circuit shown in Fig. P8.35. The most convenient place to break the loop is at the base of $Q_{\text {. Thus, connect a resistance }}$
 est vollage V, 0 , voltage at

$$
\begin{aligned}
A \beta= & \frac{g_{m 2} R_{C \cdot 2}\left(h_{f e 3}+1\right)}{R_{C 2}+\left(h_{f e 3}+1\right)\left[r_{c 3}+R_{F}+\left(R_{E} / / r_{e l}\right)\right]} \\
& \times \frac{\alpha_{1} R_{E}}{R_{E}+r_{c 1}}\left(R_{C 1} / 1 / r_{r 2}\right)
\end{aligned}
$$

55 Show that the loop gain of the amplifier circuit in fig. P8. 39 is

$$
A \beta=g_{m, 12}\left(r_{o 2} / / r_{o 4}\right) \frac{R_{t} / / r_{o 5}}{\left(R_{t} / / r_{o, 5}\right)+1 / g_{m 5}}
$$

where $g_{m 12}$ is the $g_{m \text { m }}$ of each of Q_{1} and Q_{2}.
8.56 Derive an expression for the loop gain of cach of the four feedback circuits shown in Fig. P8.26. Assume that the op anp is modeled by an input resistance $R_{i d}$, an open-circui voltage gain μ, and an oupput resistance r_{o}.
8.57 Find the loop gain of the feedhack amplifier shown in Fig. P8. 33 by breaking the loop at the gate of Q_{2} (and, of course, setting $\nabla_{s}=0$). Use the values given in the statemen af Problem 833 . Detcrminc the value of R
8.58 For the fecdback amplifier in Fig. P8.42, derive an xpression for the loop gain by breaking the loop at the gate tcrminal of the MOSFET (and, ol course, setting $v_{s}=0$). Find the value of the loop gain for the component values given is Problem 8.42
. 59 For the leedhack amplificr in Fig. P8.44, set $l_{s}=0$ and derive an expression for the loop gain by breaking the loop at he gate terminal of transistor Q_{1}
8. 60 For the feedback amplifier in Fig. P8.52, set $L=0$ and derive an expression for the loop gain hy hreaking the loop at he gate terminal of transistor Q.

Section 8.8: the stability problem

8.61 An op anmp designed to have a low-frequency gain of $10{ }^{5}$ and a high-requency response dominated by a single pole at $100 \mathrm{rad} / \mathrm{s}$, acquires, through a manulacturing error, air of additional poles at $10,000 \mathrm{rad} / \mathrm{s}$. At what frequency what value of β assumed reach 180° ? Al this frequency, for he Joop arin cach valuc of unity? What is the correspond ing value of closed-loop gain at low frequencies?
**8.62 For the siuation described in Problem 8.61, skett Nyquist plots for $\beta=1.0$ and 10^{-3}. (Plot for $\omega=0 \mathrm{rad} /$ $100 \mathrm{rad} / \mathrm{s}, 10^{3} \mathrm{rad} / \mathrm{s}, 10^{4} \mathrm{rad} / \mathrm{s}$, and $\infty \mathrm{rad} / \mathrm{s}$.
8.63 Ап op amp having a low-frequency gain of 10^{3} and singie-pole rolloff at $10^{4} \mathrm{rad} / \mathrm{s}$ is connected in a ncgativeeedback loop via a feedback network having a transmissio which the closed loup amplifier becomes untable.

64 Cond
loop gain $A(s)$ is given by

$$
A(s)=\frac{1000}{\left(1+s / 10^{4}\right)\left(1+s / 10^{5}\right)^{2}}
$$

If the feedback factor β is independent of frequency, find the requency at which the phase shift is 180°, and find the critical value of β at which oscillation will commence.

SECTION 8.9: EF

8.65 A dc amplificr having a single-pole response with pole frequency $10^{4} \mathrm{~Hz}$ and unity-gain frequency of 10 MH s operated in a loop whose frequency-independent feedback quency, and the unity-gain frequency of the closed-loo amplifier. By what factor does the pole shift?
8.66 An amplificr having a low-frequency gain of 10^{3} and poles at $10^{4} \mathrm{~Hz}$ and $10^{5} \mathrm{~Hz}$ is operated in a closed negativ feedback loop with a freguency-independent β
(a) For what value of β do the closed-loop poles beconc coincident? At what frequency?
b) What is the low-requency gain corresponding to he sit frequency of the coincident poles?
(c) What is the valuc of Q corresponding io the situation in (a) d) If β is increased by a factor of 10 , what are the new pol ocations? What is the corresponding pole Q ?
8.67 A dc amplifier has an open-loop gain of 1000 and two poles, a dominant one at 1 kHz and a bigh-frequency on Whe location can be conturled. It is required to conne his amplificr in a negaive-feciback loop hat provides a do closed-loop gain of 100 and a maximally flat response. Find he required value of β and the frequency at which the sccon pole should be placed.
8.68 Reconsider Example 8.5 with the circuit in Fig. 8.34 modified to incorporate a so-called tapered network, in whic he components immcaiately adjacent to the amper in arc rased uimpcdance to $C / 0$ and $10 R$. Find expression for the resulting pole frequency $\omega_{\text {, and }} Q$ facior. For what the response become maximally flat? For whai value of K does the circuit oscillate?
8.69 Three identical logic inverters, each of which can be characterized in its switching region as a incor amplifier hav ing a gain $-K$ and a pole at 10 Hz , are connected in at ring Ronimum value of K for which the inverler ring must cillate What would the frequency of oscillation be for very small signal operation? [Note that in practice such a ring oscillator operates with relatively larger signal (logic levels) at a somewhat lower frequency. 7

ECTION 8.10: STABILITY STUDY USIN

 BODE PLOTS8.70 Reconsider Exercise 8.14 for the case of the op amp wired as a unity-gain buffer. At what frequency is $|A \beta|=1$ hat is the corresponding phase margin?
8.71 Reconsider Excrcise 8.14 for the case of a mannufac turing erior introducing a second pole at $10^{4} \mathrm{~Hz}$. What is now he frequency for which $|A B|=1$? What is the correspond ig phase margin? For what values of β is the phase margin 5° or more?
8.72 For what phase margin does the gain peaking have alue of 5% ? Of 10% ? Of 0.1 dB ? Of 1 dB ? (Hint: Use the esult in Eq. 8.76.)
8.73 An amplifier has a dc gain of 10^{5} and poles at $10^{5} \mathrm{~Hz}$ $3.16 \times 10^{5} \mathrm{~Hz}$, and $10^{6} \mathrm{~Hz}$. Find the value of β, and the corre sponding closed-loop gain, for which a phase margin of 45 is obtained
8.74 A two-pole amplifier for which $A_{0}=10^{3}$ and having poles at 1 MHz and 10 MHz is to be comnected as a differenhator. On the basis of the rate-of-closure rule, what is the mallest differentiator time constant for which operation is stable? What are the corresponding gain and phase margins?
8.75 For the amplificr described by Fig. 8.37 and with requency-independent fecdback, what is the minimum losed-loop voltage gain that can be oblained for phase marins of 90 and 4 .

SECTION 8.11: FREQUENCY COMPENSATION

8.76 A multipole amplifier having a first pole at 2 MHz nd a dc open-loop gain of 80 dB is to be compensated fo dominat pole. At what frequency must the new pole bo placed?
8.77 For the amplifier described in Problem 8.76, rather than introducing a new dominant pole we can use additional han infocucing a new do minant pole we can use a formed to reduce the frcuuency of the first pole. If the frequcncy of the second polc is 10 MHz and if it remains unchanged while additional capacitance is introduced as mentioned, find the
requency to which the first pole mast be lowed so that the resuling amplifier is stable for closed-loop gains as fow a nity. By what factor is the capacitance at the controlling node increased
8.78 Contemplate the effects of pole spliting by consider ing Eqg. (8.87) and (8.88) under the conditions that $R_{1} \simeq R_{2}=R$ $C_{2} \simeq C_{1} / 10=C, C_{f} \gg C$, and $g_{m}=100 / R$, by calculating $\omega_{P l}$ $\omega_{p_{2}}$, and $\omega_{p_{1}^{\prime}}^{\prime}, \omega_{p_{2}}^{\prime}$.
8.79 An op amp with open-loop voltage gain of $10^{4} \mathrm{H}$ and poles at $10^{3} \mathrm{~Hz}, 10^{\circ} \mathrm{Hz}$, and 10 Hz is to be compensate by the addition of a fourth dominant pole to operate stably with unity feedback $(\beta=1)$. What is the frequcncy of the required dominant poie? The compensation network is to consist of an RC low-pass network placed in the negative feedback MQ resistor can be tolerated in serics with each the negative and positive input terminals. What capacitor is required between the ncgative input and ground to implemen the required fourth pole?
*8.80 An op amp with an 80 dB and poles at $10^{5} \mathrm{~Hz}, 10^{6} \mathrm{~Hz}$, and $2 \times 10^{6} \mathrm{~Hz}$ is to be compensated to be stable for unity β. Assume that the op am $C_{1}=150 \mathrm{pF}, C_{2}=5 \mathrm{pF}$ and $g=40 \mathrm{mAl}$. caused by the input circuit and $f_{p 2}$ by the output circuit of this amplifier. Find the required value of the compensating Miller capacitance and the new frequency of the output pole.
**8.81 The op amp in the circuit of Fig. P8.81 has an open loop gain of 10^{5} and a single-pole rolloff with $\omega_{\mathrm{adB}}=10 \mathrm{rad} / \mathrm{s}$.
(a) Skctch a Bode plot for the loop gain
(b) Find the frequency at which $|\Lambda \beta|=1$, and find the corresponding phase margin.
(c) and polsffr function versus frequescy. Ske the magninude of tant paramelers on your sketch.

FIGURE P8.8

Operational-Amplifier and Data-Converter Circuits

NTRODUCTION

Analog ICs include operational amplifiers, analog multipliers, analog-to-digital (A/D) and digital-to-analog (D/A) converters, phase-locked loops, and a varicty of other, more special ized functional blocks. All these analog subsystems are constructed internally using the basic building blocks we have studied in earlier chapters, including single-stage amplifiers,

In this chapter we shall study the in switches.
In this chapter, we shall study the internal circuitry of the most important analog ICs, namely, operational amplifiers and data converters. The terminal characteristics and circuit the reader to some of the ingeneady becn covered in Chapter 2 . Here, our objective is to expose elementary analog circuit building techniques that have evolved over the years for combining CMOS and bipolar op amps. The CMOS op-anp circuits considered find application in the
design of analog and mixed-signal VLSI circuits. Because these op amps are usually desiged with a specific application in mind, they can be optimized to meet a subset of the list of desired specifications, such as high dc gain, wide bandwidth, or large output-signal swing. In contrash the bipolar op-anp cricuil we shall study is of the gencrul-purpose variely and therefo designed to fit a wide range of specifications. As a recult its circuit represents a comes is between many performancc paramclcrs. This 741 -type of op amp has been in existence for 0 35 years. Nevertheless its internal circuit remains as relevant and interesting today as it ever

The material on data-converter circuits presented in this chapter should serve as bidg. between analog circuils, on which we have been concentrating in Cbapters 6 to 8 , dige between analog circuis, on which we have been concenirating in Cbapters 6 to 8 , and digita circuits whose study is undertaken in Chapters 10 and 11
me matog IC design such an exciting topic, this chapter should serve to tie together many of the concepts and methods studied thus far.

9.1 THE TWO-STAGE CMOS OP AMP

The first op-anp circuit we shall study is the two-stage CMOS topology shown in Fig. 9.1 This simple but elegant circuit has become a classic and is used in a variety of forms in the design of VLSI systems. We have already studied this circuit in Section 7.7.1 as an example of a nultistage CMOS amplifier. We urge the reader to review Section 7.7.1 before proceed ing further. Here, our discussion will emphasize the performance characteristics of the circuit and the trade-offs involved in its design.

9.1.1 The Circuit

The circuit consists of two gain stages: The first stage is formed by the differential pair $Q_{1}-Q_{2}$ together with its current mirror load $Q_{3}-Q_{4}$. This differential-amplifier circuit, studied in detail in Section 7.5 , provides a voltage gain that is typically in the range of $20 \mathrm{~V} / \mathrm{V}$ to $60 \mathrm{~V} / \mathrm{V}$,

FIGURE 9.1 The basic two-stage CMOS op-amp configuration.
as well as performing conversion from differential to single-ended form while providing a reasonable common-mode rejection ratio (CMRR)

The differential pair is biased by current source Q_{5}, which is one of the two output transistors of the current mirror formed by Q_{8}, Q_{5}, and Q_{7}. The current mirror is fcd by a refercnce curren $I_{\text {REF }}$, which can be generated by simply connecting a precision resistor (extemal to the chip) to the negative supply votage $-l_{s s}$ or co a more precisc negative voltage reference if one is avairements, $I_{\text {Per }}$ can be generated using a circuit such as that studied in Section 77.1
gentrequir The second yain stage consists of the common-source transistor Q and its current
 source ${ }^{2}$. The process of frequency compensating the op amp. From Section 811 the it take will recall that to gurantee that the op amp will operate in a stable fachion (as reader 1 the opp is made to roll off with frequency at the uniform rate of $20 \mathrm{~dB} / \mathrm{dec}$ ade. This in turn is a ined by introducing a pole a a relatively low frequency and arranging for it to doninate a frequency-response deternination In the circuit we are sudying, this is implemented the sige amplifying transistor Q. As will be seen, C_{C} (together with the much snaller capacisance C across it is Miller-multiphed by the gain of the second stage, and the resulting
 cap the required dominat pole (mon this later)
vide the required dominant pole (more on this later).
Unless properly designed, the CMOS op-amp circuit of Fig. 9.1 can exhibit a systematic out the dc offsel can be climinated by sizing the transistors so as to satis $\int y$ the following constraint:

$$
\begin{equation*}
\frac{(W / L)_{6}}{(W / L)_{4}}=2 \frac{(W / L)_{7}}{(W / L)_{5}} \tag{9.1}
\end{equation*}
$$

9.1.2 Input Common-Mode Range and Output Swing

Refer to Fig. 9.1 and consider what happens when the two input terninals are tied together and connected to a voltage $V_{I C M}$. The lowest value of $V_{I C M}$ has to be sufficiently large to keep Q_{1} and Q_{2} in saturation. Thus, the lowest value of $V_{I C A}$ should not be lower than the voltage at the drain of $Q_{1}\left(-V_{S S}+V_{G S 3}=-V_{S S}+V_{t n}+V_{\text {OV } 3}\right)$ by more than $\left|V_{t p}\right|$, thus

$$
\begin{equation*}
V_{I C M} \geq-V_{S S}+V_{t n}+V_{O V 3}-\left|V_{I p}\right| \tag{9.2}
\end{equation*}
$$

The highest value of $V_{I C M 1}$ should ensure that Q_{5} remains in saturation; that is, the voltage across $Q_{5 .} V_{S D 5}$, should not decrease below $\left|V_{\text {ovs }}\right|$. Equivalently, the voltage at the drain of Q_{5} should not go higher than $V_{D D}-V_{\text {OVS }}!$. Thus the upper limit of $V_{I C M}$ is

$$
V_{C G M} \leq V_{D D}-\left|V_{O V 5}\right|-V_{S G 1}
$$

or equivalently

$$
\begin{equation*}
V_{C M} \leq V_{D D}-\left\{V_{O V 5}\right\}-\left|V_{t p}\right|-\left|V_{O V 1}\right| \tag{9.3}
\end{equation*}
$$

The expressions in Eqs. (9.2) and (9.3) can be combined to express the input common-mode range as

$$
\begin{equation*}
-V_{S S}+V_{O V 3}+V_{t n}-\left|V_{t p}\right| \leq V_{T C M} \leq V_{D D}-\left|V_{t p}\right|-\left|V_{O V 1}\right|-\left|V_{O V S}\right| \tag{9.4}
\end{equation*}
$$

As expected, the overdrive voltages, which are important design parameters, subtract from the dc supply voltages, thereby reducing the input common-mode range. It follows that from a $V_{T C M}$ range point-of-view it is desirable to select the values of $V_{O V}$ as low as possible.

The extent of the signal swing allowed at the output of the op amp is limited at the lower end by the need to keep Q_{6} saturated and at the upper end by the need to keep Q_{7} saturated, thus

$$
-V_{S S}+V_{O V 6} \leq v_{O} \leq V_{D D}-\left|V_{O V 7}\right|
$$

(9.5)

Here again we observe that to achieve a wide range for the output voltage swing we need to select values for $\left|V_{o v}\right|$ of Q_{6} and Q_{7} as low as possible. This requirement, however, is counteracted by the need to have a high transition frequency f_{τ} for Q_{6}. From Table 6.3 and the corresponding discussion in Section 6.2 .3 , we know that f_{T} is proportional to $V_{O p}$; thus the high-frequency performance of a MOSFET improves with the increase of the overdrive voltage at which it is operated.

An important requirement of an op-amp circuit is that it be possible for its output terminal to be connected back to its negative input terminal so that a unity-gain amplifier is obtained. For such a connection to be possible, there must be a substantial overlap between the allowable range of v_{O} and the allowable range of $V_{\text {ICM }}$. This is usually the case in the CMOS amplifier circuit under study.

EXXRGSE

91 For a particular destign of the two-stage CMOS op any of Fig. $91.1 \pm 1.65 . V$ supples are ublized and an transistors except for Q_{6} and Q_{7} are operated with overdrye voltages of $03-7$ magnitude; Q_{5} and Q_{4}
 Find the input common-miode range and the range allowed for v_{0}.
Ans. 1.35 V to 0.55 V: -1.15 V to +1.15 Y

9.1.3 Voltage Gain

To determine the voltage gain and the frequency response, consider a simplified equivalent circuit model for the small-signal operation of the CMOS amplifier (Fig. 9.2), where each of the two stages is modeled as a transconductance amplifier. As expected, the input resistance is practically infinite,

$$
R_{\mathrm{in}}=\infty
$$

The first-stage transconductance $G_{m 1}$ is equal to the transconductance of each of Q_{1} and Q_{2} (see Section 7.5)

$$
G_{m 1}=g_{m 1}=g_{m 2}
$$

FIGURE 9.2 Small-signal equivalent circuit for the op amp in Fig. 9.1

Since Q_{1} and Q_{2} are operated at equal bias currents (I/2) and equal overdrive voltages, $V_{o v 1}=V_{o v 2}$,

$$
\begin{equation*}
G_{m 1}=\frac{2(I / 2)}{V_{O V 1}}=\frac{I}{V_{O V 1}} \tag{9.7}
\end{equation*}
$$

esistance R_{1} represents the output resistance of the first stage, thus

$$
\begin{equation*}
R_{1}=r_{o 2} \| r_{o 4} \tag{9.8}
\end{equation*}
$$

where
and

$$
r_{02}=\frac{\left|V_{A 2}\right|}{I / 2}
$$

$$
\begin{equation*}
r_{o 4}=\frac{V_{A 4}}{I / 2} \tag{9.10}
\end{equation*}
$$

The dc gain of the first stage is thus

$$
\begin{align*}
A_{1} & =-G_{m 1} R_{1} \tag{9.11}\\
& =-g_{m 1}\left(r_{o 2} \| r_{n 4}\right) \tag{9.13}\\
& =-\frac{2}{V_{O V 1}} \int\left[\frac{1}{\left|V_{A 2}\right|}+\frac{1}{V_{A 4}}\right]
\end{align*}
$$

(9.12)
bserve that the magnitude of A_{1} is increased by operating the differential-pair transistors, , Q_{1}. Q_{1} and Q_{2}, at a low overdrive voltage, and by choosing a longer chanich lengu to of the larger Early voltages, $\left|V_{A}\right|$. Both actions, how discussion in Section 6.2.3). amplifier (see Table 6.3 and the corresponding discussion in Section 6.2.3).

Returning to the equivalent circuit in Fig. 9.2 and leaving the discussion of the various model capacitances until the next section, we note that the sccond-stage transconductance $G_{m 2}$ is given by

$$
\begin{equation*}
G_{m 2}=g_{m 6}=\frac{2 I_{D 6}}{V_{o v 6}} \tag{9.1}
\end{equation*}
$$

Resistance R_{2} represents the output resistance of the second stage, thus

$$
\begin{equation*}
R_{2}=r_{o 6} \| r_{o 7} \tag{9.15}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{o 6}=\frac{V_{A G}}{I_{D 6}} \tag{9.16}
\end{equation*}
$$

and

$$
r_{o 7}=\frac{\left|V_{A 7}\right|}{I_{D 7}}=\frac{\left|V_{A 7}\right|}{I_{D 6}}
$$

The voltage gain of the second stage can now be found as

$$
\begin{align*}
A_{2} & =-G_{m 2} R_{2} \\
& =-g_{n 66}\left(r_{o 6} \| r_{o 7}\right) \tag{9.19}\\
& =-\frac{2}{V_{O V 6}} /\left[\frac{1}{V_{A 6}}+\frac{1}{\left|V_{A 7}\right|}\right]
\end{align*}
$$

Here again we observe that to increase the magnitude of A_{2}, Q_{6} has to be operated at a low overdrive voltage, and the channel lengths of Q_{6} and Q_{7} should be made longer. Both these actions, however, would reduce the amplifier bandwidth, which presents the designer with an important trade-off

The ojverall de voltage gain can be found as the product $\Lambda_{1} \Lambda_{2}$

$$
\begin{align*}
A_{v} & =\Lambda_{1} A_{2} \\
& =G_{m 1} R_{1} G_{m 2} R_{2} \tag{9.21}\\
& =g_{m 1}\left(r_{o 2} \| r_{o 4}\right) g_{m 6}\left(r_{o 6} \| r_{o 7}\right)
\end{align*}
$$

Note that A_{v} is of the order of $\left(g_{m} r_{0}\right)^{2}$. Thus the maximum value of A_{v} will be in the range of $500 \mathrm{~V} / \mathrm{V}$ to $5000 \mathrm{~V} / \mathrm{V}$.
Finally, we note that the output resistance of the op amp is equal to the output resistance of the second stage,

$$
\begin{equation*}
R_{o}=r_{o 6} \| r_{07} \tag{9.23}
\end{equation*}
$$

Heince R_{c} can be large (i.e., in the tens-of-kilohms rangc). Nevertheless, since on-chip CMOS op amps are rarely required to drive heavy loads, the large open-loop outpul resistance is usuafly not an important issue

 MU,

9.1.4 Frequency Response

Refer to the equivalent circuit in Fig. 9.2. Capacitance C_{1} is the total capacitance between the output node of the first stage and ground, thus

$$
C_{1}=C_{g d 2}+C_{d b 2}+C_{g d 4}+C_{d b 4}+C_{g s 6}
$$

Capacitance C_{2} represents the total capacitance between the output node of the op amp and ground and includes whatever load capacitance C_{L} that the amplifier is required to drive, thus

$$
C_{2}=C_{d b 6}+C_{d b 7}+C_{g d 7}+C_{L}
$$

Usually, C_{L} is larger than the transistor capacitances, with the result that C_{2} becomes much larger than C_{1}. Finally, note that $C_{g d 6}$ should be shown in parallel with C_{C} but has been ignored hecause C_{C} is usually much larger
The equivalent circuit of Fig. 9.2 was analyzed in detail in Section 7.7.1, where it was found that it has two poles and a positive real-axis 7 ero with the following approximate frequencies:

$$
\begin{align*}
& f_{P_{1}} \cong \frac{1}{2 \pi R_{1} G_{m 2} R_{2} C_{C}} \tag{9.26}\\
& f_{P 2} \cong \frac{G_{m 2}}{2 \pi C_{2}} \tag{9.27}\\
& f_{Z} \cong \frac{G_{m 2}}{2 \pi C_{C}}
\end{align*}
$$

\qquad

V_{0} FIGURE 9.3 An approximate highrequency cquivalent circuit of the twostage op amp. This circuit applies for
frequencies $f \$ f_{13}$ $\bar{\equiv}$ frequencies $f \gg f_{p}$

Here, $f_{P_{1}}$ is the dominant pole formed by the interaction of Miller-multiplied C_{C} [i.e., $\left(1+G_{m 2} R_{2}\right) C_{C} \cong G_{m 2} R_{2} C_{C} \mid$ and R_{1}. To achieve the goal of a uniform $-20 \mathrm{~dB} /$ decade gain rolloff down to 0 dB , the unity-gain frequency f_{t},

$$
\begin{aligned}
f_{t} & =\left|A_{v}\right| f_{P 1} \\
& =\frac{G_{m 1}}{2 \pi C_{C}}
\end{aligned}
$$

must be lower than $f_{p_{2}}$ and f_{Z}, thus the design must satisfy the following two conditions

$$
\begin{equation*}
\frac{G_{m 1}}{C_{C}}<\frac{G_{m 2}}{C_{2}} \tag{9.31}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{m 1}<G_{m 2} \tag{9.32}
\end{equation*}
$$

Simplified Equivalent Circuit The uniforn $-20-\mathrm{dB} /$ decade gain rolloff obtained at freguencies $f \geqslant f_{P_{1}}$ suggests that at these frequencies, the op amp can be represented by the simplified equivalent circuit shown in Fig. 9.3. Observe that this attractive simplification is based on the assumption that the gain of the second stage, $\left|A_{2}\right|$, is large, and hence a virtual ground appears at the input terminal of the second stage. The second stage then effectively acts as an integrator that is fed with the output current signal of the first stage; $G_{m 1} V_{i d}$. Although derived for the CMOS amplifier, this simplified equivalent circuit is general and applies to a variety of two-stage op amps, including the first two stages of the 741 -type bipolar op amp studied later in this chapter.
Phase Margin The frequency compensation scheme utilized in the two-stage CMOS amplifier is of the pole-splitting type, studied in Section 8.11.3: It provides a dommant lowfrequency pole with frequency $f_{P_{1}}$ and shifts the second pole beyond f_{i}. Figure 9.4 shows a representative Bode plot for the gain magnitude and phase. Note that at the unity-gain frequency f_{i}, the phase lag exceeds the 90° caused by the dominant pole at $f_{p 1}$. This so-called excess phase shift is due to the second pole,

$$
\begin{equation*}
\phi_{P 2}=-\tan ^{-1}\left(\frac{f_{1}}{f_{P 2}}\right) \tag{9.33}
\end{equation*}
$$

and the right-half-plane zero,

$$
\begin{equation*}
\phi_{z}=-\tan ^{-1}\left(\frac{f_{t}}{f_{z}}\right) \tag{9.34}
\end{equation*}
$$

Thus the phase lag at $f=f_{t}$ will be

FIGURE 9.4 Typical frequency responsc of the two-stage op amp.
and thus the phase margin will be

$$
\text { Phase margin }=180^{\circ}-\phi_{\text {tolal }}
$$

$$
\begin{equation*}
=90^{\circ}-\tan ^{-1}\left(f_{t} / f_{P 2}\right)-\tan ^{-1}\left(f_{t} / f_{Z}\right) \tag{9.36}
\end{equation*}
$$

From our study of the stability of feedback amplifiers in Section 8.10.2, we know that the magnitude of the phase margin significantly affects the closed-loop gain. Therefore obtaining a desired minimum value of phase margin is usually a design requirement.
The problem of the additional phase lag provided by the zero has a rather simple and elegant solution: By including a resistance R in series with C_{C}, as shown in Fig. 9.5, the transmission zero can be moved to other less-barmful locations. To find the new location of the

FIGURE 9.5 Small-signal cquivalent circuit of the op amp in Fig. 9.1 with a resistance R included in series with C_{C}.
transmission zero, set $V_{o}=0$. Then, the current through C_{C} will be $V_{i 2} /\left(R+1 / s C_{C}\right)$, and a node equation at the output yields

$$
\frac{V_{i 2}}{R+\frac{1}{s C_{C}}}=G_{m 2} V_{i 2}
$$

Thus the zero is now at

$$
\begin{equation*}
s=1 / C_{C}\left(\frac{1}{G_{m 2}}-R\right) \tag{9.37}
\end{equation*}
$$

We observe that hy selecting $R=1 / G_{m 2}$, we can place the zero at infiuite frequency. An even better choice would be to sclect R greater than $1 / G_{m 2}$, thus placing the zero at a ncgative real-axis location where the phase it introduces adds to the phase margin.

EXARCISE

(a) Iind the value of C, that results in $f=100 \mathrm{MH}$. What is the 3 - BB trequency of the open-loop fain? (h) Find the value of the resistance R that when placed in series with Cc cates the transnission cero to be located at minimite frequency
(c) Find the frequency of the second pole and hence find the excess phase lag at $f=f_{h}$, introduced by the second pole, and the resulting phase margin assuming that the situation in (b) pertains. Ans: $1.6 \mathrm{pFF} ; 50 \mathrm{kH}: 500 \Omega, 318 \mathrm{MHz}: 174^{\circ} ; 72: 60^{\circ}$

9.1.5 Slew Rate

The slew-rate limitation of op amps is discussed in Chapter 2. Here, we shall illustrate the origin of the slewing phenomenon in the context of the two-stage CMOS amplifier under study. Consider the unity-gain follower of Fig. 9.6 with a step of say, 1 V applied at the input Because of the amplifier dynamics, its output will not change in zero time. Thus, immedi between the two input terminals. In all likelihod, such arge signal will exceed the voltage

FIGURE 9.6 A unity-gain follower with a large step input. Sincc thc output voltage cannot change imme diatcly, a large differential voltage appears between the op-amp input terminals.

FIGURE 9.7 Model of the two-stage CMOS op amp of Fig. 9.1 when a large differential voltage is $\overline{\text { applied. }}$
current I to the other side. Reference to Fig. 9.1 shows that for our example, Q_{2} will turn off, and Q_{1} will conduct the entire current I. Thus Q_{4} will sink a current I that will be pulled from C_{C} as shown in Fig 97. Here, as we did in Fig. 93 we are modeling the second slage as an ideal integrator. We see that the output voltage will be a ramp with a slope of I / C_{C} :

$$
v_{o}(t)=\frac{I}{C_{C}} t
$$

Thus the slew rate, $S R$, is given by

$$
\begin{equation*}
S R=\frac{I}{C_{C}} \tag{9.39}
\end{equation*}
$$

It should be pointed out, however, that this is a ralher simplified model of the slewing process.
Relationship Between $S R$ and f_{t} A simple relationship exists between the unity-gain bandwidth f_{i} and the slew rate $S R$. This relationship can be found by combining Eqs. (9.30) and (9.39) and noting that $G_{m 1}=g_{m 1}=I / V_{o v 1}$, to obtain

$$
\begin{equation*}
S R=2 \pi f_{i} V_{O V} \tag{9.40}
\end{equation*}
$$

or equivaiently,

$$
\begin{equation*}
S R=V_{O V} \omega_{t} \tag{9.41}
\end{equation*}
$$

Thus, for a given ω_{i}, the slew rate is determined by the overdrive voltage at which the first-stage transistors are operated. A higher slew rate is obtained by operating Q_{1} and Q_{2} at a larger $V_{O V}$. Now, for a given bias current I, a larger $V_{O V}$ is obtained if Q_{1} and Q_{2} are p-channel devices. This is an important reason for using p-channel rather than n-channel devices in the first stage of the CMOS op amp. Another reason is that it allows the second stage to employ an n-channel device. Now, since n-channel devices have greater transconductances than corresponding p-channel devices, $G_{m 2}$ will be high, resulting in a higher second-pole frequency and a correspondingly higher ω_{r}. However, the price paid for these improvements is a lower $G_{m 1}$ and hence a lower dc gain.

Whw

We conclude our study of the two-stage CMOS op amp with a design example. Let it be required to design the circuit to obtain a de gain of $4000 \mathrm{~V} / \mathrm{N}$. Assume that the available fabrication tech nology is of the $0.5-\mu \mathrm{m}$ type for which $V_{t n}=\left|V_{t p}\right|=0.5 \mathrm{~V}, k_{n}^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{p}^{\prime}=80 \mu \mathrm{~A} / \mathrm{V}^{2}$, $V_{A n}^{\prime}=\left|V_{A p}^{\prime}\right|=20 \mathrm{~V} / \mu \mathrm{m}$, and $V_{D D}=V_{S s}=1.65 \mathrm{~V}$. To achieve a reasonable dc gain per stage, use
$L=1 \mu \mathrm{~m}$ for all devices. Also, for simplicity, operate all devices at the same $\left|V_{O V}\right|$, in the range
of 0.2 V to 0.4 V . Use $I=200 \mu \mathrm{~A}$, and to oblaun a higher $G_{m 2}$, and hence a highcr $f_{p_{2}}$, use $I_{D 6}=$
0.5 mA . Specily the W / L ratios for all transistors. Also give the values realized for the input
common-mode range, the maximum possible output swing, $R_{\text {in }}$ and R_{v}. If $C_{1}=0.2 \mathrm{pF}$ and $C_{2}=$
0.8 pF , find the required values of C_{C} and the series resistance R to place the transmission zero at
$s=\infty$ and to obtain the highost possible \int_{t} consistent with a phase margin of 75°. Evaluate the
values obtained for f, and $S R$.

Solution

Using the voltage-gain expression in Eq. (9.22),

$$
\begin{aligned}
A_{v} & =g_{m 11}\left(r_{o 2} \| r_{o 4}\right) g_{m 6}\left(r_{o 6} \| r_{o 7}\right) \\
& =\frac{2(I / 2)}{V_{O V}} \times \frac{1}{2} \times \frac{V_{A}}{(I / 2)} \times \frac{2 I_{D 6}}{V_{O V}} \times \frac{1}{2} \times \frac{V_{A}}{I_{\nu \sigma}} \\
& =\left(\frac{V_{A}}{V_{O V}}\right)^{2}
\end{aligned}
$$

To obtain $A_{t}=4000$, given $V_{A}=20 \mathrm{~V}$,

$$
\begin{aligned}
4000 & =\frac{400}{V_{O V}^{2}} \\
V_{O V} & =0.316 \mathrm{~V}
\end{aligned}
$$

To obtain the required (W/L) ratios of Q_{1} and Q_{2},

$$
\begin{aligned}
& I_{D 1}=\frac{1}{2} k_{p}^{\prime}\left(\frac{W}{L}\right)_{1} V_{o V}^{2} \\
& 100=\frac{1}{2} \times 80\left(\frac{W}{L}\right)_{1} \times 0.316^{2}
\end{aligned}
$$

Thus,

$$
\left(\frac{W}{L}\right)_{1}=\frac{25 \mu \mathrm{~m}}{1 \mu \mathrm{~m}}
$$

and

$$
\left(\frac{W}{L}\right)_{2}=\frac{25 \mu \mathrm{~m}}{1 \mu \mathrm{~m}}
$$

For Q_{3} and Q_{4} we write

$$
100=\frac{1}{2} \times 200\left(\frac{W}{L}\right)_{3} \times 0.316^{2}
$$

to obtain

$$
\left(\frac{W}{L}\right)_{3}=\left(\frac{W}{L}\right)_{4}=\left(\frac{10 \mu \mathrm{~m}}{1 \mu \mathrm{~m}}\right)
$$

For Q_{5}

$$
200=\frac{1}{2} \times 80\left(\frac{W}{L}\right)_{5} \times 0.316^{2}
$$

Thus,

$$
\left(\frac{W}{L}\right)_{5}=\left(\frac{50 \mu \mathrm{~m}}{1 \mu \mathrm{~m}}\right)
$$

Sincc Q_{7} is required to conduct $500 \mu \mathrm{~A}$, its (W / L) ratio should be 2.5 times that of Q_{5},

$$
\left(\frac{W}{L}\right)_{7}=2.5\left(\frac{W}{L}\right)_{5}=\left(\frac{125 \mu \mathrm{~m}}{1 \mu \mathrm{~m}}\right)
$$

For Q_{6} we write

$$
500=\frac{1}{2} \times 200 \times\left(\frac{W}{L}\right)_{6} \times 0.316^{2}
$$

Thus,

$$
\left(\frac{W}{L}\right)_{\sigma}=\frac{50 \mu \mathrm{~m}}{1 \mu \mathrm{~m}}
$$

Finally, lct's sclect $I_{\text {REF }}=20 \mu \mathrm{~A}$, hhus

$$
\left(\frac{W}{L}\right)_{8}=0.1\left(\frac{W}{L}\right)_{5}=\frac{5 \mu \mathrm{~m}}{1 \mu \mathrm{~m}}
$$

The input common-mode range can be found using the expression in Eq. (9.4) as

$$
-1.33 \mathrm{~V} \leq v_{I C M} \leq 0.52 \mathrm{~V}
$$

The maximum signal swing allowable at the output is found using the expression in Eq. (9.5) as

$$
-1.33 \mathrm{~V} \leq v_{o} \leq 1.33 \mathrm{~V}
$$

The input resistance is practically infinite, and the output resistance is

$$
R_{o}=r_{o 6} \| r_{o 7}=\frac{1}{2} \times \frac{20}{0.5}=20 \mathrm{k} \Omega
$$

To determine $f_{p 2}$ we use Eq. (9.27) and substitute for $G_{m 2}$,

$$
G_{m 2}=g_{m 6}=\frac{2 I_{D 6}}{V_{O V}}=\frac{2 \times 0.5}{0.316}=3.2 \mathrm{~mA} / \mathrm{V}
$$

Thus,

$$
f_{P 2}=\frac{3.2 \times 10^{-3}}{2 \pi \times 0.8 \times 10^{-12}}=637 \mathrm{MHz}
$$

To move the transmission zero to $s=\infty$, we select the value of R as

$$
k=\frac{1}{G_{m 2}}=\frac{1}{3.2 \times 10^{-3}}=31.6 \Omega
$$

For a phase margin of 75°, the phase shift duc to the second pole at $f=f_{t}$ must be 15°, hat is,

$$
\tan ^{-1} \frac{f_{i}}{f_{P 2}}=15^{\circ}
$$

Thus,

$$
f_{\mathrm{t}}=637 \times \tan 15^{\circ}=171 \mathrm{MHz}
$$

The value of C_{C} can be found using Eq. (9.30),

$$
C_{C}=\frac{G_{m 1}}{2 \pi f_{t}}
$$

where

$$
G_{m 1}=g_{m 1}=\frac{2 \times 100 \mu \mathrm{~A}}{0.316 \mathrm{~V}}=0.63 \mathrm{~mA} / \mathrm{V}
$$

Thus,

$$
C_{C 1}=\frac{0.63 \times 10^{-3}}{2 \pi \times 171 \times 10^{6}}=0.6 \mathrm{pF}
$$

The value of $S R$ can now be found using Eq. (9.40) as

$$
\begin{aligned}
S R & =2 \pi \times 171 \times 10^{6} \times 0.316 \\
& =340 \mathrm{~V} / \mu \mathrm{s}
\end{aligned}
$$

9.2 THE FOLDED-CASCODE CMOS OP AMP

In this section we stady another type of CMOS op-amp circuit: the folded cascode. The circuit is based on the folded-cascode amplifier studied in Section 6.8.6. There, it was mentioned that although it is composed of a CS transistor and a CG transistor of opposite polarity, the folded-cascode configuration is generally considered to be a single-stage amplificr. Similarly, the op-amp circuit that is based on the cascode configuration is considered to be a single-stage op amp. Nevertheless, it can be designed to provide performance parameters that equal and in some respects exceed those of the two-stage topology studied in the preceding section. Indeed, the folded-cascode op-amp topology is currently as popular as the two-slage structure. Furthermore, the folded-cascode configuration can be used in conjunction with the two-stage structure to provide performance levels higher than those available from either circuit alone.

9.2.1 The Circuit

Figure 9.8 shows the structure of the CMOS folded-cascode op amp. Here, Q_{1} and Q_{2} form the input differential pair, and Q_{3} and Q_{4} are the cascode transistors. Recall that for differential input signals, cach of Q_{1} and Q_{2} acts as a common-sourcc amplificr. Also note that the gate terminals of Q_{3} and Q_{4} are connected to a constant dc voltage ($V_{\text {BIASS }}$) and hence are

FIGURE 9.8 Structure of the folded-cascode CMOS up amp.
at signal ground. Thus, for differential input signals, each of the transistor pairs $Q_{1}-Q_{3}$ and $Q_{2}-Q_{4}$ acts as a folded-cascode amplifier, such as the one in Fig. 6.45. Note that the input differential pair is biased by a constant-current source I. Thus each of Q_{1} and Q_{2} is operating at a bias current $I / 2$. A node equation at each of their drains shows that the hias current of each of Q_{3} and Q_{4} is $\left(I_{B}-/ / 2\right)$. Selcecting $I_{b}=I$ forces all transistors to operate at the samic bias current of $I / 2$. For reasons that will be explained shortly, however, the value of I_{B} is usually made somewhat greater than I.
As we learned in Chapter 6, if the full advantage of the high output-resistance achieved through cascoding is to be realized, the output resistancc of the curent-source load must be equally high. This is the reason for using the cascode current mirror Q_{5} to Q_{8}, in the circuit of Fig. 9.8. (This current-mirror circuit was studied in Section 6.12.1.) Finally, note that capacitance C_{l}, denotes the total capacitance at the output node. It includes the internal transistor capacitances, an actual load capacitance (if any), and possibly an additional capacitance deliberately introduced for the purpose of frequency compensation. In many cases, however, the load capacitance will he sufficiently large, obviating the need to providc additional capacitance to achicve the desired frequency compensation. This topic will be discussed shortly. For the time being, we note that unlike the two-stage circuit, that requires the introduction of a separate compensation capacitor C_{C}, here the load capacitance contributes to frequicricy compensation.
A more complete circuit for the CMOS folded-cascode op amp is shown in Fig. 9.9. Here we show the two transistors Q_{9} and Q_{10}, which provide the constant bias currents I_{B}, and transistor Q_{11}, which provides the constant current I utilized for biasing the differential pair. Observe that the details for generating the bias voltages $V_{\text {BLASI }}, V_{\text {BAAS2 }}$, and $V_{\text {BIAS3 }}$ are niot shown. Nevertheless, we are interested in how the values of these voltages are to be selected. Toward that end, we evaluate the input common-mode range and the allowable output swing.

FIGURE 9.9 A more complete circuit for the folded-cascode CMOS amplifier of Fig. 9.8.

9.2.2 Input Common-Mode Range and the Output Voltage Swing

To find the input common-mode range, let the two input terminals be tied together and connected to a voltage $V_{I C M}$. The maximum value of $V_{I C M}$ is limited by the requirement that Q_{1} and Q_{2} operate in saturation at all times. Thus $V_{I C M \text { max }}$ should he at most $V_{\text {in }}$ voits above the voltag at the drains of Q_{1} and Q_{2}. The latter voltage is determined by $V_{\text {BIAS } 1}$ and must allow for a vol ge drop across Q_{9} and Q_{10} at least equal to their overdrive voltage, $\left|V_{\text {ovg }}\right|=\left|V_{\text {ovi1 }}\right|$. Assum ing that Q_{9} and Q_{10} are indeed operated at the edge of saturation, $V_{I C M \text { max }}$ will be

$$
\begin{equation*}
V_{l C M \max }=V_{D D}-\left|V_{O V 9}\right|+V_{I n} \tag{9.42}
\end{equation*}
$$

which can be larger than $V_{D D}$, a significant improvement over the case of the two-stage cir cuit. The value of $V_{\text {BIAS2 }}$ should be selected to yield the required value of I_{B} while operating Q_{9} and Q_{10} at a small value of $\left|V_{O V}\right|$ (e.g., 0.2 V or so). The minimum value of $V_{I C M}$ is the same as in the case of the two-stage circuit, namely

$$
\begin{equation*}
V_{I C M \text { min }}=-V_{S S}+V_{O V 11}+V_{O V V_{1}}+V_{t n} \tag{9.43}
\end{equation*}
$$

The presence of the threshold voltage $V_{t n}$ in this expression indicates that $V_{I C \text { main }}$ is not suf ficicnly low, Later in this section we shall describe an ingenious technique for solving this prom. required value of I while operating Q_{11} al a low overdrive voltage. Combining Eqs. (9.42) and (9.43) provides

$$
\begin{equation*}
-V_{S S}+V_{O V 11}+V_{O V 1}+V_{t n} \leq V_{C C M} \leq V_{D D}-V_{O V 9} \mid+V_{t n} \tag{9.44}
\end{equation*}
$$

The upper end of the allowable range of v_{O} is determined by the need to maintain Q_{10} and Q_{4} in saluration. Note that Q_{10} will operate in saturation as long as an overdrive voltage, $\left|V_{\text {ovio }}\right|$, appears across it. It follows that to maximize the allowable positive swing of v_{O} (and $V_{I C M \text { max }}$),
we should select the value of V_{BIASI} so that Q_{10} operates at the edge of saturation, that is,

$$
V_{\text {BIAS1 }}=V_{D D}-\left|V_{O V 10}\right|-V_{S G 4}
$$

The upper limit of v_{o} will then be

$$
\begin{equation*}
v_{O \max }=V_{D D}-\left|V_{O V 10}\right|-\left|V_{O V 4}\right| \tag{9.46}
\end{equation*}
$$

which is two overdrive voltagcs below $V_{D D}$. The situation is not as good, however, at the other end: Since the voltage at the gate of Q_{6} is $-V_{S 5}+V_{G 57}+V_{C S 5}$ or equivalently $-V_{s 5}+$ $V_{O V 7}+V_{O V S}+2 V_{t t}$, the lowest possihle v_{0} is obtained when Q_{6} reaches the edge of satura tion, namely, when v_{0} decreases below the voltage at the gate of Q_{6} by V_{m}, that is,

$$
\begin{equation*}
v_{o \text { min }}=-V_{s s}+V_{o v 7}+V_{o v s}+V_{t n} \tag{9.47}
\end{equation*}
$$

Note that this value is two overdrive voltages plus a threshold voltage above $-V_{s s}$. This is a drawback of utilizing the cascode mirror. The problem can be alleviated by using a modified miror circuit, as we shall shortly see.

EXERCISE

95 For a particular detign of the folded cascode op amp of fig $9.9, \pm 165-V$ supplies are utilzed and all liansistors are operated at overdrive voltates of 0.3. V magnitude. The fabrication process enployct provides $T_{t}=V_{p} \mid=0.5 \mathrm{~V}$. Find the input common-mode tange and the range allowed for to.
Ans, -0.55 V to $+1.85 \mathrm{~V},-0.55 \mathrm{~V}$ to +1.05 V

9.2.3 Voltage Gain

The folded-cascode op amp is simply a transconductance amplifier with an infinite input resistance, a transconductance G_{m} and an output resistance $R_{0} . G_{m}$ is equal to g_{m} of each of the two transistors of the differential pair,

$$
G_{m}=g_{m 1}=g_{m 2}
$$

Thus,

$$
G_{m}=\frac{2(I / 2)}{V_{O V 1}}=\frac{I}{V_{O V 1}}
$$

The output resistance R_{o} is the parallel equivalent of the output resistance of the cascode amplifier and the output resistance of the cascode mirror, thus

$$
R_{o}=R_{o 4} \| R_{o 6}
$$

Rclerence to Fig. 9.9 shows that the resistance $R_{o 4}$ is the output resistance of the CG transistor Q_{4}. The latter has a resistance ($r_{n 2} \| r_{o 10}$) in its source lead, thus

$$
R_{o 4} \cong\left(g_{m 4} r_{o 4}\right)\left(r_{o 2} \| r_{o 10}\right)
$$

The resistance $R_{o 6}$ is the output resistance of the cascode mirror and is thus given by Eq. (6.141), thus

$$
R_{o 6} \cong g_{m 6} r_{o 6} r_{08}
$$

Combining Eqs. (9.50) to (9.52) gives

$$
R_{o}=\left[\xi_{m 4} r_{o 4}\left(r_{o 2} \| r_{o 10}\right)\right] \|\left(g_{m 6} r_{o 6} r_{o 8}\right)
$$

The de open-loop gain can now be found using G_{m} and R_{o} as

$$
A_{v j}=G_{m} R_{o}
$$

Thus,

$$
\begin{equation*}
A_{v^{v}}=g_{m 1}\left\{\left[g_{m 4} r_{o 4}\left(r_{o 2} \| r_{o 10}\right)\right] \|\left(g_{m 60} r_{o 6} r_{o 8}\right)\right\} \tag{9.55}
\end{equation*}
$$

Figure 9.10 shows the equivalent circuit model including the load capacitance C_{L}, which we shall take into account shortly.

Because the folded-cascode op amp is a transconductance amplifier, it has been given the name operational transconductance amplifier (OTA). Its very high output resistance, which is of the order of $g_{m} r_{o}^{2}$ (see Eq. 9.53) is what makes it possible to realize a relatively high voltage gain in a single amplifier stage. However, such a high output resistance may bc a cause of conceln to the reader; after all, in Chapter 2, we stated that an ideal op amp has a a cause of concent to the reader; anter all, in Chapter 2, we stated that an ideal op amp has a
zero output resistance! To alleviate this concern somewhat, let us find the closed-loop outzero outpul resistance! To alleviate his concern somewhat, let us find the closed-loop output resistance of a unity-gain follower formed by connecting the output terminal of the cir-
cuit of Fig. 9.9 back to the negative input terminal. Since this feedback is of the voltage sampling type, ii reduces the output resistance by the factor $(1+A B)$ where $A=A_{2}$ and $\beta=1$, that is,

$$
\begin{equation*}
R_{o f}=\frac{R_{o}}{1+A_{v}} \cong \frac{R_{o}}{A_{v}} \tag{9.56}
\end{equation*}
$$

Substituting for A_{v} from Eq. (9.54) gives

$$
\begin{equation*}
R_{o f} \cong \frac{1}{G_{n t}} \tag{9.57}
\end{equation*}
$$

which is a general result that applies to any OTA to which 100% voltage reedback is applied. For our particular circuit, $G_{m}=g_{m}$, thus

$$
\begin{equation*}
R_{o f}=1 / g_{m 1} \tag{9.58}
\end{equation*}
$$

Since $g_{m 1}$ is of the order of $1 \mathrm{~mA} / \mathrm{V}, R_{o f}$ will be of the order of $1 \mathrm{k} \Omega$. Although this is not very small, it is reasonable in view of the simplicity of the op-amp circuit as well as the fact that this type of op amp is not usually intended to drive low-valued resistive loads.

Wuncisw

 HM! twIIUNTHTIU

9.2.4 Frequency Response

From our study of the cascode configuration in Section 6.8 we know that one of its advantages is its excellent high-frequency response. It has poles at the input, at the connection between the CS and CG transistors (i.e., at the source terminals of Q_{3} and Q_{4}), and at the output terminal. Normally, the first two poles are at very high frequencies, especially when the resistance of the signal generator that feeds the differential pair is small. Since the primary purpose of CMOS op amps is to feed capacitive Ioads, C_{L} is usually large, and the pole at the output becomes dominant. Even if C_{L} is not large, we can increase it deliberately to give the op amp a dominant pole. From Fig. 9.10 we can write

$$
\begin{equation*}
\frac{V_{o}}{V_{i d}}=\frac{G_{m} R_{o}}{1+s C_{L} R_{o}} \tag{9.59}
\end{equation*}
$$

Thus, the dominant pole has a frequency f_{P}

$$
f_{P}=\frac{1}{2 \pi C_{L} R_{o}}
$$

and the unity-gain frequency f_{t} will be

$$
\begin{equation*}
f_{t}=G_{n} R_{0} f_{P}=\frac{G_{m}}{2 \pi C_{L}} \tag{9.61}
\end{equation*}
$$

From a design point-of-view, the value of C_{L} should be such that at $f=f_{t}$ the excess phase resulting from the nondominant poles is small enough to permit the required phase margin to be achieved. If C_{L} is not large enough to achieve this purpose, it can be augmented.
It is important to note the different effects of increasing the load capacitance on the operation of the two op-amp curcuits we have sludied. In the two-stage circuit, if \mathcal{C}_{L} is increased, the frequency of the second pole decreases, the excess phase shift at $f=f_{t}$ increases, and the phase margin is reduced. Here, on the other hand, when C_{L} is increased, f_{t} decreases, bu the phase margin increases. In other words, a heavier capacitive load decreases the bandwidt of the folded-cascode amplifier but does not impair its response (which happens when the phase margin decreases). Of course, if an increase in C_{L} is anticipated in the two-stage op-amp case, the designer can increase C_{C}, thus decreasing f_{i} and restoring the phase margin to its required value.

9.2.5 Slew Rate

As discussed in Section 9.1 .5 , slewing occurs when a large differential input signal is applied. Refer to Fig. 9.8 and consider the case when a large signal $V_{i d}$ is applied so that Q_{2} cuts off and Q_{1} conducts the entire bias current I. We see that Q_{3} will now carry a current $\left(I_{B}-I\right)$, and Q_{4} will conduct a current I_{B}. The current mirror will see an input current of $\left(I_{B}-I\right)$ through Q_{5} and Q_{7} and thus its output current in the drain of Q_{6} will be of $\left(I_{B}-1\right)$. It follows that at the output node the current that will flow into C_{5} will be $I_{4}-I_{6}=$ $I_{B}-\left(I_{B}-I\right)=I$. Thus the output v_{O} will be a ramp with a slope of I / C_{L} which is the slew rate

$$
S R=\frac{I}{C_{L}}
$$

Note that the reason for selecting $I_{B}>I$ is to avoid turning off the current mirror com pletely; if the current mirror turns off, the output distortion increases. Typically, I_{B} is se 10% to 20% larger than I. Finally, Eqs. (9.61), (9.62), and (9.49), can be combined to obtain
the following relationship between $S R$ and f_{t}

$$
\begin{equation*}
S R=2 \pi f_{t} V_{O V 1} \tag{9.6.6}
\end{equation*}
$$

which is identical to the corresponding relationship in the case of the two-stage desigr Note, however, that this relationship applies only when $I_{B}>1$.

My Mivep

Consider a design of the folded-cascode op amp of Fig. 9.9 for which $I=200 \mu \mathrm{~A}, I_{B}=250 \mu \mathrm{~A}$ and $\left|V_{0}\right|$ for all transistors is 0.25 V . Assume that the fabrication process provides k^{\prime} $100 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{p}^{\prime}=40 \mu \mathrm{~A} / \mathrm{V}^{2},\left|V_{A}^{\prime}\right|=20 \mathrm{~V} / \mu \mathrm{m} . V_{D D}=V_{S S}=2.5 \mathrm{~V}$, and $\left|V_{t}\right|=0.75 \mathrm{~V}$. Let all $100 \mu \mathrm{~A} / \mathrm{V}, k_{p}^{\prime}=40 \mu \mathrm{~A} / \mathrm{V},\left|V_{A}\right|=20 \mathrm{~V} / \mu \mathrm{m} . V_{D D}=V_{S S}=2.5 \mathrm{~V}$, and $\mid V_{t}=0.75 \mathrm{~V}$. Let al
transistors have $L=1 \mu \mathrm{~m}$ and assume that $C_{L}=5 \mathrm{pF}$. Find $I_{D,}, r_{\text {a }}$ and W / L for all transistors Find the allowable rangc of V arsume that ine couput voltage swing. Determine the values of $A_{\text {a }}$, f_{p}, and $S R$. What is the power dissipation of the op amp?

Solution

From the given values of I and I_{n} we can determine the drain current I_{D} for each transistor. The transconductance of each device is found using

$$
g_{m}=\frac{2 I_{D}}{V_{O V}}=\frac{2 I_{D}}{0.25}
$$

and the oulpui resistance r_{o} from

$$
r_{o}=\frac{\left|V_{A}\right|}{I_{D}}=\frac{20}{I_{D}}
$$

The W/L ratio for cach transistor is determined from

$$
\left(\frac{W}{L}\right)_{i}=\frac{2 I_{D i}}{k^{\prime} V_{D V}^{2}}
$$

The results are as follows:

	0.	Q_{2}	Q	0_{4}	Q_{5}	Q6	Q	Q ${ }_{\text {A }}$	0_{0}	Q 10	Q
$I_{D}(\mu \mathrm{~A})$	100	100	150	150	150	150	150	150	250	250	200
$g_{\text {g.m }}(\mathrm{mA} / \mathrm{V})$	0.8	0.8	1.2	1.2	1.2	1.2	1.2	1.2	2.0	2.0	1.6
$r_{\sigma}(\mathrm{k} \Omega)$	200	200	133	133	133	133	133	133	80	80	10
W/L	32	32	120	120	48	48	48	48	200	200	

Note that for all transistors.

$$
\begin{aligned}
g_{m} r_{o} & =160 \mathrm{~V} / \mathrm{V} \\
V_{G S} & =1.0 \mathrm{~V}
\end{aligned}
$$

Using the expression in Eq. (9.44), the input common-mode range is found to be

$$
-1.25 \mathrm{~V} \leq V_{T C M} \leq 3 \mathrm{~V}
$$

The output voltage swing is found using Eqs. (9.46) and (9.47) to be

$$
-1.25 \mathrm{~V} \leq v_{0} \leq 2 \mathrm{~V}
$$

To obtain the voltage gain, we first determine R_{04} using Eq. (9.51) as

$$
R_{o 4}=160(200 \| 80)=9.14 \mathrm{M} \Omega
$$

and $R_{o 6}$ using Eq. (9.52) as

$$
R_{o 6}=21.28 \mathrm{M} \Omega
$$

The ouput resistance R_{o} can then be found as

$$
R_{o}=R_{o 4} \| R_{o 6}=6.4 \mathrm{M} \Omega
$$

and the voltage gain

$$
\begin{aligned}
A_{v} & =G_{m} R_{o}=0.8 \times 10^{-3} \times 6.4 \times 10^{6} \\
& =5120 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

The unity-gain bandwidth is found using Eq. (9.61),

$$
f_{t}=\frac{0.8 \times 10^{-3}}{2 \pi \times 5 \times 10^{-12}}=25.5 \mathrm{MHz}
$$

Thus, the dominant-pole frequency must be

$$
f_{P}=\frac{f_{i}}{A_{v}}=\frac{25.5 \mathrm{MHz}_{7}}{5120}=5 \mathrm{kHz}
$$

The slew rate can be determined using Eq. (9.62),

$$
S R=\frac{1}{C_{L}}=\frac{200 \times 10^{-6}}{5 \times 10^{-12}}=40 \mathrm{~V} / \mu \mathrm{s}
$$

Finally, to determine the power dissipation we note that the total current is $500 \mu \mathrm{~A}=0.5 \mathrm{~mA}$, and the total supply vollage is 5 V . thus

$$
P_{D}=5 \times 0.5=2.5 \mathrm{~mW}
$$

9.2.6 Increasing the Input Common-Mode Range:

Rail-to-Rail Input Operation

In Section 9.2 .2 we found that while the upper limit on the input common-mode range exceeds the supply voltage $V_{D D}$, the lower limit is significandly lower than $V_{S S}$. The oppositc stuation occurs if the input diferential ampilier is made up of ThOS transistors. 1 folows with a common-mode range that exceeds the power supply voltage in both directions. This s a con railto-rail input operation Figure 9.11 shows such an arrangement To keep the diagram simple, we have not shown the parallcl connection of the two differential pairs: The wo positive input terminals are to be connected together and the two negative input termi nals are to be tied together Transistors Q_{5} and Q_{0} are the cascodc transistors for the Q_{1} pair and transistors Q_{7} and $Q_{\text {a }}$ are the cascode devices for the $Q_{3}-Q_{\text {pair }}$. The output volt paire and V is
 asce.
Figure 9.11 indicates by arrows the direction of the current increments that result from the application of a positive differential input signal $V_{i d}$. Each of the current increments indicated is equal to $G_{m}\left(V_{i d} / 2\right)$ where $G_{m}=g_{m 1}=g_{m 2}=g_{m 3}=g_{m 4}$. Thus the total current feeding each of the two output nodes will be $G_{m} V_{i s}$. Now, if the output resistance between each of the two nodes and ground is denoted R_{o}, the output voltage will be

$$
V_{o}=2 G_{m} R_{o} V_{i d}
$$

FIGURE 9.11 A folded-cascode op amp that employs two parallel complementary input stages to achieve rail-to-rail input common-mode operation. Note that the two "+" terminals are connected together and the two "-" terminals are connected together.
Thus, the voltage gain will be

$$
\begin{equation*}
A_{v}=2 G_{m} R_{o} \tag{9.65}
\end{equation*}
$$

This, however, assumes that both differential pairs will be operating simultaneously. This in turn occurs only over a limited range of $V_{I C M}$. Over the remainder of the input commonmode range, only one of the two differential pairs will be operational, and the gain drops to half of the value in Eq. (9.65). This rail-to-rail folded-cascode structure is utilized in a commercially available op amp. ${ }^{1}$

EXERCISE

97. For the circut in Fig 9 II. assume that il tranistors are operatigg at equal overdrive vitages of o3-Y magitude and have $1 V$: $=0.7$ V and that $V_{\text {IS }}=V_{S S}=25$
(a) Find the range over which the NMOS input stage operate
(b) Finc the range over which the PMOS thput stage operates:
(c) Find the range over whith both operate (the overlap ranise)
(d) Find the input common-mode range.

Wote that te operate properly each of the curent soutces tequires a mimmin fof tage of V, across its termmats:
Ans. -1.2 V ค $+2.9 \mathrm{~V} ;-2.9 \mathrm{~V}$ to $+1.2 \mathrm{~V},-1.2 \mathrm{~V}$ to $+1.2 \mathrm{~V} ;-2.9 \mathrm{~V}$ to +2.9 V

The Texas Instruments OPA357

FIGURE 9.12 (a) Cascode current mirror with the voltages at all nodes indicated. Note that the minimun voltagc allowed at the output is $V_{1}+V_{\text {ov. }}$ (b) A modification of the cascode mirror that results in the reduc in of the sutpul voltase to V This is the widc-swing current mirror

9.2.7 Increasing the Output Voltage Range:

The Wide-Swing Current Mirror

In Section 9.2.2 it was found that while the output voltage of the circuit of Fig. 9.9 can swing to within $2\left|V_{O V}\right|$ of $V_{D D}$, the cascode current mirror limits the negative swing to $\left[2\left|V_{O V}\right|+V_{t}\right]$ above $-V_{S S}$. In other words, the cascode mirror reduces the voltage swing by volts. This poinl is further illustrated in Fig. 9.12(a), which shows a cascode mirror (with $V_{s s}=0$ for simplicity) and indicates the voltages that result at the various nodes. Observe Ss becerse the voltage at the gate of Q_{3} is $2 V_{1}+2 V_{O V}$, the minimum voltage permitted at
 Q_{1} is operating with a drain-to-source voltage $V_{t}+V_{O V}$, which is V_{t} volts greater than it needs to operate in saturation.
The observations above lead us to the conclusion that to permit the outpat voltage at the drain of Q_{3} to swing as low as $2 V_{o v}$, we must lower the voltage at the gate of Q_{3} from $2 V_{t}+$ $2 V_{O V}$ to $V_{t}+2 V_{O V}$. This is exactly what is done in the modified mirror circuit in Fig. 9.12(b) The gate of Q_{3} is now connected to a hias voltage $V_{\text {BIAS }}=V_{t}+2 V_{O V}$. Thus the output voltage can go down to $2 V_{O V}$ with Q_{3} still in saturation. Also, the voltage at the drain of Q_{1} is now $V_{o v}$ and thus Q_{1} is operating at the edge of saturation. The same is true of Q_{2} and thus the tracking between Q_{1} and Q_{2} will be assured. Note, however, that we can no
 as V is ureater than V_{O} which is usually the case). This circuit is known as the wide-swing current mirror. Finally, note that Fig. 9.12(b) does not show the circuit for generating $V_{\text {wis }}$.There are a number of possible circuits to accomplish this task, one of which is explored in Exercise 9.8.

ExERCISE

9.8 Show that if transistor Q_{5} in the circuit of Fis E9:8 has a W/L ratio equal to one-quater that of the tran

 gates of Q_{3} and Q_{4}

FIGURE E9.8

9.3 THE 741 OP-AMP CIRCUIT

Our study of BJT op amps is focused on the 741 op-amp circuit, which is shown in Fig. 9.13 Note that in keeping with the IC design philosophy the circuit uses a large number of transistors, but relatively few resistors, and only one capacitor. This philosophy is dictated by the economics (silicon area, ease of fabrication, quality of realizable components) of the fabrication of active and passive components in IC form (see Scction 6.1 and Appendix A). As is the case with most general-purpose IC op amps, the 741 requires two power supplies $+V_{C C}$ and $-V_{E E}$. Normally, $V_{C C}=V_{E E}=15 \mathrm{~V}$, but the circuit also operates satisfactorily with the power supplics reduced to much lower values (such as $\pm 5 \mathrm{~V}$). It is important to
With at no circuit uode is connected to ground, the common terminal of the two supplies. With a relatively large circuit such as that shown in Fig. 9.13, the first step in the analysis is the identification of its recognizable parts and their functions. This can be done as follows

9.3.1 Bias Circuit

The reference bias current of the 741 circuit, $I_{\text {REF }}$, is generated in the branch at the extreme left of Fig. 9.13, consisting of the two diode-connected transistors Q_{11} and Q_{12} and the resisCance R_{5}. Using a Widlar current source formed by Q_{11}, Q_{10}, and R_{4}, bias current for the first sage is generated in the collector of Q_{10}. Another current mirror formed by Q_{8} and Q_{9} take in biasing the first stage.
The reference bias current $I_{\text {RFF }}$ is used to provide two proportional currents in the collectors of Q_{13}. This double-collector lateral ${ }^{2} p n p$ transistor can be thought of as two
in Scction 6 . A for a description of lateral $\rho m p$, rransistors. Also, Lheir characteristics were discussed

transistors whose base-cmiller junctions are connected in parallel. Thus Q_{12} and Q_{13} form a two-output current mirror: One output, the collector of $Q_{1: 3}$, provides bias current for Q_{17}, and the other output, the collector of $Q_{13 A}$, provides bias current for the output stage of the op amp.
Two more transistors, Q_{18} and Q_{19}, take part in the dc bias process. The purpose of Q_{18} and Q_{19} is to establish two $V_{B E}$ drops between the bases of the output transistors Q_{14} and Q_{20}.

9.3.2 Short-Circuit Protection Circuitry

The 741 circuit includes a number of transistors that are norinally off and conduct only in the event that onc atuempts to draw a large current from the op-amp output terminal. This happens, for example, if the output terninal is short-circuited to one of the two supplies. The shor-circuit protection network consists of $R_{6}, R_{7}, Q_{15}, Q_{21}, Q_{24}, R_{11}$, and Q_{22}. In the following we shall assume that these transistors are off. Operation of the short-circuit protection network will be explained in Scction 9.5.3.

9.3.3 The Input Stage

The 741 circuit consists of three stages: an input differential stage, an intermediate singleended high-gain stage, and an output-buffering stage. The input stage consists of transistors Q_{1} through Q_{7}, with biasing performed by Q_{8}, Q_{9}, and Q_{10}. Transistors Q_{1} and Q_{2} act as emitter followers, causing the input resistance to be high and delivering the differential input signal to the differential common-base amplifier formed by Q_{3} and Q_{4}. Thus the input stage is the differential version of the common-collector common-base configuration discussed in Section 6.11.3

Transistors Q_{5}, Q_{6}, and Q_{7} and resistors R_{1}, R_{2}, and R_{3} form the load circuit of the input stage. This is an elaborate current-mirror load circuit, which we will analyze in detail in Section 9.5.1. It will be shown that this load circuit not only provides a high-resistance load but also converts the signal from differential to single-ended form with no loss in gain or common-mode rejection. The output of the input stage is taken single-endedly at the collector of Q_{6}

As mentioned in Section 7.7.2, every op-amp circuit includes a level shifter whose function is to shift the dc level of the signal so that the signal at the op-amp ouput can swing positive and negative. In the 741, level shifting is done in the lirst stage using the lateral pnp transistors Q_{3} and Q_{4}. Although lateral pnp transistors have poor high-frequency performance, their use in the common-base configuration (which is known to have good bighfrcquency response) does not seriously impair the op-amp frequency response.

The use of the lateral $p n p$ iransistors Q_{3} and Q_{4} in the first stage results in an added advantage. protection or the input-stage transistors Q_{1} and Q_{2} against emitter-base junction breakdown. Since the emiler-base junction of an $n p n$ transistor breaks down at about 7 V of reverse bias (see Section 5.2.5), regular npn differential stages suffer such a breakdown if, say, the supply voltage is accidentally connected bctween the input terminals. Lateral pnp transistors, however, have high emitter-base breakdown voltages (about 50 V); and because they are connected in series with Q_{1} and Q_{2}, they provide protection of the 741 input transistors, Q_{1} and Q_{2}.

9.3.4 The Second Stage

The second or intermediate stage is composed of $Q_{16}, Q_{17}, Q_{13 B}$, and the two resistors R_{8} and R_{9}. Transistor Q_{16} acts as an cmitter follower, thus giving the sccond stage a high inpu1
resistance. This minimizes the loading on the input stage and avoids loss of gain. Transistor Q_{17} acts as a common-cmitter amplifier with a $100-\Omega$ resistor in the emitter. Its load is composed of the high output resistance of the pnp current source $Q_{13 B}$ in parallel with the input resistance of the output stage (seen looking into the base of Q_{23}). Using a transistor current source as a load resistance (active load) enables one to obtain high gain without resorting to the use of large load resistances, which would occupy a large chip area and require Jarge power-supply voltages.

The output of the second stage is taken at the collector of Q_{17}. Capacitor C_{C} is connected in the feedhack path of the second stage to provide frequency compensation using the Miller compensation technique studied in Section 8.11. It will be shown in Section 9.5 that the relatively small capacitor C_{C} gives the 74 I a dominant pole at about 4 Hz . Furthermore, pole splitting causes other poles to be shifted to much higher frequencies, giving the op amp a uniform $-20-\mathrm{dB} /$ decade gain rolloff with a unity-gain bandwidth of about 1 MHz . It should be pointed out that although C_{C} is small in value, the chip area that it occupies is about 13 times that of a standard npn transistor!

9.3.5 The Output Stage

The purpose of the output stage is to provide the amplifier with a low output resistance. In addition, the output stage should be able to supply relatively large load currents without dissipating an unduly large amount of power in the IC. The 741 uses an efficient output circuit known as a class AB output stage.

Output stages are studied in detail in Chapter 14, and the output stage of the 741 will be discussed in some detail in Section 9.4. For the time being we wish to point out the difference between the class AB output stage and the output stage we are familiar with, namely the emitter (or source) follower. Figure 9.14(a) shows an eniiter follower biased with a constant-current source I. To keep the emitter-follower transistor conducting at all times and thus ensure the low output resistance it provides, the bias current / must he greater than the largest magnitude of load current i_{L}. This is known as class A operation and the emitter(source) follower is a class A output stage. The drawback of class A operation is the large power dissipated in the transistor.

The power dissipated in the outpul-stage can be reduced by arranging for the transistor to turn on only when an input signal is applied. For this to work, however, one needs two transistors, an apn to source output current and a pnp to sink output current. Such an arrangement is shown in Fig. 9.14(b). Observe that both transistors will be cut off when $v_{I}=0$. In other words, the transistors are biased at a zero de current. When v_{I} goes positive, Q_{N} conducts while Q_{P} remain off. When v_{l} goes negative the transistors reverse roles. This arrangement is known as class B operation and the circuit as a class B output stage.

Although efficient in terms of power dissipation, the class B circuit causes output-signal distortion, as illustrated in Fig. 9.14(c). This is a result of the fact that for $\left|\tilde{v}_{1}\right|$ cess than about 0.5 V , neither of the transistors conducts and $v_{0}=0$. This type of distortion is known as crossover distortion.

Crossover distortion can be reduced hy biasing the output-stage transistors at a low current. This ensures that the output transistors Q_{N} and Q_{P} will remain conducting when v_{t} is small. As v_{1} increases, one of the two transistors conducts more, while the other shuts off, in a manner similar to that in the class B stage.

There are a number of ways for biasing the transistors of the class AB stage. Figure 9.14 (d) shows one such approach utilizing two diode-connected transistors Q_{1} and Q_{2} with junction

(a)

(c)

(b)

(d)

FIGURE 9.14 (a) The cmitter follower is a class A output stage. (b) Class B oupput stage. (c) The output of a class B oupput stage fed with an inpul sinusoid. Obscrve the crossover distortion. (d) Class AB outpui stage.
areas much snaller tban those of Q_{N} and Q_{P}. A somewhat more elaborate biasing network is utilized in the 741 output stage.
The output stage of the 741 consists of the complementary pair Q_{14} and Q_{20}, where Q_{20} is substrate pnp (see Appendix A). Transistors Q_{18} and Q_{19} are fed by current source Q_{13} and bias the output transistors Q_{14} and Q_{20}. Transistor Q_{23} (which is another substrate $p n p$) acts as an emitter follower, thus minimizing the loading effect of the output stage on the second stage.

9.3.6 Device Parameters

In the following sections we shail carry out a detailed analysis of the 741 circuit. For the standard $n p n$ and $p n p$ transistors, the following parameters will be used

$$
\begin{array}{ll}
n p n: & I_{S}=10^{-14} \mathrm{~A}, \beta=200, V_{A}=125 \mathrm{~V} \\
p n p: & I_{S}=10^{-14} \mathrm{~A}, \beta=50, V_{A}=50 \mathrm{~V}
\end{array}
$$

In the 741 circuit the nonstandard devices are Q_{13}, Q_{14}, and Q_{20}. Transistor Q_{13} will be assumed to be equivalent to two transistors, $Q_{13 A}$ and $Q_{13 B}$, with parallel base-emitter junctions and having the following saturation currents:

$$
I_{S A}=0.25 \times 10^{-14} \mathrm{~A} \quad I_{S B}=0.75 \times 10^{-14} \mathrm{~A}
$$

Transistors Q_{14} and Q_{20} will be assumed to each bave an area three times that of a standard Transistors Q_{14} and Q_{20} will be assumed to each have an area three timles supply large load
device. Output transistors usually bave relatively large areas, to be ahle to supa device. Output transistors usually have relatively large areas, th only a moderate increase in device temperature.

EXERGISES

99. Fof the standarl nph traissitor whose parameters are given in Section 936 , find approximite vilues
 Ans, $633 \mathrm{mV}, 40 \mathrm{mAV} ; 25 \Omega, 5 \mathrm{k} 2,125 \mathrm{kS}$
910 Forthe circuut in Fir E E 910 , neglect base currents and use the exponential $i_{C} \psi_{B E}$ relationship to show that

$$
I_{,}=I_{i} \frac{\sqrt{T_{1} I_{s t}}}{I_{s} 1_{s i}}
$$

x
 9.4 DC ANALYSIS OF THE 741

In this section, we shall carry out a dc analysis of the 741 circuit to determine the bias poin of each device. For the dc analysis of an op-amp circuit the input terminals are grounded Theorctically speaking, this should result in zero de voltage at the oupur. However, becaus the oput volage is far from being zero and is close to either $+V$ anys will show that the on lies. To overcome this problem in the de analysis it will be asumed tat onnected in negative-feedback loop that stab

9.4.1 Reference Bias Current

The reference bias current $I_{\text {RFF }}$ is generated in the branch composed of the two diodeonnected transistors Q_{11} and Q_{12} and resistor R_{5}. With reference to Fig. 9.13, we can write

$$
I_{\mathrm{REF}}=\frac{V_{C C}-V_{E B 12}-V_{B E 11}-\left(-V_{E E}\right)}{R_{5}}
$$

For $V_{C C}=V_{E E}=15 \mathrm{~V}$ and $V_{B E 11}=V_{E B 12} \simeq 0.7 \mathrm{~V}$, we have $I_{\text {REF }}=0.73 \mathrm{~mA}$.

9.4.2 Input-Stage Bias

Transistor Q_{11} is biased by $I_{\text {REF }}$, and the voltage developed across it is used to bias Q_{10} which has a series emitter resistance R_{4}. This part of the circuit is redrawn in Fig. 9.15 and can be recognized as the Widlar current source studied in Section 6.12.5. From the circuit, and assuming β_{10} to be large, we have

$$
V_{B E 11}-V_{B E 10}=I_{C 10} R_{4}
$$

Thus

$$
V_{T} \ln \frac{I_{\mathrm{REF}}}{I_{C 10}}=I_{C 10} R_{4}
$$

where it has been assumed that $I_{S 10}=I_{S 11}$. Substituting the known values for $I_{\text {PEF }}$ and R_{4}, this equation can be solved by trial and error to determine $I_{C 10}$. For our case, the result is $I_{C 10}=19 \mu \mathrm{~A}$.

$-V_{E R}$

Puintis

Having determined $I_{C 10}$, we proceed to determine the dc current in each of the input-stage transistors. Part of the input stage is redrawn in Fig, 9.16. From symmetry, we see that

$$
I_{C 1}=I_{C 2}
$$

Denote this current by I. We see that if the $n p n \beta$ is high, then

$$
I_{E 3}=I_{E 4} \simeq I
$$

and the base currents of Q_{3} and Q_{4} are equal, with a value of $I /\left(\beta_{P}+1\right) \simeq I / \beta_{P}$, where β_{P} denotes β of the pnp devices.

The current mirror formed by Q_{8} and Q_{9} is fed by an input current of $2 I$. Using the result in $E \mathcal{q}$ (621), we can express the output current of the mirror as

$$
I_{C 9}=\frac{2 I}{1+2 / \beta_{P}}
$$

We can now write a node equation for node X in Fig. 9.16 and thus determine the value of I. If $\beta_{\rho} \gg 1$, then this node equation gives

$$
2 I \simeq I_{C 10}
$$

FIGURE 9.16 The dc analysis of the 741 input stage

For the $741, I_{C 10}=19 \mu \mathrm{~A}$; thus $I \simeq 9.5 \mu \mathrm{~A}$. We have thus determined that

$$
I_{C 1}=I_{C 2} \simeq I_{C 3}=I_{C 4}=9.5 \mu \mathrm{~A}
$$

At this point, we should note that transistors Q_{1} through Q_{4}, Q_{8}, and Q_{9} form a negativefcedback loop, which works to stabilize the valuc of I at approximately $I_{C: 10} / 2$. To appreci fcedback loop, which works to stabilize the valuc of I at approximately $I_{C 10} / 2$. To appreciate this fact, assume that for some reason the current T in Q_{1} and Q_{2} incrcases. This will cause ondingly increase. However since I_{c} remains constant, node X forces the wom bined base currents of Q_{3} and Q_{3} to decreasc. This in twn will couse the emitter currents Q_{3} and $Q_{\text {a }}$ and hence the collector currents of Q_{1} and Q_{2}, te decrease. This is opposite in Q_{3} and Q_{4}, and hence the collector currents of Q_{1} and Q_{2}, to decrease. This is opposite in direction to the change orivinally assumed. Hence the fccuback is negative, and it stabilizes the viluc of 9

Figure 9.17 shows the remainder of the 741 input stage. If we neglect the base current of Q_{16}, then

$$
I_{C 6} \simeq I
$$

Similarly, neglecting the base current of Q_{7} wc obtain

$$
I_{C 5} \simeq 1
$$

The bias curtent of Q_{7} can be determined from

$$
\begin{equation*}
I_{C 7} \simeq I_{E 7}=\frac{2 I}{\beta_{N}}+\frac{V_{B E G}+I R_{2}}{R_{3}} \tag{9.67}
\end{equation*}
$$

where β_{N} denotes β of the npn transistors. To determine $V_{R E 6}$ we use the transistor exponential relationship and write

$$
V_{B E 6}=V_{T} \ln \frac{1}{I_{S}}
$$

Substituting $I_{5}=10^{-14} \mathrm{~A}$ and $I=9.5 \mu \mathrm{~A}$ results in $V_{B E 6}=517 \mathrm{mV}$. Then substituting in Eq. (9.67) yields $I_{C 7}=10.5 \mu \mathrm{~A}$. Note that the base current of Q_{7} is indeed negligible in comparison to the value of I, as has been assumed

FIGURE 9.17 The dc analysis of the 741 input stage, continucd

9.4.3 Input Bias and Offset Currents

The input bias current of an op amp is defined (Chapters 2 and 7) as

$$
I_{B}=\frac{I_{B 1}+I_{B 2}}{2}
$$

For the 741 we obtain

$$
I_{B}=\frac{I}{\beta_{N}}
$$

Using $\beta_{N}=200$, yields $I_{B}=47.5 \mathrm{nA}$. Note that this value is reasonably small and is typical of general-purpose op amps that use BJTs in the input stage. Much lower input bias currents (in the picoamp or femtoamp range) can be obtained using a FET input stage. Also, there exist techniques for reducing the input bias current of bipolar-input op amps.
Because of possible misnmatches in the β values of Q_{1} and Q_{2}, the input base currents will not be equal. Given the value of the β mismatch, one can use Eq. (7.137) to calculate the input offset current, defined as

$$
I_{O S}=\left|I_{B 1}-I_{B 2}\right|
$$

9.4.4 Input Offset Voltage

From Chapter 7 we know that the input offset voltage is determined primarily by mis matches between the two sides of the input stage. In the 741 op amp, the input offset voltage is due to mismatches between Q_{1} and Q_{2}, between Q_{3} and Q_{4}, betwecn Q_{5} and Q_{6}, and between R_{1} and R_{2}. Evaluation of the components of $V_{O S}$ corresponding to the various mismatches follows the method outlined in Section 7.4. Basically, we find the current that results at the output of the first stage due to the particular mismatch heing considered. Then we find the differential input voltage that must be applicd to reduce the output curren to zero.

9.4.5 Input Common-Mode Range

The input common-mode range is the range of input common-mode voltages over which the input stage remains in the linear active mode. Refer to Fig. 9.13 . We see that in the 741 circuit the input common-mode range is determined at the upper end by saturation of Q_{1} and Q_{2}, and at the lower end by saturation of Q_{3} and Q_{4}.

HETETE

Miln dutar

9.4.6 Second-Stage Bias

If we neglect the base current of Q_{23} then we sce from Fig. 9.13 that the collector current of Q_{17} is approximately equal to the current supplied by current source $Q_{13 n}$. Because $Q_{13 B}$ has scale cuitcnt 0.75 times that of Q_{12}, its collector current will be $I_{\text {C13 }} \simeq 0.75 I_{\text {REF }}$, where we have assuned that $\beta_{P} \gg 1$. Thus $I_{C 13}=550 \mu \mathrm{~A}$ and $I_{C 17} \simeq 550 \mu \mathrm{~A}$. At this current level the
base-emitter voltage of Q_{17} is

$$
V_{B E 17}=V_{T} \ln \frac{I_{C 17}}{I_{S}}=618 \mathrm{mV}
$$

The collector current of Q_{16} can be determined from

$$
I_{C 16} \simeq I_{E 16}=I_{B 17}+\frac{I_{E 17} R_{8}+V_{B E 17}}{R_{9}}
$$

This calculation yields $I_{C 16}=16.2 \mu \mathrm{~A}$. Note that the base current of Q_{16} will indeed be negligible compared to the input-stage bias I, as we have assumed.

9.4.7 Output-Stage Bias

Figure 9.18 shows the output stage of the 741 with the short-circuit-protection circuitry onnitted. Current source $Q_{13,}$ delivers a current of $0.25 I_{\text {REF }}$ (because I_{S} of $Q_{13 A}$ is 0.25 times the I_{s} of Q_{12}) to the network composed of Q_{18}, Q_{19}, and $R_{1 \text {. If we ne }}$, Q_{154} is currents of Q_{14} and Q_{20}, then the emitter current of Q_{23} will also be equal to $0.25 I_{R E F}$. Thus

$$
I_{C 23} \simeq I_{E 23} \simeq 0.25 I_{\mathrm{REF}}=180 \mu \mathrm{~A}
$$

Thus we see that the base current of Q_{23} is only $180 / 50=3.6 \mu \mathrm{~A}$, which is negligible compared to $I_{C 17}$, as we have assumed.

FIGURE 9.18 The 741 outpur stage wihout the short-circuil protection devices.

If we assume that $V_{B E 18}$ is approximately 0.6 V , we can determine the current in R_{10} as $5 \mu \mathrm{~A}$. The emitter current of Q_{18} is therefore

$$
I_{E 18}=180-15=165 \mu \mathrm{~A}
$$

Also,

$$
I_{C 18} \simeq I_{E 18}=165 \mu \mathrm{~A}
$$

at this value of current we find that $V_{B E 18}=588 \mathrm{mV}$, which is quite close to the value ssumed. The base current of Q_{18} is $165 / 200=0.8 \mu \mathrm{~A}$, which can be added to the current in R_{10} to determine the Q_{19} current as

$$
I_{C 19} \simeq I_{E 19}=15.8 \mu \mathrm{~A}
$$

The voltage drop across the base-emitter junction of Q_{19} can now be determined as

$$
V_{B E 19}=V_{\tau} \ln \frac{I_{C 19}}{I_{S}}=530 \mathrm{mV}
$$

As mentioned in Section 9.3.5, be purpose of the $Q_{18}-Q_{19}$ network is to establish two $V_{B R}$ drops between the bases of the output transistors Q_{14} and Q_{20}. This voltage drop, $V_{B B}$, can be now calculated as

$$
V_{B B}=V_{B E 18}+V_{B E 19}=588+530=1.118 \mathrm{~V}
$$

Since $V_{B A}$ appears actoss the series combination of the base-emitter junctions of Q_{14} and Q_{20}, we can write

$$
V_{B B}=V_{T} \ln \frac{I_{C 14}}{I_{S 14}}+V_{T} \ln \frac{I_{C 20}}{I_{S 20}}
$$

Using the calculated value of $V_{B B}$ and substituting $I_{S 14}=I_{520}=3 \times 10^{-14} \mathrm{~A}$, we determine the collector currents as

$$
I_{C 14}=I_{C 20}=154 \mu \mathrm{~A}
$$

This is the small current at which the class AB output stage is biased.

9.4.8 Summary

For future referencc, Table 9.1 provides a listing of the values of the collector bias currents of the 741 transistors.

		Q_{8}	19	$Q_{13 H}$	550	Q_{19}	15.8
Q_{1} Q_{2}	9.5 9.5	Q_{8} Q_{9}	19	Q_{1+}	154	Q_{20}	154
Q_{3}	9.5	Q_{10}	19	Q_{15}	${ }^{0}$	Q_{21}	0
Q_{4}	9.5	Q_{11}	730	Q_{16}	16.2	Q_{22}	80
Q_{5}	9.5	Q_{12}	730	Q_{17}	550	Q_{23}	80
Q_{6}	9.5	ϱ_{134}	180	Q_{18}	165	${ }_{24}$	

ExERGISE

9.13 If the circul of Fig 9 is the Q_{8} - Q_{1}. network irepaced by wo diode-conincted transistors, find the current in Q_{14} and $Q_{2 \text {, (Hint: Use the result of Excrisc 9.10) }}$ Ans. 540 IIA

951 9.5 SMALL-SIGNAL ANALYSIS OF THE 741

9.5.1 The Input Stage

Figure 9.19 shows part of the 741 input stage for the purpose of performing small-signa analysis. Note that since the collectors of Q_{1} and Q_{2} are connected to a constant de voltage they are shown grounded. Also, the constant-current biasing of the bases of Q_{3} and Q_{4} is equivalent to having the common base terminal open-circuited

The differential signal v_{i} applied between the input terminals effectively appears acros four equal emitter resistances connected in sćries - those of Q_{1}, Q_{2}, Q_{3}, and Q_{4}. As a result enilter signal currents flow as indicated in Fig. 9.19 with

$$
i_{e}=\frac{v_{i}}{4 r_{e}}
$$

where r_{e} denotes the emitter resistance of each of Q_{1} through Q_{4}. Thus

$$
r_{e}=\frac{V_{T}}{I}=\frac{25 \mathrm{mV}}{9.5 \mu \mathrm{~A}}=2.63 \mathrm{k} \Omega
$$

Thus the four transistors Q_{1} through Q_{4} supply the load circuit with a pair of complementary current signals αi_{e}, as indicated in Fig. 9.19.

The input diffcrential resistance of the op amp can be obtained from Fig. 9.19 as

$$
R_{i d}=4\left(\beta_{N^{\prime}}+1\right) r_{e}
$$

For $\beta_{R}=200$, we obtain $R_{i d}=2.1 \mathrm{M} \Omega$.

FIGURE 9.19 Sinall-signal analysis of the 74 input slage.

IGURE 9.20 The load circuit of the input stage rea by the two complemenary cancon signals generated by Q_{1} through Q_{4} in Fig. 9.19 . Circled numbers indicate the order of the analysis steps.

Proceeding with the input-stage analysis, we show in Fig. 9.20 the load circuil fed wit Proceed base of Q_{7}, we see that the collector signal current of Q_{5} is approximately equal to the input current αi Now, since Q_{5} and Q_{6} are identical and their bases are tied together, and since aqual resistances are connected in their emitters, it follows that their collector signal currents must be equal Thus the signal current in the collector of Q_{6} is forced to be equal to αi_{c}. In other words, the load circuit functions as a current mirro
Now consider the output node of the input stage. The output current i_{0} is given by

$$
\begin{equation*}
i_{o}=2 \alpha i_{e} \tag{9.70}
\end{equation*}
$$

The factor of 2 in this equation indicates that conversion from differential to single-ended is performed without losing half the signal. The trick, of course, is the use of the current mirror to invert one of the current signals and then add the result to the other current signal (see Section 7.5).

Equations (9.68) and (9.70) can be combined to obtain the transconductance of the input stage, $G_{m 1}$:

$$
\begin{equation*}
G_{m 1}=\frac{i_{g}}{z_{i}}=\frac{\alpha}{2 r_{e}} \tag{9.71}
\end{equation*}
$$

Substituting $r_{\epsilon}=2.63 \mathrm{k} \Omega$ and $\alpha \simeq 1$ yields $G_{m \mid}=1 / 5.26 \mathrm{~mA} / \mathrm{V}$.

ExERCISE

0, te the inpur resistance seen by the lef handside signal curren source of (Nore: For simpicity, assunce that $I_{c}=1$ or $-I_{c e}$)

FIGURE 9.21 Simplified circuits for Finding the wo components of the oulput resistance $R_{o i}$ of the firss stage

To completc our modeling of the 741 input stage we must find its output resistance R This is the resistance scen "looking back" into the collector terminal of Q_{6} in Fig. 9.20. Thu $R_{o 1}$ is the parallel equivalent of the output resistance of the corrent source supplying the sig噱
 assume then nly when the input signal v_{i} is applied sumping error
Assumig ${ }^{2}$. Q_{4} is at virtual ground. the resistance we are after is R, indi cated in Fig. 9.2 (a). This is the output resistance of a common-base transistor that ha resistance (r_{e} of Q_{2}) in its emitter. To find R_{04} we may use the following expression (Eq. 6.118):

$$
\begin{equation*}
R_{\nu}=r_{o}\left[1+g_{m}\left(R_{t} / / r_{\pi}\right)\right] \tag{9.72}
\end{equation*}
$$

Substituting $R_{B}=r_{e} \equiv 2.63 \mathrm{k} \Omega$ and $r_{o}=V_{A} / I$, wherc $V_{A}=50 \mathrm{~V}$ and $I=9.5 \mu \mathrm{~A}$ (thus $r_{o}=$ $5.26 \mathrm{M} \Omega)$, and neglecting r_{π} since it is $(\beta+1)$ times larger than R_{k}, results in $R_{o 4}=10.5 \mathrm{M} \Omega$,

The second component of the output resistance is that seen looking into the coliector of Q_{6} in Fig. 9.20. Although the base of Q_{6} is not at signal ground, we shall assume that the signal volage at the base is small enough to make this approximation valid. The circuit then takes the form shown in Fig. 9.21(b), and $R_{d 6}$ can be determined using Eq. (9.72) with $R_{E}=R_{2}$ Thus $R_{o 6} \simeq 18.2 \mathrm{M} \Omega$
Finally, we combine $R_{o 4}$ and $R_{c 6}$ in parallel to obtain the output resistance of the input stage, $R_{o l}$, as $R_{o l}=6.7 \mathrm{M} \Omega$.

Figure 9.22 shows the equivalent circuit that we have derived for the input stage.

FIGURE 9.22 Small-signal equivalent circuit for the input stage of the 741 op amp.

We wish to find the input offset voltage resulting from a 2% mismatch between the resistances R_{1}
and R_{2} in Fig. 9.13.

Solution

Consider first the situation when both input terminals are grounded, and assume that $R_{1}=R$ and $R_{2}=R+\Delta R$, where $\Delta R / R=0.02$. From Fig. 9.23 we see that while Q_{5} still conducts a current equal to I, the current in Q_{6} will be smaller by ΔI. The value of ΔI can be found from

$$
V_{B E 5}+I R=V_{B E G}+(I-\Delta I)(R+\Delta R)
$$

Thus

$$
V_{B E 5}-V_{B E 6}=I \Delta R-\Delta I(R+\Delta R)
$$

The quantity on the left-hand side is in effect the change in $V_{B E}$ due to a change in I_{E} of ΔI. We may therefore write

$$
V_{B E 5}-V_{B E 6} \simeq \Delta I r_{c}
$$

Equations (9.73) and (9.74) can be combined to obtain

$$
\begin{equation*}
\frac{\Delta I}{I}=\frac{\Delta R}{R+\Delta R+r_{e}} \tag{9.75}
\end{equation*}
$$

Substituting $R=1 \mathrm{k} \Omega$ and $r_{e}=2.63 \mathrm{k} \Omega$ shows that a 2% mismatch between R_{1} and R_{2} gives rise to an output current $\Delta I=5.5 \times 10^{-3} \mathrm{I}$. To reduce this output current to zero we have to apply an input voltage $V_{O S}$ given by

$$
\begin{equation*}
V_{o s}=\frac{\Delta I}{G_{m 1}}=\frac{5.5 \times 10^{-3} I}{G_{m 1}} \tag{9.76}
\end{equation*}
$$

Substituting $I=9.5 \mu \mathrm{~A}$ and $G_{m 1}=1 / 5.26 \mathrm{~mA} / \mathrm{V}$ results in the offset voltage $V_{o s} \simeq 0.3 \mathrm{mV}$. It should be pointed out that the offset voltage calculated is only one component of the input offset voltage of the 741. Other components arise because of mismatches in transistor characteristics. The 741 offset voltage is specified to be typically 2 mV

FIGURE 9.23 Input stage with both inputs grounded and a mismatch ΔR between R_{1} and R_{2}

EXERGSES

The purpose of this series of exercises is to determine the finite conmon-mode gain that resuht from a mismatch in the load circuit of the input stade of the 741 op amp fivire F9 is shans that resuhs from
 R_{2}. Note that to simplity matters. we have opened the coimon mode feedback loop and included a resistance R, which is the resistance seen looking to the leff of node Y in the circut of Fig. 9 i3. Thus R is the parallel equivalent of R_{9} (the output resistance of Q_{9}) and R_{9} (the output resistance of Q_{10}). 935 Show that the eurfent (Fis: E9 15) is iven approximately by

9,16 Show that

$$
l_{0}=-\frac{\Delta R}{R T r_{i}+\Delta R}
$$

9.17 Using the result: of Execcies 9,15 and 916 , and assuming that $A R<R+r_{c}$ and $R,\left(\beta_{P}+1\right)$ $\left(r,+r_{e 3}\right)$, show that the common-mode transconductance G_{m}, is given approximately by

$$
Q_{m i}=\frac{l_{1}}{v_{i c h}}=\frac{\beta_{p}}{2 R_{o}} \frac{\Delta R}{R+r_{i s}}
$$

9.18 Refer to Fig: 913 and assume that the bases of Q_{5} and $Q_{\text {, }}$ are at apmoximately eonstant voltages
 Ans $R_{o 9}=2.63 \mathrm{M} \Omega ; R_{01}=31.1 \mathrm{M} \Omega ; R_{o}=2.43 \mathrm{M} \Omega$
919 For $\beta_{p}=50$ and $A R / R=0.02$, evaluate $G_{\text {nimo }}$ obtaine in Exercise 917.

$$
\text { Ans, } 0.057 \mu \mathrm{AV}
$$

9.20 Use the value of G. obtaincd in Exetcise 9.19 and the value of $G_{m l}$ obbained from Eq. 9.71) to find 9.20 se the value the $G_{m \times n}$, that is the ratio of $G_{m 1}$ to $G_{m i n}$, expressed in decibels. Ans. 70.5 dB
9.21 Xoing that wits the cormon-mode negative fectback loop in place the common-mode gain will decrease by the amount of feedback, and noting that the toop sain is approximately equal to β_{p} (see Problem 9.26) find the C MRR with the feedback loop in place ($\beta_{p}=50$)
Ans. 104.6 cB

9.5.2 The Second Stage

Figure 9.24 shows the 741 second stage prepared for small-signal analysis. In this section we shall analyze the second stage to determine the values of the parameters of the equivalen circuit shown in Fig. 9.25.
nput Resistance The input resistance $R_{i 2}$ can be found by inspection to be

$$
R_{\mathrm{i} 2}=\left(\beta_{16}+1\right)\left[r_{e 16}+R_{9} / /\left(\beta_{17}+1\right)\left(r_{e 17}+R_{8}\right)\right]
$$

Substituting the appropriate parameter values yields $R_{t 2} \simeq 4 \mathrm{M} \Omega$.

small-signal analysis.

FIGURE 9.25 S

Transconductance From the equivalent circuit of Fig. 9.25, we see that the transconductance $G_{m 2}$ is the ratio of the short-circuit output current to the input voltage. Shortcircuiting the output terminal of the second stage (Fig. 9.24) to ground makes the signal current through the output resistance of $Q_{13 B}$ zero, and the output short-circuit current becomes equal to the collector signal current of $Q_{17}\left(\epsilon_{\mathrm{c} 17}\right)$. This latter current can be easily related to $v_{i 2}$ as follows:

$$
\begin{align*}
& i_{c 17}=\frac{\alpha v_{b 17}}{r_{e 17}+R_{8}} \tag{9.78}\\
& v_{b 17}=v_{i 2} \frac{\left(R_{9} / / R_{i 17}\right)}{\left(R_{9} / / R_{i 17}\right)+r_{e 16}} \tag{9.79}\\
& R_{i 17}=\left(\beta_{17}+1\right)\left(r_{e 17}+R_{8}\right)
\end{align*}
$$

These equations can be combined to obtain

$$
\begin{equation*}
G_{m 2} \equiv \frac{i_{c 17}}{v_{i 2}} \tag{9.81}
\end{equation*}
$$

which, for the 741 parameter values, is found to be $G_{m 2}=6.5 \mathrm{~mA} / \mathrm{V}$.
Output Resistance To determine the output resistance $R_{o z}$ of the second stage in Fig. 9.24, we ground the input terminal and find the resistance looking back into the output terminal. It follows that $R_{o 2}$ is given by

$$
\begin{equation*}
R_{o 2}=\left(R_{o 13 B} / / R_{o 17}\right) \tag{9.82}
\end{equation*}
$$

where $R_{o 13 B}$ is the resistance looking into the collector of $Q_{13 B}$ whilc its base and emitter are connected to ground. It can be easily seen that

$$
\begin{equation*}
R_{o 13 B}=r_{o 13 B} \tag{9.83}
\end{equation*}
$$

For the 741 component values wc obtain $R_{o 13 B}=90.9 \mathrm{k} \Omega$.
The second component in Eq. (9.82), $R_{\text {o17 }}$, is the resistance seen looking into the collector of Q_{17}, as indicated in Fig. 9.26. Since the resistance between the base of Q_{17} and ground is relatively small, one can considerably simplify matters by assuming that the base is grounded. Doing this, we can use Eq. (9.72) to determine R_{017}. For our case the result is $R_{017} \cong 787 \mathrm{k} \Omega$. Combining $R_{o 13 B}$ and $R_{o 17}$ in parallel yields $R_{o 2}=81 \mathrm{k} \Omega$.
Thévenin Equivalent Circuit The second-stage equivalent circuit can be converted to the Thévenin form, as shown in Fig. 9.27. Note that the stage open-circuit voltage gain is $-G_{m 2} R_{02}$.

FIGURE 9.26 Definition of R_{017}

FIGURE 9.27 Théveniu form of the small-signal model of the second stage.

$9.22 \mathrm{Use} \mathrm{Eq} .(9.77)$ to show that $R_{i 2}=4 \mathrm{M} \Omega$
9.23 Use Eqs. 9.78) to (9.81) 10 yerify that $G_{m 2}$ is 6.5 mAN
9.24 Verify that $R_{02} \simeq 81 \mathrm{k} \mathrm{\Omega}$
9.25 Find the open-circuit voltage gain of the second stage of the 741 Ans. -526.5 VN

9.5.3 The Output Stage

The 741 output stage is shown in Fig. 9.28 without the short-circuit-protection circuitry. The stage is shown driven by the second-stage transistor Q_{17} and loaded with a $2-\mathrm{k} \Omega$ resistance The circuit is of the AB class (Section 9.3.5), with the network composed of Q_{18}, Q_{19}, and R_{10} providing the bias of the output transistors Q_{14} and Q_{20}. The use of this nerwork rather than two diode-connected transistors in series enables biasing the output transistors at a low current $(0.15 \mathrm{~mA})$ in spite of the fact that the output devices are three times as large as the standard devices. This is obtained by arranging that the current in Q_{19} is very small and thus its $V_{B E}$ is also small. We analyzed the dc bias in Section 9.4.7

Another featurc of the 741 output stage worth noting is that the stage is driven by an emit ter follower Q_{23}. As will be shown, this emitter follower provides added buffcring, which makes the op-amp gain almost independent of the parameters of the output transistors.
Output Voltage Limits The maximum positive output voltage is limited by the saturation of current-source transistor Q_{134}. Thus

$$
v_{\text {Omax }}=V_{C C}-V_{C T \text { sal }}-V_{B E 14}
$$

which is about 1 V below $V_{C C}$. The minimum output voltage (i.e., maximum negative amplitude) is limited by the saturation of Q_{17}. Neglecting the voltage drop across R_{8}, we obtain

$$
v_{O \text { min }}=-V_{E E}+V_{C F \mathrm{sat}}+V_{E R 23}+V_{E B 20}
$$

which is about 1.5 V above $-V_{E E}$
Small-Signal Model We shall now carry out a small-signal analysis of the output stage for the purpose of determining the values of the parameters of the equivalent circuit model shown in Fig. 9.29. Note that this model is based on the general amplifier equivalent circuit presented in Table 5.5 as "Equivalent Circuit C." The model is shown fed by v_{02}, which is

FIGURE 9.28 The 741 output stage.

FIGURE 9.29 Model for the 741 oupput stage. This model is based on the amplifier equivalent circuit
presented in Table 5.5 as "Equivalent Circuit C."
the open-circuit output voltage of the second stage. From Fig. 9.27, v_{02} is given by

$$
v_{o 2}=-G_{m 2} R_{o 2} v_{i 2}
$$

where $G_{m 2}$ and R_{02} were previously determined as $G_{m 2}=6.5 \mathrm{mAVV}$ and $R_{o 2}=81 \mathrm{k} \Omega$. Resisance $R_{\text {in3 }}$ is the input resistance of the output stage determined with the amplifier loaded with R_{L}. Although the effect of loading an amplifier stage on its input resistance is negligible in the input and second stages, this is not the case in general in an output stage. Defining $R_{\text {in3 }}$ this manner (see Table 5.5) enables correct evaluation of the voltage gain of the second stage, A_{2}, as

$$
A_{2} \equiv \frac{v_{i 3}}{v_{i 2}}=-G_{m 2} R_{o 2} \frac{R_{\mathrm{in} 3}}{R_{\mathrm{i} \mathrm{i} 3}+R_{o 2}}
$$

To determine $R_{\text {in3 }}$, assume that one of the two output transistors--say, Q_{20}-is conducting current of, say, 5 mA . It follows that the input resistance looking into the base of $Q_{2 n}$ is approximately $\beta_{20} R_{L}$. Assuming $\beta_{20}=50$, for $R_{L}=2 \mathrm{k} \Omega$ the input resistance of Q_{2} is $100 \mathrm{k} \Omega$. This resistance appears in parallel with the series combination of the outpu resistance of $Q_{134}\left(r_{0134} \simeq 280 \mathrm{k} \Omega\right)$ and the resistance of the $Q_{18}-Q_{19}$ network. The latter resis thice is very small (about 160Ω. see later: Exercise 9 26). Thus the total resistance in the emitter of Q_{23} is approximately ($100 \mathrm{k} \Omega / / 280 \mathrm{k} \Omega$) or $74 \mathrm{k} \Omega$ and the input resistance $R_{\mathrm{in} 3}$ is given by

$$
R_{\mathrm{in} 3} \simeq \beta_{23} \times 74 \mathrm{k} \Omega
$$

which for $\beta_{23}=50$ is $R_{\mathrm{in} 3} \simeq 3.7 \mathrm{M} \Omega 2$. Since $R_{o 2}=81 \mathrm{kS}$, we see that $R_{\mathrm{in} 3} \Rightarrow R_{o 2}$, and the value of R, will have little effect on the performance of the op amp. We can use the value ohtained for $R_{\text {in }}$ to determine the gain of the second stage using Eq. (9.87) as $A_{2}=-515 \mathrm{~V} / \mathrm{V}$ The value of A_{2} will be necded in Section 9.6 in connection with the frequency-response analysis.

Continuing with the determination of the equivalent circuil-model-parameters, we note from Fig. 9.29 that $G_{\nu n 3}$ is the open-circuit overail voltage gain of the output stage,

$$
G_{v o 3}=\left.\frac{v_{g}}{v_{o 2}}\right|_{R_{L}=\infty}
$$

With $R_{L}=\infty$, the gain of the emitter-follower output transistor (Q_{14} or Q_{20}) will be nearly unity. Also, with $R_{t}=\infty$ the resistance in the emitter of Q_{23} will be very large. This means that the gain of Q_{23} will be nearly unity and the input resistance of Q_{23} will be very large We thus conclude that $G_{m 3} \simeq 1$
Next, we shall find the value of the output resistance of the op amp, $R_{\text {out }}$. For this purpose refer to the circuit shown in Fig. 9.30. In accordance with the definition of $R_{\text {out }}$, the input source feeding the output stage is grounded, but its resistance (which is the outpu

FIGURE 9.30 Circuit for finding the output resistance $R_{\text {our }}$
resistance of the second stage, R_{0}) is included. We have assumed that the output voltage on is negative, and thus Q_{20} is conducting most of the current; transistor Q_{14} has therefore been eliminated. The exact value of the output resistance will of course depend on which transistor (Q_{14} or Q_{20}) is conducting and on the value of load current. Neverthelcss, we wish to find an estimate of $R_{\text {out }}$

As indicated in Fig. 9.30, the resistance seen looking into the emitter of Q_{23} is

$$
\begin{equation*}
R_{o 23}=\frac{R_{o 2}}{\beta_{23}+1}+r_{e 23} \tag{9.89}
\end{equation*}
$$

Substituting $R_{o 2}=81 \mathrm{kS} \Omega, \beta_{23}=50$, and $r_{e 23}=25 / 0.18=139 \Omega$ yields $R_{o 23}=1.73 \mathrm{k} \Omega$. This resistance appears in parallel with the serics combination of $r_{o 13 A}$ and the resistance of the $Q_{18}-Q_{19}$ network. Since $r_{o 13 A}$ alone ($0.28 \mathrm{M} \Omega$) is much larger than $R_{o 23}$, the effective resistance between the base of Q_{20} and ground is approximately cqual to R_{023}. Now we can find the output resistance $R_{\text {ou }}$ as

$$
\begin{equation*}
R_{\text {out }}=\frac{R_{o 23}}{\beta_{20}+1}+r_{e 20} \tag{9.90}
\end{equation*}
$$

For $\beta_{20}=50$, the first component of $R_{\text {out }}$ is 34Ω. The second component depends critically on the value of output current. For an output current of $5 \mathrm{~mA}, r_{220}$ is 5Ω and $R_{\text {out }}$ is 39Ω. To this value we must add the resistance $R_{7}(27 \Omega)$ (see Fig. 9.13), which is included for shortcircuit protection. The outpul resistance of the 741 is specified to be typically 75Ω.

EXTRGISES

9.26 Using a smple $\left(y_{t} \mathrm{o}_{m}\right)$ model for each of the two transistors $Q_{\text {is }}$ and Q_{i} in Fig. E9.26, Find the small-signal resistance between 4 and \AA^{\prime}. Note Fron Fahle $91 . I_{\text {is }}=165 \mu$ and $l_{c i} \approx 16 \mu \mathrm{~A}$. Ans. 163 \&

FIGURE E9.26

927 Fioure 8927 shows the circlit for determining the op-anp output resistance when v_{0} is positive and 9.7 Frgure en Q_{1} is corducting most of the current Using the resistance of the $Q_{i s} Q_{i}$ network calculated in Exercisc 926 and neglecting the large output resistance of $Q_{13 n}$, find $R_{\text {ow }}$ when Q_{14} is sourcing an ollput curtent of 5 mA .
Ans: 44Ω.
\%)

$$
\text { Ans } 144 \Omega
$$,

 .

FGURE E9.27

Output Short-Circuit Protection If the op-amp output terminal is short-circuited to one of the power supplies, one of the two output transistors could conduct a large amount of current. Such a large current can result in sufficient heating to cause burnouith a special (Chapter 14). To guard against this possibility, the 741 op amp is equipped with a specia circuit for short-circuit protection. The function of this circuit is to limit the current in output transistors in the event of a short circuit.

Refer to Fig. 9.13. Resistance R_{6} together with transistor Q_{15} limits the current that would flow out of Q_{14} in the event of a short circuit. Specifically, if the current in the emitter of Q_{14} exceeds about 20 mA , the voltage drop across R_{6} exceeds 540 mV , which turns Q_{15} on. As Q_{15} turns on, its collector robs some of the current supplied by Q_{133}, that reducing the base current of Q_{14}. This mechanism thus limits the naximum currenin) the op amp can source (i.e., supply from the output terminal in then (in about 20 mA .
Limiting of the maximum current that the op amp can sink, and hence the current through Q_{20}, is done by a mechanism similar to the one discussed above. The relevant circuit is composed of R_{7}, Q_{21}, Q_{24}, and Q_{22}. For the components shown, the current in the inward direction is linited also to about 20 mA .

9.6 GAIN, FREQUENCY RESPONSE, AND
 . SLEW RATE OF THE 741

In this section we shall evaluate the overall small-signal voltage gain of the 741 op amp. We shall then consider the op amp's frequency response and its slew-rate limitation.

9.6.1 Small-Signal Gain

The overall small-signal gain can be easily found from the cascade of the equivalent circuits derived in the preceding sections for the three op-amp stages. This cascade is shown in Fig. 9.31, loaded with $R_{L}=2 \mathrm{k} \Omega$, which is the typical value used in measuring and specifying the 741 data. The overall gain can be expressed as

$$
\begin{align*}
\frac{v_{o}}{v_{i}} & =\frac{v_{i 2} v_{o 2}}{v_{i}} \frac{v_{o}}{v_{i 2}} v_{o 2} \tag{9.91}\\
& =-G_{m 1}\left(R_{o 1} / / R_{i 2}\right)\left(-G_{m 2} R_{o 2}\right) G_{w o 3} \frac{R_{L}}{R_{L}+R_{\text {out }}} \tag{9.92}
\end{align*}
$$

Using the values found earlier yields for the overall open-circuit voltage gain,

$$
\begin{equation*}
A_{0} \equiv \frac{v_{o}}{v_{i}}=-476.1 \times(-526.5) \times 0.97=243,147 \mathrm{~V} / \mathrm{V} \tag{9.93}
\end{equation*}
$$

$\equiv 107.7 \mathrm{~dB}$

9.6.2 Frequency Respons

The 741 is an internally compensated op amp. It employs the Miller compensation technique, studied in Section 8.11.3, to introduce a dominant low-frequency pole. Specifically a $30-\mathrm{pF}$ capacitor (C_{C}) is connected in the negative-feedback path of the second stage. An approximate estimate of the frequency of the dominant pole can be obtained as follows.

Using Miller's theorem (Section 6.4.4) the effective capacitance due to C_{C} between the base of Q_{16} and ground is (see Fig. 9.13)

$$
\begin{equation*}
C_{\mathrm{in}}=C_{C}\left(1+\left|A_{2}\right|\right) \tag{9.94}
\end{equation*}
$$

where A_{2} is the second-stage gain. Use of the value calculated for A_{2} in Section 9.5.3, $A_{2}=-515$, resuls in $C_{\mathrm{in}}=15,480 \mathrm{pF}$. Since this capacitance is quite large, we shall neglect all other capacitances between the base of Q_{16} and signal ground. The total resistance between this node and ground is

$$
R_{t}=\left(R_{o 1} / / R_{i 2}\right)
$$

$=(6.7 \mathrm{M} \Omega / / 4 \mathrm{M} \Omega)=2.5 \mathrm{M} \Omega$
(9.95)

FIGURE 9.31 Cascading the sndill-signal equivalent circuits of the individual stages for the evaluation of the overall vollage gain.

FIGURE 9.32 Bode plot for the 741 gain, neglecting nondominant poles.

Thus the dominant pole has a frequency f_{P} given by

$$
f_{P}=\frac{1}{2 \pi C_{\mathrm{in}} R_{t}}=4.1 \mathrm{~Hz}
$$

It should be noted that this approach is equivalent to using the approximate formula in Eq. (8.87).

As discussed in Section 8.11.3, Miller compensation provides an additional advanta geous effect, namely pole splitting. As a result, the other poles of the circuit are moved to very high frequencies. This has been confirmed hy computer-aided analysis (see Gray et a (2000)]

Assuming that all nondominant poles are at very high frequencies, the calculated value give rise to the Bode plot shown in Fig. 9.32 where $f_{3 \mathrm{~dB}}=f_{P}$. The unity-gain bandwidth $f_{\text {, can }}$ be calculated from

$$
\begin{equation*}
f_{t}=A_{0} f_{3 \mathrm{aB}} \tag{9.97}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
f_{t}=243,147 \times 4.1 \simeq 1 \mathrm{MHz} \tag{9.98}
\end{equation*}
$$

Although this Bode plot implies that the phase shift at f_{t} is -90° and thus that the phase margin is 90°, in practice a phase margin of about 80° is obtained. The excess phase shift (about 10°) is due to the nondominant poles. This phase margin is sufficient to provide stable operation of closed-loop amplifiers with any value of feedback factor β. This convenience of use of the internally compensated 741 is achieved at the expense of a great reduction in open-loop gain and hence in the amount of negative feedback. In other words, if one requires a closed-loop amplifier with a gain of 1000 , then the 741 is overcompensated for such an application, and one would be much better off designing one's own compensation (assuming of course, the availability of an op amp that is not already internally connpensated).

9.6.3 A Simplified Mode

Figure 9.33 shows a simplified model of the 741 op amp in which the high-gain second stage, with its feedback capacitance C_{C}, is modeled by an ideal integrator. In this model, the

FIGURE 9.33 A simple model for the 741 based on modeling the second stage as an integrato
gain of the second stage is assumed sufficiently large that a virtual ground appears at it input. For this reason the output resistance of the input stage and the input resistance of the second slage have been omitted. Furthermore, the output stage is assumed to be an ideal nity-gain follower. Except for the presence of the output stage, this model is identical to that which we used for the two-stage CMOS amplifier in Section 9.1.4 (Fig. 9.3)

Analysis of the model in Fig. 9.33 give

$$
A(s) \equiv \frac{V_{0}(s)}{V_{i}(s)}=\frac{G_{m 1}}{s C_{C}}
$$

Thus,

$$
\begin{equation*}
A(j \omega)=\frac{G_{m 1}}{j \omega C_{C}} \tag{9.100}
\end{equation*}
$$

and the magnitude of gain becomes unity at $\omega=\omega_{i}$, where

$$
\begin{equation*}
\omega_{t}=\frac{G_{m 1}}{C_{C}} \tag{9.101}
\end{equation*}
$$

Substituting $G_{m 1}=1 / 5.26 \mathrm{~mA} / \mathrm{V}$ and $C_{C}=30 \mathrm{pF}$ yields

$$
\begin{equation*}
f_{t}=\frac{\omega_{t}}{2 \pi} \simeq 1 \mathrm{MHz} \tag{9.102}
\end{equation*}
$$

which is equal to the value calculated before. It should be pointed out, however, that this model is valid only at frequencies $f \gtrdot f_{3 \text { BiB }}$. At such frequencies the gain falls off with a slope
of $-20 \mathrm{~dB} /$ decade, just like that of of $-20 \mathrm{~dB} /$ decade, just like that of an integrator

9.6.4 Slew Rate

The slew-rate limitation of op amps is discussed in Chapter 2. Here we shall illustrate the origin of the slewing phenomenon in the context of the 741 circuit.
Consider the unity-gain follower of Fig. 9.34 with a step of, say, 10 V applied at the input. Because of amplifier dynamics, its output will not change in zero time. Thus immediately after the input is applied, almost the entire value of the step will appear as a differential signal between the two input terminals. This large input voltage causes the input stage to be overdriven, and its small-signal model no longer applies. Rather, half the stage cuts off and the other half conducts all the current. Specifically, reference to Fig. 9.13 shows that a large positive differential input voltage causes Q_{1} and Q_{3} to conduct all the available bias current (2) while Q_{2} and Q_{4} will be cut off. The current mirror Q_{5}, Q_{6}, and Q_{7} will still function, and Q_{6} will produce a collector current of $2 I$

FIGURE 9.34 A unity-gain follower with a large step input. Since the output voltage cannol change instantaneously, a large differential voliage appears between the op-amp input terminals.

FIGURE 9.35 Model for the 741 op amp when a large positive differential signal is applied.
Using the observations above, and modeling the second stage as an ideal integrator results in the model of Fig. 9.35. From this circuit we see that the output voltage will be a ramp with a slope of $2 I / C_{C}$

$$
\begin{equation*}
v_{o}(t)=\frac{2 I}{C_{C}} t \tag{9.103}
\end{equation*}
$$

Thus the slew rate $S R$ is given by

$$
S R=\frac{2 I}{C_{C}}
$$

For the $741, I=9.5 \mu \mathrm{~A}$ and $C_{C}=30 \mathrm{pF}$, resulting in $S R=0.63 \mathrm{~V} / \mu \mathrm{s}$.
It should be pointed out that this is a rather simplified model of the slewing process. More detail can be found in Gray et al (2000)

EXERCISE

9.28 Use the value of the stew rate caleulated abouye to find the fult power bandxilth for of the 741 op amp Assume that the maxinum outpu is $\pm 10 \mathrm{y}$. Ans. 10 klt
9.6.5 Relationship Between f_{t} and $S R$

A simple rclationship exists between the unity-gain bandwidth f, and the slew rate $S R$. This relationship is obtained from Eqs. (9.101) and (9.104) together with

$$
G_{m 3}=2 \frac{1}{4 r_{e}}
$$

where r_{e} is the emitter resistance of each of Q_{1} through Q_{4}. Thus
and

$$
r_{e}=\frac{V_{T}}{I}
$$

$$
G_{m 1}=\frac{I}{2 V_{T}}
$$

(9.105)

Substituting in Eq. (9.101) results in

$$
\omega_{t}=\frac{I}{2 C_{C} V_{T}}
$$

Substituting for I / C_{C} from Eq. (9.104) gives

$$
\omega_{t}=\frac{S R}{4 V_{T}}
$$

which can be expressed in the alternative form

$$
S R=4 V_{T} \omega_{t}
$$

(9.108)

As a check, for the 741 we have

$$
S R=4 \times 25 \times 10^{-3} \times 2 \pi \times 10^{6}=0.63 \mathrm{~V} / \mu \mathrm{s}
$$

which is the result obtamed previously. Observe that Eq. (9.108) is of the same form a Eq. (9.41), which applies to the two-stage CMOS op amp. Here, $4 V_{T}$ replaces $V_{O v}$. Since, typically, $V_{O V}$ will be two to three times the value of $4 V_{T}$, a two-stage CMOS op amp with an f_{t} equal to that of the 741 exhibits a slew rate that is two to three times as large as that of the 741 . A general form for the relationship between $S R$ and ω_{s} for an op amp with a structure similar to that of the 741 (including the two-stage CMOS circuit) is

$$
S R=\omega_{1} / a
$$

where a is the constant of proportionality relating the transconductance of the first stage $G_{m 1}$, to the total bias current of the input differential stage. That is, for the 741 circuit $G_{m 1}=$ $a(2 I)$, while for the CMOS circuit of Fig. 9.1, $G_{m 1}=a I^{3}$ For a given ω_{t}, a higher value of $S R$ is obtained by making a smaller; that is, the total bias current is kept constant and $G_{m t}$ is reduced. This is a viable technique for increasing slew rate. It is referred to as the G_{m}-reduction method (see Exercise 9.30)

ExERCISES

929 Consider the integrator model of the op amp in Fig 9.33. Tind the vatue of the resistor that, when con nectel across C_{c}. provides the correct value of the de gain: nected across C
D9 30 If a resistance R_{E} is included in each of the emitter lead, of Q_{3} and Q_{4} shaw that $S R=4 V_{4}, \mathbb{R}_{E}: 24 \%$. Hence find the value of R_{E} that would double the 74 slew rate whiee keeping ω_{r} and $/$ unchanged. What arc the new values of C_{C}, the dc gain, and the $3-\mathrm{dB}$ frequency? Ans. 5.26 kS : $15 \mathrm{pF}, 1017 \mathrm{~dB}(46-\mathrm{dB}$ decrease), 8.2 H

[^31]
3. 9.7 DATA CONVERTERS-AN INTRODUCTION

In this section we begin the study of another group of analog IC circuits of great importance; namely, data converters.

9.7.1 Digital Processing of Signals

Most physical signals, such as those obtained at transducer outputs, exist in analog form. Some of the processing required on these signals is most conveniently performed in an analog fashion. For instance, in instrumentation systems it is quite common to use a high-inpnt-impedance, high-gain, high-CMRR differential amplifier right at the output of the transducer. This is usually followed by a filter whose purpose is to elimninate interference. However, further signal processing is usually required, which can range from simply obtaining a measurement of signal strength to performing some algebraic manipulations on this and related signals to obtain the value of a particular system parameter of interest, as is usually the case in systems intended to provide a complex control function. Another example of signal processing can be found in the common need for transmission of signats to a remote receiver.

Many such forms of signal processing can he performed by analog means. In earlier chapters we encountered circuits for implementing a number of such tasks. However, an attractive alternative exists: It is to convert, following some initial analog processing, the signal fron analog to digital form and then use economical, accurate, and convenient digital ICs to perform digital signal processing. Such processing can in its simplest form provide us with a measure of the signal strength as an easy-to-read number (consider, e.g., the digital voltmeter). In more involved cases the digital signal processor can perform a variety of arithmetic and logic operations that implement a filtering algorithm. The resulting digital filter does many of the same tasks that an analog filter performs--namely, eliminate interference and noise. Yet another example of digital signal processing is found in digital communications systems, where signals are transmitted as a sequence of binary pulses, with the obvious advantage that coruption of the amplitudes of these pulses by noise is, to a large extent, of no consequence

Once digital signal processing has heen performed, we might be content to display the result in digital form, such as a printed list of numbers. Alternatively, we might require an analog output. Such is the case in a telecommunications system, where the usual output may be audible speech. If such an analog output is desired, then obviously we need to convert the digital signal back to an analog form.
. It is not our purpose here to study the techniques of digital signal processing. Rather, we shall examine the interface circuits between the analog and digital domains. Specifically, we shall study the basic techniques and circuits employed to convert an analog signal to digital form (analog-to-digital or simply A/D conversion) and those used to convert a digital signal to analog form (digital-to-analog or simply D/A conversion). Digital circuits are studied in Chapters 10 and 11.

9.7.2 Sampling of Analog Signals

The principle underlying digital signal processing is that of sampling the analog signal. Figure 9.36 illustrates in a conceptual form the process of obtaining samples of an analog signal. The switch shown closes periodically under the control of a periodic pulse signal (clock). The closure time of the switch, τ, is relatively short, and the samples obtained are

(a)

FIGURE 9.36 The process of periodically sampling an analog signal. (a) Sample-and-hofd (S/H) circuit. Hic switch closes for a small part (τ seconds) of every clock period (T). (b) Input signal waveform. (c) Sampling signal (control signal for the swich). (d) Output signal (to be fed to A/D converter).
stored (held) on the capacitor. The circuit of Fig. 9.36 is known as a sample-and-hold (S/H) circuit. As indicated, the S/H circuit consists of an analog switch that can be implemented by a MOSFET transmission gate (Section 10.5), a storage capacitor, and (not shown) a buffer amplifier.

Between the sampling intervals-that is, during the hold intervals-the voltage level on the capacitor represents the signal samples we are after. Each of these voltage levels is then fed to the input of an A / D converter, which provides an N-bit binary number proportional to the valne of signal sample.

The fact that we can do our processing on a limited number of samples of an aualog signal while ignoring the analog-signal details between samples is based on the Shannon's sampling theorem [see Lathi (1965)].

925

9.7.3 Signal Quantization

Consider an analog signal whose values range from 0 to +10 V . Let us assume that we wish to convert this signal to digital form and that the required output is a 4 -bit digital signal. ${ }^{4}$ We know that a 4-hit hinary number can represent 16 different values, 0 to 15 ; it follows that the resolution of our conversion will be $10 \mathrm{~V} / 15=\frac{2}{3} \mathrm{~V}$. Thus an analog signal of 0 V will be represented by $0000, \frac{2}{3} \mathrm{~V}$ will be represented by $0001,6 \mathrm{~V}$ will be represented by 1001 , and 10 V will be represented by 1111.

All these sample numbers are multiples of the basic increment ($\left(\frac{2}{3} \mathrm{~V}\right)$. A question now arises regarding the conversion of numbers that fall between these successive incremental levels. For instance, consider the case of a 6.2-V analog level. This falls between $18 / 3$ and $20 / 3$. However, since it is closer to $18 / 3$ we treat it as if it were 6 V and code it as 1001 . This process is called quantization. Obviously errors are inherent in this process; such errors are called quantization errors. Using more bits to represent (encode or, simply, code) an analog signal reduces quantization errors but requires more complex circuitry.

9.7.4 The A/D and D/A Converters as Functional Blocks

Figure 9.37 depicts the functional block representations of A / D and D / A converters. As indicated, the A/D converter (also called an ADC) aecepts an analog sample v_{A} and produces an N-bit digital word. Conversely, the \mathbf{D} / \mathbf{A} converter (also called a DAC) accepts an n-bit digital word and produces an analog sample. The output samples of the D/A converter are often fed to a sample-and-hold circuit. At the output of the S / H circuit a staircase waveform, such as that in Fig. 9.38, is obtained. The staircase waveform can then be smoothed by a

FIGURE 9.37 The AD and D/A converters as circuit blocks.

FIGURE 9.38 The analog samples at the output of a D / A converter are usually fed to a sample-and-hold circuit to obtain the staircase waveform shown. This waveforn can then be filtered to obtain the smooth waveform, shown in color. The time delay usually introduced by the filter is not shown
low-pass filter, giving rise to the smooth curve shown in color in Fig. 9.38. In this way an nalog output signal is reconstructed. Finally, note that the quantization error of an A / D con verter is equivalent to $\pm \frac{1}{2}$ least significant bit $\left(b_{N}\right)$.

EXERCISE

9.31 An analog synal in the range 0 to 10 Vis to be converted to an 8 hit digital ignal What s the resolu tion of the converson in voils? What is the digital representation of an input of G V What is the represen tation of an input of 6.2 V What is the error made in the quantization of 6.2 V in absolute terms and as a percentage of the input As a percentage of full seale? What is the largest possible quantization error as a percentage of fill scate?
Ans: $0.0392 \mathrm{~V} .10011001 ; 10011110 ;-0.0064 \mathrm{~V} ;-0.1 \% ;-0.064 \% ; 0.196 \%$

算 9.8 D/A CONVERTER CIRCUITS

9.8.1 Basic Circuit Using Binary-Weighted Resistors

Figure 9.39 shows a simple circuit for an N-bit D/A converter. The circuit consists of a reference voltage $V_{\text {REF }}, N$ binary-weighted resistors $R, 2 R, 4 R, 8 R, \ldots, 2^{N-1} R, N$ single-pole double-throw switches $S_{1}, S_{2}, \ldots, S_{N}$, and an op amp together with its feedback resistance $R_{f}=R / 2$

The switches are controlled by an N -bit digital input word D

$$
\begin{equation*}
D=\frac{b_{1}}{2^{1}}+\frac{b_{2}}{2^{2}}+\cdots+\frac{b_{N}}{2^{N}} \tag{9.109}
\end{equation*}
$$

where b_{1}, b_{2}, and so on are bit coefficients that are either 1 or 0 . Note that the bit b_{N} is the least significant bit (LSB) and b_{1} is the most significant bit (MSB). In the circuit in Fig. 9.39, b_{1} controls switch S_{1}, b_{2} controls S_{2}, and so on. When b_{i} is 0 , switch S_{i} is in position 1 , and when b_{i} is 1 switch S_{i} is in position 2.

Since position 1 of all switches is ground and position 2 is virtual ground, the current through each resistor remains constant. Each switch simply controls where its corresponding current goes: to ground (when the corresponding bit is 0) or to virtual ground (when the corresponding bit is 1). The currents חowing into the virtual ground add up, and the sum flows

FIGURE 9.39 An N-bit D / Λ converler using a binary-wcighted resistive ladder network.
through the feedback resistance R_{f}. The total current i_{o} is thercfore given by

$$
\begin{aligned}
i_{O} & =\frac{V_{\mathrm{RTF}}}{R} b_{1}+\frac{V_{\mathrm{REV}}}{2 R} b_{2}+\cdots+\frac{V_{\mathrm{REF}}}{2^{N-1} R} b_{\lambda} \\
& =\frac{2 V_{\mathrm{REI}}}{R}\left(\frac{b_{1}}{2^{1}}+\frac{b_{2}}{2^{2}}+\cdots+\frac{b_{N}}{2^{N}}\right)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
i_{O}=\frac{2 V_{\text {REI }}}{R} D \tag{9.110}
\end{equation*}
$$

and the output voltage v_{o} is given by

$$
\begin{equation*}
v_{O}=-i_{O} R_{f}=-V_{\mathrm{R}: \mid \mathrm{F}} D \tag{9.111}
\end{equation*}
$$

which is directly proportional to the digital word D, as desired.
It should be noted that the accuracy of the DAC depends critically on (1) the accuracy of $V_{\text {RIFF }}$, (2) the precision of the binary-weighted resistors, and (3) the perfection of the switches Regarding the third point, we should emphasize that these switches handle analog signals thus their perfection is of considerable interest. While the offset voltage and the finite on resistance are not of critical significance in a digital switch, these parameters are of immense importance in analog switches. The use of MOSFETs to implement analog switches will be discussed in Chapter 10. Also, we shall shortly see that in practical circuit implementations of the DAC, the binary-weighted currents are generated by current sources. In this case the analog switch can be realized using the differential-pair circuit, as will be shown shortly.

A disadvantage of the binary-weighted resistor network is that for a large number of bit $(N>4)$ the spread between the smallest and largest resistances becomes quite large. Thi implies difficulties in maintaining accuracy in resistor values. A more convenient schem exists utilizing a resistive network called the $R-2 R$ ladder.

9.8.2 R-2R Ladders

Figure 9.40 shows the basic arrangement of a DAC using an $R-2 R$ Jadder. Because of the small spread in resistance values, this network is usually prcfered to the binary-weighted scheme discussed earlier, especially for $N>4$. Operation of the $R-2 R$ ladder is straightforward. First, it can be shown, by starting from the right and working toward the left, that the

FIGURE 9.40 The basic circuii configuration of a DAC utilizing an $R-2 R$ ladder network.
resistance the rigt of each ladder node, such as that labeled X , is equal to $2 R$. Thus the current flowing to the right, away from each node, is equal to the current flowing downward to ground, and twice that current flows into the node from the left side. It follows that

$$
\begin{equation*}
I_{1}=2 I_{2}=4 I_{3}=\cdots=2^{N-1} I_{N} \tag{9.112}
\end{equation*}
$$

Thus, as in the binary-weighted resistive network, the currents controlled by the switches are binary weighted. The output current i_{o} will therefore be given by

$$
\begin{equation*}
i_{0}=\frac{V_{\mathrm{REJ}}}{R} D \tag{9.113}
\end{equation*}
$$

9.8.3 A Practical Circuit Implementation

A practical circuit inplementation of the DAC utilizing an $R-2 R$ ladder is shown in Fig. 9.4. The circuir utilizes BJTs to generate binary-weighted constant currents $I_{0}, I_{2}, \ldots, I_{N}$, which are switched between ground and virtual ground of an output summing op amp (not shown) We shall first show that the currents I_{1} to I_{N} are indeed binary-weighted, with I_{1} correspond ing to the MSB and I_{N} corresponding to the LSB of the DAC.

Slaring at the two rightmost transistors, Q_{N} and Q_{i}, we see that if they are matched, their emiter currents will be equal and are denoted $\left(Q_{N} / \alpha\right)$. Transistor Q_{t} is included to provide proper termination of the $R-2 R$ network. The voltage between the base line of the B.JTs and node N will bc

$$
V_{N}=V_{B E_{N}}+\left(\frac{l_{N}}{\alpha}\right)(2 R)
$$

FiGURE 9.41 A practical circuit implementation of a $D A C$ utilizing an $R-2 R$ ladder network.
where $V_{B E_{N}}$ is the base-emitter voltage of Q_{N}. Since the current flowing through the resistor R connected to node N is ($\left.2 I_{N} / \alpha\right)$, the voltage between node B and node $(N-1)$ will be

$$
V_{N-1}=V_{N}+\left(\frac{2 I_{N}}{\alpha}\right) R=V_{B E_{N}}+\frac{4 I_{N^{\prime}}}{\alpha} R
$$

Assuming, for the moment, that $V_{B E_{N: 1}}=V_{B E_{V}}$, we see that a voltage of $\left(4 I_{N} / \alpha\right) R$ appears across the resistance $2 R$ in the emitter of Q_{N-1}. Thus Q_{N-1} will have an emitter current of ($2 I_{N} / \alpha$) and a collector current of ($2 I_{N}$), twice the current in Q_{N}. The two transistors will have equal $V_{B E}$ drops if ther junction areas are scaled in the same proportion as their currents, which is usually done in practice.

Proceeding in the manner above we can show that

$$
\begin{equation*}
I_{1}=2 I_{2}=4 I_{3}=\cdots=2^{N-1} I_{N} \tag{9.114}
\end{equation*}
$$

under the assumption that the EBJ areas of Q_{1} to Q_{N} are scaled in a binary-weighted fashion. Next consider op amp A_{1}, which, together with the reference transistor $Q_{\text {REF }}$, forms a negative-feedback loop. (Convince yourself that the feedback is indeed negative.) A virtual ground appears at the collector of $Q_{\text {REF }}$ forcing it to conduct a collcctor current $I_{\text {RFF }}=$ $V_{\text {REF }} / R_{\text {REF }}$ independent of whatever imperfections $Q_{\text {REF }}$ might have. Now, if $Q_{\text {REF }}$ and Q_{1} are matchcd, their collector currents will be equal,

$$
I_{1}=I_{\text {REF }}
$$

Thus, the binary-weighted currents are directly related to the reference current, independent of the exact values of $V_{B E}$ and α. Also observe that op amp A_{1} supplies the base currents of all the BJTs.

9.8.4 Current Switches

Each of the single-pole double-throw switches in the DAC circuit of Fig. 9.41 can be implemented by a circuit such as that shown in Fig. 9.42 for switch S_{m}. Here I_{m} denotes the current flowing in the collector of the m th-bit transistor. The circuit is a differential pair with the

FIGURE 9.42 Circcit implementation of switch S_{m} in the DAC of Fig. 9.41. In a BiCMOS technology, $Q_{n s}$ and Q can bc implementcd using MOSFETs, thus avoiding the inaccuracy caused by the hase current of BIJTs:
base of the reference transistor $Q_{m r}$ connected to a suitable dc voltage $V_{\text {BIAs }}$, and the digital signal representing the m th bit b_{m} applied to the base of the other transistor $Q_{m s}$. If the voltage representing b_{m} is higher than $V_{\text {BiAS }}$ by a few hundred millivolts, $Q_{m s}$ will turn on and $Q_{m r}$ will turn off. The bit current I_{m} will fow through $Q_{m s}$ and onto the output summing line. On the other hand, when b_{m} is low, $Q_{m s}$ will be off and I_{m} will flow through $Q_{m r} t$ ground.

The curren swe fact that part the cureer I flows through the base of Q. however, from the not appear found in Grebene (1984). Also, in a BiCMOS technology the differential-pair transist $Q_{m s}$ and $Q_{m r}$ can be replaced with MOSFETs, thus eliminating the base current problem.

EXERMSS

932. Whit is the naximum resistor fatio required by a 12 -bit D/A convefter uilizing a binaty weighted resistor network?
Ans. 2048
933 If the input bias cureit of an op amp, used as the output stumer in a 10 -bil DAC, sio be no nore that that equivalcnt to -1 SB, what is the maximinn current required to tow in h tor an op amp whose bia current is as ereat as $0.5 \mu \mathrm{~A}$?
Ans. 2.046 mA

9.9 A/D CONVERTER CIRCUITS

There exist a number of A/D conversion techniques varying in complexity and speed. We shall discuss four different approaches: two simple, but slow, schemes, one complex (in terins of the amount of circuitry required) bnt extremely fast method, and, finally, a method particularly suited for MOS implementation.

9.9.1 The Feedback-Type Converter

Figure 9.43 shows a simple A/D converter that employs a comparator, an up/down counter, and a D/A converter. The comparator circuit provides an output that assumes one of two

FIGURE 9.43 A simple feedback-type A/D converter.
distinct values: positive when the difference input signal is positive, and negative when the difference input signal is negative. We shall study comparator circuits in Chapter 13. An up/down counter is simply a counter that can count either up or down depending on the bingloys DAC in its feedback luop it is usually called a fecdback-type AD converter. It operates as follows: With a 0 count in the counter the D/A converter output, v_{0} will be zero and the ouput of the comparator will he tigh, instructing the counter to count the clock pulses in the up direction As the count increases, the output of the DAC rises. The proces pontinues until the DAC output reuches the value of the analog input signal at which point continues until the DAC output reaches the value of the analog input signal, at which point the comp of Operation of the conalog voltage.

Operation of the converter of Fig. 9.43 is slow if it starts from zero. This converter however, tracks incremental changes in the input signal quite rapidly.

9.9.2 The Dual-Slope A/D Converter

A very popular high-resolution (12- to 14-bit) (but slow) A/D conversion scheme is illustrated in Fig. 9.44. To see how it operates, refer to Fig. 9.44 and assume that the analog input signal ν_{A} is negative. Prior to the start of the conversion cycle, switch S_{2} is closed, thus discharging capacitor C and setting $v_{1}=0$. The conversion cycle begins with opening S_{2} and connccting the integrator input through switch S_{1} to the analog input signal. since v_{A} is negative, a current $I=v_{A} / R$ will flow through R in the direction away from the integrator. Thus v_{1} rises linearly with a slope of $I / C=v_{A} / R C$, as indicated in Fig. 9.44(b). Simultaneously, the counter is enabled and it counts the pulses from a fixed-frequency clock. This phase of the conversion process continues for a fixed duration T_{1}. It ends when the counter has accumulated a fixed count denoted $n_{\text {REF }}$. Ustailly, for an N-bit converter, $n_{\text {REF }}=2^{N}$. Denoting the peak voltage at the output of the integrator as $V_{\text {Prak }}$, we can write with reference to Fig: 9.44(b)

$$
\begin{equation*}
\frac{V_{\text {PEAK }}}{T_{1}}=\frac{v_{A}}{R C} \tag{9.115}
\end{equation*}
$$

At the end of this phase, the counter is reset to zero.
Phase II of the conversion begins at $t=T_{1}$ by connecting the integrator input through switch S_{1} to the positive reference voltage $V_{\text {RIF. }}$. The current into the integrator reverses direction and is equal to $V_{\text {REF }} / R$. Thus v_{1} decreases linearly with a slope of ($V_{\text {REF }} / R C$). Simultaneously the counter is enabled and it counts the pulses from the fixed-frequency clock. When v_{1} reaches zero vols, the comparator signals the control logic to stop the counter. Denoting the duration of phase II by T_{2}, we can write, by reference to Fig. 9.44 (b),

$$
\begin{equation*}
\frac{V_{P \mathrm{PlAK}}}{T_{2}}=\frac{V_{\mathrm{REF}}}{R C} \tag{9.116}
\end{equation*}
$$

Equations (9.115) and (9.116) can be combined to yield

$$
\begin{equation*}
T_{2}=T_{1}\left(\frac{v_{A}}{V_{\mathrm{REF}}}\right) \tag{9.117}
\end{equation*}
$$

Since the counter reading, $n_{\text {REF }}$, at the end of T_{1} is proportional to T_{1} and the reading, n, at the end of T_{2} is proportional to T_{2}, we have

$$
n=n_{\text {REF }}\left(\frac{v_{A}}{V_{\text {REF }}}\right)
$$

(9.118)
9.9 A/D CONVERTER CIRCUITS

(a)

(b)

FIGURE 9.44 The dual-slope A/D conversion method. Note that v_{A} is assumed to be negative.

FIGURE 9.45 Paraliel, simultaneous, or flash ND conversion.

Thus the content of the counter, ${ }^{5} n$, at the end of the conversion process is the digital equivlent of v_{A}.

The dual-slope converter features high accuracy, since its performance is indcpendent of the exact values of R and C. There exist many commercial implementations of the dualslope method, some of which utilize CMOS technology.

9.9.3 The Parallel or Flash Converter

The fastest A/D conversion scheme is the simultaneous, parallel, or flash conversion process illustrated in Fig. 9.45. Conceptually, flash conversion is very simple. It utilizes $2^{N}-1$ comparators to compare the input signal level with cach of the $2^{N}-1$ possible quantization levels. The outputs of the comparators are processed by an encoding-logic block to provide he N bits of the output digital word Vote that a complete conversion can be obtained within one clock cycle.

Although flash conversion is very fast, the price paid is a rather complex circuit impleacntation. Variations on the basic technique have been successfully employed in the design of IC converters.

9.9.4 The Charge-Redistribution Converter

The last A/D conversion techniquc that we shall discuss is particularly suited for CMOS implementation. As shown in Fig. 9.46, the circuit utilizes a binary-weighted capacitor array, a voltage comparator, and analog switches; control logic (not shown in Fig. 9.46) is also requircd. The circuit shown is for a 5 -bit converter; capacitor C_{T} serves the purpose of terminating the capacitor array, making the total capacitance equal to the desired value of $2 C$.
Operation of the converter can be divided into three distinct phases, as illustrated in Fig. 9.46. In the sample phase (Fig. 9.46a) switch S_{B} is closed, thus connecting the top plate of all capacitors to ground and setting v_{0} to zero. Meanwhile, switch S_{A} is connected to the analog input voltage v_{A}. Thus the voltage v_{A} appears across the total capacitance of $2 C$, resulting in a stored charge of $2 C v_{A}$. Thus, during this phase, a sample of v_{A} is taken and a proportional amount of charge is stored on the capacitor array.
${ }^{5}$ Note that n is not a continuous function of v_{n}, as might be inferred from Eq. (9.118). Rather, n takes on discrete valucs corresponding to one of the 2^{N} quantized levels of v_{A}

(a)

(b)

(c)

FIGURE 9.46 Charge-redistribution AD converter suitable for CMOS implementation: (a) sample phas (b) hold phase, and (c) charge-redistribution phase.

During the hold phase (Fig. 9.46b), switch S_{B} is opened and switches S_{1} to S_{5}, and S_{T} ar thrown to the ground side. Thus the top plate of the capacitor array is open-circuited whil their bottom plates are connected to ground. Since no discharge path has been provided, the噱 nected to $V_{\text {P }}$ phe mate, S_{A} is con ected to $V_{\text {RIF }}$ in preparation for the charge-redistribution phase.

