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Preface 

T he field of high-frequency circuit design is receiv- 
ing significant industrial attention due to a host of radio-frequency (RF) and microwave 
(MW) applications. Improved semiconductor devices have made possible a prolifera- 
tion of high-speed digital and analog systems as observed in wireless communication, 
global positioning, RADAR, and related electrical and computer engineering disci- 
plines. This interest has translated into a strong demand for engineers with comprehen- 
sive knowledge of high-frequency circuit design principles. 

For the student, the professional engineer, and even the faculty member teaching 
this material there is, however, a general problem. The majority of existing textbooks 
appear to target two separate audiences: A) the advanced graduate-level population 
with a broad theoretical background, and B) the technologists with little interest in 
mathematical and physical rigor. As a result, RF circuit design has been presented in 
two very different formats. For the advanced students the entry into this field is often 
pursued through an electromagnetic field approach, while for the technologists the 
basic circuit aspect embedded in Kirchhoff's laws is the preferred treatment. Both 
approaches make it difficult to adequately address the theoretical and practical issues 
surrounding high-frequency design principles. The basic circuit approach lacks, or only 
superficially covers, the wave nature of currents and voltages whose reflection and 
transmission properties constitute indispensable ingredients of the RF circuit behavior. 
The electromagnetic field approach certainly covers the wave guide and transmission 
line aspect, but falls far short of reaching the important aspects of designing high-fre- 
quency amplifier, oscillator, and mixer circuits. 

The objective of this textbook is to develop the RF circuit design aspects in such a 
way that the need for transmission line principles is made clear without adopting an 
electromagnetic field approach. Therefore, no EM background is necessary beyond a 
first year undergraduate physics course in fields and waves as provided by most colleges 
and universities. Students equipped with the knowledge of basic circuit theory andlor an 
exposure to microelectronics can use this book and cover the entire spectrum from the 
basic principles of transmission and microstrip lines to the various high-frequency cir- 
cuit design procedures. Lengthy mathematical derivations are either relegated to the 
appendices or placed in examples, separated from the main text. This allows the ornis- 
sion of some of the dry theoretical details and thus focuses on the main concepts. 

Accepting the challenge of providing a high degree of design experience, we have 
included many examples that discuss in considerable detail, in many cases extending 
over several pages, the philosophy and the intricacies of the various design approaches. 
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This has caused some problems as well, specifically with respect to the circuit simula- 
tions. Obviously, we cannot expect the reader to have ready access to modem computer 
simulation tools such as MMICAD or ADS to name but two of the popular choices. 
Professional high-frequency simulation packages are generally expensive and require 
familiarity to use them effectively. For this reason we have created a considerable num- 
ber of MATLAB M-files that the interested student can download from our website listed 
in Appendix G. Since MATLAB is a widely used relatively inexpensive mathematical 
tool, many examples discussed in this book can be executed and the results graphically 
displayed in a matter of seconds. Specifically the various Smith-Chart computations of 
the impedance transformations should appeal to the reader. Nonetheless, all design 
examples, specifically the ones presented in Chapters 8 to 10, have been independently 
simulated and verified in MMICAD for the linear circuit models, and ADS for the non- 
linear oscillator and mixer models. 

In terms of material coverage, this textbook purposely omitted the high-speed dig- 
ital circuits as well as coding and modulation aspects. Although important, these topics 
would simply have required too many additional pages and would have moved the book 
too far away from its original intent of providing a fundamental, one- or two-semester, 
introduction to RF circuit design. At WPI this does not turn out to be a disadvantage, 
since most of the material can readily be acquired in available communication systems 
engineering courses. 

The organization of this text is as follows: Chapter 1 presents a general explana- 
tion of why basic circuit theory breaks down as the operating frequency is increased to 
a level where the wavelength becomes comparable with the discrete circuit compo- 
nents. In Chapter 2 the transmission line theory is developed as a way to replace the 
low-frequency circuit models. Because of the voltage and current wave nature, Chap- 
ter 3 introduces the Smith Chart as a generic tool to deal with the impedance behavior 
on the basis of the reflection coefficient. Chapter 4 discusses two-port networks with 
their flow-chart representations and how they can be described on the basis of the so- 
called scattering parameters. These network models and their scattering parameter 
descriptions are utilized in Chapter 5 to develop passive RF filter configurations. 
Before covering active devices, Chapter 6 provides a review of some of the key semi- 
conductor fundamentals, followed by their circuit models representation in Chapter 7. 
The impedance matching and biasing of bipolar and field effect transistors is taken up 
in Chapter 8 in an effort to eliminate potentially dangerous reflections and to provide 
optimal power flow. Chapter 9 focuses on a number of key high-frequency amplifier 
configurations and their design intricacies ranging from low noise to high power appli- 
cations. Finally, Chapter 10 introduces the reader to nonlinear systems and their 
designs in oscillator and mixer circuits. 
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This book is used in the Electrical and Computer Engineering Department at WPI 
as required text for the standard 7-week (5 lecture hours per week) course in RF circuit 
design (EE 3113, Introduction to RF Circuit Design). The course has primarily 
attracted an audience of 3rd and 4th year undergraduate students with a background in 
microelectronics. The course does not include a laboratory, although six videotapes of 
practical circuit performances conducted at Philips Semiconductors and in-class RF cir- 
cuit measurements with a network analyzer are included. In addition, MMICAD and 
ADS simulations are incorporated as part of the regular lectures. Each chapter is fairly 
self-contained, with the goal of providing wide flexibility in organizing the course 
material. At WPI the content of approximately one three semester hour course is com- 
pressed into a 7-week period (consisting of a total of 25-28 lectures). The topics cov- 
ered are shown in the table below. 

EE 31 13, Introduction to RF Circuit Design 

I Chapter 1, introduction I Sections 1.1-1.6 I 
-- 

Chapter 2, Transmission Line Analysis 

Chapter 3, Smith Chart 

Sections 2.1-2.12 

Sections 3.1-3.5 
- - 

Chapter 4, Single- and Multi-Port Networks 

Chapter 7, Active RF Component Modeling 

( Chapter 9, RF Transistor Amplifier Designs ( Sections 9.1-9.4 I 

Sections 4 . 1 4 5  

Sections 7.1-7.2 

Chapter 8, Matching and Biasing Networks 

The remaining material is targeted for a second (7-week) term covering more 
advanced topics such as microwave filters, equivalent circuit models, oscillators and 

Sections 8.1-8.4 

mixers. An organizational plan is provided below. 

Advanced Principles of RF Circuit Design 

Chapter 5, A Brief Overview of RF Filter Design 

Chapter 6, Active RF Components 

Sections 5.1-5.5 

Sections 6.1-6.6 

Chapter 7, Active RF Component Modeling 

Chapter 9, RF Transistor Amplifier Designs 

Sections 7.3-7.5 

Sections 9.5-9.8 

Chapter 10, Oscillators and Mixers Sections 10.1-10.4 
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However, the entire course organization will always remain subject to change 
depending on total classroom time, student background, and interface requirements 
with related courses. 

Please refer to the companion website at http://www.prenhall.com~ludwig for 
more material including all of the art files in this text in pdf format. 
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Introduction 

I t is common knowledge that both analog and digi- 
tal design engineers are continually developing and refining circuits for increasingly 
higher operational frequencies. Analog circuits for wireless communication in the giga- 
hertz (GHz) range and the ever-increasing clock speeds of computer circuits in high- 
performance mainframes, workstations, and, of course, personal computers exemplify 
this trend. Global positioning systems require carrier frequencies in the range of 
1227.60 and 1575.42 MHz. The low-noise amplifier in a personal communication sys- 
tem may operate at 1.9 GHz and fit on a circuit board smaller in size than a dime. Satel- 
lite broadcasting in the C band involves 4 GHz uplink and 6 GHz downlink systems. In 
general, due to the rapid expansion of wireless communication, more compact ampli- 
fier, filter, oscillator, and mixer circuits are being designed and placed in service at fre- 
quencies generally above 1 GHz. There is little doubt that this trend will continue 
unabated, resulting not only in engineering systems with unique capabilities, but also 
special design challenges not encountered in conventional low-frequency systems. 

This chapter reviews the evolution from low- to high-frequency circuit operations. It 
motivates and provides the physical rationales that have prompted the need for new engi- 
neering approaches to design and optimize these circuits. The example of a cellular phone 
circuit, components of which will be analyzed in more detail in later chapters, serves as a 
vehicle to outline the goals and objectives of this textbook and its organization. 

The chapter begins with a brief historical discussion explaining the transition from 
direct current (DC) to high-frequency modes of operation. As the frequency increases 
and the associated wavelengths of the electromagnetic waves becomes comparable to 
the dimensions of the discrete circuit components such as resistors, capacitors, and 
inductors, these components start to deviate in their electric responses from the ideal 
frequency behavior. It is the purpose of this chapter to provide the reader with an appre- 
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ciation and understanding of high-frequency passive component characteristics. In par- 
ticular, due to the availability of sophisticated measurement equipment, the design 
engineer must know exactly why and how the high-frequency behavior of his or her cir- 
cuit differs from the low-frequency realization. Without this knowledge it will be impos- 
sible to develop and understand the special requirements of high-performance systems. 

1.1 Importance of Radiofrequency Design 
The beginning of electrical circuit design is most likely traced back to the late 

eighteenth and early nineteenth centuries when the first reliable batteries became avail- 
able. Named after their inventor A. Volta (1745-1827), the Voltaic cells permitted the 
supply of reliable DC energy to power the first crude circuits. However, it soon became 
apparent that low-frequency alternating current (AC) power sources can transport elec- 
tricity more efficiently and with less electric losses when transmitted over some dis- 
tance and that rerouting the electric energy could be facilitated through transformers 
that operate in accordance with Faraday's induction law. Due to pioneering work by 
such eminent engineers as Charles Steinmetz, Thomas Edison, Werner Siemens, and 
Nikolas Tesla, the power generation and distribution industry quickly gained entry into 
our everyday life. It was James Maxwell (183 1-1879) who, in a paper first read in 1864 
to the Royal Society in London, postulated the coupling of the electric and magnetic 
fields whose linkage through space gives rise to wave propagation. In 1887 Heinrich 
Hertz experimentally proved the radiation and reception of electromagnetic energy 
through air. This discovery heralded the rapidly expanding field of wireless communi- 
cation, from radio and TV transmissions in the 1920s and 1930s to cellular phones and 
Global Positioning Systems (GPS) in the 1980s and 1990s. Unfortunately, the design 
and development of suitable high-frequency circuits for today's wireless communica- 
tion applications is not so straightforward. As will be discussed in detail, conventional 
Kirchhoff-type voltage and current law analysis tools, as presented to first- and second- 
year undergraduate electrical engineering students, apply strictly only to DC and low- 
frequency lumped parameter systems consisting of networks of resistors, capacitors, 
and inductors. They fail when applied to circuits governed by electromagnetic wave 
propagation. 

The main purpose of this textbook is to provide the reader with theoretical and 
practical aspects of analog circuit design when the frequency of operation extends into 
the radio frequency (RF) and microwave (MW) domains. Here conventional circuit 
analysis principles fail. The following questions arise: 

At what upper frequency does conventional circuit analysis become inappropriate? 
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After the input signal has been digitally preprocessed, it is converted back to ana- 
log form via a digital-to-analog converter (DAC). This low-frequency signal is mixed 
with a high-frequency carrier signal provided by a local oscillator. The combined signal 
is subsequently amplified through a power amplifier (PA) and then routed to the 
antenna, whose task is to radiate the encoded information as electromagnetic waves 
into free space. 

In the block diagram of Figure 1- 1 let us focus on the transmitter PA. This could be 
a 2 GHz PA for cellular phones that may be implemented as a dual-stage amplifier. 
Details of the circuit diagram for the first stage PA are shown in Figure 1-2(a). 

RF Blocking 

BFG425W Interstage Matching 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , Network 
Input Matching 

Network 

Figure 1-2(a) Simplified circuit diagram of the first stage of a 2 GHz power 
amplifier for a cellular phone. 

We notice that the input signal is fed through a DC blocking capacitor into an 
input matching network, needed to match the input impedance of the transistor (type 
BFG425W of Philips Semiconductors), operated in common emitter configuration, to 
the output impedance of the mixer that precedes the PA. The matching is needed to 
ensure optimal power transfer as well as to eliminate performance degrading reflec- 
tions. The interstage matching network must then match the output impedance of the 
transistor to the input impedance of the second stage of the PA. Key components in the 
matching networks are microstrip lines shown by the shaded rectangles in Figure 
1-2(a). At high frequency these distributed elements exhibit unique electric properties 
that differ significantly from low-frequency lumped circuit elements. We also notice 



Importance of Radiofrequency Deslgn 

additional networks to bias the input and output ports of the transistor. The separation 
of high-frequency signals from the DC bias conditions is achieved through two RF 
blocking networks that feature so-called radio frequency coils (RFCs). 

The actual dual-stage circuit board implementation is given in Figure 1-2(b), 
which shows the microstrip lines as copper traces of specific lengths and widths. 
Attached to the microstrip lines are chip capacitors, resistors, and inductors. 

k 
0.5 inch Interstage Matching 

4 _ , -7 Network 
- - - - - - - - - - - - - - r C  , 

Figure 1-2(b) Printed circuit board layout of the power amplifier. 

To understand, analyze, and ultimately build such a PA circuit requires knowledge 
of a number of crucial RF topics discussed in this textbook: 

Microstrip line impedance behavior is discussed in "Transmission Line Analysis" 
(Chapter 2) and its quantitative evaluation is considered in Chapter 3, "The Smith 
Chart." 
The ability to reduce a complicated circuit into simpler constituents whose input- 
output is described through two-port network description. This is discussed in 
Chapter 4, "Single- and Multipart Networks." 
Strategies of generically developing particular impedance versus frequency 
responses as encountered in filter design. Chapter 5, "A Brief Overview of RF Fil- 
ter Design," outlines the basic discrete and distributed filter theories, and Chapter 
8, "Matching Networks," delves into a detailed circuit implementation as related 
to Figure 1-2(b). 
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High-frequency bipolar junction and field effect transistors as well as RF diodes 
are investigated in "Active FW Components" (Chapter 6) in terms of their physical 
basis followed by "Active Circuit Device Models" (Chapter 7), where large signal 
and small signal circuit models are analyzed. 
The overall amplification requirements, as related to gain, linearity, noise, and sta- 
bility, are basis of "RF Transistor Amplifier Design" (Chapter 9). 
In addition to amplifiers, Chapter 10, "Oscillators and Mixers," focuses on addi- 
tional important FW circuit design concepts, as shown in Figure 1 - 1. 

A successful RF design engineer knows about and applies all these concepts in the 
design, construction, and testing of a particular RF circuit project. As the preceding 
example implies, our concern in this textbook is mostly geared toward analog FW cir- 
cuit theory and applications. We purposely neglect mixed and digital RF signals since 
their treatment would exceed the size and scope of this textbook. 

1.2 Dimensions and Units 
To understand the upper frequency limit, beyond which conventional circuit the- 

ory can no longer be applied to analyze an electric system, we should recall the repre- 
sentation of an electromagnetic wave. In free space, plane electromagnetic (EM) wave 
propagation in the positive z-direction is typically written in sinusoidal form: 

H y  = H o y  cos ( a t  - pz) (1.lb) 

where Ex and H, are the x-directed electric and the y-directed magnetic field vector 
components, as shown qualitatively in Figure 1-3. Here Eox and HOy represent con- 
stant amplitude factors in units of V/m and Mm. 

These waves possess an angular frequency a ,  and a propagation constant P that 
defines the spatial extent in terms of the wavelength h , such that P = 2 d h .  Classical 
field theory based on Maxwell's equations reveals that the ratio between electric and 
magnetic field components is defined in terms of the so-called intrinsic impedance Zo 

based on the material dependent permeability p = pop ,  and permittivity E = E ~ E , ,  

with pO and being absolute permeability and permittivity of free space and p, and E, 

denoting relative values. We also point out that the field components are orthogonal to 
each other and both are orthogonal to the direction of propagation. This is known as 
transverse electromagnetic mode (TEM) and, since we deal exclusively with RF, it is 
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Figure 1-3 Electromagnetic wave propagation in free space. The electric and 
magnetic fields are recorded at a fixed instance in time as a function of space 

(9, 9 are unit vectors in x- and y-direction). 

the only mode that is considered in this text. TEM wave propagation is in stark contrast 
to the various transverse electric (TE) and transverse magnetic (TM) wave modes, 
which are the underlying principles of MW and optical communication. In these cases 
the field vectors are no longer perpendicular to the direction of propagation. 

The phase velocity vp of the TEM wave can be found via 

Relevant quantities, units and symbols used throughout the book are summarized in 
Tables A-1 and A-2 in Appendix A. Although we are dealing here with rather abstract 
concepts of electromagnetic wave quantities, we can immediately relate (1.1) to circuit 
parameters by observing that the electric field, as the unit of V/m already implies, can 
intuitively be understood as a normalized voltage wave. Similarly, the magnetic field, 
given in units of A/m, is a normalized current wave. 

C & M W  
Example 1-1: Intrinsic wave impedance, phase velocity, and 

wavelengths 

Compute the intrinsic wave impedance, phase velocity, and wave- 
lengths of an electromagnetic wave in free space for the frequencies 
f = 30 MHz, 300 MHz, 30 GHz. 
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Solution: Relative permeability and permittivity of free space 
are equal to unity. Therefore, from (1.2) we determine that intrinsic 
impedance in this case is equal to 

The phase velocity according to (1.3) is equal to 
1 1 v = - = - = 2.999~10~ m/s 

" &  
which happens to be the speed of light vp = c . The wavelength is 
evaluated by the following expression: 

where f is the operating frequency. Using equation (1.4), we find 
that the wavelength for an electromagnetic wave propagating in free 
space at a frequency of 30 MHz is equal to h = 10 m; at 300 MHz it 
is already reduced to h = 1 m; and at 30 GHz the wavelength is a 
minute h = 1 cm. 

This example conveys an appreciation of how the wavelength 
changes as a function of frequency. As the frequency increases, the 
wavelength reduces to dimensions comparable to the size of circuit 
boards or even individual discrete components. The implication of 
this fact will be analyzed in Chapter 2. 

1.3 Frequency Spectrum 
Because of the vast scope of applications, engineers have to deal with a broad 

range of frequencies of circuit operation. Over the years several attempts have been 
made to classify the frequency spectrum. The first designations for industrial and gov- 
ernment organizations were introduced in the United States by the Department of 
Defense during and shortly after World War 11. However, the most common frequency 
spectrum classification in use today was created by the Institute of Electrical and Elec- 
tronic Engineers (IEEE) and is listed in Table 1- 1. 
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Table 1-1 IEEE Frequency Spectrum 

I Frequency Band I Frequency Wavelength 

I VLF (Very Low Frequency) 1 3-30 kHz 1 100-10 km 

ELF (Extreme Low Frequency) 

VF (Voice Frequency) 

I HF (High Frequency) 1 3-30 MHz 1 100-10 m 

30-300 Hz 

300-3000 Hz 

LF (Low Frequency) 

MF (Medium Frequency) 

10,000-1000 km 

1000-100 km 

I SHF (Superhigh Frequency) 1 3-30 GHz 1 10-1 cm 

30-300 kHz 

300-3000 kHz 

VHF (Very High Frequency) 

UHF (Ultrahigh Frequency) 

I EHF (Extreme High Frequency) 1 30-300 GHz I 1-0.1 cm 

10-1 km 

1-0.1 km 

30-300 MHz 

300-3000 MHz 

I L Band 1 1-2 GHz 1 30-15 cm 

10-1 m 

100-10 cm 

Decimillimeter 

P Band 

X Band 1 8-12.5 GHz 1 3.75-2.4 crn 

300-3000 GHz 

0.23-1 GHz 

S Band 

C Band 

1-0.1 mrn 

130-30 cm 

Ka Band 126.5-40 GHz 1 1.13-0.75 cm 

2-4 GHz 

4-8 GHz 

KU Band 

K Band 

Millimeter wave 1 40-300 GHz 17.5-1 nun 

15-7.5 cm 

7.5-3.75 cm 

12.5-18 GHz 

18-26.5 GHz 

Based on Table 1 - 1 and calculations carried out in Example 1 - 1 we note that the 
VHFNHF band, as typically encountered in television sets, constitutes the point at 
which the wavelength first reaches dimensions equivalent to the physical extent of the 
electronic system. It is this region where we need to begin to take into account the wave 
nature of current and voltage signals in the respective electronic circuits. The situation 
becomes even more critical when for instance 30 GHz frequency in the EHF band is 
considered. Without being able to assign exact limits, the RF frequency range is cus- 
tomarily associated from VHF to the S band. The MW frequency range has been tradi- 
tionally associated with radar systems operating in the C band and above. 

2.4-1.67 cm 

1.67-1.13 cm 

Submillimeter wave 300-3000 GHz 1-0.1 rnrn 
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1.4 RF Behavior of Passive Components 

From conventional AC circuit analysis we know that a resistance R is frequency 
independent and that a capacitor C and an inductor L can simply be specified by their 
reactances Xc and XL as follows: 

XL = o L  (1.5b) 

The implications of (IS),  for example, are such that a capacitor of C = 1 pF and an 
inductor of L = 1 nH at low frequencies of 60 Hz represent, respectively, either an open 
or short circuit condition because 

Xc(60 Hz) = 1 - 2 . 6 5 ~ 1 0 ~  SZ = m (1.6a) 
2n.. 6 0 .  10-l2 = 

X,(60 Hz) = 2n. - 60 - 10" - 3 . 7 7 ~ 1 0 - ~  Q = 0 (1.6b) 

It is important to point out that resistances, inductances, and capacitances are not only 
created by wires, coils, and plates as typically encountered in conventional low-fre- 
quency electronics. Even a single straight wire or a copper segment of a printed circuit 
board (PCB) layout possesses frequency dependent resistance and inductance. For 
instance, a cylindrical copper conductor of radius a, length I ,  and conductivity ocond 
has a DC resistance of 

For a DC signal the entire conductor cross-sectional area is utilized for the current flow. 
At AC the situation is complicated by the fact that the alternating charge carrier flow 
establishes a magnetic field that induces an electric field (according to Faraday's law) 
whose associated current density opposes the initial current flow. The effect is strongest 
at the center r = 0 ,  therefore significantly increasing the resistance in the center of the 
conductor. The result is a current flow that tends to reside at the outer perimeter with 
increasing frequency. As derived in Appendix B, the z-directed current density J, can be 
represented by 

where = - j o p o c o n d ,  and J o ( p r ) ,  J , ( p a )  are Bessel functions of zeroth and first 
order, and I is the total current flow in the conductor. Further calculations reveal that the 
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normalized resistance and inductance under high-frequency conditions (f 2 500 MHz) 
can be put in the form 

R/RDc z a/(26) (1.9) 

and 

(oL)/RDC G a/(26) 

In these expressions 6 is the so-called skin depth 

6 = (nf~oco,d)-1'2 (1.11) 

which describes the spatial drop-off in resistance and reactance as a function of fre- 
quencyf, permeability p , and conductivity oCond. For the equations (1.9) and (1.10) to 
be valid it is assumed that 6 <i a .  In most cases, the relative permeability of the conduc- 
tor is equal to unity (i.e., p, = 1 ). Because of the inverse square root frequency behav- 
ior, the skin depth is large for low frequencies and rapidly decreases for increasing 
frequencies. Figure 1-4 exemplifies the skin depth behavior as a function of frequency 
for material conductivities of copper, aluminum, and gold. 

Figure 1-4 Skin depth beeavior of copper a,, = 64.516~106, ~ l m ,  aluminum 
o, = 40.0~10 Slm , and gold a, = 48.544~10 Slm . 

If we consider the conductivity of copper, we can plot the AC current density (1.8) 
normalized with respect to the DC current density Jzo = Z/(na2) as schematically 
shown for the axisymmetric wire depicted in Figure 1-5(a). 

For a fixed wire radius of, let us say, a = 1 mrn we can now plot Jz/Jzo as a 
function of radius r for various frequencies as given in Figure 1-5(b). 
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Hieh current Low current -- 
0- 

density density 

r 
Current Flow -Q a 

Figure 1-5(a) Schematic cross-sectional AC current density representation 
normalized to DC current density. 

Figure 1-5(b) Frequency behavior of normalized AC current density for a 
copper wire of radius a = 1 rnrn. 

We notice the significant increase in current flow at the outer perimeter of the wire 
even for moderate frequencies of less than 1 MHz. At frequencies around 1 GHz, the 
current flow is almost completely confined to the surface of the wire with negligible 
radial penetration. An often used high-frequency approximation for the z-directed cur- 
rent density is 



As seen in (1.12). the skin depth 6 has a simple physical meaning. It denotes the 
reduction in the current density to the e-' factor (approximately 37%) of its original 
DC value. If we rewrite (1.9) slightly, we find 

This equation shows that the resistance increases inverse proportionally with the 
cross-sectional skin area, see Figure 1-6. 

Figure 1-6 Increase in resistance over the cross sectional surface area. The 
current flow is confined to a small area defined by the skin depth 6. 

.I 
To standardize the sizes of wires, the American Wire Gauge (AWG) system is 

commonly used in the United States. For instance, the diameter of the wire can be 
determined by its AWG value. A complete listing of all AWG values and their corre- 
sponding diameters is given in Table A-4 in Appendix A. The general rule is that in the 
AWG system, the diameter of the wire roughly doubles every six wire gauges starting 
with 1 mil for a AWG 50 wire (see Table A-4). 

m m w  
Example 1-2: Conversion between wire diameter and AWG 

size 

Determine the radius of the AWG 26 wire if the diameter of the 
AWG 50 wire is 1.0 mil (or 2.54x10-~m). 
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Solution: The increase in diameter is computed as follows: 
AWG50 d =  1 mil 
AWG44 d=2mils  
AWG38 d=4mils  
AWG32 d=8mils  
AWG 26 d =16 mils 

Thus we determined that the diameter of a AWG 26 wire is equal to 
16 mils. Therefore, the radius is 

8 mil = 8 x (2.54~10-'m) = 0.2032 mm 

Even in today's increasingly metric world, AWG has retained 
its importance, and knowledge of how to convert mil-based AWG 
size wires into millimeters often proves indispensable. 

1.4.1 High-Frequency Resistors 

Perhaps the most common circuit element in low-frequency electronics is a resis- 
tor whose purpose is to produce a voltage drop by converting some of the electric 
energy into heat. We can differentiate among several types of resistors: 

Carbon-composite resistors of high-density dielectric granules 
Wire-wound resistors of nickel or other winding material 
Metal-film resistors of temperature stable materials 
Thin-film chip resistors of aluminum or beryllium based materials 

Of these types mainly the thin-film chip resistors find application nowadays in RF and 
MW circuits as surface mounted devices (SMDs). This is due to the fact that they can 
be produced in extremely small sizes, as Figure 1-7 shows. 

As the previous section has shown, even a straight wire possesses an associated 
inductance. Consequently, the electric equivalent circuit representation of a high- 
frequency resistor of nominal value R is more complicated and has to be modified such 
that the finite lead dimensions as well as parasitic capacitances are taken into account. 
This situation is depicted in Figure 1-8. 

The two inductances L model the leads, while the capacitances are needed to 
account for the actual wire arrangement, which always represents a certain charge sepa- 
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Ire 1-7 One- and quarter-watt thin-film chip resistors in comparison 
conventional quarter-watt resistor. 

Figure 1-8 Electric equivalent circuit representation of the resistor. 

with a 

ration effect modeled by capacitance C, . and interlead capacitance Cb . The lead resis- 
tance is generally neglected when compxed with the nominal resistance R. For a wire- 
wound resistor the model is more complex, as Figurc 1-9 shows. 

Figure 1-9 Electric equivalent circuit representation for a high-frequency wire- 
wound resistor. 
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Here, in addition to the lead inductances L2 and the contact capacitance, we need 
to include the inductance L1 of the wire-wound resistor, which acts as a coil, and the 
stray capacitance C, established between the windings. The interlead capacitance C2 
(or Cb in Figure 1-8) is usually much smaller than the internal or stray capacitance and 
in many cases can be neglected. 

*&M W 
Example 1-3: RF impedance response of metal film resistors 

i - 
Find the high frequency impedance behavior of a 500 Q metal film 
resistor (see Figure 1-8) with 2.5 cm copper wire connections of 
AWG 26 and a stray capacitance C, of 5 pF. 

Solution: In Example 1-2 we have determined that the radius of 
an AWG 26 wire is a = 2 . 0 3 2 ~ 1 0 ~  m . According to (1.10) the 
inductance of the straight wire at high frequency is approximately 
equal to L = RDca/ (206) .  Substituting (1 .11)  for the skin depth, 
we get the following expression of a lead inductance (we set the 
conductivity of copper to be a,, = 64.5 16x10~ R-I . m-l ): 

r 

where the length of the leads is doubled to account for two connec- 
tions. The preceding formula for the computation of the lead induc- 
tance is applicable only for frequencies where the skin depth is 
smaller than the radius of the wire [i.e., 6 = (7cfpo)-lJ2 cc a ]  or in 
terms of frequency f D 1 /(7cpoc,a2) = 95 kHz. 

Knowing the inductance of the leads, we can now compute the 
impedance of the entire circuit as 

The result of the computation is presented in Figure 1-10, where the 
absolute value of the impedance of the resistor is plotted versus 
frequency. 

As seen, at low frequencies the impedance of the resistor is 
equal to R. However, as the frequency increases and exceeds 
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1 o - ~  
1 o6 10' lo8 1 o9 lo10 1ol1 loL2 

Frequency, Hz 
Figure 1-1 0 Absolute impedance value of a 500-Sl thin-film resistor as a 

function of frequency. 

10 MHz, the effect of the stray capacitance becomes dominant, 
which causes the impedance of the resistor to decrease. Beyond the 
resonance at approximately 20 GHz, the total impedance increases 
due to the lead inductance, which represents an open circuit or infi- 
nite impedance at very high frequencies. 

This example underscores the care that is required when deal- 
ing with the ubiquitous, seemingly frequency-independent resistors. 
While not all resistors exhibit exactly the same response as shown in 
Figure 1-10, it is the single, ofen multiple, resonance point that 
occurs when the frequency reaches into the GHz range. 

1.4.2 High-Frequency Capacitors 

In most RF circuits chip capacitors find widespread application for the tuning of 
filters and matching networks as well as for biasing active components such as transis- 
tors. It is therefore important to understand their high-frequency behavior. Elementary 
circuit analysis defines capacitance for a parallel plate capacitor whose plate dimen- 
sions are large compared to its separation as follows: 
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where A is the plate surface area and d denotes the plate separation. Ideally there is no 
current flow between the plates. However, at high frequencies the dielectric materials 
become lossy (i.e., there is a conduction current flow). The impedance of a capacitor 
must thus be written as a parallel combination of conductance Ge and susceptance oC: 

In this expression the current flow at DC is due to the conductance G, = odielA/d, 
with odiel being the conductivity of the dielectric. It is now customary to introduce the 
series loss tangent tanA, = o ~ / o ~ ~ ~ ~  and insert it into the expression for Ge to yield 

Some practical values for the loss tangent are summarized in Table A-3. The corre- 
sponding electric equivalent circuit with parasitic lead inductance L, series resistance R, 
describing losses in the lead conductors, and dielectric loss resistance Re = l /Ge ,  is 
shown in Figure 1 - 1 1. 

Figure 1-1 1 Electric equivalent circuit for a high-frequency capacitor. 

W&MW 
Example 1-4: RF impedance response of capacitor 

Compute the high frequency impedance of a 47 pF capacitor whose 
dielectric medium consists of an aluminum oxide (AL203) possess- 
ing a series loss tangent of lo4 (assumed to be frequency indepen- 
dent) and whose leads are 1.25 cm AWG 26 copper wires 
(oCu = 64 .516~10~  R-I . m-'1. 
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Solution: Similar to Example 1-3, the inductance associated 
with the leads is given by 

The series resistance of the leads is computed from (1.13) to be 

Finally, in accordance with (1.16), the parallel leakage resistance is 
equal to 

The frequency response of the magnitude of the impedance based on 
equation (1.15) for the capacitor is shown in Figure 1 - 12. 

Figure 1-12 Absolute value of the capacitor impedance as a function of 
frequency. 

In computing the parallel leakage resistance Re we have 
assumed the loss tangent tanA, to be frequency independent. In 
reality, however, this factor may significantly depend upon the oper- 
ating frequency. Unfortunately, data sheets often do not, or only 
very incompletely, report this behavior. 



20 Chapter 1 Introduction 

Since the loss tangent can also be defined as the ratio of an 
equivalent series resistance (ESR) to the capacitor's reactance, many 
data sheets list ESR instead of tan A, . The ESR value is thus given as 

tan A, 
ESR = - 

oc 
This indicates that ESR + 0 as tanA, + 0 .  

As already known from the RF resistor impedance response in 
Example 1-3, the capacitor reveals a similar resonance behavior 
due to the presence of dielectric losses andjnite lead wires. 

The construction of a surface-mounted ceramic capacitor is shown in Figure 1 - 13. 
The capacitor is a rectangular block of a ceramic dielectric into which a number of 
interleaved metal electrodes are sandwiched. The purpose of this type of packaging is 
to provide a high capacitance per unit volume by maximizing the electrode surface 
area. Capacitance values range from 0.47 pF to 100 nF with operating voltage ranging 
from 16V to 63 V. The loss tangent is usually listed by the manufacturer as 
t a n 4  5 lo5 at a 1 MHz test frequency. Again, this loss tangent can significantly 
increase as the frequency reaches into the GHz range. 

~exarnic material 

Figure 1-13 Actual construction of a surface-mounted ceramic multilayer 
capacitor. 
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Besides capacitance and loss tangent, manufactures list a nominal voltage that 
cannot be exceeded at a particular operating temperature (for instance, T 5 85°C). Fur- 
thermore, the capacitance is temperature dependent, as further discussed in the problem 
section of this chapter. 

1.4.3 High-Frequency Inductors 

Although not employed as often as resistors and capacitors, inductors generally 
are used in transistor biasing networks, for instance as RF coils (RFCs) to short circuit 
the device to DC voltage conditions. Since a coil is generally formed by winding a 
straight wire on a cylindrical former, we know from our previous discussion that the 
windings represent an inductance in addition to the frequency-dependent wire resis- 
tance. Moreover, adjacently positioned wires constitute separated moving charges, thus 
giving rise to a parasitic capacitance effect as shown in Figure 1- 14. 

Figure 1-1 4 Distributed capacitance and series resistance in the inductor coil. 

The equivalent circuit model of the inductor is shown in Figure 1-15. The para- 
sitic shunt capacitance C, and series resistance R, represent composite effects of distrib- 
uted capacitance Cd and resistance Rd, respectively. 

Figure 1-1 5 Equivalent circuit of the high-frequency inductor. 
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C & M  w 
Example 1-5: RF impedance response of an RFC 

Estimate the frequency response of an RFC formed by N = 3.5 turns 
of AWG 36 copper wire on a 0.1 inch air core. Assume that the 
length of the coil is 0.05 inch. 

Figure 1-16 Inductor dimensions of an air-core coil. 

Solution: The dimensions of the coil are shown in Figure 1-16. 
From Table A-4 in Appendix A, we find that the radius of the 
AWG 36 wire is a = 2.5 mils = 63.5 Fm. The radius of the coil core 
is r = 50 mils = 1.27 mm. The length of the coil is 1 = 50 mils 
= 1 . 2 7 ~ .  The distance between two adjacent turns is 
d = Z / N  = 3 . 6 ~ 1 0 ~  m.  

To estimate the inductance of the coil we will use a well- 
known formula for the inductance of an air core solenoid: 

Strictly speaking, this formula is valid only for the case when r << I 
and the number of turns N is large. In our case, the length of the coil 
is comparable with its radius and the number of turns is relatively 
small. Therefore, (1.17) will not give an exact value for the induc- 
tance, but a rather good approximation. Substituting the given val- 
ues into (l.l7), we obtain L = 61.4 nH . 

To approximate the effect of the capacitance C,, we will use 
the formula for an ideal parallel-plate capacitor (1.14). In our case 
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the separation d between the plates is assumed to be equal to the 
distance between the turns d = 1/N = 3.6x10-~ m , and the area A 
can be estimated as A = 2alWire, where lWi, = 2nrN is the length 
of the wire. We conclude that 

Since the radius of the wire is only 63.5 pm, we can neglect the skin 
effect and compute the series resistance R, as a DC resistance of the 
wire. 

The frequency response of the RFC impedance just analyzed is 
shown in Figure 1- 17. 

Figure 1-17 Frequency response of the impedance of an RFC. 

RFCsJind widespread use for biasing RF circuits. Howevel; as 
Figure 1-1 7 shows, the frequency dependency can form complicated 
resonance conditions with additional elements in an RF system. 
Indeed, certain matching circuits rely on the RFCs as tuning elements. 
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As can be seen from Figure 1-17, the behavior of the RFC deviates from the 
expected behavior of an ideal inductance at high frequencies. First, the impedance of 
the RFC increases more rapidly as the frequency approaches resonance. Second, as the 
frequency continues to increase, the influence of the parasitic capacitance Cs becomes 
dominant and the impedance of the coil decreases. 

If the RFC had zero series resistance, then the overall impedance behavior at reso- 
nance would reach infinity, but due to the nonzero value of R, the maximum value of 
the impedance is of finite value. To characterize the impact of the coil resistance, the 
quality factor Q is commonly used: 

where X is the reactance and R, is the series resistance of the coil. The quality factor 
characterizes the resistive loss in this passive circuit, and for tuning purposes it is desir- 
able that this factor is as high as possible. 

1.5 Chip Components and Circuit Board Considerations 
The practical realization of passive components on printed FW circuit boards is 

primarily accomplished in chip form and placed on specially fabricated board materi- 
als. In the following section we examine the three most common passive chip elements 
in terms of their sizes and electric characteristics. 

1.5.1 Chip Resistors 

The size of chip resistors can be as small as 40 by 20 mils (where 1 mil = 0.001 
inch = 0.0254 mm) for 0.5 W power ratings and up to 1 by 1 inch for 1000 W ratings in 
RF power amplifiers. The chip resistor sizes that are most commonly used in circuits 
operating up to several hundred watts are summarized in Table 1-2. 

A general rule of thumb in determining the size of the chip components from the 
known size code is as follows: the first two digits in the code denote the length L in 
terms of tens of mils, and the last two digits denote the width W of the component. The 
thickness of the chip resistors is not standardized and depends on the particular compo- 
nent type. 

The resistance value range from 1/10 Q up to several M i l .  Higher values are diffi- 
cult to manufacture and result in high tolerances. Typical resistor tolerance values range 
from f 5% to fO.01 % . Another difficulty that arises with high-value resistors is that they 
are prone to produce parasitic fields, adversely affecting the linearity of the resistance ver- 
sus frequency behavior. A conventional chip resistor realization is shown in Figure 1- 18. 
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Table 1-2 Standard sizes of chip resistors 

I Geometry I Size Code 1 Length L, mils 1 Width W, mils I 

Marking 

Protective coat 
1 Resistive layer 

/ 
End contact 

Inner electrodes Ceramic substrate 

Figure 1-18 Cross-sectional view of a typical chip resistor, 

A metal film (usually nichrome) layer is deposited on a ceramic body (usually 
aluminum oxide). This resistive layer is trimmed to the desired nominal value by reduc- 
ing its length and inserting inner electrodes. Contacts are made on both ends of the 
resistor that allow the component to be soldered to the board. The resistive film is 
coated with a protective layer to prevent environmental interferences. 

1.5.2 Chip Capacltors 

The chip capacitors are implemented either as a conventional single-plate configu- 
ration, as shown in Figure 1-19, or a multiple-layer design (see Figure 1-13). 

Frequently, single-plate capacitors are combined in clusters of two or four ele- 
ments sharing a single dielectric material and a common electrode, as shown in Figure 
1-20. 



Chip capacitor Ribbon lead or wire 

\ / 
Ciui t  lraces 

Flgure 1-19 Cross section of a typical single-plate capacitor connected to the 
board. 

Dual capacitor Quadrupole capacitor 

llfP 
1 -7- 

Flgure 1-20 Clusters of single-plated capacitors sharing a common dielectric 
material. 

The standard sizes of the capacitors range from a minimum of 15 mils square in a 
single layer configuration to 400 by 425 mils at higher values. mica1  values for com- 
mercial capacitors range from 0.1 pF to several pF . The tolerances vary from f2% to 
f 50%.  For small capacitances tolerances are usually expressed in terms of pF instead 
of percent; for example, we often encounter capacitors with the nominal values given as 
(0.5 f 0.25) pF . 

1.5.3 SurfaceMounted Inductors 

The most common implementation of surface-mounted inductors is still the wire- 
wound coil. A typical example of such an inductor with air core is shown in Figure 1-21. 
Modem manufacturing technology allows us to make these inductors extremely small. 
Their dimensions are comparable to those of chip resistors and capacitors. m i c a 1  sizes 
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Figure 1-21 Typical size of an RF wire-wound air-core inductor in comparison 
with a cellular phone antenna (courtesy of Coilcraft, Inc.). 

of the surface-mounted wire-wound inductors range from 60 by 30 mils to 180 by 120 
mils. The inductance values cover the range from 1 nH to 1000 pH. 

When thickness constraints of the circuit play a major role, flat inductors are often 
employed that can be integrated with microstrip transmission lines. A generic configu- 
ration of a flat coil is shown in Figure 1-22. Although such thin-wire coils have rela- 
tively low inductances on the order of 1 to 500 nH, it is the frequency in the GHz range 
that helps push the reactance beyond 1 kR. The physical construction can be as small 
as2mmby2mm. 

Air bridge 

Figure 1-22 Flat coil configuration. An air bridge is made by using either a wire 
or a conductive ribbon. 

Flat coils are used in both integrated and hybrid circuits. Hybrid circuits are very 
similar to an ordinary circuit, but discrete semiconductor elements are placed on the 
dielectric substrate in die form (without case) and are connected to the conductors on 
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the board using bond wires. After the entire circuit is assembled, it is then placed into a 
single case to protect it from environmental interferences. Resistors and capacitors for 
hybrid circuits can directly be implemented on the board by metal-film deposition. This 
approach permits significant reduction in the size of the circuit. 

1.6 Summary 
In this chapter the evolution from low- to high-frequency systems is discussed and 

placed in a historical context. A key concept when dealing with high-frequency applica- 
tions is the fact that the electromagnetic wave nature begins to dominate over Kirch- 
hoff's current and voltage laws. Issues such as propagation constant and phase velocity, 

0 1 p = 2n/h and v p  = - = - 
K p  

gain importance. 
A consequence of the electromagnetic wave nature is the skin effect, which forces 

the current to flow close to the surface of the conducting structures. The depth of pene- 
tration from the surface can be determined via the skin depth equation: 

1 a = -  

With the skin depth we can approximately characterize the frequency dependent resis- 
tance and reactance of components at RF frequency. As an example, the simple cylin- 
drical lead wires exhibit resistances and reactances that become a function of frequency 

These wires, in conjunction with the respective R, C, and L elements, form electric equiv- 
alent circuits whose performance markedly deviate from the ideal element behavior. We 
find that the constant resistance at low frequency is no longer constant, but displays a 
second-order system response with a resonant dip. The dielectric material in a capacitor 
becomes lossy at high frequencies (i.e., allows the flow of a small conduction current). 
The degree of loss is quantified by the loss tangent, which is tabulated for a range of 
engineering materials. Therefore, a capacitor exhibits an impedance behavior that fol- 
lows an inverse frequency response only at low frequencies. Finally, inductors represent 
an impedance response that follows a linear increase at low frequencies before deviating 
from the ideal behavior by reaching a resonance peak and then turning capacitive. 

A passive RF component vendor will always attempt to keep the physical dimen- 
sions of resistors, capacitors, and inductors as small as possible. This is desired since 
the wavelength of high-frequency voltage and current waves becomes ever smaller, 
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eventually reaching the characteristic sizes of the circuit components. As discussed in 
subsequent chapters, when the wavelength is comparable in size with the discrete elec- 
tronic components, basic circuit analysis no longer applies. 

Further Reading 

I. Bohl and P. Bhartia, Microwave Solid State Design, John Wiley, New York, 1988. 

C. Bowick, RF Circuit Design, Newmes, Newton, MA, 1982. 

D. K Chen, Fundamentals of Engineering Electromagnetics, Addison-Wesley, Reading, 
MA, 1993. 

R. A. Chipman, Transmission Lines, Schaum Outline Series, McGraw-Hill, New York, 
1968. 

L. N. Dworsky, Modern Transmission Line Theory andApplications, Robert E. Krieger, 
Malabar, FL, 1988. 

M. F. Iskander, Electromagnetic Fields and Waves, Prentice Hall, Upper Saddle River, 
NJ, 1992. 

T. S. Laverghetta, Practical Mircowaves, Prentice Hall, Upper Saddle River, NJ, 1996. 

H. P. Neff, Basic Electromagnetic Fields, 2nd ed. Harper & Row, New York, 1987. 

K. F. Sander, Microwave Components and Systems, Addison-Wesley, 1987. 

K. F. Sander and G. A. L. Read, Transmission and Propagation of Electromagnetic 
Waves, 2nd ed. Cambridge University Press, Cambridge, UK, 1986. 

W. Sinnema, Electronic Transmission Line Technology, 2nd ed., Prentice Hall, Upper 
Saddle River, NJ, 1988. 

F. T. Ulaby, Fundamentals of Applied Electromagnetics, Prentice Hall, Upper Saddle 
River, NJ, 1997. 

Problems 

1.1 Compute the phase velocity and wavelength in an FR4 printed circuit board 
whose relative dielectric constant is 4.6 and where the operational frequency 
is 1.92 GHz. 
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The current flowing in a microstrip line (assumed to be infinite and lossless) 
is specified to be i(t) = 0.6cos(9 x 109t - 5002) A. Find the (a) phase 
velocity, (b) frequency, (c) wavelength, and (d) phasor expression of the cur- 
rent. 

A coaxial cable that is assumed lossless has a wavelength of the electric and 
magnetic fields of h = 20 cm at 960 MHz. Find the relative dielectric con- 
stant of the insulation. 

The electric wave field of a positive z-traveling wave in a medium with rela- 
tive dielectric constant of E, = 4 and with frequency of 5 GHz is given by 

E, = E,,cos ( a t  - k z )  V/m 

(a) Find the magnetic field if E,, = lo6 ~ l m .  
(b) Determine phase velocity and wavelength. 
(c) Compute the spatial advance of the traveling wave between time intervals 
t, = 3ps and tz = 7ps.  

Find the frequency response of the impedance magnitude of the following 
series and parallel LC circuits: 

L = l O n H  

C =  lOpF 

C =  lOpF 

Compare your results to the situation when the ideal inductance is replaced 
by the same inductance and a 5 Q resistance connected in series. Assume 
that these circuits operate in the VHFIUHF frequency band of 30-3000 
MHz. 

For the circuit shown, derive the resonance frequency and plot the resonance 
frequency behavior as a function of the resistance R. 
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1.7 

1.8 

1.9 

1.10 

1.11 

1.12 

Repeat Problem 1.6 for the following circuit. 

For the following circuit we chose R cc (m)/2. 

Find I V,/ViI as a function of frequency and identify the dominant circuit 
portions for the low-, mid-, and high-frequency domains. 

One of the objectives of Chapter 1 is to sensitize the reader to high-fre- 
quency phenomena that are usually neglected in a low-frequency circuit ana- 
lysis. One such phenomenon is the skin effect. To show its importance in RF 
calculations, (a) compute the frequency behavior of an inductor formed by 
10 turns of AWG 26 copper wire on a 5 mm air core. The length of the coil is 
5 mrn. (b) repeat the computations by first neglecting the skin effect and then 
including it. 

The leads of a resistor in an RF circuit are treated as straight aluminum wires 
(o,, = 4.0 x 107s/m) of AWG size 14 and of total length of 5 cm. (a) 
Compute the DC resistance. (b) Find the AC resistance and inductance at 
100 MHz, 1 GHz, and 10 GHz operating frequencies. 

Compute the skin depths for copper (a,, = 64.516 x 1 0 ~ ~ / m ) ,  aluminum 
6 

(o,, = 40 x 10 S/m), and gold (o,, = 48.544 x 106s/m) at 1 GHz and 
10 GHz, and find the resistance of a 10 cm wire with diameter of 1 rnm. 

A typical PCB substrate consists of A1203 with a relative dielectric constant 
of 10 and a loss tangent of 0.0004 at 10 GHz. Find the conductivity of the 
substrate. 
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For the series RLC circuit with R = 1 Q , L = 1 nH, and C = 1 pF, 
compute the resonance frequency and quality factor at +lo% of the reso- 
nance frequency. Does the presence of the resistor affect the resonance fre- 
quency? 

A 4.7 pF capacitor with relative dielectric constant of 4.6 and series loss tan- 
gent of 0.003 is used in a circuit operated at 10 GHz. For a combined copper 
lead length of 6 cm and diameter of 0.5 mrn, determine (a) the lead resis- 
tance and lead reactance, and (b) the conductance and the total im edance. -7 The conductivity of copper is given as oc, = 64 .516~10~  Q-I . m . 

A manufacturer data sheet records the series loss tangent of a capacitor to be 
at 5 GHz. For a total plate dimension of 10-~crn~ and plate separation 

of 0.01 mm and a relative dielectric constant of 10, find the conductance. 

A two-element impedance of the generic form 
Z =  R + j X  

has to be converted into an equivalent admittance form Y = 1IZ such that 
Y = G + j B  

Find the conductance G and susceptance B in terms of resistance R and reac- 
tance X. 

A more elaborate model of a capacitor is sometimes represented by the fol- 
lowing circuit: 

Here the loss tangent is specified as consisting of two parts involving the 
admittance Y, = l/R,+ j o C  with a parallel-circuit loss tangent 
tanA, = ~ R ~ { Y , } / I ~ { Y , } ~  and series impedance Z, = Rs + l / ( j o C )  
with a series-circuit loss tangent tanAs = ~Re{Z,}/Irn{Z,}~ (it is noted 
that Rs is different from Example 1-4). Show that for low-loss capacitances 
we approximately obtain tanA=tanA,+tanA,, where 
tanA = IRe{Z}/Im{Z}I and Z is the total impedance. 

When recording the capacitance with a measurement equipment, the user 
has often the choice to select a suitable circuit representation. For the series 
representation, the instrument attempts to predict Rs and C, , while for the 
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1.19 

1.20 

parallel representation the prediction involves Rp and C p .  Which mode 
should be chosen if large capacitors of more than 100 pF are to be mea- 
sured? Is this mode also suitable for small values of less than 10 pF? 
Explain your answers. 

The ability to store electric charge, expressed through the capacitance, 
depends on the operating temperature. This behavior can be quantified 
through the relation C = C o [ l  + a ( T  - 20°C)] , where Co is the nominal 
capacitance and a is a temperature coefficient that can be positive or nega- 
tive. If the capacitance C at T = 20°C is recorded to be 4.6 pF, which 
increases to 4.8 pF at T = 40°C, what is the temperature coefficient a ?  
Determine the capacitance at 0°C and 80°C . 

When measuring impedance at low frequency we connect the measurement 
equipment to a device using a pair of wires and assume that the reading 
reflects the impedance of the device under test (DUT). As we have seen in 
this chapter, at high frequencies we have to take into account the influence of 
the parasitic elements. The typical circuit representation of the measurement 
arrangement is as follows. 

z,, ZDUT 
, Rs 

A a 

V 1 
Measurement ; 
Equipment Y i  ==CP? DUT 

a 

A J " 

Cables and Fixture * 
Measurement 

Plane 
Device 
Plane 

Here the fixture and cables are replaced by an equivalent circuit of the lead 
impedance (Rs  + j o L s )  and stray admittance ( G p  + joC,). Ideally, we 
would like to perform the measurement at the device plane. However, due to 
the influence of the fixture, the measurement plane is shifted away from the 
DUT. 

To measure accurately the impedance of the DUT, the test fixture with 
connecting cables has to be taken into account. The methodology adopted by 
most manufacturers is to compensate for these undesired, fixture-related 
influences through an open- and short-circuit calibration. The first step is to 
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replace the DUT by a short circuit and record the resulting impedance. Due 
to the influence of the fixture, the measured impedance will not be equal to 
zero. Next, the short circuit is replaced by an open circuit and the impedance 
is recorded again. These two measurements allow us to quantify the parasitic 
influence of the fixture. 

After calibration, we can connect the DUT and measure the input 
impedance. The equivalent circuit in this case is as follows. 

Zs =Rs+joL, 

'in 

Knowing the values of the parasitic elements (Zs and Y p ) ,  we can now 
compute the true impedance of the DUT. 

Explain the procedure with all necessary equations, and specify under 
what conditions such a calibration is possible. Next, develop the formula that 
allows us to find the desired DUT impedance in the absence of the fixture. 

1.21 The results of a frequency sweep impedance measurement of an unknown 
passive device are shown in the following figure. 

lo4 t 
c 
6 - l o 3 .  
0 
U 

E u 

10': 

lo0 . . . . .......' . . 

lo4 105 lo6 10' lo8 lo9 io10 10" 10" 
Frequency, Hz 
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Based on the shape of the impedance response, develop a circuit that can be 
used as an equivalent circuit to replicate this device under test. What device 
can it be: resistor, inductor, or capacitor? 

1.22 To measure the impedance of a passive component at RF frequencies is quite 
a challenge. Conventional techniques such as bridge circuits and resonance 
techniques fail beyond a few MHz. A technique pursued by several instru- 
ment manufactures is the current voltage recording based on the following 
simplified schematic. 

Here the voltages are measured with vector voltmeters that allow the record- 
ing of magnitude and phase. Explain how the impedance of the component 
under test is determined and discuss the purpose of the transformer and 
operational amplifier. 

1.23 An RFC is constructed by winding four turns of AWG 38 copper wire on a 
2 mm ceramic core diameter ( p r  = 1 ) of 0.1 mm length. Based on Example 
1-5, estimate the inductance, stray capacitance, resistance, and resonance 
frequency. 

1.24 Using data and the equivalent circuit diagram developed in the previous 
problem, find values of the equivalent circuit parameters for the magnitude 
of the impedance if the device is 100 SZ under DC conditions and 1257 Q 
at 100 GHz. Assume the resonance frequency point to be at 1.125 GHz. 

1.25 A quadrupole capacitor as shown in Figure 1-18 consists of four equal-size 
electrodes of 25 mils square separated 5 mils from a common ground plane 
through a dielectric medium of a relative dielectric constant of 11. Find the 
individual and total capacitance that can be achieved. 
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1.26 Consider the following diode circuit. 

DGIA.90 

RFC 

WNO O RFour 

5 nH 

As will be shown in Chapter 6, a reverse biased diode can be represented as 
a series combination of a resistor Rs and junction capacitor C, where the 
capacitance is bias dependent. Its value is approximately given by the 
expression 

Assuming that RFC and blocking capacitor CB have infinite values, find the 
biasing voltage such that the circuit exhibits a resonance at the frequency of 
1 GHz. The diode is characterized as follows: Co = 10 pF , Rs = 3 R , 
and barrier voltage Vdiff = 0.75 V . 



Transmission Line Analysis 

A s we already know, higher frequencies imply 
decreasing wavelengths. The consequence for an RF circuit is that voltages and currents 
no longer remain spatially uniform when compared to the geometric size of the discrete 
circuit elements: They have to be treated as propagating waves. Since Kirchhoff's volt- 
age and current laws do not account for these spatial variations, we must significantly 
modify the conventional lumped circuit analysis. 

The purpose of this chapter is to outline the physical reason for transitioning from 
lumped to distributed circuit representation and, in the process, develop one of the most 
useful equations: the spatially dependent impedance representation of a generic RF 
transmission line configuration. The application of this equation to the analysis and 
design of high-frequency circuits is going to assume central importance in subsequent 
chapters. Developing the background of transmission line theory in this chapter, we have 
purposely attempted to minimize (albeit not eliminate) the reliance on electromagnetics. 
The motivated reader who would like to delve deeper into the concepts of electromag- 
netic wave theory is referred to a host of excellent books listed at the end of this chapter. 

2.1 Why Transmission Line Theory? 
Let us once again return to the wave field representation (1.la): 

Ex = Eo,cos(ot - pz) . Here we have an x-directed electric field propagating in the 
positive z-direction. For propagation in free space the orthogonality between electric 
field and direction of propagation is always assured. If, on the other hand, we assume 
that the wave is confined to a conducting medium that is aligned with the z-axis, we will 
find that the electric field has a longitudinal component E, that, when integrated in z- 
direction, gives us a voltage drop (i.e., V = - k d l , ,  where dl, is the line element in the 
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z-direction). Let us now consider more closely the argument of the cosine term in 
(1. la). It couples space and time in such a manner that the sinusoidal space behavior is 
characterized by the wavelength h along the z-axis. Moreover, the sinusoidal temporal 
behavior can be quantified by the time period T = 1 / f along the time-axis. In mathe- 
matical terms this leads to the method of characteristics, where the differential change 
in space over time denotes the speed of evolution, in our case the constant phase veloc- 
ity in the form v,,: 

For a frequency of, let us say, f = 1 MHz and medium parameters of E,= 10 and 
1 ~ ,  = 1 (vP = 9 . 4 9 ~ 1 0 ~  m/s ), a wavelength of h = 94.86 m is obtained. This situation is 
spatially and temporally depicted in Figure2-1 for the voltage wave 
V = -Icos(wt - pz)dz = sin(ot - Pz)/P. 

Figure 2-1 Voltage distribution as a function of time (z = 0) and as a function of 
space ( t  = 0). 

We next direct our attention to a simple electric circuit consisting of load resistor 
RL and sinusoidal voltage source V G  with internal resistance RG connected to the load 
by means of 1.5 cm long copper wires. We further assume that those wires are aligned 
along the z-axis and their resistance is negligible. If the generator is set to a frequency 
of 1 MHz, then, as computed before, the wavelength will be 94.86 m. A 1.5 cm long 
wire connecting source with load will experience spatial voltage variations on such a 
minute scale that they are insignificant. 
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When the frequency is increased to 10 GHz, the situation becomes dramatically 
different. In this case the wavelength reduces to h = v,/ 10'' m = 0.949 crn and thus 
is approximately two-thirds the length of the wire. Consequently, if voltage measure- 
ments are now conducted along the 1.5 cm wire, location becomes very important in 
determining the phase reference of the signal. This fact would readily be observed if an 
oscilloscope were to measure the voltage at the beginning (location A), at the end (loca- 
tion B), or somewhere along the wire, where distance A-B is 1.5 cm measured along the 
z-axis in Figure 2-2. 

Figure 2-2 Amplitude measurements of 10 GHz voltage signal at the beginning 
(location A) and somewhere in between a wire connecting load to source. 

We are now faced with a dilemma. A simple circuit, seen in Figure 2-2, with a 
voltage source VG and source resistance RG connected to a load resistor RL through a 
two-wire line of length 1, whose resistance is assumed negligible, can only be analyzed 
with Kirchhoff 's voltage law 

when the line connecting source with load does not possess a spatial voltage variation, 
as is the case in low-frequency circuits. In (2.2) V i  (i = 1, . . . , N )  represents the voltage 
drops over N discrete components. When the frequency attains such high values that the 
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spatial behavior of the voltage, and also the current, has to be taken into account, Kirch- 
hoff's circuit laws cannot be directly applied. The situation can be remedied, however, 
if the line is subdivided into elements of small, (mathematically speaking) infinitesimal 
length, over which voltage and current can be assumed to remain constant, as depicted 
in Figure 2-3. 

Figure 2-3 Partitionin an electric line into small elements Az over which 
Kirchhoff's laws o 9 constant voltage and current can be applied. 

For each section of length Az, we can devise an equivalent electric circuit repre- 
sentation. With reference to our discussions in Chapter 1 it is immediately concluded 
that there will be some series resistance and inductance associated with each wire. In 
addition, due to the relative proximity of the two wires, a capacitive effect will also be 
observed. Since in reality no perfect insulator does exist, a small current flow through 
the dielectric occurs. A more accurate analysis of all these effects will be given in 
Section 2.2. At this point we need to stress that equivalent elements, briefly described 
here, represent only a small segment of the line. To build the complete model of the 
entire line we would have to replicate Az a large number of times. Therefore, the trans- 
mission line in general cannot be represented in terms of lumped parameters, but must 
be viewed as distributed parameters R,  L, C, and G, where all circuit parameters are 
given in terms of unit length. 

The question of when a wire, or a discrete component, has to be treated as a trans- 
mission line cannot precisely be answered with a single number. The transition from 
lumped circuit analysis obeying Kirchhoff's laws to distributed circuit theory involving 



voltage and current waves depends on the wavelength in comparison with the average 
component size. The transition takes place gradually as the wavelength becomes 
increasingly comparable with the circuit elements. As a rule of thumb, when the aver- 
age size 1, of the discrete circuit component is more than a tenth of the wavelength, 
transmission line theory should be applied ( lA t U10). For the example of the 1.5 cm 
wire we would determine the following frequency estimation: 

Can the RF design engineer deal with the simple circuit in Figure 2-2 as a lumped ele- 
ment representation at 700 MHz? Perhaps. Can Kirchhoff's circuit theory be applied to 
the circuit at 1 GHz? Not without having to take into account a significant loss in preci- 
sion. Additional reasons why the use of transmission line theory is needed will become 
apparent in later chapters. 

2.2 Examples of Transmission Lines 

2.2.1 Wo-Wire Lines 

The two-wire transmission line discussed in Section 2.1 is one example of a sys- 
tem capable of transporting high-frequency electric energy from one location to 
another. Unfortunately, it is perhaps the most unsuitable way of transmitting high-fre- 
quency voltage and current waves. As shown schematically in Figure 2-4, the two con- 
ductors separated over a fixed distance suffer from the drawback that the electric and 
magnetic field lines emanating from the conductors extend to infinity and thus influence 
electronic equipment in the vicinity of the line. 

Electric Field 

I- 7 - 
Magnetic Field 
(dashed lines) 

Figure 2-4 Geometry and field distribution in two-wire parallel conductor 
transmission line. 



Further, due to the fact that the wire. pair acts as a large antenna, radiation loss 
tends to be very high. Therefore, the two-wire. line finds only limited applications in the 
RF domain (for instance, when connecting private TV sets to receiving antennas). How- 
ever, it is commonly used in 50-60 Hz power lines and local telephone connections. 
Even though the frequency is low, the distance can easily extend over several kilome- 
ters, thus making the wire size comparable to the wavelength (as an example, 
h = c/  f = 3 x 108/60 = 5000 km). Here again, distributed circuit behavior may 
have to be taken into account. 

of a transmission line is the coaxial cable. It is used for 
mnected RF systems or measurement equipment at h- 

yUIIIIIIU LV U1lO. -hewn in Figure 2-5, a typical coaxial line consists of an 
inner cylindrical conductor of radius a, an outer conductor of radius b, and a dielectric 
medium layered in between. Usually the outer conductor is grounded, thus minimizing 
radiation loss and field interference. Several of the most commonly used dielectric 
materials include polystyrene (E, = 2.5, tanAs = 0.0003 at 10 GHz), polyethylene 
(E, = 2.3, tanAS = 0.0004 at 10 GHz), or teflon (E, = 2.1, tanAs = 0.0004 at 10 GHz). 

Flgure 2-5 Coaxial cable transmission line. 

2.2.3 Mlcmstrip Lines 
It is a common practice to use planar printed circuit boards (PCBs) as the basic 

medium to implement most electronic systems. When dealing with actual RF circuits, 
we need to consider the high-frequency behavior of the conducting strips etched on the 
PCBs, as depicted qualitatively in Figure 2-6. 

The ground plane below the current carrying conductor traces helps prevent exces- 
sive field leakage and thus reduces radiation loss. The use of PCBs simplifies the access 



Examples of Tmnsmlulon L I m  43 

(a) Printed circuit board section (b) Microstrip line 
Figure 2-6 Microstrip transmission line representation. 

to the active and passive devices on the board and reduces the cost of the manufacturing 
process. In addition, PCBs allow the tuning of circuits by simply changing the position 
of the components and manually adjusting variable tuning capacitors and inductors. 

One of the disadvantages of single layered PCBs is that they have rather high radi- 
ation loss and are prone to "crosstalk" (interference) between neighboring conductor 
traces. As noted in Figure 2-7, the severity of field leakage depends on the relative 
dielectric constants, as shown qualitatively in the electric field line displays for teflon 
epoxy (E, = 2.55) and alumina (E, = 10.0) dielectrics. 

(a) Teflon epoxy (E, = 2.55 ) (b) Alumina (E, = 10.0) 

Figure 2-7 Electric field leakage as a function of dielectric constants. 

. Direct comparison of the field lines in Figure 2-7 suggests that to achieve high 
board density of the component layout, we should use substrates with high dielectric 
constants since they minimize field leakage and cross coupling. 

Another way to reduce radiation losses and interference is to use multilayer tech- 
niques to achieve balanced circuit board designs where the microstrip line is "sand- 
wiched" between two ground planes, resulting in the triple-layer configuration seen in 
Figure 2-8. 

A microstrip configuration that is primarily used for low impedance, high-power . applications is the parallel-plate line. Here the current and voltage flow is confined to two 
plates separated by a dielectric medium. This configuration and the corresponding field 
distribution are shown in Figure 2-9 for the dielectric medium of teflon epoxy (E, = 2.55). 



Sandwich structure (&, = 2.5. -.-~~-. - -2-,. 

(a) 5 )  (b) Cross-sectional field distribution 

r lwre  za I nwe-laver transmission line configuration. 

(a) Geometric representation (b) Field distribution (E, = 2.55) 

Flgum 2-9 Parallel-plate transmission line. 

There are many more transmission line configurations used for a number of spe- 
cial-purpose applications. However, a detailed coverage of the pros and cons of all pos- 
sible combinations would go beyond the objectives of this book. 

The preceding transmission line examples all have the commonality that the elec- 
tric and magnetic field components between the current-carrying conductors are traos- 
versely orientated (or polarized); that is, they form a transverse electromagnetic (TEM) 
field pattern similar to the one shown in Figure 1-3. As mentioned in Chapter 1, the 
TEM behavior has to be seen in contrast to guided modes, where the electromagnetic 
wave propagation is accomplished through wave reflections and refractions between 
conducting plates or indexed dielectric media in optical fibers. The analysis is broken 
down into so-called transverse magnetic (Th4) and transverse electric (TE) modes. 
Such modes of operation are of major interest in the microwave range for satellite com- 
munication, radar, and remote sensing applications. Due to their extremely high fre- 
ouencv nf oneratinn. well above the RF ranee. wavemides and ontical fiber cables --...., .. .r....-.-, . .- ................ - ~ .  ~~ ~-~ -~ ~ ~ - - ~ ~  ~r 

require special electromagnetic treatment and are not considered further. Instead, we 
refer the reader to a number of references listed at the end of this chapter. 
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2.3 Equivalent Circuit Representation 
As mentioned previously, voltages and currents are no longer spatially constant on 

the geometric scale of interest to RF circuit design engineers. As a consequence, Kirch- 
hoff's voltage and circuit laws cannot be applied over the macroscopic line dimension. 
However, this problem can be circumvented when the transmission line is broken down 
into smaller (in the limit infinitesimally small) segments. Those segments are still large 
enough to contain all relevant electric characteristics such as loss, as well as inductive 
and capacitive line effects. The main advantage of this reduction to a microscopic rep- 
resentation is the fact that a distributed parameter description can now be introduced 
whose analysis follows Kirchhoff's laws on a microscopic scale. Besides providing an 
intuitive picture, the approach also lends itself to a two-port network analysis, as dis- 
cussed in Chapter 4. 

To develop an electric model, let us consider once again a two-wire transmission 
line. As Figure 2-10 indicates, the transmission line is aligned along the z-axis and seg- 
mented into elements of length Az . 

n , , .  ............... . . . . . . . . . .  .......... . . . .  ..... ........... .-.._ .... ....... ,..' ....... ....... .-.___ ...... .,. ....... .... ,.I. .... ....... %. ..... ..........- .... ...... ....... I(z).=.$, ~(.titak)R, L, ....... 
i Rl Ll + ..i ...... $5:: ..... :-Y;:.:-! .... +. .......,.......... ...... 
: , *! '< . . : : 1  , 

:-:.I,.: ....*....,..... i.. . . . . , . , .. : 
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Figure 2-10 Segmentation of two-wire transmission line into Az-long sections 
suitable for lumped parameter analysis. 

If we focus our attention on a single section residing between z and z + Az, we 
notice that each conductor (1 and 2) is described as a series connection of resistor and 
inductor ( R 1  , Ll , and R 2 ,  L2) .  In addition, the charge separation created by conduc- 
tors 1 and 2 gives rise to a capacitive effect denoted by C. Recognizing that all dielec- 
trics suffer losses (see our discussion in Section 1.4.2), we need to include a 
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conductance G. Again attention is drawn to the fact that all circuit parameters R, L, C, 
and G are given in values per unit length. 

Similar to the two-wire transmission line, the coaxial cable in Figure 2-1 1 can 
also be recognized as a two-conductor configuration with the same lumped parameter 
representation. 

Figure 2-1 1 Segmentation of a coaxial cable into Az length elements suitable for 
lumped parameter analysis. 

A generic form of an electric equivalent circuit is developed as shown in Figure 2- 
12, where the resistances and inductances of the two conductors are usually combined 
into single elements. This representation is not suitable for all transmission line appli- 
cations. For instance, when dealing with transient wave propagation and signal integrity 
issues of inductive and capacitive crosstalks, it generally makes more sense to retain the 
parameter representation shown in Figure 2- 1 1. However, for our treatment of transmis- 
sion lines we will exclusively use the model shown in Figure 2-12. 

z z + Az 

Figure 2-12 Generic electric equivalent circuit representation. 
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It should be recalled from the discussion in Chapter 1 that the aforementioned R, 
L, C, and G elements are frequency-dependent parameters that change significantly 
depending on the operational frequency and the employed transmission line type. Fur- 
ther, L not only incorporates the inductance of the wire (self-inductance; see Section 
1.4.3) but also takes into account the mutual inductance between the wires. In general, 
the self-inductance is so small compared with the mutual inductance that it can be 
safely neglected. To summarize the advantages of the electric circuit representation, we 
observe that it 

provides a clear intuitive physical picture 
lends itself to a standardized two-port network representation 
permits the analysis with Kirchhoff's voltage and current laws 
provides building blocks that allow the expansion from microscopic to macro- 
scopic forms 

There are also two significant disadvantages worth noting: 

It is basically a one-dimensional analysis that does not take into account field 
fringing in the plane orthogonal to the direction of propagation and therefore can- 
not predict interference with other components of the circuit. 
Material-related nonlinearities due to hysteresis effects are neglected. 

Despite these disadvantages, the equivalent circuit representation is a powerful mathe- 
matical model for describing the characteristic transmission line behavior. With this 
model in place, we can now embark on developing generalized transmission line 
equations. 

2.4 Theoretical Foundation 

2.4.1 Basic Laws 

The next question that we should ask ourselves is how to determine the distributed 
circuit parameters if we know the physical dimensions and electric properties of the 
transmission line. The answer is provided through the use of two central laws of elec- 
tromagnetic~: Faraday's law and Amphe's law. 

Rooted in experimental observations, Faraday's and Amp2re's laws establish two 
fundamental relations linking electric and magnetic field quantities. As such, both laws 
provide cornerstones of Maxwell's theory by stating so-called source-field relations. In 
other words, the time-varying electric field as a source gives rise to a rotational mag- 
netic field. Alternatively, the time-varying magnetic field as a source results in a time- 
varying electric field that is proportional to the rate of change of the magnetic field. The 
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mutual linkage between electric and magnetic fields is ultimately responsible for wave 
propagation and traveling voltage and current waves in RF circuits. 

By stating Faraday's and Ampkre's laws in integral and differential forms, we pos- 
sess the necessary tools to calculate, at least in principle, the line parameters R, L, C, 
and G for the electric circuit elements. They are needed to characterize various trans- 
mission line systems. By going through the subsequent calculations, we will observe 
how abstract theoretical laws can be used as a starting point to derive practical circuit 
parameters for a particular type of transmission line. 

Ampire's Law 

This fundamental law states that moving charges, which are characterized by the 
current density J, give rise to a rotational magnetic field H surrounding the charge flow 
as expressed by the integral relation 

where the line integral is taken along the path characterized by the differential element 
dl that defines the edge of the surface element S in such a manner that the surface S 
always stays on the left side. In equation (2.3) the total current density can be written as 
J = Jo + OE + d ( ~ E ) / d t .  It is comprised of (a) the impressed source current density 
Jo , (b) the conduction current density oE, which is induced by an electric field E in the 
conductor and is responsible for conduction losses; and (c) the displacement current 
density a(&E)/a t ,  which is responsible for radiation losses. Here and in the following 
equations we use again bold letters to denote vector quantities such that 

E(r,  t) = Ex(x, y, Z, t)P + Ey(x, Y ,  Z, t ) j  + Ez(x, y, z, t ) i  

where Ex, Ey, EZ are the vector components and f, j ,  i are unit vectors in x, y, z direc- 
tions in a Cartesian coordinate system. Figure 2-13 illustrates the meaning of equation 
(2.3). 

Perhaps less intuitive than the integral relation, nonetheless perfectly identical to 
(2.3), is Ampkre's law in differential or point form: 

where Vx is the curl operator and n is a unit vector perpendicular to the surface ele- 
ment AS. When using vector components in a rectangular coordinate system, this dif- 
ferential operator can be represented in the matrix form 
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Figure 2-13 Ampere's law linking the current flow to the magnetic field. 

Therefore, by applying the curl to the vector field H, we obtain 

VxH = 

where H,, H,, Hz and J,, J, Jz are x, y, and z components of the magnetic field vector H, 
and the current density J. 
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.,mw 
Example 2-1: Magnetic field generated by a constant current 

flow in a conductor 

Plot the graph of the radial magnetic field H ( r )  inside and outside 
an infinitely long wire of radius a = 5 mm aligned along the z-axis 
and carrying a DC current of 5 A. The surrounding medium is 
assumed to be air. 

Solution: This is a typical example for Amfire's law in integral 
form as given by (2.3). Inside the conductor the current density J is 
uniform and is equal to J = I / ( n a 2 ) 2 .  Therefore, the application 
of (2.3) yields the following result: 

I H2nr = -nr2 Ir H = -  
nu2 2na2 

where 0 l r l a .  Outside of the conductor the current density is 
equal to zero and the surface integral in (2.3) gives the total current I 
flowing through the conductor. Thus, the magnetic field H outside 
the wire is obtained as 

where r 2 a . The total magnetic field inside and outside of the infi- 
nitely long wire is thus 

The graph of this radial magnetic field distribution is plotted in 
Figure 2-14. 

We make the important observation that inside the wire the 
magnetic Jield linearly increases from the center to the outer con- 
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Figure 2-14 Magnetic field distribution inside and outside of an infinitely long wire 
of radius a = 5 mm carrying a current of 5 A. 

ductor periphery since more current contributes to the magnetic 
jield. 

Faraday 's law 

This law implies that the time rate of change of the magnetic flux density B = p H  
(p = pop,) as a source gives rise to a rotating electric field 

The line integral is again taken along the edge of the surface S as previously described 
for Amphe's law. The integration of the a wire loop as shown in 
Figure 2-15 yields an induced voltage V 

Similar to Arnphre's law, we can 

Equation (2.8) makes it clear that we need a time-dependent magnetic flux density to 
obtain an electric field, which in turn creates a magnetic field according to Ampkre's law. 
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Figure 2-15 The time rate of change of the magnetic flux density induces a 
voltage. 

"'&M w 
Example 2-2: Induced voltage in a stationary wire loop 

Find the induced voltage of a thin wire loop of radius a = 5 mm in 
air subjected to a time-varying magnetic field H = Hocos(ot) ,  
where Ho = 5 Aim, and the operating frequency is 
f = 100 MHz. 

Solution: The voltage induced in the loop is equal to the line 
integral of the electrical field E along the loop. Employing Faraday's 
law (2.7) results in the following: 

Since the surrounding medium is air, the relative permeability p, 
equals unity and the magnetic flux density is 
B = poH = pOHOcos(at )&.  Substituting B into the preceding 
integral leads to an expression for the induced voltage V in the loop: 

d B .  dS = -p H cos(at )na2 = -na2apoH0sin(at )  
d t dt  O O 

This can be further simplified to V = -0.31 sin(6.28x108t) V .  
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The result of this example is also known as the transformer 
form of Faraday's law whereby a time-varying jield produced by a 
primary coil induces a voltage response in a secondary loop. 

2.5 Circuit Parameters for a Parallel PlateTransmission Line 
Our goal is to compute the line parameters R, L, C, and G for a section of a trans- 

mission line seen in Figure 2-16. To avoid any confusion we explicitly use oCond and 
odiel to denote, respectively, conductivity in the conductor and conductivity in the 
dielectric medium. 

Figure 2-16 Parallel-plate transmission line geometry. The plate width w is large 
compared with the separation d. 

For the analysis we must assume that the plate width w is large compared with the plate 
separation d for a one-dimensional analysis to apply. Further, we assume that the skin 
depth 6 is small compared to the thickness d,  of the plates to simplify the derivation of 
the parameters. Under these conditions we are able to cast the electric and magnetic 
fields in the conducting plates in th? form 

H = jH,(x, z)ejwf (2.9b) 

The term ejw' represents the time dependence of the sinusoidal electric and magnetic 
fields, and phasors E,(x,z) and H,(x,z) encode spatial variations. We do not have any 
field dependency upon y, because the plates are assumed very wide, and thus the elec- 
tromagnetic fields do not change appreciably along the y-axis. Application of the differ- 
ential forms of Faraday's and Ampkre's laws 
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aH VxE = -p- 
at 

VxH = oCondE 

results in two differential equations: 

and 

By differentiating (2.13) with respect to x and substituting (2.12), we find 

2 .  
where p = J O C F ~ ~ , ~ ~ .  The general solution for this second-order ordinary differential 
equation (2.14) is H y ( x )  = ~ e - ' ~  + ~ e ' ~ .  The coefficients A  and B are integration 
constants. We can now perform the following manipulations: 

where 6 = 4-1 is recognized as the skin depth. Since p has a positive real 
component, constant A  should be equal to zero to satisfy the condition that the magnetic 
field in the lower plate must decay in amplitude for negative x. A similar argument can 
be made for the upper plate by setting B  = 0. Thus, for the magnetic field in the lower 
conducting plate we have a simple exponential solution 
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where B = Ho is a yet to be determined constant factor. Since the current density can 
be written as 

we are now able to relate the current density Jz to the total current flow I in the lower 
plate 

where S is the cross sectional area of the lower plate and dp is the thickness of that plate. 
Since we assume that d p  >> 6 ,  the exponential term in (2.18) drops out and I = wHo.  
From this we conclude that Ho = I/w . The electric field at the surface of the conduc- 
tor (x = 0) can be specified as 

Equation (2.19) allows us to compute the surface impedance per unit length, Z,, by 
eliminating the current I as follows: 

The surface resistance and surface inductance per unit length are then identified as 

Both are dependent on the skin depth 6. It is important to point out that (2.21) and 
(2.22) apply for a single conductor. Since we have two conductors in our system (upper 
and lower plates) the total series resistance and inductance per unit length will be twice 
the value of R, and L, , respectively. 

To obtain the inductive and capacitive behavior of the mutual line coupling, we 
must employ the definitions of capacitance and inductance: 
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and 

where we have used the result of (2.18) to compute the current I = wHy. Both in (2.23) 
and (2.24) the capacitance and inductance are given per unit length. 

Finally, we can express the conductance G in a similar way as derived in (2.23): 

Thus we have succeeded in deriving all relevant parameters for the parallel-plate trans- 
mission line. From a practical point of view, at RF frequencies the magnitude of L, is 
typically much smaller than L and therefore is neglected. 

w&Mw 
Example 2-3: Line parameters of a parallel-plate transmission 

line 

For a parallel copper-plate transmission line operated at 1 GHz, the 
following parameters are given: w = 6 mm, d = 1 mm, E, = 2.25, and 
odiel = 0.125 mS/m. Find the line parameters R, L, G, and C per unit 
length. 

Solution: The skin depth for copper with conductivity 
(Tcond = 64.5 l 6 x l 0 ~ ~ - ~ m - ~  at operating frequency of 1 GHz is 
6 = l / J G f  = 1.98 pm , which is assumed to be much 
smaller than the thickness of the conductor. Therefore, the resistance 
of each plate is determined by (2.21). Since we have two plates, the 
total resistance is R = 2R, = 2/(woCond6) = 2.6 W m .  The 
series inductance due to the skin effect is 
L, = 2/(wocon,06) = 0.42 nWm, where the factor 2 takes into 
account both plates. The mutual inductance between plates is deter- 
mined by (2.24) and for our problem is equal to L = 209.4 nWm. 
As seen, the series inductance is much smaller than the mutual 
inductance and therefore can safely be neglected. According to 
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(2.23), the capacitance of the line is given by 
C = ( E ~ E , W ) / ~  = 119.5 pF/m. Finally, the conductance G is 
determined from (2.25) and equals G = 0.75 mS/m . 

The RF suflace resistance due to the skin depth phenomenon 
does, in general, contribute much more signiJicantly to the line 
losses than does the DC resistance. 

2.6 Summary of Different Line Configurations 
The previous computations were carried out for the relatively simple case of a 

parallel-plate transmission line. Similar analyses apply when dealing with more com- 
plicated line geometries, such as coaxial cables and twisted wire pairs. Table 2-1 sum- 
marizes the three common transmission line types. 

Table 2-1 Transmission line parameters for three line types 

The geometric dimensions for the two-wire (D, a),  coaxial (a, b), and parallel- 
plate (w, 4 lines are depicted in Figures 2-4,2-5, and 2-16. The term acosh in Table 2-1 
denotes the inverse hyperbolic cosine function. For more complex transmission line 
configurations, significant mathematical effort must be exerted, and resorting to numer- 
ical analysis procedures is often the only available solution. This is seen when dealing 
with microstrip transmission lines (Section 2.8). 

Parameter 

R 

L 

G 

C 

Two-Wire Line 

1 

7Caocond6 

acosh (% ) 
7C 

7Cbdiel 

acosh(D/(2a)) 

7rE 

acosh(D/(2a)) 

Coaxial Line 

1 
27Cbcond 6(: + k) 

ln (:) 
27C 

27Codiel 

ln(b/a) 

27C& 
ln(b/a) 

Parallel-Plate Line 

2 
~ o c o n d ~  

d 

W 
bdiel ;i 

W 
E - 

d 

Unit 

R/m 

Wm 

s/m 

F/m 
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2.7 General Transmission Line Equation 

2.7.1 Kirchhoff Voltage and Current Law Representations 

Having developed the background of Faraday's and Ampkre's laws in 
Section 2.4.1, we are well positioned to exploit both equations from a circuit point of 
view. This is identical with applying Kirchhoff's voltage and current laws (KVL and 
KCL, respectively) to the loop and node a shown in Figure 2-17. 

Figure 2-17 Segment of a transmission line with voltage loop and current node. 

Adopting phasor notation, we can use Kirchhoff's voltage law to conclude 

(R + jwL)I(z)Az + V(z + Az) = V(z) (2.26) 

which is re-expressed as a differential equation by combining the voltage drop on either 
side of the differential transmission line segment into a differential quotient: 

where R and L are the combined resistance and inductance of the two lines. Applying 
Kirchhoff's current law to the designated node a in Figure 2-17 yields 

I(z) - V(z + &)(G + jwC)Az = I(z + Az) (2.29) 

which can be converted into a differential equation similar to (2.27). The result is 

lim I(z + Az) - I(z) - dI(z) - - = -(G + jwC)V(z) 
A Z + O  AZ dz 

Equations (2.28) and (2.30) are coupled first-order differential equations. They can also 
be derived from a more fundamental point of view, revealing the definitions of R, G, C, 
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and L as discussed in Example 2-4 for the previously analyzed parallel-plate transmis- 
sion line example. 

m m w  
Example 2-4: Derivation of the parallel-plate transmission line 

equations 

Establish the transmission line equations for the parallel-plate con- 
ductors 

Solution: The purpose of this example is to show how the trans- 
mission line equations (2.28) and (2.30) can be derived from the 
fundamental physical concepts of Faraday's and Amp5re's laws. 

Let us first consider Faraday's law (2.7). The surface element 
over which the line and surface integrations are performed is shown 
as a shadowed area in Figure 2- 18. 

ith cell plate 2 m 

Y 'plate 1 

Figure 2-18 Integration surface element for Faraday's law application. 

The line integral in (2.7) is taken along the edge of the shaded 
region with the integration direction denoted by arrows in Figure 2- 
18. Evaluation of this line integration yields the following contribu- 
tions: 
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where E: = E1 . 2 and EZ = E2 . 2 are the electric fields in the 
lower (denoted by index 1) and upper (index 2) plates, respectively; 
and E,(z) = E(z) . fi and E,(z + Az) = E(z + Az) . 8 are the 
electric fields in the dielectric medium between locations z and 
z + & . It is important to note that the direction of the electric field 
in the upper conductor is opposite to that of the electric field in the 
lower conductor, whereas the direction of the field in the dielectric is 
the same regardless of position. The minus sign in front of the unit 
vectors indicates that the integration is performed counterclockwise. 
Combining terms, we obtain 

i 

Since the magnetic field in the dielectric is assumed uniform, the 
integration over the surface in (2.7) gives 

Substitution of these two integrals into (2.7) results in 

Similar to discussions in Section 2.5, the magnetic field in the 
dielectric can be expressed as H y  = I / w  . The electric field in the 
conductor at high frequency is dependent on the skin effect and is 
Ef = E l  = I/(wocOndS) + jI/(woCond8) = EZ . At low fre- 
quency, the skin effect does not affect the electric field behavior. The 
field is solely determined by the DC resistivity of the plates and cur- 
rent I: E, = I/(wocondd,) . Since we are primarily concerned with 
the high-frequency performance, we must assume that the skin 
depth 6 is much smaller than the thickness of the plates. Thus, d, 
has to be replaced with 8 .  Combining expressions for H y  and E,, 
and taking into account the relation for the potential between the 
plates, V = E,d, we obtain 
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where R, = l / (wo, , ,6)  is the surface resistance of the plates, 
L, = I / ( w o C o n d ~ 6 )  is the high-frequency self-inductance of the 
plates, and L = p d / w  is the mutual inductance between both plate 
conductors. 

For the application of Amp&re's law (2.3) we use the surface 
element shown in 2-19. 

ith cell plate 2 

Figure 2-19 Surfaceelement used to apply AmpBre's law. 

The surface integral of the current density J in the dielectric 
medium results in the following expression 

where the odielErw& term represents the conduction current in the 
dielectric, and &(aE,/at)wAz is the contribution of the displace- 
ment current. The line integration of the magnetic field yields 

$H. dl = - H,(z + Az)w + Hy(z )w  = - I(z  + Az) + I ( z )  

Taking into account the relation between the electric field and the 
potential drop Vbetween z and z + Az , that is, E, = V / d ,  we com- 
bine both integrals: 

or, after introducing the differential quotient, 
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Thus, we succeeded in deriving the equations for the parallel-plate 
transmission line. To obtain the voltage and current distribution of 
such a line, the following system of coupled first-order differential 
equations must be solved: 

Usually, the self-inductance due to the skin effect Ls is much 
smaller than the mutual inductance L and is often neglected. 

This example underscores the effort and assumptions required 
to develop closed-form expressions for the parallel-plate transmis- 
sion line. Howevel; if w is comparable in size to d, the preceding 
treatment breaks down and one has to resort to numerical 
simulations. 

2.7.2 Traveling Voltage and Current Waves 

The solution of equations (2.28) and (2.30) is greatly facilitated if these first-order 
differential equations are decoupled. This can be accomplished by spatially differentiat- 
ing both sides of (2.28) and substituting (2.30) for the space derivative of the current. 
The result is a standard second-order differential equation 

describing the voltage behavior in phasor form. Here the factor k is known as a complex 
propagation constant 

k = k, + jki  = J(R + j o L ) ( G  + j o C )  (2.32) 

that depends on the type of transmission line. For simple line configurations, Table 2-1 
provides explicit parameters. Reversing the order of decoupling by differentiating 
(2.30) and substituting (2.28) results in an identical differential equation describing the 
current: 
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General Transmission Line Equation 

Solutions to these decoupled equations are two exponential functions for the voltage 

and for the current 

It is important to observe that (2.34) and (2.35) are general solutions for transmission 
lines aligned along the z-axis. The convention is such that the first term represents 
wavefronts propagating in the +z-direction, whereas the second term denotes wave 
propagation in the -z-direction. This makes physical sense since the negative sign in 
conjunction with k ,  10 ensures diminishing amplitudes for the positive (+z) traveling 
wave. Conversely, negative traveling waves are attenuated due to the diminishing expo- 
nential term. 

2.7.3 General Impedance Definition 

Equation (2.35) is related to (2.34). This can be seen if (2.34) is substituted into 
(2.28). Differentiating and rearranging provides us with a current expression in the fol- 
lowing form: 

Since voltage and current are generally related via an impedance, we can introduce the 
so-called characteristic line impedance Zo by defining 

Substituting the current expression (2.35) into the left-hand side of (2.36), we also find 

The characteristic impedance allows us to express the current (2.36) in the concise form 
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The importance of Zo will become apparent in the following sections. Here it is note- 
worthy to point out that Zo is not an impedance in the conventional circuit sense. Its 
definition is based on the positive and negative traveling voltage and current waves. As 
such this definition has nothing in common with the total voltage and current expres- 
sions used to define a conventional circuit impedance. 

2.7.4 Lossless Transmission Line Model 

The characteristic line impedance defined in (2.37) is, in general, a complex quan- 
tity and therefore takes into account losses that are always present when dealing with 
realistic lines. However, for short line segments, as mostly encountered in RF and MW 
circuits, it does not create an appreciable error to deal with lossless line conditions. This 
implies R = G = 0 and the characteristic impedance (2.37) simplifies to 

Since Zo is independent of frequency, current and voltage waves are only scaled by a 
constant factor. It is instructive to substitute values for a particular transmission line 
type. If we use the parallel-plate transmission line with L and C given in Table 2- 1, we 
find the explicit form 

where the square root term is known as the wave impedance, which yields (p = pO, 
E = E~ ), a value of approximately 377 R in free space. This value is typical when deal- 
ing with radiation systems whereby an antenna emits electromagnetic energy into free 
space. However, unlike electromagnetic field radiation into open space, the transmis- 
sion line introduces geometric constraints as expressed through w and d for the parallel- 
plate line configuration. 

2.8 Microstrip Transmission Lines 

As we have seen in Figures 2-6 and 2-7, a simple treatment of the strip line as a 
parallel-plate capacitor that formed the basis of computing C in Table 2-1 does not 
apply in the general case. If the substrate thickness h increases or if the conductor width 
w decreases, fringing fields become more prominent and cannot be ignored in the math- 
ematical model. Over the years a number of researchers have developed approximate 
expressions for the calculation of the characteristic line impedance, taking into account 
conductor width and thickness. As often encountered in engineering, we have to strike a 
balance between complexity and the accuracy of our computations. The most precise 
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expressions describing microstrip lines are derived by using conformal mapping, but 
these expressions are also the most complex, requiring substantial computational 
efforts. For the purposes of obtaining fast and generally reliable estimations of the line 
parameters, simpler empirical formulas are more beneficial. 

As a first approximation, we assume that the thickness t of the conductor forming 
the line is negligible compared to the substrate height h (t/h < 0.005 ). In this case, we 
can use empirical formulas that depend only on the line dimensions (w and h) and the 
dielectric constant E, . They require two separate regions of applicability depending on 
whether the ratio w/h is larger or less than unity. For narrow strip lines, w/h < 1,  we 
obtain the line impedance 

where Zf = &,/E, = 376.8 R is the wave impedance in free space, and eeff is the 
effective dielectric constant given by 

For a wide line, w/h > 1 , we need to resort to a different characteristic line impedance 
expression: 

with 

It is important to note that the characteristic impedances given by (2.42) and (2.44) are 
only approximations and do not produce continuous functions over the entire range of 
w/h . In particular, we notice that at w/h = 1 the characteristic impedance computed 
according to (2.42) and (2.44) displays a small discontinuity. Since the error introduced 
by this discontinuity is less than 0.596, we still can use the preceding expressions for the 
computation of both the characteristic line impedance and the effective dielectric con- 
stant, as shown in Figures 2-20 and 2-21. In these figures the quantities Zo and ceff are 
plotted as functions of w/h ratios and E, values. The parameter range of w/h and E, 
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is chosen such that it spans the domain of typically encountered practically relevant cir- 
cuit values. 

Line width to dielectric thickness ratio, w lh 

Figure 2-20 Characteristic line impedance as  a function of w/h. 

0 1 
0.1 0.3 1 3 10 

Line width to dielectric thickness ratio, w lh 

Figure 2-21 Effective dielectric constant as  a function of w/h for different 
dielectric constants. 
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In the preceding formulas the effective dielectric constant is viewed as the dielec- 
tric constant of a homogeneous material that fills the entire space around the line, 
replacing dielectric substrate and surrounding air. With the knowledge of the effective 
dielectric constant we can compute the phase velocity of the strip line as 
v, = c / G f .  This leads to an expression for the wavelength of 

where, as before, c  is the speed of light and f is the operating frequency. 
For design purposes we would like to have a relation that allows us to compute 

w / h  ratios based on a given characteristic impedance Zo and dielectric constant e, of 
the substrate. Assuming an infinitely thin line conductor, we can write (see Sobol's arti- 
cle in Further Reading at the end of the chapter) for w / h  5 2 : 

w  - 8eA  - - -  
h  $ A - 2  

where the factor A is given by 

For w / h  2 2 we obtain: 

where the factor B is given by 

c m w  
Example 2-5: Design of a microstrip line 

A particular RF circuit requires that a line impedance of 50 L2 is to 
be maintained. The selected PCB board material is FR-4 with a rela- 
tive dielectric constant of 4.6 and a thickness of 40 mil. What are the 
width of the trace, phase velocity, and wavelength at 2 GHz? 
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Solution: At first we can use Figure 2-20 to determine an 
approximate ratio of w / h .  Choosing a curve corresponding to 
E, = 4.6, we find that for Zo = 50 Q , w / h  is approximately 1.9. 
Therefore, in (2.46) we have to chose the case where w / h  I 2 .  This 
leads to 

Substituting this result into (2.46a), we find 

Then, by using (2.45), we obtain the effective dielectric constant 
to be 

We can compute the characteristic impedance of the line (2.44) to 
verify our result: - 

which is very close to the target impedance of 50 52 and therefore 
indicates that our result is correct. 

Using the obtained ratio for w / h  , we find the trace width to be 
w = 73.9 mil. Finally, the effective dielectric constant just com- 
puted allows us to evaluate the phase velocity of the microstrip line 

and the effective wave length at 2 GHz 
h = v p /  f = 80.67 rnm 

Strictly speaking, this example focuses on a single trace of in . -  
nite length only. In reality, proximity to neighboring traces and 
bends is an issue of practical importance that is most easily 
accounted for in RF/MW computer aided design (CAD) programs. 
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For many applications the assumption of zero thickness of the strip line may not be 
valid and corrections to the preceding equations are needed. The effect of nonzero copper 
strip thickness is approximated as an increase in effective width we, of the conductor 
since more fringing fields will occur. In other words, a finite thickness is modeled by sim- 
ply replacing the width of the strip in (2.42)-(2.45) with an effective width computed as 

where t is the thickness of the conductor, and either x = h if w > h/(27~) > 2t,  or 
x = 2nw if h/(27~) > w > 2t .  

The influence of nonzero thickness on the characteristic line impedance for a stan- 
dard FR-4 substrate with h = 25mil is illustrated in Figure 2-22. 

150 1 , 

O;. 1 0.3 1 3 
Line width to dielectric thickness ratio, w lh 

Figure 2-22 Effect of conductor thickness on the characteristic impedance of a 
microstrip line placed on a 25 mil thick FR-4 printed circuit board. 

As seen in the figure, the effect is most noticeable for narrow strips, while it become 
almost negligible for cases when the width is greater than the thickness of the dielectric. 

2.9 Terminated Lossless Transmission Line 

2.9.1 Voltage Reflection Coefficient 

High-frequency electric circuits can be viewed as a collection of finite transmis- 
sion line sections connected to various discrete active and passive devices. Therefore, 
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let us take at first a closer look at the simple configuration of a load impedance con- 
nected to a finite transmission line segment of length 1 depicted in Figure 2-23. Such a 
system forces us to investigate how an incident voltage wave propagating along the 
positive z-axis interacts with a load impedance representing a generic line termination. 

Figure 2-23 Terminated transmission line at location z = 0. 

Without a loss of generality, the load is assumed to be located at z = 0 and the 
voltage wave is coupled into the line at z = -1. As we know, the voltage anywhere 
along the line is generically given by (2.34). The second term in (2.34) has the meaning 
of a reflection from the terminating load impedance for values z c 0. We introduce the 
voltage reflection coefficient To as the ratio of reflected to incident voltage wave 

at the load location z = 0. As a consequence of this definition, the voltage and current 
waves can be re-expressed in terms of the reflection coefficient as 

and 

If (2.49) is divided by (2.50), we find the impedance as a function of space Z(z) any- 
where along the z-axis -1 I z I 0 .  For instance at z = -1 the total input impedance Zi, 
is recorded, and for location z = 0 the impedance becomes the load impedance 
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Equation (2.5 1) can be solved for the reflection coefficient To with the result 

This is a more useful representation than (2.48) since it involves known circuit quanti- 
ties independent of particular voltage wave amplitude ratios. 

We conclude that for an open line (ZL -+ m) the reflection coefficient becomes 1, 
which means the reflected wave returns with the same polarity as the incident voltage. 
In contrast, for a short circuit (ZL = 0 )  the reflected voltage returns with inverted 
amplitude, resulting in To = -1 . For the case where the load impedance matches the 
line impedance, Z,, = ZL , no reflection occurs and To = 0 .  If there is no reflection we 
have the case where the incident voltage wave is completely absorbed by the load. This 
can be regarded as if a second transmission line with the same characteristic imped- 
ance, but infinite length, is attached at z = 0. 

2.9.2 Propagation Constant and Phase Velocity 

The definition of the complex propagation constant (2.32) assumes a very simple 
form for the lossless line ( R  = G = 0 ). For this case we obtain 

This is identified in generally accepted engineering notation as 

a k ,  = 0 

and 

where a  represents the attenuation coefficient and p is the wave number or propaga- 
tion constant for lossless lines. The propagation constant is now purely imaginary, 
resulting in 

and 

Here, the characteristic impedance is again given by (2.40). Furthermore, from (2.1) it is 
known that the wavelength h can be related to the frequency f via the phase velocity v p  : 



Chapter 2 Transmlsslon Line Analysis 

and the phase velocity v, is given in terms of the line parameters L, C as 

Because of (2.55), we can relate the wave number to the phase velocity: 

Substituting the appropriate line parameters from Table 2-1, it is noticed that for all 
three transmission line types the phase velocity is independent of frequency. The impli- 
cation of this fact is as follows: If we assume a pulsed voltage signal propagating down 
a line, we can decompose the pulse into its frequency components, and each frequency 
component propagates with the same fixed phase velocity. Thus, the original pulse will 
appear at a different location without having changed in shape. This phenomenon is 
known as dispersion-free transmission. Unfortunately, in reality we always have to 
take into account a certain degree of frequency dependence or dispersion of the phase 
velocity that causes signal distortion. 

2.9.3 Standing Waves 

It is instructive to insert the reflection coefficient for a short-circuit line 
(To = -1 ) into the voltage expression (2.56) and change to a new coordinate d repre- 
sentation such that z = 0 in the old system coincides with the origin of the new coordi- 
nate system but extends in opposite, -z direction, as shown in Figure 2-24. 

Figure 2-24 Short-circuit transmission line and new coordinate system d. 

Equation (2.56) now reads 
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We notice that the bracket can be replaced by 2 jsin(pd), and upon converting the pha- 
sor expression back into the time domain, we obtain 

= 2v+sin(pd) cos ( a t  + d 2 )  

The sin-term ensures that the voltage maintains the short circuit condition for d = 0 at 
all time instances t, see Figure 2-25. Because time and space are now decoupled, no 
wave propagation, as discussed in Chapter 1, occurs. This phenomenon can physically 
be explained by the fact that the incident wave is 180" out of phase with the reflected 
wave, giving rise to fixed zero crossings of the wave at spatial locations 0, U2, h, 3U2, 
and so on. 

Figure 2-25 Standing wave pattern for various instances of time. 

Introducing the new coordinate d into (2.56), this equation becomes 

+ + jpd  
V(d) = V e ( 1  + = A(d)[ 1 + T(d)] 

+ + jpd  
where we set A(d) = V e and define a reflection coefficient 

- j2pd 
F(d) = Toe 
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valid anywhere along the length of the line d. The far-reaching implications of equation 
(2.64) as part of the Smith Chart will be subject of Chapter 3. Similarly, the current in 
the new spatial reference frame can be defined as 

Under matched condition (To = 0) the reflection coefficient T(d) is zero, thus main- 
taining only a right-propagating wave. To quantify the degree of mismatch, it is cus- 
tomary to introduce the standing wave ratio (SWR) as the ratio of the maximum 
voltage (or current) over the minimum voltage (or current) as follows: 

We note that the extreme values of (2.64) can only be + I  and -1. Knowing that the 
exponential function has a magnitude of 1, we find for (2.66) the form 

which has a range of 1 I SWR c = , as seen in Figure 2-26. 

Figure 2-26 SWR as a function of load reflection coefficient lrol . 
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In many cases engineers use the term voltage standing wave ratio (VSWR) 
instead of SWR by defining it as the ratio of the maximum absolute voltage value to its 
minimum. It is concluded from the definition (2.66) and from Figure 2-26 that the ideal 
case of matched termination yields an SWR of 1, whereas the worst case of either open 
or short-circuit termination results in SWR + = . Strictly speaking, SWR can only be 
applied to lossless lines, since it is impossible to define a SWR for lossy transmission 
systems. This is because the magnitude of the voltage or current waves diminishes as a 
function of distance due to attenuation and thus invalidates (2.67), which, as a single 
descriptor, is independent of where along the transmission line the measurement is 
taken. Because most RF systems possess very low losses, (2.67) can be safely applied. 
Upon inspection of the exponent in (2.64) we see that the distance between the maxi- 
mum and minimum of the reflection coefficient is 2pd = IT or d = h/4 and the dis- 
tance between two maxima is d = h/2.  

2.1 0 Special Termination Conditions 

2.10.1 Input Impedance of Terminated Lossless Line 

At a distance d away from the load the input impedance is given by the expression 

where (2.63) and (2.65) are used for the voltage and current expressions. Equation 
(2.68) can be converted into the form 

and, upon using (2.52) to replace To, we obtain 
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Division by the cosine term gives us the final form of the input impedance for the termi- 
nated transmission line: 

This important result allows us to predict how the load impedance ZL is trans- 
formed along a transmission line of characteristic impedance Zo and length d. It takes 
into account the frequency of operation through the wave number P. Depending on the 
application, P can be expressed either in terms of frequency and phase velocity, 
p = (2nf )/v,, or wavelength, P = 27c/h. 

2.1 0.2 Short Circuit Transmission Line 

If ZL = 0 (which means the load is represented by a short circuit) expression 
(2.7 1) simplifies to 

Zin(d) = jZotan(pd) (2.72) 

Equation (2.72) can also directly be derived by the division of voltage through current 
wave for the short circuit condition (To = -1 ): 

and 

so that Zin(d) = V/I = jZotan(pd). A plot of voltage, current, and impedance as a 
function of line length is shown in Figure 2-27. 

It is interesting to note the periodic transitions of the impedance as the distance 
from the load increases. If d = 0, the impedance is equal to the load impedance, which 
is zero. For increasing d the impedance of the line is purely imaginary and increases in 
magnitude. The positive sign of the impedance at this location shows that the line 
exhibits inductive behavior. When d reaches a quarter-wave length, the impedance is 
equal to infinity, which represents an open-circuit condition. Further increase in dis- 
tance leads to negative imaginary impedance, which is equivalent to a capacitive behav- 
ior. At distance d = h/2 the impedance becomes zero and the entire periodic process 
is repeated for d > h/2.  

From a practical point of view, it is difficult to conduct electric measurements at 
various locations along the line, or alternatively by considering a multitude of lines of 
different lengths. Much easier (for instance, through the use of a network analyzer) is 
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circuit circuit circuit circuit circuit 

Figure 2-27 Voltage, current, and impedance as a function of line length for a 
short circuit termination. 

the recording of the impedance as a function of frequency. In this case d is fixed, and 
the frequency is swept over a specified range, as discussed in the following example. 

s & M w  
Example 2-6: Input impedance of a short-circuit transmission 

line as a function of frequency 

For a short-circuit transmission line of 1 = 10 cm compute the mag- 
nitude of the input impedance when the frequency is swept from 
f = 1 GHz to 4 GHz. Assume the line parameters are the same as the 
ones given in Example 2.3 (i.e., L= 209.4 nWm and C =  119.5 
pF/m). 

Solution: Based on the line parameters L and C, the characteris- 
tic impedance is found to be Z ,  = JL-c = 41.86 0. Further, the 
phase velocity is given by v, = I / ~ c  and is equal to 
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8 1.99~10 m/s . The input impedance of the transmission line 
Zi,(d = 1 )  as a function of frequency can then be expressed in the 
form 

The magnitude of the impedance is shown in Figure 2-28 for the fre- 
quency range of 1 GHz to 4 GHz. Again we notice the periodic 
short- or open-circuit behavior of this line segment. In other words, 
depending on the frequency, the line exhibits an open-circuit behav- 
ior (for instance at 1.5 GHz) or a short-circuit behavior (for instance 
at 2 GHz). 

Figure 2-28 Magnitude of the input impedance for a 10 crn long, short-circuit 
transmission line as a function of frequency. 

Practical measurements with a network analyzer permit the 
recording of graphs as the one seen in Figure 2-28. Had we f i e d  the 
frequency and varied the line length, we would have gotten an iden- 
tical response. 



Speclal Termination Conditions 79 

2.10.3 Open-Circuit Transmission Line 

If 2, -+ w the input impedance (2.71) simplifies to the expression 

which can be directly derived when we divide the voltage (2.63) by the current wave 
(2.65) for the open circuit condition (To= + 1 ): 

V(d) = vi[e+jpd + e-jpd] = 2v+cos(pd) 

and 

so that Zi,(d) = V/Z = -jZ,cot(pd). Plotting voltage, current, and impedance as a 
function of line length is shown in Figure 2-29. 

Open Short Open Short Open 
circuit circuit circuit circuit circuit 

Figure 2-29 Voltage, current, and impedance as a function of line length for an 
open-circuit termination. 

It is again of interest to keep the length d fixed, and sweep the frequency over a speci- 
fied range, as the next example illustrates. 
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c & M w  
Example 2-7: Input impedance of an open-circuit transmission 

line as a function of frequency 

For an open-circuit transmission line of 1 = 10 cm, repeat the calcu- 
lations of Example 2-6. 

Solution: All calculations remain the same, except that the input 
impedance is changed to 

The magnitude of the impedance is displayed in Figure 2-30 for the 
frequency range of 1 GHz to 4 GHz. The points where the cotangent 
approaches infinity correspond to values where the argument 
reaches 90°, 180°, 270°, and so on. In reality, small losses due to 
the presence of R and G tend to limit the amplitude to finite peaks. 
The physical reason for these peaks is due to a phase shift between 

Figure 2-30 Magnitude of impedance for a 10 cm long, open-circuit transmission 
line as a function of frequency. 



Special Tennlnation Conditions 81 

voltage and current wave. Specifically, when the current wave 
approaches zero and the voltage is finite, the line impedance 
assumes a maximum. This is equivalent to the mechanical effect 
where, for instance, a sound wave at particular discrete frequencies 
(so-called eigen frequencies) forms standing waves between the 
walls of a confining structure. 

Figures 2-28 and 2-30 teach us that impedance matching to a 
particular impedance value is only possible at a fixed frequency. 
Any deviations can result in signiJicantly diferent impedances. 

2.1 0.4 Quarter-Wave Transmission Line 

As evident from (2.70), if the line is matched, ZL = Z O ,  we see that 
Zin(d) = Z ,  regardless of the line length. We can also ask ourselves the question: Is it 
possible to make the input impedance of the line equal to the load impedance 
(Zin(d) = Z,)? The answer is found by setting d = h/2 (or more generally 
d = h / 2  + m ( h / 2 ) ,  m = 1,2, . . .), i.e., 

In other words, if the line is exactly a half wavelength long, the input impedance is 
equal to the load impedance, independent of the characteristic line impedance Zo . 

As a next step, let us reduce the length to d = h/4 (or d = h/4 + m(h/2) , 
m = 1, 2, . . . ). This yields 

L + L tan - .  
O I L  ( h  

The implication of (2.81) leads to the lambda-quarter transformer, which allows the 
matching of a real load impedance to a desired real input impedance by choosing a 
transmission line segment whose characteristic impedance can be computed as the geo- 
metric mean of load and input impedances: 
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20 = J z L z i n  (2.82) 

This is shown in Figure 2-31, where Zin and Z L  are known impedances and Zo is 
determined based on (2.82). 

Zi, desired Z, given 

I 

Figure 2-31 Input impedance matched to a load impedance through a h/4 line 
segment Zo . 

The idea of impedance matching has important practical design implications and 
is investigated extensively in Chapter 8. In terms of a simple example we place the pre- 
ceding formula in context with the reflection coefficient. 

c & M w  
Example 2-8: Impedance matching via a h / 4  transformer 

A transistor has an input impedance of Z, = 25 R which is to be 
matched to a 50 R rnicrostrip line at an operating frequency of 
500 MHz (see Figure 2-32). Find the length, width, and characteris- 
tic impedance of the quarter-wave parallel-plate line transformer for 
which matching is achieved. The thickness of the dielectric is 
d = 1 rnm and the relative dielectric constant of the material is 
E, = 4 .  Assume that the surface resistance R and shunt conduc- 
tance G (see Table 2-1) can be neglected. 

Solution: We can directly apply (2.81) by using the given 
impedances from the problem statement. For the line impedance we 
find 

Z,,,(Z = h/4) = mL = 35.355 R 



Figure 2-32 Input impedance of quarter-length transformer. 

On the other hand, the characteristic impedance of the parallel-plate 
line is 

zli,, = JL~c = (d , /w)Jr;7-~ 

Thus, the width of the line is 

From Table 2-1 we find the values for capacitance and inductance of 
the line: 

L = p d p / w  = 235.8 nH/m 

C = & w / d p  = 188.6 pF/m 

The line length I follows from the condition 

The input impedance of the combined transmission line and the load 
is shown in Figure 2-32. 

where d = 1 = h/4 and the reflection coefficient is given by 

The reflection coefficient is next inserted into the expression for 
Zi, . Plotting the impedance magnitude is shown in Figure 2-33. 

We note that Zi, is matched to the line impedance of 50 i2 not 
only at 500 MHz, but also at 1.5 GHz. Since the quarter-wave trans- 
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Figure 2-33 Magnitude of 4, for frequency range of 0 to 2 GHz and fixed 
length d. 

former is designed to achieve matching only at 500 MHz for a par- 
ticular line length 1, we cannot expect matching to occur for 
frequencies away from the 500 MHz point. In fact, for circuits 
required to operate over a wide frequency band, this approach may 
not be a suitable strategy. 

The h / 4  transfomer plays an important role in many applica- 
tions as an easy-to-build, narrowband matching circuit. 

2.1 1 Sourced and Loaded Transmission Line 
Thus far our discussion has only relied on the transmission line and its termina- 

tion through a load impedance. In completing our investigation, we need to attach a 
source to the line. This results in the added complication of not only having to deal with 
an impedance mismatch between transmission line and load, but having to take into 
considerations possible line-to-source mismatches as well. 
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2.1 1.1 Phasor Representation of Source 

The generic transmission line circuit is shown in Figure 2-34 and 
age source consisting of a generator voltage VG and source impedance 

involves a volt- 

ZG - 

Figure 2-34 Generic transmission line circuit involving source and load 
terminations. 

The input voltage recorded at the beginning of the transmission line can be written 
in general form 

where the last expression follows from the voltage divider rule. The input reflection 
coefficient Tin is obtained by looking from the source into the transmission line of 
length d = 1: 

'in - '0 -2jpJ Tin = T(d= 1) = - = Toe 
'in + 'O 

In (2.84), To is the load reflection coefficient as defined in (2.52). In addition, it is often 
useful to introduce transmission coefficients, which take the form 

at the beginning of the line, and 

at the load end. The formal derivation of the transmission coefficient for a terminated 
transmission line is presented in the following example. 
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l & M  W 
Example 2-9: Determination of transmission coefficient 

Consider a transmission line aligned along the z-axis whose charac- 
teristic line impedance is Zo and has a load Z ,  at d = 0. Derive 
the transmission coefficient T o .  

Solution: To the left of the load impedance ( d  > 0 )  we can write 
for the voltage wave 

~ ( d )  = v+(e+ jPd  + r,,e-jPd) 

and for the transmitted voltage at the load impedance (d  = 0 )  we set 
generically 

V ( d  = 0 )  = V+T,  

Since the voltage has to maintain continuity at d = 0 ,  we obtain 

1 + r0 = To 

from which we can find the transmission coefficient 

The argument of matching incident voltage with transmitted voltage 
wave can be applied to any discontinuity between two lines involv- 
ing different characteristic impedances. 

Reflection and transmission coeficients are easier to measure 
at high frequency than impedances. They are therefore more com- 
monly used to characterize an inteqace between two dissimilar 
transmission line segments. 

In addition to the preceding reflection and transmission coefficients, the connected 
source introduces an additional difficulty. Since the voltage reflected from the load is 
traveling toward the source, we need to consider a mismatch between the transmission 
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line and the source impedance. Accordingly, when looking from the line into the source 
we can define the source reflection coefficient: 

The output reflection coefficient shown in Figure 2-34 is then computed similar to 
- j2pI  

(2.84), but moving in opposite direction: To,, = Tse . 

2.1 1.2 Power Considerations for a Transmission Line 

From the definition of time-averaged power 

we can compute the total power at the beginning of the transmission line. To accom- 
plish this task, the complex input voltage Vin = ~ k ( 1  +Tin) and current 
Iin = ( v ; ~ / z ~ ) ( ~  - Tin) have to be inserted in (2.88). The result is 

We notice here again that, just like voltage and current, power is also treated as being 
comprised of a positive and negative traveling wave. 

Since V: in (2.89) is not directly accessible, it is more useful to re-express (2.89) 
in terms of the generator voltage VG as follows: 

where (2.83) is used. As already known from (2.69), the input impedance is rewritten 

The generator impedance follows from (2.87) as 

Inserting (2.9 1) and (2.92) into (2.90) yields, after some algebra, 
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(2.93) 

Using (2.93) in (2.89), the final expression for the input power is therefore 

Upon using (2.84), we obtain the following expression for the input power for a lossless 
line: 

Since the line is lossless, the power delivered to the load will be equal to the input 
power. If source and load impedances both are matched to the transmission line imped- 
ance (implying T s  = 0 and To = 0), then (2.95) simplifies to 

which represents the power produced by the source under perfectly matched conditions 
and which constitutes the maximum available power provided by the source. When the 
load Z L  is matched to the transmission line, but the source impedance ZG is mis- 
matched, then part of the power will be reflected and only portion of the maximum 
available power will be transmitted into the line at location d = 1 : 

For the case where both source and load impedances are mismatched, reflections will 
occur on both sides of the transmission line and the power that will be delivered to the 
load is defined by (2.95). Besides watts (W), the unit that is widely used to quantify 
power in RF circuit design is dBm, which is defined as follows: 

In other words, power is measured relative to 1 milliwatt. 
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C & M W  
Example 2-10: Power considerations of transmission line 

For the circuit shown in Figure 2-34, assume a lossless line with 
Z, = 75 R ,  ZG = 50 R ,  and Z L  = 40 R .  Compute the input 
power and power delivered to the load. Give your answer both in W 
and dBm. Assume the length of the line to be h/2 with a source 
voltage of VG = 5 V . 

Solution: Since the line is lossless, the power delivered to the 
load is exactly the same as the input power. To find the input power, 
we use expression (2.95). Because the length of the line is h/2,  all 
ex onential terms in (2.95) are equal to unity; that is, 

-!jpi -2 j ( 2 7 c / ~ ) ( ~ / 2 )  
e = e = 1 and (2.95) can be rewritten as 

where the reflection coefficient at the source end is 
Ts = (Z, - Zo)/(ZG + Z,) = -0.2 and the reflection coefficient 
at the load is To = (Z, - Zo)/(ZL + 2,) = -0.304. Substitution 
of the obtained values into the preceding equation yields 

P, = Pin = 61.7 mW 

Most RF data sheets and application notes specify the output 
power in dBm. It is therefore important to gain a 'yeel" of the rela- 
tive magnitudes of mW and dBm. 

The previous analysis is easy to extend to a lossy transmission line. Here we find 
that the input power is no longer equal to the load power due to signal attenuation. 
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However, with reference to Figure 2-34 the power absorbed by the load can be 
expressed similarly to (2.89) as 

where the voltage 1 V L ~  for a lossy transmission is I v ; I  = I v L ~  e-a', with a again being 
the attenuation coefficient. Inserting (2.93) into (2.99) gives as the final expression 

where all parameters are defined in terms of the source voltage and the reflection 
coefficients. 

2.1 1.3 Input Impedance Matching 

Employing an electric equivalent circuit representation for the transmission line 
configuration shown in Figure 2-34 allows us to examine optimal conditions for the 
matching of the generator to the line. 

Figure 2-35 Equivalent lumped input network for a transmission line 
configuration. 

In a lumped parameter expression, and consistent with Figure 2-35, we can 
express (2.95) as 

If we assume the generator impedance to be of fixed complex value ZG = RG + jXG, 
we can find the conditions that have to be imposed on Zin to obtain maximum power 
transfer into the transmission line. Treating Pin as a function of two independent vari- 
ables Rin and X i , ,  we find the maximum power value by taking the first derivatives of 
Pin with respect to Rin and Xi, and setting the values to zero: 



Sourced and Loaded Transmlsslon Line 91 

The two conditions that result are 

R& - RiL, + (X& + 2XGXi,, + X i )  = 0 

and 

Xin(X, + Xi,) = 0 (2.103b) 

Solving (2.103b) gives Xi, = -XG and, upon substituting this result into (2.103a), 
yields Rin = RG . This derivation shows that optimal power transfer requires conjugate 
complex matching of the transmission line to the generator impedance: 

Although this is done for the case of generator to input impedance matching, an identi- 
cal analysis can be carried out to match the output impedance to the load impedance. 
Again we will find that the impedances require conjugate complex matching for maxi- 
mum power transfer: 

ZO",  = ZE 
Here, Z,, represents the impedance looking into the transmission line from the load 
side. 

2.1 1.4 Return Loss and Insertion Loss 

Practical circuit realizations always suffer a certain degree of mismatch between 
available source power and power delivered to the transmission line; that is, Ti, in 
(2.89) is not zero. This mismatch is customarily defined as return loss (RL), which is 

+ 
the ratio of reflected power, P ,  = Pi,, to incident power, Pi = Pin,  or 

RL = -lnlTinI (2.105b) 

Here equation (2.105a) specifies the return loss in decibel (dB) based on the logarithm 
to the base 10, whereas (2.105b) specifies RL in Nepers (Np) based on the natural loga- 
rithm. A conversion between Np and dB is accomplished by noting that 

RL = -2010glrinl = -20(lnlTinl)/(ln10) = -(2010ge)lnlTinl (2.106) 
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Therefore, 1 Np = 201oge = 8.686 dB. As seen from (2.106), if the line is matched 
r in+O,then RL+m.  

.,&M w 
Example 2-11: Return loss of transmission line section 

For the circuit in Figure 2-35 a return loss of 20 dB is measured. 
Assuming real impedance values only, what is the source resistance 
RG if the transmission line has a characteristic line impedance of 
Rin = 50 R ? Is the answer unique? 

Solution: The reflection coefficient is found from (2.105a) as 
10-RL/20 = 10-20/20 

l r i n l  = = 0.1 
The source resistance is now computed by using (2.91): 

In the preceding calculations, we assumed that the reflection coeffi- 
cient r, is positive and therefore is equal to its absolute value. 
However, it can also be negative, and in that case the source resis- 
tance would be 

The return loss, which can be recorded with a network ana- 
l y z e ~  provides immediate access to the rejection coeficient and 
thus the degree of impedance mismatch between the transmission 
line and generato,: 

In addition to the return loss, which involves the reflected power, it is useful to intro- 
duce the insertion loss (IL) defined as a ratio of transmitted power P,  to incident 
power P i .  In practice insertion loss is measured in dB according to the following 
formula: 
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The meaning of (2.107) in circuit design is straightforward. As the name implies, if an 
unmatched circuit is connected to an RF source, reflections occur that result in a loss of 
power delivered to the circuit. For instance, if the circuit represents an open- or short- 
circuit condition, the insertion loss reaches a maximum (IL + - ). Alternatively, if the 
circuit is matched to the source, all power is transferred to the circuit, and the insertion 
loss becomes a minimum (IL = 0 ). 

2.1 2 Summary 
In this chapter a detailed description is given of the fundamental concepts of dis- 

tributed circuit theory. The topic is motivated by the fact that when the wavelengths of 
the voltage and current waves shrink to roughly 10 times the size of the circuit compo- 
nents, a transition must be made from lumped element analysis, based on Kirchhoff's 
current and voltage laws, to distributed theory according to wave principles. This transi- 
tion from low- to high-frequency circuit analysis may not be as clear-cut as the defini- 
tion of less than or equal to 10 h implies; in fact, a considerable "gray area" does exist. 
Nonetheless, starting at a particular frequency a transition is needed to obtain meaning- 
ful design results. 

The underlying concepts of distributed theory can best be understood by develop- 
ing an equivalent circuit representation (Section 2.3) of a microscopic section of the 
transmission line. The required circuit parameters per unit length R, L, G, C are 
obtained directly from Table 2-1 for three common transmission line types (Section 
2.6) without going into much theoretical detail. However, for the readers who are inter- 
ested in how the parameters can be found, Section 2.4 introduces the necessary tools of 
Faraday's and Arnp2re's laws, followed by Section 2.5, which derives all four circuit 
parameters for the parallel-plate transmission line. 

In either case, the knowledge of the circuit parameters ultimately leads to the 
characteristic line impedance of a generic transmission line system: 

From this representation the input impedance of a terminated transmission line is devel- 
oped. The result is perhaps one of the single most important RF equations: 
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The application of this equation for the special cases of open, short, and matched load 
impedances are investigated in terms of their spatial and frequency domain behaviors. 
Furthermore, the lambda-quarter or quarter-wave transformer is introduced as a way of 
matching a load impedance to a desired input impedance. 

As an alternative to the input impedance equation, it is often very useful to repre- 
sent the line impedance in terms of the reflection coefficients at load and source end: 

It is found that the reflection coefficient is spatially dependent, as shown by 

The reflection coefficient concept allows concise expressions for power flow con- 
siderations. Similar to the input impedance we found the input power 

This equation permits the investigation of various matching or mismatching conditions 
at the load/source side. Chapter 2 concludes with a brief discussion of insertion loss and 
return loss. 
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Problems 

2.1 To estimate the effective relative permittivity E,  of a dielectric material used 
in a transmission line, you decide to measure the voltage distribution along 
the line using a similar setup as depicted in Figure 2-2. Your measurements 
at 1 GHz excitation frequency have shown that the wavelength of the signal 
in the cable is equal to 10 m. Using this information, compute the effective 
relative permittivity of the material. Discuss how this experimental setup 
could be used to measure the attenuation factor a .  

As discussed in this chapter, a single signal trace on a printed circuit board 
(PCB) can be treated as a transmission line and can be modeled using an 
equivalent circuit, shown in Figure 2-12. Nevertheless, when the size of the 
PCB gets smaller, the distance between the traces decreases and they can no 
longer be treated as separate transmission lines. Therefore, the interaction 
between them has to be accounted for. Using the configuration shown in 
Figure 2-7, suggest a new equivalent circuit that takes into account interac- 
tion between two signal traces. 

.3 In Example 2-1 we showed how to compute the magnetic field distribution 
produced by the wire carrying current I .  Repeat your computations for a 
system consisting of two parallel wires each of radius 5 mm and carrying a 
current of 5 A in the same direction. Plot the field distribution of the mag- 
netic field H ( r )  as a function of distance r starting at the center-line posi- 
tion between the two wires. 

2.4 Consider a system consisting of a circular loop of radius r = 1 cm of thin 
wire (assume the radius of the wire to be equal to zero) and carrying a con- 



Chapter 2 Transmission Line Analysis 

stant current I = 5 A .  Compute the magnetic field along the center line of 
the loop as a function of distance h from the center of the loop. 

Find k ,  and ki in terms of L, C, G, R, and o in equation (2.32). 

In the text we have derived the transmission line parameters (R, L, G, and C) 
for a parallel-plate line. Derive these parameters for a two-wire configura- 
tion, see Figure 2-4. Assume that D >> a. 

Repeat Problem 2.6 for a coaxial cable, see Figure 2-5. 

An RG6AAJ cable has a characteristic impedance of 75 Q . The capacitance 
of a 0.5 m long cable is measured and the value is found to be 33.6 pF. What 
is the cable inductance per unit length, if the cable is lossless? 

Assuming that dielectric and conductor losses in a transmission line are 
small (i.e. G << o C  and R <( o L ) ,  show that propagation constant k can be 
written as 

where Zo = JLIc is the characteristic impedance of the line in the 
absence of loss. 

Using the results from the previous problem and the transmission line 
parameters given in Table 2- 1, 
(a) show that the attenuation constant in a coaxial cable with small losses is 

where csdiel and ocond are the conductivities of the dielectric material 
and the conductors, respectively. 

(b) show that the attenuation in this case is minimized for conductor radii 
such that xlnx = 1 + x ,  where x = b / a  . 

(c) show that for a coaxial cable with dielectric constant E, = 1 the condi- 
tion of minimum losses results in the characteristic impedance of 
Z ,  = 76.7Q. 

Compute the transmission-line parameters for a coaxial cable, which charac- 
teristics are listed as follows: 
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Inner Conductor: Copper 
a = OSmm, ocu = 64.516~10~ S/m 
Dielectric: Polyethylene 
b = 1.5mm, opOly = 10-l4 S/m 
Outer Conductor: Copper 
t = OSmm, ocu = 64.516~10~ S/m 

An RG58A/U cable has a characteristic line impedance of 50 R . The mea- 
surements performed on a section of this cable produce the following results 

capacitance of 1 meter of cable: 101 pF 
phase velocity: 66% of speed of light 
attenuation at 1 GHz: 0.705 dB/m 
outer diameter of the insulation layer: 2.95 mm 
center conductor is made out of AWG20 copper wire, 
ocu = 64.5l6x1o6 S/m 
dielectric layer is made out of polyethylene, om, = lo-" S/m 

From this list of information, find the following quantities: 
(a) inductance L per unit length of the cable assuming that cable is lossless 
(b) relative permeability E, of the dielectric material 
(c) resistance R per unit length of the cable at operating frequency of 

1 GHz (Hint: use the formula for the attenuation constant derived in 
Problem 2.10) 

(d) conductance G of the dielectric per unit length 

2.13 Using the coaxial cable from the previous problem, compute its characteris- 
tic impedance. Plot the frequency behavior of the real and imaginary compo- 
nents of the characteristic impedance. Is the result what you expected to see? 
Explain any discrepancies. 

2.14 A distortionless transmission line results if R = G = 0, which results in 
k = jwzc = a +  j p ,  or a = 0 and p = w/vp with the phase velocity 
independent of frequency [i.e., vp = 1/(&c) 1. A signal propagating along 
this transmission line will not suffer any pulse distortion or attenuation. If we 
allow R f G # 0 ,  find the condition for which a = &G and P = W&C . 
In other words, the line is attenuative but remains distortionless. 

2.15 It is desired to construct a 50 R microstrip line. The relative dielectric con- 
stant is 2.23 and the board height is h = 0.787 rnm. Find the width, wave- 
length, and effective dielectric constant when the thickness of the copper 
trace is negligible. Assume an operating frequency of 1 GHz. 
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Starting with basic definition for the standing wave ratio (SWR) 

show that it can be re-expressed as 

The characteristic impedance of a coax cable is 50 R and assumed lossless. 
If the load is a short circuit, find the input impedance if the cable is 2 wave- 
length, 0.75 wavelength, and 0.5 wavelength in length. 

An experiment similar to the one shown in Figure 2-2 is performed with the 
following results: The distance between successive voltage minima is 
2.1 cm; the distance of the first voltage minimum from the load impedance 
is 0.9 cm; the SWR of the load is 2.5. If Zo = 50 R ,  find the load imped- 
ance. 

In this chapter we have derived the equation for the input impedance of the 
loaded lossless line, (2.65). Using the same approach, show that for a loaded 
lossy transmission line (i.e., R # 0, G # 0 )  the input impedance is 

Z,,(d)= z 2, + zOtanh(y4 
OZ, + ZLtanh(yd) 

where y is the complex propagation constant and tanh denotes the hyper- 
bolic tangent 

Using the result from the previous problem, compute the input impedance of 
a 10 cm long lossy coaxial cable connected to a ZL = (45 + j5) R load 
impedance. The system is operated at 1 GHz frequency, and the coaxial 
cable has the following parameters: R = 123(pQ/m), L = 123(nH/m), 
G = 123(pS/m), and C = 123(pF/m). 

Show that the input impedance of a lossless transmission line repeats itself 
every half wavelength [i.e., Zin(ld) = Zi,(ld + m(h/2)} 1, where ld is an 
arbitrary length and m is an integer 0, 1,2, . . . 
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2.22 

2.23 

2.24 

2.25 

2.26 

2.27 

2.28 

2.29 

A radio transmitter is capable of producing 3 W output power. The transmit- 
ter is connected to an antenna having a characteristic impedance of 75 R .  
The connection is made using a lossless coaxial cable with 50 R character- 
istic impedance. Calculate the power delivered to the antenna if the source 
impedance is 45 R and the cable length is 11 h. 

For an RF circuit project an open-circuit impedance has to be created with a 
75 R microstrip line placed on a circuit board with relative dielectric con- 
stant of 10 and operated at 1.96 GHz. The line is terminated with a short cir- 
cuit on one side. To what length does the line have to be cut to measure an 
infinite impedance on the other side? 

A short-circuited microstrip line of Zo = 85 R and (3/4)h in length is 
used as a lumped circuit element. What is the input impedance if the line is 
assumed lossless? 

For the following system, compute the input power, power delivered to the 
load, and insertion loss. Assume that all transmission lines are lossless. 

Repeat Problem 2.25 for a 50 R load impedance. 

The complex load impedance Z L  = (75 - j50)R is attached to a lossless 
transmission line of 100 R characteristic impedance. The frequency is 
selected such that the wavelength is 30 cm for a 50 cm long line. Find (a) the 
input impedance, (b) the impedance looking toward the load 10 cm away 
from the load, and (c) the voltage reflection coefficient at the load and 10 cm 
away from the load. 

A 100 R microstrip line is connected to a 75 R line. Determine r, SWR, 
percentage power reflected, return loss, percentage power transmitted, and 
insertion loss. 

A 50 $2 transmission line is matched to a source and feeds a load of 
2, = 75 R .  If the line is 3.4h long and has an attenuation constant 
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a = 0.5 dBlh, find the power that is (a) delivered by the source, (b) lost in 
the line, and (c) delivered to the load. The amplitude of the signal produced 
by the source is 10 V. 

A measurement technique is proposed to determine the characteristic line 
impedance of a coaxial cable via the determination of open, Z g  , and short 
circuit, 2;; input impedances with a network analyzer. It is assumed that the 
line impedance is real. How does one have to process these impedances to 
obtain Zo ? 

A signal generator is used to feed two loads, as shown in the following 
figure. 

Find the both the power produced by the source and the power delivered to 
each load. 

A lossless 50 Q microstrip line is terminated into a load with an admittance 
of 0.05 mS. (a) what additional impedance has to placed in parallel with the 
load to assure an input impedance of 50 Q ? (b) If the input voltage is 10 V, 
find the voltage, current, and power absorbed by the combined load. 

Show that return loss and insertion loss can be expressed in terms of the 
voltage standing wave ratio SWR as 

RL = 201og SWR + and IL = 201og 
SWR+ 1 

SWR- 1 2 r n '  
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The Smith Chart 

A transmission line changes its impedance 
depending on material properties and geometric dimensions. Typical practical realiza- 
tions include microstrip line, coaxial cable, and parallel-plate line. In addition, both the 
length and operating frequency of the transmission line significantly influence the input 
impedance. In the previous chapter we derived the fundamental equation describing the 
input impedance of a terminated transmission line. We found that this equation incorpo- 
rates the characteristic line impedance, load impedance, and, through the argument of 
the tangent function, line length and operating frequency. As we saw in Section 2.9, the 
input impedance can equivalently be evaluated by using the spatially dependent reflec- 
tion coefficient. To facilitate the evaluation of the reflection coefficient, P. H. Smith 
developed a graphical procedure based on conformal mapping principles. This 
approach permits an easy and intuitive display of the reflection coefficient as well as the 
line impedance in one single graph. Although this graphical procedure, nowadays 
known as the Smith Chart, was developed in the 1930s prior to the computer age, it has 
retained its popularity and today can be found in every data book describing passive 
and active RFMW components and systems. Almost all computer-aided design pro- 
grams utilize the Smith Chart for the analysis of circuit impedances, design of matching 
networks, and computations of noise figures, gain, and stability circles. Even instru- 
ments such as the ubiquitous network analyzer have the option to represent certain 
measurements in a Smith Chart format. 

This chapter reviews the steps necessary to convert the input impedance in its 
standard complex plane into a suitable complex reflection coefficient representation via 
a specific conformal transformation originally proposed by Smith. The graphical dis- 
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play of the reflection coefficient in this new complex plane can then be utilized directly 
to find the input impedance of the transmission line. Moreover, the Smith Chart facili- 
tates evaluation of more complicated circuit configurations, which will be employed in 
subsequent chapters to build filters and matching networks for active devices. 

The following sections present a step-by-step derivation of the Smith Chart fol- 
lowed by several examples of how to use this graphical design tool in computing the 
impedance of passive circuits. 

3.1 From Reflection Coefficient to Load Impedance 
In Section 2.9 the reflection coefficient is defined as the ratio of reflected voltage 

wave to incident voltage wave at a certain fixed spatial location along the transmission 
line. Of particular interest is the reflection coefficient at the load location d = 0 .  From a 
physical point of view this coefficient To  describes the mismatch in impedance between 
the characteristic line impedance Zo and the load impedance Z L  as expressed by (2.52). 
In moving away from the load in the positive d-direction toward the beginning of the 
transmission line, we have to multiply To  by the exponential factor exp (- j2pd) , as 
seen in (2.64), to obtain T ( d )  . It is this transformation from To  to T ( d )  that constitutes 
one of the key ingredients in the Smith Chart as a graphical design tool. 

3.1.1 Reflection Coefficient in Phasor Form 

The representation of the reflection coefficient T o  can be cast in the following 
complex notation. 

where 0 ,  = tan-' ( b i / T o , )  . We recall that pure short- and open-circuit conditions in 
(3.1) correspond to To  values of -1 and + 1, located on the real axis in the complex T - 
plane. 

c m w -  
Example 3-1: Reflection coefficient representations 

A transmission line with a characteristic line impedance of 
Z ,  = 50 R is terminated into the following load impedances: 

(a) ZL = 0 (short circuit) 
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(b) ZL + 00 (open circuit) 
(c) ZL = 50 i2 
(d) Z, = (16.67 - jl6.67) 51 
(e) Z, = (50 + j150) 51 

Find the individual reflection coefficients To and display them in 
the complex r -plane. 

Solution: Based on (3.1) we compute the following numbers for 
the reflection coefficients: 
(a) To = -1 (short circuit) 
(b) To = 1 (open circuit) 
(c) r0 = 0 (matched circuit) 
(d) r0 = 0.54L221° 
(e) To = 0.83L34" 
The values are displayed in polar form in Figure 3- 1. 

Figure 3-1 Complex T -plane and various locations of To 

The rejection coeficient is represented in phasor form as done 
when dealing with the conventional voltages and currents in basic 
circuit theory. 
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3.1.2 Normalized Impedance Equation 

Let us return to our general input impedance expression (2.69), into which we 
substitute the reflection coefficient 

This results in 

In order to generalize the subsequent derivations, we normalize (3.3) with respect to the 
characteristic line impedance as follows 

The preceding equation represents a mapping from one complex plane, the zin -plane, 
to a second complex plane, the r -plane. Multiplying numerator and denominator of 
(3.4) by the complex conjugate of the denominator allows us to isolate real and imagi- 
nary parts of zin in terms of the reflection coefficient. This means 

can be separated into 

and 

Equations (3.6) and (3.7) are explicit transformation rules of finding zin if the reflection 
coefficient is specified in terms of T, and Ti .  Therefore, the mapping from the com- 
plex r-plane into the zin -plane is straightforward, as the following example under- 
scores. 
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C & M W  
Example 3-2: Input impedance of a terminated transmission 

line 

A load impedance Z L  = (30 + j60) R is connected to a 50 R 
transmission line of 2 cm length and operated at 2 GHz. Use the 
reflection coefficient concept and find the input impedance Zin 
under the assumption that the phase velocity is 50% of the speed of 
light. 

Solution: We first determine the load reflection coefficient 

Next we compute T(d  = 2cm) based on the fact that 

This results in 2pd = 191.99" and yields for the refection coeffi- 
cient 

- j2pd 
= r, + jTi = - 0.32 - j0.55 = J2/5e -j120.43" r = Toe 

Having thus determined the reflection coefficient, we can now 
directly find the corresponding input impedance: 

We note that the reflection coeficient phasor form at the load, 
T o ,  is multiplied with a rotator that incorporates twice the electric 
line length pd. This mathematical statement thus conveys the idea 
that voltage/current waves have to travel to the load and return back 
to the source to dejine the input impedance. 

Example 3.2 could have been solved just as efficiently by using the impedance 
equation (2.65) developed in Section 2.9. 
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3.1.3 Parametric Reflection Coefficient Equation 

The goal of our investigation is to pursue a different approach toward computing 
the input impedance. This new approach involves the inversion of (3.6) and (3.7). In 
other words, we ask ourselves how a point in the zin -domain, expressed through its nor- 
malized real, r, and imaginary, x,  components, is mapped into the complex r-plane, 
where it then can be expressed in terms of the real, T, , and imaginary, Ti, components 
of the reflection coefficient. Since T appears in the numerator and denominator, we 
have to suspect that straight lines in the impedance plane zin may not be mapped into 
straight lines in the T -plane. All we can say at this point is that the matching of the load 
impedance to the transmission line impedance Zin = Z,, or zin = 1 , results in a zero 
reflection coefficient (i.e., r, = Ti = 0 ) located in the center of the r -plane. 

The inversion of (3.6) is accomplished by going through the following basic alge- 
braic operations: 

At this point the trick consists in recognizing that T, can be written as a complete bino- 
mial expression (see also Appendix C) 

This finally can be cast in the form 

In an identical way as done previously, we proceed to invert (3.7). The result for 
the normalized reactance is 

Both (3.10) and (3.11) are parametric equations of circles in the complex T -plane that 
2 2 2 

can be written in the generic form (r, - a )  + (Ti - b) = c . Here a, b denote shifts 
along the real and imaginary T axes, and c is the radius of the circle. 
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Figure 3-2 depicts the parametric circle equations of (3.10) for various resis- 
tances. For example, if the normalized resistance r is zero, the circle is centered at the 

2 2 origin and possesses a radius of 1, since (3.10) reduces to T, + Ti = 1 . For r = 1 we 
find (T, - 1 /212 + = (1 /2)' , which represents a circle of radius 112 shifted in the 
positive r, direction by 1 /2 units. We conclude that as r increases, the radii of the cir- 
cles are continually reduced and shifted further to the right toward the point 1 on the 
real axis. In the limit for r + m we see that the shift converges to the point 
r / ( r  + 1) + 1 and the circle radius approaches 1 /( r + 1)2 4 0 . 

It is important to realize that this mapping transforms fixed values of r only and 
does not involve x. Thus, for a fixed r an infinite range of reactance values x, as indi- 
cated by the straight lines in the z-plane, maps onto the same resistance circle. The 
mapping involving r alone is therefore not a unique point-to-point correspondence. 

z-plane r-plane 

Constant resistance lines (r = const) 

Figure 3-2 Parametric representation of the normalized resistance r in the 
complex T -plane. 

A different graphical display results for the circle equation (3.1 I), which involves 
the normalized reactance. Here the centers of the circles reside all along a line perpen- 

2 2 dicular to the T, = 1 point. For instance, for x = we note that (T, - 1) + Ti = 0 ,  
which is a circle of zero radius, or a point located at l?, = 1 and Ti = 0 .  For x = 1 

2 2 we see that the circle equation becomes ( r ,  - 1) + (Ti - 1) = 1 . As x + 0 the radii 
and shifts along the positive imaginary axis approach infinity. Interestingly, the shifts 
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can also be along the negative imaginary axis. Here for x = -1 we notice that the cir- 
2 2 cle equation becomes ( r ,  - 1) + (Ti + 1) = 1 with the center located at T,= 1 and 

Ti = -1 . We observe that negative x -values refer to capacitive impedances residing in 
the lower half of the r -plane. Figure 3-3 shows the parametric form of the normalized 
imaginary impedance. For better readability the circles are displayed inside the unit cir- 
cle only. In contrast to Figure 3-2 we notice that fixed x-values are mapped into circles 
in the r-plane for arbitrary resistance values 0 l r < w ,  as indicated by the straight 
lines in the impedance plane. 

The transformations (3.10) and (3.11) taken individually do not constitute unique 
mappings from the normalized impedance into the reflection coefficient plane. In other 
words, impedance points mapped into the r-plane by either (3.10) or (3.11) cannot 
uniquely be inverted back into the original impedance points. However, since the trans- 
formations complement each other, a unique mapping can be constructed by combining 
both transformations, as discussed in the next section. 

z-plane (r > 0) r-plane 

Constant reactance lines (x = const) 

Figure 3-3 Parametric representation of the normalized reactance x in the 
complex r -plane. 

3.1.4 Graphical Representation 

Combining the parametric representations for normalized resistance and reactance 
circles (i.e., Figures 3-2 and 3-3) for (rl 5 1 results in the Smith Chart as illustrated in 
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Figure 3-4. An important observation of the Smith Chart is that there is a one-to-one 
mapping between the normalized impedance plane and the reflection coefficient plane. 
We notice also that the normalized resistance circles r have a range 0 I r < = and the 
normalized reactance circles x can represent either negative (i.e., capacitive) or positive 
(i.e., inductive) values in the range -= < x < += . 

It should be pointed out that the reflection coefficient does not have to satisfy 
Irl 5 1 . Negative resistances, encountered for instance as part of the oscillation condi- 
tion for resonators, lead to the case Irl > 1 and consequently map to points residing 
outside the unit circle. Graphical displays where the reflection coefficient is greater than 
1 are known as compressed Smith Charts. These charts, however, play a rather limited 
role in RF/MW engineering designs and are therefore not further pursued in this text. 
The interested reader may consult specialized literature (see the Hewlett-Packard appli- 
cation note listed at the end of this chapter). 

z-plane r-plane 

Figure 3-4 Smith Chart representation by combining rand x circles for Irl 

In Figure 3-4 we must note that the angle of rotation 2pd introduced b the length 
W L  of the transmission line is measured from the phasor location of To = lrol e in clock- 

wise (mathematically negative) direction due to the negative exponent (-2 j p d )  in the 
reflection coefficient expression (3.2). For the computation of the input impedance of a 
terminated transmission line, the motion is thus always away from the load impedance 
or toward the generator. This rotation is indicated by an arrow on the periphery of the 
chart. We further observe that a complete revolution around the unit circle requires 
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where d = h/2 or 180'. The quantity pd is sometimes referred to as the electrical 
length of the line. 

3.2 lmpedance Transformation 

3.2.1 lmpedance Transformation for General Load 

The determination of the impedance response of a high-frequency circuit is often 
a critical issue for the RF design engineer. Without detailed knowledge of the imped- 
ance behavior, RFJMW system performance cannot adequately be predicted. In this 
section we will elaborate on how the impedance can be determined easily and effi- 
ciently with the aid of the previously introduced Smith Chart. 

A typical Smith Chart computation involving a load impedance ZL connected to a 
transmission line of characteristic line impedance Zo and length d proceeds according 
to the following six steps: 

1. Normalize the load impedance ZL with respect to the line impedance Zo to deter- 
mine zL . 

2. Locate zL in the Smith Chart. 
3. Identify the corresponding load reflection coefficient To in the Smith Chart both 

in terms of its magnitude and phase. 
4. Rotate To by twice its electrical length pd to obtain T i n ( d )  . 
5. Record the normalized input impedance zin at this spatial location d. 
6. Convert zin into the actual impedance Zi, . 

Example 3-3 goes through these steps, which are the standard procedure to arrive at the 
graphical impedance solution. 

Y , & M w  
Example 3-3: Transmission line input impedance determina- 

tion with the Smith Chart 

Solve Example 3-2 by following the six-step Smith Chart computa- 
tions given in the preceding list. 
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Solution: We commence with the load impedance 
ZL = (30 + j60) R and proceed according to the previously out- 
lined steps: 

1. The normalized load impedance is 

2. This point can be identified in the Smith Chart as the intersec- 
tion of the circle of constant resistance r = 0.6 with the circle of 
constant reactance x = 1.2, as seen in Figure 3-5. 

3. The straight line connecting the origin to point zL determines 
the load reflection coefficient T o .  The associated angle is recorded 
with respect to the positive real axis. 

4. Keeping in mind that the outside circle on the Smith Chart cor- 
responds to the unity reflection coefficient (Irol = 1 ), we can find 
its magnitude as the length of the vector connecting the origin to zL. 
Rotating this vector by twice the electrical length of the line (i.e., 
2 x pd = 2 x 96" = 192" ) yields the input reflection coefficient 

'in . 

5. This point uniquely identifies the associated normalized input 
impedance zin = 0.3 - j0.53. 

6. The preceding normalized impedance can be converted back 
into actual input impedance values by multiplying it by 
Z0 = 50 Q , resulting in the final solution: 2, = (15 - j26.5)Q. 

We recall that the exact value of the input impedance obtained 
in Example 3-2 is (14.7 - j26.7) Q .  The small discrepancy is 
understandable because of the approximate processing of the graph- 
ical data in the Smith Chart. The entire sequence of steps leading to 
the determination of the input impedance of the line connected to 
the load is shown in Figure 3-5. 
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Figure 3-5 Usage of the Smith Chart to determine the input impedance for 
Example 3-3. 

These steps appear at jrst cumbersome and prone to error if 
carried out by hand. Howevel; using mathematical spreadsheets and 
relying on modern computer-based instrumentation, the calcula- 
tions are routinely done in seconds and with a high degree of 
accuracy. 
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3.2.2 Standing Wave Ratio 

From the basic definition of the SWR in Section 2.8.3 it follows that for an arbi- 
trary distance d along the transmission line, the standing wave ratio is written 

where T(d) = To exp (- j2pd) . Equation (3.12) can be inverted to give 

This form of the reflection coefficient permits the representation of the SWR as circles 
in the Smith Chart with the matched condition r ( d )  = 0 (or SWR = 1) being the 
origin. 

It is interesting to note that equation (3.12) is very similar in appearance to the 
expression for determining the impedance from a given reflection coefficient: 

This similarity, together with the fact that for (T(d)( 5 1 the SWR is greater or equal to 
unity, suggests that the actual numerical value for the SWR can be found from the 
Smith Chart by finding the intersection of the circle of radius (T(d)( with the right- 
hand side of the real axis. 

Example 3-4: Reflection coefficient, voltage standing wave 
ratio, and return loss 

Four different load impedances: 
(a)ZL = 5 0 Q ,  (b)ZL = 48.5 SZ, (c)ZL = (75+ j25) SZ, and 
(d) ZL = (10 - j5) SZ , are sequentially connected to a 50 SZ trans- 
mission line. Find the reflection coefficients and the SWR circles, 
and determine the return loss in dB. 