Next, we consider the operation during the charge-redistribution phase illustrated in Fig. 9.46(c). First, switch S_{1} is connected to $V_{\text {ReF }}$ (through S_{A}). The circuit then consists of $V_{\text {REE }}$, a series capacitor C, and a total capacitance to ground of value C. This capacitive divider causes a voltage increment of $V_{\text {REF }} / 2$ to appear on the top plates. Now, if v_{A} is greater than
 V then the net voltage at the top plate would become positive The comparator will
 detect this situ
move on to S_{2}.

Next, switch S_{2} is connected to $V_{\text {REF }}$, which causes a voltage increment of $V_{\text {REF }} / 4$ to appear on the top plate. If the resulting voltage is still negative, S_{2} is left in its new position; otherwise, S_{2} is returned to its ground position. We then move on to switch S_{3}, and so on until all the bit switches S_{1} to S_{5} have been tried.

It can be seen that during the charge-redistrihution phase the voltage on the top plate will be reduced incrementally to zero. The connection of the bit switches at the conclusion of this phase gives the output digital word; a switch connected to ground indicates a 0 value for the corresponding bit, whereas connection to $V_{\text {REF }}$ indicates a 1 . The particular switch configuration depicted in Fig. 9.46 (c) is for $D=01101$. Observe that at the end of the conversion process, all the charge is stored in the capacitors corresponding to 1 bits; the capacitors of the 0 bits have been discharged

The accuracy of this A/D conversion method is independent of the value of stray capacitances from the bottom plate of the capacitors to ground. This is because the bottom plates are connected cither to ground or to V_{REF}; thus the charge on the stray capacitances will not flow into the capacitor array. Also, because both the initial and the final vollages on the top plate are zero, the circuit is also insensitive to the stray capacitances between the top plates and ground. The insensitivity to stray capacitances makes the charge-redistribution technique a reasonably accurate method capable of implementing A/D converters with as many as 10 bits.

ExERCISES

9.34 Consider the 5 -bit charge-redistribution converter in Fig 9.46 with $V_{\text {REF }}-4 V$ What is the voltage ancrement appearing on the top plate when δ is switched? What is the fult scale voltage of this conVerter if: $v_{A}=2.5 \mathrm{~V}$. which switches will be connected to $V_{\text {REF }}$ at the end of conversion? Ans. $\frac{1}{8} V \frac{31}{8} V$. S_{1} and S_{3}
935 Express the simaximum quatization error of an N-bit ADB converter in terns of its feast-significant bit (CSB) and in terms of it full scale anafog: input $V_{P s}$
Ans. $\pm \frac{1}{2} \mathrm{LSB}, Y_{F S}: 2\left(2^{\prime}-1\right)$

9.10 SPICE SIMULATION EXAMPLE

We conclude this chapter with an example to illustrate the use of SPICE in the simulation of the two-stage CMOS op amp
${ }^{6}$ More precisely, the final voltage can deviate from zero by as much as the analog equivalent of the MSB. Thus, the insensitivity to top-plate capacitance is not complete.

23MME 5

A TWO-STAGE CMOS OP AMP

In this example, we will use PSpice to aid in designing the fregucncy compensation of the twostage CMOS circuit whose Capture schematic is shown in Fig. 9.47. PSpice will then be employcd to detcrmine the frequency response and the slew rate of the op amp. We will assume a $0.5-\mu \mathrm{m} n$-well CMOS technology for the MOSFETs and use the SPICE level-I model parameters listed in Table 4.8. Obscrve that to eliminate the body effect and improve the matching between M_{1} and M_{2}, the source terminals of the input PMOS transistors M_{1} and M_{2} are connected

to their n well.

The op-amp circuit in Fig. 9.47 is designed using a refcrence curcnt $I_{\text {REF }}=90 \mu \mathrm{~A}$, a supply voltage $V_{D D}=3.3 \mathrm{~V}$, and a load capacitor $C_{L}=1 \mathrm{pF}$. Unit-size transistors with $W / L=1.25 \mu \mathrm{~m} / 0.6 \mu \mathrm{~m}$ V and $V_{O V}=0.3$ V. The corresponding multiplicative factors are given in Fig. 9.47,
bias-point simulation is perfermed voltage $V_{C S}$ of the op-amp circuit is sel to $V_{D D} / 2=1.65 \mathrm{~V}$. A ias-pont simulation is performed to deternine the dc operating point. Using the valucs found in the simulation output file for the small-signal paramcters of the MOSFETs, we obtain ${ }^{7}$

$$
\begin{aligned}
G_{m 1} & =0.333 \mathrm{~mA} / \mathrm{V} \\
G_{m 2} & =0.650 \mathrm{~mA} / \mathrm{V} \\
C_{1} & =26.5 \mathrm{fF} \\
C_{2} & =1.04 \mathrm{pF}
\end{aligned}
$$

using Eqs. (9.7), (9.14), (9.24), and (9.25), respectively. Then, using Eq. (9.27), the frequency of the second, nondominant, pole can be found as

$$
f_{P 2} \simeq \frac{G_{m 2}}{2 \pi C_{2}}=97.2 \mathrm{MHz}
$$

In order to place the transmission zero, given by Eq. (9.37), at infinite frequency, we select

$$
R=\frac{1}{G_{m 2}}=1.53 \mathrm{k} \Omega
$$

Now, using Eq. (9.36), the phase margin of the op amp can be expressed as

$$
\begin{equation*}
\mathrm{PM}=90^{\circ}-\tan ^{-1}\left(\frac{f_{t}}{f_{P_{2}}}\right) \tag{9.119}
\end{equation*}
$$

where f_{t} is the unity-gain frequency, given in Eq. (9.30),

$$
f_{t}=\frac{G_{m 1}}{2 \pi C_{C}}
$$

Using Eqs. (9.119) and (9.120) we determine that compensation capacitors of $C_{C}=0.78 \mathrm{pF}$ and $C_{C}=2 \mathrm{pF}$ are required to achieve phase margins of $\mathrm{PM}=55^{\circ}$ and $\mathrm{PM}=75^{\circ}$, respectively.

[^32]

FIGURE 9.48 Magnitude and phase response of the op-amp circuit in Fig. 9.47: $R=1.53 \mathrm{k} \Omega, C_{C}=0$ (nof frequency compensation), and $C_{C}=0.6 \mathrm{pF}\left(\mathrm{PM}=55^{\circ}\right)$.

Next, an ac-analysis simulation is performed in PSpice to compute the frequency response of he op anp and to verify the forcooing design values. It was found that, with $R=1.53 \mathrm{k} \Omega$, we needed $C_{C}=0.6 \mathrm{pF}$ and $C_{C}=1.8 \mathrm{pF}$ to set $\mathrm{PM}=55^{\circ}$ and $\mathrm{PM}=75^{\circ}$. respectively. We note that these values are reasonably close to those predicted by hand analysis. The corresponding frequency responses for the compensatcd op amp are ploted in Figs. 9.48 and 9.49. For comparion. we also show the frequency response of the ung the unity gain frequency f_{t} drops from 70.2 MHz to 26.4 MHz as C_{C} is increased to improve PM as anticipated from Eq. 9.12(0).
Rather than increasing the compensation capacitor C_{C}, the vilue of the serics resistor R ca be increased to improve the phase margin PM: For a given C_{C}, increasing R above $1 / G_{m 2}$ place nd transmission zero at a ncgative real-axis location (Eq. 9.3), where the phase it introduce
 $R=32$ to 0.6 pF and approximally in Tncresing PM is Pamp . and $\mathrm{PM}=75^{\circ}$. $(10-\mathrm{mV})$ pulse signal the (periforn a seng (he 1 Observe that the overshot in the 15% to 1.4% wa is increased from 55° to 75°.

FIGURE 9.49 Magnitude and phase response of the op-amp circuit in Fig. 9.47: $R=1.53 \mathrm{k} \Omega, C_{C}=0$ (no frequency compensation), and $C_{C}=1.8 \mathrm{pF}\left(\mathrm{PM}=75^{\circ}\right)$.

- $\circ \mathrm{dB}(\mathrm{V}$ (OUT) $)$

op-amp circuit in Fig. 9.47: $C_{C}=0.6$ pF. $R=1.53 \mathrm{k} \Omega$ $\left(\mathrm{PM}=55^{\circ}\right)$, and $R=3.2 \mathrm{k} \Omega\left(\mathrm{PM}=75^{\circ}\right)$

FIGURE 9.51 Small-signal step response (for a $10-\mathrm{mV}$ step input) of the op-amp circuit in Fig. 9.47 connected
in a unity-gair configuration: $\mathrm{PM}=55^{\circ}\left(C_{C}=0.6 \mathrm{pF}, R=1.53 \mathrm{k} \Omega\right)$ and $\mathrm{PM}=75^{\circ}\left(C_{C}=0.6 \mathrm{PF}, R=3.2 \mathrm{k} \Omega\right)$.
We conclude this example by computing $S R$, the slew rate of the op amp. From Eq. (9.40),

$$
S R=2 \pi f_{t} V_{O V}=\frac{G_{m 1}}{C_{C}} V_{O V}=166.5 \mathrm{~V} / \mu \mathrm{s}
$$

when $C_{C}=0.6 \mathrm{pF}$. Next, to determinc $S R$ using PSpice (see Examplc 2.9), we again connect the op amp in a unily-gain conliguration and perform a transient-analysis simulation. However, we now apply a large pulse signal $(3.3 \mathrm{~V})$ at the input to canse slew-rate limiting at the output. The corresponding output-voltagc waveform is ploted in Fig. 9.52. The slope of the slew-rate-limited output waveform corresponds to the slew rate of the op amp and is found to be $S R=160 \mathrm{~V} / \mu \mathrm{s}$ and

FIGURE 9.52 Large-signal step response (for a 3.3-V step-input) of the op-amp circuit in fig. 9.47 con nected in a unity-aain configuration. The slope of the rising and falling edges of the output waveforn concspond
to the siew rate of the op amp.

5alues of $S R$ in the (wo directions, differ from those predicted by the simple model for the slewrate limiting of the two-stage op-amp circuit (Section 9.1.5). The difference can perhaps be said to be a result of transistor M_{4} entering the triode region and its output current (which is sourced through C_{C}) heing correspondingly reduced. Of course. the availability of PSpice should enable the reader to explore this point further.

SUMMARY

Most CMOS op amps are designed to operate as part of a VLSI circuit and thus are required to drive only smal capacitive loads. Thereforc, most do not have a low-outputesistance stage.
There are básically two approaches to the design of CMOS op amps: a two-stage contiguration, and a singlestage topology utilizing the folded-cascode circuil.

- In the two-stage CMOS op amp, approximately equal gains are realized in the two stages.
The threshold mismatch ΔV, together with the low transconductance of the input stage result in a larger input ofrse voltage for $C M O S$ op amps than Cor bipolar units.
Miller compensation is employed in the two-stage CMOS amp, but a series resistor is required to place the transmission zero at either $s=\infty$ or on the negative real axis.
(5. CMOS op amps have higher slew rates than their bipolar counterparts with comparahlc f_{t} values.
- Use of the cascode configuration increases the gain of a CMOS amplifier stage hy ahout two orders of magnitude, hus making possible a single-stage op amp
The dominant pole of the folded-cascode op amp is determined by the total capacitance at the output node, C_{l}. Increasing C_{t} improves the phase margin at the expens of reducing the bandwidth.
. By using two complementary input differential pairs in parallel, the input common-mode range can be extended to equal the entire power-supply voltage, providing so-called rail-to-rail operation at the input.
The output vollagc swing of the folded-cascode op amp can be extended by utilizing a wide-swing current mirror in place of the cascode mirror
The internal circuit of the 741 op amp embodies many of the design techniques employed in bipolar analog integrated circuits.
* The 741 circuil consists of an input differential stage, a high-gain single-ended sccond stage, and a class AB outand is known as the
output stage). It is the same structure used in the two-stag CMOS op anp of Section 9.1
To obtain low input offset voltage and current, and hig CMRR, the 741 input stagc is designed to be perfectly ba anced. The CMRR is increased by common-mode feed back, which also stabilizes the de operating point.
To Thain high input resistance and low input bias current. the input stage of the 741 is operated af a very low current leve.
In the 741 , output short-circuit protection is accomplished by turning on a transistor that takes away most of the base current drive of the output transistor
The use of Miller frcquency compensation in the 741 circuit cnables locating the dominant pole at a very low frequency, while utiliving a relarively small compensating capacitane.
- Two-stage op amps can be modeled as a transconductance amplifier fecding an ideal integrator with C_{C} as the inte grating capacitor
* The slew rate of a two-stage op amp is determined hy the first-stage bias current and the frequency-compensatio capacitor.
(A / D and D / A converters conslitute an important group of analog ICs.
- ADAC consists of (a) a circuit that generates a refercnce cur rent, (b) a circuit that assigns binary weights to the value of the reference current, (c) switches that, under the control of the bits of the input digital word, direct the proper conbination of binary-weighted cturents to an output sumning node, and (d) an op amp chat converts the current sum to an output voltage. The circuit of (b) can be implemented by cilher a binary-weighted resistive network or an $R-2 R$ ladder.
Two simple but slow implementations of the ADC are the feedback-type converter [Fig. 9.43] and the dual-slope converter [Fig. 9.44].
㥕 The fastest possible ADC implementation is the paralie or llash converter |Fig. 9.45|.
The charge-redistribution method [Fig. 9.46] utilizcs switched-capacitor techniques and is particularly suited for the implementation of ADCs in CMOS technology.

PROBLEMS

SECTION 9.1: THE TWO-STAGE CMOS OP AMP
9.1 A particular design of the two-stage CMOS operational amplifier of Fig. 9.1 utilizes $\pm 2.5-\mathrm{V}$ power supplies. All transistors are opcrated at overdrive voltages of 0.3-V magnitude. The process technology provides devices with $V_{t n}=\left|V_{t \varphi}\right|=$ 0.7 V . Find the input common-mode range, and the range allowed for v_{0}.
9.2 The CMOS op amp of Fig. 9.1 is Fabricated in a process for which $V_{n,}^{\prime}=25 \mathrm{~V} / \mu_{\mathrm{m}}$ and $\left|V_{A p}^{\prime}\right|=20 \mathrm{~V} / \mu \mathrm{m}$. Find A_{1}, A_{2}, and A_{v} if all devices are $0.8-\mu \mathrm{m}$ long and are operated at equal overdrive voltages of $0.25-\mathrm{V}$ magnitude. Also, determine the op-anp output resistance obtaincd when the second stage is biased at 0.4 mA . What do you expect the output resistance of a unity-gain voltage amplifier to be, using this op amp?
D9. 3 The CMOS op amp of Fig. 9.1 is fabricated in a process for which $\left|V_{A}^{\prime}\right|$ for aill devices is $10 \mathrm{~V} / \mu \mathrm{m}$. If all transistors bave $L=1 \mu \mathrm{n}$ and are operated at equal overdrive voltages, find the magnitude of the overdrive voltage required to obtain a dc open-loop gain of $2500 \mathrm{~V} / \mathrm{V}$.
9.4 This problem is identical to Problem 7.90.

Consider the circuit in Fig. 9.1 with the device geometries shown at the bottom of this page:
Let $I_{\text {REF }}=225 \mu \mathrm{~A},\left|V_{t}\right|$ for all devices $=0.75 \mathrm{~V}, \mu_{n} C_{o x}=$ $180 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{a x}=60 \mu \mathrm{~A} / \mathrm{V}^{2},\left|V_{A}\right|$ for all dcvices $=9 \mathrm{~V}$,
$V_{D D}=V_{S S}=1.5 \mathrm{~V}$. Determine the width of $Q W$, that will ensure that the op amp will not have a systematic offset voltage. Then, for all devices, evaluate $I_{D},\left|V_{o v}\right|,\left|V_{G s}\right|, g_{m}$, and r_{o}. Provide your results in a table. Also find A_{1}, A_{2}, the dc open-loop voltage gain, thc input common-mode range, and the output voltage range. Neglect the effect of V_{A} on the bias currents.

D9.5 A particular implementation of the CMOS amplifier of Figs. 9.1 and 9.2 provides $G_{m 1}=0.3 \mathrm{~mA} / \mathrm{V}, G_{m 2}=$ $0.6 \mathrm{~mA} / \mathrm{V}, r_{o 2}=r_{04}=222 \mathrm{k} \Omega, r_{o 6}=r_{07}=111 \mathrm{k} \Omega$, and $\mathrm{C}_{2}=1 \mathrm{pF}$.
(a) Find the frequency of the second pole, f_{p}.
(b) Find the value of the resistance R which when placed in series with C_{C} causes the iransmission zero to be located at $s=\infty$,
(c) With R in place, as in (b), find the value of C_{C} that result in the highest possible value of f_{1} while providing a phas margin of 80°. What value of f, is realized? What is the corre sponding frequency of the dominant pole?
(d) To what value shoudd C be che
of f ? At the new value of f what is the phas double the value by the second pole? To reduce this cxcess phase shift to 10° and thus obtain an 80° phase margin, as beforc, what value should R he changed to?
D9.6 A two-stage CMOS op amp similar to that in Fig. 9 . is found to have a capacitance between the output nod and ground of 1 pF . If it is desired to have a unity-gein bandwidth f_{t} of 100 MHz with a phase margin of 75° what must $g_{m s}$ be set to? Assume that a resistance R is connected in serics with the frequency-compensation capacitor C_{C} and adjusted to place the transmission zero at infinity. What value should R have? If the first stage is operated al $V_{o v}=0.2 \mathrm{~V}$, what is the value of slew rate obtained? the first-stage bias current $I=200 \mu \mathrm{~A}$, what is the require value of C_{c}
9.7 A CMOS op amp with the topology shown in Fig. 9. but with a resistance R included in series with C_{C} is designed to provide $G_{m l}=1 \mathrm{~mA} / \mathrm{V}$ and $G_{m 2}=2 \mathrm{~mA} / \mathrm{V}$
(a) Find the valuc of C_{C} that results in $f_{t}=100 \mathrm{MHz}$. (b) For $R=500 \Omega$, what is the maximum allowed value of C有
9.8 A two-stage CMOS op amp resembling that in Fig. 9.1 is found to have a slew rate of $60 \mathrm{~V} / \mathrm{\mu s}$ and a unity-ga bandwidth f_{t} of 50 MHz .
(a) Estimate the value of the overdrive voltage at which the input-stage transistors are operaling.
(b) If the first-stage bias curient $I=100 \mu \mathrm{~A}$ what value C_{c} must be used?
cotio applies for Q, and Q ?
9.9 Sketch the having the structure of Fig. 9.1 but utilizing NMOS transis tors in the input scage (i.e., Q_{1} and Q_{2}).

SECTION 9.2: THE FOLDED-CASCODE OP AMP

D9.10 If the circuit of Fig. 9.8 utilizes ± 1.65-V power supplies and the power dissipation is to be limited to 1 mW . find

| Transistor | Q_{1} | \boldsymbol{Q}_{2} | \mathbf{Q}_{3} | \mathbf{Q}_{4} | Q_{5} | \boldsymbol{Q}_{6} | \boldsymbol{Q}_{7} | \boldsymbol{Q}_{8} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $W / L(\mu \mathrm{~m} / \mu \mathrm{m})$ | $30 / 0.5$ | $30 / 0.5$ | $10 / 0.5$ | $10 / 0.5$ | $60 / 0.5$ | $W / 0.5$ | $60 / 0.5$ | $60 / 0.5$ |

the values of I_{k} and I. To avoid turning off the current mirror during slewing, select I_{z} to be 20% larger than I.

D9.11 For the folded-cascode op amp utilizing power sup plies of $\pm 1.65 \mathrm{~V}$, find the values of $V_{\text {BISS1 }}, V_{\text {BIAS2 }}$, and $V_{B 1 A}$ to maximize the allowable range of $V_{I C M}$ and v_{0}. Assume that all transistors are operated at equal overdrive voltages of 0.2 V Assume $\mid V_{t}$ for all devices is 0.5 V . Specify the maximum range of $v_{I C M}$ and of v_{O}
9.12 For the folded-cascode op-amp circuit of Figs. 98 and 9.9 with bias currents $I=125 \mu \mathrm{~A}$ and $I_{u}=150 \mu \mathrm{~A}$ and with all transistors operated at overdrive voltages of 0.2 V the $1 / /$ ratios for all devices. Assume that the technol$00 \mu \mathrm{~A} / \mathrm{V}^{2}$.

D9.13 Consider the folded-cascode op amp when loaded with a $10-\mathrm{pF}$ capacitance. What should the bias current I be to obtain a slew rate of at least $10 \mathrm{~V} / \mu \mathrm{s}$? If the input sage transistors are operated at overdrive voltages of 0.2 V what is the unity-gain bandwidth realized? If the two nondominant poles have the same frequency of 25 MHz , wha is the phase margin obtained? If it is required to have phasc margm of 75°, what must f_{t} be reduced to? By what anlount should C_{L} he increased? What is the new value f $S R$?
.14 Consider a design of the cascode op amp of Fig. 9.9 for which $I=125 \mu \mathrm{~A}$ and $I_{B}=150 \mu \mathrm{~A}$. Assume that all transistor re operated at $\left|V_{o v}\right|=0.2 \mathrm{~V}$ and that for all devices, $\mid V_{A}=10 \mathrm{~V}$ ind $G_{m,}, R_{o}$, and A_{w}. Also, if the op amp is connected in the
ceedback configuration shown in Fig. P9.14, find the voltage gain and output resistance of the closed-loop amplifier.

IGURE P9. 14

9.15 For the circuit in Fig. 9.11, assume that all cransistor re operating at equal overdrive voltages of $0.2-\mathrm{V}$ magnitude and have $\left|V_{t}\right|=0.5 \mathrm{~V}$ and that $V_{D D}=V_{s s}=1.65 \mathrm{~V}$. Find (a) the range over which the NMOS input stage operates, (b) the range over which the PMOS input stage operates, d) the range coner (d) the input common-mode range.
9.16 A particular design of the wide-swing current mirror of Fig. 9.12(b) utilizes deviccs having $W / L=25$ and $V_{t}=0.5 \mathrm{~V}$. at all nodes and specify the minimum voltage allowable at the output terninal. If V is specified to be 10 V , what is the output resistance of the miror?

D9.17 It is required to design the folded-cascode circuit of Fig. 9.9 to provide voltagc gain of 80 dB and a unity-gain frequency of 10 MHz when $C_{L}=10 \mathrm{pF}$. Design for $I_{B}=I$, with $1-\mu \mathrm{m}$ channel length for which $|V|$ is specified to be 20 V . Find the required overdrive voltages and bias currents. What slew rate is achieved? Also, for $k^{\prime}=2.5 k^{\prime}=$ $200 \mu \mathrm{~A} / \mathrm{V}^{2}$, specify the required width of each of the 11 transistors used.
D9.18 Sketch the circuit that is complementary to that in Fig. 9.9, that is, one that uses an input p-channel differential pair
0.19 For the folded-cascode circuit of Fig. 9.8, let the total capacitance to ground at each of the source nodes of Q_{3} and Q_{4} be denoted C_{P}. Show that the pole that arises at the $f_{p}=Q^{2}$ $f_{p}=g_{m 3} / 2 \pi C_{p}$. Now, if this is the only nondominant pole, what is the largest value that C_{P} can be (expressed as a fraclion of C_{t}) while a phase margin of 75 is achieved? Assume that all transistors arc operated at the same bias current and overdrive voltage.

SECTION 9.3: THE 741 OP-AMP CIRCUIT

9.20 In the 741 op-amp circuit of Fig. 9.13, Q_{1}, Q_{2}, Q_{5}, and Q_{6} are hiascd at collector currents of $9.5 \mu \mathrm{~A} ; Q_{16}$ is biased at a collector current of $16.2 \mu \mathrm{~A}$; and Q_{17} is biased at a collector current of $550 \mu \mathrm{~A}$. All thcse devices are of the 125 V . For each of these transistors, find V_{0}, and r_{0}. Provide your results in table form. (Note that these parameter values are utilized in the text in the analysis of the 741 circuit.)
D9.21 For the (mirror) hias circuit shown in Fig. E9.10 and the result verified in the associated Exercise, find I_{1} for the case in which $I_{53}=3 \times 10^{-14} \mathrm{~A}, I_{54}=6 \times 10^{-14} \mathrm{~A}$, and $I_{51}=$
$I_{52}=10^{-14} \mathrm{~A}$ and for which a biss current $I^{2}=154 \mathrm{~A}$ is $I_{52}=10^{-14} \mathrm{~A}$
9.22 Transistor Q_{13} in the circuit of Fig. 9.13 consists, in effect, of two transistors whose emitter-base junctions are connected in parallel and for which $I_{54}=0.25 \times 10^{-14} \mathrm{~A}$, $I_{S B}=0.75 \times 10^{-14} \mathrm{~A}, \beta=50$, and $V_{A}=50 \mathrm{~V}$. For operation at a total emitter current of 0.73 mA , find values for the parame ers $V_{E L}, \Omega_{n}, r_{0}, r_{\pi}$ and r_{0} for the A and B devices.
9.23 In the circuit of Fig. 9.13, Q_{1} and Q_{2} exhibit emitter base breakdown at 7 V , while for Q_{3} and Q_{4} such breake would result in the 50 V . What differential isp trancistors?
D*9.24 Figure P9.24 shows the CMOS version of the circuil in Fig. F9.10. Find the relationship hetween I_{3} and I_{1} in terms of k_{1}, k_{2}, k_{3}, and k_{4} of the four transistors, assuming the threshold voltages of all devices to be equal in magnitude. Note that k denotes $\frac{1}{2} \mu C_{o r} W / L$. In the event that $k_{1}=$ k_{2} and $k_{3}=k_{4}=10 k_{1}$, fna he required valuc of I_{1} to yield bias current in Q_{3} and Q_{4} of 1.6 mA .

FIGURE P9. 24

SECTION 9.4: DC ANALYSIS OF THE 74

D9.25 For the 741 circuit, estimate the input reference current $I_{\text {REF }}$ in the event that ± 5 - V supplics are used. Find a nore precise value assuming that for the two BJTs involved,
$I_{s}=10^{-14} \mathrm{~A}$. What value of R_{5} would be necessary to reestablish the same bias current for ± 5-V supplies as exists for $\pm 15 \mathrm{~V}$ in the original design
*9.26 In the 741 circuit, consider the common-mode feedback loop comprising transistors $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{8}$, Q_{9}, and Q_{10}. We wish to find the loop gain. This can be concollector connection or Q_{1} and Q_{2}, and the diode-connected transistor Q_{8}. Apply a test current signal I_{5} to Q_{8} and find the returned current signal t_{r} in the combined collector connection of Q_{1} and Q_{2}. Thus determine the loop gain. Assume have $\beta=50$ find the ant of common-node fecdback in decibels.

D9.27 Design the Widlar current source of Fig. 9.15 to generate a current $I_{c n}=20 \mu \mathrm{~A}$ given that $I_{\text {Rr }}=0.5 \mathrm{~mA}$. If for the transistors, $I_{s}=10^{-14} \mathrm{~A}$, find $V_{B E 11}$ and $V_{E s 10}$. Assume β to be high.
9.28 Consider the de aulysis of the 741 inpur stage shown in Fig. 9.16. For what value of β_{r} do the currents in Q_{1} and Q_{2} differ from the ideal value of $I_{C 1} / 2$ by 10% ?

D9.29 Consider the dc analysis of the 741 input stage shown in Fig. 9.16 for the situation in which $I_{s y}=2 I_{s s}$. For $I_{C 10}=19 \mu \mathrm{~A}$ and assuming β_{p} to be high, what docs I become? Redcsign the Widlar source to restablish $I_{C 1}=I_{C 2}=9.5 \mu \mathrm{~A}$
9.30 For the mirror circuit shown in Hig. 9.17 with the bias and component values given in the cext for the 741 circuit what does the current in Q_{6} hecome if R_{2} is shorted?

D9.31 It is required to redesign the circuit of Fig. 9.17 by selecting a now value for R_{3} so that when the base currents are not neglected, the collector currents of Q_{5}, Q_{6}, and Q_{7} all become equal, assuming hat the input cure $I_{C 3}=9.4 \mu \mathrm{~A}$ Find the new value of R_{3} and the three currents. Recall that
.32 Consider the input circuit of the 741 op amp of Fig. 9.13 when the emitter current of Q_{8} is about $19 \mu \mathrm{~A}$. If β of Q_{1} is 150 and that of Q_{2} is 200 , find the input bias current I_{s} and the input offset current $I_{o s}$ of the op amp
9.33 For a particular application, consideration is being given to selecting 741 ICs for bias and offset currents limiled to 40 nA and 4 nA , respectively. Assuming other aspects of the selected units to be normal, what minimum β_{N} and what β_{N} variation are implied?
9.34 A manufacturing problem in a 741 op amp causes the current transfer ratio of the mirror circuil that loads the input slage to become $0.9 \mathrm{~A} / \mathrm{A}$. For input devices $\left(Q_{1}-Q_{4}\right.$ appropriately matched and with high β, and normally biased at $9.5 \mu \Lambda$, what input offset voltage results?

D9.35 Consider the desigu of the second stage of the 741. What value of R_{9} would he needed to reduce $I_{C 16}$ to $9.5 \mu \Lambda$?
9.36 Reconsider the 741 output stage as shown im Fig. 9.18 in whicb R_{10} is adjusted to make $I_{C 99}=I_{C 18}$. What
valuc of R_{10} ? What values of $I_{C 14}$ and $I_{C 20}$ rcsult?

D*9.37 An alterpative approach to providing the voltage drop needed to bias the output transistors is the $V_{B E}$ - -nultiplie terminal voflage of 1.118 V (the same as in the 741 circuit) Base your design on half the current flowing through R_{1}, and assume that $I_{s}=10^{-14} \mathrm{~A}$ and $\beta=200$. What is che incremental
resistance between the two terminals of the $V_{B K}$-multiplier circuit?

FIGURE P9. 37

9.38 For the circuit of Fig. 9.13, what is the total curren equired from the power supphies when the op amp is oper ated in the linear mode, but with no load? Hence, estimate th quiescent power dissipation in the circuit. (Hint: Use the dat given in Table 9.1.)

ECTION 9.5: SMALL-SIGNAL ANALYSIS

 OF THE 7419.39 Consider the 741 input stage as modeled in Fig. 9.19, With two additional npn diode-connected transistors, Q_{14} and $Q_{2 n}$, connected between the present nph and pnp devices, one per side. Convince yourself that each of the additiona devices will be biased at the same current as Q_{1} to Q_{4}-that is, $9.5 \mu \mathrm{~A}$. What does $R_{i d}$ become? What does $G_{m i}$ become What is the value of R_{o+4} now'? What is the output resistance of he first stage, R_{01} ? What is the new open-circuil voltage gai P. Compare these values with the original oncs.
9.40 What relatively simple change can be made to the mirror load of stagc 1 to increase its output resistance, say by a factor of 2 ?
9.41 Repeat Exercise 9.14 with $R_{1}=R_{2}$ replaced by $2-\mathrm{k} \Omega$ esistors.
9.42 In Example 9.3 we investigated the effect of mismatch between R_{1} and R_{2} on the input offset voltage of the op annp. Conversely, R_{1} and R_{2} can be deliberately mismatche using the circuit shown in Fig. P9.42, for example) to conpensatc for the op amp input offset vollage.
(a) Show that an input offset voltage $V_{\text {os }}$ can be compensated for (i.e., reduced to zero) hy creating a relative mismatch
$\Delta R / R$ between R_{1} and R_{2}

$$
\frac{\Delta R}{R}=\frac{V_{O S}}{2 V_{T}} \frac{1+r_{e} / R}{1-V_{O S} / 2 V_{T}}
$$

where r_{e} is the emitcor resistance of each of Q_{1} to Q_{6}, and R is

(c) What is the maximum offset voliage that can be trimmed this way (corresponding to R_{2} completcly shorted)?

FIGURE P9.42

9.43 Through a processing imperfection, the β of Q_{4} in Fig. 9.13 is reduced to 25 , while the β of Q_{3} remains at its regular value of 50 . Find the input offset voltage that this mismatch introduces. (Hint: Follow the general procedure outlined in Example 9.3.)
9.44 Consider the circuit of Fig. 9.13 modified to include resistors R in serics with the emitters of each of Q_{8} and Q_{9}. What docs the resistance looking into the collector of Q_{9}, R_{9}, what does R what value of R does it equal $R_{n 10}$? For this case,
*9.45 Reficr to Fig. E9.15 and let $R_{1}=R_{2}$. If Q_{3} and Q_{4} have a β mismatch such that for Q_{3} the current gain is β_{p} and for Q_{4} the current gain is $k \beta_{P}$, find i_{o} and $G_{\text {macm }}$. For $R_{o}=2.43 \mathrm{M} \Omega, \beta_{T}=$
 else is ideal.
*9.46 What is the cffect on the differential gain of he 74 op amp of short-circuiting one, or the other, or both, of R_{1} and R_{2} in Fig. 9.13? (Refer to Fig. 9.20.) For simplicity, assume $\beta=\infty$.
*9.47 Figure P9. 47 shows the equivalent common-mode half circuit of the input stage of the 741 . Here R_{0} is the resistance seen looking to the left of node Y in Fig. 9.13 ; its valuc is approximately $2.4 \mathrm{M} \Omega$. Transistors Q_{1} and Q_{3} operate at a
bias current of $9.5 \mu \mathrm{~A}$. Find the input resistance of the commonmode hatf-circuit Using $\beta_{i}=200, \beta_{P}=50$, and $V_{A}=125 \mathrm{~V}$ for $n p n$ and 50 V for $p n p$ transistors. To find the common-mode input resistance of the 741 note that it has commonmode feedback that increases the inpla mode resis value of $R_{k c m}$.

FIGURE P9.47

9.48 Consider a variation on the design of the 741 second stage in which $R_{8}=50 \Omega$. Wbat $R_{i 2}$ and $G_{m 2}$ correspond?
9.49 In the analysis of the 741 second stage, note that $R_{o 2}$ is affected most strongly hy the low value of $R_{013 B}$. Consider the effect of placing appropriate resistors in the emitters of Q_{12}, Q_{133}, and $Q_{13 k}$ on this valuc. What resistor in the emitter of $Q_{13 B}$ would be required to make $R_{o 13 B}$ equal to $R_{o 17}$ and emilters would be required?
9.50 For a 741 employing ± 5-V supplies, $\left|V_{B E}\right|=0.6 \mathrm{~V}$ and $\left|V_{C Y \text { sit }}\right|=0.2 \mathrm{~V}$, find the oulput voltage limits that apply.
D9.51 Consider an alternative to the present 741 output stage in which Q_{23} is not used, that is, in which its base and are joined. Reevaluate the reflection of $R_{L}=2 \mathrm{k} \Omega$ to the collector of Q_{17}. What does A_{2} become?
9.52 Consider the positive current-limiting circuit involving $Q_{13,}, Q_{15}$ and R_{6}. Find the current in R_{6} at which the collector current of Q_{15} cquals the current available from $Q_{13 /}$ ($180 \mu \mathrm{~A}$) minus the base carrent of ℓ_{14}. (You necd to perform a couple of iterations.)
9.53 Considcr the 741 sinking-current limit involving
$R_{7}, Q_{21}, Q_{22}, R_{11}$, and Q_{22}. For what current through R_{7} is
the current in Q_{22} equal to the maximum current available from the input stage (i.e., the current in Q_{8})? What simpl hange would you make to reduce this current limit to 0 mA ?

SECTION 9.6: GAIN, FREQUENCY RESPONSE,

AND SLEW RATE OF THE 741

9.54 Using the data provided in F.p. (9.93) (alonc) for the verall gain of the 741 with a $2-\mathrm{k} \Omega$ load, and reatizing he significance of the factor 0.97 in relation to the load, cal culate the open-circuit voltage gain, the output resistance, and he gain with a load of 200Ω. What is the maximum outpu oltage available for such a load?
9.55 A 741 op amp has a phase margin of 80°. If the xcess phasc shift is duc to a second single pole, what is the ircquency of this pole?
.56 A 741 op amp has a phase margin of 80°. If the op amp as nearly coincident second and third poles, what is thei requency?
*9.57 For a modified 741 whose second pole is at 5 MH , what dominant-pole frequency is required for 85° phase margin with a closed-loop gain of 100? Assuming C_{C} continrequired?
9.58 An internally compensated op amp having an f, or 5 MHz and dc gain of 10^{6} utilizes Miller compensation round an inverting amplificr stage with a gain of -1000 . If pace exists for at most a $50-\mathrm{pF}$ capacitor, what resistance level must be reached at the input of the Miller amplifier for compensation to be possible?
9.59 Consider the integrator op-amp model shown in Fig. 9.33. For $G_{m 1}=10 \mathrm{~mA} / \mathrm{N}, C_{C}=50 \mathrm{pF}$, and a resistance magnitude of the open-loop gain. If G_{m} is related to the lirst-stage hias curent via $\mathrm{Eq}_{\mathrm{q}}(9,105$) find the slcw ratc of this op amp.
9.60 For an amplifier with a slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$, what is the full-power bandwidth for outputs of $\pm 10 \mathrm{~V}$? What unity gain bandwidth, ω_{t}, would you expect if the topology was imilar to that of the 741 ?
0.61 Tigure P9.61 shows a circlit suitable for op-amp applic
$r_{0}=\infty$
(a) For inputs grounded and outpui held at 0 V (by negative feedback) find the emitter currents of all transistors. (b) Calculate the gain of the amplifier wilh a load of $10 \mathrm{k} \Omega$.

FIGURE P9.61
(c) With load as in (b) calculate the value of the capacitor C required for a 3 -dB frequency of 1 kHz .

AN INTRODUCTION
AN INTRODUCTION
9.62 An analog signal in the range 0 to +10 V is to be digitized with a quantization error of less than 1% of full scale. the conversion? If the range is to be extended to $\pm 10 \mathrm{~V}$ with the same requirement, what is the number of bits required? For an extension to a range of 0 to +15 V , how many bits are required to provide the same resolution? What is the corresponding resolution and quantization error.
*9.63 Consider Fig. 9.38. On the staircasc output of the S / H circuit sketch the output of a simple low-pass RC circuit with a time constant that is (a) one-third of the sampling interval and (b) equal to the sampling interval.

SECTION 9.8: D/A CONVERTER CIRCUITS

*9.64 Consider the DAC circuit of Fig. 9.39 for the cases $N=2,4$, and 8 . What is the tolcrance, cxpressed as $\pm x \%$, to which the resistors should be selected to limit the resulting output crror to the equivalent of $\pm \frac{1}{2}$ LSB?
9.65 The BJTs in the circuil of Fig. P9. 65 have their bascemittcr junction areas scaled in the ratios indicated. Find ℓ_{1} to h_{1} in lerms of I.

FIGURE P9.65

D9.66 A problem encountered in the DAC circuit of Fig. 9.41 is thc large spread in transistor EBJ areas required hen N is large. As an alternative arrangement, conside current in the collector 4 for 4 bis only. Then, feed the the circuit of Fig. P9. 65 (in place of the current source I) thus producing curents for 4 more bils. In this way, an 8 -bit DAC can he implemented with a maximum spread in areas of 8 . What is the total area of emitters needed in terms of the smallcst device? Contrast this with the usual 8 -bit dealized Give the complete circuit of the converter thus realized

D*9.67 The circuit in Fig. 9.41 can be used to multiply an analog signal by a digital one by feeding the analog signal to the $V_{\text {RPF }}$ terminal. In this case the D / A converter is called a nultiplof 0 sin wolts, use the circuit of Fig 9.41 together wish an additional op amp to obtain $v_{0}=10 D \sin \omega t$, where D is the digital word given hy Eq. (9.109) and $N=4$. How many discrete sine-wave amplitudes arc avaluble at output? What is the smallest? What is the largcst? To what digital input does a $10-\mathrm{V}$ peak-to-peak output correspond?
9.68 What is the input resistance seen hy $V_{\text {KEF }}$ in the cir cuit of Fig. 9.41?

SECTION 9.9: A/D CONVERTER CIRCUITS

9.69 A 12-bit dual-slope ADC of the type illustrated Fig. 9.44 utilizes a $1-\mathrm{MHz}$ clock and has $V_{\text {REF }}=10 \mathrm{~V}$. I analog input voltage is in the range 0 to -10 V . The fixed
interval T_{1} is the time taken for the counter to accumulate a count of 2^{N}. What is the time required to convert an input yoltage equal to the full-scale value? If the peak voltage reached at the output of the integrator is 10 V . what is che integrator time constant? If through aging, R increases by 2% and C decreases by 1%, what does $V_{\text {Pl:AK }}$ become? Docs the conversion accuracy changc?
D9.70 The design of a 4 -bit flash ADC such as chat shown in Fig. 9.45 is being considered. How many comparators are in Fig. 9,45 is bcing considered. How many comparators arc
required? For an input signal in the range of 0 to +10 V , what required. Fer an in put signal in the renge of to $0+10 \mathrm{~V}$, what
are generated using a $10-\mathrm{V}$ reference and several $1-\mathrm{k} \Omega$ resistors (how many?). If a comparison is possible in 50 ns and the associated logic requires 35 ns , what is the maximum possible conversion rate? Indicate the digital code you expect at the output of the comparators and at the output of the logic for an input of (a) 0 V , (b) +5.1 V , and (c) +10 V .

Digital CMOS Logic Circuits

INTRODUCTION

This chapter is concerned with the study of CMOS digital logic circuits. CMOS is by far the most popular technology for the implementation of digital systems. The small size, casc of fabrication, and low power dissipation of MOSFETs enable extremely high levels of integration of both logic and memory circuits. The latter will be studied in Chapter 11.

The chapter begins with an overview section whose objective is to place in proper perspective the material we shall study in this chapter and the next. Then, building on the study of the CMOS inverter in Section 4.10 , we take a comprehensive look at its design and analysis. This material is then applied to the design of CMOS logic circuits and two other types of logic circuits (namely, pseudo-NMOS and pass-transistor logic) that are frequently employed in special applications, as supplements to CMOS.

To reduce the power dissipation even further, and simultaneously to increase performance (speed of operation), dynamic logic techniques are employed. This chailenging topic is the subject of Section 10.6 and completes our study of logic circuits. The chapter concludes with a SPICE simulation example.

In summary, this chapter provides a reasonably comprehensive and in-depth treatment of CMOS digital integrated-circuit design, perhaps the most significant area (at least in
terms of production volume and societal impact) of electronic circuits. To gain the most out of studying this chapter, the reader must be thoroughly familiar with the MOS transistor. Thus, a revicw of Chapter 4 is recommended, and a careful study of Section 4.10 is a must!

10.1 digital circuit design: an overview

In this section, we build on the introduction to digital circuits presented in Section 1.7 and provide an overview of the subject. We discuss the various technologies and logic-circuit families currently in use, consider the paraneters employed to characterize the operation and performance of logic circuits, and finally mention the various styles for digital-system design.

10.1.1 Digital IC Technologies and Logic-Circuit Families

The chart in Figure 10.1 shows the major IC technologies and logic-circuit families that are currently in use. The concept of a logic-circuit family perhaps needs a few words of explanation. Members of each family arc nade with the same technology, have a similar circuit nation. Members of cach family arc nade with the samc technology, have a similar circuit
structure, and exhibit the same basic features. Each logic-circuit family offers a unique set of advantages and disadvantages. In the conventional style of designing systems, one selects an appropriate logic family (c.g., TTL, CMOS, or ECL) and attempts to implement as nuch of the system as possible using circuit nodules (packages) that belong to this family. In this way, interconnection of the various packages is relatively straightforward. If, on the other way, interconnection of the various packages is relatively straightforward. If, on the other
hand, packages from more than one family are used, one has to design suitable interface circuits. The selection of a logic family is based on such considerations as logic flexibility, speed of operation, availability of complex functions, noise immunity, operating-temperature range, power dissipation, and cost. We will discuss some of these considerations in this chapter and the next. To begin with, we make some brief remarks on each of the four technologies listed in the chart of Fig. 10.1.

CMOS Although shown as one of four possible technologies, this is not an indication of digital IC market share: CMOS technology is, by a large margin, the most dominant of all the IC technologies available for digital-circuit design. As mentioned carlier, CMOS has replaced NMOS, which was employed in the early days of VLSI (in the 1970s). There are a number of reasons for this development, the most important of which is the much lower power dissipation of CMOS circuits. CMOS has also replaced bipolar as the technology-ofchoice in digital-system design, and has made possible levels of integration (or circuit-packing

FIGURE 10.1 Digital IC technologies and logic-circuit fanilies.
ensities), and a range of applications, neither of which would have been possible with bipolar technology. Furthermore, CMOS continues to advance, whereas there appear to be few movations at the present time in bipolar digital circuits. Some of the reasons for CMOS displacing bipolar technology in digital applications are as follows:

1. CMOS logic circuits dissipate much less power than bipolar logic circuits and thus one can pack more CMOS circuits on a chip than is possible with bipolar circuits. We will have a lot more to say about power dissipation in the following section.
2. The high input impedance of the MOS transistor allows the designer to use charge storage as a means for the temporary storage of information in both logic and memory circuits. This technique cannot be used in bipolar circuits.
3. The feature size (i.e., minimum channel length) of the MOS transistor has dccreased dramatically over the years, with some recently reported designs utilizing channel lengths as short as $0.06 \mu \mathrm{~m}$. This permits very tight circuit packing and, correspondingly, very high levels of integration.
Of the various forms of CMOS, complementary CMOS circuits based on the inverter studied in Section 4.10 are the most widely used. They are available both as small-scale integrated (SSI) circuit packages (contaiming $1-10$ logic gates) and medium-scale integrated (MSI) circuit packages ($10-100$ gates per chip) for assembling digital systems on printedcircuit boards. More significantly, complementary CMOS is used in VLSI logic (with millions of gates per chip) and memory-circuit design. In some applications, complementary CMOS is supplemented by one (or both) of two other MOS logic circuit forms. These are pseudoNMOS, so-named becausc of the similarity of its structure to NMOS logic, and pass-transistor logic, both of which will be studied in this chapter.
A fourth type of CMOS logic circuit utilizes dynanic techniques to obtain faster circuit operation, while keeping the power dissipation very low. Dynamic CMOS logic represents an area of growing importance. Lastly, CMOS technology is used in the design of memory chips, as will be detailed in Chapter 11.
Bipolar Two logic-circuit families based on the bipolar junction transistor are in some ase at present: TTL and ECL. Transistor-transistor logic (TTL or $\mathrm{T}^{2} \mathrm{~L}$) was for many years the most widely used logic-circuit family. Its decline was precipitated by the advent of the VLSI era. TIL manufacturers, however, fought back with the introduction of low-power digh bped f a bed rating verion of TTL utilize the Schottky diode
 discussed in Section 3.8 and are called Schottky TTL or variations of this name. Despitc all this book.
The other bipolar logic-circuit family in present use is emitter-coupled logic (ECL). It is based on the current-switch implementation of the inverter, discussed in Section 1.7. The basic element of ECL is the differential BJT pair studied in Chapter 7. Because ECL is basi ally a current-steering logic, and, correspondingly, also called current-mode Iogic (CML), which saturation is avoided, very high speeds of operation are poss is aso used in VLS circuit design when very high operating speeds are required and the designer is willing to ccept higher power disipation and increased silicon asea As ECL is considered an accept higher power dissipation and increased silicon area. As such, ECL is considered an important specialty technology and will be briefly discussed in Chapter 11.

BiCMOS BiCMOS combines the high operating speeds possible with BJTs (because of their inherently higher transconductance) with the low power dissipation and other cxcellent characteristics of CMOS. Like CMOS, BiCMOS allows for the implementation of both analog and At present, BiCMOS is used to great advantage in special applications, including memory chips, where its high performance as a high-speed capacitive-current driver justifies the morc comple, process technology it requires. A brief discussion of BiCMOS is provided in Chapter 11
Gallium Arsenide (GaAs) The high carrier mobility in GaAs results in very high speeds of operation. This has been demonstrated in a number of digital IC chips utilizing GaAs technology. It should be pointed out, however, that GaAs remains an "emerging technology," one that appears to have great potential but has not yet achieved such potential commercially. As such, it will not be studied in this book. Nevertheless, considerable material on GaAs devices and circuits, including digital circuits, can be found on the CD accompanying this book and on the hook's website.

10.1.2 Logic-Circuit Characterization

The following parameters are usually used to characterize the operation and performance of a logic-circuit fannily.
Noise Margins The static operation of a logic-circuit family is characterized by the voltage transfer characteristic (VTC) of its basic inverter. Figure 10.2 shows such a VTC and defines its four parameters; $V_{O H}, V_{O L}, V_{I H}$, and $V_{I L}$. Note that $V_{I I}$ and $V_{I L}$ are defined as the points at which the slope of the VTC is -1 . Also indicated is the definition of the threshold discussed the VTC in its generic form in Section 1.7, and have also seen actual VTCs: in Section 4.10 for the CMOS inverter, and in Section 5.10 for the BIT inverter

The robustoss of a circuit family is 5 .
thus by the noise margins $N H_{B}$ and $N M_{2}$ thus by the noise margins $N H_{H}$ and $N M_{L}$.

$$
\begin{equation*}
N M_{H} \equiv V_{O H}-V_{I H} \tag{10.1}
\end{equation*}
$$

$N M_{L} \equiv V_{I L}-V_{O L}$

FIGURE 10.2 Typical voltage transfer characteristic (VTC) of a logic inverter, illustrating the definition
of the critical points. of the critical points.

FIGURE 10.3 Definitions of propagation delays and swiching times of the logic inverter.
An ideal inverter is one for which $N M_{H}=N M_{L}=V_{D D} / 2$, where $V_{D D}$ is the power-supply voltage. Further, for an ideal inverter, the threshold voltage $V_{M}=V_{D D} / 2$.
Propagation Delay The dynamic performance of a logic-circuit family is characterized by the propagation delay of its basic inverter. Figure 10.3 illustrates the definition of the by the propagation delay of its basic inverter. low to-high propagation delay ($t_{P L H}$) and the high-to-low propagation delay ($t_{P K L}$). The low-to-high propagation delay inverter propagation delay t_{P}) is defined as the average of these two quantities:

$$
\begin{equation*}
t_{P} \equiv \frac{1}{2}\left(t_{P L H}+t_{P H L}\right) \tag{10.3}
\end{equation*}
$$

Obviously, the shorter the propagation delay, the higher the speed at which the logic-circuit family can he operated.
Power Dissipation Power dissipation is an important issue in digital-circuit design. The need to minimize the gate power dissipation is motivated by the desire to pack an everincreasing number of gates on a chip, which in turn is motivated by space and economic considerations. In general, however, modern dgial systems un, have mind easonable bounds, and menor celle, the power dissipation per gate and per memory cell is particularly the case for portable, battery-operated equipment such as cellular phones and personal digital assistants (PDAs)

There are two types of power dissipation in a logic gate: static and dynamic. Static power refers to the power that the gate dissipates in the absence of switching action. It cesults from the presence or a path in the gate circuit between he power supply the other hen from a power the on $V_{\text {D }}$. supply $V_{D D}$, and driving a load capacitance C, dissipates dynamic power P_{D},

$$
P_{D}=\int C V_{D D}^{2}
$$

(10.4)
where f is the frequency at which the inverter is being switched. The derivation of this formula (Section 4.10) is based on the assumption that the low and high output voltage levels are 0 and $V_{D D}$, respectively.

Delay-Power Product One is usually interested in high-speed performance (low t_{P}) embined with low power dissipation. Unfortunately, these two requirements are often in conflict; gencrally, when designing a gate, if one attempts to reduce power dissipation by conflict; gencrally, when designing a gate, if one attempts to reduce power dissipation by of the gate decreases. This in turn results in longer times to charge and discharge the load and parasitic capacitances, and thus the propagation delay increases. It follows that a figure-of-merit for comparing logic-circuit technologies (or families) is the delay-power product, defined as

$$
\begin{equation*}
D P=P_{D} t_{P} \tag{10.5}
\end{equation*}
$$

where P_{D} is the power dissipation of the gate. Note that $D P$ has the units of joules. The lower the $D P$ figure for a logic family, the more effective it is.
Silicon Area An obvious objective in the design of digital VLSI circuits is the minimiza ion of silicon area per logic gate. Smaller area requirement cnables the fabrication of arger number of gates per chip, which has cconomic and space advantages from a systemdesign standpoint. Area reduction occurs in three different ways: through advances in proecssing tecbnology that enable the reduction of the minimum device size, through advance circuit-design techniques, and through careful chip layout. In this book. our interest lies in rcuit design, and we shall make frequent comments on the relationship between the circu equn and its silicon area. As a general rule, the simpler the circuit, he s cizes. Choosing maller devices bas the obvious advantagc of requiring smaller silicon area and at the same ime reducing parasitic capacitances and thus increasing speed Smaller deviccs, however have lower current-driving capability, which tends to increase delay. Thus as in all engi and i. ine whe

Fan-in and Fan-Out The fan-in of a gate is the number of its inputs. Thus, a four-input NOR gate has a fan-in of 4 . Fan-out is the maximum number of similar gates that a gate can drive while remaining within guaranteed specifications. As an example, we saw in Scction 4.10 that increasing the fan-out of the BJT inventer reduces $V_{O H}$ and hence $N M_{H}$. In this case, to kcep $N M_{I \prime}$ above a certain minimum, the fan-out has to be limited to a calculable maximum value.

10.1.3 Styles for Digital System Design

The conventional approach to designing digital systems consists of assembling the system using standard IC packages of various levels of complexity (and hence integration). Many ystems have been bnilt this way using for example, TIL SSI and MSI packages. The dvent of VISI in addition to providing the system designer with more powerful off-thehelf components such as microprocessors and memory chips, has made possible alternative design styles. One such alternative is to opt for implementing part or all of the system using ne or more custom VLSI chips. However, custom IC design is usually economically justified ouly when the production volume is large (greater than about 100,000 parts).

An intermediatc approach, known as semicustom design, utilizes gate-array chips. These re integrated circuits containing 100,000 or more unconnected logic gates. Their interconnection can be achieved by a final metalization step (performed at the IC fabrication facility)
according to a pattern specified by the user to implement the user's particular functional need. A more recently available type of gate array, known as a field-programmable gate array (FPGA), can, as its name indicates, be programmed directly by the user. FPGAs provide VLSI form without hing to incur either the cost on "hume" inherent ustom and, to a lesser extent, in semicustom IC design [see Brown and Rose (1996)]

10.1.4 Design Abstraction and Computer Aids

The design of very complex digital systems, whether on a single IC chip or using off-the-shelf components, is made possible by the use of different levels of design abstraction, and the use of a variety of computer aids. To appreciate the conccpt of design abstraction, consider he process of designing a digital system using off-the-shelf packages of logic gatcs. The designer consuits data sheets (and books) to determine the input and output characteristic of the gates, their fan-in and lan-out limitations, and so on. In connecting the gates, the designer needs to adhere to a set of rules specified by the manufacturer in the data sheets. The designer docs not need to consider, in a direct way, the circuit inside the gate packagc. n effect, the circuit has been abstracted in the form of a functional block that can be used as a component. This greatly simplifies system design. The digital-IC designer follows a simila process. Circuit blocks are designed, characterized, and stored in a library as standard cells. These cells can then be used by the IC designer to assemble a larger subsystem (e.g., an adder or a multipher), which in turn is characterized and stored as a functional block to b used in the design of an even larger system (e.g., an entire processor).
At every level of design abstraction, the need arises for simulation and other compute programs that help nake the design process as automated as possible. Whereas SPICE is mployed in circuit simulation, other software tools are utilized at other levcls and in other phascs of the design process. Although digita-system design and design automation are out side the scope of this book, it is important that the reader appreciate the role of design abstaction and computer aids in digital design. They are what make it humanly possihle to self to the m .
 be is posible A a digital IC
Wh possible in a digital 1
Whatever approach or style is adopted in digital design, some familiarity with the various digital-circuit technologies and design techniques is essential. This chapter and the next aim o provide such a background

10.2 DESIGN AND PERFORMANCE ANALYSIS

OF THE CMOS INVERTER

The CMOS logic inverter was introduced and studicd in Section 4.10 , which we urge th reader to review before proceeding any further. In this section, we take a more comprehen sive look at the inverter, investigating its performance and exploring the trade-offs available in its design. This matcrial will serve as the foundation for the study of CMOS logic circuits in the following section.

10.2.1 Circuit Structure

The inverter circuit, snown in Fig. 10.4(a), consists of a pair of complementary MOSFETs switched by the input voltage v_{1}. Although not shown, the source of each device is connected

FIGURE 10.4 (a) The CMOS inverter and (b) its representation as a pair of switches operatcd in a complementary fashion
of its body, thus eliminating the body effect. Usually, the threshold voltages $V_{t a}$ and $V_{t p}$ are equal in magnitude; that is, $V_{t n}=\left|V_{t p}\right|=V_{t}$, which is in the range of 0.2 V to 1 V , with val ues near the lower end of this range for modern process technologies having small featur size (c.g., with channel length of 0.5 to $0.1 \mu \mathrm{~m}$ or less).
The inverter circuit can be represented by a pair of switches operated in a complementary fashion, as shown in Fig. 10.4(b). As indicated, each switch is modeled by a linite on resistance, which is the source-drain resistance of the respective transistor, evaluated near $\left|v_{D S}\right|=0$,

$$
\begin{align*}
& r_{D S N}=1 /\left[k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{D D}-V_{t}\right)\right] \tag{10.6}\\
& r_{D S P}=1 /\left[k_{p}^{\prime}\left(\frac{W}{L}\right)_{p}\left(V_{D D}-V_{t}\right)\right] \tag{10.7}
\end{align*}
$$

10.2.2 Static Operation

With $v_{1}=0, v_{D}=V_{O n}=V_{D D}$, and the output node is connected to $V_{D D}$ througb the resistance $r_{D S P}$ of the pull-up transistor Q_{p}. Similarly, with $v_{l}=V_{D D}, v_{O}=V_{O t}=0$, and the output node is connected to ground through the resistance $r_{D S N}$ of the pull-down transistor Q_{N}. Thus, in the steady state, no direct-current path exists between $V_{D D}$ and ground, and the static-curren and the static-power dissipation are both zero (leakage effects are usually negligibly smal particularly for large-feature-size devices).
The voltage transfer characteristic of the inverter is shown in Fig. 10.5, from which it is confirmed that the output voltage levels are 0 and $V_{D D}$, and thus the output voltage swing is the maximuun possible. The fact that $V_{O L}$ and $V_{O H}$ are independent of device dimension makes CMOS very different from other forms of MOS logic.
The CMOS inverter can be made to switch at the midpoint of the logic swing, 0 to $V_{D D}$ that is, at $V_{D D} / 2$, by appropriately sizing the transistors. Specifically, it can be shown that the switching threshold $V_{t h}$ (or V_{M}) is given by

$$
\begin{equation*}
V_{t h}=\frac{V_{D D}-\left|V_{t p}\right|+\sqrt{k_{n} / k_{p}} V_{t h}}{1+\sqrt{k_{n} / k_{p}}} \tag{10.8}
\end{equation*}
$$

where $k_{n}=k_{n}^{\prime}(W / L)_{n}$ and $k_{p}=k_{p}^{\prime}(W / L)_{p}$, from which we see that for the typical case wber $V_{t n}=\left|V_{t p}\right|, V_{t h}=V_{D D} / 2$ for $k_{n}=k_{p}$, that is,

$$
k_{n}^{\prime}(W / L)_{n}=k_{p}^{\prime}(W / L)_{p}
$$

FIGURE 10.5 The voltage transfer charac Lcristic (VTC) of the CMOS inverter when $Q_{,}$ and Q_{r} are matched.

Thus a symmetrical transfer characteristic is obtained when the devices are designed to have equal transconductance parameters, a condition we reler to as matching. Since μ_{n} is two to four times larger than μ_{p}, matching is achieved by making ($\left.W / L\right)_{p}$ two to four times (1.e., μ_{n} / μ_{p} times) $(W / L)_{n}$,

$$
\left(\frac{W}{L}\right)_{p}=\frac{\mu_{n}}{\mu_{p}}\left(\frac{W}{L}\right)_{n}
$$

Normally, the two devices have the same channel length, L, which is set at the minimum allowable for the given process technology. The minimum width of the NMOS transistor is usually one and a half to two times L, and the width of the PMOS transistor two to three times that. For example, for a $0.25-\mu \mathrm{m}$ process for which $\mu_{n} / \mu_{p}=3, L=0.25 \mu \mathrm{~m},(W / L)_{n}=$ $0.375 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m}$, and $(W / L)_{p}=1.125 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m}$. As we shall discuss shortly, if the inverter is required to drive a relatively large capacitive load, the transistors are made wider However, to conserve chip area, most of the inverters would have this "minimum size." For future purposes, we shall denote the (W / L) ratio of the NMOS transistor of this minimum size inverter hy n and the (W / L) ratio of the PMOS transistor by p. Since the inverter are can be represented by $W_{n} L_{n}+W_{p} L_{p}=\left(W_{n}+W_{p}\right) L$, the area of the minimum-size inverter $(n+p) L$, , and we can use the factor $(n+p)$ as a proxy for area. For the example cited earlier $=5, p=4.5$, and the area factor $n+p=6$.
Besides placing the gate threshold at the center of the logic swing, matching the transconductance parameters of Q_{N} and Q_{P} provides the inverter with equal current-driving capabiilty in both directions (pull-up and pull-down). Furthermore, and obviously related, it nakes $r_{\text {DSN }}=r_{\text {DSSp }}$. Thus an inverter with matched transistors will have equal propagation lays, $i_{P L H}$ and $t_{P H L}$.
When the inverter threshold is at $V_{D D} / 2$, the noise margins $N M_{H}$ and $N M_{\iota}$ are equalized and their valucs are maximized, such that (Section 4.10):

$$
N M_{H}=N M_{L}=\frac{3}{8}\left(V_{D D}+\frac{2}{3} V_{t}\right)
$$

Since typically $V_{t}=0.1$ to $0.2 V_{D D}$, the noise margins are approximately $0.4 V_{D D}$. This value, being close to half the power-supply voltage, makes the CMOS inverter nearly ideal from a noise-immunity standpoint. Further, since the inverter dc input current is practically zero, the noise margins are not dependent on the gate fan-out.

Although we have emphasized the advantages of matching Q_{N} and Q_{P}, there are occasions in which this scaling is not adoptcd. One might, for instance, forgo the advantages of matching in return for reducing chip area and simply make $(W / L)_{p}=(W / L)_{n}$. There are also instances in which a deliherate mismatch is used to place $V_{t h}$ at a specificd value other than $V_{D D} / 2$. Note that hy making $k_{n}>k_{p}$, $V_{t h}$ moves closer to zero, whereas $k_{p}>k_{n}$ moves $V_{t h}$ closer to $V_{D D}$.

As a final comment on the inverter VTC, we note that the slope in the transition region, though large, is finite and is given by $-\left(g_{m N}+g_{m P}\right)\left(r_{o N} / / r_{o P}\right)$.

10.2.3 Dynamic Operation

The propagation delay of the inverter is usually determined under the condition that it is driving an identical inverter. This situation is depicted in Fig. 10.6. We wish to analyze this circuit to determine the propagation delay of the inverter comprising Q_{1} and Q_{2}, which is driven by a low-impedance source v_{k}, and is loaded by the inverter comprising Q_{3} and Q_{4}. Indicated in the figure are the various transistor internal capacitances that are connected to the output node of the (Q_{1}, Q_{2}) inverter. Obviously, an exact pencil-and-paper analysis of this circuit will be too complicated to yield useful design insight, and a simplification of the circuit is in order. Specifically, we wish to replace all the capacitances attached to the inverter output node with a single capacitance C connected between the output node and ground. If we are able to do that, we can utilize the results of the transient analysis performed in Section 4.10. Toward that end, we note that during $t_{P L H}$ or $t_{P H L}$, the output of the first inverter changes from 0 to $V_{D D} / 2$ or from $V_{D D}$ to $V_{D D} / 2$, respectively. It follows that the second inverter remains in the same state during each of our analysis intervals. This observation will have an important bearing on our estimation of the equivalent input capacitance of the second inverter. Let's now consider the contribution of each of the capacitances in

FIGURE 10.6 Circuit for analyzing the propagation delay of the inverter formed by Q_{1} and Q_{2}, which is driving an identical inverter formed by Q_{3} and Q_{4}.

Fig. 10.6 to the value of the equivalent load capacitance C

1. The gate-drain overlap capacitance of $Q_{1}, C_{g d 1}$, can be replaced by an equivalent capacitance hetween the output node and ground of $2 C_{z d}$. The factor 2 arises because of the Miller effect (Section 6.4.4). Specifically, note that as v_{y} goes high and v_{o} goes low by the same amount, the change in voltage across $C_{\text {gd } 1}$ is twice that amount. Thus the output node sees in effect twice the value of $C_{g d 1}$. The same applies for the gatedrain overlap capacitance of $Q_{2}, C_{8 \Omega 2}$, which can be replaced by a capacitance $2 C_{8 d ?}$ between the output node and ground.
2. Each of the drain-body capacitances $C_{d b 1}$ and $C_{d b 2}$ has a terminal at a constant voltage. Thus for the purposc of our analysis here, $C_{d b 1}$ and $C_{d t b 2}$ can be replaced with equal capacitances between the output node and ground. Note, however, that the formulas given in Section 4.8 for calculating $C_{d b 1}$ and $C_{d b 2}$ are small-signal relationships, whereas the analysis here is obviously a large-signal one. A technique has been developed for finding equivalent large-signal values for $C_{d b 1}$ and $C_{d b 2}$ [see Hodges and Jackson (1988) and Rabaey (2002)].
3. Since the second inverter does not switch states, we will assume that the input capacitances of Q_{3} and Q_{4} remain approximately constant and equal to the total gate capacitance ($W L C_{o x}+C_{\text {gsov }}+C_{\text {gdov }}$). That is, the input capacitance of the load inverter will be

$$
C_{83}+C_{84}=(W L)_{3} C_{o x}+(W L)_{4} C_{o x i}+C_{g s o v i}+C_{g d o v i 3}+C_{g s o v 4}+C_{g d o v 4}
$$

4. The last component of C is the wiring capacitance C_{w}, which simply adds to the value of C.
Thus, the total value of C is given by

$$
\begin{equation*}
C=2 C_{g d 1}+2 C_{g d 2}+C_{d b 1}+C_{d b 2}+C_{g 3}+C_{8^{4}}+C_{w} \tag{10.12}
\end{equation*}
$$

Having determined an approximate value for the equivalent capacitance between the inverter output node and ground, we can utilize the circuits in Fig. 10.7 to determine $t_{\text {PH }}$ and $t_{P L H}$, respectively. Since the two circuits are similar, we need only consider one and apply the result directly to the other. Consider the circuit in Fig. 10.7(a), which applies when v_{t} goes high and Q_{N} discharges C frons its initial voltage of $V_{D D}$ to the final value of 0 . The analysis is somewhat complicated by the fact that initially Q_{N} will be in the saturation mode and then, when v_{0} falls below $V_{D D}-V_{t}$, it will go into the triode region of operation. We have in fact performed this analysis in Section 4.10 and obtained the following approximate expression for $t_{\text {PIIL }}$:

$$
\begin{equation*}
t_{P H L}=\frac{1.6 C}{k_{n}^{\prime}\left(\frac{W}{L}\right)_{n} V_{D D}} \tag{10.13}
\end{equation*}
$$

where we have assumed that $V_{t} \cong 0.2 V_{D D}$, which is typically the case.
There is an alternative, an approximate but simpler, method for analyzing the circuit in Fig. 10.7(a). It is based on computing an average value for the discharge current $i_{D N}$ during the interval $t=0$ to $t=t_{P H L}$. Specifically, at $t=0, Q_{N}$ will be saturated, and $i_{D M}(0)$ is given
by by

$$
i_{D N}(0)=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{D D}-V_{z}\right)^{2}
$$

EIGURE 10.7 Equivalent circuits for determining the propagation dclays (a) $t_{p \text { pu }}$ and (b) $t_{p u,}$ of the inverter.

At $t=t_{T H L}, Q_{N}$ will be in the triode region, and $i_{D N}\left(t_{P H L}\right)$ will be

$$
\begin{equation*}
i_{D N}\left(t_{P H L}\right)=k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left[\left(V_{D D}-V_{i}\right) \frac{V_{D D}}{2}-\frac{1}{2}\left(\frac{V_{D D}}{2}\right)^{2}\right] \tag{10.15}
\end{equation*}
$$

The average discharge current can then be found as

$$
\begin{equation*}
\left.i_{D N}\right|_{\mathrm{av}}=\frac{1}{2}\left[i_{D \mathrm{NN}}(0)+i_{D N}\left(t_{P H L}\right)\right] \tag{10.16}
\end{equation*}
$$

and the discharge interval $t_{P H L}$ computed from

$$
\begin{equation*}
t_{P H L}=\frac{C \Delta V}{i_{\left.D N\right|_{\mathrm{av}}}}=\frac{C V_{D D} / 2}{\left.i_{D N}\right|_{\mathrm{av}}} \tag{10.17}
\end{equation*}
$$

Utilizing Eqs. (10.14) through (10.17) and substituting $V_{t} \cong 0.2 V_{D D}$ give

$$
\begin{equation*}
t_{P H L} \cong \frac{1.7 C}{k_{n}^{\prime}\left(\frac{W}{L}\right)_{n} V_{D D}} \tag{10.1}
\end{equation*}
$$

which yields a value very close to that obtained by the more precise formula of Eq. (10.13) Which formula to use is not very relevant, for we have already made many approximations. ndeed, our interest in these formulas is not in obtaining a precise value of $t_{\text {PHL }}$ but in what hey tell us about the effect of the various elernents on determining the inverter delay. It is such insight that the circuit designer hopes to glean from manual analysis. Precise values for delay can be determined using computer simulation (Section 10.7)

An expression for the low-to-high inverter delay, $t_{P L l}$, can be written by analogy to the PHL expression in Eq. (10.17),

$$
\begin{equation*}
t_{P L H} \cong \frac{1.7 C}{k_{p}^{\prime}\left(\frac{W}{I}\right)_{p} V_{D D}} \tag{10.19}
\end{equation*}
$$

Finally, the propagation delay t_{P} can be found as the average of $t_{P H L}$ and $t_{P L H}$

$$
t_{p}=\frac{1}{2}\left(t_{P H L}+t_{P L H}\right)
$$

xamination of the formulas in Eqs. (10.18) and (10.19) enables us to make a number of useful observations:

1. As expected, the two components of t_{p} can be equalized by selecting the (W / L) ratios to equalize k_{n} and k_{p}, hat is, by matching Q_{N} and Q
2. Since t_{p} is proportional to C, the designer should strive to reduce C. This is achieved by using the minimum possible channel length and by minimizing wiring and othe parasitic capacitances. Careful layout of the chip cant result in significant reduction in such capacitances and in the value of $C_{\text {clb }}$.
Using a process technology with larger transconductance parameter k^{\prime} can result in shorter propagation delays. Keep in mind, however, that for such processes $C_{o x}$ is increased, and thus the value of C increases at the same time
3. Using larger (W / L) ratios can result in a reduction in t_{μ}. Care, however, should be exerciscd here also, since increasing the size of the devices increases the value of C and thus the expected reduction in t_{p} might not materialize. Reducing t_{p} by increas ng (W/L), however, is an effective strategy when C is dominated by components not directly related to the size of the driving device (such as wiring or fan-oul devices)
4. A larger supply voltage $V_{D D}$ results in a lower t_{p}. However, $V_{D D}$ is determined by the process technology and thus is often not under the control of the designer. Furthermore, modem process technologies in which device sizes are reduced reguire lower $V_{D D}$ (see Table 6.1). A motivating factor for lowering $V_{D D}$ is the need to keep the dynamic power dissipation at acceptable levels, especially in very-high-density chips. We will have more to say on this point shortly
These obscrvations clcarly illustrate the conflicting requirements and the trade-offs available in the design of a CMOS digital integrated circuit (and indeed in any engineering design problem).

10.2.4 Dynamic Power Dissipation

The negligible static power dissipation of CMOS has been a significant factor in its domiThe negligible static power dissipation of CMOS has been a significant factor in its domi-
nance as the technology of choice in implementing high-density VLSI circuits. However, as the number technology of choice in implementing high-density VLSI circuits. However, a erious issue. The plyn chip steadily increase, the dynOS power dissipation has bec, which we repeat here as

$$
\begin{equation*}
P_{D}=f C V_{D D}^{2} \tag{10.20}
\end{equation*}
$$

where f is the frequency at which the gate is switched. It follows that minimizing C is an effective incans for reducing dynamic-power dissipation. An even more effective strategy is the use of a lower power-supply voltage. As wa have mentioned, new CMOS process technolgies utilize $V_{D o}$ values as low as 1 V . These newer chips, however, pack much more circuitry
on the chip (as many as 100 million transistors) and operate at higher frequencies (microprocessor clock frequencies above 1 GH , are now available). The dynamic power dissipation of such high-density chips can be over 100 W

Consider a CMOS inverter fabricated in a $0.25-\mu \mathrm{m}$ process for which $C_{a x}=6 \mathrm{fF} / \mu \mathrm{m}^{2}, \mu_{n} C_{u x}=$ $115 \mu \Lambda / \mathrm{V}^{2}, \mu_{p} C_{o r}=30 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{m}=-V_{t p}=0.4 \mathrm{~V}$, and $V_{D D}=2.5 \mathrm{~V}$. The W / L ratio of Q_{N} is $0.375 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m}$, and that for Q_{p} is $1.125 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m}$. The gate-sourcc and gate-drain overlap $0 . \mathrm{macitances}$ arc specilied to be $03 \mathrm{fF} / \mu \mathrm{m}$ of gatc width. Further, the effective value of drainbody capacitances are $C_{d n}=1 / \mathrm{F}$ and $C_{d b p}=1 \mathrm{fF}$. The wiring capacitance $C_{k}=0.2 \mathrm{fF}$. Find $t_{P H L}$. $t_{\text {PLI }}$, and t_{p}.

Solution

First, we determine the value of the equivalcnt capacitance C using Eq. (10.12),

$$
C=2 C_{g d 1}+2 C_{g d 2}+C_{d b 1}+C_{d b 2}+C_{g 3}+C_{g+}+C_{w}
$$

wherc

$$
\begin{aligned}
C_{g d 1} & =0.3 \times W_{n}=0.3 \times 0.375=0.1125 \mathrm{fF} \\
C_{g d 2} & =0.3 \times W_{p}=0.3 \times 1.125=0.3375 \mathrm{fF} \\
C_{d b 1} & =1 \mathrm{fF} \\
C_{d b 2} & =1 \mathrm{fF} \\
C_{g 3} & =0.375 \times 0.25 \times 6+2 \times 0.3 \times 0.375=0.7875 \mathrm{iF} \\
C_{g 4} & =1.125 \times 0.25 \times 6+2 \times 0.3 \times 1.125=2.3625 \mathrm{fF} \\
C_{w} & =0.2 \mathrm{fF}
\end{aligned}
$$

Thus,

$$
C=2 \times 0.1125+2 \times 0.3375+1+1+0.7875+2.3625+0.2=6.25 \mathrm{fF}
$$

Ncx1, allhough we can use the formula in Eq. (10.18) to determine $t_{P H}$, we shall take an alterna tive route. Specifically, we shall consider the discharge of C through Q_{N} and determine the aver age discharge current using Eqs. (10.14) through (10.16):

$$
i_{D N}(0)=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{D D}-V_{i}\right)^{2}
$$

$$
=\frac{1}{2} \times 115\left(\frac{0.375}{0.25}\right)(2.5-0.4)^{2}=380 \mu \mathrm{~A}
$$

$$
i_{D N}\left(t_{P H L}\right)=k_{n}^{\prime}\left(\frac{W}{L}\right)_{n^{-}}\left[\left(V_{D D}-V_{\tau}\right) \frac{V_{D D}}{2}-\frac{1}{2}\left(\frac{V_{D D}}{2}\right)^{2}\right]
$$

$$
=115 \times \frac{0.375}{0.25}\left[(2.5-0.4) \frac{2.5}{2}-\frac{1}{2}\left(\frac{2.5}{2}\right)^{2}\right]
$$

$=318 \mu \mathrm{~A}$
Thus

$$
\left.i_{D N}\right|_{\mathrm{av}}=\frac{380+318}{2}=349 \mu \mathrm{~A}
$$

and

$$
t_{P H I L}=\frac{C\left(V_{D D} / 2\right)}{\left.i_{D N!}\right|_{\mathrm{av}}}=\frac{6.25 \times 10^{-15} \times 1.25}{349 \times 10^{-6}}=23.3 \mathrm{ps}
$$

Since $W_{p} / W_{n}=3$ and $\mu_{n} / \mu_{p}=3.83$, the inverter is not perfectly matched. Therefore, we expect $t_{H_{I I I}}$ to be greater than $t_{P I I}$ by a factor of $3.83 / 3=1.3$, thus

$$
t_{P I H}=1.3 \times 23.3=30 \mathrm{ps}
$$

and thus t_{P} will be

$$
\begin{aligned}
t_{\mu} & =\frac{1}{2}\left(t_{P I I L}+t_{P L H}\right) \\
& =\frac{1}{2}(23.3+30)=26.5 \mathrm{ps}
\end{aligned}
$$

EPRRCISES

 kill the: ioppasuinin delay ficoond Ans. $43 / \mathrm{p} \mathrm{p}$:

 does giot change sispoificantly

10.3. For the pverter of Example 10.1 ; find the dynamic power dissipation wherviocked ata $500-\mathrm{MILz}$ rate. Ans $195 \mu \mathrm{~W}$

10.3 CMOS LOGIC-GATE CIRCUITS

In this section, we build on our knowledge of inverter design and consider the design of CMOS circuits that realize combinational-logic functions. In combinational circuits, th output at any time is a function only of the values of input signals at that time. Thus, these circuits do not have memory and do not employ feedback. Combinational-logic circuits are sed in large quantities in a multitude of applications; indecd, every digital system contains large numbers of combinational-logic circuits.

0.3.1 Basic Structure

A CMOS logic circuit is in effect an extension, or a generalization, of the CMOS inverter: The inverter consists of an NMOS pull-down transistor, and a PMOS pull-up transistor, uperated by the input voltage in a complementary fashion. The CMOS logic gate consists of two networks: the pull-down network (PDN) construeted of NMOS transistors, and the pullup network (PUN) constructed of PMOS transistors (see Fig 108) The two networks are operated by the iniput variablcs, in a complementary (see Fig. 10.8). The two networks are represented in Fig. 10.8, the PDN will conduct for all jnput combinations that require a low output ($Y=0$) and will then pull the output node down to ground, causing a zero voltage to

FIGURE 10.8 Representation of a three-input CMOS logic gate. The PUN compriscs PMOS transistors, and the PDN comprises NMOS transistors.
ppear at the output, $v_{Y}=0$. Simultaneously, the PUN will be off, and no direct dc path will xist between V and ground. On the other hand, all imput combinations that call for a high output ($Y=1$) will cause the PUN to conduct, and the PUN will then pull the output node up $V_{\text {I }}$ establishing an output voltage $y_{y}=V_{D D}$. Simultaneously, the PDN will be cut off, and again, no de current path between $V_{D D}$ and ground will exist in the circuit.
Now, since the PDN comprises NMOS transistors, and since an NMOS transistor conducts when the signal at its gatc is high, the PDN is activated (i.e., conducts) when the inputs are high. In a dual manner, the PUN comprises PMOS transistors, and a PMOS transistor conducts when the input signal at its gate is low; thus the PUN is activated when the inputs are low.
The PDN and the PUN each utilizes devices in parallel to form an OR function, and devices in series to form an AND function. Here, the OR and AND notation refer to current flow or conduction. Figure 10.9 shows examples of PDNs. For the circuit in Fig. 10.9(a), we observe that Q_{A} will conduct when A is high ($v_{A}=V_{D D}$) and will then pull the output node down to ground ($v_{\mathrm{Y}}=0 \mathrm{~V}, Y=0$). Similarly, Q_{B} conducts and pulls Y down when B is high. Thus Y

(a)

$\bar{Y}=A B$
(b)

IGUPE 10.9 Exampes of pull-down networks

(b)

(c)

FIGURE 10.10 Examples of pull-up networks.
will be low when A is high or B is high, which can be expressed as

$$
\begin{aligned}
& \bar{Y}
\end{aligned}=A+B
$$

The PDN in Fig. 10.9(b) will conduct only when A and B are both high simultaneously Thus Y will be low when A is high and B is high,

$$
\begin{aligned}
& \bar{Y}=A B \\
& Y=\overline{A B}
\end{aligned}
$$

or equivalently

As a final example, the PDN in Fig. 10.9(c) will conduct and cause Y to be 0 when A is high or when B and C are botli high, thus

$$
\bar{Y}=A+B C
$$

or equivalently

$$
Y=\overline{A+B C}
$$

Next consider the PUN examples shown in Fig. 10.10. The PUN in Fig. 10.10(a) will conduct and pull Y up to $V_{D D}(Y=1)$ when A is low or B is low, thus

$$
Y=\bar{A}+\bar{B}
$$

The PUN in Fig. 10.10(b) will conduct and produce a high output ($v_{Y}=V_{D D}, Y=1$) only when A and B are both low, thus

$$
Y=\bar{A} \bar{B}
$$

Finally, the PUN in Fig. 10.10(c) will conduct and cause Y to be high (logic 1) if A is low or if B and C are both low, thus

$$
Y=\bar{A}+\bar{B} \bar{C}
$$

Having developed an understanding and an appreciation of the structure and operation of PDNs and PUNs, we now consider complete CMOS gates. Before doing so, however, we wish to introduce alternative circuit symbols, that are almost universally used for MOS transistors by

FIGURE 10.11 Usual and altemative circuit symbols for MOSFETs.
digital-circuit designers. Figure 10.11 shows our usual symbols (left) and the corresponding "digital" symbols (right). Observe that the symbol for the PMOS transistor with a circle at the gate terninal is intended to indicate that the signal at the gate has to be low for the device to gate terninal is intended to indicate that the signal at the gate has to be low for the device to
be activated (i.e., to conduct). Thus, in terms of logic-circuit terminology, the gate terminal of the PMOS transistor is an active low input. Besides indicating this property of PMOS devices, the digital symbols omit any indication of which of the device terminals is the source and which is the drain. This should cause no difficulty at this stage of our study; simply remember that for an NMOS transistor, the drain is the terminal that is at the higher volage (current flows from drain to source), and for a PMOS transistor the source is the terminal that is at the higher voltage (current flows from source to drain). To be consistent with the literature, we shall henceforth use these modified symbols for MOS transistors in logic applications, except in locations where our usual symbols help in understanding circuit operation.

10.3.2 The Two-Input NOR Gate

We first consider the CMOS gate that realizes the two-input NOR function

$$
\begin{equation*}
Y=\overline{A+B}=\bar{A} \bar{B} \tag{10.21}
\end{equation*}
$$

We see that Y is to be low (PDN conducting) when A is high or B is high. Thus the PDN consists of two parallel NMOS devices with A and B as inputs (i.e., the circuit in Fig. 10.9a). For the PUN, we note from the second expression in Eq. (10.21) that Y is to be high when A and B are both low. Thus the PUN consists of two series PMOS devices with A and B as the inputs (i.e., the circuit in Fig. 10.10b). Putting the PDN and the PUN together gives the CMOS NOR gate shown in Fig. 10.12. Note that extension to a higher number of inputs is straightorward. For each additional input, an ${ }^{2}$ and $Q_{N B}$, and a PMOS transistor is added in series with $Q_{P A}$ and $Q_{P B}$.

10.3.3 The Two-input NAND Gate

The two-input NAND function is described by the Boolean expression

$$
\begin{equation*}
Y=\overline{A B}=\bar{A}+\bar{B} \tag{10.22}
\end{equation*}
$$

To synthesize the PDN, we consider the input combinations that require Y to be low: There is only one such coubination, namely, A and B both high. Thus, the PDN simply comprises two NMOS transistors in series (such as the circuit in Fig. 10.9b). To synthesize the PUN, we consider the input combinations that result in Y being high. These are found from the

second expression in Eq. (10.22) as A low or B low. Thus, the PUN consists of two paralle PMOS transistors with A and B applied to their gates (such as the circuit in Fig. 10.10a). Puitting the PDN and PUN together results in the CMOS NAND gate implementation shown in Fig. 10.13. Note that extension to a higher number of imputs is straightforward: For each additional input, we add an NMOS transistor in scries with $Q_{N A}$ and $Q_{N B}$, and a PMOS transistor in parallel with $Q_{P A}$ and $Q_{P B}$.

10.3.4 A Complex Gate

Consider next the more complex logic function

$$
Y=\overline{A(B+C D)}
$$

Since $\bar{Y}=A(B+C D)$, we see that Y should be low for A high and simultaneously either B high or C and D both high, from which the PDN is directly obtained. To obtain the PUN, we
need to express Y in terms of the complemented variables. We do this through repeated application of DeMorgan's law, as follows:

$$
\begin{align*}
Y & =\overline{A(B+C D)} \\
& =\bar{A}+\overline{B+C D} \\
& =\bar{A}+\bar{B} \overline{C D} \\
& =\bar{A}+\bar{B}(\bar{C}+\bar{D}) \tag{10.24}
\end{align*}
$$

Thus, Y is high for A low or B low and either C or D low. The corresponding complete CMOS circuit will be as shown in Fig. 10.14.

10.3.5 Obtaining the PUN from the PDN and Vice Versa

From the CMOS gate circuits considered thus far (e.g., that in Fig. 10.14), we obscrve that the PDN and the PUN are dual networks: Where a series branch cxists in one, a parallel branch exists in the other. Thus, we can obtain one from the other, a process that can be simpler than having to synthesize each separately from the Boolean expression of the function. For instance, in the circuit of Fig. 10.14, we found it relatively easy to obtain the PDN, simply because we already had \bar{Y} in terms of the uncomplemented inputs. On the other hand, to obtain the PUN, we had to manipulate the given Boolean expression to express Y as a function of the complemented variables', the form convenient for synthesizing PUNs. Alterna-
tively, we could have used this duality property to obtain the PUN from the PDN. The tively, we could have used this duality property to obtain the PUN from the PDN. The reader is urged to refer to Fig. 10.14 to convince herself that this is indeed possible.

FIGURE 10.14 CMOS realization of a complex gate.

It should, however, be mentioned that at times it is not easy to obtain one of the two networks from the other using the duality property. For such cases, one has to resort to a more rigorous process, which is beyond the scope of this book [see Kang and Leblebici (1999)].

10.3.6 The Exclusive-OR Function

An inportant function that often arises in logic design is the exclusive-OR (XOR) function,

$$
\begin{equation*}
Y=A \bar{B}+\bar{A} B \tag{10.25}
\end{equation*}
$$

We observe that since Y (rather than Y) is given, it is easier to synthesize the PUN. We note, however, that unfortunately Y is not a function of the complemented variables only (as we would like it to be). Thus, we will need additional inverters. The PUN oblained directly from Eq. (10.25) is shown in Fig. 10.15(a). Note that the Q_{1}, Q_{2} branch realizes the first term ($A \bar{B}$), whereas the Q_{3}, Q_{4} branch realizes the second teim $(\bar{A} B)$. Note also the need for two additional inverters to generate \bar{A} and \bar{B}.
As for synthesizing the PDN, we can obtain it as the dual network of the PUN in Fig. 10.15 (a). Alternatively, we can develop an expression for \bar{Y} and use it to synchesize the PDN. Leaving the first approach for the reader to do as an exercise, we shall utilize the direct synthesis approach. DcMorgan's law can be applied to the expression in Eq. (10.25) to obtain \bar{Y} as

$$
\begin{equation*}
\bar{Y}=A B+\bar{A} \bar{B} \tag{10.26}
\end{equation*}
$$

The corresponding PDN will be as in Fig. 10.15(b), which shows the CMOS realization of the exclusive-OR function except for the two additional invertcrs. Note that the exclusiveOR requires 12 transistors for its realization, a rather complex network. Later, in Section 10.5, we shall show a simpler realization of the XOR employing a different form of CMOS logic.

(b)

FIGURE 10.15 Realization of the exclusive-OR (XOR) function: (a) The PUN synthesized directly from he expression in Fq. (10.25). (b) The complete XOR realivation utilizing the PUN in (a) and a PDN that is synithesized directly from the expression in Eq. (10.26). Note that two inverters (not shown) are needed to generate the complemented variables. Also notc that in this XOR realization, the PDN and the PUN are no
dual networks: however, a realization based on dual networks is possible (see Problem 10.27).

Another interesting observation follows from the circuit in Fig. 10.15(b). The PDN and the PUN here are not dual networks. Indeed, duality of the PDN and the PUN is not a necessary condition. Thus, although a dual of PDN (or PUN) can always be used for PUN (or PDN), the two networks are not necessarily duals.

10.3.7 Summary of the Synthesis Method

1. The PDN can be most directly synthesized by expressing \bar{Y} as a function of the uncomplemented variables. If complemented variables appear in this expression, additional inverters will be required to generate them.
2. The PUN can be most directly synthesized by expressing Y as a function of the complemented variables and then applying the uncomplemented variables to the gates of plemented variables and then applying the uncomplemented variables to the gates of
the PMOS transistors. If uncomplemented variables appear in the expression, additional inverters will be needed.
3. The PDN can be obtained from the PUN (and vice versa) using the duality property

10.3.8 Transistor Sizing

Once a CMOS gate circuit has been generated, the only significant step remaining in the design is to decide on W / L ratios for all devices. These ratios usually are selected to provide the gate with current-driving capability in both directions equal to that of the basic inverter. The reader will recall from Section 10.2 that for the basic inverter design, we denoted $(W / L)_{n}=n$ and $(W / L)_{p}=p$, where n is usually 1.5 to 2 and, for a matched design, $p=$ $\left(\mu_{n} / \mu_{p}\right) n$. Thus, we wish to select individual W / L ratios for all transistors in a logic gate so that the PDN should be able to provide a capacitor discharge current at least equal to that of an NMOS transistor with $W / L=n$, and the PUN should be ahle to provide a charging current at least equal to that of a PMOS transistor with $W / L=p$. This will guarantee a worst-case gate delay cqual to that of the basic inverter. ${ }^{1}$
In the preceding description, the idea of "worst case" should be emphasized. It means that in deciding on device sizing, we should find the input combinations that result in the lowest output current and then choose sizes that will make this current equal to that of the basic inverter. Before we consider examples, we need to address the issue of determining the current-driving capability of a circuit consisting of a number of MOS devices. In other words, we need to find the equivalent W / L ratio of a network of MOS transistors. Toward that end, we consider the parallel and series connection of MOSFETs and find the equivalent W / L racios. The derivation of the equivalent W / L ratio is based on the fact that the on resistance of a MOSFET is inversely proportional to W / L. Thus, if a number of MOSFETs having ratios of $(W / L)_{1},(W / L)_{2}$, . are connected in series, the equivalent series resistance obtained by adding the on-resistances will be

$$
\begin{aligned}
R_{\text {serics }} & =r_{D S 1}+r_{D S 2}+\cdots \\
& =\frac{\text { constant }}{(W / L)_{1}}+\frac{\text { constant }}{(W / L)_{2}}+\cdots \\
& =\text { constant }\left[\frac{1}{(W / L)_{1}}+\frac{1}{(W / L)_{2}}+\cdots\right] \\
& =\frac{\text { constant }}{(W / L)_{\mathrm{eq}}}
\end{aligned}
$$

[^33]

FIGURE 10.16 Proper transistor sizing for a four-input NOR gatc. Note that n and p denote the (W/L) ratios of Q_{N} and Q_{P}, respectively, of the basic inverter.
resulting in the following expression for $(W / L)_{\text {eq }}$ for transistors connected in series:

$$
(W / L)_{\mathrm{eq}}=\frac{1}{\frac{1}{(W / L)_{1}}+\frac{1}{(W / L)_{2}}+\cdots}
$$

Similarly, we can show that the parallel connection of transistors with W / L ratios of $(W / L)_{1}$ $(W / L)_{2}, \ldots$, results in an equivalent W / L of

$$
(W / L)_{\mathrm{eq}}=(W / L)_{1}+(W / L)_{2}+\cdots
$$

As an example, two identical MOS transistors with individual W / L ratios of 4 result in an equivalent W / L of 2 when connected in series and of 8 when connected in parallel.
As an example of proper sizing, consider the four-input NOR in Fig. 10.16. Here, the worst case (the lowest current) for the PDN is obtained when only one of the NMOS transis ors is conducting. We thcrefore select the W / L of each NMOS transistor to be equa的 ansistors are conducting. Since the equivalent W / L will be one-quater of that of cach PMOS device, we should select the W / L ratio of each PMOS transistor to be four times th PMOS device, we should select the W / L ratio of each PMOS transistor to be four times that
Q_{p} of
As ate. Con NOR gates in Figs. 10.16 and 10.17 indicates that NAND reason, NAND gates are generally preferred for implementing combinational logic functions in CMOS.

FIGURE 10.17 Proper transistor sizing , for a four-inpui NAND gate. Note that n and p denote the (W/L) ratios of Q_{N} and Q_{r}, respectively, of the basic inverter.

$3 \times 1 \mathrm{~L} 5 \mathrm{~s} 0 \mathrm{~s}$

Provide transistor W / L ratios for the logic circuit shown in Fig. 10.18. Assume that for the basic inverter $n=1.5$ and $p=5$ and that the channel length is $0.25 \mu \mathrm{~m}$.

Solution

Refer to Fig. 10.18, and consider the PDN first. We note that the worst case occurs when $Q_{N s}$ is on and either $Q_{N C}$ or $Q_{N D}$ is on. That is, in the worst casc, we have two transistors in scrics. Therefore, we select each of $Q_{N B}, Q_{N C}$, and $Q_{N D}$ to have twice the width of the n-channel device in the basic inverter, thus

$$
\begin{aligned}
& Q_{N B}: W / L=2 n=3=0.75 / 0.25 \\
& Q_{N C}: W / L=2 n=3=0.75 / 0.25 \\
& Q_{N D}: W / L=2 n=3=0.75 / 0.25
\end{aligned}
$$

For transistor $Q_{N A}$, select W / L to be equal to that of the n-channel device in the basic inverter:

$$
Q_{N A}: W / L=n=1.5=0.375 / 0.25
$$

Next, consider the PUN. Here, we see that in the worst case, we have three transistors in series: $Q_{P A}, Q_{P C}$, and $Q_{P D}$. Thercfore, we sclect the W / L ratio of cach of these to be three times that of Q_{P} in the basic inverter, that is, $3 p$, thus

$$
\begin{aligned}
& Q_{P A}: W / L=3 p=15=3.75 / 0.25 \\
& Q_{P C}: W / L=3 p=15=3.75 / 0.25 \\
& Q_{P D}: W / L=3 p=15=3.75 / 0.25
\end{aligned}
$$

FIGURE 10.18 Circuit for Example 10.2.
Finally, the W / L ratio for $Q_{P H}$ should be selected so that the equivalent W / L of the series connec tion of $Q_{P B}$ and $Q_{P A}$ should be equal to p. It follows that for $Q_{P B}$ the ratio should be $1.5 p$,

$$
Q_{P B}: W / L=1.5 p=7.5=1.875 / 0.25
$$

Figure 10.18 shows the circuit with the transistor sizes indicated.

10.3.9 Effects of Fan-In and Fan-Out on Propagation Delay

Each additional input to a CMOS gate requires two additional transistors, one NMOS and one PMOS. This is in contrast to other forms of MOS logic, where each additional input requires only one additional transistor. The additional transistor in CMOS not only increases the chip area but also increases the total cffective capacitance per gate and in turn increases the propagation delay. The sizc-scaling method described earlier compensates for some (but not all) of the increase in Specifically, by increasing device size, we are ablc to preserve the curent-driving capability. However, the increasing device size, we are ablc to preserve the current-driving capability. However, the capacitance C increases because of both the increased number of inputs and the increase in device size. Thus t_{p} will still increase with
fan-in, a fact that imposes a practical limit on the fan-in of, say the NAND gate to about 4 If a higher number of inputs is required, then "clever" logic design should be adopted to Iralize the given Boolean function with gates of no more than four inputs. This would realize the given Boolean function with gates of no more than four inputs. This would
usually mean an increase in the number of cascaded stages and thus an increase in delay However, such an increase in delay can be less than the increase due to the large fan-in (sce Problem 10.36).

An increase in a gate's fan-out adds directly to its load capacitance and, hhus, increases its propagation delay.

Thus although CMOS has many advantages, it does suffer from increased circuit complexity when the fan-in and fan-out are increased, and from the corresponding effects of this complexity on both chip area and propagation delay. In the following two sections, we shall study some simplified forms of CMOS logic that attempt to reduce this complexity
although at the expense of forgoing some of the advantages of basic CMOS. although at the expense of forgoing some of the advantages of basic CMOS

EXERCISES

 inpul NOR and (b) a four- input NAND. Also, give the relative atens of the tho gates. Ans a MMOS devices: W1 -075.05 . PMOS deviecs, $12 \% 05$.
(6) MMOS devices: $\mathrm{WL} /=3.0 .5 \mathrm{PMOS}$ devices 3 y 0.0 ;

NOR arca NAND area $=2.125$
10.5 For the scaled NAND gate in Exercise 10.4, find the ratio of the maximum to minimuin current available to (i) charge a load capacitance and (b) dis chatge a load capacilance Ans. (a) 4 . (5)

10.4 PSEUDO-NMOS LOGIC CIRCUITS

As explained in Section 10.3, despite its many great advantages, CMOS suffers from increased area, and correspondingly increased capacitance and delay, as the logic gates become more complex. For this reason, designers of digital integrated circuits have been searching for forms of CMOS logic circuits that can be used to supplement the complementarytype circuits studied in Sections 10.2 and 10.3. These forms are not intended to replace complementary CMOS but rather to be used in special applications for special purposes. We shall examine two such CMOS logic styles in this and the following section.

10.4.1 The Pseudo-NMOS Inverter

Figure 10.19(a) shows a modified form of the CMOS inverter. Here, only Q_{N} is driven by the input voltage while the gate of Q_{P} is grounded, and Q_{P} acts as an active load for Q_{N}. Even before we examine the operation of this circuit in detail, an advantage over complementary CMOS is obvious: Each input must be connected to the gate of only one transistor or, alternatively, only one additional ttansistor (an NMOS) will be needed for each additional gate input. Thus the area and delay penalties arising from increased fan-in in a complementary CMOS gate will be reduced. This is indeed the motivation for exploring this modified inverter circuit.
The inverter circuit of Fig. 10.19(a) resembles other forms of NMOS logic that consist of a driver transistor (Q_{N}) and a load transistor (in this case, Q_{P}); hence the name pseudoNMOS. For comparison purposes, we shall briefly mention two older forms of NMOS logic The earliest form, popular in the mid-1970s, utilized an enhancement MOSFET for the load element, in a topology whose basic inverter is shown in Fig. 10.19(b). Enhancement-load NMOS logic circuits suffer from a relatively small logic swing, small noise margins, and high static power dissipation. For these reasons, this logic-circuit technology is now virtually obsolete. It was replaced in the late 1970s and early 1980 s with depletion-load NMOS circuits, in which a depletion NMOS transistor with its gate connected to its source is used as the load element. The topology of the basic depletion-load invertcr is shown in Fig. 10.19(c).

(a)

(b)

(c)

FIGURE 10.19 (a) The pseado-NMOS logic inverter. (b) The enhancement-load NMOS inverter. (c) The depletion-load NMOS inverter.

It was initially expected that the depletion NMOS with $V_{G S}=0$ would operate as a constant current source and would thus provide an excellent load element. ${ }^{2}$ However, it was quickly real ized that the body effect in the depletion transistor causes its $i-v$ characteristic to deviate considerably from that of a constant-current source. Nevertheless, depletion-load NMOS circuit eature significant improvements over their enhancement-load counterparts, enough to justify he extra processing step required to fabricate the depletion devices (namely, ion-implanting the channel). Although depletion-load NMOS has been virtually replaced by CMOS, one can still see some depletion-load circuits in specialized applications. We will not study depletion-load NMOS logic here (the interested reader can refer to the third edition of this book).
The pseudo-NMOS inverter that we are about to study is similar to depletion-load NMOS but with rather improved characteristics. It also has the advantage of being directly compatible with complementary CMOS circuits.

10.4.2 Static Characteristics

The static characteristics of the pseudo-NMOS inverter can be derived in a manner similar to that used for complementary CMOS. Toward that end, we note that the drain currents of Q_{N} and Q_{P} are given by

$$
\begin{align*}
& i_{D N}=\frac{1}{2} k_{n}\left(v_{I}-V_{t}\right)^{2}, \quad \text { for } v_{O} \geq v_{l}-V_{t} \quad \text { (saturation) } \tag{10.29}\\
& i_{D N}=k_{n}\left[\left(v_{l}-V_{t}\right) v_{O}-\frac{1}{2} v_{O}^{2}\right], \quad \text { for } v_{O} \leq v_{I}-V_{t} \quad \text { (triode) } \tag{10.30}\\
& i_{D P}=\frac{1}{2} k_{p}\left(V_{D D}-V_{t}\right)^{2}, \quad \text { for } v_{O} \leq V_{t} \quad \text { (saturation) } \tag{10.31}\\
& i_{D P}=k_{p}\left[\left(V_{D D}-V_{t}\right)\left(V_{D D}-v_{0}\right)-\frac{1}{2}\left(V_{D D}-v_{O}\right)^{2}\right], \quad \text { for } v_{O} \geq V_{t} \quad \text { (triode) }
\end{align*}
$$

where we have assumed that $V_{t n}=-V_{t p}=V_{t}$, and have used $k_{n}=k_{n}^{\prime}(W / L)_{n}$ and $k_{p}=k_{p}^{\prime}(W / L)_{p}$ to simplify matters.

[^34]

FIGURE 10.20 Graphical consiruction to determine the VTC of the inverter in Fig. 10.19
To obtain the VTC of the inverter, we superimpose the load curve represented by Eqs. (10.31) and (10.32) on the $i_{D}-v_{D S}$ characteristics of Q_{N}, which can be relabeled as $i_{D N}-v_{O}$ and drawn for various values of $v_{G S}=v_{l}$. Such a graphical construction is shown in Fig. 10.20 where, to keep the diagram simple, we show the Q_{N} curves for only the two extreme values of v, namely, 0 and $V_{D D}$. Two observations follow:

1. The load curve represents a much lower saturation current (Eq. 10.31) than is represented by the corresponding curve for Q_{N}, namely, that for $v_{l}=V_{D D}$. This is a result of the fact that the pseudo-NMOS inverter is usually designed so that k_{n} is greater than k_{p} by a factor of 4 to 10 . As we will show shortly, this inverter is of the so-called ratioed type, and the ratio $r \equiv k_{n} / k_{p}$ determines all the breakpoints of the VTC, that is, $V_{O L}, V_{L}, V_{I H}$, and so on, and thus determines the noise margins. Selection of a relatively high value for r reduces $V_{O L}$ and widens the noise margins.
2. Although one tends to think of Q_{P} as acting as a constant-current source, it actually operates in saturation for only a small range of v_{o}, namely, $v_{o} \leq V_{t}$. For the remainder of the v_{Q} range, Q_{μ} operates in the triode region.
Consider first the two extreme cases of v_{l} : When $v_{l}=0, Q_{N}$ is cut off and Q_{p} is operating in the triode region, though with zero current and zero drain-source voltage. Thus the operating point is that labeled A in Fig. 10.20, where $v_{O}=V_{O H}=V_{D D}$, the static current is zero, and the static power dissipation is zero. When $v_{l}=V_{D D}$, the inverter will operate at the point labeled E in Fig. 10.20. Observe that unlike complementary CMOS, here $V_{O L}$ is not zero, an obvious disadvantage. Another disadvantage is that the gate conducts current $\left(I_{\text {stat }}\right)$ in the low-output state, and thus there will be static power dissipation $\left(P_{D}=I_{\text {stat }} \times V_{D D}\right)$.

10.4.3 Derivation of the VTC

Figure 10.21 shows the VTC of the pseudo-NMOS inverter. As indicated, it has four distinct regions, labeled I through IV, corresponding to the different combinations of possible modes

For the NMOS inverters, $V_{\text {ol }}$ depends on the ratio of the transconductance parameters of the devices, that is, on the ratio $\left(k^{\prime}(W / L)\right)_{\text {ditiver }} /\left(k^{\prime}(W / L)\right)_{\text {load }}$. Such circuits are therefore known as ratioed logic circuits. Complementary CMOS logic circuits do not have such a dependency and can therefore be called ratioless.

EIGURE 10.21 VTC for the pseudo-NMOS inverter. This curve is ploted for $V_{D D}=5 \mathrm{~V}, V_{m}=-V_{p p}=1 \mathrm{~V}$ and $r=9$.
of operation of Q_{N} and Q_{P}. The four regions, the corresponding transistor modes of opera ion, and the conditions that define the regions are listed in Table 10.1. We shall utilize the information in this table together with the device equations given in Eqs. (10.29) through 10.32) to derive expressions for the various segmenis of the VTC and in particular for the mportant parameters that characterize the static operation of the inverter

- Region I (segment AB):

$$
v_{O}=V_{O H}=V_{D D}
$$

TABLE 10.1 Regions of Operation of the Pseudo NMOS inverter

	Segment of VTC	Q_{N}	Q_{p}	Condition
Region	Segmetion	Cutoff	Triode	$v_{t}<V_{t}$
I	AB	Saturation	Triode	$v_{0} \geq v_{l}-V_{t}$
II	BC	Triode	Triode	$V_{t} \leq v_{0} \leq v_{l}-V_{t}$
III	CD	Triode	Saturation	$v_{0} \leq V_{t}$
IV	DE			

- Region II (segment BC)

Equating $i_{D N}$ from Eq. (10.29) and $i_{D p}$ from Eq. (10.32) together with substituting $k_{n}=r k_{p}$, and with some manipulations, we obtain

$$
\begin{equation*}
v_{O}=V_{t}+\sqrt{\left(V_{D D}-V_{t}\right)^{2}-r\left(v_{t}-V_{t}\right)^{2}} \tag{10.34}
\end{equation*}
$$

The value of $V_{H L}$ can be obtained by differentiating this equation and substituting $\partial v_{0} / \partial v_{l}=-1$ and $v_{l}=V_{L}$,

$$
\begin{equation*}
V_{l l}=V_{t}+\frac{V_{D D}-V_{t}}{\sqrt{r(r+1)}} \tag{10.35}
\end{equation*}
$$

The threshold voltage V_{M} (or $\dot{V}_{t h}$) is by definition the value of v_{l} for which $v_{O}=v_{l}$,

$$
\begin{equation*}
V_{M}=V_{t}+\frac{V_{D D}-V_{t}}{\sqrt{r+1}} \tag{10.36}
\end{equation*}
$$

Finally, the end of the region II segment (point C) can be found by substituting $v_{0}=$ $v_{t}-V_{t}$ in Eq. (10.34), the condition for Q_{N} leaving saturation and entering the triode region

- Region III (segment CD)

This is a short segment that is not of great interest. Point D is characterized by $v_{o}=V_{t}$.

- Region IV (segment DE)

Equating $i_{D N}$ from Eq. (10.30) to $i_{D P}$ from Eq. (10.31) and substituting $k_{n}=r k_{p}$ results in

$$
\begin{equation*}
v_{O}=\left(v_{t}-V_{t}\right)-\sqrt{\left(v_{I}-V_{t}\right)^{2}-\frac{1}{r}\left(V_{D D}-V_{t}\right)^{2}} \tag{10.37}
\end{equation*}
$$

The value of $V_{I H}$ can be determined by differentiating this equation and setting $\partial v_{0} / \partial v_{I}=-1$ and $v_{I}=v_{I I I}$,

$$
\begin{equation*}
V_{I H}=V_{t}+\frac{2}{\sqrt{3 r}}\left(V_{D D}-V_{t}\right) \tag{10.38}
\end{equation*}
$$

The value of $V_{O L}$ can be found by substituting $v_{I}=V_{D D j}$ into Eq. (10.37)

$$
\begin{equation*}
V_{O L}=\left(V_{D D}-V_{t}\right)\left[1-\sqrt{1-\frac{1}{r}}\right] \tag{10.39}
\end{equation*}
$$

The static current conducted by the inverter in the low-output state is found from Eq. (10.31) as

$$
\begin{equation*}
I_{\text {stat }}=\frac{1}{2} k_{p}\left(V_{D D}-V_{t}\right)^{2} \tag{10.40}
\end{equation*}
$$

Finally, we can usc Eqs. (10.35) and (10.39) to determine $N M_{L}$ and Eqs. (10.33) and (10.38) to determine $N M_{H}$

$$
\begin{gather*}
N M_{L}=V_{t}-\left(V_{D D}-V_{t}\right)\left[1-\sqrt{1-\frac{1}{r}}-\frac{1}{\sqrt{r(r+1)}}\right] \\
N M_{H}=\left(V_{D D}-V_{t}\right)\left(1-\frac{2}{\sqrt{3 r}}\right) \tag{10.42}
\end{gather*}
$$

As a final observation, we note that since $V_{D D}$ and $V_{,}$are determined by the process technology, the only design parameter for controlling the values of $V_{O L}$ and the noise margins is the ratio r.

10.4.4 Dynamic Operation

Analysis of the inverter transient response to determine $t_{P /, / /}$ with the inverter loaded by a capacitance C is identical to that of the complementary CMOS inverter. The capacitance will be charged by the current $i_{D P}$; we can determine an estimate for $t_{P L H}$ by using the average value of $i_{D P}$ over the range $v_{O}^{\prime}=0$ to $v_{O}=V_{D D} / 2$. The result is the following approximate expression (where we have assumed $V_{t} \cong 0.2 V_{D D}$):

$$
\begin{equation*}
t_{P L H}=\frac{1.7 C}{k_{p} V_{D D}} \tag{10.43}
\end{equation*}
$$

The case for the capacitor discharge is somewhat different because the current $i_{D p}$ has to be subtracted from $i_{D N}$ to determine the discharge current. The result is the approximate expression

$$
t_{p / M} \cong \frac{1.7 C}{k_{n}\left(1-\frac{0.46}{r}\right) V_{D D}}
$$

which, for a large value of r, reduces to

$$
t_{P H L} \cong \frac{1.7 C}{k_{n} V_{D D}}
$$

Although these are identical formulas to those for the complementary CMOS inverter, the pseudo-NMOS inverter has a special problem: Since k_{p} is r times smaller than $k_{n}, t_{P L H}$ will be r times larger than $t_{P \text { Ill }}$. Thus the circuil exhibits an asymmetrical delay performance Recall, however, that for gates with large fan-in, pseudo-NMOS requires fewer transistors and thus C can be smaller than in the corresponding complementary CMOS gate.

10.4.5 Design

The design involves selecting the ratio r and the (W / L) for one of the transistors. The value of (W / L) for the other device can then be obtained using r. The design parameters of interest are $V_{O L}, N M_{t}, N M_{t}, I_{\text {sala }}, P_{D}, t_{P / / l}$, and $t_{P H L}$. Important design considerations are as follows:

1. The ratio r determines all the breakpoints of the VTC; the larger the value of r, the lower $V_{O L}$ is (Eq. 10.3) and the wider the noisc margins are (Eqs. 10.41 and 10.42), However, a larger r increases the asymmetry in the dynamic response and, for a given $(W / L)_{p}$, makes the gate larger. Thus siclecting a value for r represents a compromise
between noise margins on the one hand and silicon area and t_{p} on the other. Usually, r is selected in the range 4 to 10 .
2. Once r has been determined, a value for $(W / L)_{p}$ or $(W / L)_{n}$ can be selected and the other determincd. Here, one would select a small ($W / L)_{n}$ to keep the gate area small and thus obtain a small value for C. Similarly, a small $(W / L)_{p}$ keeps $I_{\text {staa }}$ and P_{D} low. On the other hand, one would want to select larger (W / L) ratios to obtain low t_{p} and hus fast response. For usual (high-speed) applications, (W/L) $)_{p}$ is sclected so that $i_{\text {sal }}$ is in the range of $50100 \mu \mathrm{~A}$, which for $V_{D D}=5 \mathrm{~V}$ results in P_{D} in the range of 0.25 mW to 0.5 mW .

10.4.6 Gate Circuits

Except for the load device, the pseudo-NMOS gate circuit is identical to the PDN of the complementary CMOS gate. Four-input pseudo-NMOS NOR and NAND gates are shown in Fig. 10.22. Note that each requires five transistors compared to the eight used in complementary CMOS. In pseudo-NMOS, NOR gates are preferred over NAND gates since the former do not utilize transistors in series, and thus can be designed with minimum-size NMOS devices.

10.4.7 Concluding Remarks

Pseudo-NMOS is particularly suited for applications in which the output remains high most of the time. In such applications, the static power dissipation can be reasonably low (sincc the gate dissipates static power only in the low-output state). Further, the output transitions that mattcr would presumably be high-to-low ones where the propagation delay can be made as short as necessary. A particular application of ens type can be found ine design of add dccoders for memory chips (Section 11.5) and in read-only memories (Section 11.6).

FIGURE 10.22 NOR and NAND gates of the pseudo-NMOS type.

25 Mer EMos

Consider a pseudo-NMOS inverter fabricated in the CMOS technology specified in Examplc 10 for which $\mu_{n} C_{o x}=115 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=30 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=-V_{t p}=0.4 \mathrm{~V}$, and $V_{D D}=2.5 \mathrm{~V}$. Let the W / L ratio of Q_{N} be $(0.375 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m})$ and $r=9$. Find:
(a) $V_{O H}, V_{O L}, V_{I L}, V_{I W}, V_{M}, N M_{H}$, and $N M_{L}$
(b) $(W / L)_{p}$
(c) $I_{\text {sat }}$ and P_{D}
(d) $t_{P L H}, t_{P H L}$, and t_{P}, assuming a total capacitance at the inverter output of 7 fF

Solution

(a) $V_{O H}=V_{D D}=2.5 \mathrm{~V}$
$V_{O L}$ is determined from Eq. (10.39) as

$$
V_{O L}=(2.5-0.4)\left[1-\sqrt{1-\frac{1}{9}}\right]=0.12 \mathrm{~V}
$$

$V_{L L}$ is determined from Eq. (10.35) as

$$
V_{I L}=0.4+\frac{2.5-0.4}{\sqrt{9(9+1)}}=0.62 \mathrm{~V}
$$

$V_{I H}$ is determined from Eq. (10.38) as

$$
V_{I H}=0.4+\frac{2}{\sqrt{3 \times 9}} \times(2.5-0.4)=1.21 \mathrm{~V}
$$

V_{M} is determined from Eq. (10.36) as

$$
V_{M}=0.4+\frac{2.5-0.4}{\sqrt{9+1}}=1.06 \mathrm{~V}
$$

The noise margins can now be determined as

$$
\begin{aligned}
& N M_{H}=V_{O I I}-V_{I I I}=2.5-1.21=1.29 \mathrm{~V} \\
& N M_{L}=V_{I I}-V_{O L}=0.62-0.12=0.50 \mathrm{~V}
\end{aligned}
$$

Observe that the noise margins are not equal and that $N M_{L}$ is rather low.
(b) The (W / L) ratio of Q_{p} can be found from

$$
\begin{gathered}
\frac{\mu_{\mu} C_{o x}(W / L)_{n}}{\mu_{p} C_{o x}(W / L)_{p}}=9 \\
\frac{115 \times \frac{0.375}{0.25}}{30(W / L)_{p}}=9
\end{gathered}
$$

Thus

$$
(W / L)_{p}=0.64
$$

(c) The dc current in the low-output state can be determined from Eq. (10.40), as

$$
I_{\text {tatat }}=\frac{1}{2} \times 30 \times 0.64(2.5-0.4)^{2}=42.3 \mu \mathrm{~A}
$$

The static power dissipation can now be found from

$$
P_{D}=I_{\text {staa }} v_{D D}
$$

$$
=42.3 \times 2.5=106 \mu \mathrm{~W}
$$

(d) The low-to-high propagation delay can be found from Eq. (10.43), as

$$
t_{P L H}=\frac{1.7 \times 7 \times 10^{-15}}{30 \times 10^{-6} \times 0.64 \times 2.5}=0.25 \mathrm{~ns}
$$

Thc high-to-low propagation delay can be found from Eq. (10.45), as

$$
t_{P I I L}=\frac{1.7 \times 7 \times 10^{-15}}{115 \times 10^{-6} \times \frac{0.375}{0.25} \times 2.5}=0.03 \mathrm{~ns}
$$

Now, the propagation delay can be determined, as

$$
t_{P}=\frac{1}{2}(0.25+0.03)=0.14 \mathrm{~ns}
$$

Although the propagation delay is considerably greater than that of the complementary CMOS inverter of Example 10.1, this is not an entirely fair comparison: Recall that the advantage of pseudo-NMOS occurs in gates with large fan-in, not in a single invertcr.

EXERCISES

010.6. While keeping: unchaigsed, redesign the itverter circuit of Example 10.3 to Iower its static power di
 as sumine that C remains unchansed. Would the noise margins change?
Ans. $(W / L)_{n}=1.5:(W / L)_{p}=0.32,0.5 \mathrm{~ns} ; 0.03 \mathrm{~ns}, 0.27 \mathrm{~ns}$. no

 0.11 ns tplit $=0.03 \mathrm{~ns} \cdot t_{p}=0.07 \mathrm{~ns}$

10.5 PASS-TRANSISTOR LOGIC CIRCUITS

A conceptually simple approach for implementing logic functions utilizes series and parallel combinations of switches that are controlled by input logic variables to connect the input and output nodes (see Fig. 10.23). Each of the switches can be implemented either by a single NMOS transistor (Fig. 10.24a) or by a pair of complementary MOS transistors connected in what is known as the CMOS transmission-gate configuration (Fig. 10.24b). The result is a simple form of logic circuit that is particularly suited for some special logic functions and is frequently used in conjunction with complementary CMOS logic to implement such functions efficiently.
Because this form of logic utilizes MOS transistors in the series path from input to output, to pass or block signal transmission, it is known as pass-transistor logic (PTL). As mentioned earlier, CMOS transmission gates are frequently employed to implement the switches, giving this logic-circuit form the alternative name, transmission-gate logic. The terms arc used interchangeably independent of the actual implementation of the switches.

FIGURE 10.23 Conceptual pass-transistor logic gates. (a) Two switches, controlled by the input variables B and C, when conncctcd in series in the path betwen rthe input node to which an input wariable A is applied are connecled in parallel, the funclion realizcd is $Y=A(B+C)$,

Though conceptually simple, pass-transistor logic circuits have to be designed with care. In the following, we shall study the basic principles of PTL circuit design and present examples of its application.

10.5.1 An Essential Design Requirement

An essential requirement in the design of PTL circuits is ensuring that every circuit node has at all times a low-resistance path to $V_{D D}$ or ground. To appreciate this point, consider the situation depicted in Fig. 10.25(a): A switch S_{1} (usually part of a larger PTL network, not shown) is used to form the AND function of its controlling variable B and the variable A available at the output of a CMOS inverter. The output Y of the PTL circuit is shown connected to the input of another inverter. Obviously, if B is high, S_{1} closes and $Y=A$. Node Y will then be connected either to $V_{D D}$ (if A is high) through Q_{2} or to ground (if A is low) through Q_{1}. But, what happens when B goes low and S_{1} opens? Node Y will now become a high-impedance node. If initially, v_{y} was zero, it will remain so. However, if initially, v_{r} was high at $V_{D D}$, this voltage will be maintained by the charge on the parasitic capacitance C, but for only a time: The inevitable leakage currents will slowly discharge C, and v_{y} will diminish correspondingly. In any case, the circuit can no longer be considered a static combinational logic circuit.

The problem can be easily solved by establishing for node Y a low-resistance path that is activated when B goes low, as shown in Fig. 10.25 (b). Here, another switch. S_{2}, controlled by B is connected between Y and ground. When B gocs low, S_{2} closes and establishes a low resistance path between Y and ground.

FIGURE 10.25 A basic design requirement of PTL circuits is that every node have, at all times, a lowresistance path to either ground or $V_{D D}$. Such a path does not exist in (a) when B is low and S, is open, It is provided in (b) through switch S_{2}

10.5.2 Operation with NMOS Transistors as Switches

Implementing the switches in a PTL circuit with single NMOS transistors results in a simple circuit with small area and small node capacitances. These adyantages, however, are obtained at the expense of serious shortcomings in botb the static characteristics and the dynamic performance of the resulting circuits. To illustrate, consider the circuit shown in Fig. 10.26, where an NMOS transistor Q is used to implement a switch connecting an input node with voltage v_{r} and an output node. The total capacitance between the output node and ground is represented by capacitor C. The switch is shown in the closed state with the control signal applied to its gate being high at $V_{D D}$. We wish to analyze the operation of the circuit as the input voltage v_{I} goes high (to $V_{D D}$) at time $t=0$. We assume that initially the output voltage v_{O} is zero and capacitor C is fully discharged.
When v_{1} goes high, the transistor operates in the saturation mode and delivers a current i_{D} to charge the capacitor,

$$
\begin{equation*}
i_{D}=\frac{1}{2} k_{n}\left(V_{D D}-v_{O}-V_{t}\right)^{2} \tag{10.46}
\end{equation*}
$$

where $k_{n}=k_{n}^{\prime}(W / L)$, and V_{t} is determined by the body effect since the source is at a voltage v_{o} relative to the body, thus (see Eq. 4.33),

$$
\begin{equation*}
V_{t}=V_{r 0}+\gamma\left(\sqrt{v_{0}+2 \phi_{f}}-\sqrt{2 \phi_{f}}\right) \tag{10.47}
\end{equation*}
$$

FIGURE 10.26 Operation of the NMOS transistor as a switch in the implementation of PTL circuis. This analysis is for the case with the switch closed $\left(v_{C}\right.$ is high) and the input going high $\left(v_{l}=V_{D D}\right)$.

FIGURE 10.27 Operation of the NMOS switch as the input goes low ($\left(y_{t}=0 \mathrm{~V}\right)$. Note that the drain of an NMOS transistor is always higher in voltagc than the source; correspondingly, the drain and source termi-
nals interchange roles in comparison to the circuit in Fig. 10.26 .

Thus, initially (at $t=0$), $V_{t}=V_{t 0}$ and the current i_{D} is relatively large. However, as C charges up and v_{O} rises, V_{t} increases (Eq. 10.47) and i_{D} decreases. The latter effect is due to both the increase in v_{o} and in V_{t}. It follows that the process of charging the capacitor will be relatively slow. More seriously, observe from Eq. (10.46) that i_{D} reduces to zero when v_{0} reaches $\left(V_{D D}-V_{V}\right)$. Thus the high output voltage ($V_{O H}$) will not be equal to $V_{D D}$; rather, it will be lower by $V_{\text {, }}$, and to make matters worse, the value of V_{f} can be as high as 1.5 to 2 times $V_{r 0}$!

In addition to reducing the gate noise immunity, the low value of $V_{O I I}$ (commonly referred to as a "poor 1") has another detrimental effect: Consider what happens when the output node is connected to the input of a complementary CMOS inverter (as was the case in Fig. 10.25). The low value of $V_{\text {OII }}$ can cause Q_{P} of the load inverter to conduct. Thus the inverter will have a finite static current and static power dissipation.

The propagation delay $t_{P I I J}$ of the PTL gate of Fig. 10.26 can be determined as the time for v_{0} to reach $V_{0,1} / 2$. This can be calculated using techniques similar to those employed in the preceding sections, as will be illustrated shortly in an example.

Figure 10.27 shows the NMOS switch circuit when v_{l} is brought down to 0 V . We assume that initially $v_{O}=V_{D D}$. Thus at $t=0+$, the transistor conducts and operates in the saturation region,

$$
\begin{equation*}
i_{D}=\frac{1}{2} k_{n}\left(V_{D D}-V_{t}\right)^{2} \tag{10.48}
\end{equation*}
$$

where we note tbat since the source is now at 0 V (note that the drain and source have interchanged roles), there will be no body effect, and V_{r} remains constant at $V_{t 0}$. As C discharges, v_{o} decreases and the transistor enters the triode region at $v_{O}=V_{D D}-V_{V}$. Nevertheless, the capacitor discharge continues until C is fully discharged and $v_{O}=0$. Thus, the NMOS tran-
sistor provides $V_{O L}=0$, or a "good 0 ." Again, the propagation delay $t_{P H L}$ can be determined using usual techniques, as illuscrated by the following example.

HTMA 3

Consider the NMOS transistor switch in the circuits of Figs. 10.26 and 10.27 to be fabricated in a technology for wbich $\mu_{n} C_{a x}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=20 \mu \mathrm{~A} / \mathrm{V}^{2},\left|V_{t}\right|=1 \mathrm{~V}, \gamma=0.5 \mathrm{~V}^{1 / 2}, 2 \phi_{f}=$ 0.6 V , and $V_{D D}=5 \mathrm{~V}$. Let the transistor be of the minimum size for this technology, namely, $4 \mu \mathrm{~m} /$ $2 \mu \mathrm{~m}$, and assume that the total capacitance between the output node and ground is $C=50 \mathrm{fF}$.
(a) For the case wilh v_{l} high (Fig. 10.26), find $V_{O H}$.

987
(b) If the output fceds a CMOS inverter whose $(W / L)_{n}=2.5(W / L)_{n}=10 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$, find the static current of the inverter and its power dissipation when its input is at the value found in (a). Also find the inverter output voltage.
(c) Find $t_{P L I I}$.
(d) For the case with v_{l} going low (Fig. 10.27), find $t_{\text {PHL }}$
(e) Find t_{p}.

Solution
(a) Refer to Fig. 10.26. $V_{O H}$ is the valuc of v_{o} at which Q stops conducting,

$$
V_{D D}-V_{O H I}-V_{t}=0
$$

thus,

$$
V_{O H}=V_{D D}-V_{t}
$$

where V_{t} is the value of the threshold voltage at a source-body reversed bias equal to $V_{O H}$. Using Eq. (10.47),

$$
\begin{aligned}
V_{t} & =V_{t 0}+\gamma\left(\sqrt{V_{O I I}+2 \phi_{f}}-\sqrt{2 \phi_{f}}\right) \\
& =V_{t 0}+\gamma\left(\sqrt{V_{D D}-V_{t}+2 \phi_{f}}-\sqrt{2 \phi_{f}}\right)
\end{aligned}
$$

Substituting $V_{t 0}=1, \gamma=0.5, V_{D D}=5$, and $2 \phi_{f}=0.6$, we obtain a quadratic equation in V_{f} whose solution yiclds

$$
V_{t}=1.6 \mathrm{~V}
$$

Thus

$$
V_{O H}=3.4 \mathrm{~V}
$$

Note that this represents a significant loss in signal amplitudc.
(b) The load inverter will have an input signal of 3.4 V . Thus, its Q_{P} will conduct a current of

$$
i_{D H^{H}}=\frac{1}{2} \times 20 \times \frac{10}{2}(5-3.4-1)^{2}=18 \mu \mathrm{~A}
$$

Thus, the static power dissipation of the inverter will be

$$
P_{D}=V_{D D} i_{D P}=5 \times 18=90 \mu \mathrm{~W}
$$

The output voltage of the inverter can be fouud by uoting that Q_{N} will be operating in the triode region. Equating its current to that of Q_{P} (i.e., $18 \mu \mathrm{~A}$) enables us to determinc the output voltage
to be 0.08 V . to be 0.08 V .
(c) To determine $t_{P L f}$, we need to find the current i_{ν} at $t=0$ (where $v_{0}=0, V_{t}=V_{t 0}=1 \mathrm{~V}$) and at $t=t_{P L H}$ (where $v_{0}=2.5 \mathrm{~V}, V_{t}$ to be deternincd), as follows

$$
\begin{aligned}
i_{D}(0) & =\frac{1}{2} \times 50 \times \frac{4}{2} \times(5-1)^{2}=800 \mu \mathrm{~A} \\
V_{t}\left(\mathrm{at} v_{O}=2.5 \mathrm{~V}\right) & =1+0.5(\sqrt{2.5+0.6}-\sqrt{0.6})=1.49 \mathrm{~V} \\
i_{D}\left(t_{P L H}\right) & =\frac{1}{2} \times 50 \times \frac{4}{2}(5-2.5-1.49)^{2}=50 \mu \mathrm{~A}
\end{aligned}
$$

We can now compute the average discharge current as

$$
\left.i_{D}\right|_{\mathrm{iv}}=\frac{800+50}{2}=425 \mu \mathrm{~A}
$$

and $t_{P / I I}$ can be found as

$$
\begin{aligned}
t_{P L H} & =\frac{C\left(V_{D D} / 2\right)}{\left.i_{D}\right|_{\mathrm{av}}} \\
& =\frac{50 \times 10^{-15} \times 2.5}{425 \times 10^{-6}}=0.29 \mathrm{~ns}
\end{aligned}
$$

(d) Refer to the circuit in Fig. 10.27. Observe that, here, V_{t} remains constant at $V_{t 0}=1 \mathrm{~V}$. The drain current at $t=0$ is

$$
i_{D}(0)=\frac{1}{2} \times 50 \times \frac{4}{2}(5-1)^{2}=800 \mu \mathrm{~A}
$$

At $t=t_{P H L}, Q$ will be operating in the triode region, and thus

$$
\begin{aligned}
i_{D}\left(t_{P H I}\right) & =50 \times \frac{4}{2}\left[(5-1) \times 2.5-\frac{1}{2} \times 2.5^{2}\right] \\
& =690 \mu \mathrm{~A}
\end{aligned}
$$

Thus, the average discharge current is given by

$$
i_{\left.D\right|_{\mathrm{av}}}=\frac{1}{2}(800+690)=740 \mu \mathrm{~A}
$$

and $t_{\text {P/LL }}$ can he determined as

$$
t_{P H L}=\frac{50 \times 10^{-15} \times 2.5}{740 \times 10^{-6}}=0.17 \mathrm{~ns}
$$

(e) $t_{P}=\frac{1}{2}\left(t_{P L H}+t_{\text {PHL }}\right)=\frac{1}{2}(0.29+0.17)=0.23 \mathrm{~ns}$

Example 10.4 illustrates clearly the problem of signal-level loss and its delctcrious effect on the operation of the succeeding CMOS inverter. Some rather ingenious techniques have been developed to restore the output level to $V_{D D}$. We shall bricfly discuss two such tech niques. One is circuit-based and the other is based on process technology.

The circuit-based approach is illustrated in Fig. 10.28. Here, Q_{1} is a pass-transistor controlled by input B. The output node of the PTL network is connected to the input of a com plementary inverter formed by Q_{N} and Q_{P}. A PMOS transistor Q_{R}, whose gate is controlled blementary inverler lormed by Q_{N} and Q_{P}. A PMOS transistor Q_{R}, whose gate is controllec by the output volage of the inverter, v_{02}, has been added to the circuit. Observe that in the Q_{R} will be off. On the other hand, if v_{0} is high but not quite equal to $V_{\text {wo }}$ the output of the

FIGURE 10.28 The use of transistor Q_{R}, connected in a feedback loop around the CMOS inverere, to restore the $V_{\text {OIt }}$ level, produced by Q_{i},
inverter will be low (as it should be) and Q_{R} will turn on, supplying a current to charge C up to $V_{D D}$. This process will stop when $v_{O 1}=V_{D D}$, that is, when the output voltage has been restored to its proper level. The "level-restoring" function performed by Q_{P} is frequently restored to its proper level. Tircui deveign. It should be noted that although the description of
employed in MOS digital-circuit operation is relatively straightforward, the addition of $Q_{\mathcal{R}}$ closes a "positive-feedback" loop around the CMOS inverter, and thus operation is more involved than it appears, especially around the CMOS inverter, and thus operation is more involved than it appears, especially although normally k_{r} is selected to he much lower than k_{n} (say a third or a fifth as large) Intuitively, this is appealing, for it implies that Q_{R} will not play a major role in circuit operation, apart from restoring the level of $V_{O I}$ to $V_{D D}$, as explained [sec Rabacy (1996)]. Transistor Q_{R} is said to be a "weak PMOS transistor."

The other technique for correcting for the loss of the high-output signal level $\left(V_{O H}\right)$ is a technology-based solution. Specifically, recall that the loss in the value of $V_{O H}$ is equal to V_{m}. It follows that we can reduce the loss by using a lower value of $V_{t n}$ for the NMOS switches, and we can eliminate the loss altogether by using devices for which $V_{n n}=0$. These zero-threshold devices can be fabricated by using ion implantation to control the value of V_{m} and are known as natural deviccs.

10.5.3 The Use of CMOS Transmission Gates as Switches

Great improvements in static and dynamic perforinance are obtained when the switches are implemented with CMOS transmission gates. The transmission gate utilizes a pair of complementary transistors connected in parallel. It acts as an excellent switch, providing bidirectional current flow, and it cxhibits an on-resistance that remains alınost constant for wide ranges of input voltage. These characteristics make the transmission gate not only an excellent switch iu digital applications but also an excellent analog switch in such applications as data converters (Chapter 9) and switched-capacitor filters (Chapter 12).

Figure 10.29 (a) shows the transmission-gate switch iu the "on" position with the input, v_{l}, rising to $V_{D D}$ at $t=0$. Assuming, as before, that initially the output voltage is zero, we see that Q_{N} will be operating in saturation and providing a charging current of

$$
i_{D N}=\frac{1}{2} k_{n}\left(V_{D D}-v_{O}-V_{t n}\right)^{2}
$$

where, as in the case of the single NMOS switch, $V_{m n}$ is determined by the body effect,

$$
V_{t n}=V_{t 0}+\gamma\left(\sqrt{v_{o}+2 \phi_{f}}-\sqrt{2 \phi_{f}}\right)
$$

Transistor Q_{N} will conduct a diminishing current that reduces to zero at $v_{O}=V_{D D}-V_{m n}$. Observe, however, that Q_{P} operates with $V_{S G}=V_{D D}$ and is initially in saluration,

$$
\begin{equation*}
i_{D P}=\frac{1}{2} k_{p}\left(V_{D D}-\left|V_{t p}\right|\right)^{2} \tag{10.51}
\end{equation*}
$$

where, since the body of Q_{P} is connected to $V_{D D},\left|V_{t p}\right|$ remains constant at the value $V_{t 0}$, assumed to be the same valuc as for the n-channcl device. The total capacitor-charging current is the sum of $i_{D N}$ and $i_{D P}$. Now, Q_{P} will enter the triode region at $v_{o}=\left|V_{t p}\right|$, but will continue to conduct until C is fully charged and $v_{O}=V_{O I I}=V_{D D}$. Thus, the p-channel device will provide the gate with a "good 1 ." The valuc of $t_{P L H}$ can be calculated using usual techniques, where we expect that as a rcsult of the additional current available from the PMOS device, for the same value of $C, t_{P I I}$ will be lower than in the case of the single NMOS switch. Note, however, that adding the PMOS transistor increases the value of C.

When v_{l} goes low, as shown in Fig. $10.29(\mathrm{~b}), Q_{N}$ and Q_{P} interchange roles. Analysis of the circuit in Fig. 10.29(b) will indicate that Q_{P} will cease conduction when v_{o} falls to $V_{t p} \mid$,

FIGURE 10.29 Operation of the transmission gate as a switch in PTL circuits with (a) v_{1} high and (b) v_{l} low.
where $\left|V_{t p}\right|$ is given by

$$
\begin{equation*}
\left|V_{t p}\right|=V_{t 0}+\gamma\left[\sqrt{V_{D D}-v_{Q}+2 \phi_{f}}-\sqrt{2 \phi_{f}}\right] \tag{10.52}
\end{equation*}
$$

Transistor Q_{N}, however, continues to conduct until C is fully discharged and $v_{O}=V_{O L}=0 \mathrm{~V}$, a "good 0."
We conclude that transmission gates provide far superior performance, both static and dynamic, than is possible with single NMOS switches. The price paid is increased circuit complexity, area, and capacitance.

ExERCISE

 5. Let Q_{N} and Q_{r}. st you need.
as you need:

 Witco of vo wille turn off
(c) Find tr

Ans. (a) $800 \mu \mathrm{~A}, 320 \mu \mathrm{~A}, 50 \mu \mathrm{~A}, 275 \mathrm{~A}, 0.24 n \mathrm{n}$, (b) $800 \mu \mathrm{~A}, 320 \mu \mathrm{~A}, 688 \mu \mathrm{~A}, 20 \mu \mathrm{~A}, 0.99 \mathrm{~ns} .16 \mathrm{~V}$, (c) 022 ns

10.5.4 Pass-Transistor Logic Circuit Examples

We conclude this section by showing examples of PTL logic circuits. Figurc 10.30 shows PTL realization of a two-to-one multiplexer: Depending on the logic value of C, either A o B is connecled to the output Y. The circuit realizes the Boolean function

$$
Y=C A+\bar{C} B
$$

Our second example is an efficient realization of the exclusive-OR (XOR) function. The circuit, shown in Fig. 10.31, utilizes four transistors in the transmission gates and another four for he two inverters needed to gencrate the complements \bar{A} and \bar{B}, for a total of cight transistors. Note that 12 transistors are needed in the realization with complementary CMOS
Our final PTL example is the circuit shown in Fig. 10.32. It uses NMOS switches with low or zero threshold. Observe that both the input variables and their complements are

FIGURE 10.30 Rcalization of a two-to-one mul. tiplexer using pass-transistor logic.

FIGURE 10.32 An example of a pass-rransistor logic gate utilizing both the input variables and thei complements. This typc of circuit is therefore know as complenentary pass-transistor logic or CPL. . . Note hat boih the output function and its complement ar generated
mployed and that the circuit gencrates both the Boolean function and its complement. Thu this form of circuit is known as complementary pass-transistor logic (CPL). The circuit consists of two identical networks of pass transistors with the corresponding transistor gates controlled by the same signal (B and \bar{B}). The inputs to the PTL, however, are comple mented: A and B for the first network, and \bar{A} and \bar{B} for the second. The circuit shown realize both the AND and NAND functions.

EXRCISE

 the same:
6) Thes signats at eminils 5 er 6 interchangcd as in () : and the sisnalsit 2 and 4 changed to 4 atd A respectively. All the test icmain the same:
 XNOR)

10.5.5 A Final Remark

Although the use of zero-threshold devices solves the problem of the loss of signal levels then NMOS switches are used, the resulting circuits can be much more sensitive to nois and other effects, such as leakage currents resulting from subthreshold conduction.

10.6 DYNAMIC LOGIC CIRCUITS

The logic circuits that we have studied thus far are of the static type. In a static logic circuit, every node bas, at all times, a low-resistance path to $V_{D D}$ or ground. By the same token, the olage of each node is well defined at all times, and no node is left floating. Static circuit o oner for purposes In contrast, the dynamic logic circuits we are about to discus ely on the storage of signal voltages on parasitic capacitances at certain circuit nodes. Since harge will leak away with time the circuits need to be periodically refreshed; thus the presence of a clock with a certain specificd minimum frequency is essential.

To place dynamic-logic-circuit techniques into perspective, let's take stock of the various logic-circuit styles we have studicd. Complementary CMOS excels in nearly every perfor mance category: It is easy to design, has the maximum possible logic swing, is robust irom now-to-high and high-to-low propagation delays. Its main disadvantage is the requirement trasistors for each adlitional gate inpul, which for high fan in gates can make the chip e large and increase the total capacitance and, correspondinoly, the propagation delay and the dynamic power dissipation. Pseudo-NMOS reduces the number of required transis ors at the expense of static power dissipation. Pass-transistor logic can result in simple mall-arca circuits but is limited to special applications and requires the use of complemen ary inverters to restore signal levels, especially when the switches are simple NMO ansistors. The dynamic logic techniques studied in this section maintain the low device unt of preado NMOS whic reducing the static powe disipation to zero. As will be seen, . As will be seen,

10.6.1 Basic Principle

Figure 10.33 (a) shows the basic dynannic-logic gate. It consists of a pull-down network (PDN) that realizes the logic function in cxactly the same way as the PDN of a complementary CMOS gate or a pseudo-NMOS gate. Here, however, we have two switches in series that are periodically operated by the clock signal ϕ whose waveform is shown in Fig. 10.33(b). When ϕ is low, Q_{p} is turned on, and the circuit is said to be in the setup or precharge phase. When ϕ is high, Q_{p} is off and Q_{e} turns on, and the circuit is in the evaluation phase. Finally, note hat C_{L} denotes the total capacitance between the oulput node and ground
During precharge, Q_{D} conducts and charges capacitance C_{L} so that, at the end of the precharge interval, the voltage at Y is equal to $V_{D D}$. Also during precharge, the inputs A, B and C are allowed to change and settle to their proper values. Observe that because Q_{e} is off no path to ground exists.

FIGURE 10.33 (a) Basic structure of dynamic-MOS logic circuits. (b) Waveform of the clock needed to operate the dynamic logic circuit. (c) An example circuit.

During the evaluation phase, Q_{p} is off and Q_{e} is turned on. Now, if the input combination is one that corresponds to a high output, the PDN does not conduct (just as in a complemen tary CMOS gate) and the output remains high at $V_{D D}$, thus $V_{O H}=V_{D D}$. Observe that n low-to-high propagation delay is required, thus $\tau_{p / / /}=0$. On the other hand, if the combin PIDN will condict and establish a path between the ouput node and ground throush the n-transistor Q Thus C_{l} will be discharged through the PDN and the voltage at the outp wactly the same way as for a complementary CMOS circuit axcept that here we han dditionl transistor, $Q_{\text {e }}$ in the series path to ground Although this will increase he delay listly, the increse will be mere than offet by teduced . a rult of the As the PUN
As an example, we show in Fig. 10.33(c) the circuit that realizes the function $Y=\overline{A+B C}$ sizing of the PDN transistors often follows the same procedurc employed in the design of harged during the precharge interval The size of Q howe ${ }_{2}$, acitance C_{L} will not be inced sizifice $Q_{\text {a }}$, This is a raid fom capacitance C_{L} will not be increased significantly. This is a ratioless form of MOS logic, where the output levels do not depend on the transislors' W / L ratios.

SXERCISES

10.10 Consider the prechatse operation with the eate of Q_{p}, alling io $0 V$ and astune hat at $=0, C_{L} \mathrm{~s}$ fully discharged. We wish to cleclate the rise tine of the outpot vollase detined as the iline for y , 0 rise from compute an approximate athe for 1 Find the cuirrent aty where I is the average value of the two currents.
Ans. $480 \mu \mathrm{~A}, 112 \mu \mathrm{~A}: 0.4 \mathrm{~ns}$
10.11 Next, consider the compultation of the highto-low propagation detay t F F Fid the equivalent W / L ratio of the five NMOS transitors in serics. Then, find the discharge curent at $v=5 \mathrm{~V}$ and at $v_{4}=2.5 \mathrm{~V}$ Finally, use the exctage of these two currents to compute at approximate value for tifl
Ans. (W/L) . $=0.4: 160 \mu \mathrm{~A}, 138 \mu \mathrm{~A} .15 \mathrm{~ms}$

10.6.2 Nonideal Effects

We now briefly consider various sources of nonideal operation of dynamic logic circuits.
Noise Margins Since, during the evaluation phase, the NMOS transistors begin to con-
luct for $v_{l}=V_{t n}$,

$$
V_{l L} \cong V_{l / \prime} \cong V_{t n}
$$

and thus the noise margins will be

$$
N M_{L}=V_{t n}
$$

$$
N M_{H}=V_{D D}-V_{t n}
$$

Thus the noise margins are far from equal, and $N M_{L}$ is rather low. Although $N M_{H}$ is high, other nonideal effects reduce its value, as we shall shortly see. At this time, however, observe that the output node is a high-impedance node and thus will be susceptible to noise pickup and other disturbances.
Output Voltage Decay Due to Leakage Effects In the absence of a path to ground through the PDN, the output voltage will ideally remain high at $V_{D D}$. This, however, is based on the assumption that the charge on C_{L} will remain intact. In practice, there will be leakage current that will cause C_{L} to slowly discharge and v_{Y} to decay. The principal diffusion of transistors connccted to the output node and the substrate Such currents can有 in
 he clock is oreating a wery low frequency and the output node is not "refreshed" peri dicall. This Chy. 11 in Chapter 11.