Solution: The normalized load impedances and corresponding 
reflection coefficients, return loss, and SWR values are computed as 
follows: 
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(a) zL  = 1 ,  r = ( z L -  l ) / ( z L +  1 )  = 0 ,  RLdB = W ,  SWR = 1 

(b) zL = 0.97, r = ( z L -  l ) / ( z L  + 1) = -0.015, RL,, = 36.3, 
SWR = 1.03 

(c) zL = 1.5 + j0.5, r = ( z L -  I ) / ( z L  + 1 )  = 0.23 + j0.15, 
RLdB = 11.1, SWR = 1.77 

(d) zL = 0.2 - j0.1, r = ( z L  - l ) / ( z L  + 1) = - 0.66 - j0.14, 
RL,, = 3.5, SWR = 5.05 

To determine the approximate values of the SWR requires us to 
exploit the similarity with the input impedance, as discussed previ- 
ously. To this end, we first plot the normalized impedance values in 
the Smith Chart (see Figure 3-6). Then we draw circles with centers 
at the origin and radii whose lengths reach the respective impedance 
points defined in the previous step. From these circles we see that 
the load refection coefficient for zero load reactance ( x L  = 0 ) is 

The SWR can be defined in term of the real load reflection coeffi- 
cient along the real T -axis: 

This requires lrol = rr 2 0 .  In other words, for Tr 2 0 we have to 
enforce rL 2 1 , meaning that only the intersects of the right-hand- 
side circles with the real axis define the SWR. 

As a graphical design tool, the Smith Chart allows immediate 
observation of the degree of mismatch between line and load imped- 
ances by plotting the radius of the SWR circle. 
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Impedance Transformatlon 

Figure 3-6 SWR circles for various reflection coefficients. 

3.2.3 Special Transformation Conditions 

The amount of rotation by which the point of the normalized transmission line 
impedance circles around the Smith Chart is controlled by the length of the line, or 
alternatively the operating frequency. Consequently, both inductive (upper plane) and 
capacitive (lower plane) impedances can be generated based on the line length and the 
termination conditions at a given frequency. These lumped circuit parameter represen- 
tations, realized through distributed circuit analysis techniques, are of significant practi- 
cal importance. 

The cases of open- and short-circuit line termination are of particular interest in 
generating inductive and capacitive behavior and are examined in more detail next. 
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Open Circuit Tkansformations 
To obtain a pure inductive or capacitive impedance behavior, we need to operate 

along the r = 0 circle. The starting point is the right-hand location ( T o  = 1 ) with 
rotation toward the generator in a clockwise sense. 

A capacitive impedance - j X c  is obtained through the condition 

as direct comparison with (2.70) shows. The line length d l  is found to be 

1 d ,  = ~[c~l-~(---& + n n ]  

where n n  ( n  = 1 , 2 ,  . . . ) is required due to the periodicity of the cotangent function. 
Alternatively, an inductive impedance jXLcan be realized via the condition 

The line length d2  is now found to be 

Both conditions are schematically depicted in Figure 3-7. How to choose a particular 
open-circuit line length to exhibit capacitive or inductive behavior is discussed in the 
following example. 

s m W 4  
Example3-5: Representation of passive circuit elements 

through transmission line section 

For an open-ended 50 !2 transmission line operated at 3 GHz and 
with a phase velocity of 77% of the speed of light, find the line 
lengths to create a 2 pF capacitor and a 5.3 nH inductor. Perform 
your computations both by relying on (3.16) and (3.18) and by using 
the Smith Chart. 

Solution: For a given value of phase velocity, the propagation 
constant is 
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Substituting this value into (3.16) and (3.18), we conclude that for 
the representation of a 2 pF capacitor we need an open-circuit line or 
stub with line length d = 13.27 + n38.5 rnrn . For the realization of 
a 5.3 nH inductor, a d ,  = 32.81 + n38.5 mm stub is required. 

The alternative method for computing the lengths of the 
required stubs is through the use of the Smith Chart (see Figure 3-7). 
At a 3-GHz frequency, the reactance of a 2 pF capacitor is 
Xc = l / (oC)  = 26.5!2. The corresponding normalized imped- 

Flgure 3-7 Creating capacitive and inductive impedances via an open-circuit 
transmission line. 
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ance in this case is zc = - jXc  = - j0 .53 .  From the Smith Chart 
we can deduce that the required transmission line length has to be 
approximately 0.172 of one wavelength. We note that for the given 
phase velocity, the wavelength is h = v,/ f = 77 mm . This 
results in a line length of d l  = 13.24 mm which is very close to the 
previously computed value of 13.27 mm. Similarly, for the induc- 
tance we obtain zL = j 2 .  The line length in this case is 0.426 of 
one wavelength, which is equal to 32.8 mm. 

Circuits are often designed with lumped elements before con- 
verting them into transmission line segments, similar to the proce- 
dure described in this example. 

Short-circuit Transformations 
Here the transformation rules follow similar procedures as outlined previously, 

except that the starting point in the Smith Chart is now the To = - 1  point on the real 
axis, as indicated in Figure 3-8. 

A capacitive impedance - j X c  follows from the condition 

where use is made of (2.66). The line length d l  is found to be 

1 d l  = l[n- tan-'(-) + nn] 
P w cz, 

Alternatively, an inductive impedance jXL can be realized via the condition 

The line length d2 is now found to be 

At high frequencies, it is very difficult to maintain perfect open-circuit conditions 
because of changing temperatures, humidity, and other parameters of the medium sur- 
rounding the open transmission line. For this reason short-circuit conditions are more 
preferable in practical applications. However, even a short-circuit termination becomes 
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Figure 3-8 Creating capacitive and inductive impedances via a short-circuit 
transmission line. 

problematic at very high frequencies or when through-hole connections in printed cir- 
cuit boards are involved, since they result in additional parasitic inductances. Moreover, 
a design engineer may not have a choice if the circuit layout area is to be minimized by 
requiring the selection of the shortest line segments. For instance, the realization of a 
capacitor always yields the shortest length for an open-circuit line. 

3.2.4 Computer Simulations 

There are many computer aided design (CAD) programs available to facilitate the 
RF/MW circuit design and simulation processes. These programs can perform a multi- 
tude of tasks, varying from simple impedance calculations to complex circuit optimiza- 
tions and circuit board layouts. One commercial software package that is used throughout 
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this textbook is called Monolithic and Microwave Integrated Circuit Analysis and Design 
(MMICAD) (Optotek Ltd., Kanata, Ontario, Canada), which is a linear simulator pro- 
gram with optimization tools. Another well-known program with advanced features is 
EESof's Libra package (Hewlett-Packard Corporation, Westlake Village, CA, USA), 
which is capable of performing linear as well as nonlinear analyses and optimizations. 

It is not the purpose of this textbook to review and discuss the various CAD pro- 
grams presently in industrial and academic use. However, to reproduce the subsequent 
simulation results, Appendix I provides a brief introduction to the basic features of 
MATLAB, which was chosen as a tool to carry out most simulations presented in this book. 

The main reason for using MATLAB is its wide-spread use as a mathematical 
spreadsheet which permits easy programming and direct graphical display. This elimi- 
nates the need to rely on complex and expensive programs accessible to only a few 
readers. The benefit of a MATLAB routine will immediately become apparent when the 
Smith Chart computations have to be performed repetitively for a range of operating 
frequencies or line lengths as the following discussion underscores. 

In this section we revisit Example 3-2, which computed the input reflection coeffi- 
cient and input impedance of a generic transmission line connected to a load. We now 
extend this example beyond a single operating frequency and a fixed line length. Our 
goal is to examine the effect of a frequency sweep in the range from 0.1 GHz to 3 GHz 
and a change in line length varying from 0.1 cm to 3 cm. The example MATLAB routine, 
which performs the analysis of the transmission line length changing from 0.1 cm to 
3 cm at a fixed operating frequency 2 GHz, is as follows: 

smith-chart ; % plot smith chart 
Set-ZO(50); % set characteristic impedance to 50 Ohm 
s_load(30+j*60); % set load impedance to 30+j60 Ohm 
vp=0.5*3e8; % compute phase velocity 
f =2e9 ; % set frequency to 2 GHz 
d=O.0:0.001:0.03; % set the line length to a range from 0 to 

% 3 crn in 1 nun increments 
betta=2*pi*f/vp; % compute propagation constant 
Gannna=(ZL-ZO)/(ZL+ZO); % compute load reflection coefficient 
rd=abs(Gamna); % magnitude of the reflection coefficient 
alpha=angle(Gamma)-2*betta*d; % phase of the reflection 

% coefficient 
plot(rd*cos(alpha),rd*sin(alpha)); % plot the graph 

In the first line of the MATLAB code (see file fig3-9.m on the accompanying CD) 
we generate the Smith Chart with the necessary resistance and reactance circles. The 
next lines define the characteristic line impedance Zo = 50 Q ,  load impedance 
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9 Z, = (30 + j60) L2 , operation frequency f = 2 x 10 Hz, and phase velocity 
8 

v, = 0.5 x 3 x 10 m/s . The command line d=o . o : o . 001  : o .o3 creates an array d rep- 
resenting the transmission line length, which is varied from 0 mm to 3 cm in 1-mm 
increments. After all parameters have been identified, the magnitude and phase of the 
input reflection coefficients have to be computed. This is accomplished by determining 
the propagation constant P = 2n f /vp, load reflection coefficient 
To = (ZL - Zo)/(ZL + Z,) and its magnitude ITo[, and the total angle of rotation 
a = L(T,) - 2pd .  Finally, the display of the impedance as part of the Smith Chart is 
done through the plot command, which requires both real and imaginary phasor argu- 
ments ITo( cos(a) and Ir,l sin(a) . The final result is shown in Figure 3-9. 

Figure 3-9 Input impedance of a loaded line of 2 cm length for a sweep in 
operating frequency from 0.0 to 3 GHz. If the operating frequency is fixed at 2 GHz 
and the line length is varied from 0.0 to 3 cm, the same impedance curve is obtained. 

For the case where the length of the line is fixed to be 2 cm and the frequency is 
swept from values ranging from 0.0 to 3 GHz, the only necessary modification to the 
above input file is to set d=o. 02, followed by specifying the frequency range in incre- 
ments of 100 MHz (i.e., f=o.o: le7:3e9). We should note that in both cases the electri- 
cal length ( p d )  of the line changes from 0" to 144". Therefore, the impedance graphs 
produced for both cases are identical. 

At the end of the rotation, either by fixing the frequency and varying the length or 
vice versa, the input impedance is found to be Zi, = ( 12.4 + j15.5) 52. It is reassuring 
that for a fixed frequency f = 2 GHz and a line length range d = 0 . . . 2  cm, we ulti- 



- - - -  

Chapter 3 The Smlth Chart 

mately arrive at the same input impedance of Zin = (14.7 - j26.7) s2 as obtained in 
Example 3-2. 

3.3 Admittance Transformation 

3.3.1 Parametric Admittance Equation 

From the representation of the normalized input impedance (3.4), it is possible to 
obtain a normalized admittance equation by simple inversion: 

where Y o  = l /Zo.  To represent (3.23) graphically in the Smith Chart, we have several 
options. A very intuitive way of displaying admittances in the conventional Smith Chart 
or 2-Smith Chart is to recognize that (3.23) can be found from the standard represen- 
tation (3.4) via 

In other words, we take the normalized input impedance representation and multiply 
-jz the reflection coefficient by -1 = e , which is equivalent to a 180' rotation in the 

complex r -plane. 

Y , & M  w 
Example 3-6: Use of the Smith Chart for converting imped- 

ance to admittance 

Convert the normalized input impedance zin = 1 + j 1 = &e i(zA) 

into normalized admittance and display it in the Smith Chart. 

Solution: The admittance can be found by direct inversion, that is 

In the Smith Chart we simply rotate the reflection coefficient corre- 
sponding to zin by 180' to obtain the impedance. Its numerical 
value is equal to yin as shown in Figure 3-10. To denormalize yi, 



Figure 3-10 Conversion from impedance to admittance by 180" rotation. 

we multiply by the inverse of the impedance normalization factor. 
Thus, 

Rotations by 180 degrees to convert from the impedance to the 
admittance representation require only a rejection about the origin 
in the r-plane. 

In addition to the preceding operation, there is a widely used additional possibility. 
Instead of rotating the reflection coefficient by 180' in the 2-Smith Chart, we can 
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rotate the Smith Chart itself. The chart obtained by this transformation is called the 
admittance Smith Chart or the Y-Smith Chart. The correspondences are such that 
normalized resistances become normalized conductances and normalized reactances 
become normalized susceptances. That is, 

and 

This reinterpretation is depicted in Figure 3- 11 for a particular normalized impedance 
point z = 0.6 + j1.2. 

(a) Z-Smith Chart (b) %Smith Chart 
Figure 3-1 1 Reinterpretation of the Z-Smith Chart as a Y-Smith Chart. 

As seen in Figure 3- 1 1, the transformation preserves (a) the direction in which the 
angle of the reflection coefficient is measured and (b) the direction of rotation (either 
toward or away from the generator). Attention has to be paid to the proper identification 
of the extreme points: A short-circuit condition zL = 0 in the Z-Smith Chart is 
yL = 00 in the YSmith Chart, and conversely an open-circuit zL = in the Z-Smith 
Chart is y ,  = 0 in the YSmith Chart. Furthermore, negative values of susceptance are 
plotted now in the upper half of the chart, corresponding to inductive behavior, and pos- 
itive values in the bottom half, corresponding to capacitive behavior. The real compo- 
nent of the admittance increases from right to left. 
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To complete our discussion of the Y-Smith Chart, we should mention an addi- 
tional, often employed definition of the admittance chart. Here the admittance is repre- 
sented in exactly the same manner as the impedance chart without a 180" rotation. In 
this case the reflection coefficient phase angle is measured from the opposite end of the 
chart (see the book by Gonzalez listed in Further Reading at the end of this chapter). 

3.3.2 Additional Graphical Displays 

In many practical design applications it is necessary to switch frequently from 
impedance to admittance representations and vice versa. To deal with those situations a 
combined, or so-called ZY-Smith Chart, can be obtained by overlaying the Z- and Y- 
Smith Charts, as shown in Figure 3-12. 

Figure 3-12 The ZY-Smith Chart superimposes the Z- and Y-Smith Charts in one 
graphical display. 
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This combined ZY-Smith Chart allows direct conversion between impedances and 
admittances. In other words, a point in this combined chart has two interpretations 
depending on whether the Z-Chart or Y-Chart display is chosen. 

C & M W  
Example 3-7: Use of the combined ZY-Smith Chart 

r__X#-C 

Identify (a) the normalized impedance value z = 0.5 + j0.5 and (b) 
the normalized admittance value y = 1 + j2 in the combined ZY- 
Smith Chart and find the corresponding values of normalized admit- 
tance and impedance. 

Solution: Let us first consider the normalized impedance value 
z = 0.5 + j0.5. In the combined ZY-Smith Chart we locate the 
impedance by using circles of constant resistance r = 0.5 and con- 
stant reactance x = 0.5, as shown in Figure 3-12. The intersection of 
these two circles determines the specified impedance value 
z = 0.5 + j0.5. To find the corresponding admittance value we 
simply move along the circles of constant conductance g and sus- 
ceptance b. The intersection gives us g = 1 and jb = -jl (i.e., the 
admittance for part (a) of this example is y = 1 - jl ). The solution 
for the normalized admittance y = 1 + j2 is obtained in identical 
fashion and is also illustrated in Figure 3-12. 

The ZY-Smith Chart requires a fair amount of practice due to 
its "busy" appearance and the fact that inductors and capacitors 
are counted either in positive or negative units depending on 
whether an impedance or admittance representation is needed. 

3.4 Parallel and Series Connections 
In the following sections several basic circuit element configurations are analyzed 

and their impedance responses are displayed in the Smith Chart as a function of fre- 
quency. The aim is to develop insight into how the impedanceladmittance behaves over 
a range of frequencies for different combinations of lumped circuit parameters. A prac- 
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tical understanding of these circuit responses is needed later in the design of matching 
networks (see Chapter 8) and in the development of equivalent circuit models. 

3.4.1 Parallel Connection of Rand L Elements 

Recognizing that g = Zo/R and bL = +Zo/(oL) ,  we can locate the normal- 
ized admittance value in the upper Y-Smith Chart plane for a particular, fixed normal- 
ized conductance g at a certain angular frequency oL : 

As the angular frequency is increased to the upper limit a,, we trace out a curve along 
the constant conductance circle g. Figure 3-13 schematically shows the frequency- 
dependent admittance behavior for various constant conductance values g = 0.3, 0.5, 
0.7, and 1 and for frequencies ranging from 500 MHz to 4 GHz. For a fixed inductance 
value of L = 10 nH and a characteristic line impedance Zo = 50 a ,  the susceptance 
always starts at -1.59 (500 MHz) and ends at -0.20 (4 GHz). 

In Figure 3-13 and the following three additional cases, the transmission line 
characteristic impedance is represented as a lumped impedance of Zo = 50 rR . This is 
permissible since our interest is focused on the impedance and admittance behavior of 
different load configurations. For these cases the characteristic line impedance serves 
only as a normalization factor. 

Figure 3-13 Admittance response of parallel RL circuit for o, I o I o, at 
constant conductances g = 0.3, 0.5, 0.7, and 1. 
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3.4.2 Parallel Connection of R and C Elements 

Here we operate in the lower Y-Chart plane because susceptance bc = ZooC 
remains positive. To locate the normalized admittance value for a particular, fixed nor- 
malized conductance g and angular frequency oL we have 

Figure 3-14 depicts the frequency-dependent admittance behavior as a function of vari- 
ous constant conductance values g = 0.3, 0.5, 0.7, and 1. The normalized susceptance 
for C = 1 pF and characteristic line impedance Zo = 50 i2 always starts at 0.16 
(500 MHz) and ends at 1.26 (4 GHz). 

Figure 3-14 Admittance response of parallel RC circuit for a, 5 o I o, at 
constant conductances g = 0.3, 0.5, 0.7, and 1. 

3.4.3 Series Connection of Rand L Elements 

When dealing with series connections, we can conveniently choose the 2-Smith 
Chart for the impedance display. Identifying the normalized reactive component as 
x, = o L / Z o ,  it is straightforward to locate the normalized impedance value for a par- 
ticular, fixed normalized resistance r at a given angular frequency a, : 

In Figure 3-15 the frequency-dependent impedance behavior is shown as a function of 
various constant resistance values r = 0.3, 0.5, 0.7, and 1. For the same inductance of 
10 nH and characteristic line impedance of 50 i2 as used in Figure 3-13, we now pick 
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reactance circles associated with 0.63 (500 MHz) and with 5.03 (4 GHz). Because the 
reactance is positive and since we use the 2-Smith Chart, all impedances have to reside 
in the upper half plane. 

Figure 3-15 Impedance response of series RL circuit for o, I 6.1 I o, and 
constant resistances r = 0.3, 0.5, 0.7, and 1. 

3.4.4 Series Connection of R and C Elements 

We again choose the 2-Smith Chart for the impedance display. The normalized 
reactive component is xc = +1/(oCZo), indicating that all curves will reside in the 
lower half of the Smith Chart. The normalized impedance value for a particular, fixed 
normalized resistance r at an angular frequency oL reads 

1 zin(aL) = r-j- 
~ L C ~ O  

Figure 3-16 displays the frequency-dependent impedance behavior as a function of var- 
ious constant resistance values r = 0.3,0.5,0.7, and 1. The capacitance of 1 pF in series 
with the variable resistance connected to a characteristic line impedance of 50 SZ now 
yields circles associated with the reactances of -6.03 (500 MHz) and -0.8 (4 GHz), 
which intersect with the four resistance circles, uniquely determining upper and lower 
impedance values. 
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Figure 3-1 6 Impedance response of series RC circuit for oL I o I o, at 
constant resistances r =  0.3, 0.5, 0.7, and 1. 

3.4.5 Example of a T-Network 

In the previous examples only pure series or shunt configurations have been ana- 
lyzed. In reality, however, one often encounters combinations of both. To show how 
easily the ZY Chart allows transitions between series and shunt connections, let us 
investigate by way of an example the behavior of a T-type network connected to the 
input of a bipolar transistor. The input port of the transistor is modeled as a parallel RC 
network as depicted in Figure 3-17. As we will see in Chapter 6, RL approximates the 
base-emitter resistance and CL is the base-emitter junction capacitance. The numerical 
parameter values are listed in Figure 3-17. 

'-+ 

T-type network Transistor 
input 

Figure 3-17 T network connected to the base-emitter input impedance of a 
bipolar transistor. 
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To use the Smith Chart for the computation of the input impedance of this more 
complicated network, we first analyze this circuit at 2 GHz and then show the entire 
response of the circuit for a frequency range from 500 MHz to 4 GHz by employing the 
commercial MMICAD software simulation package. 

To obtain the load impedance, or the input impedance of the transistor, we use the 
Y-Smith Chart to identify the conductance point corresponding to the load resistor 
RL = 3 1.25 R . Assuming a 50 R characteristic line impedance, we determine the 
normalized admittance for this case to be gA = 1.6, which corresponds to point A in 
Figure 3-1 8. 

Figure 3-18 Computation of the normalized input impedance of the T network 
shown in Figure 3-17 for a center frequency f = 2 GHz . 
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The next step is to connect the capacitance CL = 1.91 F in shunt with the resis- 
9 - P tor R L .  At the angular frequency of oL = 2x2 x 10 s , the susceptance of this 

capacitor becomes BCL = o L C L  = 24 mS , which corresponds to a rotation of the 
original point A into the new location B. The amount of rotation is determined by the 
normalized susceptance of the capacitor bcL = BcLZo = 1.2 and is carried out along 
the circle of constant conductance in the YSmith Chart (see Figure 3-18). 

Re-evaluating point B in the Z-Smith Chart, we obtain the normalized impedance 
of the parallel combination of resistor RL and capacitor C L  to be z, = 0.4 - j0.3 . The 
series connection of the inductance L ,  results in the new location C .  This point is 
obtained through a rotation from xB = -0.3 by an amount xL, = o L L 1 / Z o  = 1.1 to 
xc = 0.8 along the circle of constant resistance r = 0.4 in the Z-Smith Chart as dis- 
cussed in Section 3.4.3. 

Converting point C into a Y-Smith Chart value results in yc = 0.5 - jl.O. The 
shunt connected capacitance requires the addition of a normalized susceptance 
bc = a C Z o  = 1.5, which results in the admittance value of yD = 0.5 + j0.5 or 
point D in the Y-Smith Chart. Finally, converting point D into the impedance value 
zD = 1 - j 1 in the 2-Smith Chart allows us to add the normalized reactance 
xL2 = wLL2/Zo = 1 along the constant r = 1 circle. Therefore, we reach z ,  = 1 
or point E in Figure 3-18. This value happens to match the 50 L? characteristic trans- 
mission line impedance at the given frequency 2GHz. In other words, 
Zin = Z ,  = 5 0 Q .  

When the frequency changes we need to go through the same steps but will arrive 
at a different input impedance point z i n .  It would be extremely tedious to go through 
the preceding computations for a range of frequencies. This is most efficiently done by 
the computer. 

Relying on the previously mentioned CAD program MMICAD we are able to 
produce a graphical display of the input impedance in the 2-Smith Chart over the entire 
frequency range in preselected increments of 10 MHz, as shown in Figure 3-19. This 
figure can also be generated as part of the MATLAB software (see file fig3-l8.m on the 
accompanying CD). 

We notice that the impedance trace ranging from 0.5 to 4 GHz is in agreement 
with our previous calculations at 2 GHz. Also, as the frequency approaches 4 GHz, the 
capacitor of C = 2.39 pF behaves increasingly like a short circuit in series with a single 
inductor L 2 .  For this reason, the normalized resistance r approaches zero and the reac- 
tance grows to large positive values. 
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Figure 3-19 CAD simulation of the normalized input impedance q, for the 
network depicted in Figure 3-1 7 over the entire frequency range 

500 MHz I f 2 4  GHz. 

3.5 Summary 

This chapter has derived the Smith Chart as the most widely used RF graphical 
design tool to display the impedance behavior of a transmission line as a function of 
either line length or frequency. Our approach originated from the representation of the 
normalized input impedance of a terminated transmission line in the form 

which can be inverted in terms of the reflection coefficient to yield two circle equations 
(3.10) and (3.11), which take on the following expressions for the normalized 
resistance r: 

and for the normalized reactance x 

Superimposing the circles described by both equations over the complex polar form of 
the normalized impedance z-plane on the unit circle yields the Smith Chart. The key 
feature to remember is that one full rotation is equal to halfa wavelength because of the 
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exponent 2pd in the reflection coefficient expression (3.2). In addition to observing the 
impedance behavior, we can also quantify in the Smith Chart the degree of mismatch 
expressed by the standing wave ratio (SWR) equation (3.12), or 

which can be directly obtained from the chart. 
To facilitate computer-based evaluation of the Smith Chart, a wide range of com- 

mercial programs can be utilized. Due to its ease of implementation on a PC and its 
user-friendly interface, throughout this book we have used the package MMZCAD 
developed by Optotek. However, for the relatively incomplicated circuits analyzed in 
this Chapter, one can also create a custom-tailored Smith Chart and perform simple 
computations by relying on mathematical spreadsheets such as Mathematics, MATLAB, 
or MathCad. To demonstrate the procedure, a number of MATLAB modules have been 
developed, and the use of these so-called m.$les as part of a basic Smith Chart compu- 
tation is demonstrated in Section 3.2.4. 

A transition to the admittance, or Y-Smith Chart, can be made via (3.23): 

and it is found that the only difference to (3.4) is a sign reversal in front of the reflection 
coefficient. Consequently, rotating the reflection coefficient in the Z-Smith Chart by 
180" results in the Y-Smith Chart. In practice, this rotation can be avoided by turning 
the chart itself. Superimposing the rotated chart over the original Z-Smith Chart pro- 
vides a combined ZY-Smith Chart display. The benefit of such a display is the easy tran- 
sition from parallel to series connection in circuit designs. This ease is demonstrated by 
a T-network configuration connected to the input port of a bipolar transistor consisting 
of a parallel RC network. To investigate the impedance bghavior as a function of fre- 
quency sweep, however, is most easily accomplished through the use of CAD programs. 
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Problems 

3.1 Consider a load ZL = (80 + j40) R connected to a lossy transmission line 
with characteristic line impedance of 

2 0  = 
0.1 + j200 

0.05 - j0.003 
Determine the reflection coefficient and the standing wave ratio (SWR) at 
the load. 

A coaxial cable of characteristic line impedance Zo = 75 R is terminated 
by a load impedance of 2, = (40 + j35) R . Find the input impedance of 
the line for each of the following pairs of frequency f and cable length d 
assuming that the propagation velocity is 77% of the speed of light: 
(a) f = 1 GHz and d = 50 cm 
(b) f = 5 GHz and d = 25 cm 
(c) f = 9 GHz and d = 5 cm 

The attenuation coefficient of a transmission line can be determined by 
shortening the load side and recording the VSWR at the beginning of the 
line. We recall that the reflection coefficient for a lossy line takes on the form 
T ( d )  = r0exp(-kl) = roexp(-al)exp(-jpl) . If the line is 100 m in 
length and the VSWR is 3, find the attenuation coefficient a in Nplm, and 
dB1m. 
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3.4 A load impedance of Z L  = (150 - j50) R is connected to a 5 cm long 
transmission line with characteristic line impedance of Zo = 75 R .  For a 
wavelength of 6 cm, compute 
(a) the input impedance 
(b) the operating frequency, if the phase velocity is 77% the speed of light 
(c) the SWR 

3.5 Identify the following normalized impedances and admittances in the Smith 
Chart: 
(a) z = 0.1 + j0.7 
(b) y = 0.3 + j0.5 
(c) z = 0.2 + j O . l  
(d) y = 0.1 + j0.2 
Also find the corresponding reflection coefficients and SWRs. 

3.6 An unknown load impedance is connected to a 0.3h long, 50 R lossless 
transmission line. The SWR and phase of the reflection coefficient measured 
at the input of the line are 2.0 and -20°, respectively. Using the Smith Chart, 
determine the input and load impedances. 

3.7 In Section 3.1.3 the circle equation (3.10) for the normalized resistance r is 
derived from (3.6). Start with (3.7); that is, 

and show that the circle equation 

can be derived. 

3.8 Starting with the equation for normalized admittance 

prove that the circle equations for the Y-Smith Chart are given by the follow- 
ing two formulas: 
(a) For the constant conductance circle as 

(b) For the constant susceptance circle as 
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3.9 A lossless transmission line (Zo = 50 R )  is 10 cm long (f = 800 MHz, 
v, = 0 .77~) .  If the input impedance is Zin = j60 R 
(a) Find Z L  (using the Smith Chart) 
(b) What length of a short-circuit transmission line would be needed to 

replace ZL ? 

3.10 A transmission line of characteristic impedance Zo = 50 R and length 
d = 0.151 is terminated into a load impedance of ZL = (25 - j30) R . 
Find To, Zin(d) , and the SWR by using the 2-Smith Chart. 

3.1 1 A short-circuited 50 R transmission line section is operated at 1 GHz and 
possesses a phase velocity of 75% of the speed of light. Use both the analyt- 
ical and the Smith Chart approach to determine the shortest lengths required 
to obtain (a) a 5.6 pF capacitor, and (b) a 4.7 nH inductor. 

3.12 Determine the shortest length of a 75 R open-circuit transmission line that 
equivalently represents a capacitor of 4.7 pF at 3 GHz. Assume the phase 
velocity is 66% of the speed of light. 

3.13 A circuit is operated at 1.9 GHz and a lossless section of a 50 R transmis- 
sion line is short circuited to construct a reactance of 25 R . (a) If the phase 
velocity is 314 of the speed of light, what is the shortest possible length of 
the line to realize this impedance? (b) If an equivalent capacitive load of 25 
R is desired, determine the shortest possible length based on the same phase 
velocity. 

3.14 A microstrip line with 50 R characteristic line impedance is terminated into 
a load impedance consisting of a 200 R resistor in shunt with a 5 pF capac- 
itor. The line is 10 cm in length and the phase velocity is 50% the speed of 
light. (a) Find the input impedance in the Smith Chart at 500 MHz, 1 GHz, 
and 2 GHz, and (b) use the MATLAB routine (see Section 3.2.4) and plot the 
frequency response from 100 MHz to 3 GHz in the Smith Chart. 

3.15 For an FM broadcasting station operated at 100 MHz, the amplifier output 
impedance of 250 R has to be matched to a 75 S2 dipole antenna. 
(a) Determine the length and characteristic impedance of a quarter-wave 

transformer with v p  = 0 . 7 ~ .  
(b) Find the spacing D for a two-wire lossless transmission line with AWG 
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26 wire size and a polysterene dielectric (E, = 2.55 ). 

Consider the case of matching a 73 SZ load to a 50 SZ line by means of a 
h/4  transformer. Assume the matching is achieved for a center frequency of 
f = 2 GHz. Plot the SWR for the frequency range 1/3 If / f 5 3 .  

A line of characteristic impedance of 75 52 is terminated by a load consist- 
ing of a series connection of R = 30 i2 , L = 10 nH , and C = 2.5 pF . 
Find the values of the SWR and minimum line lengths at which a match of 
the input impedance to the characteristic line is achieved. Consider the fol- 
lowing range of frequencies: (a) 100 MHz, (b) 500 MHz, and (c) 2 GHz. 

A 50 SZ lossless coaxial cable (E, = 2.8) is connected to a 75 SZ antenna 
operated at 2 GHz. If the cable length is 25 cm, find the input impedance by 
using the analytical equation (2.71) and the Z-Smith Chart. 

A balanced to unbalanced (balun) transformation is often needed to connect 
a dipole antenna (balanced) to a coaxial cable (unbalanced). The following 
figure depicts the basic concept. 
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As an alternative of using a transformer, one often uses the following 
antenna connection. 

(a) Explain why one leg of the dipole antenna is connected a distance h/4  
away from the end of the coax cable. 

(b) For an FM broadcast band antenna in the frequency range from 88 to 
108 MHz, find the average length where the connection has to be made. 

3.20 Using the ZYSmith Chart, find the input impedance of the following net- 
work at 2 GHz. 

What is the input impedance of this network at 1 GHz? 

3.21 A Zo = 50R transmission line is 0.5h in length and terminated into a load 
of Z, = (50 - j30)R . At 0.35 h away from the load, a resistor of 
R = 25R is connected in shunt configuration (see figure below). Find the 
input impedance with the help of the ZY Smith Chart. 
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3.22 A 50-R transmission line of 314 wavelength in length is connected to two 
transmission line sections each of 75 R in impedance and length of 0.86 and 
0.5 wavelength, respectively, as illustrated in the following figure. 

The termination for line 1 is Z1 = (30 + j40) R and Z2 = (75-j80) R 
for line 2. Employ the Smith Chart and find the input impedance. 

3.23 Repeat the previous problem if all characteristic line impedances are 
Z, = 50 R and all transmission line sections are h/4 in length. 

3.24 A dipole antenna of impedance ZL = (75 + j20) R is connected to a 50 R 
lossless transmission whose length is h/3 . The voltage source VG = 25V 
is attached to the transmission line via an unknown resistance RG. It is 
determined that an average power of 3W is delivered to the load under load- 

match side matching (ZL = 50 R). Find the generator resistance R G ,  and 
determine the power delivered to the antenna if the generator impedance is 
matched to the line via a quarter-wave transformer. 
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3.25 Determine the values of the inductance L and the capacitance C such that 
they result in a 50 i2 input impedance at 3 GHz operating frequency for the 
following network. 

v 

3.26 An open-circuit transmission line (50 a) is operated at 500 MHz (vp = 0.7~). 
Use the ZY Smith Chart and find the impedance 2, if the line is 65 cm in 
length. Find the shortest distance for which the admittance is Y, = -j0.05S. 

3.27 Find the minimum line length l I  and the minimum length of the short-cir- 
cuited stub l2  in terms of wavelength A ,  such that the input impedance of 
the circuit is equal to 50 i2 . 

3.28 Find the input impedance in terms of magnitude and phase of the following 
network at an operating frequency of 950 MHz. 

3.29 Repeat your computation and solve Problem 3.28 for a 1.5 GHz operating 
frequency. Comment on the differences in your results. 
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3.30 A specific transmission line configuration is as follows: 

The characteristic line impedance for all three elements is Zo = 50 R . The 
load impedance has a value of Z ,  = (20 + j40) R ,  and the electrical 
lengths of the corresponding line segments are = 164.3", = 57.7', 
and Q3 = 25.5'. 
(a) Find the input impedance. 
(b) Find the input impedance if transmission line segment O2 is open 

circuit. 
(This problem and Problem 3.27 become very important in Chapter 8, when 
we discuss the problem of matching a particular load impedance to a desired 
input impedance.) 



Single- and Multiport 
Networks 

E ver since single- and multiple port networks were 
first introduced into the electrical engineering profession through Guillernin and Feld- 
keller, they have quickly become indispensable tools in restructuring and simplifying 
complicated circuits as well as in providing fundamental insight into the performance 
of active and passive electronic devices. Moreover, the importance of network model- 
ing has extended far beyond electrical engineering and has influenced such diverse 
fields as vibrational analysis in structural and mechanical engineering as well as bio- 
medicine. For example, today's piezoelectric medical transducer elements and their 
electrical-mechanical conversion mechanisms are most easily modeled as a three-port 
network. 

The ability to reduce most passive and active circuit devices, irrespective of their 
complicated and often nonlinear behavior, to simple input-output relations has many 
advantages. Chief among them is the experimental determination of input and output 
port parameters without the need to know the internal structure of the system. The 
"black box" methodology has tremendous appeal to engineers whose concern is mostly 
focused on the overall circuit performance rather than the analysis of individual compo- 
nents. This approach is especially important in RF and MW circuits, where complete 
field theoretical solutions to Maxwell's equations are either too difficult to derive or the 
solutions provide more information than is normally needed to develop functional, 
practical designs involving systems such as filters, resonators, and amplifiers. 

In the following sections our objective is to establish the basic network input-out- 
put parameter relations such as impedance, admittance, hybrid, and ABCD-parameters. 
We then develop conversions between these sets. Rules of connecting networks are pre- 
sented to show how more complicated circuits can be constructed by series and parallel 
cascading of individual network blocks. Finally, the scattering parameters are presented 
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as an important practical way of characterizing RF/MW circuits and devices through 
the use of power wave relations. 

4.1 Basic Definitions 
Before embarking on a discussion of electrical networks we have to identify some 

general definitions pertaining to directions and polarity of voltages and currents. For 
our purposes we use the convention shown in Figure 4-1. Regardless of whether we 
deal with a single-port or an N-port network, the port-indexed current is assumed to 
flow into the respective port and the associated voltage is recorded as indicated. 

Two-port 
Network Network 

Port 1 Port 2 

i A i 

I .do 
Port1 +%, + 

- v2 Port 2 - 

Multiport + I-$ + Port 4 Port3 - - 
Network 

Figure 4-1 Basic voltage and current definitions for single- and 
multiport network. 

In establishing the various parameter conventions we begin with the voltage-cur- 
rent relations through double-indexed impedance coefficients Z,,, where indices n and 
rn range between 1 and N. The voltage at each port n = 1 . . . N is given by 

v 1  = Z l l i l  + Z12 i2  + .. . + Z I N i N  

for port 1, 

v ,  = Z, ,  i ,  + Z,,i, + . . . + Z2,iN 

for port 2, and 

(4. la) 

(4. lb) 

V N  = Z N  i l  + ZN2i2  + .. . + Z N N i N  (4.1~)  

for port N. We see that each port n is affected by its own impedance Z, ,  as well as by a 
linear superposition of all other ports. In a more concise notation, (4.1) can be con- 
verted into an impedance or Z-matrix form: 
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or, in matrix notation, 

{V} = [ZI{Il (4.3) 
where { V )  and {I) are vectors of voltages vl, v2, ..., vN and currents i l ,  i2, ..., iN, 
respectively, and [Z] is the impedance matrix. 

Each impedance element in (4.2) can be determined via the following protocol: 

which means that the voltage v, is recorded at port n while port m is driven by current 
im and the rest of the ports are maintained under open terminal conditions (i.e. ik = 0 
where k # m).  

Instead of voltages as the dependent variable, we can specify currents such that 

or 

111 = [YI{Vl (4.6) 

where, similar to (4.4), we define the individual elements of the admittance or 
Y-matrix as 

Y , ,  = 4 1 
vm 

(4.7) 
vk = 0 (for k + m) 

Comparing (4.2) and (4.5), it is apparent that impedance and admittance matrices are 
the inverse of each other: 

[Z] = [YI-' (4.8) 
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RF&M W 
Example 4-1: Matrix representation of Pi-network 

For the pi-network (the name of the network comes from the resem- 
blance with the greek letter l7) shown in Figure 4-2 with generic 
impedances ZA , ZB, and Zc find the impedance and admittance 
matrices. 

port 1 port 2 

Figure 4-2 Pi-network as a two-port network. 

Solution: The impedance elements are found by using (4.4) and 
the appropriate open- and short-circuit termination conditions. 

To find Zll  we must compute the ratio of the voltage drop vl  
across port 1 to the current il flowing into this port when the current 
into port 2 equals zero. The requirement i2 = 0 is equivalent to an 
open-circuit condition. Thus, the impedance Zl is equal to the par- 
allel combination of impedances ZA and ZB + ZC . 

The value for ZI2 can be found as the ratio of voltage drop vl mea- 
sured across port 1 to the current i2. In this case we must ensure that 
the current il remains zero (i.e., we must treat port 1 as open). Volt- 
age vl  is equal to the voltage drop across impedance ZA and can be 
obtained using the voltage divider rule: 

where vAB is a voltage drop across impedances ZA and 2, con- 
nected in series and computed as vAB = i2[ZC11(ZA + Z B ) ] .  Thus, 
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Similarly, we can obtain the remaining two coefficients of the 
impedance matrix: 

Thus, the impedance matrix for the generic pi-network is written in 
the form 

The coefficients for the admittance matrix can be derived using 
(4.7). To find the value for Y we must find the ratio of current flow 
into port 1 to the voltage drop across this port when the second port 
is shortened (i.e., v2 = 0 ). 

The value for coefficient Y12 of the admittance matrix can be 
obtained by shortening port 1 (i.e., forcing vl = 0 )  and measuring 
the ratio of the current il  to the voltage drop across port 2. We note 
that, when a positive voltage is applied to port 2, the current i l  will 
flow away from port 1, resulting in a negative current: 

The rest of the admittance matrix can be derived in the same way, 
leading to the following final form 
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where Y ,  = z;', Y B  = z i 1 ,  and Y c  = Z: . 
Direct evaluation shows that the obtained impedance and 

admittance matrices are indeed inversely related, which supports the 
validity of (4.8). 

The practical determination of the matrix coeficients can be 
accomplished easily by enforcing open- and short-circuit condi- 
tions. However; as the frequency reaches RF limits, parasitic termi- 
nal effects can no longer be ignored and a different measurement 
approach becomes necessary. 

Example 4-1 indicates that both impedance and admittance matrices are symmet- 
ric. This is generally true for linear, passive networks. Passive in this context implies 
not containing any current or voltage sources. We can state the symmetry as 

z n m  = z m n  (4.9) 

which also applies for admittances because of (4.8). In fact, it can be proved that any 
reciprocal (that is, nonactive, linear) and lossless N-port network is symmetric. 

Besides impedance and admittance network descriptions, there are two more use- 
ful parameter sets depending on how the voltage and currents are arranged. Restricting 
our discussion to two-port networks and with reference to Figure 4-1, we define the 
chain or ABCD-matrix as 

and the hybrid or h-matrix as 
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The determination of the individual matrix coefficients is identical to the method intro- 
duced for the impedance and admittance matrices. For instance, to find h12 in (4.1 l ) ,  
we set i l  to zero and compute the ratio of v l  over v2 ; that is, 

It is interesting to note that in the hybrid representation parameters hZ1 and h12 define 
the forward current and reverse voltage gain, respectively. The remaining two parame- 
ters determine the input impedance ( h l l  ) and output admittance ( h 2 2 )  of the network. 
These properties of the hybrid representation explain why it is most often used for low- 
frequency transistor models. The following example shows the derivation of the hybrid 
matrix representation for a bipolar-junction transistor (BJT) for low-frequency 
operation. 

W & M  w 
Example 4-2: Low-frequency hybrid network description of a 

BJT 

Describe the common-emitter BJT transistor in terms of its hybrid 
network parameters for the low-frequency, small-signal transistor 
model shown in Figure 4-3. 

Figure 4-3 Common-emitter low-frequency, small-signal transistor model. 

Solution: In the transistor model shown in Figure 4-3 rBE, rBC , 
and rCE represent base-emitter, base-collector, and collector-emit- 
ter internal resistances of the transistor. The current through the cur- 
rent-controlled current source is dependent on the current iB' 
flowing through the base-emitter resistance. 
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To evaluate the h , ,  parameter of the hybrid matrix according 
to (4.10) we must short-circuit the collector and emitter terminals, 
thus setting v2 = vCE = 0 ,  and compute the ratio of the base-emit- 
ter voltage to the base current. Using the notation established in 
Figure 4-3, we notice that h, , is equal to the parallel combination of 
rBE and rBc : 

r ~ ~ r ~ ~  (input impedance) 

V C E  = 0 r~~ + r~~ 

Following a similar procedure, the relations for the remaining three 
parameters of the hybrid representation can be established as follows: 

r~~ (voltage feedback ratio) 

r~~ + r~~ 

- - P ~ B C  -  BE (small-signal current gain) 
V C E  = 0   BE + ~ B C  

h 2  = & I  - - -  I + + (output admittance) 
"CE i, = 0 ~ C E  r ~ ~ + r ~ ~  

In the majority of all practical transistor designs, the current amplifi- 
cation coefficient p is usually much greater than unity and the 
collector-base resistance is much larger than the base-emitter resis- 
tance. Keeping these relations in mind, we can simplify the expres- 
sions derived for the h-matrix representation of the transistor: 

- - rBE (input impedance) 

VCE = 0 

= p (small-signal current gain) 
VCE = 0 
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ic  
h22 = -1 - - - 1 P  + - (output admittance) 

' C E  iB = 0 'CE 'BC 

The hybrid network description is a very popular way to char- 
acterize the BJT and its h-parameter coeficients are widely 
reported in many data sheets. 

Due to the presence of the current source in Example 4-2, the h-matrix is no 
longer symmetric (h12 + h21) and the transistor model is nonreciprocal. In low-fre- 
quency electronic circuit design the coefficients of the hybrid matrix representation are 
often listed as hie for hl l  , h,, for h 1 2 ,  hfe for h21, and hoe for h22. 

Up to this point we considered the problem of deriving the matrix representation 
based on a known topology and element values of the circuit. However, in practical 
design tasks it is often required to solve an inverse problem and obtain the equivalent 
circuit for an unknown or incompletely defined device based on a few measurements. 
This becomes extremely important when the characterization of the device is per- 
formed under a particular set of operating conditions, but it becomes necessary to eval- 
uate its performance under completely different circuit conditions. In this case the use 
of the equivalent circuit representation enables an engineer to predict with reasonable 
accuracy the response of the device or circuit under changing operating conditions. In 
the following example we will derive the values of the internal resistances of the BJT 
from known h-matrix parameters. 

Example 4-3: Determination of internal resistances and cur- 
rent gain of a BJT based on h-parameter mea- 
surements 

Use the equivalent circuit representation of the BJT shown in 
Figure 4-3 and employ the following measured hybrid parameters: 
hie = 5 k R ,  h,, = 2xlo4, hh = 250, hoe = 20 pS (these 
parameters correspond to the 2n3904 transistor manufactured by 
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Motorola). Find the internal resistances rBE , rBC , and rCE , and the 
current gain p . 

Solution: As derived in Example 4-2, the values of the h-matrix 
for the equivalent circuit shown in Figure 4-3 are given by the fol- 
lowing four equations: 

(input impedance) (4.12) 

 BE 
're = (voltage feedback ratio) (4.13) 

 BE + ~ B C  

- - - rBE (small-signal current gain) (4.14) 
hfe rBE + rBC 

hoe = - + (output admittance) (4.15) 
~ C E  ~ B E + ~ B C  

If we divide (4.12) by (4.13), we determine that the base-collector 
resistance is equal to the ratio of hie over hre . Accordingly, for 
values given in the problem formulation, we obtain: 
rBC = hie/hre = 7 1 MQ . Substituting this value into either equa- 
tion (4.12) or (4.13), we find rBE = hi,/(l - hre) = 5 kQ. Know- 
ing rBc and rBE ,  (4.14) allows us to find the current gain 
coefficient p = (hre - h fe)/(hre - 1) = 300.02. Finally, the col- 
lector-emitter resistance can be evaluated from (4.15) as 

hie 
' C E  = 2 = 63.35 kS2 

hoehie - 're' fe + W e -  're 

We note from the obtained values that rBE is indeed much smaller 
than rBC. 

This example provides a jirst idea of how the measured h- 
parameters can be used as a basis to characterize the BJT circuit 
model. The concept of "inverting " the measurements to determine 
circuit model parameters will befurther analyzed in Chapter 7. 
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4.2 Interconnecting Networks 

4.2.1 Series Connection of Networks 

A series connection consisting of two two-port networks is shown in Figure 4-4. 
The individual networks are shown in impedance matrix representation. 

Figure 4-4 Series connection of two two-port networks. 

In this case the individual voltages are additive while the currents remain the 
same. This results in 

where the new composite network [Z] takes the form 

Zll'  + Zllt' Z12' + ZI2 
[Z] = [Z'] + [Z"]= 

[z21' + Z2," z22' + z2/ 'I 
Caution has to be exercised in not indiscriminately connecting individual net- 

works, as short circuits may be created. This situation is exemplified in Figure 4-5 (a). 
The problem can be avoided by including a transformer, as seen in Figure 4-5 (b). The 
transformer in this case decouples input and output ports of the second network. How- 
ever, this approach will only work for AC signals since the transformer acts as a high- 
pass filter and rejects all DC contributions. 

When two networks are connected with the output interchanged, as shown in 
Figure 4-6, the most suitable representation is the hybrid form. 

In the network connection that is shown in Figure 4-6, the voltages on the input 
ports and currents on the output ports are additive (i.e., v, = vl' + v," and 
i2 = i2' + i2"), while the voltages on the output ports and currents on input ports are 
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(a) (b) 
Figure 4-5 (a) Short circuit in series connection. (b) Transformer to avoid short 

circuit. 

Figure 4-6 Connection of two-port networks suitable for hybrid representation. 

I' the same (i.e., v2 = v2' = v2 and i l  = il'  = il"). From this observation we can 
conclude that the resulting h-matrix for the overall system is equal to the sum of the h- 
matrices of the individual networks: 

An example of this type of connection is the Darlington transistor pair Q, and 
Q2 shown in Figure 4-7. 

4.2.2 Parallel Connection of Networks 

A parallel connection of two dual-port networks is shown in Figure 4-8 for the 
admittance matrices Y' and Y", where, unlike (4.16), the currents are now additive 



Interconnecting Networks 155 

Figure 4-7 Series connection of two hybrid networks. 

and the new admittance matrix is defined as the sum of the individual admittances 

[Y] = [Y'] + [Yt']= rl1' + Y1lTf Y12' + y12q 
Y,,' + Y,," Y,,' + Y2, 

+ 

port 1 

- 

Figure 4-8 Parallel connection of two two-port networks. 

4.2.3 Cascading Networks 

The ABCD-parameter description is most suitable when cascading networks, as 
depicted in Figure 4-9 for the example of a two-transistor configuration. In this case the 
current on the output of the first network is equal in value, but opposite in sign, to the 
input current of the second network (i.e., i2' = -ilP'). The voltage drop v2' across the 
output port of the first network is equal to the voltage drop v l"  across the input port of 
the second network. Thus, we can write the following relations: 
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i; " i'l i;' 
+o - --" + - - 0 + 

port 1 v; [$ iJ v; - V; V; port 2 
- - - -- - 

Figure 4-9 Cascading two networks. 

The overall system ABCD-matrix is equal to the product of the ABCD-matrices of the 
individual networks. 

4.2.4 Summary of ABCD Network Representations 

As we will see in subsequent chapters, microwave circuits can usually be repre- 
sented as the result of cascading simpler networks. It is therefore important to develop 
ABCD-matrix representations for simple two-port networks that can be used as build- 
ing blocks of more complex configurations. In this section several examples are consid- 
ered for which we will derive ABCD-parameters such as transmission line, series 
impedance, and passive T-network. Other very useful circuits, such as parallel imped- 
ance, passive pi-network, and transformer, are left as exercises at the end of this chapter 
(see Problems 4.10-4.12). The results of all the computations are summarized in Table 
4-1 at the end of this section. 
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C & M  W 
Example 4-4: ABCD network representation of an impedance 

element 

Compute the ABCD-matrix representation for the following net- 
work: 

Solution: Guided by the definition (4.10), to determine parame- 
ter A we have to compute the ratio of the voltage drop across port 1 
to the voltage drop across port 2 when the current into this port is 
equal to zero (i.e., port 2 is disconnected). In this case, it is apparent 
that for the circuit under consideration, the voltages on both ports 
are equal to their ratio, which is equal to unity 

To obtain the value for B, we need to find the ratio of the voltage 
drop across port 1 to the current flowing from port 2 when the tenni- 
nals of port 2 are shortened. From the circuit topology, this ratio is 
equal to the impedance Z: 

The remaining two parameters are found according to (4.10) of the 
ABCD-representation and can be shown to be 

The ABCD-matrix coeficients are determined in a similar 
manner as the previously discussed 2-, Y-, and h-matrix coeficients. 
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The accurate prediction of the coeflcients again depends on the 
ability to enforce open- and short-circuit terminal conditions. 

In the following example the ABCD-parameters of the passive T-network are 
determined. In the derivation of the parameters we will rely on the knowledge of ABCD 
parameters for series and parallel connections of the impedance. 

C & M  w 
Example 4-5: ABCD matrix computation of a T-network 

Compute the ABCD-matrix representation for the following T-net- 
work: 

Solution: This problem can be solved using two different 
approaches. The first approach involves directly applying the defini- 
tion of the ABCD-matrix coefficients and compute them as done in 
the previous example. Another approach is to utilize the knowledge 
of the ABCD-parameters for parallel and series connections of a sin- 
gle impedance. If we choose this method, we first have to break the 
initial circuit into subcircuits as follows: 
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As discussed previously, the ABCD-matrix representation of the 
entire circuit is equal to the product of the ABCD-matrices of the 
individual subcircuits. Using the results from Example 4-4 and 
Problem 4.8, we can write 

Here we see the advantage of using the ABCD-matrix repre- 
sentation in that a more complex network can be constructed by 
multiplication of simpler building blocks. 

As a last example, let us consider the computation of the ABCD parameters for a 
transmission line. 

C & M W  
Example4-6: ABCD-matrix coefficient computation of a 

transmission line section 

Compute the ABCD-matrix representation of the following trans- 
mission line with characteristic impedance Zo , propagation con- 
stant p , and length 1. 

Solution: Similar to Example 4-4, we have to apply open- and 
short-circuit conditions at port 2. For a transmission line these con- 
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ditions are equivalent to the analysis of open- and short-circuit stub 
lines. Such lines are simply the opedshort-circuit transmission line 
representations discussed in Sections 2.9.3 and 2.9.2. In these sec- 
tions we found that for the open-circuit stub the voltage and current 
are given by the following expressions [see (2.7 1) and (2.72)]: 

V(d) = 2 ~ + c o s ( p d )  and I(d) = 2jVf sin(pd) 
20 

where distance d is measured from the open port (i.e., in our case 
from port 2). 

For a short-circuit stub of length 1 voltages and currents are 
determined by (2.67) and (2.68): 

2 v+ 
V(d) = 2 j ~ + s i n ( p d )  and I(d) = -cos(pd) 

20 
where distance d is again measured from port 2 to port 1. In addition 
to these relations, it is important to recall that the current is defined 
as flowing toward the load. Therefore, the current is equal to i l  at 
port 1 and equal to -i2 at port 2. 

Having determined the relations for voltages and currents, it is 
now possible to establish equations for the ABCD-parameters of the 
transmission line. Parameter A is defined as the ratio of the voltages 
at ports 1 and 2 when port 2 is open (i.e., we have to use the formu- 
las for the open-circuit stub): 

where we employ the fact that d = 0 at port 2 and d = 1 at port 1. 
Parameter B is defined as the ratio of the voltage drop across 

port 1 to the current flowing from port 2 (i.e., toward the load) when 
port 2 is shorted. For this case we have to use the formulas for volt- 
age and current defined for a short-circuit stub. This yields 

The remaining two coefficients are obtained in a similar manner: 



Network Properties and Appllcatlons 161 

Thus, a transmission line with characteristic impedance Zo, propa- 
gation constant p , and length 1 has the following matrix representa- 
tion: 

The ABCD transmission line representation has the expected 
periodic parameter behavior similar to the line input impedance 
formula derived in Chapter 2. 

In Table 4-1 six of the most common circuit configurations are summarized in 
terms of their ABCD two-port network representations. From these six basic models, 
more complicated circuits are readily constructed by suitably combining these elemen- 
tary networks. 

4.3 Network Properties and Applications 

4.3.1 Interrelations between Parameter Sets 

Depending on the particular circuit configuration, we may be forced to convert 
between different parameter sets to arrive at a particular inputloutput description. For 
instance, the low-frequency transistor parameters are often recorded in h-matrix form. 
However, when cascading the transistor with additional networks, a more useful 
ABCD-matrix form may be appropriate. Thus, converting the h-matrix into an ABCD- 
matrix form and vice versa can greatly simplify the analysis. 
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Table 4-1 ABCD-Parameters of Some Useful Two-Port Circuits. 

Circuit 

To show how the conversion between the individual parameter sets can be accom- 
plished, let us find an ABCD-matrix representation of a given h-matrix. From the defi- 
nition (4.11) we can express parameter A as follows 



Network Properties and Applications 1 63 

In this expression we are able to re-express the current il in (4.11) in terms of the volt- 
age v2 because i2 = 0.  The result is 

where Ah = hllh22 - h12h21 denotes the determinant of the h-matrix. Similarly, for 
the remaining coefficients we compute 

This concludes the conversion from h-parameters to ABCD form. A similar procedure 
could have been performed from ABCD-parameters to h-matrix form. 

As an additional case, let us investigate the conversion from ABCD-parameters to 
the Z-representation. Starting with (4.2) and using (4.1 I), we can develop the following 
relations: 

BC 
Av2 - Bi2 A v 2 -  Fv2 

- - - - - AD - BC - AABCD 
2 1 2  - -7 

- 
C C C C 

(4.28) 
l 2  i ,  = 0 - v l l  - o v 2  oV2 
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where AABCD = AD - BC is the determinant of the ABCD-matrix. 
By relying on the respective defining voltage and current relations, it is relatively 

straightforward to work out all parameter conversions. For convenience, Table 4-2 sum- 
marizes the formulas for the previously defined four network parameter sets (see also 
Appendix H for a complete list of all conversion formulas). 

Table 4-2 Conversion between Different Network Representations 

A - AABCD 
C C 
1 D  - - 
C C 

D AABCD - - 
B B 

1 A -- - 
B B  

B AABCD - 
D D  

[ABCD] 

4.3.2 Analysis of Microwave Amplifier 

In this section we consider, by way of an example, the usage of the conversion 
between different network representations to analyze a relatively complicated circuit. 
Basis of the analysis is the circuit diagram of a particular microwave amplifier shown in 
Figure 4- 10. 
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0 - - 0 

Figure 4-10 Microwave amplifier circuit diagram. 

The first step is to break down the circuit into smaller, simpler subnetworks. This 
can be accomplished in several ways, one of which is shown in Figure 4- 11. 

Figure 4-1 1 Subnetwork representation of the microwave amplifier. 

As shown in this figure, the amplifier is divided into a set of four subcircuits. The 
input matching network consists of a transmission line (for convenience only the upper 
trace is shown) and is cascaded with a parallel combination of the transistor and a feed- 
back loop. This circuit is then cascaded with an output matching network. 

For the transistor we will use a high-frequency hybrid pi-network model (see also 
Chapter 7), which is shown in Figure 4-12. 

Figure 4-12 High-frequency hybrid transistor model. 
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The derivation of the h-parameters is left as a problem (Problem 4.13 at the end of 
this chapter). Here we only list the resulting h-matrix for the transistor: 

To compute the matrix for the parallel combination of the transistor and the feed- 
back loop resistor we have to convert the h-matrix into a Y-matrix called [Y], in order 
to apply the summation rule (4.20). To accomplish this, we can use formulas from 
Table 4-2 and add the result to the Y-matrix of the feedback resistor. The admittance 
matrix for the feedback resistor can be derived either directly using the definition of the 
Y-matrix or by converting the ABCD-parameters derived in Example 4-4 into the Y- 
form. The result of these computations is 

After the summation we obtain the admittance matrix for the parallel combination of 
the transistor and the feedback resistor [YIk + R .  

The same result could have been obtained if we had noticed that the feedback 
resistor is connected in parallel with the capacitor CBC of the transistor. Thus, to obtain 
the admittance matrix of the parallel combination of the feedback resistor and the tran- 
sistor, we simply need to replace CBc in the h-matrix of the transistor with 
CBC + 1 /( j o R )  and then convert the resulting matrix into Y-representation. 

The final step in the analysis is to multiply the ABCD-matrices for the input 
matching network (index: IMN), the transistor with feedback resistor (index: tr + R), 
and the output matching network (index: OMN) 
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where the ABCD-matrices for the matching networks are found using the results from 
Table 4- 1 : 

Due to rather lengthy expressions we are not presenting the final result for the 
ABCD-parameters of the entire amplifier. Instead we urge the interested readers to per- 
form these computations by relying on a mathematical spreadsheet program of their 
choice (Mathcad, MATLAB, Mathematica, etc.). One of the results of these computa- 
tions is shown in Figure 4-13, where the small-signal current gain for the amplifier with 
short-circuited output (inverse of the D-coefficient) is plotted versus frequency for dif- 
ferent values of the feedback resistor. 

Figure 4-13 Small-signal current gain of the amplifier versus frequency for 
different values of the feedback resistor. 
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The computations are based on the circuit in Figure 4-1 1 with L = 1 nH, 
C = 10 pF , transmission line length of I = 5 cm , and phase velocity equal to 65% of 
the speed of light. The transistor is described by the following set of values: 
rBE = 520 R ,  rm = 8Ok R ,  C,, = 10 pF, CBC = 1 pF, and g m  = 0.192 s .  

4.4 Scattering Parameters 
In almost all databooks and technical literature regarding RF systems, the scatter- 

ing or S-parameter representation plays a central role. This importance is derived from 
the fact that practical system characterizations can no longer be accomplished through 
simple open- or short-circuit measurements, as it is customarily done in low-frequency 
applications and as discussed at the beginning of this chapter. We should recall what 
happens when we attempt to create a short circuit with a wire: The wire itself possesses 
an inductance that can be of substantial magnitude at high frequency. Also, the open 
circuit leads to capacitive loading at the terminal. In either case, the opedshort-circuit 
conditions needed to determine Z-, Y-, h-, and ABCD-parameters can no longer be guar- 
anteed. Moreover, when dealing with wavepropagation phenomena, it is not desirable 
to introduce a reflection coefficient whose magnitude is unity. For instance, the terminal 
discontinuity will cause undesirable voltage and/or current wave reflections, leading to 
oscillations that can result in the destruction of the device. With the S-parameters, the 
RF engineer has a tool to characterize the two-port network description of practically 
all RF devices without requiring unachievable terminal conditions or causing harm to 
the device under test (DUT). 

4.4.1 Definition of Scattering Parameters 

Simply put, S-parameters are power wave descriptors that permit us to define the 
input-output relations of a network in terms of incident and reflected power waves. 
With reference to Figure 4-14 we define an incident normalized power wave a,  and a 
reflected normalized power wave b, as follows: 

1 
b, = 2fio(vn - - z ~ z n )  (4.36b) 

where the index n refers either to port number 1 or 2. The impedance Zo is the charac- 
teristic impedance of the connecting lines on the input and output side of the network. 
Under more general conditions the line impedance on the input side can differ from the 
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line impedance on the output side. However, for our initial discussion, we will keep 
things simple and assume that both impedances are the same. 

Figure 4-14 Convention used to define Sparameters for a two-port network. 

Inverting (4.36) leads to the following voltage and current expressions: 

V, = &(a, + b,) (4.37a) 

1 
I = -(an-b,J (4.37b) 
" 

The physical meaning of (4.36) becomes clear when we recall the equations for power: 

Isolating forward and backward traveling wave components in (4.37), we immediately 
see 

which is consistent with the definitions (4.37) since 

V, = V; + V, = Z,I; - ZoI, (4.40) 

Based on the directional convention shown in Figure 4-14 we are now in a position to 
define the S-parameters: 

where the terms are 
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- - - reflected power wave at port 1 Sll  = - 
incident power wave at port 1 

- - - transmitted power wave at port 2 
incident power wave at port 1 

(4.42b) 

reflected power wave at port 2 
incident power wave at port 2 

a ,  = O  

transmitted power wave at port 1 
incident power wave at port 2 

We observe that the conditions a2 = 0 and a l  = 0 imply that no power waves are 
returned to the network at either port 2 or port 1. However, these condition can only be 
ensured when the connecting transmission lines are terminated into their characteristic 
impedances. 

Since the S-parameters are closely related to power relations, we can express the 
normalized input and output waves in terms of time averaged power. With reference to 
Section 2.10.2 we note that the average power at port 1 is given by 

where the reflection coefficient at the input side is expressed in terms of Sll  under 
matched output according to the following argument: 

This also allows us to redefine the VSWR at port 1 in terms of S1 as 

1 + IS111 VSWR = - 
1 - Is111 

Furthermore, based on (4.39a) we can identify the incident power in (4.43) and express 
it in terms of a,  : 
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which is the maximal available power from the generator. Using (4.46) and (4.44) in 
(4.43) finally gives us the total power at port 1 (under matched output condition) 
expressed as a combination of incident and reflected powers: 

If the reflection coefficient, or SI1 , is zero, all available power from the source is deliv- 
ered to port 1 of the network. An identical analysis at port 2 yields 

4.4.2 Meaning of SParameters 

As already mentioned in the previous section, the S-parameters can only be deter- 
mined under conditions of perfect matching on the input or output side. For instance, in 
order to record Sl l  and S21 we have to ensure that on the output side the line imped- 
ance Zo is matched for a, = 0 to be enforced, as shown in Figure 4-15. 

Figure 4-15 Measurement of S,l and &,by matchin the line impedance 4 at 8 port 2 through a corresponding load impe ance Z, = 4. 

This configuration 
coefficient: 

allows us to compute Sll  by finding the input reflection 

'in - 20 sll = rin = - 
'in + 'O 

In addition, taking the logarithm of the magnitude of Sll gives us the return loss in dB 

RL = -2010g(S1,( (4.50) 

Moreover, with port 2 properly terminated, we find 
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Since a2 = 0, we can set to zero the positive traveling voltage and current waves at 
port 2. Replacing V1 by the generator voltage VG1 minus the voltage drop over the 
source impedance Zo , VG1 - ZoI gives 

Here we observe that the voltage recorded at port 2 is directly related to the generator 
voltage and thus specifies the forward voltage gain of the network. To find the for- 
ward power gain, we square (4.52) to obtain 

If we reverse the measurement procedure and attach a generator voltage VG2 to 
port 2 and properly terminate port 1, as shown in Figure 4-16, we can determine the 
remaining two S-parameters, S22 and S I 2 .  

Figure 4-16 Measurement of S,, and S,, by matching the line impedance 4 at 
port 1 through a corresponding input impedance Z, = 4. 

To compute S22 we need to find the output reflection coefficient To,, in a similar 
way as already discussed for S I 1 :  

Zout - Zo 
S22 = r o u t  = 

Zout + zo 
and for SI2 
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The term S12 can further be manipulated through the substitution of V2 by 
VG2 - Z0Z2, leading to the form 

2 known as the reverse voltage gain and whose square ISl21 is identified as reverse 
power gain. While determining Sll  and S22 can be directly computed as part of the 
impedance definitions, SI2 an S2, require the replacement of the defining voltages by 
the appropriate network parameters. In the following example, the S-parameters are 
computed for a simple, three element network. 

, v m w  
Example 4-7: Determination of a T-network elements 

Find the S-parameters and the resistive elements for the 3 dB attenu- 
ator network shown in Figure 4-17(a) assuming that the network is 
placed into a transmission line section with a characteristic line 
impedance of Zo = 50 R . 

Solution: An attenuator should be matched to the line imped- 
ance and must therefore meet the requirement SI1 = S22 = 0 .  As a 
result, based on Figure 4-17(b) and consistent with (4.49), we set 

Because of symmetry, it is immediately clear that R1 = R2. We 

now investigate the voltage V2 = V i  at port 2 in terms of 
V1 = v:. According to the circuit configuration shown in Figure 
4-17(c), the following expression is obtained 
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Port 1 Port 2 

(c) 

Figure 4-17 S-parameter computation for a T-network. (a) circuit diagram; 
(b) circuit for S,, and S,, measurements; (c) circuit for S,, and S,, measurements. 

For a 3 dB attenuation, we require 

Setting the ratio of V2/V1 to 0.707 in the preceding equation 
allows us, in combination with the input impedance expression, to 
determine R1 and R3 . After simplification it is seen that 

$2-1 R1 = R2 = -Zo = 8.58 S2 and Rj = 2 f i .  Zo = 141.4 R 
J Z + 1  

The choice of the resistor network ensures that at the input and 
output ports an impedance of 50 R is maintained. This implies that 
this network can be inserted into a 50 R transmission line section 
without causing undesired rejections, resulting in an insertion loss. 
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The definitions for the S-parameters require appropriate termination. For instance, 
if S,, is desired, the transmission line connected to port 2 has to be terminated into its 
characteristic line impedance. This does not necessarily mean that the output impedance 
Z,,, of the network has to be matched to the line impedance Zo . Rather, the line imped- 
ance must be matched to ensure that no wave is reflected from the load, as implied by 
a2 = 0.  If this is not the case, we will see in Section 4.4.5 how Sll  is modified. 

4.4.3 Chain Scattering Matrix 

To extend the concept of the S-parameter representation to cascaded networks, it 
is more efficient to rewrite the power wave expressions arranged in terms of input and 
output ports. This results in the chain scattering matrix notation. That is, 

It is immediately seen that the cascading of two dual-port networks becomes a simple 
multiplication. This is apparent in Figure 4-18, where network A (given by matrix [TIA) 
is connected to network B (given by matrix [TIB). 

Figure 4-18 Cascading of two networks A and 9. 

If network A is described by the relation 

and network B by 

we notice, based on the parameter convention shown in Figure 4-18, that 



Thus, for the combined system, we conclude 
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(4.59) 

which is the desired matrix multiplication. Therefore, the chain scattering matrix plays 
a similar role as the ABCD-matrix discussed earlier. 

The conversion from the S-matrix to the chain matrix notation follows identical 
steps as outlined in Section 4.3.1. In particular, to compute T l  for instance, we see that 

Similarly, 

Conversely, when the chain scattering parameters are given and we need to convert to 
S-parameters, we find the following relations: 
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Alternatively, a matrix manipulation as discussed in the next section could have been 
carried out with the same result. 

4.4.4 Conversion between Z- and SParameters 

We have already seen how certain S-parameters can be defined in terms of input 
and output impedances of a network [i.e., equations (4.49) and (4.54)]. In this section, 
we go through a formal conversion between the Z- and S-parameter sets. Once this 
interrelation is established, we are able to formulate conversion links between all six 
network parameter sets (S, 2, I: ABCD, h, T). 

To find the conversion between the previously defined S-parameters and the Z- 
parameters, let us begin with the defining S-parameter relation in matrix notation [i.e., 
(4.4111 

{b} = [Sl{a} (4.69) 

Multiplying by fi0 gives 

fl0{b1 = WI = fl0[sl{a} = [sI{v+) (4.70) 

Adding {v'} = fio{a} to both sides results in 

where [El is the identity matrix. To compare this form with the impedance expression 
{V} = [Z]{I} , we have to express {v'} in terms of {I}. This is accomplished by 
first subtracting [s]{v+} from both sides of {v'} = &{a}; that is, 

{v+} - ISI{V+I = &({a} - { b ~ )  = zo{I} (4.72) 

Now, by isolating {v+}, it is seen that 

Substituting (4.73) into (4.71) yields the desired result of 
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Identifying individual terms is now easily carried out. A complete summary of all net- 
work coefficient sets is given in Appendix C. 

4.4.5 Signal Flow Chart Modeling 

The analysis of RF networks and their overall interconnection is greatly facilitated 
through signal flow charts as commonly used in system and control theory. As origi- 
nally introduced to seismology and remote sensing, wave propagation can be associated 
with directed paths and associated nodes connecting these paths. Even complicated net- 
works are easily reduced to input-output relations in which the reflection and transmis- 
sion coefficients play integral parts. In this section we will briefly summarize key 
principles needed for a signal flow network analysis. 

The main concepts required to construct flow charts are as follows: 

1. Nodes that are deployed to identify network parameters such as al, b l ,  a2, b, 
when dealing with S-parameters 

2. Branches that are needed when connecting the network parameters 
3. Addition and subtraction of branch values in accordance with the directions of the 

branches 

We will now discuss these three items in detail. To this end let us consider a section 
of a transmission line that is terminated in a load impedance Z ,  , as seen in Figure 4-19. 

b+ 

(a) (b) 
Figure 4-19 Terminated transmission line segment with incident and reflected S- 

parameter description. (a) Conventional form, and (b) Signal flow form. 
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Even though we could use voltage values as node identifier, it is the S-parameter 
representation that finds widespread use. In Figure 4-19(b) the nodes a and b are con- 
nected through the load reflection coefficient T L .  This makes sense since the reflection 
coefficient is the ratio b/a, so that it simply states that node b is found as a result of mul- 
tiplying node a by T ,  . This is depicted in generic form in Figure 4-20. 

(a) Source node a, which launches wave. (b) Sink node b, which receives wave. 

(c) Branch connecting source and sink. 

Figure 4-20 Generic source node (a), receiver node (b), and the associated (c) 
branch connection. 

In terms of notation, we can encode the situation shown in Figure 4-20 as 

b = Fa (4.77) 

A more complicated situation arises when we need to make the transmission line 
circuit shown in Figure 4-19 more realistic by including a source term, as seen in Fig- 
ure 4-21. 

(a) (b) (c) 
Figure 4-21 Terminated transmission line with source. (a) conventional form, (b) 

signal flow form, and (c) simplified signal flow form. 

Unlike Figure 4-19, the nodes a and b are preceded by two additional nodes that 
we shall denote a' and b'. The ratio b'/a' defines the source reflection coefficient Ts as 
already discussed in Section 2.1 1. Here we also see that b' is given by multiplying a' 
with the source reflection coefficient. By relying on the concept of summation, we 
define b' as the sum of bs and a'Ts. Thus, the source bs is 

bs = b' - a'T, (4.78) 
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An explicit expression for bs is obtained by noting that 

v, = V, + I,ZG (4.79) 

based on an outflowing current convention (see Figure 4-21). This can be converted into 
the form 

Rearranging terms and division by so gives 

When comparing (4.81) with (4.78), we immediately see that 

An important conclusion can be drawn when expressing a' in (4.78) by rLb' SO that we 
obtain 

This is a known as a self- or feedback loop (see Figure 4-22), which allows us to repre- 
sent the nodes bs and b' by a single branch whose value is given by (4.83). 

Figure 4-22 A self-loop that collapses to a single branch. 

All signal flow chart principles can therefore be reduced to six building blocks, as 
summarized in Table 4-3. 

By way of an example, let us analyze a more complicated RF circuit consisting of 
a sourced and terminated dual-port network. 
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Table 4-3 Signal flow chart building blocks 

Description F 
Nodal Assignment 

Branch L 
Series Connection 

Parallel Connectior 

Splitting of Branche 

Self-loop 

Graphical Representation 

c & M w  
Example 4-8: Flow chart analysis of a dual-port network 

For the network shown in Figure 4-23 find the ratios of b l / a l  and 
a l / b s .  Assume unity for the multiplication factor of the transmis- 
sion line segments. 
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(a) Circuit representation 

b, 1 1 a ,  S2, b2 1 

OA:]-IT]G 

1 b, S,, a2 1 
(b) Signal flow chart 

Figure 4-23 Sourced and terminated two-port network. 

Solution: The process of setting up the individual ratios is 
explained best by going through a step-by-step simplification for the 
ratio a /bs employing the rules summarized in Table 4-3. Figure 4- 
24 depicts the five steps. 
Step 1: Splitting of the rightmost loop between b2 and a2 ,  leading 
to the self-loop S22rL 
Step 2: Decomposition of the self-loop between branches al and b2, 
resulting in the multiplication factor S2,/(1 - S22rL), which can be 
combined with TL and S,, 
Step 3: Series and parallel connections between a and bl , leading 
to the input reflection coefficient 

Step 4: Splitting the loop into a self-loop, resulting in the multiplica- 
tion factor 

Step 5: Decomposition of the self-loop at a, ,  leading to the 
expression 
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Step 1 

S21 ............. 
bs 1 1 a,!' 1 - SZ2rL b2 ] 

bl! ...... S.!? ...... a? ......... 1 
Step 2 

Step 3 

Step 4 

Step 5 
Figure 4-24 Step-by-step simplification to determine the ratio a , / b ,  
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Rearranging and simplification leads to the final form: 

The preceding derivation follows a pattern similar to jnding 
the transferfunction of a control system or a signal processox Even 
complicated circuits can be reduced eficiently and quickly to estab- 
lish the nodal dependcies. 