Charge Sharing There is another and often more serious way for C_{L} to lose some of its charge and thus cause v_{y} to fall significantly below $V_{D D}$. To see how this can happen, refer to Fig. 10.34(a), which shows only Q_{1} and Q_{2}, the two top transistors of the PDN, together with the precharge transistor Q_{p}. Here, C_{1} is the capacitance between the comınon node of Q_{1} and Q_{2} and ground. At the beginning of the evaluation phase, after Q_{ν} has turned off and with C_{L} charged to $V_{D D}$ (Fig. 10.34a), we assume that C_{1} is initially discharged and that the inputs are such that at the gate of Q_{1} we have a high signal, whereas at the gate of Q_{2} the signal is low. We can easily see that Q_{1} will turn on, and its drain current, $i_{p 1}$, will flow as indicated.

(a)

(b)

FIGURE 10.34 (a) Chargc sharing (b) Adding a sharing problem at the expense of static power dissipation.

Thus $i_{D 1}$ will discharge C_{L} and charge C_{1}. Although eventually $i_{D 1}$ will reduce to zero, C_{L} will have lost some of its charge, which will have been transferred to C_{1}. This phenomenon js known as charge sharing.

We shall not pursue the problem of charge sharing any further here, except to point out a couplc of tbe techniques usually employed to minimize its effect. One approach involves adding a p-channcl device that continuously conducts a snall current to replenish the charge or by $C_{1,}$, lide, however the addcd tor sistor will lower the dissipate static power. On the positive make it less susceptible to noise as well as solving the leake and charge shang noble Another approach to solving the warge-shing preblem is and the is, to precharge capaitor C The price pad in this cas is hal and node capacitances. and node capacitances.

Cascading Dynamic Logic Gates A serious problem arises if one attempts to cascade dynamic logic gates. Consider the situation depicted in Fig. 10.35, where two single-input dynamic gates are connected in cascade. During the precharge phase, $C_{L 1}$ and $C_{L 2}$ will be charged through $Q_{p 1}$ and $Q_{p 2}$, respectively. Thus, at the end of the precharge interval, $v_{Y_{1}}=V_{D D}$ and $v_{Y_{2}}=V_{D D}$. Now consider what happens in the evaluation phase for the case $V_{D D}$. What happens, however is somet result will be Y_{1} low $\left(v_{y_{1}}=0 \mathrm{~V}\right)$ and Y_{2} high ($v_{\gamma_{2}}=$ $\left.V_{D D}\right)$. What happens, however, is somewhat different. As the evaluation phase begins, Q_{1} turns on and $C_{L l}$ begins to discharge. However, simultaneously, Q_{2} turns on and $C_{L 2}$ also begins to discharge. Only when $v_{Y_{1}}$ drops below V_{m} will Q_{2} turn off. Unfortunately, howthan the exped $C_{L 2}$ of V_{10} it is charge has been lost, it cannot be recovered) This problem is sufficiently seric logic, once simple cascading an impractical proposition. As usual, however, the ingenuity of circuit designers has come to recal propin. As usual, how ever, he ingenuity of circuit cading possible in dynamic-logic circuits Wc shall discuss one such scheme after cons. Excrise 10.12 Excrcise 10.12.

Figure 10.35 Two single-input dynamic logic gates connected in cascade. With the input A high, dur ing the evailuation phase $C_{l 2}$ will partially discharge and the output at Y_{2} will fall lower than $V_{D D}$, which can cause logic malfunction.

EXERCISE

 tron the equivalent circuit Futthempre, for the purpose of this approximate analysis, we can replace

 time $\theta_{\text {ch }}$ turns off and $C_{t 2}$ stops discharging A sumpe that hey process technology has the parameter values specified in Example 10:4, that for all NMOS transistors in the circuit of Fig. 10.35 , W/ L 4 im $/ 2$ inn and that $C=C i=40$ I .

FIGURE E10.12

(a) Find $(W / L)_{\text {eq }}$ and $(W / L)_{\text {er }}$
(b) Find the values of t_{ν} at $v_{v_{1}}=V_{D D}$ and at $v_{v}=V_{r}$. Hence determine an average value for $i_{p n}$.
(e) Use the average value of (p) found in (b) to determine an cstimate for the interval Δ.
(d) Find the average value of i_{2} doting Δt. To simplify matters, take the average to be the value of i_{D} ? obtained when the sate voltage 4_{4} is midway trough its excusion (i.e, $\mathrm{y}_{\mathrm{n}}=3 \mathrm{~V}$). (Hint: $Q_{\mathrm{cq} 2}$ will renain in saturation):
(e) Use the value of Δ lound in (e) together with the average value of i_{D}, deternined in (d) to find an estMate of the reduction in . $_{r}$ during st. Hence determine the final value of tr:
Ans, (i) 1, 1, (b) $400 \mu \mathrm{~A}$ and $175 \mu \mathrm{~A}$, for an average value of $288 \mu \mathrm{~A}$, (c) 0.56 ns , (d) $100 \mu \mathrm{~A}$, (e) $\Delta \mathrm{v}_{22}=$ 1.4 V thus on decteascs 103.6 V

GIS.

10.6.3 Domino CMOS Logic

Domino CMOS logic is a form of dynamic logic that results in cascadable gates. Figure 10.36 shows the structure of the Domino CMOS logic gate. We observe that it is simply the basic dynamic-logic gate of Fig. 10.33(a) with a static CMOS inverter connected to its output. Operation of the gate is straightforward. During precharge, X will be raised to $V_{D D}$, and the gate output Y will be at 0 V . During evaluation, depending on the combination of input variables, either X will remain high and thus the output Y will remain low $\left(t_{\text {PHL }}=0\right)$ or X will be brought down to 0 V and the output Y will rise to $V_{D D}$ ($t_{P L H}$ finite). Thus, during evaluation, the output either remains low or makes only one low-to-high transition.

To see why Domino CMOS gates can be cascaded, consider the situation in Fig. 10.37(a), where we show two Domino gates connected in cascade. For simplicity, we show singleinput gates. At the end of precharge, X_{1} will be at $V_{D D}, Y_{1}$ will be at $0 \mathrm{~V}, X_{2}$ will be at $V_{D D}$, and Y_{2} will be at 0 V . As in the preceding case, assume A is high at the beginning of evaluation.

GURE 10.37 (a) Two single-input Donino CMOS logic gates connected in cascade. (b) Waveforms uring the evaluation ohase.

Thus, as ϕ goes up, capacitor C_{L} will begin discharging, pulling X_{1} down. Meanwhile, the low input at the gate of Q_{2} keeps Q_{2} off, and $C_{L 2}$ remains fully charged. When $v_{x 1}$ falls below the threshold voltage of inverter I_{1}, Y_{1} will go up turning Q_{2} on, which in turn begin to discharge $C_{L 2}$ and pulls X_{2} low. Eventually, Y_{2} rises to $V_{D D}$.

From this description, we sec that because the output of the Domino gate is low at the beginning of evaluation, no premature capacitor discharge will occur in the subsequent gate in the cascade. As indicated in Fig. 10.37 (b), output Y_{1} will make a 0 -to-1 transition $t_{p_{L L}}$ seconds after the rising edge of the clock. Subsequently, output Y_{2} makes a 0 -to- 1 transition after another $t_{p L H}$ interval. The propagation of the rising edge through a cascade of gates resembles contiguously placed dominoes falling over, each toppling the next, which is the origin of the name Domino CMOS logic. Domino CMOS logic finds application in the design of address decoders in memory chips, for example.

10.6.4 Concluding Remarks

Dynamic logic presents many challenges to the circuit designer. Although it can provide considerable reduction in the chip-area requirement, as well as high-speed operation, and zero (or little) static-power dissipation, the circuits are prone to many nonideal effects, some of which have been discussed here. It should also be remembered that dynamic-power dissipation is an important issue in dynamic logic. Another factor that should be considered is the "dead time" during precharge when the output of the circuit is not yet available.

10.7 SPICE SIMULATION EXAMPLE

We conclude this chapter with an example illustrating the use of SPICE in the analysis of CMOS digital circuits. To appreciate the need for SPICE, recall that throughout this chapter we have had to make many simplifying assumptions so that manual analysis can be inade possible and also so that the results can be sufficiently simple to yield design insight. This is especially the case in the analysis of the dynamic operation of logic circuits. Computer-aided analysis using SPICE not only obviates the need to make approximations, thus providing accurate results, but it also allows the use of more precise MOSFET models. Such models, of course, are too complex to use in manual analysis.

THMM 53 MS

OPERATION OF THE CMOS INVERTER

In this example, we will use PSpice to simulate the CMOS inverter whose Capture schematic is shown in Fig. 10.38. We will assume a $0.5-\mu \mathrm{m}$ CMOS technology for the MOSFETs and use parts NMOSOP5 and PMOSOP5 whose level-1 model paramcters are listed in Table 4.8. In addition to the channel length L and the channel width W, we have used the multiplicative factor m to specify the dimensions of the MOSFETs. The MOSFET parameter m, whose default value is 1, is used in SPICE to specify the number of unit-size MOSFETs connected in parallel (see Fig. 6.65). In our simulations, we will use unit-size transistors with $L=0.5 \mu \mathrm{~m}$ and $W=1.25 \mu \mathrm{~m}$. We will simulate the inverter for two cascs: (a) setting $m_{p} / m_{n}=1$ so that the NMOS and PMOS transistors have equal widhhs, and (b) setting $m_{p} / m_{n}=\mu_{n} / \mu_{p}=4$ so that the PMOS transistor is four times wider than the NMOS transistor (to compensate for the lower mobility in p-channel devices as compared with n-channel ones). Here, m_{n} and m_{p} are the multiplicative factors of, respectively, the NMOS and PMOS transistors of the inverter.

FIGURE 10.38 Capture schematic of the CMOS inverter in Example 10.5

To compute both the voltage transfer characteristic (VTC) of the inverter and its supply curront at various values of the input voltage $V_{\text {in }}$, we apply a dc voltage source at the input and perform a dc analysis with $V_{\text {in }}$ swept over the range 0 to $V_{p D}$. The resulting VTC is plotted in Fig. 10.39. Note that the slope of the VTC in the switching region (where the NMOS and PMOS devices are both in saturation) is not infinite as predicted from the simple theory presented earlicr (Section 4.10, Fig. 4.55). Rather, the nonzero value of λ causes the inverter gain to be finitc. Using the derivative feature of Probe, we can find the two points on the VTC at $V_{H L}$.Usin inverter gain is unity (i.e., the VTC slope is $-1 \mathrm{~V} / \mathrm{V}$) and, hence, deternine $V_{L L}$ and ${ }_{1 H} 1.34 \mathrm{~V}$. inverter with $m_{n} / m_{n}=1$. Observe that these results correlate rcasonahly well with the values obtained using the approximate formula in Eq. (10.8). Furthermore, note that, with $m_{2} / m_{n}=$ $\mu_{n} / \mu_{p}=4$, the NMOS and PMOS deviccs are closcly matched and, hence, the two noise margins are equal.

The threshold voltage $V_{t h}$ of the CMOS inverter is delined as the input voltage $v_{i_{\mathbb{N}}}$ that results in an identical output voltage $v_{\text {out }}$, that is,

FIGURE 10.39 Inpul-oulput voltage transfer characteristic (VTC) of the CMOS inverter in Example 10.5 with $m_{2} / m_{n}=1$ and $m_{p} / m_{n}=4$.

Thus, as shown in Fig. 10.40, $V_{t h}$ is the intersection of the VTC with the straight line corrcsponding to $v_{\text {out }}=v_{N}$ (this line can be simply gencrated in Probe by plotting $v_{1 N}$ versus $v_{\text {OUl }}$, as shown in Fig. 10.40). Note that $V_{t h} \approx V_{D D} / 2$ for the inverter with $m_{p} / m_{n}=4$. Furthermore, decreasing m_{p} / m_{n} decreases $V_{t h}$ (see earlicr: Exercise 4.44). Figure 10,40 also shows the inverter supply current versus τ_{N}. Observe that the location of the supply-current peak shifts with the threshold voltage.

To investigate the dynamic operation of the inverter with PSpicc, we apply a pulse signal at the input (Fig. 10.38), perform a transient analysis, and plot the input and output waveforms as shown in Fig. 10.41. The rise and fall times of the pulse source are chosen to be very short. Note that increasing m_{p} / m_{n} from 1 to 4 decreases $t_{P L H}$ (from 1.13 ns to 0.29 ns) because of the increased current available to charge C_{L}, with only a minor increase in $t_{\text {PHL }}$ (from 0.33 ns to 0.34 ns$)$. The two propagation delays, $t_{P L H}$ and $t_{P H L}$, are not exactly equal when $m_{p} / m_{n}=4$ because the NMOS and PMOS transistors are still not perfectly matched (e.g., $\left.V_{t n} \neq V_{t p} \mid\right)$.

FIGURE 10.40 (a) Outpul vollage, and (b) supply curent versus input voltage for the CMOS inverter in Example 10.5 with $m_{p} / m_{n}=1$ and $m_{p} / m_{n}=4$.

FIGURE 10.41 Transient response of the CMOS inverter in Examplc 10.5 with $m_{p} / m_{n}=1$ and $m_{p} / m_{n}=4$

SUMMARY

5 Although CMOS is one of four digital IC technologics currently in use (the others are bipolar, BiCMOS and GaAs), it is the most popular. This is due to its zero staticpower dissipation and excellent static and dynamic characteristics. Further, advances in CMOS process technology have made possible the fabrication of MOS trianistors with channel lengths as small as $0.06 \mu \mathrm{~m}$. The high charge storage on capacitors as a means of realizing memry, a technique successfully exploited in both dynamic logic and dynamic memory.
The CMOS inverter is ustually designed using the minimum channcl length for both the NMOS and PMOS ansistors. The width of the NMOS transistor is usually $\mu^{\prime}\left(\mu_{0}\right)$ times that. This latter (matching) condition ensures that the inverter will switch at $V_{D D} / 2$ and gives equal current-driving capabilities in both directions and hence symmetrical propagation delays.
© A simple lechnique for determining the propagation delay of a logic gate is to determine the average current $I_{\text {av }}$ available to charge (or discharge) a load $C\left(V_{D D} / 2\right) / I_{\mathrm{av}}$.

A A complementary CMOS logic gate consists of an NMOS pull-down network (PDN) and a PMOS pull-up network (PUN). The PDN conducts for every input combination that requires a low output. Since an NMOS most directly synthesized from the expression for the low output (\bar{Y}) as a function of the uncomplemented inputs. In a complementary fashion, the PUN conducts for every input combination that corresponds to a high output. Since a PMOS conducts when its input is low, the PUN is mosi directly synthesized from the expression for a high output (Y) as a function of the complemented inputs.

- CMOS logic circuits are usually designed to provide equal current-driving capability in both directions. Furthermore the worst-case value of the pull-up and pull-down currents
are made equal to those of the basic (matched) inverte Transistor sizing is based on this principle and makes uso of the equivalent (W / L) ratios of scries and parallel devices (Eqs. 10.27 and 10.28)
(GW Complementary CMOS logic utilizes two transistors, an NMOS and a PMOS, for each input variable. Thus the circuit complexity, silicon area, and parasitic capacitance all increase with fan-in.
To reduce the device count, two other forms of static CMOS, namely, pseudo-NMOS and pass-rransisto (PTL), are employed in special applications supplements to complementary CMOS.
(祭 Pseudo-NMOS utilizes the same PDN as in complemen tary CMOS logic but replaces the PUN with a singi PMOS transistor whose gate is grounded. Unlike complementary CMOS, pseudo d by the ratio r of k to k Nor mally r is selected in the range 4 to 10 and its value determines the noise margins.

2 Pseudo-NMOS has the disadvantage of dissipating static power when the output of the logic gate is low Static power can he eliminated by turning the MOS load on for unly a bier ithe output node to V. The the inputs arc applied and depending on the input combination, the output node either remains high or is discharged through the PDN. This is the essence of dynamic logic.
䠯 Pass-transistor logic utilizes either single NMOS transistor or CMOS ransmission gates to implement a network of switches thal are contorled implemented by single NMOS transistors, though simple, result in the reduction of $V_{O H}$ from $V_{D D}$ to $V_{D D}-V_{t}$
© A particular form of dynamic logic circuits, known domino logic, allows the cascading of dynamic logic gates

PROBLEMS

SECTION 10.1: DIGITAL CIRCUIT DESIGN

an overview

10.1 For a logic-circuit family employing a 3 -V supply, suggest an ideal set of valucs for $V_{i, h}, V_{L L}, V_{J H}, V_{O L}, V_{O H}$, gain in the transition region does your ideal specification imply?
10.2 For a particular logic-circuit farnity, the basic techno logy uscd provides an inherent limit to the small-signal lowfrequency voltage gain of $50 \mathrm{~V} / \mathrm{V}$. If, with a $3.3-\mathrm{V}$ supply, the valucs of $V_{O L}$ and $V_{O H}$ are ideal, but $V_{t h}=0.4 V_{D D}$, what ar the best possible values of $V_{I L}$ and $V_{I I I}$ that can be expected? What are the best possible noise margins you coula cxpect? the actual noise maryins are only $7 / 10$ of these values, wha V_{n} and $V_{l / l}$ result? What is the large-signal voltage gain defined as $\left(V_{\text {orf }}-V_{o x}\right) /\left(V_{L J}-V_{\text {tH }}\right)$. (Hint: Use straight
linc approximations for the VTC.)

* © . 3 A logic-circuit family intended for use in a digital signal-processing application in a newly developed hearing aid can operate down to single-cell supply voltages of 1.2 V. If for its inverter, the output signals swing between and $V_{D D}$, the "gain-of-one" points are separated hy less than another, what ranges of values of $V_{D} V_{W} V_{D L} V_{O U} N M_{\text {, }}$ and $N M_{11}$ can you expect for the lowest possible battery supply?

10. 4 In a particular logic family, the standard inverter, when loaded by a similar circuit, has a propagation dclay pecified to be 1.2 ns:
(a) If the current availahle to charge a load capacitance is half as large as that available to discharge the capacitance. what do you expect $t_{p L G}$ and $t_{P H L L}$ to he?
b) If when an external capaciitive load of 1 pF is added at the inverter output, its propagation delays increase by 70%, what do you estimate the normal combined capacitance of inverte cutput and input to be?
nverter is removed and the prop load connected, the load decrease by 40%, estimate the two compore ohserve capacitance found in (b) that is, the component due to the inverter output and other associated parasitics, and the com ponent due to the input of the load inverter?
10.5 In a particular logic family, operating with a $3.3-\mathrm{V}$ supply, the basic inverter draws (from the supply) a current of $40 \mu \mathrm{~A}$ in one state and $0 \mu \mathrm{~A}$ in the other. When the inverter is switched at the rate of 100 MHz , the average supply curren
becomes $150 \mu \mathrm{~A}$. Estimate the equivalent capacitance at the output node of the inverter.
10.6 A collection of logic gates for which the static-power dissipation is zero, and the dynamic-power dissipation, as specified by Eq. (10.4), is 10 mW arc operated at 50 MHz with a 5 -V supply. By what fraction could the power dissipation be reduced if operation at 3.3 V were possible? If the supply vollage (i.c., $3.3 / 5$), what additional power can be saved?
010.7 A ogic-circuit family with zero static-power dissipation normally operates at $V_{D D}=5 \mathrm{~V}$. To reduce its dynami-power dissipation, which is specified by Eq. (10.4), operation at 3.3 V is considered. It is found, however, that the currents available to charge and discharge load capacitances also decrease. If current is (a) proportional to $V_{D D}$, or (b) proportional to $V_{D D}$, what reductions in maximum operating frequency do you expect in each case? What cach case?

0*10.8 Reconsider the situation described in Problem 10.7 for the situation in which a threshold relation exists such that the current depends on ($V_{D D}-V_{t}$) rather than $V_{D D}$ directly. frequency, dynamic power, and delay-power product as a result of decreasing $V_{\text {Du }}$ from 5 V to 3.3 V . Assume that the currents are proportional to (a) $\left(V_{D D}-V_{V}\right)$, or (b) $\left(V_{D D}-V_{t}\right)^{2}$, for V_{t} equal to (i) 1 V and (ii) 0.5 V .
D*10.9 Consideration is being given to reducing by 10% all dimensions, including oxide thickness, of a silicon digital CMOS process. Recall that for a MOS device the available current is related to

$$
i=\frac{1}{2} \mu C_{a x} \frac{W}{L}\left(V_{D D}-V_{i}\right)^{2}
$$

where $C_{o x}=\varepsilon_{o x} / t_{o x}$. Also assume that the total cffective capacitance that determines the propagation delay is divided about equally hetween MOS capacicances that are propor tional to arca and inversely proportional to oxide thickness, and reverse-bias junction capacitances that are proportional to area. Find the factors by which the flowizg paraneers tion delay, maximum operating frequency, dynamic power dissipation, delay-power product, and performance (in operations per unit area per second). If the supply voltage is also reduced by 10% (but V_{t} is not), what other changes result?
10.10 Considcr an inverter for which $t_{\text {PLH }}, t_{\text {PHL }}, t_{\text {TLL }}$, and $t_{T H L}$ arc $20 \mathrm{~ns}, 10 \mathrm{~ns}, 30 \mathrm{~ns}$, and 15 ns , respectively. The rismated by linear ramps. Two such inverters are connected in tandem and driven by an ideal input having zero rise and fall times. Calculate the time taken for the output vollage to complete 90% of its excursion for (a) a rising input and (h) a falling input. What is the propagation delay for the inverter?
10.11 A particuiar logic gate has $t_{P L H}$ and $t_{T H L}$ of 50 ns and 70 ns , respectively, and dissipates 1 mW with output low and 0.5 mW with output high. Calculate the corrc 50% duty-cycle signal and neglecting dynamic power dissipation).
SECTION 10.2: DESIGN AND PERFORMANCE analysis of the cmos inverter
10.12 For a CMOS inverter operating from a $3.3-\mathrm{V}$ supply in a technology for which $\left|V_{d}\right|=0.8 \mathrm{~V}$, and $k_{n}^{\prime}=4 k_{p}^{\prime}=$ $180 \mu \mathrm{~A} / \mathrm{V}^{2}$, evaluate the drain-source resistance asso$075 \mu \mathrm{~m} / 0.5 \mathrm{~m}$. For which ratio (W / W) will $Q_{\text {v }}$ and Q, which have equal channel lengths, havc equal resistances?
10.13 A CMOS inverter fabricated in the process specilied in Problem 10.12 utiizes a p-channel device four times as wide as the n-channcl cevice. If he $l_{D D}$ supply is subject capacitance of 1 pF , what is the $3-\mathrm{dB}$ cutoff frequency emhodied in each gatc for this supply noise?
10.14 A CMOS inverter for which $k_{n}=10 k_{p}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{t}=0.5 \mathrm{~V}$ is connected as shown in Fig. PJ 0.14 to a sina soidal signal source having a Thévenin equivalent voltage of $0.1-\mathrm{V}$ peak amplitude and resistance of $100 \mathrm{k} \Omega$. What signal voltage appears at node A with $v_{k}=+1.5 \mathrm{~V}$? With $v_{l}=-1.5 \mathrm{~V}$

FIGURE P10.14
10.15 For a generalized CMOS inverter characterized by V_{r}, V_{w}, k_{n}, and k_{p}, derive the relation in Eq. (10.8) for $V_{t h}$.
10.16 Use Eq. (10.8) to explore the variation of $V_{t h}$ with $V_{t n}=\left|V_{t r}\right|=0.5 \mathrm{~V}$ and $V_{D D}=2.5 \mathrm{~V}$ for $r=0.5,1.5$, and 3. Note that V_{A} is not a strong function of r aroun, 2, point $r=1$.
D10.17 Design a "natched" inverter whose area is $15 \mu \mathrm{~m}^{2}$ in a proccss for which the minimum length is $0.5 \mu \mathrm{~m}$ and $\mu_{n} / \mu_{p}=3$. By what factor docs the maxinum output current
available from this inverter exceed that of the minimum-size inverter for which the factor $n=1.5$? What is the ratio of theize areas? What is the ratio of their output resistances?
10.18 For a CMOS inverter having $k_{n}=k_{p}=300 \mu \mathrm{~A} / \mathrm{V}^{2}$, $V_{t n}=\left|V_{t p}\right|=0.8 \mathrm{~V}, V_{D D}=3.3 \mathrm{~V}$, and $\lambda_{t} \stackrel{ }{=} \lambda_{p}=0.05 \mathrm{~V}^{-1}$, find $V_{\text {OII }}, V_{I I}, V_{O L}, V_{H L} N M_{H}, N M_{I}, V_{\text {th }}$, and thc voitage gain at the threshold point M. [Hint: The small-signal voltage gain is $\left.-\left[\left(g_{m N}+g_{m P}\right)\left(r_{o N} / T_{o p}\right)\right]\right]$.
10.19 For a particular matched CMOS inverter, $k^{\prime}=$ $75 \mu \mathrm{~A} / \mathrm{V}^{2},(W / L)_{n}=8 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}, \mu_{r} / \mu_{p}=2.5$. The circuil has an equivalent output capacitance with two major components, one proportional to device width of 2 -fF $/ \mu \mathrm{m}$ width for each device, and the other fixcd, at 50 fF . What total equivalent capacitance is associated with the output node? Calculate t_{p} using Eq. (10.13) for a supply of 3.3 V
10.20 Use Eqs. (10.14) to (10.17) to derive an expression for $t_{P H L}$ in which V_{t} is expressed as a fraction α of $V_{D D}$ (i.e., $V_{t}=\alpha V_{D D}$). Find the value of the multiplier in the numerator of the expression, for α in the range 0.1 to 0.5 (e.g., for $\alpha=0.2$ the multiplier is 1.7)
10.21 Find the propagation delay for a minimum-size inverter for which $k_{n}=3 k_{p}=180 \mu \mathrm{~A} / v$ and $(\mathrm{W} / L)_{n}=$ $(W / L)_{p}=0.75 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}, V_{D D}=3.3 \mathrm{~V}$, and the capacitance is roughly $2 \mathrm{fF} / \mu \mathrm{m}$ of device width plus $1 . \mathrm{fF} /$ device. What does t_{p} becomc if the design is changed to a matched one?
10.22 A CMOS microprocessor chip containing the equivalent of 1 million gates operates from a 5 -V supply. The power dissipation is found to be 9 W when the chip is operating at 120 MHz , and 4.7 W when operating at 50 MHz . What is the power lost in the chip by some clock-indcpendent mechanism, such as leakage and other static currents? If 70% of the gates are assumed to be active at any time, what is the
average gate capacitance in such a design?
10.23 A matched CMOS inverrer fabricated in a process for which $C_{o x}=3.7 \mathrm{ff} / \mu^{2}, \mu_{n} C_{o r}=180 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=45 \mu \mathrm{~A} / \mathrm{V}^{2}$, $V_{m}=-V_{t p}=0.7 \mathrm{~V}$, and $V_{D D}=3.3 \mathrm{~V}$, uses $W_{n}=0.75 \mathrm{\mu m}$ and $L_{n}=$ $L_{p}=0.5 \mu \mathrm{~m}$. The gate-drain overlap capacitance and end
tive drain-body capacitance per micrometer of gate width are 0.4 fF and 1.0 fF , respectively. The wiring capacitance is $C_{w}=$ 2 fF Find $t_{\text {a }} t_{\text {per }}$ and t_{t} For how much additional capacitance load does the propagation delay increase by 50% ?
10.24 Repeat Problem 10.23 for an inverter for which $(W / L)_{n}=(W / L)_{p}=0.75 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$. Find t_{P} and the $250-\mathrm{MHz}$ rate.

SECTION 10.3: CMOS LOGIC-GATE CIRCUITS

D10.25 Sketch a CMOS realization for the fuuctio

 $Y=\bar{A}+B(C+D)$.D10.26 A CMOS logic gate is required to provide an output $Y=A B C+A B C+A B C$. How many transistors does it need? Sketch a suitable PUN and PDN, obtaining each first independently, then one from the other using the dualnetworks idea

D10.27 Give two different realizations of the exclusiveOR function $Y=A B+A B$ in which the PDN and the PUN are dual networks.
010.28 Sketch a CMOS logic circuit that realizes the function $Y=A B+\bar{A} \bar{B}$. This is called the equivalence or coincidence function.
D10.29 Sketch a CMOS logic circuit that realizes the function $Y=A B C+\bar{A} \bar{B} \bar{C}$.
D10.30 It is required to design a CMOS logic circuit that realizes a three-input even-parity checker. Specifically, the output Y is to be low when an even number (0 or 2) of the inputs A, B, and C are high.
(a) Give the Boolean function \bar{Y}.
(b) Sketch a PDN directly from the expression for \bar{Y}. Note that it requires 12 transistors in addition ω those in the inverters. transistors to 10 . transistors to 10 .
(d) Find the PUN as a dual of the PDN in (c) and hence the complete realization.
10.31 Give a CMOS logic circuit that realizes the func ion of three-input odd-parity checker. Specifically, the output is $t 1$ be high when an odd number (1 or 3) of the purting those in the inath in ach of the PUN and the PDN
10.32 Design a CMOS full-adder circuit wilh inputs A B, and C, and two outputs S and C_{0} such that S is 1 if one o wo or more inputs are 1 .

D10.33 Consider the CMOS gate shown in Fig. 10.14 specify W / L ratios for all transistors in lerms of the ratios nd p of the basic inverter, such that the worst-case $t_{p H L}$ and ${ }_{p, t,}$ of the gate are equal to those of the basic inverter
0.34 Find appropriate sizes for the transistors used in he exclusive-OR circuit of Fig. 10.15 (b). Assume that the . he required inverters?
0.35 Consider a four-input CMOS NAND gate for which the transient response is dominated by a fixed-size capacitance between the output node and ground. Compare the values of $t_{P L H}$ and $t_{P H,}$, obtained when the devices are sized as in . n, halues obtained when all n-channel device . $L=n$ and all p-channel devices have $W / L=p$
10.36 Figure P10.36 shows two approaches to realizing O36(b), The circuit in Fig. P036(b) though it uses additional transistors, has in fact

(a)

FIGURE P10.36

1007
less total area and lower propagation delay because it uses NOR gates with lower fan-in. Assuming that the transistors in both circuits are properly sized to provide each gate with a current-driving capability equal to thal of the basic matched inverter, find the number of transistors and the total area of each circuit. Assume the basic inverter to have $\mathrm{a}(W /)_{n} \mathrm{ratio}$ of
$3.6 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$.
*10.37 Consider the two-input CMOS NOR gate of Fig. 10.12 whose transistors are properly sized so that the current-driving capability in each direction is equal to that of a matched inverter. For $\left|V_{t}\right|=1 \mathrm{~V}$ and $V_{D D}=5 \mathrm{~V}$, find the gate threshold in the cases for which (a) input terminal A is connccted to ground and (b) the two inpul terminals are ticd together. Neglect the body effect in $Q_{P \beta}$.

SECTION 10.4: PSEUDO-NMOS LOGIC CIRCUITS
10.38 The purpose of this prohlem is to compare the value of $t_{P L H}$ obtained with a resistive load (see Fig. P10.38a) to That obtained with a current-source load (sec Fig. P10.38b). For a fair comparison, let the current source $I=V_{D D} / R_{D}$,
which is the initial current availahle to charge the capacitor in the case of a resistive load. Find $t_{p, y}$ for each casc, and hence the percentage reduction obtained when a current-source load is used.
*10.39 Design a pseudo-NMOS inverter that has equal positive and negative capacitive-driving output currents a $o_{0}=V_{D D} / 4$ for unch assten with $V_{D D}=5 V, V_{H}=0.8 \mathrm{~V}$ $k_{n}^{\prime}=3 k_{p}^{\prime}=75 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $(W / L)_{n}=1.2 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$ What are the values of $(W / L)_{p}, v_{L}, v_{t H}, V_{M}, V_{O H}, v_{O L}, N M_{t}$ and $N M_{t}$?
10.40 Consider a pseudo-NMOS inverter with $r=2$ $(W / L)_{\pi}=1.2 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}, V_{D D}=5 \mathrm{~V},\left|V_{t}\right|=0.8 \mathrm{~V}$, and $k_{n}^{\prime}=3 k_{\mu}^{\prime}=75 \mu \mathrm{~A} / \mathrm{V}^{2}$. Let the device capacilances per microneter of device width be $C_{g s}=1.5 \mathrm{fF}, C_{s t}=0.5 \mathrm{fF}$, and $C_{d u}=2 \mathrm{fF}$. Estimate the input and output capacitances and the values of $t_{\text {PLII }}, t_{\text {pII, }}$, and t_{P} obtaincd when the inverter is driv-
ing another identical invertar. Also find the corresponding values for a complementry CMOS inverter with a matched design.
10.41 Use Eq. (10.41) to find the value of r for whic $N M_{l}$ is maximized. What is the corresponding value of $N M_{L}$?
10.42 Design a pseudo-NMOS inventer that has $\nabla_{O L}=0.1 \mathrm{~V}$ Let $V_{D D}=2.5 \mathrm{~V}, V_{t}=0.4 \mathrm{~V}, k_{n}^{\prime}=4 k_{p}=120 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $(W / L)_{n}=0.375 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m}$. What is the value of $(W / L)_{p}$? Calculate the values of $N M_{L}$ and the static power dissipation.
10.43 For what value of r does $N M_{H}$ of a pseudo-VMOS $r=1$ to 16

(a)

(b)

FIGURE P10.38
10.48 For a pseudo-NMOS inverter, what value of r results in $N M_{L}=N M_{I I}$. Let $V_{D D}=5 \mathrm{~V}$ and $\left|V_{t}\right|=0.8 \mathrm{~V}$. What is th resulting margin?

D*10.45 It is required to design a minimum-area pseudoMOS inverter with equal high and low noise margins using a 5-V supply and devices for which $\left|V_{d}\right|=0.8 \mathrm{~V}, k_{n}^{\prime}=$ $3 k_{p}^{\prime}=75 \mu \mathrm{~A} / \mathrm{V}^{2}$, and the minimum-size device has (W / L) $1.2 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$. Use $r=2.72$ and show that $N M_{L} \simeq N M_{H}$. Specify the values of $(W / L)_{n}$ and $(W / L)_{p}$. What is the power dissipated in this gate? What is the ratio of propagation delays or of 1 pF and neglecting the much smaller device capacitances, find $t_{\mu, 1}, t_{p, 4}$, and $t_{\text {, }}$. Al what frequcncy of operation would the slatic and dynamic power levels be equal? Is this specd of operation possible in view of the t_{p} value you found? What is the ratio of dynarnic power to static power at what you may assune is the maximum usable oper atiog frequency [say, $\left.1 /\left(2 t_{p L H}+2 t_{P H H}\right)\right]$?
D10.46 Sketch a pseudo-NMOS realization of the function $Y=\bar{A}+B(C+D)$.

D10.47 Sketch a psendo-NMOS realization of the exclusive OR function $Y=A \bar{B}+\bar{A} B$.
D10.48 Consider a four-input pseudo-NMOS NOR gate i which the NMOS devices have $(W / L)_{n}=(1.8 \mu \mathrm{~m} / 1.2 \mu \mathrm{~m})$ is required to find $(W / L)_{p}$ so that the worst-case valu
of $V_{D O}$ is 0.2 V . Let $V_{D D}=5 \mathrm{~V},|V|=0.8 \mathrm{~V}$, and $k^{\prime}=$ $3 k_{p}^{\prime}=75 \mu \mathrm{~A} / \mathrm{V}^{2}$.

SECTION 10.5: P

LOGIC CIRCUITS
*10.49 A designer, beginning to experiment with the idea of pass-transistor logic, seizes upon what he sees as two good ideas:
(a) that a string of minimum-size single MOS cransistors can do complex logic functions, but
b) that there must always be a path between output and supply terminal.

Correspondingly, he first considers two circuits (shown in Fig. P10.49). For each, express Y as a function of A and B. I each case, what can be said about general operation? Abou the logic levels at Y ? About node X ? Do either of these cir cuits look familiar? If in each case the terminal connected to $V_{D D}$ is instead connected to the output of a CMOS inverter ion Y become?
10.50
0.50 Consider the circuits in Fig. P10.49 with all PMOS transistors replaced with NMOS, and all NMOS by PMOS

FIGURE P10.49
and with ground and $V_{b D}$ connections interchanged. What do the output functions Y become?
*10.51 Is the circuit in Fig. P10.51 a satisfactory passtransistor circuit? What are its deficiencies? What is Y as a function of A, B, C, D ? What does the output become if the two $V_{D D}$ connections are driven by a CMOS inverter with input E ?
*10.52 An NMOS pass-transistor switch wilh $W / L=$ $1.2 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$, used in a $3.3-\mathrm{V}$ system for which $V_{i 0}=0.8 \mathrm{~V}$, $\gamma=0.5 \mathrm{~V}^{1 / 2}, 2 \phi_{f}=0.6 \mathrm{~V}, \mu_{n} C_{o x}=3 \mu_{\rho} C_{o x}=75 \mu \mathrm{~A} / \mathrm{V}^{2}$, drives a 100 -fF load capacitance at the input of a matched static inverter using $(W / L)_{n}=1.2 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$. For the for inputs at $V_{D D}$ and 0 V , respectively. For this value of V_{0} what inverter static current results? Estimate $t_{P H L}$ and $t_{P H L}$ for this arrangement as measured from the input to the output of the switch itself.

D10.53 The purpose of this problem is to design the level-restoring circuit of Hig. 10.28 and gain insight into its

FIGUREP10.51

operation. Assumc that $k_{n}^{\prime}=3 k_{p}^{\prime}=75 \mu \mathrm{~A} / \mathrm{V}^{2}, \quad V_{D D}=$ $3.3 \mathrm{~V},\left|V_{r}\right|=0.8 \mathrm{~V}, \gamma=0.5 \mathrm{~V}^{1 / 2}, 2 \phi_{f}=0.6 \mathrm{~V},(W / L)_{1}=$ $(W / L)_{n}=1.2 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m},(W / L)_{p}=3.6 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$, and
$C=20$ fF. Let $v_{R}=V_{D D}$. a)
(a) Consider first the situation with $v_{A}=V_{D D}$. Find the value of the voltage v_{01} that causes v_{02} to drop a thrcshold voltage below $V_{\text {DD }}$, that is, to 2.5 V so that Q_{R} turns on. At this value of v_{01}, find V_{2} of Q_{1}. What is the capacitor-cbarging current available at this time? What is it at $\nabla_{O_{1}}=0$? What is the average curicnt avallable
(h) Now to
the situation when ψ is a suitable W / L ratio for Q_{R}, consiuts and begins to discharge C. The voltage v_{01} will begin to drop. Mean while, $v_{O 2}$ is still low and Q_{R} is conducling. The current that Q_{K} conducts subtracts from the current of Q_{1}, reducing the current available to discharge C. Find the value of v_{O} at which the inverter begins to switch. This is $V_{P H}=$ $\frac{1}{8}\left(5 V_{D D}-2 V_{t}\right)$. Then, find the current that Q_{1} conducts at this valuc of v_{01}. Choose W / L for Q_{R} so that the current it What is the W / L you have chosen? Estimate $t_{P, N}$ as the time for v_{01} to drop from $V_{D D}$ to $V_{m \text {. }}$

D10.54 (a) Use the idea emhodied in the exclusive-OR realization in Fig. 10.31 to realize $\bar{Y}=A B+\bar{A} \bar{B}$. That is, find a realization for \bar{Y} using two transmission gates
in Fig. 10.31 to obtain a realization of the function $Z=$ $\bar{Y} C+Y \bar{C}$, where C is a third input. Sketch the complete 12 transistor circuit realization of Z. Note that Z is a three-input exclusive-OR.
*D10.55 Using the idea presented in Fig. 10.32, sketch a CPL circuit whose outputs are $Y=A \bar{B}+\bar{A} B$ and $\bar{Y}=$ $A B+\bar{A} \bar{B}$.

D10.56 Extend the C.PL idea in $\overline{A g i g .} 10.32$ to hree variables to form $Z=A B C$ and $\bar{Z}=\overline{A B C}=\bar{A}+\bar{B}+\bar{C}$.

SECTION 10.6: DYNAMIC-LOGIC CIRCUITS

D10.57 Based on the basic dynamic-logic circuit of Fig. 10.33, sketch completc circuits for NOI, NAND, and NOR gates, the latter two with two inputs, and a circuit for which $\bar{Y}=A B+C D$.
10.58 In this and the following problcm, we investigate the dynamic operation of a two-input NAND gate realized in the dynamic-logic form and fabricated in a CMOS process technology for which $k_{n}^{\prime}=3 k_{p}^{\prime}=75 \mu \mathrm{~A} / V_{t n}$,
$-V_{t D}=0.8 \mathrm{~V}$, and $V_{D D}=3 \mathrm{~V}$. To keep C_{L} small, minimum. $-V_{t p}=0.8 \mathrm{~V}$, and $V_{D D}=3 \mathrm{~V}$. To keep C_{L} small, minimum-
sizc NMOS devices are used for which $W / L=$ $1.2 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$ (this includcs Q_{e}). The PMOS prechargc transistor Q_{p} has $2.4 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$. The capacitance C_{L} is found to be 15 fF . Consider the precharge operation with the gate of Q_{p} at 0 V , and assume that at $t=0, C_{L}$ is fully discharged. We wish to calculate the rise time of the output voltage, defined as the time for v_{Y} to rise from 10% to 90% the current at $v_{Y}=2.7 \mathrm{~V}$, then compute an approximate value for $t_{r}, t_{r}=C_{r}(2.7-0.3) / I_{\mathrm{av}}$, where I_{ax} is the avcrage valuc of the two currents.
10.59 For the gate specified in Problem 10.58, evaluate the high-to-low propagation delay, $t_{\text {PHL }}$ To obtain an approximate value of $t_{P H L}$, replace the three series NMOS transistors with an equivalent deviee and find the average discharge current.
*10.60 In this problem, we wish to calculate the reduction in the output voltage of a dynamic logic gate as a result of charge redistribution. Refer to the circuit in Fig. 10.34(a), and assume that at $t=0-, v_{\mathrm{Y}}=V_{D D}$, and $v_{\mathcal{C}_{1}}=0$. At $t=0$, g goes
high and Q_{p} turns off, and simultaneously the voltagc at the gate of Q_{i} goes high and simultaneously the votagi will remain conducting until either the voltage at its source $\left(v_{C 1}\right)$ reaches $V_{D D}-V_{m \text { or }}$ or until $v_{Y}=v_{C 1}$, whichever comes first. In both cascs, the final value of v_{y} can be found using
chargc conscrvation. For $V_{t h}=1 \mathrm{~V}, V_{D D}=5 \mathrm{~V}, C_{L}=30 \mathrm{fF}$ and neglecting the body efrct in Q_{1}. find the drop in yoltage at the output in the two cases. (a) $C_{1}=5$ If and (b) $C_{1}=10 \mathrm{f}$ such that Q_{1} remains in saturation during its entire conduc jion interval)
10.61 The leakage current in a dynamic-logic gate caus the capacilor C_{L} to discharge during the evaluation phase even if the PDN is not conducting. For $C_{L}=30 \mathrm{fF}$ and
$I_{\text {leatage }}=10^{-12} \mathrm{~A}$, find the longcst allowable evaluate time if the decay in output voltage is to be limited to 0.5 V . If the precharge interval is much shorter than the maximum allowable evaluate time, find the minimum clocking frequency
10.62 For the four-inpu1 dynamic-logic NAND gatc ana lyzed in Fxcrciscs 10.10 and 10.11, estimate the maximum clocking frequency allowed.

part III

SELECTED TOPICS

CHAPTER 11

Memory and Advanced Digital Circuits 1013

CHAPTER 12

Filters and Tuned Amplifiers 1083

CHAPTER 13

Signal Generators and Waveform-Shaping Circuits 1165

CHAPTER 14

Output Stages and Power Amplifiers 1229

InTRODUCTION

To round out our study of electronic circuits we have selected, from among the many possible somewhat-specialized topics, four to include in the third and final part of this book.

Chapter 11 deals with the important subject of digital memory. In addition, two advanced digital-circuit technologies-ECL and BiCMOS-are studied. The material in Chapter 11 follows naturally the study of logic circuits, presented in Chapter 10 . Together, these two chapters should provide a preparation sufficient for advanced courses on digital electronics and VLSI design.

The subscquent two chapters, 12 and 13, have an applications or systems orientation: Chapter 12 deals with the design of filters, which are important building blocks of communications and instrumentation systems. Fiter design is one of the rare areas of enginecring for which a complete design theory exists, starting from specification and culminating in an actual working circuit. The reader to perform such a complcte design process

In the design of electronic systems, the need usually arises for signals of various waveforms-sinusoidal, pulse, square-wave, etc. The generation of such signals is he subject of Chapter 13. It will be seen that some of the circuits utilized in waveform generation posscss meny 11 circuits studied in Chapter 1
The material in Chapters 12 and 13 assumes knowledge of op amps (Chapier 2) and makes use of frequency response and related s-plane concepts (Chapter 6) and of The (Chapter 8)

The last of the four selected-topics chapters (Chapter 14) deals with the design of amplifiers that are required to deliver large amounts of load power; for example, the these high-power circuits is based in a stereo system. As will be seen, the soll signal amplifiers. Most of the material in Chapter 14 sbould be cesible 10 er who has studied Part I of this book.

Memory and Advanced Digital Circuits

Introduction

The logic circuits studied in Chapter 10 are called combinational (or combinatorial). Their output depends only on the present value of the input. Thus these circuits do not have memory. Memory is a very important part of digital systems. Its availability in digital computers allows for storing programs and data. Furthernore, it is important for temporary storage of the output produced by a combinational circuit for use at a later time in the operation of a digital system.

Logic circuits that incorporate memory are called sequential circuits; that is, their output depends not only on the present value of the input but also on the input's previous values. Such circuits require a timing generator (a clock) for their operation.

There are basically two approaches for providing memory to a digital circuit. The first relies on the application of positive feedback that, as will be seen shortly, can be arranged to provide a circuit with two stable states. Such a bistable circuit can then be used to store one bit of information: Onc stable state would concspond to a stored 0 , and the other to a stored 1 . A bistable circuit can remain in either state indefinitely, and thus belongs to the category of static sequential circuits. The other approach to realizing memory utilizes the storage of

1015
charge on a capacitor: When the capacitor is charged, it would be regarded as storing a 1 ; when it is discharged, it would be storing a 0 . Since the inevitable leakage effects will cause the capacitor to discharge, such a form of memory requires the periodic recharging of the capacitor, a process known as refresh. Thus, like dynamic logic, memory based on charge storage is known as dynamic memory and the corresponding sequential circuits as dynamic sequential circuits.
In addition to the study of a variety of memory types and circuits in this chapter, we will also learn about two important digital-circuit technologies: Emitter-coupled logic (ECL), which utilizes bipolar transistors and achieves very high speeds of operation; and
BiCMOS, which combines bipolar transistors and CMOS to BiCMOS, which combines bipolar transistors and CMOS to great advantage.

蚿

11.1 LATCHES AND FLIP-FLOPS

In this section, we shall study the basic memory element, the latch, and consider a sampling of its applications. Both static and dynamic circuits will be considered.

11.1.1 The Latch

The basic memory element, the latch, is shown in Fig. 11.1(a). It consists of two cross-coupled logic inverters, G_{1} and G_{2}. The inverters form a positive-feedback loop. To investigate the opcration of the latch we break the feedback loop at the input of one of the inverters, say G_{i}, and apply an input signal, z_{w}, as shown in Fig. 11.1(b). Assuming that the input impedance of G_{1} is large, breaking the feedback loop will not change the loop voltage transfer charactenslic, which can be determined from the circuit of Fig. 11.1(b) by plotting v_{Z} versus v_{w}. This is the voltage transfer characteristic of two cascaded inverters and thus takes the shape shown in Fig. 11.1(c). Observe that the transfer characteristic consists of threc segments, with the middle segment corresponding to the transition region of the inverters.

Also slown in Fig. 11.1(c) is a straight line with unity slope. This straight line represents the relationship $v_{W}=v_{L}$ that is realized by reconnecting Z to W to close the feedback loop.

FIGURE 111 (a) Basic latch. (b) The latch with the feedhack loop opened. (c) Determining the operating poinl(s) of the latch.

As indicated, the straight line intersects the loop transfer curve at three points, A, B, and C Thus any of these three points can serve as the operating point for the latch. We shall now show that whilc points A and C are stable operating points in the sense that the circuit can remain at either indefinitely, point B is an unstable operating point; the latch cannot operate at B for any significant period of time.
The reason point B is unstahle can be seen by considering the latch circuit in Fig. 11.1(a) to be operating at point B, and taking account of the clectrical interference (or noise) that is inevitably present in any circuit. Let the voltage v_{w} increase by a small increment v_{k}. The voltage at X will increase (in magnitude) by a larger increment, equal to the product of v_{w} and incremental gain of G_{1} at point B . The resutting signal i_{x} is applied on_{2} and gives nise to
 gain ar ponc B, whity. Since u coupled to the input of G it will be furcer amplitied by
 he loop ga. Thi C .

The dased a negaive voltage incro wo would have seen that the operting mes drom B to A Again since at point A the slope of the transfer curve is (or ost zero) no regeneration can take place In fact for regeneration to occur the loo . gain must be greater than unity, which is the case at point B

The and At A (say that corresponding to operating point A) w is high (at V) and τ_{z} is low (at V) In the ther statc (corresponding to operating point C) ψ_{y} is low (at V_{0}) and v_{z} is high (at V_{0}) Thus the latch is a bistable circuit having two complementary outputs. The stable stare in wich the latch onerates depends on the external exciration that forces it to the particular state. The latch then memorizes this external action by staying indefinitely in the acquired stat. A a memory element the latch is capable of storing one bit of information. For instance, we anbitraily designate the state in which v_{x} is high and z_{z} is low as corresponding to tore 1 . The complemery stete then is dexignted by a stored logic 0 . Finally,

the andop. This will be discussed next. Analog bistable circuits utilizing op amps will be presented in Chapter 13 .

11.1.2 The SR Flip-Flop

The simplest type of flip-flop is the sel/reset (SR) flip-flop shown in Fig. 11.2(a). It is formed by cross-coupling two NOR gates, and thus it incorporates a latch. The second input

FIGURE 11.2 (a) The set/rcset (SR) flip

Flop and (b) its trulh table.
(a)

(b)

of each NOR gate together serve as the trigger inputs of the flip-flop. These two inputs are labcled S (for set) and R (for reset). The outputs are labeled Q and \bar{Q}, emphasizing thei complementarity. The flip-flop is considered to be set (i.e., storing a logic 1) when Q is high and \bar{Q} is low. When the flip-flop is in the other state (Q low, \bar{Q} high), it is considered to be reset (storing a logic 0).

In the rest or memory state (i.e., when we do not wish to change the state of the flip-flop), both the S and R inputs should be low. Consider the case when the flip-flop is storing a logic 0 , Since Q will be low, both inputs to the NOR gate G_{2} will be low. Its output will therefore be high. This high is applied to the input of G_{1}, causing its output Q to be low, satisfying the original assumption. To set the flip-flop we raise S to the logic- 1 level while leaving R at 0 . The 1 at the S terminal will force the output of G_{2}, \bar{Q}, to 0 . Thus the two inputs to G_{1} will be 0 and its output Q will go 20 1. Now even if S returns to 0 , the flip-flop remains in the newly acquired set state. Obviously, if we raise S to 1 again (with R remaining at 0) no change will occur. To reset the flip-flop we need to raise R to 1 while leaving $S=0$. We can readily show that this forccs the flip-flop into the reset state and that the fip-flop remains in this state even after R has returncd to 0 . It should be observed that the trigger signal merely stars the regenerative action of the positive-fecdback loop of the latch.
Finally, we inquire into what happens if both S and R are simultaneously raised to 1 . The
wo NOR gates will cause both Q and \bar{Q} to becme 0 (hate in two NOR gates will cause both Q and \bar{Q} to become 0 (note that in this case the complemen-
tary labeling of these two variables is incorrect). However, if R and S ratum to the rest tary labeling of these two variables is incorrect). However, if R and S return to the rest state
$(R=S=0)$ simultaneously, the state of the flip-flop will be undefined In ($R=S=0$) simultaneously, the state of the flip-flop will be undefined. In other words, it will be impossible to predict the final state of the flip-flop. For this reason, this input combination is usually disallowed (ie., not used). Note, however, that this situation arises only in the idealized case, when both R and S return to 0 precisely simultaneously. In actual practice one of the two will return to 0 first, and the final state will be determined by the input that
remains high longest. remains high longest.

The operation of the flip-flop is summarized by the truth table in Fig. 11.2(b), where Q_{n} denotes the value of Q at time t_{n} just before the application of the R and S signals, and Q_{n+1}
denotes the value of Q at timc t denotes the value of Q at time t_{n+1} after the application of the input signals.

Rather than using two NOR gates, one can also implement an SR flip-flop by crossthe inputs are correspondingly called \bar{S} and \bar{R}. the inputs are correspondingly called \bar{S} and \bar{R}.

11.1.3 CMOS Implementation of SR Flip-Flops

The SR flip-flop of Fig. 11.2 can be directly implemented in CMOS by simply replacing each of the NOR gates by its CMOS circuit realization. We encourage the reader to sketch the resulting circuit. Although the CMOS circuit thus obtaincd works well, it is somewhat complex. As an alternative, we consider a simplified circuit chat furthermore implements additional logic. Specifically, Fig. 11.3 shows a clocked version of an SR flip-flop. Since the clock inputs form AND functions with the set and reset inputs, the flip-flop can be set or reset only when the clock ϕ is high. Observe that although the iwo cross-coupled inverters at the heart of the flip-flop are of the complementary CMOS type, only NMOS transistors are used lor the set-reset circuitry. Nevertheless, since there is no conducting palt between $V_{D D}$ and ground (except during switching), the circuit does not dissipate any static power.

Except for the addition of clocking, the SR flip-Clop of Fig. 11.3 operates in exactly the same way as its logic antecedent in Fig. 11.2: To illustrate, consider what happens when the flip-flop is in the reset state ($\left.Q=0, Q=1, v_{Q}=0, v_{Q}=V_{D D}\right)$, and assume that we wish to set it. To do so, we arrange for a high ($V_{D D}$) signal to appear on the S input while R is held low at 0 V . Then, when the clock ϕ gocs high, both Q_{5} and Q_{6} will conducl, pulling the

FIGURE 11.3 CMOS implementation of a clocked SR flip-Ilop. The clock signal is denoted by φ.
voltage $v_{\bar{Q}}$ down. If v_{Q} goes below the threshold of the (Q_{3}, Q_{4}) inverter, the inverter will switch states (or at least begin to switch states), and its output ∇_{Q} will rise. This increase in v_{Q} is fed back to the input of the $\left(Q_{1}, Q_{2}\right)$ inverter, causing its output $v_{\bar{T}}$ to go down even further; the regeneration process, characteristic of the positive-feedback latch, is now in progress.
The preceding description of Clip-flop switching is predicated on two assumptions:

1. Transistors Q_{s} and Q_{6} supply sufficient current to pull the node \bar{Q} down to a voltage at least slightly below the threshold of the $\left(Q_{3}, Q_{4}\right)$ inverter. This is essential for the regenerative process to begin. Without this initial trigger, the flip-flop will fail to switch. In Example 11.1, we shall investigate the minimum W / L ratios that Q_{5} and Q_{6} must have to meet this requirement.
2. The set signal remains high for an interval long enough to cause regeneration to take over the switching process. An estimate of the minimum width required for the set pulse can be obtained as the sum of the interval during which $v_{\bar{Q}}$ is reduced from $V_{D D}$ to $V_{D D} / 2$, and the interval for the voltage v_{Q} to respond and rise to $V_{D D} / 2$.
Finally, note that the symmetry of the circuit indicates that all the preceding remarks apply equally well to the reset process.

mulum -118

The CMOS SR flip-flop in Fig. 11.3 is fabricated in a process technology for which $\mu_{n} C_{o x}=$ $2.5 \mu_{p} C_{o x}=50 \mu \mathrm{~A} \mathrm{~V}^{2}, V_{t n}=\left|V_{i p}\right|=1 \mathrm{~V}$, and $V_{D D}=5 \mathrm{~V}$. The inverters have $(W / L)_{n}=4 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$ and $(W / L)_{p}=10 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$. The four NMOS transistors in the set-reset circuit have equal W / L ratios. Determine the minimum value required for this ratio to ensure that the flip-flop will switch.

Solution

Figure 11.4 shows the relevant portion of the circuit for our present purposes. Observe that since regeneration has not yet begun, we assume that $v_{Q}=0$ and thus Q_{2} will be conducting. The circuit is in effect a pseudo-NMOS gate, and our task is to select the W / L ratios for Q_{5} and Q_{6} so that $V_{O L}$ of this inverter is lower than $V_{D D} / 2$ (the threshold of the Q_{3}, Q_{4} inverter whose Q_{N} and Q_{P} are

1019

$v_{S}=V_{D D} \cdot 1 Q_{5} \quad$ FIGURE 11.4 The relevant portion of the flip-flop circuit of Fig. 11.3 for determining the minimum W / L ratios of Q_{5} and Q_{6} nccded to ensure that the flip-flop will switch
matched). The minimum required W / L for Q_{5} and Q_{6} can be found by equating the current supplied by Q_{5} and Q_{6} to the current supplicd by Q_{2} at $v_{\bar{Q}}=V_{D D} / 2$. To simplify matters, wc assume that the scrics connection of Q_{5} and Q_{6} is approximately equivalent to a single transistor
 transistor and Q_{2} will be operating in the triode region, we can write

$$
50 \times \frac{1}{2} \times\left(\frac{W}{L}\right)_{S-}\left[(5-1) \times \frac{5}{2}-\frac{1}{2} \times\left(\frac{5}{2}\right)^{2}\right]=20 \times \frac{10}{2}\left[(5-1) \times \frac{5}{2}-\frac{1}{2} \times\left(\frac{5}{2}\right)^{2}\right]
$$

which leads to

$$
\left(\frac{W}{L}\right)_{5}=4 \quad \text { and } \quad\left(\frac{W}{L}\right)_{6}=4
$$

Recalling that this is an absolute minimum value, we would in practice select a ratio of 5 or 6 .

EXERMSES

11. Repeat Example 11.1 to detemine the mininum required $(W / L), ~(W /)_{8}$ so that switching is achicred when spurts $\&$ and p ate at $V_{p D} / 2$. Ans. 24.4
12. Wie wish io determine the minimim required widh of the see pulse. Towith hat end (a) first consider the time for $t \frac{1}{2}$ in the cricut of Frg 114 to tall from $V_{\text {in }} 10 V_{D D} / 2$. Assume that the total capacitance between the \bar{Q} node and ground is 50 fF Determine the high-tolow propagation delay tpin by finding the average current avalable to discharge the capactance over the voltage range $V_{D D}$ to $V_{D D} / 2$. Remember that Q_{2} will be conducting a current that untortunately reduces the current ayailable to dis charge C. Assume $(W / L)_{5}=(W / L)_{6}=8$, and use the technology parameters given in Example 11.1 (b) Detcrnine $t_{i L L}$ for $y o(P i g, 113)$ using the following formula:

$$
h_{\text {PLA }}=\frac{1 \pi C}{k_{1}\left(\frac{U}{L}\right)_{n} V_{D p}}
$$

Assume a total node capactance at Q of 50 fF . (c) What is the minimum width required of the set pulse? Ans, (a) 0.11 ns ; (b) 0.17 ns ; (e) 0.28 ns

FIGURE 11.5 A simpler CMOS implementation of the clocked SR flip-flop. This circuit is popular as th basic cell in the design of static random-access memory (SRAM) chips.

11.1.4 A Simpler CNOS Implementation

 of the Clocked SR Flip-FlopA simpler implementation of a clocked SR flip-flop is shown in Fig. 11.5. Here, pass-transisto logic is employed to implement the clocked set-reset functions. This circuit is very popular in the design of static random-access memory (SRAM) chips, where it is used as the basic memory cell (Section 11.4.1).

11.1.5 D Flip-Flop Circuits

A variety of flip-flop types exist and can be synthesized using logic gates. CMOS circuit implementations can be obtained by simply replacing the gates with their CMOS circuit realizations. This approach, however, usually results in rather complex circuits. In many cases, simpler circuits can be found by taking a circuit-design viewpoint, rather than a logicdesign one. To illustrate this point, we shall consider the CMOS implementation of a very important type of flip-flop, the data, or D, flip-flop.
The D flip-flop is shown in block-diagram form in Fig. 11.6. It has two inputs, the data input D and the clock input ϕ. The complementary outputs are labeled Q and \bar{Q}. When the clock is low, the flip-flop is in the memory, or rest, state; signal changes on the D input line have no effect on the state of the flip-flop. As the clock goes high, the flip-flop acquires the logic level that existed on the D line just before the rising edge of the clock. Such a flip-flop is said to be edge-triggered. Some implementations of the D flip-flop include direct set and reset inputs that override the clockcd operation just described
A simple implementation of the D flip-flop is shown in Fig. 11.7. The circuit consists of two inverters connected in a positive-feedback loop, just as iu the static latch of Fig. 11.1(a),

FIGURE 11.6 A block-diagram representation of the D flip-flop.

T11.7 A single implementation of the D flip-flop. The circuit in (a) utilizes the two-phase non overlapping clock whose waveforms are shown in (b)
except that here the loop is closed for only part of the time. Specifically, the loop is closed when the clock is low $(\phi=0, \phi=1)$. The input D is connected to the flip-flop through witch that closes when the clock is high. Operation is straightforward: When ϕ is high, the oop is opened, and the input D is connected to the input of inverter G_{1}. The capacitance he input node of G_{1} is charged to the value of D, and the capacitance at the input node of G_{2} is charged to the value of \bar{D}. Then, when the clock goes low, the input line is isolated from the flip-flop, the feedback loop is closed, and the latch acquires the state corresponding to the value of D just before ϕ went down, providing an output $Q=D$.

From the preceding, we observe that the circuit in Fig. 11.7 combines the positive-feedback echnique of static bistable circuits and the charge-storage technique of dynamic circuits. is important to note that the proper operation of this circuit, and of many circuits that use clocks, is predicated on the assumption that ϕ and $\bar{\phi}$ will not be simultaneousty high at any time. This condition is defined by referring to the two clock phases as being nonoverlapping

An inherent drawback of the D fip-flop implementation of Fig. 11.7 is that during φ, the output of the flip-flop simply follows the signal on the S input line. This can cause problen in certain logic design situations. The problem is solved very effectively by using the master lave configuration shown in Fig. 11.8(a). Bcforc discussing its circuit operation, we note that although the switches are shown implemented with single NMOS transistors, CMOS transmission gates are cimployed in many applications. We are simply using the single MOS transistor as a "shorthand notation for a senes switch

The master-slave circuit consists of a pair of circuits of the type shown in Fig. 11.7, operated with alternate clock phases. Here, to emphasize that the two clock phases must be nonoverlapping, we denote them ϕ_{1} and ϕ_{2}, and clearly show the nonoverlap interval in the waveforms of Fig. 11.8(b). Operation of the circuit is as follows:

1. When ϕ_{1} is high and $\phi_{\text {, }}$ is low, the input is connected to the master latch whose fcedback loop is opened, while the slave latch is isolated. Thus the output Q remains the value stored previously in the slave latch whose loop is now closed. The node capacitances of the master latch are charged to the appropriate voltaycs correspondin to the present value of D.
2. When ϕ_{1} goes low, the master latch is isolated from the input data line. Then, when ϕ_{2} goes high, the feedback loop of the master latch is closed, locking in the value of D. Further, its output is connected to the slave latch whose feedback loop is now open. The node capacitances in she se goes high again the slave atch locks in put, $Q=D$.

FiGURE 11.8 (a) A master-slavc D flip-flop. The switchcs can be, and usually are implemented with CMOS transmission gates. (b) Wavcforms of the two-phase nonoverlapping clock required.

From this description, we note that at the positive transition of clock ϕ_{2} the output Q adopts the value of D that existed on the D line at the end of the preceding clock phase. ϕ_{1}. This output value remains constant for one clock period. Finally, note that during the nonoverlap interval both latches have their feedback loops open and we are relying on the node be kept reasonably short (perhe or the clock period, and of the order of 1 ns or so in current practice)

3. 11.2 MULTIVIBRATOR CIRCUITS

As mentioned before, the flip-flop has two stable states and is called a bistable multivibrato There are two other types of multivibrator: monostable and astable. The monostable multistate to which it can be triggered. The it can remain indefinitely. It has another quasi-stable
 this way the monostable multivibran whichit automatically revers to the stable state. In

FIGURE 11.9 The monostable multivibrator (one-shut) as a functional block, shown to be triggered by positive pulse. In addition, therc are onc shots that are triggered by a negative pulse.
in Fig. 11.9. The monostable multivibrator can therefore be used as a pulse stretcher or, mor appropriately, a pulse standardizer. A monostable multivibrator is also referred to as a one-shot. The astable multivibrator has no stable states. Rather, it has two quasi-stable states nd it remains in each for predetermined intervals T_{1} and T_{2}. Thus after T_{1} seconds in one of the quasi-stable states the astable switches to the other quasi-stable state and remains ther for T_{2} seconds, after which it reverts back to the original state, and so on. The astable multivibrator thus oscillates with a pcriod $T=T_{1}+T_{2}$ or a frequency $f=1 / T$, and it can be used ogenerate periodic pulses such as those required for clocking.
In Chapter 13 we will study astable and monostable multivibrator circuits that us op amps. In the following, we shall discuss monostable and astable circuits using logic gates We also present an alternative, and very popular, oscillator circuit, the ring oscillator.

11.2.1 A CMOS Monostable Circuit

Figure 11.10 shows a simple and popular circuit for a monostable multivibrator. It is composed of two two-input CMOS NOR gates, G_{1} and G_{2}, a capacitor of capacitance C, and resistor of resistance R. The input source v_{1} supplies the triggering pulses for the monostable multivibrator.
Commercially available CMOS gates have a special arrangement of diodes connected at heir input terminals, as indicated in Fig. 11.11 (a). The purpose of these diodes is to preven he input voltage signal from rising above the supply voltage $V_{D D}$ (by more than one diode drop) and from falling below ground voltage (by more than one diode drop). These clamp ing diodes have an important effect on the operation of the monostable circuit. Specifically we shall be interested in the effect of these diodes on the operation of the inverter-connected gate G_{2}. In this case, each pair of corresponding diodes appears in parallel, giving rise to the equivalent circuit in Fig. 11.11(b). While the diodes provide a low-resistance path to the power supply for voltages exceeding the power supply limits, the input current for intermediate vultages is essentially zero.

FIGURE 11.10 A monoslable circuil using CMOS NOR gates. Signal source v_{j} supplies positive trigger pulsos.

FIGURE $\mathbf{1 1 . 1 1}$ (a) Diodes at each input of a two-input CMOS gate. (b) Equivalcnt diode circuit when the wo inputs of the gate are joined togethcr. Note that the diodcs arc intended to protect the device gates from potentially destructivc overvoltages due to stalic charge accumulation.

To simplify matters we shall use the approximate output equivalent circuits of the gate Hustrated in Fig. 11.12. Figure 11.12(a) indicates that when the gate output is low, its out put characteristics can be represented by a resistance $R_{\text {on }}$ to ground, which is normally a few undred ohms. In this state, current can flow from the external circuit into the output terminal of the gate; the gate is said to be sinking current. Similarly, the equivalent output circuit in Fig. 11.12(b) applies when the gate output is high. In this state, current can flow from $V_{D D}$ through the oupput terminal of the gate into the external circuit; the gate is said to be sourcing urrent.
To see how the monostable circuit of Fig. 11.10 operates, consider the timing diagram given in Fig. 11.13. Hcre a short triggering pulse of duration τ is shown in Fig. 11.13(a). In the following we shall neglect the propagation delays through G_{1} and G_{2}. These delays, however, set a lower limit on the pulse width $\tau, \tau>\left(t_{p_{1}}+t_{p_{2}}\right)$.
Consider first the stable state of the monostable circuit--that is, the state of the circui before the trigger pulse is apphied. The output of G_{1} is high at $V_{D D}$, the capacitor is dis charged, and the input voltage to G_{2} is high at $V_{D D}$. Thus the output of G_{2} is low, at ground voltage. This low voltage is fed back to G_{1}; since v_{I} also is low, the output of G_{1} is high, as inivially assumed.
Next consider what happens as the trigger pulse is applied. The output voltage of G_{1} will go low. However, becausc G_{l} will be sinking some current and because of its finite output resistance $R_{\text {or }}$, its output will not go all the way to 0 V . Rather, the output of G_{1} drops by a alue ΔV_{1}, which we shall shortly evaluate.
The drop ΔV_{1} is coupled through C (which acts as a short circuit during the transient) to the input of G_{2}. Thus the input voltage of G_{2} drops (from $V_{D D}$) by an identical amount ΔV_{1} Here, we note that during the transient there will be an instantaneous current hat flows from

(c)

FIGURE 11.13 Timing diagram for the monostable circuit in Fig. 11.10
$V_{D D}$ through R and C and into the output terminal of G_{1} to ground. We thus have a voltage divider formed by R and $R_{\text {or }}$ (note that the instantaneous voltage across C is zero) from which we can determine ΔV_{1} as

$$
\begin{equation*}
\Delta V_{1}=V_{D D} \frac{R}{R+R_{\mathrm{on}}} \tag{11.1}
\end{equation*}
$$

Returning to G_{2}, we see that the drop of voltage at its input causes its output to go high (to $V_{D i}$). This signal keeps the output of G_{1} low even after the triggering pulse has disapto $\left.V_{D D}\right)$. This signal keeps the output of G_{1} state.
peared. The circuit is now in the quasi-stable state
We next consider operation in the quasi-stable state. The current through R, C, and $R_{\text {on }}$ causes C to charge, and the voltage r_{2} riscs exponentially toward $V_{D D}$ with a time constant

FIGURE 11.14 Circuit that applies during the dischargc of C (at the end of the munostable pulse interval T)
$C\left(R+R_{\text {on }}\right)$, as indicated in Fig. 11.13(c). The voltage v_{n} will continue to rise until it reache the value of the threshold voltage V_{t} of inverter G_{2}. Al this time G_{2} will switch and its out put $v_{O 2}$ will go to 0 V , which will in turn cause G_{1} to switch. The output of G_{1} will attempt to rise to V_{0} but, as will become obvious shortly, its instantaneous risc will be limited to a mount ΔV_{2}. This rise in w_{0} is coupled faithfully through C to the inpul of G_{2}. Thus the input of G_{2} will rise by an equal amount ΔV_{2}. Note here that because of diode D_{1}, between the input of G_{2} and $V_{D D}$, the voltage π_{12} can rise only to $V_{D D}+V_{D 1}$, where $V_{D 1}$ (approximately 0.7 V) is the drop across D_{1}. Thus from Fig. 11.13(c) we see that

$$
\Delta V_{2}=V_{D D}+V_{D 1}-V_{\text {tin }}
$$

Thus it is diode D_{1} that limits the size of the increment ΔV_{2}
Because now $v_{l 2}$ is higher than $V_{D D}$ (by $V_{D 1}$), current will flow from the output of G_{1} hrough C and then through the parallel combination of R and D_{1}. This current discharges C until v_{n} drops to $V_{D D}$ and $v_{O 1}$ rises to $V_{D D}$. The discharging circuit is depicted in Fig. 11.14, from which we note that the existence of the diode causes the discharging to be a nonlincar proCess. Although the details of the transient at the end of the pulse are not of immense interest, imporanto note that the monotuble cirevit should not be retrigered until the capacitor has been discharged, since otherwise the output obtained will not be the stanciard pulse, which the one-shot is intended to provide. The capacitor discharge interval is known as the recovery time An expession can be derived for the pulse interval T by referring to Fig 11.13(c) and
 expressing $\nu_{12}(t)$ as

$$
v_{t 2}(t)=V_{D D}-\Delta V_{1} e^{-t / \tilde{x}_{1}}
$$

where $\tau_{1}=C\left(R+R_{\text {on }}\right)$. Substituting for $t=T$ and $v_{n 2}(T)=V_{\text {th }}$, and for ΔV_{1} from Eq. (11.1) gives, after a little manipulation:

$$
T=C\left(R+R_{\mathrm{on}}\right) \ln \left(\frac{R}{R+R_{\mathrm{on}}} \frac{V_{D D}}{V_{D D}-V_{\mathrm{th}}}\right)
$$

(a)

(b)

FIGURE 11.15 (a) A simple astable multivibrator circuit using CMOS gates. (b) Waveforms for the astable circuit in (a). The diodes at the gate input are assumed to be ideal and thus to limit the voltage $v_{I I}$ to 0 and $V_{D D}$

11.2.2 An Astable Circuit

Figure 11.15(a) shows a popular astable circuit composed of two inverter-connected NOR gates, a resistor, and a capacitor. We shall consider its operation, assuming that the NOR gates are of the CMOS family. However, to simplify matters we shall make some furthe approximations, neglecting the fimite outpul resistance of the CMOS gate and assuming that the clamping diodes are ideal (thus have zero voltage drop when conducting).
With these simplifying assumptions, the waveforms of Fig. 11.15 (b) are obtained. The reader is urged to consider the operation of this circuit in a stcp-by-step manner and verify that the waveforms shown indeed apply. ${ }^{1}$

ExERCISE

115 Using the waveforms in Fis . $115(6)$. derive an expression for the period T of the astable nultivibrator of Fis: 11 I5(a)

$$
\text { Ans: } T=\left(R \ln \left(\frac{V_{D D}}{V_{D D}-V_{j}} \frac{V D n}{V_{n}}\right)\right.
$$

${ }^{1}$ Practical circuits often use a large resistance in series with the input to G_{1}. This limits the effect of

(a)

All delays $\rightarrow \left\lvert\, \begin{array}{ll:l} & t_{p} & \leftarrow \\ 1 & & \\ \end{array}\right.$
(b)

FIGURE $\mathbf{1 1 . 1 6}$ (a) A ring oscillator formed by connecting three inverters in cascade. (Normally at leas five inverters arc used.) (b) The resulting waveform. Obscrve that the circuit oscillates with frequency $1 / 6 t_{p}$

11.2.3 The Ring Oscillator

Another type of oscillator commonly used in digital circuits is the ring oscillator. It is formed by connecting an odd number of inverters in a loop. Although usually at least five inverter re used, we illustrate the principle of operation using a ring of three inverters, as shown in Fig. 11.16(a). Figure 11.16(b) shows the waveforms obtained at the outputs of the three inverters. These waveforms are idcalized in the sense that their edges have zero rise and fal times. Nevertheless, they will serve to explain the circuit operation.
Observe that a rising edge at node 1 propagates through gates 1,2, and 3 to return nverted after a delay of $3 t_{p}$. This falling edge then propagates, and returns with the original (rising) polarity after another $3 t_{p}$ interval. It follows that the circuit oscillates with a period of $6 t_{p}$ or correspondingly with frequency $1 / 6 t_{p}$. In general, a ring with N inverters (where N must be odd) will oscillate with period of $2 N t_{p}$ and frequency $1 / 2 N t_{P}$.
${ }^{-}$As a final remark, we note that the ring oscillator provides a relatively simple means for measuring the inverter propagation delay.

EXERCISE

10.6. Find the trequency of oscillation of a ing of five inverters it the inverter propagation delay is specified to bet ins:
Ans. 100 MHz

紋紋 11.3 SEMICONDUCTOR MEMORIES: TYPES ARCHITECTURES

A computer system, whether a large machine or a microcomputer, requires memory for storing data and program instructions. Furthermore, within a given computer system there usually arc various types of menory utilizing a variety of technologies and having different access times. Broadly speaking, computer memory can be divided into two types: main memory and massstorage memory. The main memory is usually the most rapidly accessible memory and the onc from which most, often all, instructions in programs are executed. The main memory is usually of the random-access typc. A random-access memory (RAM) is one in which the time required for storing (writing) information and for retrieving (reading) information is independent of the physical location (within the memory) in which the information is stored.

Random-access memories should be contrasted with serial or sequential memories, such as disks and tapes, from which data are available only in the sequence in which the data were originally stored. Thus, in a serial memory the time to access particular information depends on the memory location in which the required information is stored, and the average access time is longer than the access time of random-access memory. In a computer system, serial memory is used for mass storage. Items not frequently accessed, such as large parts of the computer operating system, are usually stored in a moving-surface memory such as inagnetic disk.

Another important classification of memory relates to whether it is a read/write or a read-only memory. Read/write (R/W) memory permits data to be stored and retrieved at comparable speeds. Computer systems require random-access read/write menory for data and program storage.

Read-only memories (ROM) permit reading at the same high speeds as R/W memories (or perhaps higher) but restrict the writing operation. ROMs can be used to store a microprocessor operating-system program. They are also employed in operations that require table lookup, such as finding the values of mathematical functions. A popular application of ROMs is their use in video game cartridges. It should be noted that rcad-only memory is usually of the random-access type. Nevertheless, in the digital circuit jargon, the acronym RAM
refers to read/write, random-access memory, while ROM is used for read-only memory.
The regular structure of memory circuits has made them an ideal application for design of the circuits of the very-large-scale integrated (VLSI) type. Indeed, at any moment, memory chips represent the state of the art in packing density and hence integration levcl. Beginning with the introduction of the 1 K -bit chip in 1970, memory-chip density has quadrupled about every 3 years. At the present time, chips containing 256 M bits ${ }^{2}$ are commercially available, whilc multigigabit memory chips are being tested in research and development laboratories. In this and the next two sections, we shall study some of the basic circuits employed in VLSI RAM clips. Read-only memory circuits are studied in Section 11.6.

11.3.1 Memory-Chip Organization

The bits on a memory chip are addressable either individually or in groups of 4 to 16. As an example, a 64 M -bit chip in which all bits are individually addressable is said to be organized as 64 M words $\times 1$ bit (or simply $64 \mathrm{M} \times 1$). Such a chip needs a 26 -bit address $\left(2^{26}=\right.$ $67,108,864=64 \mathrm{M}$). On the other hand, the 64 M -bit chip can be organized as 16 M words $\times 4$ bits

[^35]

FIGURE 11.17 A $2^{\text {LST } N^{N}}$-bil mermory clip organized as an array of $2^{M H}$ rows $\times 2^{N}$ columns.
($16 \mathrm{M} \times 4$), in which case a 24 -bit address is required. For simplicity we shall assume in our subsequent discussion that all the bits on a memory chip are individually addressable.
The bulk of the memory chip consists of the cells in which the bits ate stored. Each memory cell is an electronic circuit capable of storing one bit. We shall study memory-cel circuits in Section 11.4. For reasons that will become clear shortly, it is desirable to physially organize the storage cells on a chip in a square or a nearly square matrix. Figure 11.17 illustrates such an organization. The cell matrix has 2^{M} rows and 2^{N} columns, for a total storage capacity of 2^{2+N}. For example, a 1M-bit square matrix would have 1024 rows and 1024 columns ($M=N=10$). Each cell in the array is connected to one of the 2^{M} row lines, known rather loosely, but universally, as word lines, and to one of the 2^{N} column lines, known as digit ines or, more commonly, bit ines. A particular cell is selected for reading or writing by activating its word line and its bit line.
Activating one of the 2^{M} word lines is performed by the row decoder, a combinational logic circuit that selects (raises the voltage of) the particular word line whose M-bit address is applied to the decoder input. The address bits are denoted $A_{0}, A_{1}, \ldots, A_{M-1}$. When the K th word line is activated for, say, a read operation, all 2 cells in row K will provide their contents to their respective bit lines. Thus, if the cell in column L (Fig. 11.17) is storing a 1 , the voltage
of hit-line number L will be raised, usually by a small voltage, say 0.1 V to 0.2 V . The readout voltage is small because the cell is small, a deliberate design decision, since the number of cells is very large. The small readout signal is applied to a sense amplifier connected to the bit linc. As Fig. 11.17 indicates, there is a sense amplifier for cvery bit line. The sense amplifier provides a full-swing digitad signal (from 0 to $V_{D D}$) at its output. This signal, together with the output signals from all the other cells in the selected row, is then delivered to the column ecoder. The column decoder selects the signal of the particular colum whose N-bit addres is applied to the decoder input (the address bits are denoted $A_{M}, A_{M-1}, \ldots, A_{M+N-1}$) and causes this signal to appear on the chip input/output (I/O) data line.
A write operation proceeds in a similar manner: The data bit to he stored (1 or 0) is applied to the I/O line. The cell in which the data bit is to he stored is sclected through the comhination of its row adaress and its column address. The sense a plif of the selected column acts as a driver to write the applied signal into the sel mplifiers and address decoders will be studed in Section 11.5
Before leaving the topic of memory organization (or memory-chip architecture), we wish oripention a relatively recent innovation in organization dictaed by the exponential increase in hip density. To appreciace he
 tently, CMOS process technologies with 0.1-03 $\mu \mathrm{m}$ feature size are utilized). The net increas n word-line and hilline lengths increases their total resistance and capacitance, and thus slows lown their transient response. That is, as the lines lengthen, the exponential rise of the voluge of the word line fas been olved hy pritioning the memory chip into a number of blocks. Each of the block has an in il The row and column addresses are broadcas all blocks, but the data sclected come from only one of the bocks. Block selection i chieved by using an approprite number of the address bits as a block address. Such an arch tecture can be thought of as three-dimensional: rows, columns, and blocks.

11.3.2 Memory-Chip Timing

The memory access time is the time between the initiation of a read operation and the appearance of the output data. The memory cycle time is the minimum time allowed between two consecutive memory operations. To be on the conservative side, a memory operation is usually taken to include both read and write (in the same location). MOS memories have access and cycle times in the range of a few to few hundred nanoseconds.

EXERCISES
 Give the amber of bits requited tor the riw adtress, collimin address. and block address Ais 10. 7.5
11.8. The word lines in a particular Mos memory chip are fabricated using polysilicon (see Appendix. A) The resistance of eith word the is estimated to be 5 KSL , and the toted capaciance between the line and groind
 voltage $V_{b y}$ provided by a low impedance inverter. (Note: The line is actially a distributed network that we are approtinating by a lumped circuit consisting of a ingle resistor and a single capacitor.) Ans 0.9 ns

11.4 RANDOM-ACCESS MEMORY (RAM) CELLS

As mentioned in Section 11.3; the major part of the memory chip is taken up by the storage cells. It follows that to be able to pack a large number of bits on a chip, it is imperative that the cell size he reduced to the smallest possible. The power dissipation per cell should bc minimized also. Thus, many of the flip-flop circuits studied in Section-11.1 are too complex to be suitable for implementing the storage cells in a RAM chip.

There are basically two types of MOS RAM: static and dynamic. Static RAMs (called RRAMs for short) utilize static latches as the storage cells. Dynamic RAMs (called DRAMs) on the other hand, store the binary data on capacitors, resulting in further reduction in cell area, but at the expense of more complex read and write circuitry. In particular, while static RAM can hold their stored data indefinitely, provided the power supply remains on, dynamic RAMs require periodic refreshing to regencrate the data stored on capacitors. This is because the storage capacitors will discharge, though slowly, as a result of the leakage currents inevitably present. By virtue of their smaller cell size, dynamic memory chips are usually four times as dense as their contemporary static chips. Both static and dynamic RAMs are volatile; that is, they require the continuous presence of a power supply. By contrast, most ROMs are of the nonvolatile type, as we shall see in Section 11.6. In the following sections, we shall study basic SRAM and DRAM storage cells.

11.4.1 Static Memory Cel

Figure 11.18 shows a typical static menory cell in CMOS technology. The circuit, which we encountered in Section 11.1, is a flip-flop comprising two cross-coupled inverters and two access transistors, Q_{5} and Q_{6}. The access transistors are turned on when the word line is two access transistors, Q_{5} and Q_{6}. The access transistors are turned on when the word line is
selected and its voltage raised to V_{D}, and they connect the flip-flop to the column (bit or B) line and $\overline{\overline{c o l u m n}}$ ($\overline{\text { bit }}$ or \bar{B}) line. Note that both B and \bar{B} lines are utilized. The access transistors act as transmission gates allowing bidirectional current flow between the flip-flop and the B and \bar{B} lines.

The Read Operation Consider first a read operation, and assume that the cell is storing a 1. In this case, Q will be high at $V_{D D}$, and \bar{Q} will be low at 0 V . Before the read operation begins, the B and B lines are precharged to an intermediate voltage, between the low and high values,

FIGURE 11.18 A CMOS SRAM memory ccll.

(a)

FIGURE 11.19 Relevant parts of the SRAM cell circuit during a read operation when the cell is storing a logic 1 . Note that initially $v_{Q}=V_{D D}$ and $v_{\overline{\bar{D}}}=0$. Also note that the B and \bar{B} lines are usually precharge a voltage of about $V_{D D} / 2$. However, in Example 11.2 , it is assumed for simplicity that the precharg voltage is $V_{D D}$.
usually $V_{D D} / 2$. (The circuit for precharging will be shown in Section 11.5 in conjunction with the sense amplifier.) When the word line is selected and Q_{5} and Q_{6} are turned on, w see that current will flow from V_{D} through Q_{4} and $Q_{\text {6 }}$ and onto line B, charging the capaciance of line B, C_{B}. On the other side of the circuit, current will flow from the precharged \bar{B} line through Q_{5} and Q_{1} to ground, thus discharging $C_{\bar{P}}$. It follows that the relevant parts of circuit during a read operation are those shown in Fig. 11.19.
From this description, we note that during a read " 1 " operation, the voltage across C ill rise and that across C will fall Thus, a differential voltage v, develops betwcen lin B and line \bar{B} Usually only 02 V or so is required for the sense anplifier to deteet the pres ence of 1 in the cell. Observe that the cell must be designed so that the changes in v_{0} and , are small enough to prevent the flip flop from changing state during readout The read ${ }_{Q}$ are in ${ }^{2}$ SRAM is nondestructive Typically, each of the inverters is designed Q_{N} ad $Q_{\text {a }}$ are matched, thes are usually made two to three times wider than Q_{N} of the inverters.

The purpose of this example is to analyze the dynarnic operation of the CMOS SRAM cell of Fig. 11.18. Assume that the cell is fabricated in a process technology for which $\mu_{n} C_{o x}=$ $50 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=20 \mu \mathrm{~A} / \mathrm{V}^{2} . V_{t 00}=-V_{t p 0}=1 \mathrm{~V}, 2 \phi_{f}=0.6 \mathrm{~V}, \gamma=0.5 \mathrm{~V}^{1 / 2}$, and $V_{D D}=5 \mathrm{~V}$ Let the cell transistors have $(W / L)_{n}=4 / 2,(W / L)_{p}=10 / 2$, and let the access transistors hav $W / L)=10 / 2$. Assuming that the cell is storing a 1 and that the capacitance of each hit line 1 pF , determine the time required to develop an output voltage of 0.2 V . To simplify the analysis, assume that the B and \bar{B} lines arc precharged to $V_{D D}$.

Solution

We note at the outset that the dynamic analysis of this circuit is complex, and we must therefore make a number of simplifying assumptions. Of course, a precise analysis can always be obtaince using simulation. However, much insight can be gaised from even an approximate paper-and pencil analysi

Therer to Fig. 11.19 and recall that initially $v_{Q}=V_{D D}, v_{\bar{Q}}=0$, and $v_{B}=v_{\bar{B}}=V_{D D}$. We see immediately that the circuit in Fig. 11.19(b) will not be conducting, and thus v_{B} will remain constant at $V_{D D}$. Turning our attention then to the circuit in Fig. 11.19(a), we observe that since $v_{\bar{B}}$ stant at $V_{D D}$. Turning our atention then to the circuit in Fig. $11.19(\mathrm{a})$, we observe that since $v_{\bar{B}}$
will change by only 0.2 V (i.e., from 5 V tn 4.8 V) during the readout process, transistor Q_{5} will be operating in saturation, and thus $C_{\bar{B}}$ will be discharged with a constant current I_{5}. For transistor Q_{1} to conduct, its drain vollage $\tau_{\bar{D}}$ will have to risc. We hope, however, that this rise will not exceed the threshold of inverter (Q_{3}, Q_{4}), which is $V_{D D} / 2$, since the p and n transistors in each invertcr are natched. There will be a brief interval during which I_{5} will chargc the small parasitic capacitance between node Q and ground to a voltage $v_{\bar{Q}}$ sufficient to opcrate Q_{1} in the triode mode at a current I_{1} equal to I_{5}. The current I_{1} cau then be expressed as

$$
I_{1}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1}\left[\left(V_{D D}-V_{t 1}\right) v_{\bar{Q}}-\frac{1}{2} v_{\bar{Q}}^{2}\right]
$$

where we have assumed that v_{Q} will remain constant at $V_{D D}$. Since the source of Q_{1} is at ground, $V_{i 1}=1 \mathrm{~V}$ and

$$
\begin{equation*}
I_{1}=50 \times \frac{4}{2}\left[(5-1) v_{\overline{2}}-\frac{1}{2} v_{\bar{D}}^{2}\right] \tag{11.3}
\end{equation*}
$$

For Q_{5} we can write

$$
I_{5}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{5}\left(V_{D D}-v_{\bar{Q}}-V_{t 5}\right)^{2}
$$

where the threshold voltage V_{15} can be deternined from

$$
\begin{equation*}
v_{t 5}=1+0.5\left(\sqrt{v_{\bar{Q}}+0 . \overline{6}}-\sqrt{0.6}\right) \tag{11.4}
\end{equation*}
$$

Since we do not yct know $\gamma_{\bar{Q}}$, we need to solve by itcration. For a first iteration, we assume that $V_{15}=1 \mathrm{~V}$, thus I_{5} will bc

$$
\begin{equation*}
I_{5}=\frac{1}{2} \times 50 \times \frac{10}{2}\left(5-v_{0}-1\right)^{2} \tag{11.5}
\end{equation*}
$$

Now cquating I_{1} from Eq. (11.3) to I_{5} from Eq. (11.5) and solving for $v_{\overline{\bar{c}}}$ results in $v_{\overline{\bar{p}}}=1.86 \mathrm{~V}$ As a second iteration, we use this value of $v_{\overline{2}}$ in Eq. (11.4) to determine $V_{t 5}$. The result is $V_{t 5}=1.4 \mathrm{~V}$. This value is then used in the expression for I_{5} and the process repeated, with the result that $\nu_{\bar{D}}=1.6 \mathrm{~V}$. This is close enough to the original value, and no lurther iteration seem than $V_{D D} / 2$, and thus the flip-flo be deternined, $I_{5}=0.5$.ill . St 2.125 V ; thus the assumption that v_{0} stays at $V_{D D}$ is justified, although v_{0} will change somewh a point we shall not pursue any further in this approximate analysis

We can now determine the interval for $0 . \mathrm{V}$ decre analysi

$$
\Delta t=\frac{C_{\bar{B}} \Delta V}{I_{\mathrm{S}}}
$$

Thus,

$$
\Delta t=\frac{1 \times 10^{-12} \times 0.2}{0.5 \times 10^{-3}}=0.4 \mathrm{~ns}
$$

We should point out that Δt is only one component of the delay encountered in the read operation. Another significant component is duc to the finite rise time of the voltage on the word line. Indeed, even the calculation of Δt is optimistic, since the word line will have only reached a voltage lower than $V_{D D}$ when the process of discharging $C_{\bar{B}}$ takes place.

Another even more approximate (but faster) solution can be obtained by observing that in the circuit of Fig. 11.19(a), Q_{1} and Q_{5} have equal gate voltages ($V_{D D}$) and are connected in series. We may consider that they are approximately equivalent to a single transistor with a W / L ratio,

$$
(W / L)_{\text {eq }}=\frac{1}{\frac{1}{(W / L)_{1}}+\frac{1}{(W / L)_{5}}}=\frac{1}{\frac{2}{4}+\frac{2}{10}}=\frac{10}{7}
$$

$$
\begin{aligned}
& \frac{1}{(W / L)_{1}}+\frac{1}{(W / L)_{5}} \quad \frac{2}{4}+\frac{2}{10} \quad 7 \\
& \text { ate in saturation, thus its current } I \text { will b }
\end{aligned}
$$

$$
I=\frac{1}{2} \times 50 \times \frac{10}{7}(5-1)^{2}=0.57 \mathrm{~mA}
$$

This is only 14% greater than the value found earlier. The voltage $\tau_{\bar{Q}}$ can be found by multiplying I by the approximate value of $r_{D S}$ of Q_{1} in the triode region,

$$
r_{D S}=1 /\left[50 \times 10^{-6} \times \frac{4}{2} \times(5-1)\right]=2.5 \mathrm{k} \Omega
$$

Thus,

$$
v_{\bar{Q}}=0.57 \times 2.5=1.4 \mathrm{~V}
$$

Again, this is reasonably close to the value found earlier.
The Write Operation Next we consider the write operation. Assume that the cell is originally storing a $1\left(v_{Q}=V_{D D}\right.$ and $\left.v_{\bar{D}}=0\right)$ and that we wish to write a 0 . To do this, the B line is lowered to 0 V and the \bar{B} line is raised to $V_{D D}$, and of course the cell is selected by raising the word line to $V_{D D}$. Figure 11.20 shows the relevant parts of the circuit during the interval in which node Q is being pulled up toward the threshold voltage $V_{D D} / 2$ (Fig. 11.20 a) and node Q is being pulled down toward $V_{D D} / 2$ (Fig. 1.20b). Capacitors C_{Q} and C_{Q} are the parasic capacitances at nodes Q and Q, respectively. An approximate analysis ${ }^{2}$. et tive feedback that causes the fip-Hop to swach $V_{D D} / 2$. When this happens, the positive feedback takes over longer apply.

(a)

(b)

FIGURE 11.20 Reievant parts of the SRAM circuit during a write operation. Initially, the SRAM has a stored 1 and a $\overline{\bar{Q}}$ is being written. These equivalent circuits apply before switching takes place. (a) The circuit is pulling node \bar{Q} up toward $V_{D D} / 2$. (b) The circuit is pulling node Q down toward $V_{D D} / 2$.

We shall briefly explain the operation of the circuits in Fig. 11.20, leaving the analysis for the reader to perform in Exercise 11.9 and Problems 11.23 and 11.24 . Consider first the circuit in Fig. 11.20(a), and note that Q_{5} will be operating in saturation. Initially, its source voltage will be 0 , and thus its V_{t} will be equal to $V_{t 0}$. Also initially, Q_{1} will be off because its
 mind Q_{1} weducing the current. Q_{1} will be in the triode region and its clurrent I_{1} will subtract rom I_{5}, reducing the Fig. $11.20(\mathrm{~b})$ is that v_{Q} will be falling from V red V_{b}. This will cause the corcuit in ing decrease in the Q_{Q}. $I_{\text {der }}$ Despond ing decrease n e I_{1}. Despite all these complications, one can easily calculate an approwh with $u_{0}=V_{0}$ ing with $v_{Q}=V_{D D}, v_{\overline{\bar{L}}}=0$) and ending with ($v_{Q}=V_{D D} / 2, v_{\bar{Q}}=V_{D D} / 2$). We can then us
The circuit in
tre circuit in rg. 11.20(b) operates in much the same fashion except that neither of the larger discharge current than the current provided by the circuit in Fig. $1120($ a) to charge The result will be that C_{0} will discharge faster than C_{0} will charge In 2 ther words, ${ }_{\overline{\mathrm{w}}}$. The re V_{0}, lay time ${ }^{2}$.
anther comen of write delay is that then
up by the switching action of the flip top. This can be approximated by the delay time of one inverter

EREGSE

 parameters are as specificd in Example 112. We wish to determine the interval Δy reguired for C_{0} to discharge, and its Yoltase to fill from $V_{D D}$ to $V_{D D} 12$.
(a) At the beginning of interyal Δt, find the values of $I_{4}, 1$, and I_{C}
(b) At the end of interval A t, find the values of $I_{4} I_{5}$ and $I_{C \text { : }}$.
(c) Fird an estinate of the average value of \mathcal{C}_{Q} during interval Δt
(d) $I C_{C}=50 \mathrm{fF}$ estinate $\triangle t$

Ans (a) $I_{4}=0 . I_{6}=2 \mathrm{~mA}, I_{C_{e}}=2 \mathrm{~mA}$, b) $I_{4}=011 \mathrm{~mA}, I_{6}=172 \mathrm{~mA} I_{C_{2}}=161 \mathrm{~mA}$; (c) $I_{C_{e}}=$ 1.8 mA . (d) $\Delta t=69.4 \mathrm{p}$

From the results of Exercise 11.9, we note that this component of write delay is much smaller than the corresponding component in the read operation. This is because in the write operation, only the small capacitance C_{Q} needs to be charged (or discharged), whereas in the read operation, we have to charge (or discharge) the much larger capacitances of the B or \bar{B} lines. In the write operation, the B and \bar{B} line capacitances are charged (and discharged) relatively quickly by the driver circuitry. The end result is that the delay time in the write operation is dominated by the word-line delay.

[^36]

FIGURE 11.21 The onc-transistor dynamic RAM cell.

11.4.2 Dynamic Memory Cell

Although a varicty of DRAM storage cells have been proposed over the years, a particular cell, shown in Fig. 11.21, has become the industry standard. The cell consists of a single n-channel MOSFET, known as the access transistor, and a storage capacitor C_{S}. The cell is appropriately known as the one-transistor cell. ${ }^{4}$ The gate of the transistor is connected to the word line, and its source (drain) is connected to the bit line. Observe that only one bit line is used in DRAMs, whercas in SRAMs both the bit and hit lines are utilized

The DRAM cell stores its bit of infornation as charge on the cell capacitor C_{s}. When the cell is storing a 1 , he capacier is charged to ($V_{D D}-V_{t}$), when a 0 is stored, the capacitor is discharged to a zero voltage. ${ }^{3}$ Because of leakage effects, the capacitor charge will leak off, and hence the cell must be refreshed periodically. During refresh, the cell content is read and the data bit is rewritten, thus restoring the capacitor voltage to its proper value. The refresh operation must be performed every 5 ms to 10 ms .
Let us now consider the DRAM opcration in more detail. As in the static RAM, the row decoder selects a particular row by raising the voltage of its word line. This causes all the access transistors in the selected row to become conductive, thercby connecting the storage capacitors of all the cells in the selected row to their respective bit lines. Thus the cell capacitor C_{S} is connected in parallel with the bit-line capacitance C_{B}, as indicated in Fig. 11.22. Here, it should be noted that C_{S} is typically 30 fF to 50 fF , whereas C_{B} is 30 to 50 times larger. Now, if the operation is a read, the bit linc is precharged to $V_{D D} / 2$. To find the change
${ }^{4}$ The narne was originally used to distinguish this cell from earlier ones utilizing three transistors. "The reason that the " 1 " level is less than $V_{D D}$ by the magnitude of the threshold V, is as follows: Consider a write-1 operation. The word line is at $V_{D D}$ and the bit line is at $V_{D D}$ and the uransistor is conducting, charging C_{s}. The transistor will cease conduction when the voltage on C_{s} reaches $\left(V_{D D}-V_{V}\right)$, Scction 10.5 in connection with pass-transistor logic.
in the voltage on the bit line resulting from connecting a cell capacitor C_{S} to it, let the initia voltage on the cell capacitor be $V_{C S}\left(V_{C S}=V_{D D}-V_{t}\right.$ when a I is stored, but $V_{C S}=0 \mathrm{~V}$ when 0 is stored). Using charge conservation, we can write

$$
C_{S} V_{C S}+C_{B} \frac{V_{D D}}{2}=\left(C_{B}+C_{S}\right)\left(\frac{V_{D D}}{2} \div \Delta V\right)
$$

from which we can obtain for ΔV

$$
\Delta V=\frac{C_{S}}{C_{B}+C_{S}}\left(V_{C S}-\frac{V_{D D}}{2}\right)
$$

and since $C_{B} \gtrdot C_{S}$,

$$
\Delta V \cong \frac{C_{S}}{C_{B}}\left(V_{C S}-\frac{V_{D D}}{2}\right)
$$

Now, if the cell is storing a $1, V_{C S}=V_{D D}-V_{t}$, and

$$
\begin{equation*}
\Delta V(1) \cong \frac{C_{S}}{C_{B}}\left(\frac{V_{D D}}{2}-V_{t}\right) \tag{11.8}
\end{equation*}
$$

whereas if the cell is storing a $0, V_{C S}=0$, and

$$
\begin{equation*}
\Delta V(0) \cong-\frac{C_{S}}{C_{B}}\left(\frac{V_{D D}}{2}\right) \tag{11.9}
\end{equation*}
$$

Since usually C_{b} is much greater than C_{S}, these readout voltages are very small. For examSince usually C_{B} is much greater than C_{S}, these readout voltages are very small. For exam-
ple, for $C_{B}=30 C_{S}, V_{D D}=5 \mathrm{~V}$, and $V_{t}=1.5 \mathrm{~V}, \Delta V(0)$ will he about -83 mV , and $\Delta V(1)$ will be 33 mV . This is a best-case scenario, for the 1 level in the cell might very well be below $\left(V_{D D}-V_{F}\right)$. Furthermore, in modern memory chips, $V_{D D}$ is 3.3 V or cven lower. In lin volte we the a 1 a line voltage, whereas a stored the readout process is de $V_{D D}-V_{,}$) or 0 .

The change of vollage on the bit linc is detccted and amplified by the column sense amplificr. The amplified signal is then impressed on the storage capacitor, thus restoring its signal to the proper level ($V_{D D}-V_{z}$ or 0). In this way, all the cells in the selected row are unn is fed to the data-output line of the chip through the artion of the column decoder.

The write operation proceeds similarly to the read and
The writen which is impressed on the data input line is applied by the column decoder to the selected bit line. Thus if the data bit to be writen is a 1 the B line voltage is raised to V (ie, $C_{\text {}}$ is charged to V) When the access transistor of the particular ccll is umed on, its (i.e., C_{B} is charged to $V_{D D}$). When the access transistor of the particular ccll is turned on, it capacitor C_{S} will he charged to $V_{D D}-V_{\text {; }}$; thus a L is writ the her cells in the selected row are simply refreshed.

Although the read and write operations result in automatic refreshing of all the cells in the selected row, provision must be made for the periodic refreshing of the entire memory every 5 to 10 ms , as specified for the particular chip. The refresh operation is carried out in a burst mode, one row at a time. During refresh, the chip will not be available for read or writc entire chip is typically less than 2% of the time between refresh cycles. In other words, the memory chip is available for normal operation more than 98% of the time.

EXERCISES

11.10 In a particular dynamic memory chip. $C_{S}=30 \mathrm{fF}, C_{B}=1 \mathrm{pF}, V_{D D}=5 \mathrm{~V}, V_{1}$ (including the body effect) $=$ $13 . V$ find the output feadout molrage for a stored 1 and a stored 0 . Recall that in a read operation, the bit lines are precharged to $t_{\text {DD }} / 2$
Ans 30 mV : 75 mV
1111 A 64 M bit DRAM chip fabricated in a $0.4 \mu \mathrm{~m}$ CMOS rechnology requires $2 \mu \mathrm{~m}^{2}$ per cell If the stor age array is square, estimate its dimensions. Ftrther, if the perpheral circuitry re.g., sense amplifiers, decoders) add about 30% to the chip area, estimate the dimensions of the resulting chip.
Ans. $11.6 \mathrm{~mm} \times 11.6 \mathrm{~mm}, 13.2 \mathrm{~mm} \times 13.2 \mathrm{~mm}$

11.5 SENSE AMPLIFIERS AND ADDRESS DECODERS

Having studicd the circuits commonly used to implement the storage cells in SRAMs and DRAMs, we now consider some of the other important circuit blocks in a memory chip. The design of these circuits, commonly referred to as the memory peripheral circuits, presents exciting challenges and opportunities to integrated-circuit designers: Improving the pcrfor mance of peripheral circuits can result in denser and faster memory chips that dissipate less power.

11.5.1 The Sense Amplifier

Next to the storage cells, the sense amplifier is the most critical component in a memory cliip. Sense amplifiers are essential to the proper operation of DRAMs, and their use in SRAM results in speed and area improvements.
A variety of sense-amplifier designs are in use, some of which closely resemble the active-load MOS differential amplifier studied in Chapter 7. Here, we describe a differential sense amplifier that employs positive feedback. Because the circuit is differential, it can be employed directly in SRAMs where the SRAM cell utilizes both the B and \bar{B} lines. On the other hand, the one-transistor DRAM circuit we studied in Section 11.4.2 is a single-ended circuit, utilizing one bit line only. The DRAM circuit, however, can be made to resemble a differential signal source through the use of the "dummy cell" technique, which we shall discuss shortly. Therefore, we shall assume that the memory cell whose output is to be amplified develops a difference output voltage between the B and \bar{B} lines. This signal, which can range between 30 mV and 500 mV depending on the memory type and cell design, will be applied to the input terminals of the sense amplifier. The sense amplifier in turn responds by providing a full-swing (0 to $V_{D D}$) signal at its output terminals. The particular amplifier circuit we hall discuss here has a rather unusual property: Its output and input terminals are the same!

A Sense Amplifier with Positive Feedback Figure 11.23 shows the sense amplifier together with some of the other column circuitry of a RAM chip. Note that the sense ampli fer is nothing but the familiar latch formed by cross-coupling two CMOS inverters: One inverter is inplemented by tansistors Q_{1} and Q_{2}, and the other by transistoss ℓ_{3} and Q_{4} ransistors Q_{5} and Q_{6} act as switches that connect the sense amplifier to ground and $V_{D D}$ nly when data-sensing action is required. Otherwise, ϕ_{s} is low and the sense amplifier is turned off. This conserves power, an important consideration because usually there is one sense amplifier per column, resulting in thousands of sense amplifiers per chip. Note, again,

FIGURE 11.23 A differential sense amplifier connected to the bit lines of a particular column. Th arrangement can bc used directly for SRAMs (which utilize both the B and \bar{B} lincs). DRAMs can be turned into differencial circuits by using the "dummy cell" arrangement shown in Fig. 11.25.
hat terminals x and y are both the input and the output terminals of the amplifier. As indi cated, these I/O terminals are connected to the B and \bar{B} lines. The amplifier is required to detect a smaall signal appearing between B and \bar{B}, and to amplify it to provide a full-swing signal at B and B. For instance, if during a read operation, the cell had a stored I, then a mall positive voltage will develop between B and \bar{B}, with v_{B} higher than $v_{\bar{B}}$. The amplifier will then cause v_{B} to rise to $V_{D D}$ and $z_{\bar{B}}$ to fall to 0 V . This 1 output is then directed to the chip I/O pin by the column decoder (not shown) and at the same time is used to rewrite a 1 in the DRAM cell, thus performing the restore operation that is required because the DRAM adout process is destructive
Figure 11.23 also shows the precharge and equalization circuit. Operation of this circuit is straightforward: When ϕ_{p} gocs high prior to a read operation, all three transistors conduct

While Q_{8} and Q_{9} precharge the B and B lincs to $V_{D D} / 2$, transistor Q_{7} helps speed up this process by equalizing the initial voltages on the two lines. This equalization is critical to the proper operation of the sense amplifier. Any voltage difference present between B and \bar{B} prior to cominencement of the read operation can result in erroneous interpretation by the sense amplificr of its input sigual. In Fig. 11.23, we show only one of the cells in this partic ular column, namely, the cell whose word line is activated. The cell can be either an SRAM or a DRAM cell. All other cells in this column will not be connected to the B and \bar{B} line (because thcir word lines will remain low)

Let us now consider the sequence of cvents during a read operation:

1. The precharge and equalization circuit is activated by raising the control signal ϕ_{p} This will cause the B and \bar{B} lines to be at equal voltages, equal to $V_{D D} / 2$. The clock ϕ_{p} then goes low, and the B and \bar{B} lines are lcft to float for a brief interval.
2. The word line goes up, connecting the cell to the B and \bar{B} lines. A voltage then devel ops between B and \bar{B}, with v_{b} higher than $v_{\bar{B}}$ if the accessed cell is storing a 1 , or ower than $v_{\bar{B}}$ if the cell is storing a 0 . To keep the cell design simple, and to facilitate operation at higher speeds, the readout signal, which the cell is required to provide between B and \bar{B}, is kept small (typically, $30-500 \mathrm{mV}$).
3. Once an adequate difference voltage signal has been developed between B and \bar{B} by the storage cell, the sense amplificr is turned on by connecting it to ground and $V_{D D}$ through Q_{5} and Q_{6}, activated by raising the sense-control signal $\phi_{s .}$. Because ini ially the input terminals of the inverters are at $V_{D D} / 2$, the inverters will be operatin in their transition region where the gain is high (Section 10.2). It follows that initially the latch will be operating at its unstable equilibrium point. Thus, depending on the signal between the input terminals, the latch will quickly move to one of its two sta ble equilibrium points (refer to the description of the latch operation in Section 11.1). This is achieved by the regenerative action, inherent in positive feedback. Figure 11.24 clearly illustrates this point by showing the waveforms of the signal on the bit line for both a read- 1 and a read-0 operation. Observe that once activated, the sense amplifier causes the small initial difference, $\Delta V(1)$ or $\Delta V(0)$, provided by the cell, to grow exponentially to either $V_{D D}$ (for a read- 1 opcration) or 0 (for a read- 0 operation)

FGURE 11.24 Wavelorms of z_{l} before and after the activation of the sense amplifier. In a read-1 operation, the sense ampuifier caluses the initial small increment $\Delta V(1)$ to grow exponentially io $V_{m D}$. In a read-0 operation, the negative $\Delta V(0)$ grows to 0 . Complementary signal waveforms develop on the \bar{B} line.

The waveforms of the signal on the \bar{B} line will be complementary to those shown in Fig. 11.24 for the B line. In the following, we quantify the process of exponential growth of v_{B} and $v_{\bar{B}}$.

A Closer Look at the Operation of the Sense Amplifier Developing a precise expres sion for the output signal of the sense amplifier shown in Fig. 11.23 is a rather complex task requiring the use of large-signal (and thus nonlinear) models of the inverter voltage transfer characteristic, as well as taking the positive feedback into account. We will not do this here rather, we shall consider the operation in a semiquantitative way

Recall that at the time the sense amplifier is activated, each of its iwo inverters is operaing in the transition region at $V_{D D} / 2$. Thus, for small-signal operation, each inverter can be modeled using $g_{m n}$ and $g_{m p}$, the rransconductances of Q_{N} and Q_{P}, respectively, evaluated at an input bias of $V_{D D} / 2$. Specifically, a small-signal γ_{i} superimposed on $V_{D D} / 2$ at the input of on of the inverters gives rise to an inverter output current signal of $\left(g_{m n}+g_{m p}\right) v_{i} \equiv G_{m n} v_{i}$. This out put current is delivered to one of the capacitors, C_{B} or $C_{\bar{B}}$. The voltage thus developed acros he capacitor is then fed back to the other inverter and is multiplied by its G_{m}, which gives risu o an oulput current feeding the other capacitor, and so on, in a regenerative process. The pos itive feedback in this loop will mean that the signal around the loop, and thus ν_{B} and $\tau_{\bar{\beta}}$, will ise or decay exponentially (see Fig. 11.24) with a time constant of (C_{B} / G_{m}) for ($C_{\bar{n}} / G_{m}$) since we have been assuming $C_{B}=C_{\bar{B}}$. Thus, for cxample, in a read-1 operation we obtain

$$
v_{B}=\frac{V_{D D}}{2}+\Delta V(1) e^{\left(G_{n} / C_{B}\right) ;} \quad v_{B} \leq V_{D D}
$$

(11.10)
whereas in a read-0 operation,

$$
\begin{equation*}
v_{B}=\frac{V_{D D}}{2}-\Delta V(0) e^{\left(G_{m} / C_{B}\right) t} \tag{11.11}
\end{equation*}
$$

Bccause these expressions have becn derived assuming small-signal operation, they describe the exponential growth (decay) of v_{B} reasonably accurately only for values close to $V_{D D} / 2$ Nevertheless, they can be used to obtain a reasonable estimate of the time required to develop a particular signal level on the bit linc.

3 x^{2}

Consider the sense-amplificr circuit of Fig. 11.23 during the reading of a 1 . Assume that the stor age cell provides a voltage increment on the B line of $\Delta V(1)=0.1 \mathrm{~V}$. If the . NMOS devices in the amplifiers have $(W / L)_{n}=12 \mu \mathrm{~m} / 4 \mu \mathrm{~m}$ and the PMOS devices have $(W / L)_{p}=(30 \mu \mathrm{~m} / 4 \mu \mathrm{~m})$; and assuming that the other parameters of the process technology are as specificd in Example 11.2 find the time required for v_{B} to reach 4.5 V . Assume $C_{B}=1 \mathrm{pF}$.

Solution

First, we determinc the transconductances $g_{m n}$ and $g_{m p}$

$$
\begin{aligned}
g_{m n} & =\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{n}\left(V_{C S}-V_{t}\right) \\
& =50 \times \frac{12}{4}(2.5-1) \\
& =0.225 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

1043

FIGURE 11.25 An arrangement for obtaining differential operation from the single-ended DRAM cell. Note the dummy cells at the far right and far leff.

Basically, each bit line is split into two identical halves. Each half-line is connected to half the cells in the column and to an additional cell, known as a dummy cell, having a storage capacitor $C_{D}=C_{S}$. When a word line on the left side is selected for reading, the dummy cell on the right side (controlled by $\bar{\phi}_{D}$) is also selected, and vice versa; that is, when a word ine on the right side is selected, the dummy cell on the left (controlled by ϕ_{D}) is also elected. In effect, then, the dummy cell serves as the other half of a differential DRAM cell. When the left-half bit line is in operation, the right-half bit line acts as its complement (or \bar{B} ine) and vice versa.
Operation of the circuit in Fig. 11.25 is as follows: The two halves of the line are preharged to $V_{D D} / 2$ and their voltages are equalized. At the same time, the capacitors of the wo dummy cells are precharged to $V_{D D} / 2$. Then a word line is selected, and the dumm ell on the other side is enabled (with ϕ_{D} or ϕ_{D} raised to $V_{D D}$. Thus the half-line connected oo the selected cell will develop a voltage increment (around $V_{D D} / 2$) of $\Delta V(1)$ or $\Delta V(0)$ depending on whether a or a 0 is stored in the cell. Meanwhile, the other half of the line will have its voltage held equal to that of C_{D} (i.e., $V_{D D} / 2$). The result is a differential signal of $\Delta V(1)$ or $\Delta V(0)$ that the sense amplifier detects and amplifies when it is enabled. As usual, by the end of the regenerative process, the amplifier will cause the voltage on one half of the line to become $V_{D D}$ and that on the other half to become 0

11.12 It is required to redace the time Δi of the sense-mplifer circuit in Exaniple 1.3 to 4 ns by increasing ${ }_{m}$ of the tiansistors (while retuining the mached desi, of each inverter. What must the (W) L) ation of the n and p-charnel devices become.
Ans. $(W H)_{1}, 5(1 / L /)_{j}=12.5$
11.13 If in the sense amplifier of Example 11.3, the stenal available from the cell is onty half as large fie only $50 \mathrm{~m} V$, what will Δt becone?
Ans. 8.19 ns , an increase of 23 .

11.5.2 The Row-Address Decoder

As described in Section 11.3, the row-address decoder is required to select one of the 2^{M} word lines in response to an M-bit address input. As an example, consider the case $M=3$ and denote the three address bits A_{0}, A_{1}, and A_{2}, and the eight word lines $W_{0}, W_{1}, \ldots, W_{7}$. Conventionally, word line W_{0} will be high when $A_{0}=0, A_{1}=0$, and $A_{2}=0$, thus we can express W_{0} as a Boolean function of A_{0}, A_{1}, and A_{2},

$$
W_{0}=\bar{A}_{0} \bar{A}_{1} \bar{A}_{2}=\overline{A_{0}+\overline{A_{1}}+\bar{A}_{2}}
$$

Thus the selection of W_{0} can be accomplished by a three-input NOR gate whose three inputs are connected to A_{0}, A_{1}, and A_{2} and whose output is connected to word line 0 . Word line W_{3} will be high when $A_{0}=1, A_{1}=1$, and $A_{2}=0$, thus

$$
W_{3}=A_{0} A_{1} \bar{A}_{2}=\overline{\bar{A}_{0}+\overline{\bar{A}}_{1}+A_{2}}
$$

Thus the selection of W_{3} can be realized by a three-input NOR gate whose three inputs are connected to \bar{A}_{0}, \bar{A}_{1}, and A_{2}, and whose output is connected to word line 3 . We can thus see that this address decoder can be realized by cight three-input NOR gates. Each NOR gate is
fed with the appropriate combination of address bits and their complements, corresponding to the word line to which its output is connected:

A simple approach to realizing these NOR functions is provided by the matrix structure shown in Fig. 11.26. The circuit shown is a dynamic one (Section 10.6). Attached to each row line is a p-channel device that is activated, prior to the decoding process, using the precharge control signal ϕ_{P}. During precharge (ϕ_{P} low), all the word lines are pulled high to $V_{D D}$. It is assumed that at this time the address input bits have not yet been applied and all the inputs are low; hence there is no need for the circuit to include the evaluation transistor utilized in dynamic logic gates. Then, the decoding operation begins when the address bits

FIGURE 11.26 A NOR address decoder in array form. One out of eight lines (row lincs) is selected using
and their complements are applied. Observe that the NMOS transistors are placed so that the word lines not sclected will be discharged. For any input combination, only one word line will not be discharged, and thus its voltage remains high at $V_{D D}$. For instance, row 0 will be high only when $A_{0}=0, A_{1}=0$, and $A_{2}=0$; this is the only combination that will result in all three transistors connected to row 0 being cut off. Similarly, row 3 has transistors connected to \bar{A}_{0}, \bar{A}_{1}, and A_{2}, and thus it will be high when $A_{0}=1, A_{1}=1, A_{2}=0$, and so on. After the decoder outputs have stabilized, the output lines are connected to the word lines of the array, usually via clock-controlled transmission gates. This decoder is known as a NOR decoder. Obse
because of the precharge operation, the decoder circuit does not dissipate static power.

Ex, ReISE

1114 How many transistory are needed for a NOR row decoder with an M-bit address?. Ans. M2 NMOS $+2^{M}$ PMOS $=2^{M} M+1$

11.5.3 The Column-Address Decoder

From the description in Section 11.3, the function of the column-address decoder is to connect one of the 2^{N} bit lines to the data I/O line of the chip. As such, it is a multiplexer and can be implemented using pass-transistor logic (Section 10.5) as shown in Fig. 11.27. Here eacb bit line is connected to the data I/O line through an NMOS transistor. The gates of the pass transistors are controlled by 2^{N} lines, one of which is selected by a NOR decoder simiar to that used for decoding the row address.

An alternative implementation of the column decoder that uses a smaller number of tran sistors (but at the expense of slower speed of operation) is shown in Fig. 11.28. This circuit known as a tree decoder, has a simple structure of pass transistors. Unfortunately, since relatively large number of transistors can exist in the signal path, the resistance of the bit lines increases, and the speed decreases correspondingly.

FIGURE 11.27 A column decoder realized by a combination of a NOR decoder and a pass-transistor multiplexer.

when $A_{0}=1 . A_{1}=0$, and $A_{2}=1$, the address that results in connecting B_{5} to the data line.
Exemese

11.6.1 A MOS ROM

Figure 11.29 shows a simplified 32 -bit (or 8 -word $\times 4$-bit) MOS ROM. As indicated, the memory consists of an array of n-channel MOSFETs whose gates are connected to the word lines, whose sources are grounded, and whose drains are connected to the hit lines. Each bit line is connected to the power supply via a PMOS load transistor, in the manner of pseudoNMOS logic (Section 10.4). An NMOS transistor exists in a particular cell if the cell is storing a 0 ; a cell storing a 1 has no MOSFET. This ROM can be thought of as 8 words of 4 bits each. The row decoder selects one of the 8 words by raising the voltage of the corresponding word line. The cell transistors connected to this word line will then conduct, thus pulling the voltage of the bit lines (to which transistors in the selected row are connected) down from $V_{D D}$ (o a voltage close to ground voltage (the logic-0) level). The bit lines that are connected
to cells (of the selected word) without transistors (i.e., the cells that are storing 1 s) will remain at the power-supply voltage (logic 1) hecausc of the action of the pull-up PMOS load devices. In this way, the bits of the addressed word can be read.

A disadvantage of the ROM circuit in Fig. 11.29 is that it dissipates static power. Specifically, when a word is selectect, the transistors in this particular row will conduct static current that is supplied by the PMOS load transistors. Static power dissipation can be eliminated by a simple change. Rather than grounding the gate terminals of the PMOS transistors, we can connect these transistors to a precharge line ϕ that is normally high. Just before a reading operation, ϕ is lowered and the bit lines are precharged to $V_{D D}$ through the PMOS transistors. The precharge signal ϕ then goes high, and the word line is selected. The bit lines that have transistors in the selected word are then discharged, thus indicating stored zeros, whereas those lines for which no transistor is present remain at $V_{D D}$. indicating stored ones.

3 3ERGISE

1176 The pu pose of this exercise is to estinate the vanons delay times involved in the operation of a ROM Constder the ROM in Fis. 11.29 with the sates of the PMOS deviees discomected fiom ground and connected to a precharge control signal of tet all he MMOS devices have $1 / L=6 \mu \mathrm{~m} / 2 \mu \mathrm{n}$ and an

(a) During the precharge interval of s lowered to $0 . V$. Estimate the time required to charge a bit ino

 Mote that all MMOS transistors are cut off at this time.
 yoftage of the selected word line. Because of the finite resistance and capacitance of the word line: the oltage ises exponentialy toward Vpp. If the esistance of each of the poly silicon word lines is 3 ks and the cappictance between the word line and ground if 3 pF , what is the (10% to 90%) tise time of the vord-1ine voltage? What is the vottage reachec at the end of one time constant?
(e) We account for the exponental rise of the word-line voltage by approximating the werd-line votage
by a sten equal to the voltage reached in one time constant. Find the niterval Δt required for an NMOS

Ans. (a) 61 ns (b) $19.8 \mathrm{~ns}, 3.16 \mathrm{~V}$: (c) 2.9 ms

11.6.2 Mask-Programmable ROMs

The data stored in the ROMs discussed thus far is determined at the time of fabrication, according to the user's specifications. However, to avoid having to custom-design each ROM from scratch (which would be extremely costly), ROMs are manufactured using process fabricated on a wafer or silicon using a sequence of processing steps that include photomasking, etching, and difusion. In this way, a patterm of junctions and interconnections created on the surface of the wafer. One of the final steps in the fabrication process consists of coating the surface of the wafer with a layer of aluminum and then selectively (using mask) etching away portions of the aluminum, leaving aluminum only where interconnec ions are desired. This last step can be used to program (i.e., to store a desired pattern in) ROM. For instance, if the ROM is made of MOS transistors as in Fig. 11.29, MOSFETs can be included at all bit locations, but only the gates of those transistors where 0 s are to be stored are connected to the word lines; the gates of transistors where 1 s are to be stored are not connected. This pattern is determined by the mask, which is produced according to the ser's specifications.
The economic advantages of the mask programming process should be obvious: All ROMs are fabricated similarly; customization occurs only during one of the final steps in fabrication.

11.6.3 Programmable ROMs (PROMs and EPROMs)

PROMs are ROMs that can be programmed by the user, but only once. A typical arrangement employed in BJT PROMs involves using polysilicon fuses to connect the emiter each BJT to the corresponding digit line. Depending on the desired content of a ROM cell, the fuse can be either left intact or blown out using a large current. The programming pro ess is obviously irreversible.
An erasable programmable ROM, or EPROM, is a ROM that can be erased and repro grammed as many times as the user wishes. It is therefore the most versatile type of readonly memory. It should be noted, bowever, that the process of erasure and reprogramming is time-consuming and is intended to be performed only infrequently.
State-of-the-art EPROMs use variants of the memory cell whose cross section is shown in Fig. II.30(a). The cell is basically an enhancemen--type n-channel MOSFET with two

IGURE 11.30 (a) Cross section and (b) circuit symbol of the floating-gate transistor used as an EPROM cell.

FIGURE 11.31 Illustracing the shift in the $i_{D}-v_{G S}$ characteristic of a floating-gate transistor as a result of programming
gates made of polysilicon material. ${ }^{6}$ One of the gates is not electrically connected to any other part of the circuit; rather, it is left floating and is appropriately called a floating gate. The other gate, called a select gate, functions in the same manner as the gate of a regular enhancement MOSFET

The MOS transistor of Fig. 11.30(a) is known as a noating-gate transistor and is given the circuit symbol shown in Fig. 11.30(b). In this symbol the broken line denotes the floating gate. The memory cell is known as the stacked-gate cell.

Let us now examine the operation of the floating-gate transistor. Before the cell is programmed (we will shortly explain what this means), no charge exists on the floating gate and the device operates as a regular n-channel enhancement MOSFET. It thus exhibits the $i_{D}-v_{G S}$ characteristic shown as curve (a) in Fig. 11.31. Note that in this case the threshold voltage $\left(V_{2}\right)$ is rather low. This state of the transistor is known as the not-programmed state. It is one of two states in which the floating-gate transistor can exist. Let us arbitrarily take the not-programmed state to represent a stored 1 . That is, a floating-gate transistor whose $i_{D}-y_{C S}$ characteristic is that shown as curve (a) in Fig. 11.31 will be said to be storing a 1 .

To program the floating-gate transistor, a large voltage ($16-20 \mathrm{~V}$) is applied between its drain and source. Simultaneously, a large voltage (about 25 V) is applied to its select gate. Figure 11.32 shows the floating-gate MOSFET during programming. In the absence of any charge on the floating gate the device behaves as a regular n-channel enhancement MOSFET: An n-type inversion layer (channel) is created at the wafer surface as a result of the large positive voltage applied to the select gate. Because of the large positive voltage at the drain, the cluannel has a tapered shape
The drain-to-source voltage accelerates electrons through the channel. As these electrons reach the drain end of the channel, they acquire large kinetic energy and are referred to as hot electrons. The large positive voltage on the select gate (greater than the drain voltage) establishes an clectric ficld in the insulating oxide. This electric field attracts the hot electrons

FIGURE 11.32 The חloating-gatc transistor during programmiug.
and accelerates them (through the oxide) toward the floating gate. In this way the floating gate is charged, and the charge that accumulates on it becomes trapped.

Fortunately, the process of charging the floating gate is self-liniting. The negative charge hat accumulates on the floating gate reduces the strength of the electric field in the oxide to the point that it eventually becomes incapable of accelerating any more of the hot electrons.
Let us now inquire about the effect of the floating gate 's negative charge on the operation of the transistor. The negaive charge trapped on the floating gate will cause electrons to be rcpelled from the surface of the substrate. This implies that to form a channel, the posifive voltage that has to be applied to the sclect gate will have to be greater than that required when the floating gate is not charged. In other words, the threshold voltage V_{t} of the pro grammed transistor will be higher than that of the not-programmed devicc. In fact, programming causes the $i_{D}-v_{C S}$ characteristic to shift to the curve labeled (b) in Fig. 11.31. In this state, known as the programmed state, the cell is said to be storing a 0 .
Once programmed, the floating-gate device retains its shifted $i-v$ characteristic (curve b) even when the power supply is turned off. In fact, extrapolated experimental results indicate hat the device can remain in the programmed state for as long as 100 years!
Reading the content of the stacked-gate cell is easy: A voltage $V_{G S}$ somewhere between he low and high threshold values (see Fig. 11.31) is applied to the selected gate. While a programmed device (one that is storing a 0) will not conduct, a not-programmed device (onc hat is storing a 1) will conduct heavily.
To return the floating-gate MOSFET to its not-programmed state, the charge stored on the floating gate has to be returned to the substrate. This erasure process can be accom plished by illuminating the cell with uitraviolet light of the correct wavelength ($2537 \AA$) for a specified duration. The ultraviolet light imparts sufficient photon energy to the trapped electrons to allow them to overcome the inherent energy barrier, and thus he transported hrough the oxide, back to the substrate. To allow this erasure process, the EPROM package contains a quartz window. Finally, it should be noted that the device is extremely durable and can be erased and programmed many times.
A more versatile programmable ROM is the electrically erasable PROM (or EEPROM). As the name implies, an EEPROM can be erased and reprogrammed electrically withou the need for ultraviolet illumination. EEPROMs utilize a variant of the floating-gate MOSFET. An important class of EEPROMs using a floating gate variant and implementing block erasure are referred to as Flash memories

11.7 EMITTER-COUPLED LOGIC (ECL)

Emitter-coupled logic (ECL) is the fastest logic circuit family. High speed is achieved by perating all transistors out of saturation, thus avoiding storage-time delays, and by keepin he logic signal swings relatively small (about 0.8 V or less), thus reducing the time required to charge and discharge the various load and parasitic capacitances. Saturation in ECL is avoided by using the BJT differential pair as a current switch. The BJT differential pair wa studied in Chapter 7, and we urge the reader to review the introduction given in Section 7.3 before proceeding with the study of ECL.

11.7.1 The Basic Principle

Enitter-coupled logic is based on the use of the current-steering switch introduced in Sec tion 1.7. Such a switch can be enost conveniently realized using the differential pair shown in Fig. 11.33. The pair is biased with a constant-current source I, and one side is connected o a reference voltage V_{R}. As shown in Section 7.3 , the current I can be steered to either Q or Q_{2} under the control of the input signal v_{2}. Specifically, when v_{1} is greater than V_{R} by about $4 V_{T}(\cong 100 \mathrm{mV})$, nearly all the current I is conducted by Q_{1}, and thus for $\alpha_{1} \cong 1, v_{O 1}=$ $V_{C C}-I R_{C}$. Simultancously, the current through Q_{2} will be nearly zero, and thus $v_{o z}=V_{C C}$. Conversely, when U_{I} is lower than V_{R} by about $4 V_{T}$, most of the current I will flow through Q_{2} and the current through Q_{1} will be nearly zero. Thus $v_{01}=V_{C C}$ and $v_{02}=V_{C C}-I R_{C}$
The preceding description suggests that as a logic element, the differential pair realizes The out anction at ${ }_{0}$, and simultaneously provides the complementary output signal

.33 The basic element of ECL is the differential pair. Here, V_{R} is a reference voitage.

[^37] becoming forward biascd.
swing is $l R_{C}$. A number of additional remarks can be made concerning this circuit

1. The differential nature of the circuit makes it less susceptible to picked-up noise. In particular, an interfering signal will tend to affect both sides of the differential pai imilarly and thus will not resull in current switching. This is the common-mode rejection property of the differential pair (see Section 7.3)
2. The current drawn from the power supply remains constant during switching. Thus unlike CMOS (and TTL), no supply current spikes occur in ECL, eliminating an mportant source of noise in digital circuits. This is a definite advantage, especially since ECL is usually designed to operate with small signal swings and has corre spondingly low noise margins.
3. The output signal levels are both referenced to $V_{C C}$ and thus can be made particularly stable by operating the circuit with $V_{C C}=0$, in other words, by utilizing a negative power supply and connecting the $V_{C C}$ line to ground. In this case, $V_{O H}=0$ and $V_{O L}=-I R_{C}$
4. Some means has to be provided to make the output signal levels compatible with those at the input so that one gate can drive another. As we shall see shortly, practical ECL gate circuits incorporate a level-shifting arrangement that serves to center the output signal levels on the value of V_{R}
5. The availability of complementary outputs considerably simplifies logic design with ECL

EXERCISE

1117 For the citcitit in Fiq. 11.33 , let $V_{C}=0.1=4 \mathrm{~mA}, R_{C}=220 \Omega, V_{R}=-1.32 \mathrm{~V}$, and assunic $\alpha=1$. Deter
 become centered on $V_{\text {? }}$ What will the shifted values of $V_{\text {oh }}$ and $V_{o s}$ be?
Ans. $0-0.88 \mathrm{~V}-0.88 \mathrm{~V}=0.88 \mathrm{~V} /-176 \mathrm{~V}$

11.7.2 ECL Families

Currently there are (wo popular forms of commercially available ECL-namely, ECL 10 K and ECL 100 K . The ECL 100 K series features gate delays of the order of 0.75 ns and dissi pates about $40 \mathrm{~mW} / \mathrm{gate}$, for a delay-power product of 30 pJ . Although its power dissipation relatively high, the 100 K series provides the shortest availahle gate delay.
The ECL 10K series is slightly slower; it features a gate propagation dclay of 2 ns and power dissipation of 25 mW for a delay-power product of 50 pJ . Alchough the value of $D P$ is higher than that obtained in the 100 K series, the 10 K serics is easier to use. This is bccause the rise and fall times of the pulse signals are deliberately made longer, thus reducing signal coupling, or crosstalk, between adjacent signal lines. ECL 10 K has an "edge speed" of about 3.5 ns, compared with the approximately 1 ns of ECL 100K. To give conreteness to our study of ECL, in the following we shall consider the popular ECL 10 K i one detail. The same techniques, however, can be applied to other types of ECL.
In addition to its usage iu snall- and medium-scale integrated-circuit packages, ECL i also employed in large-scale and VLSI applications. A variant of ECL known as current

11.7.3 The Basic Gate Circuit

The basic gate circuit of the ECL 10K fanily is shown in Fig. 11.34. The circuit consists of three parts. The network composed of $Q_{1}, D_{1}, D_{2}, R_{1}, R_{2}$, and R_{3} gencrates a reference voltag

V_{R} whose value at room temperature is -1.32 V . As will be shown, the value of this reference voltage is made to change with temperature in a predetermined manner to keep the noise margins almost constant. Also, the reference voltage V_{R} is made relatively insensitive to variations in the power-supply voltage $V_{E E}$.

The second part, and the heart of the gate, is the differential amplifier formed by Q_{R} and either Q_{A} or Q_{B}. This differential amplifier is biased not by a constant-current source, as was done in the circuit of Fig. 11.33, but with a resistance R_{E} connected to the negative supply $-V_{E E}$. Nevertheless, we will shortly show that the current in R_{E} remains approximately constant over the normal range of operation of the gatc. One side of the differential amplifier consists of the refereuce transistor Q_{R}, whose base is connected to the reference voltage V_{R}. The other side consists of a number of transistors (two in the case shown), connected in parallel, with separated bases, each connected to a gate input. If the voltages applied to A and B are at the logic- 0 level, which, as we will soon find out, is about 0.4 V below V_{R}, both Q_{A} and Q_{B} will be off and the current I_{E} in R_{E} will flow throngh the reference transistor Q_{R}. The resulting voltage drop across $R_{C 2}$ will cause the collector voltage of Q_{R} to be low.
On the other hand, when the voltage applied to A or B is at the logic-1 level, which, as we will show shortly, is about 0.4 V above V_{R}, transistor Q_{A} or Q_{B}, or both, will be on and Q_{K} will be off. Thus the current I_{E} will flow through Q_{A} or Q_{B}, or both, and an almost equal current flows through $R_{C 1}$. The resulting voltage drop across $R_{C,}$ will cause the collector voltage to drop. Meanwhile, since Q_{R} is off, its collector voltage rises. We thus see that the voltage at the collector of Q_{R} will be high if A or R, or both, is high, and thus at the collec-
tor of $Q_{\text {, the }}$ OR logic function, $A+B$, is realized. On the other hand, the common collector of Q_{A} and Q_{B} will be high only when A and B are simultaneously low. Thus, at the common
collector of Q_{A} and Q_{B} the logic function $\bar{A} \bar{B}=\overline{A+B}$ is realized．We therefore conclude that the two－input gate of Fig． 11.34 realizes the OR function and its complement，the NOR function．The availability of complementary outputs is an important advantage of ECL；it implifies logic design and avoids the use of additional inverters with associated time delay It should be noted that
 will be pulled down to the negative supply voltage，and its associated transistor will be off．

H【いいいい

The third part of the ECL gate circuit is composed of the two emitter followers，Q_{2} and Q_{3} ．The emitter followers do not have on－chip loads，since in many applications of high－ specd logic circuits the gate output drives a transmission line terminated at the other end，as indicated in Fig．11．35．（More on this later in Section 11．7．6．）
The emitter followers have two purposes：First，they shift the level of the output signals by one $V_{B E}$ drop．Thus，using the results of Excreise 11．19，we sec that the output level becone approximately -1.75 V and -0.75 V ．These shifted levels are centered approxi－ mecome apround the reference voltage（ $V_{R}=-1.32 \mathrm{~V}$ ）which means that onc gatc can drive nother This compatibility of logic levels at input and output is an essential requirement the design of gate circuits．
The second lunction of the output emitter followers is to provide the gate with low out－ ut resistances and with the large output currents required for chargino load capacitances． Since these large transient currents can cause spikes on the power－supply line，the collectors of the enitter followers are connected to a power－supply terminal $V_{C C}$ s sparate from that of the differential amplifier and the reference－voltage circuit，$V_{C c 2}$ ．Here we note that the sup－ ply current of the differential amplifier and the reference circuit remains almost constant The use of separate power－supply terminals prevents the coupling of power－supply spikes from the output circuit to the gate circuit and thus lessens the likelihood of false gate switching． Both $V_{C C 1}$ and $V_{C C 2}$ are of course connected to the same system ground，external to the chip．

FIGURE 11．35 The proper way to connect high－speed logic gatcs such as ECL．Properly terminating the
 signals．（See Section 11．7．6．）

FIGURE 11．36 Simplificd version of the ECL gate for the purpose of fiuding transfer characleristics．

11．7．4 Voltage Transfer Characteristics

Having provided a qualitative description of the operation of the ECL gate，we shall now derive its voltage transfer characteristics．This will be donc under the conditions that the out－ puts arc terminated in the manner indicated in Fig．11．35．Assuming that the B input is low and thus Q_{B} is off，the circuit simplifies to that shown in Fig．11．36．We wish to analyze this circuit to determine $v_{\text {OR }}$ versus v_{I} and v_{NOR} vcrsus $v_{\text {（ }}$（where $v_{I} \equiv v_{A}$ ）．
In the analysis to follow we shall make use of the exponential $i_{C}-v_{B E}$ characteristic of the
BJT．Since the BJTs used in ECL circuits BJT．Since the BJTs used in ECL circuits have small areas（in order to have small capaci－ tances and hence high f_{T} ，their scalc currents I_{S} are small．We will therefore assume that at an emitter current of 1 mA an ECL transistor has a $V_{B E}$ drop of 0.75 V ．

The OR Transfer Curve Figure 11.37 is a sketch of the OR transfer characteristic，$y_{0 R}$ versus ψ_{l} ，with the parameters $V_{O L}, V_{O H}, V_{I}$ ，and $V_{H I}$ iudicated．However，to simplify the cal－ culation of $V_{I L}$ and $V_{I H}$ ，we shall use an alternative to the unity－gain definition．Specifically， we shall assume that at point x ，transistor $Q_{\text {A }}$ is conducting 1% of $I_{\|}$while Q_{j} is conducting 99% of $l_{l \text { ：}}$ ．The reverse will be assumed for point y ．Thus at point x we have

$$
\frac{\left.I_{E}\right|_{Q_{R}}}{\left.I_{E}\right|_{Q_{A}}}=99
$$

Using the exponential $i_{E}-v_{B E}$ relationship，we obtain

$$
\left.V_{B E}\right|_{Q_{R}}-\left.V_{B E}\right|_{Q_{A}}=V_{T} \ln 99=115 \mathrm{mV}
$$

which gives

$$
V_{l l}=-1.32-0.115=-1.435 \mathrm{~V}
$$

Assuming Q_{A} and Q_{R} to be matched，we can write

$$
V_{l H}-V_{R}=V_{R}-V_{l l}
$$

FIGURE 11.37 The OR tramsfer characteristic $v_{\text {OR }}$ versus ψ_{1}, for the circuit in Fig. 11.36
which can be used to find $V_{I H}$ as

$$
v_{W}=-1.205 \mathrm{~V}
$$

To obtain $V_{\text {or }}$, we note that Q_{A} is off and Q_{R} carries the entire current I_{E}, given by

$$
\begin{aligned}
I_{f:} & =\frac{V_{R}-\left.V_{D E}\right|_{Q_{R}}+V_{E E}}{R_{l}} \\
& =\frac{-1.32-0.75+5.2}{0.779} \\
& \simeq 4 \mathrm{~mA}
\end{aligned}
$$

(If we wish, we can iterate to determine a better estimate of $\left.V_{B E}\right|_{Q_{p}}$ and hence of I_{t}.) Assuming that $Q_{\text {p }}$ has a high β so that its $\alpha \simeq 1$, its collector current will be approximately 4 mA . If we neglect the base current of Q_{2}, we obtain for the collector voltage of Q_{R}

$$
V_{\left.C\right|_{Q_{k}}} \simeq-4 \times 0.245=-0.98 \mathrm{~V}
$$

Thus a first approximation for the value of the output voltage $V_{O L}$ is

$$
\begin{aligned}
V_{O L} & =\left.V_{C}\right|_{Q_{R}}-\left.V_{B E}\right|_{Q_{2}} \\
& \simeq-0.98-0.75=-1.73 \mathrm{~V}
\end{aligned}
$$

We can use this value to find the emitter current of Q_{2} and then iterate to determine a better estimate of its base-emitter voltage. The result is $V_{B E 2} \simeq 0.79 \mathrm{~V}$ and, correspondingly,

$$
V_{O L} \simeq-1.77 \mathrm{~V}
$$

this value of output voltage, Q_{2} supplies a load current of about 4.6 mA
To find the value of $V_{O H}$ we assume that Q_{R} is completely cut off (because $v_{l}>V_{I H}$). Thus the circuit for determining $V_{O H}$ simplifies to that in Fig. 11.38. Analysis of this circuit assuming $\beta_{2}=100$ results in $V_{B E 2} \simeq 0.83 \mathrm{~V}, I_{E 2}=22.4 \mathrm{~mA}$, and

$$
V_{O H}=-0.88 \mathrm{v}
$$

WisRcISE

 Ans $3.97 \mathrm{M}, 4,00 \mathrm{~mA}, 422 \mathrm{~mA} ;-21 \mathrm{~V}$

Noise Margins The results of Exercise 11.20 indicate that the bias curtent I_{E} remains approximately constant. Also, the output voltage corresponding to $v_{l}=V_{R}$ is approximately equal to V_{R}. Notice further that this is also approximately the midpoint of the logic swing; specifically,

$$
\frac{V_{O L}+V_{O H}}{2}=-1.325 \simeq V_{R}
$$

Thus the output logic levels are centered around the midpoint of the input transition band. This is an ideal situation from the point of view of noise margins, and it is one of the reasons for selecting the rather arbitrary-looking numbers ($V_{R}=-1.32 \mathrm{~V}$ and $V_{E E}=5.2 \mathrm{~V}$) for refer-
ence and supply voltages. ence and supply voltages.