The preceding example points out what will happen if the matching condition for 
recording the S-parameters is not satisfied. As we know, if we compute S1, we need to 
ensure that a2 = 0 .  However, if a2 f 0 ,  as is the case in the preceding example, we see 
that Sl is modified by the additional factor S12S21 rL/ (  1 - S22rL) . 

4.4.6 Generalization of SParameters 

In our discussion thus far it was assumed that the characteristic line impedance at 
both ports has the same value Zo . However, this does not have to be the case. Indeed, if 
we assume that port 1 is connected to line impedance Zol and port 2 to impedance 
ZO2, we have to represent the voltage and current waves at the respective port 
(n  = 1,2)as  

V, = V; + Vi = K n ( a ,  + b,) (4.84) 

and 

where we immediately observe 
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These equations allow the definition of the S-parameters as follows: 

When compared to the previous S-parameter definitions, we notice that scaling by the 
appropriate line impedances has to be taken into account. It should also be apparent that 
although the focus of our derivations was a two-port network, the preceding formulas 
can be extended to an N-port network where n = 1, . . . , N . 

A second consideration is related to the fact that practical measurements involve 
the determination of the network S-parameters through transmission lines of finite 
length. In this case we need to investigate a system where the measurement planes are 
shifted away from the actual network, as depicted in Figure 4-25. 

Figure 4-25 Two-port network with finite-length transmission line segments. 

An incident voltage wave launched from the power supply will have to travel a 
distance lI in order to reach port 1. Consistent with the notation introduced in 
Section 2.9, we note that at port 1 the incident voltage is given as 

and, at the generator side, as 

The reflected voltage wave at port 1 can be cast in the form 

and 
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where, as usual, pl stands for the lossless propagation constant of line 1. In an identical 
fashion, the voltage behavior at port 2 can be formulated by simply replacing Vin in 
terms of Vout and Vl in terms of V2 as well as p, in terms of p2.  The preceding equa- 
tions can be combined in matrix form 

which links the impinging waves at the network ports to the corresponding voltages 
shifted by the electric lengths of the attached transmission line segments. For the 
reflected voltage waves we get the matrix form 

As the discussion in Section 4.4.1 taught us, the S-parameters are linked to the coeffi- 
cients a, and b,, which in turn can be expressed through voltages (if we assume 

z,, = z,, 1. 

It is apparent that if transmission line segments are added, we have to replace the above 
voltages by the previously derived expressions, leading to the form 

This final reveals that the S-parameters for the shifted network are comprised of three 
matrices. In terms of the coefficients, we see that 

The physical meaning of this form is easy to understand. The first matrix coefficient 
reveals that we have to take into account 2Plll or twice the travel time for the incident 
voltage to reach port 1 and, upon reflection, return. Similarly, for port 2 we see that the 
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phase shift is 2P212. Moreover, the cross terms, which are closely related to the for- 
ward and reverse gains, require the additive phase shifts associated with transmission 
line 1 (P1ll ) and transmission line 2 (P212), since the overall inputloutput configura- 
tion now consists of both line segments. 

Y , m w  
Example 4-9: Input impedance computation of a transmission 

line based on the use of the signal flow chart 

A lossless transmission line system with characteristic line imped- 
ance Z,, and length 1 is terminated into a load impedance ZL and 
attached to a source voltage VG and source impedance ZG, as 
shown in Figure 4-26. (a) Draw the signal flow chart and (b) derive 
the input impedance formula at port 1 from the signal flow chart rep- 
resentation. 

Figure 4-26 Transmission line attached to a voltage source and terminated by a 
load impedance. 

Solution: (a) Consistent with our previously established signal 
flow chart notation, we can readily convert Figure 4-26 into the form 
seen in Figure 4-27. 

Figure 4-27 Signal flow chart diagram for transmission line system in 
Figure 4-26. 

(b) The input reflection coefficient at port 1 is given by 
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-j2pI bl = TLe a l  

which is exactly in the form given in Section 3.1, with TL = To and 
1 = d.Thus 

rin(l) = r L e  -j2pI 'in - ZO =-  
'in + ZO 

Solving for Zin yields the final result 

This example shows how the input impedance of a transmis- 
sion line can be found quickly and elegantly by using signal $ow 
chart concepts. 

4.4.7 Practical Measurements of SParameters 

Measurement of the S-parameters of a two-port network requires reflection and 
transmission evaluations of traveling waves at both ports. One of the most popular 
methods is to use a vector network analyzer. The vector network analyzer is an instru- 
ment that can measure voltages in terms of magnitude and phase. Usually network ana- 
lyzers have one output port, which provides the RF signal either from an internal source 
or an external signal generator, and three measurement channels, which are denoted as 
R, A, and B (see Figure 4-28). 

The RF source is typically set to sweep over a specified frequency range. The 
measurement channel R  is employed for measuring the incident wave. Channel R  also 
serves as a reference port. Channels A and B  usually measure the reflected and transmit- 
ted waves. In general, the measurement channels A  and B can be configured to record 
any two parameters with a single measurement setup. An example of the test arrange- 
ment that allows us to measure Sl l  and S2, is shown in Figure 4-28. 

In this case the value of Sl l  can be obtained by evaluating the ratio A / R ,  and 
S21 through computing B / R  . To measure S12 and S22 we have to reverse the DUT. In 
Figure 4-28 the dual-directional coupler allows the separation of the incident and 
reflected waves at the input port of the DUT. The bias tees are employed to provide nec- 
essary biasing conditions, such as a quiescent point for the DUT. Since the most com- 
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50 Q 

Bias tee Bias tee 

Dual-Directional Dual-Directional 
Coupler 

I 7 Coupler 

Figure 4-28 Measurement system for S l l  and S21 parameters using a network 
analyzer. 

mon use of network analyzers is the characterization of two-port devices, bias tees, 
directional couplers, and necessary electronic switches as well as the RF sweep signal 
generator are all integral parts of most modem analyzers. 

As we can see, a practical test arrangement is more complicated when compared 
with the simple ideal system described in Sections 4.4.4 and 4.4.6, where we assume 
that the DUT is connected to perfectly matched transmission lines of equal (Section 
4.4.4) or unequal (Section 4.4.6) characteristic impedance. In a realistic measurement 
system we cannot guarantee either matching conditions or ideality of the components. 
In fact, we have to consider all effects of the external components connected to the 
input and output ports of the DUT. Furthermore, the primary reference plane for mea- 
surements of complex voltages, which are then converted into S-parameters, is usually 
somewhere inside of the networks analyzer. As a result, it is necessary to take into 
account not only attenuation and phase shifts due to the external components, but also 
portions of the internal structure of the network analyzer itself. 

In general, the measurement test arrangement can be reduced to the cascade of 
three networks depicted in Figure 4-29. 
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Figure 4-29 (a) Block dia ram of the setup for measurement of S-parameters of 
a two-port network; (by signal flow chart of the measurement test setup. 

.4 p 

In Figure 4-29 the signals R, A, B correspond to the reference port and channels A 
and B of the network analyzer. RFi, is the output line from the signal source. The 
branch denoted Ex represents possible leakage between the output of the signal source 
and the channel B. 

The network analyzer treats everything between the measurement reference 

Error 
b o x B i  

- 

planes as a single device. Therefore, our task is reduced to finding a way to calibrate the 

tH, g++ i b2 Measurement 2 ~easurement 
Reference Plane Desired Reference Plane Reference Plane 

network analyzer in such a way that it becomes possible to eliminate the effect of all 
undesired influences or parasitics. The main goal of a calibration procedure is to char- 
acterize the error boxes prior to measuring the DUT. This information can then be used 
by an internal computer to evaluate the error-free S-parameters of the actual DUT. 

Error 
i b o x A  

Assuming that the error boxA network is reciprocal, we can state E12 = E21. 
Therefore, we have to find six parameters (Ell, E12, E22, EX, ER, and ET) to character- 

DUT i 

ize the error boxes. 

' 

i 

The simplest calibration method involves three or more known loads (open, short, 
and matched). The problem with this approach is that such standards are usually imper- 
fect and are likely to introduce additional errors into the measurement procedures. 
These errors become especially significant at higher frequencies. To avoid the depen- 
dency on the accuracy of calibration standards, several methods have been developed 
(see Eul and Schiek and Engen and Hoer, listed in the Further Reading section at the 
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end of this chapter). In this section we will only consider the so-called Through- 
Reflect-Line (TRL) technique (see Engen and Hoer). 

The TRL calibration scheme does not rely on known standard loads. Instead, it is 
based on the use of three types of connections, which are shown in Figure 4-30. 

RE;;" E21 R 1 F ET 4- 
El2 1 

(a) Through 

12 

(b) Reflect 

(c) Line 
Figure 4-30 Signal flow graphs of TRL method: (a) Through, (b) Reflect, (c) Line 

configurations. 

The Through connection is made by directly connecting ports 1 and 2 of the DUT. 
Next, the Reject connection uses a load with high reflectivity. The reflection coefficient 
does not have to be known because it will be determined during the calibration process. 
The only requirement is that the load possesses the same reflection coefficient for both 
input and output ports. The Line connection is made by connecting ports 1 and 2 via a 
transmission line matched to the impedance of the error boxes. Usually, this impedance 



192 Chapter 4 Single- and Multipart Networks 

is close to 50 0. Before we continue with the actual analysis of each particular con- 
nection type, let us first consider the system as a general two-port network. 

From Figure 4-29(b) it is seen that the signal at node B is a linear combination of 
the input RF signal and the signal at node F: 

Applying the self-loop rule, we can write that signal at node F as 

To compute the signal at port R, the same method as discussed in Example 4-8 can 
be used. In this example we first replaced the loop with the signal F through a self-loop 
and then performed the same transformation for the signal R. The result of these com- 
putations is 

Substituting (4.99) into (4.98) followed by the substitution of (4.98) into (4.97), we 
obtain an expression for signal B: 

Finally, the value for the signal at node A is obtained by using the summation rule: 

If the measurement system does not introduce any errors, then E12 = E21 = ET = 1 
and Ell  = E22 = ER = EX = 0 . Substituting these values into (4.99), (4. loo), and 
(4.101), we find that R = 1 , A = Sl , and B = S12, which shows the validity of the 
formulas. 

Now we are ready to investigate the TRL connections in more detail. To avoid 
confusion, let us denote the measured signals R, A, and B for Through by subscript 7', 
for Reflect by R, and for Line by L. 
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For the Through connection we know that Sll = S2, = 0 and S12 = S21 = 1 .  
Setting E = E21 it follows that 

For the Reject connection we have Sl l  = S22 = r and S12 = S21 = 0 .  This results 
in the equations 

BR = Ex (4.103~) 
-71 Finally, for the Line connection we see that Sll  = S22 = 0 and S12 = S21 = e , 

where 1 is the transmission line length and y is a complex propagation constant 
(y = a + j p )  that takes into account attenuation effects. The result is 

Equations (4.102a)-(4.104b) allow us to solve for the unknown coefficients of the error 
boxes El l  , E12, E22, EX, ER , ET , the reflection coefficient T , and the transmission 
line parameter e-y'. Knowing the error coefficients we are then in a position to process 
the measured data in order to obtain an error-free S-parameter set of the DUT. 



194 Chapter 4 Singk and Multiport Networks 

4.5 Summary 
Networks play an integral part in analyzing basic low-frequency circuits as well as 

RF/MW circuits. For instance, the admittance or Y-matrix for an N-port network can be 
written in generic form as 

where currents and voltages become the defining external port conditions. The evalua- 
tion of the matrix coefficients is accomplished through appropriate terminal conditions: 

The concepts of Z-, Y-, h-, and ABCD-matrix representations of networks can be 
directly extended to high-frequency circuits. Unfortunately, we encounter practical dif- 
ficulties in applying the required open- and short-circuit network 
when defining the respective parameter sets. It is for this reason 
parameters as normalized forward and backward propagating 
introduced: 

conditions needed 
that the scattering 
power waves are 

For a two-port network this results in the matrix form 

Unlike open- or short-circuit network conditions, impedance line matching at the 
respective port is now required to establish the S-matrix set. The S-parameters can be 
directly related to the reflection coefficients at the input and output of the two-port 
network (SI1, S22 ). Furthermore, forward and reverse power gains are readily identified 

(1~211~9 ls1212 1. 
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The S-parameters are also very useful descriptors when dealing with signal flow 
diagrams. A signal flow diagram is a circuit representation involving nodes and paths 
for the sourced and terminated transmission line as follows: 

With signal flow diagrams even complicated systems can be examined in terms of spe- 
cific input output relations in a similar manner as done in control system theory. 

Chapter 4 finishes with a brief discussion of the practical recording of the S- 
parameters for a two-port network (DUT) through the use of a vector network analyzer. 
To compensate for various error sources associated with the measurement arrangement, 
the so-called TRL method is presented. Here the Through, Reject, and Line calibrations 
are shown to account for the various errors and therefore permit the recording of the 
actual S-parameters needed to characterize the DUT. 
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Problems 

4.1 From the defining equations (4.3) and (4.6) for the impedance and admit- 
tance matrices, show that [Z] = [Y]-' . 

For the following generic T-network, find the impedance and admittance 
matrices. 

Show that for a bipolar-junction transistor in a common-base configuration 
under small-signal low-frequency conditions (whose equivalent circuit is 
shown below) a hybrid parameter matrix can be established as follows: 

where the individual transistor parameters are denoted in the figure. 

Using the results from Problem 4.3, compute the equivalent circuit parame- 
ters for a BJT in common-base configuration if the h-matrix is given as 

r 7 

Employ the conversion table for the different parameter representations of 
the two-port network and find the h-matrix representation for a Darlington 
pair shown in Figure 4-7 under the assumption that the transistors are speci- 
fied by the same h-matrices derived in Example 4-2. 



Problems 

4.6 

4.7 

4.8 

4.9 

4.10 

4.11 

4.12 

Using the definition of the ABCD network representation, find the Y-parame- 
ter description. 

From the results of Problem 4.3 and Example 4.2, establish the conversion 
equations between the h-matrix parameters for the common-base and com- 
mon-emitter transistor configurations. 

Unlike the series connection discussed in Example 4-4, derive the ABCD- 
parameters for a two-port network where the impedance Z is connected in 
parallel. 

Find the ABCD-parameters for a generic three-element pi-network, as 
depicted in Figure 4-2. 

Compute the ABCD-parameters for an RF transformer with turn ratio 
N = N / N 2 ,  where N ,  is the number of turns a the primary winding and 
N 2  is the number of turns of the secondary winding. 

Prove that the h-matrix parameters for a high-frequency hybrid transistor 
model shown in Figure 4-12 are given by (4.31). 

In this chapter we have mentioned several h-matrix representations of the 
bipolar-junction transistor for different frequency conditions. In all cases we 
have neglected the influence of the parasitic components associated with the 
casing of the transistor. The modification to the equivalent circuit of the tran- 
sistor that takes into account these parasitics is shown below: 

I I 

LB Intrinsic C .  Tvv\, 
LC 

B- ' Y Y \ : ~  Transistor C 
Model 

E' 
I I I I  - 
I I I I 

CB, LE CEc 
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Assuming that the intrinsic transistor model is given by a generic h-matrix, 
derive the modified model that accounts for the casing. 

Compute the return loss for a 25 !2 resistor connected to a 75 !2 lossless 
transmission line. 

Find the forward gain of the circuit discussed in Example 4-8. 

Given that the input of an amplifier has a VSWR of 2 and the output is given 
by VSWR = 3, find the magnitudes of the input and output reflection coeffi- 
cients. What does your result mean in terms of Sl l  and S22 ? 

Using the same approach as described in Section 4.4.4, show that the S- 
parameters of the network can be computed from the known Y-parameters 
using 

[Sl = ([Yl + Y,[EI)-'(Y,[EI - [YI) 
and the corresponding inverse relation 

[Yl = Y,([EI - [SI)([Sl+ [El)-' 
where Yo = 1 /Zo is the characteristic line admittance. 

The ideal transformer of Problem 4.10 can also be represented in S-pararne- 
ter form. Show that the S-matrix is given by 

where N = N1/N2. 

For the following two circuits, prove that the S-parameters are given as 

respectively, where r1 = ( 1 + 2Z0/Zl)-' and r2 = -( 1 + 2Yo/Y ,)-I . 
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4.19 For the following T-network inserted into a transmission line with character- 
istic impedance of Zo = 5 0 R ,  the three resistances are 
R1 = R2 = 8.56 R , and R j  = 141.8 f2. Find the S-parameters of this 
configuration and plot the insertion loss as a function of inductance L for 
the frequency of f = 2 GHz and L changing from 0 to 100 nH. 

4.20 In practice, the resistors in the T-network of the previous problem are not 
frequency independent. At RF frequencies parasitic effects have to be taken 
into account. Compute the S-parameters at 2 GHz when all resistors have a 
0.5 nH parasitic series inductance. Assume L is fixed at 10 nH. 

4.21 A BJT is operated in a 50 R circuit at 1.5 GHz. For the bias conditions of 4 
mA collector current and collector-emitter voltage of 10 V, the manufacturer 
provides the S-parameters in magnitude and angle as follows: 

Find (a) the 2-parameter and (b) the h-parameter representation. 





An Overview of RF Filter 
Design 

A fter the discussion in Chapter 4, we are ready to 
extend and apply our knowledge of one- and two-port networks to develop RF filters. It 
is of particular interest in any analog circuit design to manipulate high-frequency sig- 
nals in such a way as to enhance or attenuate certain frequency ranges or bands. This 
chapter examines the filtering of analog signals. As we know from elementary circuit 
courses, there are generally four types of filters: low-pass, high-pass, bandpass, and 
bandstop. The low-pass filter allows low-frequency signals to be transmitted from the 
input to the output port with little attenuation. However, as the frequency exceeds a cer- 
tain cut-ofSpoint, the attenuation increases significantly with the result of delivering an 
amplitude-reduced signal to the output port. The opposite behavior is true for a high- 
pass filter, where the low-frequency signal components are highly attenuated or reduced 
in amplitude, while beyond a cut-off frequency point the signal passes the filter with lit- 
tle attenuation. Bandpass and bandstop filters restrict the passband between specific 
lower and upper frequency points where the attenuation is either low (bandpass) or high 
(bandstop) compared to the remaining frequency band. 

In this chapter we first review several fundamental concepts and definitions per- 
taining to filters and resonators. Specifically, the key concept of loaded and unloaded 
quality factors will be examined in some detail. Then, we introduce the basic, multisec- 
tion low-pass filter configuration for which tabulated coefficients have been developed 
both for the so-called maximally flat binomial, or Butterworth filter, and the equi-ripple 
or Chebyshev filter. The intent of Chapter 5 is not to introduce the reader to the entire 
filter theory, particularly how to derive these coefficients, but rather how to utilize the 
information to design specific filter types. We will see that the normalized low-pass fil- 
ter serves as the basic building block from which all four filter types can be derived. 
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Once we know the procedures of converting a standard low-pass filter design in 
Butterworth or Chebyshev configuration into a particular filter type that meets our 
requirements, we then need to investigate ways of implementing the filter through 
distributed elements. This step is critical, since at frequencies above 500 MHz lumped 
elements such as inductors and capacitors are unsuitable. Relying on Richards transfor- 
mation, which converts lumped into distributed elements, and Kuroda's identities, we 
are given powerful tools to develop a wide range of practically realizable filter 
configurations. 

5.1 Basic Resonator and Filter Configurations 

5.1.1 Filter Types and Parameters 

It is convenient to begin our discussion by introducing the ideal behavior of the 
four basic filter types: low-pass, high-pass, bandpass, and bandstop. Figure 5-1 summa- 
rizes their attenuation a versus normalized angular frequency behavior. 

Low-pass filter 
a. dB 

I I 
0 Q, a2 

Bandpass filter 

High-pass filter 
a, dB 

I I 
0 

4 2  
Q, Q2 

Bandstop filter 

Figure 5-1 Four basic filter types. 

We have chosen the parameter i2 = o/oc as a normalized frequency with 
respect to the angular frequency a , ,  which denotes cut-off frequency for low-pass and 
high-pass filters and center frequency for bandpass and bandstop filters. As we will 
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see, this normalization will greatly simplify our task of developing standard filter 
approaches. Actual attenuation profiles are shown in Figure 5-2 for the so-called bino- 
mial (Butterworth), Chebyshev, and elliptic (Cauer) low-pass filters. 

!2 
0 1 0 1 

d 2  

Binominal filter Chebyshev filter 

Figure 5-2 Actual attenuation profile for three types of low-pass filters. 

The binomial filter exhibits a monotonic attenuation profile that is generally easy 
to implement. Unfortunately, to achieve a steep attenuation transition from pass- to stop 
band, a large number of components is needed. A better, steeper slope can be imple- 
mented if one permits a certain degree of variations, or ripples, in the passband attenua- 
tion profile. If these ripples maintain equal amplitude, either in the stopband or 
passband, we speak of a Chebyshev filter since the design relies on the so-called Che- 
byshev polynomials. For both the binomial and the Chebyshev filter we observe that the 
attenuation approaches infinity as R + -. This is in contrast to the elliptic filters, 
which allow the steepest transitions from passband to stopband at the expense of ripples 
in both bands. Because of their mathematical complexity in designing elliptic filters, we 
will not investigate them any further (for more information see Rizzi, listed in Further 
Reading at the end of this chapter). 

In analyzing the various trade-offs when dealing with filters, the following param- 
eters play key roles: 
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Insertion loss. Ideally, a perfect filter inserted into the RF circuit path would 
introduce no power loss in the passband. In other words, it would have zero inser- 
tion loss. In reality, however, we have to expect a certain amount of power loss 
associated with the filter. The insertion loss quantifies how much below the 0 dB 
line the power amplitude response drops. In mathematical terms it states 

Pin 2 
IL = 10log- = -1olog(l- lrinl ) 

PL 

where PL is the power delivered to the load, Pin is the input power from the 
source, and Irinl is the reflection coefficient looking into the filter. 

Ripple. The flatness of the signal in the passband can be quantified by specifying 
the ripple or difference between maximum and minimum amplitude response in 
either dB or Nepers. As already mentioned, and as will be discussed further, the 
Chebyshev filter design allows us to precisely control the magnitude of the ripple. 

Bandwidth. For a bandpass filter, bandwidth defines the difference between upper 
and lower frequencies typically recorded at the 3 dB attenuation points above the 
passband: 

Shape factor. This factor describes the sharpness of the filter response by taking 
the ratio between the 60 dB and the 3 dB bandwidths: 

Rejection. For an ideal filter we would obtain infinite attenuation level for the 
undesirable signal frequencies. However, in reality we expect an upper bound due 
to the deployment of a finite number of filter components. Practical designs often 
specify 60 dB as the rejection rate since it can readily be combined with the shape 
factor (5.3). 

The preceding filter parameters are best illustrated by way of a generic bandpass 
attenuation profile, as summarized in Figure 5-3. The magnitude of the filter's attenua- 
tion behavior is plotted with respect to the normalized frequency R. As a result, the 
center frequency f, is normalized to R = 1 . The 3 dB lower and upper cut-off fre- 
quencies are symmetric with respect to this center frequency. Beyond these 3 dB points, 
we observe the attenuation response rapidly increasing and reaching the 60 dB rejection 
points at which the stopband begins. 
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Figure 5-3 Generic attenuation profile for a bandpass filter. 

There is one additional parameter describing the selectivity of the filter. This 
parameter is known as the quality factor Q, which generally defines the ratio of the 
average stored energy to the energy loss per cycle at the resonant frequency: 

average stored energy average stored energy Q = a  Wstod = a-1 
energy loss per cycle power loss a = PlOSS ',, = ac 

where the power loss PloSs is equal to the energy loss per unit time. In applying this def- 
inition, care must be taken to distinguish between an unloaded and loaded filter. What is 
meant here is best seen by viewing the filter as a two-port network connected to a 
source at the input side and a load at the output, as shown in Figure 5-4. 

Filter . a - ~ z .  

Figure 5-4 Filter as a two-port network connected to an RF source and load. 

It is customary to consider the power loss as consisting of the power loss associ- 
ated with the external load and the filter itself. The resulting quality factor is named 
loaded Q, or QLD . Interestingly, if we take the inverse of the loaded Q, we see that 
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power loss in filter power loss in load 
average stored energy average stored energy (5.5) 

0 = 0, 

since the total power loss is comprised of the power losses due to the presence of the fil- 
ter and the load. This can be written in the concise form 

1 1 1  - = -+-  
QLD QF Q E  

(5.6) 

where QF and QE are the filter Q and the external Q. The precise meaning of (5.6) 
will be analyzed in Section 5.1.4. As we will also see in this section, (5.6) can be cast in 
the form 

f c  - f c 
QLD = -- fim- fy-BW3m (5.7) 

where f c  is the center or resonance frequency of the filter. In the following sections a 
summary is given of the salient features of the three most common filters. Emphasis is 
placed on the network description as previously developed in Chapter 4. 

5.1.2 Low-Pass Filter 

As one of the simplest examples we start our investigation by analyzing a first- 
order low-pass filter connected to a load resistance, as depicted in Figure 5-5. 

(a) Low-pass filter with load resistance. (b) Network with inputloutput voltages 

Figure 5-5 Low-pass filter connected between source and load resistance. 

The focal point in any filter design is to find the output V 2  due to the input volt- 
age V ,  , or even better, the generator voltage VG . For our simple circuit this can best be 
accomplished by cascading four ABCD-networks (labeled 1 through 4) as suggested in 
Figure 5-6. 
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Figure 5-6 Cascading four ABCDnetworks. 

The overall ABCD-network is therefore 

where we use the fact that both source and load impedances are resistive, i.e., ZG = RG 
and ZL = R,. Since A is already the ratio V G / V 2 ,  we only have to invert this single 
coefficient: 

Equation (5 .9)  can be examined for the limiting cases where the frequency is either zero 
or approaches infinity. For o + 0 we obtain 

and for o + w 

In the first case we notice that the voltage divider rule applies for the DC condition, 
while for the second case the filter exhibits the expected low-pass behavior of zero out- 
put voltage at high frequencies. Further, if the load resistance goes to infinity 
( R L  + w), the filter becomes unloaded and in the limit a pure first-order system 
results: 
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where H ( o )  is known from system theory as transfer function. Besides specifying 
the transfer function, it is more common to compute the attenuation factor in Neper 
(Np) such that 

1 2 a ( o )  = -lnlH(o)l = --lnlH(o)l 
2 

(5.12a) 

or in dB as 

a(o) = -201oglH(o)l = -1010gl~(o)12 (5.12b) 
The corresponding phase is 

Directly related to phase is the so-called group delay 
quency derivative of the phase 

(5.12~) 

t, , which is defined as the fre- 

It is often desirable to design a filter with nearly linear phase (i.e., $ a oA,  with A 
being an arbitrary constant factor). The group delay is then simply a constant t ,  a A .  

A typical filter response for C = 10 pF, R = 10 R, RG = 50 R and various load 
resistances is shown in Figure 5-7. 

Frequency, Hz 

(a) Attenuation profile of the low-pass filter for various load resistances 
Figure 5-7 First-order low-pass filter response as a function of various load 

resistances. 
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Frequency, Hz 

(b) Phase response of the low-pass filter for various load resistances 
Figure 5-7 First-order low-pass filter response as a function of various load 

resistances. (Continued) 

5.1.3 High-Pass Filter 

Replacing the capacitor with an inductor in Figure 5-5 permits the construction of 
a first-order high-pass filter, as depicted in Figure 5-8. The analysis follows the same 
steps as outlined in (5.9), except that the capacitive reactance is replaced by an induc- 
tive reactance. The result is 

r 7 

(a) High-pass filter with load resistance (b) Network and inputloutput voltages 
Figure 5-8 First-order high-pass filter. 
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This gives us directly the result 

As o + 0 ,  it is seen that 

and for o = we conclude 

which reveals that the inductive influence can be neglected. The filter response for 
L = 100 nH, R = 10 R, RG = 50 R, and various load resistances is shown in Figure 5-9. 

5.1.4 Bandpass and Bandstop Filters 

A bandpass filter can be constructed through an RLC series circuit or through a 
parallel connection of an RLC shunt circuit. The generic series circuit diagram, includ- 
ing generator and load impedances, is displayed in Figure 5-10. 

The network representation in ABCD notation takes on the form 

where impedence Z is specified from conventional circuit analysis as 

The transfer function H(o) = l/A is found to be 

Explicit plots of the transfer function and the attenuation profile are discussed in the 
following example. 
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. . 

Frequency, Hz 

(a) Attenuation profile of the filter for various load resistances 

Frequency, Hz 

(b) Phase response of the filter for various load resistances 
Figure 5-9 Low-pass filter response as a function of various load resistances. 

Figure 5-10 Bandpass filter implemented in series configuration. 
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5 & M  W 
Example 5-1: Bandpass filter response 

For a bandpass filter with Z L  = ZG = 50 Q the following compo- 
nents are selected: R = 20 Q ,  L = 5 nH, and C = 2 pF. Find 
the resonance frequency, and plot the frequency response of the 
phase of the transfer function and the associated attenuation profile 
in dB. 

Solution: To solve this problem we use the definition of the trans- 
fer function for the bandpass filter presented in (5.18). The attenua- 
tion profile of the filter expressed in dB is computed as 
a = ~ O ~ O ~ [ H ( C O ) - ' ]  = -2010g [H(o)]  . Both the attenuation and 
phase profiles of the filter are shown in Figure 5- 1 1. From the graph 
we can estimate the resonance frequency f, of the filter to be approx- 
imately 1.5GHz. The exact numerical value is 
f, = 1/(2n&c) = 1.59 GHz . 

1 . . . . ..., . . . . . .  , . . . . . . . . ,  . . . . . . .  -1-100 

10' lo8 lo9  1o'O 10" 
Frequency , Hz 

Figure 5-1 1 Bandpass filter response. 
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As expected, our bandpass jilter assumes a minimum attenua- 
tion at the resonance point, but the transitions from stopband to 
passband are very gradual. 

If the series circuit is replaced by a shunt circuit, as shown in Figure 5-12, we only 
have to replace Z by IN in (5.17), which leads to 

where the admittance is 

and upon insertion into (5.19) yields 

A typical transfer function response of magnitude and phase for the values listed in 
Example 5- 1 is seen in Figure 5- 12. 

Working with energy storage systems or LC-based networks, we can use the qual- 
ity factor as introduced in Section 5.1.1 to specify the bandwidth of the 3 dB passband 
or stopband of a filter: 

where f is the resonance frequency. This quality factor is the inverse of the dissipa- 
tion factor d ,  which depends on whether we deal with a series (RLC) or a parallel con- 
nected (GLC) circuit. Table 5-1 summarizes all relevant definitions for the series and 
parallel resonance circuits. 

The quality factor provides important insight into the losses generated by a partic- 
ular resonator circuit configuration. The circuits shown in Table 5-1 depict unloaded fil- 
ters (i.e., filters in the absence of any external load connections). 
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(a) Magnitude of transfer function 

Frequency, Hz 

(b) Phase of transfer function 
Figure 5-12 Bandstop filter response. 

When dealing with the loaded situation we are confronted with the additional 
complication of generator and load impedances attached to the resonator. With refer- 
ence to Figure 5-10, let us take a more detailed look at how the three different quality 
factors arise. To this end, our aim is to analyze the series resonance, or bandpass filter, 
connected to the generator resistance RG and load R L .  Without loss of generality, we 
can combine both resistances into the configuration shown in Figure 5-13. 
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Table 5-1 Series and parallel resonators 
I I 

Impedance or Admittance 

Dissipation Factor 
R d = - = Rw,C = Go0L 

Z = R + J W L  + - 1 
Y = G + j o C + -  j oL  

- 

Resonance Frequency 
1 

W o  = - 
EC 

Quality Factor 

Figure 5-1 3 Circuit used for the definitions of loaded and unloaded quality factors. 

1 o0 = - 
z c  

Bandwidth 

where RE = RG + RL and V G  is understood as a ThCvenin-equivalent source. The 
losses can now be partitioned as originating from an external resistance RE,  an internal 
resistance R , or both. Therefore, we need to differentiate three cases: 

External quality factor (RE  # 0, R  = 0 ) 

6'oL 1 Q = - = -  
R Ro0C 

Internal or filter quality factor (RE  = 0, R  # 0 ) 

WoC - 1 Q = - - -  
G GooL  

f o  1 R  BW = - = -- 
Q 2nL  

f o  1 G  BW = - = -- 
Q 2nC 
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Loaded quality factor ( R E  # 0, R # 0 ) 

Identical expressions are derived for a shunt resonator circuit if we replace R  and RE 
by G and GE. It is customary to introduce the normalized frequency deviation from 
the resonance point 

and expand it as follows: 

with A f = f - f . Equation (5.24) leads to the expression of the differential change in 
quality factor 

Af AQLD = Q L D ~  = 2- QLD 
fo 

If (5.25) is solved for QLD , and using X = o L  , we obtain 

for the series circuit configuration. 
Alternatively, for a parallel circuit with B = 1 / (aL)  we have 

The equations (5.26a) and (5.26b) show that generically the loaded quality factor for 
complex impedances (or admittances) can be computed as 
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where Re{Z}, Im{Z), Re{ Y), and Im{ Y} are real and imaginary parts of the total 
impedance or admittance of the resonance circuit. 

5.1.5 lnsertion Loss 

The previously developed quality factor expressions are very useful in RF circuit 
design, since the Q of a filter can more easily be measured (for instance, with a network 
analyzer) than the actual impedance or admittance. It is therefore helpful to re-express 
the impedance or admittance values of bandpass or bandstop filters in terms of the vari- 
ous Q-factors. For example, the impedance of the series resonance circuit can be rewrit- 
ten as: 

which leads to 

Following the same steps as described for a series resonator, a very similar expression 
can be derived for the admittance Y of a parallel resonator: 

We now turn our attention to the following situation: a transmission line system 
with characteristic line impedance Zo is matched at the load and generator sides 
(2, = Z ,  = Z, ) as seen in Figure 5- l4(a). 

(a) Matched transmission line system 

.--....----..-------. 

(b) Inserted bandpass filter 
Figure 5-14 Insertion loss considerations. 
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In Figure 5-14(a) the power delivered to the load PL is the total available power from 
the source Pin : 

P,  = Pin = I V , ~ ~ / ( ~ Z , )  (5.30) 

If the filter is inserted as shown in Figure 5-14(b), the power delivered to the load 
becomes 

which, after some algebra and the use of (5.6), yields 

P ,  = Pin 
1 

(5.32) 
(1 + E~QZ,)Q:/Q~, 

The insertion loss in dB due to the presence of the filter is then computed as 

At resonance, E = 0 ,  the first term drops out and the second term quantifies the associ- 
ated resonator losses. However, if the filter is off resonance, then the first term quanti- 
fies the sensitivity. If we consider the frequency at which the power delivered to the 
load is half, or 3 dB, of the power at resonance frequency, we can immediately write 

2 2 that 1 + E QLD = 2 ,  or, taking into account relation (5.24), we obtain 

BW3,, = 2Af = ~f 0 = f 
Recalling Section 2.1 1, we notice that (5.33) can be related to the input reflection coef- 
ficient: 

where LF is known as the loss factor. This loss factor plays a central role when devel- 
oping the desired filter attenuation profiles. 
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%&M w 
Example 5-2: Calculation of various quality factors for a filter 

- -.u >* For the filter configuration shown in Figure 5-14(b), the following 
parameters are given: Zo = 50 52 , Z, = ZL = Zo , R = 10 52, 
L = 50 nH, C = 0.47 pF, and the generator voltage is 
V, = 5 V . Find the loaded, unloaded (filter), and external quality 
factors; power generated by the source; power absorbed by the load 
at resonance; and plot the insertion loss in the range of +20% of the 
resonance frequency. 

Solution: The first step in the solution of this problem is to find 
the resonance frequency of the filter: 

Knowing this value we are now capable of computing the various 
quality factors of the filter: 

External quality factor: QE = OoL 22, = 3.26 

OoL Internal or filter quality factor: QF = - = 32.62 
R 

Loaded quality factor: ooL - - = 2.97 - R + 22, 

To determine the input power, or maximum available power from 
the source, we use (5.30): 

Pin = 1v,1*/(8z0) = 62.5 mW 

Due to nonzero internal resistance of the filter (R = 10 Q) , the sig- 
nal will suffer some attenuation even at the resonance frequency and 
the power delivered to the load will be less than the available power: 

Finally, substituting the loaded and external quality factors into 
(5.33), we proceed to find the insertion loss of the filter in the range 
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of f20% of the resonance frequency by plotting the frequency 
response of ZL, as shown in Figure 5-15. As we see from the graph, 
the 3 dB bandwidth of this filter is approximately equal to 350 MHz, 
which agrees with the result obtained using our formula derived ear- 
lier in this section (i.e., BW,,, = f o/QLD = 350.07MHz). 

, BW = 350 MHz 
4 

Frequency, GHz 

Figure 5-1 5 Insertion loss versus frequency. 

Although not as distinctively observed in practice, the example 
shows that the loaded quality is lower than both the external and 
internal Jilter quality factors. 

5.2 Special Filter Realizations 
The analytical synthesis of special filter characteristics such as low-pass, high-pass, 

and bandpasdbandstop filters is generally very complicated. In our brief introductory 
treatment we are going to concentrate on two filter types: the maximally flat Butterworth 
and the equi-ripple Chebyshev filter realizations. Both filter types are analyzed first in a 
normalized low-pass configuration, before the low-pass behavior is frequency scaled to 
implement the remaining filter types through a frequency transformation. 
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5.2.1 Butterworth-Type Filters 

This filter type is also known as maximally flat filter since no ripple is permitted in 
its attenuation profile. For the low-pass filter, the insertion loss is determined through 
the loss factor, 

where R is again the normalized frequency as introduced in Section 5.1.1 and where N 
denotes the order of the filter. It is customary to select the constant a = 1 so that at 
R = 0/0, = 1 the insertion loss becomes IL = 10log (2 )  , which is the 3 dB point 
at the cut-off frequency. In Figure 5-16 the insertion loss for several values N is plotted. 

Normalized frequency, Q 

Figure 5-16 Butterworth low-pass filter design. 

Two possible realizations of the generic normalized low-pass filter are shown in 
Figure 5-17, where we set RG = 1 . 

The element values in the circuits in Figure 5-17 are numbered from go at the 
generator side to gN + at the load location. The elements in the circuit alternate 
between series inductance and shunt capacitance. The corresponding elements g are 
defined as follows: 

internal generator resistance for circuit in Figure 5-17(a) = 
internal generator conductance for circuit in Figure 5-17(b) 
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Figure 5-17 Two equivalent realizations of the generic multisection low-pass 
filter with normalized elements. 

inducance for series inductor 
capacitance for shunt capacitor 

( m =  1, ..., N) 

- i load resistance if the last element is a shunt capacitor 
g N  + - 

load conductance if the last element is a series inductor 

The values for the g's are tabulated and can be found in the literature (see Pozar and Rizzi, 
listed in Further Reading). For N up to 10, Table 5-2 summarizes the respective g-values 
for the maximally flat low-pass filter based on go = 1 and cut-off frequency a, = 1 . 

The corresponding attenuation versus frequency behavior for various filter orders 
N is seen in Figure 5-18. We note that 52 = 1 is the 3 dB cut-off frequency point. The 
attenuation curves in Figure 5-18 are very useful in determining the required order of 
the filter. For instance, if a maximally flat low-pass filter is to be designed with attenua- 
tion of at least 60 dB at i2 = 2 ,  we see that an order of N = 10 is required. 

Figure 5-18 exhibits a steep increase in attenuation after cut-off. We notice that 
2 N  

for 52 >> 1 or o >> o, the loss factor increases as R , which is a rate of 20N dB per 
decade. However, nothing is said about the phase response of such a filter. In many 
wireless communication applications, a linear phase behavior may be a more critical 
issue than a rapid attenuation or amplitude transition. Unfortunately, linear phase and 
rapid amplitude change are opposing requirements. If linear phase is desired, we 
demand a functional behavior similar to (5.35) 
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Table 5-2 Coefficients for maximally flat low-pass filter (N = 1 to 10) 

1.1 1.2 1.3 1.5 1.7 2 3 4  6 8 1 1  
Normalized frequency, fi 

Figure 5-18 Attenuation behavior of maximally flat low-pass filter versus 
normalized frequency. 
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with A and A2 being arbitrary constants. The associated group delay tg  is 

In Table 5-3, the first 10 coefficients for a linear phase response with group delay 
t ,  = 1 are listed. 

Since steep filter transition and linear phase are generally competing require- 
ments, it has to be expected that the shape factor is reduced. The question of how a lin- 
ear phase design based on Table 5-3 compares with a standard design of Table 5-2 is 
discussed in Example 5-3 for the case N = 3. 

Table 5-3 Coefficients for linear phase low-pass filter (N = 1 to 10). 

5.2.2 Chebyshev-Type Filters 

The design of an equi-ripple filter type is based on an insertion loss whose func- 
tional behavior is described by the Chebyshev polynomials TN(R) in the following 
form: 

ZL = 10log{LF} = lOlog{l +a2~:(L2)} (5.38) 

where 

TN(Q) = cos {~[cos-' (R)] 1, for QI 5 1 

TN(R) = cosh {~[cosh- l  (Q)] }, for IRI 2 1 



To appreciate the behavior of the Chebyshev polynomials in the normalized frequency 
range -1 < SZ < 1 , we list the first five terms: 

To = 1,T,  = R,T, = - 1 + 2 S Z 2 , ~ ,  = - 3 R + 4 R 3 , ~ ,  = 1-8SZ2+8SZ4 

The functional behavior of the first two terms is a constant and a linear function, and 
the subsequent three terms are quadratic, cubic, and fourth-order functions, as seen in 
Figure 5- 19. 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 L 
-1 -0.8 -0.64.4-0.2 0 0.2 0.4 0.6 0.8 I 

Normalized frequency, R 

Figure 5-1 9 Chebyshev polynomials T, (SZ) through T4(SZ) in the normalized 
frequency range -1 I R I 1 . 

It can be observed that all polynomials oscillate within a +1 interval, a fact that is 
exploited in the equi-ripple design. The magnitude of the transfer function IH(jR)( is 
obtained from the Chebyshev polynomial as follows: 

where TN(R) is the Chebyshev polynomial of order N and a is a constant factor that 
allows us to control the height of the passband ripples. For instance, if we choose 
a = 1 , then at SZ = 1 we have 
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which is the 3 dB level that applies uniformly throughout the passband (equiripple). We do 
not go any further into the general theory of Chebyshev filter design, but rather refer the 
reader to a classical textbook that covers this topic comprehensively (see Matthaei et al.). 

In Figure 5-20 the loss factor and insertion loss are plotted for a Chebyshev filter 
with coefficient a = 1 , which again results in a 3 dB attenuation response at resonance 
frequency (R = 1 ) . 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Normalized frequency, R 

Normalized frequency, R 

Figure 5-20 Frequency dependence of the loss factor and insertion loss of the 
Chebyshev low-pass filter. 
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As mentioned, the magnitude of the ripple can be controlled by suitably choosing 
factor a. Since Chebyshev polynomials oscillate in the range from -1 to +1 for 
-1 152 I 1 , the squared value of these polynomials will change from 0 to +1 in the 
same frequency range. Therefore, in the frequency range of -1 I 52 I 1 the minimum 
attenuation that is introduced by the filter is 0 dB and the maximum attenuation, or 

2 
equivalently the magnitude of the ripples, is IL = lOlog(1 + a ) . Thus, if the desired 
magnitude of the ripples is denoted as RPLdB,  then a should be chosen as 

For instance, to obtain a ripple level of 0.5 dB we have to select 
( 1o0.5/10 - )I12 a = = 0.3493. The associated attenuation profiles for the first 10 

orders are shown in Figure 5-21 for a 3 dB ripple, and in Figure 5-22 for a 0.5 dB ripple. 

Normalized frequency, R 

Figure 5-21 Attenuation response for 3 dB Chebyshev design. 

Upon comparing Figure 5-21 with 5-22, it is apparent that the disadvantage of a 
higher ripple in the passband has as an advantage a steeper transition to the stopband. For 
instance, a fifth-order, 3 dB ripple Chebyshev filter design at Q = 1.2 has an attenua- 
tion of 20 dB, whereas the same order 0.5 dB ripple filter reaches only 12 dB at the same 
frequency point. The trend remains the same for higher frequencies and different orders. 
As a case in point, at 52 = 5 the fourth-order, 0.5 dB filter has an attenuation of 65 dB 
compared with the 3 dB design, which has an attenuation of approximately 73 dB. 

With reference to the prototype filter circuit, Figure 5-17, the corresponding coef- 
ficients are listed in Table 5-4. 
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1.011.021.04 1.1 1.2 1.4 1.72 3 5 8 11 
Normalized frequency, !2 

Figure 5-22 Attenuation response for 0.5 dB Chebyshev design. 

Table 5-4 (a) Chebyshev filter coefficients; 3 dB filter design (N = 1 to 10) 
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Table 5-4 (b) Chebyshev filter coefficients; 0.5 dB filter design (N  = 1 to 10) 

-- -- 

Unlike the previously discussed Buttenvorth filter, the Chebyshev filter approach 
provides us with a steeper passbandlstopband transition. For higher normalized fre- 
quencies R >> 1 , the Chebyshev polynomials TdR)  can be approximated as 
(1 /2)(2R)". This means that the filter has an improvement in attentuation of roughly 
(22N)/4 over the Butterworth design. 

Y U m w  
Example 5-3: Comparison between Butterworth, linear phase 

Butterworth, and Chebyshev filters 

Compare the attenuation versus frequency behavior of the third- 
order low-pass filter for (a) standard 3 dB Buttenvorth, (b) linear 
phase Butterworth, and (c) 3 dB Chebyshev design. 

Solution: If we choose the first element of the filter to be an 
inductor connected in series with the source, then the circuit topol- 
ogy of the third order filter is given by 
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where the inductances and the capacitor are obtained from Tables 
5-2,5-3, and 5-4. Specifically, 

Standard Butterworth: L1 = L2 = 1 H ,  C ,  = 2 F 
Linear phase Butterworth: L1 = 1.255 H ,  C 1  = 0.5528 F ,  
L, = 0.1922 H 
3 dB Chebyshev filter: L1 = L2 = 3.3487 H ,  C 1  = 0.71 17 F 
generator and load: RG = RL = 1 SZ 

As we can see from the preceding circuit diagram, under DC 
condition the inductances become short circuits and the capacitor 
acts like an open circuit. The voltage across the load is equal to one- 
half of the voltage at the source due to the voltage divider formed by 
the load and source impedances (i.e. V ,  = 0.5 V G ) .  When the fre- 
quency is not equal to zero the voltage across the load can be 
obtained by applying the voltage divider rule twice; first, to obtain 
the voltage at node A: 

and, second, to obtain the voltage across the load with reference to 
V A  : 

where Zc = RG + joL, .  If we find the ratio of the circuit gain at AC to 
the gain under DC conditions, it is possible to compute the attenua- 
tion that is introduced by the filter: 

The graph of the attenuation coefficient expressed in dB for the 
three filter realizations is shown in Figure 5-23. As expected, the 
Chebyshev filter has the steepest slope of the attenuation profile, 
while the linear phase filter exhibits the lowest roll-off with fre- 
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Normalized frequency, R 

Figure 5-23 Comparison of the frequency response of the Butteworth, linear 
phase, and 3-dB Chebyshev third-order filters. 

quency. Therefore, if a sharp transition from passband to stopband is 
required, and ripples can be tolerated, the most appropriate choice 
would be a Chebyshev filter implementation. We also note that the 
attenuation of the Chebyshev filter at cut-off frequency is equal to 
the ripple size in the passband. 

Even though the linear phase Butterworth filter su$ers from a 
shallow transition, it is the linear phase that makes it particularly 
attractive for modulation and mixer circuits. 

5.2.3 Denormalization of Standard Low-Pass Design 

To arrive at realizable filters, we have to denormalize the aforementioned coeffi- 
cients to meet realistic frequency and impedance requirements. In addition, the stan- 
dard low-pass filter prototype should be convertible into high-pass or 
bandpasstbandstop filter types depending on the application. Those objectives can be 
achieved by considering two distinct steps: 
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Frequency transformation to convert from nomalized frequency 52 to actual 
frequency o . This step implies the scaling of the standard inductances and capac- 
itances. 
Impedance transformation to convert standard generator and load resistances 

go and g(, + 
to actual resistances RL and RG . 

We begin by examining the frequency transformation and its implications in terms of 
the various filter types. To eliminate confusing notation, we drop the index denoting 
individual components (i.e., Ln(n = 1, . . . , N) + L and Cn(n = 1, . . . , N )  + C ) .  
This makes sense since the transformation rules to be developed will be applicable to 
all components equally. 

Frequency Transformation 
A standard fourth-order low-pass Chebyshev filter with 3 dB ripples in the pass- 

band response is shown in Figure 5-24, where we have included negative frequencies to 
display more clearly the symmetry of the attenuation profile in the frequency domain. 
Furthermore, by appropriately scaling and shifting, we notice that all four filter types, 
Figures 5-25,5-26,5-28, and 5-29, can be generated. This is now examined in detail. 

Normalized frequency, Q 

Figure 5-24 Fourth-order low-pass Chebyshev filter with 3 dB ripples in the 
passband. 
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For the low-pass filter we see that a simple multiplication by the angular cut-off 
frequency o, accomplishes the desired scaling (see Figure 5-25): 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Frequency, GHz 

Figure 5-25 Conversion of standard low-pass filter prototype into low-pass 
realization. Cut-off frequency is f, = 1 GHz. 

For the scaling we picked an arbitrary cut-off frequency of 1 GHz. In the corresponding 
insertion loss and loss factor expressions, Q is simply replaced by Qo, . For the induc- 
tive and capactive elements, we have to compare normalized with actual reactances: 

This reveals that the actual inductance and capacitance i and k are computed from the 
normalized L and C as 

For the high-pass filter the parabolically shaped frequency response has to be 
mapped into a hyperbolic frequency domain behavior. This can be accomplished 
through the transformation 
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The correctness of this transformation is immediately apparent when the normalized 
cut-off frequency R = f 1 is substituted in (5.43). This assigns the actual cut-off fre- 
quency o = yo, to the high-pass filter, consistent with Figure 5-26. 

Frequency, GHz 

Figure 5-26 Conversion of standard low-pass filter prototype into high-pass 
realization. Cut-off frequency is f, = 1 GHz. 

Care has to be exercised in de-normalizing the circuit parameters. We note 

Thus, it follows that 
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This makes intuitive sense since it is known from fundamental circuit theory that a h t -  
order high-pass filter can be obtained from a low-pass filter by replacing the inductors 
with capacitors or vice versa. Equations (5.45) are the logical extension to higher-order 
filters. 

The bandpass $filter requires a more sophisticated transformation. In addition to 
scaling, we also have to shift the standard low-pass filter response. The mapping from 
the normalized frequency R to the actual frequency o is best explained by considering 
Figure 5-27. 

Frequency, o 

Figure 5-27 Mapping from standard frequency R into actual frequency o. 
Lower cut-off frequency is oL = 1 and upper cut-off frequency is ow = 3 .  

The functional relation that achieves scaling and shifting is 

where the upper and lower frequencies o w ,  oL define the bandwidth expressed in 
radh (BW = ow - oL) of the passband located at o, = wo . In other words, the cut- 
off frequency o, now defines the center frequency oo as mentioned earlier. Using oo 
and (5.23), it is possible to rewrite (5.46) as 

The upper and lower frequencies are the inverse of each other: 
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a fact that can be employed to specify the center frequency as the geometric mean of 
the upper and lower frequencies, coo = JGL. The mapping of this transformation is 
verified if we first consider R = 1 . Equation (5.46) is unity for o = ou and 
o = o, . For R = 0 we obtain o = fa,, . The frequency transformations are there- 
fore as follows: 

-1 IRIO+o,IoI-oo 

The result of this transformation applied to the low-pass filter prototype is shown in 
Figure 5-28. 

Frequency, GHz 

Figure 5-28 Conversion of standard low-pass filter prototype into bandpass 
realization with lower cut-off frequency f, = 0.7 GHz, upper cut-off frequency 

f, = 1.3 GHz, and center frequency of f, = 1 GHz. 

The circuit parameters are next transformed according to the assignment 

which yields for the series inductor L in (5.49) the denormalized series inductor t 
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- 
L = 

L 
0, - UL 

and the denormalized series capacitance C 

The shunt capacitor is transformed based on the equation 

to the following two shunt elements: 

- 
C = C (5 S2b) 

0, - OL 

Referring to Figure 5-17, we see that a normalized inductor is transformed into a series 
inductor and capacitor with values given by (5.50). On the other hand, the normalized 
capacitor is transformed into shunt inductor and capacitor, whose values are stated by 
(5.52). 

The bandstop filter transformation rules are not explicitly derived, since they can 
be developed through an inverse transform of (5-47) or by using the previously derived 
high-pass filter and applying (5.49). In either case, we find for the series inductor the 
series combination 

I: = l /[(a,-  a,)L] 

and for the shunt capacitor the shunt combination 

2 C = (a ,  - wL)C/o0 (5.54b) 

The resulting frequency response for the band-stop filter is shown in Figure 5-29. 
Table 5-5 summarizes the conversion from the standard low-pass filter to the four 

filter realizations. 
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Frequency, GHz 

Figure 5-29 Conversion of standard low-pass filter prototype into band-stop 
realization with center frequency of f, = 1 GHz. Lower cut-off frequency is 

f, = 0.7 GHz and upper cut-off frequency is f, = 1.3 GHz. 

Table 5-5 Transformation between normalized low-pass filter and actual bandpass 
and bandstop filter (BW = o, - o,) 
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Impedance transformation 
In the original filter prototype shown in Figure 5-17 we have unit source and load 

resistances except for the even-numbered Chebyshev filter coefficients listed in 
Table 5-4. If, however, either the generator resistance go or the load resistance RL is 
required to be unequal to unity, we need to scale the entire impedance expression. This 
is accomplished by scaling all filter coefficients by the actual resistance RG . That is, 

- 
RL = RLRG (5.55d) 

where the tilde expressions are again the resulting actual parameters and L, C, and RL 
are the values of the original prototype. 

In Example 5-4 we demonstrate the design of a Chebyshev bandpass filter based 
on the low-pass prototype. 

C & M W  
Example 5-4: Chebysehev bandpass filter design 

An N = 3 Chebyshev bandpass filter is to be designed with a 3 dB 
passband ripple for a communication link. The center frequency is at 
2.4 GHz and the filter has to meet a bandwidth requirement of 20%. 
The filter has to be inserted into a 50 R characteristic line imped- 
ance. Find the inductive and capactive elements and plot the attenu- 
ation response in the frequency range 1 to 4 GHz. 

Solution: From Table 5-4(a) we find that the coefficients for a 
standard low-pass N = 3 Chebyshev filter with 3 dB ripples in the 
pass-band are go = g, = 1 ,  g, = g, = 3.3487, and 
g2 = 0.71 17 . In this filter prototype we assumed that both genera- 
tor and load impedances are equal to unity. In our problem, however, 
we have to match the filter to 50 R line impedances. Thus we must 
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apply scaling as described by (5.55). The resulting circuit is shown 
in the following figure: 

This is still a low-pass filter with cut-off frequency of o, = 1 or 
f, = 1/(2n) = 0.159 Hz. We can next apply the frequency trans- 
formation to change the low-pass filter into a bandpass filter: 

w, = 1.1(2n2.4x109) = 1 6 . 5 9 ~ 1 0 ~  

and 

The actual inductive and capacitive values are defined in (5.50) and 
(5.52): 

- 
C,  = C2 = 4.7 pF 

ou - UL 
The final circuit is shown in Figure 5-30 together with the resulting 
graph for the attenuation response. 
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Frequency, GHz 

Figure 5-30 Attenuation response of a third-order 3-dB ripple bandpass 
Chebyshev filter centered at 2.4 GHz. The lower cut-off frequency is f ,  = 2.1 6 

GHz and the upper cut-off frequency is f ,  = 2.64 GHz. 

The jlter design becomes almost a cook-book approach if we 
start from the standard low-pass jilter and subsequently apply the 
appropriate frequency transfomultion and component scaling. 

5.3 Filter Implementation 
Filter designs beyond 500 MHz are difficult to realize with discrete components 

because the wavelength becomes comparable with the physical filter element dimen- 
sions, resulting in various losses severely degrading the circuit performance. Thus, to 
arrive at practical filters, the lumped component filters discussed in Section 5.2 must be 
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converted into distributed element realizations. In this section, some of the necessary 
tools are introduced-namely, Richards transformation, the concept of the unit ele- 
ment, and Kuroda's identities. 

To accomplish the conversion between lumped and distributed circuit designs, 
Richards proposed a special transformation that allows open- and short-circuit trans- 
mission line segments to emulate the inductive and capactive behavior of the discrete 
components. We recall that the input impedance Zi, of a short-circuit transmission line 
(Z, = 0 ) of characteristic line impedance Zo is purely reactive: 

Here, the electric length 8 can be rewritten in such a way as to make the frequency 
behavior explicit. If we pick the line length to be ho/8 at a particular reference fre- 
quency f = vp/ho, the electric length becomes 

By substituting (5.57) into (5.56), a direct link between the frequency-dependent induc- 
tive behavior of the transmission line and the lumped element representation can be 
established: 

where S = j t an(xW4)  is the actual Richards transform. The capacitive lumped ele- 
ment effect can be replicated through the open-circuit transmission line section 

Thus, Richards transformation allows us to replace lumped inductors with short-circuit 
stubs of characteristic impedance Zo = L and capacitors with open-circuit stubs of 
characteristic impedance Zo = 1 /C . 

It is interesting to note that the choice of ho/8 as line length is somewhat arbi- 
trary. Indeed, several authors use ho/4 as the basic length. However, ho/8 is more 
convenient since it results in smaller physical circuits and the cut-off frequency point in 
the standard low-pass filter response is preserved (i.e., S = jl for f = f = f ,). In 
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Section 5.5.3 we will encounter a bandstop filter that requires a ho/4 line length to 
meet the expected attenuation profile. 

Richards transformation maps the lumped element frequency response in the 
range of 0 I f < - into the range 0 I f I 4 f due to the periodic behavior of the tan- 
gent function and the fact that all lines are ho/8 in length, a property that is known as 
commensurate line length. To obtain the inductive responses, we need to restrict the 
domain to 0 I f I 2 f o .  Because of this periodic property, the frequency response of 
such a filter cannot be regarded as broadband. 

5.3.1 Unit Elements 

When converting lumped elements into transmission line sections, there is a need 
to separate the transmission line elements spatially to achieve practically realizable 
configurations. This is accomplished by inserting so-called unit elements (UEs). The 
unit element has an electric length of 8 = f (f / f ,) and a characteristic impedance 

4 
ZUE . The two-port network expression in chain parameter representation is irnmedi- 
ately apparent from our discussion in Chapter 4. We recall that the transmission line 
representation is 

where the definition of S is given by (5.58). The use of the unit elements is discussed 
best by way of a few examples, as presented in Section 5.3.4. 

5.3.2 Kuroda's Identities 

In addition to the unit element, it is important to be able to convert a practically 
difficult-to-implement design to a more suitable filter realization. For instance, a series 
inductance implemented by a short-circuit transmission line segment is more compli- 
cated to realize than a shunt stub line. To facilitate the conversion between the various 
transmission line realizations, Kuroda has developed four identities which are summa- 
rized in Table 5-6. 

We should note that in Table 5-6 all inductances and capacitances are represented 
by their equivalent Richards transformations. As an example we will prove one of the 
identities and defer proof of the remaining identities to the problems at the end of this 
chapter. 
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Table 5-6 Kuroda's Identities 

I Initial Circuit 

element 

z, = Z,S 

element 

element 

2, = Z,S element 

Kuroda's Identity 

Z, = SZIIN 

Unit 
I element I 

Yc = SI(NZ2) 

element 

Z, = SZ, IN 

Z & M W  
Example 5-5: Prove the fourth of Kuroda's identities from 

Table 5-6 

Solution: It is convenient to employ chain parameter representa- 
tion of the shunt connected inductor (see Table 4-1 for the corre- 
sponding ABCD-matrix) and the unit element as given in (5.60) to 
write the left-hand side as follows: 
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Similarly, we can write the ABCD-matrix for Kuroda's fourth iden- 
tity, or the right-hand side: 

where subscripts UE, ind, and trans indicate chain parameter matri- 
ces for unit element, inductor, and transformer, respectively. After 
carrying out the multiplication between the matrices, we obtain the 
following ABCD-matrix describing Kuroda's identity: 

which is 
N =  1 + Z  2. - 
proved in a similar fashion. 

identical with the left-hand side, if we set 
/Z, . The remaining three Kuroda identities can be 

We see again the importance of the ABCD network representa- 
tion, which allows us to directly multiply the individual element 
networks. 

5.3.3 Examples of Microstrip Filter Design 

In the following two examples we will concentrate on the design of a low-pass 
and a bandstop filter. The bandstop design will be conducted based on the aforemen- 
tioned Richards transformation followed by employing Kudora's identities. Specifi- 
cally, the bandstop design requires some attention in converting from lumped to 
distributed elements. 

The practical filter realization proceeds in four steps: 
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1. Select the normalized filter parameters to meet the design criteria. 
2. Replace the inductances and capacitances by equivalent A0/8 transmission lines. 
3. Convert series stub lines to shunt stubs through Kudora's identities. 
4. De-normalize and select equivalent microstrip lines (length, width, and dielectric 

constant). 
Specifically, step 4 requires knowledge of the appropriate geometric dimensions of the 
respective microstrip lines, a subject that is discussed in detail in Chapter 2. According 
to these four steps, let us now discuss the two examples. 

The first design task involves a low-pass filter which is formulated as follows: 

Project I 
Design a low-pass filter whose input and output are matched to a 50 R impedance 

and that meets the following specifications: cut-off frequency of 3 GHz; equi-ripple of 
0.5 dB; and rejection of at least 40 dB at approximately twice the cut-off frequency. 
Assume a dielectric material that results in a phase velocity of 60% of the speed of 
light. 

In solving this problem, we proceed according to the previously outlined four 
steps. 

Step 1 From Figure 5-22, it is seen that the filter has to be of order N = 5, with 
coefficients 

g, = 1.7058 = g,, g, = 1.2296 = g,, g, = 2.5408, g, = 1.0 

The normalized low-pass filter is given in Figure 5-3 1. 

Figure 5-31 Normalized low-pass filter of order N = 5. 

Step 2 The inductances and capacitances in Figure 5-31 are replaced by open 
and short circuit series and shunt stubs as shown in Figure 5-32. This is a direct conse- 
quence of applying Richards transformation (5.58) and (5.59). The characteristic line 
impedances and admittances are 

Y, = Y, = g,, Y, = g,,Z, = z, = g4 
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S.C. S.C. 

Figure 5-32 Replacing inductors and capacitors by series and shunt stubs 
(o.c. = open circuit line, S.C. = short circuit line). 

Step 3 To match source and load sides, and to make the filter realizable, unit 
elements are introduced with the intent to apply the first and second of Kudora's identi- 
ties (see Table 5-6) to convert all series stubs into shunt stubs. Since we have a fifth- 
order filter we must deploy a total of four unit elements to convert all series connected 
short-circuited stubs into shunt connected open-circuit stubs. To clarify this process we 
divide this step into several substeps. 

First, we introduce two unit elements on the input and output ends of the filter, as 
shown in Figure 5-33. 

S.C. S.C. 

Figure 5-33 Deployment of the first set of unit elements (U.E. = unit element). 

The introduction of unit elements does not affect the filter performance since they 
are matched to source and load impedances. The result of applying Kuroda's identities 
to the first and last shunt stubs is shown in Figure 5-34. 
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0.6304 2, = 1.2296 2, = Z2 Z, = 2, 
S.C. S.C. S.C. S.C. 

\b 
Z, = 0.3936 

Figure 5-34 Converting shunt stubs to series stubs. 

This version of the circuit is still nonrealizable because we have four series stubs. 
To convert them to shunt connections, we have to deploy two more unit elements, as 
shown in Figure 5-35. 

Z, = 0.6304 2, = 1.2296 Z, = Z, Z, = Z, 

Figure 5-35 Deployment of the second set of unit elements to the fifth-order filter. 

Again, the introduction of unit elements does not affect the performance of the fil- 
ter since they are matched to the source and load impedances. Applying Kuroda's iden- 
tities to the circuit shown in Figure 5-35, we finally arrive at the realizable filter design, 
depicted in Figure 5-36. 

Step 4 De-normalization involves scaling the unit elements to the 50 R input 
and output impedances and computing the length of the lines based on (5.57). Using 
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Figure 5-36 Realizable filter circuit obtained by converting series and shunt stubs 
using Kuroda's identities. 

v, = 0 . 6 ~  = 1.8 x lo8 m/s, the length is found to be 1 = (ho/8) = 
vp/(8 fo)  = 7.5 mrn. The final design implemented in microstrip lines is shown in 
Figure 5-37(a). Figure 5-37(b) plots the attenuation profile in the frequency range 0 to 
3.5 GHz. We notice that the passband ripple does not exceed 0.5 dB up to the cut-off 
frequency of 3 GHz. 

The second design project involves a more complicated bandstop filter, which 
requires the transformation of the standard low-pass prototype with a unity cut-off fre- 
quency into a design with specified center frequency and lower and upper 3 dB fre- 
quency points. 

Project I1 
Design a maximally flat third-order bandstop filter whose input and output are 

matched to a 50 R impedance that meets the following design specifications: center 
frequency of 4 GHz and bandwidth of 50%. Again, we assume a dielectric material that 
results in a phase velocity of 60% of the speed of light. 

This design requires a careful analysis when converting from lumped to distributed 
elements. Specifically, when dealing with bandstop designs, we require either maximal 
or minimal impedance at the center frequency f depending on whether series or shunt 
connections are involved. With our previous definition of Richards transformation based 
on h,/8 line segments, we encounter the difficulty that at f = f 0 ,  (5.58) yields a tan- 
gent value of 1, and not a maximum. However, if a line length of ho/4 is used, then the 
tangent will go to infinity as required for a bandstop design. Another aspect that we have 
to take into account is the fact that we want the R = 1 cut-off frequency of the low- 
pass prototype filter to be transformed into lower and upper cut-off frequencies of the 
bandstop filter. This is done by introducing a so-called bandwidth factor bf: 
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129.3 R 24.0 R 19.7 R 24.0 R 129.3 R 

(a) Microstrip line low-pass filter implementation 
5 

4.5 

4 
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-0.5 
0 0.5 1 1.5 2 2.5 3 3.5 

Frequency, GHz 

(b) Attenuation versus frequency response 
Figure 5-37 Final microstrip line low-pass filter. 

where sbw = (au - aL)/aO is the stopband width and oo = (ow + aL)/2 is the 
center frequency. Multiplying the Richards transformation for ho/4 line lengths by bf 
at the lower or upper frequency points reveals that the magnitude of the product is equal 
to unity. For instance, for the lower frequency point oL , it follows that 

This corresponds to a R = 1 cut-off frequency in the normalized low-pass filter 
response. Similarly, for the upper cut-off frequency ow we have 
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which corresponds to a G? = -1 cut-off frequency in the normalized low-pass filter. 
With these preliminary remarks, we are now ready to proceed according to the four steps. 

Step 1 From Table 5-2, the coefficients for a maximally flat normalized low- 
pass filter prototype of third order are 

g, = 1.0 = g,, g2 = 2.0, g4 = 1.0 

Thus, the normalized low-pass filter has the form shown in Figure 5-38. 

Figure 5-38 Normalized third-order low-pass filter. 

Step 2 The inductances and capacitances in Figure 5-38 are replaced by open 
and short circuit series and shunt stubs, as depicted in Figure 5-39. The line impedances 
and the admittance are multiplied by the bandwidth factor (5.61). 

S.C. S.C. 

Figure 5-39 Replacing inductors and capacitors by series and shunt stubs. 

Step 3 Unit elements of ho/4 line length are inserted and Kudora's identity is 
used to convert all series stubs into shunt stubs as seen in Figure 5-40. 
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S.C. S.C. 

(a) Unit elements at source and load sides 

rG = 1 ZuE,=1.4142 zuE2=1.4142 

(b) Conversion from series to shunt stubs 
Figure 5-40 Introducing unit elements and converting series stubs to shunt 

stubs. 

Step 4 De-normalization the unit elements and explicit computation of the indi- 
vidual line lengths can now be conducted. Using the phase velocity 

8 v p  = 0 . 6 ~  = 1.8 x 10 mls, the length is computed to be 1 = (ho/4)  = 
vp/(4 f o )  = 15 mm. Thus, the resulting design in microstrip line implementation is 
as shown in Figure 5-41. 

Finally, for this bandstop filter we can also utilize a commercial simulation pack- 
age such as MMICAD to simulate the filter response of the microstrip line configura- 
tion shown in Figure 5-41. The attenuation profile is given in Figure 5-42, and shows 
that the filter specifications are met. 



Coupled Filter 253 

Figure 5-41 Characteristic impedances of final microstrip line implementation of 
bandstop filter design. 
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Figure 5-42 Attenuation versus frequency response for third-order bandstop 
filter. 

5.4 Coupled Filter 
The literature is extensive when dealing with coupled filter designs and analyses. 

For our cursory treatment we will introduce only the most salient points and refer the 
reader to the references listed at the end of this chapter. 

Our discussion briefly covers the odd and even wave coupling of transmission 
lines through a common ground plane, which results in odd and even characteristic line 
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impedances. This sets the stage to an understanding of the coupling between two strip 
lines and their inputloutput impedances as part of a two-port chain matrix representa- 
tion. Cascading these elements gives rise to bandpass filter structures that are most eas- 
ily designed with the aid of RF circuit simulation packages. 

5.4.1 Odd and Even Mode Excitation 

A simple modeling approach of coupled microstrip line interaction is established 
when considering the geometry depicted in Figure 5-43. The configuration consists of 
two lines separated over a distance S and attached to a dielectric medium of thickness d 
and dielectric constant E,. The strip lines are W wide, and the thickness is negligible 
when compared with d. The capacitive and inductive coupling phenomena between the 
lines and ground is schematically given in Figure 5-44. Here equal indices denote self- 
capacitances and inductances, whereas index 12 stands for coupling between line 1 and 
line 2 (which is equal to coupling between line 2 and line 1 ) .  

Figure 5-43 Coupled microstrip lines. 

We can now define an even mode voltage V ,  and current I, and an odd mode volt- 
age V, and current IOd in terms of the total voltages and currents at terminals 1 and 2 
such that 

and 

This is consistent with the voltage and current convention shown in Figure 5-44. For 
even mode of operation (V,, I,), voltages are additive and currents flow in the same 
direction. However, for odd mode of operation (V,, Iod) the terminal voltages are sub- 
tractive and currents flow in opposite directions. 
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Figure 5-44 Equivalent circuit diagram and appropriate voltage and current 
definitions for a system of two lossless coupled transmission lines. 

The benefit of introducing odd and even modes of operation is seen when estab- 
lishing the fundamental equations. It can be shown that for two lines we get a set of 
first-order, coupled ordinary differential equations similar in form to the transmission 
line equations in Chapter 2: 

and 

What is important to notice is the fact that even and odd modes allow us to decouple the 
governing equations. The characteristic line impedances Zo, and Zoo for the even and 
odd modes can be defined in terms of even and odd mode capacitances C,, Cod, and the 
respective phase velocities as follows: 
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If both conductors are equal in size and location, we can conclude for the even mode 

and for the odd mode 

Cod = Cl l  + 2C12 = C,, + 2C12 (5.66b) 

The capacitances are, in general, difficult to find since fringing fields and different 
media have to be taken into account. For instance, even the strip line conductor over a 
dielectric substrate cannot be computed based on the simple capacitance per unit length 
formula CI1 = q ,e , (w/d)  because the width-to-thickness ratio is not sufficiently 
large for this formula to apply. Moreover, the cross-coupling capacitance C12 requires 
a very intricate treatment. For this reason, it is common practice to resort to a numeri- 
cally computed impedance grid, such as the one shown in Figure 5-45. 

Odd mode impedance Z,, 52 

Figure 5-45 Even and odd characteristic impedance for microstrip lines. 
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5.4.2 Bandpass Filter Section 

We turn our attention to two microstrip lines as the main building block of a band- 
pass filter shown in Figure 5-46. Both the geometric arrangement with input and output 
ports and open-circuit conditions and the corresponding transmission line representa- 
tion are depicted. 

Filter element 

z, 

z, 
t-- 

(a) Arrangement of two microstrip lines (b) Transmission line representation 
Figure 5-46 Bandpass filter element. 

Without delving into details of the rather complicated treatment (see Gupta in 
Further Reading), this configuration has the impedance matrix coefficients for open 
transmission line segments in the form 

When cascading these building blocks into multiblock filter configurations, our 
desire is to match both ports of this segment to the adjacent elements. This is also 
known as finding the image impedance. For the input impedance at port 1 we can write 

and the output impedance at port 2 

Since we require Z, = Z, , we find from (5.68) that A = D and 
7 
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If (5.67) is converted into a chain matrix form the coefficients A, B, C, D can be deter- 
mined. Inserting B and C into (5.69), one finds for the input, or image impedance 

The bandpass filter behavior of (5.70) becomes apparent when plotting the real part of 
the input impedance response as a function of the electric length in the range 
0 5 pl-< 2n,  as depicted in Figure 5-47. 

Electrical length, pl 

Figure 5-47 Input impedance behavior of equation (5.70). Zoe and Zoo are 
arbitrarily set to 120 Q and 60 Q , respectively. 

According to Figure 5-47, the characteristic bandpass filter performance is obtained 
when the length is selected to be h/4 or pl  = n/2.  For this case the upper and lower 
cut-off frequencies are found as 

Also noticeable is the periodic impedance response in Figure 5-47, which indicates that 
the upper operating frequency has to be band limited to avoid multiple bandpass filter 
responses at higher frequencies. 

5.4.3 Cascading bandpass filter elements 

A single bandpass element as discussed in the previous section does not result in a 
good filter performance with steep passband to stopband transitions. However, it is the 
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ability to cascade these building blocks that ultimately results in high-performance 
filters. Figure 5-48 depicts a generic multielement design. 