The noise margins can now be cvaluated as follows:

$$
\begin{array}{rlrl}
N M_{H} & =V_{O H}-V_{l H} & N M_{L} & =V_{I L}-V_{O L} \\
& =-0.88-(-1.205)=0.325 \mathrm{~V} & & =-1.435-(-1.77)=0.335 \mathrm{~V}
\end{array}
$$

Note that these values are approximately equal.
The NOR Transfer Curve The NOR transfer characteristic, which is $\tau_{\text {hor }}$ versus v_{t} for the circuit in Fig. 11.36, is sketched in Fig. 11.39. The values of $V_{l l}$ and $V_{l H}$ are identical to those found earlier for the OR characteristic. To emphasize this we have labeled the threshold points x and y, the same letters used in Fig. 11.37.
For $v_{l}<V_{H}, Q_{A}$ is off and the output voltage $\tau_{\text {NoR }}$ can be found by analyzing the circuit composed of $R_{C 1}, Q_{3}$, and its $50-\Omega$ termination. Except that $R_{C 1}$ is slightly smaller than $R_{C 2}$, this circuit is identical to that in Fig. 11.38. Thus the output voltage will be only slightly

FIGURE 11.39 The NOR transfer characteristic, $w_{\text {Yor }}$ versus v^{\prime}, for the circuit in Fig. 11.36.
greater than the value $V_{O H}$ found earlier. In the sketch of Fig. 11.39 we have assumed that the output voltage is approximately equal to $V_{O H}$

For $v_{I}>V_{H}, Q_{A}$ is on and is conducting the entire bias curtent. The circuit then simplifies to that in Fig. 11.40. This circuit can be easily analyzed to obtain $v_{\text {Nor }}$ versus v_{I} for the ange $v_{I} \geq V_{T H}$. A number of observations are in order. First, note that $v_{I}=V_{I H}$ results in an output voltage slightly higher than $V_{O r}$. This is because $R_{C 1}$ is smaller than $R_{C 2}$. In fact, $R_{C 1}$ schosen lower in value than $R_{C 2}$ so that with v_{1} equal to the normal logic-1 value (i.e., $V_{D H}$ which is approximately -0.88 V), the output will be equal to the $V_{\text {OL }}$ value found earlier for the OR output.
Second, note that as v_{I} exceeds $V_{l H}$, transistor Q_{A} operates in the active mode and the ciruit of Fig. 11.40 can be analyzed to find the gain of this amplifier, which is the slope of the segment $y z$ of the transfer characteristic. At point z, transistor Q_{A} saturates. Further increments in v_{I} (beyond the point $v_{l}=V_{S}$) cause the collector voltage and hence $v_{\text {NOR }}$ to increase

FIGURE 11.40 Circuit for finding $v_{\text {NOR }}$ versus v_{I} for the range $v_{I}>V_{l B}$.

The slope of the segment of the transfer characteristic beyond point z, however, is not unity but is about 0.5 because as Q_{A} is driven deeper into saturation, a portion of the increment in v_{t} appears as an increment in the base-collector forward-bias voltage. The reader is urged to solve Exercise 11.21, which is concerned with the details of the NOR transfer characteristic.
 find. (i Find the slope of the the for $v_{-}=V_{0}=0.88 \mathrm{~V}$ find tys . (C) Find the slope of the tiasser characterstic at the point $y_{j}=V_{o n}=-0.88 \mathrm{~V}$. (d) Find thi and $\beta=1$ at which Q_{A} saturates (i.e, V_{s}) Assume that $V_{B r}=0.75 \mathrm{~V}$ at a current of $1 \mathrm{~mA}, V_{\text {is }}=0.3 \mathrm{~V}$ and $\beta=100$
Ans. (a) 170 V : (b) -1.79 V . (c) $-0.24 \mathrm{~V} \mathrm{~V}:(\mathrm{dr}-0.58 \mathrm{I}$

Manufacturers' Specifications ECL manufacturers supply gate transfer characteristics tie form shown in Figs. 1.37 and 11.39. A manufacturer usually provides such curve measured at a number of temperatures. In addition, at each relevant temperature, worst-case values for the parameters $V_{I L}, V_{I W}, V_{O L}$, and $V_{O /}$ are given. Thesc worst-case values are spec ied with the inevitable component tolerances taken into account. As an example, Motorola pecifies that for MECL 10,000 at $25^{\circ} \mathrm{C}$ the following worst-case values apply ${ }^{9}$

$$
\begin{array}{ll}
V_{I L \text { max }}=-1.475 \mathrm{~V} & V_{I / I_{\text {min }}}=-1.105 \mathrm{~V} \\
V_{\text {OL } \max }=-1.630 \mathrm{~V} & V_{\text {OHmin }}=-0.980 \mathrm{~V}
\end{array}
$$

These values can be used to determine worst-case noise margins,

$$
N M_{L}=0.155 \mathrm{~V} \quad N M_{H}=0.125 \mathrm{~V}
$$

which are about half the typical values previously calculated.
For additional information on MECL specifications the interested reader is referred to the Motorola $(1988,1989)$ publications listed in the bibliography at the end of the book

11.7.5 Fan-Out

When the input signal to an ECL gate is low, the input current is cqual to the current that flows in the $50-\mathrm{k} \Omega$ pull-down resistor. Thus

$$
I_{I L}=\frac{-1.77+5.2}{50} \simeq 69 \mu \mathrm{~A}
$$

When the input is high, the input current is greater because of the base current of the input transistor. Thus, assuming a transistor β of 100 , we obtain

$$
I_{H I}=\frac{-0.88+5.2}{50}+\frac{4}{101} \simeq 126 \mu \mathrm{~A}
$$

Both these current values are quite small, which, coupled with the very sinall output resistance of the ECL gate, ensures that little degradation of logic-signal levels results from the input currents of fan-out gates. It follows ihat the fan-out of ECL gates is not limited by

[^38]logic-level considerations but rather by the degradation of the circuit speed (rise and fall times). This latter effect is due to the capacitance that each fan-out gate presents to the driving gate (approximately 3 pF). Thus while the $d c$ fan-out can be as high as 90 and thus does not represent a design problem, the ac fan-out is limited by considerations of circuit speed to 10 or so.

11.7.6 Speed of Operation and Signal Transmission

The speed of operation of a logic family is measured by the delay of its basic gate and by the rise and fall limes of the output waveforms. Typical values of these parameters for ECL have already been given. Here we should note that because the outpul circuit is an emitter follower, the rise time of the output signal is shorter than its fall time, since on the rising cdge of the output pulse the emitter follower functions and provides the output current required to charge up the load and parasitic capacitances. On the other hand, as the signal at the base of the emitter follower falls, the emitter follower cuts off, and the load capacitance discharges through the combination of load and pull-down resistances.
To take full advantage of the very high speed of operation possible with ECL, special attention should be paid to the method of interconnecting the various logic gates in a system. To appreciate this point, we shall briefly discuss the problem of signal transmission.

ECL deals with signals whose rise times may be 1 ns or even less, the time it takes for light to travel only 30 cm or so. For such signals a wire and its environment become a relatively complex circuit element along which signals propagate with finite speed (perhaps half the speed of in - i.e., $5 \mathrm{~cm} / \mathrm{hs}$. Uness special care is taken, energy hat raches he end of such a wire is not absorbed but rather returns as a reflection to the transmitting end, where

can be observed as ringin, a damped oscinaory excursion of the signal abour its final value.
Unt Thus it is inclitant
 necting wires in some one way is to insist that they be very short where "shot" is nectng wies in the the is taken to mean whe nection in so " "bup" only a somewhat slow and bumpy" rising edge
If, however, the reflection returns after the rising edge, it produces not simply a modification of the initiating edge but an independent second event. This is clearly bad! Thus the time of the driving signal by some factor-say 5 . Thus for a restricted to less than the rise for propagation the speed flight ($30 \mathrm{~cm} / \mathrm{ns}$) a double path of only 02 -ns cquivalent length for propagation a 6 cm would bed ores (c .
or 6 cm , would be allowed, representing in the limit a wire only 3 cm from end to end.
有 rise time of about 3 ns . Using the same rutes wires can accordingly be as long as about 10 cm for ECL 10K
If greater lengths are needed, then transmission lines must be used. These are simply wires in a controlled environment in which the distance to a ground reference plane or secwhich is grounded, or parallel ribbou wires, every second of which is grounded, or so-called microstrip lines on a printed-circit board. The latter are simply copper strips of controlled ceometry on one side of a thin prited-circuit board the other side of which consists of grounded plane.

Such transmission lines have a characteristic impedance, R_{0}, that ranges from a few tens of ohms to hundreds of ohms. Signals propagate on such lines somewhat more slowly than the speed of light, perhaps half as last. When a transmission lime is terminated at its receiving end in a resistance equal to its characteristic impedance, R_{0}, all the energy sent on the line is absorbed at the receiving end, and no reflections occur (since the temmination acts as a linutless length of transmission line). Thus, signal integrity is maintained. Such transmission lines are said to be properly terminated. A properly terminated line appears at its sending end as a resistor of value R_{0}. The followers of ECL 10 K with their open emitters and low output resistances (specified to be 7Ω naximum) are ideally suited for driving transmission lines. ECL is also good as a line receiver. The simple gate with its high ($50-\mathrm{k} \Omega$) pull-down input resistor represents a very high resistance to the line. Thus a few such gates can be connected to a terminated line with little difficulty. Both of these ideas are represented in Fig. 11.35.

11.7.7 Power Dissipation

Because of the differential-amplificr nature of ECL, the gate current remains approximately constant and is simply steered from one side of the gate to the other depending on the input logic signals. Thus, the supply current and hence the gate power dissipation of unterminated ECL remain relatively constant independent of the logic state of the gate. It follows that no voltage spikes are introduced on the supply line. Such spikes can be a dangerous source of noise in a digital system. It follows that in ECL the need for supply-line bypassing is not as great as in, say, TTL. This is another advantage of ECL.
At this juncture we should reiterate a point we made earlier, namely, that although an ECL gate would operate with $V_{E E}=0$ and $V_{C C}=+5.2 \mathrm{~V}$, the selection of $V_{E E}=-5.2 \mathrm{~V}$ and $V_{C C}=0 \mathrm{~V}$ is recommended because in the circuit all signal levels are referenced to $V_{C C}$, and ground is certainly an excellent reference.

Y XERGI

1.22 For: the ECL sate in Fis. 1.34 . calculate an approxinatte :alue for the power ifssipated in the circuit ander the condition that al inputs ate low and Alat the ermitters of the output followers afe left pen diss fpated in the reference circuit should be atributed of a single gate.
Ans. 22.4 mW

11.7.8 Thermal Effects

In our analysis of the ECL gate of Fig. 11.34, we found that at room temperature the reference voltage V_{R} is -1.32 V . We have also shown that the midpoint of the output logic swing is approximately equal to this voltage, which is an ideal situation in that it results in equal high and low noise margins. In Example 11.4, we shall derive expressions for the temperature cuefficients of the reference voltage and of the output low and high voltages. In this way, it will be shown that the midpoint of the output logic swing varies with temperature at the same rate as the refercnce voltage. As a result, although the magnitudes of the high and low noise margins change with temperature, their values remain equal. This is an added advantage of ECL and provides a demonstration of the high degree of design optimization of this gate circuit.

3yMHM Hysy

We wish to determine the temperature coefficient of the rcference voltage V_{R} and of the midpoint between $V_{O L}$ and $V_{\text {OH }}$.

Solution

To determine the temperature coefficient of V_{R}, consider the circuit in Fig. E11.18 and assume that the temperature changes by $+1^{\circ} \mathrm{C}$. Denoting the temperature coefficient of the diode and transistor voltage drops by δ, where $\delta \simeq-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, we obtain the cquivalent circuit shown in Fig. 11.41. In the latter circuit the changes in device voltage drops are considered as signals, and hence the power supply is shown as a signal ground

In the circuit of Fig. 11.41 we have two signal generators, and we wish to analyze the circuit to determine ΔV_{R}, the change in V_{R}. We shall do so using the principle of superposition. Consider first the branch $R_{1}, D_{1}, D_{2}, 2 \delta$, and R_{2}, and neglect the signal base current of Q_{1}. The voltage signal at the base of Q_{1} can be easily obtained from

$$
v_{b 1}=\frac{2 \delta \times R_{1}}{R_{1}+r_{d 1}+r_{d 2}+R_{2}}
$$

where $r_{d 1}$ and $r_{d 2}$ denote the incremental resistances of diodes D_{1} and D_{2}. respectivcly. The dc bias current through D_{1} and D_{2} is approximately 0.64 mA , and thus $r_{d 1}=r_{d 2}=39.5 \Omega$. Hence $v_{b 1}=0.3 \delta$. Since the gain of the emitter follower Q_{1} is approximatcly unity, it follows that the component of ΔV_{R} due to the gencrator 2δ is approximately cqual to $v_{b l}$, that is, $\Delta V_{R 1}=0.3 \delta$.

Consider nexi the component of ΔV_{R} due to the generator δ. Rellection into the emitter circuit of the total resistance of the base circuit, $\left[R_{1} \|\left(r_{d 1}+r_{d 2}+R_{2}\right)\right]$, by dividing it by $\beta+1$ (with $\beta \simeq 100$) results in the following component of ΔV_{R} :

$$
\Delta V_{R 2}=-\frac{\delta \times R_{3}}{\left[R_{B} /(\beta+1)\right]+r_{e 1}+R_{3}}
$$

FIGURE 11.41 Equivalent circuit for determining the temperature coefficient of the refercnce volage V_{R}.

FIGURE 11.42 Equivalent circuit for determining the temperature cocfficient of $V_{O I}$.
where R_{B} denotes the total resistance in the basc circuit, and $r_{e l}$ denotes the cmitter resistance of $Q_{1}(\simeq 40 \Omega)$. This calculation yields $\Delta V_{R 2} \simeq-\delta$. Adding this value to that due to the gencrator 2δ gives $\Delta V_{R} \simeq-0.7 \delta$. Thus for $\delta=-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ the temperature coefficient of V_{R} is $+1.4 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. We next consider the determination of the temperature coerficient of $V_{O L}$. The circuit on which to perform this analysis is shown in Fig. 11.42. Here we have three generators whose contributions can be considered separately and the resulting components of $\Delta V_{O L}$ summed. The result is

$$
\begin{aligned}
\Delta V_{O L} \simeq & \Delta V_{R} \frac{-R_{C 2}}{r_{e R}+R_{E}} \frac{R_{T}}{R_{T}+r_{e 2}} \\
& -\delta \frac{-R_{C 2}}{r_{\epsilon R}+R_{E}} \frac{R_{T}}{R_{T}+r_{e 2}} \\
& -\delta \frac{R_{T}}{R_{T}+r_{e 2}+R_{C 2} /(\beta+1)}
\end{aligned}
$$

Substituting the values given and those obtained throughout the analysis of this section, we find

$$
\Delta V_{O L}=-0.43 \delta
$$

The circuit for detcrmining the temperature coefficient of $V_{O H}$ is shown in Fig. 11.43, from which we obtain

$$
\Delta V_{O I I}=-\delta \frac{R_{T}}{R_{T}+r_{e 2}+R_{C 2} /(\beta+1)} \simeq-0.93 \delta
$$

We now can obtain the variation of the midpoint of the logic swing as

$$
\frac{\Delta V_{O L}+\Delta V_{O H}}{2}=-0.68 \delta
$$

which is approximately equal to that of the reference voltage $V_{R}(-0.7 \delta)$.

FIGURE 11.43 Equivalent circuit for determining the cemperature coefficient of V_{OH}.

11.7.9 The Wired-OR Capability

The emitter-follower output stage of the ECL family allows an additional level of logic to be performed at very low cost by simply wiring the outputs of several gates in parallel. This is illustrated in Fig. 11.44, where the outputs of two gates are wired together. Note that the base-emitter diodes of the output followers realize an OR function: This wired-OR connection can be used to provide gates with high fan-in as well as to increase the flexibility of ECL in logic design.

11.7.10 Final Remark

We have chosen to study ECL by focusing on a commercially available circuit family. As has been demonstratcd, a great deal of design optimization has been applied to create a very-high-performance family of SSI and MSI logic circuits. As already mentioned, ECL and some of its variants are also used in VLSI circuit design. Applications include very-high-speed processors such as those used in supercomputers, as well as high-speed and high-frequency communication systems. When employed in VLSI design, current-source biasing is almost always utilized. Further, a variety of circuit configurations are employed [see Rabaey (1996)]

11.8 BiCMOS DIGITAL CIRCUITS

In this section, we provide an introduction to a VLSI circuit technology that is becoming increasingly popular, BiCMOS. As its name implies, BiCMOS technology combines bipolar and CMOS circuits on one IC chip. The aim is to combine the low power, high input impedance, and wide noise margins of CMOS with the high current-driving capability of bipolar transistors. Specificany, CMOS, although a nearly ideal logic-circuit technology in many respects, has a limited current-driving capabiity. This is not a serious problem when the CMOS gate has to drive a few other CMOS gates. It becones a serious issue, however, when relatively large capacitive loads (e.g., greater than 0.5 pF or so) are present. In such cases, one has to either resort to the use of elaborate CMOS buffer circuits or face the usually unacceptable consequence of long propagation delays. On the other hand, we know that by virtue of its much larger transconductance, the BJT is capable of large output currents. We have seen a practical illustration of that in the emitter-follower output stage of ECL. Indeed, the high current-driving capability contributes to making ECL two to five times faster than CMOS (under equivalent conditions)-of course, at the expense of high power dissipation. In summary, then, BiCMOS seeks to combine the best of the CMOS and bipolar technologies to obtain a class of circuits that is particularly useful when output currents that are higher than possible with CMOS are needed. Furthermore, since BiCMOS technology is well suited for the implementation of high-perforinance analog circuits, it makes possible the realization of both analog and digital functions on the same IC chip, making the "system on a chip" an attainable goal. The price paid is a more complex, and hence more expensive (than CMOS) processing technology.

11.8.1 The BiCMOS Inverter

A variety of BiCMOS inverter circuits have been proposed and are in use. All of these are based on the use of npn transistors to increase the output current available from a CMOS inverter. This can be most simply achieved by cascading each of the Q_{N} and Q_{P} devices of the CMOS inverter with an npn transistor, as shown in Fig. 11.45(a). Observe that this circuit can be thought of as utilizing the pair of complementary composite MOS-BJT devices shown in Fig. 11.45(b). These composite devices ${ }^{10}$ retain the high input impedance of the MOS transistor while in effect multiplying its rather low g_{m} by the β of the BJT. It is also useful to observe that the output stage formed by Q_{1} and Q_{2} has what is known as the totem-poic configuration utilized by TTL.

The circuit of Fig. 11.45(a) operates as follows: When v_{r} is low, both Q_{N} and Q_{2} are off while Q_{P} conducts and supplies Q_{1} with base current, thus turning it on. Transistor Q_{1} then provides a large output current to charge the load capacitancc. The result is a very fast charging of the load capacitance and correspondingly a short low-to-high propagation delay $t_{P, H}$. Transistor Q_{1} turns off when v_{0} reaches a value about $V_{D D}-V_{B E 1}$, and thus the output high level is lower than $V_{D D}$, a disadvantage. When v_{l} goes high, Q_{P} and Q_{1} tum off, and Q_{N} turns on, providing its drain current into the base of Q_{2}. Transistor Q_{2} then turns on and pro vides a large output current that quickly discharges the load capacitance. Here again the result is a short high-to-low propagation delay, $t_{P H L}$. On the negative side, Q_{2} tums off when θ_{0} reaches a value about $V_{B E 2}$, and thus the output low level is greater than zero, a disadvantage

[^39]1069

FIGURE 11.45 Development of the BiCMOS inverter circuit. (a) The hasic concept is to use an addiFIGURE 1.45 Development of the
tional bipolar iransistor to increase the outpul current drive of each of Q_{N} and Q_{P} of the CMOS inverter. (b) The circuit in (a) can be thought of as urilising these composite devices. (c) To reducc the turn-off NMOS of Q_{1} and Q_{2}. "bleeder resistors" R_{1} and R_{2} are added. (d) Impicmentation of the circuict in (c) connecting the
transisturs to realize the resistors. (e) An improved version of the circuir in (c) oblained by connecting transisturs to realize the resistors.
lower end of R_{1} to the output node.

Thus, while the circuit of Fig. 11.45(a) features large output currents and short propaga tion delays, it has the disadvantage of reduced logic swing, and, correspondingly, reduced noise margins. There is also another and perhaps more serious disadvantage, namely, the rclatively long turn-off delays of Q_{1} and Q_{2} arising from the absence of circuit paths along
which the base charge can be removed. This problem can be solved by adding a resistor between the base of each of Q_{1} and Q_{2} and ground, as shown in Fig. 11.45(c). Now when either Q_{1} or Q_{2} is turned off, its stored base charge is removed to ground through R_{1} or R_{2}, respectively. Resistor R_{2} provides an additional benefit: With v_{I} high, and alter Q_{2} cuts off, v_{O} continues to fall below $V_{B E 2}$, and the output node is pulled to ground through the series path of Q_{N} and R_{2}. Thus R_{2} functions as a pull-down resistor. The $Q_{N}-R_{2}$ path, however, is a high-impedance one with the result that pulling v_{0} to ground is a rather slow process. Incorporatiug the resistor R_{1}, however, is disadvantageous from a static power-dissipation stand point: When v_{l} is low, a dc path exists bctween $V_{D D}$ and ground through the conducting Q_{F} and R_{1}. Finally, it should be noted that R_{1} and R_{2} take some of the drain currents of Q_{r} and Q_{N} away from the bases or Q_{1} and Q_{2} and thus sighly reducc the gate output current avail le to charge and discharge the load capacitance.
Figure 11.45 (d) shows the way in which R_{1} and R_{2} arc usually implemented. As indicated, NMOS devices $Q_{R 1}$ and $Q_{R 2}$ are used to realize R_{1} and R_{2}. As an added innovation. hese two transistors are mad , ing up its lurn-off. Similarly $Q_{R_{2}}$ will conduct only when v_{l} fals and Q_{P} conducts, puling he gate of $Q_{R 2}$ high. Tif speeding up its turn-off.
As a final circuit for the BiCMOS inverter, we show the so-called R-circuit in Fig. 11.45(e) This circuit differs from that in Fig. 11.45(c) in only one respect: Rathcr than returning R_{1} to
 refts. Firt, her
 Q_{P}) after ℓ_{1} has $v_{\text {l }}$. vels very close to $V_{D D}$ and ground
As a ransistors Q_{1} and Q_{2} are never simultaneously conducting and neither is allowed to saturate with large capacitive-charging currentse of the collector region of the BJT in conjunction put currents, the voltage developed across r (which can be of the order of 100Ω) can lower
 an the the As the reader will recall, saturation is a harmful effect for two reasons: It limits the collecto current to a value less than $\beta I_{\boldsymbol{g}}$, and it slows down the transistor turn-off.

1.8.2 Dynamic Operation

A detailed analysis of the dynamic operation of the BiCMOS inverter circuit is a rather complex undertaking. Nevertheless, an estimatc of its propagation delay can be obtained by considering only the time required to charge and discharge a load capacilance C. Such an approximation is justificd when C is relatively large and thus its effect on inverter dynamics ditic asitic capacitances present at incrnal circuit nodes. Fortunately, this is usually the case in practice, for if the load capacitance is not large, one would use the simpler CMOS inverter. In fact, it has been shown (Embabi, Bellaouar, and Elmasry (1993)) that the speed advantage F BiCMOS (over CMOS) becomes evident only when the gate is required to drive a large
 OM t_{p} of a BiCMOS inverter is 0.3 ns , whereas that of an otherwise comparable CMOS inverter about 1 ns.

(a)

(b)

FIGURE 11.46 Equivalent circuits for charging and discharging a load capacitance C. Note that C includes all the capacitances present at the output node.
Finally, in Fig. 11.46, we show simplified equivalent circuits that can be employed in obtaining rough estimates of $t_{T L H}$ and $t_{P H L}$ of the R-type BiCMOS inverter (see Problem 11.55).

11.8.3 BiCMOS Logic Gates

In BiCMOS, the logic is performed by the CMOS part of the gate, with the bipolar portion simply functioning as an output stage. It follows that BiCMOS logic-gate circuits can be generated following the same approach used in CMOS. As an example, we show in Fig. 11.47 BiCMOS two-input NAND gate
As a final remark, we note that BiCMOS technology is applied in a variety of product including microprocessors, static RAMs, and gate arrays [see Alvarez (1993)!.

FIGURE 11.47 A BiCMOS two-input NA.VD gate.

134TM:

4"
11.9 SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting an example that illustrates the use of SPICE in the analysis of bipolar digital circuits.

Huy?

STATIC AND DYNAMIC OPERATION OF AN ECL GATE
In this example, we use PSpice to investigate the static and dynamic operation of the ECL gate (studied in Section 11.7) whose Capturc schematic is shown in Fig. 11.48.
Having no access to the actual values for the SPICE model parameters of the BJTs utilized in commercially available ECL, we have selected parametcr values represcntative of the technology utilized that, from our experience, would lead to reasonable agreement between simulation

FIGURE 11.48 Capture schematic of the two-input ECL gate for Example 11.5.

FIGURE $\mathbf{1 1 . 4 9}$ Circuit arrangernent for computing the voltage transfer characteristics of the ECL gate in Fig. 11.48.
results and the measured performance data supplied by the manufacturer. It should be noted that this problem would not be encountered by an IC designer using SPICE as an aid; presumably, the designer would have full access to the proprietary process parameters and the corresponding device model parameters. In any case, for the simulations we conducled, we have utilized the following BJT modcl parameter values ${ }^{12}: I_{s}=0.26 \mathrm{fA}, \beta_{F}=100 ; \beta_{R}=1, \tau_{\Gamma}=0.1 \mathrm{~ns}, C_{p}=1 \mathrm{pF}$ $C_{j c}=C_{\mu}=1.5 \mathrm{pF}$, and $\left|V_{A}\right|=100 \mathrm{~V}$.

We use the circuit arrangenent of Fig. 11.49 to compute che vollage transfer characteristics of the ECL gate, that is, $\tau_{\text {OR }}$ and $\tau_{\text {Nor }}$ versus v_{A}, where τ_{A} is the input voltage at terminal A. For this investigation, the other input is deactivated by applying a voltage $v_{\mathrm{R}}=V_{O L}=-1.77 \mathrm{~V}$. In PSpice, we perform a dc-analysis sinnulation with v_{A} swept over the rangc -2 V to 0 V in $10-\mathrm{mV}$ increments and plot $\tau_{\text {RR }}$ and $v_{\text {OR }}$ versus v_{A}. The simulation results arc shown in Fig. 11.50. We immediately recognize the VTCs as those we have seen and (partially) verified by manual analysis in Sccion 11.7. The two transfer curves are symmetrical about an input voltage of -1.32 V . PSpice also deternincd that the voltage V_{R} at the base of the reference transistor Q_{R} has exactly this value (-1.32 V), which is also identical to the value we determined by hand analysis of the refcrence-voltage circuit

Utilizing Probe (the graphical interface of PSpice), one can determinc the values of the imporant parametcrs of the VTC, as follows

OR output: $V_{O L}=-1.77 \mathrm{~V}, V_{O I}=-0.88 \mathrm{~V}, V_{H}=-1.41 \mathrm{~V}$, and $V_{L H}=-1.22 \mathrm{~V}$; thus, $N M_{H}=0.34 \mathrm{~V}$ and $N M_{L}=0.36 \mathrm{~V}$
NOR output: $V_{O L}=-1.78 \mathrm{~V}, V_{O H}=-0.88 \mathrm{~V}, V_{I L}=-1.41 \mathrm{~V}$, and $V_{I H}=-1.22 \mathrm{~V}$; thus, $N M_{H}=0.34 \mathrm{~V}$ and $N M_{L}=0.37 \mathrm{~V}$
These valucs are remarkably closc to those found hy pencil-and-paper analysis in Section 11.6. We next use PSpice to investigate the temperature dependence of the transfer characteristics. The reader will recall that in Section 11.7 we discussed this point at some length and carried out a hand analysis in Example 11.4. Here, we use PSpice to find the voltage transfer characteristics at two tem peratures, $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ (the VTCs shown in Fig. 11.50 were compnted at $27^{\circ} \mathrm{C}$) for two differen cases: the first case with V_{R} generated as in Fig. 11.48, and the sccond with the reference-voltage circuit climinated and a constant, temperature-independent reference voltage of -1.32 V applied to the base of Q_{R}. The simulation results are displayed in Fig. 11.51. Figure 11.51(a) shows plot

[^40] well as on-line at www.sedrasmith.org.

FIGURE 11.50 Voltage transfer characieristics of the OR and NOR outpuss (see Fig. 11.49) for the ECL gate shown in Fig. 11.48. Also indicated is the reference vollage, $V_{R}=-1.32 \mathrm{~V}$
of the transfer characteristics for the case in which the reference circuit is utilized and Fig. 11.51(b) shows plots for the case in which a constant rcfarcnce voltage is cmployed. Figure 11.51 (a) indicate that as the temperature is varied and V_{P} changes, the values of $V_{O H}$ and $V_{O,}$ also change but remain centered on V_{k}. In other words, the low and high noise margins remain nearly cqual. As mentioned in Section 11.7 and demonstrated in the analysis of Example 11.4, this is the basic idea behind making V_{R} temperature dependent. When V_{R} is not temperature dependent, the symmetry of $V_{O L}$ and $V_{O H}$ around V_{R} is no longer maintained, as demonstrated in Fig. 11.51(b). Finally, we show in Table 11.1, some of the valucs obtained. Observe that for the temperature-compensated case, the

TABLE 11. PSplice-Computed Parameter Values of the ECL Gate, With and Wiithout
Temperature Compensation, at Two Different Temperatures.

Temperature	Parameter	Temperatur-Compensated		Not Temperature-Compensated	
		OR	NOR	OR	NOR
$0^{\circ} \mathrm{C}$	$v_{\text {or }}$.	$-1.779 \mathrm{~V}$	-1.799 V	$-1.786 \mathrm{~V}$	$-1.799 \mathrm{~V}$
	$V_{O H}$	$-0.9142 \mathrm{~V}$	$-0.9092 \mathrm{~V}$	-0.9142 V	$-0.9092 \mathrm{~V}$
	$V_{\mathrm{avg}} \mathrm{g}=\frac{V_{O L}+V_{O H}}{2}$	$-1.3466 \mathrm{~V}$	$-1.3541 \mathrm{~V}$	-1.3501 V	$-1.3541 \mathrm{~V}$
	V_{R}	$-1.345 \mathrm{~V}$	$-1.345 \mathrm{~V}$	$-1.32 \mathrm{~V}$	$-1.32 \mathrm{~V}$
	$\left\|V_{\mathrm{avg}}-V_{R}\right\|$	1.6 mV	9.1 mV	30.1 mV	34.1 mV
$70^{\circ} \mathrm{C}$	$V_{\text {oz }}$	$-1.742 \mathrm{~V}$	$-1.759 \mathrm{~V}$	$-1.729 \mathrm{~V}$	-1.759 V
	$V_{O H}$	$-0.8338 \mathrm{~V}$	$-0.8285 \mathrm{~V}$	$-0.8338 \mathrm{~V}$	$-0.8285 \mathrm{~V}$
	$V_{\mathrm{avg}}=\frac{V_{O L}+V_{O H}}{2}$	$-1.288 \mathrm{~V}$	$-1.294 \mathrm{~V}$	-1.2814 V	$-1.294 \mathrm{~V}$
	V_{R}	$-1.271 \mathrm{~V}$	-1.271 V	$-1.32 \mathrm{~V}$	$-1.32 \mathrm{~V}$
	$\left\|V_{\mathrm{avg}}-V_{R}\right\|$	17 mV	23 mV	38 mV	26.2 mV

f(a)

FIGURE 11.51 Comparing the voltage transfer charactenstics of the OR and NOR outputs (see Fig. 11.49) of the ECL gate shown in Fig. 11.48, with the reference voltage V_{R} gencrated using: (a) the temperatureof the ECL gate shown in Fig. 11.48, with the reference voltage V_{R} gencrated using:
compensated bias network of Fig. 11.48. (b) a temperaturc-independent voltage source.
average value of $V_{O L}$ and $V_{O H}$ remains very close to V_{R}. The rcader is encouraged to compare these results to those oblained in Example 11.4

The dynamic opcration of the ECL gate is iuvestigated using the arrangement of Fig. 11.52.
Here, two gates arc connected by a $1.5-\mathrm{m}$ coaxial cable having a characteristic impedauce $\left(Z_{0}\right)$ of
(b)

FIGURE 11.52 Circuit arrangement for investigating the dynamic operation of ECL. Two ECL gates (Fig. 11.48) are connected in cascade via a $1.5-\mathrm{m}$ coaxial cabie which has a characteristic impedance $Z_{0}=50 \Omega$ and a propagation delay $t_{t}=10$ ns. Resistor $R_{7}(50 \Omega)$ provides proper termination for the coaxial cable
50Ω. The manufacturer specifies that signals propagate along this cable (wheu it is properly ter minated) at about half the speed of light, or $15 \mathrm{~cm} / \mathrm{ns}$. Thus we would expect the $1.5-\mathrm{m}$ cable we are using to introduce a delay t_{d} of 10 ns . Observe that in this circuit (Fig. 11.52), resistor $R_{T \mid}$ provides the proper cable termination. The cable is assumed to be lossless and is modeled in PSpice using the transmission line element (the T part in the Analog library) with $Z_{0}=50 \Omega$ and $t_{d}=$ 10 ns . A voltage step, rising from -1.77 V to -0.884 V in 1 ns , is applied to the input of the first gate, and a transient analysis over a 30 -ns interval is requested. Figure 11.53 shows plots of the wavcforms of the inut, he volage at he output of he first gate, the voltage at he input of second gate, and the output. Observe that despite the very high edge-speeds involved, the waveforms are reasonably clean and free of excessive ringing and reflections. This is particularly remarkable

FIGURE 11.53 Transicnt response of a cascade of two FCl gales interconnected by a 1.5 -m coaxia cable having a characteristic impedance of 50Ω and a delay of 10 ns (see Fig. 11.52).

FIGURE 11.54 Transient response of a cascade of two ECL gates interconnected by a 1.5 -m cable having a characteristic impedance of 300Ω. The termination resistance $R_{T \backslash}$ (sec Fig. 11.52) was kept unchanged at 50 S. Note the change in time scale of the plo
because the signal is being transported over a relatively long dislance. A detailed examination of the waveforms reveals that the delay along the cable is indeed 10 ns , and the delay of the secons gate is about 1.06 ns .
Finally, to verify the need for properly terminating the transmission line, the dynamic analysis is repeated, this time with the $50-\Omega$ coaxial cable replaced with a $300-\Omega$ twisted-pair cable whil long-delayed waveforms shown in Fig. 11.54. (Note the change of plotting scale.)
in a square matrix. A cell is selected for reading or writing by activating its row, via the row-address decoder, and it column, via the column-address decoder. The sense vides it to the data-output terninal of the chip.
: There are two kinds of MOS RAMs: static and dynanic. Static RAMs (SRAMs) employ flip-flops as the storage ells. In a dynamic RAM (DRAM). data is stored on hips provide the highest possible storage capacity for given chip area.
2lthough sensc amplifiers are utilized in SRAMs to speed up opcration, they are essential in DRAMs. A typical ense amplitier is a differential circuit that employs posientially toward either V output signal that grows expoHenlly toward either $V_{D D}$ or 0 .
\& Read-only memory (ROM) contains fixed data patterns that arc stored at the time of fabrication and cannot be
changed by the user. On the other hand, the contents of an rasable programmable ROM (EPROM) can be changed by the user. The erasurc and reprogramming is a time consuming process and is performed only infrequently.
(2onc EPROMS utilize floating-gate MOSFETs as the storage cells. The cell is programmed by applying a high natage to the selcct gate. Frasure is achieved hy illumiEEPROMs can be erased and reprogrammed electrically.

- Emitter-coupled logic (ECL) is the fastest lovic-crece family. It achieves its high speed of operation by avoiding
transistor saturation and by utilizing small logic-signa swings.
s In ECL the input signals are used to steer a bias current betwen a reference transistor and an input transistor. Ther basic gate configuration is that of a differential amplifier.
- There are two popular conmmercially available ECL types ECL 10 K , having $t_{P}=2 \mathrm{~ns}, P_{D}=25 \mathrm{nW}$, and $D P=50 \mathrm{p} J$ and ECL. 100 K , having $t_{P}=0.75 \mathrm{~ns}, P_{D}=40 \mathrm{~mW}$, and $D P$ 30 pJ . ECL 10 K is easier to use because the rise and fal timcs of its signals are dcliberately made long (about 3.5 ns)
. Becausc of the very high opcrating speeds of ECL, car should be taken in connecting the output of one gate to the employed.
整 The design of the ECL gate is optimized so that the nois margins are equal and remain equal as temperature changes.
The ECL gate provides two complementary oulputs, real izing the OR and NOR funclions.

舞 The outputs of ECL gates can be wired together to realiz the $O R$ function of the individual output variables.
(Esi BiCMOS combines the low-power and wide noise margin of CMOS with the high current-driving capability (and thus the short gate delays) of BJIs to obtain a technolog that is capable of implementing very dense, low-powc high-speed VLSI circuits that can also include analog lunction

SUMMARY

(mip-flops employ one or more latchcs. The basic stat: D latch is a bistable circuit implemented using two inverters in either stahle state indefinitely

I As an altemative to the positive-feedhack approach, memory can be provided through the use of cbarge storage. A number of CMOS flip-flops are realized this way,
including some master-slave D flip-flops.
(5 A monostable multivibrator has one stable statc, in which it can remain indefinitely, and one quasi-stable statc, which it enters upon triggering and in which it remains for a predermined interval T. Monostable circuits can be used to ge rate a pulse signal of predetermined height and width

An astable multivibrator has no stable states Rather it has wo quasi-stable states, between which it oscillates. The astable circuit, in is operation is in effect, a scuare-wave generator.

A ring oscillator is implemented by comecting an odd number (N) of inverters in a loop, $f_{\text {osc }}=1 / 2 N t_{p}$.
(14 A randon-access memory (RAM) is onc in which the time required for storing (writing) information and for retrievin (rcading) information is indcpendent of the physical loca tion (within the memory) in which ihe information is stored.
The major part of a memory chip consists of the cells in wlich the bits are stored and that are typically organized
11.2 For a flip-flop of the type shown in Fig. 11.3, determine the minimum width required of wic set and reset pase Let Q_{1}, Q_{2}, Q_{3}, and Q_{4} be minimum-size deviccs for whic $W / L=2 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ and all oher devices have $W / L=$ $4 \mu \mathrm{~m} / 1 \mu \mathrm{~m} . /_{D D}=5 \vee, V_{\|}=1 \vee, \kappa_{n}=$ (Hint: Follow the method outlined in Exercise 11.2)
11.3 Consider another possibility for the circuit in Fig. 11.5: Relabel the R input as \bar{S} and the S input as \bar{R}. Let \bar{S} and \bar{R} nornally rest at relatively high voltages under the control of
a relativcly high-impedance source associatcd with "reading" the content of the flip-flop wilhout changing its state. For "writing," that is, setting or resetting the flip-flop, \bar{S} or \bar{R} is brought low to 0 V with ϕ raised to $V_{D D}$ to force \bar{Q} or Q low to $V_{D D} / 2$ at
which point regencration proceeds rapidly. For Q_{1}, Q_{3}, Q_{5}, an Q_{6}, all minimum size with $(W / L)_{n}=2$, find $(W / L)_{p}$ so that \bar{Q} can be lowered to 2.5 V in a 5 -V system, when S is brough
down to 0 V . Assume $V_{t} \mid=1 \mathrm{~V}, k_{n}^{\prime}=3 k_{p}^{\prime}=75 \mu \mathrm{~A} / \mathrm{V}^{2}$.
011.4 The clocked SR flip-flop in Fig. 11.3 is not a fully emplementary CMOS circuit Sketch the fully conple mentary version by augmenting the circuit with the PUN corresponding to the PDN comprising Q_{5}, Q_{6}, Q_{7}, and Q_{8} Note that the fully complementary circuit utilizes 12 tranistors. Although the circuit is more complex, it switche faster.
D11.5 Sketch the complementary CMOS circuit imple mentation of the SR flip-flop of Fig. 11.2.
011.6 Sketch the logic gate symbolic representation of an SR flip-flop using NAND gates. Give the truth table and describe the operation. Also sketch a CMOS circuit imple mentation.
**11.7 Consider the latch of Fig. 11.1 as implemented in CMOS technology. Let $\mu_{n} C_{o r}=2 \mu_{p} C_{o x}=20 \mu \mathrm{~A} / \mathrm{V}^{2}, W_{p}=$ $2 W_{n}=24 \mu \mathrm{n}, L_{\mu}=L_{n}=6 \mu \mathrm{~m},\left|V_{2}\right|=1 \mathrm{~V}$, and $V_{D D}=5 \mathrm{~V}$.
a) Plot the transfer characteristic of each inverter-that is v_{x} versus v_{W}, and \grave{v}_{z} versus v_{y}. Detcrmine the output of each verter at input voltages of $1,1.5,2,2.25,2.5,2.75,3,3.5,4$ ad 5 volts.
ansfer curve of thistics in (a) to determine the loop volage oordinates of points A, B, and C as defined in Fig. 11.1 (c) . c) If the finite output resistance of the saturated MOSFET is ken into account, with $\left|V_{A}\right|=100 \mathrm{~V}$, find the slope of the oop transfer characteristic at point B . What is the approxi ate width of the transition region?
1.8 Two CMOS inverters operating from a 5 -V supply have $V_{H H}$ and $V_{I L}$ of 2.42 and 2.00 V and corresponding out puts of 0.4 V and 4.6 V , respectivcly, and are connected as a tch. Approximating the corresponding transfer characterstic of each gate by a straight line belween the threshold What, sketch the latch open-loop transfer characteristic. What
at B ?

5ECTION 11.2: MULTIVIBRATOR CIRCUITS

D11.9 For the monostable circuit of Fig. 11.11, use the approximate expression derived in Exercise 11.3 to find propriate values for R and C so that $T=1 \mathrm{~ms}$ and the maxiR in the design is 2%. Assume that R is luited to locting mum value of $1 \mathrm{k} \Omega$.
1.10 Consider the monotable circail of fig. H.10 under the condition that $R_{\text {on }} \ll R$. What does the expression for T
become? If V_{th} is nominally $0.5 V_{D D}$ but can valy due to production variations in the range $0.4 V_{D D}$ to $0.6 V_{D D}$, find the cor responding variation in T expressed as a percentage of the ominal value.
*11.11 The waveforms for the monostable circuit of Fig. 11.10 are given in Fig. 11.13. Let $V_{D D}=10 \mathrm{~V}$ $\mathrm{h}_{\mathrm{t}}=V_{D D} / 2, R=10 \mathrm{k} \Omega, C=0.001 \mu \mathrm{~F}$, and $R_{\text {on }}=200 \Omega$
Find the values of $T, \Delta V_{\text {, }}$, and ΔV_{2}. By how much does v^{2} change during the quasi-stable state? What is the peak current that G_{1} is required to sink? to source?
D11.12 Using the circuit of Fig. 11.10 design a monostab circuit with CMOS logic for which $R_{0 n}=100 \Omega, V_{D D}=5 \mathrm{~V}$ and $V_{b}=0.4 \mathrm{~V}$. Use $C=1 \mu \mathrm{~F}$ to $R_{\text {enerate }}$ on output pulse duration $T=1 \mathrm{~s}$. What value of R should be used?
011.13 (a) Use che expression given in Exercise 11.5 to find an expression for the frequency of oscillation f_{0} for the astable multivibrator of Fig. 11.15 under the condition th $V_{\text {dh }}=V_{D D} / 2$
11.14 Variations in manufacluring result in the CMOS gates used in unplementing the astable circuit of Fig. 13.15 to have threshold volages in the range $0.4 V_{D D}$ to $0.6 V_{D D}$ with $0.5 V_{D D}$ being the nominal valuc. Express the expected correponding varialion in the value of f_{0} (rrom nominal) as a per given in Exercise (1.5.)
11.15 Consider a modification of the circuit of Fig. 11. in which a resistor equal to $10 R$ is inserted between the common node of C and R and the input node of G_{1}. This resisto allows the voltage labeled v_{l} to rise above $V_{D D}$ and belo ed waveforms of v_{n} an show that the period T is now given by

$$
T=C R \ln \left[\frac{2 V_{D D}-V_{\text {th }}}{V_{D D}-V_{\text {th }}} \cdot \frac{V_{D D}+V_{\text {th }}}{V_{\text {th }}}\right]
$$

11.16 Consider a ring oscillator consisting of five inverers, each having $t_{P_{L H}}=60 \mathrm{~ns}$ and $T_{P H L}=40 \mathrm{~ns}$. Sketch one the output waveforms, and specify its frequency and the perentage of the cycle during which the output is high
11.17 A ring-of-eleven oscilator is found to uscillate at

20 MHz . Find the propagation delay of the inverter.

SECTION 11.3: SEMICONDUCTOR MEMORIES

TYPES AND ARCHITECTURES

1.18 A partiour Mbi square memory array has its eripheral circuits reorganized to allow for the readout of need?
11.19 For the memory chip described in Prohlem 11.18 how many word lines must be supplied by the row decoder How many sense amplifiers/drivers would a straightforward implementation require? If the chip power dissipation 500 mW with a $5-V$ supply for continuous operation with $200-\mathrm{ns}$ cycle time, and that all the power loss is dynamic, estumate the total capacitance of allogic accivated in any on cycle. If we assume that 90% of this power loss occurs aray access, and tit for this desig. If chermana he memory aray to operate at 3 V how much lager mens ry array can be designed in the same tectnology at about the same power level?
17.20 In a particular 1 G -bil memory of the dynamic typ (callced DRAM) under development by Sansung, using of the 2 of $21 \mathrm{~mm} \times 31$ mm chip. Estimate the e. If two cells form a $\times 3$ est estinate the cell dimesion
1.21 An experimental $1.5-\mathrm{V}$, G -bi cynamic RAM (called DRAM) by Hilachi uscs a $0.16-\mu \mathrm{m}$ process with a ccll size $.38 \times 0.76 \mu^{2}$ in a $19 \times 38 \mathrm{~nm}^{2}$ chip. What fraction of the nections, peripheral circuit -
1.22 A 26 M-hil RaM chip with a 6 -bit reado mploys a l6-block design with square cell arrays. Ho adress bits arc needed for the hlock decoder, the ro

SECTION 11.4: RANDOM-ACCE55 MEMOR

ram) CELLS
D11.23 Consider the write operation of the SRAM cell of ig. 11.18. Specifically, refer to relevant parts of the circuit as depicted in Fig. 11.20. Let the process technology be char acterized by $\mu_{n} / \mu_{p}=2.5, \gamma=0.5 \mathrm{~V}^{1 / 2},\left|\nu_{t 0}\right|=0.8 \mathrm{~V}, 2 \phi_{f}$ 6.6 V , and $V_{D D}=5 \mathrm{~V}$. Also let each of the two invertcrs b matched and $\left(W / L_{1}=(W / L)_{3}=n\right.$, where n denotes the W / L atio of a minimun-size devic
(a) Using the circuit in Fig. 11.20(a), find the minimum required (W / \mathcal{L}) of Q_{5} (in terms or n) so that node \bar{Q} can be pulled to $V_{D D} / 2$, that is, at $v_{\bar{Q}}=2.5 \mathrm{~V}, I_{5}=I_{1}$.
b) Using the circuit of Fig. $11.20(\mathrm{~b})$, find the minimum equired (W / L) ratio of Q_{6} (in terms of n) so that node Q ca (c) Since Q_{5} and Q_{6} are designed to have equal W / L r which of the two values found in (a) and (b) would you and (b) would yo (d) For the value found in (c)
$\mu \mathrm{A} / \mathrm{V}^{2}$, determine the time for v_{0} to reach $V_{D D} 2$. Lct $C_{Q}=50 \mathrm{fF}$
11.24 Consider the circuit in Fig. 11.20(a), and assume that the device dimensions and process technology parameters are val Δt required for $C_{\bar{Q}}$ to charge, and its voltage to rise from 0 to $V_{D D} / 2$.
(a) At the beginning of interval Δt, find the values of I_{5}, I_{1} and $I_{\bar{\bullet}}$
(b) At the end of interval Δt, find the values of I_{5}, I_{1}, and $I_{C_{\bar{I}}}$. (c) Find and
(d) If $C_{\bar{Q}}=50 \mathrm{fF}$, estimate Δt. Compare this value to that found in Exercise 11.9 for v_{e} to reach $V_{D D} / 2$. Recalling that regeneration begins when either v_{Q} or $v_{\bar{Q}}$ reaches $V_{D D} / 2$,
what do you estimate the delay to be? what do you estimate the delay to be?
11.25 Reconsider the analysis of the read operation of the SRAM cell in Example 11.2. This timc, assume that bit and bit lincs arc precharged to $V_{D D} / 2$. Also consider the discharge of $C_{\bar{B}}$ Isee Fig. 11.19(a)] to hegin at the instant the voltage on the word line reaches $V_{D D} / 2$. (Recall that the to rise relatively slowly toward V. Using an approach similar to that in Example 112, determinc the read delay, defined at the time required to reduce the voltage of the \bar{B} line by 0.2 V . Assume all technology and device parameters arc those specilied in Example 11.2.
11.26 For a particular DRAM design, the cell capacitance $C_{s}=50 \mathrm{fF}, V_{D D}=5 \mathrm{~V}$, and V_{t} (including the body effect) $=$ 1.4 V . Each cell represents a capacitive load on the bit linc of 2 fF . The sense amplifier and other circuitry attached to the bit line has a $20-\mathrm{FF}$ capacitance. What is the maximum number of cells that can be attached to a bit line while ensuring a miminum bit-line signal of 0.1V? How many bits of row addressing can be used? If the sense-amplifier gain is inbased a a actor of 5 , how many word-line address bits can be accommodated?
11.27 For a DRAM available for regular use 98% of the time, having a row-to-column ratio of 2 to 1 , a cycle time of 20 ns , and a refresh cycle of 8 ms , estimate the total memury
11.28 In a particular dynamic memory chip, $C_{S}=25 \mathrm{fF}$, the bit-line capacitance per cell is 1 fF and bit-line control circuitry involves 12 fF . For a 1 M-bit square array, what bitread? Ass result when a stored 1 is read? when a sored 0 d effect) $=1.5 \mathrm{~V}$. Recall that the bit lines are precharged to $V_{D D} / 2$.
11.29 For a DRAM cell utilizing a capacitance of 20 fF , refresh is required within 10 ms . If a signal loss on the capacitur of $/$ can be tolerated, what is the largest acceptable deakage current present at the cell?

SECTION 11.5: SENSE AMPLIFIERS AND

 ADDRESS DECODERS11.30 Consider the operation of the differential scns mplifier of Fig. 11.23 following the rise of the sense contro signal ϕ_{5}. Assume that a balanced differential signal of 0.1 is established between the bit lines each of which has a 1 pH capacitance. For $V_{D D}=3 \mathrm{~V}$, what is the value of G_{m} of each of the inverters in the amplifier required to cause the outputs to each $0.1 V_{D \prime \prime}$ and $0.9 V_{D \prime \prime}$ (from initial valnes of $0.5 V_{D D}+$
 what are the device widths required? If the input signal is 0.2 V what does the amplifier response time become?
1.31 A particular version of the regenerative sense ampl fier of Fig. 11.23 in a $0.5-\mu \mathrm{m}$ technology, uses transistors fo with $(W / L)=6 \mu \mathrm{~m} / 15 \mu \mathrm{~m}$) $(W / L)=15 \mu \mathrm{~m} / 1.5 \mu \mathrm{~m}$ For each inverter, find the value of $G_{w .}$. For a bit-line capaciance of 0.8 pF , and a delay until an output of $0.9 V_{D D}$ is reached of 2 ns, find the initial difference-voltage required between the two bit lines. If the time can be rclaxed by 1 ns , what input signal can be handled? With the increased dclay ime and with the input signal at the original level, by what percentage can the bit-line capacitance, and correspond ingly the bit-line length, be increased? If the delay tim required for the bit-line capacitances to charge by the conscivelop the difference-voltage signal needed by the sconse mplifier, was 5 ns, what does it increase to when longer ines are used?
11.32 (a) For the seuse amplifier of Fig. 11.23, show that the time required for the bit lines to reach $0.9 V_{D D}$ and ΔV in the initial difference-voltage between the two bit lines. b) If the response time of the sense amplifier is to be educed to one half the value of an original design, by what factor must the width of all transistors bc increased?
c) If for a particular design, $V_{D D}=5 \mathrm{~V}$ and $\Delta V=0.2 \mathrm{~V}$, fin the factor by which the width of all transistors must be increased so that ΔV is reduced by a factor of 4 while kceping t_{d} unchanged?
11.33 It is required to design a sense amplifier of the type shown in Fig. 11.23 to operate with a DRAM using the dummy-cell technique illustrated in Fig. 11.25. The DRAM rocides readout voltages of -100 mV when a 0 is stored and +40 mV when a 1 is stored. The sense amplifier is required to provide a dinerential output vilage of 2 V in at most 5 ns . Find the W / L ratios of the transistors in the amplifier inverters assuming that the processing technology is $V_{0 N}=5 \mathrm{~V}$. The capacitance of each half bit line is 1 pF . What
will be the amplilier response time when a 0 is read? When a 1 is read?
11.34 Consider a 512 -row NOR decoder. To how many address bits does this correspond? How many output lines does it have. How many input knes does the NOR array a design nced?
11.35 For the column decoder shown in Fig. 11.27. how many column-address bits are needed in a 256 -K bit square array? How many NMOS pass transistors are needed in the multiplexer? How many NMOS transistors are needed in the NOR decoder? How many PMOS transistors? What is the ata number of NMOS and PMOS transistors necded.
11.36 Consider the use of the tree column decoder shown in Fig. 11.28 for application with a square 256 -K bit array. How many addrcss bits are involved? How many levels of pass
gates are used? How many pass transistors are therc in total?

SECTION 11.6: READ-ONLY MEMORY (ROM)

11.37 Give the eight words stored in the ROM of Fig. 11.29. 011.38 Design the bit pattern to be stored in a (16×4) ROM that provides the 4 -bit product of two 2 -bit variables. Give a circuit implementation of the ROM array using a form similar to that of Fig. 11.29.
11.39 Consider a dynamic version of the ROM in 「ig. 11.29 in which the gates of the PMOS devices are connected to a precharge control signal ϕ. Let all the NMOS devices have$W / L=3 \mu \mathrm{~m} / 1.2 \mu \mathrm{~m}$ and all the PMOS devices have $W / L=$ $12 \mu \mathrm{~m} / 1.2 \mu \mathrm{~m}$. Assume $k_{n}^{\prime}=3 k_{p}^{\prime}=90 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=-V_{\varphi p}=$ 1 V , and $V_{D D}=5 \mathrm{~V}$.
(a) During the precharge interval, ϕ is lowered to 0 V . Estimate the time required to charge a bit line from 0 to 5 V . Use as an average charging current the current supplied by a PMOS transistor at a bit-line voltage half way through the 0 to 5 V excursion, i.e., 2.5 V . The bit-line capacitancc is 1 pF . Notc that all NMOS transistors are cut off at this time. (b) After the prechargc interval is completed and φ retums
to $V_{D D}$, the row decoder raises the voltage of the selected word line. Because of the finite resistance and capacitance of the word line, the voltage rises exponentially toward $V_{D y}$. If the resistance of each of the polysilicon word lines is $5 \mathrm{k} \Omega$ and the capacitance between the word line and ground is 2 pF , what is the (10% to 90%) rise time of the word-line volage? What is the voltage reached at the end of one timeconstant?
(c) If we approximate the exponential rise of the word-line voltage by a step equal to the voltage reached in one time-
conslant, find the interval Δt required for an NMOS transistor to discharge the bit line and lower its voltage hy 1 V

SECTION 11.7: EMITTER-COUPLED LOGIC (ECL

11.40 For he el cirai ing. Pu., he tansisors

 exhibit(a) Find $V_{\text {OI }}$ and $V_{O L}$
(h) For the input at B sufficiently negative for Q_{B} to be cut off, what voltage at A causes a current of $I / 2$ to flow in Q_{R}
(c) Repeat (b) for a current in Q_{R} of 0.991 .
(d) Repeat (c) for a current in Q_{R} of 0.011 .
(e) Use the results of (c) and (d) to specify $V_{L L}$ and $V_{H H}$. (I) Find $N M_{H}$ and $N M_{L}$
the width of the transition makes the noise margins equal (b) Using the the transition region, $V_{I H}-V_{I L}$
(h) Using the $I R$ value obtained in (g), give nnmerical values
for $V_{O H}, V_{O L}, V_{I H}, V_{I L}$, and V_{R} for this ECL gate.
*11.41 Three logic inverters are connected in a ring. Spccifications for this family of gates indicates a typical and 7 ns for low-to-high transitious. Assume that for som reason the input to one of the gates undergoes a low-to-high transition. By sketching the waveforms at the outputs of the three gates and keeping track of their relative positions, show that the circuit functions as an oscillator. What is the frequency of oscillation of this ring oscillator? In each cycle, how long is the output high? low?
11.42 Following the idea of a ring oscillator introduced

Problem 11.41, considcr an implementation using a ring of five

ECL 100 K inverters. Assume that the inventers have lineariy rising and falling edges (and thus the waveforms are trapezoidal in shape). Let the 0 to 100% rise and fall times be equal to 1 ns . to 1 ns. Provide a labeled sketch of the five onst be equal taking carc that relevant phase information is provided What is the frequency of oscillation?
*11.43 Using the logic and circuit flexibility of ECL indicatcd by Figs. 11.34 and 11.44, sketch an ECL logic circuil that realizes the exclusive OR function, $Y=\bar{A} B+A \bar{B}$.
*11.44 For the circuit in Fig. 11.36, whose transfer characteristic is shown in Fig. 11.37, calculate the incremental voltage gain from input to the OR output at points x, m, and y of the transfer characteristic. Assume $\beta=100$. Use the results of Exercise 11.20 , and let the output at x be -1.77 V and that at be -0.88 V . Hint: Recall that x and y are defined by a 1% 99% current split.
11.45 For the circuit in Fig. 11.36, whose transfer characteristic is shown in Fig. 11.37, find $V_{L L}$ and $V_{l H}$ if x and y are defined as the points at which
(a) 90% of the current I_{E} is switched.
(b) 99.9% of the curren I_{E} is switched.
11.46 For the symmerrically loaded circuit of Fig. 11.36 and for typical output signal levels $\left(V_{O H}=-0.88 \mathrm{~V}\right.$ and $V_{O L}=$
-1.77 V) calculate the and both output followers. What then is the total power
dissipation of a single ECL gate including its symmetrical output terminations?
11.47 Considering the circuit of Fig. 11.38, what is the value of β of Q_{2}, for which the high noise $\operatorname{margin}\left(N M_{H}\right)$ is reduced by 50% ?
*11.48 Consider an ECL gate whose inverting output is terminated in a $50-\Omega$ resistance connected to a $-2-\mathrm{V}$ supply. Let the total load capacitance be denoted C. As the input of the gate rises, the output emitter follower cuts off and the load capacitance C discharges through the $50-\Omega$ load (until the emitter follower conducts again). Find the value of C that will result in a discharge time of 1 ns. Assume that the two outpur levels are -0.88 V and -1.77 V .
11.49 For signals whose rise and fall times are 3.5 ns , what length of untcrminated gate-to-gate wire interconnect can be used if a ratio of rise time to return time of 5 to $\$$ is required? Assume the environment of the wire to be such that the signal propagates at two-thirds the speed of light (which is $30 \mathrm{~cm} / \mathrm{ns}$).
*11.50 For the circuit in Fis. P11.50 let the levels of the inputs A, B, C, and D be 0 and +5 . For all inputs low at 0 V ,

FIGURE P11.50

What is the voltage at E If 4 and C are raised to +5 V what the voltage at E ? Assume $\left|V_{B E}\right|=0.7 \mathrm{~V}$ and $\beta=50$. Expres E as a logic function of A, B, C, and D.

ECTION 11.8: BICMOS DIGITA

 circuits11.51 Consider the conceptual BiCMOS circuit of Fig. 11.45(a), for the conditions that $V_{D D}=5 \mathrm{~V},\left|V_{i}\right|=1 \mathrm{~V}$
$V_{B E}=0.7 \mathrm{~V}, \beta=100, k_{k}^{\prime}=2.5 k^{\prime}=100,14 A \mathrm{~V}^{2}$ $V_{B E}=0.7 \mathrm{~V}, \beta=100, k_{n}^{\prime}=2.5 k_{p}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$, and
$(W / L)_{n}=2 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$. For $v_{1}=v_{0}=V_{D D} / 2$, find (W / L) so that $I_{E Q_{1}}=I_{F R_{2}}$. What is this totern-pole transient current?
11.52 Consider the conceptual BiCMOS circuit of Fig. 11.45 (a) for the conditions stated in Problen 11.51. Wha is the threshold voltage of the inverter if both Q_{N} and Q_{P} have $L=2 \mu$ nith flows at equal to the tlireshold voltage?
11.53 Consider the choice of values for R_{1} and R_{2} in the circuit of Fig. 11.45(c). An inportant consideration in making this choice is that the loss of base drive current be limited. This loss becomes particulariy acute when the curren he end of the output signal swing when the happens near device is deeply in triode opcration (say at \mid Determine valucs for R_{1} and R_{2} so that the loss in base current is limited to 50%. What is the ratio R_{1} / R_{2} ? Repeat for a 20% loss in base drive.
1.54 For the circuit of Fig. 11.45(a) with parameters a in Problem 11.51 and with $(W / L)_{p}=(W / L)_{n}$, estimate the propagation delays $t_{p \text { LII }}, t_{\text {IIIL }}$ and t_{p} obtained for a load capaci tance of 2 pF . Assume that the intemal mode capacitances do not courribute much to this result. Use average values for the capacitor charging and discharging currents.
11.55 Repeat Problem 11.54 for the circuit in Fig. 11.45(e) assuming that $R_{1}=R_{2}=5 \mathrm{kS}$.
011.56 Consider the dynamic response of the NA.ND gate of Fig. 11.46 with a large extermal capacitive load. If the worst-case response is to be identical to that of the inverter of Fig. 11.45(e), how must the (W / L) ratios of $Q_{N A}, Q_{N B}, Q_{N}$, $Q_{P A}, Q_{P B}, Q_{P}$ be related?
D11.57 Sketch the circuit of a BiCMOS two-inpul NOR gate. If when loaded with a large capacitance the gate is to have worst case delays equal to the corresponding values of the inverter of Fig. 11.45(e), find W / L of each Lransisior in letms of $(W / L)_{n}$ and (W / L)

Filters and Tuned Amplifiers

Introduction 1083
121 Fiter Transmission, Types and Specification 1084
12.2 The Filter Transfe Function 1088
12.3 Butterworth and Chebyshey Filters 1091
12.4 First-Order and Second-Order Filter Functions 1098
12.5 The Second-Order LCR Resonator 1106
12.6. Second Order Active Filters Based on Inductor Replacement 1112
12.7 Second-Order Active Filters Based on the Two-Integrator Loop Topology. 120
12.8. Single-Amplifier Biquadratic Active Filters 1125
129 Sensitivity 1133
12.10 Svitched-Capacitor Filters 1136
12.11 Tuned Amplifiers 1141
12.12 SPICE Simulation

Examples 1152
Summary 1158
Problems 1159

INTRODUCTION

In this chapter, we study the design of an important building block of communications and instrumentation systems, the electronic filter. Filter design is one of the very few areas of engineering for which a complete design theory exists, starting from specification and ending with a circuit realization. A detailed study of filter design requires an entire book, and indeed such textbooks exist. In the limited space available here, we shall concentrate on a selection of topics that provide an introduction to the subject as well as a useful arsenal of filter circuits and design methods.

The oldest technology for realizing filters makes use of inductors and capacitors, and the resulting circuits are called passive LC filters. Such filters work well at high frequencies;
however, in low-frequency applications (dc to 100 kHz) the required inductors are large and physically bulky, and their characteristics are quite nonideal. Furthermore, such inductors are impossible to fabricate in monolithic form and are incompatible with any of the modem techniques for assembling electronic systems. Therefore, there has been considerable interest in finding filter rcalizations that do not require inductors. Of the various possible types of inductorless filters, we shall study active-RC filters and switched-capacitor filters.

Active-RC filters utilize op amps together with resistors and capacitors and are fabricated using discrete, hybrid thick-film, or hybrid thin-film technology. However, for large-volume production, such technologies do not yield the economies achieved by monolithic (IC) fabrication. At the present time, the most viable approach for realizing fully integrated monolithic filters is the switched-capacitor technique.
The last topic studied in this chapter is the tuned amplifier commonly employed in the design of radio and TV receivers. Although tuned amplifiers are in effect bandpass filters, they are studied separately because their design is based on somewhat different techniques.

變 12.1 FILTER TRANSMISSION, TYPES
 ? AND SPECIFICATION

12.1.1 Filter Transmission

The filters we are about to study are linear circuits that can be represented by the general two-port network shown in Fig. 12.1. The filter transfer function $T(s)$ is the ratio of the out put voltage $V_{o}(s)$ to the input voltage $V_{i}(s)$

$$
\begin{equation*}
T(s) \equiv \frac{V_{o}(s)}{V_{i}(s)} \tag{12.1}
\end{equation*}
$$

The filter transmission is found by evaluating $T(s)$ for physical frequencies, $s=j \omega$, and can be expressed in terms of its magnitude and phase as

$$
T(j \omega)=|T(j \omega)| e^{j \phi(\omega)}
$$

The magnitude of transmission is often expressed in decibels in terms of the gain function

$$
G(\omega) \equiv 20 \log |T(j \omega)|, \mathrm{dB}
$$

or, alternatively, in terms of the attenuation function

$$
\begin{equation*}
A(\omega) \equiv-20 \log |T(j \omega)|, \mathrm{dB} \tag{12.4}
\end{equation*}
$$

A filter shapes the frequency spectrum of the input signal, $\left|V_{i}(j \omega)\right|$, according to the magnitude of the transfer function $|T(j \omega)|$, thus providing an output $V_{o}(j \omega)$ with a spectrum

$$
\begin{equation*}
\left|V_{c}(j \omega)\right|=|T(j \omega)|\left|V_{i}(j \omega)\right| \tag{12.5}
\end{equation*}
$$

Also, the phasc characteristics of the signal are modified as it passes through the filte according to the filter phase function $\phi(\omega)$.

$V_{o}(s)$ FIGURE 12.1 The filters studied in this chapter are linear circuits represented by he general two-port network shown. The filter transfer function $\mathcal{T}(s) \equiv V_{o}(s) / V_{i}(s)$.

12,1.2 Filter Types

We are specifically intcrested here in filters that perform a frequency-selection function: passing signals whose frequency spectrum lies within a specified range, and stopping signals whose frequency spectrum falls outside this range. Such a filter has ideally a frequency band (or bands) over which the magnitude of transmission is unity (the filter passband) and a fre(or bands) over which the magnilude of transmission is unity (the fiter passband) and a frequency band (or bands) over which the transmissiou is zero (the filter stopband). Figure 12.2 depicts the ideal transmission characteristics of the four major ititer types: low-pass (LP) in (BS) or band-reject in Fig. 12.2(d). These idealized characteristics, by virtue of their vertical edges, are known as brick-wall responses.

12.1.3 Filter Specification

The filter-design process begins with the filter user specifying the transmission characteristics required of the filter. Such a specification cannot be of the form shown in Fig. 12.2 because physical circuits cannot realize these idealized characteristics. Figure 12.3 shows realistic specifications for the transmission characteristics of a low-pass filter. Obscrve that since a physical circuit cannot provide constant transmission at all passband frequencies, the specilications allow for deviation of the passband transmission from the ideal 0 dB , but places an upper bound, $A_{\text {max }}(\mathrm{dB})$, on this deviation. Depending on the application, $A_{\text {max }}$ typically ranges from 05 dB 3 , Als, sine a pris sion at all stopband frequencies, the specifications in Fig. 12.3 allow for some transmission
$|T|$

(a) Low-pass (LP)

(b) High-pass (HP)

(c) Bandpass (BP)

(d) Bandstop (BS)

FIGURE 12.2 Ideal transmission characteristics of the four major filter types: (a) low-pass (LP), (b) highpass (HP), (c) bandpass (BP), and (d) bandstop (BS).

$\omega_{t 1} \quad \omega_{k 2}$

IGURE 12.3 Specification of the ransmission charactcristics of a low-pass filter. The magnitude response of a filter that just meets specifications is also shown. over the stopband. However, the specifications require the stopband signals to be attenuated
by at least $A_{\min }(\mathrm{dB})$ relative to the passband signals. Depending on the filter application $A_{\text {min }}$ can range from 20 dB to 100 dB
Since the transmission of a physical circuit cannot change abruptly at the edge of the passband, the specifications of Fig. 12.3 provide for a band of frequencies over which the attenuation increases from near 0 dB to $A_{\text {nur }}$. This transition band extends from the passband edge ω_{p} to the stopband edge ω_{s}. The ratio ω_{s} / ω_{p}, is usually used as a measure of the sharpness of the low-pass filter response and is called the selectivy factor. Fnally, observe that for convenience the passband if aission specifer,
To a pasiz, gan, if desired, wis.
To summarize the transmission of a low-pass filter is specitied by four parameters:

1. The passband edge ω_{p}
2. The maximum allowed variation in passband transmission $A_{\text {ma }}$
3. The stopband edge ω_{s}
4. The minimum required slopband attenuation $A_{\text {min }}$

The more tightly one specifies a filter-that is, lower $A_{\text {maxa }}$, higher $A_{\text {min }}$, and/or a selectivity ratio ω_{1} / ω_{p} closer to unity-the closer the response of the resulfing filter will be to the idcal. However, the resulting filter circuit must be of higher order and thus more complex and expensive.

In addition to specifying the magnitude of transmission, there are applications in which phase response of the filter is also of interest. The filter-design problem, however, is considerably complicated when both magnitude and phase are specified.

Once the filter specifications have been decided upon, the next step in the design is to find a transfer function whose magnitude meets the specification. To meet specification, he magnitude-response curve must lie in the unshaded area in Fig. 12.3. The curve shown in the figure is for a filler that just meets specifications. Observe that for this particular filter he magnitude response ripples throughout the passband with the ripple peaks being all

FIGURE 12.4 Transmission specifications for a bandpass filter. The magnitude response of a filter that just meets specifications is also shown. Note that this particular filter has a monotonically decreasing
equal. Since the peak ripple is equal to $A_{\text {max }}$ it is usual to refer to $A_{\text {max }}$ as the passband ripple and to ω_{p} as the ripple bandwidth. The particular filter response shown ripples also in the stopband, again with the ripple peaks all equal and of such a value that the minimum stopband attenuation achieved is equal to the specified value, $A_{\text {min }}$. Thus this particular response is said to be equiripple in both the passband and the stopband.

The process of obtaining a transfer function that meets given specifications is known as filter approximation. Filter approximation is usually performed using computer programs (Snelgrove, 1982; Ouslis and Sedra, 1995) or filter design tables (Zverev, 1967). In simpler cases, filter approximation can be performed using closed-form expressions, as will be seen in Section 12.3.

Finally, Fig. 12.4 shows transmission specifications for a handpass filter and the response of a filter that meets these specifications. For this example we have chosen an approximation function that does not ripple in the passband; rather, the transmission decreases monotonically on both sides of the center frequency, attaining the maximum allowable deviation at the two edges of the passband.

WhencIsEs
12.1. Find approximate vatues of attenuation (in dB c corresponding to filter transtussions of $1,0.99,0.9$ 08, 0.7, 0.5: 0.1,0.
Ans. $0,0.1,1,2,3,6,20 \infty(\mathrm{~dB})$
12.2 If the magnitude of passband transmission is to remain constan to within 5%. and II he stopband ransmussion is to be no greater than 1\% of the passband transmission, find Aman and Am: Ans. $0.9 \mathrm{~dB} ; 40 \mathrm{~dB}$

12 12.2 THE FILTER TRANSFER FUNCTION

The filter transfer function $T(s)$ can be written as the ratio of two polynomials as

$$
\begin{equation*}
T(s)=\frac{a_{M} s^{M}+a_{M-1} s^{M-1}+\cdots+a_{0}}{s^{N}+b_{N-1} s^{N-1}+\cdots+b_{0}} \tag{12.6}
\end{equation*}
$$

The degree of the denominator, N, is the filter order. For the filter circuit to be stable, the degree of the numerator must be less than or equal to that of the denominator; $M \leq N$. The numerator and denominator coefficients, $a_{0}, a_{1}, \ldots, a_{3}$ and $b_{0}, b_{1}, \ldots, b_{N-1}$, are real num bers. The polynomials in the numerator and denominator can be factored, and $T(s)$ can be expressed in the form

$$
\begin{equation*}
T(s)=\frac{a_{M}\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{M}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{N}\right)} \tag{12.7}
\end{equation*}
$$

The numerator roots, $z_{1}, z_{2}, \ldots, z_{M}$, are the transfer-function zeros, or transmission zeros, and the denominator roots, $p_{1}, p_{2}, \ldots, p_{N}$, are the transfer-function poles, or the natura and the denominator roots, $p_{1}, p_{2}, \ldots, p_{N}$, are the transfer-function polcs, or the natura modes. Each transmission zero or pole can be either a real or a complex number. Comple croo, then $-1-j 2$ also must be a zero.
Since in the filter stopband the transmission is required to be zero or small, the filter ransmission zeros are usually placed on the $j \omega$ axis at stopband frequencies. This indeed is the case for the filter whose transmission function is sketched in Fig. 12.3. This particula filter can be seen to have infinite attenuation (zero transmission) at two stopband frequen filter can be seen to have infinite attenuation (zero transmission) at two stopband frequen
cil
ω_{12}. The filter then must have transmission zeros at $s=+j \omega_{11}$ and $s=+j \omega_{12}$. cies: ω_{11} and ω_{12}. The filter then must have transmission zeros at $s=+j \omega_{l 1}$ and $s=+j \omega_{12}$.
However, since complex zeros occur in conjugate pairs, there must also be transmission However, since complex zeros occur in conjugate pairs, there must also be transmission
zeros at $s=-j \omega_{i 1}$ and $s=-j \omega_{2}$. Thus the numerator polynomial of this filter will have the zeros at $s=-j \omega_{11}$ and $s=-j \omega_{n 2}$. Thus the numerator polynomial of this fiter will have the factors $\left(s+j \omega_{12}\right)\left(s-j \omega_{l l}\right)\left(s+j \omega_{12}\right)\left(s-j \omega_{12}\right)$, which can be written as $\left(s^{2}+\omega_{12}\right)\left(s^{2}+\omega_{12}\right)$. Fo
$s=j \omega$ (physical frequencies) the numerator becomes $\left(-\omega^{2}+\omega_{11}^{2}\right)\left(-\omega^{2}+\omega_{12}^{2}\right)$, which indeed is zero at $\omega=\omega_{11}$ and $\omega=\omega_{12}$.
Continuing with the example in Fig. 12.3, we observe that the transmission decreases ward $-\infty$ as ω approaches ∞. Thus the filter must have one or more transmission zeros a $s=\infty$. In general, the number of transmission zeros at $s=\infty$ is the difference between the dcgree of the numerator polynomial, M, and the degree of the denominator polynomial, N of the transfer function in Eq. (12.6). This is because as s approaches $\infty, T(s)$ approaches $a_{M /} / s^{N-M}$ and thus is said to have $N-M$ zeros at $s=\infty$.
For a filter circuit to be stable, all its poles must lie in the left half of the s plane, and thus $p_{1}, p_{2}, \ldots, p_{N}$ must all have negative real parts. Figure 12.5 shows typical pole and zero locations for the low-pass filter whose transmission function is depicted in Fig. 12.3. We havc assumed that this filter is of fifth order $(N=5)$. It has two pairs of complex-conjugate poles and one real-axis pole, for a total of five poles. All the poles lie in the vicinity of the pass band, which is what gives the filter its high transmission at passband frequencies. The five alter is of the form

$$
T(s)=\frac{a_{4}\left(s^{2}+\omega_{13}^{2}\right)\left(s^{2}+\omega_{i 2}^{2}\right)}{s^{5}+b_{4} s^{4}+b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}}
$$

FIGURE 12.5 Pole-zero pattem for the lowpass filter whose transmission is sketched in Fig. 12.3. This is a fifu-order filler $(N=5)$.

As another example, consider the bandpass filter whose magnitude response is shown in Fig. 12.4. This filter has transmission zeros at $s= \pm j \omega_{11}$ and $s= \pm j \omega_{p 2}$. It also has one or more zeros at $s=0$ and onc or more zeros at $s=\infty$ (because the transmission decreases toward 0 as ω approaches 0 and ∞). Assuming that only one zero cxists at each of $s=0$ and $s=\infty$, the filter must be of sixth order, and its transfer function takes the form

$$
\begin{equation*}
T(s)=\frac{a_{5} s\left(s^{2}+\omega_{l 1}^{2}\right)\left(s^{2}+\omega_{12}^{2}\right)}{s^{6}+b_{5} s^{5}+\cdots+b_{0}} \tag{12.9}
\end{equation*}
$$

A typical pole-zero plot for such a filter is shown in Fig. 12.6

[^41]
(a)

(b)

FIGURE 12.7 (a) Transmission characteristics of a fifth-order low-pass filter having all transmission zeros at infinity. (b) Pole-zero pattenn for the filter in (a)

As a third and final example, consider the Jow-pass filter whose transmission function is depicted in Fig. 12.7(a). We observe that in this case there are no finite values of ω at which the attenuation is infinite (zero transmission). Thus it is possible that all the transmission zeros of this filter are at $s=\infty$. If this is the case, the filter transfer function takes the form

$$
T(s)=\frac{a_{0}}{s^{N}+b_{N-1} s^{N-1}+\cdots+b_{0}}
$$

(12.10)

Such a filter is known as an all-pole filter. Typical pole-zero locations for a fifth-order allpole low-pass filter are shown in Fig. 12.7 (b)

Almost all the filters studied in this chapter have all their transmission zeros on the $j \omega$ axis, in the filter stopband(s), including $\omega=0$ and $\omega=\infty$. Also, to obtain high selectivity, all the natural modes will be complex conjugate (except for the case of odd-order filters, where one natural mode must be on the real axis). Finally we note that the more selective the required filter response is, the higher its order must be, and the closer its natural modes are to the $j \omega$ axis.

EXERCISES

 and sondity at de $(\omega=0$. Find the transfer function.

Ans. $T(s)=\frac{1}{4} \frac{s^{2}+4}{s^{2}+s+1}$

[^42]12.4 A fourth-order filter has zero transmission at $\omega=0, \omega=2 \mathrm{rad} / \mathrm{s}$, and $\omega=\infty$. The natural modes a -0.1 ± 808 and -0.1 ± 142. Find $T(s)$.
Ans,$(s)=\frac{\left(a_{3}\left(s^{2}+4\right)\right.}{\left(s^{2}+0.2 s+0.65\right)\left(s^{2}+0.2 s+1.45\right)}$
125. Find the transfer function $T(s)$ of a third order all-pole tow pass filter whose poles are at a radialdis tance of 1 radts trom the ofigil and whose complex peles are at 30° angles from the $; 0$ axis. Th. dc gain is inity Show that $|(\bar{\omega})|=1 / \sqrt{+\omega^{6}}$ Find $\omega_{3 \text { a }}$ and the attenuation at $\rho-3$ rad/s. Ans. $7(s)=1 /(s+1)\left(3^{2}+s+1\right): 1$ rads 28.6 dB

12.3 BUTTERWORTH AND CHEBYSHEV FILTERS

In this section, we present two functions that are frequently used in approximating the transmis sion characteristics of low-pass filters. Closed-form expressions are available for the parameter of these functions, and thus one can use them in filter design without the need for computer or filter-design tables. Their utility, however, is limited to relatively simple applications.
Although in this section we discuss the design of low-pass filters only, the approxima tion functions presented can be applied to the design of other filter types through the use of
frequency transformations [see Sedra frequency transformations [see Sedra and Brackett (1978)]

12.3.1 The Butterworth Filter

Figure 12.8 shows a sketch of the magnitude response of a Butterworth ${ }^{3}$ filter. This filter exhibits a monotonically decreasing transmission with all the transmission zeros at $\omega=\infty$, making it an all-pole filter. The magnitude function for an Nth-order Butterworth filter with a passband edge ω_{p} is given by

$$
\begin{equation*}
|T(j \omega)|=\frac{1}{\sqrt{1+\epsilon^{2}\left(\frac{\omega}{\omega_{p}}\right)^{2 N}}} \tag{12.11}
\end{equation*}
$$

At $\omega=\omega_{p}$

$$
\begin{equation*}
\left|T\left(j \omega_{p}\right)\right|=\frac{1}{\sqrt{1+\epsilon^{2}}} \tag{12.12}
\end{equation*}
$$

Thus, the parameter ϵ determines the maximum variation in passband transmission, $A_{\text {max }}$ according to

$$
\begin{equation*}
A_{\max }=20 \log \sqrt{1+\bar{\epsilon}^{2}} \tag{12.13}
\end{equation*}
$$

Conversely, given $A_{\text {gaxa }}$, the value of ϵ can be determined from

$$
\begin{equation*}
\epsilon=\sqrt{10^{\lambda_{\text {max }} / 10}-1} \tag{12.14}
\end{equation*}
$$

Observe that in the Butterworth response the maximum deviation in passband transmission (from the ideal value of unity) occurs at the passband edge only. It can be shown that the first
${ }^{5}$ The Butterworth filter approximation is named after S. Butterworth, a British enginecr who in 1930 Was among the first to employ it.

FIGURE 12.8 The magnitude response of a Butterworlh filter
$2 N-1$ derivatives of $|T|$ relative to ω are zero at $\omega=0$ [see Van Valkenburg (1980)]. This property makes the Butcerworth response very fat near $\omega=0$ and gives the response the nam maximally flat response. The degree of passband llatness increases as the order N is increased as can be seen from Fig. 12.9. This figure indicates also that, as should be expected, as the ordcr N is increased the filter response approaches the idcal brick-wall type of response.

IGURE 12.9 Masuitude response for Butterworth filters of various order with $\epsilon=1$. Note that as the order increases, the response approaches the ideal brick-wall type of transmission.

At the edge of the stopband, $\omega=\omega_{s}$, the attenuation of the Butterworth filter is given by

$$
A\left(\omega_{s}\right)=-20 \log \left[1 / \sqrt{1+\epsilon^{2}\left(\omega_{s} / \omega_{p}\right)^{2 N}}\right]
$$

$$
\begin{equation*}
=10 \log \left[1+\epsilon^{2}\left(\omega_{s} / \omega_{p}\right)^{2 N}\right] \tag{12.15}
\end{equation*}
$$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A\left(\omega_{0}\right) \geq A^{2}$

The natural modes of an N th-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

(a)

(c)

(b)

(d)

FIGURE 12.10 Graphical construction for determining the poles of a Butterworth filter of ordcr N. All the poles lie in the left half of the s plane on a circle of radius $\omega_{0}=\omega_{p}(1 / \epsilon)^{1 / N}$, where ϵ is the passband deviation parameter $\left(\boldsymbol{\epsilon}=\sqrt{10^{A_{\text {maxis }} / 10}-1}\right.$): (a) the general casc. (b) $N=2$, (c) $N=3$, and (d) $N=4$.
radius $\omega_{p}(1 / \epsilon)^{1 / N}$ and are spaced by equal angles of π / N, with the first mode at an angle $\pi / 2 N$ from the $+j \omega$ axis. Since the natural modes all have equal radial distance from he origin they all have the same frequency $\omega_{0}=\omega_{p}(1 / \epsilon)^{1 / N}$. Figure $12.10(\mathrm{~b})$, (c), and (d) hows the natural modes of Butterworth filters of order $N=2,3$, and 4 , respectively. Once the N natural modes $p_{1}, p_{2}, \ldots, p_{N}$ have been found, the transfer function can be written as

$$
T(s)=\frac{K \omega_{0}^{N}}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{N}\right)}
$$

where K is a constant equal to the required dc gain of the filter.
To summarize, to find a Butterworth transfer function that meets transmission specifica tions of the form in Fig. 12.3 we perform the following procedure:

1. Determine ϵ from Eq. (12.14).
2. Use Eq. (12.15) to determine the required filter order as the lowest integer value of N that results in $A(\omega) \geq A_{\text {m }}$
3. Use Fig. 12.10(a) to determine the N natural modes.
4. Use Eq. (12.16) to deternine $T(s)$.

$32+1,2183$

Find the Butterworth transfer function that meets the following low-pass filter specification $f_{p}=10 \mathrm{kHz}, A_{\max }=1 \mathrm{~dB}, f_{s}=15 \mathrm{kHz}, A_{\min }=25 \mathrm{~dB}$, dc gain $=1$.

Solution

Substituting $A_{\max }=1 \mathrm{~dB}$ into Eq. (12.14) yields $\epsilon=0.5088$. Equation (12.15) is then used to determine the filter order by trying various values for N. We find that $N=8$ yields $A\left(\omega_{s}\right)=$ 22.3 dB and $N=9$ gives 25.8 dB . We thus select $N=9$.

Figure 12.11 shows the graphical construction for determining the poles. The poles all have the same frequency $\omega_{0}=\omega_{p}(1 / \epsilon)^{2 / N}=2 \pi \times 10 \times 10^{3}(1 / 0.5088)^{1 / 9}=6.773 \times 10^{4} \mathrm{rad} / \mathrm{s}$. The first pole p_{1} is given by

$$
p_{1}=\omega_{0}\left(-\cos 80^{\circ}+j \sin 80^{\circ}\right)=\omega_{0}(-0.1736+j 0.9848)
$$

Combining p_{1} with its complex conjugate p_{9} yields the factor $\left(s^{2}+s 0.3472 \omega_{0}+\omega_{0}^{2}\right)$ in the denominator of the transfer function. The same can be done for the other complex poles, and the complete transfer function is obtained using Eq. (12.16),

$$
\begin{align*}
T(s)= & \frac{\omega_{0}^{9}}{\left(s+\omega_{0}\right)\left(s^{2}+s 1.8794 \omega_{0}+\omega_{0}^{2}\right)\left(s^{2}+s 1.5321 \omega_{0}+\omega_{0}^{2}\right)} \\
& \times \frac{1}{\left(s^{2}+s \omega_{0}+\omega_{0}^{2}\right)\left(s^{2}+s 0.3472 \omega_{0}+\omega_{0}^{2}\right)}
\end{align*}
$$

FIGURE 12.11 Poles of the ninth-order Butterworth filter of Example 12.1

12.3.2 The Chebyshev Filter

Figure 12.12 shows representative transmission functions for Chebyshev ${ }^{4}$ filters of even and odd order. The Chebyshev filter exhibits an equiripple response in the passband and a monoonically decreasing transmission in the stopband. While the odd-order filter has $|T(0)|=1$ he even-order filter exhibits its maximum magnitude deviation at $\omega=0$. In both cases the total number of passband maxima and minima equals the order of the filter, N. All the transmis sion zeros of the Chebyshev filter are at $\omega=\infty$, making it an all-pole filter
The magnitude of the transfer function of an N th-order Chebyshev filter with a passband edge (ripple bandwidth) ω_{p} is given by

$$
|T(j \omega)|=\frac{1}{\sqrt{1+\epsilon^{2} \cos ^{2}\left[N \cos ^{-1}\left(\omega / \omega_{p}\right)\right]}} \quad \text { for } \omega \leq \omega_{p}
$$

(12.18)
and

$$
\begin{equation*}
|T(j \omega)|=\frac{1}{\sqrt{1+\epsilon^{2} \cosh ^{2}\left[N \cosh ^{-1}\left(\omega / \omega_{p}\right)\right]}} \quad \text { for } \omega \geq \omega_{p} \tag{12.19}
\end{equation*}
$$

At the passband edge, $\omega=\omega_{p}$, the magnitude function is given by

$$
\left|T\left(j \omega_{p}\right)\right|=\frac{1}{\sqrt{1+\epsilon^{2}}}
$$

${ }^{4}$ Named after the Russian mathematician P. L. Chebyshev, who in 1899 used these functions in studying the construction of steam engines

1097

(a)

(b)

GURE 12.12 Sketches of the tranmission characteristics of representative (a) even-order and (b) oddorder Chehyshev filters.

Thus, the parameter ϵ determines the passband ripple according to

$$
A_{\max }=10 \log \left(1+\epsilon^{2}\right)
$$

Conversely, given $A_{\text {max }}$, the value of ϵ is determined from

$$
\epsilon=\sqrt{10^{A_{\max } / 10}-1}
$$

The attenuation achieved by the Chebyshev filter at the stopband edge ($\omega=\omega_{s}$) is found using Eq. (12.19) a

$$
A\left(\omega_{s}\right)=10 \log \left[1+\epsilon^{2} \cosh ^{2}\left(N \cosh ^{-1}\left(\omega_{s} / \omega_{p}\right)\right)\right]
$$

With the aid of a calculator this equation can be used to determine the order N required to obtain a specified $A_{\text {min }}$ by finding the lowest integer vaf N. in the case of the B magnitude function to approach the ideal brick-wall low-pass response.

The poles of the Chebyshev filter arc given by

$$
\begin{aligned}
p_{k}= & -\omega_{p} \sin \left(\frac{2 k-1}{N} \frac{\pi}{2}\right) \sinh \left(\frac{1}{N} \sinh ^{-1} \frac{1}{\epsilon}\right) \\
& +j \omega_{p} \cos \left(\frac{2 k-1}{N} \frac{\pi}{2}\right) \cosh \left(\frac{1}{N} \sinh ^{-1} \frac{1}{\epsilon}\right) \quad k=1,2, \ldots, N
\end{aligned}
$$

Finally, the transfer function of the Chebyshev filter can be written as

$$
T(s)=\frac{K \omega_{p}^{N}}{\epsilon 2^{N-1}\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{N}\right)}
$$

where K is the dc gain that the filter is required to have

To summarize, given low-pass transmission specifications of the type shown in Fig. 12.3, the transfer function of a Chebyshev filter that meets these specifications can be found as follows:

1. Determine ϵ from Eq. (12.21).
2. Use Eq. (12.22) to determine the order required.
3. Determine the poles using Eq. (12.23)
4. Determine the transfer function using Eq. (12.24).

The Chebyshev filter provides a more efficient approximation than the Butterworth filter. Thus, for the same order and the same $A_{\text {max }}$, the Chebyshev filter provides greater stopband attenuation than the Butterworth filler. Alternatively, to meet identical specifications, one requires a lower order for the Chebyshev than for the Butterworth filter. This point will be illustrated by the following example.

EXMPE Cis?

Find the Chebyshev transfer function that mects the same low-pass filter specifications given in Example 12.1: namely, $f_{p}=10 \mathrm{kHz}, A_{\max }=1 \mathrm{~dB}, f_{s}=15 \mathrm{kHz}, A_{\min }=25 \mathrm{~dB}$, dc gain $=1$.

Solution

Substituting $A_{\max }=1 \mathrm{~dB}$ into Eq. (12.21) yields $\epsilon=0.5088$. By trying various values for N in Eq. (12.22) we find that $N=4$ yields $A\left(\omega_{s}\right)=21: 6 \mathrm{~dB}$ and $N=5$ provides 29.9 dB . We thus Eq. (12.22) we fal that $N=4$ requircd a ninth-order Butterworth filter to meet the same specifica
select $N=5$. Recall that tiuns in Example 12.1

The poles arc obtained by substituting in Eq. (12.23) as

$$
\begin{aligned}
p_{1}, p_{5} & =\omega_{p}(-0.0895 \pm j 0.9901) \\
p_{2}, p_{4} & =\omega_{p}(-0.2342 \pm j 0.6119) \\
p_{5} & =\omega_{p}(-0.2895)
\end{aligned}
$$

The transfer function is obtained by substituting these values in Eq. (12.24) as

$$
\begin{align*}
T(s)= & \frac{\omega_{p}^{5}}{8.1408\left(s+0.2895 \omega_{p}\right)\left(s^{2}+s 0.4684 \omega_{p}+0.4293 \omega_{p}^{2}\right)} \tag{12.25}\\
& \times \frac{1}{s^{2}+s 0.1789 \omega_{p}+0.9883 \omega_{p}^{2}}
\end{align*}
$$

where $\omega_{p}=2 \pi \times 10^{4} \mathrm{rad} / \mathrm{s}$.

ExERGISES

0126 Delemine the order N of a Butterwith fitter for which $A_{\text {max }}=1 \mathrm{~dB}, \omega_{0} \omega_{p}=15$, and $\$_{\text {Ini }}=30 \mathrm{~dB}$. What is the actual value of ninimum stopband atenuation realized? If A inin is to be exactl 30 dB , to what value can $A_{\text {dix }}$ be reduced?
Ans. $N=11 . A$

1098 \qquad chapter 12 FILTERS AND TUNED AMPLIFIERS
12.7. Find the natural modes and the transfer function of a Butterworth filter with $\omega_{p}=1 \mathrm{rad} / \mathrm{A}$. $\mathrm{max}=3 \mathrm{~dB}$ $(\epsilon \simeq 1)$, and $N=3$
Ans. $-0.5 \pm j \sqrt{3} / 2$ and $-1, T(s)=1 /(s+1)\left(s^{2}+s+1\right)$
12.8 Observe that Eq. (12.18) can be used to find the frequencies in the passhand at which TI is at its peaks and at its vallcys, (The peaks are feached when the $\cos ^{2}[1$ term is zero, and the valley correspond to the $\cos ^{2} \mathrm{f} 7$ term equal to unity) Find these frequencies for a fifth-order filter
Ans Peaks at $\omega=0,059 \omega_{0}$, and 0.95ω, the walleys at $\omega=0.31 \omega_{p}$ and $0.81 \omega_{\text {. }}$
D12.9 Find the atenuation provided at $\omega=2 \omega$, hy a seventh-order Chebyshey filter with a $0.5-\mathrm{dB}$ passband ripple. If the passband ipple is allowed to increase 101 dB , by how much does the stophat atteniation inctease
Ans. $64.9 \mathrm{~dB}: 3.3 \mathrm{~dB}$
 (a) Find the required orde of a Cheby shey fiter. What is the execess stopband attenrathon obtained? (b) Repeat for a Buttermerth filter.

Ans. (a) $N=8.5 \mathrm{cB}$, (b) $N=16 ; 0 S \% \mathrm{~B}$

12.4 FIRST-ORDER AND SECOND-ORDER

 FILTER FUNCTIONS

 FILTER FUNCTIONS}In chis section, we shall study the simplest filter transfer functions, those of first and second order. These functions are useful in their own right in the design of simple filters. First- and second-order filters can also be cascaded to realize a high-order fiter. Cascade design is in fact one of the most popular methods for the design of active firters (mose utilizing op amps and RC circuits). Because the filter poles occur in complex-conjugate pairs, a high-order transfer function $T(s)$ is factored is the prodnct of second-order functions. I $T(s)$ is odd, there will also be a first-order function in the factorization. Each of the second-order functions [and the first-order function when $T(s)$ is odd] is then realized using one of the op amp-RC circuits that will be studied in this chapter, and the resulting blocks are placed in cascade. If the output of each block is taken at the output terminal of an op amp where the impedance level is low (ideally zero), cascading does not change the transfer functions of the individual blocks. Thus the overall transfer function of the cascade is simply the product of the transfer functions of the individual blocks, which is the original $T(s)$.
12.4.1 First-Order Filters

The general first-order transfer function is given by

$$
\begin{equation*}
T(s)=\frac{a_{1} s+a_{0}}{s+\omega_{0}} \tag{12.26}
\end{equation*}
$$

This bilinear transfer function characterizes a first-order filter with a natural mode at $s=-\omega_{0}$, a transmission zero at $s=-a_{0} / a_{1}$, and a high-frequency gain that approaches a_{1}. The numerator coefficients, a_{0} and a_{1}, determine the type of filter (e.g., low pass, high pass, etc.). Some special cases together with passive (RC) and active (op amp-RC) realization are shown in Fig. 12.13. Note that the active realizations provide considerably more versatil ity than their passive counterparts; in many cases the gain can be set to a desired value, and some transfer-function parameters can be adjusted without affecting others. The output impedance of the active circuit is also very low, making cascading easily possible. The op amp, however, limits the high-frequency operation of the active circuits.

s-Plane Singularities				
参				

An important special case of the first-order filter funcion is the all-pass filter shown in Fig. 12.14. Here, the transmission zero and the natural mode are symmetrically located relative to the $j \omega$ axis. (They are said to display mirror-image symmetry with respect to the $j \omega$ axis.) Observe that although the transmission of the all-pass filter is (ideally) constant at all frequencies, its phase shows frequency selectivity. All-pass filters are used as phase shifters and in systems that require phase shaping (e.g., in the design of circuits called delay equalizers, which cause the overall time delay of a transmission systen to be constant with frequency)

WXRGCISES

 nef frequency of 10 rad/ and a hith-freguency gain of 10 Ans. R. $-100 \mathrm{kIL} \mathrm{c}=0.01 \mu$
012.12 Design the op amp-RC circuit of Fig. 12.14 to teahite an all pass Filter with a 90 phase shift at $10 \mathrm{rad} / \mathrm{s}$ Select suitable component values.
Ans. Possible choices: $R=R_{1}=R_{2}=10 \mathrm{k} \Omega, C=0.1 \mu \mathrm{~F}$
12.4.2 Second-Order Filter Functions

The general second-order (or biquadratic) filter transfer function is usually expressed in the standard form

$$
\begin{equation*}
T(s)=\frac{a_{2} s^{2}+a_{1} s+a_{0}}{s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}^{2}} \tag{12.27}
\end{equation*}
$$

where ω_{0} and Q determine the natural modes (poles) according to

$$
\begin{equation*}
p_{1}, p_{2}=-\frac{\omega_{0}}{2 Q} \pm j \omega_{0} \sqrt{1-\left(1 / 4 Q^{2}\right)} \tag{12.28}
\end{equation*}
$$

We are usually interested in the case of complex-conjugate natural modes, obtained for $Q>0.5$. Figure 12.15 shows the location of the pair of complex-conjugate poles in the s plane. Observe that the radial distance of the natural modes (from the origin) is equal to ω_{1}, which is known

IGURE 12.15 Definition of the parameters ω_{1}, and Q of a pair of complex-conjugate poles.
as the pole frequency. The parameter Q determines the distance of the poles from the $j \omega$ axis: the higher the value of Q, the closer the poles are to the $j \omega$ axis, and the more selective the filter response becomes. An infinite value for Q locates the poles on the $j \omega$ axis and can yield sustained oscillations in the circuit realization. A negative value of Q implies that the
poles are in the right half of the s plane, which certainly produces oscillations. The parameter poles are in the right half of the s plane, which certainly produces oscillations. The parameter Q is called the pole quality factor, or simply, pole Q.
The transmission zeros of the second-order filter are determined by the numerator coefficients, a_{0}, a_{1}, and a_{2}. It follows that the numerator coefficients determine the type of in Fig. 1216 . For in Fig. 12.16. For each case we give the transfer function, the s-planc locations of the
 ous second-order filter functions will be given in subsequent sections.
All seven special second-order fiters have a pair of complex-conjugate natural modes characterized by a frequency ω_{0} and a quality factor, Q.
In the low-pass (LP) case, shown in Fig. 12.16(a), the two transmission zeros are at $=\infty$. The magnitude response can exhibit a peak with the details indicated. It can be shown that the peak occurs only for $Q>1 / \sqrt{2}$. The response obtained for $Q=1 / \sqrt{2}$ is the Buterworth, or maximally flat, response

The high-pass (HP) function shown in Fig. 12.16(b) has both transmission zeros at $s=0$ (dc) The magnitude response shows a peak for $Q>1 / \sqrt{2}$, with the details of the response as indicated. Observe the duality between the LP and HP responses.
Next consider the bandpass (BP) filter function shown in Fig. 12.16(c). Here, one transmis Thus the center frequency of the handpass filter is magnitude response peaks at $\omega=\omega_{0}$ electivity of the sccond arder bandpass filter is usually measured by it $3-d B$ bandwidth. Th dhe difference betwen the two frequencies ω_{1} and ω_{2} at which the magnitude respos
 3 dB below its maximum value (a, It $c a n$ shown that

$$
\omega_{1}, \omega_{2}=\omega_{0} \sqrt{1+\left(1 / 4 Q^{2}\right)} \pm \frac{\omega_{0}}{2 Q}
$$

Thus,

$$
\begin{equation*}
B W \equiv \omega_{2}-\omega_{1}=\omega_{0} / Q \tag{12.30}
\end{equation*}
$$

Observe that as Q increases, the bandwidth decreases and the bandpass filter becomes more selective.

If the transmission zeros are located on the $j \omega$ axis, at the complex-conjugatc locations $\pm j \omega_{n}$, then the magnitude response exhibits zero transmission at $\omega=\omega_{n}$. Thus a notch in the magnitude re.sponse occurs at $\omega=\omega_{n}$, and ω_{n} s. known as the notch frequcncy. Three cases of the second-order notch filter are possible: the regular notch, obtained when $\omega_{n}=\omega_{0}$ (Fig. 12.16d); the low-pass notch, obtained when $\omega_{n}>\omega_{0}$ (Fig. 12.16e); and tbe high-pass notch, obtained when $\omega_{n}<\omega_{0}$ (Fig. 12.16f). The reader is urged to verify the response details given in these figures (a rather tedious task, though!). Observe that in all notch cases, the transmission at dc and at $s=\infty$ is finite. This is so because there are no transmission zeros at either $s=0$ or $s=\infty$.
The last special case of interest is the all-pass (AP) filter whose characteristics are illustrated in Fig. 12.16(g). Here the two transmission zeros are in the right half of the s plane, at the mirror-image locations of the poles. (This is the case for all-pass functions of any order.) The magnitude response of the all-pass function is constant over all frequencies; the flat gain, as it is called, is in our case equal to $\left|a_{2}\right|$. The frequency selectivity of the all-pass function is in its phase response.

Filter Type and $T(s)$	s-Plane Singularities	$\|T\|$
(d) Notch $\begin{gathered} T(s)=a_{2} \frac{s^{2}+\omega_{0}^{2}}{s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}} \\ \text { DC gain }= \\ \text { High-frequency gain }=a_{2} \end{gathered}$		
(e) Low-pass notch (LPN) $\begin{aligned} & T(s)=a_{2} \frac{s^{2}+\omega_{n}^{2}}{s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}} \\ & \omega_{n} \geq \omega_{0} \\ & \text { DC gain }= a_{2} \frac{\omega_{n}^{2}}{\omega_{0}^{2}} \end{aligned}$ High-frequency gain $=a_{2}$		
(f) High-pass notch (HPN) $\begin{gathered} \qquad T(s)=a_{2} \frac{s^{2}+\omega_{n}^{2}}{s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}} \\ \omega_{n} \leq \omega_{0} \\ \text { DC gain }=a_{2} \frac{\omega_{n}^{2}}{\omega_{0}^{2}} \end{gathered}$ High-frequency gain $=a_{2}$		

FIGURE 12.16 (Continued)
(g) All pass (AP)

FIGURE 12.16 (Continued)

EXERCISES

12.13 For a maximally flat second-otder low-pass fitter $(Q=1 / \sqrt{2})$, show that $t \omega=$ the magnitude response 1s 3 dB below the ylue at de:
12.14 Give the transfer function if a second irder bandpass filter with a center frequency: if 10° rad/s, a senter-frequency gein of 10 , ind a 3 : aB bandwidth of $10^{3} \mathrm{rad} /$

$$
\text { hns. } T(s)=\frac{10}{2} \cdot \frac{1}{2}+1 \rho^{3} s+10^{\prime \prime}
$$

$12: 15$ (a) For the sccond order notch finetion with $\omega_{i}=\omega_{0}$, show that for the attenuation to te greater than A dB over a frequency band sW the value of O is given by

$$
Q \frac{B W_{a} \sqrt{10^{4 / 10}-1}}{\omega_{0}}
$$

(Hint First, show that any two frequencies, ω_{1} and ω_{2}, at which $|T|$ is the sune. are related by $\omega_{1} \omega_{2}$, ω_{0}^{2} : (b) Use the result of (a) to show that the 3 dB bandwidth is $\omega_{0} Q$, as indicated in Fig 12.16(d).
12.16 Consider a low-pass notch with $\omega_{0}=1 \mathrm{rad} / \mathrm{s}, Q=10, \omega_{n}=12 \mathrm{rad} / \mathrm{s}$, and a to garn of unity Find the frequency and magnitude of the tralsmission peak. Also tind the high freylency tiansmission. Ans. $0.986 \mathrm{rad} / \mathrm{s} ; 3.17 .0 .69$

3 12.5 THE SECOND-ORDER LCR RESONATOR

In this section we shall study the second-order LCR resonator shown in Fig. 12.17(a). The use of this resonator to derive circuit realizations for the various second-order filter functions will be demonstrated. It will be shown in the next section that replacing the inductor L by a simulated inductance obtained using an op amp-RC circuit results in an op amp-RC resonator. The latter forms the basis of an important class of active-RC filters to be studied in Section 12.6.

12.5.1 The Resonator Natural Modes

The natural modes of the parallel resonance circuit of Fig. 12.17(a) can be determined by applying an excitation that does not change the natural structure of the circuit. Two possible ways of exciting the circuit are shown in Fig. 12.17(b) and (c). In Fig. 12.17(b) the resonator

(a)

(b)

(c)

FIGURE 12.17 (a) The second-order parallel LCR resonator: (b, ce Two ways of exciting the resonator of (a) without changing its naturual strucurure: resonator poles are those poles of V_{o} / I and V_{o} / V_{i}.
is excited with a current source $/$ connected in parallel. Since, as far as the natural response of a circuit is concemed, an independent ideal current source is equivalent to an open circuit, the excitation of Fig. 12.17(b) does not alter the natural structure of the resonator. Thus the circuit in Fig. 12.17(b) can he used to determine the natural modes of the resonator by simply finding the poles of any response function. We can for instance take the voltage V_{o} across the resonator as the response and thus obtain the response function $V_{o} / l=Z$, where Z is the impedance of the parallel resonance circuit. It is obviously more convenient, however, to work in terms of the admittance Y; thus,

$$
\begin{align*}
\frac{V_{o}}{I} & =\frac{1}{Y}=\frac{1}{(1 / s L)+s C+(1 / R)} \\
& =\frac{s / C}{s^{2}+s(1 / C R)+(1 / L C)} \tag{12.31}
\end{align*}
$$

Equating the denominator to the standard form $\left[s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}\right]$ leads to

$$
\begin{equation*}
\omega_{0}^{2}=1 / L C \tag{12.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{0} / Q=1 / C R \tag{12.33}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\omega_{0} & =1 / \sqrt{L C} \tag{12.34}\\
Q & =\omega_{0} C R \tag{12.35}
\end{align*}
$$

These expressions should be familiar to the reader from studies of parallcl resonance circuits in introductory courses on circuit theory.

An alternative way of exciting the parallel LCR resonator for the purpose of determining its natural modes is shown in Fig. 12.17(c). Here, node x of inductor L has been disconnected from ground and connected to an ideal voltage source v_{i}. Now, since as far as the natural response of a circuit is concerned, an ideal independent voltage source is equivalent to a - short circuit, the excitation of Fig. 12.17(c) does not alter the natural structure of the resonator. Thus we can use the circuit in Fig. 12.17(c) to determine the natural modes of the resonator. These are the poles of any response function. For instance, we can select V_{o} as the response variable and find the transfer function V_{o} / V_{i}. The reader can easily verify that this will lead to the natural modes determined earlier.

In a design problem, we will be given ω_{j} and Q and will be asked to determine L, C, and R. Equations (12.34) and (12.35) are two equations in the three unknowns. The one available degree-of-freedom can be utilized to set the impedance level of the circuit to a value that results in practical component values.

12.5.2 Realization of Transmission Zeros

Having selected the component values of the LCR resonator to realize a given pair of complexconjugate natural modes, we now consider the use of the resonator to realize a desired filter type (e.g., LP, HP, etc.). Specifically, we wish to find out where to inject the input voltage signal V_{i} so that the transfer function V_{o} / V_{i} is the desired one. Toward that end, note that in the resonator circuit in Fig. 12.17(a), any of the nodes labeled x, y, or z can be disconnected
from ground and connected to V_{i} without altering the circuit's natural modes. When this is done the circuit takes the form of a voltage divider, as shown in Fig. 12.18(a). Thus the transfer function realized is

$$
\begin{equation*}
T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\frac{Z_{2}(s)}{Z_{1}(s)+Z_{2}(s)} \tag{12.36}
\end{equation*}
$$

Wc observe that the transmission zeros are the values of s at which $\mathrm{Z}_{2}(s)$ is zero, provided $Z_{1}(s)$ is not simultaneously zero, and the values of s at which $Z_{1}(s)$ is infinite, provided $Z_{2}(s)$ is not simultaneously infinite. This statement makes physical sense: The output will be zero either when $Z_{2}(s)$ behaves as a short circuit or when $Z_{1}(s)$ behaves as an open circuit. If there is a value of s at which both Z_{1} and Z_{2} are zero, then V_{o} / V_{i} will be finite and no transmission zero is obtained. Similarly, if there is a value of s at which both Z_{1} and Z_{2} are infinite, then V_{o} / V_{i} will be finite and no transmission zero is realized.

12.5.3 Realization of the Low-Pass Function

Using the scheme just outlined we see that to realize a low-pass function, node x is dis connected from ground and connected to V_{i}, as shown in Fig. 12.18(b). The transmission zeros of this circuit will be at the value of s for which the series impedance becomes infinite ($s L$ becomes infinite at $s=\infty$) and the value of s at which the shunt impedance becomes zero $(1 /[s C+(1 / R)]$ becomes zero at $s=\infty)$. Thus this circuit has two transmission zeros at $s=\infty$, as an LP is supposed to. The transfer function can be written either by inspection or by using the voltage-divider rule. Following the latter approach, we ohtain

$$
\begin{align*}
T(s) & \equiv \frac{V_{o}}{V_{i}}=\frac{Z_{2}}{Z_{1}+Z_{2}}=\frac{Y_{1}}{Y_{1}+Y_{2}}=\frac{1 / s L}{(1 / s L)+s C+(1 / R)} \\
& =\frac{1 / L C}{s^{2}+s(1 / C R)+(1 / L C)} \tag{12.3}
\end{align*}
$$

12.5.4 Realization of the High-Pass Function

To realize the second-order high-pass function, node y is disconnected from ground and connected to V_{i}, as shown in Fig. 12.18(c). Here the series capacitor introduces a transmission zero at $s=0$ (dc), and the shunt inductor introduces another transmission zero at $s=0$ (dc). Thus, by inspection, the transfer function may be written as

$$
\begin{equation*}
T(s) \equiv \frac{V_{o}}{V_{i}}=\frac{a_{2} s^{2}}{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}} \tag{12.38}
\end{equation*}
$$

where ω_{1} and Q are the natural mode parameters given by Eqs. (12.34) and (12.35) and a_{2} is the high-frequency transmission. The value of a_{2} can be determined from the circuit by obscrving that as s approaches ∞, the capacitor approaches a short circuit and V_{o} approaches V_{i}, resulting in $a_{2}=1$.

12.5.5 Realization of the Bandpass Function

The bandpass function is realized by disconnecting node z from ground and connecting it to V_{i}, as shown in Fig. 12.18(d). Here the series impedance is resistive and thus does not to $V_{\text {i }}$, as shown in Fig.
introduce any transmission zeros. These are obtained as follows: One zero at $s=0$ is

(e) Notch at ω_{0}

(g) LPN $\left(\omega_{n}>\omega_{0}\right)$

(b) $\underset{\mathrm{LP}}{\overline{-}}$

(f) Gencral notch

(h) LPN as $\overline{=} \rightarrow \infty$

(i) $\operatorname{HPN}\left(\omega_{n}<\omega_{0}\right)$

FIGURE 12.18 Realization of various second-order filter functions using the LCR resonator of Fig. 12.17(b): (a) general structure, (b) LP, (c) HP, (d) BP, (e) notch ac ω_{0}, (f) gcneral notch, (g) LPN $\left(\omega_{n} \geq \omega_{0}\right)$, (h) L.PN as $s \rightarrow \infty$, (i) HPN $\left(\omega_{n}<\omega_{0}\right)$.
realized by the shunt inductor, and one zero at $s=\infty$ is realized by the shunt capacitor. At he center frequency ω_{0}, the parallel LC-tuned circuit exhibits an infinite inpedance, and hus no current flows in the circuit. It follows that at $\omega=\omega_{0}, V_{o}=V_{i}$. In other words, the center-frequency gain of the bandpass filter is unity. Its transfer function can be obtaine as follows:

$$
\begin{align*}
T(s) & =\frac{Y_{R}}{Y_{R}+Y_{L}+Y_{C}}=\frac{1 / R}{(1 / R)+(1 / s L)+s C} \tag{12.39}\\
& =\frac{s(1 / C R)}{s^{2}+s(1 / C R)+(1 / L C)}
\end{align*}
$$

12.5.6 Realization of the Notch Functions

To obtain a pair of transmission zeros on the $j \omega$ axis we use a parallel resonance circuit in the series arm, as shown in Fig. 12.18(e) Observe that this circuit is obtained by disconnecting both nodes x and y from ground and connecting them together to V_{i}. The mpedance of the LC circuit becomes infinite at $\omega=\omega_{0}=1 / \sqrt{L C}$, thus causing zero transmission at this frequency. The shunt impedance is resistive and thus does not introduce ransmission zeros. It follows that the circuit in Fig. 12.18(e) will realize the notch transfer function

$$
\begin{equation*}
T(s)=a_{2} \frac{s^{2}+\omega_{0}^{2}}{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}} \tag{12.40}
\end{equation*}
$$

The value of the high-frequency gain a_{2} can be found from the circuit to be unity.
To obtain a notch-filter realization in which the notch frequency ω_{n} is arbitrarily placed elative to ω_{0}, we adopt a variation on the scheme above. We still use a parallel LC circuit in the series branch, as shown in Fig. 12.18(f) where L_{1} and C_{1} are selected so that

$$
\begin{equation*}
L_{1} C_{1}=1 / \omega_{n}^{2} \tag{12.41}
\end{equation*}
$$

Thus the $L_{1} C_{1}$ tank circuit will introduce a pair of transmission zeros at $\pm j \omega_{n}$, provided the $L_{2} C_{2}$ tank is not resonant at ω_{n}. Apart from this restriction, the values of L_{2} and C_{2} must be selected to ensure that the natural modes have not been altered; thus,

$$
\begin{gather*}
C_{1}+C_{2}=C \tag{12.42}\\
L_{1} \| L_{2}=L \tag{12.43}
\end{gather*}
$$

n other words, when V_{i} is replaced by a short circuit, the circuit should reduce to the riginal LCR resonator. Another way of thinking about the circuit of Fig. 12.18(f) is that it is obtained from the original LCR resonator by lifting part of L and part of C off ground and connecting them to V_{i}.
It should be noted that in the circuit of Fig. $12.18(\mathrm{f}), L_{2}$ does not introduce a yero at $s=0$ because at $s=0$, the $L_{1} C_{1}$ circuit also has a zero. In fact, at $s=0$ the circuit reduces to an inductive voltage divider with the dc transmission being $L_{2} /\left(L_{1}+L_{2}\right)$. Simila omments can be made about C_{2} and the fact that it does not introduce a zero at $s=\infty$.
The LPN and HPN filter realizations are special cases of the general notch circuit of Fig. 12.18(f). Spccifically, for the LPN,
$\omega_{n}>\omega_{0}$
and thus

$$
L_{1} C_{1}<\left(L_{1} \| L_{2}\right)\left(C_{1}+C_{2}\right)
$$

This condition can be satisfied with L_{2} eliminated (i.e., $L_{2}=\infty$ and $L_{1}=L$), resulting in the LPN circuit in Fig. 12.18(g). The transfer function can be written by inspection as

$$
\begin{equation*}
T(s) \equiv \frac{V_{o}}{V_{i}}=a_{2} \frac{s^{2}+\omega_{n}^{2}}{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}} \tag{12.44}
\end{equation*}
$$

where $\omega_{n}^{2}=1 / L C_{1}, \omega_{0}^{2}=1 / L\left(C_{1}+C_{2}\right), \omega_{0} / Q=1 / C R$, and a_{2} is the high-frequency gain. From the circuit we see that as $s \rightarrow \infty$, the circuit reduces to that in Fig. 12.18(h), for which

Thus

$$
\frac{V_{o}}{V_{i}}=\frac{C_{1}}{C_{1}+C_{2}}
$$

$$
\begin{equation*}
a_{2}=\frac{C_{1}}{C_{1}+C_{2}} \tag{12.45}
\end{equation*}
$$

To obtain an HPN realization we start with the circuit of Fig. 12.18(f) and use the fact that $\omega_{n}<\omega_{0}$ to obtain

$$
L_{1} C_{1}>\left(L_{1} \| L_{2}\right)\left(C_{1}+C_{2}\right)
$$

which can be satisfied while selecting $C_{2}=0$ (i.e., $C_{1}=C$). Thus we obtain the reduced circuit shown in Fig. 12.18(i). Observe that as $s \rightarrow \infty, V_{o}$ approaches V_{i} and thus the highfrequency gain is unity. Thus, the transfer function can be expressed as

$$
\begin{equation*}
T(s) \equiv \frac{V_{o}}{V_{i}}=\frac{s^{2}+\left(1 / L_{1} C\right)}{s^{2}+s(1 / C R)+\left[1 /\left(L_{1} \| L_{2}\right) C\right]} \tag{12.46}
\end{equation*}
$$

12.5.7 Realization of the All-Pass Function

The all-pass transfer function

$$
\begin{equation*}
T(s)=\frac{s^{2}-s\left(\omega_{0} / Q\right)+\omega_{0}^{2}}{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}} \tag{12.47}
\end{equation*}
$$

can be written as

$$
\begin{equation*}
T(s)=1-\frac{s 2\left(\omega_{0} / Q\right)}{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}} \tag{12.48}
\end{equation*}
$$

The second term on the right-hand side is a bandpass function with a center-frequency gain of 2. We already have a bandpass circuit (Fig. 12.18d) but with a center-frequency gain of unity. We shall therefore attempt an all-pass realization with a flat gain of 0.5 , that is,

$$
T(s)=0.5-\frac{s\left(\omega_{0} / Q\right)}{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}}
$$

This function can be realized using a voltage divider with a transmission ratio of 0.5 together with the bandpass circuit of Fig. 12.18(d). To effect the subtraction, the output of the all-pass circuit is taken between the output terminal of the voltage divider and that of the

FIGURE 12.19 Realization of the second-order all-pas ransfer function using a voltage divider and an LCR resonator.
bandpass filter, as shown in Fig. 12.19. Unfortunately this circuit has the disadvantage of acking a common ground terminal between the input and the output. $A n$ op amp-RC realization of the all-pass function will be presented in the next section.

EXERCISES


``` Wha a 3 -ch frequeney of 100 kHt
```



```
12.18 E Se the circuit of Fig 1218 (e) to tesigh a notch fiter to thminate a bothersome powerstupply hum at