Figure 5-48 Multielement configuration of a fifth-order coupled-line 
bandpass filter (N = 5). 

To design such a structure that meets a particular bandpass filter specification, a 
number of computations have to be performed. The following sequence of steps is 
needed to translate a set of design requirements into a practical filter realization (see 
Matthaei et al. in Further Reading). 

Selection of standard low-pass filter coeficients. Depending on whether a Butter- 
worth or Chebyshev design with desired rejection and ripple is needed, the 
designer can directly select the appropriate standard low-pass filter coefficients 

go, gl ,  . . ., gN, gN + 
listed in Tables 5-2 to 5-6. 

Identijication of normalized bandwidth, upper, and lower frequencies. From the 
desired filter specifications for lower and upper frequencies aL, mu and the cen- 

ter frequency oo = ( a u  + a L ) / 2 ,  we define the normalized bandwidth of the 

filter as 

BW = '"u - '"L 

'"0 

This factor allow us to compute the following parameters: 

Jo, 1 = J= 
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which in turn permit us to determine the odd and even characteristic line imped- 
ances: 

and 

where the indices i,i + 1 refer to the overlapping elements seen in Figure 5-48. 
Here Zo is the characteristic line impedance at the beginning and the end of the 
filter structure. 

Selection of actual strip line dimensions. Based on Figure 5-45, the individual odd 
and even line impedances can be converted into strip line dimensions. For 
instance, if the dielectric material and the thickness of the PCB board are given, 
we can determine separation S, and width W of the copper strips. Normally, the 
width will conform with the width of the other microstrip lines. Therefore, the 
separation is the most common parameter that can be varied to achieve the imped- 
ances required by (5.74). The length of each coupled line segment has to be equal 
to h/4 at the center frequency, as described in Section 5.4.2. 

The preceding steps result in a first and often crude design, which can be made 
more precise by introducing length and width corrections to account for fringing field 
effects. In addition, the use of simulation packages often allows further adjustments and 
fine-tuning to ensure a design that actually performs according to the specifications. 

5.4.4 Design Example 

In the following example we go through the steps outlined in the previous section 
by designing a particular bandpass filter. 
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s & M w  
Example 5-6: Bandpass filter design with coupled line trans- 

mission line segments 

A coupled-line bandpass filter with 3 dB ripples in the passband is 
to be designed for a center frequency of 5 GHz and lower and upper 
cut-off frequencies of 4.8 and 5.2 GHz, respectively. The attenuation 
should be at least 30 dB at 5.3 GHz. Select the number of elements 
and find odd and even mode characteristic impedances of the cou- 
pled transmission lines. 

Solution: According to Section 5.4.3, the first step in the design 
of this filter is to choose an appropriate low-pass filter prototype. 
The order of the filter can be selected from the requirement of 30 dB 
attenuation at 5.3 GHz. Using frequency conversion for the band- 
pass filter (5.46), we find that for 5.3 GHz the normalized frequency 
of the low-pass filter prototype is 

From Figure 5-21 we determine that the order of the filter should be 
at least N = 5 to achieve 30 dB attenuation at R = 1.4764. The 
coefficients for an N = 5 Chebyshev filter with 3 dB ripples are 

g, = g5 = 3.4817,g2 = g4 = 0.7618,g3 = 4.5381,g6 = 1 .  

The next step in the design is to find the even and odd excita- 
tion mode characteristic impedances of the coupled transmission 
lines as described by (5.74). The results of theses computations are 
listed in the following table. 
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To confirm the validity of our theoretical design, we can use 
MMICAD to analyze the performance of the bandpass filter just 
designed. The result of the simulation is shown in Figure 5-49. 

4.7 4.8 4.9 5.0 5.1 5.2 5.3 
Frequency, GHz 

Figure 5-49 MMICAD simulations of the fifth-order coupled-line Chebyshev 
bandpass filter with 3 dB ripple in the passband. The lower cut-off frequency is 

4.8 GHz and the upper cut-off frequency is 5.2 GHz. 

The filter response in Figure 5-49 confirms that the specifications 
are met for f, and f, and that the attenuation at 5.3 GHz even 
exceeds the 30 dB requirement. 

Often the theoretical jilter design leads to coeficients whose 
validity must be double-checked against an RF circuit simulator to 
test the actual per$ormance. 

Another reason for resorting to a simulation package is the need to verify the 
design methodology independently and to test the filter performance over a range of 
parameter variations in terms of geometry and dielectric properties. Most of these para- 
metric studies can be accomplished with little effort on a computer. After the initial the- 
oretical design idea, the computer simulations typically precede the actual board 
construction and testing. 
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5.5 Summary 
Our emphasis in this chapter has been an exposure to filter design concepts that 

are ubiquitous in many RFMW circuit designs. Rather than going into detailed deriva- 
tions, the intent of this chapter is to present a generic discussion of some of the key 
issues facing a design engineer in the construction of practical filter types. 

Beginning with a general classification of high-pass, low-pass, bandpass, and 
bandstop filters, we introduce a common terminology that is needed to understand the 
common descriptors when developing filter specifications. Terms that are often used 
such as cut-off, lower, upper, and center frequencies, shape factor, bandwidth, insertion 
loss, and rejection, are defined and placed in context with simple first-order high- and 
low-pass filters as well as series and parallel resonant circuits. Since the resonator cir- 
cuits permit the realization of bandpass and bandstop designs, the sharpness of the 
impedance or admittance behavior is quantified through the so-called quality factor: 

averaged stored energy 
Q = a 

energy loss per cycle a = 

a measure that can be further broken down into the filter QF and external Q E  quality 
factors. Specifically, the notation of insertion loss 

Pin 2 IL  = lolog- = - i o i ~ g ( i  - Irinl I 
PL 

which defines the amount of power lost by inserting the filter between the source and 
load ports, is of central important in the design of high-frequency filters. Depending on 
the attenuation profile necessary to realize the various filter types, the loss factor 

is employed to realize a particular response. 
To enable a more comprehensive approach, the low-pass filter design based on a 

normalized frequency scale is chosen as the standard type. Through frequency scaling 
and shifting, all filter types can then be readily realized. The benefit of this approach is 
that only a few sets of standard low-pass filter coefficients have to be derived depending 
on whether a Butterworth filter with a maximally flat profile or Chebyshev filter with an 
equiripple attenuation profile is desired. 

The practical implementation is achieved through Richards transformation: 
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This transformation is central in establishing a link between lumped capacitive and 
inductive elements and distributed transmission line theory. The various series and 
shunt transmission line segments can be spatially separated through unit elements 
before Kudora's identities permit the conversion of some of the transmission sections 
into easy-to-implement segmental elements. In particular, series inductive configura- 
tions are often easier to implement than stub elements. With the aid of Kudora's identi- 
ties this can be accomplished elegantly. 

The fact that the proximity of strip lines causes electromagnetic coupling is 
exploited to design bandpass and bandstop filters. Without delving into the theoretical 
explanations too deeply, two line segments are used as the basic building block of a 
two-port network representation. Through odd and even mode impedance analysis we 
can find the image impedance 

as the characteristic bandpass response. This single element can be cascaded into multi- 
ple section filters to fulfill various design requirements. By using an RF/MW simulation 
package, the same example is revisited and the coupled filter response is computed as a 
function of various element numbers and geometric dimensions of the microstrip lines. 

Although the topic of filter design could only cursively be covered, Chapter 5 
should convey the basic engineering steps needed to arrive at a functional high- 
frequency filter realization. We attempted to make the process of picking the appropri- 
ate filter coefficients, scaling the results to actual frequencies, and implementing the 
process in microstrip lines as much of a cookbook approach as possible. However, 
Chapter 5 should also make clear the usefulness of commercial simulation packages in 
carrying out a detailed numerical analysis. Indeed, for most modem filter design exam- 
ples, an RFMW simulation package is an indispensable tool to predict the filter perfor- 
mance. Moreover, from the circuit schematic it is relatively straightforward to use 
special layout programs to generate the actual PCB layout file that becomes the basis 
for the physical board construction. 

Further Reading 

S. Butterworth, "On the Theory of Filter Amplifiers," Wireless Eng., Vol. 7, pp. 536- 
541, 1930. 

K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slot Lines, Artech House, 
Dedham, MA, 1979. 
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G. L. Matthaei, et al., Microwave Filters, Impedance-Matching Networks, and Cou- 
pling Structures, McGraw-Hill, New York, 1964. 

C. G. Montgomery, R. H Dicke, and E. M. Purcell, Principles of Microwave Circuits, 
MIT Radiation Laboratory Series, Vol. 8, McGraw-Hill, New York, 1948. 

D. M. Pozar, Microwave Engineering, 2nd ed., John Wiley, New York, 1998. 

P. A. Rizzi, Microwave Engineering: Passive Circuits, Prentice Hall, Englewood Cliffs, 
NJ, 1988. 

L. Weinberg, Network Analysis and Synthesis, McGraw-Hill, New York, 1962. 

Problems 

5.1 For the simple integrator circuit shown, 

determine the following quantities: 
Transfer function H(o) = V , / V ,  
Attenuation versus frequency behavior a ( o )  
Phase versus frequency behavior q ( o )  
Group delay t ,  

Plot these factors for the frequency range from DC to 1 GHz. 

Derive expressions for internal, external, and loaded quality factors for the 
standard series and parallel resonance circuits discussed in Section 5.1.4. 

In Section 5.1.5 the admittance of the parallel resonance circuit is expressed 
in terms of a quality factor expression. Prove the resulting equation (5.29). 

For the filter circuit shown, 
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Find the loaded, unloaded, and external quality factors. In addition deter- 
mine the power generated by the source as well as the power absorbed by the 
load at resonance. Furthermore, plot the insertion loss as a function of fre- 
quency in the range of +50% of the resonance frequency. 

5.5 Repeat Problem 5.4 for the following filter circuit: 

5.6 You are required to build a low-pass Butterworth filter that provides an 
attenuation value of at least 50 dB at f = 1.5 f 3 d B .  Which filter order is 
required? How many components (inductors and capacitors) do you need to 
realize this filter? 

5.7 Design a prototype low-pass Butterworth filter that will provide at least 
20 dB attenuation at the frequency of f = 2 f 3dB . 

5.8 Plot the insertion loss of a low-pass Chebyshev filter that has 6 dB ripple in 
the passband and at least 50 dB attenuation at f = 2 f 

5.9 Using the low-pass prototype developed in Problem 5.7, design a high-pass 
filter with cut-off frequency of 1 GHz. Plot the attenuation profile. 

5.10 To suppress noise in a digital communication system a bandpass RF filter is 
required with a passband from 1.9 GHz to 2 GHz. The minimum attenuation 
of the filter at 2.1 GHz and 1.8 GHz should be 30 dB. Assuming that a 
0.5 dB ripple in the passband can be tolerated, design a filter that will use a 
minimum number of components. 

5.1 1 In the design of an amplifier for cellular phone applications it is discovered 
that the circuit exhibits excessive noise at 3 GHz. Develop a bandstop filter 
with a center frequency of f, = 3GHz and bandwidth of 10% at f, with 
30 dB minimum attenuation in the stopband. 



5.12 In previous chapters we examined the input impedance behavior of an open- 
circuit stub assuming that open-circuit conditions at the end are ideal. In 
practical realizations, due to fringing fields, leakage occurs. This can be 
modeled as an additional parasitic capacitance, as shown below: 

Using your favorite mathematical program, find the input impedance of the 
50 R open-circuit stub of length 1 = 1 cm for frequencies ranging from 10 
MHz to 100 GHz. In your computations assume that an equivalent load 
capacitance is C, = 0.1 pF and the phase velocity of the line is 
v, = 1 . 5 ~ 1 0 ~  mls. Compare your results to the input impedance behavior 
of the ideal open-circuit and short-circuit stubs. 

5.13 Assuming all physical parameters of the open-circuit stub to be the same as 
in Problem 5.12, find the effective fringing capacitance C,, if the lowest 
frequency (at which the input impedance of the stub is equal zero) is 
3.3 GHz. 

5.14 After reconsidering the design in Problem 5.12, it is decided to use an open- 
circuit stub of half of the length (i.e., 1 = 5 mm). Since the hoard is already 
manufactured with a 1 cm stub, you cut a slit in the middle so that the length 
of the resulting stub is 5 mm, as shown below. 

Due to proximity effects, the equivalent circuit in this case is as follows: 



Using a mathematical spreadsheet, compute the input impedance of this con- 
figuration for frequencies ranging from 10 MHz to 20 GHz, assuming that 
the characteristic line impedance is 50 R and the phase velocity is 
v, = 1 . 5 ~ 1 0 ~  mls. Compare the results with the input impedance behavior 
of the 5 nun open-circuit stub taking into account a fiinging capacitance 
c, = 100 fE 

5.15 In Chapter 2 we introduced a quarter-wave strip line transformer that is able 
to transform any real load impedance into any other real value. In our analy- 
sis we always assumed that there are no parasitic elements involved. In real- 
ity, the connection of two transmission lines with different impedances leads 
to discontinuity in the line width as follows: 

Due to this discontinuity, additional parasitic elements have to be taken into 
account. The equivalent circuit for the above configuration is: 

. , , .,, ..., ,.,, .,. -, - 25 R and a Zo = 100 R line impedance 
find a characteristic impedance Z ,  of the quarter-wave transformer and 
compute the input impedance Z ,  of the entire system for a frequency m g e  
from 10 MHz to 20 GHz, assuming that the transmission line is quarter- 
wave long and parasitic elements have the following values: L = 10 pH, C = 
100 fE 

5.16 Prove the first three Kuroda's identities given in Table 5-6 by computing the 
appropriate ABCD matrices. 

5.17 Develop a low-pass filter with cut-off frequency of 200 MHz and attenuation 
of 50 dB at 250 MHz. The flatness of the filter response is not a design con- 
sideration. Choose the filter implementation that requires the least number of 
components. 



Problems 

5.18 

5.19 

5.20 

5.21 

5.22 

5.23 

Design a three-section bandpass filter with 3 dB ripples in the passband. The 
center frequency is 900 MHz and the bandwidth is 30 MHz. Use a mathe- 
matical spreadsheet and plot the insertion loss of the filter. 

In Project I of Section 5.3.3 we designed a microstrip realization of the 
Chebyshev-type low-pass filter with 3 GHz cut-off frequency. Repeat this 
design using an FR-4 substrate with dielectric constant of E, = 4.6 and 
thickness of h = 25 mil. In addition, obtain the physical width and length of 
each microstrip line. 

Design a five-section bandstop filter having a maximally flat response. The 
bandwidth of the filter should be 15% with a center frequency of 2.4 GHz. 
The filter has to be matched to a 75 f2 impedance at both sides. 

Design a fifth-order low-pass filter with linear phase response. The cut-off 
frequency of the filter is 5 GHz. Provide two designs: the first one using 
lumped elements and the second design using microstrip lines. In both cases 
assume that a FR-4 substrate is used (E, = 4.6, h = 20 mil). 

As a part of a satellite communication link, a bandpass filter for image rejec- 
tion in the downconversion stage has to be designed. The bandwidth of a sig- 
nal is 300 MHz and the center frequency is 10 GHz. It is essential to provide 
maximally flat response in the passband and obtain at least 40 dB attenua- 
tion at 10.4 GHz. 

Prove equations (5.68a) and (5.68b) and show how (5.70) results. 





Active RF Components 

0 ur focus in the first five chapters has been pri- 
marily geared toward passive RF devices and their electric circuit behavior. In this 
chapter we extend and broaden our scope to include an investigation of various active 
circuit elements. Of specific interest for the design of amplifiers, mixers, and oscillators 
are solid-state devices such as diodes and transistors. What complicates a unified treat- 
ment is the wealth of special purpose components developed and marketed by a range 
of companies for a wide host of industrial applications. We cannot adequately address 
the multitude of technological advances currently shaping the FWMW commercial 
markets. This is not the intent of this text; rather we emphasize a number of key con- 
cepts driving the technological RFMW evolution. These concepts are utilized later for 
the design of amplifiers, mixers, oscillators, and other circuits developed in subsequent 
chapters. Our approach intends to enable the reader to formulate and develop his or her 
own network descriptions as part of an integrated strategy to construct suitable models 
of analog RF circuits. 

Before developing appropriate network models for active devices, a short discus- 
sion of solid-state physics involving pn and metal-semiconductor junctions is 
presented. The aim is to provide a solid-state perspective of the electric circuit repre- 
sentations derived from the physical device level. This is needed because 

at high-frequency modes of operation, additional capacitive and inductive effects 
enter the solid-state devices and affect their performance 
the high-frequency behavior of many active devices markedly departs from that of 
low-frequency components and therefore requires special treatment 
to utilize simulation tools such as SPICE, or more dedicated RF CAD programs, a 
working knowledge of the physical parameters must be obtained that directly or 
indirectly influence the circuit behavior 
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Chapter 6 provides a concise summary of the most important semiconductor fun- 
damentals that are encountered at high frequencies. 

By analyzing the pn-junction and the Schottky contact, we gain a more complete 
picture of electronic circuit functions that form the foundation of rectifier, amplifier, 
tuning, and switching systems. In particular, the metal-semiconductor interface is 
shown to be especially useful for high-frequency operations. It is the RF domain that 
has seen many specialized diode developments. Chief among them are the Schottky, 
PIN, and tunnel diode, to name but a few. 

Next, our attention is turned toward the bipolar and field effect transistors, which 
are more complex implementations of the previously investigated pn-junction and 
Schottky contact. We learn about the construction, functionality, temperature, and noise 
performance of the bipolar and the metal-semiconductor field effect transistors. 

6.1 Semiconductor Basics 

6.1 .I Physical Properties of Semiconductors 

The operation of semiconductor devices is naturally dependent on the physical 
behavior of the semiconductors themselves. This section presents a brief introduction to 
the basic building blocks of semiconductor device modeling, particularly the operation 
of the pn-junction. In our discussion we will concentrate on the three most commonly 
used semiconductors: germanium (Ge), silicon (Si), and gallium arsenide (GaAs). Fig- 
ure 6-l(a) schematically shows the bonding structure of pure silicon: Each silicon atom 
shares its four valence electrons with the four neighboring atoms, forming four covalent 
bonds. 

In the absence of thermal energy (i.e., when the temperature is equal to zero 
degree Kelvin [T°K = 0 or T°C = -273.15 , where T°K = 273.15 + T°C I) all elec- 
trons are bonded to the corresponding atoms and the semiconductor is not conductive. 
However, when the temperature increases, some of the electrons obtain sufficient 
energy to break up the covalent bond and cross the energy gap W g  = WC - W y  , as 
shown in Figure 6-l(b) (at room temperature T = 300°K the bandgap energy is 
equal to 1.12 eV for Si, 0.62 eV for Ge, and 1.42 eV for GaAs). These free electrons 
form negative charge carriers that allow electric current conduction. The concentration 
of the conduction electrons in the semiconductor is denoted as n. When an electron 
breaks the covalent bond it leaves behind a positively charged vacancy, which can be 
occupied by another free electron. These types of vacancies are called holes and their 
concentration is denoted by p. 

Electrons and holes undergo random motion through the semiconductor lattice as 
a result of the presence of thermal energy ( T  > 0°K). If an electron happens to meet a 



Free electron 

Forbidden Band 
or Bandgap 

Hole /valence band 

(b) Energy band levels 

(a) Planar representation of covalent bonds 

Figure 6-1 Lattice structure and energy levels of silicon. 
(a) schematic planar crystal arrangement with thermal breakup of one valent bond 

resulting in a hole and a moving electron for T > 0°K. 
(b) equivalent energy band level representation whereby a hole is created in the 

valence band W,, and an electron is produced in the conduction band W, The energy 
gap between both bands is indicated by Wg. 

hole, they recombine and both charge carriers disappear. In thermal equilibrium we 
have equal number of recombinations and generations of holes and electrons. The con- 
centrations obey the Fermi statistics according to 

(6. la) 

where 

are the effective carrier concentration in the conduction (Nc) and valence (Nv)  
bands, respectively. The terms W c  and WV denote the energy levels associated with 
the conduction and valence bands and WF is the Fermi energy level, which indicates 
the energy level that has a 50% probability of being occupied by an electron. For 
intrinsic (i.e., pure) semiconductors at room temperature the Fermi level is very close 
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to the middle of the bandgap. In (6.2), mi and mf,  refer to the effective mass of elec- 
trons and holes in the semiconductor that are different from the free electron rest mass 
due to interaction with the crystal lattice; k is Boltzmann's constant; h is Planck's con- 
stant; and T is the absolute temperature measured in Kelvin. 

In an intrinsic semiconductor the number of free electrons produced by thermal 
excitation is equal to the number of holes (i.e. n = p = ni). Therefore, electron and 
hole concentrations are described by the concentration law 

where ni is the intrinsic concentration. Equation (6.3) is true not only for intrinsic but 
also for doped semiconductors, which are discussed later in this section. 

Substitution of (6.1) into (6.3) results in the expression for the intrinsic carrier 
concentration: 

The effective electron and hole masses as well as the concentrations Nc , N, , and 
ni for T = 300°K are summarized in Table 6-1 and are also listed in Table E-1 in 
Appendix E. 

Table 6-1 Effective concentrations and effective mass values at T =  300°K 

Classical electromagnetic theory specifies the electrical conductivity in a material 
to be o = J / E ,  where J is the current density and E is the applied electric field. The 
conductivity in the classical model (Drude model) can be found through the carrier con- 
centration N, the associated elementary charge q, the drift velocity vd, and the applied 
electric field E: 

In semiconductors, we have both electrons and holes contributing to the conductivity of 
the material. At low electric fields the drift velocity vd of the carriers is proportional to 

ni (cm-') 

1.45~10'~ 

2 .4~10 '~  

1.79x106 

Semiconductor 

Silicon (Si) 

Germanium (Ge) 

Gallium Arsenide (GaAs) 

mi/rno 

1.08 

0.55 

0.067 

mf,/mo 

0.56 

0.37 

0.48 

~ ~ ( c m " )  

2.8x1019 

1.04~10'~ 

4.7~10" 

Nv (cm") 

1.04~10'~ 

6.0x1018 

7 .0~10 '~  



the applied field strength through a proportionality constant known as mobility p. 
Thus, for semiconductors we can rewrite (6.5) as 

where p, , p, are the mobilities of electrons and holes, respectively. For intrinsic semi- 
conductors we can simplify (6.6) further by recalling that n = p = ni,  that is, 

c & M w  
Example 6-1: Computation of the temperature dependence of 

the intrinsic semiconductor conductivity 

It is desired to find the conductivities for the intrinsic materials of 
Si, Ge, and GaAs as a function of temperature. To make the compu- 
tations not too difficult, we assume that the bandgap energy and the 
mobilities for holes and electrons are temperature independent over 
the range of interest -50°C I T I 200°C. 

Solution: As a first step it is convenient to combine into one 
parameter oo(T) all factors without the exponential term in (6.7); 
that is, 

o,(T) = q J ~ T v ( a .  + P,) 

where electron and hole mobilities are found from Table E-1 : 
p, = 1350(Si), 3900(Ge), 8500(GaAs) 

2 
All values are given in units of cm /(V . s).  Nc, Nv are com- 
puted according to (6.2) as 

Nc, v(T) = Nc, ~(300°K)  (3i00)3'2 - 

This leads to the form 
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where the bandgap energy W g  = W C  - W is, respectively, 1.12 eV 
(Si), 0.62 eV (Ge), and 1.42 eV (GaAs). The three conductivities are 
plotted in Figure 6-2. 

10-141 
-5 0 0 50 100 150 200 250 

Temperature, " C 

Figure 6-2 Conductivity of Si, Ge, GaAs in the range from -50°C to 250°C. 

The electric properties of semiconductors are strongly in@- 
enced by the ambient temperature. In this example we have 
neglected the temperature dependence of the bandgap energy, which 
is discussed in Chapter 7. Knowledge of the temperature behavior of 
active devices is an important design consideration where internal 
heating, due to power dissipation, can easily result in temperature 
values exceeding 1 OG1 50°C. 

A major change in the electrical properties of a semiconductor can be initiated by 
introducing impurity atoms. This process is called doping. To achieve n-type doping 
(which supplies additional electrons to the conduction band) we introduce atoms with a 
larger number of valence electrons than the atoms in the intrinsic semiconductor lattice 
that they substitute. For instance, the implantation of phosphorous (P) atoms into Si intro- 
duces loosely bound electrons into the neutral crystal lattice, as shown in Figure 6-3(b). 
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/ I / / / / / / / / / / / / / / / / / / /  WC J///////////////////f 
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Valence band Valence band Valence band 

(a) Intrinsic (b) n-type (c) PtyPe 
Figure 6-3 Lattice structure and energy band model for (a) intrinsic, (b) n-type, 
and (c) ptype semiconductors at no thermal energy. W, and W, are donor and 

acceptor energy levels. 

It is intuitively apparent that the energy level of this "extra" electron is closer to 
the conduction band than the energy of the remaining four valence electrons. When the 
temperature is increased above absolute zero, the loosely bound electron separates from 
the atom, forming a free negative charge and leaving behind the fixed positive ion of 
phosphorous. Thus, while still maintaining charge neutrality, the atom has donated an 
electron to the conduction band without creating a hole in the valence band. This results 
in an increase in the Fermi level since more electrons are located in the conduction 
band. Contrary to the intrinsic semiconductor ( n ,  pi)  we now have an n-type semicon- 
ductor in which the electron concentration is related to the hole concentration as 

where N D  is the donor concentration and p, represents the minority hole concentra- 
tion. To find n, and p, we have to solve (6.8) in conjunction with (6.3). The result is 
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If the donor concentration N D  is much greater than the intrinsic electron concentration 
ni , then 

Let us now consider adding impurity atoms with fewer valence electrons than the 
atoms forming the intrinsic semiconductor lattice. These types of elements are called 
acceptors, and an example of such an element for the Si lattice is boron (B). As seen in 
Figure 6-3(c), one of the covalent bonds appears to be empty. This empty bond introduces 
additional energy states in the bandgap that are closely situated to the valence band. 
Again, when the temperature is increased from absolute zero, some electrons gain extra 
energy to occupy empty bonds but do not possess sufficient energy to cross the bandgap. 
Thus, impurity atoms will accept additional electrons, forming negative net charges. At 
the sites where the electrons are removed, holes will be created. These holes are free to 
migrate and will contribute to the conduction current of the semiconductor. By doping the 
semiconductor with acceptor atoms we have created a p-type semiconductor with 

Pp = N~ + n p  (6.11) 

where N A  , np  are the acceptor and minority electron concentrations. Solving (6.11) 
together with (6.3), we find hole pp  and electron np concentrations in the p-type semi- 
conductor: 

Similar to (6.9), for high doping levels, when N A  >> ni, we observe 

p p  = N A  (6.13a) 



Minority and majority concentrations play key roles in establishing the current 
flow characteristics in the semiconductor materials. 

The physical contact of ap-type with an n-type semiconductor leads to one of the 
most important concepts when dealing with active semiconductor devices: the pn-junc- 
tion. Because of the difference in the carrier concentrations between the two types of 
semiconductors a current flow will be initiated across the interface. This current is com- 
monly known as a diffusion current and is composed of electrons and holes. To sim- 
plify our discussion we consider a one-dimensional model of the pn-junction as seen in 
Figure 6-4. 

Electric field 
4 

P-VI-'e n-type -- 
current ~ion 

-- current 

Figure 6-4 Current flow in the p~junction 

I I 

Space 
charge 

The diffusion current is composed of Indiff and IPdiff components: 

I I 

w w  
Space 
charge 

where A is the semiconductor cross-sectional area orthogonal to the x-axis, and D n ,  
D,  are the diffusion constants for electrons and holes in the form (Einstein relation) 

The thermal potential V T  = k T / q  is approximately 26 mV at room temperature of 
300°K. 

Since the p-type semiconductor was initially neutral, the diffusion current of holes 
is going to leave behind a negative space charge. Similarly, the electron current flow 
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from the n-semiconductor will leave behind positive space charges. As the diffusion 
current flow takes place, an electric field E is created between the net positive charge in 
the n-semiconductor and the net negative charge in the p-semiconductor. This field in 
turn induces a current IF = 6 A E  which opposes the diffusion current such that 
IF + Idiff = 0 . Substituting (6.6) for the conductivity, we find 

Since the total current is equal to zero, the electron portion of the current is also equal 
to zero; that is, 

where the electric field E  has been replaced by the derivative of the potential 
E  = -dV/dx . Integrating (6.17), we obtain the diffusion barrier voltage or, as it is 
often called, the built-in potential: 

where again n, is the electron concentration in the n-type and np is the electron con- 
centration in the p-type semiconductor. The same diffusion barrier voltage could have 
been found had we considered the hole current flow from the p to the n-semiconductor 
and the corresponding balancing field-induced current flow IpF . The resulting equation 
describing the barrier voltage is 

If the concentration of acceptors in the p-semiconductor is NA >> ni and the concentra- 
2 tion of donors in the n-semiconductor is ND B ni, then n, = ND , n,, = ni /NA , see 

(6. Hb), and by using (6.18) we obtain 

Exactly the same 
2 pn = ni/ND. 

result is obtained from (6.19) 

(6.20) 

if we substitute pp  = NA and 



Semiconductor Basics 281 

C & M W  
Example 6-2: Determining the diffusion barrier or built-in 

voltage of a pn-junction 

For a particular Si pn-'unction the doping concentrations are given 3' 15 -3 
to be N A  = 1018cm- and N = 5 x 10 cm with an intrinsic 
concentration of ni = 1.5 x 10focm-3 . Find the barrier voltages for 
T = 300°K. 

Solution: The barrier voltage is directly determined from (6.20): 

N A N D  V = 1 = y l n ( " F )  = 0.796 (V) 

We note that the built-in potential is strongly dependent on the dop- 
ing concentrations and temperature. 

For different semiconducdor materials such as GaAs, Si, Ge, 
the built-in voltage will be different even if the doping densities are 
the same. This is due to signijicantly different intrinsic carrier con- 
centrations. 

If we want to determine the potential distribution along the x-axis, we can employ 
Poisson's equation, which for a one-dimensional analysis is written as 

where p(x) is the charge density and E, is the relative dielectric constant of the semi- 
conductor. Assuming uniform doping and the abrupt junction approximation, as 
shown in Figure 6-5(b), the charge density in each material is 

p(x) = -qNA, for - d , l x l O  (6.22a) 

p(x) = qND,  for 0 5 x l d, (6.22b) 

where dp and d, are the extents of the space charges in the p- and n-type semiconduc- 
tors. 
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(a) pn-junction with space charge extent 

pp = N, (majority carrier) 
nn = N, (majority carrier) 

(b) Acceptor and donor concentrations 

(c) Polarity of charge density distribution 
Figure 6-5 The pn-junction with abrupt charge carrier transition in the absence of 

an externally applied voltage. 



(d) Electric field distribution 
V(x) 
f 

(e) Barrier voltage distribution 
Figure 6-5 The pn-junction with abrupt charge carrier transition in the absence of 

an externally applied voltage. (Continued) 

The electric field in the semiconductor is found by integrating (6.21) in the spatial 
limits -dp I x I d, such that 

The resulting electric field profile is depicted in Figure 6-5(d). In deriving (6.23) 
we used the fact that the charge balance law demands that the total space charge in the 
semiconductor equals zero, which for highly doped semiconductors is equivalent to the 
condition 

NA.d, = ND.d, (6.24) 

To obtain the voltage distribution profile we now carry out the integration of 
(6.23) as follows: 
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~ N A  2 
, 

- ( x + d , )  , for - d p I x I O  
V ( x )  = -r E(x)dx 

= I 2 E r E ~  (6.25) 

-dP 2 2 ~ N D  2 
P ( ~ A d p  + NDd,) - - (d ,  - x )  , for 0 5 x 5 d ,  
2ErEo 2 V o  

Since the total voltage drop must be equal to the diffusion voltage Vdiff, it is 
found that 

Substituting d ,  = d , N D / N A  and solving (6.26) for d , ,  we obtain the extent of the 
positive space charge domain into the n-semiconductor: 

where E = E ~ E ~ .  An identical derivation involving d ,  = d p N A / N D  gives us the space 
charge extent into the p-semiconductor: 

The entire length is then the addition of (6.27) and (6.28): 

We next turn our attention to the computation of the junction capacitance. This is 
an important parameter for RF devices, since low capacitances imply rapid switching 
speeds and suitability for high-frequency operations. The junction capacitance can be 
found via the well-known one-dimensional capacitor formula 

&A c = -  
ds  

Substituting (6.29) for the distance d s ,  we express the capacitance as 
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If an external voltage VA is applied across the junction, two situations arise that 
explain the rectifier action of the diode, as shown in Figure 6-6. 

Space charge distribution in the pn-junction 

Electric field distribution in the pn-junction 

X 

-dP d" 

Voltage distribution in the pnjunction 

(a) Reverse biasing (VA < 0) (b) Forward biasing (VA > 0) 

Figure 6-6 External voltage applied to the pn-junction in reverse and forward 
directions. 

The reverse polarity [Figure 6-6(a)] increases the space charge domain and pre- 
vents the flow of current except for a small leakage current involving the minority car- 
rier concentration (holes in the n-semiconductor, and electrons in the p-semiconductor). 
In contrast, the forward polarity reduces the space charge domain by injecting excessive 
electrons into the n- and holes into the p-type semiconductor. To describe these situa- 
tions, the previously given equations (6.27) and (6.28) have to be modified by replacing 
the barrier voltage Vdiff with Vdiff - VA ; that is, 
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which leads to a total length of the space charge or depletion domain 

Depending on the polarity of V A ,  we notice from (6.31)-(6.33) that either the space 
charge domain is enlarged or diminished. 

.,&M w 
Example 6-3: Computation of the junction capacitance and 

the space charge region length of a pn-junction 

For an abrupt pn-junction Si semiconductor at room temperature 
10 

(e, = 11.9, ni = 1.5 x 10 cm") with donor and acceptor con- 
15 15 

centrations equal to N D  = 5 x 10 cm" and N A  = 10 cmV3, 
we desire to find the space charge regions d p  and dn and the junc- 
tion capacitance at zero biasing voltage. Show that the depletion- 
layer capacitance of a pn-junction can be cast into the form 

and determine C,, . Sketch the depletion capacitance as a function 
of applied voltage. Assume that the cross-sectional area of the pn- 
junction is A = lo4 cm2. 

Solution: We rehun to the capacitance expression (6.30) where 
we introduce the applied voltage V A  . Thus, 

which is immediately recognized as the preceding formula, if we set 
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Substituting Vdiff = v,ln(NAND/nf) = 0.6159 V ,  it is found 
that C,, = 10.68 pF . 

For the space charge extents we use (6.28) and (6.29): 

The dependence of the junction capacitance on the applied voltage 
is depicted in Figure 6-7. 

70 1 

-4 -3 -2 -1 0 

Applied voltage &, V 

Figure 6-7 The pn-junction capacitance as a function of applied voltage. 

In Figure 6-7 the junction capacitance for applied voltages 
near the built-in potential will approach infinity. Howevel; in reality 
the value begins to saturate, as further discussed in Chapter 7. 
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For the current flow through the diode we list the Shockley diode equation, which 
is derived in Appendix F: 

I = I o ( e  V A / V T  
- 1 )  (6.34) 

where I .  is the reverse saturation or leakage current. The current-voltage character- 
istic, often called the I-V curve, is generically depicted in Figure 6-8. 

Figure 6-8 Current-voltage behavior of pn-junction based on Shockley equation. 

This curve reveals that for negative voltages a small, voltage independent, current 
-Io will flow, whereas for positive voltages an exponentially increasing current is 
observed. The function shown in Figure 6-8 is an idealization since it does not take into 
account breakdown phenomena. Nonetheless (6.34) reveals clearly the rectifier prop- 
erty of the pn-junction when an alternating voltage is applied. 

The existence of the depletion layer or junction capacitance requires a reverse- 
biased pn-junction diode. This implies, with reference to Example 6-3, the condition 
that VA < Vdiff. However, under forward bias condition we encounter an additional dif- 
fusion capacitance due to the presence of diffusion charges Qd (minority carriers) 
stored in the semiconductor layers which become dominant if VA > Vdiff . This charge 
can be quantified by realizing that the charge Q, can be computed as diode current I 
multiplied by the transition time of carriers through the diode zT or 

It is apparent that the diffusion capacitance assumes a nonlinear relation with the 
applied voltage and the junction temperature. The diffusion capacitance is computed as 
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and is seen to be strongly dependent on the operating voltage. 
In general, the total capacitance C of a pn-diode can roughly be divided into three 

regions: 

1. V, c 0 : only the depletion capacitance is significant: C = CJ 
2. 0 c VA c Vdiff : depletion and diffusion capacitances combine: C = CJ + Cd 
3. V, > Vdiff: only the diffusion capacitance is significant: C = Cd 

The influence of the diffusion capacitance is appreciated if we consider a diode 
that is operated at VA = 1 V and that has an assumed transition time of 
r, = 100 ps = 10-1°s and a reverse saturation current of lo = 1 fA = ~ o - ~ ~ A  mea- 
sured at room temperature of 300°K (i.e., VT = 26 mV). Substituting these values 
into (6.36), we find C = Cd = 194 nF which is rather large and for typical resistances 
of R = 0.1 . . . 1 R results in large RC time constants that restrict the high-frequency 
use of conventional pn-junction diodes. 

6.1.3 Schottky Contact 

W. Schottky analyzed the physical phenomena involved when a metallic electrode 
is contacting a semiconductor. For instance, if a p-semiconductor is in contact with a 
copper or aluminum electrode, there is a tendency for the electrons to diffuse into the 
metal, leaving behind an increased concentration of holes in the semiconductor. The 
consequences of this effect are modified valence and conduction band energy levels 
near the interface. This can be displayed by a local change in the energy band structure 
depicted in Figure 6-9(a). 

(a) Energy band model (b) Voltage-current characteristic 
Figure 6-9 Metal electrode in contact with psemiconductor. 
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Because of the higher concentration of holes, the valence band bends toward the 
Fermi level. The conduction band, as the result of a lower electron concentration, bends 
away from the Fermi level. For such a configuration we always obtain a low resistance 
contact [(see Figure 6-9(b)], irrespective of the polarity of the applied voltage. 

The situation becomes more complicated, but technologically much more inter- 
esting, when a metallic electrode is brought in contact with an n-semiconductor. Here 
the more familiar behavior of a pn-junction emerges: A small positive volume charge 
density is created in the semiconductor due to electron migration from the semiconduc- 
tor to the metal. This mechanism is due to the fact that the Fermi level is higher in the 
semiconductor (lower work function) than in the metal (higher work function) when the 
two materials are apart. However, as both materials are contacted, the Fermi level again 
has to be the same and band distortions are created. Electrons difise from the n-semi- 
conductor and leave behind positive space charges. The depletion zone grows until the 
electrostatic repulsion of the space charges prevents further electron diffusion. To clar- 
ify the issues associated with a metal n-semiconductor contact, Figure 6-10 shows the 
two materials before and after bonding. 

t Free electron energy level t 

(a) Metal and semiconductor do not interact (b) Metal-semiconductor contact 
Figure 6-10 Energy-band diagram of Schottky contact, (a) before and (b) 

after contact. 

The energy W b  = q V b  is related to the metal work function W M  = qVM ( V ,  is 
recorded from the Fermi level to the reference level where the electron becomes a 
detached free particle; values of V M  for some commonly used metals are summarized 
in Table 6-2) and the electron affinity q ~ ,  where x is 4.05V for Si, 4.OV for Ge, and 
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4.07V for GaAs and is measured from the conduction band to the same reference level 
where the electron becomes a free carrier, according to 

An expression for a built-in Schottky barrier voltage Vd is established just as in 
the pn-junction, which involves (6.37) and the additional voltage Vc between conduc- 
tion and Fermi levels: 

where Vc is dependent on the doping ND and the concentration of states in the con- 
duction band Nc according to Nc = NDexp ( Vc/V,) . Solving for the voltage gives 
Vc = V,ln(Nc/ND) . Although real metal-semiconductor interfaces usually involve 
an additional very narrow isolation layer, we will neglect the influence of this layer and 
only deal with the length of the space charge in the semiconductor: 

Therefore, it is found that the junction capacitance of the Schottky contact 
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is almost identical to (6.30). A simple computation now can predict a typical value for 
Vd as illustrated in the following example. 

c & M w  
Example 6-4: Computation of the barrier voltage, depletion 

capacitance, and space charge region width for a 
Schottky diode 

A Schottky diode is created as an interface between a gold contact 
material and an n-ty silicon semiconductor. The semiconductor is IF doped to ND = 10 ~ m - ~  and the work function VM for gold is 
5.1 V. Also, as mentioned above, the affinity for Si is x = 4.05V. 
Find the Schottky barrier Vd, space charge width ds,  and capaci- 
tance C ,  if the dielectric constant of silicon is E, = 11.9. Assume 
the cross-sectional diode area to be A = 104cm2 and the ternpera- 
ture equal to 300°K . 

Solution: Since the concentration of states in the conduction 
19 band of silicon is Nc = 23x10 ~ m - ~ ,  we can compute the con- 

duction band potential as 

Substituting the obtained value for V ,  into (6.38), we find the built- 
in barrier voltage 

Vd = (VM - X )  - Vc = (5.1 V - 4.05 V) - 0.21 V = 0.84 V 

The space charge width is obtained from (6.39) 

Finally, the junction capacitance according to the formula for the 
parallel-plate capacitor, see (6.40), gives us 



This example shows that the metal-semiconductor junction 
diode for similar size and doping has a depletion capacitance sig- 
nijicantly smaller than that of a pn-junction, which permits higher 
operational frequencies of the device. 

6.2 RF Diodes 
In this section we will review some practical realizations of the diodes that are 

most commonly used in RF and MW circuits. As presented in the previous section, a 
classical pn-junction diode is not very suitable for high-frequency applications because 
of the high junction capacitance. In contrast, diodes formed by a metal-semiconductor 
contact possess smaller junction capacitances and consequently reach higher frequency 
limits. Today, Schottky diodes find widespread applications in RF detectors, mixers, 
attenuators, oscillators, and amplifiers. 

After discussing the Schottky diode in Section 6.2.1, we will continue investigat- 
ing a number of special RF diodes. In Section 6.2.2 the PIN diode is analyzed and 
placed in context with its primary use as a variable resistor and high-frequency switch. 

Besides relying on the rectifier property of diodes, we can also exploit the depen- 
dence of the junction capacitance on the applied voltage to construct voltage-controlled 
tuning circuits, where diodes are used as variable capacitors. An example of such a spe- 
cialized diode is the varactor diode, covered in Section 6.2.3. 

At the end of this section we will discuss a few more exotic diode configurations, 
such as IMPATT, Tunnel, TRAPATT, BARIUTT, and Gunn diodes, which are less fre- 
quently used but which are still of interest due to their unique electric properties. 

6.2.1 Schottky Diode 

Compared with the conventional pn-junction, the Schottky barrier diode has a dif- 
ferent reverse-saturation current mechanism, which is determined by the thermionic 
emission of the majority carriers across the potential barrier. This current is orders of 
magnitude larger than the diffusion-driven minority carriers constituting the reverse- 
saturation current of the ideal pn-junction diode. For instance, the Schottky diode has a 
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typical reverse-saturation current density on the order of 10-~A/cm~ compared with 
10-"A/cm2 of a conventional Si-based pn-junction diode. The schematic diagram of a 
cross-sectional view of the Schottky diode with the corresponding circuit elements is 
given in Figure 6- 1 1. 

Depletion 
Metal contact 
I 

Metal contact \ Pi 

\ ~ e t a l  contact \ ~ e t a l  contact 

Figure 6-1 1 Cross-sectional view of Si Schottky diode. 

The metal electrode (tungsten, aluminum, gold, etc.) is in contact with a weakly 
doped n-semiconductor layer epitaxially grown on a highly doped n+ substrate. The 
dielectric is assumed to be ideal; that is, the conductance is zero. The current-voltage 
characteristic is described by the following equation: 

where the reverse-saturation current is given by 

and R* is the so-called Richardson constant for thermionic emission of the majority 
carrier across the potential barrier. A typical value of R* for Si is 100 A/cm2K2. 

The corresponding small-signal equivalent circuit model is illustrated in Figure 
6-12. In this circuit we note that the junction resistance R j  is dependent on the bias cur- 
rent, just as is the diode series resistance, which is comprised of epitaxial and substrate 
resistances Rs = Repi + Rsub. The bond wire inductance is fixed and its value is 
approximately on the order of Ls = 0.1 nH . As discussed above, the junction capaci- 
tance C, is given by (6.40). Because of the resistance Rs ,  the actual junction voltage is 



equal to the applied voltage minus the voltage drop over the diode series resistance, 
resulting in the modified exponential expression (6.41). 

Figure 6-12 Circuit model of typical Schottky diode. 

Typical component values for Schottky diodes are R s = 2 . .  . 5 R ,  
C ,  = 0.1 . . . 0.2 pF, and R j  = 200 . . . 2 kR. Often, the additional IRs term in 
(6.41) is neglected for small bias currents below 0.1 mA. However, for certain applica- 
tions, the series resistance may form a feedback loop, which means the resistance is 
multiplied by a gain factor of potentially large magnitude. For this situation, the ZRs 
term has to be taken into account. 

In circuit realizations of high-frequency Schottky diodes, the planar configuration 
in Figure 6-1 1 gives rise to relatively large parasitic capacitances for very small metal 
contacts of typically 10 pm diameter and less. The stray capacitances can be somewhat 
minimized through the addition of an isolation ring, as depicted in Figure 6-13. 

Metal contact 

n-type epitaxial layer P-type 
ring 

I n+-type substrate 

\ ~ e t a l  contact 

Figure 6-13 Schottky diode with additional isolation ring suitable for very-high- 
frequency applications. 

The small signal junction capacitance and junction resistance can be found by 
expanding the electric current expression (6.41) around the quiescent or operating 
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point VQ . That means the total diode voltage is written as a DC bias VQ and a small 
AC signal carrier frequency component vd : 

V = VQ+vd (6.43) 

The substitution of (6.43) in (6.41) for a negligible IRs term yields 

Expanding this equation in a Taylor series about the Q-point and retaining the first two 
terms gives 

Here the junction resistance RJ(VQ) is identified as 

and the junction capacitance is given by (6.40), with VQ replacing V, . 

6.2.2 PIN Diode 

PIN diodes find applications as high-frequency switches and variable resistors 
(attenuators) in the range from 10 k R  to less than 1 R for RF signals up to 50 GHz. 
They contain an additional layer of an intrinsic (I-layer) or lightly doped semiconduc- 
tor sandwiched between highly doped p+ and n+ layers. Depending upon application 
and frequency range, the thickness of the middle layer ranges from 1 to 100 pm. In 
forward direction, the diode behaves as if it possesses a variable resistance controlled 
by the applied current. However, in reverse direction the lightly doped inner layer cre- 
ates space charges whose extent reaches the highly doped outer layers. This effect takes 
place even for small reverse voltages and remains essentially constant up to high volt- 
ages, with the consequence that the diode behaves similar to a dual plate capacitor. For 
instance, a Si-based PIN diode with an internal I-layer of 20 p m and a surface area of 
200 by 200 p m has a diffusion capacitance on the order of 0.2 pF. 

A generic PIN diode and its practical implementation in mesa processing tech- 
nology is presented in Figure 6-14. The advantage of the mesa configuration over the 
conventional planar construction is a significant reduction in fringing capacitance. 

The mathematical representation of the I-V characteristic depends on the level and 
direction of current flow. To keep things simple, we will rely to a large extent on discus- 
sions already outlined for the pn-junction. 
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I n+-type substrate I 
6 6 

(a) Simplified structure of a PIN diode (b) Fabrication in mesa processing technology 
Figure 6-14 PIN diode construction. 

In the forward direction and for a weakly doped n-type intrinsic layer the current 
through the diode is 

where W is the width of the intrinsic layer; 2 p  is the excess minority carrier lifetime, 
which can be on the order of up to 7 ,  = 1 ps ; and ND is the doping concentration in 
the middle layer of the lightly doped n-semiconductor. The factor 2 in the exponent 
takes into account the presence of two junctions. For a pure intrinsic layer ND = ni, 
(6.47) leads to the form 

The total charge can be calculated from the relation Q = I ' tp .  This allows us to find 
the diffusion capacitance: 

In the reverse direction, the capacitance is dominated by the bias-dependent space 
charge length of the I-layer. For small voltages CJ is approximately 
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where is the dielectric constant of the intrinsic layer. 
The dynamic resistance of a PIN diode can be found through a Taylor series 

expansion around the Q-point as already discussed for the Schottky diode. The result is 

2 where, with reference to (6.47), we have set Ipo = A(qni W ) / ( N D ~ p )  . 
Based on the PIN diode's resistive behavior under forward bias ("switch on") and 

capacitive behavior under reverse bias ("switch off' or isolation) we can proceed to con- 
struct simple small signal models. For the PIN diode in series connection, the electric cir- 
cuit model is seen in Figure 6-15 terminated with source and load resistances. The 
junction resistance and diffusion capacitance, as derived in (6.49) and (6.50), may in prac- 
tice model the PIN diode behavior only very approximately. More quantitative informa- 
tion is obtained through measurements or sophisticated computational modeling efforts. 

L , - - - - -  

(a) Forward bias 

T-;?!] 
VG - ZL = zo 

I I 

L , - - - - -  

(b) Reverse bias (isolation) 

Figure 6-15 PIN diode in series connection. 

The bias point setting required to operate the PIN diode has to be provided 
through a DC circuit that must be separated from the RF signal path. The DC isolation 
is achieved by a radio frequency coil (RFC), representing a short circuit at DC and an 
open circuit at high frequency. Conversely, blocking capacitors ( C B )  represent an 
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open circuit at DC and a short circuit at RF. Figure 6-16 shows a typical attenuator cir- 
cuit where the PIN diode is used either in series or shunt connection. 

Although in the following discussion we will use a DC bias, a low-frequency AC 
bias can also be employed. In this case the current through the diode consists of two 
components such that I = (dQ/dt) + Q/z, . The implication of this is deferred to the 
problem section. 

PIN Diode J 

(a) Series connection of PIN diode 

win +J 
RFC 

& - 
(b) Shunt connection of PIN diode 

Figure 6-16 Attenuator circuit with biased PIN diode in series and shunt 
configurations. 

For positive DC bias voltage, the series connected PIN diode represents a low 
resistance to the RF signal. The shunt connected PIN diode, however, creates a short-cir- 
cuit condition, permitting only a negligibly small RF signal to appear at the output port. 
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The shunt connection acts like a high attenuation device with high insertion loss. The 
situation is reversed for negative bias condition where the series connected PIN diode 
behaves like a capacitor with high impedance or high insertion loss, whereas the shunt 
connected diode with a high shunt impedance does not affect the RF signal appreciably. 

An often used notation is the transducer loss TL conveniently expressed in terms 
of the S parameter SO that with (4.52) 

The following example computes the transducer loss for a PIN diode in series 
configuration. 

-0 .,&M w 
Example 6-5: Computation of transducer loss of a PIN diode 

in series configuration for forward and reverse 
bias conditions 

Find the transducer loss of a forward and reverse biased PIN diode in 
series connection (ZG = ZL = ZO = 50 Q). Assume the junction resis- 
tance R j  under forward bias ranges between 1 and 20 Q .  Further- 
more, assume that the reverse bias operating conditions result in the 
junction capacitance being CJ = 0.1, 9.3, 0.6, 1.3, and 2.5 pF, and 
the frequency range of interest extends from 10 MHz to 50 GHz. 

Solution: Based on (6.51) and Figure 6-15, the transducer loss is 
found with the aid of the voltage divider rule to be 

and 

Figure 6-17 plots the transducer loss in dB under forward bias 
condition for the given range of junction resistances. In contrast, 
Figure 6-18 graphs the reverse bias condition where the PIN diode 
essentially has a purely capacitive response. 



Junction resistance R, , R 

Figure 6-17 Transducer loss of series connected PIN diode under forward bias 
condition. The diode behaves as a resistor. 

Frequency 

Figure 6-18 Transducer loss of series connected PIN diode under reverse bias 
condition. The diode behaves as a capacitor. 
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6.2.3 Varactor Diode 

The PIN diode with its capacitive behavior under reverse bias already suggests 
that a variable capacitance versus voltage characteristic can be created by a specific 
middle layer doping profile. A varactor diode exactly accomplishes this task by a suit- 
able choice of the intrinsic layer thickness Win addition to selecting a particular doping 
distribution ND(x) . 

,,mw 
Example 6-6: Determination of the required doping profile for 

a particular capacitance-voltage behavior 

Find the appropriate doping concentration profile ND(x) that 
ensures that the varactor diode capacitance changes depending on 
the applied reverse biasing voltage as C( V,) = Co'/( V, - V,,) , 
where Cot = 5 x 10-l2 FV and the cross-sectional diode area 

-4 2 
is A = 10 cm . 

Solution: The extent of the space charge length can be predicted 
based on (6.39) to be 

which determines the junction capacitance C = eIA/x. In the deri- 
vation of the preceding formula we assumed that the doping concen- 
tration in the I-layer is much lower than the doping in the adjacent 
layers. If the space charge domain is increased by a small increment 
dx, the charge is modified to 

aQ = qN,(x)Aax 

This differential increase in length can be expressed by a corre- 
sponding decrease in capacitance. By differentiating the capacitor 
formula, we obtain 

ax = - E , A ~ c / c ~  

Upon substitution of dx into the expression for dQ and noting that 
aQ = CaV,, we have 



2 aQ = cav, = -qND(x)A ~ , a c / c  2 

This gives us the desired expression for the doping profile: 

For the desired capacitance, we find 

Naturally we cannot enforce the doping projle to reach injnity 
as x approaches the beginning of the I-layel: Nonetheless, by 
approximating a hyperbolic function, it is possible to ensure the 
desired capacitance-voltage behavio,: 

Figure 6-19 presents the simplified electric circuit model of the varactor diode 
consisting of a substrate resistance and voltage-dependent capacitance of the form 
(Vdif f  - v,)-"~. This is the case when the doping profile is constant. Therefore we 
have for the capacitance in generic representation: 

where VQ is the reverse bias. 
One of the main applications of this diode is the frequency tuning of microwave 

circuits. This is due to the fact that the cut-off frequency fv of the first-order varactor 
model 

can be controlled through the reverse bias VQ . 
In addition, the varactor diode can be used to generate short pulses as schematically 

explained in Figure 6-20. An applied voltage V A  across a series connection of resistor 
and diode creates a current flow I " .  This current is in phase with the voltage over the pos- 
itive cycle. During the negative voltage cycle the stored carriers in the middle layer con- 
tribute to the continued current flow until all carriers are removed. At this point the current 
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0.08 1 
-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 4 . 8  -0.6 -0.4 -0.2 0 

Biasing voltage V, , V 

Figure 6-19 Simplified electric circuit model and capacitance behavior of 
varactor diode. 

drops abruptly to zero. A transformer can now couple out a voltage pulse according to 
Faraday's law V,,, = L(dZv/dt )  . The pulse width can be approximated based on the 
length of the middle layer Wand the saturation drift velocity vdmax of the injected carrier 
concentration. 

t 

Figure 6-20 Pulse generation with a varactor diode. 



RF Diodes 305 

6 If we assume W = 10 pm and vdmm = 10 c d s  we obtain a transit time that is 
equivalent to a pulse width of 

6.2.4 IMPATT Diode 

IMPATT stands for IMPact Avalanche and Transit Time diode and exploits the 
avalanche effect as originally proposed by Read. The principle of this diode construc- 
tion, which is very similar to the PIN diode, is depicted in Figure 6-21. The key differ- 
ence is the high electric field strength that is generated at the interface between the n+ 
and p layer resulting in an avalanche of carriers through impact ionization. 

Hole 

Impact 
I -0 

(a) Layer structure and electric field profile (b) Impact ionization 
Figure 6-21 IMPATT diode behavior. 

The additional ionization current Zion that is generated when the applied RF volt- 
age V A  produces an electric field that exceeds the critical threshold level is seen in Fig- 
ure 6-22. The current slowly decreases during the negative voltage cycle as the excess 
carriers are removed. The phase shift between this ionization current and the applied 
voltage can be tailored so as to reach 90". The total diode current suffers an additional 
delay since the excess carriers have to travel through the intrinsic layer to the p+ layer. 
The time constant is dependent on the length and drift velocity as given in (6.47). 
Choosing the intrinsic layer length appropriately in conjunction with a suitable doping 
concentration can create an additional time delay of 90" . 
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Figure 6-22 Applied voltage, ionization current, and total current of an 
IMPATT diode. 

The electric circuit diagram of an IMPATT device shown in Figure 6-23 is more 
intricate than the PIN diode and the reactance reveals an inductive behavior below the 
diode's resonance frequency f before turning capacitive above the resonance fre- 
quency. The total resistance is positive for f e f and becomes negative for f > f o .  

Lion  

Figure 6-23 Electric circuit representation for the IMPATT diode. 

The resonance frequency is determined based on the operating current IQ , dielec- 
tric constant, saturation drift velocity vdmax, and the differential change in the ioniza- 
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tion coefficient a with respect to the differential change in electric field strength 
a' = a a / a E .  The resonance frequency is predicted as 

The additional circuit parameters are specified as follows 

R = R,+ ' d  max 

where RL is the combined resistance of the semiconductor layers, d is the length of the 
avalanche region of the p-layer, and W is the total length, as shown in Figure 6-19. The 
negative resistance of this diode above the resonance frequency can be understood in 
terms of returning electric energy to the RF or MW resonance circuit; which means the 
diode operates as an active device. Thus, the circuit attenuation can be substantially 
reduced to the point where additional power is transferred to the load impedance. 
Unfortunately, the 180-degree phase shift comes with a price: The efficiency of con- 
verting DC to RF power at operating frequencies of 5 to 10 GHz is very low, with typi- 
cal values in the range of 10 to 15%. 

6.2.5 Tunnel Diode 

Tunnel diodes are pn-junction diodes that are made of n and p layers with 
extremely high doping (concentrations approach 1 0 ' ~ - 1 0 ~ ~  ~ r n - ~ )  that create very nar- 
row space charge zones. This can be seen immediately from equations (6.27) and 
(6.28). The result is that the electrons and holes exceed the effective state concentra- 
tions in the conduction and valence bands. The Fermi level is shifted into the conduc- 
tion band W,, of the nt layer and into the valence band W V p  of the pf 
semiconductor. We notice from Figure 6-24 that the permissible electron states in either 
semiconductor layer are only separated through a very narrow potential barrier. 
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Figure 6-24 Tunnel diode and its band energy representation. 

Based on quantum mechanical considerations, there is a finite probability that 
electrons can be exchanged across the narrow gap rather than having to overcome the 
potential barrier through an externally supplied voltage. This phenomenon is known as 
tunneling. In thermal equilibrium the electron tunneling from the n to p layer is bal- 
anced by the opposite tunneling from the p to n layer. No net current flow results. 

The peculiar current-voltage response of the tunnel diode is best explained with 
reference to the corresponding energy band deformation for four distinct situations, as 
shown in Figure 6-25(b)-(e). 

I /  i v7 diode current 

(a) I-Vcurve of tunnel diode. At high positive biasing voltages the corresponding current 
of the tunnel diode approaches the current of the conventional pn-junction diode. 

Figure 6-25 Current-voltage behavior of the tunnel diode and comparison with 
energy band structure. 
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(b) Negative current flow for VA < 0 (c) No current flow for V', = 0 

pn-junction 

Excess of 
electrons Tunneling 

(d) Positive tunneling current, 0 < VA < Vdin (e) Positive current flow for V, > Vdin 

Figure 6-25 Current-voltage behavior of the tunnel diode and comparison with 
energy band structure. (Continued) 

Unlike the equilibrium condition shown in Figure 6-24 and Figure 6-25(c), for a 
negative applied voltage VA a higher concentration of electron states is created in the p- 
layer, which results in a higher probability to tunnel into the n-layer than vice versa. 
The consequence is that even for small negative voltages, a steep increase in current can 
be observed [Figure 6-25(b)]. For a small positive voltage the reservoir of free electrons 
is shifted to the n-semiconductor and an increase in free electron states is created in the 
p-semiconductor. The consequence is a positive current flow [Figure 6-25(d)] in 
response to the tunneling of electrons from the n to the p layer. However, if the applied 
voltage reaches a critical value V A  = Vdiff no overlapping band structures occur [i.e., 
the condition Wc, < WVp responsible for the tunneling effect no longer exists, see Fig- 
ure 6-25(e)]. The current flow through the tunnel diode approaches a minimum. Above 
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this critical voltage point Vdiff  the diode behaves again like a conventional pn-junction 
diode and current increases exponentially. 

The electric circuit of the tunnel diode, Figure 6-26, is very similar to the IMPATT 
diode shown in Figure 6-23. Here Rs and L, are resistance of the semiconductor layer 
and associated lead inductance. The junction capacitance CT is in shunt with a negative 
conductance -g = d I / d V ,  which is utilized in the negative slope of the I-V curve 
shown in Figure 6-25(a). 

cT 
Figure 6-26 Electric circuit representation of a tunnel diode. 

A simplified amplifier circuit involving a tunnel diode is depicted in Figure 6-27. 
If we consider the power amplification factor GT as the ratio of the power delivered to 

2 the load RL to the maximally available power from the source Ps = I V,I /(8 R,) , we 
obtain at resonance 

where the influence of Rs is neglected. If g is chosen appropriately (i.e., 
g = 1 / R L  + 1 / R G ) ,  the denominator approaches zero and we have the behavior of an 
oscillator. 

Figure 6-27 Tunnel diode circuit for amplification/oscillation behavior. 



6.2.6 TRAPATT, BARRITT, and Gunn Diodes 

For completeness we briefly mention these additional three diode types without 
going into any detail of their circuit representation and quantitative electric parameter 
derivations. 

The TRApped Plasma Avalanche Triggered Transit (TRAPATT) diode can be 
considered an enhancement of the IMPA'IT diode in that a higher efficiency (up to 
75%) is realized through the use of bandgap traps. Such traps are energy levels that are 
situated inside the bandgap and allow the capture of electrons. External circuits ensure 
that during the positive cycle a high barrier voltage is generated, resulting in carrier 
multiplication of the electron-hole plasma. The consequence is a breakdown in the rec- 
tifier properties of the diode during the negative cycle. The operating frequency is 
slightly lower than the IMPAm diode. This is due to the fact that the buildup of the 
electron-hole plasma is slower than the transit time through the middle layer in an 
IMPA'IT diode. 

For the BARRier Injection Transit Time (BARRIT) we are essentially dealing 
with a transit time diode whose p+np+ doping profile acts like a transistor without base 
contact. The space charge domain extends from the cathode through the middle layer 
into the anode. The small-signal circuit model consists of a resistor and shunt capacitor 
whose values are dependent on the DC current bias. Unlike the IMPATT diode, this RC 
circuit can create a negative phase of up to -90 degrees at a relatively low efficiency of 
5% and less. The BARRIT diode finds applications in RADAR mixer and detector 
circuits. 

The Gunn diode is named after its inventor J. B. Gunn, who found in 1963 that in 
certain semiconductors (GaAs, InP) a sufficiently high electric field can cause electrons 
to scatter into regions where the bandgap separation increases. As a result of this 
increase in bandgap energy, the electrons suffer a loss in mobility p, . This phenome- 
non is so dramatic that, for instance in GaAs, the drift velocity (vd = nqp,) can drop 
from 2 x lo7 c d s  to less than lo7 c d s  for electric field strengths growing from 
5 kV/cm to 7 kV/cm. The negative differential mobility 

is again used for oscillator circuits as we will see in later chapters. To exploit the Gunn 
effect for RF and MW applications, a special doping profile is needed to ensure that 
once the voltage exceeds the required threshold a stable single-carrier space domain is 
created. 
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6.3 Bipolar-Junction Transistor 
The transistor was invented in 1948 by Bardeen and Brattain at the former AT&T 

Bell Laboratories and has over the past 50 years received a long lists of improvements 
and refinements. Initially developed as a point-contact, single device, the transistor has 
proliferated into a wide host of sophisticated types ranging from the still popular bipo- 
lar junction transistors (BJTs) over the modem GaAs field effect transistors (GaAs 
FETs) to the most recent high electron mobility transistors (HEMTs). Although tran- 
sistors are often arranged in the millions in integrated circuits (ICs) as part of micropro- 
cessor, memory, and peripheral chips, in RF and MW applications the single transistor 
has retained its importance. Many RF circuits still rely on discrete transistors in low- 
noise, linear, and high-power configurations. It is for this reason that we need to investi- 
gate both the DC and RF behavior of the transistors in some detail. 

The constituents of a bipolar transistor are three alternatively doped semiconduc- 
tors, in npn or pnp configuration. As the word bipolar implies, the internal current flow 
is due to both minority and majority carriers. In the following we recapitulate some of 
the salient characteristics. 

6.3.1 Construction 

The BJT is one of the most widely used active RF elements due to its low-cost 
construction, relatively high operating frequency, low-noise performance, and high- 
power handling capacity. The high-power capacity is achieved through a special inter- 
digital emitter-base construction as part of a planar structure. Figure 6-28 shows both 
the cross-sectional planar construction and the top view of an interdigital emitter-base 
connection. 

Because of the interleaved construction shown in Figure 6-28(b) the base-emitter 
resistance is kept at a minimum while not compromising the gain performance. As we 
will see, a low base resistance directly improves the signal-to-noise ratio by reducing 
the current density through the base-emitter junction (shot noise) and by reducing the 
random thermal motion in the base (thermal noise), see Chapter 7 for more details. 

For frequency applications exceeding 1 GHz it is important to reduce the emitter 
width to typically less than 1 pn size while increasing the doping to levels of 
loz0 , . . 10" ~ m - ~  to both reduce base resistance and increase current gain. Unfortu- 
nately, it becomes extremely difficult to ensure the tight tolerances, and self-aligning 
processes are required. Furthermore, the acceptor and donor doping concentrations 
reach quickly the solubility limits of the Si or GaAs semiconductor materials, providing 
a physical limitation of the achievable current gain. For these reasons, heterojunction 
bipolar transistors (HBTs) are becoming increasingly popular. HBTs achieve high 
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(a) Cross-sectional view of a multifinger bipolar junction transistor 
Base bondine uad 

well 

Emitter bonding pad 

(b) Top view of a multifinger bipolar junction transistor 
Figure 6-28 lnterdigitated structure of high-frequency BJT. 

current gains without having to dope the emitter excessively. Due to additional semi- 
conductor layers (for instance, GaAIAs-GaAs sandwich structures) an enhanced elec- 
tron injection into the base is achieved while the reverse hole injection into the emitter 
is suppressed. The result is an extremely high emitter eficiency as defined by the ratio 
of electron current into the base to the sum of the same electron current and reverse 
emitter hole current. Figure 6-29 shows a cross-sectional view of such a structure. 

Besides GaAs, heterojunctions have been accomplished with InP emitter and 
InGaAs base interfaces; even additional heterojunction interfaces between the GaInAs 
base and InP collector (double heterojunctions) have been fabricated. The material InP 
has the advantage of high breakdown voltage, larger bandgap, and higher thermal con- 
ductivity compared to GaAs. Operational frequencies exceeding 100 GHz, and a canier 



Figure 6-29 Cross-sectional view of a GaAs heterojunction bipolar transistor 
involving a GaAIAs-GaAs interface. 

transition time between base and collector of less than 0.5 ps have been achieved. 
Unfortunately, InP is a difficult material to handle and the manufacturing process has 
not yet matured to a level that allows it to compete with the Si and GaAs technologies. 

~ - - ~  ~ - - ~  . 
ransistor since it requires only a reversal of voltage polarity and diode directi 

The first letter in the voltage designation always denotes the positive an 
~ ~ 

6.3.2 Functlonallty 

In general, there are two types of BJTs: npn and pnp transistors. The difference 
between these two types lies in the doping of the semiconductor used to produce base, 
emitter, and collector. For an npn-transistor; collector and emitter are made of n-type 
semiconductor, while the base is of p-type. For a pnp-transistor, the semiconductor 
types are reversed (n-type for base, and p-type for emitter and collector). Usually, the 
emitter has the highest and the base has the lowest concentration of doping atoms. The 
BIT is a current-controlled device that is best explained by referring to Figure 6-30, 
which shows the structure, elechical symbol, and diode model with associated voltage 
and current convention for the non-structure. We omit the discussion of the pnp- 
t ons. 

d the sec- 
ond letter gives the negative voltage reference points. Under normal mode of operation 
(i.e., the forward active mode), the emitter-base diode is operated in forward direction 
(with V,, 5 0.7 V )  and the base-collector diode in reverse. Thus the emitter injects 
electrons into the base, and conversely from the base a hole current reaches the emitter. 
If we maintain the m 
voltage (typically of 
dB S 1 pm) and hgnoy oopea p-type layer, only a smau amount or emxmns recom- 
bine with the holes supplied through the base current. The vast majority of electrons 
reach the base-collector junction and are collected by the applied reverse voltage V B C .  

For the reverse active mode, the collector-emitter voltage is negative (typically 
VCE < -0.1 V ) and the base-collector diode is forward biased, while the base-emitter 

: collector emitter voltage to be larger than the so-called satomtic 
around 0.1 V), and since the base is a very thin (on the order t .... 3 . . . . - ~ ~ ~ ~ . .  ~~~-~ ~. c - . ~ - A ~  ..---- ~~ 
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n-type 
collector 

P-type 
base 

n-type 
emitter 

Figure 6-30 npn transistor: (a) structure with electrical charge flow under forward 
active mode of operation, (b) transistor symbol with voltage and current directions, 

and (c) diode model. 

diode is now operated in reverse direction. Unlike the forward active mode, it is now 
the electron flow from the collector that bridges the base and reaches the emitter. 

Finally, the saturation mode involves the forward biasing of both the base-emit- 
ter and base-collector junctions. This mode typically plays an important role when 
dealing with switching circuits. 

For a common emitter configuration, Figure 6-31(a) depicts a generic biasing 
arrangement, where the base current is fixed through an appropriate choice of biasing 
resistor RB and voltage source VBB , resulting in a suitable Q-point. The base current 
versus base-emitter voltage, Figure 6-3 l(b), follows a typical diode I-V behavior, which 
constitutes the input characteristic of the transistor. The base current and base-emitter 
voltage at the intersection point between the load line and the transistor input character- 

Q Q istic are identified as IB and VBE . The collector current versus collector-emitter voltage 
behavior as part of the transistor output characteristic follows a more complicated pat- 
tern since the collector current must be treated as a parametric curve dependent on the 
base current (IB1 < IB2 . . . ) as seen in Figure 6-31(c). 

The quantitative BJT behavior is analyzed by investigating the three modes of 
operation in terms of setting appropriate operating points and formulating the various 
current flows. For simplicity, we will neglect the spatial extent of the individual space 
charge domains and assume typical representative voltage and current conditions. To 
keep track of the different minoritylmajority and doping conditions in the three semi- 
conductor layers, Table 6-3 summarizes the parameters and corresponding notation. 
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(a) Biasing circuit for npn BJT in common-emitter configuration 

(b) Input characteristic of transistor (c) Output characteristic of transistor 

Figure 6-31 Biasing and input, output characteristics of an npn BJT. 

Table 6-3 BJT parameter nomenclature 

I I I 

Doping level I N", I 4 I N: 

Parameter description I Emitter (mtype) I Base (ptype) Collector (mtype) 

Minority carrier concentration 
in thermal equilibrium 

Spatial extent I d~ I d~ I 
Majority carrier concentration 
in thermal equilibrium 

E 2 E 
pno = ni / N D  

E 
nno 

B 2 B n = ni / N A  
Po 

C 2 C 
pno = ni I N D  

B 
P ~ o  

C 

n "0 
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For the following BJT analysis, it is implicitly understood that the concentrations 

obey the inequality pfo << n;o pto . 
Forward Active Mode ( VcE > VcE,, = 0.1 V , I, > 0 )  

To find the minority charge concentrations, we consider the configuration shown 
in Figure 6-32. Here the concentration is plotted as a function of distance across the 
three semiconductor layers. For predicting the spatial minority carrier concentrations in 
the respective layer, we rely on the so-called short diode (see Appendix F) analysis, 
which approximates the exponentials as linear charge concentration gradients. 

Forward biased B Reverse biased 

, I 1 *x 
x = -dE x = 0 x L d B  x=dBn+dC 

Figure 6-32 Minority carrier concentrations in forward active BJT. 

The minority charge concentrations in each layer are given as follows: 

E E E E VBE/VT 
Emitter: p, (-d,) = p,, and p, (0) = pnoe 

B B VBE/VT B B VBC/VT 
.Base: np(0) = npoe and np(dB) = npOe = 0 

c C VBC/VT = 
Collector: pn (dB) = pnOe 

The last two concentrations are zero because the base-collector voltage is negative (for 
instance, for typical transistor values of VCE = 2.5 V and VBE = 0.7 V we find 
V, ,  = -1.8 V , which yields exp[VBc/VT] = exp[-1.8/0.026] + 0).  Based on 
the aforementioned carrier concentrations we can now predict the diffusion current den- 
sity of holes J : ~ ~ ~  in the emitter: 
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For the diffusion current density of electrons in the base layer J : ~ ,  we similarly obtain 

From the preceding two equations, the collector and base currents can be established as 

and 

where index F denotes forward current, A is the junction cross-sectional area, and 
B B I, = (qDnnpoA)/dB is the saturation current. The emitter current is directly found 

by adding (6.60) and (6.61). The forward current gain P F  under constant collector 
emitter voltage is defined as 

To arrive at (6.62) it is assumed that the exponential function in (6.61) is much larger 
than 1, allowing us to neglect the factor -1. Moreover, the ratio between collector and 
emitter currents, or a,, is expressed as 

C & M W  
Example 6-7: Computation of the maximum forward current 

gain in a bipolar-junction transistor 

Find the maximum forward current gain for a silicon-based BJT 
with the following parameters: donor concentration in the emitter, 
N~ - l ~ l ~ c m - ~ ;  acceptor concentration in the base. 4 - N A  = 10'~cm-'; space charge extent in the emitter, 
dE = 0.8 pm ; and space charge extent in the base, dB = 1.2 pm . 
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Solution: To apply (6.62), we need to determine the diffusion 
constants in base and emitter as described by the Einstein relation 
(6.15). Substituting 
current gain: 

this relation into (6.62), we obtain the forward 

Furthermore, using the expressions for the minority carrier concen- 
trations in base and emitter from Table 6-3, we arrive at the final 
expression for p, : 

As discussed in Section 6.3.3 and in the following chaptel; the 
current gain is only approximately constant. In general, it depends 
on the transistor operating conditions and temperature behaviol: 

Reverse Active Mode ( V m  < -0.1 V, I ,  > 0 ) 
The minority carrier concentrations are shown in Figure 6-33 with the associated 

space charge domains (i.e., the base-emitter diode is reversed biased whereas the base- 
collector diode is forward biased). 