``` \(R=10 \mathrm{kS}\).
```



``` no practieal in low frequency applications.
```


## 12 12.6 SECOND-ORDER ACTIVE FILTERS BASED ON

n this section, we study a family of op amp-RC circuits that realize the various second-orde filter functions. The circuits are based on an op amp-RC resonator obtained by replacing the inductor $L$ in the LCR resonator with an op amp-RC circuit that has an inductive input impedance.

### 12.6.1 The Antoniou Inductance-Simulation Circuit

Over the years, many op amp-RC circuits have been proposed for simulating the operation of an inductor. Of these, one circuit invented by A. Antoniou ${ }^{5}$ [see Antoniou (1969)] has proved to be the "best." By "best" we mean that the operation of the circuit is very tolerant of the nonideal properties of the op amps, in particular their finite gain and bandwidth Figure 12.20 (a) shows the Antoniou inductance-cimulation circuit. If the circuit is fed at it Fgure 12.20 (a) shows the Antoniou inductancc-simulation circuit. If the circuit is fed at is

[^43]
$Z_{\text {in }} \equiv \frac{V_{1}}{I_{1}}=s C_{4} R_{1} R_{3} R_{5} / R_{2}$
(a)

(b)

FIGURE 12.20 (a) The Antoniou inductancc-simulation circuit. (b) Analysis of the circuit assuming ideal op amps. The order of the analysis steps is indicated by the circled numbers.
op amps the input impedance can be shown to be

$$
Z_{\text {in }} \equiv V_{1} / I_{1}=s C_{4} R_{1} R_{3} R_{5} / R_{2}
$$

which is that of an inductance $L$ given by

$$
\begin{equation*}
L=C_{4} R_{1} R_{5} R_{5} / R_{2} \tag{12.50}
\end{equation*}
$$

Figure 12.20(b) shows the analysis of the circuit assuming that the op amps are ideal and thus that a virtual short circuit appears between the two input terminals of cach op amp, an assuming also that the input currents of the op amps arc zero. The analysis begins at node I
which is assumed to be fed by a voltage source $V_{1}$, and proceeds step by step, with the order of the steps indicated by the circled numbers. The result of the analysis is the expression shown for the input current $I_{1}$ from which $Z_{\text {in }}$ is found.
The design of this circuit is usually based on selecting $R_{1}=R_{2}=R_{3}=R_{5}=R$ and $C_{4}=C$ which leads to $L=C R^{2}$. Convenient values are then selected for $C$ and $R$ to yield the desired inductance value $L$. More details on this circuit and the effect of the nonidealities of the op amps on its performance can be found in Sedra and Brackett (1978).

### 12.6.2 The Op Amp-RC Resonato

Figure 12.21 (a) shows the LCR resonator we studied in detail in Section 12.5. Replacing the inductor $L$ with a simulated inductance realized by the Antoniou circuit of Fig. 12.20(a) inductor $L$ with a simulated inductance realized by the Antoniou circuit of Fig. 12.20(a)
results in the op amp-RC resonator of Fig. 12.21(b). (Ignore for the moment the additional amplifier drawn with broken lines.) The circuit of Fig. 12.21(b) is a second-order resonator having a pole frequency

$$
\begin{equation*}
\omega_{0}=1 / \sqrt{L C_{6}}=1 / \sqrt{C_{4} C_{6} R_{1} R_{3} R_{5} / R_{2}} \tag{12.51}
\end{equation*}
$$

where we have used the expression for $L$ given in Eq. (12.50), and a pole $Q$ factor,

$$
\begin{equation*}
Q=\omega_{0} C_{6} R_{6}=R_{6} \sqrt{\frac{C_{6}}{C_{4}} \frac{R_{2}}{R_{1} R_{3} R_{5}}} \tag{12.52}
\end{equation*}
$$

Usually one selects $C_{4}=C_{6}=C$ and $R_{1}=R_{2}=R_{3}=R_{5}=R$, which results in

$$
\begin{align*}
\omega_{0} & =1 / C R  \tag{12.53}\\
Q & =R_{6} / R \tag{12.54}
\end{align*}
$$

Thus, if we select a practically convenient value for $C$, we can use Eq. (12.53) to determine the value of $R$ to realize a given $\omega_{0}$, and then use Eq. (12.54) to determine the value of $R_{6}$ to realize a given $Q$.

### 12.6.3 Realization of the Various Filter Types

The op amp-RC resonator of Fig. 12.21(b) can be used to generate circuit realizations for the various second-order filter functions by following the approach described in detail in Section 12.5 in connection with the LCR resonator. Thus to obtain a bandpass function we disconnect node $z$ from ground and connect it to the signal source $V_{i}$. Ahigh-pass function is disconnect node $z$ from ground and connect it to the signal source $V_{i}$. A high-pass function is
obtained by injecting $V_{i}$ to node $y$. To realize a low-pass function using the LCR resonator, obtained by injecting $V_{i}$ to node $y$. To realize a low-pass function using the LCR resonator,
the inductor terminal $x$ is disconnected from ground and connected to $V_{i}$. The corresponding node in the active resonator is the node at which $R_{5}$ is connected to ground, ${ }^{6}$ labeled as node node in the active resonator is the node at which $R_{5}$ is connected to ground, labeled as node
$x$ in Fig. 12.21(b). A regular notch function $\left(\omega_{n}=\omega_{0}\right)$ is obtained by feeding $V_{i}$ to nodes $x$ $x$ in Fig. 12.21 (b). A regular notch function $\left(\omega_{n}=\omega_{0}\right)$ is obtained by feeding $V_{i}$ to nodes $x$
and $y$. In all cases the output can be taken as the voltage across the resonance circuit, $V_{r}$ However, this is not a converient node to use as the filter output terminal because connecting a load there would change the filter characteristics. The problem can be solved easily by utilizing a buffer amplifier. This is the amplifier of gain $K$, drawn with broken lines in Fig. 12.21(b).
${ }^{6}$ This point might not be obvious! The reader, however, can show that when $V_{i}$ is fed to this node the function $V_{r} / V_{i}$ is indeed low pass.
12.6 SECOND-ORDER ACTIVE FILTERS BASED ON INDUCTOR REPLACEMENT1115
(a)

(b)

(c)

FIGURE 12.21 (a) An LCR resonator. (b) An op amp-RC resonator obtained by replacing the inductor $l$ in the LCR resonator of (a) with a simulated inductance realized by the Antoniou circuit of Fig. 12.20(a) (c) Implementation of the buffer amplifier $K$.

Figure 12.21 (c) shows how this amplifier can be simply implemented using an op amp connected in the noninverting configuration. Note that not only does the amplifier $K$ buffe he output of the filt, but also allows the designer to set the filter gain to any desired value by appropriately selecting the value of $K$.
Figure 12.22 shows the various second-order filter circuits obtained from the resonator of Fig. 12.21 (b). The transfer functions and design equations for these circuits are given in


FIGURE 12.22 Reaizations for the various second-order fitter functions using the op amp-RC resonalor of Fig. 12.21 (b): (a) LP. (b) HP, (c) BP


FIGURE 12.22 (Continued) (d) notch at $\omega_{0}$ (e) LPN, $\omega_{n} \geq \omega_{0}$, (f) HPN, $\omega_{a} \leq \omega_{0}$, and

CHAPTER 12 FILTERS AND TUNED AMPLIFIERS

(g) All-pass

FIGURE 12.22 (Continued) (g) all pass. The circuits are based on the LCR circuits in Fig. 12.18. Design equations are given in Table 12.1

Table 12.1. Note that the transfer functions can be written by analogy to those of the LCR resonator. We have already commented on the LP, HP, BP, and regular-notch circuits give in Fig. 12.22(a) to (d). The LPN and HPN circuits in Fig. 12.22(e) and (f) are obtained by direct analogy to their LCR counterparts in Fig. $12.18(\mathrm{~g})$ and (i), respectively. The all-pass circuit in Fig. 12.22(g), however, deserves some explanation

### 12.6.4 The All-Pass Circuit

An all-pass function with a flat gain of unity can be written as

$$
\begin{equation*}
\mathrm{AP}=1-(\mathrm{BP} \text { with a center-frequency gain of } 2) \tag{12.55}
\end{equation*}
$$

(sce Eq. 12.48). Two circuits whose transfer functions are related in this fashion are said to be complementary. Thus the all-pass circuit with unity flat gain is the complement of the andpass circuit with a center-frequency gain or 2 . A simple procedure exists for obtaining he complement of a given linear circuit: Disconnect all the circuit nodes that are connecte og ground and connect them to $V_{i}$, and disconnect all the nodes that are connected to $V_{i}$ an connect them to ground. That is, interchanging input and ground in a linear circuit generate circuit whose transfer function is the complement of that of the original circuit.
Returning to the problem at hand, we first use the circuit of Fig. 12.22(c) to realize a BP with a gain of 2 by simply selecting $K=2$ and implementing the buffer amplifier with the circuit of Fig. 12.21(c) with $r_{1}=r_{2}$. We then interchange input and ground and thus obtain the all-pas circuit of Fig. 12.22(g).

Finally, in addition to being simple to design, the circuits in Fig. 12.22 exhibit excellen performance. They can be used on their own to realize second-order filter functions, or they can be cascaded to implement high-order filters.
${ }^{7}$ Morc about complementary circuits will be presented later in conjunction with Fig. 12.31.

## TABLE 12.1 Design Data $f$ : Uirclite of fig 12.22

Circuit	Transt, unction and Other Parameters	Design Equations
Resonator   Fig. 12.21(b)	$\begin{aligned} \omega_{0} & =1 / \sqrt{C_{4} C_{6} R_{1} R_{3} R_{5} / R_{2}} \\ Q & =R_{6} \sqrt{\frac{C_{6}}{\frac{C_{4}}{R_{1} R_{3}} R_{3} R_{5}}} \end{aligned}$	$\begin{aligned} & C_{4}=C_{6}=C \text { (practical value) } \\ & R_{1}=R_{2}=R_{3}=R_{5}=1 / \omega_{0} C \\ & R_{6}=Q / \omega_{0} C \end{aligned}$
Low-pass (LP)   Fig. 12.22(a)	$T(s)=\frac{K R_{2} / C_{4} C_{6} R_{1} R_{3} R_{5}}{s^{2}+s \frac{1}{C_{6} R_{6}}+\frac{R_{2}}{C_{4} C_{6} R_{1} R_{3} R_{5}}}$	$K=$ DC gain
$\begin{aligned} & \overline{\text { High-pass (HP) }} \\ & \text { Fig. } 12.22(\mathrm{~b}) \end{aligned}$	$T(s)=\frac{K s^{2}}{s^{2}+s \frac{1}{C_{6} R_{6}}+\frac{R_{2}}{C_{4} C_{6} R_{1} R_{3} R_{5}}}$	$K=$ High-frequency gain
Bandpass (BP) Fig. 12.22(c)	$T(s)=\frac{K s / C_{6} R_{6}}{s^{2}+s \frac{1}{C_{6} R_{6}}+\frac{R_{2}}{C_{4} C_{6} R_{1} R_{3} R_{5}}}$	$K=$ Center-frequency gain
Regular notch ( N ) Fig. 12.22(d)	$T(s)=\frac{K\left[s^{2}+\left(R_{2} / C_{4} C_{6} R_{1} R_{3} R_{5}\right)\right]}{s^{2}+s \frac{1}{C_{6} R_{6}}+\frac{R_{2}}{C_{4} C_{6} R_{1} R_{3} R_{5}}}$	$K=$ Low- and high-frequency gain


Low-pass notch (LPN) Fig. 12.22(e)	$\begin{aligned} T(s)= & K \frac{C_{61}}{C_{61}+C_{62}} \\ & \times \frac{s^{2}+\left(R_{2} / C_{4} C_{61} R_{3} R_{3} R_{5}\right)}{s^{2}+s \frac{1}{\left(C_{61}+\overline{\left.C_{62}\right) R_{6}}+\frac{R_{2}}{C_{4}\left(C_{61}+C_{62}\right) R_{1} R_{3} R_{5}}\right.}} \\ \omega_{n}= & 1 / \sqrt{C_{4} C_{61} R_{1} R_{3} R_{5} / R_{2}} \\ \omega_{0}= & 1 / \sqrt{C_{4}\left(C_{61}+C_{62}\right) R_{1} R_{3} R_{5} / R_{2}} \\ Q= & R_{6} \sqrt{\frac{C_{61}+C_{62}}{C_{4}} \frac{R_{2}}{R_{1} R_{3} R_{5}}} \end{aligned}$	$\begin{aligned} & K=\text { DC gain } \\ & C_{61}+C_{62}=C_{6}=C \\ & C_{61}=C\left(\omega_{0} / \omega_{n}\right)^{2} \\ & C_{62}=C-C_{61} \end{aligned}$
High-pass notch (HPN)   Fig. 12.22(f)	$\begin{aligned} T(s) & =K \frac{s^{2}+\left(R_{2} / C_{4} C_{6} R_{1} R_{3} R_{51}\right)}{s^{2}+s \frac{1}{C_{6} R_{6}}+\frac{R_{2}}{C_{4} C_{6} R_{1} R_{3}}\left(\frac{1}{R_{51}}+\frac{1}{R_{52}}\right)} \\ \omega_{n} & =1 / \sqrt{C_{4} C_{6} R_{1} R_{3} R_{51} / R_{2}} \\ \omega_{0} & =\sqrt{\frac{R_{2}}{C_{4} C_{6} R_{1} R_{3}}\left(\frac{1}{R_{51}}+\frac{1}{R_{52}}\right)} \\ Q & =R_{6} \sqrt{\frac{C_{6}}{C_{4} R_{2}} \frac{2}{R_{1} R_{3}}\left(\frac{1}{R_{51}}+\frac{1}{R_{52}}\right)} \end{aligned}$	$K=$ High-frequency gain $\begin{aligned} & \frac{1}{R_{51}}+\frac{1}{R_{52}}=\frac{1}{R_{5}}=\omega_{0} C \\ & R_{51}=R_{5}\left(\omega_{0} / \omega_{n}\right)^{2} \\ & R_{52}=R_{5} /\left[1-\left(\omega_{n} / \omega_{0}\right)^{2}\right] \end{aligned}$
All-pass (AP) Fig. 12.22(g)	$\begin{aligned} & T(s)=\frac{s^{2}-s \frac{1}{C_{6} R_{6} r_{1}}+\frac{r_{2}}{C_{4} C_{6} R_{1} R_{3} R_{5}}}{s^{2}+s \frac{1}{C_{6} R_{6}}+\frac{R_{2}}{C_{4} C_{6} R_{1} R_{3} R_{5}}} \\ & \omega_{\varepsilon}=\omega_{0} \quad Q_{\varepsilon}=Q\left(r_{1} / r_{2}\right) \quad \text { Flat gain }=1 \end{aligned}$	$r_{1}=r_{2}=r \text { (arbitrary) }$   Adjust $r_{2}$ to make $Q_{2}=Q$

12.19 USe the circut of Fig. 12.22 (c) 4 d desige a sccond-ordct bandpass filter with a center frequency of 10 kHz


012.20 Realize the Chehyshey fiter of Example 12.2, whose tansfer function is given in Eq ( 2.25 ) as the ca cade counnection of theee circuits: two of the type shown in Fig. 2.22 (a) and one first order op amp-RC cricut of the type showin $1 \mathrm{FIg}, 12.13(a)$. Note that you car nake the de gain of all sections equal to anty Bo so. Use as many $10-\mathrm{kS}$ resistors as possible.
Ans First-order section: R $\quad R_{2}=10 \mathrm{k} \mathrm{\Omega}$, $\mathbb{-}-55 \mathrm{nf}$, second-order section with $\omega_{0}=4.177 \times 10^{4} \mathrm{rad} / \mathrm{s}$
 tion with $\omega_{0}=6.246 \times 10^{4}$ rads and $Q=5.56, R_{1}=R_{2}=R_{5}=R_{5}=10 \mathrm{ks}, R_{6}, 55.6 \mathrm{kS} C_{4}=C_{6}$ $1 . \mathrm{MI}_{\mathrm{H}}^{\mathrm{H}}=\mathrm{m}_{\mathrm{H}_{2}}=0$

## 34 12.7 SECOND-ORDER ACTIVE FILTERS BASED

In this section, we study another family of op amp-RC circuits that realize second-orde filter functions. The circuits are based on the use of two integrators connected in cascade in n overall feedback loop and are thus known as two-integrator-loop circuits.

### 12.7.1 Derivation of the Two-Integrator-Loop Biquad

To derive the two-integrator-loop biquadratic circuit, or biquad as it is commonly known, consider the second-order high-pass transfer function

$$
\begin{equation*}
\frac{V_{\mathrm{hp}}}{V_{i}}=\frac{K s^{2}}{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}} \tag{12.56}
\end{equation*}
$$

where $K$ is the high-frequency gain. Cross-multiplying Eq. (12.56) and dividing both sides of the resulting equation by $s^{2}$ (to get all the terms involving $s$ in the form $1 / s$, which is the transfer function of an integrator) gives

$$
\begin{equation*}
V_{\mathrm{hp}}+\frac{1}{Q}\left(\frac{\omega_{0}}{s} V_{\mathrm{hp}}\right)+\left(\frac{\omega_{0}^{2}}{s^{2}} V_{\mathrm{hp}}\right)=K V_{i} \tag{12.57}
\end{equation*}
$$

In this equation we observe that the signal $\left(\omega_{0} / s\right) V_{\mathrm{hp}}$ can be obtained by passing $V_{\mathrm{hp}}$ through an integrator with a time constant equal to $1 / \omega_{0}$. Furthermore, passing the resulting signal through another identical integrator results in the third signal involving $V_{\text {hp }}$ in Eq. (12.57)-namely $\left(\omega_{0}^{2} / s^{2}\right) V_{\mathrm{hp}}$. Figure $12.23(\mathrm{a})$ shows a block diagram for such a two-integrator arrangement. Note that in anticipation of the use of the inverting op-amp Miller integrator circuit to implement each integrator, the integrator blocks in Fig. 12.23 (a) have been assigned negaiuve signs.
The problem still remains, however, of how to form $V_{\text {hp }}$, the input signal feeding the two cascaded integrators. Toward that end, we rearrange Eq. (12.57), expressing $V_{\mathrm{hp}}$ in terms of its single- and double-minegrated versions and of $V_{i}$ as

$$
\begin{equation*}
V_{\mathrm{hp}}=K V_{i}-\frac{1}{Q} \frac{\omega_{0}}{s} V_{\mathrm{hp}}-\frac{\omega_{0}^{2}}{s^{2}} V_{\mathrm{hp}} \tag{12.58}
\end{equation*}
$$

${ }^{8}$ The name biquad stems from the fact that this circuit in its most general form is capable of realizing a biquadratic transfer function, that is, one that is the ratio of two quadratic polynomials.


FIGURE 12.23 Derivation of a block diagran realization of the two-integrator-loop biquad.
which suggests that $V_{\mathrm{bp}}$ can be obtained by using the weighted summer of Fig. 12.23(b) Now it should be easy to see that a complete block diagrain realization can he obtained b combining the integrator blocks of Fig. 12.23(a) with the summer block of Fig. 12.23(b), a shown in Fig. 12.23(c).
In the realization of Fig. 12.23 (c), $V_{\text {hp }}$, obtained at the output of the summer, realizes the high-pass transfer function $T_{\text {hp }} \equiv V_{\text {hp }} / V_{i}$ of Eq. (12.56). The signal at the output of the first integrator is $-\left(\omega_{0} / s\right) V_{\text {hp }}$, which is a bandpass function

$$
\frac{\left(-\omega_{0} / s\right) V_{\mathrm{hp}}}{V_{i}}=-\frac{K \omega_{0} s}{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}}=T_{\mathrm{bp}}(s)
$$

Therefore the signal at the output of the first integrator is labeled $V_{b p}$. Note that the centerrequency gain of the bandpass filter realized is equal to $-K Q$
second integrator is the low-pass function,

$$
\begin{equation*}
\frac{\left(\omega_{0}^{2} / s^{2}\right) V_{\mathrm{kp}}}{V_{i}}=\frac{K \omega_{0}^{2}}{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}}=T_{\mathrm{Lp}}(s) \tag{12.60}
\end{equation*}
$$

Thus the output of the sccond intcgrator is labeled $V_{\mathrm{p}}$. Note that the dc gain of the low-pass filter realized is equal to $K$.
We conclude that the two-integrator-loop biquad shown in block diagram form in Fig. 12.23(c) realizes the three basic second-order filtering functions, LP, BP, and HP,
simultaneously. This versatility has made the circuit very popular and has given it the name universal active filter.

### 12.7.2 Circuit Implementation

To obtain an op-amp circuit implementation of the two-integrator-loop biquad of Fig. 12.23(c), we replace each integrator with a Miller integrator circuit having $C R=1 / \omega_{0}$, and we replace the summer block with an op-amp summing circuit that is capable of assigning boinpositive and negative weights to is inputs its inventors, is shown in Fig. 12.24(a). Given Huelsman-Newcomb or KHN biquad after its ircuit is straightforward: We select suitably values for $\omega_{0}, Q$, and $K$, the design of the integrators $C$ and $R$ so that $C R=1 / \omega_{0}$. To practical values of the resistors associated with the summer, we first use supcrposidetermine thc values of the summer $V_{\mathrm{tp}}$ in terms of its inputs, $V_{\mathrm{bp}}=-\left(\omega_{0} / s\right) V_{\text {bp }}$ and $V_{\mathrm{ip}}=\left(\omega_{0}^{2} / s^{2}\right) V_{\mathrm{hp}}$, as

$$
\begin{equation*}
V_{\mathrm{hp}}=\frac{R_{3}}{R_{2}+R_{3}}\left(1+\frac{R_{f}}{R_{1}}\right) V_{i}+\frac{R_{2}}{R_{2}+R_{3}}\left(1+\frac{R_{f}}{R_{1}}\right)\left(-\frac{\omega_{0}}{s} V_{\mathrm{hp}}\right)-\frac{R_{f}}{R_{1}}\left(\frac{\omega_{0}^{2}}{s^{2}} V_{\mathrm{hp}}\right) \tag{12.61}
\end{equation*}
$$

Equating the last right-hand-side terms of Eqs. (12.61) and (12.58) gives

$$
\begin{equation*}
R_{f} / R_{1}=1 \tag{12.62}
\end{equation*}
$$


(a)

(b)

FIGURE 12.24 (a) The KHN biquad circuit, oblained as a direct implementation of the block diagram of Fig. 12.23(c). The three basic filtering functions, HP , BP , and $L P$, are simultancously reatized. (b) To obtain notch and all-pass functions, the three outputs are summed with appropriate weights using this op-amp surmmer.
which implies that we can select arbitrary but practically convenient equal values for $R_{1}$ and $R_{f}$. Then, equating the second-to-last terms on the right-hand side of Eqs. (12.61) and (12.58) and setting $R_{1}=R_{f}$ yields the ratio $R_{3} / R_{2}$ required to realize a given $Q$ as

$$
\begin{equation*}
R_{3} / R_{2}=2 Q-1 \tag{12.63}
\end{equation*}
$$

Thus an arbitrary but convenient value can be selected for either $R_{2}$ or $R_{3}$, and the value of the other resistance can be determined using Eq. (12.63). Finally, equating the coefficients of $V_{i}$ in Eqs. (12.61) and (12.58) and substituting $R_{f}=R_{1}$ and for $R_{3} / R_{2}$ from Eq. (12.63) results in

$$
K=2-(1 / Q)
$$

(12.64)

Thus the gain parameter $K$ is fixed to this value.
The KHN biquad can be used to realize notch and all-pass functions by summing weighted versions of the three outputs, LP, BP, and HP. Such an op-amp summer is shown in Fig. 12.24(b); for this summer we can write

$$
\begin{align*}
V_{o} & =-\left(\frac{R_{F}}{R_{l}} V_{\mathrm{hp}}+\frac{R_{F}}{R_{B}} V_{\mathrm{bp}}+\frac{R_{F}}{R_{L}} V_{\mathrm{lp}}\right) \\
& =-V_{i}\left(\frac{R_{F}}{R_{H}} T_{\mathrm{hp}}+\frac{R_{F}}{R_{B}} T_{\mathrm{bp}}+\frac{R_{F}}{R_{L}} T_{\mathrm{lp}}\right) \tag{12.65}
\end{align*}
$$

Substituting for $T_{\mathrm{hp}}, T_{\mathrm{pp}}$, and $T_{\mathrm{lp}}$ from Eqs. (12.56), (12.59), and (12.60), respectively, gives he overall transfer function

$$
\begin{equation*}
\frac{V_{o}}{V_{i}}=-K \frac{\left(R_{F} / R_{H}\right) s^{2}-s\left(R_{F} / R_{B}\right) \omega_{0}+\left(R_{F} / R_{L}\right) \omega_{0}^{2}}{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}} \tag{12.66}
\end{equation*}
$$

from which we can see that different transmission zeros can be obtained by the appropriate selection of the values of the summing resistors. For instance, a notch is obtained by selecting $R_{B}=\infty$ and

$$
\begin{equation*}
\frac{R_{H}}{R_{L}}=\left(\frac{\omega_{n}}{\omega_{0}}\right)^{2} \tag{12.67}
\end{equation*}
$$

### 12.7.3 An Alternative Two-Integrator-Loop Biquad Circuit

An alternative two-integrator-loop biquad circuit in which all three op amps are used in a single-ended mode can be developed as follows: Rather than using the input summer to add signals with positive and negative coefficients, we can introduce an additional inverter, as shown in Fig. 12.25(a). Now all the coefficients of the summer have the same sign, and we can dispense with the summing amplifier altogether and perform the summation at the virtual-ground input of the first integrator. The resulting circuit is shown in Fig. 12.25 (b), from which we observe that the high-pass function is no longer available! This is the price from which we observe that the high-pass function is no longer available! This is the price
paid for obtaining a circuit that utilizes all op amps in a single-ended mode. The circuit of Fig. 12.25(b) is known as the Tow-Thomas biquad, after its originators.

Rather than using a fourth op amp to realize the finite transmission zeros required for the notch and all-pass functions, as was done with the KHN biquad, an economical feedforward scheme can be employed with the Tow-Thomas circuit. Specifically, the virtual ground available at the input of each of the three op amps in the Tow-Thomas circuit permits the input signal to be fed to all threc op amps, as shown in Fig. 12.26. If $V_{o}$ is taken at the output

1125

(a)

(b)

GURE 12.25 (a) Derivation of an alternative two-integrator-loop biquad in which all op amps are used figure 12.25 fale (a) (b) The resulting circuit, known as the Tow-Thomas hiquad.


FIGURE 12.26 The Tow-Thomas biquad with feedforward. The ransier function of Eq. (12.68) is realized by feeding the input signal through appropriate components to the inputs of the three op amps. Thi circuit can realize all special second-order unctions. The designequal
of the damped integrator, straightforward analysis yields the filter transfer function

$$
\frac{V_{0}}{V_{i}}=-\frac{s^{2}\left(\frac{C_{1}}{C}\right)+s \frac{1}{C}\left(\frac{1}{R_{1}}-\frac{r}{R R_{3}}\right)+\frac{1}{C^{2} R R_{2}}}{s^{2}+s \frac{1}{Q C R}+\frac{1}{C^{2} R^{2}}}
$$

which can be used to obtain the design data given in Table 12.2.

IABLE 12.2 Design Datr tor the Circutin Fig 12.26
All cases $\quad C=$ arbitrary, $R=1 / \omega_{0} C, r=$ arbitrary
Positive BP
Negative BP
HP
Notch
(all types)
(all types
AP
$C_{1}=0, R_{1}=\infty, R_{2}=R / \mathrm{dc}$ gain, $R_{3}=\infty$
$C_{1}=0, R_{1}=\infty, R_{2}=\infty, R_{3}=Q_{r} /$ center-frequency gain
$C_{1}=0, R_{1}=Q R /$ centec-frequency gain, $R_{2}=\infty, R_{3}=\infty$
$C_{1}=C \times$ high-frequency gain, $R_{1}=\infty, R_{2}=\infty, R_{3}=\infty$
$C_{1}=C \times$ high- -requency gain, $R_{1}=\infty$,
$R_{2}=R\left(\omega_{0} / \omega_{n}\right)^{2} /$ high-frequency gain, $R_{3}=\infty$
$C_{1}=C \times$ flat gain, $R_{1}=\infty, R_{2}=R /$ gain, $R_{3}=Q_{r} /$ gain

### 12.7.4 Final Remarks

Two-integrator-loop biquads are extremely versatile and easy to design. However, their performance is adversely affected by the finite bandwidth of the op amps. Special techniques exist for compensating the circuit for such effects [see the SPICE simulation in Section 12.12 and Sedra and Brackett (1978)].

## EXERCISES

012.21 Desien the KHN circuit to realize a hith-pass finction with $f=10$ kHz and $Q=2$. Chorse C -1 if

 Ans. $R=159 \mathrm{k} \Omega, R_{1}=R=R_{2}-10 \mathrm{k} \Omega$ (arbitrary): $R_{R}=30 \mathrm{kS}: 15,3$
012.22 USe the KilN circhit together with ar ouput summing amplitier to desǐn a low- plass notch fiffer with
 Ans. $R=31.83 \mathrm{kN} \Omega, R_{1}=R_{1}=R_{2}=10 \mathrm{k} \Omega$ (arbitrary) $R_{3}-90 \mathrm{k} \Omega . R_{H}=25.0 \mathrm{k} \Omega, R_{F}=167 \mathrm{k} \Omega, R_{B}=\infty$.
D12.23 Use the Tow Thomas biguad (Fig; 12.256) to design a seconderder bandpass filter with $\mathrm{f}_{\mathrm{o}}=10 \mathrm{kHz}$ $O=20$ and unity center-frequency sain. If $R=10$ kR give the values of $C R_{i,}$ and $R$. Ans, $1.59 \mathrm{nF}, 200 \mathrm{k} \Omega ; 200 \mathrm{ks}$
D12.24 Use the data of Table 12.2 to design the biquad circuit of Fig. 12.26 to realize an all-pass filter with $\omega_{0}=10^{+}$rads. $Q=5$, and flat gain $=1$. Use $C=10 \mathrm{nF}$ and $=10 \mathrm{k} \Omega$. Ans. $R=10 \mathrm{k} \Omega$ : $Q$-determining resistor $=50 \mathrm{k} \Omega \mathrm{C}_{1}=10 \mathrm{nF} \cdot R_{1}=0 ; R_{2}=10 \mathrm{k} \Omega, R_{3}=50 \mathrm{k} \Omega$

## Sid 12.8 SINGLE-AMPLIFIER BIQUADRATIC 3 ACTIVE FILTERS

The op amp-RC biquadratic cireuits studied in the two preceding sections provide good per formance, are versatile, and are casy to dcsign and to adjust (tunc) after final assembly Unfortunately, however, they are not economic in their usc of op amps, requiring three or four amplifiers per second-order section. This can be a problem, especially in applications where power-supply current is to be conserved: for instance, in a battery-operated instrument. In this section we shall study a class of second-order filter circuits that requires only one op amp per biquad. These minimal realizations, however, suffer a greater dependence
on the limited gain and bandwidth of the op amp and can also be more sensitive to the unavoidable tolerances in the values of resistors and capacitors than the multiple-op-amp biquads of the preceding sections. The single-amplifier biquads (SABs) are therefore limited to the less stringent filter specificatious- or example, poe $Q$ cactors the

The synthesis of SAB circuits is based on the use of fedeack to meve poles of an RC circuit from the locations required to provide selective filter response. The synthesis of SABs follows a two step process:

1. Synthesis of a fecdback loop that realizes a pair of complex-conjugate poles charac terized by a frequency $\omega_{\text {, }}$, and a $Q$ factor $Q$.
2. Injecting the input signal in a way that realizes the desired transmission zeros.

### 12.8.1 Synthesis of the Feedback Loop

Consider the circuit shown in Fig. 12.27(a), which consists of a two-port RC network $n$ placed in the negative-feedback path of an op amp. We shall assume that, except for having a finite gain $A$, the op amp is ideal. We shall denote by $t(s)$ the open-circuit voltage transfer function of the RC network $n$, where the definition of $t(s)$ is illustrated in Fig. 12.27 (b). The transfer function $t(s)$ can in general be written as the ratio of two polynomials $N(s)$ and $D(s)$

$$
t(s)=\frac{N(s)}{D(s)}
$$

The rools of $N(s)$ are the transmission zeros of the RC network, and the roots of $D(s)$ are its poles. Study of network theory shows that while the poles of an RC network arc restricted to lie on the negative real axis, the zeros can in general lie anywhere in the $s$ plane.

The loop gain $L(s)$ of the feedback circuit in Fig. 12.27(a) can be determined using the method of Section 8.7. It is simply the product of the op-amp gain $A$ and the transfer function $f(s)$,

$$
L(s)=A t(s)=\frac{A N(s)}{D(s)}
$$

Substituting for $L(s)$ into the characteristic equation

$$
\begin{equation*}
1+L(s)=0 \tag{12.70}
\end{equation*}
$$



FIGURE 1227 (a) Fcedback loop obtined by placing two-port RC network $n$ in the feedback path of an op amp. (b) Definition of thc open-circuit transfer function $t(s)$ of the RC network.
results in the poles $s_{\rho}$ of the closed-loop circuit obtained as solutions to the equation

$$
t\left(s_{P}\right)=-\frac{1}{A}
$$

In the ideal case, $A=\infty$ and the poles are obtained from
$N\left(s_{p}\right)=0$
(12.72)

That is, the filter poles are identical to the zeros of the RC network.
Since our objective is to realize a pair of complex-conjugate poles, we should sclect an RC network that can have complex-conjugate transmission zeros. The simplest such networks arc the bridged-T networks shown in Fig. 12.28 together with their transfer functions $t(s)$ from $b$ to $a$, with $a$ open-circuited. As an example, consider the circuit generated by placing the bridged-T network of Fig. 12.28(a) in the negative-feedback path of an op amp, as shown in Fig. 12.29.

$t(s)=\frac{s^{2}+s\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) \frac{1}{R_{3}}+\frac{1}{C_{1} C_{2} R_{3} R_{4}}}{s^{2}+s\left(\frac{1}{C_{1} R_{3}}+\frac{1}{C_{2} R_{3}} \div \frac{1}{C_{1} R_{4}}\right)+\frac{1}{C_{1} C_{2} R_{3} R_{4}}}$
(a)

$t(s)=\frac{s^{2}+s\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \frac{1}{C_{4}}+\frac{1}{C_{3} C_{4} R_{1} R_{2}}}{s^{2}+s\left(\frac{1}{C_{4} R_{1}}+\frac{1}{C_{4} R_{2}}+\frac{1}{C_{3} R_{2}}\right)+\frac{1}{C_{3} C_{4} R_{1} R_{2}}}$
(b)

FIGURE 12.28 Two RC networks (called bridged-T networks) that can have complex transmission zeros. The transfer functions given are from $b \omega a$, with $a$ open-circuited.


The pole polynomial of the active-filter circuit will be equal to the numerator polynomial of the bridged-T network; thus,

$$
s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}=s^{2}+s\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) \frac{1}{R_{3}}+\frac{1}{C_{1} C_{2} R_{3} R_{4}}
$$

which cnables us to obtain $\omega_{0}$ and $Q$ as

$$
\begin{align*}
& \omega_{0}=\frac{1}{\sqrt{C_{1} C_{2} R_{3} R_{4}}}  \tag{12.73}\\
& Q=\left[\frac{\sqrt{C_{1} C_{2} R_{3} R_{4}}}{R_{3}}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right]^{-1} \tag{12.74}
\end{align*}
$$

If we are designing this circuit, $\omega_{0}$ and $Q$ are given and Eqs. (12.73) and (12.74) can be used to determinc $C_{1}, C_{2}, R_{3}$, and $R_{4}$. It follows that there are two degrees of freedom. Let us exhaust one of these by selecting $C_{1}=C_{2}=C$. Let us also denote $R_{3}=R$ and $K_{4}=R / m$. By substituting in Eqs. (12.73) and (12.74) and with some manipulation, we obtain

$$
\begin{align*}
m & =4 Q^{2}  \tag{12.75}\\
C R & =\frac{2 Q}{\omega_{0}} \tag{12.76}
\end{align*}
$$

Thus if we are given the value of $Q$, Eq. (12.75) can be used to determine the ratio of the two resistances $R_{3}$ and $R_{4}$. Then the given values of $\omega_{0}$ and $Q$ can be substituted in Eq. (12.76) to determine the time constant $C R$. There remains one degrce of freedom--the value of $C$ or $R$ an be arbitrarily chosen. In an actual design, this value, which sets the impedance level of the circuit, should be chosen so that the resulting component values are practical.

## EXERCISES

D12.25 Desigh the circult of fig: 12.29 to realize a paif of poles with $\omega_{0}=19^{4}$ ridt and $0=1$. Sclect $C_{r}=$ $C_{2}=1 \mathrm{nf}$.
Ans. $R_{3}=200 k \Omega$. $R_{1}=50 k \Omega$
12.26 For the circuit designed in Exercine 12.25 , find the location of the poles of the RC networ in the teed back loop.
Ans. $0.382 \times 10^{4}$ and $-2.618 \times 10^{4} \mathrm{rad} / \mathrm{s}$

### 12.8.2 Injecting the Input Signai

Having synthesized a feedback loop that realizes a given pair of poles, we now consider connecting the input signal source to the circuit. We wish to do this, of course, without altering the poles.
Since, for the purpose of finding the poles of a circuit, an ideal voltage source is equivalent to a short circuii, it follows that any circuit node that is connected to ground can instead be connected to the input voltage source without causing the poles to change. Thus the method of injecting the input voltage signal into the feedback loop is simply to disconnect a component (or several components) that is (are) connected to ground and connect it (them) to the input source. Depending on the component(s) through which the input signal is injected,
different trausmission zeros are obtained. This is, of course, the same method we used in Scction 12.5 with the LCR resonator and in Section 12.6 with the biquads based on the LCR resonator.

As an example, consider the fcedback loop of Fig. 12.29. Here we have two grounded nodes (one terminal of $R_{4}$ and the positive input terminal of the op anp) that can serve for injecting the input signal. Figure 12.30 (a) shows the circuit with the input signal injected through part of the resistance $R_{4}$. Note that the two resistances $R_{4} / \alpha$ and $R_{4} /(1-\alpha)$ have a parallel equivalent of $R_{4}$.

Analysis of the circuit to determine its voltage transfer function $T(s) \equiv V_{o}(s) / V_{i}(s)$ is illustrated in Fig. 12.30 (b). Note that we have assumed the op amp to be ideal, and have indicated the order of the analysis steps by the circled numbers. The final step, number 9 ,

(a)

(b)

FIGURE 12.30 (a) The feedback loop of Fig. 12.29 with the input signal injccted through part of resistanco $\mathrm{R}_{4}$. This circuit realizes the bandpass function. (b) Analysis of the circuit in (a) to determine its voltage transfer function $T(s)$ with the order of the analysis steps indicated by the circled numbers.

1131
consists of writing a node equation at X and substituting for $V_{x}$ by the value determined in step 5 . The result is the transfer function

$$
\frac{V_{o}}{V_{i}}=\frac{-s\left(\alpha / C_{1} R_{4}\right)}{s^{2}+s\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) \frac{1}{R_{3}}+\frac{1}{C_{1} C_{2} R_{3} R_{4}}}
$$

We recognize this as a bandpass function whose center-frequency gain can be controlled by the value of $\alpha$. As expected, the denominator polynomial is identical to the numerator polynomial of $t(s)$ given in Fig. 12.28(a).

EXERCISE
22.27 tse the :con 27 Lse the component values obtained in Exercise 12.25 to des ign the bandpass circuit of fig.
Determine the values of $\left(R_{4}(\alpha)\right.$ and $R /(1-\alpha)$ to obtain a center frequency gain of minty. Ans. 100 kg : 100 kS

### 12.8.3 Generation of Equivalent Feedback Loops

The complementary transformation of feedback loops is based on the property of linear net works illustrated in Fig. 12.31 for the two-port (three-terminal) network n. In Fig. 12.31(a), terminal $c$ is grounded and a signal $V_{b}$ is applied to terminal $b$. The transfer function from $b$ to $a$ with $c$ grounded is denoted $t$. Then, in Fig. 12.31(b), terminal $b$ is grounded and the input signal is applied to terminal $c$. The transfer function from $c$ to $a$ with $b$ grounded can be shown to be the complement of $t$-that is, $1-t$. (Recall that we used this property in generating a circuit realization for the all-pass function in Section 12.6.)

Application of the complementary transformation to a feedback loop to generate an equivalent feedback loop is a two-step process:

1. Nodes of the fcedback network and any of the op-amp inputs that are connected to ground should be disconnected from ground and connected to the op-amp output. Conversely, those nodes that were connected to the op-amp output should be now connected to ground. That is, we simply interchange the op-amp output terninal with ground.
2. The two input terminals of the op anp should be interchanged.

(a)

(b)

FIGURE 12.31 Interchanging input and ground results in the complement of the transfer function.


FIGURE 12.32 Application of the complementary transformation to the feedback loop in (a) results in the equivalent loop (same poles) shown in (b).

The feedback loop generated by this transformation has the same characteristic equation, and hence the same poles, as the original loop.

To illustrate, we show in Fig. 12.32(a) the feedback loop formed by connecting a two-port RC network in the negative-feedback path of an op amp. Application of the complementary transformation to this loop results in the feedback loop of Fig. 12.32(b). Note that in the latter loop the op amp is used in the unity-gain follower configuration. We shall now show that the two loops of Fig. 12.32 are equivalent.
If the op amp has an open-loop gain $A$, the follower in the circuit of Fig. 12.32(b) will have a gain of $A /(A+1)$. This, together with the fact that the transfer function of network $n$ from $c$ to $a$ is $1-t$ (see Fig. 12.31), enables us to write for the circuit in Fig. 12.32(b) the characteristic equation

$$
1-\frac{A}{A+1}(1-t)=0
$$

This equation can be manipulated to the form

$$
1+A t=0
$$

which is the characteristic equation of the loop in Fig. 12.32(a). As an example, consider the application of the complementary transformation to the feedback loop of Fig. 12.29: The feedback loop of Fig. 12.33(a) results. Injecting the input signial through $C_{1}$ results in the cir cuit in Fig. 12.33(b), which can be shown (by direct analysis) to realize a second-order highpass function. This circuit is one of a family of SABs known as the Sallen-and-Key circuits, fter their originators. The design of the circuit in Fig. 12.33(b) is based on Eqs. (12.73) hrough (12.76); narmely, $R_{3}=R, R_{4}=R / 4 Q, C_{1}=C_{2} C, C R=2 Q / \omega_{0}$, and the valu $C$ is aitraty
As another example, Fig. 12.34(a) shows the feedback loop generated by placing the two-port RC network of Fig. 12.28(b) in the negative-feedback path of an op amp. For an he same location as the zeros of $t(s)$ of the RC network. Thus, using the expression for $t(s)$

(b)

FIGURE 12.33 (a) Fccdback loop obtained by applying the complementary transformation to the loop in Fig. 12.29. (b) Injecting the input signal through $C_{1}$ realizes the high-pass function. This is one of the Sallen and-Key family of circuits.

(a)

(b)

(c)

FIGURE 12.34 (a) Feedback loop obtained by placing the bridged-T network of Fig. 12.28(b) in the negative-feedback path of an op amp. (b) Equivalent feedback loop gencrated by applying the complementary transformation to the loop in (a). (c) A low-pass filter oblained by injecting $V_{i}$ through $R_{1}$ intu the loop in (b).
given in Fig. 12.28(b), we can write for the active-filter poles

$$
\begin{aligned}
\omega_{0} & =1 / \sqrt{C_{3} C_{4} R_{1} R_{2}} \\
Q & =\left[\frac{\sqrt{C_{3} C_{4} R_{1} R_{2}}}{C_{4}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)\right]^{-1}
\end{aligned}
$$

$$
(12.77)
$$

(12.78)

Normally the design of this circuit is based on selecting $R_{1}=R_{2}=R, C_{4}=C$, and $C_{3}=C / m$. When substituted in Eqs. (12.77) and (12.78), these yield

$$
\begin{align*}
m & =4 Q^{2}  \tag{12.79}\\
C R & =2 Q / \omega_{0}
\end{align*}
$$

(12.80)
with the remaining degree of freedom (the value of $C$ or $R$ ) left to the designer to choose, Injecting the input signal to the $C_{4}$ terminal that is connected to ground can be shown to result in a bandpass realization. If, however, we apply the complementary transformation to the feedback loop in Fig. 12.34(a), we obtain the equivalent loop in Fig. 12.34(b). The loop equivalence means that the circuit of Fig. 12.34(b) has the same poles and thus the same $\omega_{1}$ and $Q$ and the same design equations (Eqs. 12.77 through 12.80). The new loop in Fig. 12.34(b) can be used to realize a low-pass function by injecting the input signal as shown in Fig. 12.34(c).

## EXERCISES

 and Q are indeed those in Eqs. (12.77) and (12.78). Also show that the de gain is unity
012.29 Desien the circuit in Fig: 12.34 cc to reatize a low pass filter with $f_{0}=4 \mathrm{kHz}$ and $0=1 / 5$. $10-\mathrm{k} 2$ resistors.
Ans. $R_{5}=R_{2}=10 \mathrm{kQ}, C_{3}=281 \mathrm{nF} C_{4}=563 \mathrm{nF}$
12.9 SENSITIVITY

Because of the tolerances in component values and because of the finite op-amp gain, the response of the actual assembled filter will deviate from the ideal response. As a means for predicting such deviations, the filter designer employs the concept of sensitivity. Specifically, for second-order fiters onc is usually interested in finding how sensitive their poles are relative to variations (both initial tolerances and future drifts) in RC component values and amplifier gain. These sensitivities can be quantified using the classical sensitivity function $S_{x}^{x}$, defined as

$$
\begin{equation*}
S_{x}^{y} \equiv \operatorname{Lim}_{\Delta x \rightarrow 0} \frac{\Delta y / y}{\Delta x / x} \tag{12.81}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
S_{x}^{y}=\frac{\partial y}{\partial x} \underline{x} \tag{12.82}
\end{equation*}
$$

Here, $x$ denotes the value of a component (a resistor, a capacitor, or an amplifier gain) and $y$ denotes a circuit parameter of interest (say, $\omega_{0}$ or $Q$ ). For small changes

$$
S_{x}^{y} \simeq \frac{\Delta y / y}{\Delta x / x}
$$

Thus we can use the valuc of $S_{x}^{y}$ to determine the per-unit change in $y$ due to a given perunit change in $x$. For instance, if the sensitivity of $Q$ relative to a particular resistance $R_{1}$ is 5 , then a $1 \%$ increase in $R_{1}$ results in a $5 \%$ increase in the value of $Q$.

## 5wMPL

For the feedback loop of Fig. 12.29, find the sensitivities of $\omega_{7}$ and $Q$ relative to all the passive components and the op-amp gain. Evaluate these sensitivities for the design considered in the preceding scction for which $C_{1}=C_{2}$.

## Solution

To find the sensitivities with respect to the passive components, called passive sensitivities, we assume that the op-amp gain is infinite. In this case, $\omega_{0}$ and $Q$ are given by Eqs. (12.73) and (12.74). Thus for $\omega_{0}$ we have

$$
\omega_{0}=\frac{1}{\sqrt{C_{1} C_{2} R_{3} R_{4}}}
$$

which can be used togcther with the sensitivity definition of Eq. (12.82) to obtain

$$
S_{C_{1}}^{\omega_{1}}=S_{C_{2}}^{\omega_{0}}=S_{R_{3}}^{\omega_{0}}=S_{R_{4}}^{\omega_{0}}=-\frac{1}{2}
$$

For $Q$ we have

$$
Q=\left[\sqrt{C_{1} C_{2} R_{3} R_{4}}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) \frac{1}{R_{3}}\right]^{-1}
$$

to which we apply the sensitivity definition to obtain

$$
S_{C_{1}}^{Q}=\frac{1}{2}\left(\sqrt{\frac{C_{2}}{C_{1}}}-\sqrt{\frac{C_{1}}{C_{2}}}\right)\left(\sqrt{\frac{C_{2}}{C_{1}}}+\sqrt{\frac{C_{1}}{C_{2}}}\right)^{-1}
$$

For the design with $C_{1}=C_{2}$ we sec that $S_{C_{1}}^{Q}=0$. Similarly, we can show that

$$
S_{C_{2}}^{Q}=0, \quad S_{R_{3}}^{Q}=\frac{1}{2}, \quad S_{R_{4}}^{Q}=-\frac{1}{2}
$$

It is important to remember that the sensitivity expression should be drrived before values corresponding to a particular design are substituted.
Next we consider the sensitivities relative to the amplifier gain. If we assume the op amp to have a finite gain $A$, the characteristic equation for the loop becomes

$$
1+A t(s)=0
$$

where $t(s)$ is given in Fig. 12.28(a). To simplify matters we can substitute for the passive compo finding the sensitivity with This causes no errors in evaluating sensitivities, since we are no
earlier-namely, $C_{1}=C_{2}=C, R_{3}=R, R_{4}=R / 4 Q^{2}$, and $C R=2 Q / \omega_{0}$-we get

$$
\begin{equation*}
t(s)=\frac{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}}{s^{2}+s\left(\omega_{0} / Q\right)\left(2 Q^{2}+1\right)+\omega_{0}^{2}} \tag{12.85}
\end{equation*}
$$

where $\omega_{0}$ and $Q$ denote the nominal or design values of the pole frequency and $Q$ factor. The actual values are obtained by substituting for $t(s)$ in Eq. (12.84):

$$
s^{2}+s \frac{\omega_{0}}{Q}\left(2 Q^{2}+1\right)+\omega_{0}^{2}+A\left(s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}\right)=0
$$

Assuming the gain $A$ to be real and dividing both sides by $A+1$, we get

$$
\begin{equation*}
s^{2}+s \frac{\omega_{0}}{Q}\left(1+\frac{2 Q^{2}}{A+1}\right)+\omega_{0}^{2}=0 \tag{12.86}
\end{equation*}
$$

From this equation we see that the actual pole frequency, $\omega_{b s}$, and the pole $Q, Q_{a}$, are

$$
\begin{gathered}
\omega_{0 a}=\omega_{0} \\
Q_{a}=\frac{Q}{1+2 Q^{2} /(\Lambda+1)}
\end{gathered}
$$

Thus

$$
\begin{aligned}
S_{A}^{\omega_{Q_{a}}} & =0 \\
S_{A}^{Q_{a}} & =\frac{A}{A+1} \frac{2 Q^{2} /(A+1)}{1+2 Q^{2} /(A+1)}
\end{aligned}
$$

For $A \gg 2 Q^{2}$ and $A \gg 1$ we oblain

$$
S_{A}^{Q_{a}} \simeq \frac{2 Q^{2}}{A}
$$

It is usual to drop the subscript $a$ in this expression and write

$$
\begin{equation*}
S_{A}^{Q} \simeq \frac{2 Q^{2}}{A} \tag{12.89}
\end{equation*}
$$

Note that if $Q$ is high ( $Q \geq 5$ ), its sensitivity relative to the amplifier gain can be quite high. ${ }^{9}$

### 12.9.1 A Concluding Remark

The results of Example 12.3 indicale a serious disadvantage of singlc-amplifier biquadsthe sensitivity of $Q$ relative to the amplifier gain is quite high. Although a technique exists for reducing $S_{A}^{\varrho}$ in SABs [see Sedra et al. (1980)], this is done at the expense of increased passive sensitivities. Nevertheless, the resulting SABs are used extensively in many applications. However, for fillers with $Q$ factors greater than about 10 , one usually opts for one of the multiamplifier biquads studied in Sections 12.6 and 12.7. For these circuits $S_{A}^{Q}$ is proportional to $Q$, rather than to $Q^{2}$ as in the SAB case (Eq. 12.89)
${ }^{9}$ Becausc the open-loop gain $A$ of op amps usually has wide tolerance, it is important to keep $S_{A}^{\omega_{0}}$ and
$S_{A}^{Q}$ very small.

1137

## EXERGISE

 change in $\omega_{3}$ and $Q$ under fhe conditions that (a) $R_{3}$ is $2 \%$ high, (b) $R_{4}$ is $2 \%$ hish (c) both $R_{7}$ and $R$ at $2 \%$ high, and (d) both capacilors are $2 \%$ low and boil resistors are $2 \%$ high
Ans. (a) $-1 \%,+1 \%$; (b) $-1 \%,-1 \%$; (c) $-2 \%, 0 \%$; (d) $0 \%, 0 \%$

### 12.10 SWITCHED-CAPACITOR FILTERS

The active-RC filter circuits presented above have two properties that make their production in monolithic IC form difficult, if not practically impossible; these are the need for largevalued capacitors and the requirement of accurate RC time constants. The search therefore as continued for a method of filter design that would lend itself more naturally to IC imple mentation. In this section we shall introduce one such method

### 12.10.1 The Basic Principle

The switched-capacitor filter technique is hased on the realization that a capacitor switched between two circuit nodes at a sufficiently high rate is equivalent to a resistor connecting these two nodes. To be specific, consider the active-RC integrator of Fig. 12.35(a). This is the familiar Miller integrator, which we used in the two-integrator-loop biquad in Section 12.7. In Fig. 12.35(b) we have replaced the input resistor $R_{1}$ by a grounded capacitor $C_{1}$

(a)

(b)

(d)

(c)

FIGURE 12.35 Basic principle of the switched-capacitor filter technique. (a) Active-RC integrator. (b) Switched-capacilor integrator. (c) Two-phase clock (nonoverlapping). (d) During ${ }^{\text {p }}$ current value of $v_{3}$ and then, during $\phi_{2}$, discharges into $C_{2}$.
together with two MOS transistors acting as switches. In some circuits, more elaborate switch configurations are used, but such details are beyond our present need.
The two MOS switches in Fig. 12.35(h) are driven by a nonoverlapping two-phase clock. Figure 12.35 (c) shows the clock waveforms. We shall assume in this introductory exposition that thc clock frequency $f_{c}\left(f_{c}=1 / T_{c}\right)$ is much higher than the frequency of the signal being filtered. Thus during clock phase $\phi_{1}$, when $C_{1}$ is connected across the input signal source $v_{i}$, the variations in the input signal are negligibly small. It follows that during $\phi_{1}$ capacitor $C_{1}$ charges up to the voltage $v_{i}$,

$$
q_{C 1}=C_{1} v_{i}
$$

Then, during clock phase $\phi_{2}$, capacitor $C_{1}$ is connected to the virtual-ground input of the op amp, as indicated in Fig. 12.35(d). Capacitor $C_{1}$ is thus forced to discharge, and its previous charge $q_{C_{1}}$ is transferred to $C_{2}$, in the direction indicated in Fig. 12.35(d).
From the description above we see that during each clock period $T_{c}$ an amount of charge $q_{C I}=C_{1} v_{i}$ is extracted from the input source and supplied to the integrator capacitor $C_{2}$. Thus the average current flowing between the input node (IN) and the virtual-ground node (VG) is

$$
i_{\mathrm{av}}=\frac{C_{1} v_{i}}{T_{c}}
$$

If $T_{c}$ is sufficiently short, one can think of this process as almost continuous and define an equivalent resistance $R_{\text {eq }}$ that is in effect present between nodes IN and VG:

$$
R_{\mathrm{eq}} \equiv v_{i} / i_{\mathrm{av}}
$$

Thus,

$$
R_{e q}=T_{c} / C_{1}
$$

Using $R_{e q}$ we obtain an equivalent time constant for the integrator:

$$
\begin{equation*}
\text { Time constant }=C_{2} R_{\mathrm{eq}}=T_{c} \frac{C_{2}}{C_{1}} \tag{12.91}
\end{equation*}
$$

Thus the time constant that determines the frequency response of the filter is established by the clock period $T_{c}$ and the capacitor ratio $C_{2} / C_{1}$. Both these parameters can be well controlled in an IC process. Specifically, note the dependence on capacitor ratios rather than on absolute values of capacitors. The aecuracy of capacitor ratios in MOS technology can be controlled to within $0.1 \%$.

Another point worth observing is that with a reasonable clocking frequency (such as 100 kHz ) and not-too-large capacitor ratios (say, 10), one can obtain reasonably large time constants (such as $10^{-4} \mathrm{~s}$ ) suitable for audio applications. Since capacitors typically occupy relatively large areas on the IC chip, one attempts to minimize their values. In this context, it is important to note that the ratio accuracies quoted earlier are obtainable with the smaller capacitor value as low as 0.1 pF .

### 12.10.2 Practical Circuits

The switched-capacitor (SC) circuit in Fig. 12.35(b) realizes an inverting integrator (note the direction of charge flow through $C_{2}$ in Fig. 12.35d). As we saw in Section 12.7, a two-integrator-loop active filter is composed of one inverting and one noninverting integrator. ${ }^{10}$

[^44]
(a)

(b)

FIGURE 12.36 A pair of complementary stray-insensitive switched-capacitor integrators. (a) Noninverting switched-capacilor integrator. (b) Inverting switched-capacitor integrato.

To realize a switched-capacitor biquad filter we therefore need a pair of complementary switched-capacitor integrators. Figure 12.36(a) shows a noninverting, or positive, integrato circuit. The reader is urged to follow the operation of this circuit during the two clock phase and thus show that it operates in much the same way as the basic circuit of Fig. 12.35(b) except for a sign reversal.
In addition to realizing a noninverting integrator function, the circuit in Fig. 12.36(a) is insensitive to stray capacitances; however, we shall not explore this point any further. The interested reader is referred to Schaumann, Ghausi, and Laker (1990). By reversal of the clock phases on two of the switches, the circuit in Fig. 12.36(b) is obtained. This circuit real izes the inverting integrator function, like the circuit of Fig. 12.35(b), but is insensitive to stray capacitances (which the original circuit of Fig. 12.35b is not). The pair of complemen tary integrators of Fig. 12.36 has become the standard building block in the design of itched-capacitor filters.
Let us now consider the realization of a complete biquad circuit. Figure 12.37(a) shows the active-RC two-integrator-loop circuit studied carlier. By considering the cascade of inte grator 2 and the inverter as a positive integrator, and then simply replacing each resistor by its switched-capacitor cquivalent, we obtain the circuit in Fig. 12.37(b). Ignore the dampin around the first integrator (i.e., the switched capacitor $C_{5}$ ) for the time being and note that the feedback loop indeed consists of one inverting and one noninverting integrator. Then隹 would convert the feedback to positive and move the poles to the right half of the $s$ plane


On the other hand, the phasing of the feed-in switched capacitor $\left(C_{6}\right)$ is not that important; eversal of phases would result only in an inversion in the sign of the function realized.
Having identificd the correspondences between the active-RC biquad and the switchedcapacitor biquad, we can now derive design equations. Analysis of the circuit in Fig. 12.37(a)
yiclds

$$
\begin{equation*}
\omega_{0}=\frac{1}{\sqrt{C_{1} C_{2} R_{3} R_{4}}} \tag{12.92}
\end{equation*}
$$

Replacing $R_{2}$ and $R_{4}$ with their SC equivalent values, that is,

$$
R_{3}=T_{c} / C_{3} \quad \text { and } R_{4}=T_{c} / C_{4}
$$

gives $\omega_{0}$ of the SC biquad as

$$
\begin{equation*}
\omega_{0}=\frac{1}{T_{c}} \sqrt{\frac{C_{3}}{C_{2}} \frac{C_{4}}{C_{2}}} \tag{12.93}
\end{equation*}
$$

It is usual to select the time constants of the two integrators to be equal; that is,

$$
\begin{equation*}
\frac{T_{c}}{C_{3}} C_{2}=\frac{T_{c}}{C_{4}} C_{1} \tag{12.94}
\end{equation*}
$$

If, further, we select the two integrating capacitors $C_{1}$ and $C_{2}$ to be equal

$$
\begin{equation*}
C_{1}=C_{2}=C \tag{12.95}
\end{equation*}
$$

then

$$
\begin{equation*}
C_{3}=C_{4}=K C \tag{12.96}
\end{equation*}
$$

where from Eq. (12.93)

$$
\begin{equation*}
K=\omega_{0} T_{c} \tag{12.97}
\end{equation*}
$$

For the casc of equal time constants, the $Q$ factor of the circuit in Fig. 12.37(a) is given by $R_{5} / R_{4}$. Thus the $Q$ factor of the corresponding SC circuit in Fig. 12.37(b) is given by

$$
\begin{equation*}
Q=\frac{T_{c} / C_{5}}{T_{c} / C_{4}} \tag{12.98}
\end{equation*}
$$

Thus $C_{5}$ should be selected from

$$
\begin{equation*}
C_{5}=\frac{C_{4}}{Q}=\frac{K C}{Q}=\omega_{0} T_{c} \frac{C}{Q} \tag{12.99}
\end{equation*}
$$

Finally, the center-frequency gain of the bandpass function is given by

$$
\begin{equation*}
\text { Center-frequency gain }=\frac{C_{6}}{C_{5}}=Q \frac{C_{6}}{\omega_{0} T_{c} C} \tag{12.100}
\end{equation*}
$$





### 12.10.3 A Final Remark

We have attempted to provide only an introduction to switched-capacitor filters. We have made many simplifying assumptions, the most important being the switched-capacitorresistor equivalence (Eq. 12.90). This equivalence is correct only at $f_{c}=\infty$ and is approximately correct for $f_{c} \gg f$. Switched-capacitor filters are, in fact, sampled-data networks whose analysis and design can be carried out exactly using $z$-transform techniques. The interested reader is referred to the bibliography.

### 12.11 TUNED AMPLIFIERS

In this section, we study a special kind of frequency-selective nctwork, the LC-tuned amplifier. Figure 12.38 shows the general shape of the frequency response of a tuned amplifier. The techniques discussed apply to amplifiers with center frequencies in the range of a few hundred kilohertz to a few hundred megahertz. Tuned amplifiers find application in the radio-frequency (RF) and intermediate-frequency (IF) sections of communications receivers and in a variety of other systems. It should be noted that the tuned-amplifier response of Fig. 12.38 is siniar o 1238 he dass fler discused enier sections.

As indicated in Fig. 12.38, the response is characterized by the center frequency $\omega_{0}$, the $3-\mathrm{dB}$ handwidth $B$, and the skirt selectivity, which is usually measured as the ratio of the $30-\mathrm{dB}$ bandwid the $3-\mathrm{dB}$ bandwidn. In many applications, $3-\mathrm{dB}$ bandwidth is les than $5 \%$ of $\omega_{0}$. This narrow-band property makes possible simplify the design process, as will be explained later

The tuned amplifiers studied in this section are small-signal voltage amplifiers in which the transistors operate in the "class A" mode that is, the transistors conduct at all times. Tuned power amplifiers based on class C and other switching modes of operation are not studied in this book. (For a discussion on the classification of amplifiers, refer to Section 14.1.)

### 12.11.1 The Basic Principle

The basic principle underlying the design of tuned amplifiers is the use of a parallel LCR circuit as the load, or at the input, of a BJT or a FET amplifier. This is illustrated in Fig. 12.39 with a MOSFET amplifier having a tuned-circuit load. For simplicity, the bias details are not included. Since this circuit uses a single tuned circuit, it is known as a single-tuned amplifier. The amplifier equivalent circuit is shown in Fig. 12.39(b). Here $R$ denotes the

Gain (dB) 1


FIGURE 12.38 Frequency response of a tuncd amplifict


FIGURE 12.39 The basic principle of tuncd amplitiers is illustrated using a MOSFET with a uned-circuit load. Bias details arc not shown.
parallel cquivalent of $R_{t}$ and the output resistance $r_{o}$ of the FET, and $C$ is the parallel equivalent of $C_{L}$ and the FET output capacitance (usually very small). From the equivalent circuit we can write

$$
V_{o}=\frac{-g_{t n} V_{i}}{Y_{L}}=\frac{-g_{m n} V_{i}}{s C+1 / R+1 / s L}
$$

Thus the voltage gain can be expressed as

$$
\begin{equation*}
\frac{V_{o}}{V_{i}}=-\frac{g_{m}}{C} \frac{s}{s^{2}+s(1 / C R)+1 / L C} \tag{12.101}
\end{equation*}
$$

which is a second-order bandpass function. Thus the tumed amplifier has a center frequency of

$$
\omega_{0}=1 / \sqrt{L C}
$$

(12.102)
a 3-dB bandwidth of

$$
B=\frac{1}{C R}
$$

(12.103)
a $Q$ factor or

$$
Q \equiv \omega_{0} / B=\omega_{0} C R
$$

and a center-frequency gain of

$$
\frac{V_{o}\left(j \omega_{0}\right)}{V_{i}\left(j \omega_{0}\right)}=-g_{m} R
$$

(12.105)

Note that the expression for the center-frequency gain could have been written by inspection; At resonance the reactances of $L$ and $C$ cancel out and the impedance of the paralle] LCR circuit reduces to $R$

## 4. ANHE 52

It is required to design a tuned amplifier of the type shown in Fig. 12.39, having $f_{6}=1 \mathrm{MHz}, 3-\mathrm{dB}$ bandwidth $=10 \mathrm{kHz}$, and center-frequency gain $=-10 \mathrm{~V} / \mathrm{V}$. The FET available has at the bias point $g_{m}=5 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=10 \mathrm{k} \Omega$. The output capacitance is negligibly small. Determine the values of $R_{L}, C_{l}$, and $L$.

## Solution

Center-Irequency gain $=-10=-5 R$. Thus $R=2 \mathrm{k} \Omega$. Since $R=R_{L} \| r_{o}$, then $R_{L}=2.5 \mathrm{k} \Omega$.

$$
B=2 \pi \times 10^{4}=\frac{1}{C R}
$$

Thus

$$
C=\frac{1}{2 \pi \times 10^{4} \times 2 \times 10^{3}}=7958 \mathrm{pF}
$$

$$
\text { Since } \omega_{0}=2 \pi \times 10^{6}=1 / \sqrt{L C} \text {, we obtain }
$$

$$
L=\frac{1}{4 \pi^{2} \times 10^{12} \times 7958 \times 10^{-12}}=3.18 \mu \mathrm{H}
$$

### 12.11.2 Inductor Losses

The power loss in the inductor is usually represented by a serics resistance $r_{s}$ as shown in Fig. 12.40(a). However, rather than specilyiug the value of $r_{s}$, the usual practice is to specify the inductor $Q$ factor at the frequency of interest,

$$
Q_{0} \equiv \frac{\omega_{0} L}{r_{s}}
$$

(12.106)

Typically, $Q_{0}$ is in the range of 50 to 200
The analysis of a tuned amplifier is greatly simplified by representing the inductor loss by a parallel resistance $R_{p}$, as shown in Fig. 12.40(b). The relationship between $R_{p}$ and $Q_{0}$ can be found by writing, for the admittance of the circuit in Fig. 12.40(a)
$Y\left(j \omega_{0}\right)=\frac{1}{r_{s}+j \omega_{0} L}$
$=\frac{1}{j \omega_{0} L} \frac{1}{1-j\left(1 / Q_{0}\right)}=\frac{1}{j \omega_{0} L} \frac{1+j\left(1 / Q_{0}\right)}{1+\left(1 / Q_{0}^{2}\right)}$

(a)

(b)

1145

For $Q_{0} \gg 1$,

$$
\begin{equation*}
Y\left(j \omega_{0}\right) \simeq \frac{1}{j \omega_{0} L}\left(1+j \frac{1}{\varrho_{0}}\right) \tag{12.107}
\end{equation*}
$$

Equating this to the admittance of the circuit in Fig. 12.40(b) gives

$$
\begin{equation*}
Q_{0}=\frac{R_{p}}{\omega_{0} L} \tag{12.108}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
R_{p}=\omega_{0} L Q_{0} \tag{1.2.109}
\end{equation*}
$$

Finally, it should be noted that the coil $Q$ factor poses an upper linit on the value of $Q$ achieved by the tuned circuit.

## EXERCISE

12.32 If the inductor in Example 12.4 has $Q_{0}=150$ find $R_{p}$ and then find the value to which $R_{L}$ should be . Thanged to keep the overall $Q$, and henec the bandwidth unchanged.

Ans. $3 \mathrm{ks}, 1511 \mathrm{~s}$

### 12.11.3 Use of Transformers

In many cases it is found that the required value of inductance is not practical, in the sense In many cases it is found that the required value of inductance is not practical, in the sense
that coils with the requircd inductance might not be available with the required high values of $Q_{0}$. A simple solution is to use a transformer to effect an impedance change. Alternatively, a tapped coil, known as an autotransformer, can be used, as shown in Fg. 12.41. Provided the two parts or he inductor are tighty coupled, which can be ach is that the tuned ing on a crite core, if a turns ratio $n=3$ is used in the anfier of Example 12.4, then a cil with inductance $L^{\prime}=9 \times 3.18=28.6 \mathrm{H}$ ad a these values are more practical than the original ones.

In applications that involve coupling the output of a tuned amplifier to the input of another amplifier, the tapped coil can be used to raise the effective input resistance of the號 illustrated in Fig. 12.42 and in the following exercises.

$n=\frac{n_{2}}{n_{1}}$
FIGURE 12.41 A tapped inductor is used as an impecance transformer to allow using a higher inductance, $L^{\prime}$, and a smaller capaciitance, $C^{\prime}$


FIGURE 12.42 (a) The output of a tuned amplifier is coupled to the input of another amplifier via a tapped coil. (b) An equivalent circuit. Note that the use of a tapped coil increases the effective input impedance of the
second amplifier stage.

## EXERCISES

01233 Consider the circul in fig 12.42 (a) first withoul lapping the col/ Let $L=5.14 \%$ and assume that $R_{1}$ is fixed at 1 kS We wish to design a luide amplifier with $f$ o 455 kHz and o 3 -dB band with of 10 kHz this is the Ineemediate Frequency (IF) amplifier of an AM ratio) If the BIT has $R_{\text {in }}-1 \mathrm{~K} \mathrm{~K}_{\mathrm{an}}$ and $C_{\mathrm{h}}=$ 200 of. find the eltual bandwifth obtained and the required falioe of $C$. Ans. 13 k $\mathrm{kHz}, 24,27 \mathrm{nF}$
012.34 Since the bandwidth realized in Exercise 12.33 is greater than desired, find an afternative desigi uiliz ing a tapped coil as in Fig 12.42 (a). Find the value of $n$ that allows the specfications to be just nict Ing a tapped col as in Fig. 12.42 (a) F Ho the value of $n$ that allows the specifications to be just met point the BJI has o -40 mAV . hns. $136: 24.36 \mathrm{nF} .19 .1 \mathrm{~A} / \mathrm{A}$

### 12.11.4 Amplifiers with Multiple Tuned Circuits

The sclectivity achieved with the single-tuned circuit of Fig. 12.39 is not sufficient in many applications--for instance, in the IF amplifier of a radio or a TV receiver. Greater selectivity is obtained by using additional tuned stages. Figure 12.43 shows a BJT with tuned circuits at both the input and the output. ${ }^{11}$ In this circuit the bias details are shown, from which we

[^45] voltage source) signal is utilized.


FIGURE 12.43 A BJT amplifier with tuned circuits at the input and the output.
discrete-circuit design. However, to avoid the loading effect of the bias resistors $R_{B 1}$ and $R_{B 2}$ on the input tuned circuit, a radio-frequency choke (RFC) is inserted in series with each resistor. Such chokes have high impedances at the frequencies of interest. The use of RFCs in biasing tuned RF amplifiers is common practice.
The analysis and design of the double-tuned amplifier of Fig. 12.43 is complicated by the Miller effect ${ }^{12}$ due to capacitance $C_{\mu}$. Since the load is not simply resistive, as was the case in the amplifiers studied in Section 6.4.4, the Miller impedance at the input will be complex. This reflected impedance will cause detuning of the input circuit as well as "skewing" of the response of the input circuit. Needless to say, the coupling introduced by $C_{\mu}$ makes uning (or aligning) the amplifier quite difficult. Worse still, the capacitor $C_{\mu}$ can cause oscillations to occur [see Gray and Searle (1969) and Problenı 12.75]
Methods exist for neutralizing the effect of $C_{\mu}$ using additional circuits arranged to feed back a current equal and opposite to that through $C_{\mu}$. An alternative, and preferred, approach is to use circuit configurations that do not suffer from the Miller effect. These are iscussed later. Before leaving this section, however, we wish to pontout hat circl type shown in Fig. 12.43 are usually designed utinizing the $y$-parameter model of the BJT (see Appendix B). This is done because here, in view of the fact that $C_{\mu}$ plays a significant ole, the $y$-param ) yybrid- $\pi$ model). Also, he $y$ paraner can casily me measured a of interest, $\omega_{0}$. For narrow-band amplifiers, the assumption is usually made that the $y$ paramters remain approximately constant over the passband

### 12.11.5 The Cascode and the CC-CB Cascade

From our study of amplifier frequency response in Chapter 6 we know that two amplifier configurations do not suffer from the Miller effect. These are the cascode configuration and

[^46]
(a)

(b)

FIGURE 12.44 Two tuned-ampifificr configurations that do not suffer from the Miller effect: (a) cascode and (b) common-collector common-base cascade. (Note that bias details of the caseode circuit are not shown.)
he common-collector common-base cascade. Figure 12.44 shows tuned amplifiers based on hese two contigurations. The CC-CB cascade is usually preferred in IC implementations
 basing details of the cascode circuit are not shown in Fig. 12.44(a). Biasing can be don using arrangements similar to those discussed in earlier chapters.)

### 12.11.6 Synchronous Tuning

In the design of a tuned amplifier with multiple tuned circuits the question of the frequency to which each circuit should be tuned arises. The objective, of course, is for the overall response to exhibit high passband flatness and skirt selectivity. To investigate this question, we shall assume that the overall response is the product of the individual responses: in othe words, that the stages do not interact. This can easily be achieved using circuits such as those in Fig. 12.44.


FIGURE 12.45 Frequency response of a synchronously tuned amplifier.
Consider first the case of $N$ identical resonant circuits, known as the synchronously tuned case. Figure 12.45 shows the response of an individual stage and that of the cascade. Observe the bandwidth "shrinkage" of the overall response. The 3 -dB bandwidth $B$ of the overal amplifier is related to that of the individual tuned circuits, $\omega_{0} / Q$, by (see Problem 12.77)

$$
\begin{equation*}
B=\frac{\omega_{0}}{Q} \sqrt{\sqrt{2}^{1 / N}-1} \tag{12.110}
\end{equation*}
$$

The factor $\sqrt{2^{1 / N}-1}$ is known as the bandwidth-shrinkage factor. Given $B$ and $N$, we can use Eq. (12.110) to determine the bandwidtb required of the individual stages, $\omega_{0} / Q$.

## EXERCISE


 Usind $3-\mu \mathrm{H}$ inductors find $C$ and $R$ for esch stare
Ans. $310.8 \mathrm{kHz}, 737 \mathrm{pF} 0.95 \mathrm{k} \Omega$

### 12.11.7 Stagger-Tuning

A much better overall response is obtained by stagger-tuning the individual stages, as illus trated in Fig. 12.46. Stagger-tuned amplifiers are usually designed so that the overall response exhibits maximal flatness around the center frequency $f_{0}$. Such a response can be obtained by transforming the response of a maximally flat (Butterworth) low-pass filter up the frequency axis to $\omega_{0}$. We show here how this can be done.
The transfer function of a second-order bandpass filter can be expressed in terms of it poles as

$$
\begin{equation*}
\left.T(s)=\frac{a_{1} s}{\left(s+\frac{\omega_{0}}{2 Q}-j \omega_{0}\right.} \sqrt{1-\frac{1}{4 Q^{2}}}\right)\left(s+\frac{\omega_{0}}{2 Q}+j \omega_{0} \sqrt{1-\frac{1}{4 Q^{2}}}\right) \tag{12,1,1}
\end{equation*}
$$

Response of individual stages


FIGURE 12.46 Stagger-tuning the individual resonant circuits can result in an overall response with passband flatter than that obtained with synchronous tuning (Fig. 12.45)

For a narrow-band filler, $Q \gg 1$, and for values of $s$ in the neighborhood of $+j \omega_{0}$ (see Fig. 12.47b) the second factor in the denominator is approximately ( $s+j \omega_{0} \simeq 2 s$ ). Hence Eq. (12.111) can be approximated in the neighborhood or $j \omega_{0}$ by

$$
\begin{equation*}
T(s) \simeq \frac{a_{1} / 2}{s+\omega_{0} / 2 Q-j \omega_{0}}=\frac{a_{1} / 2}{\left(s-j \omega_{0}\right)+\omega_{0} / 2 Q} \tag{12.112}
\end{equation*}
$$

This is known as the narrow-band approximation. ${ }^{13}$ Note that the magnitude response, for $s=j \omega$, has a peak value of $a_{1} Q / \omega_{0}$ at $\omega=\omega_{0}$, as expected
Now consider a first-order low-pass network with a single pole at $p=-\omega_{0} / 2 Q$ (we use $p$ to denote the complex frequency variable for the low-pass filter). Its transfer function is

$$
\begin{equation*}
T(p)=\frac{K}{p+\omega_{0} / 2 Q} \tag{12.113}
\end{equation*}
$$

where $K$ is a constant. Comparing Eqs. (12.112) and (12.113) we note that they are identical for $p=s-j \omega_{0}$ or, equivalently,

$$
\begin{equation*}
s=p+j \omega_{0} \tag{12.114}
\end{equation*}
$$

This result implies that the response of the second-order bandpass filter in the neighborhood its center frequency $s=j \omega_{0}$ is identical to the response of a first-order low-pass filler with a pole at $\left(-\omega_{0} / 2 Q\right)$ in the neighborhood of $p=0$. Thus the bandpass response can b obtained by shifting the pole of the low-pass prototype and adding the complex-conjugate pole, as illustrated in Fig. 12.47(b). This is called a lowpass-to-bandpass transformation or narrow-hand filters.
The transformation $p=s-j \omega_{0}$ can be applied to low-pass filters of order greater than one For instance, we can transform a maximally flat second-order low-pass filter $(Q=1 / \sqrt{2})$ to

[^47] order bandpass filters designcd using the transformation presented in this section.

1150 CHAPTER 12 FILTERS AND TUNED AMPLIFIERS

(c)

FIGURE 12.47 Obtaining a second-order narrow-band bandpass filter by transforming a first-order lowpass filtcr. (a) Polc of the first-order filter in the $p$ plane. (b) Applying the transformation $s=p+j(0)$ and
 response of the first-order low-pass filler. (d) Magnitude response of the sccond-order bandpass filter.
obtain a maximally flat bandpass filter. If the $3-\mathrm{dB}$ bandwidth of the bandpass filter is to be $B \mathrm{rad} / \mathrm{s}$, then the low-pass filter should have a $3-\mathrm{dB}$ frequency (and thus a pole frequency) of $(B / 2) \mathrm{rad} / \mathrm{s}$, as illustrated in Fig. 12.48. The resulting fourth-order bandpass filter will be a stagger-tumed one, with its two tuned circuits (refer to Fig. 12.48) having

$$
\begin{array}{lll}
\omega_{01}=\omega_{0}+\frac{B}{2 \sqrt{2}} & B_{1}=\frac{B}{\sqrt{2}} & Q_{1} \simeq \frac{\sqrt{2} \omega_{0}}{B}  \tag{12.115}\\
\omega_{02}=\omega_{0}-\frac{B}{2 \sqrt{2}} & B_{2}=\frac{B}{\sqrt{2}} & Q_{2} \simeq \frac{\sqrt{2} \omega_{0}}{B}
\end{array}
$$

(12.116)


FIGURE 12.48 Obtaining the poles and the frequency response of a fourth-order stageer-tuned natrow band bandpass amplitier by transforming a second-order low-pass maximally flat rcsponse.

Note thal for the overall response to have a normalized center-frequency gain of unity, the individual responses to have equal center-frequency gains of $\sqrt{2}$, as shown in Fig. 12.48(d).

## EXERCISES

1236. A statger tuned desigh for the FF amplifier specified in Exereise 12.35 is requird Find for $B_{1}$, $f_{62}$. and B. Also sive the value of $C$ and $R$ for eich of the two stages. (Recall that 3 - $\mu \mathrm{H}$ indictors are to be (sed)

12.37. Using the fact that the veltage gan at resonance is proportional to the value of $R$. Wind the ratio of the gain at 107 MH , of the staggee-tuned amplifier designed in Excrese 12.36 and the synchronously funed amplifier destigned in Exercise 12.35 (Hinu For the stagger tuned amplifier note that the gain at $\omega_{0}$ is equal to the product of the gains of the individual stages at their $3-\mathrm{dB}$ frequencies.) Ans. 2.42

## 3.

### 12.12 SPICE SIMULATION EXAMPLES

Circuit simulation is employed in filter design for at least three purposes: (1) to verify the correctness of the design using ideal components, (2) to investigate the effects of the nonidea characteristics of the op amps on the filter response, and (3) to determine the percentage of circuits fabricated with practical components, whose values have specified tolerance statis (ics, that meet the design specifications (this percentage is known as the yield). In this sec ion, we present two examples that illustrate the use of SPICE for the first two purposes. The ion, we present two examples that illustrate the use of SPICE for the first two purposes. The hird area of computer-aided design, though very important, is a rather specialized topic, and is considered beyond the scope of this textbook.

## FMMDE12 ${ }^{3}$ 3

VERIFICATION OF THE DESIGN OF A FIFTH-ORDER CHEBYSHEV FILTER
Our first example shows how SPICE can be utilized to verify the design of a fifth-orde Chebyshey filter. Specifically, we simulate the operation of the circuit whose component values were obtained in Exercise 12.20. The complete circuit is shown in Fig. 12.49(a). It consists of ascade of two second-order simulated-LCR resonators using the Antoniou circuit and a first order op amp-RC circuit. Using PSpice, we would like to compare the magnitude of the filte response with that computed directly from its transfer function. Here, we note that PSpice can also be used to perform the latter task by using the Laplace transfer-function block in the analog behavioral-modeling (ABM) library.
Since the purpose of the simulation is simply to verify the design, we assume ideal compo nents. For the op amps, we utilize a near-ideal model, namely, a voltage-controlled voltage source (VCVS) with a gain of $10^{6} \mathrm{~V} / \mathrm{V}$, as shown in Fig. 12.49(b). ${ }^{14}$
${ }^{14}$ SPICE models for the op amp are described in Section 2.9


FIGURE 12.49 Circuits for Example 12.5. (a) Fifth-order Chebyshev filter circuit implemented as a cascade of two second-ordcr simulated LCR resonator circuits and a single first-order op amp-RC circuit. (b) VCVS representation of an ideal op amp with gain $A$.

In SPICE, we apply a 1 -V ac signal at the filter input, perform an ac-analysis simulation over the range 1 Hz to 20 kHz , and plot the nutput voltage magnitude versus frequency, as shown in Fig. 12.50. Both an expanded view of the passband and a view of the entire magnitude response are shown. These results are almost identical to those computed directly from the dcal transfer function, thereby verifying the conectness of the design.


FIGURE 12.50 Magnitude response of the fifth-ordcr lowpass filler circuit shown in Fig. 12.49: (a) an expanded view of the passband region: (b) a view of both the passband and stopband regions.

## BAMP $=1266$

INVESTIGATING THE EFFECT OF FINITE OP-AMP bandwidth on the operation of the
TWO-INTEGRATOR-LOOP FILTER
In this example, we investigate the effect of the finite bandwidth of practical op amps on the response of a two-integrator-loop bandpass filter utilizing the Tow-Thomas biquad circuit of Fig. 12.25(b). The circuit is designed to provide a bandpass response with $f_{0}=10 \mathrm{kHz}, Q=20$, and a unity center-frequency gain. The op amps are assumed to be of the 741 type. Specifically, we model the terminal behavior of the op amp with the single-time-constant linear nctwork shown in Fig. 12.51. Since the analysis performed bere is a small-signal (ac) analysis that ignores nonlincarities, no nonlinearities are included in this op-amp nacromodel. (If the effects of op-amp nonlinearities are to be investigated, a transient analysis should be performed.) The following values are uscd for the parameters of the op-amp macromodel in Fig. 12.51:

$$
\begin{array}{lll}
R_{i d}=2 \mathrm{M} \Omega & R_{i c m}=500 \mathrm{M} \Omega & R_{o}=75 \Omega \\
G_{m}=0.19 \mathrm{~mA} / \mathrm{V} & R_{b}=1.323 \times 10^{9} \Omega & C_{b}=30 \mathrm{pF}
\end{array}
$$



FIGURE 12.51 One-pole equivalent circuit macromodel of an op amp operated within its linear region.


FIGURE 12.52 Circuit for Example 11.6. Second-order bandpass filter implemented with TowThomas biquad circuit having. $f_{0}=10 \mathrm{kHz}, Q=20$, and unity center-frequency gain

These values result in the specified input and output resistances of the 741 -type op amp. Further, they provide a de gain $A_{0}=2.52 \times 10^{5} \mathrm{~V} / \mathrm{V}$ and a $3-\mathrm{dB}$ frequency $f_{b}$ of 4 Hz , again equal to the values specified for the 741 . Note that the selection of the individual values of $G_{m}, R_{b}$, and $C_{b}$ is immaterial as long as $G_{m} R_{b}=\Lambda_{0}$ and $C_{b} R_{b}=1 / 2 \pi f_{b}$

The Tow-Thomas circuil simulated is shown iu Fig. 12.52. The circuit is simulated in PSpice for two cases: (1) assuming 741 -typc op amps and using the linear macromodel in Fig. 12.51; in Fig. 12.49. In both cases, we wiply a $1-\mathrm{V}$ ac signal $A_{0} \mathrm{~V}$ the filter using the near-idcal model in Fig. 12.49. In both cases, we apply a $1-\mathrm{N}$ ac signal at the filter inpur, perform an ac-analysis , and por frequency.

The simulation results are shown in Fig. 12.53, from which we observe the significant deviation between the response of the filter using the 741 op amp and that using the near-ideal op-amp model. Specifically, the response with practical op amps shows a deviation in the center


FIGURE 12.53 Comparing the magnizude response of the Tow-Thomas biquad circuit (shown in Fig. 12.52) constructed with 741 -type op amps, with the ideal magnizude response. These results illustrate Thomas biquad circuit.
frequency of about -100 Hz , and a reduction in the $3-\mathrm{dB}$ bandwidth from 500 Hz to about 110 Hz Thus, in effect, the filter $Q$ factor has increased from the ideal value of 20 to about 90 . This phenomenon, known as $Q$-enhancement, is predictable from an analysis of the two-integratorloop biquad with the finite op-amp bandwidth taken into account [see Sedra and Bracket (1978)]. Such an analysis shows that $Q$-enhancement occurs as a res ult of the excess phase lag introduced by the linite op-amp bandwidth. The theory also shows that the $Q$-enhancement effect can be compensated for by introducing phase lead around the fecdback loop. This can be accomplished by connecting a small capacitor, $C_{c}$, across resistor $R_{2}$. To investigate the poten tial of such a compensation technique, we repeat the PSpice sinulation with various capaci tance valucs. The results are displayed in Fig. 12.54(a). We observe that as the compensatio capacitance is increased from 0 pF , both the filter $Q$ and the resonance peak of the filter response move closer to the desired values. It is evident, however, that a compensation capacitance of 80 pF causes the response to deviate further from the ideal. Thus, optimum compensa tion is oblained with a capacitance value between 60 and 80 pF . Furthcr experimentatio using PSpice enabled us to determine that such an optimum is oblained with a compensation capacitance of 64 pF . The corresponding response is shown, together with the ideal response in Fig. 12.54(b). We note that although the filter $Q$ has been restored to its idcal value, there remains a deviation in the center frequency. We shall not pursue this matter any further here; our objective is not to present a detailed study of the design of two-integrator-loop biquads rathcr, it is to illustrate the application of SPICE in investigating the nonideal performance of active-filter circuits, generally

(b)

FIGURE 12.54 (a) Magnitude response of the Tow-Thomas biquad circuit with different values of response of the Tow-Thumas biquad circuit using a $64-\mathrm{pF}$ compensation capaiter Comparing the magnitua

## SUMMARY

E．A filter is a linear two－port network with a transfer function $T(s)=V_{o}(s) / V_{i}(s)$ ．For physical frequencies，the filcer （ransmission is expressed as $T(j \omega)=\mid T(j \omega)!e^{j \phi(\omega)}$ ．The agnitude of transmission can be expressed in decibels us－ ing either the gain function $G(\omega) \equiv 20 \log |T|$ or the attcn－ aation function $\Lambda(\omega) \equiv-20 \log |T|$
嶙 The transmission characteristics of a tilter are specified in terms of the edges of the passband（s）and the stopband $(\mathrm{s})$ ； the maximum allowed variation in passband transmission， $\lambda_{\text {max }}(\mathrm{dB})$ ：and the minimum attenuation required in the stopband，$A_{\min }(\mathrm{dB})$ ．In some applicalions，the phase char－ acteristics are also specified．

级 The filter transfer function can be expressed as the ratio of two polynomials in $s$ ；the degree of the denominator poly－ omial，$N$ ，is the filter order．The $N$ roots of the denomi－ ator polynomial are the polcs（natural modes）
．To obtain a highly selective response，the poles are com－ plex and occur in conjugate pairs（except for one real pole hen $N$ is odd）．The zeros are placed on the $j \omega$ axis in the opband（s）including $\omega=0$ and $\omega=\infty$
＊The Butterworth filter approximation provides a low－pass esponse that is maximally flat at $\omega=0$ ．The transmission decreases monotonically as $\omega$ increases，reaching 0 （iufi－ nite attenuation）at $\omega=\infty$ ，where all $N$ transmission zeros lie．Eq．（12．11）gives $T T$ ，where $\epsilon$ is given by Eq．（12．14）
and the order $N$ is determined using Eq．（12．15）．The poles are found using the granhical construction of Fig．12．10， and the rransfer function is given by Eq．（12．16）．
面 The Chebyshev filter approximation provides a low－pass response that is equiripple in the passband with the trans－ ission decreasing monotonically in the stopband．AI The passband and Eq．（12．19）gives ！$T!$ in the stopband，where $\epsilon$ is given by Eq．（12．21）．The order $N$ can be determined sing Eq．（12．22）．The polcs are given hy Eq．（12．23）and he transfer function by Eq．（12．24）．
Wigures 12.13 and 12.14 provide a summary of first－order filter functions and their realizations．
＊⿴囗大 Figure 12.16 provides the characteristics of seven special second－order filtering functions．
－The second－order LCR resonator of Fig．12．17（a）realizes a pair of complex－conjugate poles with $\omega_{0}=1 / \sqrt{L C}$ and $Q=$ ial second－orderfitering fuyctions，as shown in Fig 12．18．
By replacing the inductor of an LCR resonator with a sim－ lated inductance obtained using the Antoniou circuit of

Fig．12．20（a），the op amp－RC resonator of rig． 12.21 （b）is oblained． second－order fitter tunctions as shown in Fig．12．22．The design equations for these circuits are given in Table 12．1．
Biquads based on the two－integrator－loop topology are the most versatile and popular second－order filter real izations．There are two varieties：the KHN circuit of Fig．12．24（a），which realizcs the LP，BP，and HP func－ tions simulaneously and can be combined with the output summing amplifier of Fig．12．28（b）to realize the notic and all－pass functions；and the Tow－Thomas circuit of Fig．12．25（b），which realizes the BP and LP functions simul－ circuit to obtain the circuit of Fig．12．26，which can be de signed to realize any of the second－order functions（see Table 12．2）．
＊ingle－amplifier biquads（SABs）are obtained by placin a bridged－T network in the negative－feedback path of a op amp．If the op amp is ideal，the poles realize same locations as the zeros of the RC network．The com plementary transformation can be applied to the feedback loop to obtain another feedback loop having identical poles．Different transmission zeros are realized by feeding the input signal to circuit nodss that are connected to ground．SABs are economic in their use of op amps but are sensitive to the op－anp nonidealities and are thus lim ited to low－$Q$ applications $(Q \leq 10)$ ．
（\％The classical sensitivity function

$$
S_{x}^{y}=\frac{\partial y / y}{\partial x / x}
$$

is a very usefur tool in investugating how tolcrant a filer circuit is to the unavoidable inaccuracies in componen values and to the nonidealitics of the op anps．
3 Switched－capacitor（SC）filters are based on the principle that a capacitor $C$ ，periodically switched hetween two cir－ cuit nodes at a high rate，$f_{c}$ ，is cquivalent to a resistance $R=$ $1 / C f_{c}$ connecting the two circuit nodes．SC fillers can be fabricated in monohithic form using CMOS IC technology．
副 Tuned amplificrs utilize I．C－tuned circuits as loads，or the input，of transistor amplificrs．They are used in the design of the RF tuncr and the IF amplifier of communi cation reccivers．The cascode and the CC－CB cascad configurations are frequently used in the design of tuned amplifiers．Stagger－tuning the individual uned circuils $r$ r－ sults in a flatter passband response（in comparison on

## PROBLEMS

## SECTION 12．1：FILTERTRANSMISSION，TYPES

 AND SPECIFICATION12．1 The transfer function of a firsl－order low－pass filter （such as that realized by an RC circuit）can be expressed as filler．Give in table fomere $\omega_{0}$ is the 3 －dB frequency of the $0.0 .5 \omega_{1}, \omega_{3}, 2 \omega, 5 \omega_{2}, 10 \omega$ and $1000, \psi, G$ ，and $A$ at $\omega=$
＊12．2 A filter has the transfer function $T(s)=1 /[(s+1)$ $(s+s+1)]$ ．Show that $; T j=\sqrt{1+\omega^{6}}$ and find an expres－ and $\phi$ for $\omega=01,1$ ． responding to each of the following ind sid he ouput cor－
（a） $2 \sin 0.1 t$（volls）
（b） $2 \sin t$（volts）
12．3 For the filter whose magnitude responsc is sketcle as the colored curve）in Fig． 12.3 find $\mid T$ at $\omega=0, \omega-\omega_{2}$ and $\omega=\omega_{3} . A_{\text {max }}=0.5 \mathrm{~dB}$ ，and $A_{\text {min }}=40 \mathrm{~dB}$
12．4 A low－pass filter is required to pass all signal wissin its passband，extending from 0 to 4 kHz ，with a tran sion variation of at most $10 \%$（i．e．，the ratio of the max to miniman tansmission in the passband should not and 1．1）．The transmission in the stopband，which extend aschand $\infty$ ，should not excecd $0.1 \%$ of the maximum he selcctivity factor for this fiter？values of $A_{\text {max }}, A_{\min }$ ，and

2．5 A low－pass filter is specified to have $A_{m}=1 \mathrm{~dB}$ and $\mathrm{m}_{\text {min }}=10 \mathrm{~dB}$ ．It is found that these specificications can be just net with a single－time－constant $R C$ circuit having a time con－ ant of $1 s$ and a adc transmission of unity．What must $\omega_{p}$ and 12.6 Skect

12．6 Skerch transmission specifications for a high－pass fil er having a passband dcrined by $f \geq 2 \mathrm{kllz}$ and a stopband defined by $f \leq 1 \mathrm{kHz}$ ．$A_{\text {max }}=0.5 \mathrm{~dB}$ ，and $A_{\text {min }}=50 \mathrm{~dB}$ ．
12．7 Sketch transmission specifications for a bandstop 10 kHz and $20 \mathrm{kHz}<f \leq \infty$ piss signals over the bands $0 \leq f \leq$ cxtends from $f=12 \mathrm{kHz}$ to $f=16 \mathrm{kHz}$ ，with a minimum required attenuation of 40 dB ．

## SECTION 12．2：THE FILTER TRANSFER

12.8 Conider a fuh－order filter whose poles are all at a隹 other pair is $54^{\circ}$ angles form the $j \omega$ axis，and 1 4 angles．Give the transfer function in eac
of the following cases：
（a）The transmission zcros are all at $s=\infty$ and the dc gain unity．
ber all at $s=0$ and the hig equency gan is unity
What type of filler results in each case？
12．9 A third－order low－pass filter has lransmission zeros $\omega=2 \mathrm{rad} / \mathrm{s}$ and $\omega=\infty$ ．Its natural modes are at $s=-1$ and $=-.5 \pm \rho .8$ ．The de gain is unity．Find $\tau(s)$ ．

12．10 Find the order $N$ and the form of $T(s)$ of a bandpas $\omega=10^{3}$ transmission zeros as follows：one at $\omega=0$ ，one and one at $\omega=\infty$ ，If this filter $\mathrm{rad} / \mathrm{s}$ ，one at $6 \times 10 \mathrm{rad} / \mathrm{s}$ ing passband transmission with a peak at the center frequcncy of $2 \times 10^{3} \mathrm{rad} / \mathrm{s}$ ，and equiripple response in the stopbands， sketch the shape of its $|T|$
＊12．11 Analyze the RLC network of Fig．P12．11 to deter－ nuine its transter function $V_{o}(s) / V_{i}(s)$ and hence its poles and zeros．（Hinr：Bcgin the analysis at the output and work your way back to the input．


## FIGURE P12．11

## CECTION 12．3：BUTTERWORTH AND CHEBYSHEV FILTERS

for which Determine the order $N$ of the Bulterworth filter $\omega, \omega_{p}=1.3$ ．What is $A_{\text {min }} \geq 20 \mathrm{~dB}$ ，and the sclectivily ratio attenuarion realized？If $A$ is to he of minimum stopband he cxactly 20 dB ，to wha alue can $A_{\text {max }}$ be reduced

12．13 Calculate the valuc of attemation oblained at equency 1.6 time the 3 －dB frequency of a seventh－order Butcerworth filter．

2．14 Find the natural modes of a Butterworth filler with $1-\mathrm{dB}$ bandwidth of $10^{3} \mathrm{rad} / \mathrm{s}$ and $N=5$ ．
012．15 Design a Butcerworlb filter that mects the follow ing low－pass specifications：$f_{p}=10 \mathrm{kHz}, A_{\text {nex }}=2 \mathrm{~dB}, f_{\mathrm{s}}=$ $T(s)$ ．What is thc attenuation provided at 20 kHz ？
*12.16 Skctch $|T|$ for a seventh-order low-pass Chebyshev filter with $\omega_{p}=1 \mathrm{rad} / \mathrm{s}$ and $A_{\text {max }}=1 \mathrm{~dB}$. Usc Eq. (12.18) to determine the values of $\omega$ at which $|T|=1$ and the values of $\omega$ at which $\mid=1 / \sqrt{1+\epsilon} \epsilon^{2}$. Indicatc $\mid$ hese values $\mathrm{ra} / \mathrm{s}$, and indicte this point on your sketch. For large values of $\omega$, at what rate (in dB/oclave) does the transmission decrease?
12.17 Contrast the attenuation provided hy a fifth-order Chebyshev filter at $\omega=20$ to that provided by a ButterChebyshev filter at $\omega_{s}-2 o_{p}$, nhat provid $=1 \mathrm{~dB}$. Sketch $|T|$ for both filters on the same axes
D*12.18 It is requircd to design a low-pass filter to meet the following specifications: $f_{p}=3.4 \mathrm{kHz}, A_{\max }=1 \mathrm{~dB}, f_{s}=$ $4 \mathrm{kH} 7, A_{\text {nin }}=35 \mathrm{~dB}$
(a) Find the required order of Chebyshev filter. What is the excess (above 35 dB ) stophand attenuation oblaincd? (b) Find the poles and the transifer function.

## SECTION 12.4: FIRST-ORDER AND

SECOND-ORDER FILTER FUNCTIONS
D12.19 Use the information displayed in Fig. 12.13 to design a first-order op amp-RC low-pass filter having a 3 - dB frequency of 10 kHz .
D12.20 Use the information given in Fig. 12.13 to design a first-order op amp-RC high-pass filter with a 3-dB frequency of 100 Hz , a high-frequency input resistance of $100 \mathrm{k} \Omega$, and a high-frequency gain magnitude of unity.
D*12.21 Use the information given in Fig. 12.13 to design a first-order op amp-RC spcctrum-sbaping network. with a transmission zcro frequency of 1 kHz , a pole frequency of 100 kHz , and a dc gain magnitude of unity. The low-frequency uput resistance is to be 1 kS . What is the high-frequency gain that results? Sketch the magnitude of the transfer function versus frequency.
D*12.22 By cascading a first-order op amp-RC low-pass cir- cuit with a first-order op amp-RC high-pass circuit one can design a wideband bandpass filter. Provide such a design for the case in which the midband gain is 12 dB and the 3 -dB bandwidth extends from 100 Hz to 10 kHz . Select appropriate component values under the constraint that no resistors higher han $100 \mathrm{k} \Omega$ are to he used, and that the input resistance is to be
as high as possible.
D12.23 Dcrive $T(s)$ for the op amp-RC circuit in Fig. 12.14 We wish to use this circuit as a variable phase shifter by adjusting $R$. If the input signal frequency is $10^{4} \mathrm{rad} / \mathrm{s}$ and if $C=$ $30^{\circ},-60^{\circ},-90^{\circ},-120^{\circ}$, and $-150^{\circ}$.
12.24 Show that by interchanging $R$ and $C$ in the op ampRC circuit of Hig. 12.14, the resulting phase shift covcrs the
range 0 to $180^{\circ}$ (with $0^{\circ}$ at high frequencies and $180^{\circ}$ at low frequencies).
12.25 Use the information in Fig. 12.16(a) to obtain the transler function of a second-order low-pass filter with $\omega_{0}=$ $10^{3}$ rad $/ \mathrm{s}, Q=1$, and dc gain $=1$. At what frequency does $|T|$ peak? What is the peak transmission?
D***12.26 Use the information in Fig. 12.16f(a) to oblain the transfer function of a second-order low-pass filter that just mects the specifications delined in Fig. 12.3 with $\omega_{p}=1$ rad and $A_{\max }=3 \mathrm{~dB}$. Note that there are two possible solutions. For each, find $\omega_{0}$ and $Q$. Also, if $\omega_{s}=2 \mathrm{rad} / \mathrm{s}$, find the value of $A_{\min }$ obtained in cach case.
D**12.27 Use two first-order op amp-RC all-pass circuit in cascade to design a circuit that provides a set of three phase $60-\mathrm{Hz}$ voltages, each separated by $120^{\circ}$ and cqual in magnitude, as shown in the phasor diagrann of Fig. P12.2 These voltages simulate those used in three-phase powe transmission systems. Use $1-\mu \mathrm{F}$ capacitors.


FIGURE P12.27
12.28 Use the information given in Fig. 12.16 (b) to find the transfer function of a second-order high-pass filter with natural modes at $-0.5 \pm j \sqrt{3} / 2$ and a high-frequency gain of unity.
D** 12.29 (a) Show that $|T|$ of a second-order bandpas function is geometrically symmetrical around the center frequency $\omega_{0}$. That is, the members of each pair of frequencies $\omega_{1}$ and $\omega_{2}$ for which $\left|T\left(j \omega_{1}\right)\right|=\left|T\left(j \omega_{2}\right)\right|$ are related by $\omega_{1} \omega_{2}=\omega_{0}^{2}$. (b) Find the transfer function of the second-order bandpas filter that meets specifications of the form in Fig. 12.4 where $\omega_{p 1}=8100 \mathrm{rad} / \mathrm{s}, \omega_{p 2}=10,000 \mathrm{rad} / \mathrm{s}$, and $A_{\text {max }}=1 \mathrm{~dB}$. If $\omega_{\mathrm{s} 1}=$ $3000 \mathrm{rad} / \mathrm{s}$ find $A_{\text {min }}$ and $\omega_{32}$.
D*12.30 Use the resulf of Exercise 12.15 to find the trans fer function of a notch filter that is required to eliminate a both ersome interference of $60-\mathrm{Hz}$ frequency. Since the freguency provide attenuation is not stable, the filter should be derd around 60 Hz . The de transmission of the filter is to be unity.
12.31 Consider a sccond-order all-pass circuit in which errors in the componcrt values result in the frequency of the
zeros being slightly lower than that of the poles. Roughly setclh the expected 7 . Repeat for the case of he requen
12.32 Consider a second-order all-pass filter in which errors in the component values result in the $Q$ factor of the zeros being greater than the $Q$ factor of the poles. Rough ketch the

## SECTION 12.5: THE SECOND-ORDER

## CR RESONATOR

12.33 Design the LCR resonator of Fig. 12.17(a) to obtain natural modes with $\omega_{0}=10^{4} \mathrm{rad} / \mathrm{s}$ and $Q=2$. Usc $R=10 \mathrm{k} \Omega$.
12.34 For the LCR resonator of Fig. 12.17(a) find the change in $\omega_{0}$ that results from:
(a) increasing $L$ by $1 \%$
()) increasing $C$ by $1 \%$
2.35 Derive an expression for $V_{o}(s) / V_{i}(s)$ of the high-pas ircuit in Fig. 12.18 (c)
12.36 Use the circuit of Fig. 12.18(b) to design a lowpass filter with $\omega_{0}=10^{5} \mathrm{rad} / \mathrm{s}$ and $Q=1 / \sqrt{2}$. Ctilize a $0.1-\mu \mathrm{F}$ capacitor
12.37 Modify the bandpass circuit of Fig. 12.18(d) to change its center-frequency gain from 1 to 0.5 without chang ing $\omega_{0}$ or $Q$.
12.38 Consider the LCR resonator of Fig. 12.17(a) wit node $x$ disconnected from ground and conncted to an input ignal source $V_{x}$, node $y$ disconnected from ground and conected to another input signal source $V_{p}$, and node $z$ disconectcd from ground and connected to a third input signal across the resonator, $V_{o}$, in terms of $V_{x}, V_{y}$, and $V_{z}$.
12.39 Consider the notch circuit shown in Fig. 12.18(i) For what ratio of $L_{1}$ to $L_{2}$ does the notch occur at $0.9 \omega_{n}$ ? For his case, what is the magnitude of the transmission at fre quencies $<\omega_{0}$ ? At frequencies $\gg \omega_{0}$ ?

## SECTION 12.6: SECOND-ORDERACTIVE

## IILTERS BASED ON INDUCTOR REPLACEMENT

D12.40 Design the circuit of Fig. 12.20 (utilizing suitahle omponent values) to realize an inductance of (a) 10 H , (b) 1 H and (c) 0.1 H
12.41 Starting from first principles and assuming ideal op amps. derive the transfer funclion of the circuit in Fig. 12.22 (a)
D*12.42 It is required to design a fifth-order Butterworth filler having a 3 -dB bandwidth of $10^{4} \mathrm{rad} / \mathrm{s}$ and a unity do gain. Use a cascade of two circuits of the type shown in

Fig. 12.22 (a) and a first-order op amp-RC circuit of the type shown in Fig. 12.13(a). Select appropriate component values. D12.43 Design the circuit of Fig. 12.22(c) to realize an LPN function with $f_{0}=4 \mathrm{kHz}, f_{n}=5 \mathrm{kHz}, Q=10$, and a unity dc gain. Select $C_{4}=10 \mathrm{nF}$.
012.44 Design the all-pass circuit of Fig. 12.22 (g) to provide a phase shift of $180^{\circ}$ at $f=1 \mathrm{kHz}$ and to have $Q=1$. Use ,
12.45 Consider the Antoniou circuit of Fig. 12.20(a) with $R_{5}$ eliminated, a capacitor $C_{6}$ connected between node 1 and ground, and a voltage source $V_{2}$ connected to node 2. Show does this impedance behave for physical frequencies $(s=j \omega)$ ? (This impedance is known as a frequency-dependent negative resistance, or FDNR.)
D12.46 Using the transfer function of the LPN filter, given in Table 12.1, derive the design equations also given.
D12.47 Using the transfer function of the HPN filter, given in Table 12.1, derive the design equations also given.

D**12.48 It is required to design a third-order low-pass filter whose $|T|$ is equiripple in both the passhand and the stopband (in the manner shown in Fig. 12.3, except that the response shown is for $N=5$ ). The filter passband extends ies between 1 ord 0.9 The stopband The following transfer function was obsin uing fiter design tables:

$$
T(s)=\frac{0.4508\left(s^{2}+1.6996\right)}{(s+0.7294)\left(s^{2}+s 0.2786+1.0504\right)}
$$

The actual filter realized is to have $\omega_{p}=10^{4} \mathrm{rad} / \mathrm{s}$.
(a) Obtain the transfer function of the actual filter by replac ing $s$ by $s / 10^{4}$.
LP Realize this filter as the cascade connection of a first-order second-order LPN circuit of the type shown in Fig. 1222 (e) Each section is to have a de gain of unity. Select appropriate component values. (Note: A filler with an equiripple esponse in both the passband and the stopband is known a an elliptic filter.)

## SECTION 12.7: SECOND-ORDER ACTIVE

 FILTERS BASED ON THE TWO-INTEGRATOR LOOP TOPOLOGYD12.49 Design the KH.N circuit of Fig. 12.24(a) to realize bandpass filler with a center frequency of 7 kHz and a $3-\mathrm{d}$ andwidth of 50 Hz . Use $10-\mathrm{nF}$ capacitors. Give the comple ent values. What value of center frequency gain is obtained?

D12.50 (a) Using the KHN biquad with the output summing amplifier of Fig. $12.24(\mathrm{~b})$ show that an all-pass funclion is realized by selecting $R_{L}=R_{H}=R_{B} / Q$. Also show that the flat gain obtaincd is $K R_{F} / R_{R}$ () and flat gain $=10$. Select appropriate componcent values.
D12.51 Consider a notch filter with $\omega_{n}=\omega_{0}$ realized using the KHN biquad with an output summing amplifier. If the summing resistors uscd have $1 \%$ tolerances, what
worst-case percentage deviation between $\omega_{r}$ and $\omega_{0}$ ?
D12.52 Design the circuit of Fig. 12.26 to realize a low D12.52 Design the circuit of Fig. 12.26 to realize a low-
pass notch filter wilh $\omega_{y}=10^{4} \mathrm{rad} / \mathrm{s}, Q=10$, dc gain $=1$, and
$\omega_{2}=1.2 \times 10^{4} \mathrm{rad} / \mathrm{s}$. Use $C=10 \mathrm{nF}$ and $r=20 \mathrm{k} \Omega$.

D12.53 In the all-pass realization using the circuit of Fig. 12.26, which component(s) does one need to trim to adjust (a) only $\omega_{z}$ and (b) only $Q_{z}$ ?
12.54 Repeat Problem 12.48 using the Tow-Thomas biquad of Fig. 12.26 to realize the second-order section in the cascade.

## SECTION 12.8: SINGLE-AMPLIFIER

## BIQUADRATIC ACTIVE FILTERS

D12.55 Design the circuit of Fig. 12.29 to realize a pair of poles with $\omega_{0}=10^{4} \mathrm{rad} / \mathrm{s}$ and $Q=1 / \sqrt{2}$. Use $C_{1}=C_{2}=1 \mathrm{nF}$. 12.56 Consider the bridged-I network of Fig. 12.28(a) with $R_{1}=R_{2}=R$ and $C_{1}=C_{2}=C$, and denote $C R=\tau$. Find the zeros and poles of the bridged-T network. If the network is placed in the negative-feedback path of an ideal infinite-gain amplifier.
12.57 Consider the bridged-T network of Fig. 12.28(b) with $R_{1}=R_{2}=R, C_{4}=C$, and $C_{3}=C / 16$. Let the network be placed in the negative-feedback palh of an infinite-gain op amp and let $C_{4}$ be disconnected from ground and connected to the input signal source $V_{i}$. Analyzc the resulting circuit to determine its transfer function $V_{o}(s) / V_{i}(s)$, where $V_{o}(s)$ is the vollagc at the op-anp output. Show that the circuit realized is a

D**12.58 Consider the bandpass circuit shown in Fig. 12.30 Let $C_{1}=C_{2}=C, R_{3}=R, R_{4}=R / 4 Q^{2}, C R=2 Q / \omega_{0}$, and $\alpha=$ 1. Disconnect the positive input terninal of the op amp from ground and apply $V_{i}$ through a voltage divider $R_{1}, R_{2}$ to thc positive input terminal. Analyne the circuit ratio $R_{2} /\left(R_{1}+R_{2}\right)$ so that the circuit realizes (a) an all-pass function and (b) notch function. Assume the op aunp to bc ideal.
D*12.59 Derive the transfer function of the circuit in Fig. 12.33(b) assuming the op amp to be idcal. Thus show Fig. 12.33 (b) assuming the op anp to ce idal. thus how
that the circuit realizes a high-pass tunclion. What is the high-
requency gain of the circuit? Design the circuit for a maxi $C_{1}=C_{2}=10 \mathrm{nF}$. (Hint . For a maxinally $10^{3} \mathrm{rad} / \mathrm{s}$. Us $C_{1}=C_{2}=10 \mathrm{nF}$. (Hint: For a maximally flat response,
$Q=1 / \sqrt{2}$ and $\omega_{3,4 \mathrm{~B}}=\omega_{0 .}$.)
*12.60 Design a fifth-order Butterworth low-pass filter with a 3 -dB bandwidth of 5 kHz and a dc gain of unity using Fiy cascade connection or two samen-and-Key circuit $10-\mathrm{k} \Omega$ value for all resistors.
2.61 The process of obtaining the complement of a transfer function by interchanging input and ground, as illustrate in Fig. 12.31, applies to any general network (not just RC net with a center-frequency gain of unity, then the complement obtained is a notch. Verify this by using the RLC circuits of Fig. 12.18(d) and (e).

## SECTION 12.9: SENSITIVITY

12.62 Evaluate the sensitivities of $\omega_{0}$ and $Q$ relative to $R$, $L$, and $C$ of the bandpass circuit in Fig. 12.18(d).
*12.63 Verify the following sensitivity identities:
(a) If $y=u v$, then $S_{x}^{y}=S_{x}^{u}+S_{x}^{v}$
(b) If $y=u / v$, then $S_{x}^{y}=S_{x}^{u}-S_{x}^{y}$
(c) If $y=k u$, where $k$ is a constant, then $S_{x}^{y}=S_{x}^{u}$.
(d) If $y=u^{n}$, where $n$ is a constant, then $S_{x}^{x}=n \mathrm{~S}$
(c) If $y=f_{1}(u)$ and $u=f_{2}(x)$, then $S_{x}^{y}=S_{u}^{y} \cdot S_{x}^{u}$.
*12.64 For the high-pass filter of Fig. 12.33(b), what are he sensitivities of $\omega_{0}$ and $Q$ to amplifier gain $A$ ?
12.65 For the feedback loop of Fig. 12.34(a), use the expressions in Eqs. (12.77) and (12.78) to determine the sen sitivities of $\omega_{0}$ and $Q$ relative to all passive components to the dcsign in which $R_{1}=R$
12.66 For the op amp-RC resonator of Fig. 12.21(b), use the expressions for $\omega_{0}$ and $Q$ given in the cop row of Table 12 o determine the sensitivities of $\omega_{0}$ and $Q$ to all resistors and capacitors.

## SECTION 12.10: SWITCHED-CAPACITOR

 filters12.67 For the switched-capacitor inpnt circuit of Fig. 12.35(b), in which a clock frequency of 100 kHz is used, what input resistances correspond to capacitance $C_{1}$ values of 1 pF and 10 pH ?
12.68 For a dc voltage of 1 V applied to the input of the cir cuit of Fig. $22.35(\mathrm{~b})$, in which $C_{1}$ is 1 PF , what charge is transferred for each cycle of the two-phase clock? For a the-kput source") For a feed ack capacitance of 10 pF what change
would you expect in the output for cach cycle of the chock? For an amplifier that saturates at $\pm 10 \mathrm{~V}$ and the feedback capacitor initially discharged, how many clock cycles would it take to saturate the amplifier? What is the average slope of the staircase output voltage produced?
D12.69 Repeat Excrcise 12.31 for a clock frequency of 400 kHz .

D12.70 Repeat Exercise 12.31 for $Q=40$.
(12.71 Design the circuit of Fig. 12.37(b) to realize, at the output of the second (noninverting) integrator, a maximally flat low-pass function with $\omega_{3 \text { 3iB }}=10^{4}$ rad/s and unity de gain. sse a clock frequency $f_{c}=100 \mathrm{kHz}$ and select $C_{1}=C_{2}=$
10 pF . Give the values of $C_{3}, C_{4}, C_{5}$, and $C_{6}$. (Hint: For a 10 pF . Give the values of $C_{3}, C_{4}, C_{5}$, and $C_{6}$. (Hint:
maximally flat response, $Q=1 / \sqrt{2}$ and $\omega_{3 \text { dib }}=\omega_{0}$.)

## SECTION 12.11: TUNED AMPLIFIERS

*12.72 A vollage signal source wilh a resistance $R_{s}=10 \mathrm{k} \Omega$ is councected to the imput of a common-enitter BJT amplifier. Between basc and ennitter is connected a tuned circuit with $L=$
$1 u \mathrm{H}$ and $C=200 \mathrm{pF}$. The transistor is biased at 1 mA and has $B=200, C_{r}=10 \mathrm{pF}$. and $C_{=}=1 \mathrm{pF}$. The transistor load is a resistance of $5 \mathrm{k} \Omega$ Find $\omega_{2} Q$, the 3 -dB handwidth and the center-frequency gain of this single-tuned amplifier.
12.73 $\Lambda$ coil having an inductance or $10 \mu \mathrm{H}$ is intended for applications around $1-\mathrm{MHIz}$. frequency. Its $Q$ is specificd to be
200. Iind the equivalent parallel resistance $R$. What is the value of the capacitor required to produce resonance at I MHz? What additional parallel resistance is required to produce a $3-\mathrm{dB}$ bandwidth of 10 kHz ?
12.74 An inductance of $36 \mu \mathrm{H}$ is resonated with a $1000-\mathrm{pF}$ capacitor. If the inductor is tapped at onc-third of its turns and a $1-k \Omega$ resistor is connected across the onc-third part, find $f_{0}$ and $Q$ of the resonator
12.75 Consider a common-emitter transistor amplifier oaded with an inductance $L$. Ignoring $r_{o}$ and $r_{r}$, show that for $\omega C_{\mu} \varangle 1 / \omega L$, the amplifier input admittance is given by

$$
Y_{\mathrm{in}}=\left(\frac{1}{r_{\pi}}-\omega^{2} C_{\mu} L g_{m}\right)+j \omega\left(C_{\pi}+C_{\mu}\right)
$$

Note: The real part of the input admittance can be negative. This can lead to oscillations.
12.76 (a) Substituting $s=j \omega$ in the transfer function $T$ (.) of a second-order bandpass filter (see Fig. 12.16c), find $|T(j \omega)|$. where $\delta \omega / \omega_{0} \ll 1$ so that $\omega^{2} \approx \omega_{0}^{2}(1+2 \delta \omega / \omega)$ sho that, for $Q \gg 1$, hat, for $Q \gg 1$

$$
|T(j \omega)|=\frac{\left|T\left(j \omega_{0}\right)\right|}{\sqrt{1+4 Q^{2}\left(\delta \omega / \omega_{0}\right)^{2}}}
$$

b) Use the result obtained in (a) to show that the $3-\mathrm{dB}$列

$$
B=\left(\omega_{0} / Q\right) \sqrt{2^{1 / N}-1}
$$

**12.77 (a) Using the fact that for $Q \gg 1$ the second order bandpass response in the neighborbood of $\omega_{0}$ is the quency of $\left(\omega_{0} / 2 Q\right)$, show that the bandpass respunse $\omega=\omega_{0}+\delta \omega$, for $\delta \omega \ll \omega_{0}$, is given by

$$
|T(j \omega)| \simeq \frac{\left|T\left(j \omega_{0}\right)\right|}{\sqrt{1+4 Q^{2}\left(\delta \omega / \omega_{0}\right)^{2}}}
$$

(b) Use the relationship derived in (a) together wilh Eq. (12.110) to show that a bandpass amplifier with a 3 - dB bandwidth $B$ designed using $N$ synchronously tuned stages, has in overall transfer function given by

$$
|T(j \omega)|_{\text {overall }}=\frac{\left|T\left(j \omega_{0}\right)\right|_{\text {overall }}}{\left[1+4\left(2^{1 / N}-1\right)(\delta \omega / B)^{2}\right]^{N / 2}}
$$

(c) Use the rclationship derived in (b) to find the altenuation (in decibecs) obtained at a bandwidth $2 B$ for $N=1$ to 5 . Also find the ratio of the $30-\mathrm{dB}$ bandwidth to the $3-\mathrm{dB}$ bandwidth for $N=1$ to 5 .
*12.78 This problem investigates the selectivity of maximally flat stagger-tuned amplifiers derived in the manner illustrated in Fig. 12.48.
(a) The low-pass maximally flat (Butterworth) filter having a 3 - dB bandwidth $B / 2$ and order $N$ has the magnitude response

$$
|T|=1 / \sqrt{1+\left(\frac{\Omega}{B / 2}\right)^{2 N}}
$$

where $\Omega=\ln (p)$ is the frequency in the low-pass donain (This relationship can be obtained using the information provided in Section 12.3 on Butterworth filters.) Use this expression to obtain for the corresponding bandpass filter at $\omega=$ $\omega_{0}+\delta \omega$, where $\delta \omega \ll \omega_{0}$, the relationship

$$
|T|=1 / \sqrt{1+\left(\frac{\delta \omega}{B / 2}\right)^{2 N}}
$$

(b) Use the transfer function in (a) to find the altenuation (in decibects) obtained at a bandwidth of $2 B$ for $N=1$ to 5 . Also find the ratio of the $30-\mathrm{dB}$ bandwidth to the $3-\mathrm{dB}$ bandwidth for $N=1$ to 5
**12.79 Consider a sixth-order stagger-tuncd bandpass amplilier with center frequency $\omega_{0}$ and $3-\mathrm{dB}$ bandwidth $B$. The poles are to be obtained by shifting those of the thirdorder maximally flat low-pass filter, given in lig. L2.10(c). For the three resonant circuits, find $\omega_{0}$, the $3-\mathrm{dB}$ bandwidth.


## Signal Generators and Waveform-Shaping Circuits

	Introduction 1165	13.7	Integrated-Circuit
13.1	Basic Principles of Sinusoidal Oscilators 1166		Timers 1198
		13.8	Nonlinear WaveformShaping Circuits 1203
13.2	Op-Amp-RC Oscilator Circuits 1171		
		13.9	Precision Rectifier Cifcuits 1206
133	LC and Crystal Oscillators 1179		
13.4	Bistable Multwibrators 1185	13,10	SPICE Simulation   Examples 1214
13.5	Generation of Square and Trangular Waveforms Using Astable Multivibrators 1192		$\begin{array}{ll} \text { Summary } & 1219 \\ \text { Problems } & 1220 \end{array}$
13.6	Generation of a Standardized   Palse--The Monostable   Multivibrator 1196		

## Introduction

In the design of electronic systems the need frequently arises for signals having prescribed standard waveforms, for example, sinusoidal, square, triangular, or pulse. Systems in which standard signals are required include computer and control systems where clock pulses are needed for, among other things, timing, communication systems where signals of a variety of waveforms are utilized as information carriers; and test and measurement systems where signals, again of a variety of waveforms, are employed for testing and characterizing electronic devices and circuits. In this chapter we study signal-generator circuits.

There are two distinctly different approaches for the generation of sinusoids, perhaps the most commonly used of the standard waveforms. The first approach, studied in Sections 13.1
to 13.3, employs a positive-feedback loop consisting of an amplifier and an RC or LC frequency-selective network. The amplitude of the generated sine waves is limited, or set, using a nonlinear mechanism, implemented either with a separate circuit or using the nonlinearities of the amplifying device itself. In spite of this, these circuits, which generate sine waves utilizing resonance phenomena, are known as linear oscillators. The name clearly distinguishes them from the circuits that generate sinusoids by way of the second approach. In these circuits, a sine wave is obtained by appropriately shaping a triangular waveform We study waveform-shaping circuits in Section 139, following the study of triangur waveform generators.
Circuits that generate square, triangular, pulse (etc.) waveforms, called nonlinear oscillators or function generators, employ circuit building blocks known as multivibrators. There are three lypes of multivibrator: the bistable (Section 13.4), the astable (Section 13.5), and the monostable (Section 13.6). The multivibrator circuits presented in this chapter employ op amps and are intended for precision anal
using digital logic gates were studied in Chapter 11.
A general and versatile scheme for the generation of square and triangular waveforms is obtained by connecting a bistable multivibrator and an op-amp integrator in a feedback loop chip, the 555 timer (Section 13.7). The chapter includes also a study of precision circuits that implement the rectifier functions introduced in Chapter 3. The circuits studied here (Section 13.9), however, are intended for applications that demand precision, such as in instrumentation systems, including wavcform generation. The chapter concludes with examples illustrating the use of SPICE in the simulation of oscillator circuits.

### 13.1 BASIC PRINCIPLES OF SINUSOIDAL OSCILLATORS

In this section, we study the basic principles of the design of linear sine-wave oscillators. In spite of the name linear oscillator, some form of nonlinearity has to be employed to provide control of the amplitude of the output sine wave. In fact, all oscillators are essentially nonlinear circuits. This complicates the task of analysis and desion of oscillators; no longer is one able to apply transform (s-plane) methods directly. Nevertheless, techniques have been developed by which the design of sinusoidal oscillators can be performed in two steps: The first step is allinear one, and frequency-domain methods of feedback circuit analysis can be readily employed. Subsequently, a nonlinear mechanism for amplitude control can be provided.

### 13.1.1 The Oscillator Feedback Loop

The basic structure of a sinusoidal oscillator consists of an amplifier and a frequencyselective network connected in a positive-feedback loop, such as that shown in block diagram form in Fig. 13.1. Although in an actual oscillator circuit, no input signal will be present, we include an input signal here to help explain the principle of operation. It is important to note that unlike the negative-feedback loop of Fig. 8.1, here the feedback signal $x_{f}$ is summed with a positive sign. Thus the gain-with-feedbagck is given by

$$
\begin{equation*}
A_{f}(s)=\frac{\Lambda(s)}{1-A(s) \beta(s)} \tag{13.1}
\end{equation*}
$$

where we note the negative sign in the denominator.


FIGURE 13.1 The basic structure of a sinusoidal oscillator. A positive-feedback loop is formed by an amplifier and a frequency-sclcctive nctwork. In an actual osciliator circuit, no input signal will be present:
here an input signal $x_{\text {s }}$ s employed to help explain the principle of operation.

According to the definition of loop gain in Chapter 8, the loop gain of the circuit in Fig. 13.1 is $-A(s) \beta(s)$. However, for our purposes here it is more convenient to drop the minus sign and define the loop gain $L(s)$ as

$$
L(s) \equiv A(s) \beta(s)
$$

The characteristic equation thus becomes

$$
\begin{equation*}
1-L(s)=0 \tag{13.3}
\end{equation*}
$$

Note that this new definition of loop gain ${ }^{1}$ corresponds directly to the actual gain seen around the feedback loop of Fig. 13.1.

### 13.1.2 The Oscillation Criterion

If at a specific frequency $f_{0}$ the loop gain $A \beta$ is equal to unity, it follows from Eq. (13.1) that $A_{f}$ will be infinite. That is, at this frequency the circuit will have a finite outpul for zero input signal. Such a circuit is by definition an oscillator. Thus the condition for the feedback loop of Fig. 13.1 to provide siunsoidal oscillations of frequency $\omega_{0}$ is

$$
\begin{equation*}
L\left(j \omega_{0}\right) \equiv A\left(j \omega_{0}\right) \beta\left(j \omega_{0}\right)=1 \tag{13.4}
\end{equation*}
$$

That is, at $\omega_{0}$ the phase of the loop gain should be zero and the magnitude of the loop gain should be unity. This is known as the Barkhausen criterion. Note that for the circuit to oscillate at one frequency, the oscillation criterion should be satisficd only at one frequency (i.e., $\omega_{0}$ ); otherwise the resulting waveform will not be a simple sinusoid.

An intuitive feeling for the Barkhausen criterion can be gained by considering once more the feedback loop of Fig. 13.1. For this loop to produce and sustain an output $x_{o}$ with no input applied ( $x_{s}=0$ ), the feedback signal $x_{f}$

$$
x_{f}=\beta x_{\theta}
$$

should be sufficiently large that when multiplied by $A$ it produces $x_{0}$, that is,

$$
A x_{f}=x_{o}
$$

${ }^{'}$ For both the negative-feedback loop in Fig. 8.1 and the positive-feedback loop in Fig. 13.1, the loop gain $L=A \beta$. However, the negative sign wilh which the feedback sigmal is summed in the negative-
feedback loop results in the characteristic equation being $1+L=0$. In the positive-feedback loop, the feedback signal is summed with a positive sign, thus resulting in the characteristic equation $1-L=0$.


FIGURE 13.2 Dependence of the oscillator-frequency stability on the slope of the phase response. A teep phasc response (i.e.,., large $d \phi / d \omega$ ) results in a small $\Delta \omega_{0}$ for a given change in phase $\Delta \phi$ ( resslting fro change (due for example, to tempcrature) in a circuit component).
that is,

$$
\Delta \beta x_{o}=x_{o}
$$

which results in

## $A \beta=1$

It should be noted that the frequency of oscillation $\omega_{0}$ is determined solely by the phase haracteristics of the feedback loop; the loop oscillates at the frequency for which the phasc is zcro. It follows that the stability of the frequency of oscillation will be determined by the manner in which the phase $\phi(\omega)$ of the feedback loop varies with frequency. A "steep" function $\phi(\omega)$ will result in a more stable frequency. This can be seen if one imagines a change in phase $\Delta \phi$ due to a change in one of the circuit components. If $d \phi / d \omega$ is large, the resulting change in $\omega_{0}$ will be small, as illustrated in Fig. 13.2.

An alternative approach to the study of oscillator circuits consists of examining the cir cuit poles, which are the roots of the characteristic equation (Eq. 13.3). For the circuit to roots at $s= \pm j \omega_{0}$. Thus $1-A(s) \beta(s)$ should have a factor of the form $s^{2}+\omega_{0}^{2}$.

EXERCISE
13.1. Consider a simusoddal oscilator formed of an amplifier with again of 2 and a second-order bandpass fiter Find the pole frectuency and the center-frequency sain of the thiter needed to produce sustamed oscila thons al Mitz
Ans. $1 \mathrm{kHz} ; 0.5$

### 13.1.3 Nonlinear Amplitude Contro

The oscillation condition, the Barkhausen criterion, just discusscd, guarantees sustained oscillations in a mathematical sense. It is well known, however, that the paramelers of any physical system cannot be maintained constant for any length of time. In other words, suppose we work hard to make $A \beta=1$ at $\omega=\omega_{0}$, and then the temperature chauges and $A \beta$ becomes slightly less than unity. Obviously, oscillations will cease in this case. Convcrsely,
if $A \beta$ exceeds unity, oscillations will grow in amplitude. We therefore need a mechanism fo forcing $A \beta$ to remain equal to unity at the desired value of output amplitude. This task is accomplished by providing a nonlinear circuit for gain control

Basically, the function of the gain-control mechanism is as follows: First, to ensure that oscillations will start, one designs the circuit such that $A \beta$ is slightly greater than unity. This corresponds to designing the circuit so that the poles are in the right half of the $s$ plane. Thus a the power supply is turned on, oscillations will grow in amplitude. When the amplitude reaches the desired level, the noulinear network comes into action and causes the loop gain be reduced to exactly unity In other words, the poles will be "pulled back" to the j $\omega$ axis. This action will cause the circuit to sustain oscillations at this desired amplitude If for some reason, the loop gain is reduced below unity, the amplitude of the sine wave will diminish. This will be detected by the nonlinear network, which will cause the loop gain to increase to exactly unity.
As will be seen, there are two basic approaches to the implementation of the nonlinear mplitude-stabilization mechanism. The first approach makes use of a limiter circuit (see Chapter 3). Oscillations are allowed to grow until the amplitude reaches the level to which he limiter is set. When the limiter comes into operation, the amplitude remains conslant. Obviously, the limiter should be "soft" to minimize nonlinear distortion. Such distortion, however, is reduced by the filtering action of the frequency-selective network in the feedback oop. In fact, in one of the oscillator circuits studied in Section 13.2, the sine waves arc hard limited, and the resulting square waves are applied to a bandpass filter present in the feedback loop. The "purity" of the output sine waves will be a function of the selectivity of this filter That is, the higher the $Q$ of the filter, the less the harmonic content of the sine-wave output.

The other mechanism for amplitude control utilizes an element whose resistance can be controlled by the amplitude of the output sinusoid. By placing this element in the feedback circuit so that its resistance determines the loop gain, the circuit can be designed to ensure that the loop gain reaches unity at the desired output amplitude. Dindes, or .JFETs operated in he triode region, ${ }^{2}$ are commonly employed to implement the controlled-resistance clement.

### 13.1.4 A Popular Limiter Circuit for Amplitude Contro

We conclude this section by presenting a limiter circuit that is frequently employed for the amplitude control of op-amp oscillators, as well as in a varicty of other applications. The ciruit is more precise and versatile than those presented in Cliapter 3
The limiter circuit is shown in Fig. 13.3(a), and its transfer characteristic is depicted in Fig. 13.3(b). To see how the transfer characteristic is obtained, consider first the case of mall (close to zero) input signal $v_{l}$ and a small output voltage $v_{0}$, so that $v_{A}$ is positive and $v_{1}$ is negative. It can be easily seen that both diodes $D_{1}$ and $D_{2}$ will be off. Thus all of the input current $v_{I} / R_{1}$ flows through the feedhack rcsistance $R_{f}$ and the output voltage is given by

$$
v_{0}=-\left(R_{f} / R_{1}\right) v_{l}
$$

Lis is the linear portion of the limiter transfer characteristic in Fig. 13.3(b). We now can use superposition to find the voltages at nodes A and B in terms of $\pm V$ and $z_{o}$ as

$$
\begin{align*}
& v_{\mathrm{A}}=V \frac{R_{3}}{R_{2}+R_{3}}+v_{o} \frac{R_{2}}{R_{2}+R_{3}}  \tag{13.6}\\
& v_{\mathrm{B}}=-V \frac{R_{4}}{R_{4}+R_{5}}+v_{o} \frac{R_{5}}{R_{4}+R_{5}} \tag{13.7}
\end{align*}
$$

[^48] on JFETs and JFET circuits. The same material can also bc found on the book's website.

The corresponding value of $v_{I}$ can be found by dividing $L_{-}$by the limiter gain $-R_{f} / R_{1}$. If $\nu_{I}$ is
 $-V_{D}$. Thus the current through $R_{2}$ remains constant, and the additional diode current flows through $R_{3}$. Thus $R_{3}$ appears in effect in parallel with $R_{f}$, and the incremental gain (ignoring the diode resistance $)$ is $-\left(R_{f} \| R_{3}\right) / R_{1}$. To make the slope of the transfer characteristic small in the limiting region, a low value should be selected for $R_{3}$.

The rransfer characteristic for negative $v_{l}$ can be found in a manner identical to that just employed. It can be easily seen that for ncgative $v_{l}$, diode $D_{2}$ plays an identical role to that played by diode $D_{1}$ for positive $\psi_{l}$. The positive limiting level $L_{+}$can be found to bc

$$
\begin{equation*}
L_{\perp}=V \frac{R_{4}}{R_{5}}+V_{D}\left(1+\frac{R_{4}}{R_{5}}\right) \tag{13.9}
\end{equation*}
$$

and the slope of the transfer characteristic in the positive limiting region is $-\left(R_{f} \| R_{t}\right) / R_{+}$. We thus see that the circuit of Fig. 13.3(a) functions as a soft limiter, with the limiting levels $L$ and $L$ and the limiting gains, independenily adjustable by the selection of appropriate resistor value Finally, we note that increasing $R_{f}$ results in a higher gain in the linear region while
 acteristic of Fig. 13.3(c), which is that of a comparator. That is, the cricuit compares $v_{l}$ with he comparator reference value of $0 \mathrm{~V}: v_{1}>0$ results in $y_{0} \simeq L$ and $v_{1}<0$ yields $v_{u} \simeq L$

## EXERCISE


 Assume that $y_{D}=0.7 \mathrm{~V}$
Ans. $\pm 5.93$ V. $\pm 2.97 \mathrm{~V} .-2,=0,093$

### 13.2 OP AMP-RC OSCILLATOR CIRCUITS

In this section we shall study some practical oscillator circuits utilizing op amps and RC networks.

### 13.2.1 The Wien-Bridge Oscillator

One of the simplest oscillator circuits is based on the Wien bridge. Figure 13.4 shows a Wien-bridge oscillator without the nonlinear gain-control network. The circuit consists of an op amp connected in the noninverting configuration, with a closed-Ioop gain of $1+R_{2} / R_{1}$. In the feedback path of this positive-gain amplifier an RC network is connected. The loop gain can be easily obtained by multiplying the transfer function $V_{o}(s) / V_{o}(s)$ of the feedback network by the amplifier gain.

$$
L(s)=\left[1+\frac{R_{2}}{R_{1}}\right] \frac{Z_{p}}{Z_{p}+Z_{s}}
$$

Thus,

$$
\begin{equation*}
L(s)=\frac{1+R_{2} / R_{1}}{3+s C R+1 / s C R} \tag{13.10}
\end{equation*}
$$



FIGURE 13.4 A Wien-bridgc oscillator without amplitude stabilization.

Substituting $s=j \omega$ results in

$$
\begin{equation*}
L(j \omega)=\frac{1+R_{2} / R_{1}}{3+j(\omega C R-1 / \omega C R)} \tag{13.11}
\end{equation*}
$$

The loop gain will be a real number (i.e., the phase will be zero) at onc frequency given by

$$
\omega_{0} C R=\frac{1}{\omega_{0} C R}
$$

That is,

$$
\begin{equation*}
\omega_{0}=1 / C R \tag{13.12}
\end{equation*}
$$

To obtain sustained oscillations at this frequency, one should set the magnitude of the loop gain to unity. This can be achieved by selecting

$$
\begin{equation*}
R_{2} / R_{1}=2 \tag{13.13}
\end{equation*}
$$

To ensure that oscillations will start, one chooses $R_{2} / R_{1}$ slightly greater than 2 . The reader can easily verify that if $R_{2} / R_{1}=2+\delta$, where $\delta$ is a small number, the roots of the characteristic equation $1-L(s)=0$ will be in the right half of the $s$ plane.
The amplitude of oscillation can be determined and stabilized by using a nonlinear control network. Two different implementations of the amplitude-controlling function are shown in Figs. 13.5 and 13.6. The circuit in Fig. 13.5 employs a symmetrical feedback limiter of the type studicd in Section 13.1.3. It is formed by diodes $D_{1}$ and $D_{2}$ together with resistors $R_{3}, R_{4}$,
$R_{5}$ and $R_{6}$. The limiter operates in the following manner: At the positive peak of the output $R_{5}$, and $R_{6}$. The limiter operates in the following manner: At the positive peak of the output voltage $v_{0}$, the voltage at node $b$ will exceed the voltage $v_{1}$ (which is about $\frac{1}{3} v_{0}$ ), and diode $D_{2}$ conducts. This will clamp the positive peak to a value determined by $R_{5}, R_{6}$, and the negative power supply. The value of the positive output peak can be calculated by setting $\nu_{b}=v_{1}+V_{D 2}$ and writing a node equation at node $b$ while neglecting the current through $D_{2}$. Similarly, the negative peak of the output sine wave will be clamped to the value that causcs diode $D_{1}$ to conduct. The value of the negaive peak can be determined by seting $v_{a}=v_{1}-V_{D 1}$ and writing an equation at node $a$ while neglecting the current through $D_{1}$. Finally, note that to obtain a symmetrical output waveform, $R_{3}$ is chosen equal to $R_{6}$, and $R_{4}$ equal to $R_{5}$.


FIGURE 13.5 A Wien-bridge oscillator with a limiter used for amplitude control.


FIGURE 13.6 A Wien-bridge oscillator with an alternative method for amplitude stabilization

## EXERCISE



FIGURE 13.8 A practical phase-shift oscillator with a limiter for ampliude stabilization.

### 13.2.2 The Phase-Shift Oscillator

The basic structure of the phase-shift oscillator is shown in Fig. 13.7. It consists of a negativegain amplifier ( $-K$ ) with a three-section (third-order) RC ladder network in the feedback. The circuit will oscillate at the frequency for which the phase shift of the RC network is $180^{\circ}$. Only at this frequency will the total phase shift around the loop be $0^{\circ}$ or $360^{\circ}$. Here we should note that the reason for using a three-section RC network is that three is the minimum number of sections (i.e., lowest order) that is capable of producing a $180^{\circ}$ phase shift at a finite frequency.

For oscillations to be sustained, the value of $K$ should be equal to the inverse of the magnitude of the RC network transfer function at the frequency of oscillation. However, to ensure that oscillations start, the value of $K$ has to be chosen slightly higher than the value
13.3 For the circuit in FIg. 13.5 : (a) Disregarding the himiter circuit, tind the location of the closed loop poles. (b) Find the frequency of oscilation. (c) With the limiter in phace, find the amplitude of the output sine wave (assume that the diode drop is 0.7 V ).
Ans. $\left(10^{5} / 16\right)(0.015 \pm j), 1 \mathrm{kHz}, 21.36 \mathrm{~V}$ (peak-to-peak

The circuit of Fig. 13.6 employs an inexpensive implementation of the parameter-variation mechanism of amplitude control. Potentiometer $P$ is adjusted until oscillations just start to grow. As the oscillations grow, the diodes start to conduct, causing the effective resistance between $a$ and $b$ to decrease. Equilibrium will be reached at the output amplitude that causes the loop gain to be exactly unity. The output amplitude can be varied by adjusting potentiometer $P$.

As indicated in Fig. 13.6, the output is taken at point $b$ rather than at the op-amp output terminal because the signal at $b$ has lower distortion than that at $a$. To appreciatc this point, note that the voltage at $b$ is proportional to the voltage at the op-amp input terminals and that the latter is a filtered (by the RC network) version of the voltage at node $a$. Node $b$, however, is a high-impedance node, and a buffer will be needed if a load is to be connected.

## EXERCISE

13.4 For the circuitin Fig. 13.6 find the following: (a) The seting of potentioneter $P$ at which oseilation just stait. (b) The fregiency of occillation.
Ans. (a) 20102 to sround; (b) 1 kHz

- Ans (a) 20 kO to


FIGURE 13.7 A phase-shift oscillator
that satisfies the unity-loop-gain condition. Oscillations will then grow in magnitude until limited by some nonlinear control mechanism.
Figure 13.8 shows a practical phase-shift oscillator with a feedback limiter, consisting of odes $D_{1}$ and $D_{2}$ and resistors $\kappa_{1}, R_{2}, R_{3}$, and $R_{4}$ for amplitude stabilization. To start oscilla tions, $R_{f}$ has to be made slightly greater than the minimum required value. Although the cir uit stabilizes more rapidly, and provides sine waves with more stable amplitude, if $R_{f}$ is made much larger than this minimum, the price paid is an increased output distortion.

## SXERCISES

 $A \beta=V_{0}(j \omega) / \int(\omega)$ To do this, it is easier the stat at the oitpul and work backy ard finding the varions curfents and voltages, and eventually $V$ in terns of $V$
Ans, $\frac{\omega^{2}}{4+\frac{\omega^{2}}{} C^{2} R R_{j}, c}$
13.6 Use the cxpression derived in Exercise 135 to find the fequency of oscillation fo and the minimum required value of $R$ for oscillations to start in the citcuit of Fie. 13.8. Ans. $574.3 \mathrm{H}, 120 \mathrm{kS}$

### 13.2.3 The Quadrature Oscillator

The quadrature oscillator is based on the two-integrator loop studied in Section 12.7. As an active filter, the loop is damped to locate the poles in the left half of the $s$ plane. Here, no such damping will be used, since we wish to locate the poles on the $j \omega$ axis to provide sustained oscillations. In fact, to ensure that oscillations start, the poles are initially located in the right half-plane and then "pulled back" by the nonlinear gain control

Figure 13.9 shows a practical quadrature oscillator. Amplifier 1 is connected as an inverting Miller integrator with a limiter in the feedback for amplitude control. Amplifier 2 is connected as a noninverting integrator (thus replacing the cascade conncction of the Miller integrator and the inverter in the two-integrator loop of Fg. 12.25b). To . Ferstand the operation of this noninveruing integrator, consider the cquivalent circais show in Here, we have replaced the integrator input voltage $v_{O 1}$ and the series resistace $2 R$ yy Norton equivalent composed of a current source $v_{01} / 2 R$ and a paralle resistance $2 R$. Now since $v_{02}=2 v$, where $\quad$ is the voltage at the inpu op anp 2 , $R_{\text {, }}$, $R_{f}$ will. $(2 v-v) / R_{f}=v / R_{f}$ in the direction from output to input. Thus $R_{f}$ gives ise to a negative input resistance, $-R_{f}$, as indicated in the equivalent circuit of Fig. 13.9(b). Nominally, $R_{f}$ made equal to $2 R$, and thus $-R_{f}$ cancels $2 R$, and at the input we are left with a current source $v_{01} / 2 R$ feeding a capacitor $C$. The result is that $v=\frac{1}{C} \int_{0} \frac{o_{0} R}{2 R} d t$ and $v_{O_{2}}=2 v=\frac{1}{C R} \int_{0} v_{01} d$ That is, for $R_{f}=2 R$, the circuit functions as a perfect nonimver. $R_{f}$ is made smaller than $2 R$, a net negative resistance appears in parallel with $C$

(a)

FIGURE 13.9 (a) A quadrature-oscillaur circuit. (b) Equivalent circuit at the input of op anp 2.

Returning to the oscillator circuit in Fig. 13.9(a), we note that the resistance $R$ in the positive-fcedback path of op amp 2 is made variable, with a nominal value of $2 R$. Dccreasing the value of $R_{f}$ moves the poles to the right half-plane (Problem 13.19) and ensurcs that the oscillations start. Too much positive feedback, although it results in better amplitude stability, also results in higher output distortion (because the limiter has to operate "hardcr"). In this regard, note that the output $v_{02}$ will be "purcr" than $v_{01}$ because of the filtering action provided by the second integrator on the peak-limited ouiput of the first integrator

If we disregard the limiter and break the loop at $X$, the loop gain can be obtained as

$$
\begin{equation*}
L(s) \equiv \frac{V_{o 2}}{V_{x}}=-\frac{1}{s^{2} C^{2} R^{2}} \tag{13.14}
\end{equation*}
$$

Thus the loop will oscillate at frequency $\omega_{0}$, given by

$$
\begin{equation*}
\omega_{0}=\frac{1}{C R} \tag{13.15}
\end{equation*}
$$

Finally, it should be pointed out that the name quadrature oscillator is used because the circuit provides two sinusoids with $90^{\circ}$ phase difference. This should be obvious, since $v_{O 2}$ is the integral of $v_{O 1}$. There are many applications for which quadrature sinusoids are

### 13.2.4 The Active-Filter-Tuned Oscillato

The last oscillator circuit that we shall discuss is quite simple both in principle and in design. Neverthelcss, the approach is gencral and versatile and can result in high-quality (i.e., low-distortion) output sine waves. The basic principle is illustrated in Fig. 13.10. The circuit consists of a high- $Q$ bandpass filter connected in a positive-feedback loop with a hard limiter. To understand how this circuit works, assume that oscillations have already started. The output of the bandpass filter will be a sine wave whose frequency is equal to the center frequency of the filler, $f_{0}$. The sine-wave signal $v_{1}$ is fed to the limitcr, which produces at its output a square wave whose levels are determined by the limiting levels and whose


FIGURE 13.10 Block diagram of the active-filter-tuncd oscillator.


IGURE 13.11 A practical implementation of the active-filter-tuned oscillator
frequency is $f_{0}$. The square wave in turn is fed to the bandpass filter, which filters out th harmonics and provides a sinusoidal output $v_{1}$ at the fundamental frequency $f_{0}$. Obviously the purity of the output sine wave will be a direct function of the sclectivity (or $Q$ factor) of he bandpass filter.
The simplicity of this approach to oscillator design should be apparent. We have inde pendent control of frequency and amplitude as well as of distortion of the outiput sinusoid Any filter circuit with positive gain can be used to implement the bandpass filter. The fre quency stability of the oscillator will be directly deternined by the frequency stability of th bandpass-filter circuit. Also, a variety of limiter circuits (see Chapter 3 ) degrees of sophistication can he used to implement the limiter block.

Figure 13.11 shows one possible implementation of the active-filter-tuned oscillator This circuil uscs a variation on the bandpass circuit based on the Antoniou inductance simulation circuit (see Fig. 12.22c). Here resistor $R_{2}$ and makes the oupput limiter used is a very simple one consisting of a resistance $R_{1}$ and two diodes.

## EXERCISE

13.7. U sime the diode drop is 07 V tind the teak to-peak anplitude of the output sine wave. Hint: A squate wa with peak to peak amplimde of $V$ velts has a tundamental comporient with $4 V / t$ yolts peak-to peak amplitudes
Ans 10 k 3.3 .6

### 13.2.5 A Final Remark

The op amp-RC oscillator circuits studied are useful for operation in the range 10 Hz to 100 kHz (or perhaps 1 MHz at most). Whereas the lower frequency limit is dictated by the size of passive components required, the upper limit is governed by the frequency-response and slew-rate limitations of op amps. For higher frequencies, circuits that employ transistors together with LC tuned circuits or crystals are frequently used. ${ }^{3}$ These are discussed in Section 13.3.

### 13.3 LC AND CRYSTAL OSCILLATORS

Oscillators utilizing transistors (FETs or BJTs), with LC-tuned circuits or crystals as feedback elements, are used in the frequency range of 100 kHz to hundreds of megahertz. They exhibit higher $Q$ than the RC types. However, LC oscillators are difficult to tune over wide ranges, and crystal oscillators operate at a single frequency.

### 13.3.1 LC-Tuned Oscillators

Figure 13.12 shows two commonly used configurations of LC-tuned oscillators. They are known as the Colpitts oscillator and the Hartley oscillator. Both utilize a parallel LC circuit connected between collector and base (or between drain and gate if a FET is used) with a fraction of the tuned-circuit voltage fed to the emitter (the sonrce in a FET). This feedback is achieved by way of a capacitive divider in the Colpitts oscillator and by way of an inductive divider in the Hartley circuit. To focus attention on the oscillator's structure, the bias details are not shown. In both circuits, the resistor $R$ models the combination of the losses of the inductors, the load resistance of the oscillator, and the output resistance of the transistor.
If the frequency of operation is sufficiently low that we can neglect the transistor capacitances, the frequency of oscillation will be determined by the resonance frequency of the parallel-tuned circuit (also known as a tank circuit because it behaves as a reservoir for

(a)

(b)

FIGURE 13.12 Two commonly used configurations of LC-Iuned oscillators: (a) Colpitts and (b) Hartley.
${ }^{3}$ Of course, transistors can be used in place of the op amps in the circuits just studied. At higher frequencies, however, better results are obtained with LC-tuned circuits and crystals.


FIGURE 13.13 Equivalent circuit of the Coipits oscillator of Fig. 13.12 (a). To
and $r_{\pi}$ are neglected. We can consider $C_{\pi}$ to be part of $C_{2}$, and we can include $r_{0}$ in $R$.
e). Thus for the Colpitts oscillator we have

$$
\begin{equation*}
\omega_{0}=1 / \sqrt{L\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)} \tag{13.16}
\end{equation*}
$$

and for the Hartley oscillator we have

$$
\begin{equation*}
\omega_{0}=1 / \sqrt{\left(L_{1}+L_{2}\right) C} \tag{13.17}
\end{equation*}
$$

The ratio $L_{1} / L_{2}$ or $C_{1} / C_{2}$ determines the feedback factor and thus must be adjusted in The oscillation condition for the Colpitts oscilator, we replace the transistor with equastor circuit, as shown in Fig. 13.13. To simplify the analysis we have neg ot shown can capacitance $C_{\mu}$ ( $C_{g d}$ for a FET). Capacitance $C_{\pi}\left(C_{g s}\right.$ for a ${ }^{2}$, ( considered to be a part of $C_{2}$. The input resistance $r_{\pi}$ (infin eglected, assuming that at he frequency of oscilation $r_{2}$ ioned earlier, the resistance $R$ includes $r_{o}$ of the transisto

To find the loop gain, we break the loop at the transistor base, apply an input voltage $V_{\pi}$ and find the returned voltage that appears across the input terminals of the transistor. We hen eqnate the loop gain to unity. An alternative approachis to ation that governs circuit nate all current and voltage variables, and thus obtain one equ renting equation will give us the conditions for oscillation

A node equation at the transistor collector (node C) in the circuit of Fig. 13.13 yield

$$
s C_{2} V_{\pi}+g_{m} V_{\pi}+\left(\frac{1}{R}+s C_{1}\right)\left(1+s^{2} L C_{2}\right) V_{\pi}=0
$$

Since $V_{\pi} \neq 0$ (oscillations have started), it can be eliminated, and the equation can be rear ranged in the form

$$
\begin{equation*}
s^{3} L C_{1} C_{2}+s^{2}\left(L C_{2} / R\right)+s\left(C_{1}+C_{2}\right)+\left(g_{m}+\frac{1}{R}\right)=0 \tag{13.18}
\end{equation*}
$$

Substituting $s=j \omega$ give

$$
\begin{equation*}
\left(g_{m}+\frac{1}{R}-\frac{\omega^{2} L C_{2}}{R}\right)+j\left[\omega\left(C_{1}+C_{2}\right)-\omega^{3} L C_{1} C_{2}\right]=0 \tag{13.19}
\end{equation*}
$$

For oscillarions to start, both the real and imaginary parts must be zero. Equating the imagi nary part to zero gives the frequency of occillation as

$$
\begin{equation*}
\omega_{0}=1 / \sqrt{L\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)} \tag{13.20}
\end{equation*}
$$

which is the resonance frequency of the tank circuit, as anticipated. ${ }^{4}$ Equating the real part to zero together with using Eq. (13.20) gives

$$
\begin{equation*}
C_{2} / C_{1}=g_{m} R \tag{13.21}
\end{equation*}
$$

which has a simple physical interpretation: For sustained oscillations, the magnitude of the gain from base to collector ( $g_{m} R$ ) must be equal to the inverse of the voltage ratio provided by the capacitive divider, which from Fig. 13.12(a) can be seen to be $v_{c b} / v_{c c}=C_{1} / C_{2}$. Of course, for oscillations to start, the loop gain must be made greater than unity, a condition that can be stated in the equivalent form
$g_{m} R>C_{2} / C_{1}$
As oscillations grow in amplitude, the transistor's nonlinear characteristics reduce the effective value of $g_{m}$ and, correspondingly, reduce the loop gain to unity, thus sustaining the oscillations.

Analysis similar to the foregoing can be carried out for the Hartley circuit (see laterExercise 13.8). At high frequencies, more accurate transistor models must be used. Alternatively, the $y$ parameters of the transistor can be measured at the intended frequency $\omega_{0}$, and the analysis can then be carried out using the $y$-parameter model (see Appendix B). This is usually simpler and more accurate, especially at frequencies above about $30 \%$ of the transistor $f_{T}$.

As an example of a practical LC oscillator we show in Fig. 13.14 the circuit of a Colpitts oscillator, complete with bias details. Here the radio-frequency choke (RFC) provides a high reactance at $\omega_{6}$ but a low dc resistance.

Finally, a few words are in order on the mechanism that determines the amplitude of oscillations in the LC-tuned oscillators discussed above. Unlike the op-amp oscillators that incorporate special amplitude-control circuitry, LC-tuned oscillators utilize the nonlinear $i_{C}-v_{B E}$ characteristics of the BJT (the $i_{D}-v_{G S}$ characteristics of the FET) for amplitude control. Thus these LC-tuned oscillators are known as self-limiting oscillators. Specifically, as the oscillations grow in amplitude, the effective gain of the transistor is reduced below its small-signal value. Eventually, an amplitude is reached at which the effective gain is reduced to the point that the Barkhausen criterion is satisfied exactly. The amplitude then remains constant at this value.

Reliance on the nonlinear characteristics of the BJT (or the FET) implies that the collector (drain) current waveform will be nonlinearly distorted. Ncvertheless, the output voltage signal will still be a sinusoid of high purity because of the filtering action of the LC tuned circuit. Detailed analysis of amplitude control, which makes use of nonlinear-circuit techniques, is beyond the scope of this book.
${ }^{4}$ If $r_{\pi}$ is taken into account, the frequency of oscillation can be shown to shift slightly from the value given by Eq. (13.20).

1183


## EXERCISES

$3: 8$ : 38.

013.9 Using a BIT biased at $l_{c}=1 \mathrm{~mA}$ designa Colpits oscillator to operate at $\theta_{0}-10$ rats $\mathrm{tse} C_{1}=0.01 \mu$, and assume that the con ayaitable has a $Q$ of 100 this can be represented by a ressittance in patallel with $C_{1}$ given by $O / \omega_{0} C_{1}$. Also assume that there is a load resistance at the collector of 2 ks and that for the Bit, $r_{0}=100 \mathrm{ke}$ Find $C_{2}$ and $L$.
Ans. $0.66 \mu \mathrm{~F}$, $100 \mu \mathrm{H}$ (a somewhat smatler $C_{2}$ would be used to allow oscilations to grow in anplitude)

### 13.3.2 Crystal Oscillators

A piezoelectric crystal, such as quartz, exhibits eectromechanical-resonance characteristics that are very stable (with time and temperature) and highly selective (haviug very high $Q$ factors). The circuit symbol of a crystal is shown in Fig. 13.15(a), and its equivalent circuit model is given in Fig. 13.15(b). The resonance properties are characterized by a large induc tance $L$ (as high as hundreds of hentys), a very small series capacitance $C_{s}$ (as small as 0.0005 pF ), a series resistance $r$ representing a $Q$ factor $\omega_{0} L / r$ that can be as high as a few hundred thousand, and a parallel capacitance $C_{p}$ (a few picofarads). Capacitor $C_{p}$ represents the electrostatic capacitance between the two parallel plates of the crystal. Note that $C_{p} \gg C_{s}$.

(a)
(c)
valent circuit. (c) Crystal reactanc versus frequency (note that, neglecting the small resistance $r, Z^{(0)}=j X(\omega)$ ]

Since the $Q$ factor is very high, we may neglect the resistance $r$ and express the crystal mpedance as

$$
Z(s)=1 /\left[s C_{p}+\frac{1}{s L+1 / s C_{s}}\right]
$$

which can be manipulated to the form

$$
\begin{equation*}
Z(s)=\frac{1}{s C_{p}} \frac{s^{2}+\left(1 / L C_{s}\right)}{s^{2}+\left[\left(C_{p}+C_{s}\right) / L C_{s} C_{p}\right]} \tag{13.23}
\end{equation*}
$$

From Eq. (13.23) and from Fig. 13.15(b) we see that the crystal has two resonance frequencies: a series resonance at $\omega_{s}$

$$
\omega_{s}=1 /{\sqrt{L C_{s}}}_{s}
$$

and a parallel resonance at $\omega_{p}$

$$
\begin{equation*}
\omega_{p}=1 / \sqrt{L\left(\frac{C_{s} C_{p}}{C_{s}+C_{p}}\right)} \tag{13.25}
\end{equation*}
$$

Thus for $s=j \omega$ we can write

$$
\begin{equation*}
Z(j \omega)=-j \frac{1}{\omega C_{p}}\left(\frac{\omega^{2}-\omega_{s}^{2}}{\omega^{2}-\omega_{p}^{2}}\right) \tag{13.26}
\end{equation*}
$$

From Eqs. (13.24) and (13.25) we note that $\omega_{p}>\omega_{s}$. However, since $C_{p} \gg C_{s}$, the two resonance frequencies arc very close. Expressing $Z(j \omega)=j X(\omega)$, the crystal reactance $X(\omega)$ will
 -
have the shape shown in Fig. 13.15(c). We observe that the crystal reactance is inductive have the shape shown frequency band between $\omega_{s}$ and $\omega_{p}$. For a given crystal, this frequency over the very narron ascillator (Fig. 13.12a). The resulting circuit will oscillate at the resonance frequency of the oscilator (Fig. 13.12a). Th the series equivalent of $C_{s}$ and ( $C_{p}+C_{1} C_{2} /\left(C_{1}+C_{2}\right)$ ). Since $C$ crystal inductance $L$ the three other capacitances, it will be dominant and

$$
\begin{equation*}
\omega_{0} \simeq 1 / \sqrt{L C_{s}}=\omega_{s} \tag{13.27}
\end{equation*}
$$

In addition to the basic Colpitts oscillator, a variety of configurations exist for crystal In addition to 13.16 shows a popular configuration (called the Pierce oscillator) oscillators. Figus inverter (see Section 4.10) as amplifier. Resistor $R_{f}$ determines a dc
utilizing a CMOS utilizing a CMOS in the high-gain region of the CMOS inverter. Resistor $R_{1}$ together with capacitor $C_{1}$ provides a low-pass filter that discourages the circuit from oscillating at a higher harmonic of the crystal frequency. Note that this circuit also is based on the Colpitts configuration.

The extremely stable resonance characteristics and the very high $Q$ factors of quartz crystals result in oscillators with very accurate and stable frequencies. Crystals are available with resonance frequencies in the range of few kilohertz to hundreds of megahertz. Temperature coefficients of $\omega_{0}$ of 1 or 2 parts per million (ppm) per degree Celsius are achievable. Unfortunately, however, crystal oscillators, being mechanical resonators, ate fixed-frequency circuits.

Brictse
4. 1.3 .



### 13.4 BISTABLE MULTIVIBRATORS

In this section we begin the study of waveform-generating circuits of the other type-nonlinear oscillators or function generators. These devices make use of a special class of circuits known as multivibrators. As mentioned earlier, there are ihree types of multivibrator: bistable, monostable, and astable. This section is concerned with the first, the bistable multivibrator. ${ }^{5}$
As its name indicates, the bistable multivibrator has two stable states. The circuit can remain in either stable state indefinitely and moves to the other stable state only when appropriately triggered.

### 13.4.1 The Feedback Loop

Bistability can be obtained by connecting a dc amplifier in a positive-feedback loop having a loop gain greater than unity. Such a feedback loop is shown in Fig. 13.17; it consists of an op amp and a resistive voltage divider in the positive-feedback path. To see how bistability is obtained, consider operation with the positive input terminal of the op amp near ground potential. This is a reasonable starting point, since the circuit has no external excitation. Assume that the electrical noise that is inevitably present in every electronic circuit causes a small positive increment in the voltage $v_{+}$. This incremental signal will be amplified by the large open-loop gain $A$ of the op amp, with the result that a much greater signal will appear in the op amp's output voltage $v_{0}$. The voltage divider ( $R_{1}, R_{2}$ ) will feed a fraction $\beta \equiv R_{1} /\left(R_{1}+R_{2}\right)$ of the output signal back to the positive input terminal of the op amp. If $A \beta$ is greater than unity, as is usually the case, the fed-back signal will be greater than the original increment in $v_{+}$. This regenerative process continues until eventually the op amp sat urates with its output voltage at the positive saturation level, $L_{+}$. When this happens, the voltage at the positive input terminal. $\tau_{+}$, becomes $L_{+} R_{1} /\left(R_{1}+R_{2}\right)$, which is positive and thus keeps the op amp in positive saturation. This is onc of the two stable states of the circuit.
In the description above we assumed that when $v_{+}$was near zero volts, a positive increment occurred iu $v_{+}$. Had we assumed the equally probable situation of a negative increment, the op amp would have ended up saturated in the negative direction with $v_{0}=L_{-}$and $\nu_{+}=L_{-} R_{1} /\left(R_{1}+R_{2}\right)$. This is the other stable state.
We thus conclude that the circuit of Fig. 13.17 has two stable states, one with the op amp in positive saturation and the other with the op ainp in negative saturation. The circuit can exist in either of these two states indefinitely. We also note that the circuit cannot exist in the state for which $v_{+}=0$ and $v_{0}=0$ for any length of time. This is a state of unstable equilibrium (also known as a metastable state); any disturbance, such as that caused by electrical noise,


FIGURE 13.17 A positive-feedback loop capabl of bistable operation.

[^49] implementations utilizing op amps.


FIGURE 13.18 A physical analogy for the operation of the bistable circuit. The ball cannot remain at the top
of the hill for any length of time (a stale of unstable equibibrium or mielastability); the inevitably present disturbance will cause the ball to fall to one side or the oher, where it can remain indefinitely (the two stable
states).
causes the bistable circuit to switch to one of its two stable states. This is in sharp contrast to the case when the feedback is negative, causing a virtual short circuit to appear between the op amp's input terminals and maintaining this virtual short circuit in the face of disturbances. A physical analogy for the operation of the bistable circuit is depicted in Fig. 13.18.

### 13.4.2 Transfer Characteristics of the Bistable Circuit

The question naturally arises as to how we can make the bistable circuit of Fig. 13.17 change state. To help answer this crucial question, we derive the transfer characteristics of the bistable. Reference to Fig. 13.17 indicates that either of the two circuit nodes that are connected to ground can serve as an input terminal. We investigate both possibilities.

Figure 13.19 (a) shows the bistable circuit with a voltage $v_{l}$ applied to the inverting input terminal of the op amp. To derive the transfer characteristic $v_{O}-v_{l}$, assume that $v_{0}$ is at one of its two possible levels, say $L_{+}$, and thus $v_{-}=\beta L_{+}$. Now as $v_{l}$ is increased from 0 V we can see from the circuit that nothing happens until $v_{l}$ reaches a value equal to $v_{+}$(i.e., $\beta L_{+}$). As $v_{t}$ begins to exceed this value, a net negative vollage develops between the input terminals of the op amp. This voltage is amplified by the open-loop gain of the op amp, and thus $v_{0}$ goes negative. The voltage divider in torn causes $v_{+}$to go negative, thus increasing the net negative input to the op amp and keeping the regenerative process going. This process culminates in the It is easy to see that increasing $v_{I}$ further has no effect on the acquired state of the bistable circuit. Figure 13.19 (b) shows the transfer characteristic for increasing $\nu_{\text {l }}$. Observe that the characteristic is that of a comparator with a threshold voltage denoted $V_{T H}$, where $V_{T H}=\beta L_{+}$.
Next consider what happens as $v_{i}$ is decreased. Since now $v_{ \pm}=\beta L_{-}$, we see that the circuit remains in the negative-saturation state until $v_{y}$ gocs negative to the point that it equals $\beta L$. As $v_{1}$ goes below this value, a net positive voltage appears between the op amp's input terminals. This voltage is amplified by the op-amp gain and thus gives rise to a positive voltage at the op amp's ouiput. The regenerative action of the positive-feedback loop then sets in and causes the circuit eventually to go to its positive-sacuration state, in which $v_{Q}=L_{+}$and $v_{+}=\beta L_{+}$. The transfer characteristic for decreasing $v_{I}$ is shown in Fig. 13.19(c). Here again we observe that the characteristic is that of a comparator, but with a threshold voltage $V_{\mathbb{L}}=\beta L_{-}$.

The complete transfer characteristics, $v_{o}-v_{\text {, }}$, of the circuit in Fig. 13.19(a) can be ohtained by combining the characteristics in Fig. 13.19(b) and (c), as shown in Fig. 13.19(d). As indicated, the circuit changes state at different values of $v_{l}$, depending on whether $v_{t}$ is increasing or decreasing. Thus the circuit is said to exhibit hysteresis; the width of the hysteresis is the difference between the high threshold $V_{T I}$ and the low threshold $V_{T I}$. Also note that the bistable circuit is in effect a comparator with hystcresis. As will be shown shortly, adding hysteresis to a comparator's characteristics can be very beneficial in certain applications. Finally, observe that because the bistable circuit of Fig. 13.19 switches from the positive statc $\left(v_{O}=L_{+}\right)$to the negative slate ( $v_{O}=L_{-}$) as $v_{I}$ is increased past the positive threshold $V_{T H}$, the circuit is said to bc inverting. A bistable circuit with a noninverting transfer characteristic will be presented shortly.


FIGURE 13.19 (a) The bistable circuit of Fig. 13.17 with the negative input terninal of the op amp disconnected from ground and connected to an input signal $v_{r}$. (h) The transfer characteristic of the circuit in (a) for increasing $v_{L_{t}}$ (c) The transfer characteristic for decreasing $v_{t}$ (d) The complete rransfer characteristics.

### 13.4.3 Triggering the Bistable Circuit

Returning now to the question of how to make the bistable circuit change state, we observe from the transfer characteristics of Fig. 13.19(d) that if the circuit is in the $L_{+}$state it can be switched to the $L_{-}$state by applying an input $v_{l}$ of value greater than $V_{T H} \equiv \beta L_{4}$. Such an input causes a net negative voltage to appear between the input terminals of the op amp, which inilates the regenerative cycle that culminates in the circuit switching to the $L_{-}$stable state. Here it is important to note that the input $v_{y}$ merely initiates or triggers regeneration. Thus we can remove $v_{1}$ with no effect on the regeneration process. In other words, $v_{1}$ can be simply a pulse The duration. The uput signal $v_{1}$ is thus referred to as a trigger signal, or simply a trigge The characteristics of Fig. 13.19 (d) indicate also that the bistable circuit can be switched than that of the negative threshold $V_{T L}$

### 13.4.4 The Bistable Circuit as a Memory Element

We observe from Fig. 13.19(d) that for input voltages in the range $V_{T L}<v_{l}<V_{T H}$, the output can be either $L_{+}$or $L_{-}$, depending on the state that the circuit is already in. Thus, for this inpul range, the output is determined by the previous value of the trigger signal (the trigger signal that caused the circuit to be in its current state). Thus the circuit exhibits memory. Indeed, the bistable multivibrator is the basic memory element of digital systems, as we have seen in Chapter 11. Finally, note that in analog circuit applications, such as the ones of concern to us in this chapter, the bistable circuit is also known as a Schmitt trigger.
13.4.5 A Bistable Circuit with Noninverting Transfer Characteristics The basic bistable feedback loop of Fig. 13.17 can be used to derive a circuit with noninverting transfer characteristics by applying the input signal $v_{l}$ (the trigger signal) to the terminal of $R_{\mathrm{t}}$ that is connected to ground. The resulting circuit is shown in Fig. 13.20(a). To obtain the transfer characteristics we first employ superposition to the linear circuit formed by $R_{1}$ and $R_{2}$, thus expressing $v_{+}$in terms of $v_{r}$ and $v_{o}$ as

$$
\begin{equation*}
v_{\succ}=v_{I} \frac{R_{2}}{R_{1}+R_{2}}+v_{o} \frac{R_{1}}{R_{1}+R_{2}} \tag{13.28}
\end{equation*}
$$

From this equation we see that if the circuit is in the positive stable state with $v_{O}=L_{3}$, positive values for $v_{t}$ will have no effect. To trigoer the circuit into the $L_{-}$state, $v_{t}$ must be made negative and of such a value as to make $v_{\text {}}$ decrease below zero. Thus the low threshold $V_{T L}$ can be found by substituting in Eq. (13.28) $v_{o}=L_{-}, v_{+}=0$, and $v_{l}=V_{7 \text { I }}$. The result is

$$
\begin{equation*}
V_{T L}=-L_{⿱}\left(R_{1} / R_{2}\right) \tag{13.29}
\end{equation*}
$$

Similarly, Eq. (13.28) indicates that when the circuit is in the negative-output state ( $x_{0}=L_{-}$), negative values of $v_{v}$ will make $\tau_{4}$ more negative with no effect on operation. To regeneration process that causes the circuit to switch to the positive state, $v_{+}$must be made

(a)

(b)

FIGURE 13.20 (a) A bistable circuil derived from the positive-feedback loop of Fig. 13.17 by applying is $^{2}$ througl) $R_{1}$. (b) The transfer characteristic of the circuit in (a) is noninvering. (Comparc it to the inverting cbaracteristic in Fig. 13.19d.)
o go slightly positive. The value of $v_{1}$ that causes this to happen is the high threshold volt ge $V_{T H}$, which can be found by substituting in Eq. (13.28) $v_{O}=L_{-}$and $v_{+}=0$. The result is

$$
\begin{equation*}
V_{T I I}=-L_{-}\left(R_{1} / R_{2}\right) \tag{13.30}
\end{equation*}
$$

The complete transfer characteristic of the circuit of Fig. 13.20(a) is displayed in Fig. 13.20(b) switch to the positive state ( $\pi_{1}$ gignal $v_{I}$ (of value greater than $V_{T_{t}}$ ) causes the circuit to circuit is noninverting.

### 13.4.6 Application of the Bistable Circuit as a Comparator

The comparator is an analog-circuit building block that is used in a variety of applications ranging from detecting the level of an input signal relative to a preset threshold value, to the design of analog-to-digital (A/D) converters (sec Section 9.1). Althoush one normall thinks of the comparator as having a single threshold value (sec Fig. 13.21a) it is useful in many applications to add hysteresis to the comparator characteristics. If this is dofe, comparator exhibits two threshold values, $V_{T L}$ and $V_{T I I}$, symmetrically placed about the

(a)

(b)

FIGURE 13.21 (a) Block diagram representation and transfer characterisic for having a reference. or thrcshold, voltage $V_{k \text {. }}$. (b) Comparator charsetrivic with by

R



FIGURE 13.22 Mustrating the use of hysteresis in the comparator characteristics as a means of rejecting interference.
desired reference level, as indicated in Fig. 13.21(b). Usually $V_{T H}$ and $V_{T L}$ are separated by a small amount, say 100 mV .
To demonstrate the need for hysteresis we consider a common application of comparators. It is required to design a circuit that detects and counts the zero crossings of an arbitrary waveform. Such a function can be implemented using a comparator whose threshold is set to 0 V . The comparator provides a step change at its output every time a zero crossing occurs. Each step change can be used to generate a pulse, and the pulses are fed to a counter circuit.
Imagine now what happens if the signal being processed has-as it usually does haveinerference superimposed on it, say of a frequency much higher than that of the signal. It ollows that the signal might cross the zero axis a number of times around each of the zero rossing points we are trying to dctect, as shown in Fig. 13.22. The comparator would thu change state a number of times at each of the zero crossings, and our count would obviously be in error. However, if we have an idea of the expected peak-to-peak amplitude of the interfer ence, the problem can be solved by introducing hysteresis of appropriate width in the comparator characteristics. Then, if the input signal is increasing in magnitude, the comparato with hysteresis will remain in the low state until the input level exceeds the high threshold $V_{T H}$. Subsequently the comparator will remain in the high state even if, owing to interference, the signal decreases below $V_{T I I}$. The comparator will switch to the low state only if the input signal is decreased bclow the low threshold $V_{T L}$. The situation is illustrated in Fig. 13.22, from which we see that including hysteresis in the comparator characteristics provides an effective means for rejecting interference (thus providing another form of filtering).

(a)

(b)

FIGURE 13.23 Limiter circuits are uscd to obtain more precise output levels for the bistable circuit. In both circuits the value of $R$ should be chosen to yield the current required for the proper operation of the zener
diodes. (a) For this circuit $L_{+}=V_{z_{2}}+V_{\text {a }}$ and $L$ diodes. (a) For this circuit $L_{+}=V_{Z_{1}}+V_{D}$ and $L_{-}=-\left(V_{Z}+V_{D}\right)$, where $V_{D}$ is the forward diode drop
(b) For this circuit $L_{+}=V_{Z}+V_{D}+V_{D}$ and $L=-\left(V_{Z}+V_{D}+V_{2}\right)$
(b) For this circuit $L_{+}=V_{Z}+V_{D_{1}}+V_{D_{2}}$ and $L=-\left(V_{Z}+V_{D_{3}}+V_{D_{4}}\right)$.

### 13.4.7 Making the Output Levels More Precise

The output levels of the bistable circuit can be made more precise than the saturation volt discussion of limp are circuis) Tascang the op amp with a limiter circuit (see Section 3.6 for discussion of limiter circuits). Two such arrangements are shown in Fig. 13.23

## EXERCISES

 sireviello whtain thieshold yoltages of $\pm 5$. For $R_{f}=10 \mathrm{kS}$, find the salue required for $R_{2}$. Ans. 6 klC
 obtan:-t. thresholds. Give suitable component values

$$
\text { Ans Possible choice } R_{1}-10 k \& 2 \operatorname{sid} R_{2}-20 k \Omega
$$

13.13 Consider a bistable circuit with a nomineetting transfer charactetistic: and let $L$.
 perrod, sketch the waveforn of $t_{0}$. Find the time mertial between the zero crossings of $v$ : and so. Ans, 6 is a square waye with 0 V average, 10 V anplitude and 1 ms period and is delajed by $225 \mu \mathrm{~F}$
relative to
3.14. Conider
13.14 Conider an of amp having saturation levels of $12 V$ used wilhont feedback, with the invertine input
ifrminal conneted terminal connected to +3 I and the nonimyerimg input terminal connected of t, Characterize it opera ins $+12 \mathrm{~V}, 12 \mathrm{~V},+3 \mathrm{~V}$. $L_{\text {, }}, L$, and $V_{:}$, as delined in Fig. 13.21 (a)! Ans. $12 \mathrm{~V}, 12 \mathrm{~V}: 13 \mathrm{~V}$
 of $100-\mathrm{n} V$ widh.
Ast. $200 \mathrm{k} \Omega$

### 13.5 GENERATION OF SQUARE AND TRIANGULAR WAVEFORMS USING ASTABLE MULTIVIBRATORS

A square waveform can be generated by arranging for a bistable multivibrator to switch tates periodically. This can be done by connecting the bistable multivibrator with an RC circuit in a feedback loop, as shown in Fig. 13.24(a). Observe that the bistable multivibrator has an inverting transfcr characteristic and can thus be realized using the circuit of Fig. 13.19(a). This results in the circuit of Fig. 13.24(b). We shall show shortly that this circuit has no stable states and thus is appropriately named an astable multivibrator.

### 13.5.1 Operation of the Astable Multivibrator

To see how the astable multivibrator operates, refer to Fig. 13.24(b) and let the output of the bistable multivibrator be at one of its two possible levels, say $L_{+}$. Cappacitor $C$ will charge oward this level through resistor $R$. Thus the voltage across $C$, which is applied to the nega tive input terminal of the op amp and thus is denoted $v_{-}$, will rise exponentially toward $L$ with a time constant $\tau=C R$. Meanwhile, the voltage at the positive input terminal of the op amp is a time constant $\tau=C R$. Mcanwhile, the voltage at he positive input terminal of the op amp $v_{+}=\beta L_{+}$. This situation will continue until the capacitor voltage reaches the positive
hreshold $V_{T H}=\beta L_{+}$at which point the bistable multivibrator will switch to the other stable state in which $v_{O}=L_{-}$and $v_{-}=\beta L_{-}$. The capacitor will then start discbarging, and its voltage, $v_{-}$, will decrease exponentially toward $L_{-}$. This new state will prevail until $v_{-}$reaches the negative threshold $V_{T L}=\beta L_{-}$, at which time the bistable multivibrator switches to the positive-output state, the capacitor begins to charge, and the cycle repeats itself.
From the preceding description we see that the astable circuit oscillates and produces a square waveform at the output of the op amp. This waveform, and the waveforns at the two input terminals of the op amp, are displayed in Fig. 13.24(c). The period $T$ of the square

(a)

FIGURE 13.24 (a) Connecting a bistable multivbrator with inverting transfer characteristics in a feed back loop wilh an RC circuit results in a square-wave gencrator.


FIGURE 13.24 (Continued) (b) The circuit obtained when the bistable mulivibrator is implementod wit he circuit of Fig. 13.19(a). (c) Waycforms at various nodes of the circuit in (b). This circuit is called a stable multivibrator
wave can be found as follows: During the charging interval $T_{1}$ the voltage $\nu_{-}$across the apacitor at any time $t$, with $t=0$ at the beginning of $T_{1}$, is given by (see Appendix D)

$$
v_{-}=L_{+}-\left(L_{+}-\beta L_{-}\right) e^{-t / \tau}
$$

where $\tau=C R$. Subssituting $v_{-}=\beta L_{+}$at $t=T_{1}$ gives

$$
\begin{equation*}
T_{1}=\tau \ln \frac{1-\beta\left(L_{-} / L_{+}\right)}{1-\beta} \tag{13.31}
\end{equation*}
$$

Similarly, during the discharge interval $T_{2}$ the voltage $v_{-}$at any time $t$, with $t=0$ at the beginning of $T_{2}$, is given by

$$
v_{-}=L_{-}-\left(L_{-}-\beta L_{+}\right) e^{-1 / \tau}
$$

Substituting $\%_{2}=\beta L_{-}$at $l=T_{2}$ gives

$$
\begin{equation*}
T_{2}=\tau \ln \frac{1-\beta\left(L_{+} / L_{-}\right)}{1-\beta} \tag{13.32}
\end{equation*}
$$

Equations (13.31) and (13.32) can be combined to obtain the period $T=T_{1}+T_{2}$. Normally, $L_{\mu}=-L$, resulting in symmetrical square waves of period $T$ given by

$$
\begin{equation*}
T=2 \tau \ln \frac{1+\beta}{1-\beta} \tag{13.33}
\end{equation*}
$$

Note that this sqnare-wave generator can be made to have variable frequency by switching different capacitors $C$ (usually in decades) and by continuously adjusting $R$ (to obtain continuous frequency control within each decade of frequency). Also, the waveform across $C$ can be made almost triangular by using a small value for the parameter $\beta$. However, triangular waveforms of superior linearity can be easily generated using the scheme discussed next.
Before leaving this section, however, note that although the astable circuit has no stable states, it has two quasi-stable states and remains in each for a time interval determined by the time constant of the RC network and the thresholds of the bistable multivibrator.

## EXERCISES

1316 for the circiut in Fig. 13.246), lot the op-amp saturation vollages be $10 \mathrm{~V}, R_{1}=100 \mathrm{k} \Omega, R_{2}=R=1 \mathrm{M} \Omega$. and $C=0.01 \quad \mu \mathrm{~F}$ find the fiequency of oscilation Ans $274 \mathrm{H}_{2}$
13.17. Consider a modification of the circuit of Figs 13.246) in which $R_{1}$ is replaced by a pair of diodes connecied in parallel in opposite: fifections, For $L=L_{1}=12 V_{V}, R_{2}=R=10 \mathrm{k} \Omega, C=01 \mu \mathrm{~F}$, and the
 at 25 G withy of this circuit can be sent to a remotely connected frequency meter to provide a digital readout of tempcrature.
Ans. $\left.f=500 / \mathrm{lm} /\left(12+V_{D}\right) / 12-V_{D)}\right) H_{2} .3995 \mathrm{~Hz} .4281 \mathrm{~Hz} .461 \mathrm{~Hz} .5451 \mathrm{~Hz}$

### 13.5.2 Generation of Triangular Waveforms

The exponential waveforms generated in the astable circuit of Fig. 13.24 can be changed to triangular by replacing the low-pass RC circuit with an integrator. (The integrator is, after all, a low-pass circuit with a corner frequency at dc.) The integrator causes linear charging and discharging of the capacitor, thus providing a triangular waveform. The resulting circuit is shown in Fig. 13.25(a). Observe that because the integrator is inverting, it is necessary to invert the characteristics of the bistable circuit. Thus the bistable circuit required here is of the noninverting type and can be implemented using the circuit of Fig. 13.2.

We now proceed to show how the feedback loop of Fig. 13.25(a) oscillates and gener ates a triangular waveform $v_{1}$ at the output of the integrator and a square waveform $v_{2}$ at the output of the bistable circuit: Let the output of the bistable circuit be at $L_{+}$. A current equa to $L_{+} / R$ will flow into the resistor $R$ and through capacitor $C$, causing the output of the inle grator to linearly decrease with a slope of $-L_{+} / C R$, as shown in Fig. 13.25(c). This will continue until the integrator output reaches the lower threshold $V_{\pi L}$ of the bistable circuit, at which point the bistable circuit will switch states, its output becoming negative and equal to


(b)

(c)

FIGURE 13.25 A general scheme for generating triangular and square waveforms.
L. At this moment the current through $R$ and $C$ will reverse direction, and its value will become equal to $\left|L_{-}\right| / R$. It follows that the integrator output will start to increase linearly reaches the positive equal to $\left|L_{-}\right| / C R$. This will continue until the integrator output voltage reaches the positive threshold of the bistable eircuit, $V_{T \pi}$. At this point the bistable circuil and the output of thecomes positive ( $L_{+}$), the current into the integrator reverses direction, From the discussion above it ins to decrease linearly, beginning a new cycle.
esquare and tringurar was expression for the period $T$ of解

$$
\frac{V_{T H}-V_{T L}}{T_{1}}=\frac{L_{+}}{C R}
$$

from which we obtain

$$
\begin{equation*}
T_{1}=C R \frac{V_{T H}-V_{T L}}{L_{+}} \tag{13.34}
\end{equation*}
$$

Similarly, during $T_{2}$ we have

$$
\frac{V_{T H}-V_{T L}}{T_{2}}=\frac{-L_{-}}{C R}
$$

from which we obtain

$$
\begin{equation*}
T_{2}=C R \frac{V_{T H}-V_{T L}}{-L_{-}} \tag{13.35}
\end{equation*}
$$

Thus to obtain symmetrical square waves we design the bistable circuit to have $L_{+}=-L_{-}$

## EXERCISE


(a)

(b)

FIGURE 13.26 (a) An op-amp monostable circuit. (b) Signal wavcforms in the circuit of (a).

The negative voltage at A causes $D_{1}$ to cut off, and $C_{1}$ begins to discharge exponentially toward $L_{-}$witb a time constant $C_{1} R_{3}$. The monostable multivibrator is now in its quasi stable state, which will prevail until the declining $v_{B}$ goes below the voltage at node C which is $\beta L_{-}$. At this instant the op-amp output switches back to $L_{+}$and the voltage at node $C$ goes back to $\beta L_{+}$. Capacitor $C_{1}$ then charges toward $L_{+}$until diode $D_{1}$ turns on and he circuit returns to its stable state.
Fron Fig. 13.26(b), we observe that a negative pulse is generated at the output durin e quasi-stable state. The duration $T$ of the output pulse is determined from the exponentia waveform of $v_{B}$,

$$
v_{B}(t)=L_{-}-\left(L_{-}-V_{D 1}\right) e^{-t / C_{1} R_{3}}
$$

by substituting $v_{\beta}(T)=\beta L_{-}$,

$$
\beta L_{-}=L_{-}-\left(L_{-}-V_{D_{1}}\right) e^{-T / C_{1} R_{3}}
$$

which yields

$$
\begin{equation*}
T=C_{1} R_{3} \ln \left(\frac{V_{D 1}-L_{-}}{\beta L_{-}-L_{-}}\right) \tag{13.36}
\end{equation*}
$$

For $V_{D D} \ll|L|$, this equation can be approximated by

$$
T \simeq C_{1} R_{3} \ln \left(\frac{1}{1-\beta}\right)
$$

Finally, note that the monostable circuit should not be triggered again until capacitor $C_{1}$ has been recharged to $V_{D 1}$; otherwise the resulting output pulse will be shorter than normal. This recharging time is known as the recovery period. Circuit techniques exist for shortening the recovery period.

## EXERCISE

13.19 For the nonostable circuit of Fis: $13.26(a)$ tind the value of $R$ : that will result in a $100-\frac{u s}{}$ output pulse for $C_{1}=0.1 \mu F \beta=0.1, V_{p}=0.1 V_{\text {and }} L_{-}=-L_{-}=12 V$.
Ans. $6171 \Omega$
13.7 INTEGRATED-CIRCUIT TIMERS

Commercially available integrated-circuit packages exist that contain the bulk of the circuitry needed to implement monostable and astable multivibrators with precise characteristics. In this section we discuss the most popular of such ICs, the $\mathbf{5 5 5}$ timer. Introduced in 972 by the Signctics Corporation as a bipolar integrated circuit, the 555 is also avaliable in C.MOS technology and from a number of manufacturers.

### 13.7.1 The 555 Circuit

Figurc 13.27 shows a block-diagram representation of the 555 timer circuil [for the actual circuit, refer to Grebe (1984)] The circuit consists of two comparators, an SR flip-flop,


FIGURE 13.27 A block diagram represcntation of the intexnal circuit of the 555 integratcd-circuit timer.
and a transistor $Q$, that operates as a switch. Onc power supply $\left(V_{C C}\right)$ is required for operation, with the supply voltage typically 5 V . A resistive voltage divider, consisting of the threc equal-valued resistors labeled $R_{\mathrm{l}}$, is connected across $V_{C C}$ and establishes the reference (threshold) voltages for the two comparators. Thesc are $V_{T H}=\frac{2}{3} V_{C C}$ for comparator 1 and $V_{T l}=\frac{1}{3} V_{C C}$ for comparator 2 .

We studied SR flip-flops in Chapter 11. For our purposes here we note that an SR flip-flop (also called a latch) is a bistable circuit having complementary outputs, denoted $Q$ and $\bar{Q}$. In the set state, the output at $Q$ is "high" (approximately equal to $V_{C C}$ ) and that at $\bar{Q}$ is "low" (approximately equal to 0 V ). In the other stable state, termed the reset state, the output at $Q$ is low and that at $\bar{Q}$ is high. The flip-flop is set by applying a high level $\left(V_{C C}\right)$ to its set input terminal, labeled $S$. To reset the flip-flop, a high level is applied to the reset input terminal, labeled $R$. Note that the reset and set input terminals of the flipflop in the 555 circuit are connected to the outputs of comparator 1 and comparator 2 , respectively.

The positive-input terminal of comparator 1 is brought out to an external terminal of the 555 package, labeled Threshold. Similarly, the negative-input terminal of comparator 2 is connected to an external terminal labeled Trigger, and the collector of transistor $Q_{1}$ is connected to a terminal labeled Discharge. Finally, the $Q$ output of the flip-flop is connected to the output terminal of the timer package, labeled Out.

### 13.7.2 Implementing a Monostable Multivibrator

 Using the 555 ICFigure 13.28(a) shows a monostable multivibrator implemented using the 555 IC together with an external resistor $R$ and an external capacitor $C$. In the stable state the flip-flop will be in the rescl state, and thus its $\bar{Q}$ output will be high, turning on transistor $Q_{1}$. Transistor $Q_{1}$ will be saturated, and thus $v_{C}$ will be close to 0 V , resulting in a low level at the output of comparator 1 . The voltage at the trigger input terminal, labeled $v_{\text {rigger }}$ is kept high (greater than $V_{\tau t}$ ), and thus the output of comparator 2 also will be low. Finally, note that since the flip-flop is in the reset state, $Q$ will be low and thus $v_{o}$ will be
closc to 0 V . close to 0 V .

To trigger the monostable multivibrator, a negative input pulse is applicd to the trigger input terminal. As $v_{\text {rigeger }}$ goes below $V_{T L}$, the output of comparator 2 goes to the high level, thus setting the flip-flop. Output $Q$ of the flip-flop goes high, and thus $v_{0}$ goes high, and out-
put $\bar{Q}$ goes low, turning off transistor $Q_{1}$. Capacitor $C$ now begins to charge up through put $\bar{Q}$ goes low, turning off transistor $Q_{1}$. Capacitor $C$ now begins to charge up through resistor $R$, and its voltage $v_{C}$ rises exponentially toward $V_{C C}$, as shown in Fig. 13.28(b). The monostable multivibrator is now in its quasi-stable state. This state prevails until $v_{C}$ reaches, and begins to exceed, the threshold of comparator $1, V_{\tau H}$, at which time the output of comparator 1 goes high, resetting he flp-lop. Oapu $Q$, on transistor $Q_{1}$. In turn, transistor $Q_{1}$ rapidly discharges capacitor $C$, causing $v_{C}$ to go to
 The monostable mult triggering pulse.

From the description above we see that the monostable multivibrator produces an output pulse $v_{O}$ as indicated in Fig. 13.28(b). The width of the pulse, $T$, is the time interval that the monostable multivibrator spends in the quasi-stable state; it can be determined by reference to the waveforms in Fig. 13.28(b) as follows: Denoting the instant at which the trigger pulse is applied as $t=0$, the exponential waveform of $v_{C}$ can be expressed as

$$
\begin{equation*}
v_{C}=V_{C C}\left(1-e^{-t / C R}\right) \tag{13.38}
\end{equation*}
$$




(b)

IGURE 13.28 (a) The 555 timer connecled to implement a monostable multivibrator. (b) Waveform. of the circuit in (a).

Substituting $v_{C}=V_{T H}=\frac{2}{-} V_{C C}$ at $t=T$ gives

$$
\begin{equation*}
T=C R \ln 3 \simeq 1.1 C R \tag{13.39}
\end{equation*}
$$

Thus the pulse width is determined by the external components $C$ and $R$, which carl be selected to have values as precise as desired.

### 3.7.3 An Astable Multivibrator Using the 555 IC

Figure 13.29(a) shows the circuit of an astable multivibrator employing a 555 IC, two exter nal resistors, $R_{A}$ and $R_{B}$, and an external capacitor $C$. To see how the circuit operates refer to the waveforms depicted in Fig. 13.29(b). Assume that initially $C$ is discharged and the flip flop is set. Thus $\nu_{0}$ is high and $Q_{1}$ is off. Capacitor $C$ will charge up through the scrics com bination of $R_{A}$ and $R_{B}$, and the voltage across it, $v_{C}$, will rise exponentially toward $V_{C C}$. As $v_{C}$ crosses the level equal to $V_{T L}$, the output of comparator 2 goes low. This, however, has no effect on the circuit operation, and the flip-flop remains set. Indeed, this state continues until $V_{C}$ reaches and begins to exceed the threshold of comparator $1, V_{T H}$. At this instant of time the output of comparator 1 goes high and resets the flip-flop. Thus $v_{0}$ goes low, $\bar{Q}$ goe high, and transistor $Q_{1}$ is turned on. The saturated transistor $Q_{1}$ causes a voltage of approxi mately zero volts to appear at the common node of $R_{A}$ and $R_{B}$. Thus $C$ begins to discharge through $R_{B}$ and the collector of $Q_{1}$. The voltage $\nu_{C}$ decreases exponentially with a time contant $C R_{B}$ toward 0 V . When $v_{C}$ reaches the threshoid of comparator $2, V_{T L}$, the output of comparator 2 , goes high and sets the flip-flop. The output $v_{o}$ then goes high, and $\bar{Q}$ goe low, turning off $Q_{1}$. Capacitor $C$ begins to charge through the serics equivalent of $R_{A}$ and $R_{b}$ and its voltage rises exponentially toward $V_{C C}$ with a time constant $C\left(R_{A}+R_{B}\right)$. This rise continues until $v_{C}$ reaches $V_{T H}$, at which time the output of comparator 1 goes high, resetting the flip-flop, and the cycle continues.
From the description above we see that the circuit of Fig. 13.29(a) oscillates and pro-
fuces a square waveform at the output. The frequency of oscillation can be determined as duces a square waveform at the output. The frequency of oscilation can be determined as
follows. Reference to Fig. 13.29 (b) indicates that the output will be high during the interval $T_{H}$, in which $v_{C}$ rises from $V_{T L}$ to $V_{T H}$. The exponential rise of $v_{C}$ can be described by

$$
\begin{equation*}
v_{C}=V_{C C}-\left(V_{C C}-V_{T L}\right) e^{* / / C\left(R_{A}+R_{B}\right)} \tag{13.40}
\end{equation*}
$$

where $t=0$ is the instant at which the interval $T_{I I}$ begins. Substituting $v_{C}=V_{T H}=\frac{2}{3} V_{C C}$ at $t=T_{H}$ and $V_{T L}=\frac{1}{3} V_{C C}$ results in

$$
\begin{equation*}
T_{H}=C\left(R_{A}+R_{B}\right) \ln 2 \simeq 0.69 C\left(R_{A}+R_{B}\right) \tag{13.41}
\end{equation*}
$$

We also note from Fig. 13.29(b) that $v_{O}$ will be low during the interval $T_{L}$, in which $v_{C}$ falls from $V_{T H}$ to $V_{T L}$. The exponential fall of $v_{C}$ can be described by

$$
\begin{equation*}
v_{C}=V_{T H} e^{-t / C R_{u}} \tag{13.42}
\end{equation*}
$$

where we have taken $t=0$ as the beginning of the interval $T_{L}$. Substituting $v_{C}=V_{T L}=\frac{1}{3} V_{C C}$ at $t=T_{L}$ and $V_{T H}=\frac{2}{3} V_{C C}$ results in

$$
\begin{equation*}
T_{L}=C R_{B} \ln 2 \simeq 0.69 C R_{B} \tag{13.43}
\end{equation*}
$$

Equations (13.41) and (13.43) can be combined to obtain the period $T$ of the output square wave as

$$
T=T_{H}+T_{L}=0.69 C\left(R_{A}+2 R_{B}\right)
$$


(a)

(b)
(b) Waveforms of the circuit in (a)

Also, the duty cycle of the output square wave can be found from Eqs. (13.41) and (13.43):

$$
\begin{equation*}
\text { Duty cycle } \equiv \frac{T_{H}}{T_{H}+T_{L}}=\frac{R_{A}+R_{B}}{R_{A}+2 R_{B}} \tag{13.45}
\end{equation*}
$$

Note that the duty cycle will always be greater than $0.5(50 \%)$; it approaches 0.5 if $R_{A}$ is selected to be much smaller than $R_{B}$ (unfortunately, at the expense of supply current).

```
EXERCISES
13.20 Using a \(10-\mathrm{nf}\) capacitht \(C\) find the value of \(R\) that yields an sutput putse of \(100 \mu\) in the monostable circtite of Fis 13:28(a). Ans. 91 ks
013.27 For the eircut an Fig. 13.29(a), with a 1000 -p capacitor, and find the values of \(R_{\text {, }}\) and \(R_{F}\) that result in an oscillation frequency of 100 kHz and a duty cycte of \(75 \%\). Ans. \(7.2 \mathrm{kS} \Omega .36 \mathrm{k} \Omega\)
```


### 13.8 NONLINEAR WAVEFORM-SHAPING CIRCUITS

Diodes or ransistors can be combined with resistors to synthesize two-port networks having arbitrary nonlinear transfer characteristics. Such two-port networks can be employed in waveform shaping-that is, changing the waveform of an input signal in a prescribed man ner to produce a waveform of a desired shape at the output. In this section we illusirate thi application by a concrete example: the sine-wave shaper. This is a circuit whose purpose o change the waveform of an input triangular-wave signal to a sine wave. Though simple the sinc-wave shaper is a practical building block used extensively in function generators This method of generating sine waves should be contrasted to that using linear oscillator (Sections 13.1-13.3). Although linear oscillators produce sine waves of high punty, they are not convenient at very low frequencies. Also, linear oscillators are in general more difficu to tune over wide frequency ranges. In the following we discuss two distinctly differen techniques for designing sine-wave shapers.

### 13.8.1 The Breakpoint Method

In the breakpoint method the desired nonlinear transfer characteristic (in our case the sin function shown in Fig. 13.30) is implemented as a piecewise linear curve. Diodes are utilized as switches that turn on at the various breakpoints of the transfer characteristic, thu switching into the circuit additional resistors that cause the transfer characteristic to chang slope.

Consider the circuit shown in Fig. 13.31(a). It consists of a chain of resistors connected across the entire symmerrical voltage supply $+V,-V$. The purpose of this voltage divider is to generate refcrence voltages that will serve to determine the breakpoints in the transfer characteristic. In our example these reference voltages are denoted $+V_{2},+V_{1},-V_{1},-V_{2}$. Note hat the entire circuit is symmetrical, driven by a symmetrical triangular wave and generat wave by three straight-line segments; the breakpoints between these segments are deter mined by the reference voltages $V_{1}$ and $V_{2}$.


FIGURE 13.30 Using a nonlinear (sinusoidal) transfer characteristic to shape a triangular waveform into a sinusoid.


FIGURE 13.31 (a) A thre-segment sine-wave shaper. (b) The input !riangular wavefurm and the output FIGURE 13.31 (a) A three-segme
approximately sinusoidal waveform.

The circuit works as follows: Let the input be the triangular wave shown in Fig. 13.31(b), and consider first the quarter-cycle defined by the two points labelcd 0 and 1 . When the input signal is less in magnitude than $V_{1}$, none of the diodes conducts. Thus zero current flows through $R_{4}$, and the output voltage at B will be equal to the input voltage. But as the input rises to $V_{1}$ and above, $D_{2}$ (assumed ideal) begins to conduct. Assuming that the conducting $D_{2}$ behaves as a shori circuit, we see that, for $v_{1}>V_{1}$,

$$
v_{O}=V_{1}+\left(v_{1}-V_{1}\right) \frac{R_{5}}{R_{4}+R_{5}}
$$

This implies that as the input continues to rise above $V_{1}$ the output follows but with a reduced slope. This gives rise to the second segment in the output waveform, as shown in Fig. 13.31(b). Note that in developing the equation above we have assumed that the resistances in the voltage divider are low enough in value to cause the voltages $V_{1}$ and $V_{2}$ to be constant independent of the current coming from the input.

Next consider what happens as the voltage at point B reaches the second breakpoint determined by $V_{2}$. At this point, $D_{1}$ conducts, thus limiting the output $v_{0}$ to $V_{2}$ (plus, of course, the voltage drop across $D_{1}$ if it is not assumed to be ideal). This gives rise to the third segment, which is flat, in the output waveform. The overall result is to "bend" the waveform and shape it into an approximation of the first quarter-cycle of a sine wave. Then, form and shape it into an approximation of the first quarter-cycle of a sine wave. Then, beyond the peak of the input triangular wave, as the input voltage decreases, the process
unfolds, the output becoming progressively more like the input. Finally, when the input unfolds, the output becoming progressively more like the input. Finally, when the input half-cycle.

Although the circuit is relatively simple, its performance is surprisingly good. A measure of goodness usually taken is to quantify the purity of the output sine wave by specifying the percentage total harmonic distortion (THD). This is the percentage ratio of the rins the percentage total harmonic distortion (THD). This is the percentage ratio of he rims
voltage of all harmonic components above the fundamental frequency (which is the frequency of the triangular wave) to the rms voltage of the fundamental (sec also Chapter 14). Interestingly, one reason for the good performance of the diode shaper is the beneficial effects produced by the nonideal $i-z$ characteristics of the diodes-that is, the exponential knee of the junction diode as it goes into forward conduction. The consequence is a relatively smooth transition from one line segment to the next.
Practical implementations of the breakpoint sine-wave shaper employ six to eight segments (compared with the thrce used in the example above). Also, transistors are usually employed to provide more versatility in the design, with the goal being increascd precision and lower THD. [See Grebene (1984), pages 592-595.]

### 13.8.2 The Nonlinear-Amplification Method

The other method we discuss for the conversion of a triangular wave into a sine wave is based on feeding the triangular wave to the input of an amplifier having a nonlinear transfer characteristic that approximates the sine function. One such amplifier circuit consists of a differential pair with a resistance connected between the two emitters, as shown in Fig. 13.32. With appropriate choice of the values of the bias current $I$ and the resistance $R$, the differential amplifier can be made to have a transfer characteristic that closely approximates that shown in Fig. 13.30. Observe that for small $v_{J}$ the transfer characteristic of the circuit of $y$ the nonlinear cost linear, as a sine waveform is near its zero crossings. At large values $\nu_{t}$ the details on this circuit can be found in Grebene (1984), pages 595-597.


FIGURE 13.32 A differencial pair with an emit er degeneration resistance uscd to implement friangular-wave to sinc-wave convcree. ion of the Fig. 13.30.

EXERCISES

 acteristic: $=$ 0 wh where wis the vomage m vortect at $t=2 V, 4 V$ and $8 V$. Calculate the ertor in curcht value at $1=3 \mathrm{~V} .5 \mathrm{~V} .7 \mathrm{~V}$ and 10 V . Assmime ideal diodes

ficure El 3.22

13.23 A detaled anatusis of the citcuit in tis 13.32 shows that its opumim performance oceurs wher the values of fand $R$ are setected so that $R T-2.51 /$, where $V$ it the hermal voltage For this design, the peak ampitude of the inpul tiangitat wave should be $6.6 V_{7}$ and he corresponding sine wave acrass $R$ has a peat value of $242 V_{\text {, }}$ For $1=0.25 \mathrm{~mA}$ and $R_{\rho}=10 \mathrm{k} \Omega$. find the peak amplitude of the sine wave sutput $y_{a}$. Assume $\alpha=1$ Ans. 4.84 Y

### 13.9 PRECISION RECTIFIER CIRCUITS

Rectifier circuits were studied in Chapter 3, where the emphasis was on their application in Rower-supply design In such in Chapter 3 , where the emphasis was on their application in to the proper operation of the rectifier. Other applications exist, however, where this is not
the case. For instance, in instrumentation applications, the signal to be rectified can be of a very small amplitude, say 0.1 V , making it impossible to employ the conventional rectifier circuits. Also, in instrumentation applications the need arises for rectifier circuits with very precise transfer characteristics.

In this section we study circuits that combinc diodes and op amps to implement a variety of rectifier circuits with precise characteristics. Precision rectifiers, which can be considered a special class of wave-shaping circuits, find application in the design of instrumentation systems. An introduction to precision rectifiers was presented in Chapter 3. This material, however, is repeated here for the reader's convenience.

### 13.9.1 Precision Half-Wave Rectifier-The "Superdiode"

Figure 13.33(a) shows a precision half-wave-rectifier circuil consisting of a diode placed in the negative-feedback path of an op amp, with $R$ being the rectifier load resistance. The circuit works as follows: If $y_{l}$ goes positive, the output voltage $y_{A}$ of the op amp will go positive and the diode will conduct, thus establishing a closed feedback path between the op amp's output terminal and the negative input terminal. This negative-fecdback path will cause a virtual short circuit to appear between the two input terminals of the op amp. Thus the voltage at the negative input terminal, which is also the output voltage $v_{0}$, will equal (to within a few millivolts) that at the positive input terminal, which is the input voltage $v_{1}$

$$
v_{o}=v_{I} \quad v_{i} \geq 0
$$

Note that the offset voltage ( $\simeq 0.5 \mathrm{~V}$ ) exhibited in the simple half-wave rectifier circuit is no longer present. For the op-amp circuit to start operation, $v_{i}$ has to exceed only a negligibly small voltage equal to the diode drop divided by the op amp's open-loop gain. In other words, the straight-line transfer cbaracteristic $v_{n}-v_{l}$ almost passes through the origin. This makes this circuit suitable for applications involving very small signals.

Consider now the case when $\tau_{i}$ goes negative. The op amp's output voltage $\tau_{A}$ will tend to follow and go negative. This will reverse-bias the diode, and no current will flow through resistance $R$, causing $v_{0}$ to remain equal to 0 V . Thus for $v_{1}<0, v_{0}=0$. Since in this case the diode is off, the op amp will be operating iu an open-loop fashion and its output will be at the negative saturation level.

The transfer characteristic of this circuit will be that shown in Fig. 13.33(b), which is almost identical to the ideal characteristic of a half-wave rectifier. The nouideal diode

(a)

(b)

FIGURE 13.33 (a) The "superdiode" precision half-wave rectificr and (b) its almost ideal transser characteristic. Note that when $v_{l}>0$ and the diode conducts, the op amp supplies the load current, and the source is conveniently buffercd, an added advantage.
characteristics have been almost completely masked by placing the diode in the negativefeedback path of an op amp. This is another dramatic application of negative feedback. The combination of diode and op amp, shown in the dashed box in Fig. 13.33(a), is appropriately referred to as a "superdiode.
As usual, though, not all is well. The circuit of Fig. 13.33 has some disadvantages: When $v_{I}$ goes negative and $v_{0}=0$, the entire magnitude of $v_{l}$ appears between the two input terminals of the op amp. If this magnitude is greater than few volts, the op amp may be damaged unless it is equipped with what is called "overvoltage protection" (a feature that most modern IC op amps have). Another disadvantage is that when $v_{1}$ is negative, the op anp will be saturated. Although not harmul to the op amp, saturation should usually be avoided, since getting the op amp out of he satalon region and back into its linear region of operation requires some the. Thion of the superdiode half waverectifio circuit operation and limit the frequen circuit

### 13.9.2 An Alternative Circuit

An alternative precision rectifier circuit that does not suffer from the disadvantages mentioned above is shown in Fig. 13.34. The circuit operates im the following manner: For positive $\tau_{1}$, diode $D_{2}$ conducts and closes the negative-feedback loop around the op amp. A virtual ground therefore will appear at the inverting input terminal, and the op amp's outpu will be clamped at one diode drop below ground. This negative voltage will keep diode $D_{1}$ off, and no current will flow in the feedback resistance $R_{2}$. It follows that the rectifier output voltage will be zero.

As $v_{I}$ goes negative, the voltage at the inverting input terminal will tend to go negative, causing the voltage at the op amp's output terminal to go positive. This will cause $D_{2}$ to be reverse-biased and hence cut off. Diode $D_{1}$, however, will conduct through $R_{2}$ : thus establishing a negative-feedback path around the op amp and forcing a virtual ground to appear at the inverting input terminal. The current through the feedback resistance $R_{2}$ will be equal to the current through the input resistance $R_{1}$. Thus for $R_{1}=R_{2}$ the output voltage $v_{0}$ will be
$v_{0}=-v_{I} \quad v_{I} \leq 0$

(a)

(b)

FIGURE 13.34 (a) An improved version of the precision half-wave rectifier: Diode $D_{2}$ is included to keep he feedback loop closed around the op amp during the off times of the rectifier diode $D_{1}$, thus preventing the feedback loop closed around the op anip during the off times or

The transfer characteristic of the circuit is shown in Fig. 13.34(b). Note that unlike the situation for the circuit shown in Fig. 13.33, here the slope of the characteristic can be set to any desired valuc, including unity, by selecting appropriate values for $R_{1}$ and $R_{2}$.

As mentioned before, the major advantage of the improved half-wave-rectifier circuit is that the feedback loop around the op amp remains closed at all times. Hence the op amp remains in its linear operating region, avoiding the possihility of saturation and the associted time delay required to "get out" of saturation. Diode $D_{2}$ "catches" the op-amp outp voltage as it goes nergative and clamps it to one diode drop below ground; hence $D_{2}$ is called a "catching diode."

### 13.9.3 An Application: Measuring AC Voltages

As one of the many possible applications of the precision rectifier circuits discussed in this section, consider the basic ac voltmeter circuit shown in Fig. 13.35. The circuit conists of a hall-wave rectilicr-formed by op amp $\mathrm{A}_{1}$, diodes $D_{1}$ and $D_{2}$, and resistors $R$ and $R_{2}$-and a first-order low-pass filter-formed by op amp $\mathrm{A}_{2}$, resistors $R_{3}$ and $R_{4}$, and apacitor $C$. For an input sinusoid having a peak amplitude $V_{\rho}$ the output $v_{1}$ of the rectifie will consist of a half sine wave having a peak amplitude of $V_{p} R_{2} / R_{1}$. It can be shown using Fourier series analysis that the waveform of $v_{1}$ has an average value of $\left(V_{p} / \pi\right)\left(R_{2} / R_{1}\right)$ in addition to harmonics of the frequency $\omega$ of the input signal. To reduce the amplitudes of all these harmonics to negligible levels, the corner frequency of the low-pass filter should be chosen much smaller than the lowest expected frequency $\omega_{\min }$ of the input sine wave. This leads to

$$
\frac{1}{C R_{4}} \ll \omega_{\min }
$$

Then the output voltage $v_{2}$ will be mostly dc, with a value

$$
V_{2}=-\frac{V_{p}}{\pi} \frac{R_{2}}{R_{1}} \frac{R_{4}}{R_{3}}
$$

where $R_{4} / R_{3}$ is the dc gain of the low-pass filter. Note that this voltmeter essentially measures the average value of the negative parts of the input signal but can be calibrated to provide rms readings for input sinusoids.


FIGURE 13.35 A simple ac volmeter consisting of a precision half-wave rectifier followed by a firstorder low-pass filter.
13.24 Consider the operational rectifer or superdiode circul of Fig $13.33(a)$, wht $R=1 \mathrm{~K} 2$ For $y_{1}=10 \mathrm{mV}$, 1 V and-i V what are the voltases that result at the rectifier output and at the output of the op amp V. and -1 What are the wottages that resut at the reetifer ourput and at the output on he op amp 1 -mi curent: ard the voltage drop changes $b$ y 01 Y per decade of current change:
Ans IomV. . Siv. IV. IT V. OV. 12 V
33.25 ti the diode in the circuilot tig: 13.33 (a) is reversed, what is the transfer claracteristic $y_{o}$ as a function of 14 ?

1326. Consider the circuit in Fíg. 13.34 an with $R_{1}=1 \mathrm{k} \Omega$ and $h_{2}=10$ kR Find vo and the voltage at the mptifiet rutput for $i=+1,10 \mathrm{mV}$ and -1 . $V$. Assume the op amp to be ideal with saturatio 1 V
Ars. $0 \mathrm{~V}, 07 \mathrm{~V}: 0.1 \mathrm{~V}, 0.6 \mathrm{~V}, 10 \mathrm{~V}, 10.7 \mathrm{~V}$
13.27. It the fiodes in the circult of Fis, 13.34 (a) are reversed, what is the transfer characterstic ovo as a func tion of tin

13.28 Find the transfer characteristic for the circuit in Fiy. E13.28.


## GGURE E13. 28

Ans. $v_{0}=0$ for $m_{m} \geq-5 \mathrm{~V} v_{0}-v_{1}-5$ for $v_{5} \leq-5 \mathrm{~V}$

### 13.9.4 Precision Full-Wave Rectifier

We now derive a circuit for a precision full-wave rectifier. From Chapter 3 we know that fullwave rectification is achieved by inverting the negative halves of the input-signal waveform and applying the resulting signal to another diode rectifier. The outputs of the two rectifiers are then joined to a common load. Such an arrangement is dcpicted in Fig. 13.36, which also shows the waveforms at various nodes. Now replacing diode $D_{\mathrm{A}}$ with a superdiode, and replacing diode $D_{\mathrm{B}}$ and the inverting amplifier with the inverting precision half-wave rectifier of Fig. 13.34 but without the catching diode, we obtain the precision full-wave-rectifier circuit of Fig. 13.37(a).
To see how the circuit of Fig. 13.37(a) operates, consider first the case of positive inpu A. The output of $\mathrm{A}_{2}$ will go positive, turning $D_{2}$ on, which will conduct through $R_{L}$ and thus close the fcedback loop around $A_{2}$. A virtual short circuit will thus be established between


FIGURE 13.36 Principle of full-wave rectification.

(a)

(b)

FIGURE 13.37 (a) Precision full-wave recificr bascd on the concentual circuit of Fig. 13.36. (b) Transfer Fhaurt 13.37 (a) Precision ful
the two input terminals of $\mathrm{A}_{2}$, and the voltage at the negative-input terminal, which is the output voltage of the circuit, will become equal to the input. Thus no current will flow through $R_{1}$ and $R_{2}$, and the voltage at the inverting input of $\mathrm{A}_{1}$ will be equal to the input and hence positive. Therefore the output terminal ( F ) of $\mathrm{A}_{1}$ will go negative until $\mathrm{A}_{1}$ saturates This causes $D_{1}$ to be turned off.

Next consider what happens when A goes negative. The tendency for a negative voltage at the negative input of $\mathrm{A}_{1}$ causes F to rise, making $D_{1}$ conduet to supply $R_{L}$ and allowing the feedback loop around $\mathrm{A}_{1}$ to be closed. Thus a virtual ground appears at the negative input of $\mathrm{A}_{1}$, and the two equal resistances $R_{1}$ and $R_{2}$ force the voltage at C , which is the output voltage, to be equal to the negative of the input voltage at $A$ and thus positive. The combination of positive voltage at C and negative voltage at A causes the output of $\mathrm{A}_{2}$ to saturate in the negative direction, thus keeping $D_{2}$ off

The overall result is perfect full-wave rectification, as represented by the transfer characteristic in Fig. 13.37(h). This precision is, of course, a result of placing the diodes in op-amp feedback loops, thus masking their nonidealities. This circuit is one of many possible precision full-wave-rectifier or absolute-valuc circuits. Another related implementation of this function is examined in Exercise 13.30.

## EXERGISES

 ideal except for output satiution at $=12 \mathrm{~V}$. When condueting a current of 1 mat each diode exhbins witage cotrop of 0.7 V , and dis V . +1 V . $+10 \mathrm{~V},-0.1 \mathrm{~V}$, and -10 V .
Ars. $+0.1 \mathrm{~V},+0.6 \mathrm{~V},-12 \mathrm{~V}, 1 \mathrm{~V},+1.6 \mathrm{~V},-12 \mathrm{~V},+10 \mathrm{~V},+10.7 \mathrm{~V},-12 \mathrm{~V}:+0.1 \mathrm{~V},-12 \mathrm{~V}+0.63 \mathrm{~V},+1 \mathrm{~V}$. Ans. $+0.1 \mathrm{~V},+0.6 \mathrm{~V},-12 \mathrm{~V},+1 \mathrm{~V},-1.6 \mathrm{~V}$, -
D13.30 The bock diagran shown in Fig E13.30(a) gives another possible arratsement for inplementilig the eifit operation depicted symbolically in Fio E13.30(b). The bloct in. in. cinists of two hoxes: a hall-wave rectifier, which can be implemented by the circult in Fis $1334(a)$ after reversing both diodes, and a weighted inverting summer. Convince sourself that this block diacram does in fact realize the absolute-value operation. Then draw a complete circuit diagtan. giving reasonable values for all resistors.


FIGURE EI3.30
13.9.5 A Precision Bridge Rectifier for Instrumentation Applications The bridge rectifier circuit studied in Chapter 3 can be combined with an op amp to provide useful precision circuits. One such arrangement is shown in Fig. 13.38. This circuit causes a current equal to $\left|v_{A}\right| / R$ to flow through the moving-coil meter M. Thus the meter provides


FIGURE 13.38 Use of the diode bridge in the design of an ac voltmeter.
a reading that is proportional to the average of the absolute value of the input voltage $v_{A}$. All the nonidealities of the meter and of the diodes are masked by placing the bridge circuit in the negative-feedback loop of the op amp. Observe that when $v_{A}$ is positive, cunent flows from the op-amp output through $D_{1}, \mathrm{M}, D_{3}$, and $R$. When $v_{A}$ is negative, current flows into the op-amp output through $R, D_{2}, \mathrm{M}$, and $D_{4}$. Thus the feedback loop remains closed for both polarities of $\gamma_{A}$. The resulting virtual short circuit at the input terminals of the op amp causes a replica of $v_{A}$ to appear across $R$. The circuit of Fig. 13.38 provides a relatively accurate high-input-impedance ac volimeter using an inexpensive moving-coil meter.

## EXERCISE


 (ie its resistance is 50 A and il provides full-seale deftection when the average current firough it is 1 nit). What are the appoximate maximum and mimimum voltages at the op amp's outpult Assume. that the diodes haye const
Ans. $45 \mathrm{k} \Omega,+8.55 \mathrm{~V},-55 \mathrm{~V}$

### 13.9.6 Precision Peak Rectifiers

Including the diode of the peak rectifier studied in Chapter 3 inside the negative-feedhack loop of an op amp, as shown in Fig. 13.39, results in a precision peak rectifier. The diode-op-amp combination will be recognized as the superdiode of Fig. 13.33(a). Operation of the circuit in Fig. 13.39 is quite straightforward. For $v_{I}$ greater than the output voltage, the op amp will drive the diode on, thus closing the negative-feedback path and causing the op amp to act as a follower. The output voltage will thercfore follow that of the input, with the op amp supplying the capacitor-charging current. This process continues until the input reaches its peak value. Beyond the positive peak, the op amp will see a negative voltage between its inpu terminals. Thus its output will go negative to the saturation level and the diode will turn off Except for possible discharge through the load resistance, the capacitor will retain a voltage equal to the positive peak of the input. Inclusion of a load resistance is essential if the circuit is required to detect reductions in the magnitude of the positive peak.

### 13.9.7 A Buffered Precision Peak Detector

When the peak detector is required to hold the value of the peak for a long time, the capacitor should be buffered, as shown in the circuit of Fig. 13.40. Here op amp $\mathrm{A}_{2}$, which should have high input impedance and low input bias current, is connected as a voltage follower. The remainder of the circuit is quite similar to the half-wave-rectifier circuit of Fig. 13.34.


FIGURE 13.39 A precision peak rectifier oblained by placing the diode in the feedback loop of an op amp.


While diode $D_{1}$ is the essential diode for the peak-rectilication operation, diode $D_{2}$ acts as catching diode to prevent negative saturation, and the associated dclays, of op amp $A$ During the holding state, follower $\mathrm{A}_{2}$ supplies $D_{2}$ with a small current through $R$. The output of $o p \operatorname{amp} A_{1}$ will then be clamped at one diode drop below the input voltagc. Now if th input $v_{I}$ increases above the value stored on $C$, which is equal to the output voltage $v_{O}$, op amp $\mathrm{A}_{1}$ sees a net positive input that drives its output toward the positive saturation level, turnin off diode $D_{2}$. Diode $D_{1}$ is then turned on and capacitor $C$ is charged to the new positive peak of the input, after which time the circuit returns to the holding state. Finally, note that thi circuit has a low-impedance output.

### 13.9.8 A Precision Clamping Circuit

By replacing the diode in the clamping circuit studied in Chapter 3 with a "superdiode," By replacing the diode ision clamp of Fig. 13.41 is obtained. Operation of this circuit should be selfexplanatory.

### 13.10 SPICE SIMULATION EXAMPLES

The circuits studied in this chapter make use of the noulincar operation of devices to perform a variety of tasks, such as the stabilization of the amplitude of a sine-wave oscimator and the shaping of a triangular waveform into a sinusoid. Although we have been ablc to devise simplified methods for the analysis and design of these circuits, a complete pencil-and-paper analysis is nearly impossible. The designer must therefore rely on computer simulation to obtain greater insight into detailed circuit operation, to experiment with different component values, and to optimize the design. In this section, we present two examples that illustrate the use of SPICE in the simulation of oscillator circuits.

## WAMEETES

## WIEN-BRIDGE OSCILLATOR

For our first example, we shall simulate the operation of the Wien-bridge oscillator whose Capture schematic is shown in Fig. 13.42. The component values are selected to yield oscillations at 1 kHz . We would like to investigate the operation of the circuit for diffcrent scttings of $R_{1 a}$ and $R_{1 b}$, with $R_{1 a}+R_{1 b}=50 \mathrm{k} \Omega$. Since oscillation just starts when $\left(R_{2}+R_{\mathrm{f} b}\right) / R_{1 a}=2$ (sec Exercise 13.4), that is, when $R_{1 a}=20 \mathrm{k} \Omega$ and $R_{1 b}=30 \mathrm{k} \Omega$, we consider thrce possible settings: (a) $R_{1 a}=15 \mathrm{k} \Omega$, $R_{1 b}=35 \mathrm{k} \Omega$; (b) $R_{1 a}=18 \mathrm{k} \Omega, R_{\mathrm{lb}}=32 \mathrm{k} \Omega$; and (c) $R_{\mathrm{la}}=25 \mathrm{k} \Omega, R_{1 b}=25 \mathrm{k} \Omega$. These settings correspond to loop gains of $1.33,1.1$, and 0.8 , respectively.

In PSpice, a 741 -type op amp and 1 N 4148 -type diodes are used to simulate the circuit in Fig. 13.42. ${ }^{6}$ A transient-analysis simulation is performed with the capacitor voltages initially set to zero. This demonstrates that the op-amp offset voltage is sufficient to cause the oscillations to start without the need for special start-up circuitry. Figure 13.43 shows the simulation results.


[^50]
wn in Fig. 13.42 for variou FIGURE 13.43
values of loop gain.

The graph in Fig. 13.43(a) shows the ouput waveform obtained for a loop gain of 1.33. Observe that although the oscillations grow and stabilize rapidly, the distortion is considerable. The output obtained for a loop gain of 1.1, shown in Fig. 13.43(b), is much less distorted. However, a
expected, as the loop gain is reduced toward unity, it takes longer for the oscillations to build up and for the amplitude to stabilize. For this case, the frequency is 986.6 Hz , which is reasonably close to the design value of 1 kHz , and the amplitude is 7.37 V . Finally, for a loop gain of 0.8 , the output shown in Fig. 13.43(c) confirms our expectation that sustained oscillations cannot be obtained when the loop gain is less than unity.
PSpice can be used to investigate the spectral purity of the output sine wave. This is achieved using the Fourier analysis facility. It is found that in the steady state the output for the case of a loop gain of 1.1 has a THD figure of $1.88 \%$. When the oscillator output is taken at the op-amp output (voltage $v_{A}$ ), a THD of $2.57 \%$ is obtained, which as expected is higher than that for the voltage $v_{\text {OCT }}$, but not by very much. The output terminal of the op amp is of course a much more convenient place to take the output.

## 2 $4=1$ Hz

## ACTIVE-FILTER-TUNED OSCILLATOR

In this example, we use PSpice to verify our contention that a superior op amp-oscillator can be realized using the active-filter-tuned circuit of Fig. 13.11. We also investigate the effect of changing the value of the filter $Q$ factor on the spectral purity of the output sine wave.
Consider the circuit whose Capture schematic is shown in Fig. 13.44. For this circuit, the center frequency is 1 kHz , and the filter $Q$ is 5 when $R_{1}=50 \mathrm{k} \Omega$ and 20 when $R_{1}=200 \mathrm{k} \Omega$. As in the case of the Wien-bridge circuit in Example 13.1, 741-type op amps and 1N4148-type diodes are utilized. In PSpice a transient-analysis simulation is perforned with the capacitor voltages initially sct to zero. To bc able to compute the Fourier components of the output, the analysis interval chosen nus be long enough to allow the oscillator to reach a steady state. The time to reach a steady state is in turn determined by the value of the filter $Q$; the higher the $Q$, the longer it takes the output to settle. For $Q=5$, it was determined, through a combinatiou of approximate calculations and experimenta ion using PSpice, that 50 ms is a reasonable estimate for the analysis interval. For plotiong purposes, we use 200 points per period of oscillation.
The results of the transicnt analysis are plotted in Fig. 13.45. The upper graph shows the sinusoidal waveform at the output of op amp $A_{1}$ (voltage $v_{1}$ ). The lower graph shows the waveform across the diode limiter (voltage $v_{2}$ ). The frequency of oscillation is found to be very close to the design value of 1 kHz . The amplitude of the sinc wave is determined using Probe (the graphical interface of PSpice) to be 1.15 V (or 2.3 V p-p). Note that this is lower than the 3.6 V estimated in Exercise 13.7. The latter value, however, was based on an estimate of $0.7-\mathrm{V}$ drop across each conducting diode in the limiter. The lower waveform in Fig. 13.45 indicates that the diode drop is closer to 0.5 V , for a 1-V peak-to-peak amplitude of the pseudo-square wave. We should therefore expect the peak-to-peak amplitude of the output sinusoid to be lower than 3.6 V by the same factor, and indeed it is approximately the case.

In PSpice, the Fouricr analysis of the output sinc wave indicates that THD $=1.61 \%$. Repeating the simulation with $Q$ increased to 20 (by increasing $R_{1}$ to $200 \mathrm{k} \Omega$ ), we find that the value of THD is reduced to $1.01 \%$. Thus, our expectations that the value of the filler $Q$ can be used as an cffective means for constrolling the THD of the output waveform are confirmed


䨓 A feedback loop consisting of an integrator and a bistable multivibrator can bc used to generate triangular and square waveforms.
can be implemented either by using diodes (or transis tors) and resistors, or by using an amplificr having sine function
23 The 555 timer, a commercially available IC, can he used with external resistors and a capacitor to implement highuality monostable and astable multivibrators.

球 A sine waveform can be generated by feeding a triangular waveform to a sine-wave shaper. A sine-wave shaper

Diodes can be combined with op amps to implemen precision rectifier circuits in which negative feed back serves to mask the nonidealities of the diod characteristics.

## PROBLEMS

## SECTION 13.1: BASIC PRINCIPLES OF

## SINUSOIDAL OSCILLATORS

*13.1 Consider a sinusoidal oscillator consisting of an arnphifier having a frequency-independent gain $A$ (where $A$ is positive) and a second-order bandpass filter with a pole frequency $\omega_{0}$, a pole $Q$ denoted $Q$, and a center-frequency gain $K$. (a) Find the frequency of oscillation, and the condition that $A$ and $K$ must satisfy for sustained oscillation.
(b) Derive an expression for $d \phi / d \omega$, evaluated at $\omega=\omega_{0}$. (c) Use the result of (b) to find an expression for the per-unit change in frequency of oscillation resulting from a phase-

$$
\text { Hint: } \frac{d}{d x}\left(\tan ^{1} y\right)=\frac{1}{1+y^{2}} \frac{d y}{d x}
$$

13.2 For the oscillator described in Problem 13.1, show that, independent of the value of $A$ and $K$, the poles of the circuil lie at a radial distance of $\omega_{3}$. Find the value of $A K$ that results in poles appearing (a) on the $j \omega$ axis, and (b) in the right-half of the $s$ plane, at a horizontal distance from tho $j \omega$ axis of $\omega_{0} /(2 Q)$.
D13.3 Sketch a circuit for a sinusoidal oscillator formed by an op amp connected in the noninverting configuration and a bandpass filter implemented by an RLC resonator (such as that in Fig. 12.18d). What should the amplifier gain be to obtain sustained oscillation? What is the frequency of oscillation? Find the percentage change in $\omega_{0}$, resulting from a change of $+1 \%$ the value of (a) $L$, (b) $C$ and (c) $R$.
13.4 An oscillator is formed by loading a transconduccance amplifier having a positive gain with a parallel RLC circuit and connecting the output directly to the input (thus applying positive feedback with a factor $\beta=1$ ). Let the and an output resistance of $10 \mathrm{k} \Omega$. The LC resonator has $L=10 \mu \mathrm{H}, C=1000 \mathrm{DF}^{2}$, and $Q=100$. For what value of
ransconductance $G_{m}$ will the circuit oscillate? At what frequency?
13.5 In a particular oscillator characterized by the structure of Fig. 13.1, the frequency-selective network exhibits a los of 20 dB and a phase shift of $180^{\circ}$ at $\omega_{0}$. What is the mini mum gain and the phase shift that the amplifier must have, for oscillation to begin?
13.6 Consider the circuit of Fig. 13.3(a) with $R_{f}$ removed to realize the comparator function. Find suitable values for all resistors so that the comparator output levels are $\pm 6 \mathrm{~V}$ and the slope of the limiting characteristic is 0.1 . Use power supply oltages of $\pm 10 \mathrm{~V}$ and assume che voltage drop of a conductin diode to be 0.7 V .
D13.7 Consider the circuit of Fig. 13.3(a) with $R_{f}$ removed to realize the comparator function. Sketch the transfer characteristic. Show that by connecuing a dc source $V_{B}$ to the virtual ground of the op amp through a resistor $R_{D}$, the cranstecharacteristic is shifted along the $v_{l}$ axis to the poiv
$\nu_{t}=--\left(R_{1} / R_{B}\right) V_{B}$. Utilizing available +15 -V dc supplies for $\pm V$ and for $V_{B}$, find suitable componient values so that the lim iting levels are $\pm 5 \mathrm{~V}$ and the comparator threshold is at $v_{1}=$ +5 V . Neglect the diode voltage drop (i.e., assume that $V_{D}=0$ ). The input resistance of the comparator is to be $100 \mathrm{k} \Omega$ and the slope in the limiting regions is to be $\leq 0.05 \mathrm{~V} / \mathrm{N}$. Use standard $5 \%$ resistors (see Appendix G).
13.8 Denoting the zener voltages of $Z_{1}$ and $Z_{2}$ by $V_{z 1}$ and $V_{Z 2}$ and assuming that in the forward dircction the voltage drop is approximately 0.7 V , sketch and clearly label the transfer characteristics $v_{o}-v_{t}$ of the circuits in Fig. P13.8 Assume the op amps to be ideal.

## SECTION 13.2: OP-AMP-RC OSCILLATOR

 CIRCUITS13.9 For the Wicn-bridge oscillator circuit in Fig. 13.4 show that the transfer function of the feedhack network

(a)

FIGURE P13.8
$\left[V_{( }(s) / V_{0}(s)\right]$ is that of a bandpass filter. Find $\omega_{0}$ and $Q$ of the poles, and find the center-frequency gain.
13.10 For the Wien-bridge oscillator of Fig. 13.4, let the closed-loop amplifier (formed by the op amp and the resistors $R_{1}$ and $R_{2}$ ) exhibit a phase stift of -0.1 rad in neighborhood of $\omega=1 / C R$. Find the frequency at whic oscillations can occur in chis case, in terms of $C R$. (Hint: Use Eq. 13.11.)
13.11 For the Wien-bridge oscillator of Fig. 13.4, use the expression for loop gain in Eq. (13.10) to find the poles of the closed-loop system. Give the expression for the pole $Q$, and use it to show that to locate the poles in the right half of the $s$ plane, $R_{2} / R_{1}$ must be selected to bc greater than 2 .
D*1 3.12 Reconsidcr Exercise 13.3 with $R_{3}$ and $R_{6}$ iucrcased to reduce the output voltage. What values are required for a pcak-to-peak output of 10 V ? What results if $R_{3}$ and $R_{6}$ arc open-circuited?
3.13 For the circuit in Fig. Pl3.13 find $L(s), L(j \omega)$, the frequency for zero loop phase, and $R_{2} / R_{1}$ for oscillation.


FIGURE P13.13
13.14 Repeat Problem 13.13 for the circuit in Fig. P13.14.


## FIGURE P13.14

*13.15 Consider the circuit of Fig. 13.6 with the $50-\mathrm{k} \Omega$ poleniometer replaced by two fixed resistors: $10 \mathrm{k} \Omega$ between the op amp's negative input and ground, and $18 \mathrm{k} \Omega$. Modeling each diode as a $0.65-\mathrm{V}$ battery in series with a $100-\Omega$ resis, find the peak-to-peak amphtude of the output sinusoid.
D**13.16 Redesign the circuit of Fig. 13.6 for operation at 10 kHz using the same values of resistance. If at 10 kHz the be the frequency of oscillation? (Assume that the phase shift introduced by the op amp remains constant for frequencics around 10 kHz .) To restore operation to 10 kHz , what change must be made in the shunt resistor of the Wien bridge? Also, to what value must $R_{2} / R_{1}$ be changed?
*13.17 For the circuit of Fig. 13.8. connect an additional $R=10 \mathrm{k} \Omega$ resistor in series with thc rightrmost capacitor $C$. For this modification (and ignoring the amplitude stabilizaaircuitry) tind the loop gain $A B$ by breaking the circuit at node $X$. Find $R_{f}$ for oscillation to begin, and find $f_{0}$.


## FIGURE P13.18

13.18 For the circuit in Fig. P13.18, break the loop at rode $X$ and find the loop gain (working backward for simplicity atain sinusoidal oscillations at 10 kHz
13.19 Consider the quadrature-oscillator circuit of Fig. 13 without the limiter. Let the resistance $R_{f}$ be equal to $R /(1+\Delta)$, where $\Delta \& 1$. Show talfs plese and given by eristic equation are $\Delta \in 1$.
13.20 Assuming that the diode-clipped waveform Exercise 13.7 is nearly an ideal square wave and that the esonator $Q$ is 20 , provide an estimate of the distortion in the output sine wave by calculating the magnitudc (relative to the fundamental) of
a) the second harmonic
b) the third harmonic
c) the fifth hannonic
(d) the rms of harmonics to the tenth

(a)

Note chat a square wave of amplitude $V$ and frequency $\omega$ epresented by the series

$$
\frac{4 V}{\pi}\left(\cos \omega t-\frac{1}{3} \cos 3 \omega t+\frac{1}{5} \cos 5 \omega t-\frac{1}{7} \cos 7 \omega t+\cdots\right)
$$

## SECTION 13.3: LCAND CRYSTAL OSCILLATORS

**13.21 Figure P13.21 shows four oscillator circuits of the Colpitts type, complete with bias detail. For each circuit, derive an equation governing circuit operation, and find the frequency of oscillation and the gain condition that ensures that oscillations start.
**13.22 Consider the oscillatorcircuit in Fig. P13.22, a assume for simplicity that $\beta=\infty$.
(a) Find the frequency of oscillation and the minimum valuc of $R_{C}$ (in terms of the bias current $I$ ) for oscillation to slart.

(b)

FIGURE P13.21


FIGURE P13.21 (Continued
b) If $R_{C}$ is selected equal to $(1 / I) \mathrm{k} \Omega$, where $I$ is in milliamperes, convince yourself that oscillations will start. If oscilla ions grow to the point that $V_{o}$ is large enough to turn the BJT on and off, show that the voitage at the collector of $Q_{2}$ will be square wave of $1 \vee$ peak to peak. Estimate the peak-to-peak mplitude of the output sine wave $V_{o}$.


FIGURE P13.22
13.23 Consider the Pierce crystal oscillator of Fig 1316 with the crystal as specified in Exercise 13.10. Let $C_{1}$ be variFind the range over which the , and let $C_{2}$ be fixed at 10 pF . tuned. (Hint: Use the result in the statement leading to the expression in Eq. 13.27.)

SECTION 13.4: BISTABLE MULTIVIBRATORS
13.24 Consider the bistable circuit of Fig. 13.19(a) with the op amp's positive-input terminal connected to a positiveoltage source $V$ through a resistor $R_{3}$.
(a) Derive expressions for the threshold voltages $V_{T L}$ and $V_{T H}$ in terms of the op amp's saturation levels $L_{+}$and $L_{-}, R_{1}, R_{2}$ $R_{3}$, and $V$.
(b) Let $L_{+}=-L_{-}=13 \mathrm{~V}, V=15 \mathrm{~V}$, and $R_{1}=10 \mathrm{k} \Omega$. Find he values of $R_{2}$ and $R_{3}$ that result in $V_{T L}=+4.9 \mathrm{~V}$ and $V_{T H}=+5.1 \mathrm{~V}$.
.25 Consider the bis he op amp's negative-input terminal disconnected from round and connected to a reference voltage $V$
a) Derive expressions for the threshold voltages $V_{T L}$ and $V_{T h}$ in terms of the op amp's saturation levels $L_{+}$and $L, R_{1}, R_{2}$ and $V_{R}$.
Let $L=-L=V$ and $R_{1}=10 \mathrm{k} \Omega$. Find $R_{2}$ and $V_{R}$ that esult in threshold voltages of 0 and $V / 10$.
13.26 For the circuit in Fig. P13.26, skctch and label the transfer characteristic $v_{o}-v_{r}$. The diodes are assumed to have a constant $0.7-\mathrm{V}$ drop when conducting, and the op anp saturates at $\pm 12 \mathrm{~V}$. What is the maximum diode current?


FIGURE P 13.26
13.27 Consider the circuit of Fig. P13.26 with $R_{1}$ eliminated and $R_{2}$ short-circuited. Sketch and label the transfcr characleristic $v_{o}-v_{v}$. Assume that the diodes have a constant $0.7-\mathrm{V}$ drop when conducting and that the op amp saturates at
$\pm 12 \mathrm{~V}$.
13.28 Consider a bistable circuit having a noninverting transfer characteristic with $L_{-}=-L_{-}=12 \mathrm{~V}, V_{T L}=-1 \mathrm{~V}$, and $V_{T H}=+1 \mathrm{~V}$.
(a) For a $0.5-\mathrm{V}$-amplitude sine-wave input having zero average, what is the output?
(b) Describe the oulput if a sinusoid of frequency $f$ and amplitude of 1.1 V is applied at the input. By how much can the average of this sinusoidal input shift before the output becomes a constant value?
13.29 Design the circuit of Fig. 13.23(a) to realize a transfer characteristic with $\pm 7.5$ - V output levels and $\pm 7.5 \mathrm{-V}$

FIGURE P13.33

threshold valucs. Design so that when $v_{l}=0 \mathrm{~V}$ a current of 0.1 mA flows in the feedback resistor and a curent of 1 mA llows through the zener diodes. Assume that the output saturation levels of the op amp are $\pm 12 \mathrm{~V}$. Speciify the volt

## SECTION 13.5: GENERATION OF SQUARE AND TRIANGULAR WAVEFORMS USING ASTABLE

multivibrators
13.30 Find the frequency of oscillation of the circuit it 13.30 Find the frequency of oscillation of the circuit in
Fig. $13.24(\mathrm{~b})$ for the case $R_{1}=10 \mathrm{k} \Omega, R_{2}=16 \mathrm{k} \Omega, C=10 \mathrm{nF}$, and $R=62 \mathrm{k} \Omega$.

D13.31 Augment the astable multivibrator circuit of Fig. 13.24(b) with an output limiter of thc type shown in Fig. 13.23(b). Design the circuit to obtain an output square wave with 5 -V amplitude and $1-\mathrm{kHz}$ frequency using a 10 -n esistive divider approximately equal to the average current in the RC network over a half-cycle. Assuming $\pm 13-\mathrm{V}$ op-amp saturation voltages, arrange for the zener to operatc at a current of 1 mA .
D13.32 Using the scheme of Fig. 13.25, design a circuit that provides square waves of 10 V peak to peak and trianguwaves of 10 V peak to peak. The frequency is to be mplement the bistable circuit with the circuit of Fig. 13.23(b) see a $0.01-\mu \mathrm{F}$ capacitor, and specify the values of all resis curtent of 1 mA and for a maximum current in the resistive divider of 0.2 mA . Assume that the output saturation levels of the op amps are $\pm 13 \mathrm{~V}$.
D*13.33 The circuit of Fig. P13.33 consists of an inverting bistable multivibrator with an output limiter and a noninvering integrator. Using equal values for all resistors except $R$ and a $0.5-\mathrm{nF}$ capacitor, design the circuit to obtain a square
wave at the output of the bistable multivibrator of $15-\mathrm{V}$ peak-to-peak amplitude and $10-\mathrm{kHz}$ frequency. Sketch and label the waveforn at the integrator output. Assuming $\pm 13-\mathrm{V}$ op-amp sauration levels, design for a minimum zener curren of 1 mA . Specify
resistors.

## SECTION 13.6: GENERATION OF standardized pulse-the

## MONOSTABLE MULTIVIBRATOR

*13.34 Figure P13.34 shows a monostable multivibrator circuit. In the stable state, $v_{O}=L_{+}, v_{A}=0$, and $v_{R}=-V_{\text {ref }}$. The
circuit can be triggered by applying a positive input pulse of height greater than $V_{\text {rei. }}$. For nomai operation, $C_{1} R_{t} \leqslant C R$. Show the resuling waveforms of $v_{O}$ and $\tau_{A}$. Also, show that the pulse generated at the output will have a width $T$ given by

$$
T=C R \ln \left(\frac{L_{+}-L_{-}}{V_{\text {ref }}}\right)
$$

Note that this circuit has the interesting property that the pulse width can be controlled by changing $V_{\text {cri }}$.


## FIGURE P1 3.34

3.35 For the monostable circuit considered in Exer cise 13.19 , calculate the recovery time.
*13.36 Using the circuit of Fig. 13.26, with a nearly ideal op amp for which the saturation levels are $\pm 13 \mathrm{~V}$, design a monostable multivibrator to provide a negative output puls of $100-\mu \mathrm{s}$ duration. Use capacitors of 0.1 nF and nF . Whe ever possible, choose resistors of $100 \mathrm{k} \Omega$ in your design. Diodes have a drop of 0.7 V . What is the minimum input ste ize that will ensure triggering? How long does the circu with a recona a possib with a normal outpul?

## SECTION 13.7: INTEGRATED-CIRCUIT TIMERS

13.37 Consider the 555 circuit of Fig. 13.27 when the Threshold and the Trigger input terminals are joined together
and connected to an input voltage $v$. Verify that the transfer characteristic $v_{o}-v_{I}$ is that of an inverting bistable circuit with thresholds $V_{T L}=\frac{1}{3} V_{C C}$ and $V_{T H}=\frac{2}{3} V_{C C}$ and output level ${ }^{0} 0$ and $V_{c c}$.
13.38 (a) Using a $1-\mathrm{nF}$ capacitor $C$ in the circuit of Fig. 13.28(a), find the valuc of $R$ that results in an outpu pulse of $10-\mu$ duration.
b) If the 555 timer used in (a) is powered with $V_{c C}=15 \mathrm{~V}$ and assuming that $V_{T I I}$ can be varied externally (i.e., it need nemain equal to ${ }_{3}^{2} V_{C C}$ ), find its required value so that the me widh is increased to $20 \mu \mathrm{~s}$, with other conditions the (2)

D13.39 Using a $680-\mathrm{pF}$ capacitor, design the astable circuil of Fig. $13.29($ a) to oblain a square wave with a $50-\mathrm{kHz}$ frequency and a $75 \%$ duty cycle. Specify the values of $R_{A}$ and $R_{p}$.
*13.40 The node in the 555 timer at which the voltage is $V_{T H}$ (i.e., the inverting input terminal of comparator 1 ) is usually connected to an extemal terminal. This allows the user to change $V_{T H}$ externally (i.e., $V_{T H}$ no longer remains at $\frac{2}{3} V_{C C}$ ). always remains $\frac{1}{2} V$ (a)
(a) For the astable circuit of Fig. 13.29, rederive the expressions for $T_{H}$ and $T_{L}$, expressing them in terms of $V_{T H}$ and $V_{T L}$. (b) For the case $C=1 \mathrm{nF}, R_{A}=7.2 \mathrm{k} \Omega, R_{D}=3.6 \mathrm{k} \Omega$, and $V_{C C}=5 \mathrm{~V}$, find the frequency of oscillation and the duty cycle oplied (c) For the desion in (b)
lower frequency than that found in (b) and of 1 V $V$ peak much tude be capacitively coupled to the circuit node $V_{T H}$. This signal will cause $V_{t H}$ to change around its quiescent value of ${ }^{\frac{2}{3}} V_{C C}$, and thus $T_{H}$ will change correspondingly-a modulation process. Find $T_{H}$, and find the frequency of oscillation and the duty cycle at the two extreme values of $V_{T I I}$

## SECTION 13.8: NONLINEAR WAVEFORM

## SHAPING CIRCUITS

D*13.41 The two-diode circuit shown in Fig. P13.41 can provide a crudc approximation to a sine-wave output when driven by a triangular waveform. To obtain a good approximation, we select the peak of the triangular waveform, $V$, so That thc slope of the desired sine wave at the zero crossings is
cqual to that of the triangular wave Also, the was of $R$ cqual to that of the triangular wave. Also, the value of $R$ equal to the that when $v_{\text {, }}$ is at its peak the output vetage is cxhibit a voltage drop of 0.7 V at 1 -mA curcnt. changing at the rate of 0.1 V per decade, find the values of $V$ and $R$ that will yield an 0.1 V per decade, find the values of $V$ and $R$ that will yield an approximation to a sine waveform of $0.7-V$ peak
amplitude. Then Jind the angles $\theta$ (where $\theta=90^{\circ}$ when $\nu_{h}$ is at its peak) at which the output of the circuit, in volts, is 0.7 , $0.65,0.6,0.55,0.5,0.4,0.3,0.2,0.1$, and 0 . Use the angle
values obtained to determine the values of the exact sinc wave (ie $07 \sin \theta$ ) and thus find the percentage error of this circuil as a sine shaper. Providc your results in tabular form.


## FIGURE P13.4

013.42 Dcsign a two-segment sine-wave shapcr using $10-\mathrm{k} \Omega$ input resistor, two diodes, and two clamping voltages. The circuit, fed by a $10-\mathrm{V}$ peak-to-peak triangular wave, should limit the amplitude of the output signal via a $0.7-\mathbf{}$ diode to a value corresponding to that of a sine wave whose
zero-crossing slope matches that of the triangle. What are the lamping voltages you have chosen?
13.43 Show that the output voltage of the circuit in Fig. P13.43 is given by

$$
v_{o}=-n V_{T} \ln \left(\frac{v_{I}}{I_{S} R}\right) \quad v_{i}>0
$$

where $I_{S}$ and $n$ are the diode parameters and $V_{T}$ is the
thermal voltage. Since the output voltage is proportional to the logarithm of the input voltage, the circuit is known as in situations amplifier. Such amplifiers find application range.


## FIGURE P13.43

13.44 Verify that the circuit in Fig. P13.44 implements the transfer characteristic $v_{o}=v_{1} v_{2}$ for $v_{1}, v_{2}>0$. Such a circuit is known as an analog multiplier. Check the circuit's performance for various combinations of input voltage of values, say, $0.5 \mathrm{~V}, 1 \mathrm{~V}, 2 \mathrm{~V}$, and 3 V . Assume all diodes to be identical, with $700-\mathrm{mV}$ drop at $1-\mathrm{mA}$ current and $n=2$. Note that a squarer can easily be produced using a single input (e.g., $v_{1}$ ) connected via a $0.5-\mathrm{k} \Omega$ resistor (rather than the $1-\mathrm{k} \Omega$ resistor shown).


FIGURE P13.44
**13.45 Detailed analysis of the circuit in Fig. 13.32 shows that optimum performance (as a sine shaper) occurs when the values of $I$ and $R$ are selected so that $R I=2.5 \mathrm{~V}_{T}$ where $V_{T}$ is the thermal voltage, and the peak amplitude of the input triangular wave is $6.6 V_{T}$. If the output is laken across $R$ (i.e., between the two emitters), find $v_{T}$ corre sponding to $v_{O}=0.25 V_{T}, 0.5 V_{T}, V_{7}, 1.5 V_{T}, 2 V_{T}, 2.4 V_{T}$ and $2.42 V_{T}$. Plot $v_{o}-v_{T}$ and compare to the idcal curve given by

$$
v_{0}=2.42 V_{T} \sin \left(\frac{v_{l}}{6.6 V_{T}} \times 90^{\circ}\right)
$$

## SECTION 13.9: PRECISION RECTIFIER

IRCUITS
13.46 Two superdiode circuits connected to a commonload resistor and having the samc input signal have thei node to thed, one with cathode to the load, the other will de whe load. For a sine-wave input of 10 pcak to peak, what is the output waveform? Note that each halfcycle of the load current is provided by a separate amplifier, and that while one amplifier supplies the load current, the other amplifier ides. This idea, callec class-B opcration (see amplifiers.
13.47 The superdiode circuil of Fig. (1.33(a) can be made to have gain by connecting a resistor $R_{2}$ in placc of the shorr circuit between the cathode of the diodc and the negative input terminal of the op amp, and a resistor $R_{1}$ hetween the negative-input terminal and ground. Design the circuit for a gain of 2 . For a 10 -V peak-to-peak input sinc wave, what i he average oulput voltage resulting?
13.48 Provide a design of the inverting precision rectific shown in Fig. 13.34(a) in which the gain is -2 for negative Whats values of otherwise, and the input ré $R_{2}^{\prime}$ do you choose?
*13.49 Provide a design for a voltmeter circuit similar ot the one in Fig. 13.35, which is intended to function at freuencies of 10 Hz and above. It should be calibrated for nput of 1 V rms. The input resistance should be as high a possible. To extend the bandwidth of operation, keep the gain in the ac part of the circuit reasonably s̀mall. As well, the design should result in reduction of the size of the capacitor $C$ required. The largest value of resistor available is $1 \mathrm{M} \Omega$.
13.50 Plot the transfer characteristic of the circuit in Fig. P13.50.


FIGURE P13.50
13.51 Plot the transler characteristics $v_{o_{1}-}-v_{1}$ and $v_{02}-v_{t}$ of the circuit in Fig. P13.51.


## FIGURE P13.51

13.52 Sketch the transfer characteristics of the circuit in Fig. P13.52.


D13.53 A circuit related to that in Fig. 13.38 is to be used to provide a curreni proportional to $v_{A}\left(v_{A} \geq 0\right)$ to a light-emitting diode (LED). The valuc of the current is to be independent of the diode's nonlinearities and variability. Indicate how may be donceasily
*13.54 In the precision rectifier of Fig. 13.38, the resistor $R$ is replaced hy a capacitor $C$. What happens? For equivalent performance with a sine-wave input of $60-\mathrm{Hz}$. freWhat is the response of the modified circuit at 120 Hz ? At 180 Hz ? If the amplitude of $v_{A}$ is kept fixed, what new function does this circuit perform? Now consider the effect of a wavefurn change on both circuits (the one with $R$ and the one with $C$ ). For a triangular-wave input of $60-\mathrm{Flz}$ frcquency that produces an average meter concin or 1 mA the circuit with $R$, what does the average

## become when Ris replaced with tha $C$ wast

 calculated?*13.55 A positive-peak rectifier utilizing a fast op amp and a junction diode in a superdiode condiguration, and a $10-\mu \mathrm{F}$ capacior initially uncharged, is driven by a series of $10-\mathrm{V}$ pulses of $10-\mu \mathrm{s}$ duration. If the maximum output current that the op amp can supply is 10 mA , what is the voltage on the capacitor following one pulse? Two pulses? Ten pulses?

D13.56 Consider the buffered precision peak rectifier shown in Fig. 13.40 when connected to a triangular input of 1-V peak-to-peak amplitude and $1000-\mathrm{Hz}$ frequency. It lutilizes an op amp whose bias can ( 10 . 1 ) is is and diodes whose reverse leakge to guarantee an output ripple less than $1 \%$ ?

## Output Stages and Power Amplifiers



## INTRODUCTION

An important function of the output stage is to provide the amplifier with a low output resistance so that it can deliver the output signal to the load without loss of gain. Since the output stage is the final stage of the amplifier, it usually deals with relatively large signals. Thus the small-signal approximations and models either are not applicable or must be used with care. Nevertheless, linearity remains a very important requirement. In fact, a measure of goodness of the design of the output stage is the total harmonic distortion (THD) it introduces. This is the rms value of the harmonic components of the output signal, excluding the fundamental, expressed as a percentage of the rms of the fundamental. A high-fidelity audio power amplifier features a THD of the order of a fraction of a percent.

The most challenging requirement in the design of the output stage is that it deliver the required amount of power to the load in an efficient manner. This implies that the power dissipated in the output-stage transistors must be as low as possible. This requirement stems mainly from the fact that the power dissipated in a transistor raises its internal junction temperature, and there is a maximum temperature (in the range of $150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ for silicon
devices) above which the transistor is destroyed. A high power-conversion efficiency als may be required to prolong the life of batteries employed in battery-powered circuits, to permi a smaller, lower-cost power supply, or to obviate the need for cooling fans.
We begin this chapter with a study of the various output-stage configurations employed in amplifiers that handle both low and high power. In this context, "high power" generally means greater than 1 W . We then consider the specific requirements of BJTs employed in he design of high-power output stages, called power transistors. Special attention will be paid to the thermal properties of such transistors.
A power amplifier is simply an amplifier with a high-power output stage. Example of discrete- and integrated-circuit power amplifiers will be presented. Also included is brief discussion of MOSFET structures that are curtently finding application in powercircuit design. The chapter concludes with an example illuscrating the use of SPICE simulation in the analysis and design of output stages.

## 4. 14.1 CLASSIFICATION OF OUTPUT STAGES

Output stages are classified according to the collector current waveform that results when an input signal is applied. Figure 14.1 illustrates the classification for the case of a sinusoida input signal. The class A stage, whose associated waveform is shown in Fig. 14.1(a), is biased at a current $I_{C}$ greater than the amplitude of the signal curtent, $\hat{l}_{c}$. Thus the transistor in a class A stage conducts for the entire cycle of the input signal; that is, the conduction angle is $360^{\circ}$. In contrast, the class B stage, whose associated waveform is shown in Fig. 14.1(b), is biased at zero dc current. Thus a transistor in a class B stage conducts for only half the cycle of the input sine wave, resulting in a conduction angle of $180^{\circ}$. As will be seen later he negative halves of the sinusoid will be supplied by another transistor that also operates in the class B mode and conducts during the alternate half-cycles.

An intermediate class between A and B , appropriately named class AB , involves biasing he transistor at a nonzero dc current much smaller than the peak current of the sine-wave signal. As a result, the transistor conducts for an interval slightly greater than half a cycle, as illustrated in Fig. 14.1(c). The resulting conduction angle is greater than $180^{\circ}$ but much less than $360^{\circ}$. The class AB stage has another transistor that conducts for an interval slightly greater than that of the negative half-cycle, and the currents from the two transistors are combined in the load. It follows that, during the intervals near the zero crossings of the input inusoid, both transistors conduct.

Figure 14.1(d) shows the collector-current waveform for a transistor operated as a class C mplifier. Observe that the transistor conducts for an interval shorter than that of a half cycle; that is, the conduction angle is less than $180^{\circ}$. The result is the periodically pulsating current waveform shown. To obtain a sinusoidal output voltage, this curtent is passe hrough a parallel LC circuit, tuned to the frequency of the input sinusoid. The tuned circuit ans a bandpass filter and provides an output voltage proportional to the amplitude of the A $A$.
Class A, AB, and B amplifiers are studied in this chapter. They are employed as outpu ges of op amps and audio power amplifiers. In the latter application, class AB is the pre erred choice, for reasons that will be explained in the following sections. Class $C$ amplifier , enally employed for radio-frequency ( Rr ) power amplification (required, e.g., in mo opic and is not included in this book.


FIGURE 14.1. Collector currcnt waveforms for transistors opcrating in (a) class A, (b) class B. (c) class AB, and (d) class C amplifier stages.

Although the BJT has been used to illustrate the definition of the various output-stage classes, the same classification applies to output stages implemented with MOSFETs. Furthermore, the classification above extends to amplifier stages other than those used at the output In this reyard, all the common-emitter, common-base, and common-collector amplifier (and their FET counterparts) studied in earlier chapters fall into the class A category

## 43 14.2 CLASS A OUTPUT STAGE

Because of its low output resistance, the emitter follower is the most popular class A output stage. We have already studied the emitter follower in Chapters 5 and 6 ; in the following we consider its large-signal operation.

### 14.2.1 Transfer Characteristic

Figure 14.2 shows an emitter follower $Q_{1}$ biased with a constant current $I$ supplied by tran sistor $Q_{2}$. Since the emitter current $i_{E 1}=I+i_{L}$, the bias current $I$ must be greater than the


FIGURE 14.2 An emitter foliower $\left(Q_{1}\right)$ biased with a constant current $I$ supplied by transistor $Q_{2}$.
largest negative load current; otherwise, $Q_{1}$ cuts off and class A operation will no longer be maintained.

The transfer characteristic of the emitter follower of Fig. 14.2 is described by

$$
\begin{equation*}
v_{O}=v_{l}-v_{D E 1} \tag{14.1}
\end{equation*}
$$

where $v_{\text {BEI }}$ depends on the emitter current $i_{E 1}$ and thus on the load current $i_{i, i}$ If we neglect the relatively small changes in $v_{B E 1}$ ( 60 mV for every factor-of-10 change in emitter current), the linear transfer curve shown in Fig. 14.3 results. As indicated, the positive limit of the lincar region is determined by the saturation of $Q_{1}$; thus

$$
\begin{equation*}
v_{O \max }=V_{C C}-V_{C E \text { lat }} \tag{14.2}
\end{equation*}
$$



FIGURE 14.3 Transfer characteristic of the emitter follower in Fig. 14.2. This linear characteristic is obtained by neglecting the change in $v_{s \in!}$ with $i_{r}$. The maximum positive output is detecrnined by the saluration f $Q_{1}$. In the negative direction, the limit of the lincar region is determined either by $Q_{1}$ turning off or by $\ell^{2}$ saurating, depending on the values of $I$ and $R_{L}$

In the negative direction, depending on the values of $I$ and $R_{L}$, the limit of the linear region is determined either by $Q_{1}$ turning off,

$$
\begin{equation*}
v_{o_{\text {min }}}=-I R_{L} \tag{14.3}
\end{equation*}
$$

or by $Q_{2}$ saturating,

$$
v_{O \text { min }}=-V_{C C}+V_{C E 2 \mathrm{sat}}
$$

The absolutely lowest output voltage is that given by Eq. (14.4) and is achieved provided the bias current $I$ is greater than the magnitude of the corresponding load current,

$$
I \geq \frac{\left|-V_{C C}+V_{C E 2 \text { sat }}\right|}{R_{L}}
$$

## EXERCISES

014.1 For the enilter follower in Fis: $142, V_{C C}=15 \mathrm{~V}$. $V_{\text {esar }}=02 \mathrm{~V}, V_{B E}=07 \mathrm{~V}$ and constant, and $\beta$ is wet high Find the value of $R$ thit will establish a bias curtent sufficienty farge to allow the larsest po sible output sifnal swing for $R_{L}=1$ kת Beternine the resuting output signal swing and the minimun and maximim emiter currents.

14.2 For the emitter follower of Exefecise 14.1 in which $1-14.8 \mathrm{~mA}$, considet the ease in which if is limited
 ing tow, $-10 \mathrm{~V}, 0 \mathrm{~V}$, and +10 V . At each of these pornts, use small signal andy sis to determine the vi age gain $/ / v_{\text {. }}$. Note that the incremental vollage gain gives the slope of the $t_{0}$ versus- $y_{c}$ characterstic. Ans. $9360 \mathrm{~V} 0.67 \mathrm{~V}, 10.68$ Y: $0.95 \mathrm{~V} / \mathrm{N}, 0.998$ V/V 0.999 VN

### 14.2.2 Signal Waveforms

Consider the operation of the emitter-follower circuit of Fig. 14.2 for sine-wave input Neglecting $V_{\text {CEssi, }}$ we see that if the bias current $/$ is properly selected, the output voltage ca swing from $-V_{C C}$ to $+V_{C C}$ with the quiescent value being zero, as shown in Fig. 14.4(a) Figure 14.4(b) shows the corresponding waveform of $v_{C E 1}=V_{C C}-v_{0}$. Now, assuming that the bias current $I$ is selected to allow a maximum negative load current of $V_{C C} / R_{L}$, the col lector current of $Q_{1}$ will have the waveform shown in Fig. 14.4(c). Finally, Fig. 14.4(d) shows the waveform of the instantaneous power dissipation in $Q_{1}$,

$$
\begin{equation*}
p_{D 1} \equiv v_{C E 1} i_{C 1} \tag{14.6}
\end{equation*}
$$

### 14.2.3 Power Dissipation

Figure 14.4(d) indicates that the maximum instantaneous power dissipation in $Q_{1}$ is $V_{C C}{ }^{d}$ This is equal to the quiescent power dissipation in $Q_{1}$. Thus the emitter-follower transisto dissipates the largest amount of power when $v_{o}=0$. Since this condition (no input signal) can easily prevail for prolonged periods of time, transistor $Q_{1}$ must be able to withstand a continuous power dissipation of $V_{C C} I$

The power dissipation in $Q_{1}$ depends on the value of $R_{L}$. Consider the extreme case of an ontput open circuit, that is, $R_{L}=\infty$. In this case, $i_{C 1}=I$ is constant and the instantaneous power dissipation in $Q_{1}$ will depend on the instantaneous value of $v_{0}$ : The maximum powe dissipation will occur when $v_{O}=-V_{C C}$, for in this case $v_{C E 1}$ is a maximum of $2 V_{C C}$ and $p_{D 1}=$ $2 V_{c C} I$. This condition, however, would not normally persist for a prolonged interval, so the

1235


FIGURE 14.4 Maximum signal waveforns in the class A output stage of Fig. 14.2 under the condition $I=V_{C C} / R_{L}$ or, equivalcntly, $R_{L}=V_{C C} / I$.
design need not be that conservative. Observe that with an open-circuit load the average pbwer dissipation in $Q_{1}$ is $V_{c c}$. A far more dangerous situation occurs at the other extreme of $R_{L}-$ specifically, $R_{L}=0$. In the event of an output short circuit, a positive input voltage would theoretically result in an infinite load current. In practice, a very large current may flow through $Q_{1}$, and if the short-circuit condition persists, the resulting large power dissipation in $Q_{1}$ can raise its junction temperature beyond the specified maximum, causing $Q_{1}$ to burn up. To guard against such a situation, output stages are usually eqnipped with shortcircuit protection, as will be explained later.

The power dissipation in $Q_{2}$ also must be taken into account in designing an emiterfollower output stage. Since $Q_{2}$ conducts a constant current 1 , and the maximum value of $v_{C E 2}$ is $2 V_{C C}$, the maximum instantancous power dissipation in $Q_{2}$ is $2 V_{C C} I$. This maximum, however, occurs when $v_{O}=V_{c c}$, a condition that would not normally prevail for a prolonged period of time. A more significant quantity for design purposes is the average power dissipation in $Q_{2}$, which is $V_{c c} I$.

ExERGISE
143 Consider the emitter follower in Fig 142 with $V_{c C} \leq 10 V_{,}, 100 \mathrm{~mA}$, and $R_{I}=100 \Omega$. Find he power dissipated in $Q_{1}$ and $Q_{2}$ under quiescent conditions $\left(\left(_{0}=0\right)\right.$ For a sinisididal output volfage of

Ans. 1 Wil W. 0.5 W. I W, 0.5 W

### 14.2.4 Power-Conversion Efficiency

The power-conversion efficiency of an output stage is defined as

$$
\begin{equation*}
\eta \equiv \frac{\text { Load power }\left(P_{L}\right)}{\text { Supply power }\left(P_{S}\right)} \tag{14.7}
\end{equation*}
$$

For the emitter follower of Fig. 14.2, assuming that the output voltage is a sinusoid with the peak value $\hat{V}_{o}$, the average load power will be

$$
\begin{equation*}
P_{L}=\frac{\left(\hat{V}_{o} / \sqrt{2}\right)^{2}}{R_{L}}=\frac{1}{2} \frac{\hat{V}_{o}^{2}}{R_{L}} \tag{14.8}
\end{equation*}
$$

Since the current in $Q_{2}$ is constant (I), the power drawn from the negative supply ${ }^{1}$ is $V_{C C} I$. The average current in $Q_{1}$ is equal to $I$, and thus the average power drawn from the positive supply is $V_{C C} I$. Thus the total average supply power is

$$
\begin{equation*}
P_{S}=2 V_{C C} I \tag{14.9}
\end{equation*}
$$

Equations (14.8) and (14.9) can be combined to yield

$$
\begin{align*}
\eta & =\frac{1}{4} \frac{\hat{V}_{B}^{2}}{I R_{I} V_{C C}} \\
& =\frac{1}{4}\left(\frac{\hat{V}_{o}}{I R_{L}}\right)\left(\frac{\hat{V}_{o}}{V_{C C}}\right) \tag{14.10}
\end{align*}
$$

Since $\hat{V}_{o} \leq V_{C C}$ and $\hat{V}_{o} \leq I R_{L}$, maximum efficiency is obtained when

$$
\begin{equation*}
\hat{V}_{o}=V_{C C}=I R_{J .} . \tag{14.11}
\end{equation*}
$$

The maximum efficiency attainable is $25 \%$. Because this is a rather low figure, the class A output stage is rarely used in high-power applications ( $>1$ W). Note also that in practice the output voltage swing is limited to lower values to avoid transistor saturation and associated nonlinear distortion. Thus the efficiency achieved is usually in the $10 \%$ to $20 \%$ range.

## EXERCISE

 is an 8 -V-peak simusoid find the following: (a) the power defivered to the load; (b) the average powcr drawn from the supplies, (c) the power conversion efficichey.
Ignore the loss in $Q_{3}$ and $R$
ms. $0.32 \mathrm{~W}: 2 \mathrm{~W} .16 \%$

### 14.3 CLASS B OUTPUT STAGE

Figure 14.5 shows a class B output stage. It consists of a complementary pair of transistors (an $n p n$ and a $p n p$ ) connected in such a way that both cannot conduct simultaneously.


FIGURE 14.5 A class B output stage.

### 14.3.1 Circuit Operation

When the input voltage $v_{1}$ is zero, both transistors are cut off and the output voltage $v_{0}$ is zero. As $v_{1}$ goes positive and exceeds about $0.5 \mathrm{~V}, Q_{N}$ conducts and operates as an emitter follower. In this case $v_{O}$ follows $v_{l}\left(\right.$ (i.e., $v_{O}=v_{1}-v_{B E N}$ ) and $Q_{N}$ supplies the load current. Meanwhile, the emitter-base junction of $Q_{P}$ will be reverse-biased by the $V_{B E}$ of $Q_{N}$, which is approximately 0.7 V . Thus $Q_{P}$ will be cut off.

If the input goes negative by more than about $0.5 \mathrm{~V}, Q_{\rho}$ turns on and acts as an emitter ollower. Again $v_{o}$ follows $v_{l}$ (i.e., $v_{o}=v_{l}+v_{\text {IBP }}$ ), but in this case $Q_{P}$ supplies the load cur rent and $Q_{N}$ will be cut off

We conclude that the transistors in the class B stage of Fig. 14.5 are biased at zero cur ent and conduct only when the input signal is present. The circuit operates in a push-pul fashion: $Q_{N}$ pushes (sources) current into the load when $v_{l}$ is positive, and $Q_{P}$ pulls (sinks) current from the load when $\dot{v}_{I}$ is negative.

### 14.3.2 Transfer Characteristic

A sketch of the transfer characteristic of the class B stage is shown in Fig. 14.6. Note that A sketch of the transfer characteristic of the class B ere stage is transistors are cut off and $v_{0}$ is zero. This dead band results in the crossover distortion illustrated in Fig. 14.7 for the cas of an input sine wave. The effect of crossover distortion will be most pronounced when the amplitude of the input signal is small. Crossover distortion in audio power amplifiers give rise to unpleasant sounds.

### 14.3.3 Power-Conversion Efficiency

To calculate the power-conversion efficiency, $\eta$, of the class B stage, we neglect the cros over distortion and consider the case of an output sinusoid of peak amplitude $\hat{V}_{o}$. The ave age load power will be

$$
\begin{equation*}
P_{L}=\frac{1}{2} \frac{\hat{V}_{J}^{2}}{R_{L}} \tag{14.12}
\end{equation*}
$$

The current drawn from each supply will consist of half-sine waves of peak amplitud $\left(\hat{V}_{o} / R_{L}\right)$. Thus the average current drawn from each of the two power supplies will be


FIGURE 14.6 Transfer characteristic for the class B oulput stage in Fig. 14.5.


FIGURE 14.7 Illustrating how the dead band in the class B transfer characteristic results in crossover distortion.
$\hat{V}_{o} / \pi R_{L}$. It follows that the average power drawn from each of the two power supplies will be the same,

$$
\begin{equation*}
P_{S+}=P_{S-}=\frac{1}{\pi} \frac{\hat{V}_{o}}{R_{L}} V_{C C} \tag{14.13}
\end{equation*}
$$

and the total supply power will be

$$
\begin{equation*}
P_{S}=\frac{2}{\pi} \frac{\hat{V}_{o}}{R_{l}} V_{C C} \tag{14.14}
\end{equation*}
$$

Thus the efficiency will be given by

$$
\begin{equation*}
\eta=\left(\frac{1}{2} \frac{\hat{V}_{o}^{2}}{R_{J}}\right) /\left(\frac{2}{\pi} \frac{\hat{V}_{o}}{R_{L}} V_{C C}\right)=\frac{\pi}{4} \frac{\hat{V}_{O}}{V_{C C}} \tag{14.15}
\end{equation*}
$$

It follows that the maximum efficiency is obtained when $\hat{V}_{o}$ is at its maximum. This maximum is limited by the saturation of $Q_{N}$ and $Q_{P}$ to $V_{C C}-V_{C E s a l} \simeq V_{C C}$. At this value of peak output voltage, the power-conversion efficiency is

$$
\eta_{\max }=\frac{\pi}{4}=78.5 \%
$$

This value is much larger than that obtained in the class A stage ( $25 \%$ ). Finally, we note that the maximum average power available from a class B output stage is obtained by substitut ng $\hat{V}_{o}=V_{C C}$ in Eq. (14.12),

$$
\begin{equation*}
P_{I \text { max }}=\frac{1}{2} \frac{V_{C C}^{2}}{R_{i}} \tag{14.17}
\end{equation*}
$$

### 14.3.4 Power Dissipation

Unlike the class A stage, which dissipates maximum power under quiescent conditions ( $v_{o}=0$ ), the quiescent power dissipation of the class B stage is zero. When an input signal is applied, the average power dissipated in the class $\mathbf{B}$ stage is given by

$$
\begin{equation*}
P_{D}=P_{S}-P_{L} \tag{14.18}
\end{equation*}
$$

Substituting for $P_{S}$ from Eq. (14.14) and for $P_{L}$ from Eq. (14.12) results in

$$
\begin{equation*}
P_{D}=\frac{2}{\pi} \frac{\hat{V}_{o}}{R_{L}} V_{C C}-\frac{1}{2} \frac{\hat{V}_{o}^{2}}{R_{L}} \tag{14.19}
\end{equation*}
$$

From symmetry we see that half of $P_{D}$ is dissipated in $Q_{N}$ and the other half in $Q_{P}$. Thus $Q_{N}$ and $Q_{\mu}$ must be capable of safely dissipating $\frac{1}{2} P_{D}$ watts. Since $P_{D}$ depends on $\hat{V}_{0}$, we must find the worst-case power dissipation, $P_{D \max }$. Differentiating Eq. (14.19) with respect to $\hat{V}_{o}$ and equating the derivative to zero gives the value of $\hat{V}_{o}$ that results in maximum aver age power dissipation as

$$
\left.\hat{V_{o}}\right|_{P_{D \max }}=\frac{2}{\pi} V_{C C}
$$

Substituting this value in Eq. (14.19) gives

$$
\begin{equation*}
P_{D_{\text {max }}}=\frac{2 V_{C C}^{2}}{\pi^{2} R_{L}} \tag{1.}
\end{equation*}
$$

Thus,

$$
P_{D N \max }=P_{D P_{\max }}=\frac{V_{C C}^{2}}{\pi^{2} R_{L}}
$$

At the point of maximum power dissipation the efficiency can be evaluated by substituting for $\hat{V}_{0}$ from Eq. (14.20) into Eq. (14.15); hence, $\eta=50 \%$.
Figure 14.8 shows a sketch of $P_{D}$ (Eq. 14.19) versus the peak output voltage $\hat{V}_{0}$. Curve such as this are usually given on the data sheets of IC power amplifiers. (Usually, however, $P_{D}$ is plotted versus $P_{L}$, as $P_{L}=\frac{1}{2}\left(\hat{V}_{o}^{2} / R_{L}\right)$, rather than $\left.\hat{V}_{o}\right)$. An interesting observation follow from Fig. 14.8: Increasing $\hat{V}_{0}$ beyond $2 V_{C C} / \pi$ decreases the power dissipated in the class B


FIGURE 14.8 Power dissipation of the class B output stage versus amplitude of the output sinusoid.
stage while increasing the load power. The price paid is an increase in nonlinear distortion a a result of approaching the saturation region of operation of $Q_{N}$ and $Q_{P}$. Transistor saturation flattens the peaks of the output sine waveform. Unfortunately, this type of distortion cannot be significantly reduced by the application of negative feedback (see Section 8.2), and thus transislor saturation should be avoided in applications requiring low THD

## 

It is required to design a class $\mathbf{B}$ output stage to deliver an average power of 20 W to an $8-\Omega$ load. The power supply is to be selected such that $V_{C C}$ is about 5 V greater than the peak output voltage, This avoids transistor saturation and the associated nonlinear distortion, and allows for including short-circuit protection circuitry. (The latter will be discussed in Section 14.7.) Determine the supply voltage required, the peak current drawn from each supply, the total supply power, and the power-conversion efficiency. Also determine the maximum power that each transistor must be able to dissipate safely.

## Solution

Since
then

$$
\begin{aligned}
\hat{V}_{o} & =\sqrt{2 P_{L} R_{L}} \\
& =\sqrt{2 \times 20 \times 8}=17.9 \mathrm{~V}
\end{aligned}
$$

Therefore we select $V_{C C}=23 \mathrm{~V}$.
The peak current drawn from each supply is

$$
\hat{I}_{o}=\frac{\hat{V}_{o}}{R_{L}}=\frac{17.9}{8}=2.24 \mathrm{~A}
$$

The average power drawn from each supply is

$$
P_{S+}=P_{S-}=\frac{1}{\pi} \times 2.24 \times 23=16.4 \mathrm{~W}
$$

for a total supply power of 32.8 W . The power-conversion efficiency is

$$
\eta=\frac{P_{L}}{P_{S}}=\frac{20}{32.8} \times 100=61 \%
$$

The maximum power dissipated in cach transistor is given by Eq. (14.22); thus

$$
\begin{aligned}
P_{D N \max } & =P_{D P_{\text {max }}}=\frac{V_{C C}^{2}}{\pi^{2} R_{L}} \\
& =\frac{(23)^{2}}{\pi^{2} \times 8}=6.7 \mathrm{~W}
\end{aligned}
$$

### 14.3.5 Reducing Crossover Distortion

The crossover distortion of a class B output stage can be reduced substantially by employing a high-gain op amp and overall negative feedback, as shown in Fig. 14.9. The $\pm 0.7-V$ dead band is reduced to $\pm 0.7 / A_{0}$ volt, where $A_{0}$ is the de gain of the op amp. Nevertheless, the slew-rate limitation of the op amp will cause the alternate turning on and off of the outpu transistors to be noticeable, especially at high frequencies. A more practical method for reducing and almost eliminating crossover distortion is found in the class AB stage, which will be studied in the next section.

### 14.3.6 Single-Supply Operation

The class B stage can be operated from a single power supply, in which case the load is capacitively coupled, as shown in Fig. 14.10. Note that to make the formulas derived in Section 14.3.4 directly applicable, the single power supply is denoted $2 V_{C C}$.


FIGURE 14.9 Class B circuit with an op amp connected in a negative-feedback loop to reduce crossover distorion.



 MUリIIU,



### 14.4 CLASS AB OUTPUT STAGE

Crossover distortion can be virtually eliminated by biasing the complementary output transistors at a small nonzero current. The result is the class AB output stage shown in Fig. 14.11. A bias vollage $V_{B D}$ is applied between the bases of $Q_{\mathrm{N}}$ and $Q_{P}$. For $v_{I}=0, v_{O}=0$, and a voltage $V_{B B} / 2$ appears across the base-cmitter junction of each of $Q_{N}$ and $Q_{P}$. Assuming


FIGURE 14.11 Class AB output stage. A bias vollage $V_{B B}$ is applied between the bascs of $Q_{N}$ and $Q_{P}$, giving rise to a bias current $I_{\varrho}$ given by Eq. (14.23). Thus, for small $v_{r}$, both transistors conduct and crossover distortion is almost completely climinated.
matched devices,

$$
\begin{equation*}
i_{N}=i_{P}=I_{Q}=I_{S} e^{V_{B B} / 2 V_{T}} \tag{14.23}
\end{equation*}
$$

The value of $V_{B B}$ is selected to yield the required quiescent current $I_{Q}$.

### 14.4.1 Circuit Operation

When $v_{I}$ goes positive by a certain amount, the voltage at the base of $Q_{N}$ increases by the same amount and the output becomes positive at an almost equal value,

$$
\begin{equation*}
v_{0}=v_{l}+\frac{V_{B \dot{B}}}{2}-v_{B E N} \tag{14.24}
\end{equation*}
$$

The positive $\dot{v}_{O}$ causes a current $i_{L}$ to flow through $R_{L}$, and thus $i_{N}$ must increase; that is,

$$
\begin{equation*}
i_{N}=i_{p}+i_{L} \tag{14.25}
\end{equation*}
$$

The increase in $i_{N}$ will be accompanied by a corresponding increase in $v_{B E N}$ (above the quics cent value of $V_{B B} / 2$ ). However, since the voltage between the two bases remains constant at $V_{B B}$, the increase in $v_{A E N}$ will result in an equal decrease in $v_{E B P}$ and hence in $i_{P}$. The relationship between $i_{j}$ and $i_{p}$ can he derived as follows:

$$
\begin{gathered}
v_{B E N}+v_{E B P}=V_{B B} \\
V_{T} \ln \frac{i_{N}}{I_{S}}+V_{T} \ln \frac{i_{P}}{I_{S}}=2 V_{T} \ln \frac{I_{Q}}{I_{S}} \\
i_{N} i_{P}=I_{Q}^{2}
\end{gathered}
$$

Thus, as $i_{N}$ increases, $i_{P}$ decreases by the same ratio while the product remains conslant Equations (14.25) and (14.26) can be combined to yield $i_{N_{N}}$ for a given $i_{L}$ as the solution to the quadratic equation

$$
\begin{equation*}
i_{N}^{2}-i_{L} i_{N}-I_{Q}^{2}=0 \tag{14.27}
\end{equation*}
$$

From the equations above, we can see that for positive output voliages, the load current is supplied by $Q_{N}$, which acts as the output emitter follower. Meanwhile, $Q_{P}$ will be conducting a current that decreases as $v_{O}$ iucreases; for large $v_{o}$ the current in $Q_{P}$ can be ignored altogether.
For negative input voltages the opposite occurs: The load current will be supplied by $Q_{P}$, which acts as the output emitter follower, while $Q_{\mathbb{N}}$ conducts a current that gets smaller as $v_{l}$
becomes more negative. Equation (14.26), relating $i_{N}$ and $i_{p}$, holds for negative inputs as well. We conclude that the class AB stage operates in much the same manner as the class B We conclude that the class AB stage operates in much the same manner as the class B ircuit, with one important exception. For small $v_{l}$, both trand ons and and as $v_{l}$ is increased or decreased, one of the two transistors takes over the operation. Since the transiion is a smooth one, crossover distortion will be almo hows the transfer characteristic of the class AB stage.

The power relationships in the class $A B$ stage are almost identical to those derived for he class B circuit in Section 14.3. The only difference is that under quiescent conditions the class AB circuit dissipates a power of $V_{c c} I_{Q}$ per transistor. Since $I_{Q}$ is usually much smaller than the peak load current, the quiescent power dissipation is usually small. Nevertheless, it an be taken into account easily. Specifically, we can simply add the quiescent dissipation per transistor to its maximum power dissipation with an input signal applied, to obtain the total power dissipation that the transistor must be able to handle safely.


FIGURE 14.12 Transfer characteristic of the class AB stage in Fig. 14.11.


### 14.4.2 Output Resistance

If we assume that the source supplying $v_{f}$ is ideal, then the output resistance of the class AB stage can be determined from the circuit in Fig. 14.13 as

$$
\begin{equation*}
R_{\text {out }}=r_{e N} \| r_{e P} \tag{14.28}
\end{equation*}
$$

where $r_{e N}$ and $r_{e \rho}$ are the small-signal emitter resistances of $Q_{N}$ and $Q_{P}$, respectively. At a given inpul voltage, the currents $i_{N}$ and $i_{p}$ can be determined, and $r_{e N}$ and $r_{e p}$ are given by

$$
\begin{aligned}
& r_{e N}=\frac{V_{T}}{i_{N}} \\
& r_{e P}=\frac{V_{T}}{i_{P}}
\end{aligned}
$$

Thus

$$
R_{\mathrm{out}}=\frac{V_{T}}{i_{N}} \| \frac{V_{T}}{i_{P}}=\frac{V_{T}}{i_{P}+i_{N}}
$$

Since as $i_{N}$ increases, $i_{P}$ decreases, and vice versa, the output resistance remains approximately constant in the region around $v_{I}=0$. This, in effect, is the reason for the virtual absence of crossover distortion. At larger load currents, either $i_{N}$ or $i_{p}$ will be significant, and $R_{\text {out }}$ decreases as the load current increases.

ExERCISE
14.6 Conilder a class AB circuit with $V_{C C}=15 V_{L} 1_{e}=2 \mathrm{~mA}$, and $R_{L}=100 \Omega$. Determine $V_{\text {BF }}$ Construct

 incremental gain obtained as $R_{L}\left(R_{L}+R_{\text {out }}\right.$.) The incremental gain is eqtat to the slope of the transfer curte at the operating point: Assime $Q_{n}$ and $Q_{N}$ to be matched with $I=10^{3}$. A Ans. $V_{B S}=1.186$ N

\% 4	$4 \operatorname{maf} 4 \times f(\mathrm{~A})$		Iflnat			viv	$V_{0} \mathrm{~V}=\mathrm{B}=(\mathrm{si})$		Vivit
+10.0.	100	100.04	0.04	0.691	0.495	10.1	0.99	025	100.
+5.0.	50	50.08	0.08	0.673	0.513	5.08	0.98	0.50	100
-1.0.	10	10.39	039	0.634	0.552	104.	0.96	2.32	0.98 .
+0.5.	5	570	0.70	0.619	0.567	0.526	0.95	4.03	0.96
40.2	2	3.24	1.24	0.605	0.581	0.212	0.94	558	0.95
401	4	2.56	4.56	0.509	0.587.	0.106	0.94	667	0.94.
0.	$\bigcirc$	${ }^{2}$.	2.	0.593	0.593	$0^{0 .}$	-	6.25	0.94
-0.1.	4	156	2.56	0.587	0.599	-0.106	0.94	697	0.94
-02	$-2$	1.24	324	0581	0.605	-0.212	0.94	5.58	095
0.5	-5	0.70	570	0.567	0.619	-0.526	095	4.03	0,96
40	$-10$	0.39	10.39	0.552	0.634	-1.041	0.96	2.32	0.98
-5.0	-50	0.08	50.08	0.513	0.673	-5.08	0.98	0.50	100
-100	-100	0.04	10004	0.495	0.691	-101	0.99	0.25	100.

## 24 14.5 BIASING THE CLASS AB CIRCUIT

In this section we discuss two approaches for generating the voltage $V_{B B}$ required for biasing the class $A B$ output stage.

### 14.5.1 Biasing Using Diodes

Figure 14.14 shows a class AB circuit in which the bias voltage $V_{B B}$ is generated by passing a constant current $I_{\text {BIAS }}$ through a pair of diodes, or diode-connected transistors, $D_{1}$ and $D_{2}$ In circuits that supply large amounts of power, the output transistors are large-geometry devices. The biasing diodes, however, need not be large devices, and thus the quiescent current $I_{Q}$ established in $Q_{N}$ and $Q_{P}$ will be $I_{Q}=n I_{\mathrm{BIAS}}$, where $n$ is the ratio of the emitterjunction arca of the oupput devices to the junction area of the biasing diodes. In other words, the saturation (or scalc) current $I_{S}$ of the output transistors is $n$ times that of the biasing diodes. Area ratioing is simple to implement in integrated circuits but difficult to realize in discrete-circuit designs.


FIGURE 14.14 A class AB output stage utiliz, ing diodes for biasing. If the junction arca of the output devices, $Q_{N}$ and $Q_{p}$, is $n$ times that of the bias
ing devices $D_{1}$ and $D_{\text {, }}$, and a quiescent curren $I_{e}=n I_{\text {UIAS }}$ flows in the oulput devices.

When the output stage of Fig. 14.1.4 is sourcing current to the load, the base current of $Q$ increases from $I_{Q} / \beta_{N}$ (which is usually small) to approximately $i_{l} / \beta_{N}$. This base current drive must be supplied by the current source $I_{\text {Blas }}$. It follows that $I_{\text {BIAS }}$ must be greater than the maximum anticipated base drive for $\mathcal{Q}_{N}$. This sets a lower limit on the value of $I_{\text {RIA }}$. Now, ince $I_{Q}=n I_{\text {BAA }}$ and since $I_{Q}$ is usually much smaller than the peak load current ( $<10 \%$ ), $W$ maller than the output devices. This is a disadvantage of the diode biasing scheme
From the discussion above we see that the current through rhe biasing diodes will decrease when the output stage is sourcing current to the load. Thus the bias voltage $V_{B u}$ will also decrease, and the analysis of Section 14.4 must be modified to take this effect into account.

The diode biasing arrangement has an important advantage: It can provide thermal stabi ization of the quiescent current in the output stage. To appreciate this point recall that the class AB output stage dissipates power under quiescent conditions. Power dissipation raise the internal temperature of the BJTs. From Chapter 5 we know that a rise in transistor tem perature results in a decrease in its $V_{B E}$ (approximately $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ ) if the collector current is held constant. Alternatively, if $V_{B E}$ is held constant and the temperature increases, the collector current increases. The increase in collector current increascs the power dissipation, which in turn increases the collector current. Thus a positive-feedback mechanism exist that can result in a phenomenon called thermal runaway. Unless checked, thermal runaway can lead to the ultimate destruction of the BJT. Diode biasing can be arranged to provide compensating effect that can protect the output transistors against thermal runaway unde quiescent conditions. Specifically, if the diodes are in close thermal contact with the output transistors, their temperature will increase by the same amount as that of $Q_{N}$ and $Q_{p}$. Thus $V_{B B}$ will decrease at the same rate as $V_{B E N}+V_{E B P}$, with the result that $I_{Q}$ remains constant Close thermal contact is easily achieved in IC fabrication. It is obtained in discrete circuits by mounting the bias diodes on the metal case of $Q_{N}$ or $Q_{P}$.

## iny ix

Consider the class AB output stage under the conditions that $V_{C C}=15 \mathrm{~V}, R_{L}^{\prime}=100 \Omega$, and the output is sinusoidal with a maximum amplitude of 10 V . Let $Q_{N}$ and $Q_{P}$ be matched with $I_{s}=10^{-1.3} \mathrm{~A}$ and $\beta=50$. Assume that the biasing diodes have one-third the junction area of the output devices. Find the value of $I_{\text {BIAS }}$ that guarantees a minimum of 1 mA through the diodes at all times. Determine the quiescent current and the quiescent power dissipation in the output transistors (i.e., at $v_{O}=0$ ). Also find $V_{B B}$ for $v_{O}=0,+10 \mathrm{~V}$, and -10 V .
14.5 BIASING THE CLASS AB CIRCUI1247

## Solution

The maximum current through $Q_{N}$ is approximately equal to $i_{L \text { max }}=10 \mathrm{~V} / 0.1 \mathrm{k} \Omega=100 \mathrm{~mA}$. Thus the maximum base current in $Q_{N}$ is approximately 2 mA . To maintain a minimum of 1 mA through the diodes, we selcct $I_{\text {BIAS }}=3 \mathrm{~mA}$. The area ratio of 3 yields a quiescent current of 9 mA through $Q_{N}$ and $Q_{P}$. The quiescent power dissipation is

$$
P_{D Q}=2 \times 15 \times 9=270 \mathrm{~mW}
$$

For $v_{0}=0$, the base current of $Q_{N}$ is $9 / 51 \simeq 0.18 \mathrm{~mA}$, leaving a current of $3-0.18=2.82 \mathrm{~mA}$ to flow through the diodes. Since the diodes have $I_{S}=\frac{1}{3} \times 10^{-13} \mathrm{~A}$, the voltage $V_{B B}$ will be

$$
V_{B B}=2 V_{T} \ln \frac{2.82 \mathrm{~mA}}{I_{S}}=1.26 \mathrm{~V}
$$

At $v_{O}=+10 \mathrm{~V}$, the current hrough the diodes will decrease to 1 mA , resulting in $V_{B B} \simeq 1.21 \mathrm{~V}$ At the other exireme of $v_{0}=-10 \mathrm{~V}, Q_{N}$ will be conducting a very small curient; thus its base current will be negligibly small and all of $I_{\text {BIAS }}(3 \mathrm{~mA})$ flows through the diodes, resulting in $V_{B B} \simeq 1.26 \mathrm{~V}$.

## EXERCISES




 every $1 \circ \mathrm{C}$ rise in lemperature. For a device operatitg at $I_{c}=10 \mathrm{~mA}$, find the change in collector curren resulting from an increase in temperature of $5^{\circ} \mathrm{C}$
Ans: 4 mA

### 14.5.2 Biasing Using the $V_{B E}$ Multiplier

An alternative biasing arrangement that provides the designer with considerably more flexibility in both discrete and integrated designs is shown in Fig. 14.15. The bias circuit consists of transistor $Q_{1}$ with a resistor $R_{1}$ connected between base and emitter and a feedback resistor $R_{2}$ connected between collector and base. The resulting two-terminal network is fed with or $R_{2}$ connected between collector and base. The resulting two-terminal network is fed with constant-current source $I_{\text {BIAS }}$. If we neglect the base current of $Q_{1}$, then $R_{1}$ and $R_{2}$ will carry the same current $I_{R}$, given by

$$
\begin{equation*}
I_{R}=\frac{V_{B E ;}}{R_{1}} \tag{14.32}
\end{equation*}
$$

and the voltage $V_{B B}$ across the bias network will be

$$
\begin{align*}
V_{B B} & =I_{R}\left(R_{1}+R_{2}\right) \\
& =V_{B E 1}\left(1+\frac{R_{2}}{R_{1}}\right) \tag{14.33}
\end{align*}
$$

Thus the circuit simply multiplies $V_{B P 1}$ by the factor $\left(1+R_{2} / R_{1}\right)$ and is known as the " $V_{B /}$ multiplier." The multiplication factor is obviously under the designer's control and can be


FIGURE 14.15 A class AB output stage utilizing a $V_{B E}$ multiplier for biasing.


FIGURE 14.16 A discrete-circuit class AB output stage with a potentioneter used in the $V_{D E}$ multiplicr. The potentiometer is adjusted to yield the desired value of quiescent current in $Q_{N}$ and $Q_{P}$.
used to establish the value of $V_{B B}$ required to yield a dcsircd quiescent current $I_{Q}$. In IC design it is relatively easy to control accurately the ratio of two resistances. In discreteircuit design, a potentiometer can be used, as shown in Fig. 14.16, and is inanually set to produce the desired value of $I_{Q}$.

The value of $V_{B E 1}$ in Eq. (14.33) is determined by the portion of $I_{\text {BIAS }}$ that flows through the collector of $Q_{1}$; that is,

$$
\begin{align*}
I_{C 1} & =I_{\mathrm{BIAS}}-I_{R} \\
V_{B E 1} & =V_{T} \ln \frac{I_{C 1}}{I_{S 1}} \tag{14.35}
\end{align*}
$$

where we have neglected the base current of $Q_{N}$, which is normally small both under quiesent conditions and when the output voltage is swinging negative. However, for positive $v_{0}$ especially at and near its peak value, the base current of $Q_{N}$ can become sizable and will reduce the current available for the $V_{B E}$ multiplier. Nevertheless, since large changes in $I_{C}$ correspond to only small changes in $V_{B E 1}$, the decrease in current will be mostly absorbed by $Q_{1}$, leaving $I_{R}$, and hence $V_{B B}$, almost constant.

## EXERGISE

14.9 Consder a $V_{F}$. multipfier with $R:=R_{2}=12 \mathrm{k} \Omega$, utilizing a transistor that has $V_{R E}=0.6 \mathrm{~V}$ at $I_{C}=1 \mathrm{~mA}$ and a ver high $\beta$ (a) Find the vatue of the cirrent $/$ that should be supplied to the multiplier to obtain a and a very high $\beta$. (a) Find the value of the current I that should be supplied to the mumpies of otan the $12 . \mathrm{V}$ value by $+50 \mathrm{mV},+100 \mathrm{mV}, 4200 \mathrm{mV}, 50 \mathrm{mV},-100 \mathrm{mV},-200 \mathrm{mV}$,

## 

Like the diode biasing network, the $V_{B E}$-multiplier circuit can provide thermal stabiliza tion of $I_{Q}$. This is especially true if $R_{1}=R_{2}$ and $Q_{1}$ is in close thermal contact with the outpu ransistors.

## 34Mr

It is required to redesign the output stage of Example 14.2 utilizing a $V_{B E}$ multiplier for bias ing. Use a small-geometry transistor for $Q_{1}$ with $I_{s}=10^{-14} \mathrm{~A}$ and design for a quiescent curren $I_{Q}=2 \mathrm{~mA}$.

## Solution

Since the peak positive current is 100 mA , the base current of $Q_{N}$ can be as high as 2 mA . We shall therefore select $I_{\text {BIAs }}=3 \mathrm{~mA}$, thus providing the multiplier with a minimum current of 1 mA .
Under quiescent conditions ( $y_{O}=0$ and $i_{L}=0$ ) the base current of $Q_{N}$ can be neglected and all of $I_{\mathrm{HIAS}}$ flows through the multiplier. We now must decide on how this current ( 3 mA ) is to be divided between $I_{C 1}$ and $I_{R}$. If we select $I_{R}$ greater than 1 mA , the transistor will be almost cut off at the positive peak of $v_{O}$. Therefore, we shall selcct $I_{R}=0.5 \mathrm{~mA}$, leaving 2.5 mA for $I_{C 1}$
To obtain a quiescent current of 2 mA in the output transistors, $V_{B B}$ should be

$$
V_{B B}=2 V_{T} \ln \frac{2 \times 10^{-3}}{10^{-13}}=1.19 \mathrm{~V}
$$

We can now determine $R_{1}+R_{2}$ as follows:

$$
R_{1}+R_{2}=\frac{V_{B B}}{I_{R}}=\frac{1.19}{0.5}=2.38 \mathrm{k} \Omega
$$

At a collcctor current of $2.5 \mathrm{~mA}, Q_{1}$ has

$$
V_{B E 1}=V_{T} \ln \frac{2.5 \times 10^{-3}}{10^{-14}}=0.66 \mathrm{~V}
$$

The value of $R_{1}$ can now be determined as

$$
R_{1}=\frac{0.66}{0.5}=1.32 \mathrm{k} \Omega
$$

and $R_{2}$ as

$$
R_{2}=2.38-1.32=1.06 \mathrm{k} \Omega
$$

## W䜌 14.6 POWER BJTS

Transistors that are required to conduct currents in the ampere range and withstand power dissipation in the watts and tens-of-watts ranges differ in their physical structure, packaging, and specification from the small-signal transistors considered in earlier chapters. In this section we consider some of the important properties of power transistors, especially those aspects that pertain to the design of circuits of the type discussed earlier. There are, of course, other important applications of power transistors, such as their use as switching elements in power inverters and motor-control circuits. Such applications are not studied in this book.

### 14.6.1 Junction Temperature

Power transistors dissipate large amounts of power in their collector-base junctions. The dissipated power is converted into heat, which raises the junction temperaturc. However, the jissipation temperature $T_{y}$ must not be allowed to exceed a specified maximum. $T_{\text {ser }}$; otherwise the transistor could suffer pernanent danage. For silicon devices, $T_{\text {, }}$ is in the range of $150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$.

### 14.6.2 Thermal Resistance

Consider first the situation of a transistor operating in free air-that is, with no special arrangements for cooling. The heat dissipated in the transistor junction will be conducted away from the junction to the transistor case, and from the case to the surrounding environment. In a steady state in which the transistor is dissipating $P_{D}$ watts, the temperature rise of the junction relative to the surrounding ambience can be expressed as

$$
\begin{equation*}
T_{J}-T_{A}=\theta_{J A} P_{D} \tag{14.36}
\end{equation*}
$$

where $\theta_{J A}$ is the thermal resistance between junction and amhience, having the units of degrees Celsius per watt. Note that $\theta_{J A}$ simply gives the rise in junction temperature over the ambient temperature for each watt of dissipated power. Since we wish to be able to dissipate large amounts of power without raising the junction temperature above $T_{\text {Imax }}$, it is desirable to have, for the thermal resistance $\theta_{J A}$, as small a valuc as possible. For operation in free air,


FIGURE 14.17 Elctrical equivalent circuit of the thermalconduction process; $T_{J}-T_{A}=P_{\nu} \theta_{J A}$.
$\theta_{\mu}$ depends primarily on the type of case in which the transistor is packaged. The value of $\theta_{J A}$ is usually specified on the transistor data sheet.
Equation (14.36), which describes the thermal-conduction process, is analogous to hm's law, which describes the electrical-conduction process. In this analogy, power dissi pation corresponds to curent, temperature difference corresponds to voltage difference, and therinal resistance corresponds to electrical resistance. Thus, we may reprcsent the thermal conduction process by the electric circuit shown in Fig. 14.17.

### 14.6.3 Power Dissipation Versus Temperature

The transistor manufacturer usually specifies the maximum junction temperature $T_{\text {Jmax }}$, the maximum power dissipation at a particular ambient temperature $T_{A 0}$ (usually, $25^{\circ} \mathrm{C}$ ), and the hermal resistance $\theta_{A A}$. In addition, a graph such as that shown in Fig. 14.18 is usually pro vided. The graph simply states that for operation at ambient ter if the device is to be oper evice can safely dissipathe rem dissipation must b ated at higher ant the straight line shown in Fig 14.18. The power-derating curve is erated according to graphical representation ( Eq. (14.36). Spainur ( $P$ ) then the juction temperature ${ }_{10}$ and the power dissip will be $T$. Substituting these quantities in Eq (1436) results in

$$
\begin{equation*}
\theta_{J A}=\frac{T_{Y_{\text {max }}}-T_{A 0}}{P_{D 0}} \tag{14.37}
\end{equation*}
$$

which is the inverse of the slope of the power-derating straight line. At an ambient temperature $T_{A}$, higher than $T_{A 0}$, the maximum allowable power dissipation $P_{D \max }$ can be obtained from Eq. (14.36) by substituting $T_{I}=T_{I m a x}$; thus,

$$
P_{D \text { max }}=\frac{T_{\max }-T_{A}}{\theta_{J \Lambda}}
$$



IGURE 14.18 位 free air. This is known as a "power-derating" curve.

Observe that as $T_{A}$ approaches $T_{\text {max }}$, the allowable power dissipation decreases; the lower thermal gradient limits the amount of heat that can be removed from the junction. In the extreme situation of $T_{A}=T_{\text {Jmax }}$, no power can be dissipated because no heat can be removed from the junction.

## 

A BJT is specified to have a maximum power dissipation $P_{D 0}$ of 2 W at an ambient temperature $T_{A 0}$ of $25^{\circ} \mathrm{C}$, aud a maximum junction temperature $T_{\operatorname{smax}}$ of $150^{\circ} \mathrm{C}$. Find the following
(a) The chermal resistance $\theta_{J A}$.
(b) The maximum power that can be safely dissipated at an ambient temperature of $50^{\circ} \mathrm{C}$.
(c) The junction temperature if the device is operating at $T_{A}=25^{\circ} \mathrm{C}$ and is dissipating 1 W .

## Solution

(a) $\theta_{J A}=\frac{T_{J \max }-T_{A 0}}{P_{D 0}}=\frac{150-25}{2}=62.5^{\circ} \mathrm{C} / \mathrm{W}$
(b) $P_{D \max }=\frac{T_{J_{\max }-T_{A}}^{\theta_{J A}}}{}=\frac{150-50}{62.5}=1.6 \mathrm{~W}$
(c) $T_{J}=T_{A}+\theta_{J A} P_{D}=25+62.5 \times 1=87.5^{\circ} \mathrm{C}$

### 14.6.4 Transistor Case and Heat Sink

The thermal resistance between junction and ambience, $\theta_{J A}$, can be expressed as

$$
\begin{equation*}
\theta_{J A}=\theta_{J C}+\theta_{C A} \tag{14.39}
\end{equation*}
$$

where $\theta_{j C}$ is the thermal resistance between junction and transistor case (package) and $\theta_{C A}$ is he thermal resistance between case and ambience, For a given transistor, $\theta_{J}$ is fixed by the device design and packaging. The device manufacturer can reduce $\theta_{J c}$ by encapsulating the dissipated) in direct contact with the case Most high-power transistors most of the heat is ashion Figure 14.19 shows a sketch of typical pack $\theta_{\text {- }}$ Allough the circuit designer has a typical package
adrer over $\theta_{J C}$ (once a particular transistor has been selected, the designer can considerably reduce $\theta_{C A}$ below its free-air value (specifie facilitate heat transfer from case to ambience A popular be effected by providing means he chassis or to an extended metal surface Such a metal surface then functions as ink. Heat is easily conducted from the transistor case to the heat sink; that is the resistance $\theta_{c}$ is usually vary soll Also, heti cificienly tanfent by covection


FIGURE 14.19 The popular 103 package for power transistors. The case is metal with a diameter of about 2.2 cm ; the outside dimension of the "seating plane" is about 4 cm . The seating plane has two holes for screws to bolt it to a heat sink. The collector is electrically connected to the casc. Therefore an transistor case and the "heat sink."


FIGURE 14.20 Electrical nalog of the thermal condw tion process when a heat sink is utilized.


FIGURE 14.21 Maximum allowable power dissipation versus transistor-case temperature.
radiation) from the heat sink to the ambience, resulting in a low thermal resistance $\theta_{S A}$. Thus, if a heat sink is utilized, the case-to-ambience thermal resistance given by

$$
\begin{equation*}
\theta_{C A}=\theta_{C S}+\theta_{S A} \tag{14.40}
\end{equation*}
$$

can be small because its two components can be made small by the choice of an appropriate heat sink. ${ }^{2}$ For example, in very high-power applications the heat sink is usually equipped with fins that further facilitate cooling by radiation and convection.

The electrical analog or the thernal-conduction process when a heat sink is employed is shown in Fig. 14.20, from which we can write

$$
T_{J}-T_{A}=P_{D}\left(\theta_{J C}+\theta_{C: S}+\theta_{S A}\right)
$$

As well as specifying $\theta_{J C}$, the device manufacturer usually supplies a derating curve for $P_{D \text { max }}$ versus the case temperature, $T_{C}$. Such a cnrve is shown in Fig. 14.21. Note that the slope of the power-derating straight line is $-1 / \theta_{J C}$. For a given transistor, the maximum

As noted earlicr, the metal case of a power transistor is electrically connected to the collector. Thus a electicully insulating material such as mica is usually placed betwcen the metal case and the metal hea sink. Also, insulating bushings and washers are generally used in bolting the transistor to the heat sink.
power dissipation at a case temperature $T_{C 0}$ (usually $25^{\circ} \mathrm{C}$ ) is much greater than that at an ambient temperature $T_{A 0}$ (usually $25^{\circ} \mathrm{C}$ ). If the device can be maintained at a case temper ture $T_{C}, T_{C 0} \leq T_{C} \leq T_{\text {jmax }}$ then the maximum safc power dissipation is obtained whe $T_{j}=T_{\text {max }}$,

$$
\begin{equation*}
P_{D \text { max }}=\frac{T_{J \text { max }}-T_{C}}{\theta_{J C}} \tag{14.42}
\end{equation*}
$$

## 

A BJT is specified to have $T_{I_{\text {max }}}=150^{\circ} \mathrm{C}$ and to be capable of dissipating maximum power as follows

$$
\begin{aligned}
40 \mathrm{~W} \text { at } T_{C} & =25^{\circ} \mathrm{C} \\
2 \mathrm{~W} \text { at } T_{A} & =25^{\circ} \mathrm{C}
\end{aligned}
$$

Above $25^{\circ} \mathrm{C}$, the maximum power dissipation is to be derated linearly with $\theta_{J C}=3.12^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{J A}=62.5^{\circ} \mathrm{C} / \mathrm{W}$. Find the following
(a) The maximum power that can be dissipated safely by this transistor when operated in frec air at $T_{A}=50^{\circ} \mathrm{C}$.
(b) The maximum power that can be dissipated safely by this transistor when opcrated at an ambicnt temperature of $50^{\circ} \mathrm{C}$, but with a heat sink for which $\theta_{C S}=0.5^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{S 4}=4^{\circ} \mathrm{C} / \mathrm{W}$. Find the temperature of the case'and of the heal sink.
(c) The maximum power that can be dissipated safely if an infinite heat $\operatorname{sink}$ is used and $T_{A}=50^{\circ} \mathrm{C}$.

## Solution

(a)

$$
P_{D \max }=\frac{T_{J \text { mix }}-T_{A}}{\theta_{J A}}=\frac{150-50}{62.5}=1.6 \mathrm{~W}
$$

(b) With a heat sink, $\theta_{J A}$ bccomes

$$
\theta_{J A}=\theta_{J C}+\theta_{C S}+\theta_{S \Lambda}
$$

$$
=3.12+0.5+4=7.62^{\circ} \mathrm{C} / \mathrm{W}
$$

Thus,

$$
P_{D_{\max }}=\frac{150-50}{7.62}=13.1 \mathrm{~W}
$$

Figure 14.22 shows the thermal equivalent circuit with the various temperatures indicated.
(c) An infinite heat sink, if it existed, would cause the case temperature $T_{C}$ to equal the ambient temperature $T_{A}$. The infinite heal sink has $\theta_{C A}=0$. Obviously, onc cannot buy an infinite heat sink; nevertheless, this terminology is used by some manufacturcrs to describe the power-derating curve of Fig. 14.21. The abscissa is then labeled $T_{A}$ and the curve is called "power dissipatio versus ambient temperature with an infinite heat sink." For our cxample, with infinite heat sink,

$$
P_{D \max }=\frac{T_{J_{\max }}-T_{A}}{\theta_{J C}}=\frac{1.50-50}{3.12}=32 \mathrm{~W}
$$



FIGURE 14.22 Thermal equivalent circuit for Example 14.5.
The advantage of using a heat sink is clearly evident from Example 14.5: With a heat ink, the maximum allowable power dissipation increases from 1.6 W to 13.1 W . Also note hat although the transistor considered can be called a " $40-\mathrm{W}$ transistor," this level of powe dissipation cannot be achieved in practice; it would require an intinite heat sink and an ambient temperature $T_{A} \leq 25^{\circ} \mathrm{C}$.

## EXERCISE


$12350 \%=146 / W$ If in a particular applicition this device is to dissipate 50 V and operate at


Wanse (iec $\left.\theta_{50}\right)$ Assume
Ans 13OW: 130
3

### 14.6.5 The BJT Safe Operating Area

In addition to specifying the maximum power dissipation at different case temperatures, power-transistor manufacturers usually provide a plot of the boundary of the safe operating area (SOA) in the $i_{C}-v_{C E}$ plane. The SOA specification takes the form illustrated by the sketch in Fig. 14.23; the following paragraph numbers conespond to the boundaries on the sketch.

1. The maximum allowable current $l_{\text {cinax }}$. Exceeding this current on a continuous basis can result in melting the wires that bond the device to the package terminals.
2. The maximum power dissipation hyperbola. This is the locus of the points for which $v_{C E} i_{C}=P_{D \text { max }}\left(\right.$ at $\left.T_{C 0}\right)$. For temperatures $\tau_{C}>T_{C 0}$, the power-derating curves $v_{C E}{ }^{i} C=P_{D \text { max }}$ (at $T_{C O}$. For hould be used to obtain the applicable $P_{D \text { max }}$ and thus a
described in Section 14.6.4 should correspondingly lower hyperbola. Although the operating point can be allowed to move temporarily above the hyperbola, the average power dissipation should not be allowed to exceed $P_{D \text { max }}$.


FIGURE 14.23 Safe operuting area (SOA) of a BJT.
3. The second-breakdown limit. Second breakdown is a phenomenon that results because current flow across the emitter-base junction is not uniform. Rather, the current density is greatest near the periphery of the junction. This "current crowding" gives rise to increased localized power dissipation and hence temperature rise (at localized form of thermal since a temperature rise causes an increase in current, a localized form of thermal runaway can occur, leading to junction destruction.
4. The collector-to-emitter breakdown voltage, $B V_{C E O}$. The instantaneous value of $v_{C E}$ should never be allowed to exceed $B V_{\text {CEO }}$; otherwise, avalanche breakdown of the collector-base junction may occur (see Section 5.2.5).
Finally, it should be mentioned that logarithmic scales are usually used for $i_{C}$ and $v_{C E}$, leading to an SOA boundary that consists of straight lines.

### 14.6.6 Parameter Values of Power Transistors

Owing to their large geometry and high operating currents, power transistors display typical parameter values that can be quite different from thosc of small-signal transistors. The important differences are as follows:

1. At high currcnts, the exponential $i_{C^{-}} v_{B E}$ relationship exhibits a constant $n=2$; that is,
2. $\beta$ is low, typically 30 to 80 , but can be as low as 5 . Here, it is important to note that $\beta$ has a positive temperature cocfficient.
3. At high currents, $r_{\pi}$ becomes very small (a few ohms) and $r_{x}$ becomes important ( $r_{x}$ is defined and explained in Section 5.8.4).
4. $f_{T}$ is low (a few megahertr), $C_{\mu}$ is large (hundreds of picofarads), and $C_{\pi}$ is even larger. (These parameters are defined and explained in Scction 5.8).
5. $I_{C B O}$ is large (a few tens of microamps) and, as usual, doubles for every $10^{\circ} \mathrm{C}$ rise in temperaturc.
6. $B V_{\text {cro }}$ is typically 50 to 100 V but can be as high as 500 V .
7. $I_{C_{\text {max }}}$ is typically in the ampere range but can be as high as 100 A .

### 14.7 VARIATIONS ON THE CLASS AB CONFIGURATION

In this section, we discuss a number of circuit improvements and protection techniques for the class AB output stage.
14.7.1 Use of Input Emitter Followers

Figure 14.24 shows a class AB circuit biased using transistors $Q_{1}$ and $Q_{2}$, which also function as emitter followers, thus providing the circuit with a high input resistance. In effect, the circuit functions as a unity-gain buffer amplifier. Since all four transistors are usually
 Resistos $R_{3}$ and $R_{4}$ ard the possibility of thermal runaway due to matches betweent $Q_{3}$ and $Q_{4}$ and temperature differences $Q_{\text {t }}$. be appreciated by noting and in $V_{3}$. Thus $R_{3}$ provides negative voltage drop across $R_{3}$ and a corresponding decrease in $V_{B E 3}$. Thus $R_{3}$ provides negative
feedback that helps stabilize the current through $Q_{3}$.

Because the circuit of Fig. 14.24 requires high-quality pnp transistors, it is not suitable for implementation in conventional monolithic Ie technology. However, excellent results have been obaing . This technology permits component trimming, for instance, to minimize the output offset voltage. The circuit can be used alone or together with an op amp to


FIGURE 14.24 $A$ class $A B$ ouiput stage with an input buffer. In addiuion to proviöng a high input resis tance, the buffer transistors $Q_{1}$ and $Q_{2}$ bias the outpul transistors $Q_{3}$ and $Q_{4}$.
provide increased output driving capability. The latter application will be discussed in the next section.

## EXERCSE

14.11 (Note: Although yery instruetive, this exercise is rather long) Consider the circuit of Fig. 14.24 with $R_{1}$ $R_{2}=5 \mathrm{k} \Omega_{1} R_{1}=R_{4}=0 \Omega$, and $V_{c c}=15 V_{\text {. }}$ Let the transistors be matched wiht $I_{s}=3.3 \times 10^{-14} A, n_{1} 1$ and $\beta=200$. These are the values $\mu$ sed in the LH002 manufactured by National Semicondactof except ors and $v_{0}$. (b) For $R_{t}=\pi$, find $i_{C 3}, i_{c 2}, i_{c}, i_{C a}$ and $v_{0}$ for $v_{t}=-10 \mathrm{~V}$ and -10 V . (c) Repeat for $R_{t}=100 \Omega$
Ans. (a) $2.87 \mathrm{~mA}, 0 \mathrm{~V}$ (b) for $r_{l}=+10 \mathrm{~V} .0 .88 \mathrm{~mA}, 4.87 \mathrm{~mA}, 1.95 \mathrm{~mA}, 1.95 \mathrm{~mA},+9.98 \mathrm{~V}$ for $v=-10 \mathrm{~V}$ : $.87 \mathrm{~mA}, 0.88 \mathrm{~mA}, 1.95 \mathrm{~mA}, 1.95 \mathrm{~mA},-9.98 \mathrm{~V} ;(\mathrm{c})$ for $v_{r}=+10 \mathrm{~V}: 0.38 \mathrm{~mA}, 4.87 \mathrm{~mA} \quad 100 \mathrm{~mA}, 0.02 \mathrm{~mA}$ +9.86 V . for $v_{\mathrm{r}}=-10 \mathrm{~V} .4 .87 \mathrm{~mA}, 0.38 \mathrm{~mA}, 0.02 \mathrm{~mA}, 100 \mathrm{~mA},-9.86 \mathrm{~V}$

### 14.7.2 Use of Compound Devices

To increase the current gain of the output-stage transistors, and thus reduce the required base current drive, the Darlington configuration shown in Fig. 14.25 is frequently used to replace the $n p n$ transistor of the class AB stage. The Darlington configuration (Section 6.11.2) is equivalent to a single $n p n$ transistor having $\beta \simeq \beta_{1} \beta_{2}$, but almost twice the value of $V_{B E}$.
The Darlington configuration can be also used for pnp transistors, and this is indeed tors prompted the use of the alternative compound configuration shood-quality in $p n p$ transiscompound device is equivalent a single ${ }^{2}$ compound device is equivalent to a single $p r \mu$ transistor having $\beta=\beta_{1} \beta_{2}$. When fabricated high-frequency response ( $f_{T} \simeq 5 \mathrm{MHz}$ ); has a relarively high equivalent $\beta$ still suffers from a $A$. The compound device, although it suffers from another problem. The feedback rop formed by $Q$ and $Q$ is ponse. It hiso frequency oscillations (with frequency near $f$ of the $p m$ d $Q_{1}$ and $Q_{2}$ is prone to highexist for preventing such oscillations. The subject of feedback alifier thility was in Chapter 8 . in Chapter 8.


FIGURE 14.25 The Darlington configuration.
14.7 VARIATIONS ON THE CLASS AB CONFIGURATION1259


FIGURE 14.26 The compound-pnp configuration

To illustrate the application of the Darlington configuration and of the compound $p n p$, we show in Fig. 14.27 an output stage utilizing both. Class AB biasing is achicved using a $V_{B}$ multiplier. Notc that the Darlington npn adds one more $V_{B E}$ drop, and thus the $V_{B E}$ multiplie s required to provide a bias voltage of about 2 V . The design of this class $A B$ stage is inves igated in Problem 14.39.


FIGURE 14.27 A class AB output stage utilizing a Darlington $n p m$ and a compound $p n p$. Biasing obtained using a $V_{B E}$ nultiplicr.

XXERCSE
14.12 (a) Refer to Fig 14.26. Show that, for the composite pnp transistor.
and.

Hence show that


$$
I_{s}=\beta_{\mu} I_{s i} .
$$

Where $I_{s r}$ is the saturation current of the $p m p$ transistor $Q_{1}$
(6) For $\beta_{p}=20, \beta_{N}=50,,_{s p}=10^{-14}$ A. Find the effective current gain of the compound device and its ${ }_{E S}$ when $I_{C}=100$ mA Let $n=1$.
n5. (b) $1000,0.651$ y
14.7.3 Short-Circuit Protection

Figure 14.28 shows a class AB output slage equipped with protection against the effect of short-circuiting the output while the stage is sourcing current. The large current that flows through $Q_{1}$ in the event of a short circuit will develop a voltage drop across $R_{T 1}$ of sufficient


FIGURE 14.28 A class AB output stage with short-circuit protection. The protection circuil shown operates in the event of an oupput short circuit while $v_{o}$ is positive.

126
value to turn $Q_{5}$ on. The collector of $Q_{5}$ will then conduct most of the current $I_{\text {BIAS }}$, robbing $Q^{\prime}$ of its base drivc. The current through $Q_{1}$ will thus be reduced to a safe operating level.

This method of short-circuit protection is effective in ensuring device safety, but it has the disadvantage that under normal operation about 0.5 V drop might appear across each $R^{2}$ This means that the voltage swing at the output will be reduced by hat much, in each dre tion. On the other hand, the inclusion of emitter resistors provides the additional benefit prolecting the output transistors against thermal runaway

## EXERCISE



 of $\mathrm{C}_{3}$. Ans . 4. Ans 4.3 S .430 m V 0 BH

### 14.7.4 Thermal Shutdown

In addition to short-circuit protection, most IC power amplifiers are usually equipped with a circuit tbat senses the temperature of the chip and turns on a transistor in the event tbat the temperature exceeds a safe preset value. The urned-on transistor is connected in such a way that it absorbs the bias current of the amplifier, thus virtually shuting down its opcration.

Figure 14.29 shows a thermal-shutdown circuit. Here, Hancer the chip temperature rises, the combination of the positive temperature cocfficient of zencr diode $Z_{1}$ and the negative temperature coefficient of $V_{B E 1}$ causes the voltage al the emitter of $Q_{1}$ to rise. This in turn raises the voltage at the base of $Q_{2}$ to the point at which $Q_{2}$ turns on.


FIGURE 14.29 Thermal-shutdown circuit.

## 5社 <br> 14.8 IC POWER AMPLIFIERS

A variety of IC power amplifiers are available. Most consist of a high-gain small-signal amplifier followed by a class $A B$ output stage. Some have ovcrall negative feedback already applied, resulting in a fixed closed-loop voltage gain. Others do not have on-chip feedback and are, in effect, op amps with large outpul-power capability. In fact, the output currentdriving capability of any general-purpose op amp can be increased by cascading it with a class $B$ or class $A B$ output stage and applying overall negative feedback. The additional output stage can be either a discrete circuit or a bybrid IC such as the buffer discussed in the preceding section. Iñ the following we discuss some power amplifice examples.

### 4.8.1 A Fixed-Gain IC Power Amplifie

Our first example is the LM380 (a product of National Semiconductor Corporation), which is a fixed-gain monolithic power amplifier. A simplified version of the internal circuit of the amplifier ${ }^{3}$ is shown in Fig. 14.30. The circuit consists of an input differential amplifier utilizing $Q_{1}$ and $Q_{2}$ as emitter followers for input buffering, and $Q_{3}$ and $Q_{4}$ as a differential pair with an emitter resistor $R_{3}$. The two resistors $R_{4}$ and $R_{5}$ provide dc paths to ground for the base currents of $Q_{1}$ and $Q_{2}$, thus enabling the input signal source to be capacitively coupled to either of the two input lerminals.