Reverse biased Forward biased 

, X 
1 1 

x =-dE x = O  x = dB x = d B + d C  

Figure 6-33 Reverse active mode of BJT. 



- -- 

320 Chapter 6 Active RF Components 

The minority charge concentrations in each layer are as follows: 

E E E V B E / V T  Emitter: p, (-dE) = 0 and p, (0) = pnoe = O  

B B V B E / V T  B B V ~ c / V ~  .Base: np(0) = npoe = 0 and np(dB) = npoe 

c C V B C / ~ T  c C Collector: p, (dB) = pnOe and Pn ( d ~  + dc) = Pn0 

From the diffusion current density, we can find the reverse emitter current 

and the reverse base current 

In a similar manner as done for the forward current gain, we define the reverse current 
gain PR 

and the collector emitter ratio a, 

Saturation Mode ( VBE, VBc > V,, I, > 0 ) 
This mode of operation implies the forward bias of both diodes, so that the diffu- 

sion current density in the base is the combination of forward and reverse carrier flows; 
that is, with (6.60) and (6.64): 

From (6.68) it is possible to find the emitter current by taking into account the forward 
base current. This forward base current (6.61) injects holes into the emitter and thus has 
to be taken with a negative sign to comply with our positive emitter current direction 
convention. Making the exponential expressions in (6.68) compatible with (6.61), we 
add and subtract unity and finally obtain 



BlpoiarJunctlon Transistor 321 

Because the BJT can be treated as a symmetric device, the collector current is express- 
ible in a similar manner as the contribution of three currents: the forward collector and 
reverse emitter currents, given by the negative of (6.68), and an additional hole diffu- 
sion contribution as the result of the reverse base current IRB . The resulting equation is 

Finally, the base current IB = - I ,  - IE is found from the preceding two equations: 

Here again, it is important to recall that the internal emitter current flow is denoted 
opposite in sign to the customary external circuit convention. 

6.3.3 Frequency Response 

The transition frequency f (also known as the cut-off frequency) of a micro- 
wave BJT is an important figure of merit since it determines the operating frequency at 
which the common-emitter, short-circuit current gain hfe decreases to unity. The tran- 
sition frequency f is related to the transit time z that is required for carriers to travel 
through the emitter-collector structure: 

This transition time is generally composed of three delays: 

7 = z E + z B + z C  (6.73) 

where Z~ , zB , and zc are delays in emitter, base, and collector, respectively. The base- 
emitter depletion region charging time is given by 

where C E ,  CC are emitter and collector capacitances, and rE is the emitter resistance 
obtained by differentiation of the emitter current with respect to base-emitter voltage. 
The second delay in (6.73) is the base layer charging time, and its contribution is given as 
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where the factor q is doping profile dependent and ranges from q = 2 for uniformly 
doped base layers up to q = 60 for highly nonuniform layers. Finally, the transition 
time zc through the base-collector junction space charge zone wc can be computed as 

with vs representing the saturation drift velocity. In the preceding formulas we have 
neglected the collector charging time z~~ = rcCc , which is typically very small when 
compared with Z E .  

As seen in (6.74a), the emitter charging time is inversely proportional to the collec- 
tor current, resulting in higher transition frequencies for increasing collector currents. 
However, as the current reaches sufficiently high values, the concentration of charges 
injected into the base becomes comparable with the doping level of the base, which 
causes an increase of the effective base width and, in turn, reduces the transition fre- 
quency. Usually, BJT data sheets provide information about the dependence of the tran- 
sition frequency on the collector current. For instance, Figure 6-34 shows the transition 
frequency as a function of collector current for the wideband npn-transistor BFG403W 
measured at VCE = 2 V , f = 2 GHz, and at an ambient temperature of 25°C. 

"1 10 
Collector current I,, mA 

Figure 6-34 Transition frequency as a function of collector current for the 17 GHz 
npn wideband transistor BFG403W (courtesy of Philips Semiconductors). 
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Another aspect of the BJT operated at RF and MW frequencies is that at high fre- 
quencies the skin effect physically restricts current flow to the outer perimeter of the 
emitter (see also Section 1.4). To keep the charging time as low as possible, the emitter 
is constructed in a grid pattern of extremely narrow (less than 1 p m )  strips. Unfortu- 
nately, the trade-off is a high current density over the small surface area, limiting the 
power handling capabilities. Additional ways to increase the cut-off frequency are to 
reduce the base transition time constant Z~ by high doping levels and concomitantly 
fabricate very short base layers of less than 100 nm. In addition, a small base thickness 
has as an advantage a reduction in power loss. 

6.3.4 Temperature Behavior 

We have seen in this chapter that almost all parameters describing both the static 
and dynamic behavior of semiconductor devices are influenced by the junction temper- 
ature Ti . As an example of such a dependence, in Figure 6-35 the forward current gain 
PF for a given VCE is plotted as a function of collector current I c  for various junction 
temperatures Tj . As we can see from this graph, the current gain raises from 40 at 
I c  = 3.5 rnA and Tj = -50°C to more than 80 at Ti = 50°C. 

- 
0 1 2 3 4 5 6 

Collector current I,, rnA 

Figure 6-35 Current gain P, = a,/(l - a,) as a function of collector current 
for various junction temperatures at a fixed VCE . 
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Another example that shows the strong temperature influence is the dependence 
of the input characteristic of a transistor described by the base current as a function of 
base-emitter voltage, as depicted in Figure 6-36. 

0.5 1 .O 1.5 2.0 
Base-emitter voltage V,,, V 

Figure 6-36 Typical base current as a function of base-emitter voltage for various 
junction temperatures at a fixed V,, 

Again, if we compare the behavior of the transistor at Tj = -50°C and 
Tj = 50°C, we notice that at T, = -50°C and a base-emitter voltage of 1.25 V the 
transistor is in cut-off state, whereas at Ti = 50°C the BJT already conducts 4 mA 
base current. These two examples underscore the importance of temperature consider- 
ations in the design of RF circuits. For instance, the design of a cellular phone for 
worldwide use must ensure that our circuit preforms according to specifications under 
all temperature conditions encountered by the operator. Standard specifications usually 
cover the temperature range from -50°C to 80°C . 

The junction temperature also plays an important role when dealing with the max- 
imum power dissipation. In general, the manufacturer provides a power derating 
curve that specifies the temperature T s  up to which the transistor can be operated at 
the maximum available power Pto, . For junction temperatures T j  exceeding this value, 
the power has to be reduced to values dictated by the thermal resistance between the 
junction and the soldering point (or case) Rthjs according to 

T j m a x - T j  = Tjmar -T j  
P = PtOtT (6.75) 

jrnax - T~ 'thjs 



where Tim,, is the maximum junction temperature. Typical BJT values vary between 
150 and 200°C. 

For the RF transistor BFG403W the maximum total power P,,, of 16 mW can be 
maintained up to Ts  = 140°C . For higher temperatures Ts  I T j  < Ti,, , the power 
must be derated until the maximum junction temperature T j m ,  of 150°C is reached. 
The corresponding slope is 820°K/W. This value implies that if the power dissipation 
of the device decreases by 10 mW, the junction temperature can be increase by 8.2"C 
up to the maximum junction temperature. Obviously, transistor cases with such a high 
slope (or high thermal resistance) are not acceptable for high-power applications and 
manufacturers have to develop effective ways to dissipate the thermal energy generated 
by the transistor. Usually, this is done by employing heat sinks and using materials with 
high thermal conductivity. Instead of the thermal resistance at the soldering point Rfijhj,, 
the manufacturer may supply additional information involving heat resistances between 
junction-to-case (Rhjc), case-to-sink (R,,,), and sink-to-air (Rthha) interfaces. 

To simplify the thermal analysis it is convenient to resort to a thermal equivalent 
circuit with the following correspondences: 

Thermal power dissipation = electric current 
Temperature = electric voltage 

A typical thermal circuit in equilibrium is shown in Figure 6-37, where the total electric 
power supplied to the device is balanced through a thermal circuit involving thermal 
resistances. In particular, we recognize the thermal resistance of junction to soldering 
point which is assumed to be equal to Rhjc. Therefore 

T j -  T ,  - 1 
Rthjc = R . = - - - 

t h ~ s  Pw Y ~ ~ B J T  

where junction and soldering point temperatures Ti and T ,  and thermal power Pw 
determine the thermal resistance in Kelvin per Watt ( O W ) ,  and whose value can also 
be expressed in terms of the thermal conductivity yth and the surface area ABm of the 
BJT. The solder point temperature is affected by the transition between casing and heat 
sink. This constitutes a thermal resistance Rthcs with values up to 5 O W .  Finally, the 
heat sink represents a thermal resistance of 

2 
where tjhs is a convection coefficient that can vary widely between 10 W/(K.m ) for 
still air, 1 0 0 W / ( ~ . r n ~ )  for forced air, up to I O O O W / ( K . ~ ~ )  for water cooling, and 
Ahs is the total area of the heat sink. 
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R'hjs Ceramic cover 

Figure 6-37 Thermal equivalent circuit of BJT. 

The following example provides an often encountered design problem. 

"&MW 
Example 6-8: Thermal analysis involving a BJT mounted on a 

heat sink 

An RF power BJT generates a total power Pw of 15 W at case tem- 
perature of 25°C. The maximum junction temperature is 150°C 
and the maximum ambient operating temperature is specified by the 
user to be T, = 60°C. What is the maximum dissipated power if 
the thermal resistances between case-to-sink and sink-to-air is 
2"K/W and 10°K/W, respectively. 

Solution: With reference to Figure 6-37, we are dealing with 
three thermal resistances: RhjS, Rthcs, and Rthha. The junction-to- 
soldering resistance can be found based on equation (6.76): 

Adding up all resistances gives us a total thermal resistance of 

R,,, = Rhjs + Rthca + Rthhs = 20.333OK/W 

The dissipated power Pth follows from the temperature drop (junc- 
tion temperature Tj minus ambient temperature T,) divided by the 
total thermal resistance: 



To operate the BJT in thermal equilibrium, we have to reduce the 
total electric power Ptot = Pw to the point where it is in balance with 
the computed thermal power Ptot = P, .  Thus a reduction from 
15 W to 4.43 W is required. 

While the design engineer cannot influence the junction-to-sol- 
dering point heat resistance, it is the choice of casing and heat sink 
that typically allows major improvements in thermal performance. 

6.3.5 Limiting Values 

The total power dissipation capabilities at a particular temperature restrict the 
range of safe operation of the BJT. In our discussion we will exclusively focus on the 
active mode in the common-emitter configuration and will neglect the switch-mode 
behavior whereby the BJT is operated either in saturation or cut-off mode. For a given 
maximum BJT power rating, we can either vary the collector-emitter voltage V C E  and 
plot the allowable collector current I ,  = Pto t /Vc ,  (here we assume that base current 
is negligibly small compared to the collector current due to high P ) or vary I ,  and plot 
the allowable collector-emitter voltage VCE = P t o t / I C .  The result is the maximum 
power hyperbola. This does not mean that Ic and V C E  can be increased without 
bound. In fact, we need to ensure that I ,  I I,,, and VCE I VCEmax,  as depicted in 
Figure 6-38. The safe operating area (SOAR) is defined as a set of biasing points 
where the transistor can be operated without risk of unrecoverable damage to the 
device. The SOAR domain, shown as a shaded region in Figure 6-38, is more restrictive 
than a subset bounded by the maximum power hyperbola, since we have to take into 
account two more breakdown mechanisms: 

1. Breakdown of first kind. Here the collector current density exhibits a nonuni- 
form distribution that results in a local temperature increase, which in turn lowers 
the resistance of a portion of the collector domain, creating a channel. The conse- 
quence is a further increase in current density through this channel until the posi- 
tive feedback begins to destroy the crystal structure (avalanche breakdown), 
ultimately destroying the transistor itself. 
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2. Breakdown of second kind. This breakdown mechanism can take place indepen- 
dently of the first mechanism and affects primarily power BJTs. Internal overheat- 
ing may cause an abrupt increase in the collector current for constant V C E .  This 
breakdown mechanism usually occurs at the base-collector junction when the 
temperature increases to such high values that the intrinsic concentration is equal 
to the collector doping concentration. At this point the resistance of the junction is 
abruptly reduced, resulting in a dramatic current increase and melting of the 
junction. 

Figure 6-38 Operating domain of BJT in active mode with breakdown 
mechanisms. 

It is interesting to point out that the BJT can exceed the SOAR, indeed even the 
maximum power hyperbola, for a short time since the temperature response has a much 
larger time constant (on the order of microseconds) in comparison with the electric time 
constants. 

Additional parameters of importance to a design engineer are the maximum volt- 
age conditions for open emitter, base and collector conditions; that is, VCBo (collector- 
base voltage, open emitter), VCEo (collector-emitter, open base), and VEBO (emitter- 
base voltage, open collector). For instance, values for the BFG403W are as follows: 

l = 10 V , Voolmm = 4.5 V , and VEBOl = 1.0 V . 
max 

6.4 RF Field Effect Transistors 
Unlike BJTs, field effect transistors (FETs) are monopolar devices, meaning 

that only one carrier type, either holes or electrons, contributes to the current flow 
through the channel. If hole contributions are involved we speak of p-channel, other- 
wise of n-channel FETs. Moreover, the FET is a voltage-controlled device. A variable 
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electric field controls the current flow from source to drain by changing the applied 
voltage on the gate electrode. 

6.4.1 Construction 

Traditionally FETs are classified according to how the gate is connected to the 
conducting channel. Specifically, the following four types are used: 

1.  Metal Insulator Semiconductor FET (MISFET). Here the gate is separated 
from the channel through an insulation layer. One of the most widely used types, 
the Metal Oxide Semiconductor FET (MOSFET), belongs to this class. 

2. Junction FET (JFET). This type relies on a reverse biased pn-junction that iso- 
lates the gate from the channel. 

3. MEtal Semiconductor FET (MESFET). If the reverse biased pn-junction is 
replaced by a Schottky contact, the channel can be controlled just as in the JFET 
case. 

4. Hetero FET. As the name implies (and unlike the previous three cases, whose 
constructions rely on a single semiconductor material such as Si, GaAs, SiGe, or 
InP) the hetero structures utilize abrupt transitions between layers of different 
semiconductor materials. Examples are GaAlAs to GaAs or GaInAs to GaAlAs 
interfaces. The High Electron Mobility Transistor (HEMT) belongs to this 
class. 

Figure 6-39 provides an overview of the first three types. In all cases the current 
flow is directed from the source to drain, with the gate controlling the current flow. 

Due to the presence of a large capacitance formed by the gate electrode and the 
insulator or reverse biased pn-junction, MISFETs and J E T S  have a relatively low cut- 
off frequency and are usually operated in low and medium frequency ranges of typi- 
cally up to 1 GHz. GaAs MESFETs find applications up to 60-70 GHz, and HEMT can 
operate beyond 100 GHz. Since our interest is geared toward RF applications, the 
emphasis will be on the last two types. 

In addition to the above physical classification, it is customary to electrically clas- 
sify FETs according to enhancement and depletion types. This means that the channel 
either experiences an increase in carriers (for instance the n-type channel is injected 
with electrons) or a depletion in carriers (for instance the n-type channel is depleted of 
electrons). In Figure 6-39 (a) the FET is nonconducting, or normally-off, until a suffi- 
ciently positive gate voltage sets up a conduction channel. Normally-off FETs can only 
be operated in enhancement mode. Alternatively, normally-on FETs can be of both 
enhancement and depletion types. 
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Source Gate Drain 

I \ induced 

D - m e  substrate n-ch-me1 I / 
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(a) Metal insulator semiconductor FET (MISFET) 

Source Gate Drain 
Insulator ? ? ? 

-L - - 
(b) Junction field effect transistor (JFET) 

p+ substrate 

Source Gate Drain 
0 Q Q 

'/ 

(c) Metal semiconductor FET (MESFET) 
Figure 6-39 Construction of (a) MISFET, (b) JFET, and (c) MESFET.The shaded 

areas depict the space charge domains. 
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6.4.2 Functionality 

Because of its importance in RF and MW amplifier, mixer, and oscillator circuits, 
we focus our analysis on the MESFET, whose physical behavior is in many ways simi- 
lar to the JET.  The analysis is based on the geometry shown in Figure 6-40 where the 
transistor is operated in depletion mode. 

(a) Operation in the linear region. (b) Operation in the saturation region. 
Figure 6-40 Functionality of MESFET for different drain-source voltages. 

The Schottky contact builds up a channel space charge domain that affects the 
current flow from source to drain. The space charge extent ds can be controlled via the 
gate voltage in accordance to our discussion in Section 6.1.3, where (6.39) is adjusted 
such that V ,  is replaced by the gate source voltage VGS : 

For instance, the barrier voltage Vd is approximately 0.9 V for a GaAs-Au interface. 
The resistance R between source and drain is predicted by 

with the conductivity given by o = qp,ND and W being the gate width. Substituting 
(6.78) into (6.79) yields the drain-current equation: 
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where we have defined the conductance Go = oWd/L . This equation shows that the 
drain current depends linearly on the drain source voltage, a fact that is only true for 
small VDs . 

As the drain-source voltage increases, the space charge domain near the drain 
contact increases as well, resulting in a nonuniform distribution of the depletion region 
along the channel; see Figure 6-40(b). If we assume that the voltage along the channel 
changes from 0 at the source location to VDs at the drain end, then we can compute the 
drain current for the nonuniform space charge region. This approach is also known as 
the gradual-channel approximation. The approximation rests primarily on the 
assumption that the cross-sectional area at a particular location y along the channel is 
given by A(y) = {d - ds(y)) W and the electric field E is only y-directed. The chan- 
nel current is thus 

where the difference between Vd and VGs in the expression for ds(y) has to be aug- 
mented by the additional drop in voltage V(y) along the channel; that is, (6.78) 
becomes 

Substituting (6.82) into (6.81) and carrying out the integration on both sides of the 
equation yields 

The result is the output characteristic of the MESFET in terms of the drain current as 
a function of VDs for a given fixed VGS , or 

This equation reduces for small VDs to (6.80). 
An interesting phenomenon occurs when the space charge extends over the entire 

channel depth d. The drain-source voltage for this situation is called drain saturation 
voltage V,,, and is given by 
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or, explicitly, 

q N ~ d 2  (V, - VGS) = vp - V, + VGS = VGS - V,, 'Dsat = 7 - (6.86) 

where we introduced the so-called pinch-off voltage Vp = q ~ D d 2 / ( 2 ~ )  and 
threshold voltage V,, = V, - V, . The associated drain saturation current is found by 
inserting (6.86) into (6.84) with the result 

The maximum saturation current in (6.87) is obtained when VGS = 0 ,  which we 
define as IDsat(VGs = 0)= IDss. In Figure 6-41 the typical input/output transfer as 
well as the output characteristic behavior is shown. 

- 1 

(a) Circuit symbol (b) Transfer characteristic (c) Output characteristic 
Figure 6-41 Transfer and output characteristics of an n-channel MESFET 

The saturation drain current (6.87) is often approximated by the simple relation 

How well (6.88) approximates (6.87) is discussed in the following example. 

m m w  
Example 6-9: Drain saturation current in a MESFET 

A GaAs MESFET has the following parameters: ND = 1016cm", 
d = 0 . 7 5 p m ,  W = lOpm,  L = 2 p m ,  E , =  12.0, 
V, = 0.8 V , and p, = 8500 cm2/(vs). Determine (a) the pinch- 
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off voltage, (b) the threshold voltage, (c) the maximum saturation 
current IDSs ; and plot the drain saturation current based on (6.87) 
and (6.88) for VGS ranging from -4 to 0 V. 

Solution: The pinch-off voltage for the FET is independent of 
the gate-source voltage and is computed as 

Knowing Vp and the barrier voltage Vd = 0.8 V ,  we find the 
threshold voltage to be VTo = Vd - V, = -3.44 V . The maximum 
saturation drain current is again independent of the applied drain- 
source voltage and, based on (6.87), is equal to 

where Go = o q N D W d / L  = q 2 p , , ~ i ~ d / ~  = 8.16 9 .  
Figure 6-42 shows results for the saturation drain current com- 

puted by using the exact formula (6.87) and by using the quadratic 
law approximation given by (6.88). 

Quadratic law 
approximation 

Exact formula 

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 
Gate-source voltage V,,, V 

Figure 6-42 Drain current versus V,, computed using the exact and the 
approximate equations (6.87) and (6.88). 
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Because of the excellent agreement, the quadratic law approx- 
imation (6.88) is more widely used in the literature and data sheets 
than the exact equation. 

If VDs reaches the saturation voltage VDsat for a given VGS, the space charges 
pinch off the channel. This implies that the drain current saturates. Interestingly, pinch- 
off does not imply a zero ID since there is no charge barrier impeding the flow of carri- 
ers. It is the electric field as a result of the applied voltage VDs that "pulls" the elec- 
trons across the depletion space charge domain. Any additional increase VDS > VDsat 
will result in a shortening of the channel length from the original length L to the new 
length L' = L - AL . The result is that (6.87) must be modified to 

The change in channel length as a function of VDs is heuristically taken into account 
through the so-called channel length modulation parameter h = AL/(L'VDs) . This 
is particularly useful when expressing the drain current in the saturation region: 

"Dsat = IDsat(' + "DS) (6.90) 

where measurements show a slight increase in drain current as VDsis increased. 

c & M w  
Example 6-10: I-V characteristic of a MESFET 

For discrete gate-source voltages VGS = -1, -1.5, -2, and -2.5 V , 
plot the drain current ID of a MESFET as a function of drain-source 
voltage VDs in the range from 0 to 5 V. Assume that the device 
parameters are the same as in the previous example and that the 
channel length modulation parameter h is set to be 0.03 V-I . Com- 
pare your results with the case where h = 0 .  

Solution: In the analysis of the MESFET behavior we have to be 
careful about choosing the appropriate formulas. At very low drain- 
source voltages, the drain current can be described by a simple lin- 
ear relation (6.80). As the voltage increases, this approximation 
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becomes invalid and a more complicated expression for ID has to be 
employed; see (6.84). Further increase in V,, ultimately leads to 
channel pinch-off, where VDs 2 V,,,, = V,, - V,, . In this case the 
drain current is equal to the saturation current given by (6.87). Addi- 
tional increases in V,, beyond the saturation voltage result only in 
minor increases of the drain current due to a shortening of the chan- 
nel. At this point, ID is linearly dependent on VDs. Substituting 
(6.87) into (6.90) for VDs 2 V,,,, , we obtain 

To provide a smooth transition from normal to saturation region for 
nonzero h we multiply (6.84) by (1  + hVDs). Thus, the final 
expression for the drain current for VDs 5 V,,, is 

The results of applying these formulas to predict ID for zero (dashed 
line) as well as nonzero h (solid line) are shown in Figure 6-43. 

-0 1 2 3 4 5 
Drain-source voltage V,, , V 

Figure 6-43 Drain current as a function of applied drain-source voltage for 
different gate-source biasing conditions. 
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The channel length modulation is similar to the Early effect 
encountered in a BJT where the collector current in saturation 
mode increases slightly for increasing collector emitter voltage as 
discussed in Chapter 7. 

6.4.3 Frequency Response 

The high-frequency MESFET performance is determined by the transit time of 
charge carriers traveling between source and drain and the RC time constant of the 
device. Here we will focus our attention on the transit time only and defer the time con- 
stant computation, which requires knowledge of the channel capacitance, to Chapter 7. 
Since electrons in silicon and GaAs have much higher mobility than holes, n-channel 
MESFETs are used in RF and MW applications almost exclusively. Furthermore, since 
the electron mobility of GaAs is roughly five times higher than that of Si, GaAs MES- 
FETs are usually preferred over Si devices. 

The transit time z of the electrons traveling through the channel of gate length L 
is computed as 

where we have assumed a fixed saturation velocity v,, . As an example, the transition 
frequency f = 1/(2nz) for a gate length of 1.0 pm and a saturation velocity of 
approximately lo7 cm/s is 15 GHz. 

6.4.4 Limiting Values 

The MESFET must be operated in a domain limited by maximum drain current 
IDmaxr maximum gate-source voltage VGsmax, and maximum drain-source voltage 
VDSma, . The maximum power P,, is dictated by the product of VDs and I,, or 

which in turn is related to the channel temperature Tc and ambient temperature T ,  
and the thermal resistance between channel and soldering point Rfijs, according to 

Figure 6-44 clarifies this point. Also shown in this figure are three possible operat- 
ing points. Bias point 3 indicates low amplification and possible clipping of the output 
current. However, the power consumption is at a minimum. Bias point 2 reveals accept- 
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Figure 6-44 Typical maximum output characteristics and three operating points 
of MESFET. 

able amplification at substantially increased power consumption. Finally, bias point 1 
shows high amplification at high power consumption and low output current swing. 
Choosing appropriate bias points for specific applications will be investigated in-depth 
in subsequent chapters. 

6.5 High Electron Mobility Transistors 
The high electron mobility transistor (HEMT), also known as modulation- 

doped field effect transistor (MODFBT), exploits the differences in band gap energy 
between dissimilar semiconductor materials such as GaAlAs and GaAs in an effort to 
substantially surpass the upper frequency limit of the MESFET while maintaining low 
noise performance and high power rating. At present, transit frequencies of 100 GHz 
and above have been achieved. The high frequency behavior is due to a separation of 
the carrier electrons from their donor sites at the interface between the doped GaAlAs 
and undoped GaAs layer (quantum well), where they are confined to a very narrow 
(about 10 nm thick) layer in which motion is possible only parallel to the interface. 
Here we speak of a two-dimensional electron gas (2DEG) or plasma of very high 
mobility, up to 9000 cm2/(v.s). This is a major improvement over GaAs MESFETs 
with pn = 4500 cm2/(v-s) . Because of the thin layer, the canier density is often spec- 
ified in terms of a surface density, typically on the order of 10'~-10'~ ~ m - ~ .  

To further reduce carrier scattering by impurities it is customary to insert a spacer 
layer ranging between 20 and 100 nm of undoped GaAlAs. The layer is grown through 
a molecular beam epitaxial process and has to be sufficiently thin so as to allow the gate 
voltage VGS to control the electron plasma through electrostatic force mechanism. 
Besides single layer heterostructures (GaAlAs on GaAs), multilayer heterostructures 
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involving several 2DEG channels have also been proposed. As can be expected, manu- 
facturing an HEMT is significantly more expensive when compared with the relatively 
inexpensive GaAs MESFET due to the precisely controlled thin-layer structures, steep 
doping gradients, and the use of more difficult to fabricate semiconductor materials. 

6.5.1 Construction 

The basic heterostructure is shown in Figure 6-45, where a GaAlAs n-doped 
semiconductor is followed by an undoped GaAlAs spacer layer of the same material, an 
undoped GaAs layer, and a high resistive semi-insulating (s.i.) GaAl substrate. 

Source Gate Drain 
? Y ? 

Figure 6-45 Generic heterostructure of a depletion-mode HEMT. 

The 2DEG is formed in the undoped GaAs layer for zero gate bias condition 
because the Fenni level is above the conduction band so that electrons accumulate in 
this narrow potential well. As discussed later, the electron concentration can be 
depleted by applying an increasingly negative gate voltage. 

HEMTs are primarily constructed of heterostructures with matching lattice con- 
stants to avoid mechanical tensions between layers. Specific examples are the GaAlAs- 
GaAs and InGaAs-InP interfaces. Research is also ongoing with mismatched lattices 
whereby, for instance, a larger InGaAs lattice is compressed onto a smaller GaAs lat- 
tice. Such device configurations are known as pseudomorphic HEMTs, or pHEMTs. 

6.5.2 Functionality 

The key issue that determines the drain current flow in a HEMT is the narrow 
interface between the GaAlAs and the GaAs layers. For simplicity, we neglect the spacer 
layer and concentrate our attention at the energy band model shown in Figure 6-46. 

A mathematical model similar to (6.21) can be developed by writing down the 
one-dimensional Poisson equation in the form 
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(a) Energy band diagram (b) Close-up view of conduction band 
Figure 6-46 Energy band diagram of GaAIAs-GaAs interface for an HEMT. 

where ND and EH are the donor concentration 
heterostructure. The boundary conditions for 

and dielectric constant in the GaAlAs 
the potential are imposed such that 

V(x = 0) = 0 and at the metal-semiconductor side V(x  = -d) = - Vb + VG + AWC/q . 
Here V ,  is the barrier voltage, see (6.38); AWc is the energy difference in the conduc- 
tion levels between the n-doped GaAlAs and GaAs; and V G  is comprised of the gate- 
source voltage as well as the channel voltage drop VG = - VGS + V ( y ) .  TO find the 
potential, (6.94) is integrated twice. At the metal-semiconductor we set 

which yields 

where we defined the HEMT threshold voltage VTo as VTo = V, - A W c , q  - V, . 
Here we have used the previously defined pinch-off voltage Vp = q N D d  /(2EH). 
From the known electric field at the interface, we find the electron drain current 

As mentioned previously, the current flow is restricted to a very thin layer so that it is 
appropriate to carry out the integration over a surface charge density Qs at x = 0 .  The 
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result is o = -y,Q/(WLd) = -pnQS/d. For the surface charge density we find with 
Gauss's law Qs = E,E(O) . Inserted in (6.97), we obtain 

Upon using (6.96), it is seen that the drain current can be found 

Pinch-off occurs when the drain-source voltage is equal to or less than the difference of 
gate-source and threshold voltages (i.e., VDs I VGS - VTO). If the equality of this con- 
dition is substituted in (6.98c), it is seen 

The threshold voltage allows us to determine if the HEMT is operated as an 
enhancement or depletion type. For the depletion type we require VTo < 0, or 

2 Vb - ( A W c / q )  - Vp < 0 .  Substituting the pinch-off voltage Vp = qNDd / ( 2 ~ )  and 
solving for d, this implies 

and if d is less than the preceding expression (i.e., VTO > 0 ), we deal with an enhance- 
ment HEMT. 

C & M W  
Example 6-11: Computation of HEMT-related electric charac- 

teristics 

Determine typical numerical values for a HEMT device such as 
pinch-off voltage, threshold voltage, and drain current for 
VGS = -1, -0.75, -0.5, -0.25, and 0 V as a function of drain- 
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source voltage VDs. Assume the following parameters: 
N D  = 10l8 cm-', Vb = 0.81 V ,  E, = 12.5~, ,  d = 50 nm, 
AWc = 3.5 x lop2' W.S . W = 10 p m ,  L = 0.5 p m ,  and 

2 pn = 8500 cm /(V-s) . 

Solution: The pinch-off voltage of a HEMT is evaluated as 
2 Vp = qNDd /(2EH) = 1.81 V 

Knowing Vp we can find the threshold voltage as 

VTo = Vb - A Wc/q - Vp = -1.22 V 

Using these values the drain current is computed by relying either on 
equation (6.98~) for VDS I VGS - VTO or equation (6.99) for 
V,, 2 V,, - VTo . The results of these computations are plotted in 
Figure 6-47. We notice in this graph that unlike the GaAs MESFET in 
Figure 6-43, a channel length modulation is not taken into account. In 
practical simulations such a heuristic adjustment can be added. 

Drain-source voltage V, , V 

Figure 6-47 Drain current in a GaAs HEMT. 

Both GaAs MESFET and HEMT exhibit similar output charac- 
teristics and are thus represented by the same electric circuit model. 



Summary 343 

6.5.3 Frequency Response 

The high-frequency performance of the HEMT is determined by the transit time 
similar to the MESFET, However, the transit time z is expressed best through the elec- 
tron mobility p, and the electric field E of the drain-source voltage according to 

We therefore obtain a transit frequency f = 1 / ( 2 n z )  of a proximately 190 GHz for ? the gate length of 1.0 pm and a mobility of p, = 8000 cm /(V.s) at a typical drain 
voltage VDs  of 1.5 V. 

6.6 Summary 
To understand the functionality and limitations of the most widely employed 

active RF solid-state devices, we commenced this chapter with a review of the key ele- 
ments of semiconductor physics. The concepts of conduction, valence, and Fermi levels 
as part of the energy band model are used as the starting point to examine the various 
solid-state mechanisms. 

We next turned our attention to the pn-junction, 
voltage 

where we derived the barrie~ 

and the depletion and diffusion capacitances Cd and Cs in the forms 

Co zIo V A N ,  C,  = and C - -e 
JW7Gf - V, 

Both capacitances are of primary importance when dealing with the frequency response 
of a pn-diode whose current is given by the Shockley equation 

This equation underscores the nonlinear current-voltage diode characteristics. 
Unlike the pn-junction, the Schottky contact involves an n-type semiconductor 

and a metal interface. The Schottky barrier potential Vd is now modified and requires 
the work function of metal, q V M  , semiconductor, q~ , and the conduction band poten- 
tial V c  , expressed via 
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vd = ( v ~ - ~ ) - v ~  
Unlike the 0.7 V of a pn-junction, we obtain a typical value of 0.84 V for a Si-Au inter- 
face. Technologically, this contact is exploited in the Schottky diode, which has become 
ubiquitous in many RF applications such as modulators and mixers. The I-V character- 
istic remains the same as for the pn-junction diode, except that the reverse saturation 
current Is is theoretically more intricate. 

Additional special-purpose RF diodes are the PIN, varactor, and tunnel diodes. 
The PIN diode incorporates an additional intrinsic layer sandwiched between the p and 
n layers. This allows the switching between a low-resistance forward bias to a capaci- 
tive reverse, or isolation, bias. PIN diodes find applications in switchers and attenua- 
tors. The I-V characteristic of a PIN diode is very similar to a pn-junction diode but 
differs by the factor 2 in the exponent: 

qniW I = A(T)(.V*/(2V~)- 1) 

The varactor diode incorporates the I-layer based on a special doping profile to achieve 
a particular capacitance-voltage behavior. Such a response is beneficial for frequency 
tuning and the generation of short pulses. The tunnel diode exhibits a negative slope 
during a particular portion of its I-V curve, thus making it suitable for oscillator circuits. 
Additional diodes of interest in the RF field are the IMPAm, TRAPATT: BARRITT, 
and Gunn diodes. 

The BJT in many ways can be regarded as an extension of our previous diode dis- 
cussion since the npn-structure constitutes the series connection of two diodes. The 
three transistor modes forward active, reverse active, and saturation are reflected in the 
emitter, collector, and base current expressions (6.69)-(6.7 1): 

The frequency response of a BJT is determined by the transit or transition frequency 
f, = 1/(2nz) at which the short-circuit current gain is equal to unity. The time con- 
stant is comprised of three delays z = zE + zB + zc associated with emitter, base, and 
collector domains. 
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Unlike the bipolar BJT, the FET is a monopolar device that displays superior 
high-frequency and low-noise performances. In particular, n-channel GaAs MESFETs 
are commonly found in many RF amplifiers, mixers, and oscillators. The key equation 
that determines the output characteristic of a MESFET is the drain current (6.84): 

Additional modifications to the drain current are required when the channel is pinched 
off and the FET is operated in the saturation domain with channel length modulation. 

Finally, the HEMT device is almost identical in construction with the MESFET, 
but exploits the differences in bandgap energies between heterogeneous semiconduc- 
tors. Here the current flow is restricted to a very narrow, quantum well layer where the 
charge mobility can attain twice the value of a MESFET. Because of carrier separation 
from the donor sites, extremely high operational frequencies have been reported 
(exceeding 100 GHz). The drain-current representation is almost identical with the one 
discussed for the MESFET. 
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Problems 

6.1 To appreciate the large number of atoms in semiconductors, let us consider 
the following simple calculation: A silicon semiconductor is a bod centered -r- 
cubic semiconductor with a lattice constant of a = 5.43 x 10 cm. The 
atom arrangement is such that a comer atom contributes one-eighth plus one 
center atom. Find the density of atoms per cubic centimeter. 

6.2 The conduction and valence band carrier concentration is determined by 
integration of the density of states based on the Fermi statistics. 

N = g(E)dE I 
For effective electron mass m,* , quantum mechanical considerations lead to 
the density function 

(a) Determine the generic electron concentration of states N for energy val- 
ues up to 1.5 eV. 

(b) For an effective electron mass of 1 .08mn or 1 .O8 x 9.11 x lo-" kg, 
explicitly find the number of states. 

6.3 Let us consider a p-type Si semiconductor whose doping concentration at 
16 

room temperature contains N A  = 5 x 10 boron atoms per cubic centime- 
10 

ter (ni  = 1.5 x 10 cm-' ). Find the minority and majority carrier concen- 
trations as well as the conductivity of the semiconductor. 



Problems 

6.4 

6.5 

6.6 

6.7 

6.8 

The Fermi-Dirac probability for indistinguishable particles is the underlying 
statistical theory describing the quantum mechanical distribution of particles 
per unit volume and per unit energy N(E) normalized with respect to the 
number of quantum states per unit voltage and per unit energy g(E) accord- 
ing to 

Plot both the probability of states being occupied, JTE), as well as the 
probability of states being empty, 1 -JTE), at room temperature and for 
EF = 5 eV. 
Determine the temperature at which we have a 5% probability of 
encountering an empty state. 

The intrinsic carrier concentration is typically recorded at room temperature. 
For GaAs we find at T = 300°K the effective densities of state 
N, = 4.7 x 1017 cm-', NV = 7.0 x 1018 cm-' . Assuming that the band- 
gap energy of 1.42 eV remains constant, 
(a) Find the intrinsic carrier concentration at room temperature. 
(b) Compute ni at T = 400°K. 
(c) Compute ni at T = 450°K. 

It is interesting to observe that a significant diffusion current density can be 
created even for moderate carrier concentration gradients. We can assume 
for a p-type Si semiconductor a linear hole concentration changing from 
5 x 1017 cm-' to 10l8 cm3 over a distance of 100 pm . Find the current 
density if the diffusion coefficient is given at T = 300°K to be 

2 D, = 12.4 cm /s .  

In Section 6.1.2 we derived the expressions for the electric field and poten- 
tial distributions in the pn-diode with abrupt junction. Repeat these compu- 
tations for a case of gradual junction where the charge density changes 
linearly according to the following relation: 

The built-in potential barrier of a pn-junction remains relatively constant 
even though the doping concentration may change over several orders of 
magnitude. We recall that the typical barrier potential in solid state circuits is 



348 Chapter 6 Active RF Components 

assumed to be 0.5-0.9 V. In this problem we intend to show how one arrives 
at this voltage. Let us assume a p-type semiconductor with 

18 N ,  = 10 cm-3 joined with an n-type semiconductor of concentration 
N D  = 5 x 1015 ern-'. 

10 (a) Find the barrier voltage at room temperature (ni = 1.45~10 ~ m - ~  ). 

(b)Recompute the barrier voltage if N A  is reduced to 
N ,  = 5 lo16 cm-3. 

6.9 An abrupt pn-'unction made of Si has the acce tor and donor concentrations 
I d  -3 15 -? of N A  = 10 cm and N D  = 5 x 10 cm , respectively. Assuming that 

the device operates at room temperature, determine 
(a) the barrier voltage 
(b) the space charge width in the p- and n-type semiconductors 
(c) the peak electric field across the junction 

-4 2 
(d) the junction capacitance for a cross sectional area of 10 cm and a rel- 

ative dielectric constant of E, = 1 1.7 

6.10 For two pn-diodes with abrupt junction, one of which is made of Si and 
14 

another is made of GaAs, with N A  = 1017 and N D  = 2 x 10 cm-3 
in both cases: 
(a) Find the barrier voltage. 
(b) Find the maximum electric field and the space charge region width. 
(c) Plot the space charge, potential, and electric field distribution along the 

diode axis. 

6.1 1 A silicon pn junction has a conductivity of 10 S/cm and 4 S/cm for p and 
n layers, respectively. Using the necessary properties of silicon, calculate the 
built-in voltage of the junction at room temperature. 

6.12 A Schottky contact between a metal and a semiconductor can be made of 
various materials. For both Si and GaAs we would like to investigate the bar- 
rier voltage if the metal is either aluminum or gold. Use Table 6-2 and Table 
E-1 to find the four barrier voltages and associated depletion layer thick- 
nesses at room temperature. 

6.13 Consider a Schottky diode formed by the contact between n-type GaAs and 
silver. The diode is operated at forward biasing current of 1 rnA. The Rich- 
ardson constant R* = 4 A/(cm2K2), the parasitic series resistance is 
15 Q ,  and the device cross section A = rnrn2. Compute the barrier 
voltage V d  and plot the magnitude and phase of the impedance of diode ver- 



Problems 

6.14 

6.15 

6.16 

6.17 

sus frequency ranging from 1 MHz to 100 GHz for two doping densities 
ND : 1015 and 1017 ~ m - ~ .  Assume that the device is operated at the temper- 
ature of 300°K. 

It is often of enormous practical interest to investigate the nonlinear current 
behavior of a Schottky diode for a given applied voltage. We recall 

with the reverse saturation current given to be Is = 2 x lo-" A.  For a sub- 
strate resistance Rs = 1.8 l2 write a computer program to predict the cur- 
rent if the applied voltage is allowed to vary within 0 I VA I 10 V . 

A PIN diode is a semiconductor device with an intrinsic layer sandwiched 
between two highly doped n- and p-type materials. In the intrinsic layer, the 
charged minority and majority carriers possess a finite life time zp before 
recombination takes place. On the basis of the recombination lifetime a sim- 
ple PIN model can be constructed involving the diode current I and the 
stored charge Q: 

Establish the frequency domain response Q(o) of this first-order 
system. 
Plot the normalized charge response 2010g [Q(o)/(Izp)] versus angu- 
lar frequency for zp of 10 ps, 1 ns, and 1 LS . 

Note: For frequencies well below the cut-off frequency f = 1 /zp the PIN 
diode behaves like a normal pn-junction diode. However, at frequencies 
above f p ,  the PIN diode becomes a pure linear resistor whose value is con- 
trolled by the biasing signal. 

The fabrication of two different types of varactor diodes calls for the follow- 
ing two capacitance-voltage behaviors: 
(a) C = 5 PFJvA/( VA - Vdiff) 
(b) C = 5 pF(VA/(VA - Vdiff))'13 
Determine the necessary donor doping profile ND(x) for the intrinsic layer. 
Assume the cross-sectional area of the varactor diode to be lo4 cm2. 

Consider a Si bipolar junction transistor whose emitter, base, and collector 
are uniforml doped with the followin concentrations: N: = lo2' cm", 
B 77 -3 c 19 -8 

NA = 2x10 cm , ND = 10 cm . Assume that the base-emitter volt- 
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age is 0.75 V and the collector-emitter potential is set to 2 V. The cross- 
-4 2 

sectional area of both junctions is 10 cm and the emitter, base, and col- 
lector thicknesses are dE = 0.8 pm , dB = 1.2 pm , and dc  = 2 pm , 
respectively. Assuming that the device is operated at room temperature: 
(a) Find the space charge region extents for both junctions. 
(b) Draw the energy band diagram. 
(c) Compute the base, emitter, and collector currents. 
(d) Calculate the forward and reverse current gains PF and P R .  

6.18 For a GaAs BJT the maximum junction temperature is 420°C (which far 
exceeds the maximum junction temperature of Si with 200°C). The sup- 
plied power is 90 W. The thermal resistance between the BJT and the heat 
sink is estimated to be 1.5"C/W 
(a) Determine the maximum thermal resistance of the heat sink if the ambi- 

ent operating temperature does not exceed 50°C. 
(b) For a heat convection coefficient of 100 W/"C . m2 find the required 

surface area. 

6.19 A BJT is encapsulated in a plastic housing and mounted on a heat sink 
(Rthha = 3.75 "C/W ). Under these conditions the total power dissipation is 
supposed to be 20 W at an ambient temperature of 20°C. What rating has the 
engineer to choose for the BJT casing if the maximum junction temperature 
should not exceed 175"C? 

6.20 Prove that the drain current (6.84) for a MESFET under gradual-channel 
approximation reduces to (6.80) for small VD9 

6.21 Derive the saturation drain current equation (6.88). 

6.22 The junction field-effect transistor with n-type channel has the followiqg 
parameters: W/L = 10, p, = 1000 m2/(V.s), d = 2pm, E, = 11.7, 
and VTO = -3 V . Compute the saturation drain current at VGS = -1 V 

6.23 Compute the output current I, versus VDs characteristics of the transistor 
from Problem 6.22 for drain-source voltage ranging from 0 to 5 V. First 
assume that channel length modulation effect is negligible (i.e., h = 0), and 
then repeat your computation for a case when h = 0.01 . 
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A lmost all circuit designs of any complexity have 
to be modeled as part of computer-aided design (CAD) programs prior to their practical 
realizations to assess quantitatively whether or not these circuits meet design specifica- 
tions. For the purpose of electric circuit simulation, a large number of software analysis 
packages offer a host of equivalent circuit models attempting to replicate the electric 
performance of the various discrete elements. Special electric circuit models have been 
developed to address such important design requirements as low- or high-frequency 
operation, linear or nonlinear system behavior, and normal or reverse mode of opera- 
tion to name but a few. 

It is the purpose of this chapter to examine several active devices in terms of suit- 
able equivalent circuit representations for diodes as well as mono- and bipolar transis- 
tors. The physical foundation of these devices is reviewed in Chapter 6. By developing 
a close link with the previous chapter, we will be able to observe how a basic under- 
standing of solid-state device physics naturally leads to large signal (nonlinear) circuit 
models. Subsequent discussions will focus on modifications that can be made to linear- 
ize these models and to refine them for high-frequency operations. 

Considering the various BJT models, we restrict our discussion to only the most 
popular types such as the Ebers-Moll and Gummel-Poon models. Both types, and a 
number of linear derivatives, find widespread applications in such simulation tools as 
SPICE, ADS, MMICAD, and others. Often the situation arises where the device manu- 
facturer may not be able to specify all the required electric parameters, since they can 
easily exceed 40 independent parameters, and a so-called SPICE model representation 
is unattainable. Under those circumstances, the S-parameters are recorded for various 
bias conditions and operating frequencies to characterize the high-frequency behavior. 
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In most cases, these S-parameters may provide the design engineer with sufficient 
information to complete the simulation task. 

7.1 Diode Models 

7.1 .I Nonlinear Diode Model 

The typical large-scale circuit model treats both the pn and Schottky diode in the 
same fashion, as shown in Figure 7-1. 

Figure 7-1 Large-scale diode model. 

This model takes into account the nonlinear I-V characteristics of the Shockley 
diode equation (6.34) in slightly modified form 

where the emission coefficient n is chosen as an additional parameter aimed at bringing 
the model in closer agreement with actual measurements. This coefficient for most 
applications is close to 1 .O. Furthermore, in Section 6.1.2 the diffusion and junction (or 
depletion layer) capacitances Cd and CJ are discussed. Both effects are combined in a 
single capacitance C, but in a more general form. Specifically, for the junction capaci- 
tance, we have to consider the space charge Q J ,  which is differentiated with respect to 
the applied voltage, leading to 

where m is known as the junction grading coefficient. It assumes a value of 0.5 for the 
abrupt junction that is subject of our analysis in Section 6.1.2. For the more realistic 
case of a gradual transition m lies in the range 0.2 1 m 10.5. As mentioned in 
Chapter 6, the formula given in (7.2) is applicable only for certain positive applied volt- 
ages. If the applied voltage VA approaches the built-in potential Vdiff, the junction 
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capacitance computed using (7.2) approaches infinity which is obviously physically 
impossible. In practice, the junction capacitance becomes almost linearly dependent on 
the applied voltage once it exceeds a threshold potential V,, which is usually equal to 
half of the built-in potential, V, = 0.5 Vdiff . Therefore, the approximate formula capa- 
ble of describing the junction capacitance over the entire range of applied voltages is 
given by 

We also observe that Cd is dependent on VA . For the diffusion capacitance, we 
can use 

with the transition time zT . 
In a realistic diode the injection and extraction of charges is accomplished by the 

electric field that constitutes a voltage drop in the charge neutral domains. This voltage 
drop is modeled as a series resistance Rs . Thus the total voltage in Figure 7-1 is com- 
posed of two contributions: 

V = RsID + nVTln(l + ID/Is) (7.5) 

Temperature dependencies can also be introduced into this model. Besides the 
obvious thermal voltage V, = kT/q it is primarily the reverse saturation current Is 
that is found to be strongly influenced by temperature according to 

where To is a reference temperature at which the saturation current is recorded. The lit- 
erature primarily uses To = 300°K (or 27°C). The reverse saturation current temper- 
ature coefficient p, is either 3 or 2 depending on whether a pn or Schottky diode is 
modeled. The model parameter can thus account for the difference in temperature 
behavior between the two diode types. Also, the bandgap energy W,(T) is consid- 
ered. As the temperature increases, this bandgap decreases, making it easier for charge 
carriers to transition from the valence into the conduction band. The semi-empirical 



354 Chapter 7 Active RF Component Modeling 

formula assumes a specific bandgap energy W,(O) recorded at T = O°K and then 
adjusts this value as follows 

For instance, the experimentally determined parameters for Si are W,(O) = 1.16eV, 
a, = 7.02 x eV/"K, and PT = 1 108°K . Additional temperature dependencies 
affecting the capacitances are usually small and are neglected. 

Perhaps the most popular circuit simulation program in industry and academia is 
SPICE, which is capable of taking into account the nonlinear diode model depicted in 
Figure 7-1. This simulation program incorporates a range of physical model parame- 
ters; some of them are so specialized that they are beyond the scope of our textbook. 
The most important ones are summarized in Table 7-1. Also listed are the differences 
between the standard pn and Schottky diode. 

Table 7-1 Diode model parameters and their corresponding SPICE parameters 

I Symbol I SPICE I Description I Typical values 

I Is I 1s I saturation current I 1 fA-10 yA 

n 

ZT 

R.7 

m b 4  grading coefficient I 0.2-0.5 

Vciff 

c ~ o  

N 

TT 

RS 

XTI saturation current temperature coefficient I p i  I 3 @4 
2 (Schottky) 

VJ 

CJO 

bandgap energy 

7.1.2 Linear Diode Model 

emission coefficient 

transit time 

ohmic resistance 

1.11 eV (Si) 
0.69 eV (Si-Schottky) 

The nonlinear model is based on the device physics developed in Chapter 6. As 
such, this model can be used for static and dynamic analyses under practically any cir- 
cuit conditions. However, if the diode is operated at a particular DC voltage bias point 
and the signal variations about this point are small, we can develop a linear or small- 

1 

5 ps-500 ys 

0.1-20 R 

barrier voltage 

zero-bias junction capacitance 

0 . M . 8  V @n) 
0.5-0.6 V (Schottky) 

5-50 pF @n) 
0.2-5 pF (Schottky) 
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signal model. The concept of linearization implies the approximation of the exponen- 
tial I-V characteristic through a tangent at the bias or Q-point VQ . The tangent at this 
Q-point is the differential conductance Gd, which we can find as 

The tangent approximation is shown in Figure 7-2 along with the simplified, linear cir- 
cuit model. It is important to emphasis that the differential capacitance is now the diffu- 
sion capacitance at bias point VQ , or 

(a) tangent approximation at Qpoint (b) linear circuit model. 
Figure 7-2 Small-signal diode model. 

An apparent benefit of such a linearized circuit model is the ability to decouple the RF 
diode operation from the DC bias condition, as the following design example under- 
scores. 

"&MW 
Example 7-1: Derivation of the small-signal pn diode model 

A conventional Si-based pn-diode is operated at 300°K and has the 
following electric parameters at this temperature: zT = 500 ps, 
I, = 5 x lo-" A, Rs = 1.5 R , n = 1.16. The DC operating con- 
ditions are chosen such that IQ = 50 mA. To characterize the per- 
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formance of a particular RF system in which this diode is used, we 
need to obtain 

(a) the impedance behavior of the diode in the frequency range 
10 MHz If 2 1  GHz at 300°K, and 

(b) the impedance response of the diode in the same frequency 
range, but for temperatures of 250°K, 350°K, and 400°K. 

Solution: At a temperature of 300°K, we first determine from 
IQ = 50 mA the corresponding VQ , which is found from (7.1) 

VQ = nVTln(l + IQ/Is) = 0.898 V 

Next we can compute the differential resistance and capacitance as 

Knowing these parameters, we can find the impedance of the diode 
as a resistor Rs connected in series with the parallel combination of 
Rd and Cd : 

The resulting frequency behavior is shown in Figure 7-3. 
As temperature changes and the biasing current IQ is main- 

tained constant, the biasing voltage VQ should change due to the 
temperature dependence of the thermal potential VT = k T / q ,  
bandgap energy W, given by (7.7), and saturation current Is 
described in (7.6). Results of these computations are presented in 
Table 7-2, and the corresponding frequency behavior of the diode 
impedance is shown in Figure 7-3. 

Table 7-2 Diode model parameters for different temperatures 
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Frequencyf, MHz 

Figure 7-3 Frequency behavior of the diode impedance for different junction 
temperatures. 

We observe how the physical parameters developed for the pn- 
junction in Chapter 6 directly translate into the small-signal circuit 
model. The DC bias conditions influence the AC behavior because 
they affect the differential capacitance and resistance. 

7.2 Transistor Models 
Over the years a number of large- and small-signal bipolar and monopolar transis- 

tor models have been developed. Perhaps the best-known one is the Ebers-Moll BJT 
model, which was initially introduced to characterize static and low-frequency transis- 
tor modes. The need to expand into RFMW frequencies and high power applications 
required taking into account many important second-order effects, such as low-current 
and high-injection phenomena. This has resulted in the Gurnmel-Poon model as a more 
refined BJT circuit representation. 

7.2.1 Large-Signal BJT Models 

We begin our discussion with the static Ebers-Moll model, which is one of the 
most popular large-signal models. Although this model was first introduced in Decem- 
ber of 1954, it still is indispensable to understand the basic model requirements and its 
extensions to more sophisticated large-signal models as well as the derivation of most 
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small signal models. Figure 7-4 shows the generic npn transistor with the associated 
Ebers-Moll circuit model in the so-called injection version. 

(a) Voltage and current convention for npn transistor 

(b) Ebers-Moll circuit model 
Figure 7-4 Large-signal Ebers-Moll circuit model. 

In Figure 7-4 we encounter two diodes connected in forward and reverse polarity, as 
already seen in Chapter 6. In addition, two current-controlled current sources permit the 
mutual coupling of the two diodes as part of the base contact. The forward and reverse 
current gains (in comrnon-base configuration) aF and aR possess typical values of 
a, = 0.95 . . . 0.99 and aR = 0.02 . . . 0.05 . As a direct extension of the previously 
discussed single-diode model, the dual-diode Ebers-Moll equations take on the form 

with the diode currents 
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where the reverse collector and emitter saturation currents Ics and I,, (whose 
numerical values range from A to lo-'* A) can be related to the transistor satura- 
tion current Is as follows: 

Despite their simplicity, the Ebers-Moll equations are capable of describing all major 
physical phenomena developed in Chapter 6. For the important cases of forward and 
reverse active modes, the circuit model can be simplified. The following two situations 
arise: 

Forward Active Mode ( VCE > VCEsat = 0.1 V , VBE = 0.7 V ). With the base- 
emitter diode IF conducting, and the base-collector diode in reverse direction 
(i.e., VBC < 0 V ), we conclude that IR = 0 ,  and also aRIR - 0 .  The base-collec- 
tor diode and the base-emitter current source can thus be neglected. 

Reverse Active Mode (V,, c -0.1 V , V,, = 0.7 V ). Here the base-collector 
diode I, is conducting, and the base-emitter diode is biased in reverse direction 
(i.e., V,, < 0 V ), which results in IF = 0 and a,IF = 0 .  

Figure 7-5 summarizes these two modes of operation when the emitter is chosen as 
common reference point. 

(a) Forward active mode (b) Reverse active mode 
Figure 7-5 Simplified Ebers-Moll equations for forward and reverse active 

modes. 

This model can be modified to account for dynamic operations by including the 
familiar base-emitter and base-collector diffusion ( Cde , Cdc ) and junction ( C j e  , C,, ) 
diode capacitances. Unlike the simple charge analysis presented for the single-diode 
model, a more elaborate treatment is required for the BJT. For instance, the charge 
accounting for the emitter diffusion capacitance is comprised of minority charges stored 
in (a) the neutral emitter zone, (b) the emitter-base, (c) the collector-base space charge 
regions, and (d) the neutral base zone. An identical analysis applies to the collector diffu- 
sion capacitance. Figure 7-6 depicts the dynamic Ebers-Moll chip-model. Further refine- 
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j Ebers-Moll 
j model 

N 

(a) Dynamic Ebers-Moll chip model 

(b) RF model with parasitic terminal effects 

Figure 7-6 Dynamic Ebers-Moll model and parasitic element refinements. 
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ments for RF operations are often made by including the resistive and inductive 
properties of the lead wires as well as parasitic capacitances between the terminal points, 
see Figure 7-6(b). 

.,&M w'- 
Example 7-2: Transport versus injection form of the Ebers- 

Moll large-signal model 

Instead of the injection model, it is the transport model that typically 
finds use in SPICE simulations. Let us go through the qualitative 
steps to arrive at this important representation. 

Solution: We begin our discussion with the static BJT model, 
since the diffusion and junction capacitances can be added later in 
the derivation. First, we can show that the injection model Figure 
7-4 is equivalent to the transport model in Figure 7-7. 

Figure 7-7 Transport representation of static Ebers-Moll injection model. 

The equivalence of both models can be established if we re- 
express collector and emitter currents as follows: 

I E  = - I C c / a F  + IEc 

with the current controlled sources now given as 
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A slightly different form can be obtain if both current sources are 
combined to a single source I,,, = Icc - I,, and the diode cur- 
rents are re-expressed as 

ICC - +- k c  Icc = - 
a F  a~ P F 

This model configuration is shown in Figure 7-8 with base, collec- 
tor, and emitter resistances. Also shown in Figure 7-8 are the com- 
bined diffusion and junction capacitances Cbe and Cbc associated 
with the base-emitter and base-collector diodes. 

Figure 7-8 Dynamic Ebers-Moll transport model with single current source. 

The Figure 7-8 configuration is important since it leads 
directly to the large-signal BJT model under forward active mode 
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condition. This mode allows us to neglect the base-collector diode 
current, but not its capacitative effect. Renaming the electric param- 
eters, we arrive at the circuit depicted in Figure 7-9, where we 
replaced the forward-biased diode with an equivalent current source. 

Figure 7-9 Large-signal BJT model in forward active mode. 

This final form can be found in the SPICE library as a nonlin- 
ear representation of the standard BJT. 

We notice how the dynamic transport model of the Ebers-Moll 
equations naturally lead to the SPICE large-signal model. An inher- 
ent divgiculty for all circuit models is the unique determination of the 
model parameters through appropriate measurement strategies. 

The Ebers-Moll model was one of the first BJT circuit representations and has 
retained its popularity and wide acceptance. However, shortly after its introduction, it 
became apparent that a number of physical phenomena could not be taken into account 
by this original model. Specifically, research has shown that (1) P, and PR are current 
dependent, and (2) the saturation current Is is affected by the base-collector voltage 
(Early effect). Both effects significantly influence the overall BJT performance. For 
this reason a number of refinements have been introduced to the original Ebers-Moll 
model, culminating in the Gummel-Poon model shown in Figure 7-10. 

In this model we immediately notice the addition of two extra diodes to deal with 
the collector-dependent forward and reverse current gains PF(IC) and PR(IC). Figure 
7- 1 1 depicts a typical curve for P, . 
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~6 

Figure 7-10 Static Gummel-Poon model. 

1 
10-~  lo4 10-1 lo0 lo1  lo2 lo3 

Collector current I,, rnA 

Figure 7-1 1 Typical dependency of P, on the collector current I, for a fixed 
collector-emitter voltage VcE . 

The two leakage diodes L1, L2 provide four new design parameters: coefficients 
I,, , n,, in I,, = Is, (exp [VBE/(nELVT)] - 1 ) for low-current normal mode opera- 
tion, and I,, , ncL in IL2 = IS2(exp[VBc/(n,,V,)] - 1) for low-current inverse 
mode operation. Additionally, the Gurnmel-Poon model can handle the Early effect, 
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whereby with increasing collector-emitter voltage the space charge domain begins to 
extend far into the base region. The result is an increase in collector current for a fixed 
base current. If one draws tangents to each collector current curve (see Figure 7-12), they 
all converge approximately at a single voltage point -VAN known as the forward Early 
voltage. An identical analysis can be conducted if the BJT is operated in the reverse 
active mode, resulting in a voltage point VBN known as the inverse Early voltage. 

Figure 7-12 Collector current dependence on V and its approximation through 
the Early voltage 6;. 

Both voltages are incorporated as additional factors in the model. Moreover, 
Gummel-Poon also permits the specification of a current-dependent base resistance and 
a distributed base-collector junction capacitance C j b c .  We will not go into any details 
of the various underlying physical reasonings leading to the requirement of these addi- 
tional model parameters. The interested reader is referred to the sources listed at the 
end of this chapter. Converting the static Gurnmel-Poon model (Figure 7-10) into 
dynamic form by including the diode capacitances and Cjbc leads to the equivalent cir- 
cuit shown in Figure 7- 13. 

This circuit is similar to the large-signal Ebers-Moll form (Figure 7-9) but with 
the differences that the base resistance RBBg is current dependent, the collector current 
takes into account the Early effect, and a distributed base-collector junction capacitance 
Cjbc enters the model. 

In SPICE both BJT models can be invoked, with Ebers-Moll requiring the specifi- 
cation of 26 circuit parameters and up to 41 parameters for Gurnmel-Poon. Generally, 
the BJT manufactures supply these parameters in their data sheets. Unfortunately, one 
increasingly encounters the situation where instead of the generally applicable SPICE 
model parameters, only the measured S-parameters are given. Since these measure- 
ments are recorded for particular operating frequencies and under certain bias condi- 
tions, it is then left to the circuit design engineer to interpolate the data for a particular 
transistor operation not found in the data sheet. 
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Figure 7-13 Large-signal Gummel-Poon model in normal active mode. 

7.2.2 Small-Signal BJT Models 

From the large-signal Ebers-Moll equations it is now easy to derive a small-signal 
model in the normal active mode. To this end, the large signal model (Figure 7-9) is 
converted into the linear hybrid-.lc model shown in Figure 7-14. 

Figure 7-14 Small-signal hybrid-7c Ebers-Moll BJT model. 

We see that the base-emitter diode is replaced by a small-signal diode model and 
the collector current source is substituted by a voltage-controlled current source. To 
make the model more realistic, a resistor r p  is connected in shunt to the feedback 
capacitor Cp . For this model we can directly establish the small-circuit parameters by 
expanding the input voltage V B E  and output current Ic  about the biasing or Q-point in 
terms of small AC voltage vbe and current i, as follows: 
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Truncating the series expansion of the exponential expression after the linear term, we 
find for the small-signal collector current 

where we identify the transconductance 

and the small-signal current gain at the operating point 

The input resistance is determined through the chain rule: 

For the output conductance we have 

which includes the Early effect, also known as the base-width modulation because of 
the increased depletion layer extent into the base. 

It is directly seen that this model in its simplest form at the terminals Br-C-Er 
reduces for the static case and, under negligence of the collector-emitter resistance, to 
our familiar low-frequency transistor model. Here the output current can simply be 
expressed in term of the input voltage vbe as 
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Often additional small-signal BJT circuit models can be developed on the basis of 
the h-parameter network representation. For instance, if we recall the definitions of the h- 
parameters and apply them to a BJT in common-emitter configuration, we obtain 

ic = h21 ib + h 2 2 ~ c e  

which is encoded in generic form in Figure 7- 15. 

Figure 7-1 5 Generic h-parameter BJT representation with two sources. 

In this notation the indices denote 11 * input, 21 * reverse, 21 * forward, and 
22 output. The individual parameter can be computed via the following relations: 

h = +I  input impedance (7.24a) 
lb vce = 0 

h21 = $ 1  foward current gain PF (7.24b) 
lb  v,, = 0 

reverse voltage gain (7.24~) 
l b  = 0 

output admittance (7 .24d) 
l b  = 0 

It is observed that h12 represents the influence of the output voltage "fed back" to the 
input as part of a voltage-controlled voltage source. Conversely, h2, models the influ- 
ence of the input "fed forward" to the output, or gain, as part of a current-controlled 
current source. The output to input feedback is modeled by the reverse biased collector- 
base junction capacitance Ccb , which is generally on the order of 0.1 to 0.5 pF and a 
resistor rcb , with values ranging in the low MR.  Therefore, for low and intermediary 
frequencies up to approximately 50 MHz, this feedback can safely be neglected. How- 
ever, in the GHz range, it may profoundly affect the BJT operation. 
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If the feedback resistor rbc is neglected, a high-frequency circuit model results, as 
displayed in Figure 7-16. Also shown in this figure is a converted circuit such that the 
feedback capacitance Ccb appears as the Miller capacitance on the input and output 
sides. The Miller effect allows us to decouple the input from the output port by redis- 
tributing the feedback capacitance, as the following example shows. 

(a) RF circuit model 

(b) Equivalent circuit model 
Figure 7-1 6 RF small-signal circuit model and converted circuit model using the 

Miller effect. 

C & M W  
Example 7-3: The Miller effect 

Show that the feedback capacitance Ccb can be expressed as 
C,, = CCb( l  - vCe /vbe)  on the input port and as 
CM2 = Ccb( 1 - vbe/v, , )  on the output port. Assume that the input 
and output voltages are approximately constant, and keep in mind 
that vce is negative under common emitter configuration. 

Solution: We need to convince ourselves that the two generic 
circuits shown in Figure 7-17 are equivalent. 

The current Zp  is found by taking the voltage difference 
between output and input divided by the feedback impedance 

I p  = W I  - V 2 ) 4 2  
and for the equivalent input and output impedances Zl,  , Z22 
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(a) Circuit with feedback impedance Z12 

(b) Equivalent form 
Figure 7-17 Miller transformation of feedback impedance. 

and 

With the assignments Z12 = l / ( j o C c b ) ,  Z l l  = l / ( j o C M , ) ,  
Z22 = l / ( j o C M 2 )  and V 1  = v b e ,  V 2  = v C e ,  we find the equiva- 
lent capacitances 

Decoupling of the input from the output port is accomplished 
by computing an equivalent capacitance that depends on a constant 
voltage amplijication factor vcJvb, 

Another important factor that is directly related to the BJT frequency behavior is 
the short-circuit current gain h f e ( o ) ,  which implies the connection of the collector 
with the emitter as depicted in Figure 7-18. 
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(a) Short-circuit hybrid-7c model 

(b) Amplification versus frequency behavior 
Figure 7-18 Short-circuit current gain of BJT model. 

Since the output is short circuited and thus vce = 0,  the Miller effect does not 
enter the analysis. We find h fe(o) by computing the ratio of collector to base currents 

where Zin = r,/(l + jor,C,) . Substituting Zin into (7.27) and using (7.19) results in 

with the maximum frequency f and the beta cut-off frequency f 

The transition frequency f denotes the point where the magnitude of the current gain 
is unity (or 0 dB) under short-circuit output condition. Setting the absolute value of 
(7.28) equal unity, we find 
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Since usually Po D 1 and C, N CW we can rewrite (7.30) as 

As already seen in Chapter 6, this frequency is related to the emitter-collector time 
delay, which is composed of the delays associated with base, emitter, and collector. 
Another name for f is the gain-bandwidth product, which is specified in data sheets 
for a particular collector-emitter voltage and collector current bias condition. Addi- 

2 tional figures of merit can be established when one considers , where the power 
gain of the transistor is recorded under zero source and load reflection coefficients. This 
condition will be investigated in greater detail in Chapter 9. 

Finally, let us discuss a design project involving the BJT. In this project, we will 
go through the steps of deciding upon bias conditions, determining the input and output 
impedances as a function of frequency, and converting the impedance values to the rel- 
evant S-parameters. The transistor parameters used for this example are summarized in 
Table 7-3. The MATLAB routine ex7-4.m provides computational details. 

C & M W  
Example 7-4: Setting bias conditions, determining inputlout- 

put impedances, and computing the S-parame- 
ters for a BJT 

Our task is to design an amplifier for a portable communication sys- 
tem. The system is supposed to operate from a 3.6 V battery source. 
Taking into considerations the maximum available current and bat- 
tery lifetime, we demand that the current for the amplifier should not 
exceed approximately 10 mA. Assuming V m  = 2 V and 
I c  = 10 mA as bias conditions for this transistor, and the BJT 
parameters given in Table 7-3, we need to determine the hybrid-7c 
model. In addition, the resulting inputloutput impedances and the 
corresponding S-parameters for the frequency range of 
1 MHz < f < 100 GHz have to be found. 
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Table 7-3 Parameters of the BJT transistor 

Symbol Description 

v~~ I forward Early voltage 1 3 0 ~  

Typical value 

PF 

Is 

% I forward transition time 1 4 ~ s  

CJCO I base-collector junction capacitance at zero applied junction voltage 1 16 fF 

- - - -  

forward current gain 

saturation current 

I CJEO 1 base-emitter junction capacitance at zero applied junction voltage 1 37 6 

145 

5.5 fA 

I collector capacitance grading coefficient 

I m~ I emitter capacitance grading coefficient 

'diffBE 

'diff,, 

r~ 

'- c 

Solution: We begin this design by developing a standard voltage 
divider biasing network, as shown in Figure 7-19. 

With the power supply voltage of Vcc = 3.6 V , desired col- 
lector-emitter voltage of VCE = 2 V ,  and collector current of 
I c  = 10 rnA, we can find a value for the collector resistor Rc  as 
follows: 

I I 

base-emitter diffusion potential 

' -E 

LB 

LC 

LE 

0.9 V 

base-collector diffusion potential 

base body resistance 

collector body resistance 

0.6 V 

125 a 

15 Q 

emitter body resistance 

base lead inductance 

collector lead inductance 

emitter lead inductance 

1.5 a 

1.1 nH 

1.1 nH 

0.5 nH 
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Figure 7-19 Biasing a BJT in common-emitter configuration. 

Based on the current gain of P = 145 and collector current of 
I c =  lOmA, we find the base current to be 
I, = Ic /P = 69 PA.  The current through the resistor RBI is 
equal to the sum of the current flowing through resistor RB2 and I, . 
In practice, the values of RBI and RB2 are selected such that they 
make the magnitude of I ,  equal to 10% of the current through resis- 
tor RB2.  Keeping this in mind and realizing that the base-emitter 
voltage drop Vm is approximately equal to the base-emitter built-in 
potential VdiRBE, we find 

and 

Now we are ready to compute the hybrid-n: model parameters. 
From equations (7.17)-(7.20) we obtain g, = Ic /VT = 386 mS , 

- 375 Q ,  and ro = V,, / I ,  = 3 kQ. To find C, r ,  = Po&, - 
and C ,  we have to resort to the pn-junction analysis. Since the 
base-collector voltage is negative, the base-collector capacitance is 
only determined by the junction capacitance. From (7.3) we find - 
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Because the base-emitter voltage is positive, C, is a combination of 
both the junction and diffusion capacitances. From (7.3), and by 
assuming VmE = 

and 

0.5 VdiffRE , we have 

Thus, the total base-emitter capacitance is 

cn = Cnjunct + cn.iff = 1.14 pF 

After establishing all parameters of the hybrid-n; model, we 
can compute the corresponding h-parameter matrix as described in 
(7.24). The result takes into account only the transistor die hybrid-7c 
parameters without incorporating base, collector, and emitter resis- 
tances and parasitic inductances. 

To consider the influence of the lead resistance and inductance, 
we can employ a network analysis as described in Chapter 4. Specif- 
ically, we can partition the equivalent transistor circuit into four 
two-port networks, as shown in Figure 7-20. 

I I 
I r~ I 
I I 
I Emitter 
I 
I L~ I 
I I 

EO - - - - - - -  a E  

Figure 7-20 Complete transistor model divided into four two-port networks. 
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Relying on this network partitioning we proceed as follows: To 
obtain the Z-parameters of the entire transistor we first convert the 
h-parameters of the hybrid-lr: model into ABCD representation. 
Next, this converted hybrid-lr: model is multiplied by the ABCD- 
matrix representations for base and collector leads. 

The matrix equation is as follows: 

J m  = [A rB + :.L.] [. B] 
[I rc + : . ~ c ]  

C D h-,,el 0 collector 

Finally, we convert the ABCD representation of the transistor with 
the attached base and collector leads into Z-parameter form and add 
the resulting matrix to the Z-matrix of the emitter lead. 

The frequency responses 
Figure 7-21. 

zlj + + ja'E r~ + jaLE 

2 2 2  T E  + ~.LE T E  + ~.LE I emitter 

of coefficients Z,, and Z2, are shown in 

As we see from Figure 7-21(a), the addition of the lead imped- 
ance to the basic hybrid-n model at low frequencies results in a sig- 
nificant increase in the input impedance due to the large base 
resistance. At high frequencies the effect of base and emitter induc- 
tances become noticeable in terms of a sharp rise in the impedance. 

For the output impedance the situation is quite different. Since 
the base resistance does not have any effect on Z22, the output 
impedance remains virtually unaffected by the addition of the leads 
and is dominated by the resistance ro up to very high frequencies. 
At that point the inductive effect of the leads become dominant. 

From the known 2-parameter representation of the transistor 
we can easily compute the S-parameters using the conversion 
described in Chapter 4. The resulting input reflection coefficient, 
S l l  , and gain, S Z 1  , of the transistor are shown in Figure 7-22 as part 
of the Smith Chart and a polar plot, respectively. 

As we notice in Figure 7-22(b), even though the emitter resis- 
tance and inductance seem to be negligible compared to the values of 
the other components in the model, their addition results in a signifi- 
cant drop in gain over the entire frequency range. This shows once 
again the influence of parasitic elements in RF circuits. 
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Transistor with leads I 
on all three ports \ I I 

I 

Transistor die with 
base and collector 1: 
leads only 

Transistor die 
(hybrid-n model) ' . 

Frequency, Hz 

(a) lnput impedance of the transistor 

\ Transistor with leads 
on all three ports 

Transistor die with 
base and collector 
leads only 

- - 
01 
1 o6 1 o7 1 o8 1 o9 loL0 loll 

Frequency, Hz 

(b) Output impedance of the transistor 

Figure 7-21 lnput and output impedances as a function of frequency. 



- - -  

Chapter 7 Active RF Component Modeling 

+I o Hybrid-K model w 

-1 0 270 

(a) Input reflection coefficient, Sll (b) Gain of the transistor, S2, 
Figure 7-22 Sll and S2, responses of a BJT for various model configurations. 