The differential amplifier transistors $Q_{3}$ and $Q_{4}$ are biased by two separate direct currents: $Q_{3}$ is biased by a current from the dc supply $V_{s}$ through the diode-connected transistor $Q_{10}$, and resistor $R_{1} ; Q_{4}$ is biased by a dc current from the output terminal through $R_{2}$. Under quiescent conditions (i.e., with no input signal applied) the two bias currents will be equal, and the current through and the voltage across $R_{3}$ will be zero. For the emitter current of $Q_{3}$ we can write

$$
I_{3} \simeq \frac{V_{S}-V_{E B 10}-V_{E B 3}-V_{E B 1}}{R_{1}}
$$

where we have neglected the small dc voltage drop across $R_{4}$. Assuming, for simplicity, all $V_{E \beta}$ to be equal,

$$
\begin{equation*}
I_{3}=\frac{V_{S}-3 V_{E B}}{R_{1}} \tag{14.43}
\end{equation*}
$$

For the emitter current of $Q_{4}$ we have

$$
\begin{align*}
I_{4} & =\frac{V_{O}-V_{E B 4}-V_{E B 2}}{R_{2}}  \tag{14.44}\\
& \simeq \frac{V_{O}-2 V_{E B}}{R_{2}}
\end{align*}
$$

where $V_{O}$ is the dc voltage at the output and we have neglected the small drop across $R_{5}$. Equating $I_{3}$ and $I_{4}$ and using the fact that $R_{1}=2 R_{2}$ results in

$$
\begin{equation*}
V_{O}=\frac{1}{2} V_{S}+\frac{1}{2} V_{E B} \tag{14.45}
\end{equation*}
$$

Thus the output is biased at approximately half the power-supply voltage, as desired for maximum output voltage swing. An important feature is the de feedback from the output to
${ }^{3}$ The main objective of showing this circuit is to point out some interesting design features. The circuit is not a detailed schematic diagram of what is actually on the chip.


FIGURE 14.30 The simplified internal circuit of the LM380 IC power amplifier. (Courtesy National Semiconductor Corporation.)
the emitter of $Q_{4}$, through $R_{2}$. This dc feedback acts to stabilize the output dc bias voltage at the value in Eq . (14.45). Qualitatively, the dc feedback functions as follows: If for some rcason $V_{o}$ increases, a corresponding current increment will flow through $R_{2}$ and into the emitter of $Q_{4}$. Thus the collector current of $Q_{4}$ increases, resulting in a positive increment in the voltage at the base of $Q_{12}$. This, in turn, causes the collector current of $Q_{12}$ to increase, thus bringing down the volage at the base of $Q_{7}$ and hence $V$

Continuing with the description of the circuit in Fig. 14.30, we observe that the differential amplifier $\left(Q_{3}, Q_{4}\right)$ has a current mirror load composed of $Q_{5}$ and $Q_{6}$ (refer to Section 7.5.5 for a discussion ol active loads). The single-ended output voltage signal of the first stage appears at the collecror ${ }^{2}{ }_{6}$ and $Q_{1}$ is biasped by the constant-current source $Q_{1}$ which also emitter amplifer $Q_{12}$. Transistor $Q_{12}$ s bis its and reflected resistan do to $R_{L}$ Capacior $C$ provides frequency compensation (see Chapter 8).

The output stage is class AB, utilizing a compound pnp transistor ( $Q_{8}$ and $Q_{9}$ ) Negative feedback is applied from the output to the emitter of $Q_{\text {}}$ via resistor $R_{2}$. To find the closed-loop $\mathrm{fe}_{\text {ain }}$ consider the small-signal equivalent circuit shown in Fig. 1431. Here, we have replaced the second-stage common-emitter amplifier and the output stage with an inverting amplifier block with gain $A$. We shall assume that the amplifier $A$ has high gain and high input resistance and thus the input signal current into $A$ is negligibly small Under this assumption, Fig. 1431 shows the analysis details with on input signal $y$ applied to the inverting input


FIGURE 14.31 Small-signal analysis of the circuit in Fig. 14.30. The circled numbers indicate the order
of the analysis steps.
terminal. The order of the analysis steps is indicated by the circled numbers. Note that since the input differential amplifier has a relatively large resistance, $R_{3}$, in the emitter circuit, most of the applied input voltage appears across $R_{3}$. In other words, the signal voltages across the emitter-base junctions of $Q_{1}, Q_{2}, Q_{3}$, and $Q_{4}$ are small in comparison to the voltage across $R_{3}$ Accordingly, the voltage gain can be found by writing a node equation at the collector of $Q_{6}$ :

$$
\frac{v_{i}}{R_{3}}+\frac{v_{o}}{R_{2}}+\frac{v_{i}}{R_{3}}=0
$$

which yields

$$
\frac{v_{o}}{v_{i}}=-\frac{2 R_{2}}{R_{3}} \simeq-50 \mathrm{~V} / \mathrm{V}
$$

## EXERCISE



$$
\frac{\psi_{0}}{r_{i}}=\frac{-2 R_{2} R_{3}}{1+R_{1} / A}
$$

which reduces to $\left(-2 R_{3} / R_{3}\right)$ under the condition that $A R \geqslant R$


## Output power (W)

FIGURE 14.32 Power dissipation ( $P_{D}$ ) versus output power ( $P_{t}$ ) for the LM380 with $R_{L}=8 \Omega$. (Courtcsy National Sermiconductor Corporation.)

As was demonstrated in Chapter 8, one of the advantages of negative feedback is the reduction of nonlinear distortion. This is the case in the circuit of the LM380

The LM380 is designcd to operate from a single supply $V_{S}$ in the range of 12 V to 22 V . The selection of supply voltage depends on the value of $R_{L}$ and the required output power $P_{L}$. The manufacturer supplies curves for the device power dissipation versus output power for a given load resistance and various supply voltages. One such set of curves for $R_{L}=8 \Omega$ is shown in Fig. 14.32. Note the similarity to the class B power dissipation curve of Fig. 14.8. In fact, the reader can easily verify that the location and valuc of the peaks of the curves in Fig. 14.32 are accurately predicted by Eqs. (14.20) and (14.21), respectively (where $V_{C C}=\frac{1}{2} v_{s}$ ). The line labeled $3 \%$ distortion lever in Fig. 14.32 is the locus of the points on he vas cures a which he din (THD) reas onset of peak clipping due to orpu-transistor saturation

The manufacturer also supplies curves for maximum power dissipation versus temperature (derating curves) similar to those discussed in Section 14.6 for discrete power transistors.

## EXERCISES

1415 The nanufeluiter specifies that for ambient temperatures below $25^{\circ} \mathrm{C}$ bhe LM380 can dis sinate a mai mum of 3.6 W . This is obfained under the condition that its duat-m-line package be soldered onto printed circuitbeard in close the mal contact with 6 square inches of 2 -ounce copper foil. Abore $T_{A}=$ $25^{\circ} \mathrm{C}$, the thermal resistanee is $\theta_{j A}=35^{\circ} \mathrm{CW} T_{\text {max }}$ is specified to be $150^{\circ} \mathrm{C}$. Find the inaximum power dissipation possible if the ambient temperature is to be $50^{\circ} \mathrm{C}$. Ans. 2.9 W
014.16 ft is required to tse the 1 M 880 to drive an $8 \Omega$ loud speaker. Use the curves of Fig. 1432 to determine the maximum power supply possible while limiting the maximum power dissipation to thc 2.9 W detemuner in Exercise 1415 If for fhis application $73 \%$ THD is allowed, find $P_{2}$ and the peak to-peik output voltage. Ans. $20 \mathrm{~V}: 4.2 \mathrm{~W}: 16.4 . \mathrm{V}$


FIGURE 14.33 Structure of a power op amp. The circuit consists of an op amp followed by a class AB buffer similar to that discussed in Section 14.7.1. The output current capability of the buffer, consisting of $Q_{1}, Q_{2}, Q_{3}$, and $Q_{4}$, is further boosted by $Q_{5}$ and $Q_{6}$.

### 4.8.2 Power Op Amps

Figure 14.33 shows the general structure of a power op amp. It consists of a low-power op amp followed by a class AB buffer similar to that discussed in Section 14.7.1. The buffer consists of transistors $Q_{1}, Q_{2}, Q_{3}$, and $Q_{4}$, with bias resistors $R_{1}$ and $R_{2}$ and emitter degeneration resistors $R_{5}$ ne $R_{6}$. The brop across $R$ (in the current-sourcing mode) becomes sufficienty large to that $Q_{5}$ voltage drop across $R_{3}$ (in the current-sourcing mode) becomes suficiendy laage to

 wo $\ell_{6}$. oop configurations. A circuit based on the structure of Fig, 1433 is commercially available Nom National Semiconductor as LH0101. This $\operatorname{lop}$ is capoble of providing a continuous , 2 A and 1 , 10 W oco pow Wong and Johnson, 1981)

### 4.8.3 The Bridge Amplifier

We conclude this section with a discussion of a circuit configuration that is popular in high power applications. This is the bridge amplifier configuration shown in Fig. 14.34 utilizing


FIGURE 14.34 The bridgc amplifier configuratio
two power op amps, $A_{1}$ and $A_{2}$. While $A_{1}$ is connected in the noninverting configuration with a gain $K=1+\left(R_{2} / R_{1}\right)$, $\mathrm{A}_{2}$ is connected as an inverting amplifier with a gain of equal magnitude $K=R_{4} / R_{3}$. The load $R_{L}$ is floating and is connected between the output terminals of the two op amps
If $v_{I}$ is a sinusoid with anplitude $\hat{V}_{i}$, the voltage swing at the output of each op amp will be $\pm K \hat{V}_{i}$, and that across the load will be $\pm 2 K \hat{V}_{i}$. Thus, with op amps opcrated from $\pm 15-\mathrm{V}$ supplies and capable of providing, say a $\pm 12 \mathrm{-}$ output swing, an output swing of $\pm 24 \mathrm{~V}$ is obtained across the load of the bridge amplifier.
In designing bridge amplificrs, note should be taken of the fact that the peak current drawn from each op amp is $2 K \hat{V}_{i} / R_{L}$. This effect can be raken into account by considcring the load seen by each op amp (to ground) to be $R_{L} / 2$.

## EXERCISE

1417 Consider the circhit of Fiy. 1434 with $R_{1}-R_{3}=10 \mathrm{k} \Omega_{2} R_{2}=5 \mathrm{ks}, R_{4}=15 \mathrm{k} \Omega$, and $R_{t}=832$. Find the
 wave, what is the peak-to peak output vollage? What is the peak load curtent? What is the load power?. Ans 3 VI, 10 kR , 60 V: 375 A; $56,25 \mathrm{~W}$
14.9 MOS POWER TRANSISTORS

Although, thus far in this chapter we have dealt exclusively with BJT circuits there exist MOS power transistors with specifications that are quite competitive with those of BJTs. In this section we consider the structure, characteristics, and application of power MOSFETs.

### 14.9.1 Structure of the Power MOSFET

The MOSFET structure studied in Chapter 4 (Fig. 4.1) is not suitable for high-power applications. To appreciate this fact, recall that the drain current of an $n$-channel MOSFET


FIGURE 14.35 Double-diffused vertical MOS transistor (DMOS)
operating in the saturation region is given by

$$
\begin{equation*}
i_{D}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(z_{G S}-V_{t}\right)^{2} \tag{14.46}
\end{equation*}
$$

It follows that to increase the current capability of the MOSFET, its width $W$ should be made large and its channel length $L$ should be made as small as possible. Unfortunately, however, reducing the channel length of the standard MOSFET structure results in a drastic reduction in its breakdown voltage. Specifically, the depletion region of the reverse-biased body-to-drain junction spreads into the short channcl, resulting in breakdown at a relatively low voltage. Thus the resulting device would not be capable of handling the high voltages typical of power-transistor applications. For this reason, new structures had to be found for fabricating short-channel ( $1-$ to $2-\mu \mathrm{m}$ ) MOSFETs with high breakdown voltages.

At the present time the most popular structure for a power MOSFET is the double-diffused or DMOS transistor shown in Fig. 14.35. As indicated, the device is fabricated on a lightly doped $n$-type substrate with a heavily doped region at the bottom for the drain contact. Two diffusions are employed, one to form the $p$-type body region and another to form the $n$-type source region.

The DMOS device operates as follows. Application of a positive gate voltage, $v_{G S}$, greater than the threshold voltage $V_{t}$, induces a lateral $n$ channel in the $p$-type body region underneath the gate oxide. The resulting channel is short, its length is denoted $L$ in Fig. 14.35. Current is then condacted by electrons from the source moving through the fesi ling shor
 (Chapter 4)
Even though the DMOS transistor has a short channel, its breakdown voltage can be very high (as high as 600 V ). This is because the depletion region between the substrate and the body extends mostly in the lightly doped substrate and does not spread into the channel. The result is a MOS transistor that simultaneously has a high current capability ( 50 A is possible)

[^51]as well as the high breakdown voltage just mentioned. Finally, we note that the vertical struc ture of the device provides efficient utilization of the silicon area.

An earlicr structure used for power MOS transistors deserves mention. This is the V-groove MOS device [see Severns (1984)]. Although still in use, the V-groove MOSFET has lost application ground to the vertical DMOS structure of Fig. 14.35, except possibly for high-frequency applications. Because of space limitations, we shall not describe the V-groove MOSFET.

### 14.9.2 Characteristics of Power MOSFETs

In spite of their radically different structure, power MOSFETs exhibit characteristics that are quite similar to those of the small-signal MOSFETs studied in Chapter 4. Important dif ferences exist, however, and these are discussed ncxt.
Power MOSFETs have threshold voltages in the range of 2 V to 4 V . In saturation, the drain current is related to $v_{G S}$ by the square-law characteristic of Eq. (14.46). However, as shown in Fig. 14.36, the $i_{D}-v_{G S}$ characteristic becomes linear for larger values of $v_{G S}$. The linear portion of the characteristic occurs as a result of the high electric field along the short channel, causing the velocity of charge carriers to reach an upper limit, a phenomenon known as velocity saturation. The drain current is then given by

$$
\begin{equation*}
i_{D}=\frac{1}{2} C_{o x} W U_{\mathrm{sax}}\left(v_{G S}-V_{t}\right) \tag{14.47}
\end{equation*}
$$

where $U_{\text {sal }}$ is the saturated velocity value ( $5 \times 10^{6} \mathrm{~cm} / \mathrm{s}$ for electrons in silicon). The linear $i_{D}-v_{G S}$ relationship implies a constant $g_{m}$ in the velocity-saturation region. It is interesting to note that $g_{m}$ is proportional to $W$, which is usually large for power devices; thus power MOSFETs exhibit relatively high transconductance valucs.
The $i_{D}-\hat{v}_{C S}$ characteristic shown in Fig. 14.36 iucludes a segment labeled "subthreshold." Though of little significance for power devices, the subthreshold region of operation is of interest in very-low-power applications (see Section 4.1.9).


IGURE 14.36 Typical $i_{D}-v_{G S}$ characteristic for a power MOSFET


FIGURE 14.37 The $i_{n}-v_{G S}$ characteristic curve of a puwer MOS transistor (RF 630, Siliconix) at case temperatures of $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$. (Courtesy Siliconix Inc.)

### 14.9.3 Temperature Effects

Of considerable interest in the design of MOS power circuits is the variation of the MOSFET characteristics with temperature, illustrated in Fig. 14.37. Observe chat there is a value of $v_{G S}$ (in the range of 4 V to 6 V for most power MOSFETs) at which the temperature coefficient of $i_{D}$ is zero. At higher values of $v_{G S}, i_{D}$ exh is a negaive tempcrature coernien. Tis is a significant property: It implies that a MOSFET operating beyond the zero-temperature-coefficient poin does not suffer from the possibility of thermal munaway. This is not the case, however, at low currents (i.e., lower than the zero-temperature-coefficient point). In the (relatively) low-current region, the temperature coefficient of $i_{D}$ is positive, and the power MOSFET can easily suffer thermal runaway (with unhappy consequences). Since class AB output stages are biased at low currents, means must be provided to guard against thermal runaway.

The reason for the positive temperature coefficient of $i_{D}$ at low currents is that $v_{O V}=$ ( $v_{G S}-V_{t}$ ) is relatively low, and the temperature dependence is dominated by the negative temperature coefficient of $V_{i}$ (in the range of $-3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ to $-6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ ) which causes $v_{o v}$ to rise with temperature.

### 14.9.4 Comparison with BJTs

The power MOSFET does not suffer from second breakdown, which limits the safe operating area of BJTs. Also, power MOSFETs do not require the large dc base-drive currents of power BJTs. Note, however, that the driver stage in a MOS power amplifier should be capable of supplying sufficient current to charge and discharge the MOSFET's large and nonlinear input capacitance in the time allotted. Finally, the power MOSFET features, in general, a
higher speed of operation than the power BJT. This makes MOS power transistors especially suited to switching applications-for instance, in motor-control circuits.

### 14.9.5 A Class AB Output Stage Utilizing MOSFETs

As an application of power MOSFETs, we show in Fig. 14.38 a class AB output stage utilizing a pair of complementary MOSFETs and employing BJTs for biasing and in the driver tage. The latter consists of complementary Darlington emitter followers formed by $Q$ and has the low output resistance necessary for driving the output MOSFETs at high speeds.

Of special interest in the circuit of Fig. 14.38 is the bias circuit utilizing two $V_{B E}$ multiliers formed by $Q_{5}$ and $Q_{6}$ and their associated resistors. Transistor $Q_{6}$ is placed in direct thermal contact with the output transistors; this is achieved by simply mounting $Q_{6}$ on their common heat sink. Thus, by the appropriate choice of the $V_{B E}$ multiplication factor of $Q_{6}$, he bias voltage $V_{G G}$ (between the gates of the output transistors) can be made to decrease with temperature at the same rate as that of the sum of the threshold voltages $\left(V_{t N}+\left|V_{t P}\right|\right)$


FIGURE 14.38 A class AB amplifier with MOS output transistors and BIT drivers. Resistor $R_{3}$ is adjusted to provide eemperature compcnsation while $R_{1}$ is adjusted to yicld the desired value of quicscent current in the output transistors. Resistors $R_{G}$ are used to suppress parasitic oscillations at high frequencies. Typically, $R_{f}=100 \Omega$.
of the output MOSFETs. In this way the quiescent curent of the output transistors can be stabilized against temperature variations.

Analytically, $V_{Z G G}$ is given by

$$
\begin{equation*}
V_{G G}=\left(1+\frac{R_{3}}{R_{4}}\right) V_{B E 6}+\left(1+\frac{R_{1}}{R_{2}}\right) V_{B E 5}-4 V_{B E} \tag{14.48}
\end{equation*}
$$

Since $V_{B E \sigma}$ is thermally coupled to the output devices while the other BJTs remain at constant temperature, we have

$$
\begin{equation*}
\frac{\partial V_{G G}}{\partial T}=\left(1+\frac{R_{3}}{R_{4}}\right) \frac{\partial V_{B E \sigma}}{\partial T} \tag{14.49}
\end{equation*}
$$

which is the relationship needed to determine $R_{3} / R_{4}$ so that $\partial V_{G G} / \partial T=\partial\left(V_{t N}+\left|V_{t P}\right|\right) / \partial T$. The other $V_{B E}$ multiplier is then adjusted to yield the value of $V_{G G}$, required for the desired quiescent current in $Q_{N}$ and $Q_{P}$.

## EXERCISES

14.18 For the circuit in Fig $14: 38$, frid the ratio $R_{3} / R_{4}$ that provides tenperature stabilization of the quitscent
 Ans. 2
14.19 For the circutin fig. 14.38 assume that the BITs have a notminal $Y_{B E}$ of $07 V$ and that the MOSFETS

 $R_{3}, R_{i}$ found in Exercise 1418
Ans, $3.32 \mathrm{~V}: 6.64 \mathrm{~V}: 332 \Omega: 9$

## (4) 14.10 SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting an example that illustrates the use of SPICE in the analysis of output circuits.

## 8xMm14 6

## CLASS B OUTPUT STAGE

We investigate the operation of the class B output stage whose Capture schematic is shown in Fig. 14.39. For the power transistors, we use the discrete BJTs MJE243 and MJE253 (from ON Semiconductor) ${ }^{5}$ which are rated for a maximum continuous collector current $I_{c_{\text {max }}}=4 \mathrm{~A}$ and maximum collector-emitter voltage of $V_{C E \max }=100 \mathrm{~V}$. To permit comparison with the hand analysi performed in Example 14.1, we use, in the simulation, component and voitage values identical
${ }^{5}$ In PSpice, we have created BJT parts for these power transistors based on the values of the SPICE
model parameters available on the data sheets available from ON Semiconductor. Readers can find model parameters available on the data sheets available from ON Semiconductor. Readers can fin
these parts (labelled QMJE243 and QMJE253) in the SEDRA accompanying this book as well as at www.sedrasmith.org.


FIGURE 14.39 Capture schematic of the class B output stage in Example 14.6.
(or close) to those of the circuit designed in Example 14.1. Specifically, we use a load resistance of $8 \Omega$, an input sine-wave signal of $17.9-\mathrm{V}$ peak and $1-\mathrm{kHz}$ frequency, and $23-\mathrm{V}$ power supplies. In PSpice, a transient-analysis simulation is performed over the interval 0 ms 103 ms , and the waveforms of various node voltages and branch currents are plotted. In this example; Probe (the graphical interface of PSpice) is utilized to compute various power-diss pais valus. Sow the resulting waveforms are displayed iu Fig. 14:40. The upper and midre graphs show the load voltage and current, respectively. The peak voltage amplitude is 16.9 V , and the peak current

$\square \mathrm{I}(\mathrm{RL}) * \mathrm{~V}(\mathrm{OUT}) \quad \diamond \mathrm{AVG}(\mathrm{I}(\mathrm{RL}) * \mathrm{~V}(\mathrm{OUT})$
Time (ms)
FIGURE 14.40 Several waveforms associated with the class B output stage (shown in Fig. 14.39) when excited by a $17.9-\mathrm{V}, 1-\mathrm{kHz}$ sinusoidal signal. The upper graph displays the volage across the load resistance the middle graph displays the load current, and the lower graph displays the instantaneous and average power dissipated by the load.

$-\mathrm{I}(+\mathrm{VCC}) * \mathrm{~V}(+\mathrm{VCC}) \quad \otimes \mathrm{AVG}(-\mathrm{I}(+\mathrm{VCC}) * \mathrm{~V}(+\mathrm{VCC}))$
Time (ms)
FIGURE 14.41 The voltage (upper graph), current (middle graph), and instantancous and avcrage power (bottom graph) supplied by the positive voltage supply ( $+V_{C C}$ ) in the circuit of Fig. 14.39
amplitude is 2.1 A . If one looks carefully, one can observe that both exhibit crossover distortion. The bottom graph displays the instantaneous and the average power dissipated in the load resistance as computed using Probe by multiplying the voltage and current values to obtain the instantaneous power, and taking a running average for the average load power $P_{L}$. The transient behavior of the average load power, which cventually settles into a quasiconstant steady state of about 17.6 W , is an artifact of the PSpice algorithm used to compute the running average of a waveform

The upper two graphs of Fig. 14.41 show the voltage and current waveforms, respectively, of the positive supply, $+V_{C C}$. The bottom graph shows the instantaneous and avcrage power supplied by $+V_{C C}$. Similar waveforms can be plotted for the negative supply, $-V_{c C}$. The average power provided by cach supply is found to be about 15 W , for a total supply power $P_{s}$ of 30 W Thus, the power-conversion efficiency can bc computed to he

$$
\eta=P_{L} / P_{S}=\frac{17.6}{30} \times 100 \%=58.6 \%
$$

Figure 14.42 shows plots of the voltage, current, and power waveforns associated with transistor $Q_{p}$. Similar waveforms can be obtained for $Q_{N}$. As expected, the voltage waveform is a sinusoid, and the current waveform consists of half-sinusoids. The waveform of the instantaneous power, however, is rather unusual. It indicates the presence of some distortion as a result of driving the transistors rather hard. This can be verified by reducing the amplitude of the input signal. Specifically, by reducing the amplitude to about 17 V . the "dip" in the power waveform vanishes. The average power dissipated in each of $Q_{N}$ and $Q_{P}$ can be computed by Probc and are found to bc approximately 6 W .


FIGURE 14.42 Waveforms of the voltage across, the current thirough, and the power dissipated in the $p n p$ transistor $Q_{\rho}$ of the ouiput stage shown in Fig. 14.39.

Power/Efficiency	Equation	Hand Analysis (Example 14.1)	${ }^{\text {PSpice }}$	Error \% ${ }^{\text {' }}$
$P_{S}$	$\frac{2}{\pi} \hat{V}_{o} V_{L} V_{c c}$	31.2 W	30.0 W	4
$P_{D}$	$\frac{2 \hat{V}_{o}}{\pi} V_{L C C}-\frac{1 \hat{V}_{O}^{2}}{2} \frac{R_{L}}{R_{L}}$	13.0 W	12.4 W	4.6
$P_{L}$	$\frac{1}{2} \frac{\hat{V}_{o}^{2}}{R_{L}}$	18.2 W	17.6 W	3.3
$\eta$	$\frac{P_{L}}{P_{S}} \times 100 \%$	58.3\%	58.6\%	-0.5

Rclative percentagc eror between the values predicted by hand and by PSpice.

Table 14.1 provides a comparison of the results found from the PSpice simulation and the corresponding values obtained using hand analysis in Example 14.1. Observe that the two sets of results are quite close.
To investigate the crossover distortion further, we present in Fig. 14.43 a plot of the voltage transfer characteristic (VTC) of the class B output stage. This plot is obtained through a de



FIGURE 14.43 Transfer characteristic of the class B output stage of Fig. 14.39.

Probe we determine that the slope of the VTC is nearly unity and that the dead band extends from -0.60 to +0.58 V . The effect of the crossover distortion can be quantified by performing a Fourier aualysis on the output voltage waveform in PSpice. This analysis decomposes the waveform generated through a transient analysis into its Fourier-series components. Further, PSpice computes the total harmonic distortion (THD) of the output waveform. The results obtained from the simulation output file are as follows:

FoURIER COMPONENTS OF TRANSIEN? RESFONSE V(OUT)
DC COMPONENT $=-1.5252292-02$

harmonic	$\underset{(\mathrm{HZ})}{\mathrm{FREQ}} \mathrm{Cl}$	FOJRLER COVPONERT	NORMALIZED COMPONENT	$\begin{aligned} & \text { HAASE } \\ & (D: G G) \end{aligned}$	NORNALZZED   PHASE (DEG
1	$1.00 \mathrm{CE}-03$	$\therefore .674 \mathrm{E}+0$ =	$1.000 \mathrm{e}+00$	-2.292E-03	$0.000 \mathrm{O}_{0} 00$
2	$2.000 \mathrm{E}+03$	$9.088 \mathrm{E}-03$	$5.428 \mathrm{F-04}$	9.054E: 0 -	$9.014 \mathrm{E}+01$
3	$3.000 \mathrm{E}+03$	2.747F.-01	$1.641 \mathrm{E}-32$	$-1.799 \mathrm{E} \div 02$	$-1.799 \mathrm{E}+0$ ?
4	$\leq .000 \mathrm{~F}+03$	¢.074 -03	2.433E-04	$9.035 \mathrm{E}+0$ :	$9.036 \geq+01$
5	$5.000 \mathrm{E}+03$	1.7393-63	-.039E-07	- $\because \% / 99 \mathrm{E}+02$	$-1.7998+02$
6	$6.000 \mathrm{E}+03$	$5.833 \pm-04$	$3.484 \mathrm{E}-05$	9.159F+01	9. 161 ET 01
7	$7.0005+0.3$	1.295E-01		-1.800t+02	$-1.799 \mathrm{E}+02$
8	$8.000 \mathrm{E}+33$	$5.75 \mathrm{CE}-64$	$3.435 \pm-05$	$9.1>83+01$	9.129E+01
9	$9.000 \mathrm{E}+03$	$9.090 \mathrm{E}-02$	5.429E-03	$-1.8005+62$	1.199E+02
10	$1.0003+01$	$3.213 \mathrm{E}-04$	$1.937 \mathrm{E}-05$	9.203:01	9.1225:01

total harmontc jistortion - $2.210017 \mathrm{E}+00$ percent
These Fourier components are used to plot the line spectrum shown in Fig. 14.44. We note that the output waveform is rather rich in odd harmonics and that the resulting THD is rather high (2.14\%).


FIGURE 14.44 Fourier-series componenss of the output waveform of the class B output stage in Fig. 14.39.

## SUMMARY

Output stages are classified according to the transistor conduction angle: class A $\left(360^{\circ}\right)$, class AB (slightly more than $180^{\circ}$ ), class $B\left(180^{\circ}\right)$, and class $C$ (less than $180^{\circ}$.
The most common class A output stage is the emitter fol lower. It is hiased at a current greater than the peak load current.
E The class A output stage dissipates its maximum power under quiescent conditions ( $v_{O}=0$ ). It achievcs a maximum power-conversion cfficiency of $25 \%$

- The class B stage is biased at zero current, and thus dissipates no power in quiescence.
- The class B stage can achieve a power conversion efficiency as high as $78.5 \%$. It dissipates its maximum power for $\hat{V}_{o}=(2 / \pi) V_{C C}$.
- The class B stage suffers from crossover distortion.
- The class AB output stage is biased at a small current; thus both transistors conduct for small input signals, and crossover distortion is virtually eliminated.

Eax Except for an additional small quiescent power dissipation, the power relationships of the class $A B$ stage are similar to those in class B.
絲 To guard against the possibility of thermal runaway, the bias voltage of the class $A B$ circuit is made to vary with temperature in the same manner as does $V_{B E}$ of the oulput ransistors.
(20 To facilitate the removal of heat from the silicon chip, power devices arc usually mounted on heat sinks. The maximum power that can be safely dissipated in the device is given by

$$
P_{D \max }=\frac{T_{\max }-T_{A}}{\theta_{S C}+\theta_{C S}+\theta_{S A}}
$$

where $T_{\max }$ and $\theta_{I C}$ arc specified by the manufacturer while $\theta_{C S}$ and $\theta_{S_{1}}$ depend on the heat-sink design.
(5 Use of the Darlington contiguration in the class $A B$ outpu stage reduces the base-current drive requirement. In integrated circuits, the compound pnp configuration is commonly used.
$\$$ Output stages arc usually equipped with circuitry that, in the event of a short circuil, can turn on and limit the basecurrent drive, and hence the emitter current, of the oulput transistors.
a IC power amplifiers consist of a small-signal voliage amphifier cascaded with a high-power output stage. Overal feedback is applied either on-chip or externally.
: The bridge amplifier configuration provides, across floating load, a peak:to-peak output voltage which is
twice that possible from a single amplifier with a
The DMOS (ransistor is a short-channel power device capable of both high-current and high-voltage operation.
8 The drain current of a power MOSFET exhihits a positive temperature coefficient at low currents, and thus the dencers temperature coefficient of $i_{D}$ is negative

## PROBLEMS

## SECTION 14.2: CLASS A OUTPUT STAGE

14.1 A class A emitter follower, hiased using the circuit shown in Fig. 14.2, uses $V_{C C}=5 \mathrm{~V}, R=R_{l,}=1 \mathrm{k} \Omega$, with all transistors (including $Q_{3}$ ) identical. Assume $V_{B K}=0.7 \mathrm{~V}$ $c_{\text {Esat }}=0.3 \mathrm{~V}$, and $\beta$ to be very large. For linear operation, what are the upper and lower limits of output voltage, and the corresponding inputs? How do these values change if th emitter-base junction area of $Q_{3}$ is made twice as big as that of $Q_{2}$ ? Half as big?
14.2 A source-follower circuit using NMOS transistors is constructed following the pattern shown in Fig. 14.2. All three ransistors used arc identical, with $V_{t}=1 \mathrm{~V}$ and $\mu_{n} C_{o x} W /=$ $20 \mathrm{~mA} / \mathrm{V}^{2} ; V_{c c}=5 \mathrm{~V}, R=R_{L}=1 \mathrm{k} \Omega$. For linear operation, what are the upper and lower limits of the output voltage, and the corresponding inputs?
14.3 Using the follower configuration shown in Fig. 14. with $\pm 9$ - V supplies, provide a design capable of $\pm 7$-V output wih a $1-k \Omega$ load, using the smallest possible total supply cur resistor of your choice.
14.4 An emitter follower using the circuit of Fig. 14.2 for which the output voltage range is $\pm 5 \mathrm{~V}$, is rcquired using $V_{C C}=10 \mathrm{~V}$. The circuit is to be designed such that the current variation in the emitter-follower transistor is no greater than a factor of 10 , for load resistances as low as $100 \Omega$. What is the value of $R$ required? Find the incremental. voltage gain of the resulting follower at $v_{0}=+5,0$, and -5 V , with a $100-\Omega$ load. What is the percentage change in gain over this rang of $v_{0}$ ?
14.5 Consider the operation of the follower circuit of Fig. 14.2 for which $R_{l}=V_{C C} / I$, when driven by a square wave such that the output ranges from $+V_{c c}$ to $-V_{c c}$ (ignoring
$V_{\text {CEal }}$ ). For this situation, sketch the equivalent of Kig. 14.4 for $v_{o,}, i_{c l}$, and $p_{p l}$. Repeat for a squarc-wave output that has pcak levels of $\pm\rangle_{c c} / 2$. What is the average power dissipation in $Q_{1}$ in each case? Compare these results to those for
14.6 Consider the sination square-wave outputs having peak-to-peak values of $2 V_{c c}$ and $V_{c c}$, and for sine waves of the same peak-to-peak valucs, find the average power loss in the current-source transistor $Q_{2}$
14.7 Reconsider the situation described in Exercise 14.4 for variation in $V_{C C}$-specifically for $V_{C C}=16 \mathrm{~V}, 12 \mathrm{~V}, 10 \mathrm{~V}$, and 8 V . Assume $V_{\text {CEsat }}$ is neariy zero. What is the powerconversion efficiency in each casc?
14.8 The BiCMOS follower shown in Fig. P14.8 uses device for which $V_{B E}=0.7 \mathrm{~V}, V_{C \text { kset }}=0.3 \mathrm{~V}, \mu_{n} C_{o x} W / L=20 \mathrm{~mA} / \mathrm{V}^{2}$

and $V=-2 \mathrm{~V}$. For linear opcration, what is the range of output voluges obtaincd with $R_{L}=\infty$ ? With $R_{L}=100 \Omega$ ? What is the smallest load resistor allowed for which a $1-\mathrm{V}$ peak sine-wave output is available? What is the corresponding power-conversion efficiency?

## SECTION 14.3: CLASS B OUTPUT STAGE

14.9 Consider the circuit of a complementary-BJT class B output stage. For what amplitude of input signal does the crossover distortion represent a $10 \%$ loss in peak amplitude?
14.10 Consider the feedhack configuration with a class B output stagc shown in Fig. 14.9. Let the amplifier gain $A_{0}=$ $100 \mathrm{~V} / \mathrm{V}$. Derive an expression for $v_{o}$ versus $v_{5}$, assuming that $\left|V_{B E}\right|=0.7 \mathrm{~V}$. Sketch the transfer characteristic $v_{O}$ versus $v_{p}$, and compare it with that without feedback.
14.11 Consider the class B output stage, using enhancement MOSFETs. shown in Fig. P14.11. Let the devices have $\left|V_{\cdot}\right|=1 \mathrm{~V}$ and $\mu C_{o x} W / L=200 \mu \mathrm{~A} / \mathrm{V}^{2}$. With a $10-\mathrm{kHz}$ sine-wave input of 5 -V peak and a high value of load resistance, what peak output would you expect? What fraction of the sine-wave period does the crossover interval represent? For what value of load resistor is the peak output voltage reduced to half the input?


FIGURE P14.11
14.12 Consider the complementary-BJT class B output stage and neglect the effects of finite $V_{B E}$ and $V_{C E s t r}$. For $\pm 10-\mathrm{V}$ power supplies and a $100-\Omega$ load resistance, what is the maximum sine-wave output power available? What supply power corresponds? What is the power-conversion efficiency? For output signals of half this amplitude, find the output $p$ the supply power, and the

D14.13 A class B oulput stage opcrates from $\pm 5$-V supplies. Assuming relatively ideal transistors, what is the output voltage for maximum power-conversion efficiency? What is the output voltage for maximum device dissipation? If each of the output devices is indviaualy in to be used, what is the
and a factor-of-2 safety margin is
smallest valuc of load resistance that can be tolerated, if operation is always at full output voltage? If opcration is allowed
at half the full output voltage, what is the smallest load permitted? What is the greatest possible output power available, in each case?
D14.14 A class B output stage is required to deliver an average power of 100 W into a $16-\Omega$ load. The power supply should be 4 V greater than the corresponding peak sine-wave (to the voltage. Deterrnine the power-supply voltage required current frost volt im the appropriate direction), the and the power-conversion efficiency Alsol determine che maximum possible power distipation in each transistor for a sine-wave input.
14.15 Consider the class B BJT output stage wilh a squarewave output voltage of amplitude $\hat{V}_{o}$ across a load $R_{L}$ and employing power supplies $\pm V_{s s}$. Neglecting the effects of finite $V_{B E}$ and $V_{C E s a}$ determine the load power, the supply power the power-conversion efficiency, the maximum attainable power-conversion efficiency and the corresponding value of $\hat{V}_{o}$, and the maximum available load power. Also find the value of $\hat{V}_{o}$ at which the power dissipation in the transistor conversion efficiency

## SECTION 14.4: CLASS AB OUTPUT STAGE

D14.16 Design the quiescent current of a class AB BJT output stage so that the incremental voltage gain for $\psi_{/}$in the vicinity of the orign is in excess have $V_{\text {BE }}$ of 0.7 V at a current of 100 mA and determine the value of $V_{B B}$ required.

D14.17 The design of a class AB MOS output stage is being considercd. The available dcvices have $\left|V_{t}\right|=1 \mathrm{~V}$ and $\mu C_{o x} W / L=200 \mathrm{~mA} / \mathrm{V}^{2}$. What value of gate-to-gate hias voltage, $V_{G G}$ is required to rednce the incremental outp resistance in the quicseant state to $10 \Omega$ ?
14.18 A class AB output stage, rescmbing that in Fig. 14.1 hut utilizing a single supply of +10 V and biased at $V_{t}=6 \mathrm{~V}$ is capacitively coupled to a $100-\Omega$ load. For transistors for whicl $\left|V_{B R}\right|=0.7 \mathrm{~V}$ at 1 mA and for a bias volage $V_{B B}=$ 1.4 V , what quiescent current results? For a step change in output from 0 to - V , what input step is required? Assuming


## SECTION 14.5: BIASING THE CLASS AB CIRCUIT

 D14.19 Consider the diode-biased class AB circuit of Fig. 14.14. For $I_{\mathrm{BiAS}}=100 \mu \mathrm{~A}$, find the relative size $(n)$ th housing devics) tor*14.20 A class AB output stage using a two-diode bias network as shown in Fig. 14.14 utilizes diodes having the ame junction area as the output transistors. For $V_{C C}=10 \mathrm{~V}$ $I_{\mathrm{BIAS}}=0.5 \mathrm{~mA}, R_{L}=100 \Omega, \beta_{\mathrm{N}}=50$, and $\left|V_{C E \text { sat }}\right|=0 \mathrm{~V}$, what is the quiescent current? What are the largest possible ive peak output level equal to the negative To achicve a posi value of $\beta_{\psi}$ is needed if $I_{0 \text { Is }}$ is not changed" What value of $I_{\text {biss }}$ is needed if $\beta_{N}$ is held at 50 ? For this value, what does $I_{Q}$ become?
**14.21 A class $A B$ output stage using a two-diode bia network as shown in Fig. 14.14 utilizes diodes having the ature of about $20^{\circ} \mathrm{C}$ the quiescent current is 1 mA and $\left|V_{B E}\right|=0.6 \mathrm{~V}$. Through a manufacturing error, the thermal coupling between the output transistors and the biasing diode-connected transistors is omitted. After some output activity, the output devices heat up to $70^{\circ} \mathrm{C}$ while the biasing devices remain at $20^{\circ} \mathrm{C}$. Thus while the $V_{D E}$ of each device remains unchanged, the quiescent current in the output devices increases. To calculate the new current value, recall that there are two effects: $I_{s}$ increases hy about $14 \% /{ }^{\circ} \mathrm{C}$ $\left.{ }^{\circ} \mathrm{C}\right)$ and $V_{T}=25 \mathrm{mV}$, where $T=\left\{273^{\circ}+\right.$ temperature in assume that $\beta_{N}$ remains almost constant This based on the fact that $\beta$ increases with temperature but decreases with current (see Fig. 5.22). What is the new value of $I_{Q}$ ? If the power supply is $\pm 20 \mathrm{~V}$, what additional power is dissipatcd? If thermal runaway occurs, and the temperature of the output transistors increases hy $10^{\circ} \mathrm{C}$ for every watt of additional power dissipation, what additional temperature rise and current increase result?
14.22 Figure PI4.22 shows a MOSFET class AB output stage. All transistors have $|V|=,1 \mathrm{~V}$ and $k_{1}=k_{2}=n k_{3}=n k_{4}$,


FIGURE P14.22

Where $k=\mu C_{o x} W / L$ is the MOSFET transconductance parameter. Also, $k_{3}=2 \mathrm{~mA} / \mathrm{V}^{2}$. For $I_{\mathrm{BAAS}}=100 \mu \mathrm{~A}$ and $R_{L}=$ .99 for output voltages that results in a small-signal gain value of $I_{Q}$.
D14.23 Repeat Examplc 14.3 for the situation in which the peak positive output current is 200 mA . Use the same general approach to safety margins. What are the values of $R_{1}$ and $R_{2}$ you have chosen?
**14.24 A $V_{B E}$ multiplier is designed with equal resi with half the current flowing in the bias current of 1 mA design is based on $\beta=\infty$ and $V=07 \mathrm{~V}$
(a) Find the required resistor values and the terminal voltage (b) Find the terminal voltage that results when the terminal (c) Rent increases to 2 mA. Aosume $\beta=\infty$.
(d) Repeat (c) using the more realistic val

## SECTION 14.6: POWERBJTS

14.25 A particular transistor having a thermal resistance $\theta_{J A}=2^{\circ} \mathrm{C} / \mathrm{W}$ is operating at an ambient temperature of $30^{\circ} \mathrm{C}$ with a collector-emitter voltage of 20 V . If long life require sording device power ratins? What is the gait he cone ollector current that should be considered?
14.26 A particular transistor has a powcr rating at $25^{\circ} \mathrm{C}$ of 0 mW , and a maximnm junction temperature of $150^{\circ} \mathrm{C}$ What is its hernal resistance. What is its power rating when ion temperature when dissipating 100 mW at in lisjuc emperature of $50^{\circ} \mathrm{C}$ ?
4.27 A power transistor operating at an ambient tempera are of $50^{\circ} \mathrm{C}$, and an average emitter current of 3 A , dissipate W. If the thermal resistance of the transistor is known euss han , If the the greatest junction ternperaus pulsed emitter current of 3 A at a junction temperaturc of $25^{\circ} \mathrm{C}$ is 0.80 V , what average $V$ would you expect under rmal operating conditions? (Use a temperature coefficien of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.)
14.28 For a particular application of the transistor speciied in Example 14.4, extreme reliability is essential. To be limited to $100^{\circ} \mathrm{C}$. What are the consequences of this decision for the conditions specified?
4.29 A power transistor is specified to have a maximu in morn of 13 is
found to be $90^{\circ} \mathrm{C}$. The case is attachcd to the heat sink with bond having a thermal resistance $\theta_{C S}=0.5^{\circ} \mathrm{C} / \mathrm{W}$ and the hermal resistance of the heat sink $\theta_{s_{\text {s }}}=0.1^{\circ} \mathrm{C} / \mathrm{W}$. If the ambicnt temperature is $30^{\circ} \mathrm{C}$ what is the power being dissipated in the devicc? What is the thermal resistance of the device, $\theta_{j c}$, from junction to case?
14.30 A power transistor for which $T_{J_{\text {max }}}=180^{\circ} \mathrm{C}$ can dis ipate 50 W at a casc temperature of $50^{\circ} \mathrm{C}$. If it is connecte a heat sink using an insulating washer for which the thernal resistance is $0.6^{\circ} \mathrm{C} / \mathrm{W}$, what hcat-sink temperaturc is neccssary to ensure safc operation at 30 W ? For an ambient emperature of $39^{\circ} \mathrm{C}$, what heat-sink hermal resistance equired? If, for a particular extruded-aluminum-finned hca sink, the thermal resistance in still air is $4.5^{\circ} \mathrm{C} / \mathrm{W}$ per cent meter of length, how long a hcat sink is needed?
14.31 An npn power transistor operating at $I_{\mathrm{C}}=10 \mathrm{~A}$ found to have a base current of 0.5 A and an incremental bas mput resistance of $0.95 \Omega$. What value of $r_{x}$ do you suspect (At this high current density, $n=2$.)
14.32 A base spreading resistance ( $r_{x}$ ) of $0.8 \Omega$ has been measured for an $n$ pn power transistor operating at $I_{C}=5 \mathrm{~A}$ 190 mA . Assuming that $n=2$ for high-curcnt-density opera tion, what base-emitter voltage would you expect for operaion at $I_{C}=2 \mathrm{~A}$ ?

SECTION 14.7: VARIATIONS ON THE CLASS AB CONFIGURATION
4.33 Use the results given in the answer to Excrcise 14.1 o detcrnine the input current of the circuit in Fig. 14.24 for $\nu_{4}=0$ and $\pm 10 \mathrm{~V}$ with infinite and $100-\Omega$ loads

D***14.34 Consider the circuit of Fig. 14.24 in which $Q$ and $Q_{2}$ are matched, and $Q_{3}$ and $Q_{4}$ are matchcd but hav three timcs the junction area of the others. For $V_{C C}=10 \mathrm{~V}$ find values for resistors $R_{1}$ through $R_{4}$ which allow for a base current of at least 10 mA in $Q_{8}$ and $Q_{4}$ at $v_{t}=+5 \mathrm{~V}$ (when a oad demands it) with at most a 2 -to-1 variation in currents in $Q_{1}$ and $Q_{2}$, and a no-load quiescent curren of V , eslinate the output resislance of the overall follower driven by a source having zero resistance. For an input voltage of +1 V and a load resistance of $2 \Omega$, what output voltage results? $Q_{1}$ and $Q_{2}$ have $\left|V_{B E}\right|$ of 0.7 V at a current of 10 mA and exhibit a constant $n=1$.
14.35 A circuit resembling that in Fig. 14.24 uses four matched transistors for which $\left|V_{B E}\right|=0.7 \mathrm{~V}$ at $10 \mathrm{~mA}, n=1$ rent sources, and $R_{3}=R_{4}=0$. What quiescent current flows the oupput transistors? What bias current flows in the bases of
the input transistors? Where does it flow? What is the net input current (the offset current) for a $\beta$ mismatch of $10 \%$ ? What is the small-signal voltage gain?
14.36 Characterize a Darlington compound transistur formed from two npn BJTs for which $\beta \geq 50, V_{B E}=0.7 \mathrm{~V}$ at you expect for $\beta \quad V$

14.37 For the circuitin 100 , 14.3 in which the transistors have $V_{B E}=0.7 \mathrm{~V}$ and $\beta=100$, find $\%_{c}, g_{\text {meq }}, v_{o} / v_{i}$, and $R_{\text {in }}$.


FIGURE P14.37
** 14.38 The BJTs in the circuit of Fig. P14.38 have $\beta_{P}=10$, $\beta_{\mathrm{N}}=100,\left|V_{B E}\right|=0.7 \mathrm{~V}$, and $\left|V_{A}\right|=100 \mathrm{~V}$.


FIGURE P14.38
(a) Find the dc collector current of each transistor and the value of $V_{c}$
(b) Replacing each BJT with its hybrid- $\pi$ model, show that

$$
\frac{z_{o}}{v_{i}} \simeq g_{m 1}\left[r_{o 1} \| \beta_{N}\left(r_{o 2} \| R_{f}\right) .\right.
$$

(c) Find the values of $v_{o} / v_{i}$ and $R_{\text {in }}$

D**14.39 Consider the compound-transistor class AB output stage shown in Fig. 14.27 in which $Q_{2}$ and $Q_{4}$ are matched transistors with $V_{D E}=0.7 \mathrm{~V}$ at 10 mA and $\beta=100$, $Q_{1}$ and $Q_{5}$ have $V_{B E}=0.7 \mathrm{~V}$ at 1 -mA currents and $\beta=100$, and $Q_{3}$ has $v_{E B}=0.7 \mathrm{~V}$ at a $1-\mathrm{mA}$ current and $\beta=10$. All transis2 mA in $Q_{2}$ and $Q_{4} I_{\text {pus }}$ that is 100 times the standby base current in $Q_{1}$, and a current in $Q_{5}$ that is nine times that in the associated resistors. Find the values of the input voltage required to produce outputs of $\pm 10 \mathrm{~V}$ for a $1-\mathrm{k} \Omega$ load. Use $V_{C C}$ of 15 V .
14.40 Repeat Exercise 14.13 for a design variation in which transistor $Q_{5}$ is increased in size by a factor of 10 , all other conditions remaining the same.
14.41 Repeat Exercise 14.13 for a design in which the limiting output current and normal pcak current are 50 mA and 33.3 mA , respectively.

D14.42 The circuit shown in Fig. P14.42 operates in manner analogous to that in Fig. 14.28 to limit the output


IGURE P14.42
current from $Q_{3}$ in the event of a short circuit or other mis hap. It has the advantage that the current-sensing resistor does not couses $Q_{\text {the }}$ the output. Find the value when the current being sourced reaches 150 mA For $\mathrm{I}_{\text {R }}$ $I_{s}=10^{-14} \mathrm{~A}$ and $n=1$. If the normal peak output current 00 mA , find the voltage drop across $R$ and the collector current in $Q_{5}$.
14.43 Consider the thermal shutdown circuit shown in Fig. 14.29. At $25^{\circ} \mathrm{C}, Z_{1}$ is a 6.8 - V zener diode with a TC 0.7 V at a current of 100 Design the circuit so that at $125^{\circ} \mathrm{C}$, a current of 100 flows in each of $Q_{1}$ and $Q_{2}$. What is the current in $Q_{2}$ $25^{\circ} \mathrm{C}$ ?

## SECTION 14.8: IC POWER AMPLIFIERS

D14.44 In the power-amplifier circuit of Fig. 14.30 two resistors are important in controlling the overall voltage gain affects both the de Which controls the gain alone? Which being considered in which the outpur dc A level is design is mately $\frac{1}{1} V_{S}$ (rather than approximately $\frac{1}{2} \mathrm{~V}$ ) with approxi (as before). What changes are needed?
14.45 Consider the front end of the circuit in Fig. 14.30 For $V_{s}=20 \mathrm{~V}$, calculate approximate values for the bias curreints in $Q_{1}$ through $Q_{6}$. Assume $\beta_{\text {npn }}=100, \beta_{p n p}=20$, and $\left|V_{B E}\right|=0.7 \mathrm{~V}$ : Also find the dc voltage at the output.
*14.46 Assume that the output voltage of the circuit of Fig. 14.30 is at signal ground (and thus the signal feedback is deactivated) and find the differential and common-mode input resistances. For this purpose do not include $R_{4}$ and $R_{5}$. Let $V_{s}=20 \mathrm{~V}, \beta_{n p n}=100$, and $\beta_{p u p}=20$. Also find the transconductance from the input to the output of the first stage (at $Q_{6}$ ) base of $Q_{12}$ )
14.47 It is required to use the LM380 power amplifier to drive an $8-\Omega$ loudspeaker while limiting the maximum possible device dissipation to 1.5 W Uise the graph of Fig 1432 to deiermine the maximum possihle power-supply volage that can be used. (Use only the given graphs; do not interpolate.) If the maximum allowed THD is to be $3 \%$, what is the maximum possible load power? To deliver this power to the load what peak-to-peak output sinusoidal voltage is required
14.48 Consider the LM380 amplifier. Assume that when the amplifier is operated with a $20-\mathrm{V}$ supply, the transconductance of the first stage is $1.6 \mathrm{~mA} / \mathrm{V}$. Find the unity-gain
frain current does velocity saturation begin? For electro in silicon, $U_{\text {sen }}=5 \times 10^{6} \mathrm{~cm} / \mathrm{s}$ and $\mu_{n}=500 \mathrm{~cm}^{2} / \mathrm{Ys}$. What $g_{m}$ for this device at high currents?
14.54 Consider the design of the class AB amplifie of Fig. 14.38 under the following conditions: $\left|V_{l}\right|=2 \mathrm{~V}$ $C_{Q X}=I_{R}=10 \mathrm{~mA}, I_{B}, V_{B E}=100=0.7 \mathrm{~V}, \beta$ is high, $I_{Q N}=$
$R_{2}=R_{4}$, the temperature coefficient of $V_{B E}=-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, and the temperature coefficient of $V_{1}=-3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ in the lowcurrent region. Find the values of $R, R_{1}, R_{2}, R_{3}$, and $R_{4}$. Assume $Q_{6}, Q_{P}$, and $Q_{N}$ to be thermally coupled. ( $R_{G}$, used to suppress parasitic oscillation at high frequency, is usually $100 \Omega$ or so.)


## APPENDIXES

## APPENDIX A

VLSI Fabrication Technology
APPENDIX B
Two-Port Network Parameters B-1
APPENDIX C
Some Useful Network Theorems C-1
APPENDIX D
Single-Time-Constant Circuits D

APPENDIX E
$s$-Domain Analysis: Poles, Zeros, and Bode Plots E-1

APPENDIX F
Bibliography F-1
APPENDIX G
Standard Resistance Values and Unit Prefixes G-1
APPENDIX H
Answers to Selected Problems $\mathrm{H}-1$


## VLSI Fabrication Technology

## Introduction

The purpose of this appendix is to familiarize the reader with VLSI (very-large-scale integrated circuit) fabrication technology. Brief explanations of standard silicon VLSI processing steps are given. The characteristics of devices available in CMOS and BiCMOS fabrication technologies are also presented. In particular, the aspects of IC (integrated-circuit) design that are distinct from discrete-circuit design will be discussed. To take proper advantage of the economics of integrated circuits, designers have had to overcome some serious device limitations (such as poor tolerances) while exploiting device advantages (such as good component matching). An understanding of device characteristics is therefore essential in designing good custom VLSls or application-specific ICs (ASICs). This understanding is also very helpful when selecting commercially available ICs to implement a system design.

This appendix will consider only silicon-based technologies. Although gallium arsenide (GaAs) is also used to implement VLSI chips, silicon ( Si ) is by far the most popular material, featuring a wide range of cost-performance trade-offs. Recent development in SiGe and strained-silicon technologies will further strengthen the position of Si-based fabrication processes in the microelectronics industry in the coming years.

Silicon is an abundant element, which occurs naturally in the form of sand. It can be refined using well-established techniques of purification and crystal growth. Silicon also exhibits suitable physical properties for fabricating active devices with good electrical characteristics. Moreover, silicon can be easily oxidized to form an excellent insulator, $\mathrm{SiO}_{2}$ (glass). This native oxide is useful for constructing capacitors and MOSFETs. It also serves as a diffusion barrier that can mask against the diffusion of unwanted impurities into nearby high-purity silicon material. This masking property of silicon oxide allows the electrical properties of silicon to be easily altered in predefined areas. Therefore, active and passive elements can be built on the same piece of material (or, substrate). The components can then be interconnected using metal layers (similar to those used in printed-circuit boards) to form a so-called monolithic IC, which is essentially a single piece of material (rock!).

## A. 1 IC FABRICATION STEPS

The basic IC fabrication steps will be described in the following subsections. Some of these steps may be carried out many times, in different combinations and under different processing conditions during a complete fabrication run


FIGURE A. 1 Silicon ingot and wafer slices.

## A.1.1 Wafer Preparation

The starting material for modern integrated circuits is very-high-purity silicon. The material is grown as a single-crystal ingot. It takes the form of a steel gray solid cylinder 10 cm to 30 cm in diameter (Fig. A.1) and can he 1 m to 2 m in length. This crystal is then sawed (like a loaf of bread) to produce circular wafers that are $400 \mu \mathrm{~m}$ to $600 \mu \mathrm{~m}$ thick (a micrometer or micron is a millionth of a neter). The surface of was and mechanical polining (chm) echiques. Sarely start their process at the ingot stage.
ready-made silicon wafers from a supplier and rarely start their process at the ingot stage.
The basic clectrical and mecharch propertis of the wor inpuritics present. These variables are erstricly controlled during crystal growth. Controlled amounts of impurities can be added to the strictly contriled dors allows the alteration of the electrical properties pure silicon in a mocess kis resistivity It is also possible to control the conduction-carrier type, of the silicon, in either holes (in $p$-type silicon) or electrons (an $n$-type site then the silicon is said to be heavily conduction. If a arge number or inpur ${ }^{18}$ atoms $/ \mathrm{cm}^{3}$ ). When designating the relative doping concentradoped (e.g., concluctor device structurcs, it is common to use + and - symbols. A heavily doped (low-resistivity) $n$-type silicon wafer would be referred to as $n+$ material, while a lightly doped (low-resis be referred to as $n$ - The ability to control the type of impurity and the doping conregtration in the silicon permits the formation of diodes, transistors, and resistors in flexible centration in the siucon.
integrated-cricuit form.

## A.1.2 Oxidation

Oxidation refers to the clemical process of silicon reacting with oxygen to form silicon dioxide $\left(\mathrm{SiO}_{2}\right)$. To speed up the reaction, it is necessary to use special high-temperature (e.g., $1000-1200^{\circ} \mathrm{C}$ ) ultraclean furnaces. To avoid the introduction of even smal quandites of contaminants (which could significantly alter the electrical properties of the silicon), it in necessary to maintain a clean environment. This is true for all prossiag steps in processing the fabrication of an integrated circuit. Specialy fist area, and all personnel must wear special lint-free clothing.
The oxygen used in the reaction can be introduced either as a high-purity gas (in a process referred to as a "dry oxidation") or as steam (for wet oxidation"). In general, wet oxidation has a faster growth rate, but dry oxidation gives better electricar chaceries. The dielectric strength for mally grown oxide layer has excellent electrical insulation properus. 3.9 and can be used to form $\mathrm{SiO}_{2}$ is approximately $10 \mathrm{~V} / \mathrm{cm}$. It has a dielectric constant of about 3.9 ask against many inpuriexcellent capacitors. As noted, silicon dioxide serves as anly in regions that are not covered with cies, allowing the introduction of dopans in Silicon dionide is thin Sincon is shone and destructive interference will white certain colors to be reflected. The wavelengths of the reflected light depend on the ane can
deduce the thickness of the oxide layer. The same principle is used by sophisticated optical inferometers to measure film thickness. On a processed wafer, there will be regions with different oxide thicknesses. The corresponding colors can be quite vivid, and thickness variations are immediately ohvious when a finished wafer is viewed with the naked eye

## A.1.3 Diffusion

Diffusion is the process by which atoms move from a high-concentration region to a lowconcentration region through the semiconductor crystal. The diffusion process is very much like a drop of ink dispersing through a glass of water except that it occurs much more slowly in solids. In fabrication, diffusion is a method by which to introduce impurity atoms (dopants) into silicon to change its resistivity. The rate at which dopants diffuse in silicon is a strong function of temperature. Thus, for speed, diffusion of impurities is usually carried out at high temperatures $\left(1000-1200^{\circ} \mathrm{C}\right.$ ) to obtain the desired doping profile. When the wafer is cooled to room temperature, the impurities are essentially "frozen" in position. The diffusion process is performed in furnaces similar to those used for oxidation. The depth to which the impurities diffuse depends on both the temperature and the time allocated.
The most common impurities used as dopants are boron, phosphorus, and arsenic. Boron is a $p$-type dopant, while phosphorus and arsenic are $n$-type dopants. These dopants can be effectively masked by thin silicon dioxide layers. By diffusing boron into an $n$-type substrate, a $p n$ junction (diode) is formed. If the doping concentration is heavy enough, the diffused layer can also be used as a conductor.

## A.1.4 Ion Implantation

Ion implantation is another method used to introduce impurity atoms into the semiconductor crystal. An ion implanter produces ions of the desired dopant, accelerates them by an electric field, and allows them to strike the semicondnctor surface. The ions become embedded in the crystal lattice. The depth of penetration is related to the energy of the ion beam, which can be controlled by the accelerating-field voltage. The quantity of ions implanted can be controlled by varying the heam current (flow of ions). Since both voltage and current can be accurately measured and controlled, ion implantation results in much more accurate and reproducible impurity profiles than can be oblained by diffusion. In addition, ion implantation can be performed at room temperature. Ion implantation normally is used when accurate control of the doping profile is cssential for device operation.

## A.1.5 Chemical-Vapor Deposition

Chemical-vapor deposition (CVD) is a process by which gases or vapors are chernically reacted, leading to the formation of solids on a substrate. CVD can be used to deposit various materials on a silicon substrate including $\mathrm{SiO}_{2}, \mathrm{Si}_{3} \mathrm{~N}_{\text {, }}$ and polysilicon. For instance, if silane gas and oxygen are allowed to react above a silicon substrate, the end product, silicon dioxide, will be deposited as a solid film on the silicon wafer surface. The properties of the CVD oxide layer are not as good as those of a thermally grown oxide, but such a layer is sufficient to act as an electrical insulator. The advantage of a CVD layer is that the oxide deposits at a fast rate and a low temperature (below $500^{\circ} \mathrm{C}$ ).
If silane gas alone is used, then a silicon layer will be deposited on the wafer. If the reaction temperature is high enough (above $1000^{\circ} \mathrm{C}$ ), the layer deposited will be a crystalline layer (assuming that there is an exposed crystalline silicon substrate). Such a layer is called an epitaxial layer, and the deposition process is referred to as epitaxy, rather than CVD. At lower temperatures, or if the substrate surface is not single-crystal silicon, the atoms will not be able to align in the same crystalline dircction. Such a layer is called polycrystalline
silicon (poly Si), since it consists of many small crystals of silicon whose crystalline axes are oriented in random directions. These layers are normally doped very heavily to form are oriented in random directions. These layers are normally doped very

## A.1.6 Metallization

The purpose of metallization is to interconnect the various components (transistors, capacitors, etc.) to form the desired integrated circuit. Metalization involves the initial deposition of a metal over the entire surface of the silicon. The required interconnection patteri is then selectively etched. The metal layer is normally deposited via a sputtering process. A pure metal disk (e.g., $99.99 \%$ aluminum) is placed under an argon (Ar) ion gun inside a vacuum chamber. The wafers are also mounted inside the chamber above the target. The Ar ions will not react with the metal, since Ar is a noble gas. However, their ions are made to physically bombard the target and literally knock metal atoms out of it. These metal atoms will then coat all the surface inside the chamber, including the wafers. The thickness of the metal film can be controlled by the length of time for sputtering, which is normally in the range of 1 to 2 minutes.

## A.1.7 Photolithography

The surface geometry of the various integrated-circuit components is defined photographically First, the wafer surface is coated with a photosensitive layer (called photoresist) using a spin-on technique. After this, a photographic plate with drawn patterns (e.g., a quartz plate with a chromium pattem) will be used to selectively expose the photoresist under uitraviolet (UV) illumination. The exposed areas will become softened (for positive photoresist). The exposed layer can then be removed using a chemical developer, causing the mask pattern to appear on the wafer. Very fine surface geometries can be reproduced accurately by this technique. Photolithography requires some of the must expensive equipment in VLSI fabrication. Currently, we are already approaching the physical limits of the photolithographic process. Deep UV light or electron beam can be used to define patterns with resolution as fine as 50 nm . However, another technological breakthrough will be needed to achieve further geometry downscaling.

The patterned photoresist layer can be used as an effective masking layer to protect naterials below from wet chemical etching or reactive ion etching. Correspondingly, silicon dioxide, silicon nitride, polysilicon, and metal layers can be sclectively removed using the appropriate etching methods. After the ctching step(s), the photoresist is stripped away, leaving behind a permanent pattern, an image of the photomask, on the wafer surface

To make this process even more challenging, multiple masking layers (there can be more than 20 layers in advanced VLSI fabrication processes) must be aligned precisely on top of previous layers. This must be done with even greater precision than is associated with the minimum dimensions of the masking pattems. This requirement imposes very critical mechanical and optical constraints on the photolithography equipment.

## A.1.8 Packaging

A finished silicon wafer may contain several hundred or more finished circuits or chips. Each chip may contain from 10 to $10^{8}$ or more transistors in a rectangular shape, typically between 1 mm and 10 mm on a side. The circuits are first tested electrically (while still in wafer form) sing an automatic probing station. Bad circuits are marked for later identification. The circuits re then separated from each other (hy dicing), and the good circuits (called dies) are mount in packages (or headers). Examples of such IC packages are given in Fig. A.2. Fine gold the die Fin mally used to connect the pins of the package in ar or in an inert atmosphere.


FIGURE A. 2 (a) An 8 -pin plastic dual-inhine IC package (DIP), (b) A 16 -pin surface mount IC package (SOC), shown on a much larger scale than (a).

## 14. 2 VLSI PROCESSES

Integrated-circuit fabrication was originally dominated by bipolar technology. But, by the late 1970s metal-oxide-semiconductor (MOS) technology was perceived to be more promising for VLSI implementation, owing to its higher packing density and lower power consumption. Since the early 1980s, complementary MOS (CMOS) technology has grown prodigiously to almost completely dominate the VLSI scene, leaving bipolar technology to fill specialized functions such as digital and high-speed analog and RF circuits. CMOS technologies continue to evolve, and in the late 1980s, the incorporation of bipolar devices led to the emergence of high-performance bipolar-CMOS (Bi-CMOS) fabrication processes that provided the best of both technologies. However, BiCMOS processes are often very complicated and cosily, smee they requir apward of is to 20 masking levels per implenentationby comparison, standard CMOS processes require only 10 to 12 masking levels.

The performance of CMOS and BiCMOS processes continues to improve, offering finer lithographic resolution. However, fundamental limitations on processing techniques and emiconductor properties have pronpled he need to explore atternate inaterials. Siliconermanium (SiGe) and strained-Si technologies have emerged as good compromises which mprove pertormance while maintaing manufacturng compatibility (hence low cost) with xisting silicon-based CMOS fabrication equipment.
In the subsections that follow, we will cxamine, in turn, three aspects of modern IC fabrication, namely; a typical CMOS process flow, the performance of the available components, and the inclusion of bipolar devices to form a BiCMOS process.

## A.2.1 $n$-Well CMOS Process

Depending on the choice of starting material (substratc), CMOS processcs can be identified as $n$-well, $p$-well, or twin-well processes, the latter being the most complicated but also the most lexible in the optimization of both the $n$ - and $p$-channel devices. In addition, many advanced CMOS processes may make use of trench isolation, and silicon-on-insulator (SOI) technol ogy, to reduce parasitic capacitance (to achieve higher speed) and to inprove packing density For simplicity, an $n$-well CMOS process is chosen for discussion. Another benefit of this hoice is that it can also be easily extended into a BiCMOS process. The typical proces ow is as shown in Fig. A.3. A minimum of 7 masking layers is necessary. How better latchup imOS processes will also require additional lays and miltilayer metals igh-density interconnections. The inclusion of these layers would increase the ural nub of masking layers from 15 to 20.
The starting material for the $n$-well CMOS is a $p$-type substrate. The process begins with n $n$-well diffusion (Fig. A.3a). The $n$ well is required wherever $p$-type MOSFETs are to be
(a) Define $n$-well diffusion (mask \#1)

(b) Define active regions (mask \#2)

(c) LOCOS oxidation

(d) Polysilicon gate (mask \#3)

(e) $n+$ diffusion (mask \#4)

(f) $p$ + diffusion (mask \#5)

(g) Contact holes (mask \#6)

(h) Metallization (mask \#7)


FIGURE A. 3 A typical $n$-well CMOS process flow.
placed. A thick silicon dioxide layer is etched to expose the regions for $n$-well diffusion. The unexposed regions will be protected from the $n$-type phosphorus impurity. Phosphorus i usually used for deep diffiusions because it has a large diffusion coefficicnt and can diffus faster than arsenic into the substrate.
The second step is to define the active region (where transistors are to be placed) using a technique called local oxidation (LOCOS). A silicon nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ layer is deposited an patterned relative to the previous $n$-well regions (Fig. A.3b). The nitride-covered region will not be oxidized. After a long wet oxidation step, thick-field oxide will appcar in regions between transistors (Fig. A.3c). This thick-field oxide is necessary for isolating the transistors It also allow interconnection layers to be routed on top of the field oxide without inadvertently forming a conduction channel at the silicon surface.

The next step is the formation of the polysilicon gate (Fig. A.3d). This is one of the most critical steps in the CMOS process. The thin oxide layer in the active region is first removed using wet etching followed by the growth of a high-quality thin gate oxide. Current $0.13 \mu \mathrm{~m}$ and $0.18 \mu \mathrm{~m}$ processes routinely use oxide thicknesses as thin as $20 \AA$ to $50 \AA(1$ angstrom $=$ $10^{-8} \mathrm{~cm}$ ). A polysilicon layer, usually arsenic doped ( $n$ type), is then deposited and patterned. The photolithography is most demanding in this step, since the finest resolution is required to produce the shortest possible MOS channel length.

The polysilicon gate is a self-aligned structure and is preferred over the older type of metal gate structure. A heavy arsenic implant can be used to form the $n+$ source and drain regions of the $n$-MOSFETs. The polysilicon gate also acts as a barrier for this implant to protect the channel region. A layer of photoresist can be used to block the regions where $p$-MOSFETs are to be formed (Fig. A.3e). The thick-field oxide stops the implant and prevents $n+$ regions from forming outside the active regions. A reversed photohithography step can be used to protect the $n$-MOSFETs during the $p+$ boron source and drain implant for the $p$-MOSFETs (Fig. A. $3 f$ ). In both cases the separation between the source and drain diffusionsthe channel length-is defined by the polysilicon gate mask alone, hence the self-alignment.

Before contact holes are opened, a thick layer of CVD oxide is deposited over the entire wafer. A photomask is used to define the contact window opening (Fig. A.3g) followed by a wet or dry oxide etch. A thin aluminum layer is then evaporated or sputtered onto the wafer A final masking and etching step is used to pattern the interconnection (Fig. A.3h).

Not shown in the process flow is the final passivation step prior to packaging and wire bonding. A thick CVD oxide or pyrox glass is usually deposited on the wafer to serve as a protective layer.

## A.2.2 Integrated Devices

Besides the obvious $n$ - and $p$-channel MOSFETs, there are other devices that can be obtained by manipulating the masking layers. These include pn junction diodes, MOS capacitors, and resistors.

## A.2.3 MOSFETs

The $n$-channel MOSFET is preferred over the $p$-MOSFET (Fig. A.4). The electron surface mobility of the $n$-channel device is two to four times higher than that for holes. Therefore, with the same device size ( $W$ and $L$ ), the $n$-MOSFET offers higher current drive (or lower on-rcsistance) as well as higher transconductance.

In an integrated-circuit design environment, MOSFETs are characterized by their thresh old voltage and device sizes. Usually the $n$ - and $p$-channel devices are designed to have threshold voltages of similar magnitudc for a particular process. The transconductance can be adjusted


FIGURE A. 4 Cross-sectional diagram of an $n$ - and $p$-MOSFET.
by changing the device sufface dimensions ( $W$ and $L$ ). This feature is not available for hipolar transistors; thus integrated MOSFET circuits are much more flexible in their design.

## A.2.4 Resistors

Resistors in integrated form are not very precise. They can be made from various diffusion regions as shown in Fig. A.5. Different diflusion regions have different resistivity. The $n$ well is usually used for medium-value resistors, while the $n+$ and $p+$ diffusions are useful for low-value resistors. The actual resistance value can be defined by changing the length and width of diffused regions. The tolerance of the resistor value is very poor ( $20-50 \%$ ), but the matching of two similar resistor values is quite good ( $5 \%$ ). Thus circuil designers should design circuits that exploit resistor matching and avoid designs that require a specific resistor value.

All diffused resistors are self-isolated by the reversed-hiased $p n$ junctions. However, a serious drawback for these resistors is that they are accompanied by a substantial parasitic junction capacitance, making them not very useful for high-frequency applications. The reversed-biased $p n$ junctions also exhibit a JFET effect, leading to a variation in the resistance value as the applied voltage is changed (a large voltage coefficient is undesirable). Since the mobilities of carriers vary with temperature, diffused resistors also exhibit a significant temperature coefficient.

A more uscful resistor can be fabricated using the polysilicon layer that is placed on top of the thick-field oxide. The thin polysilicon layer provides better surface area matching and


FIGURE A. 5 Cross sections of resistors of various types available from a typical $n$-well CMOS process.


FIGURE A. 6 Interpoly and MOS capacitors in an $n$-wcll CMOS process.
hence more accurate resistor ratios. Furthennore, the poly resistor is physically separatcd from the substratc, resulting in much lower parasitic capacitance and voltage cocfficient.

## A.2.5 Capacitors

Two types of capacitor structure are available in CMOS processes, MOS and interpoly capacitors (also MIM-metal-insulator-metal). The cross sections of these structures are as shown in Fig. A.6. The MOS gate capacitance, depicted in the center structure, is basically the gate-to-source capacitance of a MOSFET. The capacitance value is dependent on the gate area. The oxide thickness is the same as the gate oxide thickness in the MOSFETs. Thi. capacitor exhibits a large voltage dependence. To eliminate this problem, an additional $n+$ implant is required to form the bottom plate of the capacitors, as shown in the structure on the night. Both these MOS capacitors are physically in conket whe substrate, resulting in a large parasitic $p n$ junction capacitance at the bottom plate.

The interpoly capacitor exhibits near ideal characteristics but at the expense of the inclusion of a second polysilicon layer to the CMOS process. Since this capacitor is placed on top of the thick-field oxide, parasitic effects are kept to a minimum.

A third and less often used capacitor is the junction capacitor. Any $p n$ junction under reversed bias produces a depletion region that acts as a dielectric between the $p$ and the $n$ regions. The capacitance is determined by geometry and doping levels and has a large volt-
age coefficient. This type of capacitor is often used as a variactor (variable capacitor) for age coefficient. This type of capacitor is often used as a variactor (variable capacitor) for For interpoly and MOS capacitor works only win reversed-bias voltages

For interpoly and $1 \%$. Practical capacitance values range from 0.5 pF to a few 10 s of picofarads. The matching between similar-size capacitors can be within $0.1 \%$. This property is extremely useful for designing precision analog CMOS circuits.

## A.2.6 pn Junction Diodes

Whenever $n$-type and $p$-type diffusion regions are placed next to each other, a $p n$ junction diode results. A useful structure is the $n$-well diode shown in Fig. A.7. The diode fabricated in an $n$ well can provide a high breakdown voltage. This diode is essential for the input clamping circuits for protection against electrostatic discharge. The diode is also very useful as an on-chip temperature sensor by monitoring the variation of its forward voltage drop.

## A.2.7 BiCMOS Process

An npn vertical bipolar transistor can be integrated into the $n$-well CMOS process with the addition of a $p$-hase diffusion region (Fig. A.8). The characteristics of this device depend on


FIGURE A. 7 A $p n$ junction diodc in an $n$-well CMOS process.


FIGURE A. 8 Cross-sectional diagrarn of a BiCMOS process.
he base width and the emitter area. The base width is determined by the difference in junctio depth between the $n+$ and the $p$-base diffusions. The emitter area is determined by the juncion area of the $n+$ diffusion at the emitter. The $n$ well serves as the collector for the $n p n$ ransistor. Typically, the $n p n$ transistor has a $\beta$ in the range of 50 to 100 and a cutoff frequency greater than 10 GHz .
Normally, an $n+$ buried layer is used to reduce the serics resistance of the collector, since the $a$ well has a very high resistivity. However, this would further complicate the process with the introduction of $p$-type epitaxy and one more masking step. Other variations on the bipolar tran sistor include the use of a polyemitter and self-aligned base contact to minimize parasitic cffects.

## A.2.8 Lateral pnp Transistor

The fact that most BiCMOS processes do not have optimized pnp transistors inakes circuit design somewhat difficult. However, in noncritical situations, a parasitic lateral pnp transis or can be used (Fig. A.9).

In this case, the $n$ well serves as the $n$-basc region, with $p+$ diffusions as the emitter and he collector. The base width is determined by the separation between the two $p+$ diffusions. Since the doping profile is not optimized for the base-collector junctions, and because the


FIGURE A. 9 A lateral pnp transisto.


FIGURE A. 10 -base and pinched $p$-base resistors.
ase width is limited by the minimum photolithographic resolution, the performance of this device is not very good-typically, $\beta$ of around J 0 , with a low cutoff frequency.

## A.2.9 p-Base and Pinched-Base Resistors

With the additional $p$-base diffusion in the BiCMOS process, two additional resistor structures are available. The $p$-base diffusion can be used to form a straightforward $p$-base resistor as shown in Fig. A.10. Since the base region is usually of a relatively low doping level and with a noderate junction depth, it is suitable for medium-value resistors (a few kilohms). If a large resistor value is required, the pinchcd-base resistor can be used. In this structure, the $p$-base region is encroached by the $n+$ diffusion, restricting the conduction path. Resistor values in the ange of $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ can be obtained. As with the difusion resistors discussed eanher hese resistors exhibit poor tolerance and temperalure coefficients but rclatively good matching

## A.2.10 The SiGe BiCMOS Proces

With the advent of wireless applications, the demand for high-performance, high-irequency RF integrated circuits is enjoying a tremendous growth. The fundamental limitations of physical material properties initially prevented silicon-based technology from competing with more expensive III-V compound technologies such GaAs. By incorporating a con rolled amonnt (typically no more than 15 mole \%) of germanium (Ge) into crystalline sili on (Si), the energy bandgap can be altered. The specific concentration profile of the Ge can be engineercd in such a way that the energy bandgap can be gradually reduced from that in he pure Si region to a lower value in the Sige region. This energy-bandgap reduction proaces a built-in electrical field that can assist the movement of carriers, hence giving faster operating speed. Therefore, SiGe bipolar transistors can achieve significant higher cut off frequency (e.g., in the $50-70 \mathrm{GHz}$ range). Another benefit is that the siGe process is onipatiole with existing Si-based fabrication technology, ensuring a very favorable cost erformance ratio.
To take advantage of tuc sige materiar characteristics, the basic bipolar transistor structure nust also be modify to further reduce parasitic capacitance (for higher speed) and to improve the jection efficiency (for higher gain). A symmetrical bipolar device structur is shown in g. A. The device makes use of tench solaion to redace he colletor sidem capacitace etween the $n$-weli $n+$ buried layer and the $p$ substate. The entiter size and he. $p+$ base contac size are defined by a self-aligned process to minimize the base-collector junction (Miller)
 mitter-base juinction is formed from two different types of material, polysilicon emiter and SiGe base. The injection efficiency is significantly better than a homojunction device (as in a


FIGURE A. 11 Cross-sectional diagram of a symmetrical seif-aligned $n p n$ SiGe heterojunction bipolar transistor (HBT).
conventional BJT). Coupled with the fact that base width is typically orily around 50 nm , it is easy to achieve a current gain of more han 100. In addition, not shown in Fig. A. 1 1, muluple lay ers of metallization can be used to further reduce the device size and interconnect resistance. Al these device features are necessary to complement the speed performance of the SiGe material.

## A. 3 VLSI LAYOUT

Each designed circuit schematic nust be transformed into a layout that consists of the geometric representation of the circuit components and interconnections. With the advent of computer-aided design (CAD) tools, many of the conversion steps from schematic to layout can be carried out semi- or fully automatically. However, any good mixed-signal IC designer must have practiced full-custom layout at one point or another. To illustrate such a procedure we will consider the layout of a CMOS inverter
Similar to the requirement in a printed-circuit-board layout to reduce crossover paths, the ircuit must first be "flatened" and redrawn to eliminate any interconnection crossovers. Each process is made up of a specific set of masking layers. In this casc, 7 layers are used. Each hyer is usually assigned a unique color and fill pattern for ease of identification on a compute crcen or on a printed color plot. The layout begins with the placement of the transistors. For lustration purposes (Fig. A.12), the $p$ - and $n$-MOSFETs are placed in arrangements similar to hat of the schematic. In practice, the designer is frec to choose the most area-efficient layout hat she can identify. The MOSFE1s are defined by the active areas overtapped by the "Poly 1 layer. The MOS channel length and width are defined by the width of the "Poly 1 " strip and hat of the active region, respectivcly. The $p$-MOSFET is enclosed in an $n$ well. For more com plex circuits, multiple $n$ wells can be used for different groups of $p$-MOSFETs. The $n$-MOSFE is enclosed by the $n+$ diffusion mask to form the source and drain, while the $p$-MOSFET is enclosed by the $p+$ diffusion mask. Conlact holes are placed in regions that require connection to the metal layer. Finally, the "Metal 1 " layer completes the interconnections.
The corresponding cross-sectional diagram of the CMOS inverter, viewed along the AA plane is shown in Fig. A.13. The poly-Si gates for both transistor are connected together form the input terminal, $X$. The drains of both transistors are tied together via "Metal 1" to form the output terminal, $Y$. The sources of the $n$ - and $p$-MOSFETs are connected to GND and $V_{D D}$, respectively. Note that butting contacts consisting of sidc-by-side $n+/ p+$ diffusions are used to tie the body potential of the $n$ - and $p$-MOSFETs to the appropriate volage levels.


FIGURE A. 13 The cross section along the plane $\mathrm{AA}^{\prime}$ of a CMOS inverter
When the layout is completed, the circuit must be verified using appropriate CAD tools including circuit extractor, design-rule checker (DRC), and circuit simnulator. Once these verifiations have been saisfied, the design can be "taped out" to a mask-making facility. A pattern enerator ( PG mashinc) can then draw the geometries on a glass or quatz photoplate using ectronically driven shuters. Layers are drawn one-by-one onto different photoplates. Whe hese plates have been developed, clear and dark patterns depicting the geometries on the layout will appear. A set of the photoplates for the CMOS inverter example is shown in Fig. A. 14 Depending on whether the drawn geometries are meant to be opened as windows or kept as pat ems, the plates can be "positive" or "negative" images with clear or dark fields. Note that lhes layers must be processed in sequence. In the steps of this sequence, they must be aligned within very fine tolerances to form the transistors and inlerconnections. Naturally, the greater the nnmer of layers, the more difficult it is to inaintain the alignment. A process with more layers also requires better photolithography equipment and possibly results in lower yield. Hence, each additional mask will be reflected in an increase in the final cost of the IC chip.

A-14 APPENDIXA VLSI FABRICATION TECHNOLOGY

(a) $n$ Well

(c) $p$-1 Diffusion

(b) Active region
(f) Contact holc


(c) Poly 1

(g) Metal 1

(d) $n+$ Diffusion

FIGURE A. 14 A set of photomasks for the $n$-well CMOS inverter. Note that cach layer requires a scparate plate: (a), (d), (e), and (f) arc dark-field masks; (b), (c), and (g) are clear-field mask

## SUMMARY

« This appendix presented an overview of the various aspects of VLSI tabrication procedures. This includes component characteristics, process flows, and layouts. This is by no means a complete account of state-of-the-art

VLSI technologies. Interested readers should consult relerence textbooks on this subject for more delaile
discussions.

## Two-Port Network Parameters

## Introduction

Al various points throughout the text, we make use of some of the different possible ways to characterize linear two-port networks. A summary of this topic is presented in this appendix

## 塐䜌 B. 1 CHARACTERIZATION OF LINEAR * TWO-PORT NETWORKS

A two-port network (Fig. B.I) has four port variables: $V_{1}, I_{1}, V_{2}$, and $I_{2}$. If the two-port network is linear, we can use two of the variables as excitation variables and the other two as response variables. For instance, the network can be excited by a voltage $V_{1}$ at port 1 and a voltage $V_{2}$ at port 2 , and the two currents, $I_{1}$ and $I_{2}$, can be measured to represent the network response. In this case $V_{1}$ and $V_{2}$ are independent variables and $I_{1}$ and $I_{2}$ are dependent variables, and the network operation can be described by the two equations

$$
\begin{align*}
& I_{1}=y_{11} V_{1}+y_{12} V_{2}  \tag{B.1}\\
& I_{2}=y_{21} V_{1}+y_{22} V_{2}
\end{align*}
$$

Here, the four parameters $y_{11}, y_{12}, y_{21}$, and $y_{22}$ are admittances, and their values completely characterize the linear two-port network

Depending on which two of the four port variables are used to represent the network excitation, a different set of equations (and a correspondingly different set of parameters) is obtained for characterizing the network. We shall present the four parameter sets commonly used in electronics.


FIGURE B. 1 The reference directions of the four port variables in a linear two-port network.

## B.1.1 y Parameters

The short-circuit admittance (or $y$-parameter) characterization is based on exciting the network by $V_{1}$ and $V_{2}$, as shown in Fig. B. 2(a). The describing equations arc Eqs. (B.1) and (B.2). The four admittance parameters can be defined according to their roles in Eqs. (B.1) and (B.2).

Specifically, from Eq. (B.1) we see that $y_{11}$ is defined as

$$
\begin{equation*}
y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0} \tag{B.3}
\end{equation*}
$$

Thus $y_{11}$ is the input admittance at port 1 with port 2 short-circuited. This definition is illustrated in Fig. B.2(b), which also provides a conceptual method for measuring the input short-circuit admittance $y_{11}$

The definition of $y_{12}$ can be obtained from Eq. (B.1) as

$$
\begin{equation*}
y_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}-0} \tag{B.4}
\end{equation*}
$$

Thus $y_{12}$ represents transmission from port 2 to port 1 . Since in amplifiers, port 1 represents the input port and port 2 the output port, $y_{12}$ represents internal feedback in the network. Figure B.2(c) illustrates the definition and the method for measuring $y_{12}$.

(a)

$y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}$
(b)

$\dot{y}_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}=0}$
(c)

(d)

(e)

FIGURE B. 2 Definition and conceptual measurement circuits for the $y$ parameters.

The definition of $y_{21}$ can be obtained from Eq. (B.2) as

$$
\begin{equation*}
y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}=0} \tag{B.5}
\end{equation*}
$$

Thus $y_{21}$ represents iransmission from port 1 to port 2. If port 1 is the input port and port 2 the output port of an amplifier, then $y_{21}$ provides a measure of the forward gain or transmission. Figure B.2(d) illustrates the definition and the method for measuring $y_{21}$

The parameter $y_{22}$ can he defined, based on Eq. (B.2), as

$$
\begin{equation*}
y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{i}=0} \tag{B.6}
\end{equation*}
$$

Thus $y_{22}$ is the admittance looking into port 2 while port 1 is short-circnited. For amplifiers, $y_{22}$ is the output short-circuit admittance. Figure B.2(c) illustrates the definition and the method for measuring $y_{22}$

## B.1.2 $z$ Parameters

The open-circuit impedance (or $z$-parameter) characterization of two-port networks is hased on exciting the network by $I_{1}$ and $I_{2}$, as shown in Fig. B.3(a). The describing equations are

$$
\begin{equation*}
V_{1}=z_{11} I_{1}+z_{12} I_{2} \tag{B.7}
\end{equation*}
$$

$V_{2}=z_{21} I_{1}+z_{22} I_{2}$

$V_{1}=z_{11} I_{1}+z_{12} I_{2}$
$V_{2}=z_{21} I_{1}+z_{22} I_{2}$
(a)

$z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{l_{2}=0}$
(b)

(d)

(c)

(e)

FIGURE B. 3 Definition and conceptual measurement circuits for the $z$ parameters

Owing to the duality between the $z$ - and $y$-parameter characterizations, we shall not give detailed discussion of $z$ parameters. The definition and method of measuring each of the fou z parameters are given in Fig. B. 3

### 3.1.3 h Parameters

The hybrid (or $h$-parametcr) characterization of two-port networks is hased on exciting the etwork by $I_{1}$ and $V_{2}$, as shown in Fig. B.4(a) (note the reason behind the name hybrid). The describing equations are

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

from which the definition of the four $h$ parameters can be obtained as

$$
\begin{array}{ll}
h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0} & h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0} \\
h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0} & h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{l_{1}=0}
\end{array}
$$


(a)

(b)
$h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V=0}$

$h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{t_{1}=0}$
(c)

(d)

(e)

FIGURE B. 4 Definition and conceptual measurement circuits for the $h$ parameters.

Thus, $h_{11}$ is the input impedance at port 1 with port 2 short-circuited. The parameter $h_{12}$ represents the reverse or feedback vollage ratio of the network, measured with the input port open-circuited. The forward-transmission parameter $h_{21}$ represents the current gain of the network with the output port short-circuited; for this reason, $h_{21}$ is called the short-circuit current gain. Finally, $h_{22}$ is the output admittance with the input port open-circuited.

The definitions and conceptual measuring setups of the $h$ parameters are given in Fig. B. 4 .

## B.1.4 g Parameters

The inverse-hybrid (or $g$-paranietcr) characterization of two-port networks is hased on excitation of the network by $V_{1}$ and $I_{2}$, as shown in Fig. B.5(a). The describing equations are

$$
\begin{aligned}
& I_{1}=g_{11} V_{1}+g_{12} I_{2} \\
& V_{2}=g_{21} V_{1}+g_{22} I_{2}
\end{aligned}
$$

(B.11)
(B.12)

The definitions and conceptual measuring setups are given in Fig. B. 5 .

## B.1.5 Equivalent-Circuit Representation

A two-port network can be represented by an equivalent circuit based on the set of parametcrs used for its characterization. Figure B. 6 shows four possible cquivalent circuits corresponding

(a)

$g_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{t_{2}=0}$
(b)
$g_{21}=\left.\frac{V_{2}}{V_{1}}\right|_{t_{2}-0}$
(d)

(a)

$g_{12}=\left.\frac{I_{1}}{l_{2}}\right|_{y_{1}=0}$
(c)

$g_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{r_{1}=0}$
(e)

FIGURE B. 5 Definition and conceptual measurement circuits for the $g$ parameters.

+	
$V_{1}$	
-	


$\square$

${ }_{12} r_{2}$

(a)

(b)

(c)

(d)

FIGURE B. 6 Fquivaient circuits for two-por networks in terns of (a) $y$, (b) $z$, (c) $h$, and $(\mathbf{d}) ~ g$ parameters.
to the four parameter types just discussed. Each of these equivalent circuits is a direct pictorial representation of describing the network in terms of the particular parameter set.

Finally, it should be mentioned that other parameter sets exist for characterizing two-port networks, but these are not discussed or used in this book.

## EXERCISE

11 Fisire EB I shows the small-signal equivalent-circuit model of a transistor. Calculate the values of the fiprameters

$r=100 \Omega B, \quad=10 \mathrm{MO}$

higure eb.

## PROBLEMS

B. 1 (a) An amplifier characterized by the $h$-parameter equi- the current in the output is 0.2 mA and the voltage measure valencent of B .6(c) is fed win a source having a voltage the input is 2.5 mV . Find values for the $h$ parameters of this $V_{s}$ and a resistance $R_{s,}$, and is loaded in a resistance $R_{L}$. Show that its voltage gain is given hy

$$
\frac{V_{2}}{V_{s}}=\frac{-h_{21}}{\left(h_{11}+R_{s}\right)\left(h_{22}+1 / R_{L}\right)-h_{12} h_{21}}
$$

(h) Use the expression derived in (a) to find the voltage gain of the transistor in Exercise B. 1 for $R_{s}=1 \mathrm{k} \Omega$ and $R_{L}=$
B. 2 The terminal properties of a two-port network are measured with the following rcsults: With the output shortcircuited and an input current of 0.01 mA , the outpul current is 1.0 mA and the input voltage is 26 mV . With the input open-circuited and a voltage of 10 V applied to the output,
network.
B. 3 Figure PB. 3 shows the high-frequency equivalent cit cuit of a BJT. (For simplicity, $r_{x}$ has been omitted.) Find the $y$ parameters.


FIGURE PB. 3


## Some Useful Network Theorems

## Introduction

In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thevenin's theorem, Norton's theorem, and the source-absorption theorem

## C. 1 THÉVENIN'S THEOREM

Thévenin's theorem is used to represent a part of a network by a voltage source $V$, and a series impedance $Z_{t}$, as shown in Fig. C.1. Figure C.1(a) shows a network divided into two parts, A and B. In Fig. C.1(b) part A of the network has been replaced by its Thévenin equivalent: a voltage source $V_{t}$ and a series impedance $Z_{r}$. Figure C. I(c) illustrates how $V_{t}$ is to be determined: Simply open-circuit the two terminals of network A and measure (or calculate) the voltage that appears between these two terminals. To determine $Z_{i}$ we reduce all external (i.c., independent) sources in netwoṛk A to zero by short-circuiting voltage sources and open-circuiting current sources. The impedance $Z_{t}$ will be equal to the input impedance of network A after this reduction has been performed, as illustrated in Fig. C.1(d).

## C. 2 NORTON'S THEOREM

Norton's thcorem is the dual of Thévenin's theorem. It is used to represent a part of a network by a current source $I_{n}$ and a parallel impedance $Z_{m}$, as shown in Fig. C.2. Figurc C.2(a) shows a network divided into two parts, A and B. In Fig. C.2(b) part A has been replaced by its Norton's equivalent: a current sonrce $I_{n}$ and a parallel impedance $Z_{n}$. The Norton's current source $I_{n}$ can be measured (or calculated) as shown in Fig. C.2(c). The terminals of the network being reduced (network A) are shorted, and the current $I_{n}$ will be equal simply to the short-circuit curicnt. To determine the impedance $Z_{n}$ we first reduce the external excitation in network A to zero: That is, we short-circuit independent voltage sources and open-circuit independent current sources. The impedance $Z_{n}$ will be equal to the input impedance of network A after this source-elimination process has taken place. Thus the Norton impedance $Z_{n}$ is equal to the Thévenin impedance $Z_{t}$. Finally, note that $I_{n}=V_{t} / Z$, where $Z=Z_{n}=Z_{t}$


FIGURE C. 2 Norron's theorem.

## whind tect

Figure C.3(a) shows a bipolar junction transistor circuit. The transistor is a three-terminal device with the terminals labeled E (emitter), $B$ (base), and $C$ (collector). As shown, the base is connected to the dc power supply $V^{+}$via the voltage divider composed of $R_{1}$ and $R_{2}$. The collector is connected to the dc supply $V^{+}$through $R_{3}$ and to ground through $R_{4}$. To simplify the analysis we wish to apply Thévenin's theorem to reduce the circuit.

## Solution

Thévenin's theorem can be used at the base side to reduce the network composed of $V^{+}, R_{1}$, and $R_{2}$ to a dc voltage source $V_{B B}$,

$$
V_{B B}=V^{+} \frac{R_{2}}{R_{1}+R_{2}}
$$


(a)

(b)

FIGURE C. 3 Thévenin's theorem applied to simplify the circuit of (a) to that in (b). (See Example C.1.)
and a resistance $R_{B}$,

$$
R_{B}=R_{1} / / R_{2}
$$

where // denutcs "in parallel with." At the collector side, Thévenin's theorem can be applied to reduce the network composed of $V^{+}, R_{3}$, and $R_{4}$ to a dc voltage source $V_{C C}$

$$
V_{C C}=V^{+} \frac{R_{4}}{R_{3}+R_{4}}
$$

and a resistance $R_{C}$,

$$
R_{C}=R_{3} / / R_{4}
$$

The reduced circuit is shown in Fig. C.3(b).

## 

Consider the situation shown in Fig. C.4. In the course of analyzing a network we find a controlled current source $I_{x}$ appearing between two nodes whose voltage difference is the controlling voltage $V_{x}$. That is, $I_{x}=g_{m} V_{x}$ where $g_{m}$ is a conductance. We can replace this controlled source by an impedance $Z_{x}=V_{x} / I_{x}=1 / g_{m}$, as shown in Fig. C.4, because the current drawn by this impedance will be equal to the current of the controlled source that we have replaced


FIGURE C. 4 The source-absorption theorem.

## 

Figure C.S(a) shows the small-signal equivalent-circuit model of a transistor. We want to find the resistance $R_{\text {in }}$ "looking into" the emitter terminal E -that is, the resistance between the cmitte and ground-with the base $B$ and collector $C$ grounded

(a)

FIGURE C. 5 Circuit for Example C.

## Solution

From Fig. C.5(a) we see that the voltage $\nu_{\pi}$ will be equal to $-v_{e}$. Thus looking between E and ground we see a resistance $r_{\pi}$ in parallel with a current source drawing a current $g_{g v_{e}} v_{e}$ away from terminal $E$. The latter source can be replaced by a resistance $\left(1 / g_{m}\right)$, resuling in the input resistance $R_{\text {in }}$ given by
as illustrated in Fig. C.5(b).

$$
R_{\mathrm{in}}=r_{n} / /\left(1 / g_{m}\right)
$$

## EXERCISES

C1 A source is measured and found to $\quad$. circhit vol 1. A source is measured and found to have a $10-\mathrm{V}$ open-circhit voltage and to p povide 1 mA ito a short Ans. V . 10 V . 2 is Thévenin and Norton equivalent source parameters.
Ans. $V,=10 \mathrm{~V}, Z_{k}=Z_{4}=10 \mathrm{k} \Omega I_{n}=1 \mathrm{~mA}$
C. th the eircuit shown in Fis EC2 the diode has a voltage drop $\mathrm{V}_{0}=0.7$ V. Use Thevenin s theorem to smplify the circuit and hence calculate the diode current $I_{y}$. Ans 1 ma

figure ec.?
C3 The two-terminal device $M$ in the circuit of Fig. EC 3 has a current $I_{M}=1 \mathrm{~mA}$ independent of the vottage V, actoss it Use Vorton's theorem to simplify the circin and hence calculate the voltage V. Ans 5 V

figuresc: 3

## PROBLEMS

[^52]

FIGURE PC
C. 6 Figure PC.6(a) shows the circuit symbol of a device known as the $p$-channel jumction field-effect transistor (JFET). As indicated, the JFET has three terminals. When the gate torminal $G$ is connected to the source eerminal $S$, the two-terminal device shown in Fig. PC.6(b) is obtained. Its $i-v$ characteristic is given by

$$
\begin{aligned}
i & =I_{\mathrm{DSS}}\left[2 \frac{v}{V_{P}}-\left(\frac{v}{V_{p}}\right)^{27}\right] \\
i & =I_{\mathrm{DSS}}
\end{aligned}
$$

for $v \leq V_{P}$
for $v \geq V_{P}$

(a)

(b)
where $I_{\text {Dss }}$ and $V_{P}$ are positive constants for the particula FEI. Now consider the circuit shown in Fig. PC. 6 (c) and $J$ FET is operating in the 2 mA . For $V^{+}=10 \mathrm{~V}$ show that the voltage across it. What is the mint-current mode and find the this mode of operation is maintained? For $V^{+}=2 \mathrm{~V}$ f fich values of $I$ and $V$.
(c)


FIGURE PC. 6

(c)

FIGURE D.1 The reduction of the circuit in (a) to the STC circuit in (c) through the repeated application
of Thevenenin's theorem.
$f$ Thevenin's theorem.
source, open it. Then if the circuit has one reactive component and a number of resistances, grab hold" of the two terminals of the reactive component (capacitance or inductance) and find the equivalent resistance $R_{\text {eq }}$ seen by the component. The time constant is then eithe $L / R_{\text {eq }}$ or $C R_{\text {eq. }}$. As an example, in the circuit of Fig. D.1(a) we find that the capacitor $C$ sees" a resistance $R_{4}$ in parallel with the series combination of $R_{3}$ and ( $R_{2}$ in parallel with $R_{1}$ ). Thus

$$
R_{\text {eq }}=R_{4} / /\left[R_{3}+\left(R_{2} / / R_{1}\right)\right]
$$

and the time constant is $C R_{\text {c }}$
In some cases it may be found that the circuit has one resistance and a number of capacitances or inductances. In such a case the procedure should be inverted; that is, "grab hold"
of the resistance terminals and find the of the resistance terminals and find the equivalent capacitance $C_{\text {eq }}$, or equivalent inductance $L_{\mathrm{eq}}$, seen by this resistance. The time constant is then found as $C_{\mathrm{eq}} R$ or $L_{\mathrm{eq}} R$. This is illus-
trated in Example D.2.

## 3

Find the time constant of the circuit in Fig. D. 2


FIGURE D. 2 Circuit for Example D. 2

## Solution

After reducing the cxcitation to zero by short-circuiting the voltage source, we see that the resistance $R$ "sees" an equivalent capacitance $C_{1}+C_{2}$. Thus the time constant $\tau$ is given by
$\tau=\left(C_{1}+C_{2}\right) R$
Finally, in some cases an STC circuit has more than one resistance and more than one Frapacitance (or more than one inductance). Such cases require some initial work to simplify the circuit, as illustrated by Example D.3.

## 

Here we show that the response of the circuit in Fig. D.3(a) can be obtained using the method of analysis of STC circuits.

## Solution

The analysis stens are illustrated in Fig. D.3. In Fig. D.3(b) we show the circuit excited by two sepThe analysis steps are ill stratces. The reader should convince himself or herself of the equivalence

(a)

(c)
(d)

(b)

(e)


FIGURE D. 3 The response of the circuit in (a) can be found by superposition, that is, by summing the responses of the circuits in (d) and (e).
of the circuits in Fig. D.3(a) and D.3(b). The "trick" employed to obtain the arrangement in Fig. D.3(b) is a very useful one.

Application of Thévenin's theorem to the circuit to the left of the line $X X^{\prime}$ and then to the circuit to the right of that linc result in the circuit of Fig. D.3(c). Since this is a linear circuit, the response may be obtained using the principle of superposition. Specifically, the oulput voltage $v_{o}$ will bc the sum of the two components $v_{o 1}$ and $v_{02}$. The first component, $v_{01}$, is the The circuit for calculating-side voltage source with the other voltage source reduced to zent given by

Similarly, the second component $\tau_{0_{2}}$ is the output obtained with the left-hand-side voltage source reduced to zero. It can be calculated from the circuit of Fig. D.3(c), which is an STC circuit with the same tinxe constant $\tau$.

Finally, it should be observed that the fact that the circuit is an STC one can also be asccrtained hy setting the independent source $v_{l}$ in Fig. D.3(a) to zero. Also, the time constant is then immedialely obvious.

## D. 2 CLASSIFICATION OF STC CIRCUITS

STC circuits can be classified into two categories, low-pass (LP) and high-pass (HP) types, with each category displaying distinctly different signal responses. The task of finding whether an STC circuit is of LP or HP type may be accomplished in a number of ways, the simplest of which uses the frequency-domain responsc. Specifically, low-pass circuits pass dc (i.c., signals with zero frequency) and attenuate high frequencies, with the transmission being zero at $\omega=\infty$. Thus we can test for the circuit type cither at $\omega=0$ or at $\omega=\infty$. At $\omega=0$ capacitors should be replaced by open circuits $(1 / j \omega C=\infty)$ and inductors should be replaced by short circuits ( $j \omega L=0$ ). Then if the output is zero, the circuit is of the high-pass type, while if the output is finite, the circuit is of the low-pass type. Altematively, we may test at $\omega=\infty$ by replacing capacitors by short circuits ( $1 / j \omega C=0$ ) and inductors by open circuits $(j \omega L=\infty)$. Then if the output is finite, the circuit is of the HP type, whereas if the output is zero, the circuit is of the LP type. In Table D.1, which provides a summary of these results, s.c. stands for short circuit and o.c. for open circuit.

Figure D. 4 shows examples of low-pass STC circuits, and Fig. D. 5 shows examples of high-pass STC circuits. For each circuit we have mdicated the input and output variables of interest. Note that a given circuit can be of either category, depending on the input and output variables. The reader is urged to verify, using the rules of Table D.1, that the circuits of Figs. D. 4 and D. 5 are correctly classified.

TABLE D. 1 . Rules for finding the Type of ste Circuit

Test At	Replace	Circuit Is LP If	Circuit Is HP If
$\omega=0$	$C$ by o.c.   $L$ by s.c.	output is finitc	output is zero
$\omega=\infty$	$\begin{aligned} & C \text { by s.c. } \\ & L \text { by o.c. } \end{aligned}$	output is zero	output is finite



FIGURE D. 4 STC circuits of the low-pass type.


FIGURE D. 5 STC circuits of the bigh-pass type.
EXERGISES
D1. Find the time constants for the circuits shown in I I ED 1

$$
\text { Ans, (a) } \frac{\left(L_{1} \| L_{2}\right)}{R},(b) \frac{\left(L_{1} \| L_{2}\right)}{\left(R_{\|} \| R_{2}\right)}
$$



FIGURE ED. 1
D. 2 Classify the followine circuits as STC high pass or low-pass. Fig. D. 4 (a) with output io in $C$ to ground, Fig: D.4(6) with output $i_{0}$ in $R$ to ground Fig. D.4(d) with output 5 in $C$ to ground; Fis D.4(e) with outpit $t_{0}$ in $R$ to ground. Fig D S $(6)$ with output $i$ in Lto ground and Fis D D (d) with ouput $s_{0}$ across $C$. Ans. MP. IP. AP HP. LP. LP

## V繉 D. 3 FREQUENCY RESPONSE OF STC CIRCUITS

## D.3.1 Low-Pass Circuits

The transfer function $T(s)$ of an STC low-pass circuit always can be written in the form

$$
\begin{equation*}
T(s)=\frac{K}{1+\left(s / \omega_{0}\right)} \tag{D.1}
\end{equation*}
$$

which, for physical frequencies, where $s=j \omega$, becomes

$$
\begin{equation*}
T(j \omega)=\frac{K}{1+j\left(\omega / \omega_{0}\right)} \tag{D.2}
\end{equation*}
$$

where $K$ is the magnitude of the transfer function at $\omega=0$ (dc) and $\omega_{0}$ is defined by

$$
\omega_{0}=1 / \tau
$$

with $\tau$ being the time constant. Thus the magnitude response is given by

$$
\begin{equation*}
|T(j \omega)|=\frac{K}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}} \tag{D.3}
\end{equation*}
$$

and the phase response is given by

$$
\begin{equation*}
\phi(\omega)=-\tan ^{-1}\left(\omega / \omega_{0}\right) \tag{D.4}
\end{equation*}
$$

Figure D. 6 sketches the magnitude and phase responses for an STC low-pass circuit. The magnitude response shown in Fig. D.6(a) is simply a graph of the function in Eq. (D.3) The magnitude is normalized with respect to the dc gain $K$ and is expressed in decibels; that is, the plot is for $20 \log \mid T(j \omega) / K$, with a logarithmic scale used for the frequency axis. Furthermore, the frequency variable has been normalized with respect to $\omega_{0}$. As shown, the magnitude curve is closely defined by two straight-line asymptotes. The low-frequency asymptote is a horizontal straight line at 0 dB . To find the slope of the high-frequency asymptote consider Eq. (D.3) and let $\omega / \omega_{0} \gg 1$, resulting in

$$
|\Gamma(j \omega)| \simeq K \frac{\omega_{0}}{\omega}
$$

It follows that if $\omega$ doubles in value, the magnitude is halved. On a logarithmic frequency axis, doubings of $\omega$ represent equally spaced points, with each interval called an octave. Halving the magnitude function corresponds to a $6-\mathrm{dB}$ reduction in transmission $(20 \log 0.5=-6 \mathrm{~dB}$ ). Thus the slope of the high-frequency asymptote is $-6 \mathrm{~dB} / o c t a v e$. This can be equivalently expressed as $-20 \mathrm{~dB} /$ decade. where "decade" indicates an increase in frequency by a factor of 10 .

The two straight-line asymplotes of the magnitude-response curve meet at the "corne frequency" or "break frequency" $\omega_{0}$. The difference between the actual magnitude-response curve and the asymptotic response is largest at the corner frequency, where its value is 3 dB

(a)


FIGURE D. 6 (a) Magniude and (b) phase response of STC circuits of the low-pass type.
To verify that this value is correct, simply substitute $\omega=\omega_{0}$ in Eg. (D.3) to obtain

$$
\left|T\left(j \omega_{0}\right)\right|^{\prime}=K / \sqrt{2}
$$

Thus at $\omega=\omega_{0}$, the gain drops by a factor of $\sqrt{2}$ relative to the de gain, which corresponds to $3-\mathrm{dB}$ reduction in gain.'The corner frequency $\omega_{0}$ is appropriately referred to as the $3-\mathrm{dB}$ frequency.

Similar to the magnitude response, the phase-response curve, shown in Fig. E.6(b), is closely defined by straight-line asymptotes. Note that at the corner frequency the phase is $-45^{\circ}$, and that for $\omega \gg \omega_{0}$ the phase approaches $-90^{\circ}$. Also note that the $-45^{\circ}$ /decade straigh ine approximates the phase function, with a maximum error of $5.7^{\circ}$, over the frequency range $0.1 \omega_{0}$ to $10 \omega_{0}$.

## 13mTH:

Consider the circuit shown in Fig. D.7(a), where an ideal voltage amplifier of gain $\mu=-100$ has small $(10-\mathrm{pF})$ capacitance connected in its fcedback path. The amplificr is fed by a voltage source having a source resistance of $100 \mathrm{k} \Omega$. Show that the frequency response $V_{s} / V_{s}$ of this amplifier is equivalent to that of an STC circuit, and sketch the magnitude response.
D. 3 FREQUENCY RESPONSE OF STC CIRCUITS


FIGURE D. 7 (a) An anplificer circuit and (b) a sketch of the magnitude of its transfer function.

## Solution

Direct analysis of the circuit in Fig. D.7(a) results in the transfer function

$$
\frac{V_{o}}{V_{s}}=\frac{\mu}{1+s R C_{f}(-\mu+1)}
$$

which can be seen to be that of a low-pass STC circuit with a dc gain $\mu=-100$ (or, equiva lently, 40 dB ) and a time constant $\tau=R C_{f}(-\mu+1)=100 \times 10^{3} \times 10 \times 10^{-12} \times 101=10^{-4} \mathrm{~s}$, which corresponds to a frequency $\omega_{0}=1 / \tau=10^{4} \mathrm{rad} / \mathrm{s}$. The magnitude response is sketched in Fig. D.7(b)

## D.3.2 High-Pass Circuits

The transfer function $T(s)$ of an STC high-pass circuit always can be expressed in the
form

$$
\begin{equation*}
T(s)=\frac{K s}{s+\omega_{0}} \tag{D.5}
\end{equation*}
$$

which for physical frequencies $s=j \omega$ becomes

$$
\begin{equation*}
T(j \omega)=\frac{K}{1-j \omega_{0} / \omega} \tag{D.6}
\end{equation*}
$$

where $K$ denotes the gain as $s$ or $\omega$ approaches infinity and $\omega_{0}$ is the inverse of the time constant $\tau$

$$
\omega_{0}=1 / \tau
$$

The magnitude response

$$
\begin{equation*}
|T(j \omega)|=\frac{K}{\sqrt{1+\left(\omega_{0} / \omega\right)^{2}}} \tag{D.7}
\end{equation*}
$$

and the phase response

$$
\phi(\omega)=\tan ^{-1}\left(\omega_{0} / \omega\right)
$$


(a)

(b)

FIGURE D. 8 (a) Magnitude and (b) phase response of STC circuits of the high-pass lype
are sketched in Fig. D.8. As in the low-pass case, the magnitude and phase curves are well defined by straight-line asymptotes. Because of the similarity (or, more appropriately, duality) with the low-pass case, no further explanation will be given.

ExERCises
 STC Cicut Shown infispm.

$$
\text { Q } 10 k 11,
$$

$\mathrm{Ans}-6 \mathrm{~dB}, 31 \mathrm{kH7}, 22 \mathrm{BB}$.


$$
\text { Ans. } T(s)=\frac{C_{1}}{C_{1}+C_{2}} \frac{s}{s+1 /\left(C_{1}+C_{2}\right)} \text { ) }
$$

D. 5 For the situation discussed in Excrcise D. 4 i $R=10 \mathrm{k} \Omega$, tind the capacitor values that result in the o cill haviue ahigh frequency transmission of $05 \mathrm{~V} / \mathrm{V}$ and a cornce frcquency $0010 \mathrm{rad} / \mathrm{s}$. Ans, $C_{i}=C_{2}=5 \mu \mathrm{~F}$
D. 6 Find the highefrequency adi, the $3-\mathrm{dB}$ frequency $f_{0}$ and the gain at $f=1 \mathrm{~Hz}$ of the capacitively coupled


## D. 4 STEP RESPONSE OF STC CIRCUITS

In this section we consider the response of STC circuits to the step-function signal shown in Fig. D.9. Knowledge of the step response enables rapid evaluation of the response to other switching-signal waveforms, such as pulses and square waves.

## D.4.1 Low-Pass Circuits

In response to an input step signal of height $S$, a low-pass STC circuil (with a de gain $K=1$ ) produces the waveform shown in Fig. D. 10. Now that while the input rises from 0 to $S$ at $t=0$, the output does not respond immediately to this transient and simply hegins to rise exponentially toward the final dc value of the inpul, $S$. In the long term-that is, for $t \geqslant \tau$-the output approaches the dc value $S$, a manifestation of the fact that low-pass circuits faithfully pass dc .
The equation of the output waveform can be obtained from the expression

$$
\begin{equation*}
y(t)=Y_{\infty}-\left(Y_{\infty}-Y_{0 \div}\right) e^{-t / \tau} \tag{D.9}
\end{equation*}
$$

where $Y_{\infty}$ denotes the final value or the value toward which the output is heading and $Y_{0+}$ denotes the valuc of the output immediately after $t=0$. This cquation slates that the output at any time $t$ is equal to the difference between the final value $Y_{\infty}$ and a gap that has an initial value of $Y_{\infty}-Y_{0+}$ and is "shrinking" exponentially. In our case, $Y_{\infty}=S$ and $Y_{0+}=0$; thus,

$$
y(t)=S\left(1-e^{-t / \tau}\right)
$$



FIGURE D. 9 A step-function signal of height $S$.


FIGURE D. 10 The oulput $y(t)$ of a low-pass STC circuit excited by a step of height $S$.


FIGURE D. 11 The output $y(t)$ of a high-pass STC circuit excited by a step of height $S$.
The reader's attention is drawn to the slope of the tangent to $y(t)$ at $t=0$, which is indicated in Fig. D. 10

## D.4.2 High-Pass Circuits

The response of an STC high-pass circuit (with a high-frequency gain $K=1$ ) to an input step of height $S$ is shown in Fig. D.11. The high-pass circuit faithfully transmits the transient part of of height $S$ is shown in Fig. D.11. The high-pass circuit faithfuly trans at $t=0$ follows the input,

$$
Y_{0+}=S
$$

and then it decays toward zero,

$$
Y_{\infty}=0
$$

Substituting for $Y_{0+}$ and $Y_{\infty}{ }^{\circ}$ in Eq. (D.9) results in the output $y(t)$,

$$
y(t)=S e^{-\tau / \tau}
$$

The reader's attention is drawn to the slope of the tangent to $y(t)$ at $t=0$, indicated in Fig. D. 11

## kix

This example is a continuation of the problem considered in Example D.3. For an input $y_{r}$ that $10-\mathrm{V}$ step, find the condition under which the output $v_{o}$ is a perfect step.

Solution
Following the analysis in Example D.3, which is illustrated in Fig. D.3, we have

$$
v_{O 1}=k_{r}\left[10\left(1-e^{-t / \tau}\right)\right]
$$

where

$$
k_{r} \equiv \frac{R_{2}}{R_{1}+R_{2}}
$$

where

$$
v_{O 2}=k_{c}\left(10 e^{-t / \tau}\right)
$$

$$
k_{c} \equiv \frac{C_{1}}{C_{1}+C_{2}}
$$

$$
\tau=\left(C_{1}+C_{2}\right)\left(R_{1} / / R_{2}\right)
$$

Thus

$$
\begin{aligned}
v_{O} & =v_{O 1}+v_{O 2} \\
& =10 k_{r}+10 e^{-1 / \tau}\left(k_{c}-k_{r}\right)
\end{aligned}
$$

It follows that the output can be made a perfect step of hcight $10 k_{r}$ volts if we arrange that

$$
k_{c}=k_{r}
$$

that is, if the resistive voltage-divider ratio is made equal to the capacitive voltage divider ratio.
This cxample illustrates an important techniquc, namely, that of the "compensated attenuator." An application of this technique is found in the design of the oscilloscope probe. The oscilloscope probe problem is investigated in Problem D. 3

## EXERCISES

 Ans. $3\left(1-e^{-4}\right)$
D. 8 In the circuit of Fig $\mathrm{D} 5(\mathrm{f})$ find $v_{0}(L) 1 / i / \mathrm{s}$ a 2 mA step, $R=2 \mathrm{k}$, and $L=10 \mu \mathrm{~h}$. Ans. $4 e^{-2 \times 10 \%}$
0.9. The amplifier circait of Fis. ED. 6 is fed with a ignal source that delivers a 20 mV step If the sourc: resistance is 100 kS . find the time con stant and tit
Ans. $\tau=2 \times 10^{-2} s, v_{0}(t)=1 \times e^{-5 n t}$
D.10 For the circuil in Fig D.2 with $C_{1}=C_{2}-05 \mu \mathrm{~F} R=1 \mathrm{M} \Omega$, fuid $T_{0}(t)$ if is $(t)$ is a $10-\mathrm{V}$ step Ans. $5 e^{-7}$
D. 11 Show that the area under the exponential of Fig, D. 11 is equal to that of the rectangle of height $S$ and width $\tau$.

## f W. 5 PULSE RESPONSE OF STC CIRCUITS

Figure D. 12 shows a pulse signal whose height is $P$ and whose width is $T$. Wc wish to fin he response of STC circits to input signals of this form. Note at the outset that a pulse can be considered as the sum of two steps: a positive one of height $P$ occurring at $t=0$ and a


FIGURE D. 12 A pulse signal with height $P$ and width $T$.
earative onc of heighl $P$ occuring at $t=T$ Thus the response of a linear circuit to the pulse signal can be obtained by summing the responses to the two step signals.

## D.5.1 Low-Pass Circuits

Figure D.13(a) shows the response of a low-pass STC circuit (having unity dc gain) to an input pulse of the form shown in Fig. D.12. In this case we have assumed that the time constant $\tau$ is in the same range as the pulse width $T$. As shown, the LP circuit does not respond immediately to the step change at the leading edge of the pulse; rather, the output starts to rise exponentially toward a final value of $P$. This exponential rise, however, will be stopped at time $t=T$, that is, at the trailing edge of the pulse when the input undergoes a negative step changc. Again the output will respond by starting an exponential decay toward the final value of the input, which is zero. Finally, note that the area under the output waveform will be equal to the area under the input pulse waveform, since the LP circuit faithfully passes dc.