We have demonstrated an approach of computing the small- 
signal parameters of the transistor from known operating conditions 
of the underlying SPICE model. Even though a simple topology is 
investigated, this method can be directly applied to more compli- 
cated internal structures by breaking them down into a set of inter- 
connected two-port networks. 

7.2.3 Large-Signal FET Models 

FETs offer a number of advantages but also suffer some disadvantages over BJTs. 
In choosing the appropriate active device for a particular circuit, one should take into 
consideration the following FET-related benefits: 

FETs exhibit a better temperature behavior. 
The noise performance of a FET is, in general, superior. 
The input impedance of FETs is normally very high, making them ideal for 
preamplification stages. 
The drain current of a FET shows a quadratic (and thus a more linear) functional 
behavior compared with the exponential collector current curve of a BJT. 
The upper frequency limit exceeds, often by a substantial margin, that of a BJT. 
The power consumption of a FET is smaller. 

In terms of the disadvantages one often hears: 

FETs generally possess smaller gains. 
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Because of the high input impedance, matching networks are more difficult to 
construct. 
The power handling capabilities tend to be inferior compared with BJTs. 

The preceding list is debatable, since new device concepts and fabrication improve- 
ments continuously affect various transistor performance aspects. 

For our FET modeling purposes we will focus on the noninsulated gate FET. To 
this group we count the MESFET, often identified as GaAs FET (pronounced "gasfet"), 
and the HEMT. Both types are discussed in Chapter 6. In Figure 7-23 the basic n-chan- 
nel, depletion mode MESFET model (with negative threshold voltage) is shown along 
with the transfer and output characteristics. 

(a) FET symbol (b) Transfer characteristic 

(c) MESFET model (d) Output characteristic 
Figure 7-23 Static mchannel MESFET model. 

The key equations for the drain current in forward, or normal, mode of operation 
follow from the analysis developed in Section 6.4. There we obtained the drain current 
for both the linear and saturation regions. These current expressions constitute the start- 
ing point of deriving the model for the FET. 

Saturation region ( VDs 2 VGs - V,, > 0)  
The saturation drain current given by (6.94) is repeated here for convenience 
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If we substitute in (7.32) the combination of threshold voltage VTo and pinch-off volt- 
age Vp (in other words, Vd = VTO + VP) an alternate form is obtained: 

Making a binomial expansion of the square bracketed expression up to the second term 
allows us to write (7.33) as 

The constant factors in front of the square term in (7.34) are combined to the conduc- 
tion parameter p, 

where the definitions for the conductance Go = oZd/L = pnNDqZd/L and the 
pinch-off voltage Vp = (q~Dd2) / (2&)  from Section 6.4 have been used. If the chan- 
nel modulation effect is included, we arrive at 

ID = I ~ G S  - v d 2 (  1 + Avos) (7.36) 

Here the parameter h = 0.01 . . . 0.1 V-' models the slight increase in drain current for 
increasing drain-source voltage in the saturation region, see Figure 7-23(d). 

Linear region (0 < V,, < VGS - VTO ) 
Identical steps, as outlined for the saturation region, can be invoked to manipulate 

the drain current expression (6.91) to yield 

where again the channel modulation is considered to achieve a smooth transition from 
the linear into the saturation region. For instance, if VDs = VGs - VTo (that is, the 
transition from linear to saturation region) both drain currents are identical. 

The FET can also be operated in reverse or inverted mode if V,, < 0 .  For com- 
pleteness, the two drain current relations are given without further comments. 

Reverse saturation region (-V,, 2 VGD - VTo > 0 )  
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Revkrse linear region (0 < -VDs c VGD - V T O )  

Under reverse operation, the gate-drain diode (GD) is negatively biased. 
Making the transition from the static to the dynamic FET model requires only the 

addition of gate-drain and gate-source capacitances, as illustrated in Figure 7-24. Also 
shown in this model are source and drain resistors associated with source-gate and 
drain-gate channel resistances. A gate resistor is typically not included because the gate 
current, although substantially higher than for a MOSFET, is still negligible. 

CGS 

Figure 7-24 Dynamic FET model. 

A summary of the most relevant SPICE modeling parameters for a MESFET is 
presented in Table 7-4. 

Table 7-4 SPICE modeling parameters for a MESFET 

Ih 1 LAMBDA I Channel-length modulation coefficient I 

Symbol 

vm 

l a  1 BETA 1 Conduction parameter 
- 1 

I CGD 1 CGD I Zero-bias gate-to-drain capacitance I 

SPICE 

VTO 

I CGS 1 CGS I Zem-bias gate-to-source capacitance I 

Description 

Threshold voltage 

I r~ I RD I Drain resistance I 
I rs I RS I Source resistance I 
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7.2.4 Small-Signal FET Models 

A small-signal FET circuit can directly be derived from the large-signal FET 
model (Figure 7-24). In this model we simply replace the gate-drain and the gate- 
source diodes by their small-signal representations derived in Section 7.1. In addition, 
the voltage-controlled current source is modeled via a transconductance g, and a shunt 
conductance go = l / r d s .  The model can be tied in with a physical device correspon- 
dence, as Figure 7-25 shows. 

(a) Idealized MESFET device structure 

s - S 
(b) Circuit model 

Figure 7-25 Small-signal MESFET model. 

This model can be described by a two-port Y-parameter network in the form 

ig = Y l l V g s  + Y l ~ ~ d s  (7.40a) 

id = Y21Vgs + Y22Vds (7 AOb) 
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Under realistic conditions, the input conductance of y l l  and the feedback conduc- 
tance of y12 are very small and can thus be neglected. This is consistent with the fact 
that the gate current is too small to be of practical consequence. However, for high-fre- 
quency operations the capacticances are typically included, resulting in the circuit 
model shown in Figure 7-26. 

Figure 7-26 High-frequency FET model. 

For DC and low-frequency operation, the model in Figure 7-26 simplifies to the 
condition where the input is completely decoupled from the output. Transconductance 
gm and output conductance go can be readily computed for the forward saturation 
region from the drain current equation (7.36): 

Q Q with the operating point, or Q-point, denoted by VDs and VGS . 
The gate-source and gate-drain capacitances play a crucial role in determining the 

frequency performance. For the transition frequency f we again have to consider the 
short-circuit current gain for the situation where the magnitude of the input current IG 
is equal to the magnitude of the output current I D ,  or specifically 

IIGI = w ~ ( C g s +  cgd)IV~sI = 11~1 = g,lV~sI (7.43) 

which gives us 

For low-frequency FET applications, it is primarily the charging time defined by these 
capacitances that severely limits the FET frequency response. This is in contrast to the 
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channel transition time, as defined in Section 6.4.3, which for high-frequency applica- 
tions limits the FET's operation as the following example shows. 

C & M W  
Example 7-5: Approximate determination of cut-off fre- 

quency of a GaAs MESFET 

A GaAs MESFET with a gold gate is fabricated to be 1.0 pm in 
length and 200 pm in width, and d = 0.5 pm in depth. The fol- 
lowing electric characteristics are known: E, = 13.1 , 
ND = 1016 and pn = 8,500 cm2/v-s . Under suitably cho- 
sen approximations, we would like to find the cut-off frequency at 
room temperature. 

Solution: To apply (7.44), it is necessary to find an approximate 
expression for the transconductance and capacitances. The transcon- 
ductance can be found by knowing that the drain saturation current 
(7.33) is maximum for VGS = 0 ,  which gives 

= Go( 1 - dmP) 
v,, = 0 

where the built-in voltage Vd for the Schottky contact is found from 
(6.39) to be 

v, = (V,-x)-V, 
with V c =  V,ln(Nc/ND) = O . l V ,  V M = 5 . 1 V ,  and 
x = 4.07 V . Substituting these values yields Vd = 0.93 V.  The 
pinch-off voltage and the conductance are, respectively, 

Thus, g, .= 9.1 mS . For the capacitance we can approximately com- 
pute the surface area of the channel times the dielectric constant 
divided by the channel thickness: 
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From these values we can finally estimate f to be 

gm f~ = = 31.5 GHz 
2 w g ,  + C,,) 

In contrast to an approximate channel transit time of 15 GHz 
discussed in Section 6.4.3, we now have the situation that the RC 
time constant is smallel: In other words, the channel transition time 
becomes the limiting factor in the high-speed performance of this 
MESFET 

An often used approximate formula for (7.44) can be derived if we set gm = Go. 
The explicit result is 

This expression applied to the above example would have yielded 29.3 GHz, a value 
very close to the computed frequency of 3 1.5 GHz. 

7.3 Measurement of Active Devices 

7.3.1 DC Characterization of Bipolar Transistor 

We commence our analysis with the Ebers-Moll equations (7.10) and (7.1 I), re- 
expressed as collector and base currents: 

The unknown coefficients to be determined through measurements are I s ,  P R  , and P F  . 
In addition, forward and reverse Early voltages VAN and VBN become important when 
the BJT is operated for large V,,. To separate forward and reverse current gain mea- 
surements, we resort to two measurement protocols, shown in Figure 7-27. 
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(a) Forward measurements (b) Reverse measurements 
Figure 7-27 Forward and reverse measurements to determine Ebers-Moll BJT 

model parameters. 

Under the forward measurement condition, the base-collector is short circuited 
(VBC = 0), simplifying (7.46) to 

Monitoring the base and collector currents as a function of VBE results in the graph 
shown in Figure 7-28. 

W S  f ~ d  I,,'. 
I 'v' 

Figure 7-28 I, and I, versus V,, 

Both currents are logarithmically plotted and shown for sufficiently large V,, 
values, where the exponential terms dominates over the factor 1. A linear slope of 
1 / VT for both currents is obtained, since 
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VBE lnl, = lnl, + - 
v T 

From these two curves we can first extrapolate the collector current to get lnl, and 
thus Is. Extrapolating the base current next yields a value for lnl, - In PF, from which 
we can determine p, . From Figure 7-28 it is apparent that the current gain is constant 
only over a very narrow collector-emitter voltage domain. For low and high current 
injections significant deviations occur. The Early effect is expressed as a linear gradient 
of the collector current: 

This allows us to find VAN by projecting the tangent, applied to the collector current in 
the saturation region, to the intercept point with the VcE -axis in the second quadrant. 
The intercept point is the same for various base currents, as shown in Figure 7-12. The 
determination of the reverse mode parameters P R  , VBN is carried out by interchanging 
the collector with the emitter terminal [see Figure 7-27(b)], and then following the 
identical procedure as done in the forward direction. 

7.3.2 Measurements of AC Parameters of Bipolar Transistors 

The determination of the AC parameters is more of a challenge depending on the 
model involved and the details required. To extract analytically the large-signal Ebers- 
Moll or Gurnrnel-Poon circuit elements is an actively pursued research endeavor. For 
our purposes we concentrate on the small-signal, low-frequency circuit model shown in 
Figure 7-29. 

Figure 7-29 Small-signal, low-frequency h-parameter representation. 

This model is related to the hybrid-n: model presented in Figure 7-14, but without 
the output feedback (h12  = 0 )  and ohmic contributions rB = rE = rc = 0 .  For a Q- 
point in the active forward region, and consistent with (7.15)-(7.20), we can derive the 
following parameters: 
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Transconductance 

Input capacitance 

Input resistance 

Output conductance 

where it is understood that the collector current in the presence of the Early effect is 
given by Ic = g,I,(l + VcE/VAN) .  Furthermore, since we decided to operate in the 
forward active mode, C, denotes the diffusion capacitance, with the forward transit 
time Zbe of the base-emitter diode. 

The parameter extraction for this simplified hybrid- n model begins with the pro- 
Q Q cess of setting the desired Q-point, resulting in known Ic , I ,  , and V A N .  Thus, a mea- 

surement protocol would sequence through the following steps: 

Q Transconductance g, = Ic /VT for a given junction temperature 
Q Q D C  current gain Po = Ic / IB  

Input resistance r,  = Po/g, 

Output resistance ro = v I N / I f  

Input impedance Z, = ( l / r ,  + jwc,)-l recorded at a particular angular fre- 
quency and then solved for the capacitance C, 

Instead of recording the input impedance and indirectly determining C,, we can more 
elegantly find the transition frequency and thus C, . This is accomplished by noting that 
the AC current gain at the transition frequency f is unity: 
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Knowing that Po >> 1 leads to f = Po/(2n:C,r,), from which it follows that 

This approach can be implemented quite easily with a network analyzer. Sweeping the 
frequency until the base current is equal to the collector current would allow us to enforce 
(7.5 1). The resulting transition frequency can then be substituted into (7.52) to find C, . 

4 Example 7-6: Small-signal hybrid-n: parameter extraction 
without Miller effect 

An npn-transistor is operated under DC bias of I$ = 6 mA, 
Q ZB = 40 PA, and the Early voltage is recorded to be 

VAN = 30 V . Through a network analyzer measurement the transi- 
tion frequency is determined to be f = 37 GHz at room tempera- 
ture. It is required to determine the hybrid-n: parameters: Po, r , ,  
C,, ro,and g,. 

Solution: Neglecting feedback from the output to the input, we 
can use the preceding equations directly and find 

The forward DC current gain Po of the transistor can be found sim- 
ply as a ratio of the collector current to the base current: 

From the known Po and transconductance g, we find the input 
resistance as r, = Po/g, = 647 R .  The output resistance is a 
ratio of the forward Early voltage to the collector current 
ro = v,,/I$ = 5 k R .  Finally, the capacitance is found from 
(7.52): 
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The small-signal parameter determination is almost a cook- 
book design process. Howevel; the constant forward current gain 
may not always reject a realistic transistor behavior. 

While Example 7-6 is applicable for low- and medium-range frequencies, the sit- 
uation becomes more complicated for values approaching 1 GHz and beyond. Here we 
cannot neglect the Miller effect, and our attempt must be directed toward finding a 
strategy to obtain C,,. As discussed in Chapter 4, electric measurements at high fre- 
quencies cannot rely on impedance, admittance, or h-parameter determinations because 
of the difficulties associated with enforcing short- and open-circuit conditions. At these 
frequencies we must resort to S-parameter measurements. How the S-parameters can be 
utilized to find the feedback capacitor C,, is explained in the following example. 

. v & M w -  
Example 7-7: Small signal hybrid- n parameter extraction 

with Miller effect included 

We re-examine the previous example, but this time use the network 
analyzer to record the following S-parameters based on the charac- 
teristic impedance of 50 R at 500 MHz: 

Our goal is to find the feedback capacitance C,,. In addition, we 
would like to observe how the input and output impedances are 
affected if C,, is excluded. 

Solution: Since the DC measurements do not change, we will 
not repeat them. For given S-parameters we can easily compute the 
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input impedance of the transistor using matrix transformations 
described in Chapter 4: 

Setting the input impedance equal to the circuit model yields 

Rin + jXin = 1 
l / rn  + jo(Cn + C,,) 

where CM is the Miller-transformed capacitance. Rearranging this 
equation leads to the form 

where the real part of the input impedance is used and o = 2nf is 
the angular frequency at which the S-parameters are recorded. Explic- 
itly, we find C,, = 1.42 pF - 1 .OO pF = 0.42 pF . To compute the 
actual feedback capacitance Cp , we can use (7.25), where the ratio of 
collector-emitter to base-emitter voltage is equal to the h12 parame- 
ter. This yields finally Cp = CM1 /( 1 + I h121 ) = 7.22 fF . 

To compute the frequency behavior of the input and output 
impedances we can first calculate the h-parameters of the transistor 
as given by (7.24) and then convert them into Z-parameter represen- 
tation. Both input and output impedances are plotted with and with- 
out the feedback (Cw = 0 ) in Figure 7-30. 

Frequency, Hz Frequency, Hz 

Figure 7-30 Input and output impedances with and without feedback. 
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This example underscores the importance to include the feed- 
back effect once the frequency begins to exceeds 100 MHz. 

Although the preceding examples are simple extraction cases, they convey an appre- 
ciation of how difficult a realistic situation can become if the entire SPICE parameter set 
is attempted to be extracted. For the nonlinear large signal circuit models, this is a 
research task with no clear solution methodology. Many manufacturers have therefore 
resorted to S-parameter characterization alone. This approach greatly simplifies the BJT 
characterization by utilizing an appropriate test fixture or jig and relying on a network 
analyzer to measure the S-parameters at certain bias conditions and operation frequencies. 

7.3.3 Measurements of Field Effect Transistor Parameters 

Because the GaAs MESFET has gained such prominence in many RF circuits, it 
is important to take a closer look at its parameter extraction. Since the circuit model is 
the same for the HEMT, we can treat both cases in parallel. The fundamental equation 
for the drain current in the linear region is derived in Chapter 6 and is repeated here for 
convenience: 

The only difference between MESFET and HEMT lies in the definition of the threshold 
voltage VTO . Specifically, with the Schottky barrier voltage Vd , pinch-off voltage Vp , 
and energy difference AW, between the conduction bands of the heterostructure in a 
HEMT, we obtain the following two expressions: 

VTo = Vd - Vp (MESFET) (7.54a) 

VTo = Vd-AW,/q-Vp (HEMT) (7S4b) 

For the saturation region, when VDs = VGs - VTo, (7.53) becomes the quadratic 
equation 

ID = ID,, = P(VGS- VT012 (7.55) 

Using (7.55) we can easily extract values for conduction parameter P and threshold 
voltage VTO by plotting the square root of the drain current versus the applied gate- 
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source voltage VGS . A measurement arrangement of a MESFET for obtaining VTO and 
p is shown in Figure 7-3 1. 

(a) Measurement arrangement (b) I, versus VGs transfer characteristic 

Figure 7-31 Generic measurement arrangement and transfer characteristics in 
saturation region. 

The threshold voltage is determined indirectly by setting two different gate-source 
voltages VGsl and VGS2 while maintaining a constant drain-source voltage 
V,, = const 2 V,, - VTo so that the transistor is operated in the saturation region. 
The result of these two measurements gives 

Here we assume that the channel length modulation effect 
measured current is close to the saturation drain current as 
ratio of (7.56 a) to (7.56 b) and solving for VTo, we obtain 

is negligible; therefore, the 
given by (7.55). Taking the 

Next we substitute (7.57) into (7.56a) and solve this equation for P . The extraction pro- 
cess can further be simplified if we choose ID2 = 41D1 SO that (7.57) becomes 
VTO = 2VGS1 - VGS2. Upon substituting this expression in (7.56a), we see that 
P = zDI/(VGS2 - VG,'j'1)2. 

7.4 Scattering Parameter Device Characterization 
The S-parameter measurement approach greatly simplifies the device-under-test 

(DUT) characterization by utilizing an appropriate test fixture or jig and relying on a 
vector voltmeter or network analyzer to record the frequency and bias dependent four 
S-parameters. 
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Although nowdays a vector voltmeter is seldom used for recording the S-parame- 
ters, it nonetheless allows us to gain valuable insight into the basic measurement proce- 
dure that is also at the heart of a network analyzer. We will therefore investigate this 
approach first. It is generically depicted in Figure 7-32 and requires an RF signal gener- 
ator, two dual-directional couplers, transistor biasing networks, the actual transistor fix- 
ture, and calibration kit to create short-circuit and through-line conditions. 

r Mag. Phase 

itch 

................ 
Source 

Figure 7-32 

Through 
1 -  - - 7 I 

................ 

Recording of Sparameters with a vector voltmeter. 

The function of a dual-directional coupler in Figure 7-32 is to isolate the inci- 
dent from the reflected power wave. How this is accomplished can be explained with 
reference to Figure 7-33, where a cross-sectional view of a coaxial coupler is shown. 
For incident power coming from the left through the main arm, two slots, spaced h / 4  
apart, couple the energy into an auxiliary path labeled 4. The incident wave does not 
produce any coupling into direction 3, since there is a 180" phase delay between sig- 
nals coming from slot B and slot A, essentially canceling the entire wave. However, a 
reflected wave from the DUT will enter the coupler at port 2 coming from the right and 
subsequently couple out the wave energy through the auxiliary path labeled 3, cancel- 
ing any wave leaving port 4. Therefore, port 3 provides an output for the reflected 
power, whereas port 4 records the incident power. The two figures of merit for a direc- 
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tional coupler are the coupling factor cf and its directivity factor d j  The factor cf is 
defined as 

and denotes the logarithmic ratio of the power in the main port, either 1 or 2 (i = 1,2), 
over the power in the auxiliary port, either 3 or 4 ( n  = 3,4). The directivity df 

specifies the ratio of the powers in the auxiliary arm for the condition of equal forward 
and reverse power levels applied to the main ports 1 and 2. For high signal discrimina- 
tion we expect to see a large directivity value. 

Port 1 

Figure 7-33 Cross-sectional view of directional coupler and signal path 
adjustment. 

The actual signal propagation paths are observed in Figure 7-32. Here the vector 
voltmeter records with channels A and B the incident and reflected powers from the 
input port of the active device. Taking the ratio of the voltage magnitudes yields lSlll  . 
For recording the phase angle it is important to obtain an appropriate phase reference. 
For this reason, the DUT is removed and a short circuit is inserted for phase reference. 
To ensure equal path length (i.e., from the signal source to channel A, and from the 
short to channel B), a line stretcher is used to perform the necessary adjustment to 
achieve a zero phase difference. 

The same test setup can also be utilized to find the forward gain S 2 1 .  Switching 
channel B to the directional coupler situated on the output side of the DUT yields the 
ratio between the output and input voltages or . The phase adjustment now calls 



396 Chapter 7 Active RF Component Modeling 

for replacing the DUT with a through section element and again equalizing the signal 
paths with the line stretcher. 

The remaining two S-parameters, S22 and S I 2 ,  are measured by reversing the DUT 
jig and exchanging the biasing networks. As Figure 7-32 implies, the S-parameter mea- 
surements depend on the setting of an appropriate bias or Q-point and the signal source 
frequency. As a result, a wide range of parametric curves could be generated. 

Instead of employing a vector voltmeter, a more common approach involves the 
use of the network analyzer. This instrument is capable of processing magnitude and 
phase of a single or dual-port RF network. A simplified block diagram highlighting the 
functionality is shown in Figure 7-34. 

Figure 7-34 Block diagram of a network analyzer with Sparameter test set. 

The advantage of a network analyzer lies in the fact that all the separate functional 
units associated with the vector voltmeter based measurement procedures are incorpo- 
rated into one single instrument for an entirely automated testing of the RF or MW 
device. The operation is such that a sweeping RF generator applies the RF signal to the 
directional couplers. In forward direction, the reference channel R records the incident 
power wave and channel A provides the S , ,  parameter via directional coupler 1 (DC1). 
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At the same time, parameter SZ1 is recorded via directional coupler 2 (DC2). Switching 
to reverse direction, the reference channel R records the incident power launched into 
port 2 of the device under test, while channel B records S22 and channel A then yields 
SIz . This arrangement allows electronic switching between calibration and testing con- 
ditions, permitting the recording of the entire S-parameter set without changing the test 
jig. An interfrequency mixing and amplification stage feeds the signal into an analog-to- 
digital conversion unit and subsequently into a microcomputer and display system. The 
computer provides the user with the computed S-parameters (in magnitude and phase) 
as well as such postprocessed parameters as group delay, return and insertion losses, 
voltage standing wave ratio, input and output impedances, and many additional features. 

The computer system allows for the software compensation of many imperfec- 
tions introduced by the test arrangement. As a case in point, we recall the recording of 
the S-parameters in Section 4.4.7 via the through-reflect-line (TRL) technique. This is 
only one of a number of calibration schemes proposed to compensate for the various 
error sources introduced by the measurement process. 

7.5 Summary 
Electric circuit models for active devices form the backbone of most CAD soft- 

ware packages. These circuits range from simple linear models to very sophisticated 
large-signal models. Specifically, a large-scale BJT SPICE model that takes into 
account temperature influences can involve over 40 adjustable parameters whose deter- 
mination is a daunting task. 

In this chapter we reviewed the basic large-scale diode model that is used for 
modeling both the conventional pn-junction diode and the Schottky diode. Junction and 
diffusion capacitances and the temperature-dependent saturation current are the key 
ingredients constituting this model. By identifying a bias or Q-point and considering 
only small-signal responses, we arrive at the linear diode model with the differential 
conductance and diffusion capacitance 

The diode model is utilized as the basic building block to develop the static large- 
scale BJT model as originally proposed by Ebers and Moll. Issues such as forward 
active and reverse active modes are explained by simplifying the basic Ebers-Moll equa- 
tions. Starting from the injection model, we converted the Ebers-Moll BJT equations to 
the transport representation and subsequently to the large-scale BJT model in forward 
active mode. Additional refinements and modifications of the Ebers-Moll model have 
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resulted in the more sophisticated Gummel-Poon model, whose large-signal normal 
active mode circuit is shown in Figure 7-13. For the small-signal representation the 
hybrid-x is a popular linearization of the large-scale Ebers-Moll representation. The 
hybrid-n: parameters are computed for a given collector current operating point: 

For high-frequency operations the capacitive coupling between input and output ports 
significantly influence the transistor operation. By taking into account the so-called 
Miller effect, the collector-base capacitance is transformed into input and output capac- 
itances, thus permitting us again to separate the two ports. Since lead inductances and 
resistances also influence the high-frequency performance, we go through a detailed 
design project to investigate, among other topics, how the input and output impedances 
are affected as the frequency increases. 

Attention is next directed toward the FET circuit models, specifically the high-fre- 
quency relevant types of MESFET and HEMT. Saturation, linear, reverse saturation, 
and reverse linear regions are defined in close relation with Chapter 6. Specifically, the 
drain currents in the saturation region 

and in the linear region 

form the basis of the static and dynamic circuit models. Of particular interest are the 
small-signal low- and high-frequency FET models. The cut-off frequency allows us to 
quantify the frequency limitations of the device. For low to medium frequencies it is the 
charging time of the capacitors that determines the frequency performance, whereas for 
very high speed operations it is the channel transit time that becomes the limiting factor. 

Finally, we discuss some of the electric parameters of the active devices. For the 
DC characterization of the BJT we can primarily rely on the collector and base currents 
as a function of base-emitter voltage. From these curves, the saturation current, current 
gain, and Early voltage are obtained. Measurement of the AC parameters is more of a 
challenge, and only the linear hybrid-n model allows a cook-book approach as outlined 
by equations (7.50). The FET model characterization follows a similar path as outlined 
for the DC BJT model and involves the recording of the drain-current versus gate- 
source voltage. 

In many cases, both for BJT and FET, the S-parameter representation is the most 
common way to characterize an active device for a given bias and operating frequency. 
For this purpose either a vector voltmeter or network analyzer is used to record the 
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inputloutput power waves of the device under test. Measurements with the vector volt- 
meter require directional couplers, signal sources, switches, and a forward and reverse 
measurement protocol. This is all automated by connecting an S-parameter test set to 
the three channels of a network analyzer. The recording of S,,  , S,, , S,, , and S12 for 
particular bias conditions and operating frequencies generally provides sufficient infor- 
mation for the circuit designer to characterize the device. 
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Problems 

7.1 A silicon pn-'unction diode has the following parameters at T = 300°K, 
Itl I, = 5x10- A ,  n = 1.2, zT = 100 ps , and R, = 10 Q . Assuming that 

the diode is operated under such biasing conditions that the applied junction 
voltage is maintained at 0.7 V, find the differential resistance and the diode 
capacitance for temperatures ranging from 200 to 450°K. 

The reverse saturation current of a pn-diode is I, = 0.01 pA at Ti = 25OC and 
has an emission coefficient of 1.6. For a junction temperature of 120°C find 
the reverse saturation current and the diode current I, at an applied diode 
voltage of V, = 0.8 V. 

The task for a process engineer is to obtain the model parameters for a 
Schottky diode. From measurements it is determined that the saturation cur- 
rent is equal to I, = 2 PA. To obtain the remaining parameters ( n  and z T )  
the engineer decides to use the differential capacitance of the diode. It is 
assumed that the electric measurements at room temperature indicate a dif- 
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fusion capacitance of Cd = 0.329 pF at an applied junction voltage of 
V, = 0.5 V , and Cd = 0.371 nF at V, = 0.7 V . Find the emission coef- 
ficient n and the transit time 2 , .  

A GaAs Schottky diode with gold contact is operated at 80 rnA. The follow- 
ing parameters are given at 300°K: zT = 40 ps, R, = 3 a, n = 1.2, 
I, = 10-l4 A. (a) Plot the magnitude of the small signal impedance behavior 
in the frequency range from 1 MHz to 5 GHz. (b) Repeat the calculations for 
a temperature of 400°K. 

For the PIN diode configuration shown below, compute the S-parameters of 
the circuit when the control voltage equals either +1 V or -1 V and the fre- 
quency ranges from 1 MHz to 10 GHz. The diode model parameters are 
I ,  = 5x10-l5 A ,  n = 1.2, rT = 100 ps, rn = 0.5, CJo = 10 pF, 
Vdiff = 0.7 V ,  and Rs = 10 R . The ambient operating temperature is 
T = 300°K, and we set infinite values for the blocking capacitors and RFCs. 

Determine the change in the forward-bias voltage of an ideal Si pn-junction 
diode with change in temperature from -20°C to 80°C. Assume that current 
is kept constant and the initial bias voltage was 0.7 V at T = 300°K. 

Find the maximum operation frequency of the ideal pn-junction diode 
whose parameters are given in Example 7-1. The maximum frequency can 
be estimated based on the RC constant of the diode. 

Consider three ideal pn-junction diodes whose parameters are identical 
except for the bandgap energy. Find the ratio of the forward-biased currents 
for these diodes if the applied voltage is the same in each case and the diodes 
are made of Ge, Si, and GaAs, respectively. 



Problems 

7.9 

7.10 

7.11 

7.12 

7.13 

The terminal base current is constrained to be zero in an npn-BJT (open- 
circuit condition). Assuming that the device is operated at room temperature 
and has aF = 0.99 and aR = 0.05, use the large-signal Ebers-Moll model 
to find the base-emitter voltage as a function of the applied collector-emitter 
voltage V C E .  

Express the transconductance g, of a bipolar junction transistor in terms of 
its collector current. Compare this expression with the expression for a dif- 
ferential resistance of a pn-diode. 

Show that for a small-signal transistor model as depicted in Figure 7-16, the 
input Miller capacitance can be written as C M ,  = (1 + gmr,,)Cp. In addi- 
tion, obtain an upper frequency limit for which this formula is still applicable. 

For a hybrid-n BJT model plot the short-circuit current gain hf, in the fre- 
quency range from 10 MHz to 10 GHz. Assume the following parameters 
are given at a collector bias point of 20 mA and T =  300°K: &, = 140, 
C, = 0.1 pF, and C, = 5 pF. 

In Example 7-4 we discussed the relatively complicated case of a microwave 
transistor analysis where we have taken into account effects associated with 
parasitic elements such as lead inductances and resistances. In most practical 
applications, the situation is even more complicated due to the presence of 
internal matching and stability networks incorporated into the transistor 
housing by the manufacturer. 

For the internal circuit shown, compute the S-parameters in the fre- 
quency range of 100 MHz to 20 GHz. 
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The following component values are given: R 1  = 25 $2, R2 = 20 R ,  
C1 = C2 = 0.2 pF, CBE = CCE = 0.1 pF, and CBC = 10 fF. Assume 
that the biasing conditions and the values for all inductances and compo- 
nents in the hybrid-x: model are the same as in Example 7-4. 

7.14 An easy way to determine the capacitance Cp in the hybrid-x BJT model is 
to make a capacitance measurement between base and collector, as follows. 

If the fr equ .ency is sufficiently low such that 1 /(oCp) >> r, , we can directly 
relate the externally recorded capacitance to the feedback capacitance Cp. 
Show that this is true by proving that the voltage v, is zero and that r,, C, , 
and g, do not influence the measurement. If a precision instrument mea- 
sures an external capacitance C,,, = 0.6 pF at l MHz, can rB,  which typi- 
cally ranges between 25 and 200 SZ , be neglected? 

7.15 For the hybrid-x: model it is required to find the parameters r,, rB, and g, 
from low-frequency measurements (which allow us to neglect Cp and C,). 
The following measurement arrangement is given: 

At the operating point and at room temperature (25°C) we record a DC base 
current of I, = 100 FA at a base emitter voltage of VBE = 11.8 V , and a 
short-circuit collector current of Zc = 25 rnA . 



Problems 

7.16 

7.17 

7.18 

7.19 

A small-signal BJT model has the following parameters: g, = 40 mS, 
fT = 600 MHz, h21 = 100, r,, = 2.5 kR, rbb, = 125 Q ,  and 
Cblc = 2 pF. A load RL = 50 SZ is attached as shown. 

Under the assumption that V ,  = -gmVbt,RL, find the Miller capacitance 
CM such that the circuit can be approximated as 

Neglecting all parasitic elements, including base, emitter, and collector 
resistances in the transistor described in Example 7-4, find the maximum 
frequency f o,  the beta cut-off frequency f p ,  and the transition frequency 

f T .  

Obtain the h-parameter representation for a BJT in common-base configura- 
tion, neglecting base, emitter, and collector resistances ( r B  , r E ,  and r c ) .  

Derive the h-parameter representation for the following high-frequency FET 
model: 

/1 
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7.20 Using the equivalent circuit shown in Problem 7.19, obtain the h-parameter 
representation for a FET in common-gate configuration. 

7.21 For the FET circuit model in Problem 7.19, find the equivalent input and 
output impedances by replacing C with its equivalent Miller capacitances. 

gd 
Under what condition is this approximation valid? 

7.22 For the simplified FET model shown, determine the capacitances C,, and 
Cgd as well as g, . 

s c s  
Show that for low frequency operation it is sufficient to record the drain- 
current and gate-source voltage under short-circuit output condition. Further, 
design a measurement protocol to predict C,, and Cgd . 

7.23 FET models are often given in terms of Y-parameters, as the following 
generic figure shows: 

Convert this model into a x -network and determine its coefficients A, B, C, 
and D. 

7.24 For the model parameters in Problem 7.16, plot the cut-off frequency f as 
a function of load resistance in the range 10 SZ I RL 1 200 Q . 



Matching and Biasing 
Networks 

A s pointed out in Chapter 2, to achieve maximum 
power transfer, we need to match the impedance of the load to that of the source. Usu- 
ally this is accomplished by incorporating additional passive networks connected in- 
between source and load. These networks are generically referred to as matching net- 
works. However, their functionality is not simply limited to matching source and load 
impedances for optimal power flow. In fact, for many practical circuits matching net- 
works are not only designed to meet the requirement of minimum power loss but are 
also based on additional constraints, such as minimizing the noise influence, maximiz- 
ing power handling capabilities, and linearizing the frequency response. In a more 
general context, the purpose of a matching network can be defined as a transformation 
to convert a given impedance value to another, more suitable value. 

In this chapter we restrict our coverage to the techniques of performing imped- 
ance transformation using passive matching networks. The emphasis is to ensure mini- 
mum reflections between source and load. All remaining considerations, such as noise 
figure and linearity, are left for discussions in Chapter 9. 

We commence with a study of networks based on discrete components. These net- 
works are easy to analyze and can be used up to frequencies in the low GHz range. 
Next, we continue with the analysis and design of matching networks using distributed 
elements, such as strip lines and stub sections. These networks are more suitable for 
operational frequencies exceeding 1 GHz, or for cases where vertical circuit dimen- 
sions are of importance, as required in FW integrated circuit designs. 

To simplify our treatment and to gain clarity in the design methodology, the Smith 
Chart will be utilized extensively throughout as a primary design tool. 
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8.1 Impedance Matching Using Discrete Components 

8.1.1 Two-Component Matching Networks 

In a generic sense our engineering efforts primarily strive for two main goals: 
first, to meet system specifications, and second, to find the most inexpensive and reli- 
able way to accomplish this first task. The cheapest and most reliable matching net- 
works are usually those that contain the least number of components. 

The topic of this section is to analyze and design the simplest possible type of 
matching networks: so-called two-component networks, also known as L-sections 
due to their element arrangement. These networks use two reactive components to 
transform the load impedance (2,) to the desired input impedance ( Z , )  . In conjunc- 
tion with the load and source impedances, the components are alternatively connected 
in series and shunt configuration, as shown in Figure 8-1, which depicts eight possible 
arrangements of capacitors and inductors. 

Figure 8-1 Eight possible configurations of the discrete two-component matching 
networks. 

In designing a matching network we have two broad approaches at our disposal: 

1. To derive the values of the elements analytically 
2. To rely on the Smith Chart as a graphical design tool 

The first approach yields very precise results and is suitable for computer synthesis. Alter- 
natively, the second approach is more intuitive, easier to verify, and faster for an initial 
design, since it does not require complicated computations. The example below details 
the use of the analytical approach to design a particular L-section matching network. 
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c & M w  
Example 8-1: Analytical approach to the design of an L-sec- 

tion matching network 

The output impedance of a transmitter operating at a frequency of 
2 GHz is ZT = (150 + j 7 5 ) Q .  Design an L-section matching net- 
work, as shown in Figure 8-2, such that maximum power is deliv- 
ered to the antenna whose input impedance is Z A  = ( 7 5  + j 1 5 ) R .  

ZT z* 
Figure 8-2 Transmitter to antenna matching circuit design. 

............................ 4x7 

Solution: The condition of maximum power transfer from the 
source to the load requires the source impedance to be equal to the 
complex conjugate of the load impedance. In our case this implies that 
the output impedance Z M  of the matching network has to be equal to 
the complex conjugate of Z A  [i.e., ZM = 2: = (75  - j l 5 ) Q  1. 

The impedance Zw can be computed as a series connection of 
an inductor L and a parallel combination of C and ZT : 

r 

Transmitter 

- 

where Bc = oC is the susceptance of the capacitor and XL = OL 
is the reactance of the inductor. Expressing transmitter and antenna 
impedances in terms of their real and imaginary parts (i.e., 
ZT = RT + jXT and Z A  = RA + j X A  ), we can rewrite (8.1) as 

Separating real and imaginary parts in (8.2), a system of two equa- 
tions is found: 
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RT = RA(l - BcXT) + (XA + XL)BcRT (8.3a) 

XT = RTRABc - (1 - BcXT)(XA + XL) (8.3b) 

Solving (8.3a) for XL and substituting into (8.3b) results in a qua- 
dratic equation for Bc whose solution is 

Since RT > R the argument of the square root is positive and 4'  
greater than XT . Therefore, to ensure a positive Bc we must choose 
the "plus" sign in (8.4). Substituting (8.4) into (8.3a) yields XL as 

Inserting numerical values into (8.4) and (8.5), we find 

Bc = 9.2 mS + C = Bc/o = 0.73 pF 

X, = 76 .9Q+L = X,/o = 6.1nH 

This example shows the analytical approach of designing an L- 
section matching network by solving a quadratic equation for C and 
then a linear equation for L. The process is tedious but can be easily 
implemented on a mathematical spreadsheet. 

As we may anticipate from Example 8-1, the analytical approach of designing 
matching networks can become very complicated and computationally intensive even 
for simple L-sections. Instead of the preceding method, we can use the Smith Chart for 
rapid and relatively precise designs of the matching circuits. The appeal of this 
approach is that its complexity remains almost the same independent of the number of 
components in the network. Moreover, by observing the impedance transformation on 
the Smith Chart we obtain a "feel" of how the individual circuit elements contribute to 
achieving a particular matching condition. Any errors in component selection and value 
assignment are observed immediately and the design engineer can directly intervene. 
With the help of a personal computer, this process is carried out in real time. That is, the 
parameter choice (L or C) and its value assignment can be instantaneously displayed as 
part of the Smith Chart on the computer screen. 
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The effect of connecting a single reactive component (either capacitor or inductor) 
to a complex load is described in considerable detail in Section 3.4. Here we just point 
out the following: 

The addition of a reactance connected in series with a complex impedance results 
in motion along a constant-resistance circle in the combined Smith Chart 
A shunt connection produces motion along a constant-conductance circle. 

This is indicated in Figure 8-3 for the combined ZY Smith Chart. Concerning the direc- 
tion of the rotation, the general rule of thumb is that whenever an inductor is involved, 
we rotate in the direction that moves the impedance into the upper half of the Smith 
Chart. In contrast, a capacitance results in the movement toward the lower half. 

Figure 8-3 lmpedance effect of series and shunt connections of L and C to a 
complex load in the Smith Chart. 
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Having established the effect of connecting a single component to the load, we 
can now develop suitable two-component matching networks that perform the transfor- 
mation from any load impedance to any specified input impedance. In general, design- 
ing an L-type matching network, or for that matter any passive network, in the ZY 
Smith Chart consists of moving along either constant resistance or constant conduc- 
tance circles. 

In the following example we illustrate this graphical design technique as an alter- 
native to the analytical approach discussed in Example 8-1. Most modem CAD pro- 
grams allow us to conduct this graphical approach interactively on the computer screen. 
In fact, simulation packages such as MMICAD directly permit the placement of com- 
ponents with the corresponding impedance behavior displayed on the Smith Chart. 

W & M  w 
Example 8-2: Graphical approach to the design of the L-sec- 

tion matching network 

Design the L-type reactive matching network discussed in Example 
8-1 by using the Smith Chart as a graphical design tool. 

Solution: The first step is to compute normalized transmitter and 
antenna impedances. Since no characteristic impedance Zo is given, 
we arbitrarily select Zo = 75 R . Therefore, the normalized trans- 
mitter and antenna impedances are zT = Z T / Z o  = 2 + jl and 
zA = Z A / Z O  = 1 + j0.2, respectively. Since the first component 
connected to the transmitter is a shunt capacitor, the total impedance 
of this parallel combination is positioned somewhere on the circle of 
constant conductance that passes through the point zT in the com- 
bined Smith Chart (see Figure 8-4). 

Next, an inductor is added in series with the parallel combina- 
tion of transmitter zT and capacitor; the resulting impedance will 
move along the circle of constant resistance. For maximum power 
gain we require an output impedance of the matching network con- 
nected to the transmitter to be equal to the complex conjugate of the 
antenna impedance. This circle has to pass through 
zM = z i  = 1 - j0.2, as shown in Figure 8-4. 
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Figure 8-4 Design of the two-element matching network as part of the Z Y  Smith 
Chart. 

The intersection of two circles in the Smith Chart determines the 
normalized impedance formed by the shunt connection of transmitter 
and capacitor. Reading from the Smith Chart, we find that this imped- 
ance is approximately zTC = 1 - j  1.22 with the corresponding 
admittance of yTC = 0.4 + j0.49. Therefore, the normalized suscep- 
tance of the shunt capacitor is jbc = yTC - yT = j0.69 and the nor- 
malized reactance of the inductor is j x ,  = zA -zTC = j1.02. 
Finally, the actual values for the inductor and capacitor are 

L = ( x L Z 0 ) / m  = 6.09 nH 
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This example presents a simple and yet precise graphical 
approach to design L-section matching networks. The method can 
be readily extended to more complicated systems. 

The design procedure described in Example 8-2 can be applied to any L-section 
matching network shown in Figure 8-1. The generic solution procedure for optimal 
power transfer includes the following six steps: 

1. Find the normalized source and load impedances. 
2. In the Smith Chart plot circles of constant resistance and conductance that pass 

through the point denoting the source impedance. 
3. Plot circles of constant resistance and conductance that pass through the point of 

the complex conjugate of the load impedance. 
4. Identify the intersection points between the circles in steps 2 and 3. The number 

of intersection points determines the number of possible L-section matching 
networks. 

5. Find the values of the normalized reactances and susceptances of the inductors 
and capacitors by tracing a path along the circles from the source impedance to 
the intersection point and then to the complex conjugate of the load impedance. 

6. Determine the actual values of inductors and capacitors for a given frequency. 

In the preceding steps it is not necessary to move from the source to the complex 
conjugate load impedance. As a matter of fact, we can transform the load to the com- 
plex conjugate source impedance. The following example illustrates the first approach, 
whereas Section 8.1.2 discusses the second method. 

C & M W  
Example 8-3: Design of general two-component matching 

networks 

Using the Smith Chart, design all possible configurations of discrete 
two-element matching networks that match the source impedance 
Zs  = (50 + j25)R to the load ZL = (25 - j50)Q. Assume a char- 
acteristic impedance of Zo = 50 Q and an operating frequency of 
f = 2 GHz. 
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Solution: We follow the six steps listed previously. 
1. The normalized load and source impedances are: 

z ,  = Zs /Zo  = 1 + j0.5 or y, = 0.8 - j0.4 

zL = Z L / Z o  = 0.5 - j l  or yL = 3 + j0.8 

2. We plot circles of constant resistance and constant conductance that 
pass through the points of the normalized source impedance (dashed 
line circles in Figure 8-5), and 

Figure 8-5 D e s i g n  of a matching network using t h e  Smi th  Char t  

3. Complex conjugate of the load impedance (solid line circles in Figure 
8-5). 



- 
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4. These circles intersect in four points denoted as A, B, C, and D, with 
the normalized impedances and admittances being as follows: 

zA = 0.5 + j0.6, yA = 0.8 - j l  

z, = 0.5-j0.6, y, = 0.8+ j l  

z c =  1- j1.2,  y c =  3+ j0 .5  

z D =  l + j 1 . 2 ,  y D = 3 - j O . 5  

5. Since there are four intersection points, we expect four possible config- 
urations of L-section matching networks. Indeed, if we move along the 
zs + zA + zE path we see that from point zs to zA the impedance is 
transformed along the circle of constant conductance indicating shunt 
connection. Moreover, we move toward the upper half of the Smith 
Chart (see Figure 8-3), which indicates that the first component con- 
nected to the source should be a shunt inductor. From points zA to zE 
the impedance is transformed along the circle of constant resistance, 
with movement toward the upper half of the chart indicating series 
connection of the inductance. Therefore, the zS + zA + Z; path 
results in a "shunt L, series L" matching network, as shown in Figure 
8-l(f). If the zs + tB + z i  path is chosen, we obtain a "shunt C, 
series L" network [Figure 8-l(h)]. For zs + zc + zL the matching 
network is "series C, shunt L" [Figure 8-l(a)]. Finally, for the 
zs + zD + z i  path, a matching network is constructed by a "series L, 
shunt L combination, which is shown in Figure 8- 1 (e). 

6. We finally have to find the actual component values for the matching 
networks identified in the previous step. If we direct our attention again 
to the zs + zA + path, we see that from the source impedance to 
the point zA the normalized admittance of the circuit is changed by 

jbLZ = yA - yS = (0.8 - j 1 ) - (0.8 - j0.4) = - j0.6 

From here the value of the shunt inductor is: 

Transformation from point zA to z i  is done by adding an inductor 
connected in series to the impedance zA . Therefore, 

jx,, = z; - ZA = (0.5 + j l )  - (0.5 + j0.6) = j0.4 

and the value of this inductor is 
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The values of the components for the remaining three matching net- 
works are found in the same way. The results are shown in Figure 8-6. 

Figure 8-6 Matching networks for four different paths in the Smith Chart. 

The Smith Chart allows us immediate observation whether or 
not a particular impedance transformation is capable of achieving 
the desired matching. Moreovel; the total number of possible net- 
work connections can readily be seen. 

8.1.2 Forbidden Regions, Frequency Response, and Quality Factor 

Before continuing with the frequency analysis of L-type matching networks, let 
us first note that not every network topology depicted in Figure 8-1 can perform the 
required matching between arbitrary load and source impedances. For example, if the 
source is Zs = Z ,  = 50 Q and if we use a matching network shown in Figure 8-l(h), 
then the addition of the capacitor in parallel with the source produces motion in clock- 
wise direction away from the circle of constant resistance that passes through the ori- 
gin. This implies that all load impedances that fall into the shaded region in Figure 
8-7(a) cannot be matched to the 50 Q source by this particular network. 

Similar "forbidden regions" can be developed for all L-type matching network 
topologies depicted in Figure 8-1. Examples of such regions for several other networks 
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based on a 50 R source impedance are shown in Figure 8-7. Here the shaded areas 
denote values of the load impedance that cannot be matched to the 50 52 source. It is 
important to keep in mind that the forbidden regions in Figure 8-7 are applicable only 
when dealing with a ZS = Zo = 50 52 source impedance. The regions take on totally 
different shapes for other source impedance values. 

As explained in Example 8-3 and displayed in Figure 8-7, for any given load and 
input impedances there are at least two possible configurations of L-type networks that 
accomplish the required match. The question now is, what is the difference between 
these realizations and which network should ultimately be chosen? 

Besides the obvious reasons for selecting one network over another (for instance, 
availability of components with required values), there are key technical consider- 
ations, including DC biasing, stability, and frequency response. In the remainder of this 
section we concentrate primarily on the frequency response and quality factor of the L- 
type matching networks, whereas DC biasing issues are covered later in Section 8.3. 
Stability is deferred to Chapter 9. 

Since any L-type matching network consists of series and shunt combinations of 
capacitors and/or inductors, the frequency response of these networks can be classified 
as either low-pass, high-pass, or bandpass filters. To demonstrate such behavior, let us 
consider a matching network that transforms a complex load, consisting of resistance 
RL = 80 R connected in series with capacitor CL = 2.65 pF, into a 50 R input 
impedance. Let us further assume that the operational frequency for this circuit is 
f o  = 1 GHz. 

At 1 GHz the normalized load impedance is zL = 1.6 - j 1.2, and according to 
Figure 8-7 we can use either one of the matching networks shown in Figure 8-7(c) or 
Figure 8-7(d), following a similar design procedure as described in Example 8-2. How- 
ever, because the source impedance zs is real (z, = 50 R) it is easier to transform from 
the load to the source impedance since z i  = z, = 50 52.  This is shown in Figure 
8-8(a). The corresponding matching networks are shown in Figures 8-8(b) and 8-8(c). 

\ The frequency responses of these two networks in terms of the input reflection 
coefficient r,, = ( Z , ,  - Z,)/(Zin + Zs) and the transfer function H = Vo,,/Vs 
(where the output voltage V,,, is measured across the load resistance RL = 80 R )  are 
shown in Figures 8-9(a) and (b), respectively. 

It is apparent from Figure 8-9 that both networks exhibit perfect matching only at 
a particular frequency f = 1 GHz and begin to deviate quickly when moving away 
from fo. 

The previously developed matching networks can also be viewed as resonance 
circuits with f being the resonance frequency. As discussed in Section 5.1.1, these 
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(a) Impedance transformations displayed in Smith Chart 

(b) (c) 
Resulting matching networks 

Figure 8-8 Two design realizations of an L-type matching network. 

networks may be described by a loaded quality factor, Q L ,  which is equal to the ratio of 
the resonance frequency f over the 3 dB bandwidth B W 
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Figure 8-8(c) - 
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0 0.5 1 1.5 2 2.5 3 
FrequencyJ; GHz 

(a) Frequency response of input reflection coefficient 

(b) Transfer function of the matching networks 

. Figure 8-9 Frequency response of the two matching network realizations. 
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where both f and B W are expressed in Hz. The question now is how to find the band- 
width of the matching network. To answer this, we will exploit the similarity between 
the bell-shaped response of the matching network's transfer function near f [see Fig- 
ure 8-9(b)] and the frequency response of a bandpass filter. 

For frequencies close to f the matching network in Figure 8-8(c) can be redrawn 
as a bandpass filter with a loaded quality factor calculated based on (8.6). The equivalent 
bandpass filter is shown in Figure 8-lO(a). The equivalent capacitance CT in this circuit 
is obtained by replacing the series combination of RL and CL in Figure 8-8(c) with an 
equivalent parallel connection of RLP and CLp and then adding the capacitances C and 
CLP : CT = C + CLP . The equivalent shunt inductance LLN is obtained by first replac- 
ing the series connection of the voltage source Vs, resistance Rs, and inductance L 
with the Norton equivalent current source IN = VS/(RS + jooL) connected to the par- 
allel combination of conductance GSN and inductance LN, where the admittance is 
given as follows: GsN + (jo0LN)-I = (Rs + j o , ~ ) - l  . Next, the current source IN and 
conductance GSN are converted back into a ThCvenin equivalent voltage source 

and series resistance 

The resonance circuit in Figure 8-10 is loaded by the combined resistance 
RT = RL 11 RST = 62.54 R .  Thus, the loaded quality factor QL of the equivalent 
bandpass filter is given by 

It is immediately noticed that the maximum gain for the equivalent bandpass filter 
is higher than the gain of the original matching network. This is explained by the fact 
that for the matching network we measure the output voltage on the load RL, while for 
the equivalent filter we measure the output voltage at the equivalent load resistance RLP , 
which is connected in parallel with the capacitance CT . Therefore, the conversion from 
Vb to V,,, at the resonance frequency can be found through the voltage divider rule: 
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(a) Equivalent bandpass filter 

0.5 1 1.5 2 2.5 3 
Frequencyf; GHz 

(b) Frequency response of the matching network compared to the equivalent 
filter response 

Figure 8-10 Comparison of the frequency response of the L-type matching 
network and an equivalent bandpass filter. 

which gives us 

a result that agrees very well with Figure 8-9(b). 
From the known QL we can directly find the bandwidth of the filter: 

B W  = f 0/QL = 1.63 GHz. The frequency response in Figure 8-9(b) shows that the 
3 dB point for f < f occurs at fd, = 0.40 GHz and for f > f the 3 dB point corre- 
sponds to f,, = 2.19 GHz. Thus, the bandwidth of the matching network is 
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B W = f ,, - f = 1.79 GHz , which again agrees reasonably well with the result 
obtained for the equivalent bandpass filter. 

The equivalent bandpass filter analysis allows us to explain the bell-shaped 
response of the matching network in the neighborhood of f and provides us with a 
good estimation of the bandwidth of the circuit. The only drawback to this approach is 
its complexity. It would be desirable to develop a simpler method of estimating the 
quality factor of the matching network without having first to develop an equivalent 
bandpass filter or even computing the frequency response of the network. This is 
accomplished through the use of a so-called nodal quality factor Q, . 

Let us go back to Figure 8-8(a), where we illustrate the impedance transformation 
as we move from one node of the circuit to another. We note that at each node of the 
matching network the impedance can be expressed in terms of an equivalent series 
impedance Zs = Rs + jXs or admittance Y p  = G p  + jBp . Hence, at each node we 
can find Q, as the ratio of the absolute value of the reactance Xs to the corresponding 
resistance Rs 

or as the ratio of the absolute value of susceptance Bp to the conductance GP 

Using (8.10) and (8.1 1) and the impedance transformations in Figure 8-8(a), we 
can deduce that for the matching network shown in Figure 8-8(c) the maximum nodal 
quality factor is obtained at point B where the normalized impedance is 1 - j1.23, 
resulting in 

To relate the nodal quality factor Q,  to QL , we compare the result of (8.12) with 
(8.9) and find 

This result is true for any L-type matching network. For more complicated config- 
urations the loaded quality factor of the matching network is usually estimated as sim- 
ply the maximum nodal quality factor. Even though this approach does not yield a 
quantitative estimate of the circuit bandwidth, it nonetheless allows us to compare net- 
works qualitatively and to select a network with higher or lower bandwidth. 
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To simplify the matching network design process even further we can draw con- 
stant- Q, contours in the Smith Chart. Figure 8-1 1 shows such contours for Q, valued 
0.3, 1, 3, and 10. 

Figure 8-1 1 Constant Q,, contours displayed in the Smith Chart. 

To obtain the equations for these contours we refer back to the general derivation 
of the Smith Chart in Chapter 3. There it is shown in (3.6) and (3.7) that the normalized 
impedance can be written as 

Thus, the nodal quality factor can be written as 

Rearranging terms in (8.15), it follows that a circle equation is found in the form 
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where the "plus" sign is taken for positive reactance x and the "minus" sign for nega- 
tive x . 

With these constant Q, circles in the Smith Chart it is possible to find the loaded 
quality factor of an L-type matching network by simply reading the corresponding Q, 
and dividing it by 2. This procedure is discussed in Example 8-4. 

.,&M w 
Example 8-4: Design of narrow-band matching network 

Using the forbidden regions in Figure 8-7, design two L-type net- 
works that match a ZL = (25 + j20)R load impedance to a 50 R 
source at 1 GHz. Determine the loaded quality factors of these net- 
works from the Smith Chart and compare them to the bandwidth 
obtained from their frequency response. Assume that the load con- 
sists of a resistance and inductance connected in series. 

Solution: As we see from Figure 8-7, the normalized load 
impedance zL = 0.5 + j0.4 lies inside of the constant conductance 
circle g = 1 . There are two L-type matching networks that satisfy 
our requirements. The first consists of a series inductor and shunt 
capacitor, as shown in Figure 8-7(a), and the second is a series 
capacitor with shunt inductor, as shown in Figure 8-7(b). Following 
the same procedure as described in Example 8-2, we obtain the two 
matching networks shown in Figure 8-12. 

According to Figure 8-12(a), the nodal quality factor for both 
networks is equal to Q, = 1 .  Thus, we can expect that the band- 
width should be equal to B W = f ,/QL = 2 f , / Q ,  = 2 GHz. 
This is checked by plotting the corresponding frequency responses 
for the designed matching networks, as depicted in Figure 8-13. 

We observe that the bandwidth for the network corresponding to 
Figure 8-12(c) is approximately BW, = 2.4 GHz. Interestingly, the 
matching network corresponding to Figure 8- 12(b) does not possess a 
lower cut-off frequency. However, if we assume that the frequency 
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(a) Impedance transformation in the Smith Chart 

Rs=5052 C=3.54pFLL=3.18 nH 

L = 7.96 nH 

- - - - 
(b) (c) 

Resulting matching networks 

Figure 8-12 Two L-type matching networks for a 50 R source and a 
Z ,  = (25 + j20)R load impedance operated at a frequency of 1 GHz. 

response is symmetric around the resonance frequency f = 1 GHz, 
then the bandwidth will be B W b  = 2( f ,, - f o) = 1.9 GHz, with 
the upper cut-off frequency being f ,, = 1.95 GHz. 
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Frequencyf, GHz 

Figure 8-13 Frequency responses for the two matching networks. 

Despite their design for the same resonance frequency, certain 
matching network con$gurations exhibit better high or low fre- 
quency rejection, as Figure 8-13 exemplijies. 

In many practical applications the quality factor of the matching network is of 
importance. For example, if we design a broadband amplifier we would like to utilize 
networks with low Q in order to increase the bandwidth. However, for oscillator design 
it is desirable to achieve high- Q networks to eliminate unwanted harmonics in the out- 
put signal. Unfortunately, as we have seen in the previous example, L-type matching 
networks provide no control over the value of Q, and we must either accept or reject 
the resulting quality factor. To gain the freedom of choosing the values of Q and thus 
affect the bandwidth behavior of the circuit, we can introduce a third element in the 
matching network. The addition of this third element results in either a T- or Pi-net- 
work, both of which are discussed next. 

8.1.3 T and Pi Matching Networks 

As already pointed out, the loaded quality factor of the matching network can be 
estimated from the maximum nodal Q,. The addition of the third element into the 
matching network produces an additional node in the circuit and allows us to control 
the value of QL by choosing an appropriate impedance at that node. 
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The following two examples illustrate the design of T- and Pi-type matching net- 
works with specified Q, factor. 

Y , m w  
Example 8-5: Design of a T matching network 

-%A. *-dC 

Design a T-type matching network that transforms a load impedance 
Z, = (60 - j30)R into a Zi, = (10 + j20)R input impedance 
and that has a maximum nodal quality factor of 3. Compute the val- 
ues for the matching network components, assuming that matching 
is required at f = 1 GHz. 

Solution: There are several possible solutions that satisfy the 
design specifications. In this example, we investigate only one design 
since the rest can easily be obtained by using the same approach. 

The general topology of the T-type matching network is shown 
in Figure 8- 14. 

Figure 8-1 4 General topology of a T-type matching network. 

The first element in this network is connected in series with the 
load impedance. Because Z1 is purely reactive, the combined 
impedance ZA will reside somewhere on the constant resistance cir- 
cle described by r = rL . Similarly, Z3 is connected in series with 
the input so that the combined impedance ZB (consisting of ZL, 
Z1 , and Z2) is positioned somewhere on the constant resistance cir- 
cle with r = ri,. Because the network should have a nodal quality 
factor Q, = 3 ,  we can choose the impedance values in such a way 
that 2, is located on the intersection of the constant resistance cir- 
cle r = ri, and the Q, = 3 circle (see point B in Figure 8-15). 
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Figure 8-1 5 Design of a T-type matching network for a specified Q,, = 3. 

We next find the intersection point A of the constant conduc- 
tance circle that passes through the point B obtained from the previ- 
ous step. The circle of constant resistance r = rL now allows us to 
determine the required value of the remaining component of the net- 
work to reach the point zi, . 

The complete T-type matching network with the actual compo- 
nent values is illustrated in Figure 8-16. The computed elements are 
based on the required matching frequency off = 1 GHz. 

Figure 8-16 T-type matching network circuit schematics. 
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The extra degree offreedom to adjust the quality factor (band- 
width) of a matching network comes at the expense of an additional 
circuit element. 

In the following example the design of a Pi-type matching network is developed 
with the intent to achieve a minimum nodal quality factor. A low quality factor design 
directly translates into a wider bandwidth of the network, as required, for instance, in 
broadband FET and BJT amplifiers. 

c & M w  
Example 8-6: Design of a Pi-type matching network 

For a broadband amplifier it is required to develop a Pi-type match- 
ing network that transforms a load impedance of Z,  = ( 10 - j 10) 52 
into an input impedance of Zin = (20 + j 4 0 ) R .  The design should 
involve the lowest possible nodal quality factor. Find the component 
values, assuming that matching should be achieved at a frequency of 
f = 2.4 GHz. 

Solution: Since the load and input impedances are fixed, we can- 
not produce a matching network that has a quality factor lower than 
the highest Q, computed at the locations ZL and Z,. Therefore, 
the minimum value for Q, is determined at the input impedance 
location as Q, = IXinJ/Rin = 40/20 = 2 .  The Smith Chart 
design of the Pi-type matching network based on Q,  = 2 is 
depicted in Figure 8- 17. 

In the design we employ a method very similar to the one used 
in Example 8-5. First, we plot a constant conductance circle 
g = gin and find its intersection with the Q,  = 2 contour in the 
Smith Chart. This intersection is denoted as point B. Next, we find 
the intersection point of the constant conductance circle g = gL 
with the constant resistance circle that passes through the point B. 
The resulting point is denoted as A in Figure 8- 17. 
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Figure 8-17 Design of a Pi-type matching network using a minimal Q,,. 

The network components can be determined based on convert- 
ing the Smith Chart points into actual capacitances and inductances 
as detailed in Example 8-2. The resulting circuit configuration is 
shown in Figure 8- 18. 

Figure 8-18 Pi-type matching network configuration. 

It is interesting to note that unlike the situation discussed in 
Example 8-5, the relative positions of Z ,  and Zi, in this example 
are such that only one possible Pi-type network configuration with 
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Q, = 2 exists. All other realizations of the Pi-type network will 
result in an increased nodal quality factor. Furthermore, if we had a 
lower load resistance, we would not be able to implement this Pi- 
type network for the given Q, . 

As this example shows, the bandwidth cannot be increased 
arbitrarily by reducing the nodal quality factol: The limits are set by 
the desired input and output impedances. 

8.2 Microstrip Line Matching Networks 
In the previous sections we have discussed the design of matching networks 

involving discrete components. However, with increasing frequency and correspond- 
ingly reduced wavelength, the influence of parasitics in the discrete elements becomes 
more noticeable. The design now requires us to take these parasitics into account, thus 
significantly complicating the component value computations. This, along with the fact 
that discrete components are only available for certain values, limits their use in high- 
frequency circuit applications. As an alternative to lumped elements, distributed com- 
ponents are widely used when the wavelength becomes sufficiently small compared 
with the characteristic circuit component length, a fact already discussed in Chapter 2. 

8.2.1 From Discrete Components to Microstrip Lines 

In the mid-GHz range, design engineers often employ a mixed approach by com- 
bining lumped and distributed elements. These types of matching networks usually 
contain a number of transmission lines connected in series and capacitors spaced in a 
parallel configuration, as illustrated in Figure 8-19. The reader is also referred to Figure 
1-2(a) for a practical example. 

Figure 8-19 Mixed design of matching network involving transmission line 
sections (TL) and discrete capacitive elements. 
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Inductors are usually avoided in such designs because they tend to have higher 
resistive losses than capacitors. In general, only one shunt capacitor with two transmis- 
sion lines connected in series on both sides is sufficient to transform any given load 
impedance to any input impedance. Similar to the L-type matching networks, such con- 
figurations may involve the additional requirement of a fixed Q,, necessitating addi- 
tional components to control the quality factor of the circuit. 

The arrangement of components shown in Figure 8-19 is very attractive in practice, 
since it permits tuning the circuit after it has been manufactured. Changing the values of 
the capacitors as well as placing them at different locations along the transmission lines 
offers a wide range of flexibility. The tuning capability makes these types of matching 
networks very popular for prototyping. Usually, all transmission lines have the same 
width (i.e., the same characteristic impedance) to simplify the actual tuning. 

Example 8-7 discusses the Smith Chart approach to the design of a matching net- 
work containing two 50 SZ transmission lines connected in series and a single shunt 
capacitor placed in-between them. 

W&MW 
Example 8-7: Design of a matching network with lumped and 

distributed components 

Design a matching network that transforms the load 
2, = (30 + j l0 )R to an input impedance Z ,  = (60 + j80)SZ. 
The matching network should contain only two series transmission 
lines and a shunt capacitance. Both transmission lines have a 50 SZ 
characteristic line impedance, and the frequency at which matching 
is desired is f = 1.5 GHz. 

Solution: The first step involves identifying the normalized load 
impedance zL = 0.6 + j0.2 as a point in the Smith Chart. We can 
then draw a SWR circle that indicates the combined impedance of 
the load connected to the 50 SZ transmission line. The position on 
the SWR circle is determined by the length of the transmission line, 
as investigated in Chapter 3. 

The second step requires plotting a SWR circle that passes 
through the normalized input impedance point zi, = 1.2 + j 1.6 
shown in Figure 8-20. 
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Figure 8-20 Design of the distributed matching network for Example 8-7. 

The choice of the point from which we transition from the load 
SWR circle to the input SWR circle can be made arbitrarily. In Fig- 
ure 8-20 the point A is chosen, which approximately corresponds to 
a normalized admittance value of yA = 1 - j0.6. The addition of 
the parallel capacitor results in the movement along the circle of 
constant conductance g = 1 and transforms the impedance from 
point A to point B on the input SWR circle of the Smith Chart. 
From point B an impedance transformation is required along the 
constant SWR circle by adding a series connected transmission line. 

As a final step, the electrical length of the transmission lines 
must be determined. This can be done by reading the two lengths 1 I ,  
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1, from the so-called WTG (wavelength toward generator) scale 
displayed on the outer perimeter of the Smith Chart (see Figure 
8-20). The resulting circuit schematics for the matching network is 
shown in Figure 8-2 1 

Figure 8-21 Matching network combining series transmission lines and shunt 
capacitance. 

0.5 

Figure 8-22 

Distance 1, h 

Input impedance as a function of the position of the shunt capacitor 
in Example 8-7. 

It is interesting to investigate the tuning capability range for 
this circuit configuration. Figure 8-22 shows the dependency of the 
real rin and imaginary xin parts of the input impedance as a func- 
tion of the distance I between the load and the capacitor location. In 
other words, the total length l I  + l2  is kept fixed and the placement 
of the capacitor is varied from the load end to the beginning of the 
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network (i.e., 0 I 1 I l I  + l2 ). The dashed lines indicate the original 
design. It is noticed that xi, undergoes the expected inductive (posi- 
tive values) to capacitive (negative values) transition. 

In this example we have designed a combined matching net- 
work that involves both distributed (transmission lines) and a 
lumped (capacitor) element. These types of networks have rather 
large tuning capabilities, but are very sensitive to the placement of 
the capacitor along the transmission line. Even small deviations 
from the target location result in drastic changes in the input 
impedance. 

8.2.2 Single-Stub Matching Networks 

The next logical step in the transition from lumped to distributed element net- 
works is the complete elimination of all lumped components. This is accomplished by 
employing open- and/or short-circuit stub lines. 

In this section we consider matching networks that consist of a series transmission 
line connected to a parallel open-circuit or short-circuit stub. Let us investigate two 
topologies: The first one involves a series transmission line connected to the parallel 
combination of load and stub, as shown in Figure 8-23(a), and the second involves a 
parallel stub connected to the series combination of the load and transmission line, as 
depicted in Figure 8-23(b). 

open or A- - - 
short circuit - 

- -2% - open or - 
short circuit 

(4 (b) 

Figure 8-23 Two topologies of single-stub matching networks. 

The matching networks in Figure 8-23 possess four adjustable parameters: length 
I ,  and characteristic impedance ZOs of the stub, and length lL and characteristic 
impedance ZoL of the transmission line. 
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Example 8-8 demonstrates the design procedure for the matching network topol- 
ogy shown in Figure 8-23(a) with the characteristic impedances of both stub Zos and 
transmission line ZOL fixed to the same arbitrary value Zo and their electrical lengths 
variable to meet the particular input impedance requirement. 

-&Mw 
Example 8-8: Single-stub matching network design with fixed 

characteristic impedances 

For a load impedance of Z L  = (60 - j45)R, design two single-stub 
matching networks that transform the load to a 2, = (75 + j90)R 
input impedance. Assume that both stub and transmission line in 
Figure 8-23(a) have a characteristic impedance of Z ,  = 75 R .  

Solution: The basic concept is to select the length I s  of the stub 
such that it produces a susceptance Bs sufficient to move the load 
admittance yL = 0.8 + j0.6 to the SWR circle that passes through 
the normalized input impedance point zin = 1 + j 1.2, as illustrated 
in Figure 8-24. 

We notice that the input SWR circle associated with 
zin = 1 + j1.2 intersects the constant conductance circle g = 0.8 
in two points (at yA = 0.8 + j 1 .O5 and at yB = 0.8 - j 1 .O5 ) sug- 
gesting two possible solutions. The corresponding susceptance val- 
ues for the stub are jbsA = yA - y ,  = j0.45 and 
jbsB = yB - yL = - j 1.65 , respectively. In the first case, the length 
of an open-circuit stub can be found in the Smith Chart by measur- 
ing the length l,, starting from the y = 0 point (open circuit) and 
moving along the outer perimeter of the Smith Chart g = 0 toward 
the generator (clockwise) to the point where y = j0.45 . The length 
for this case is lsA = 0.067 h . The open-circuit stub can be replaced 
by a short-circuit stub if its length is increased by a quarter wave- 
length. Such a substitution may become necessary if a coaxial cable 
is used because of excessive radiation losses due to the large cross- 
sectional area. In printed circuit design, open-circuit stubs are some- 
times preferred because they eliminate the deployment of a via, 
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Figure 8-24 Smith Chart design for the single-stub matching network based on 
Example 8-8. 

which is otherwise necessary to obtain the ground connection for a 
short-circuit stub. 

Similar to the first solution, bsB yields the length 
I s ,  = 0.337h for the open-circuit stub, and lSB = 0.087h for the 
short-circuit stub. For this case we also notice that creating a short- 
circuit stub requires a shorter length than an open-circuit stub. This 
is due to the fact that the open-circuit stub models a negative 
susceptance. 

The length of the series transmission line segment is found in 
the same way as described in Example 8-7 and is equal to 
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I,, = 0.266h for the first solution and lLB = 0.07h for the second 
solution. 

A circuit designer often has to minimize the size of the circuit 
board and therefore must be concerned about employing the short- 
est possible transmission line segments. Depending on the imped- 
ance requirements, this can either be an open- or short-circuit stub 
section. 

In the next example we illustrate the generic design procedure for the matching 
network topology shown in Figure 8-23(b). Unlike the previous example, we now fix 
the lengths of both the stub and the transmission line segment but vary their characteris- 
tic impedances. In a microstrip line circuit design this is typically accomplished by 
changing the width of the lines. 

c & M w  
Example 8-9: Design of a single-stub matching network using 

transmission lines with different characteristic - & < =  

impedances 

Using the matching network topology shown in Figure 8-23(b), 
choose the characteristic impedances of the stub and transmission 
line such that the load impedance ZL = (120- j20)R is trans- 
formed into the input impedance 2, = (40 + j30)R. Assume that 
the length of the transmission line is lL = 0.25h and the stub has 
the length of I s  = 0.375 h . Furthermore, determine whether a short- 
circuit or an open-circuit stub is necessary for this circuit. 

Solution: The combined impedance Z 1  of the series connection 
of the load impedance with the transmission line can be computed 
using the formula for the quarter-wave transformer: 

2 
Z ,  = Z O L / Z L  (8.17) 
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The addition of the open-circuit stub results in an input admittance 
of 

Yin = Y,  + jB, (8.18) 

where Y, = z;' is the admittance of the previously computed 
series combination of load impedance and transmission line and 
jB, = k j ~ i i  is the susceptance of the stub. The "plus" or "minus" 
signs correspond to either a short-circuit or an open-circuit stub. 

Combining (8.17) and (8.18), we find 

B, = x ~ / z ~  + (8.19b) 

where we have used the input admittance and load impedance repre- 
sentation in terms of their real and imaginary components: 
Yin = Gin + jBin , ZL = RL + jXL . 

Using (8.19a), we find the characteristic impedance of the 
transmission line to be 

ZOL = 
Gin 0.016 

Substituting the obtained value into (8.19b), we find that the 
"minus" sign should be used; that is, we need to implement an open- 
circuit stub with a characteristic impedance of 

This design approach is very easy to implement as long as the 
characteristic impedance stays within reasonable limits ranging 
approximately from 20 to 200 0. 

In practical realizations single-sided unbalanced stubs are often replaced by the 
balanced design, as shown in Figure 8-25. 

Naturally, the combined susceptance of the parallel connection of stubs ST 1 and 
ST2 has to be equal to the susceptance of the unbalanced stub. Therefore, the suscep- 
tance of each side of the balanced stub must be equal to half of the susceptance of the 
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Figure 8-25 Balanced stub design for Example 8-9. 

unbalanced stub. We note that the length lSB of each side does not scale linearly. In 
other words, the length of the balanced stub is not half of the length of the unbalanced 
stub ls  . Rather, it has to be computed as 

for open-circuit stub, or 

for short-circuit stub. This result can also be found graphically by using the Smith 
Chart. 

8.2.3 Double-Stub Matching Networks 

The single-stub matching networks in the previous section are quite versatile and 
allow matching between any input and load impedances, so long as they have a nonzero 
real part. One of the main drawbacks of such matching networks is that they require a 
variable-length transmission line between stub and input port, or between stub and load 
impedance. Usually this does not pose a problem for fixed networks, but it may create 
difficulties for variable tuners. In this section we examine matching networks that over- 
come this drawback by incorporating a second stub. The general topology of such a net- 
work that matches an arbitrary load impedance to an input impedance Z ,  = Z, is 
shown in Figure 8-26. 