A low-pass effect usually occurs when a pulse signal from one part of an electronic system is connected to another. The low-pass circuit in this case is formed by the ouput resistance (Thévenin's equivalent resistance) of the system part from which the signal originates and the input capacitance of the system part to which the signal is fed. This unavoidable lowpass filter will cause distortion-of the type shown in Fig. D.13(a)-of the pulse signal. In a well-designed system such distortion is kept to a low value by arranging that the time constant $\tau$ be much smaller than the pulse width $T$. In this case the result will be a slight rounding of the pulse edges, as shown in Fig. D.13(b). Note, however, that the edges are still exponential.

(a)

(b)

$\xrightarrow{(c)}$
FIGURE D. 13 Pulse responses of three STC low-pass circuits.

The distortion of a pulse signal by a parasitic (i.e., unwanted) low-pass circuit is measured by its rise time and fall time. The rise time is conventionally defined as the time taken by the amplitude to increase from $10 \%$ to $90 \%$ of the final value. Similarly, the fall time is the time during which the pulse amplitude falls from $90 \%$ to $10 \%$ of the maximum value. These definitions are illustrated in Fig. D.13(b). By use of the exponential equations of the rising and falling edges of the output waverorm, it can be easily shown that

$$
\begin{equation*}
t_{r}=t_{f} \simeq 2.2 \tau \tag{D.12}
\end{equation*}
$$

which can be also expressed in terms or $f_{0}=\omega_{0} / 2 \pi=1 / 2 \pi \tau$ as

$$
\begin{equation*}
t_{r}=t_{f} \simeq \frac{0.35}{f_{0}} \tag{D.13}
\end{equation*}
$$

Finally, we note that the effect of the parasitic low-pass circuits that are always present in a system is to "slow down" the opcration of the system: To kecp the signal distortion within acceptable limits, one has to use a relatively long pulse width (for a given low-pass time constant).
The other extreme case-namely, when $\tau$ is much larger than $T$-is illustrated in Fig. D. 13(c). As shown, the output waveform rises exponentially toward the level $P$. However, since $\tau \gg T$, the value reached at $t=T$ will be much smaller than $P$. At $t=T$ the output wavcform starts its exponential decay toward zero. Note that in this case the output waveform bears little resemblance to the input pulse. Also note that because $\tau \gg T$ the portion of the exponential curve from $t=0$ to $t=T$ is almost linear. Since the slope of this lincar curve is proportional to the height of the input pulse, we see that the output waveform approximates the tine integral of the input pulse. That is, a low-pass network with a large time constant approximates the operation of an integrator

## D.5.2 High-Pass Circuits

Figure D.14(a) shows the output of an STC HP circuit (with unity high-frequency gain) excited by the input pulse of Fig. D.12, assuming thal $\tau$ and $T$ are comparable in value. A hown, the step transition at the leading edge of the input pulse is faithfully reproduced at the output of the HP circuit. However, since the HP circuit blocks dc, the output waveform imm diately starts an exponential decay toward zero. This decay process is stopped at $t=T$, whe he negative sep fansition of the input occurs and ne HP circuit faithfuly reproduces it. Thu at $t=T$ the output waveform exhibits an undershool. Then it starts an exponential decay oward zero. Finally, note that the area of the output waveform above the zero axis will be equal to that below the axis for a total average area of zero, consistent with the fact that HP cir cuits block dc.
In many applications an STC bigh-pass circuit is used to couple a pulse from one part of a system to another part. In such an application it is necessary to keep the distortion in the puls hape as small as possible. This can be accomplished by selecting the time constant $\tau$ to be much longer than the pulse width $T$. If this is indeed the case, the loss in amplitude during the pulse period $T$ will be very small, as shown in Fig. D.14(b). Nevertheless, the output wave form still swings negatively, and the area under the negative portion will be equal to that under the positive portion.
Consider the waveform in Fig. D.14(b). Since $\tau$ is much larger than $T$, it follows that the portion of the exponential curve from $t=0$ to $t=T$ will be almost lincar and that its slope wil he eqnal to the slope of the exponential curve at $t=0$, which is $P / \tau$. We can use this value of



FIGURE D. 14 Pulsc responses of three STC high-pass circuits.
the slope to determine the loss in amplitude $\Delta P$ as

$$
\Delta P \simeq \frac{P}{\tau} T
$$

The distortion effect of the high-pass circuit on the input pulse is usually specified in terms f the per-unit or percentage loss in pulse height. This quantity is taken as an indication of he "sag" in the output pulse,

$$
\text { Percentage sag } \equiv \frac{\Delta P}{P} \times 100
$$

Thus

$$
\text { Percentage sag }=\frac{T}{\tau} \times 100
$$

Finally, note that the magnitude of the undershoot at $t=T$ is equal to $\Delta P$
The other extreme case-namely, $\tau<T$--is illustrated in Fig. D.14(c). In this case the exponential decay is quite rapid, resulting in the output becoming almost zero shortly beyond the leading edge of the pulse. At the trailing edge of the pulse the ouput swings negatively by an amount almost equal to the pulse height $P$. Then the waveform decays rapidly to zero. A seen from Fig. D.14(c), the output waveform bears no resemblance to the input pulse. It con sists of two spikes: a positive one at the leading edge and a negative one at the trailing edgc. Note that the output waveform is approximately equal to the time derivative of che imput pulse That is, for $\tau<T T$ an STC high-pass circuit approximates a differentiator. However, the result ing differentiator is not an ideal one; an ideal differentiator would produce two impulses Nevertheless, high-pass STC circuits with short time constants are employed in some applica tions to produce sharp pulses or spikes at the transitions of an input wavetorm.

ExERGSES
0.12 Find the rise and fall times of a $1+1 /$ pulse after it has passed through a low-pass RC circuil with a coner frequency of 10 MHz Ans. 35 ns
0.13 Consider the pulse response of a low- pass STC ciruit, as shown in Fig. D. 3 (c) if $t=1007$, find the output voltage at $t=T$ Also, find the difference in the slope of the rising portion of the output waveform at -0 and $=T$ (expressed as a percentage of the stope at $t=0$ ). Ans. $0.01 \mathrm{P}, 1 \%$.
D. 34 The outpul of an amplifier stage is confected to the input of another stage via a capacitance C. If the Iirst stage has an output resistance of $10 \mathrm{k} \Omega$, and the second stage has an input resistance of 40 kS , find the minimum value of C such that a $10 \mu \mathrm{~s}$ pulse exhibits less than $1 \%$ say Ans. $0.02 \mu \mathrm{~F}$
D. 15 A high-pass STC circuit with a time constant of $100 \mu$ s is excited by a pulse of $1-V$ height and $100-\mu$ widh Calculate the vatue of the undershoot in the outpu wavefurm Ans. 0.632 V

## PROBLEMS

. 1 Consider the circuit of Fig, D.3(a) and the equivale shown in (d) and (e). There, the output, $v_{o}=v_{O_{1}}+v_{02}$, is the with the time constant $\tau=\left(C_{1}+C_{2}\right)\left(R_{\|} / R\right)$. What is the condition that makes the contribution of the low-pass circuit at zero frequency equal to the contribution of the high-pass circuit at infinite frequency? Show that this condition can be expressed as $C_{1} R_{1}=C_{2} R_{2}$. If this condition applies, sketch $\left|V_{0} / V_{i}\right|$ versus frequency for the case $R_{1}=R_{2}$.
D. 2 Use the voltage divider rulc to find the transfer function $V_{o}(s) / V_{i}(s)$ of the circuit in Fig. D.3(a). Show that the transfer unction can be made independent of frequency if the condi tion $C_{1} R_{1}=C_{2} R_{2}$ applies. Ender this condition the circuit is called a compensated attenuator. Find the transmission of the compensated atenuator in terms of $R_{1}$ and $R_{2}$,
**D. 3 The circuit of Pig. D.3(a) is used as a compensited attenuator (see Problems D. 1 and D.2) for an oscilloscope probe. The objective is to reduce the signal voltage applied to he input amplifier of the oscilloscope, with the signal attenuation independent of frequency. The prohe itself includes $R_{x}$ ad $C_{1}$, while $R_{2}$ and $C_{2}$ model the oscilloscope input circuit For an oscilloscope having an input resistance of $1 \mathrm{M} \Omega$ and an input capacitance of 30 pr , design a compensated " 10 -to-
probe "-that is, a probe that attenuates the input signal by a factor of 10 . Find the input impedance of the probe when connected to the oscilloscope, which is the impedance seen higher than that of the oscilloseope itself This is 10 limes advantagc of the $10: 1$ probe.
D. 4 In the circuits of Figs. D. 4 and D.5, let $L=10 \mathrm{mH}, C=$ $0.01 \mu \mathrm{~F}$, and $R=1 \mathrm{k} \Omega$. Al what frequency does a phase angle of $45^{\circ}$ occur?
*D. 5 Consider a voltage amplifier with an open-circuit voltage gain $A_{w}=-100 \mathrm{~V} / \mathrm{V}, R_{o}=0, R_{i}=10 \mathrm{k} \Omega$, and an input capacitance $C_{i}$ (in parallel with $R_{i}$ ) of 10 pF . The amplifier has a feedback capacitanee (a capacitance connected between output and input) $C_{f}=1 \mathrm{pF}$. The amplificr is Find the altage source $V_{s}$ having a resistance $R_{s}=10 \mathrm{k} \Omega$. its manditude rier transfer function $V_{d}(s) / V_{s}(s)$ and sketch on a $\log$ axis
0.6 For the circuit in Fig. PD. 6 assume the voltage amplifier to bc ideal. Derive the transfer function $V_{o}(s) V_{t}(s)$. What find the corner Irequency.


## FIGURE PD. 6

D. 7 For the circuits of Figs. D.4(b) and D.5(b), find $v_{o}(t)$ if $v_{1}$ is a $10-\mathrm{V}$ step, $R=1 \mathrm{k} \Omega$, and $L=1 \mathrm{mH}$
0. 8 Consider the exponential response of an STC low-pass circuit to a $10-\mathrm{V}$ step input. In terms of the time constant $\tau$, find the time taken for the output to reach $5 \mathrm{~V}, 9 \mathrm{~V}, 9.9 \mathrm{~V}$, and 9.99 V .
D. 9 The high-frequency response of an oscilloscope is specified to be like that of an STC LP circuil with a $100-\mathrm{MHz}$ corner frequency. If this oscilloscope is used to display an ideal step waveform, what rise time ( $10 \%$ to $90 \%$ ) would you expect to observe?
D. 10 An oscilloscope whose step response is like that of a low-pass STC circuit has a rise time of $t_{s}$ seconds. If an inpui signal having a rise time of $t$ seconds is displayed, the waveform seen will have a rise time $t_{d}$ seconds, which can be found using the empirical formula $t_{d}=\sqrt{t_{s}^{2}+t_{w}^{2}}$. If $t_{s}=35 \mathrm{~ns}$, what is the $3-\mathrm{dB}$ frequency of the oscilloscope? What is the observed rise time for a waveform rising in $100 \mathrm{~ns}, 35 \mathrm{~ns}$, and

10 ns? What is the actual rise time of a waveform whose dis played rise time is 49.5 ns ?
D. 11 A pulse of $10-\mathrm{ms}$ width and $10-\mathrm{V}$ amplitude is tran mitted through a system characterized as having an STC high-pass root would you expect?
D. 12 An RC differentiator having a time constant $\tau$ is used to implement a shor-pulse detector. When a long pulse with $T \gtrdot \tau$ is fed to the circuit, the positive and negativc pcak out puts are of equal magnitudc. At what pulse width does the
D.13 A high-pass STC circuit with a time constant of 1 m sexcited by a pulse of $10-V$ height and 1 -ms width. Calcutate the value of the undershoot in thc output waveform. If a, undershoot of 1 V or less is required, what is the time con tant necessaly?
D. 14 a capacitor $C$ is used to couple the output of an mplifier slage to the input of the next stage. If the first stage has an ourput resistance of $2 \mathrm{k} \Omega$ and he second stage has an input resistance of $3 \mathrm{k} \Omega$, find the value of $C$ so that a $1-\mathrm{m}$ pulse exhibits less than $1 \%$ sag. What is the associated $3-\mathrm{dB}$ frequency?
DD. 15 An RC differentiator is used to convert a step volt age change $\mathcal{V}$ to a single pulse for a digita-logic application. The logic circuit that the differentiator drives distinguishe signals above $V / 2$ as "high" and below $V / 2$ as "low." Whal must the time constant of the circuit be to convert a step inpu into a pulse that will be interpreted as "high" for $10 \mu \mathrm{~s}$ ?
DD. 16 Consider the circuit in Fig. D.7(a) with $\mu=-100$ $C_{f}=100 \mathrm{pF}$, and the amplifier being ideal. Find the value $R$ so that the gain $V_{o} / V_{s}$ has a 3 -dB frequency of 1 kHz .


## s-Domain Analysis: Poles, Zeros, and Bode Plots

In analyzing the frequency response of an amplificr, most of the work involves finding th amplifier voltage gain as a function of the complex frequency $s$. In this $s$-domain analysis, capacitance $C$ is replaced by an admittance $s C$, or equivalently an impedance $1 / s C$, and an inductance $L$ is replaced by an impedance $s L$. Then, using usual circuit-analysis techniques one derives the voltage transfer function $T(s) \equiv V_{o}(s) / V_{i}(s)$.


Once the transfer function $T(s)$ is obtained, it can be evaluated for physical frequencies by replacing $s$ by $j \omega$. The resulting transfer function $T(j \omega)$ is in general a complex quantity whose magnitude gives the magnitude response (or transmission) and whose angle gives the phase response of the amplifier

In many cases it will not be necessary to substitute $s=j \omega$ and evaluate $T(j \omega)$; rather, the form of $T(s)$ will reveal many useful facts about the circuit performance. In general, for all
the circuits dealt with in this book, $T(s)$ can be expressed in the form

$$
\begin{equation*}
T(s)=\frac{a_{m n} s^{m}+a_{n i-1} s^{m-1}+\cdots+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\cdots+b_{0}} \tag{E.1}
\end{equation*}
$$

where the coefficients $a$ and $b$ are real numbers, and the order $m$ of the numerator is smaller than or equal to the order $n$ of the denominator; the latter is called the order of the network. Furthermore, for a stable circuit-that is, one that does not generate signals on ts own-the denomin forlits. Chapter 8.

## 4紋 E. 1 POLES AND ZEROS

An alternate form for expressing $T(s)$ is

$$
\begin{equation*}
T(s)=a_{m} \frac{\left(s-Z_{1}\right)\left(s-Z_{2}\right) \cdots\left(s-Z_{m}\right)}{\left(s-P_{1}\right)\left(s-P_{2}\right) \cdots\left(s-P_{n}\right)} \tag{E.2}
\end{equation*}
$$

where $a_{m}$ is a multiplicative constant (the cocfficient of $s^{m}$ in the numerator), $Z_{1}, Z_{2}, \ldots, Z_{m}$ arc the roots of the numerator polynomial, and $P_{1}, P_{2}, \ldots, P_{n}$ are the roots of the denominator polynonial. $Z_{1}, Z_{2}, \ldots, Z_{m}$ are called the transfer-function zeros or transmission zeros, and $P_{1}, P_{2}, \ldots, P_{n}$ are the transfer-function poles or the natural modes of the network. A ransfer function is completely specified in terms of its poles and zeros together with the value of the multiplicative constant.
The poles and zeros can be either real or complex numbers. However, since the $a$ and $b$ cocfficients are real numbers, the complex poles (or zeros) must occur in conjugate pairs. That is, if $5+j 3$ is a zero, then $5-j 3$ also must be a zero. A zero that is pure imaginary $\left( \pm j \omega_{7}\right)$ causes the transfer function $T(j \omega)$ to he exactly zero at $\omega=\omega_{2}$. This is because the numerator will have the factors $\left(s+j \omega_{2}\right)\left(s-j \omega_{2}\right)=\left(s^{2}+\omega_{z}^{2}\right)$, which for physical frequencie becomes $\left(-\omega^{2}+\omega_{Z}^{2}\right)$, and thus the transfer fraction will be exactly zero at $\omega=\omega_{2}$. Thus the "trap" one places at the input of a television set is a circuit that has a transmission zero at the particular interfering frequeucy. Real zeros, on the other hand, do not produce transmission nulls. Finally, note that for values of $s$ much greater than all the poles and zeros, the transfer function in Eq. (E.1) becomes $T(s) \simeq a_{m} / s^{n-m}$. Thus the transfer function has $(n-m)$ zerus at $s=\infty$.

## 4 E. 2 FIRST-ORDER FUNCTIONS

Many of the transfer functions encountered in this book have real poles and zeros and can herefore be written as the product of first-order transfer functions of the oeneral form

$$
\tau(s)=\frac{a_{1} s+a_{0}}{s+\omega_{0}}
$$

where $-\omega_{0}$ is the location of the real pole. The quantity $\omega_{0}$, called the pole frequency, is equal to the inverse of the time constant of this single-time-constant (STC) network (se Appendix D). The constants $a_{0}$ and $a_{1}$ determine the type of STC network. Specifically, we studied in Chapter 1 two types of STC networks, low pass and high pass. For the low-pas
first-order network we have

$$
\begin{equation*}
\tau(s)=\frac{a_{0}}{s+\omega_{0}} \tag{E.4}
\end{equation*}
$$

In this case the dc gain is $a_{0} / \omega_{0}$, and $\omega_{0}$ is the corner or $3-\mathrm{dB}$ frequency. Note that this transfer function has one zero at $s=\infty$. On the other hand, the first-order high-pass transfer function has a zero at dc and can be written as

$$
\begin{equation*}
\tau(s)=\frac{a_{1} s}{s+\omega_{0}} \tag{E.5}
\end{equation*}
$$

At this point the reader is strongly urged to review the material on STC networks and their fre quency and pulse responses in Appendix D. Of specific interest are the plots of the magniude and phase responses of the two special kinds of STC networks. Such plots can be employed to enerate the magnitude and phase plots of a high-order transfer function, as explained below,

## 4\% E. 3 BODE PLOTS

A simple technique exists for obtaining an approximate plot of the magnitude and phase of ransfer function given its poles and zeros. The technique is particularly useful in the of
 called Bode plots.
A transfer function of the form depicted in Eq. (E.2) consists of a product of factors of form $s+a$, where such a factor appears on top if it corrcsponds to a zero and on the bot om if it corresponds to a polc. It follows that the magnitude responsc in decibels of the net work can be obtained by summing together terms of the form $20 \log _{10} \sqrt{a^{2}+\omega^{2}}$, and the phase response can be obtained by summing ternus of the form $\tan ^{-1}(\omega / a)$. In both cases the terms cortesponding to poles are summed with negative signs. For convenience we can extract the constant $a$ and write the typical magnitude term in the form $20 \log \sqrt{1+(\overline{\omega / a})^{2}}$. On a plot of decibels versus log frequency this tern gives rise to the curve and straight-line asymptotes shown in Fig. E.1. Here the low-frequency asynuptote is a horizontal straight line


FIGURE E. 1 Bode plot for the typical magnitude term. The curve shown applies for the casc of a zero $F$ a pole, the high-frequency asymptote should be drawn with a -6 -dB/octave slope.
at $0-\mathrm{dB}$ level and the high-frequency asymptote is a straight line with a slope of $6 \mathrm{~dB} /$ octave or, equivalently, $20 \mathrm{~dB} /$ decade. The two asymptotes meet at the frequency $\omega=|a|$, which is called the corner frequency. As indicated, the actual magnitude plot differs slightly from the value given by the asymptotes; the maximum difference is 3 dB and occurs at the corner frequency. For $a=0$-that is, a pole or a zero at $s=0$-the plot is simply a straight line of $6 \mathrm{~dB} /$ octave slope intersecting the $0-\mathrm{dB}$ line at $\omega=1$
In summary, to obtain the Bode plot for the magnitude of a transfer function, the asymptotic plot for each pole and zero is first drawn. The slope of the high-frequency asymptote of the curve corresponding to a zero is $+20 \mathrm{~dB} /$ decade, while that for a pole is $-20 \mathrm{~dB} /$ decade. The various plots are then added together, and the overall curve is shifted vertically by an amount determined by the multiplicative constant of the transfer function.

## 

An amplificr has the voltage transfer function

$$
T(s)=\frac{10 s}{\left(1+s / 10^{2}\right)\left(1+s / 10^{5}\right)}
$$

Find the poles and zeros and sketch the magnitude of the gain versus frequency. Find approximate values for the gain at $\omega=10.10^{3}$, and $10^{6} \mathrm{rad} / \mathrm{s}$.

## Solution

The zeros are as follows: one at $s=0$ and one at $s=\infty$. The poles are as follows: one at $s=-10^{2} \mathrm{rad} / \mathrm{s}$ and one at $s=-10^{5} \mathrm{rad} / \mathrm{s}$.

Figure E. 2 shows the asymptotic Bode plots of the different factors of the transfer function. Curve 1 , which is a straight line intersecting the $\omega$-axis at $1 \mathrm{rad} / \mathrm{s}$ and having a $+20 \mathrm{~dB} /$ decade slope, correspouds to the $s$ term (that is, the zero at $s=0$ ) in the numerator. The pole at $s=-10^{2}$ results in curve 2 , which consists of two asymptotes intersecting at $\omega=10^{2}$. Similarly, the pole at $s=-10^{5}$ is represented by curve 3 , where the intersection of the asymptotes is at $\omega=10^{5}$. Finally, curve 4 represents the multiplicative constant of value 10


FIGURE E. 2 Bode plots for Example E.1.

Adding the four curves results in the asymptoic Bode diagram of the amplifier gain (curve 5). Note that since the two poles are widely separated, the gain will be very close to $10^{3}(60 \mathrm{~dB})$ over the
 gain as obtained from the Borde plot and from exact At the three specific frequencies, the values of the - lot and from exact evaluation of the transler function are as follows:

$\omega$	Approximate Gain	Exact Gain
10	40 dB	39.96 dB
$10^{3}$	60 dB	59.96 dB
$10^{6}$	40 dB	39.96 dB

We next consider the Bode phase plot. Figure E. 3 shows a plot of the typical phase term an ( $\omega$ ) , assuming that $a$ is negative. Also shown is an asyimptotic straight-line approx roizos the arctan function. The asymptotic plot consists of three straight lines. The first is and extend $\phi=0$. $-90^{\circ}$ The completo and a level of $\phi=$ of the phase of all poles and zeros can be obtained by summing the asymptotic Bode plots
$\tan ^{-1}\left(\frac{\omega}{a}\right)$


FIGURE E. 3 Bode plot of the typical phase term $\tan ^{-1}(\omega / a)$ when $a$ is negative

## 3MMP

Find the Bode plot for the phase of the transfer function of the amplifier considered in Example E.1.

## Solution

The zero at $s=0$ gives risc to a constant $+90^{\circ}$ phase function represented by curve 1 in Fig. E. 4 The pole at $s=-10^{2}$ gives rise to the phase function

$$
\phi_{1}=-\tan ^{-1} \frac{\omega}{10^{2}}
$$



FIGURE E. 4 Phase plots for Example E.2.
(the leading minus sign is due to the fact that this singularity is a polc). The asymptotic plot for this (the leading minus sign is due to the E.4. Similarly, he pole at $s=-10^{5}$ gives rise to the phase function

$$
\phi_{2}=-\tan ^{-1} \frac{\omega}{10^{5}}
$$

hose asymptotic plot is given by curve 3 . The overall phase response (curve 4) is obtained by whose asymptotic plot is given by curve 3e that at $100 \mathrm{rad} / \mathrm{s}$, the amplifier phase leads by $45^{\circ}$ and at $10^{5} \mathrm{rad} / \mathrm{s}$ the phase lags by $45^{\circ}$.

## 3. E. 4 AN IMPORTANT REMARK

For constructing Bode plots, it is most convenient to express the transfer-function factors in For constructing Bode plots, it is most Figs. E. 1 and E .2 and of the preceding two examples is then directly applicable.
(b) In this circuit, capacitor $C$ is used to couple the signal source $V_{s}$ having a resistance $R_{s}$ to a load $R_{L}$. For $R_{s}=10 \mathrm{k} \Omega$, design the circuit, specifying the values of $R_{L}$ and $C$ to only
one significant digit to mect the following requirements:
(i) The load resistance should be as small as possible.
(iii) The output signal should be at least $70 \%$ of the input
high frequencies.
(iii) The output should be at least $10 \%$ of the input at 10 Hz .
E. 3 Two STC RC circuits, each with a pole at $100 \mathrm{rad} / \mathrm{s}$ and a maximum gain of unity, are connected in cascade with an intervening unity-gain buffer that ensures that they function separately. Characterizc the possible combinations (of low-pass and high-pass circuits by providing (i) the rele(iii) the voltage gain at $100 \mathrm{rad} / \mathrm{s}$, and (iv) the voltage gain at $1000 \mathrm{rad} / \mathrm{s}$.
E. 4 Design the transfer function in Eq. (E.5) by specifying $a_{1}$ and $\omega_{0}$ so that the gain is $10 \mathrm{~V} / \mathrm{V}$ at high frequencies and $1 \mathrm{~V} / \mathrm{V}$ at 10 Hz
E.5 An amplifier has a low-pass STC frequency response. The magnitudc of the gain is 20 dB at dc and 0 dB at 100 kHz . What is the corner frequency? At what frequency is the gain 19 dB ? At what frequency is the phase $-6^{\circ}$ ?
E. 6 A transfer function has poles at $(-5),(-7+j 10)$, and ( -20 ), and a zero at $(-1-j 20)$. Since this function represents an aciual physical circuit, wherc must other poles and zeros be found?
E. 7 An amplifier has a voltage transfer function $T(s)=$ $10^{6} s /(s+10)\left(s+10^{3}\right)$. Convert this to the form convemient for constructing Bode plots |that is, place the denominator magnilude response, and use it to find approximate valucs for
the amplifier gain at $1,10,10^{2}, 10^{3}, 10^{4}$, and $10^{5} \mathrm{rad} / \mathrm{s}$. What would the actual gain be at $10 \mathrm{rad} / \mathrm{s}$ ? $\mathrm{At} 10^{3} \mathrm{rad} / \mathrm{s}$ ?
. 8 Find the Bode phase plot of the cransfer function of th angle at $1,10,10^{2}, 10^{3}, 10^{4}$ and $10^{5}$. Estimate the pbas calculate the actual phase at 1,10 a and $100 \mathrm{rad} / \mathrm{s}$
E.9 A transfer function has the following zeros and poles one zero at $s=0$ and one zero at $s=\infty$; one pole at $s=-100$ and one pole at $s=-10$. The magnitude of the transler $T(s)$ and sketch a Bode plof for its magnitude.
. 10 Sketch Bode plots for the magnitude and phase of the ransfer function

$$
T(s)=\frac{10^{4}\left(1+s / 10^{5}\right)}{\left(1+s / 10^{3}\right)\left(1+s / 10^{4}\right)}
$$

From your skctches, determine approximate values for the magnitude and phase at $\omega=10^{\circ} \mathrm{rad} / \mathrm{s}$. What are the exact values determined from the transfer function?
E.11 A particular amplificr has a voitage transfer function $r(s)=10 s^{2} /(1+s / 10)(1+s / 100)\left(1+s / 10^{6}\right)$. Find th olcs and zeros. Sketch the magniwde of the gein in dB vcrsus frcquency on a logarithmic scale. Estimate the gain at $10^{0}, 10^{3}, 10^{5}$, and $10^{7} \mathrm{rad} / \mathrm{s}$.
E. 12 A direct-coupled differential amplifiticr has a diffccential gain of $100 \mathrm{~V} / \mathrm{V}$ with poles at $10^{6}$ and $10^{8} \mathrm{rad} / \mathrm{s}$, and a commonmode gain of $10^{-3} \mathrm{~V} / \mathrm{V}$ with a $z \mathrm{cro}$ at $10^{4} \mathrm{rad} / \mathrm{s}$ and a polc at ain the common-mode gain and the CMRR What is the CMRR at $10^{7} \mathrm{rad} /$ ? ? (Hint . Division of masnitudes corrcspond to subtraction of logarithms.)

## PROBLEMS

E. 1 Find the transfer function $T(s)=V_{o}(s) / V_{i}(s)$ of the ircuit in Fig. PE.1. Is this an STC network? If so, of what ype? For $C_{1}=C_{2}=0.5 \mu \mathrm{~F}$ and $R=100 \mathrm{k} \Omega$, find the locatio f the pole(s) and zero(s), and sketch Bode plots for th magnitude response and the phase response


## figure Pe. 1

*E 2 (a) Find the voitagc transfer function $T(s)=$ $V_{(s) / V}(s)$ for the STC nctwork shown in Fig. PE. 2 .


FIGURE PE. 2

## Bibliography

## general textbooks on electronic circuit

E.F. Angelo Jr.. Electronics: BJTs, FETs, and Microcircuits, New York: McGraw-Hill, 196
S.B. Burns and P.R. Bond, Principles of Electronic Circuits, St. Paul cst, 1987
M.S. Ghausi, Electronic Devices and Circuits: Discrete and Integrated

New York: Holt, Rinehart and Winston, 1985.
P.E. Gray and C.L. Searle, Electronic Principles, New York: Wiley
1969.
A.R. Hanlolcy,
Hall, 1999 .
W.H. Hayt and G.W. Neudeck, Electronic Circuit Analysis and Design 2nd ed,, Boston: Houghton Mifflin Co., 1984
C.A. Holt, Electronic Circuits, New York: Wiley, 1978.
M.N. Horenstein, Microelectronic Circuits and Devices, 2nd ed Englewood Cliffs, NJ: Prentice-Hall, 1995.
R.T. Howe and C.G. Sodini, Microelectronics-An
Approach, Englewood Cliffs, NJ: Prenticc-Hall, 1997 .
R.C. Jeageger and T.N. Bladock, Microelectronic Circuil Design, 2nd ed,

New York: McGraw-Hill, 2004.
NR. Malik, Electronic Circuits: Analysis, Simulation, and Desig)
Englewood Cliffs, NI: Prentice-Hall, 1995.

1. Millman and A. Grabel, Microelectronics, 2nd ed,, New Yor

McGraw-Hill, 1987.
D.A. Neanen, Electronic Circuit Analysis and Design, 2nd ed., New

York: McGraw-Hill. 200
M.H. Rashid, Microelectronic Circuits: Analysis and Desiyn, Boston PWS. 1949.
D.L. Schilling and C. Bclove, Electronic Circuits, 2nd edd, New York

McGraw-Hill, 1979.
A. Spencer and M.S. Ghausi, Inlroduction to Electronic Circuit Design, Upper Saddle River, NJ: Peasison Education Inc. (Prentice-

IRCUIT AND SYSTEM ANALYSIS
L.S. Bobrow, Elementary Linear Circuit Analysis, 2nd ed., Ncw York

Holt, Rinehart and Winston, 1987.
A.M. Davis. Linear C Ircuit Analysis, Boston, MA: PWS Publishing s.S. Haykin
1970.
H.Hayt, G.E. Kemmerly, and S.M. Durbin. Engineering Circui Anatysis, , th ed New York: McGraw-Hill. 2003
D. Irwin, Basic Engineering Circuit Analysis, 7th ed., Ncw Yor Wiley, 2001.
B.P. Lathi, Linear Systems and Signals, New York: Oxford Universit Press, 1992.
. Nisson and S. Riccdl, Flecrronic Circuits, the ed., Revised Printing Upper Saddle River, NJ: Prentice-ITall, 2001.

## evices and ic fabrication

R.S.C. Cobboid, Theory and Applications of Field Effect Transistors

Getru. Modeling the Bipolar Transistor, Beavcrton, OR: Teletronix Inc., 1976
R.S. Muller and T.I. Kamins, Device Electronics for Integrated Circuit 3rd ed, New York: Wiley, 2003.
.D. Plummer, M.D. Deal, and P.B. Grifin sitcon vLSU ed Lpper Saddle River, NJ: Prentice-Hall, 2000.
D.L. Pulifrey and N.G. Tarr, Introduction to Mici

Englewood Cliffs, NJ: Prenticc-Hall, 1989.
Pederson. Elennentary Circuit Properties of Transistors. Vol. the SEEC Series, New York: Wiley, 1964.
B.G. Strectman and S. Banerjec, Solit-State Elect
Upper Saddle River, NJ: Prentice-Hell, 2000 .
.
perational amplifiers
G.B. Clayton, Experimenting with Operational Amplifiers, London Macrill lan, 1975.
G.B. Clayton, Operational Amplifiers, 2nd ed,, London: Newncs Butterwirths, 1979 .
S. Franco, Design with Operational Amplifiers and Analog Integrated .G. Graeme, G.E. Tobey, and Mork: McGraw-Hill, 2001.
.0. Graeme, G.L. Tobey, and d.P. Huelsman, Operational Amplufiers:
Design and Applications, New York: McGraw. Hill 1971 . Cions, New York: McGraw-Hill, 1971.
E.J. Kenuedy, $p$ inp Cookbook, Indianapoiis: Howard Sans, 19 , E.J. Kenuedy, Operational Amplifier Circuis: Theory and Application
New York: Holt, Rinehart and Winston, 1988 JK. Roberge, Operational Amplifers: Theory
J.K. Robergc, opernional Amplifers: Theory and Practice, New
York: Wilcy 1975.
1.. Smith, Modern Operational Circuit Design, New York: Wile Interscience, 1971.
W. Wait, L.P. Huelsman, and G.A. Korn, Introduction to Operational Amplifiers Theory and Applications, New York: McGraw-Hil

## analog circuits

E. Allen and D.R. Holberg, CMOS Anclog Circuit Design, $2 n d$ ed New York: Oxford University Press, 2002.
K. Bult, Transistor-Level Analog IC Design. Notes for a short course or
L. Geiver, PE Allen and N R Strader VISIDesign Lecmane, 2002

P.R. Gray. P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design
of Analog Integrated Circuits, 4th ed.. New York: Wiley, 2001.
A.B. Grebene, Bipolar and MOS Analog Integrated Circuit Design,
New York: Wiley, 1984 .

New York: Wiley, 1984
R. Gregorian and G.C. Temes, Anğlog MOS Int
Signal Processing, New York: Wiley, 1986 .

LE Journal of Solid-State Circuits, a monthly publication of the
IEEE.
D.A. Johns and K. Martin, Analog Integrated Circuil Design, Ne
York: Wiley. 1997 , York: Wiley, 1997
Laker and W. Sansen, Design for Analog
Systems, New York: McGraw-Hill, 1999,
Calt Circuits and
Hee. Analog Design," Chapter 8 in BiCMOS Technology and Appbicanions, A.R.
Publishers, 1989.
B. Razavi, Design of Analog CMOS Integrated Circuic New Yo
B. Razavi, Design of Analog CMOS Integrated Circuits, New York:
McGraw-Hill, 2001.
J.K. Roberge, operatio

Rork. Wiley, 19 H.
S. Rosenstark, Feedback Amplifier Principles, New, York: Macmillan
1986.

Sedra and G.W. Roberts, "Current Conveyor Theory and Practice," Chapter 3 in Analogue IC Design: The Current-Mode Approach,

C. Toomazon, F.I. Lidgey, and D.G. Haigh, editors, London: Peter | C. Toomazon, F.I. |
| :--- |
| Peregrinus, 1990. |

Scverns, editor MOSPOWER 4 pol
CA: Siliconix, 1984
Texas Instuments. Inc.. Power Transistor and ITL Integrated-Circiui
Applications, New York: McGraw-Hill, 1977,
S. Soelof. Applications of Analog Integrated Circuits, Englewooa . Cliffs, NJ: Prentice-Hall, 1985.
National Semiconductor Corporation, Audio/Radio Handbook, Santa
Clara, CA: National Semiconductor Cor
J.M. Steininger, "Understandicins widethand MOS Cor 1980.

Circuits and Devices, Vol. 6, No. 3, pp. 26-31, May 1990.

## digital circuits

A.R. Alverez, editor, BiCMOS Technology and Applications; 2nd ed,

SHK
Circuit Design, Bostou: Klumers 1
IEEE Press, i981. Also, Digital MOS Mitcolts, New York 1992.
D. A. Hodges and H.G. Jackson, Anatysis and Design of Divital tote IEEE Joum Circuits, 2nd ed, New York: McGraw-Hill, 1988. IEEE .lournal of Solid-Stute Circuits, a monthly pubication of the

IEEE
S.M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits, 3rd ed, R. Lituaw York: McGraw-Hill, 2003.
K. Mart, Dise Mectronics, New York: McGraw-Hill, 1965 , Univin, Digital Integrated Circuit Design. New York: Oxford
New York: McGraw-IIIll, 1965, Dital, and Switching Waveform
Motorola MFCL Device Dan,
Products, Inc., 1989 . Semiconductor Products, Inc., 1988
M. Rabaey, Disital /ntegroted, 1988. Prentice-Hall, 1996. Note: Also a 2nd ed., with A. Chandrakse NJ: and B. Nikolic, appeared in 2003 .
.. Strauss, Wave Generation and Shaping, 2nd ed, New York:
McGraw-Hill, 1970
McGraw-Hill, 1970.
H. Taub and D. Schilling Digital Lter McGraw-Hill, 1977.
Weste and K. Eshraghian, Principles of CMOS VLSID Design, Reading,
MA: Addison-Wesley, 1985 and 1993 .

## ilters and tuned amplifiers

P.E. Allen and E. Sanchez-Sinencio, Switched-Capacitor Circuits P.E. Allen and E. Sancher-Sincncio, Switches
New York: Van Nostrand Reinhold, 1984 .
K.K. Clarke and D.T. Hess, Communication Circuits: Analysis and Design, Ch. 6, Reading, MA: Addison Wesley, 1971.
G. Daryanani, Principles of Active Network Synthesis and Design,
New York: Wiley, 1976. New York: Wiley, 1976
Gregorian and G.C. Temes, Analog mOS Integrated Circuits for
Signal Processing, New York: Wiley-Interscience, 1986.
C. Ouslis and A. Sedra, "Designing custom Fiilers," IEEE Circuits ard

Devices. May 1995, pp. 29-37.
S.K. Mitra and C.F. Kurth, editors, Miniaturized and Integrated Filters,
New York: Wiley-Iterscience. 1089 . New York: Wiley-Interscience, 1989
Enolewood Cliffs, NI: Prenticc-Hall -, Design of Analog Filters
cc-Hall, 1990
R. Schaumann, M. Soderstand, and K. Lakcr, editors,
Fitter Design, New York: IEEE Press, 1981 .

New York: Oxford University Press, 2001
A.S. Sedra, "Switched-capacitor filter synthesis," in MOS VLSI C for Teleconmunications, Y. Tsividis and P. Antognetti, editors Englcwood Cliffs, NJ: Prentice-Hall. 1985.
A.S. Sedra and P.O., Brackett, Filter Theory and Design: Active and
Passive, Portiand, OR: Matrix, 1978.
M.E. Van Valkenburg, Analog Filter Design, New York: Holt, Rinehar I. Zverev, Handbook of Filter Synhesis, New York: Wiley. 1967.

SPICE
M.E. Henniter, Schematic Capture with Cadence PSpice, 2nd ed, NJ. Prentice-Hall, 2003.
SPICE, 2nd ed., New Y Yol, , Seniconductor Device Modeling with . Roberts and A.S. Sedra. SPICE, New York: Oxford Universiy Press, 1992 and 1997
J.A. Svoboda, PSpice for Linear Circuits, Ncw York: Wiley, 2002. Using PSpice ?nd ed NI: Prentice-Hall 1992 Imation \& Anclyss

## Standard Resistance Values and Unit Prefixes

Discrete resistors are available only in standard values. Table G. 1 provides the multipliers for the standard values of $5 \%$-tolerance and $1 \%$-tolerance resistors. Thus, in the kilohm
range of $5 \%$ resistors one finds resistances of $1.0,1.1,1.2,1.3,1.5, \ldots$ In the same range, one finds $1 \%$ resistors of kilohm values of $1.00,1.02,1.05,1.07,1.10$, Table G. 2 provides the SI unit prefixes used in this book and in all modern works in English.

TABLE G.2	Sl Unit Prefixes		
Name	Symbol	Factor	
femto	f	$\times 10^{-15}$	
pico	p	$\times 10^{-12}$	
nano	n	$\times 10^{-9}$	
micro	$\mu$	$\times 10^{-6}$	
milli	m	$\times 10^{-3}$	
kilo	k	$\times 10^{3}$	
mega	M	$\times 10^{6}$	
giga	G	$\times 10^{9}$	
tera	T	$\times 10^{12}$	
pcta	P	$\times 10^{15}$	


5\% Resistor Values (kS)	$1 \%$ Resistor Values (k)			
	100-174	178-309	316-549	562-976
10	100	178	316	562
11	102	182	324	576
12	105	187	332	590
13	107	191	340	604
15	110	196	348	619
16	113	200	357	634
18	115	205	365	649
20	- 118	210	374	665
22	121	215	383	681
24	124	221	392	698
27	127	226	402	715
30	130	232	412	732
33	133	237	422	750
36	137	243	432	768
39	140	249	442	787
43	143	255	453	806
47	147	261	464	825
51	150	267	475	845
56	154	274	487	866
62	158	280	499	887
68	162	287	511	909
75	165	294	523	931
82	169	301	536	953
91	174	309	549	976

3.0 V (peak-to-peak) of opposite phase, 6.0 V (peak-to-pcak); (b) $6 \mathrm{~V} / \mathrm{V}$; (c) 56 V (peak-to-peak), 19.8 V (rms) $2.8086 \mathrm{~dB} ; 500 \mathrm{~Hz} ; 10 \mathrm{MHz} \quad 2.8347 .6 \mathrm{kHz} ; 19.9 \mathrm{~V} / \mathrm{N} ; 1.99 \mathrm{~V} / \mathrm{V} \quad 2.8640 \mathrm{~V} / \mathrm{V} \quad 2.89$ (a) $(\sqrt{2}-1)^{1 / 2} f_{1}$; (b) 10 kHz ; (c) 64.4 kHz , about six times greater 2.91 (a) $f_{t} /(1+K), K f_{t} /(1+K)$; (b) $f_{t} / K, f_{i}$; noninverting preferred at low gains
(d) 1 V peak $2.103 \quad$ For each, $f_{3 \mathrm{~dB}}=f_{t} / 3 \quad 2.99$ (a) 31.8 kHz ; (b) 0.795 V ; (c) 0 to 200 kHz ; $\pm 10 \mathrm{mV}$; add $5-\mathrm{k} \Omega$ resistor in scries with the negative input terminal. 2.1074 .54 mV positive input terminal, (b) 0.2 V ; (c) $10 \mathrm{kO}, 10 \mathrm{mV}$; (d) $110 \mathrm{mV} 2114100 \mathrm{kHz} 1.59 \mu 2.118100 \mathrm{pul} 2.119 \mathrm{~V}$ ( mV , $\left(R_{2} / R_{1}\right) /\left(1+s R_{2} C\right) \cdot R_{1}=1 \mathrm{k} \cdot \cdot R_{2}=10 \mathrm{kO} \cdot C=3.98 \mathrm{~F} ; 39.8 \mathrm{kHz} 2.1211 .59 \mathrm{kHz} 10 \mathrm{~V}\left(\mathrm{p} \mathrm{V}_{\mathrm{o}}(\mathrm{s}) \mathrm{V}_{\mathrm{i}}(\mathrm{s})\right.$

## CHAPTER 3

3.1 The diode can be reversed biased and thus no current would flow; or forward biased where current would flow; (a) $0 \mathrm{~A} ; 1.5 \mathrm{~V}$; (b) $1.5 \mathrm{~A} ; 0 \mathrm{~V} \quad 3.2$ (a) $-3 \mathrm{~V} ; 0.6 \mathrm{~mA}$; (b) $+3 \mathrm{~V} ; 0 \mathrm{~mA}$; (c) $+3 \mathrm{~V} ; 0.6 \mathrm{~mA}$; (d) -3 V ; $0 \mathrm{~mA} \quad 3.5100 \mathrm{~mA} ; 35 \mathrm{~mA} ; 100 \mathrm{~mA} ; 33.3 \mathrm{~mA} \quad 3.850 \mathrm{k} \Omega \quad 3.9$ (a) $0 \mathrm{~V} ; 0.5 \mathrm{~mA} ;$ (b) $1.67 \mathrm{~V} ; 0 \mathrm{~A}$ 3.10 (a) $4.5 \mathrm{~V} ; 0.225 \mathrm{~mA}$; (b) $2 \mathrm{~V} ; 0 \mathrm{~A} \quad 3.13 \quad 3 \mathrm{~V} ; 1.5 \mathrm{~V} ; 30 \mathrm{~mA} ; 15 \mathrm{~mA} \quad 3.15 \quad 29.67 \mathrm{~V} ; 3.75 \Omega ; 0.75 \mathrm{~A}$; $26.83 \mathrm{~V} ; 30 \mathrm{~V} ; 3 \Omega 2 ; 20.5 \% ; 136 \mathrm{~mA} ; 1 \mathrm{~A} ; 27 \mathrm{~V} \quad 3.16$ red lights; neither lights; grecn lights 3.18345 mV ; $1.2 \times 10^{6} Y_{S} \quad 3.203 .46 \times 10^{-15} \mathrm{~A} ; 7.46 \mathrm{~mA} ; 273.2 \mathrm{~mA} ; 3.35 \mathrm{~mA} ; 91.65 \mu \mathrm{~A} ; 57.6 \mathrm{mV} \quad 3.233 .81 \mathrm{~mA} ;-22.8 \mathrm{mV}$ $3.2657 .1 \Omega \quad 3.27$ (a) 678 mV ; (b) 647 mV ; (c) 814 mV ; (d) 656 mV ; (e) $662 \mathrm{mV} \quad 3.2960^{\circ} \mathrm{C} ; 8.7 \mathrm{~W}$; $6.9^{\circ} \mathrm{C} / \mathrm{W} \quad 3.330 .6638 \mathrm{~V} ; 0.3362 \mathrm{~mA} \quad 3.36 R=947 \Omega \quad 3.370 .687 \mathrm{~V} ; 12.8 \Omega ;+28.1 \mathrm{mV} ;-29.5 \mathrm{mV} ;+34.2 \mathrm{mV}$ $3.390 .73 \mathrm{~V} ; 1.7 \mathrm{~mA} ; 0.7 \mathrm{~V} ; 2 \mathrm{~mA} \quad 3.410 .8 \mathrm{~V} \quad 3.45 \quad 0.86 \mathrm{~mA} ; 0 \mathrm{~V} ; 0 \wedge ; 3.6 \mathrm{~V} \quad 3.46$ (a) $0.53 \mathrm{~mA} ; 2.3 \mathrm{~V}$; (b) $0 \mathrm{~A} ;+3 \mathrm{~V}$; (c) $0.53 \mathrm{~mA} ; 2.3 \mathrm{~V}$; (d) $0 \mathrm{~A} ;-3 \mathrm{~V} \quad 3.48$ (a) $0.36 \mathrm{~mA} ; 0 \mathrm{~V}$; (b) $0 \mathrm{~A} ;-1.9 \mathrm{~V} \quad 3.52$ (a) $+49 \%$ to $-33 \%$; (b) $+22 \%$ to $-18 \% ;-2.6$ to $+2.4 \mathrm{mV}(n=1) ;-5.3$ to $+4.8 \mathrm{mV}(n=2) \quad 3.56$ (a) $0 \mathrm{~V} / \mathrm{V}$; (b) $0.001 \mathrm{~V} / \mathrm{V}$ (c) $0.01 \mathrm{~V} / \mathrm{V}$; (d) $0.1 \mathrm{~V} / \mathrm{V}$; (e) $0.5 \mathrm{~V} / \mathrm{V}$; (f) $0.6 \mathrm{~V} / \mathrm{V}$; (g) $0.9 \mathrm{~V} / \mathrm{V}$; (h) $0.99 \mathrm{~V} / \mathrm{V}$; (i) $1 \mathrm{~V} / \mathrm{V} ; 2.5 \mathrm{mV}$ (peak). $3.58157 \mu \mathrm{~A} ;-84.3^{\circ}$ to $-5.7^{\circ} \quad 3.6215-\mathrm{mA}$ supply; $-10 \mathrm{mV} / \mathrm{mA}$, for a total output change of -50 mV $3.65-30 \Omega 2 ;-120 \Omega \quad 3.678 .96 \mathrm{~V} ; 9.01 \mathrm{~V} ; 9.46 \mathrm{~V} \quad 3.708 .83 \mathrm{~V} ; 19.13 \mathrm{~mA} ; 300 \Omega ; 9.14 \mathrm{~V} ; \pm 0.01 \mathrm{~V} ;+0.12 \mathrm{~V}$; $578 \Omega ; 8.83 \mathrm{~V} ; 90 \mathrm{mV} / \mathrm{V} ;-27.3 \mathrm{~mA} / \mathrm{mA} \quad 3.7616 .27 \mathrm{~V} ; 48.7 \% ; 0.13 ; 5.06 \mathrm{~V} ; 5.06 \mathrm{~mA} \quad 3.7716 .27 \mathrm{~V} ; 97.4 \%$; $10.12 \mathrm{~V} ; 10.12 \mathrm{~mA} \quad 3.78 \quad 15.57 \mathrm{~V} ; 94.7 \% ; 9.4 \mathrm{~V} ; 9.4 \mathrm{~mA} \quad 3.8156 \mathrm{~V} \quad 3.83$ (a) $166.7 \mu \mathrm{~F} ; 15.4 \mathrm{~V} ; 7.1 \%$; $231 \mathrm{~mA} ; 448 \mathrm{~mA}$; (b) $1667 \mu \mathrm{~F} ; 16.19 \mathrm{~V} ; 2.2 \% ; 735 \mathrm{~mA} ; 1455 \mathrm{~mA} \quad 3.85$ (a) $83.3 \mu \mathrm{~F} ; 14.79 \mathrm{~V} ; 14.2 \% ; 119 \mathrm{~mA}$; 222 mA ; (b) $833 \mu \mathrm{~F} ; 15.49 \mathrm{~V} ; 4.5 \% ; 360 \mathrm{~mA} ; 704 \mathrm{~mA} 3.87$ (a) 23.6 V ; (b) $444.4 \mu \mathrm{~F}$; (c) $32.7 \mathrm{~V} ; 49 \mathrm{~V}$; (d) 0.73 A ; (e) $1.35 \mathrm{~A} \quad 3.980 .51 \mathrm{~V} ; 0.7 \mathrm{~V} ; 1.7 \mathrm{~V} ; 10.8 \mathrm{~V} ; 0 \mathrm{~V} ;-0.51 \mathrm{~V} ;-0.7 \mathrm{~V} ;-1.7 \mathrm{~V} ;-10.8 \mathrm{~V}$; fairly hard; +1 $3.10414 .14 \mathrm{~V} \quad 3.1062 .75 \times 10^{5} / \mathrm{cm}^{3} ; 1.55 \times 10^{9} / \mathrm{cm}^{3} ; 8.76 \times 10^{9} / \mathrm{cm}^{3} ; 1.55 \times 10^{12} / \mathrm{cm}^{3} ; 4.79 \times 10^{12} / \mathrm{cm}^{3}$ $3.11334 \mathrm{~cm}^{2} / \mathrm{s} ; 12 \mathrm{~cm}^{2} / \mathrm{s} ; 28 \mathrm{~cm}^{2} / \mathrm{s} ; 10 \mathrm{~cm}^{2} / \mathrm{s} ; 18 \mathrm{~cm}^{2} / \mathrm{s} ; 6 \mathrm{~cm}^{2} / \mathrm{s} ; 9 \mathrm{~cm}^{2} / \mathrm{s} ; 4 \mathrm{~cm}^{2} / \mathrm{s} \quad 3.1141 .27 \mathrm{~V} ; 0.57 \mu \mathrm{~m} ;$ $0.28 \mu \mathrm{~m} ; 45.6 \times 10^{-15} \mathrm{C} ; 18.2 \mathrm{fF} \quad 3.11616 \times 10^{-15} \mathrm{C} \quad 3.1210 .72 \mathrm{fA} ; 0.684 \mathrm{~V} ; 2 \times 10^{-11} \mathrm{C} ; 800 \mathrm{pF}$

## CHAPTER 4

$4.3 W_{p} / W_{n}=2.5 \quad 4.4238 \Omega ; 238 \mathrm{mV} ; 50 \quad 4.52 .38 \mu \mathrm{~m} \quad 4.7$ (a) 4.15 mA ; (b) $0.8 \mathrm{~mA} ; 0.92 \mathrm{~mA} ; 9.9 \mathrm{~mA}$ $4.113 .5 \mathrm{~V} ; 500 \Omega ; 100 \Omega \quad 4.123 \mathrm{~V} ; 2 \mathrm{~V} ; 5 \mathrm{~V} ; 4 \mathrm{~V} \quad 4.144 \mu \mathrm{~m} \quad 4.160 .7 \mathrm{~V} \quad 4.17100 \Omega$ to $10 \mathrm{k} \Omega$; (a) $200 \Omega$ to $20 \mathrm{k} \Omega$; (b) $50 \Omega$ to $5 \mathrm{k} \Omega$; (c) $100 \Omega$ to $10 \mathrm{k} \Omega \quad 4.1920 \mathrm{kS} ; 36 \mathrm{~V} ; 0.028 \mathrm{~V}^{-1} 420500 \mathrm{k} \Omega ; 50 \mathrm{k} \Omega \cdot 2 \% \cdot 2 \%$ $4.2282 .13 \mu \mathrm{~A} ; 2.7 \%$; use $L=6 \mu \mathrm{~m} \quad 4.26240 \mu \mathrm{~A} ; 524 \mu \mathrm{~A} ; 539 \mu \mathrm{~A} ; 588 \mu \mathrm{~A} \quad 4.27-3 \mathrm{~V} ;+3 \mathrm{~V} ;-4 \mathrm{~V} \cdot+4 \mathrm{~V}$; $-1 \mathrm{~V} ;-50 \mathrm{~V} ;-0.02 \mathrm{~V}^{-1}: 1.39 \mathrm{~mA} / \mathrm{V}^{2} \quad 4.291 \mathrm{~V}$ to $1.69 \mathrm{~V} ; 1 \mathrm{~V}$ to $3.7 \mathrm{~V} \quad 4.31$ (b) $-0.3 \% /{ }^{\circ} \mathrm{C} \quad 4.34 R_{\nu}=5 \mathrm{k} \Omega$ $R_{S}=3 \mathrm{k} \Omega \quad 4.35$ (a) $9.75 \mathrm{k} \Omega$; (b) $20 \mu \mathrm{~m} ; 4 \mathrm{k} \Omega \quad 4.364 .8 \mu \mathrm{~m}: 30.4 \mathrm{k} \Omega \quad 4.37 \quad 8 \mu \mathrm{~m} ; 2 \mu \mathrm{~m} ; 12.5 \mathrm{k} \Omega \quad 4390.4 \mathrm{~mA}$; 7.6 V 4.44 (a) $2.51 \mathrm{~V} ;-2.79 \mathrm{~V}$; (b) $7.56 \mathrm{~V} ; 5 \mathrm{~V} ; 2.44 \mathrm{~V} 4.46$ (a) $7.5 \mu \mathrm{~A} ; 1.5 \mathrm{~V}$; (b) $4.8 \mu \mathrm{~A} ; 1.4 \mathrm{~V}$; (c) 1.5 V ; $7.5 \mu \mathrm{~A} \quad 4.48$ (a) $1 \mathrm{~V} ; 1 \mathrm{~V} ;-1.32 \mathrm{~V}$ : (b) $0.2 \mathrm{~V} ; 1.8 \mathrm{~V}:-1.35 \mathrm{~V} 4.510 .8 \mathrm{~V} ; 25 \quad 4.573 .4 \mathrm{~V} \cdot 110 \mu \mathrm{~A}$ to $838 \mu \mathrm{~A}$; $8.2 \mathrm{kS} 2 ; 40 \mu \mathrm{~A}$ to $0.15 \mathrm{~mA} \quad 4.581 \mathrm{~mA} ; 13 \% \quad 4.591 .59 \mathrm{~V} ; 2.37 \mathrm{~V} ; 2.37 \mathrm{~mA} \quad 4.60 \quad R_{D}=11 \mathrm{k} \Omega ; R_{\mathrm{s}}=7 \mathrm{k} \Omega$ 4.63 (a) $-3 \mathrm{~V} ;+5 \mathrm{~V} ; 8 \mathrm{~V}$; (b) $-3.3 \mathrm{~V} ;+5 \mathrm{~V} ;+8.3 \mathrm{~V} \quad 4.6536 \mathrm{k} \Omega ; 0.2 \mathrm{~mA} ; 2 \mathrm{~V} 4.69$ (a) $2 \mathrm{~mA} ; 2.8 \mathrm{~V}$; (b) $2 \mathrm{~mA} / \mathrm{V}$; (c) $-7.2 \mathrm{~V} / \mathrm{V}$; (d) $50 \mathrm{k} \Omega$; $-6.7 \mathrm{~V} / \mathrm{V} 4.7320 \mu \mathrm{~m} ; 1.7 \mathrm{~V} 4.75-8.3 \mathrm{~V} / \mathrm{V} ; 2.5 \mathrm{~V} ;-10.8 \mathrm{~V} / \mathrm{V}$ 4.76 NMOS: $0.42 \mathrm{~mA} / \mathrm{V}, 160 \mathrm{k} \Omega, 0.08 \mathrm{~mA} / \mathrm{V}, 0.5 \mathrm{~V} ;$ PMOS: $0.245 \mathrm{~mA} / \mathrm{V}, 240 \mathrm{k} \Omega, 0.05 \mathrm{~mA} / \mathrm{V}, 0.8 \mathrm{~V}$ $4.79-11.2 \mathrm{~V} / \mathrm{V} \quad 4.81200 \Omega ; 3.57 \mathrm{~V} / \mathrm{V} ; 100 \Omega ; 4.76 \mathrm{~V} / \mathrm{V} \quad 4.850 .99 \mathrm{~V} / \mathrm{V} ; 200 \Omega ; 0.83 \mathrm{~V} / \mathrm{V} \quad 4.915 .1 \mathrm{GHz}$
$4.932 .7 \mathrm{GHz} ; 5.4 \mathrm{GHz} \quad 4.96$ (a) $-15.24 \mathrm{~V} / \mathrm{N} ; 33.1 \mathrm{kHz} \quad 4.99-10 \mathrm{~V} / \mathrm{N}, 18.6 \mu \mathrm{~F} \quad 4.103-16 \mathrm{~V} / \mathrm{V} ; C_{C 1}=20 \mathrm{nF}$, $C_{S}=10 \mu \mathrm{~F} ; C_{C_{2}}=0.5 \mu \mathrm{~F} ; 47.7 \mathrm{~Hz} \quad 4.1061 .36 \mathrm{~V} ; 1.5 \mathrm{~V} ; 1.64 \mathrm{~V} \quad 4.11010 \mu \mathrm{~m} \quad 4.114$ (b) $-125 \mathrm{~V} / \mathrm{V} ; 80 \mathrm{k} \Omega$ $4.1150 .59 \mathrm{~mA}, 5 \mathrm{~mA} ; 9 \mathrm{~mA} ; 9 \mathrm{~mA} \quad 4.116300 \mu \mathrm{~A} ; 416 \mu \mathrm{~A} ; 424 \mu \mathrm{~A} ; 480 \mu \mathrm{~A} ; 600 \mu \mathrm{~A} ; 832 \mu \mathrm{~A} ; 848 \mu \mathrm{~A} ; 960 \mu \mathrm{~A}$; $300 \mu \mathrm{~A} ; 416 \mu \mathrm{~A} ; 424 \mu \mathrm{~A} ; 480 \mu \mathrm{~A} \quad 4.118+0.586 \mathrm{~V}$

## CHAPTER 5

5.1 active; saturation; active; saturation; inversed active; active; cutoff; cutoff 5.2 (a) $7.7 \times 10^{-17} \mathrm{~A}, 368$; $\begin{array}{lllll}5.1 \\ \text { (b) } 3.8 \times 10^{-17} \mathrm{~A}, 122 ; \text { (c) } 1.5 \times 10^{-17} \mathrm{~A}, 24.2 ; 1.008 \mathrm{~mA} ; 0.7 \mathrm{~V} ; 0.96 \mathrm{pC} & 5.4 & 53.3 ; 0.982 & 5.6 & 0.5 ; 0.667 \text {; }\end{array}$ (b) 909; 0.952.0.991 $5.12-0.718 \mathrm{~V} ; 4.06 \mathrm{~V}$; $0.03 \mathrm{~mA} \quad 5913$ (a) $0.691 \mathrm{~V}, 1 \mathrm{~mA}, 1.01 \mathrm{~mA}$; (b) $-10.09 \mathrm{~mA}, 9.08 \mathrm{~mA},-1.01 \mathrm{~mA}$ $5.16-2 \mathrm{~V}: 0.82 \mathrm{~mA} \cdot-0.57 \mathrm{~V} \quad 5.180 .91 \mathrm{~mA} ; 9.09 \mathrm{~mA} \cdot 0.803 \mathrm{~V} ; 9.99 \mathrm{~mA} \quad 5.20$ (a) 1 mA ; (b) -2 V ; (c) $1 \mathrm{~mA} ; 1 \mathrm{~V}$ (d) $0.965 \mathrm{~mA} .035 \mathrm{~V} 52243 \mathrm{~V} \cdot 21 \mathrm{~mA} 5.24$ (a) $-0.7 \mathrm{~V}, 0 \mathrm{~V}, 0.756 \mathrm{~V}, 1.05 \mathrm{~mA}, 0.034 \mathrm{~mA}$, 1.02 mA ; (b) $0.7 \mathrm{~V}, 0 \mathrm{~V},-0.77 \mathrm{~V}, 2.3 \mathrm{~mA}, 0.074 \mathrm{~mA}, 2.23 \mathrm{~mA}$; (c) $3.7 \mathrm{~V}, 3 \mathrm{~V}, 2.62 \mathrm{~V}, 4.82 \mathrm{~mA}, 0.155 \mathrm{~mA}$, 4.66 mA . (d) $23 \mathrm{~V}, 3 \mathrm{~V}, 4.22 \mathrm{~V}, 4.89 \mathrm{~mA}, 0.158 \mathrm{~mA}, 4.73 \mathrm{~mA} \quad 5.26-2.2 \mathrm{~V} ; 0.779 ; 3.53 ; 3.7 \mathrm{~V} ; 0 \mathrm{~V} ;-0.7 \mathrm{~V}$; $+0.7 \mathrm{~V} \quad 5.29 \mathrm{1} / 3 \cdot 1 / 2 \quad 5.300 .74 \mathrm{~V} ; 0.54 \mathrm{~V} \quad 5.323 .35 \mu \mathrm{~A} \quad 5.3833 .3 \mathrm{k} \Omega ; 100 \mathrm{~V} ; 3.3 \mathrm{k} \Omega \quad 5.401 .72 \mathrm{~mA}$; $6 \mathrm{~V} \cdot 34 \mathrm{~V} ; 20 \mathrm{~m} \quad 5150 \cdot 125 \cdot 1.474 \mathrm{~mA} \quad 5.4540 .2 \mathrm{mV} \quad 5.523 \Omega ; 110 \mathrm{mV}: 68.2 ; 0.11 \quad 5.54-360 \mathrm{~V} / \mathrm{N}$; $6 \mathrm{~V} ; 34 \mathrm{~V} ; 20 \mathrm{kS} 5.42 \mathrm{~V}, 2 \mathrm{mV} \quad 5.57-100 \mathrm{~V} / \mathrm{V} \quad 5.603 \mathrm{~mA} ;-120 \mathrm{~V} / \mathrm{V} ;-0.66 \mathrm{~V} ;-0.6 \mathrm{~V} ; 0.54 \mathrm{~V} ; 0.6 \mathrm{~V} \quad 5.633 \mathrm{~V} ; 2.5 \mathrm{~mA}$; $25 \mu \mathrm{~A} ; 3.2 \mathrm{~V} \quad 5.65 \quad 1.8 \mathrm{k} \Omega ; 2 \quad 5.67$ (a) $1.8 \mathrm{~mA}, 1.5 \mathrm{~mA}, 3.3 \mathrm{~mA}$; (b) $1.8 \mathrm{~mA}, 0.3 \mathrm{~mA} ; 2.5 \mathrm{~mA}$ 5.69 (a) $1.3 \mathrm{~V}, 3.7 \mathrm{~V}$; (b) $0.3 \mathrm{~V}, 4.7 \mathrm{~V}$; (c) $0 \mathrm{~V},+5 \mathrm{~V} \quad 5.72-0.7 \mathrm{~V} ;+4.7 \mathrm{~V} ;-0.5 \mathrm{~V}(-1 \mathrm{~V} ;+5 \mathrm{~V})$; 5.69 (a) $1.3 \mathrm{~V}, 3.7 \mathrm{~V}$; (b) $0.3 \mathrm{~V}, 4.75 \mu \mathrm{~A} \cdot 0.8 \mathrm{~mA} ; 0.785 \mathrm{~mA}:-1.075 \mathrm{~V}: 52.3 ; 0.98 \quad 5.79$ (a) $-0.7 \mathrm{~V}, 1.8 \mathrm{~V}$; $+2.6 \mathrm{~V}(1.9 \mathrm{~V}, 1.655 \mathrm{~mA}$; (c) $-0.7 \mathrm{~V}, 0 \mathrm{~V}, 1.872 \mathrm{~V}$ : (d) $1.9 \mathrm{~V},-0.209 \mathrm{~V}$; (e) $1.224 \mathrm{~V}, 1.924 \mathrm{~V},-0.246 \mathrm{~V}$ $5.821 .08 \mathrm{k} \Omega$; the transistor saturates. $\quad 5.1121 .25 \mathrm{~V} ; 20 \mathrm{~mA} / \mathrm{V} ; 150 \mathrm{~V} / \mathrm{V} \quad 5.118135 ; 41.8 \Omega$; $23 \mathrm{~mA} / \mathrm{V} ; 1.09 \mathrm{k} \Omega ;-0.76 \mathrm{~V} / \mathrm{V} \quad 5.1239 .3 \mathrm{k} \Omega ; 28.6 \mathrm{k} \Omega ; 143 \mathrm{~V} / \mathrm{V} \quad 5.1241 \mathrm{~mA} ; 0.996 \mathrm{~V} / \mathrm{V} ;$
 (c) $18.21 \mathrm{k} \Omega, 0.64 \mathrm{~V} / \mathrm{V} \quad 5.1501 .25 \mathrm{GHz}, 5 \Omega \mathrm{GHz}, 2.47 \mathrm{ps}, 0.5 \mathrm{pF} \quad 5.170 .54 \mathrm{p}, 20 \mathrm{~m}=2.5 \mathrm{k} \Omega$ $\begin{array}{lllll}33.3 \mathrm{M} \Omega & 5.168 & 19 & 5.169 & 2.15 \mathrm{~mA} \cdot 4.62 \mathrm{~mW} \cdot 24 \mathrm{~mW} \cdot 143 \mathrm{~mW} \quad 5.170 R_{B}=11 \mathrm{k} \Omega ; R_{C}=2.2 \mathrm{k} \Omega\end{array}$

## CHAPTER 6

$6.412 ; 34 \quad 6.52 .875 \quad 6.6 \quad 25.8 ; 1 \mathrm{~mA} ; 0.25 \mathrm{~mA} \quad 6.8 \quad 0.5 \mathrm{~mA} ; 4 \mathrm{~mA} / \mathrm{V} \quad 6.100 .4 \mathrm{~mA} / \mathrm{V} ; 250 \mathrm{kS} ; 100 \mathrm{~V} / \mathrm{V}$; $6.3 \mu \mathrm{~m} \quad 6.1316 .7 \mathrm{GHz} ; 23.9 \mathrm{GHz}$; because the overlap capacitance is neglected. $6.1415 \mathrm{~V} / \mathrm{V} ; 164.2 \mathrm{MHz}$; $2.5 \mathrm{GHz}, 0155 \mathrm{~mA}$ quadrupled to $0.62 \mathrm{~mA} ; 3.75 \mathrm{~V} / \mathrm{V} ; 656.8 \mathrm{MHz} \quad 6.175 .3 \mathrm{MHz} ; 391 \mathrm{MHz} \quad 6.2120 \mathrm{k} \Omega ; 0.2 \mathrm{~V}$ $200 \mathrm{kS}: 5 \mu \mathrm{~A} \quad 6.24 \quad 80 \mu \mathrm{~A} ; 0.3 \mathrm{~V} ; 0.8 \mathrm{~V} ; 3.2 \mu \mathrm{~A} \quad 6.27 \quad 4: 25,50,200,400 \mu \mathrm{~A} ; 3: 16.7,40,133 \mu \mathrm{~A} ; 1.53 \mathrm{~V}$ 6.29 (a) $10 \mu \mathrm{~A}$ to $10 \mathrm{~mA}: 0.576$ to $0.748 \mathrm{~V} \quad 6.320 .2 \mathrm{~mA} ; 10 \% \quad 6.35$ (a) $2 \mathrm{~mA},-0.7 \mathrm{~V}, 5 \mathrm{~V}, 0.7 \mathrm{~V},-0.7 \mathrm{~V}$, -5.7 V ; (b) $0.2 \mathrm{~mA},-0.7 \mathrm{~V}, 5 \mathrm{~V}, 0.7 \mathrm{~V}, 0.7 \mathrm{~V},-0.7 \mathrm{~V} \quad 6.370 .5 \mathrm{~mA} \quad 6.40$ (a) 2.07 ; (b) 7.026 .41 (a) $10^{5} \mathrm{rad} / \mathrm{s}$; (b) $1.01 \times 10^{5} \mathrm{rad} / \mathrm{s} ; 10^{7} \mathrm{rad} / \mathrm{s} \quad 6.425 .67 \times 10^{6} \mathrm{rad} / \mathrm{s} \quad 6.442 .5 \mathrm{MHz} ; 0.56 \mathrm{MHz} \quad 6.46$ (a) $-g_{m} R_{L} /\left(1+g_{m} R_{s}\right.$ ); (b) $R_{g s}=\left(R_{\mathrm{sig}}+R_{s}\right) /\left(1+g_{m} R_{s}\right), R_{g d}=R_{L}+R_{\text {sig }}+\left(g_{m} R_{L} /\left(1+g_{m} R_{s}\right) /_{\mathrm{sig},} ;(\right.$ (c) $) 3 \mathrm{k} R_{s} / \mathrm{GBW}=8.93 \mathrm{Mrad} / \mathrm{s}$; for $453.5 \mathrm{krad} / \mathrm{s}, \mathrm{GBW}=9.07 \mathrm{Mrad} / \mathrm{s}^{2} R_{s}=1 \mathrm{GBW}=8.66 \mathrm{Mrad} / \mathrm{s}, 6.4840 .6 \mathrm{~V} / \mathrm{V} ; 243.8 \mathrm{~ns} ; 3100 \mathrm{~ns} ; 30 \mathrm{~ns} ;$
 47.2 kHz 6. $C_{i}=20 \mathrm{pF}, C_{o}=20 \mathrm{pF} ;$ (d) $10, C_{i}=0 \mathrm{pF}, C_{0}=0 \mathrm{pF} ;$ (c) $20 \mathrm{~mA} / \mathrm{V}$; (d) $2.5 \mathrm{k} \Omega .50 \mathrm{k} \Omega,-1000 \mathrm{~V} / \mathrm{N}$
$6.68796 \mathrm{GHz}, 6115 \mathrm{kHz} 45.06 \mathrm{MHz} ; 611 \mathrm{kHz} ; 602.9 \mathrm{kHz} ; 45.7 \mathrm{MHz} \quad 6.71-80.7 \mathrm{~V} / \mathrm{N} ; 6.37 \mathrm{GHz} ; 1.87 \mathrm{MHz}$ $6.8 \mathrm{MH} ; 187 \mathrm{MHz} 674-00 \mathrm{~V} / \mathrm{V} ; 713 \mathrm{MH} ; 723 \mathrm{MHz} 67880 \mathrm{fF} 6.83932 .6 \Omega ; 1.73 \mathrm{~V} \quad 6.86 \mathrm{17.1V/V}$ $557 \mathrm{MHz} \cdot 3.79 \mathrm{MHz} 3.79 \mathrm{MHz} \quad 6.9050 \mathrm{k} \Omega \quad 6.930 .97 \mathrm{~A} / \mathrm{A} ; 2.63 \mathrm{M} \Omega \quad 6.98 \quad v / v_{r}=r_{01} /\left\{r_{02}+\left[1+\left(g_{w 2}+\right.\right.\right.$ $557 \mathrm{MHz} ; 3.79 \mathrm{MHz} ; 3.79 \mathrm{MHz} \quad 6.9050 \mathrm{k} \Omega \quad 6.930 .97 \mathrm{~A} / \mathrm{A} ; 2.63 \mathrm{M} \Omega \quad 6.98 \quad v_{v} / v_{x}=r_{o 1} / 1 r_{o 2}+10+\left(g_{m 2}+\right.$
 (d) $0.75 \mathrm{~V} / \mathrm{V} \quad 6.1200 .964 \mathrm{~V} / \mathrm{V} ; 544 \mathrm{MHz} \quad 6.122$ (a) $2.51 \mathrm{M} \Omega,-3943 \mathrm{~V} / \mathrm{V}$; (b) $107.8 \mathrm{kHz}, C_{L}$ dominates,
$C_{\mu 2}$ is the second most significant; $f_{H}$ increases by a factor of $7, A_{M}$ remains unchanged $6.124 \quad 10.3 \mathrm{M} \Omega ; 14.8 \Omega$ $1 \mathrm{~V} / \mathrm{V} ; 0.985 \mathrm{~V} / \mathrm{V} \quad 6.128 \quad 80 \mu \mathrm{~A} ; 8 \mathrm{M} \Omega ; 0.9 \mathrm{~V} \quad 6.132 \quad 1 /\left(1+(n+1) / \beta^{2}\right) ; 9 \quad 6.133 \quad 0.5 \mathrm{k} \Omega \quad 6.1354 .1 \mathrm{~V}$ $6.1372 \mu \mathrm{~A} ; 0.2 \% \quad 6.141$ (a) $5.76 \mathrm{k} \Omega$; (b) $33 \mathrm{M} \Omega, 0.15 \mu \mathrm{~A} \quad 6.14311 \mathrm{M} \Omega \quad 6.144$ (a) $58.5 \mathrm{k} \Omega$; (b) $200 \mathrm{M} \Omega$

## CHAPTER 7

$7.81 .19 \mathrm{~V} ; 1.06 \mathrm{~mA} / \mathrm{V} ; 0.27 \mathrm{~V} ; 800 \mu \mathrm{~A} \quad 7.10-1.5 \mathrm{~V} ;+0.5 \mathrm{~V}$; equal in both cases; $0.05 \mathrm{~V} ;-0.05 \mathrm{~V} ; 0.536 \mathrm{~V}$ $7.19-2.68 \mathrm{~V} ; 3.52 \mathrm{~V} ; 3.52 \mathrm{~V} \quad 7.20-2.683 \mathrm{~V} ;+3.515 \mathrm{~V} \quad 7.22-0.4 \mathrm{~V} \quad 7.24$ (a) $V_{C C}-(1 / 2) R_{C}$; (b) $-(I / 2) R_{C},+(I / 2) R_{C}$; (c) 4 V ; (d) $0.4 \mathrm{~mA}, 10 \mathrm{k} \Omega \quad 7.27$ (a) $20 / R_{C} \mathrm{~V} / \mathrm{V}$; (b) $V_{C C}-0.0275 A^{\prime}$ $7.282 .4 \mathrm{~mA} ; 3.6 \mathrm{~mA} ; 10.1 \mathrm{mV} \quad 7.29 I_{C 1}=3.6 \mathrm{~mA}, I_{C 2}=2.4 \mathrm{~mA} ; 10.1 \mathrm{mV} \quad 7.30$ (a) 4.14 V ; (b) 3.15 V ; (c) 3.525 V ; (d) $3.755 \mathrm{~V} \quad 7.321 \mathrm{~mA} ; 10 \mathrm{k} \Omega 7.34$ (a) $0.4 \mathrm{~mA}, 10 \mathrm{mV}$; (b) $1.40 \mathrm{~mA}, 0.60 \mathrm{~mA}$; (c) -2.0 V +2.0 V ; (d) $40 \mathrm{~V} / \mathrm{N} 7.3740 \mathrm{~V} / \mathrm{V} ; 50 \mathrm{k} \Omega \quad 7.3830 \mathrm{~V} / \mathrm{V} ; \approx 25 \mathrm{k} \Omega 7.4126 .7 \mathrm{~V} / \mathrm{V} ; 17.8 \mathrm{k} \Omega ; 0.033 \mathrm{~V} / \mathrm{V} ; 15 \mathrm{k} \Omega$ 7.42 (a) $100 \mathrm{~V} / \mathrm{N}$; (b) $200 \mathrm{~V} / \mathrm{N}$; (c) $40.2 \mathrm{k} \Omega$; (d) $0.1 \mathrm{~V} / \mathrm{N}$; (e) $07.441 .8 \mathrm{~mA} ; 360 \mathrm{~V} / \mathrm{V} ; 1.8 \sin \omega t \mathrm{~V}$ $7.45 R_{k}=25 \Omega ; R_{C}=10 \mathrm{k} \Omega ; R_{o} \geq 50 \mathrm{k} \Omega ; R_{i_{\mathrm{cm}}}=5 \mathrm{MS} 2 ; \pm 12 \mathrm{~V}$ would do, $\pm 15 \mathrm{~V}$ would be better. $7.462 \%$ mismatch, for example $\pm 1 \%$ resistors $7.470 .004 \mathrm{~V} / \mathrm{V} 7.54-125 \mu \mathrm{~V} \quad 7.55 V_{O S}=V_{T}\left(\left(V_{C E} / V_{A 1}\right)-\left(V_{C E} / V_{A 2}\right)\right)$ 7.57 (a) 0.25 ; (b) $0.225 \quad 7.60 / / 3 ; 2 I / 3 ; R_{C} I / 3 ; 16.7 \mathrm{mV} ; 17.3 \mathrm{mV} ; 0.495 \mu \mathrm{~A} ; 0.5 \mu \mathrm{~A} ; 0.33 \mu \mathrm{~A}$ $7.98 R_{5} ;$ reduce to $7.37 \mathrm{k} \Omega ; 4104 \mathrm{~V} / \mathrm{N}$; reduce $R_{4}$ to $1.12 \mathrm{k} \Omega \quad 7.99 \quad R_{5}=7.37 \mathrm{k} \Omega ; 4104 \mathrm{~V} / \mathrm{V} ; R_{4}=1.11 \mathrm{k} \Omega$ $7.100173 .1 \times 10^{3} \mathrm{~V} / \mathrm{V} \quad 7.101$ (a) 1 mA ; (b) $2.37 \mathrm{k} \Omega, 128 \Omega$; (c) $2.81 \times 10^{4} \mathrm{~V} / \mathrm{V}$

## CHAPTER 8

$8.19 .99 \times 10^{-3} ; 90.99 ;-9 \% 8.3$ (b) 1110 ; (c) 20 dB ; (d) $10 \mathrm{~V}, 9 \mathrm{mV}, 1 \mathrm{mV}$; (e) $-2.44 \%$
$8.12 A_{M f}=A_{M} /\left(1+A_{M} \beta\right) ; W_{I f}=W_{L} /\left(1+A_{M} \beta\right) ; 1+A_{M} \beta \quad 8.14 \quad 100 \mathrm{kHz} ; 10 \mathrm{~Hz} \quad 8.20 \quad 0.08 ; 12.34 ; 10.1$ $8.2910^{4}+10^{7} /(1+j f / 100) ; 10^{-3}+1 /(1+i f / 100) ; 1 \mathrm{M} \Omega ; 14.1 \mathrm{k} \Omega ; 10 \Omega ; 700 \Omega \quad 8.30$ (a) $h_{11}=R_{1} R_{2} /\left(R_{1}+R_{2}\right) \Omega$, $h_{12}=R_{2} /\left(R_{1}+R_{2}\right) \mathrm{V} / \mathrm{V}, h_{21}=-R_{2} /\left(R_{1}+R_{2}\right) \mathrm{A} / \mathrm{A}, h_{22}=1 /\left(R_{1}+R_{2}\right)$ J; (b) $h_{11}=10 \Omega, h_{12}=0.01 \mathrm{~V} / \mathrm{V}, h_{21}=$ $-0.01 \mathrm{~A} / \mathrm{V}, h_{22}=0.99 \times 10^{-3} \mathrm{~V} 8.3110 \mathrm{~V} / \mathrm{N} ; 9.9 \Omega \quad 8.340 .0 \mathrm{~V} ; 0.7 \mathrm{~V} ; 31.3 \mathrm{~V} / \mathrm{V} ; 0.1 \mathrm{~V} / \mathrm{V} ; 7.6 \mathrm{~V} / \mathrm{V} ; \infty ; 163 \Omega$ 8.35 (b) $\simeq 1+\left(R_{F} / R_{F}\right) ;$ (c) $1.2 \mathrm{k} \Omega$; (d) $1.75 \mathrm{k} \Omega$, ( $228.1 \Omega$; (e) $23.8 \mathrm{~V} / \mathrm{V}$; (f) $154 \mathrm{k} \Omega, 0.53 \Omega$ $.377 .52 \mathrm{~mA} / \mathrm{V} ; 110.8 \mathrm{k} \Omega ; 433.4 \mathrm{kS} 28.41-4.7 \mathrm{~V} / \mathrm{V} ; 75 \mathrm{k} \Omega 8.47$ (a) shunt-series; (b) seriesseries; (c) shunt-shunt $8.48-5.66 \mathrm{~V} / \mathrm{V} ; 142 \mathrm{k} \Omega ; 5.63 \mathrm{k} \Omega ; 142.9 \mathrm{k} \Omega ;-5.61 \mathrm{~V} / \mathrm{N} ; 5.96 \mathrm{k} \Omega \quad 8.49-9.83 \mathrm{k} \Omega$; $29.7 \Omega ;-7.6 \mathrm{~A} / \mathrm{A} \quad 8.509 .09 \mathrm{~A} / \mathrm{A} ; 90.9 \Omega ; 110 \mathrm{k} \Omega \quad 8.53 \quad 3.13 ; 163 \Omega \quad 8.61 \quad 10^{4} \mathrm{rad} / \mathrm{s} ; \beta=0.002 ; 500 \mathrm{~V} / \mathrm{V}$ $8.63 K<0.008 \quad 8.659 .9 \mathrm{~V} / \mathrm{V} ; 1.01 \mathrm{MHz} ; 10 \mathrm{MHz} ; 101 \quad 8.66$ (a) $5.5 \times 10^{4} \mathrm{~Hz}, \beta=2.025 \times 10^{-3}$; (b) $330.6 \mathrm{~V} /$ V ; (c) $165.3 \mathrm{~V} / \mathrm{N}, 1 / 2$; (d) $1.338 .68 \quad \omega_{0}=1 / C R ; Q=1 /(2.1-K) ; 0.1 ; 0.686 ; K=2.1 \quad 8.69 \mathrm{~K} \geq 2$;
 $8.77 \quad 10^{3} \mathrm{~Hz} ; 2000 \quad 8.78 \mathrm{~L} 10 R C ; 1 / R C ; 1 / 100 R C_{;} ; 9.1 / R C \quad 8.79 \quad 10 \mathrm{~Hz} ; 15.9 \mathrm{nF} \quad 8.80 \quad 58.8 \mathrm{pF} ; 38.8 \mathrm{MHz}$

## CHAPTER 9

$9.2136 .3 \mu \mathrm{~A} \quad 9.220 .625 \mathrm{~V}$; for $\mathrm{A}, 7.3 \mathrm{~mA} / \mathrm{V}, 134.3 \Omega, 6.85 \mathrm{k} \Omega, 274 \mathrm{k} \Omega$; for $\mathrm{B}, 21.9 \mathrm{~mA} / \mathrm{V}, 44.7 \Omega, 2.28 \mathrm{k} \Omega$, $91.3 \mathrm{k} \Omega \quad 9.27 \quad 616 \mathrm{mV} ; 535 \mathrm{mV} ; 4.02 \mathrm{k} \Omega \quad 9.294 .75 \mu \mathrm{~A} ; 1.94 \mathrm{k} \Omega \quad 9.31 \quad 56.5 \mathrm{k} \Omega ; 9.353 \mu \mathrm{~A} \quad 9.33 \quad 226$ to 250 ; $\pm 5 \% \quad 9.36 \quad 6.37 \mathrm{k} \Omega ; 270 \mu \mathrm{~A} \quad 9.38 \quad 1.68 \mathrm{~mA} ; 50.4 \mathrm{~mW} \quad 9.40$ Raise $R_{1}^{\prime}, R_{2}^{\prime}$ to $4.63 \mathrm{k} \Omega \quad 9.430 .96 \mathrm{mV}$ $9.45 \quad 33.9 \mathrm{~dB} \quad 9.48 \quad 3.10 \mathrm{M} \Omega ; 9.38 \mathrm{~mA} / \mathrm{V} \quad 9.504 .2 \mathrm{~V}$ to $-3.6 \mathrm{~V} \quad 9.52 \quad 21 \mathrm{~mA} \quad 9.54 \quad 108 \mathrm{~dB} ; 61.9 \Omega ; 105.6 \mathrm{~dB}$ $\left|V_{0}\right|<4 \mathrm{~V} \quad 9.56 \quad 11.4 \mathrm{MHz} \quad 9.58 \quad 637 \mathrm{k} \Omega \quad 9.60 \quad 159 \mathrm{kHz} ; 15.9 \mathrm{MHz} \quad 9.62$ six bits; 0.156 V ; seven bits; seven bits; $0.117 \mathrm{~V} ; 0.059 \mathrm{~V} \quad 9.65 / / 16 ; I / 8 ; I / 4 ; I / 2 \quad 9.67$ Use op amp with $R / 2$ input and $50 R$ feedback to drive $V_{\text {tef }}: 15$ sine-wave amplitudes, from 0.625 V peak to 9.375 V peak; an output of 10 V (peak-to-peak) corresponds to a digital input of ( 1000 ). $9.698 .19 \mathrm{~ms} ; 4.096 \mathrm{~ms} ; 9.9 \mathrm{~V}$; no, stays the same!

## CHAPTER 10

$10.11 .5 \mathrm{~V} ; 1.5 \mathrm{~V} ; 1.5 \mathrm{~V} ; 0 \mathrm{~V} ; 3 \mathrm{~V} ; 1.5 \mathrm{~V} ; 1.5 \mathrm{~V} ; \infty \quad 10.30 .35$ to $0.45 \mathrm{~V} ; 0.75$ to $0.85 \mathrm{~V} ; 0 \mathrm{~V} ; 1.2 \mathrm{~V} ; 0.45$ to $0.35 \mathrm{~V} ; 0.35$ to 0.45 V 10.4 (a) $t_{P / \mu}=1.6 \mathrm{~ns}, t_{\text {PHI }}=0.8 \mathrm{~ns}$; (b) $C=1.43 \mathrm{pF}$; (c) $C_{o}=0.86 \mathrm{pF}, C_{i}=0.57 \mathrm{pF}$
$1060.436 \cdot 1.48 \mathrm{~mW} \quad 10.7$ Maximum operating frequency is reduced by a factor of (a) 0.66 , (b) $0.44 . \mathrm{DP}$ decreases by a factor of 0.44 in both cases. $\quad 10.9$ Effect of changes in device dimensions is to change the performance parameters by the factors: $0.81,1.11,0.86,0.77,1.30,1.11,0.86,1.60 .10 .149 .1 \mathrm{mV} ; 50 \mathrm{mV}$ $10.19106 \mathrm{fF} ; 68.5 \mathrm{ps} \quad 10.26 \quad 24 \quad 10.33 p_{A}=p ; p_{B}=p_{C}=p_{D}=2 p ;$ and $n_{A}=n_{B}=2 n ; n_{C}=n_{D}=2(2 n)=4 n$. 10.35 With the proper sizing, $t_{P H Z}$ is one quarter the valuc obtaincd with the smaller-size devices; $t_{P L H}$ is the same in both cases. 10.38 (a) $0.69 C R_{D}$; (b) $0.5 C R_{D}$, for a $27.5 \%$ reduction $10.391 .152 ; 1.76 \mathrm{~V} ; 3.25 \mathrm{~V}$, 2. $0.58 \mathrm{~V} \cdot 175 \mathrm{~V} \cdot 1.18 \mathrm{~V} \quad 10.402 .4 \mathrm{fF} ; 10.5 \mathrm{fF} ; 63.5 \mathrm{ps} ; 41.2 \mathrm{ps} ; 52.4 \mathrm{ps} ; 9.6 \mathrm{fF}, 24.0 \mathrm{FF}, 7.5 \mathrm{~F}$ $72.5 \mathrm{ps}: 72.5 \mathrm{ps} \quad 10.41 r \simeq 2 ; N M_{\text {Lmax }} 1.28 \mathrm{~V} \quad 10.43 \quad 1.33 ; 0.92 \mathrm{~V} \quad 10.53$ (a) $1.62 \mathrm{~V} ; 1.16 \mathrm{~V} ; 15.3 \mu \mathrm{~A} ; 351.6 \mu \mathrm{~A}$; $183 \mu \mathrm{~A} ; 177 \mathrm{ps} \quad 10.600 .67 \mathrm{~V} ; 1.25 \mathrm{~V} \quad 10.62 \quad 1.1 \mathrm{GHz}$

## CHAPTER 11

11.1 $2.16 \mathrm{~V} ; 0.93 ; 1.86 \quad 11.36 \quad 11.11 \quad 10.4 \mu \mathrm{~s} ; 9.8 \mathrm{~V} ; 5.7 \mathrm{~V} ; \approx 0.1 \mathrm{~V} ; 21.5 \mathrm{~mA}$; The source current can be as large as 21 mA (for $R_{\text {on }}=200 \Omega$ ), but is clearly limited by kp of $\mathrm{G}_{1}$ to a much smaller value 11.13 (a) 1.39 CR (b) $10 \mathrm{k} \Omega ; 721 \mathrm{pF} \quad 11.14 \quad 97.2 \% \quad 11.18 \quad 16$ bits $\quad 11.19 \quad 1024 ; 1024 ; 4000 \mathrm{pF} ; 225 \mathrm{pF} ; 220 \mathrm{fF} / \mathrm{bit} ; 2.8$ times $11.20 \quad 0.3 \mu \mathrm{~m}^{2} ; 0.39 \mu \mathrm{~m} \times 0.78 \mu \mathrm{~m} \quad 11.2160 \% \quad 11.22 \quad 4 ; 12 ; 28 \quad 11.27 \quad 32$ Mbits $\quad 11.292 \mathrm{pA}$
$11.301 .589 \mathrm{~mA} / \mathrm{V} ; 11.36 \mu \mathrm{~m} ; 34.1 \mu \mathrm{~m} ; 1.56$ ns $\quad 11.310 .68 \mathrm{~mA} / \mathrm{V} ; 0.48 \mathrm{~V} ; 0.21 \mathrm{~V} ; 50 \% ; 7.5 \mathrm{~ns} \quad 11.32$ (b) 2 ; (c) $1.46 \quad 11.349 ; 512 ; 18 ; 4608$ NMOS and 512 PMOS transistors $11.359 ; 1024 ; 4608 ; 512 ; 5641 ; 521$ $1.36262144 ; 9 ; 1022 \quad 11.392 .42 \mathrm{~ns} ; 22 \mathrm{~ns}, 3.16 \mathrm{~V} ; 1.9 \mathrm{~ns} \quad 11.4133 .3 \mathrm{MHz}$; high for 13 ns ; low for 17 ns $11.440 .329 \mathrm{~V} / \mathrm{V} ; 8.94 \mathrm{~V} / \mathrm{V} ; 0.368 \mathrm{~V} / \mathrm{V} \quad 11.45$ (a) $-1.375 \mathrm{~V},-1.265 \mathrm{~V}$; (b) $-1.493 \mathrm{~V},-1.147 \mathrm{~V} \quad 11.47 \quad 21.2$ $11.497 \mathrm{~cm} \quad 11.51(W / L)_{p}=5 \mu \mathrm{~m} / / \mu \mathrm{m} ; 6.5 \mathrm{~mA} \quad 11.522 .32 \mathrm{~V} ; 3.88 \mathrm{~mA} \quad 11.53$ For $R_{1}: 50 \% ; 36.5 \mathrm{k} \Omega ; 20 \%$; $91.1 \mathrm{k} \Omega$; for $R_{2}: 50 \% ; 6.70 \mathrm{k} \Omega ; 20 \% ; 16.7 \mathrm{k} \Omega ; 50 \% ; R_{1} / R_{2}=5.45 ; 20 \% ; R_{1} / R_{2}=5.45 \quad 11.5483 .2 \mathrm{ps}$; $50.7 \mathrm{ps} ; 67.0 \mathrm{ps} \quad 11.56(W / L)_{Q_{N A}}=(W / L)_{Q_{N B}}=2(W / L)_{Q_{N}} ;(W / L)_{Q_{P A}}=(W / L)_{Q_{P B}}=(W / L)_{Q_{p}}$

## CHAPTER 12

$12.1 \cdot 1 \mathrm{~V} / \mathrm{N}, \quad 0^{\circ}, 0 \mathrm{~dB}, 0 \mathrm{~dB}$
$12.11 \mathrm{~V} / \mathrm{V}, \quad 0^{\circ}, 0 \quad \mathrm{~dB}, 0 \mathrm{~dB}$ $0.894 \mathrm{~V} / \mathrm{V},-26.6^{\circ},-0.97 \mathrm{~dB}, 0.97 \mathrm{~dB}$
$0.707 \mathrm{~V} / \mathrm{V},-450^{\circ},-3.01 \mathrm{~dB}, 3.01 \mathrm{~dB}$ $0.707 \mathrm{~V} / \mathrm{V},-45.0^{\circ},-3.01 \mathrm{~dB}, 3.01 \mathrm{~dB}$
$0.447 \mathrm{~V} / \mathrm{B},-63.4^{\circ},-6.99 \mathrm{~dB}, 6.99 \mathrm{~dB}$ $0.447 \mathrm{~V} / \mathrm{N},-63.4^{\circ},-6.99 \mathrm{~dB}, 6.99 \mathrm{~dB}$
$0.196 \mathrm{~V},-78.7^{\circ},-14.1 \mathrm{~dB}, 14.1 \mathrm{~dB}$ $0.196 \mathrm{~V} / \mathrm{V},-78.7^{\circ},-14.1 \mathrm{~dB}, 14.1 \mathrm{~dB}$
$0.100 \mathrm{~V}, \mathrm{~V},-84.3^{\circ},-20.0 \mathrm{~dB}, 20.0 \mathrm{~dB}$ $0.010 \mathrm{~V} / \mathrm{N},-89.4^{\circ},-40.0 \mathrm{~dB}, 40.0 \mathrm{~dB}$
$12.3 \quad 1.000 ; 0.944 ; 0.010 \quad 12.5 \quad 0.509 \mathrm{rad} / \mathrm{s} ; 3 \mathrm{rad} / \mathrm{s} ; 5.90$
$12.8 T(s)=10^{15} /\left[\left(s+10^{3}\right)\left(s^{2}+618 s+10^{6}\right)\left(s^{2}+1618 s+10^{6}\right)\right]$, low-pass;
$\left.T(s)=s^{5} \Lambda\left(s+10^{3}\right)\left(s^{2}+618 s+10^{6}\right)\left(s^{2}+1618 s+10^{6}\right)\right]$, high-pass $\left.\quad 12.9 T(s)=0.2225\left(s^{2}+4\right) /(s+1)\left(s^{2}+s+0.89\right)\right]$ 12.11. $T(s)=0.5 /\left[(s+1)\left(s^{2}+s+1\right)\right]$; poles at $s=-1,-\frac{1}{2} \pm j \sqrt{3} / 2,3$ zeros at $s=\infty \quad 12.1328 .6 \mathrm{~dB}$ $12.15 \mathrm{~N}=5 ; f_{0}=10.55 \mathrm{kHz}$, al $-108^{\circ},-144^{\circ},-180^{\circ},-216^{\circ},-252^{\circ} ; p_{1}=-20.484 \times 10^{3}+j 63.043 \times 10^{3}(\mathrm{rad} / \mathrm{s})$, $p_{2}=-53.628 \times 10^{3}+j 38.963 \times 10^{3}(\mathrm{rad} / \mathrm{s}), p_{3}=-\omega_{0}=-66.288 \times 10^{3} \mathrm{rad} / \mathrm{s}, p_{4}=-53.628 \times 10^{3}-j 38.963 \times 10^{3}(\mathrm{rad} / \mathrm{s})$, $p_{5}=-20.484 \times 10^{3}-j 63.043 \times 10^{3}(\mathrm{rad} / \mathrm{s}) ; T(s)=\omega_{0}^{5} /\left[\left(s+\omega_{0}\right)\left(s^{2}+1.618 \omega_{0} s+\omega_{0}^{2}\right)\left(s^{2}+0.618 \omega_{1} s+\omega_{0}^{2}\right)\right] ;$
 High-frequency gain $=-100 \mathrm{~V} / \mathrm{V} \quad 12.23 T(s)=(1-R C s) /(1+R C s) ; 2.68 \mathrm{k} \Omega, 5.77 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 17.3 \mathrm{k} \Omega$, $37.3 \mathrm{k} \Omega \quad 12.25 T(\mathrm{~s})=10^{6} /\left(\mathrm{s}^{2}+10^{3} \mathrm{~s}+10^{6}\right) ; 707 \mathrm{rad} / \mathrm{s} ; 1.16 \mathrm{~V} / \mathrm{V} \quad 12.27 R=4.59 \mathrm{k} \Omega ; R_{1}=10 \mathrm{k} \Omega$ $12.28 T(s)=s^{2} /\left(s^{2}+s+1\right) \quad 12.30 T(s)=\left(s^{2}+1.42 \times 10^{5}\right) /\left(s^{2}+375 s+1.42 \times 10^{-}\right) \quad 12.33 \quad L=0.5 \mathrm{H} ; C=20 \mathrm{nF}$ $12.35 V_{0}(s) / V_{i}(s)=s^{2} /\left(s^{2}+s / R C+1 / L C\right) \quad 12.37$ Split $R$ into two parts, leaving $2 R$ in its place and adding $2 R$ from the oupput to ground. $12.39 \quad L_{1} / L_{2}=0.235 ;|T|=L_{2} /\left(L_{1}+L_{2}\right) ;|T|=1 \quad 12.40$ For all resistors $=10 \mathrm{k} \Omega$, $C_{4}$ is (a) $0.1 \mu \mathrm{~F}$; (b) $0.01 \mu \mathrm{~F}$, (c) 1000 pF ; For $R_{5}=100 \mathrm{k} \Omega$ and $R_{1}=R_{2}=R_{3}=10 \mathrm{k} \Omega, C_{4}$ is (a) $0.01 \mu \mathrm{~F}$, (b) 1000 pF , (c) $100 \mathrm{pF} \quad 12.43 R_{1}=R_{2}=R_{3}=R_{5}=3979 \Omega ; R_{6}=39.79 \mathrm{k} \Omega ; C_{61}=6.4 \mathrm{nF} ; C_{62}=3.6 \mathrm{nF}$
$12.44 C_{4}=C_{6}=1 \mathrm{nF} ; R_{\mathrm{T}}=R_{2}=R_{3}=R_{5}=R_{6}=r_{1}=r_{2}=159 \mathrm{k} \Omega \quad 12.48$ (a) $T(s)=0.451 \times 10^{4}\left(s^{2}+1.70 \times 10^{8}\right) /$ $\left.\mid\left(s+0.729 \times 10^{4}\right)\left(s^{2}+0.279 \times 10^{4} s+1.05 \times 10^{8}\right)\right] ;$ (b) For LP section: $C=10 \mathrm{nF}, R_{1}=R_{2}=13.7 \mathrm{k} \Omega$
For LPN section: $C=10 \mathrm{nF}, R_{1}=R_{2}=R_{3}=R_{\mathrm{s}}=9.76 \mathrm{k} \Omega R_{\mathrm{s}}=35.9 \mathrm{kS} \Omega C_{0}=6.18 \mathrm{nF}, C=3.82 \mathrm{nF}$ For LPN section: $C=10 \mathrm{nF}, R_{1}=R_{2}=R_{3}=R_{5}=9.76 \mathrm{k} \Omega, R_{6}=35.9 \mathrm{k} \Omega, C_{61}=6.18 \mathrm{nF}, C_{62}=3.82 \mathrm{nF}$ 12.49
only $\omega_{\text {, }}$ change $C_{1}$ and $r$ or $R_{3}$, or change $R_{2}$ and $r$ or $R_{2} ; R_{2}$ and $R_{3}$ prcfered; (b) Fur only $\quad \pm 1 \% \quad 12.53$ (a) For $\begin{array}{lll} \\ \text { or only } R_{3} & 12.55 & R_{3}=141.4 \mathrm{k} \Omega ; R_{4}=70.7 \mathrm{k} \Omega \\ \quad 12.57 T(s)=-(16 s / R C) /\left[s^{2}+2 s / R C+16 /(R C)^{2}\right] ; \mathrm{Banl} r\end{array}$ $\omega_{j}=4 / R C ; Q=2 ;$ Center-frequency qain $=8 \mathrm{~V} / \mathrm{V} \quad 12.59 T(s)=\dot{s}^{2} /\left[s^{2}+\left(C_{1}+C\right)\right.$ High-pass: High-frequency gain $=1 \mathrm{~V} / \mathrm{V}: R_{3}=141.4 \mathrm{k} \Omega: R_{4}=707 \mathrm{k} \Omega 12.60$ For first-order setion $\left.\mathrm{R}_{4} R_{3} C_{1} C_{2}\right]$; For one S and K section, the grounded and floating capacitors are, respectively, $C_{2}=984 \mathrm{pF}$ and $C_{0}=3 . \mathrm{C}_{1}=3 \mathrm{nF}$ For the other $S$ and $K$ section, corresponding capacitors are $C_{2}=2.57 \mathrm{nF}$ and $C_{5}=3.93 \mathrm{nF}$, wespectively. 12.62 Sensitivities of $\omega_{3}$ to $R, L$ C arc $0,-\frac{1}{2}-\frac{1}{2}$ respectively, and of $Q$ are $1,-\frac{1}{2}$, respectively.

## CHAPTER 13

13.1 (a) $\omega=\omega_{0}, A K=1$; (b) $d \phi / d \omega$ at $\omega=\omega_{0}$ is $-2 Q / \omega_{0}$ (c) $\Delta \omega_{0} / \omega_{0}=-\Delta \phi / 2 Q$. 13.3 To non-inverting input, connect LC to ground and $R$ to output; $A=1+R_{2} / R_{1} \geq 1.0$; Use $R_{1}=10 \mathrm{k} \Omega, R_{2}=100 \Omega$ (say); $\omega_{0}=1 / \sqrt{L C}$ (a) $-\frac{1}{2} \%$; (b) $-\frac{1}{2} \%$; (c) $0 \%$. 13.5 Minimum gain is 20 dB ; phase shift is $180^{\circ}$. 13.6 Use $R_{2}=R_{5}=10 \mathrm{k} \Omega$ $\left.R_{3}=R_{4}=5 \mathrm{k} \Omega_{2}^{2}, R_{1}=50 \mathrm{k} \Omega \quad 13.9 V_{a}(s) / V_{o}(s)=(s / R C) / / s^{2}+3 s / R C+1 / R^{2} C^{2}\right]$; with magnitude zero at $s=0$ $s=\infty ; \omega_{0}=1 / R C ; Q=\frac{1}{3}$; Gain at $\omega_{0}=\frac{1}{3} . \quad 13.10 \quad \omega=1.16 / C R . \quad 13.12 R_{3}=R_{6}=6.5 \mathrm{k} \Omega ; v_{O}=2.08 \mathrm{~V}_{\text {(peak-1-preak) }}$ 13.13 $L(s)=\left(1+R_{2} / R_{1}\right)(s / R C) /\left[s^{2}+s 3 / R C+1 / R^{2} C^{2}\right] ; L(j \omega)=\left(1+R_{2} / R_{1}\right) /[3-j(1 / \omega R C-\omega R C)] ; \omega=1 / R C$; for oscillation, $R_{2} / R_{1}=2$. $13.1520 .3 \mathrm{~V} . \quad 13.17 \mathrm{~A} \beta(s)=-\left(R_{f} / R\right) /\left[1+6 / R C s+5 / R^{2} C^{2} s^{2}+1 / R^{3} C^{3} s^{3}\right]$; $R_{f}=29 R ; f_{0}=0.065 / R C \quad 13.21$ For circuits (a), (b), (d), charactensic
$\left(C_{1}+C_{2}\right) s+1 / R_{L}+g_{g}=0 ; \omega_{3}=\left[\left(C_{1}+C_{2}\right) / C_{1} C_{2} L\right]^{1 / 2} ; g_{m} R_{L}=C_{2} / C_{1} ;$ For circuit $(\mathbf{c}): L C_{1} C_{2} s^{3}+\left(C_{1} L / R_{L}\right)_{s}^{2}+$ $\left(C_{1}+C_{2}\right) s+1 / R_{L}+g_{m}=0 ; \omega_{0}=\left[\left(C_{1}+C_{2}\right) / C_{1} C_{2} L L ; g_{n} R_{L}=C_{2} / C_{1} ;\right.$ For circuit (c): $L C_{1} C_{2} s^{s}+\left(C_{1} L / R_{L}\right)_{s}^{2}$
$\left(C_{1}+C_{2}\right) s+1 / R_{L}+g_{m}=0 ; \omega_{0}=\left[\left(C_{1}+C_{2}\right) / C_{1} C_{2} L\right]^{1 / 2} ; g_{m} R_{L}=C_{1} / C_{2} . \quad 13.23$ From 2.01612 MHz to
 $V_{R}=0.0476 \mathrm{~V} . \quad 13.28$ (a) Either +12 V or -12 V ; (b) Symmetrical square wave of frequency $f$ and amplitude $\pm 12 \mathrm{~V}$, and lags the input by $65.4^{\circ}$. Maximum shift of average is $0.1 \mathrm{~V} . \quad 13.29 \quad V_{7}=6.8 \mathrm{~V} ; R_{1}=R_{2}=37.5 \mathrm{k} \Omega \cdot R=4.1 \mathrm{k} \Omega$ $13.31 V_{z}=3.6 \mathrm{~V}, R_{2}=6.67 \mathrm{k} \Omega ; R=50 \mathrm{k} \Omega ; R_{1}=24 \mathrm{k} \Omega, R_{2}=27 \mathrm{k} \Omega . \quad 13.33 \quad V_{Z}=6.8 \mathrm{~V} ; R_{1}=R_{2}=R_{3}=R_{4}=R_{5}=$ $R_{6}=100 \mathrm{k} \Omega ; R_{7}=5.0 \mathrm{k} \Omega$; Output is a symmetric triangle with half period of $50 \mu \mathrm{~s}$ and $\pm 7.5 \mathrm{~V}$ peaks.
$13.3596 \mu \mathrm{~s} \quad 13.36 R_{1}=R_{2}=100 \mathrm{k} \Omega ; R_{3}=134.1 \mathrm{k} \Omega ; R_{4}=470 \mathrm{k} \Omega ; 6.5 \mathrm{~V} ; 61.8 \mu \mathrm{~s}$. 13.38 (a) $9.1 \mathrm{k} \Omega ;$ (b) 13.3 V $13.39 R_{\mathrm{A}}=21.3 \mathrm{k} \Omega ; R_{B}=10.7 \mathrm{k} \Omega \quad 13.41 \mathrm{~V}=1.0996 \mathrm{~V} ; R=400 \Omega 2$; Table rows, for $v_{0} ; \theta, 0.7 \sin \theta$, error $\%$ are: $0.70 \mathrm{~V}, 90^{\circ}, 0.700 \mathrm{~V}, \quad 0 \%$
0.65 V $63.6^{\circ}, 0.627$ V $3.7 \%$
$0.60 \mathrm{~V}, 52.4^{\circ}, 0.554 \mathrm{~V}, 8.2 \%$.
$0.55 \mathrm{~V}, 46.1^{\circ}, 0.504 \mathrm{~V}, 9.1 \%$.
$0.50 \mathrm{~V}, 41.3^{\circ}, 0.462 \mathrm{~V}, 8.3 \%$
$0.40 \mathrm{~V}, 32.8^{\circ}, 0.379 \mathrm{~V}, 5.6 \%$
$0.30 \mathrm{~V}, 24.6^{\circ}, 0.291 \mathrm{~V}, 3.1 \%$
$0.20 \mathrm{~V}, 16.4^{\circ}, 0.197 \mathrm{~V}, 1.5 \%$
$0.10 \mathrm{~V}, 8.2^{\circ}, 0.100 \mathrm{~V}, \quad 0 \%$
$0.00 \mathrm{~V}, \quad 0^{\circ}, 0.0 \mathrm{~V}, \quad 0 \%$
$3.42 \pm 2.5 \mathrm{~V} \quad 13.45$ Table rows; circuit $v_{O} / V_{T}$, circuit $v_{l} / V_{T}$, ideal $v_{0} / v_{T}$, and error as a $\%$ of ideal are
$0.250,0.451,0.259,-3.6 \%$
$0.500,0.905,0.517,-3.4 \%$
. $000,1.847,1.030,-2.9 \%$
.500, 2.886, 1.535, - 2.30
$.000,4.197,2.035,-1.7 \%$
.400, 6.292, 2.413, -0.6\%
$2.420,6.539,2.420, \quad 0.0 \%$

4 APPENDIX h answers to selected problems
$13.47 R_{1}=R_{2}=10 \mathrm{k} \Omega$ (say); 3.18 $\quad 13.49 R_{1}=1 \mathrm{M} \Omega ; R_{2}=1 \mathrm{M} \Omega ; R_{3}=45 \mathrm{k} \Omega ; R_{4}=1 \mathrm{M} \Omega ; C=0.16 \mu \mathrm{~F}$ for corner frequency of 1 Hz . 13.53 Use op amp circuit with $v_{A}$ connected to positive input, LED between output and negative input and resistor $R$ between negative input and ground; $I_{\text {LED }}=v_{A} / R . \quad 13.54 \quad i_{M}=C \mid d v / d t ; C=2.65 \mu \mathrm{~F}$ ${ }_{M 120}=2 i_{M 60} ; i_{M 180}=3 i_{M 60}$ : Acts as a linear frequency meter for fixed input amplitude; with $C$, has a dependence on waveform rate of change; $1.272 \mathrm{~mA} . \quad 13.5510 \mathrm{mV}, 20 \mathrm{mV}, 100 \mathrm{mV} ; 50$ pulses, 100 pulses, 200 pulses


## CHAPTER 14

14.1 Upper limit (same in all cases): $4.7 \mathrm{~V}, 5.4 \mathrm{~V}$; lower limits: $-4.3 \mathrm{~V},-3.6 \mathrm{~V}$; $-2.15 \mathrm{~V},-1.45 \mathrm{~V} \quad 14.4152 \Omega$ $0.998 \mathrm{VN} ; 0.996 \mathrm{~V} / \mathrm{V} ; 0.978 \mathrm{~V} / \mathrm{V} ; 2 \% 14.6 \mathrm{VCl} 14.95 \mathrm{~V} \quad 14.114 \mathrm{~V} ; 12.8 \% ; 11.1 \mathrm{k} \Omega 14.135 .0 \mathrm{~V}$ peak; 3.18 V peak; $3.425 \Omega ; 4.83 \Omega ; 3.65 \mathrm{~W} ; 0.647 \mathrm{~W} \quad 14.15 \hat{V}_{o}^{2} / R_{L} ; V_{S S} \hat{V}_{o} / R_{T} ; \hat{V}_{o} / V_{S S} ; 100 \% ; V_{S S} ; V_{S S}^{2} / R_{L} ; V_{S S} / 2$ $50 \% \quad 14.17 \quad 2.5 \mathrm{~V} \quad 14.19 \quad 12.5 \quad 14.21 \quad 20.7 \mathrm{~mA} ; 788 \mathrm{~mW} ; 7.9^{\circ} \mathrm{C} ; 37.6 \mathrm{~mA} \quad 14.23 \quad 1.34 \mathrm{k} \Omega ; 1.04 \mathrm{k} \Omega$
$14.25 \quad 50 \mathrm{~W} ; 2.5 \mathrm{~A} \quad 14.27 \quad 140^{\circ} \mathrm{C} ; 0.57 \mathrm{~V} \quad 14.29 \quad 100 \mathrm{~W} ; 0.4^{\circ} \mathrm{C} / \mathrm{W} \quad 14.310 .85 \Omega \quad 14.330 \mathrm{~mA}, 0 \mathrm{~mA} ; 20 \mu \mathrm{~A}$ $22.5 \mu \mathrm{~A} ;-20 \mu \mathrm{~A} ;-22.5 \mu \mathrm{~A} \quad 14.351 .96 \mathrm{~mA} ; 38.4 \mu \mathrm{~A}$; out of base 1 and into base $2 ; 3.4 \mu \mathrm{~A} ; 277 \mathrm{k} \Omega ; 0.94 \mathrm{~V} / \mathrm{V}$ $14.37 \quad 0.033 \mathrm{~mA} ; 66 \mathrm{~mA} / \mathrm{V} ;-66 \mathrm{~V} / \mathrm{V} ; 13.6 \mathrm{k} \Omega \quad 14.39 \quad R_{1}=300 \mathrm{k} \Omega ; R_{2}=632 \mathrm{k} \Omega ; 9.48 \mathrm{~V} ;-10.65 \mathrm{~V} \quad 14.4113 \Omega$ $433 \mathrm{mV} ; 0.33 \mu \mathrm{~A} \quad 14.43 \quad R_{1}=60 \mathrm{k} \Omega ; R_{2}=5 \mathrm{k} \Omega ; 0.01 \mu \mathrm{~A} \quad 14.45 I_{E 1}=I_{E 2}-17 \mu \mathrm{~A} ; I_{E 3}=I_{E 4}-358 \mu \mathrm{~A} ; I_{E 5}-I_{E 6}=$ $341 \mu \mathrm{~A} ; 10.5 \mathrm{~V} \quad 14.47 \mathrm{VV} ; 1.9 \mathrm{~W} ; 11 \mathrm{~V} \quad 14.49 R_{3}=R_{4}=40 \Omega ; R_{1}=R_{2}=2.2 \mathrm{k} \Omega \quad 14.5140 \mathrm{k} \Omega ; 50 \mathrm{k} \Omega$ $14.53 L=\mu_{n}\left(v_{G S}-V_{t}\right) / U_{\text {sat }} ; 3 \mu \mathrm{~m} ; 3 \mathrm{~A} ; 1 \mathrm{~A} / \mathrm{V}$

## APPENDIX B

B. $2 h_{11}=2.6 \mathrm{k} \Omega ; h_{12}=2.5 \times 10^{-4} ; h_{21}=100 ; h_{22}=2 \times 10^{-5} \mathrm{v}$
B. $3 y_{11}=1 / r_{\pi}+s\left(C_{\pi}+C_{\mu}\right) ; y_{12}=-s C_{\mu} ; y_{21}=-s C_{\mu}+g_{m} ; y_{22}=1 / r_{o}+s C_{\mu}$

## APPENDIXC

C. $1 Z_{t}=V_{\mathrm{oc}} / I_{\mathrm{sc}} \quad \mathrm{C} .31 \mathrm{~V}, 0.90 \mathrm{k} \Omega ; 0.526 \mathrm{~V} \quad$ C. $5 R_{\mathrm{in}}=\left(r_{\pi}+R_{b}\right) /\left(1+g_{m} r_{\pi}\right)$

## APPENDIXD

D. $2 V_{o}(s) / V_{i}(s)=R_{2} /\left(R_{1}+R_{2}\right) \quad$ D. $410^{5} \mathrm{rad} / \mathrm{s} \quad$ D. $6 \mathrm{HP} ; 10 \mathrm{rad} / \mathrm{s} \quad$ D. $7 \quad v_{o}(t)=10\left(1-e^{-t / 10^{-6}}\right) ; v_{o}(t)=10 e^{-10^{6}}$ D. 93.5 ns D. $11-4.67 \mathrm{~V}$ D. $13-6.32 \mathrm{~V} ; 9.5 \mathrm{~ms}$ D. $1514.4 \mu \mathrm{~s}$

## APPENDIXE

E. $1 V_{o}(s) / V_{i}(s)=R C_{1} s /\left(1+s R\left(C_{1}+C_{2}\right)\right)$; STC with $C_{e 9}=C_{1} / / C_{2}$; high-pass; zero at 0 Hz ; pole at 1.59 Hz E. $510 \mathrm{kHz} ; 5.1 \mathrm{kHz} ; 1.05 \mathrm{kHz} \quad \mathrm{E} .100 \mathrm{~dB},-90^{\circ} ;+0.04 \mathrm{~dB},-95.0^{\circ}$




	asic circuits and devices (Contioued) op amps, 63 138  
	anlery-plus-resesisiance models, 156-157. 166
	as and biasing. 19-22. See also und
	bias circuits, $893-899$
	class 'AB outpu stage, ,124-1
	classical discrecte circuit hias, 436-441
	dc hiasing, 19,271
	$p u$ junctions, 204208
	nal junctions. 148
	input bisa, , 0 de-103,
	currents
	input state hias, 899-901
	MOSFETS. 280
	overriews and sump
	pht inctions. $199-2{ }^{\text {a }}$
	${ }_{\text {Prefernce }}$ Prias currents, 899
	reverse bias, 141, 199-203
	dioles, ${ }^{\text {ditur }}$
	dind
	mullipliers iaising, 1246-12
	:ibliographies, F1-F2
	1067-1076, 1082: A9-A12
	ascode, 628-629
	dynamic operations, $1069-1070$
	logic gates, 10701071
	iew
	ie BiCMOS processes,
	YLSTs, A9-Al0
	inary number systems, 11
	Eiplar circuits. 951 -952
	ipolar differenial pairs, 723-726. 73
	Siplar Op amps, 758
	ipolar pairs. $225-726$
	1098-1106. 1160 -1161
	iquads. $1120-1122$
	istable nnutivilibatats, $1185-$
	Tris bipivilar iunction uansi
	amplifurs and swilcties, $4077421,521-524$
	CE cricuis, ${ }^{\text {che }}$ (10-412
	Eos poins, 419
	gain 4 --4
	既
	blemis, 521524
	sswich operations, 4
	transter characteris
	bias and hisisign, 436 -44, 5
	436-441
	collector-to-base feedback resistors, 4 ws and summaries, 436 etc 52 - 530
	C. 623 -625
	frrquicney yespones,
	current-Volage characterisisics, 392. $518-519$
	CE claracteristics, $401-407$
	circuit symbols and conventions, 392-397   , 40
	erviews and sumumaris, 407
	blams, 518 -519
	ining voltage, 406
	ds surmaries, 421
	24-528
	al pais, 704-720, 777-780






CMRR (coormmon-mode rejection ratio) 81-82
 $\mathrm{CBSJ}, 379$
$\mathrm{CCamplifiers,478-483}$







rejections, 65
signis.
soble
volage, $689-69$







Conversiins. $727-728.1236-1238$
differconial conversions, $727-728$


SACs.12




CS (common-source) amplifiers, 306-31





Curronts. See alss wuder ind
base curaus.
collector $45-446$






diffysion currents,
didoses, 10 In
drift curnens. 198


Curents (Continued)	ffered $p$	overvicus and summarics. A.3
input bias currents, 102-105   offset cartuts, 102-10	Devices and basic circuils, 2-542. See alse individual topics	small-siignal diffusion capacitances, 486 Diffusivity, 193, 208
kriee curren, $1.67-7.108$		
	clictronics severview, 5. 62	Digital ind analog 1Cs (integrated circuits),
reterence bias currents, 899	MOSFETs. $235-377$	543-1000. See ellso unterer individidal topics
wide swing current miitrors, 892-893	op anps, 6,3-138	,
in volias		plificrs, 687-791
orfs, 248	d mulii	featback, $7911-870$ -
dequences,	STC differential pais, 704-720, 777-780	pp anj and data conver
regions		
cy		
Cycle ti		
D	con	
DACs (djigital-t-analog converters), 12, 925.929		Des
Dala converiter ciicuits, 222-929, 946-947		
	Them	
chare-ricistritibution convecters, $932-934$	overriews and summaries, 704	Digital vs analosg simals, $10.13,922$
DACs, 12, 925-929		es, 139-234
diglal ligail provessing, 922	diffe	class AB cutput
firtering saleorithms, 922		batiery-p-pus-resisistance models, 156 -157, 166
(s, 925 S-926	hipolar pairs, ${ }^{\text {, }}$	
paralicl (flasht) converters	conmmon node sain. 732-733	exponenaiar models
R-2R lidders, 226 -298	comen	Torwardurup,
circul	diff	俍
alal	frequercy responses, 74	
	inpnt tias, 225	piccewise lincur models, 155-157,
DC (dircet	input common-mode	problens, 22
Do bias and biasine. 19	nuoideal charactocisics. $72007277,781-782$	
Dc ciiruits, 26:-270, 362-360, 421-436, 524-528	offe	165
conlcelor curremt	large-sigisal l tansfer characterisicics, 768-769	calhodes, 141
Dc inpoctections. 98 -105, 135-136	MOS differential pairs, $688.704,775-776$	current-voltagc characterisics, 140-141
, iliset volage, output, 7200723		diode logic gates, 1441 -147
Dc ecestoriess Clampeet capacitors), 187-189		
	differential gain. 66, 697 , 700, 729-790	preilifer circuits, 14
cays, 994	differential hall circu	reverse bias and biasi
ccoders, 1029-10		jonctions, termi
		breaklown regions, 152
Egeneration, cuniters, 474, $629-635$	input commun-mode range, 6	forward bias and biasing, 148152
$\begin{aligned} \text { sencrative } \\ 860-861 \end{aligned}$	eff	
	overviews and summaries, 688-68	diod
prodit		aiting an
俍	ended Oulpus, 69	clamped cas
tions.	mulistasc amplifities , 74	dippele
er depletion regions (space charge regions)		limiters, 184-
duppletion (iunction) capacitances, 200-203,	robiems, 786-789	single limiters, 185
206-208.	wo-stage CMOS up amps. 749.757	liniters, 185
depleion	Cvervicys and summaries,	votaze doubler
Positions. CVID, A7-4	Difreentiual gain, 66, 697-700, 729-790	overviews and summares, 190
ons.	Differential hal circuisis, $700,714-715$	
Desensioniv, gainl	Dificrerentaia ind iditierential ou, 758	seniconductors, 190-200. See alsp
, divetal logic circuis $90.90-955$	Iterenia	- Sememenduclore 132140217.218
(rateristics, 952 -954	dfferentia	crvicws ind summaries, $139140,217-218$
dipital IC lechnoclugies, 950-952	bipolar pairs, $723-725,733.735$	vitior circuits, 14i-144, 171-184
tau-ins and fan	pairs, $688-704,775-776$	
c-circuit fanilics, 950.952 . See also Logic-	Differential vollase gains. $713-714$	full-wave circuits, 174
circuit fanilies	Differentiat	circuis, 172-174
mary	$\begin{aligned} & \text { anpy } \\ & \text { atcos } \end{aligned}$	overviews and summaries, 141 144, 171-172
.002-1003		
er dissipations, 953-9.9.4	wes	
propaeatioun duluyy. 953		dids. $210-218$
peeude- MMOS logic ircuits. $979-980$	diffusion cepuacilarces, 206-208, 486	photo
	diffusion cunrents.	SBD, 212
ylcs, 954-935	den	varactors, 209





（Continued）	filter transmissions．（ypes，and specifications，	overviews and summiniries，141－1143
gain desensitivivy 795	4－1088， 1159 ，	${ }_{46}{ }^{1163}$
		¢，
noulineard distortion reduction， 7977 －798	prick will reepow	syychronous uning．
overvews and sim	filer spcecifications， $1085-1087$	Fiuite open－losp gain
Preanpifitars 7 ， 797	filer ransinisisions， 1084 －1085	Finite output resistance saturation， $253-253$
边	lip filiers．	functions，1098－1106，1160－1161，E2－H3
crviews and summaries，68－69，791－792．	passing signais， 1085	
（ive（recenerative）feedback．68．©9，792	first－order and second－order（biquadraic）fileer	Flash（parallell converters， 932
back loops， 1166	functions，1098－1106．1160－1161	Eain， 1
	bilineair iranserer funci	Fiip－tiops and latich
Stinpling amplifiers， 801.802.	center fruaunciess 11.102	Foided cascale CMOS op amps，883－893，941－
eriexs and sunmmarics， $815-818$	flat gain， 1102	Followers，78－79，315 318，478－883，635－641，
ms， 865 －860	notich frequencies	$1256-1257$
ures， 812	overviews and sumimaris	dilown
seilis－hinumf fecidhack amplitiers，802－810，	pole Q （pole e clualily faciers）， 1102	source followers， 315
views and summaries，807－810	preondorder（biquadratic）fiter functions，	Forward ba
ems，863－865	${ }^{11101-1106}$	
硅	torless filte	
－t－serices feeduack（curren！mixing－curren	overviews and sammaries，1083－1084，115	
mpling amplifers，799－801，818－8．3．		Founier scries， $7-8$
overviews and summaries，818－819	secondordorder act	m，
problcms stio－867	ail－pasceiricuis， 1	Frequencoies．See also under individual topics
	Antoniou inductance－simulation circuis，	bands，326－327
unt－shunt feedhack（current mixing－voluage	biquast 1112 －112－1122	break frequenciess， 30 ，
	timplementatio	es，39， 1102
rrobems，866－867	filter types，1114－1118	
ures， 819.823	inductor replacements， 111	corner
SPiCE simulations， $855-85$	op anp－RD resoators， 1114	dependences，89－91
Iability，834－836，845－849， 8	overriews and summaries， 1125	feedback fricquency compensation，
aitemative appraaches， budit	Tow－T	high froque
closedi－loup transfer fur		
feedback transfer functions， 834	ccond－orjer LCRs， 1108	integrato frequencies， 108
gain margins． 845 －8	all－pass finctions， $1111-1112$.	
Uist plats， 83	andwidith functions， $1108-1109$	ews sand summaries，31－40
inaurs， 8	隹	
phase margins，845－847	notect finclions， $11110-1111$	
pranster finctious， 834 －835	problems， 1161	CS amplifiers，326－36－36， $372-374$
curres，792－795，860	［ssonator paturalal modes， 1106	difter
closad－loop gin， 994		hiow frequenciess，477－503
	lassical sensitiviry fuc	aries． 91
92－793	sunmaines	
lanp sian 793	vilies， 1134	
figral－flow diagrams，792－793	Ic－amplififier biquadraic active fitt	
gies． $7798.8082,830-831$.	25－1133，1	
curcir anpo ifiers，	equivilen tecectaack loops． 1130 －11	GaAs（gallium arsesidice circuis， 952
blems， 881 －862	fcestack loops，1126－1127	Giain See also under individual topics
sconductance arnplificrs	input signal inijections， 11288.1130	741 op amp circuits， 9177.922
	ovcryiews and sin	comm
d tuncd	probems，	
ive RCfililers， 1084	hed－capacitor filers，1136－1141， 1162116	differential
	隹	fixel－gain amplifiers， $1261-1265$
ciior，，177－183	lems． 1162 －116	
Chabyshev（iluers， 109 I－1098， $11599-1160$		${ }_{792}$
ifileer transfor tuructions， 1088 －1091． 11159	cass	CiB products， $91-93$
ail pole filues，， 1090	Cc－ct cascade amplifiers	hinhirequency repponcs
naanral modes， 1088		
rohlens． 1159	multiple unned circuits，1145－1146	
ransfer function puese， 1088	nartow－biand approximations． 1149	open－circuit voliage gain， 24
fer function（tran		





pinchbd-off channuels, 242   PMOS transistors, 247-248		
problems, 236, 238-248, 360	bipolar op amps, $758-766$	device paramete
process ransconductearce parameters, 245	verriems	frequency responscs, 917-922
	prol	input bias
eshold volage, 239	Mulivibraters, 1021-1029, 1087, 1185-1198,	ommon-mode range
dere		tages, 8955.899 -9,
${ }^{375-377}$	bistable multivibrators	
Wer ampiniters, 1266-1	monostable mulitivibrators, $1196-11988,1225$	Offset currents, 902 2ops, 901
single stage MOS amplifiers, 299-320, 370-372	cerobews and summaries, 1021-1028, probiems, 1078	coutput staze bias, 9 ,
	quasistabile mulivibr	隹
cascode currents 315 $C G C$ (ryounded	N	Preberss, 893-899,942-946
	$n$-channel MOSEETs, 238 ,	ond stag
common-drain (groundeed drin) amplifiers,	$n-$-vpe doped scmiconductors, $n$-we silicon a	cond stages, 895 -8,
coupling capaciurs, 306	$n$-well CMOS processs, A	slew rates, $917-922$
CS amplifiers. 306.311	NAND (not AvD) gates, two-inpul,	smal-signal analyes
curren followers, 315	Narow baz	
fechack atmounts , nonit	Natural modes, 1088, $1106-1107$, E2	ADCs, 929 -934
overcriews and sumumaries, 299, 318 -320	Negative (desenenerative) focdiack properties,	analog signal sanpling, 922 --923
	Netilists, 49	DACS, 925 -929
sourre dicene	Nelworks, $963-969,1166, \mathrm{Cl}-\mathrm{CS}, \mathrm{E} 2$	didital sigal processing, 922
Soure resistances. 3 . $799-311$	Orider of thi network, E 2	filccing algorithms, 922
strucures, $299-301$	PUNs, 933-966, 968 -969	MSss, 925 -926
tranimaion resistance	theorems, C1-C6. See also Therems	overriews and summarics, 922 -925
unilateral ampifificrs, 301		
Sill-zigin cintent anylitiers	problems, C5-C6	$R-2 R$ ladder, 926 -928
kgates. 296	source-absorption	
boay etrect modeck, 296-297	Neuralizing effects, tund dumpificrs, 114	switches, 922 - 929
ditions, 288	NMOS logic circuits, 238-248, 950-951, 963-96	folded cascaude CMOS op anps, 883-893, 941 942
de analyses-sigual sc hias poincs. 287	do-MMOs logic circevits. See Pseudo-VM	input cormuluo-mode rangc, $885 .-886.890$ -
dirain lerminals, 288-289		oupl
288	stors 238-248.963-988	rahlems, 883 -89
problems. $368-370$	pull-down transistors, 963 -966	slew rates, $888-990$
sural-signal cquivilenteciricuit rodeles, 290	Noiss, $42-43,7968$ 797, $952-9533,993$ - 994	lolilee eill,
	maryins, 42-43, 952 953, 993-994	overvicws and summaries, 871 -872, 940 prolems 941
SPICE Simulations. $351-359$	siemal-to-noise rat	SPICF: simulations, 934
sqnare law models 3 .31/	(1)	$\begin{aligned} & \text { two-stage CMOS or } \\ & \text { circuits. } 872-873 \end{aligned}$
bodies, 236-237	Noniuvcrted characteristics, 77-79, 129-133,	frequeency responses, 876-877
lrain regions. 2.236	Nonlineara amplificaion mettods, 12051206	output swing, 87-874
pverriews, $236-238$	Nonlineara ampiriude controls. 1168 -1169	
problems, 360	Nonlinear macromodels, $119-122$	slew rates, 879 -883
ources, 236		874al
CS circuits , 271.272	Nounilaterel ${ }^{1225}$ amplifers 301	1s, 89-94, 134-135
dich	NOR (not OR) gates, twocinput, 966	circuits (op amps and dala convererers).
instantaneous operating points, 278	Noron's theorem, C1-C3 ${ }^{\text {Notch frequencies, } 1102,110-1111}$	81-977. See also Op amp (eperation
linear amplifiers, $2744-275$	npn tranisiols, 392	inperfections. 98-105. 1355136
lood	Nyquisis plots, 835-836,	input offeet currens, 102-105
- overviews and sanmmares, 270-271	0	offset voltage, $98-102$
quicscent poins, 274 -275	Offisets, 98, 102-105, 720-739	probiems. 135.136 -136
switch operations, 277	curren	(inte
cransconculutance ampititers, 271 transer charaterisics, $271-279$		dominant poles, 91
vTCs, 272 -273	Ohmic contacts, 210	frequercy compensations, $90-91$ freauency dependeces 80-91
Ss (most sigzaificant bits),	Op amp ( (perational amplifier) and dala converter	frequency
tiple amplifier poles, 843	circuls, 871-947. See aliso Op amps	pamps, 91
Multipliers, 496, 581, i246-1249	741 circuils, 893-899, 905-992, 942-946	
	de analyses, 893.899	



	operating poinls. 154   pseiddo-N MOS op crations, 979   rail-to-ritil operations, 890892   single supply operations, $1240-1241$   s.malli.s.ignal Ipprations, 443-460, 530-533 Optoelcectromics. 210 Ontrisclaterrs, 211   OR logic functions, 145   Order of the network. E2   active filler tuned oscillators, 11771179.   $1217-1219$   Colpitts oscillators, 1179-1180   LC and crystal oscillators, 11177-1185,   ${ }^{12222-1223}$   op amp-RC ©scsillator circuits, 1171-1179.   1220-1222   oscillation crienion, 1167-1168   phase shin (1sciliatar, ${ }^{\text {quadrature oxcillators, } 1175-11177}$   ring oscillators, 102 ?   selif-limiting oscillators. 1180   sinussidal Ioscillators, 120, 1166-1171   Wien-bridge oscillats, 1168   1215-1217   Ouppul stages and power amplificrs. 1229-1283   instantancous power dispipations, 1233   overviews ind sunnmaries, 12.21   power conversion cffcciencies, 1235   problcms, 1277-1278   siggal waveforns, 1233 transter characteristics.   frantster characteristics. 1231-1233   ass AR , output stage. $1.1241-1249,1256$ 1261, $1270-127.1 .1278 .1281$ circuit biusing, $1244-1249$   circuit operations, $1242-1243$ componound devices. $1257-1259$   confíiurratiou varialions. $1256-1261$   diode biasing, 1244-1246   input cinitter followers, 1256 .1257   ourput resistance, 12431244   overviews and sammarics, 1241-1242   piobletns, 1278-1281   short circuit prolections, 1259-1260   thermal shutdowns, 1260   $V_{\text {BF }}$ multipliers biasing, 1246-1249   circuit operations, 1236   crossover distortions, 1236, 1240   dead bands, 1236   overyicus and summarics, 1235-1236   power conversion efficiencies, 1236-1238   problems, 1235-1241, 1278   push pull operations, 1236   single supply operations, 1240-1241   transfer characteristics, 1236   classifications, $1230-1231$ dc offset voltage, $720-723$   IC power amplifiers, 1261-1266, 1281-1282   bridge amplifiers, 1265-1266   fixed gain amplifiers. 1261-1265   overviews and summmat, power op amps, 1265   problens. 1281-1282   junction temperatures, 1229-1230 MOS power Lransistors, 1266-1271, 1282-1283   overviews, 1266   problens, 1282-1283   views and summaries, 1229-1230, 1276-1277   1276-1277   weat sinks, 1251-1256, 1279-1280   unction lemperates   overviews and summaries, 1249   power dissipations \%s. temperatures,   1250-1251


power transistor parameter values, 1255   problems, 1279 1280   SOAs, 12541255   thermal rexistances, 1249-1250   Iransistor cases. $1251-1254$ power MOSFETS: $1266-1270$   ws. BJ'ls. 1269-1270   characteristics. $1268-1269$ structures. 1266.12672   strecures, 1566   problens, 1277-1283   THPCE simulations, 12711276   THD. 1229-1230   Overdrive factors, 250-251, 403   Overlap capacitances, 321   Overviews ind stimntaries 741 op anip circuitis, 893   ampliliers, 13-2.3   bias and biasing, 19-22. 436   bistable multivibrators, is, 1052,1067   BITT amplifiers and switches   407410   BJT differcntial pairs, 704   BJT structures and operations, 378-380   breakdown   cascode amplifiers, 613-614   CC amplifiers, 478 - 483   class A culpui stage, 1231   class AB output stage, 1241.1242 class B output starge. 1235-1236   class B output stare: 1235-1236   CMOS digital logic inverters, 336-337, 346 current-mirror circuits. 649   data converter circuits   940941   differential and inultistage amplifiers, 687688 ,   digital logic inverters, 40-41, 503504   diode operations, 190 diodes. 139 140, 217-218   dynanic logic circuits, 991 1-992, 998   ECL , 1052-1053, 1066-1067   electronics, 5-6. 50-51   fcedback, 791-792, 859-860   tiller transfer functions. 1088-1091   filters and tuned amplifiers, 1083-1084, 1158 Tinite open-loop gain effecis, 89   first-order and second-order (biquadratic) filter   functions, 1098   folded cascade CMOS op amps, 88   forward characteristics, 153, 165-166   frequency compensation. 849-850   high-frequency responses, 571-572   integrators and differentiators, 105   inverted op amps, 68-69   inverters, 955   large signal operations, 94   latches and flip-llops, 1014 cimits, 184   logic-circuit families, 950   logic-gate circuits, 963   loop gain determinations, 831   nemory and advanced digital circuits,   1013-1014, 1076-1077   monostable multivibrators, 196-1198   MOS differential pairs, 688-689   MOS power transistors, 1266 multistage amplitiers, 749   negative (degencrative) feedback pruperties, 795 network theorems, Cl   nonlinear waveform shaping circuits, 1203   op amp-RC oscillator circuils, 1171   op amps, 63-64, 122-123, 87-872, 940-941 open circuit conditions, 196-197, 208-209 $p n$ junctions, 190   poles, 836   power anplifiers. 1261



Problems (Continued)   single-stage IC amplifiers, 666-687 single-staye MOS amplifine   square and triangular waveforms, 1224-1225   STC circuits, DI6-DI7   switched capacitor fillers, 1162-1163   switehes, 366 36   horms   tuned amplifiers, 1163   is'o-port nerwork paramelers, B7   Lwo-stage CMOS op amps, 941   DP products, $342-343$   GiB products, 91-93   PROMs (programmable ROMs). 1046-1051   Propagation dclays, 45-48, 953, 973-974   1005-1006 logic circuits, 950 .951, 974 982,   PII . (pass transistor logic) circuits, 982-991,   PC (pull up) switches, 44-45   PC (pull up) transistors, 963-966   Pulsis, 1196-1198, D12-D16   responses, D12-D16   standiardized generation, 1196. 1198   P(ins (pull-up networks), 963-966, 968-969   Pusli pull operations, 1236   Q   Quadrature oscillators, 1175-1177   Quantization, signals, 10, 924   Quaisi-stable muldivibrators, 1021-1022 Quiescent points, 19, 162,274-275   R   R-2R ladders, 926-928   Rail-ct-rail operations, 890-892   RAM (randorn acecss) memory cells, 1028,   Rapid analyser, forward characteristics, 1.55   Raled nulput vollage, 94   Ratios, $81-82,700-704,715-716,732-733,796-797$ CMRR, 81-82, 700, 704, 715-716, 732,733   signal-to-noise ration, 796.797   RC--0p anp oscillator circuits, $1171-1179$,   R1)-op amp resonatiors, 1114   Readings. reference, $\mathrm{F} 1-\mathrm{F} 2$ Recovery periods. 1198   Rectificrs. $1411-144,171-184,1207-1228$ bridge reciliers, 12121213   full-wave rectifiers, 1210-121   half-wave rectifiers, 1207-1208   overyicws and suminarics. 141-144, 171-184   precision recititiers, 1206 1214, 1227-1228   Reductions, 796.798   noiscs, $796-797$   nonliuear distorions, 797. 798 Rcference bias errrents 899   Reference resources, Fi-F2   Reflection resistance rule, 472   Regencrative (posilive) feedback, 792   Regions. See talso under individual topics Greakdown regions, $1.52-153.203-204$   carrier depletion regions (space charge regions),   197-199   culoff regions, 248 deplction regions, 209   drain resious, 236   pscudo-NMOS logic circuits, 977-979   sanuation regions, 242-248   silicon regions, 954 SOAs, $1254-1255$   subthrcoshofd regions, 248 uriode regions, 242,248   Regulators and regulations, 163-169   linc regulations, 169   load regulations. 169


ntres	(biquarraic) filers,
Resensilitivity 208	Second order LCRs (figuid erystal resonato
Resistances, See aliso under individual topics	1008-112
tery-plus-resisiance models, 156-157, 166	Sccond stagc 711 o
degeneration resisitances, 4748	andary
ut resis sunces, $72-75,445-447,71$	,
dis	
nnce reflectio	froe clectrons, 91
resistors. See Resistor	fintes,
lard y yalues, G1 G2	
thermal resistances, 1249-1	pa junctions, 190-199. See also pn junctions
istors. See also under individ.	
	Ser
resistors, 273	Scauential
vie	
ser resistirs,	811-818, 865-866
Pinched base resis	Sesthunt feedhack anplificrs .82-810, 86.3 865
VLSts, A8-A9	Shanom, sinie wave. 1203
[r, 1106-1114	Sharing, charges, 994-995
Hral indid resouators	Shurc iricuis, , 69, 616-895
dord resunalers, I1.4	240p an
Resinomses, 492.503, 538-540, 571-600, 1085	Iual shori circails, 69
dill	Shunt regulat
$\begin{aligned} & \text { CF frequency responses, } 538-540 \\ & \text { highthricqucncy responsc, } 492-497, \\ & 571-582,588600 \end{aligned}$	Shunt-shunt feedback amplifiers, 802,818 831, 866-867 Shutdowns, thermal, 1260
lox-frequency y responses, 497	SiGc BiCMOS processcs, A15-A16
Reversis active cinverse active	Sigual gencritors and wavejomu stap
Reviodes, 141	$65 \cdot 1228$
junctions, 199-213	bistable multivibralars, 1185,-1 192, 1223-1224
	118
ing.	
ess and ripple volage, 17	
1 (read olly memory), 1028 ,	1185-1186
	haracteristic
	ourput level precision, 119
S	overvicws and summaties, 1185
ain analyses, E1	Schnuidt triggers,
bode plats, $83-\mathrm{F}$-16	transfer characterisisics, , 186-1187
firisi-order fonctions, E -	trigger sisalis and trigering, 1185-1
, or of the network.	IC itmer, 1198-1203
overyews	555 tiner circuits. 1198
nalural mode	OCorvicws and summaries,
canster functiou	Colpitits scililatars, 1779-1180
	crystal estililatrs, 1182 -1
s, E :2	Hartley oscililars, , 17917
transfer function zros,	
Iransmission ceros, E2	panel Luned (lank) ceircuis, $1179-11$
analog signal saripling, 922923	
Saturatios, 94, 149-152, 209, 248-256, 379-392,	Sur osiliatess. 1122
Surrm saluraions, 149152.209	verviews aud summaries, 11961198
des. $374,390-392$	probiems, 1225
put voltage saturati	nocilinear waverofrin shapi
253	3-1206, 1225-1227
unsaturated circuits, 50	akpoiol methods, $1203-1205$
dety barrier diodes), 212	1205-1206
	orriews and summaries, 1203
atry TIL (Schothy transistor-transistor logic)	
	wavetorm shapping, 1203



IN－14 INDEX

Synchronous tuning， 114 Synthesis meihods， 970	ransmissions．See also und amplitiers， 32	doublers，187－190 excess gate voltage，239－240
	loops， 832	－735，738－739
T models，295－296， 449	zeros，1088，E2	86， 994
junction lemperaturcs，1229－1230， 1249	Triantular ind dexpuare wavetorms，1192－1196，	
Terninal characierisisics，65，147－153．222－223，	Trigger signal and trigering， $1185-1188$	therrail voluige． 149
288－289	verviews and summmaries， 11851188	
mered input lemminals， 65	1248	（s）
硅	sistor－tral	Ladrication tectnologies Al－Al4
Theorems．C1－C6	505－506，951－952	
er＇s	cd amplifities， 40 ，	
on＇s steorem，	miouranstormers， 1	$\mathrm{CVD}, \mathrm{A} 3$－ A
overviews and sumimare	$\xrightarrow{\text { casende ampuitiers }}$	
ceatsomed	ind	cpilaxial lay
Thevenin＇s theoren， $\mathrm{C}_{1} 1 \mathrm{C}_{1}$	LP－to－BP trassiotmations，1449－11．50	eptlaxy，AS
Thermal ionization， 192	maximal Ilatres， $1148-11$	ion implanation， 13 －
Thennal resistances， 1249	multiple tuned circuits， 11	lateral php tria
ermal shutrown	narrow band approxisinatio	hayous，A12－
Ihernal volage	neulirulizing efiects． 1146	I．Cos，${ }^{\text {a }}$
Thevenins	dwert	micalivaion，A4
Thirestolds， 184	${ }_{\text {RFC．}}$ Pri46	$n$ well Crios
com	ning， 11	veerviews and summaries，Al，Al
13	边	oxidation，A2－A．3
ceme	迷 182	packaging，
	Twoinpui（ANI）（ noct AVD）sales， 9	
Tiners，198－1203	oinput NOR （not OR）ga	$p{ }^{\text {j }}$
555 timers， 1198 －1203	ineegrator loop techno	processes，A5－A12
imers，1198－1203	Two－port network parimmeres，B1－B7	Tesisturs， 18
	dara	Sige bicmos processes，All－
Sconductance amplifiers， $28.245,271$ ，	cquivient circuitrepre	sumit
sducers， 6	rvicws nd sum	VTCs Sodtage trans
disfer characlerisitics	rimeters， 132	See ulso under individual topics
14－15，410－412		（enos cigtal ogic inverters，339－342
	problems． 87	at．logic invencrs， $504-505$
bistabe multivibrators． 1186	Two－stage CMOS op arpps，749－757，872－883，941	ECL．1057－1061
Class $\Lambda$ output slage，1231－1233		（overvicws and sumn
class B ，vuput stage． 123.3	Uncourer	
closcd ${ }^{\text {cooss，} 834}$	Unequal cquitibrum 18	W
farre signas， 7688 －769	Linilateral modelss 28 －	Wafer prearation，A2
later	Lnit prefixes， $\mathrm{Gl}^{\text {c／－G2 }}$	Wavelorms， $1165-1228$ ．See also Signal generat
nooninear characteristics， $19-22$	Unity giain $79-80,91,315,488$	Weak avalarchchs， 260
	demple	ghted summer circuits，
${ }_{\text {sxitches，}}$ 271－279， 410		
ansformations， 1130	Unsaturated is．saturated digital circuils， $505-5$	Widar
Transformerss， $11.44-1145$	v	Wien－bridge oscillatars，1171－1174，1215－1217
	Varacors	
Lers 6		Whison current mimirors， $621-652$
cases，1251－1254	cocites，drim， 193	
characteristics， 397 －	$V_{6}$ tixing， $281 / 284$	Wired OR capabilities， 1066
	Girsual grunds， $69-70$	Word lines． 1029
IOS power trasistors，1266－1271，1282	vinual short circuils， 69	
SFET transistors．See MOSFETs（metal		XOR（exclusive OR）logic funcions，969－970
nyp transistos， 392	mon－mode voltage， 689.69	R
itors，247－248，963	constant－volaze crop modedis． $157-158,166$	
prp teansistors，391－392	248－262；360－362	
power rransistors， 1235		Zener（breakdowni）diodes，167－171，187，
，	differential volage．691－693， $713-714$	Zeros，1088．E2 2 ，
Transit times， 486	1	
ition fate switches，988－989	idicrs， 51.52	

any machine－readable form for back－up or or and into
purposes in support of your use of the software．The
$\begin{aligned} & \text { sotware may not be otherwise copied，networked，} \\ & \text { transmitted electironicher }\end{aligned}$
modified re－engineered，or reverse engineered By
$\begin{aligned} & \text { opening this seal，you agree to abide by these terms．} \\ & \text { If you do not }\end{aligned}$
$\begin{aligned} & \text {＂acou do not agree，return the book and the } \\ & \text { accompanying software with this seal und }\end{aligned}$
full refund．


[^0]:    The reader who has not yet studied these topics should not be alarmed. No detailed application of this naterial will be made until Chapter 6 . Nevertheless, a general understanding of Section 1.2 should be

[^1]:    Note that in the models considered in previous sections no reactive components were included. 'These were simplified models and cannot be used alone to predict the amplifier frequency response.
    At mis stage, we are using s simply as a shornand for $\omega \omega$. We shall not require detailed knowedge of

[^2]:    Such circuits are called mixcd-signal circuils, and the simulation programs that can simulate such

[^3]:    

[^4]:    ${ }^{3}$ We should note that real op amps have nonideal effects additional to those disceissed in this chapter. These include finite (nonzero) common-mode gain or, equivalently, noninfinite CMRR, noninfinite input resistance, and nonzero output resistance. The effect of these, however, on the performance of most of the closed-loop circuits studied here is not very significant, and their study will be postponed
    to later chapters (in particular Chapters 8 and 9 . Nevertheless, some of these nonideal characteristics to later chapters (in particular Chapters 8 and 9). Ne cill

[^5]:    $\overline{{ }^{6} \text { An exception is the subject of gallium arsenide (GaAs) circuits, which though not covered in this }}$ edition of the book, is studied in some detail in material provided on the text websitc and on the CD accompanying the text.

[^6]:    ${ }^{12}$ The 1 N4148 model is included in the evaluation (EVAL) library of PSpice (OrCad 9.2 Lite Edition), which is available on the CD accompanying this book.

[^7]:    ${ }^{3}$ In Fig. 4.1, the contact to the body is shown on the bottom of the device. This will prove helpful later in explaining a phcnomenon known as the "body effect. It is importan

[^8]:    ${ }^{4}$ Some texts use $V_{T}$ to denote the threshold voltage. We use $V_{t}$ to avoid confusion wilh the thermal voltage $V_{T}$.

[^9]:    An introduction to amplifiers from an external-terminals point of view was presented in Chapter
    (Sections 1.4 and 1.5 ), and it would be helful (Sections 1.4 and 1.5 ), and it would be helpful for readers who arc not familiar with basic annplifier

[^10]:    ${ }^{11}$ The reader is reminded that the Capture schematics and the corresponding PSpice simulation filcs of all SPICE examples in this book can bc- found on the cext's CD as wcll as on its website (www. Sedrasmith.org). In these schenatics (as shown in Fig. 4.63), we used variable parameters to
    cnter the values of the various circuil counponents, intluding the dimensions of the MOSFET. This cnter the values of the various circuit componenis, includng the reader to investigate the effect of changing component valucs by simply changing the

[^11]:    'The material in this section assumes shat the reader is familiar with the operation of the $p n$ junction under forward-bias conditions (Section 3.7.5)

[^12]:    This minority-carier distribution in the base results from the boundary conditions imposed by the two junctions. It is nol an exponentially decaying distribulion, which would result if the base region were infinitely thick. Rather, the thin base causes the distribution to decay linearly. Furthermore, th reverse bias on the collector-base junction causes the electron concentration at the collector side of

[^13]:    ${ }^{3}$ Saturation in a BJT means something completely different from that in a MOSFET. The saturation node of operation of the BJT is analogous to the criode region of opcration of the MOSFET. On the operalion.

[^14]:    The $i_{C}-v_{B E}$ characteristic is the BJT's counterpart of the $i_{D}-v_{G S}$ charactecristic of the enhancement MOSFET. They share an important attribute: In both cases the voltage has to excecd a "threshold" for he device to conduct appreciably. In the case of the MOSFET, there is a formal threshold voltage, $V_{p}$, which lies typically in the range of 0.5 V to 1.0 V . For the BJI, there is an "apparcnt threshold" of he $i_{C}-v_{B}$ characteristic of the BJT. This difference has a direct and significant implication on the valuc

[^15]:    Bias design secks to stabilize either $I_{E}$ or $I_{C}$ since $I_{C}=\alpha I_{k}$ and $\alpha$ varies very little. That is, a stable $I_{E}$

[^16]:    ${ }^{9}$ This section is identical to Section 4.72 Readers who studied Section 4.72 can skip this section.

[^17]:    ${ }^{10}$ The frecquency response of single-cime-constant (STC) networks was reviewed in Section 1.6. Also, a more detailed discussion of this important topic can be found in Appendix D.

[^18]:    The interested reader can refer to Chapter 7 of the fourth edition of this book.

[^19]:    ${ }^{12}$ The Q2N3904 model is included in the evaluation (EVAL) library of PSpice (OrCad 9.2 Lite Ediion) which is available on the CD accompanying this book.
    The reader is reminded that the Capture schematics and the corresponding PSpice simulation Files of all SPICE examplcs in this book can be found on the text's CD as well as on its website (www.sedrasmith.org). In thcse schcmatics (as shown in Fig. 5.79), we use variable parameters to en-
    ter the valucs of the various circuit components. This allows one to investigate the effcct of changing componcnt values by simply changing the curesponding paraneter valucs.

[^20]:    Nore. Isn't it remarkable how much two paranetcrs can revcal)

[^21]:    Although the reason is beyond our capabihities at this stagc, $f_{T}$ of MOSFETs that have very short channels varies inversely with $L$ rathcr than with $L^{2}$.

[^22]:    ${ }^{6}$ At this point we assume that the reader is familiar with the subject of $s$-plane analysis and the notions f transfer-function poles and zeros as well as Bode plots. A brief review of this material is presented

[^23]:    ${ }^{8}$ For the definition of the parameters used to characterize anplifiers, the reader should consult Table 4.3.

[^24]:    "The name cascode dates back to the days of vacuum tubes and is a shortened version of "cascaded cathode" since, in the tube version, the output (anode) of the first tube feeds the cathode of the second

[^25]:    ${ }^{2}$ The circuit itself can be thought of as having becn folded. In this same vein, the regular cascode sometimes referred to as a telescopic cascode because the stacking of transistors resembles the extension of a telescope.

[^26]:    ${ }^{1}$ Recall that saturation of a BJT means something completely differcnt from saturation of a MOSFET!

[^27]:    .Readers who have studied Chapter 2 will recall that commercially available op amps with this uniform gain rolloff of $-20 \mathrm{~dB} /$ decade are said to be internally compensated. Here "internal" means that the

[^28]:    This circuit cannot be simulated using the student evaluation version of PSpice (OrCAD 9.2 Lite Edition) that is included on the CD accompanying this book. This is because, in this free version of wit simulation is restricted to circuits with no more than 10 transistors.

[^29]:    "In earlier chapters, we used the subscript "sig" for quantities associated with the signal source e.e.g., $v_{\text {sig }}$ and $R_{\text {sis }}$ ). We did that to avoid confusion with the subscript " $s$ ", which is usually used winh FEEs
    to denote guantities associated with the source terninal of the transistor. At this point, however, it is expected that readers have become sufficiently familiar with the subject that the possibility of confusion is minimal. Thercforc, we will revert to using the simpler subscripts for signal-source quantities.

[^30]:    ${ }^{2}$ A simple rule to remember is: If the connection is shunt, short it; if series, sever it.

[^31]:    The difference is just a matter of notation; we used $/$ to denote the total bias current of the inpu
    differential stage of the CMOS circuit, and we used $2 I$ for the 741 case!

[^32]:    Recall that $G_{m 3}$ and $G_{m 2}$ are the transconductances of. respectively, the first and second stages of the
    op amp. Capacitors $C_{1}$ and $C_{2}$ represent the tatal op amp. Capacitors $C_{1}$ and $C_{2}$ represent the total capacitance to ground at the output nodes of, respec
    tively, the first and second stage of the op amp.

[^33]:    This statement assumes that the total effective capacitance $C$ of the logic gate is the same as that of the inverter. In actual practice, the value of $C$ will be larger for a gate, especially as the fan-in is increased.

[^34]:    A constant-current load provides a capacitor-charging current that does not diminish as $v_{o}$ rises towar $V_{D D}$ as is the case with a resistive load. Thus the value of $t_{P L H}$ obtained with a current-source load is significantly lower than that obtained with a resistive load (see Problem 10.38). Of course, a resistiv load is simply out of the question because of the very large silicon area it would occupy (equivalen to that of thousands of transistors!)

[^35]:    The capacity of a memory chip to hold binary information as binary digits (or bits) is measured in
    K-bit and M-bil units, where 1 K bit $=1024$ bits and 1 M bit $=1024 \times 1024=1,1048,576$ bits. Thus K-bit and M-bit units, where 1 K bit $=1024$ bits and 1 M bit $=1024 \times 1024=1,048,576$ bits. Thus a 64 M -bit chip contains $67,108,864$ bits of memory

[^36]:    ${ }^{3}$ Implicit in this statement is the assumption that both $v_{Q}$ and $v_{\bar{Q}}$ will reach $V_{D D} / 2$ simaltaneously. As purpose of shorn,

[^37]:    Although higher speeds of operation can be obtained with gallium arsenide (GaAs) circuits, the latter are not available as off-the-shelf components for conventional digital system design. GaAs digital cir cuits arc not covered in this book; however, a substantial amount of material on this subject can b found on the CD accompanying the book and on the websile at www.sedrasmith.org
    (TTL) known as Schottky TTL. There, a Schotky diode is placcd across the CBJ junction to log away some of the base current and, owing to the low volcage drop of the Schottky diode, the CBJ from

[^38]:    ${ }^{9}$ MECL is the trade namc used by Motorola for its ECL

[^39]:    ${ }^{0}$ It is interesting to note that these composite devices wcre proposed as early as 1969 [see Lin ct al. (1969)]. Refer to the CD accompanying this book for a description of the basic TTL logic-gate circuil and its otem-pole output stage.

[^40]:    12 In PSpice, we have created a part called QECL based on these BJT inodel parameter values. Reader can tind this part in the SEDRA.olb library which is available on the CD accompanying this book a

[^41]:    FIGURE 12.6 Pole-zero pattern for the bandpass filter whose transmission function is show
    in Fig. 12.4. This is a sixth-order filter ( $N=6$ ).

[^42]:    Obviously, a low-pass filter should not have a transmission zero at $\omega=0$, and, similarly, a high-pass filter should not have a transmission zero at $\omega=\infty$.

[^43]:    Andreas Antomiou is a Canad

[^44]:    ${ }^{10}$ In the two-intcgrator loop of Fig. 12.25 (b) the noninverting integrator is realized by the cascade of
    Miller integrator and an inverting amplifier

[^45]:    ${ }^{11}$ Note that because the input circuit is a parallel resonant circuit, an input current source (rather than

[^46]:    ${ }^{12}$ Here we use "Millcr effect" to refer to the efliect of the teedback capac

[^47]:    ${ }^{13}$ The bandpass response is geometrically symmetrical around the center frequency $\omega_{0}$. That is, each
    pair of frequencies $\omega_{1}$ and $\omega_{2}$ at which the magnitude response is equal are related by $\omega_{1} \omega_{2}=\omega_{0}^{2}$. Fo pair of frequencies $\omega_{1}$ and $\omega_{2}$ at which the magnitude response is equal are related by $\omega_{1} \omega_{2}=\omega_{0}^{2}$. For high $Q$, the symmetry becomes almost arithmetic for frequencies close to $\omega_{\text {b }}$. That is. two frequencic with the same magnitude response are almost cqually spacced from $\omega_{0}$. The same is true for higher

[^48]:    We have not studied JFETs in this book. However, the CD accompanying the book includes materia

[^49]:    Digital implementations of multivibrators were presented in Chapter 11. Here, we are intercsted in

[^50]:    ${ }^{6}$ The SPICE models for the 741 op amp and the 1 N 4148 diode arc available in PSpice. The 741 op amp was characterized in Example 2.9. The 1 N 4148 diode was used in Example 3.10.

[^51]:    ${ }^{\text {Sec Appcndix A for a description of the IC fabrication process. }}$

[^52]:    C. 1 Consider the Thévenin equivalent circuit characterizcd by $V_{t}$ and $Z_{t}$. Find the open-circuit voltage $V_{\mathrm{oc}}$ and the shor circuit current (i.e., the current that flows when the terminal are shorted together) $I_{\mathrm{sc}}$. Express $Z_{t}$ in terms of $V_{\mathrm{oc}}$ and $I_{\mathrm{sc}}$
    C. 2 Repeat Problenı C. 1 for a Norton equivalent circuit characterized by $I_{n}$ and $Z_{n}$
    C. 3 A voltage divider consists of a $y-k \Omega$ resistor connected to +10 V and a resistor of $1 \mathrm{k} \Omega$ connected to ground. What is the Thévenin cquivalent of this voltage divider?

    What output voltage results if it is loaded with $1 \mathrm{k} \Omega$ ? Calculate this two ways: directly and using your Thévenin cquivalent.
    C. 4 Find the output voltage and output resistance of the cir cuit shown in Fig. PC. 4 by considering a succession of Thévenin equivalent circuits.
    C. 5 Repeat Example C. 2 with a resistance $R_{H}$ connected hetween B and ground in Fig. C. 5 (i.e., rather than directly grounding the base B as indicated in Fig. C.5).