In double-stub matching networks two short- or open-circuit stubs are connected 
in parallel with a fixed-length transmission line placed in between. The length 4 of this 
line is usually chosen to be one-eighth, three-eighth, or five-eighth of a wavelength. The 
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sh& circuit 

Figure 8-26 Double-stub matching network arrangement. 

three-eighth and five-eighth wavelength spacings are typically employed in high- 
frequency applications to simplify the tuner construction. 

Let us assume for our subsequent discussion that the length of the line segment 
between the two stubs is l2  = (3/8)h. To facilitate the analysis we start from the input 
side of the tuner and work backward to the load end. 

For a perfect match it is required that Zi, = 2, and therefore yA = 1 . Since it is 
assumed that the lines are lossless, the normalized admittance y, = y, - jbs2 is 
located somewhere on the constant conductance circle g = 1 in the Smith Chart. Here 
bs2 is the susceptance of the stub and ls2 is the associated length. For an l2 = (318)h 
line the g = 1 circle is rotated by 2p12 = 3 ~ 1 2  radians or 270" toward the load (i.e., in 
counter-clockwise direction, as depicted in Figure 8-27). The admittance yc (being the 
series connection of Z, with line ll in parallel to stub l S l )  needs to reside on this rotated 
g = 1 circle (called the yc circle) in order to ensure matching. 

By varying the length of the lsl stub we can transform point yD in such a way 
that the resulting yc is indeed located on the rotated g = 1 circle. This procedure can 
be done for any load impedance except for the case when point y, (i.e., the series con- 
nection of ZL and line l l  ) is located inside the g = 2 circle. This represents the for- 
bidden region that has to be avoided. To overcome this problem in practical 
applications, commercial double-stub tuners usually have input and output transmission 
lines whose lengths are related according to l 1  = l3 f h/4. In this case, if a particular 
load impedance cannot be matched, one simply connects the load to the opposite end of 
the tuner, which moves yD out of the forbidden region. 

The following example demonstrates the computation of the stub lengths to 
achieve matching for a specific load impedance. 
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Figure 8-27 Smith Chart analysis of a double-stub matching network sl 
Figure 8-26. 

hown in 

c m w  
Example 8-10: Design of a double-stub matching network 

It is assumed that in the double-stub matching network shown in 
Figure 8-26 the lengths of the transmission lines are 
l3 = l2  = 3h/8 and l 1  = h/8 .  Find the lengths of the short-cir- 
cuit stubs that match the load impedance Z L  = (50 + j50)R to a 
50 R input impedance. The characteristic line impedance for all 
components is Z ,  = 50 R . 
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Solution: First the normalized admittance yD has to be deter- 
mined and checked that it does not fall inside the forbidden region. 
Using the Smith Chart (see Figure 8-28), we find yD = 0.4 + j0 .2 .  
Since gD c 2 ,  we are assured that the admittance yD does not fall 
into the forbidden region. Next we plot the rotated g = 1 circle as 
explained previously. This allows us to fix the intersection of the 
rotated g = 1 circle with the constant conductance circle that passes 
through the point yD. The intersection point gives us the value of 
yc . In fact, there are two intersection points that yield two possible 
solutions. If we choose yc = 0.4 - j 1.8 , then the susceptance of the 
first stub should be jbsl = yc - yD = - j 2 ,  which permits us to 
determine the length of the first short-circuit stub: ls ,  = 0.074h.  

Figure 8-28 Double-stub tuning network design for Example 8-10. 
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Rotating yc by 1, = 3 W 8  we find yB = 1 + j3 ,  which 
means that we have to make the susceptance of the second stub 
equal to jbsz = -j3 so that y, = y, = 1 . Using the Smith Chart, 
we find that the length of the second stub is I s ,  = 0.05 1 A. 

In some practical realizations the stubs are replaced by varac- 
tor diodes. This allows an electronic tuning of the diode capaci- 
tances and thus the shunt admittances. 

8.3 Amplifier Classes of Operation and Biasing Networks 
An indispensable building block in any RF circuit is the active or passive biasing 

network. The purpose of biasing is to provide the appropriate quiescent point for the 
active devices under specified operating conditions and maintain a constant setting irre- 
spective of transistor parameter variations and temperature fluctuations. 

In the following section we introduce a general analysis of the different classes of 
amplifier operation. This will enable us to develop an understanding of how BJT and 
FET need to be appropriately biased. 

8.3.1 Classes of Operation and Efficiency of Amplifiers 

Depending on the application for which the amplifier is designed, specific bias 
conditions are required. There are several classes of amplifier operation that describe 
the biasing of an active device in an RF circuit. 

In Figure 8-29 the transfer function characteristic of an ideal transistor is dis- 
played. It is assumed that the transistor does not reach saturation or breakdown regions 
and in the linear operating region the output current is proportional to the input voltage. 
The voltage V* corresponds either to the threshold voltage in case of FETs or the base- 
emitter built-in potential in case of BJTs. 

The distinction between different classes of operation is made based upon the so- 
called conduction angle, which indicates the portion of the signal cycle when the cur- 
rent is flowing through the load. As depicted in Figure 8-29(a), in Class A operation the 
current is present during the entire output signal cycle. This corresponds to a 
0, = 360" conduction angle. If the transfer characteristic of the transistor in the lin- 
ear region is close to that of a linear function, then the output signal is an amplified rep- 
lica of the input signal without suffering any distortion. In practical circuits, however, 
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9) 
Input waveform 

(a) Class A (b) Class I3 

I, 
4 

(c) Class AB (d) Class C 

Figure 8-29 Various classes of amplifier operation. 

there is always a certain degree of nonlinearity present which results in a distorted out- 
put signal of the amplifier. 

In Class B [Figure 8-29(b)] the current is present during only half of the cycle, 
corresponding to a OB = 180" conduction angle. During the second half of the cycle, 
the transistor is in the cut-off region and no current flows through the device. Class AB 
[Figure 8-29(c)] combines the properties of the classes A and B and has a conduction 
angle OAB ranging from 180" to 360". This type of amplifier is typically employed 
when a high-power "linear" amplification of the RF signal is required. 
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In a Class C amplifier [Figure 8-29(d)] we have a nonzero current for less than 
half of the cycle (i.e., the conduction angle is 0 < Oc < 180" ). This results in maximum 
distortion of the output signal. 

A logical question that arises is why are not all amplifiers operated in Class A 
since this mode delivers the least signal distortion? The answer is directly linked to the 
amplifier efficiency. Efficiency, q , is defined as the ratio of the average RF power PRF 
delivered to the load over the average power Ps supplied by the source, and is usually 
measured in percent: 

The theoretical maximum efficiency of the Class A amplifier is only 50%, but the 
efficiency of Class C can reach values close to 100%. Fifty percent efficiency of Class 
A amplifiers means that half of the power supplied by the source is dissipated as heat. 
This situation may not be acceptable in portable communication systems where most 
devices are battery operated. In practical applications, designers usually choose the 
class of operation that gives maximum efficiency but still preserves the informational 
content of the RF signal. 

In the following example we derive the maximum theoretical efficiency q of the 
amplifier as a function of conduction angle. 

C & M W  
Example 8-1 1 : Amplifier efficiency computation 

Derive the general expression for the amplifier efficiency q as a 
function of conduction angle 0 , .  List the values of q for both 
Class A and Class B amplifiers. 

Solution: The electrical current through the load for a conduc- 
tion angle of O0 has a waveform shown in Figure 8-30(a), where 
the cosine current amplitude is given by I, . 

Similarly, the power supply current Is has a maximum value 
of I, plus the quiescent current IQ : 

Is = IQ + ZocosO (8.23) 
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(a) Load current waveform at the output of the transistor 

(b) Corresponding power supply current waveform 

Figure 8-30 Load and power supply current waveforms as a function of 
conduction angle. 

The value of the quiescent current necessary to ensure the specified 
conduction angle O0 can be found from (8.23) by setting I s  to zero 
at O = 0 0 / 2  : 

IQ = -Io cos ( 0 0 / 2 )  (8.24) 

The average power supply current is then computed as an integral 
over the conduction angle ranging between the limits of 
O = - 0 0 / 2  and O = 0 0 / 2  ; that is, 

Thus, the average power from the power supply is 
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where Vcc is the supply voltage. 
Since the voltage on the load changes together with the cur- 

rent, the average RF power is computed as an integral of the product 
of load current and load voltage: 

I 0  "cc P,, = 1$12 I0VCCcos2edO = -(eo - sine,) (8.27) 
2n -0,/2 4n 

Dividing (8.27) by (8.26), we find an amplifier efficiency 

where the conduction angle e0 is measured in radians. 
The graph of q as a function of the conduction angle 0, is 

shown in Figure 8-3 1. 

Class C 
90 

Conduction angle, e0 

Figure 8-31 Maximum theoretical efficiency of an ideal amplifier as a function of 
conduction angle. 

Substituting 0, = 2n into (8.28), we find that the efficiency 
of a Class A amplifier is indeed 50%. To determine the efficiency of 
a Class B amplifier, we simply use the conduction angle 0, = n in 
(8.28), which yields 
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n - sinn - - - = 0.785 
'Is = -2[ncos(n/2) - 2sin(n/2)] 4 

That is, Class B yields an efficiency of 78.5%. 

EfJiciency is an important design consideration when dealing 
with low power consumption, as required, for instance, in personal 
communication systems, where battery lifetime must be maximized. 

8.3.2 Bipolar Transistor Biasing Networks 

There are generally two types of biasing networks: passive and active. Passive (or 
self-biased) networks are the simplest type of biasing circuits and usually incorporate a 
resistive network, which provides the appropriate voltages and currents for the RF tran- 
sistor. The main disadvantages of such networks are that they are very sensitive to 
changes in transistor parameters and that they provide poor temperature stability. To 
compensate for these drawbacks active biasing networks are often employed. 

In this section we consider several network configurations for biasing RF BJTs. 
Two possible topologies are shown in Figure 8-32. 

The combination of the blocking capacitor C ,  and the RFC connected to the base 
and collector terminals of the transistor in Figure 8-32 serve the purpose to isolate the 

(a) (b) 

Figure 8-32 Passive biasing networks for an RF BJT in common-emitter 
configuration. 
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RF signal from the DC power source. At high frequencies, the RFCs are usually 
replaced by quarter wave transmission lines that convert the short-circuit condition on 
the CB side to an open-circuit condition on the transistor side. 

The following example discusses how to compute the resistors for the two biasing 
networks shown in Figure 8-32. 

8 & M  v\r-, 
Example 8-12: Design of passive biasing networks for a BJT in 

common-emitter configuration 

Design biasing networks according to Figures 8-32(a) and (b) for 
the BJT settings of I, = 10 mA, VcE = 3 V, and Vcc = 5 V. 
Assume that the transistor has a p = 100 and VBE = 0.8 V. 

Solution: As seen in Figure 8-32(a), the current Zl through 
resistor R1 is equal to the sum of the collector and base currents. 
Since I, = Ic/P, we obtain 

I, = I, + I, = I,(l + p-1) = 10.1 mA 

The value of R1 can be found as 

Similarly, the base resistor R2 is computed as 

For the circuit in Figure 8-32(b) the situation is slightly more com- 
plicated. Here we have the freedom of choosing the value of the 
voltage potential V, and the current I, through the voltage divider 
resistor R2. Arbitrarily setting V, to 1.5 V , we determine the base 
resistor R3 to be 

The value of Ix is usually chosen to be 10 times larger than IB.  
Therefore, Ix = 101, = 1 mA and the values of the resistances 
for the voltage divider are computed as 
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Finally, the collector resistor is found as 

R4 = (Vcc - VcE)/Zc = 200 Q 

The freedom of selecting particular voltages and currents is in 
practice restricted by the need to choose electric settings that result 
in standardized resistance values. 

An example of an active biasing network for a BJT in common-emitter configura- 
tion is shown in Figure 8-33. Here we employ a low-frequency transistor Ql to provide 
the necessary base current for the RF transistor Q2.  The resistor REl connected to the 
emitter of the transistor Ql improves stability of the quiescent point. If transistors Ql 
and Q2 have the same thermal properties, then this biasing network also results in good 
temperature stability. 

Example 8- 13 illustrates the determination of the component values for the active 
biasing network depicted in Figure 8-33. 

Vcr 

+ 
Figure 8-33 Active biasing network for a common-emitter RF BJT 
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c & M w  
Example 8-13: Design of an active biasing network for a BJT 

transistor in common-emitter configuration 

Design a biasing network as shown in Figure 8-33 for 
IC2 = 10 m A  , VCE2 = 3 V , and Vcc = 5 V . Assume that both 
transistors have p = 100 and VBE = 0.8 V . 

Solution: Similar to the previous example we have several 
degrees of freedom in this biasing network. First, we can pick the 
value for a voltage potential V c l  at the collector of transistor Q l  . 
Second, we are free in our choice of the collector current through 
Q 1  . since IB2 should not be affected by current fluctuations in Icl  , 
we choose Icl  such that Icl  = 101B2 (i.e., Icl = 1 m A ) .  Then 
the current I  I through resistor Rc is composed of collector current 
Icl  and two base currents IB1 and IB2 ; that is, 

Another degree of freedom is the choice of voltage V E l  at the emit- 
ter terminal of the transistor Q l  . Setting V E l  to 1 V, we find 

and 

R E ,  = V ~ l  = l . l l k *  
ICl -IBl 

Finally, the collector resistor RC2 is determined to be 

Rc2 = ( V c c -  VcE2) / Ic2  = 200 f.2 

Although active biasing offers a number of pe$ormance 
advantages over passive networks, certain disadvantages also arise: 
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specijically, additional circuit board space, possible layout compli- 
cations, and added power requirements. 

Another active biasing network for a BJT in common-emitter configuration is 
shown in Figure 8-34. Here diodes Dl  and D, provide a fixed reference for the voltage 
drop across the base-emitter junctions of both transistors. Resistor R1 is used to adjust 
the biasing current to the base of transistor Ql and R2 limits the range of this adjust- 
ment. Ideally, for temperature compensation, transistor Ql and one of the diodes 
should remain at ambient temperature, whereas the second diode should be placed on 
the same heat-sink as RF transistor Q2. 

Figure 8-34 Active biasing network containing low-frequency transistor and two 
diodes. 

As a final remark, it is important to point out that in all biasing networks the oper- 
ational conditions (common-base, common-emitter, or common-collector) of the tran- 
sistor at RF frequencies are entirely independent of the DC configuration. For instance, 
we can take an active biasing network, shown in Figure 8-33, and modify it for com- 
mon-base RF operation, as seen in Figure 8-35. 

At DC all blocking capacitors represent an open circuit and all RFCs behave like 
short circuits. Therefore, this biasing network can be redrawn as shown in Figure 
8-36(a), indicating the common-emitter configuration. However, at RF frequency all 
blocking capacitors become short circuits and all RFCs behave like open circuits. This 
transforms the biasing network into a common-base mode, as depicted in Figure 8-36(b). 
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Figure 8-35 Modification of the active biasing network shown in Figure 8-33 for 
a common-base RF operation. 

Rc2 
i i  c, 
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(a) DC equivalent circuit 
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RFC 

....... ....... 
I. _..-. ....... - .  - .  '.. 

R E ,  ....... 
.... 
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(b) RF equivalent circuit 

Figure 8-36 DC and RF equivalent circuits for the active biasing network in 
Figure 8-35. 



Ampllfkr Classes of Operation and Blasing Networks 455 

8.3.3 Field Effect Transistor Biasing Networks 

The biasing networks for field effect transistors are in many ways very similar to 
the BJT networks covered in the previous section. One key distinction is that MESFET 
usually require a negative gate voltage as part of the bias conditions. 

The most basic passive bipolar biasing network for FETs is shown in Figure 8-37. 

dC$ - RFC p5 RFC - 

- 
Figure 8-37 Bipolar passive biasing network for FETs. 

The main disadvantage of such a network is the need of a bipolar power supply 
for VG < 0 and V D  > 0. If such a bipolar power supply is unavailable one can resort to 
a strategy where instead of the gate, the source terminal of the transistor is biased. The 
gate in this case is grounded. Two examples of such networks are shown in Figure 8-38. 

p RFC 

Figure 8-38 Unipolar passive biasing networks for FETs. 

The temperature compensation of the FET biasing networks is typically accom- 
plished through the use of thermistors. 
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8.4 Summary 
The material covered in this chapter is geared toward providing an understanding 

of two key issues encountered in any RFIMW system: interfacing various components 
of different impedance values, and suitably biasing the active devices depending on 
their class of operation. 

To ensure optimal power transfer between systems of different impedances, we 
investigate at first two-element L-type matching configurations. In the context of two- 
port network analysis, the conjugate complex matching requirement at the input and 
output ports results in optimal power transfer at a particular target frequency. The tech- 
nique is simple and can be compared with the design of a bandpass or bandstop filter. 
Care must be exercised in selecting a suitable L-type network to avoid the forbidden 
regions for which a given load impedance cannot be matched to the desired input 
impedance. From the knowledge of the network transfer function, the loaded quality 
factor 

and the simpler to compute nodal quality factor 

can be utilized as a measure to assess the frequency behavior of the matching networks. 
Unfortunately, L-type networks do not allow any flexibility in conditioning the fre- 
quency response and are therefore mostly used for narrow band RF designs. To affect 
the frequency behavior, a third element must be added, resulting in T- and Pi-type net- 
works. With these configurations a certain nodal quality factor, and indirectly a desired 
bandwidth, can be implemented. 

While the lumped element design is appropriate at low frequencies, distributed 
transmission line elements must be employed when the frequency extends into the GHz 
range. The hybrid configurations of using series connected transmission line elements 
and shunt connected capacitors are very attractive for prototyping since the location and 
value of the capacitors can easily be varied. If the capacitors are replaced by open- and 
short-circuit transmission lines, one arrives at the single- and double-stub matching 
networks. 

Depending on the application (for instance, linear small signal or nonlinear large 
signal amplification), various classes of transistor amplifiers are identified. The classifi- 
cation is done by computing the RF to supply power ratio, known as efficiency: 
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which can be expressed in terms of the conduction angle O0 quantifying the amount of 
load current flow through the relation 

For instance, Class A offers the highest linearity at the expense of the lowest efficiency 
of 50%, whereas Class B compromises linearity but improves efficiency to 78.5%. 

Once the class of operation is identified, a biasing network is chosen to set the 
appropriate quiescent point of the transistor. Passive biasing networks are normally 
easy to implement. However, they are not as flexible as biasing networks involving 
active devices. The biasing not only sets the DC operating conditions but must also 
ensure isolation of the RF signal through the use of RFCs and blocking capacitors. 
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Problems 

8.1 Obtain the "forbidden" regions for the two-element matching networks 
shown in Figures 8- l(c)-(f). Assume that the load is matched to the normal- 
ized input impedance (i.e., zi, = 1 ). 
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Use the analytical approach and design a two-component matching network 
that matches the ZL = (100 + j20)R load impedance to a given 
Z, = (10 + j25)R source, at the frequency of f o  = 960 MHz. 

Develop a two-component matching network for a ZL = (30 - j40)R load 
and a 50 S2 source. How many network topologies exist that can be used? 
Find the values of the components if a perfect match is desired at 
fo = 450 MHz. 

Repeat Problem 8.3 for a ZL = (40 + j10)R load and a matching fre- 
quency of f = 1.2 GHz. 

Measurements indicate that the source impedance in Problem 8.3 is not 
purely resistive but has a parasitic inductance of L, = 2 nH. Recompute the 
values for the matching network components that take into account the pres- 
ence of L, . 

A load ZL = (20 + j 1O)R consisting of a series R-L combination is to be 
matched to a 50 R microstrip line at f = 800 MHz. Design two two-ele- 
ment matching networks and specify the values of their components. Plot a 
frequency response for both networks and find the corresponding 
bandwidths. 

In Example 8-5 a T-network is discussed that matches a load impedance of 
ZL = (60 - j30)R to an input impedance of Zin = (10 + j20)R at 
1 GHz, under the constraint that Q, does not exceed the factor of 3. Step- 
by-step go through this design and identify each point in the Smith Chart in 
terms of its impedance or admittance values. Verify the final results shown in 
Figure 8-16. 

Go through Example 8-6 and find each point in the Smith Chart shown in 
Figure 8-17 and verify the final network components depicted in Figure 
8-18. 

Repeat the Pi-type matching network design in Example 8-6 for a nodal 
quality factor of Q, = 2.5. Plot Zin( f )  for this Q, value and compare it 
against the Q, = 2 design in Example 8-6. As frequency range, choose 
1 GHz < f < 4 GHz. 
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8.10 

8.11 

8.12 

8.13 

8.14 

8.15 

Design two T-type matching networks that transform a ZL = 100 load to 
an Zin = (20 - j40)Q input impedance at a nodal quality factor of 
Q, = 4 .  The matching should be achieved at f = 600 MHz. 

Design two Pi-type matching networks for the same conditions as in Prob- 
lem 8.10. 

To achieve matching conditions for a specified Q, , the circuit designer has 
to use more than two or three elements in the matching network. Using a 
graphical approach, design a multisection matching network that transforms 
ZL = 10 R into Z, = 250 R at fo = 500 MHz while maintaining a 
nodal quality factor of Q, = 1 . The multisection matching network should 
consist of a series of two-element sections each of which is a "series induc- 
tor, shunt capacitor" combination [see Figure 8- 1 (h)]. 

For an increased frequency of f = 1 GHz it was decided that the network 
designed in Problem 8.12 should be replaced by a combined matching net- 
work shown in Figure 8-19. Determine the total number of capacitors and 
transmission line sections necessary to achieve matching and find the values 
of all components in the network. 

Using the design from Example 8-7, find the length and width of each trans- 
mission line if an FR-4 substrate with dielectric constant of &, = 4.6 and 
height of h = 25 mil is used. Find the maximum deviation of the input 
impedance of the matching network if the capacitor that is used in the circuit 
has a f 10% tolerance and the automatic component placement equipment 
has a *2 mil precision (i.e., the capacitor can be placed within *2 mil of the 
intended position). 

In Example 8-7 it is argued that open-circuit stubs can be replaced by short- 
circuit ones if the length is increased by a quarter wavelength. Matching is 
achieved only for a single frequency, and over a broader frequency range the 
network response can significantly differ from the target impedance values, 
Design a single-stub matching network that transforms a ZL = (80 + j20)R 
load impedance into a Zin = (30 - j l0 )R input impedance. Compare the 
frequency response over the f 0.8 f frequency range for two different real- 
izations of the matching network: open-circuit stub, and using an equivalent 
short-circuit stub. Assume that the matching frequency is f = 1 GHz and 
the load is a series combination of resistance and inductance. 
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8.16 Using the matching network shown in Figure 8-23(b), find the stub length 
1, , the characteristic line impedance ZOL, and the transmission line length 
1, such that the ZL = (80 - j40)R load impedance is matched to 50 R 
source. Assume that the characteristic impedance of the stub is 
Zos = 50 R .  

8.17 For a double-stub tuner shown in Figure 8-26 with parameters 1, = h/8,  
4 = 5h/8,  and l3  = 3 W 8 ,  determine to which end of the tuner a 
ZL = (20 - j20)R load has to be connected and find the length of the 
short-circuited stubs such that the load is matched to a 50 R line. Assume 
that all stubs and transmission lines in the tuner have a 50 R characteristic 
impedance. 

8.18 Discuss a circuit configuration that replaces in the previous problem the stub 
tuners with varactor diodes in series with inductors. Choose the appropriate 
inductances if the varactor diodes can change their capacitances in the range 
from 1 pF to 6 pF. For a frequency of 1.5 GHz discuss the tuning capabilities 
in terms of possible load impedance variations. 

8.19 An ideal amplifier has a transfer function given by the equation 

30(Vin - V*), Vin 2 V* 

0, vin < v* 

where V* = 60 mV. Find the quiescent point (VQ and I Q )  and the corre- 
sponding maximum efficiency such that the amplifier is operated in the AB 
class and has conductance angle of e0 = 270". Assume that the input sig- 
nal is a sinusoidal voltage wave of 100 mV amplitude. 
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Find 
with 

the component values for a low-GHz range biasing 
bypassed emitter resistor Rg , as shown below: 

network for a BJT 

Assume that the power supply voltage is Vcc = 12 V and the transistor has 
the following parameters: Ic = 20 mA, VCE = 5 V, P = 125, and 
V,, = 0.75 V. 

8.21 For stability purposes a feedback resistor RF = 1 kQ has been added 
between base and collector of the transistor in the biasing network shown in 
Figure 8-32(b). Compute the values of all resistors in the biasing network if 
the following biasing conditions must be satisfied: supply voltage of 
Vcc = 5 V , collector current of Ic  = 10 rnA, and collector-emitter volt- 
age of VCE = 3 V. Assume that the transistor has a p = 100 and a 
v,, = 0.8 v. 
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8.22 Design a biasing network (shown in the following figure) for Ic2 = 10 rnA, 
VCE2 = 3 V, and Vcc = 5 V. Assume that p, = 150, P2 = 80, and both 
transistors have VBE = 0.7 V. 

- vcc - 

0 

R F O U ,  

8.23 Redraw the active biasing network shown in Figure 8-34 for a common-base 
and a common-collector operating mode, respectively. 

8.24 For the passive FET biasing network shown in Figure 8-38, find the value of 
the source resistance Rs if VGS = -4 V, VDS = 10 V, and the drain cur- 
rent is given to be I, = 50 mA. 



RF Transistor Amplifier 
Designs 

A mplifier designs at RF differ significantly from 
the conventional low-frequency circuit approaches and consequently require special 
considerations. In particular, the fact that voltage and current waves impinge upon the 
active device necessitates appropriate matching to reduce the VSWR and avoid undesir- 
able oscillations. For this reason a stability analysis is usually the first step in the design 
process and, in conjunction with gain and noise figure circles, is a basic ingredient 
needed to develop amplifier circuits that meet the often competing requirements of 
gain, gain flatness, output power, bandwidth, and bias conditions. 

This chapter expands upon the material covered in Chapters 2 and 3, where power 
relations of terminated transmission lines are investigated. However, unlike the passive 
circuit presentations, Chapter 9 deals with active devices where gain and feedback con- 
siderations assume central importance. Issues such as power gain, unilateral and bilat- 
eral circuit designs and their graphical display in the Smith Chart constitute the starting 
point of an extensive analysis into quantifying high-frequency transistor amplifier per- 
formance. The reader will note the flexibility of the Smith Chart, which allows constant 
gain, VSWR, and stability circle displays to be superimposed over the reflection coeffi- 
cient and impedance representation discussed in Chapter 3. Moreover, even a noise ana- 
lysis can be conducted by converting the noise figure of an amplifier into circles that are 
displayed in the Smith Chart. 

After covering the basic design tools, Chapter 9 also investigates various types of 
power amplifiers and their characteristics such as gain flatness, bandwidth, and inter- 
modular distortion as well as the differences between single- and multistage amplifiers. 
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9.1 Characteristics of Amplifiers 
Perhaps the most important and complex task in analog circuit theory is the ampli- 

fication of an input signal through either a single or multistage transistor circuit. A 
generic single-stage amplifier configuration embedded between input and output 
matching networks is shown in Figure 9-1. 

I 1: DC bias Lut 

Figure 9-1 Generic amplifier system. 

Input and output matching networks, discussed in Chapter 8, are needed to reduce 
undesired reflections and thus improve the power flow capabilities. In Figure 9-1 the 
amplifier is characterized through its S-matrix at a particular DC bias point. In terms of 
performance specifications, the following list constitutes a set of key amplifier 
parameters: 

- ,  

RF 
source 

Gain and gain flatness (in dB) 
Operating frequency and bandwidth (in Hz) 
Output power (in dBm) 
Power supply requirements (in V and A) 
Input and output reflection coefficients (VSWR) 
Noise figure (in dB) 

'T' 

- 
T 

P+ . 
i 

- ,  
fi 

. - Input T output V 

<+ Matching Matching 
, Network Network 

i (OMN) 

In addition, one often must consider such parameters as intermodular distortion (IMD) 
products, harmonics, feedback, and heating effects, all of which can seriously affect the 
amplifier performance. 

To approach the amplifier design process systematically, we need first to establish 
a number of definitions regarding various power relations. This is followed by several 
important analysis tools required to define stability, gain, noise, and VSWR perfor- 
mance. The common denominator of all four topics is that they can be expressed as cir- 
cle equations and displayed in the Smith Chart. 

Load 
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9.2 Amplifier Power Relations 

9.2.1 RF Source 

There are various power gain definitions that are critical to the understanding of 
how an RF amplifier functions. For this reason, let us examine Figure 9-1 in terms of its 
power flow relations under the assumption that the two matching networks are included 
in the source and load impedances. This simplifies our system to the configuration 
shown in Figure 9-2(a). The starting point of our power analysis is the RF source con- 
nected to the amplifier network. For the convention depicted in Figure 9-2 we recall our 
signal flow discussion in Section 4.4.5 [see (4.82) and (4.83)] and write for the source 
voltage 

(a) Simplified schematics of a single-stage amplifier 

b,' 1 a,  bs 

O;~-[J:~ 3 bqrn 
a,' b,  Sl, a* b; QI' 

(b) Signal flow graph 

Figure 9-2 Source and load connected to a single-stage amplifier network. 

The incident power wave associated with bl ' is given as 
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which is the power launched toward the amplifier. The actual input power Pin observed 
at the input terminal of the amplifier is composed of the incident and reflected power 
waves. With the aid of the input reflection coefficient Tin we can therefore write: 

The maximum power transfer from the source to the amplifier is achieved if the 
input impedance is complex conjugate matched (Zin  = Z , )  or, in terms of the reflec- * 
tion coefficients, if Ti ,  = T ,  . Under maximum power transfer condition, we define the 
available power PA as 

This expression makes clear the dependence on T s  . If Tin = 0 and T s  + 0 it is seen 
from (9.2) and (9.4) that Pin, = lbsl 2 / 2  . 

9.2.2 Transducer Power Gain 

We can next investigate the transducer power gain GT, which quantifies the 
gain of the amplifier placed between source and load. 

G, = power delivered to the load - PL - - 
available power from the source PA 

1 2  
orwith P,  = -Ib21 . ( 1  -lrL12) weobtain 

2 

In this expression, the ratio b 2 / b s  has to be determined. With the help of our signal 
flow discussion in Section 4.4.5 and based on Figure 9-2, we establish 
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The required ratio is therefore given by 

Inserting (9.7) into (9.5) results in 

which can be rearranged by defining the input and output reflection coefficients (see 
Problem 9.2) 

s12s21l-s 
rou t  = S22 + 

1 -s11rs 

With these two definitions, two more transducer power gain expressions can be derived. 
First, by incorporating (9.9a) into (9.8), it is seen that 

Second, using (9.9b) in (9.8) results in the expression 

An often employed approximation for the transducer power gain is the so-called unilat- 
eral power gain, G,,, which neglects the feedback effect of the amplifier (S12 = 0). 
This simplifies the form (9.11) to 

As discussed in Section 9.4.1, equation (9.12) is often used as a basis to develop approx- 
imate designs for an amplifier and its input and output matching networks. 
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9.2.3 Additional Power Relations 

The transducer power gain is a fundamental expression from which additional impor- 
tant power relations can be derived. For instance, the available power gain for load 
side matching (TL = I'& ) is defined as 

- - power available from the amplifier G A  = G T  
power available from the source 

or, with the aid of (9.1 I), 

Further, the power gain (operating power gain) is defined as the ratio of the power 
delivered to the load to the power supplied to the amplifier. 

G = 
power delivered to the load - P L  - P L  PA _ - _ - . -  - P A  - G -  

power supplied to the amplifier Pin P A  Pin TPin  

Combining (9.3), (9.4), and (9.10), we find 

* 
It is interesting to note that (9.14) can be obtained from (9.10) by setting Ts = Fin 
since in this case Pi, = P A .  The following example goes through the computation of 
some of these expressions for an amplifier with given S-parameters. 

S & M W  
Example 9-1: Power relations for an RF amplifier 

- 
-.-8 IX 

An RF amplifier has the following S-parameters: S l l  = 0.31-70°, 
S,, = 3.5185", S,, = 0.21-lo0, and S2, = 0.41-45'. Fur- 
thermore, the input side of the amplifier is connected to a voltage 
source with Vs = 5 VLO " and source impedance Zs = 40 R . The 
output is utilized to drive an antenna which has an impedance of 
ZL = 73 R .  Assuming that the S-parameters of the amplifier are 
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measured with reference to a Zo = 50 R characteristic impedance, 
find the following quantities: 

(a) transducer gain GT , unilateral transducer gain GTU , available 
gain G, , operating power gain G , and 

(b) power delivered to the load P L ,  available power P A ,  and inci- 
dent power to the amplifier Pinc . 

Solution: First we find the source and load reflection coefficients 
assuming a Zo = 50 R characteristic impedance: 

Next, the input and output impedances, as given in (9.9a) and (9.9b), 
are determined: 

s s r 
r o u t  = S22 + 

l2 21 = 0.265 - j0.358 
1 - S11Ts 

Substituting the obtained values along with the S-parameters into 
(9.1 l), (9.12), (9.13), and (9.14), the transducer gain GT , unilateral 
transducer gain GTU, available gain GA , and operating power gain 
G are computed as follows: 
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Using (9.2) in conjunction with (9.1) allows us to find the incident 
power flow into the amplifier: 

Often Pi, is expressed in dBm as 
Pinc(dBm) = 10log[Pin,/(l mW)] = 18.73 dBm 

Similarly, from (9.2) we find the available power to be 
PA = 78.1 mW or PA = 18.93 dBm. Finally, the power delivered to 
the load is the available power multiplied by the transducer gain. 
This results in PL = PAGT = 98 1.4 mW , or, expressed in dBm, 

It is interesting to point out that the unilateral power gain 
often matches the actual transducer power gain very closely. As dis- 
cussed further; the use of the unilateral amplifier gain signijicantly 
simpli$es the amplijier design task. 

9.3 Stability Considerations 

9.3.1 Stability Circles 

One of the first requirements that an amplifier circuit must meet is a stable perfor- 
mance in the frequency range of interest. This is a particular concern when dealing with 
RF circuits, which tend to oscillate depending on operating frequency and termination. 
The phenomenon of oscillations can be understood in the context of a voltage wave 
along a transmission line. If Ira( > 1 , then the return voltage increases in magnitude 
(positive feedback) causing instability. Conversely, Ir0l < 1 causes a diminished return 
voltage wave (negative feedback). 

Let us regard the amplifier as a two-port network characterized through its S- 
parameters and external terminations described by TL and Ts. Stability then implies 
that the magnitudes of the reflection coefficients are less than unity. Namely, 

FLI < I7 lrsl< I (9.15a) 
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where A = SllS22 - S12S21 has been used to re-express (9.9a) and (9.9b). Since the S- 
parameters are fixed for a particular frequency, the only factors that have a parametric 
effect on the stability are TL and Ts . 

In terms of the amplifier's output port, we need to establish the condition for 
which (9.15b) is satisfied. To this end the complex quantities 

R I R I R I R I 
Sl l  = S, l+ jSl l ,S22  = S2,+jS2,,A = A + j A , T L  = r L + j T L  (9.16) 

are substituted into (9.15b), resulting after some algebra in the output stability circle 
equation 

where the circle radius is given by 

- lS12S2ll 
rout - 

lls2212 - 14 
and the center of this circle is located at 

* * 

as depicted in Figure 9-3(a). In terms of the input port, substituting (9.16) into (9.1%) 
yields the input stability circle equation 

where 

and 
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(a) Output stability circle (b) Input stability circle 

Figure 9-3 Stability circle ITin[ = 1 in the complex T, plane and stability circle 
ITout[ = 1 in the complex T, plane. 

When plotted in the T, -plane we obtain a response as schematically shown in Figure 
9-3(b). 

To interpret the meaning of Figure 9-3 correctly, a critical issue arises that is 
investigated for the output circle [Figure 9-3(a)], although the same argument holds for 
the input circle. If TL = 0 ,  then Irinl = ISll[ and two cases have to be differentiated 
depending on ISll[ < 1 or lSlll > 1 .  For lSlll < 1 ,  the origin (the point TL = 0 )  is part 
of the stable region, see Figure 9-4(a). However, for ISl1[ > 1 the matching condition 
TL = 0 results in (Tin( = ISl1( > 1 , i.e. the origin is part of the unstable region. In this 
case the only stable region is the shaded domain between the output stability circle 

I&/ = 1 and the ITL/ = 1 circle, see Figure 9-4(b). 
For completeness, Figure 9-5 shows the two stability domains for the input stabil- 

ity circle. The rule-of-thumb is the inspection if IS2,( < 1 , which leads to the conclu- 
sion that the center (Ts = 0 )  must be stable; otherwise the center becomes unstable for 

Is221 > 1 . 
Care has to be exercised in correctly interpreting the stability circles if the circle 

radius is larger than (Gin( or (Co,( . Figure 9-6 depicts the input stability circles for 
c 1 and the two possible stability domains depending on rin < (Cinl or rin > lCinl . 



\ Unstable 1 / 

(a) Shaded region is stable, 
since ISllI < 1 

(a) Stable region excludes the origin, 
r, = 0, since IS,,J > 1 

Figure 9-4 Output stability circles denoting stable and unstable regions. 

(a) IS22 1 < 1 (b) IS22 1 ' 1 

Figure 9-5 Input stability circles denoting stable and unstable regions 

9.3.2 Unconditional Stability 

As the name implies, unconditional stability refers to the situation where the 
amplifier remains stable throughout the entire domain of the Smith Chart at the selected 
frequency and bias conditions. This applies to both the input and output ports. For 
lS,,I < 1 and < 1 it is stated as 
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Figure 9-6 Different input stability regions for S221 < 1 depending on 
ratio between r ,  and ICin . 

In other words, the stability circles have to reside completely outside the lrsl = 1 and 
lrLl = 1 circles. In the following discussion we concentrate on the Ir,/ = 1 circle 
shown in Figure 9-7(a). It is shown in Example 9-2 that condition (9.23a) can be reex- 
pressed in terms of the stability or Rollett factor k: 

Alternatively, unconditional stability can also be viewed in terms of the Ts behavior in 
I 

the complex T,, = rfUt + jrout plane. Here, the /rs1 S 1 domain must reside com- 
pletely within the IrOutl = 1 circle, as depicted in Figure 9-7(b). Plotting Ir,( = 1 in 
the rout plane produces a circle whose center is located at 

and which possesses a radius of 
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(a) [r,,,l = 1 circle must reside outside (b) FSl = 1 circle must reside inside 

Figure 9-7 Unconditional stability in the T, and To,, planes for IS,,I < 1 . 

where the condition lCsl + rs < 1 must hold. We note that (9.25) can be rewritten as 
C ,  = (S22 -  AS;^)/(^ - ISl1I2) . Employing /Csl + r, < 1 and (9.26) it is seen that 

IS12S2~I < I - 1 ~ 1 1 1 ~  (9.27b) 

A similar analysis can be established for T L  in the complex rin plane. From the 
corresponding circle center C, and radius rL , we set ICLI = 0 and rs < 1 . Thus, 

/sl2s21/ < I - 1 ~ 2 2 1 ~  (9.28) 

However, as long as 1A1 < 1 , (9.24) remains the sufficient requirement to ensure uncon- 
ditional stability. This follows from the fact that when (9.27b) and (9.28) are added, it is 
seen that 

2ISl2S2,I < 2  - 1 ~ 1 1 1 ~  - 1 ~ 2 2 1 ~  

Introducing the inequality [A1 = ISllS22-S12S211 I ISllS221 + IS12S211 results in 
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1 1 2 I4 < 1 - 3(lsll12 + 1p22l2 - 21~1111~221) = 1 - Z(IS1ll - IS221) 

Since ( 1 /2)(ISllI - 1Sz2l l2 < 1 , it is seen that (9.27b) and (9.28) are equivalent to 

14 < 1 (9.29) 

.,&M w 
Example 9-2: Stability factor derivation 

Derive the stability factor k (Rollett factor) from (9.23a). 

Solution: Substituting (9.21) and (9.22) into (9.23a) gives 

2 
The term ISll - S22A1 in (9.30b) can be re-expressed as 

Is11 - $ 2 ~ 1  - ls12s121 

1p11l2 - b12 

Isll - @ I 2  = I S ~ ~ S ~ ~ ~ ~  + (1 - p2212)(~~1112 - 1 ~ 1 ~ )  ( 9 . 3 ~  

Squaring (9.30b) again and rearranging terms finally gives 

> 1 (9.30a) 

The terms inside the curly brackets are recognized as the desired sta- 
bility factor: 

Squaring and rearranging (9.30a) results in 

A stability analysis starting from (9.23b) would have resulted 
in exactly the same inequality. Thus, the stability factor k applies for 
both input and output ports. 
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It is always prudent to determine that both the [A1 < 1 and k > 1 conditions are 
fulfilled to ensure an unconditionally stable design. The next example investigates a 
transistor in common-emitter configuration in terms of its input and output stability 
behavior. 

c & M w  
Example 9-3: Stability circles for a BJT at different operating 

frequencies 

Determine the stability regions of the bipolar junction transistor 
BFG505W (Philips Semiconductors) biased at VCE = 6 V and 
Ic  = 4 rnA . The corresponding S-parameters as a function of fre- 
quency are given in Table 9- 1. 

Table 9-1 BFG505W Sparameters as a function of frequency 

I Frequency 

1250 MHz 

Solution: Based on the definitions for k, [A1 , Cin , Tin, Cout , and 
rout, we compute the values via a MATLAB routine (see m-file 
ex9-3.m). A summary of the results is given in Table 9-2 for the four 
frequencies listed in Table 9- 1. 

Table 9-2 Stability parameters for BFG505W for frequencies listed in 
Table 9-1 

k 

0.41 

0.60 

0.81 

1.02 

IAI 
0.69 

0.56 

0.45 

0.37 

'in 

39.04L108" 

62.21L119" 

206.231131" 

42.421143' 

'in 

38.62 

61.60 

205.42 

41.40 

Cout 

3.56170" 

4.12L70° 

4.39L69' 

4.24168' 

'-out 

3.03 

3.44 

3.54 

3.22 
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The example input and output stability circles for the frequen- 
cies of f = 750 MHz and f = 1.25 GHz are shown in Figure 9-8. 
We notice that lSlll < 1 and ISz2[ < 1 in all cases. This implies that 
the rL = 0 and Ts = 0 points are stable, indicating that the inte- 
rior domain of the Smith Chart up to the stability circles denotes the 
stable region. 

f = 1250 MHz 
f = 1250 MHz 

/ 

stagility 
circles 

0 

m 

r i i a 5 , 0  
4.2 

Figure 9-8 Input a n d  output stability circles for BFG505W computed 
750 MHz a n d  f = 1.25 GHz. 

Also, as can be seen from Figure 9-8 and Table 9-2, the transis- 
tor is unconditionally stable at f = 1.25 GHz and both input and 
output stability circles are located completely outside of the IT1 = 1 
circle. At all other frequencies transistor is potentially unstable. 

The stability circles are not only affected byfrequency, but also 
by the bias conditions. We recall that the S-parameters are given for 
particular bias conditions. The entire stability analysis must be 
repeated if biasing, or even temperature, changes. 
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Even though k can vary widely, most unstable practical designs fall into the range 
0 l k l 1 . Oscillators, discussed in Chapter 10, target the entire Smith Chart as the 
unstable domain, resulting in negative values of k. It is also interesting to observe that 
in the absence of any output to input feedback ( S , ,  = 0 )  the transistor is inherently 
stable, since the stability factor yields k + = . In practice, one often examines k alone 
without paying attention to the )A) < 1 condition. This can cause potential problems, as 
the following example highlights. 

Y V & M  W 
Example 9-4: Stable versus unstable region of a transistor 

Investigate the stability regions of a transistor whose S-parameters 
are recorded as follows: S l l  = 0.71-70°, S I 2  = 0.21-lo0, 
S,, = 5 .5LU0,  and S22 = 0.71-45' 

Solution: We again compute the values k, [A/ , Cin , T i n ,  Gout, 
and rout. The results are k = 1.15, /A1 = 1.58, C ,  = 0.21152", 
rin = 0.54, Cou, = 0.21 L27", and rout = 0.54 (see Figure 9-9). 
It is seen that even though k > 1 , the transistor is still potentially 
unstable because IAI > 1 . This results in input and output stability 

circle 

Figure 9-9 Stability circles for k > 1 and IAI > 1 . 
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circles being located inside of the Smith Chart. Since both IS, ,I and 
IS2,[ are less than unity, the center of the Smith Chart is a stable 
point. Therefore, since ICinl < rin and ICoutI < rout, the area inside 
of the stability circles represents the stable region, as shown in Fig- 
ure 9-9. 

Usually manufacturers avoid producing transistors with both 
k > 1 and IAI > 1 by incorporating matching networks housed 
inside the transistor casing. 

9.3.3 Stabilization Methods 

If the operation of a FET or BJT is found to be unstable in the desired frequency 
range, an attempt can be made to stabilize the transistor. We recall that Irinl > 1 and 
IrOutl > 1 can be written in terms of the input and output impedances: 

> 1 and lrou,l = 

which imply Re{Zin} < 0 and Re{Zout} < 0 .  One way to stabilize the active device is 
to add a series resistance or a shunt conductance to the port. Figure 9- 10 shows the con- 
figuration for the input port. This loading in conjunction with Re{Z,} must compen- 
sate the negative contribution of Re{Zin} . Thus, we require 

Re{Zin + Rin' + Zs} > 0 or Re{ Yin + Gin' + Y,} > 0 (9.3 la) 

Source C 
Zin 

(a) Series resistance 
T n  

(b) Shunt conductance 

Figure 9-10 Stabilization of input port through series resistance or shunt 
conductance. 
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Following an identical argument, Figure 9-1 1 shows the stabilization of the output port. 
The corresponding condition is 

Z O U I  YO", 

(a) Series resistance (b) Shunt conductance 

zoul+~out' 

You, + Gout' 

Figure 9-1 1 Stabilization of output port through series resistance or shunt 
conductance. 

- - .  

--.  

The next example explains the stabilization procedure for transistor. 

- " 
Active device 

+ Load Active device 
(BJT or FET) (BIT or FET) 

5 & M w  
Example 9-5: Stabilization of a BJT 

Using the transistor BFG505W from Example 9-3 operated at 
f = 750 MHz (and with the S-parameters given as follows: 
S1, = 0.561-78", S2, = 0.05L33", SI2 = 8.64L122", and 
S22 = 0.661-42"), attempt to stabilize the transistor by finding a 
series resistor or shunt conductance for the input and output ports. 

Solution: With given S-parameters we can identify the input and 
output stability circles by computing their radii and center positions: 
C i n =  62.21L119", r i n =  61.60, and C0,,=4.12L7O0, 
rout = 3.44. The corresponding stability circles are shown in Figure 
9-12. A constant resistance circle r' = 0.33 in the 2-chart indicates 
the minimal series resistance that has to be connected to the input of 
the transistor to make this port stable. If a passive network is con- 
nected in series to the resistor with the value of 
Rinr = r'Zo = 16.5 Q ,  then the combined impedance will be 
located inside of the r' = 0.33 circle and therefore in the stable 
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region. Similarly, by tracing a constant conductance circle g' = 2.8 
we find the shunt admittance Gin' = g'/Zo = 56 mS that stabilizes 
the input of the transistor. This time any passive network connected to 
Ginr will have the combined admittance residing inside of the 
g' = 2.8 circle in the Y-chart, which is inside the stable region for the 
input port of the transistor. 

circle 

Figure 9-12 Input and output stability circles and circles for finding stabilizing 
series resistance and shunt conductances. 

Following an identical procedure we can find a series resistance of 
R,,,' = 40 s2 and a shunt conductance Goutr = 6.2 mS, which 
stabilize the output port of the transistor. 

Due to the coupling between input and output ports of the 
transistor it is usually sufJicient to stabilize one port. The choice of 
which port is generally up to the circuit designel: However; one 



Constant Gain 

attempts to avoid resistive elements at the input port since they 
cause additional noise to be amplijied. 

Stabilization through the addition of resistors comes at a prize: the impedance 
matching can suffer, there may be a loss in power flow, and the noise figure typically 
worsens due to the additional thermal noise sources that the resistors present. 

9.4 Constant Gain 

9.4.1 Unilateral Design 

Besides ensuring stability, the need to obtain a desired gain performance is 
another important consideration in the amplifier design task, If, as sometimes done in 
practice, the influence of the transistor's feedback is neglected (S12 = 0), we can 
employ the unilateral power gain GTU described by (9.12). This equation is rewritten 
such that the individual contributions of the matching networks become identifiable. 
With reference to Figure 9-13, we write 

where the individual blocks are 

r," ",, rout s 2 2  

Figure 9-13 Unilateral power gain system arrangement. 

Because most gain calculations are done in dB, (9.32) is frequently expressed as 
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where Gs and GL are gains associated with input and output matching networks and Go 
is the insertion gain of the transistor. As seen from (9.33), the network gains can be 
greater than unity which at first glance might appear stronger since they do not contain 
any active devices. The reason for this seemingly contradictory behavior is that without 
any matching a significant power loss can occur at the input and output sides of the 
amplifier. The use of Gs and GL attempts to reduce these inherent losses, which is con- 
sidered a gain. 

If ISl,I and IS221 are less than unity, the maximal unilateral power gain FTUmax 
results when both input and output are matched (i.e., Ts = Sll  and TL = S22). For 
this case it is seen that 

The contributions from Gs and GL can be normalized with respect to their maximum 
values such that 

where the normalized gain is given in both cases as 0 I gi I 1 , with i = S, L . 
Even though we have explicit gain equations for the input and output matching net- 

works, they are not directly usable in terms of providing parametric curves of constant 
gain. The key question that must be answered is formulated as follows: For a given S1 
(or S22 ) and a desired normalized gain gs (or g,), what is the range of values for Ts 
(or rL ) that achieves a particulargain? The solution requires the inversion of (9.37) 

for the reflection coefficient Ti.  Here ii = 11, 22 depending on i = S, L . The result is 
a set of circles with center locations at 
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and radii of size 

Example 9-6 details the necessary steps to derive the unilateral constant gain circle 
equations (9.39) and (9.40). 

W&MW 
Example 9-6: Derivation of the constant gain circles 

Find the expressions for dg, and rg, as given in (9.39) and (9.40). 

Solution: The derivation begins with (9.38), which is rewritten 
as 

2  * *  2 2 
1 + S - S - S )  = 1 - S - lTil + 1~~~1~1r~1~ (9.41a) 

The reflection coefficient Ti can be factored out such that 

This equation is the complex form of a circle expression 
2 

(q-dgi)(T;  -d* gi ) = r gi (9.41~) 

with 

Multiplying out (9.41~) results in the more familiar from 
R R 2  I 1 2  2 

(Ti -dgi) + ( r i  - dgi) = rgi (9.41d) 
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where superscripts R and I denote real and imaginary parts of Ti 
and dgi . 

Because of the unilateral assumption we are able to derive 
separate gain circle equations for input and output ports. 

The following observations can be made from the constant gain circle equations 
(9.39) and (9.40): 

2 .  
The maximum gain Gi, = 1 /( 1 - ISii[ ) is obtained for Ti = s:, , which coin- 
cides with the gain circle whose center is at dgi = Sii and of radius rgi = 0.  

The constant gain circles all have their centers on a line connecting the origin to * 
Sii . The smaller the gain values, the closer the center dgi moves to the origin and 
the larger the radius rgi . 

2 
*For the special case Ti = 0 ,  the normalized gain becomes gi = 1 - lSiil and 

2 
both dgi and rgi have the same value dgi = rg, = lSii/(l  + lsiil ) . This implies 
that the Gi = 1 (or 0 dB) circle always passes through the origin of the Ti -plane. 

Example 9-7 demonstrates the source gain circles for an amplifier design under 
unilateral approximation. 

-- - 
-&Mw 

Example 9-7: Computation of the source gain circles for a uni- 
- - A-*  

lateral design 

A FET is operated at f = 4 GHz and is biased such that 
S,, = O.7Ll25" . It is assumed that the transistor is uncondition- 
ally stable so that the unilateral approximation can be applied. Find 
the maximum source gain G,,, and plot the constant source gain 
circles for several values of Gs . 

Solution: First we find the maximum source gain Gs,,, using 
(9.35). The result is 
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We can now plot the constant gain circles by using (9.39) and (9.40) 
for the computation of circle centers dgs and radii rgs . A summary 
of several arbitrary source gains Gs is presented in Table 9-3. 

Table 9-3 Parameters for constant source gain circles 
in Example 9-7. 

As seen from Table 9-3, the radius rgS of the Gs = 0 dB circle 
is equal to the magnitude of its center position dgs and the circle 
indeed passes through the center of the Smith Chart. We also 
observe that the centers for all Gs circles are located on the 
O = LS,,* = -125" line, and as Gs approaches G,,, , the 
radius of the corresponding circle reduces to zero and its center 
position becomes Sll* = 0.71-125" . 

Figure 9-14 illustrates the source gain circles based on the 
computed numerical values given in Table 9-3. The figure points out 
clearly that, despite the input matching network being passive, the 
gain can be greater than 0 dB, indicating amplification. The physical 
meaning for such a behavior lies in the fact that the matching net- 
work reduces the input reflection coefficient of the overall system, 
thus effectively creating an "additional" gain. 
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-1.0 

Figure 9-14 Constant source gain circles in the Smith Chart. 

The underlying assumption of this example is that the gain 
associated with the matched input port is not affected by the output 
since the unilateral approximation neglects the reverse gain. 

We next discuss a typical application that requires the use of the constant gain circle 
approach. Specifically, let us develop a unilateral amplifier for a predetermined fixed 
gain value. 

.,&M w 
Example 9-8: Design of a 18 dB single-stage MESFET ampli- 

fier operated at 5.7 GHz 

A MESFET operated at 5.7 GHz has the following S-parameters: 
Sll  = 0.5L-60°, S12 = 0.02L0°, ,692, = 6.5Ll15', and 
S2, = 0.6L-35". 

(a) Determine if the circuit is unconditionally stable. 



Constant Gain 

(b) Find the maximum power gain under optimal choice of the 
reflection coefficients, assuming the unilateral design (S12 = 0). 

(c) Adjust the load reflection coefficient such that the desired gain is 
realized using the concept of constant gain circles. 

Solution: (a) The stability of the device is tested via (9.24) and 
(9.29), with the results 

and 

(A] = (SllS22 - S12S21( = 0.42 

Because k > 1 and )A) < 1 , the transistor is unconditionally stable. 

(b) We next compute the maximum gain for the optimal choice of 
the reflection coefficients (i.e., rL 

2 
Go = )S211 = 42.25 or 16.26 dB 

Therefore, the maximum unilateral transducer gain is given by 
- GTUmax - GsmaxGoGLm,, = 88.02 or 19.45 dB 

(c) Since the source matching network (Ts = Sll* ) and the transis- 
tor combined already provide a gain of 17.51 dB, we have to chose 
r, in such a way that GL = 0.49 dB. This means that T, has to 
reside on the rgL = 0.38, dgL = 0.48135' circle, as shown in Fig- 
ure 9-15. If we choose TL = 0.03 + j0.17, the output matching net- 
work reduces to a single element (i.e., a series inductor with a value 
of L = 0.49 nH) provided the load is equal to the characteristic 
impedance (2, = Zo). 
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-1.0 

Figure 9-15 Constant load gain circle in the Smith Chart. 

I f  the amplijier is operated over a range of frequencies, the 
gain has to be determined for a corresponding number of discrete 
frequency points due to the changing S-parameters. 

For the case where (Siil > 1 ( i i  = 1 1  for the input port and i i  = 22 for the out- 
put port) it is possible for a passive network to produce an infinite value of Gi  ( i  = S 
or L ,  respectively). This situation occurs when T i  = S i l ,  meaning that the real com- 
ponent of the impedance associated with T i  is equal in magnitude to the negative resis- 
tance related to Si i .  Thus, the two resistances cancel each other and oscillations will 
result: the amplifier is unstable. To avoid this problem, we plot the constant gain circles 
for ISii( > 1 and the corresponding stability circle and choose Ti in such a way that it is 
located on the desired gain circle but also resides inside the stable region. 

9.4.2 Unilateral Figure of Merit 

The unilateral design approach discussed in Example 9-8 involves the approxima- 
tion that the feedback effect, or the reverse gain, of the amplifier is negligible 
(S12 = 0).  TO estimate the error due to this assumption, the ratio between the trans- 
ducer gain GT , which takes into account S 1 2 ,  and the unilateral transducer gain GTu 
can be formed. Using definitions (9.8) and (9.12), we find 
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where GT I GTU . 
The maximum value of GTU,  and therefore the maximum error, is obtained for 

* 
the input and output matching conditions (Ts = S , ,  and TL = S22). Therefore, (9.42) 
becomes 

This can be used to set bounds on the error fluctuation 

where U is known as the frequency-dependent unilateral figure of merit: 

To justify a unilateral amplifier design approach, this figure of merit should be as small 
as possible. In the limit, as GT approaches GTu for the ideal case of SI2 = 0 ,  we see 
that the error does indeed vanish (i.e., U = 0 ). 

Y , & M  W4 
Example 9-9: Unilateral design applicability test 

For the amplifier discussed in Example 9-8 estimate the error that is 
introduced by making the unilateral design approximation. 

Solution: Substituting the S-parameter values into (9.43, the 
unilateral figure of merit is found to be 
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The maximum error can then be estimated from (9.44): 

This implies that the theoretical value for the transducer gain can 
deviate from its unilateral approximation by as much as 18%. Prac- 
tically, however, the actual difference often is much smaller. This 
becomes apparent if we substitute the values obtained in Example 
9-8 into the transducer power gain definition (9.8). It is found that 
GT = 62.86 or 17.98 dB, which compares favorably with 
GTU = 63.10 or 18 dB. In other words, we introduced an error of 
less than 1%. 

The unilateral jigure of merit computation constitutes a very 
conservative, worst case error estimation. 

9.4.3 Bilateral Design 

For many practical situations the unilateral approach may not be appropriate 
because the error committed by setting S12 = 0 could result in an intolerably impre- 
cise design. The bilateral design takes into account this feedback. Instead of the unilat- * * 
era1 matching T s  = Sll  and T L  = S22, it deals with the complete equations [see 
(9.15b) and (9.15c)l for the input and output reflection coefficients 

which require a simultaneous conjugate match. The meaning of simultaneous implies 
that matched source and load reflection coefficients rMS and rML have to be found 
that satisfy both coupled equations. If the device is potentially unstable, then a simulta- 
neous complex conjugate does not exist. The solution approach to obtain these optimal 
coefficients is outlined in Example 9-10. The final results, for the matched source 
reflection coefficient rMs is 
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where 

2 2 2 C1 = Sll  -&A and B1 = 1 - S - A + IS,,I 

Similarly, the matched load reflection coefficient rML is 

where 

C2 = S2, - S;,A and B2 = 1 -  IS,,^^ - 1A12 +  IS^^^^ (9.50) 

The solutions (9.47) and (9.49) are derived under the assumption of unconditional 
stability. 

With rML and rMS given by (9.47) and (9.49), the optimal matching can be 
rewritten as 

and 

(9.5 la) 

It is noted that the unilateral approach, which decouples input and output ports, is a 
subset of the bilateral design approach. 

c m w  
Example 9-10: Derivation of simultaneous conjugate matched 

reflection coefficients 

Derive the reflection coefficient expression (9.47). 

Solution: Starting from (9.46a) and (9.46b), we see that 
* 

( 1  - S & ) ( ~ S  - S11) = r~S12S21 (9.5 2a) 
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(9.52b) 

Solving (9.52a) for r, yields 

Substituting (9.52~) into (9.52b) results, after some algebra, in 

(9.5 2d) 
2 2 Identifying C = ( S  -S2A) ,  B, = (1 + ISllI -IS2,[ - 1 ~ 1 ~ )  

leads to the standard quadratic equation 

whose solution is 

The negative sign in front of the square root is picked to ensure sta- 
bility (k  > 1 ). 

An identical analysis approach for the load side leads to a 
quadratic equation for rL whose solution yields rML. 

Example 9-1 1 demonstrates the use of simultaneously complex conjugate reflec- 
tion coefficients for the design of an amplifier with maximum gain. 

w&Mw 
Example 9-11: Amplifier design for maximum gain 

A BJT with I c  = 10 mA and VcE = 6 V is operated at a fre- 
quency of f = 2.4 GHz. The corresponding S-parameters are: 
Sl l  = 0.3L30°, S12 = 0.21-60°, S2, = 2.51-80°, and 
S22 = 0.21-15'. Determine whether the transistor is uncondition- 
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ally stable and find the values for source and load reflection coeffi- 
cients that provide maximum gain. 

Solution: The stability of the transistor is determined by com- 
puting k and ]A1 based on (9.24) and (9.29) with the explicit result 
of k = 1.18, IAI = 0.56. Since k > 1 and lAl < 1 , the transistor is 
unconditionally stable. 

As we see from the S-parameters of the transistor, S12 has a 
relatively large magnitude and the use of the unilateral design 
method for the amplifier does not appear appropriate, suggesting the 
bilateral approach instead. 

Using (9.48) and (9.50), we find the coefficients 
C ,  =0.19+ j0 .06 ,  B ,  =0.74 ,  and C2 = 0.03+j0.07, 
B2 = 0.64, which allow us to compute the simultaneously complex 
conjugate source and load reflection coefficients 
rMS = 0.301- 18 and rML = O.12L69 , respectively. It should 
be noted that these values differ significantly from s;, and s i2 ,  
which are the basis for the unilateral design. 

Applying (9.8), with TL and Ts replaced by TML and TMs, 
we find the transducer gain to be GT = 8.42 dB. This also happens 
to be the maximum transducer gain GTmax. 

The discrepancy between unilateral and bilateral gain is best * 
seen in the large diferences in phase between Sll and rMS as well * 
as SZ2 and rML . 

9.4.4 Operating and Available Power Gain Circles 
For the situation where the reverse gain of S12 cannot be neglected, the input 

impedance is dependent on the load reflection coefficient. Conversely, the output 
impedance becomes a function of the source reflection coefficient. Because of this 
mutual coupling, the unilateral approach described in Section 9.4.1 is not appropriate to 
design an amplifier for a predetermined gain. 

In the bilateral case, which takes into account the mutual coupling between input 
and output ports, there are two alternative design methods to develop amplifiers with a 
specified gain. 
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The first method is based on the use of the operating power gain G given by 
(9.14). Here we attempt to find the load reflection coefficient r L ,  assuming that the 
source is complex conjugate matched to the input reflection coefficient [i.e., Ts = T:~, 
where Tin is computed based on (9.9a)l. This method yields an input voltage standing 
wave ratio of VSWR, = 1 . 

The second method uses the available power gain GA definition of (9.13). * In this 
case we assume perfect match on the output side of the amplifier (TL = Tout), and the 
load is chosen in such a way as to satisfy the gain requirement. This method is prefera- 
ble if the output standing wave ratio should be unity (i.e., VSWR,,, = 1 ). 

Operating Power Gain 
To develop the design procedure based on using the operating power gain (and 

thus ensuring VSWR, = I), we rewrite (9.14) in the form 

where we use (9.9a) for Tin. The factor go defines a proportionality factor given by 

As shown in Example 9-12, (9.54) can be rewritten in terms of a circle equation 
for the load reflection coefficient TL ; that is, 

I ~ L  -41 = rgo (9.55) 

where the center position dgo is 

and the radius rgo is defined as 

with k denoting the Roulette stability factor as defined in (9.24). 
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.,&M w- 
Example 9-12: Operating power gain circle derivation 

Starting from (9.54), derive the circle equation (9.55) in the complex 
rL -plane. 

Solution: First we rewrite (9.54) in the form 

After multiplying both sides of (9.58) by the denominator and rear- 
ranging terms, we see that 

lrL12[ 1 + g0(p2212 - I ~ 1 ~ ) 1  - 2 g o ~ e { r L ( ~ 2 2  -  AS;^)} = (9.59) 
2 

= I  -go(l  -p111  ) 

Dividing (9.59) by [ I  + g0(IS2212 - 1AI2)] , we find 

This equation can already be recognized as a circle equation of the 
form irL-dgo12 - 2 , where the circle center dgo is given by 
(9.56) and the radisr;io is computed from 

- - 1 - 2gop12S2,1k - g,2M 
11 + g0(p2212 - lAI2)l2 

where k is the stability factor defined in (9.24) and M is a constant 
given by 
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M = (1 - I s ~ ~ ~ ) ( I S ~ ~ ~ ~ -  b12) - Is22 - A S ; I ~  = -1S12S211' 

Thus, for the square of the circle radius we obtain 

which agrees with (9.57). 

The following example demonstrates the design of an amplifier based on the bilat- 
eral method. It targets a specified gain using the constant operating gain circle 
approach. 

S & M W  
Example 9-13: Amplifier design using the constant operating 

gain circles 

Use the same BJT as described in Example 9-11, but instead of 
GTmax = 8.42 dB, design an amplifier with 8 dB power gain. In 
addition, ensure a perfect match on the input port of the amplifier. 

Solution: As shown in Example 9-1 1, the transistor is uncondi- 
tionally stable. Because a perfect match on the input port must be 
maintained, we employ the operating power gain circles in our 
design. 

First we compute the value of factor go ; that is, 

where G = 6.31 is the required 8 dB operating gain. Substituting 
go into (9.56) and (9.57), we find center and radius of the constant 
operating gain circle in the T L  -plane. The corresponding values are 
dgo = 0.11169" and rgo = 0.35. The constant gain circle is 
shown in Figure 9- 16. 
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Figure 9-16 Constant operating power circle in the TL -plane. 

There is a great variety of possible choices for the load reflec- 
tion coefficient that ensures a G = 8 dB operating gain. To simplify 
the output matching network, we pick TL at the intersection of the 
constant gain circle with the constant resistance circle r = 1 (see 
Figure 9-16). The value obtained at that point is TL = 0.261-75'. 
With rL known, we can next find the source reflection coefficient 
that must be the conjugate to the input refection coefficient as given 
in (9.9a): 

Based on the previously computed values, we check the correctness 
of our approach. Substituting Tin and TL into (9.10), we find that 
the transducer power gain is indeed 8 dB. 



500 Chapter 9 RF Trfanslstor Amplltier Deslgns 

The complexity of the input matching network is directly 
affected by the appropriate choice of TL because of the requirement 
Ts = T;n where Tin is afunction of rL. 

In Example 9-13 we pick the value of T ,  arbitrarily (residing on the desired gain 
circle) and compute a corresponding input impedance such that T ,  = Ti*, , assuming 
that there are no restrictions imposed on the value of T ,  . Unfortunately, in many prac- 
tical applications, T ,  has to satisfy certain constraints (for example, to stay within a 
desired noise performance). Such additional conditions may therefore restrict our free- 
dom in using r, and, as a consequence, limit the possible choices for TL . One way to 
satisfy both requirements ( T L  residing within an appropriate gain circle, and Ts sat- 
isfy a particular noise requirement) is via trial-and-error, whereby we arbitrarily pick 
TL and see whether the corresponding Ts meets design specifications. This method is 
simple but very tedious and time-consuming. 

A more scientific approach relies upon mapping the constant gain circle (9.55) in 
the TL -plane into a circle in the T ,  -plane, i.e., 

where the equations for the circle radius rgs and its center dgs are obtained from the 
requirement that T s  = Tyn . This can be written as 

Substituting (9.62) into (9.55) gives us 

which can be rewritten in the form of (9.60), where the circle radius is 
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and the center is given by 

The derivation of (9.64) and (9.65) is left as a problem at the end of this chapter. The 
example of constant gain circle mapping is discussed further in Section 9.5, Example 
9-14. 

Available Power Gain 
In those cases where perfect matching on the output side of the amplifier is 

required (VS WR,, = 1 ), the available power gain approach should be used instead of 
the previously presented operating gain method. For this situation, a constant available 
gain circle equation can be derived in the same fashion as (9.55) is obtained. The result 
of such a derivation is a circle equation which relates the source reflection coefficient to 
the desired gain: 

l r ~ - d g a l  = rga (9.66) 

where the center position dga is 

and the radius rga is defined as 

The proportionality factor g, is computed as 

where GA is the desired power level. 
Similar to the constant operating power circles, a constant available power circle 

can be mapped into the TL -plane using 

I ~ L  - = 5 1  (9.70) 

with the circle radius given by 
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and the center location defined by 

We see that rgl and dg,  for VS WR,, = 1 have their correspondence to rgs and 
dgs for VSWRin = 1 with S I 1  in (9.71) and (9.72) replaced by S22. 

9.5 Noise Figure Circles 
In many RF amplifiers, the need for signal amplification at low noise level 

becomes an essential system requirement. Unfortunately, designing a low-noise ampli- 
fier competes with such factors as stability and gain. For instance, a minimum noise 
performance at maximum gain cannot be obtained. It is therefore important to develop 
a method that allows us to display the influence of noise as part of the Smith Chart to 
conduct comparisons and observe trade-offs between gain and stability. 

From a practical perspective, the key ingredient of a noise analysis is the noise 
figure of a two-port amplifier in the admittance form 

or in the equivalent impedance representation 

where Zs = l/Ys is the source impedance. 
Both expressions are derived in Appendix H. When using transistors, typically 

four noise parameters are known either through datasheets from the FET or BJT manu- 
facturers or through direct measurements. They are: 

The minimum (also called optimum) noise figure F f i n  whose behavior depends 

on biasing condition and operating frequency. If the device were noise free, we 
would obtain F,, = 1 . 
The equivalent noise resistance Rn = 1 /Gn of the device. 
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The optimum source admittance Yopt = Gopt + jBopt = 1 /Zopt . Instead of the 

impedance or admittance, the optimum reflection coefficient Topt is often listed. 

The relationship between Yopt and Top, is given by 

Since the S-parameter representation is a more suitable choice for high-frequency 
designs, we convert (9.73) into a form that replaces the admittances by reflection coeffi- 
cients. Besides (9.75) we use 

2 2 in (9.73). Recognizing that Gs can be written as GS = Yo(l - ITS\ )/I1 + rsl , the 
final result becomes 

In (9.77) the quantities F,, , R , ,  and Topt are known. In general, the design engineer 
has the freedom to adjust Ts to affect the noise figure. For Ts = Top, we see that the 
lowest possible noise figure is achieved, F = F,, . To answer the question of how a 
particular noise figure, let us say Fk , relates to Ts , (9.77) is put into the form 

which on the right-hand side already suggests the form of a circle equation. Introducing 
a constant Qk such that 

and rearranging terms gives 
2 

(1 + ~ ~ ) l r ~ l ~  - 2 ~ e { r ~ r k ~ }  + lroPtl = Qt (9.80) 

Division by ( 1 + Q,) and forming a complete square yields, after some algebra, 
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This is the required circle equation in standard form that can be displayed as part of the 
Smith Chart: 

with the circle center location dFk denoted by the complex number 

R I 1 opt 
d ~ k  

= dFk + JdFk = - 
1 + Qk 

and the associated radius 

There are two noteworthy conclusions that can be drawn from (9.83) and (9.84): 

The minimum noise figure is obtained for Fk = Frnin, which coincides with the 
location dFk = rapt and radius rFk = 0 .  
All constant noise circles have their centers located along a line drawn from the 
origin to point T,, . The larger the noise figure, the closer the center dFk moves to 
the origin and the larger the radius rFk . 

The following example points out the trade-offs between gain and noise figure for 
a small-signal amplifier. 

.,&M w 
Example 9-14: Design of a small-signal amplifier for minimum 

noise figure and specified gain 

Using the same transistor as in Example 9-13, design a low-noise 
power amplifier with 8 dB gain and a noise figure that is less than 
1.6 dB. Assume that the transistor has the following noise parame- 
ters: Frni, = 1.5 dB , R, = 4 R , and rapt = 0.5145 . 

Solution: The noise figure is independent of the load reflection 
coefficient. However, it is a function of the source impedance. It is 
therefore convenient to map the constant gain circle obtained in 
Example 9-13 into the rs-plane. Applying equations (9.64) and 
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(9.65) and values from Example 9-13, we find the center and radius 
of the mapped constant gain circle: dgs = 0.29L-18' and 
r = 0.18 . A Ts residing anywhere on this circle will satisfy our 

s 
gam requirement. However, for the noise figure specifications to be 
met we have to ensure that Ts resides inside the Fk = 2 dB con- 
stant noise circle. 

The noise circle center and its radius are computed using 
(9.83) and (9.84), respectively. They are listed below together with 
the coefficient Qk , see (9.79): 

Qk = 0.2, dFk = 0.42L45O, rFk = 0.36 

The obtained G = 8 dB and Fk = 1.6 dB circles are shown in Fig- 
ure 9-17. 

Figure 9-17 Constant noise figure circle and constant operating gain circle 
mapped into the Ts -plane. 

Notice that the maximum power gain is obtained at the point 
where rMS = 0.30L-18 (see Example 9- 11 for the detailed com- 
putations). However, the minimum noise figure is obtained at 
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rs = rapt = 0SL45', which shows for this example that it is 
impossible to achieve maximum gain and minimum noise figure 
simultaneously. Clearly, some compromises have to be made. 

To minimize the noise figure for a given gain, we should pick 
the source reflection coefficient as close as possible to the location 
of Top while still residing on the constant gain circle. Arbitrarily 
choosing Ts  = 0.29L19" , the corresponding load reflection coeffi- 
cient is found to be rL = 0.45L50° by applying (9.62). The 
obtained amplifier noise figure is then computed using (9.77): 

The requirements of maximum gain and minimum noise jigure 
will always be design trade-offs and cannot be met simultaneously. 

9.6 Constant VSWR Circles 
In many cases the amplifier has to stay below a specified VSWR as measured at 

the input or output port of the amplifier. Typical values range between 
1.5 I VSWR 52.5.  As we know from our discussion in Chapter 8, the purpose of 
matching networks is primarily motivated by the desire to reduce the VSWR at the tran- 
sistor. The complication arises from the fact that the input VSWR (or VSWRm) is 
determined at the input matching network (IMN), which in turn is affected by the active 
device, and, through feedback, by the output matching network (OMN). Conversely, the 
output VSWR (or VSWRoMN) is determined by the OMN and, again through feedback, 
by the IMN. This calls for a bilateral design approach, as discussed in Section 9.4.3. 

To set the stage, let us consider the arrangement depicted in Figure 9-18. The two 
VSWRs that are part of an RF amplifier specification are 

The reflection coefficients r IMN,  roMN require further clarification. If we concentrate 
on r IMN,  it is apparent from Section 9.2.1 that the input power Pi, (under the assump- 
tion I?$ = 0 ) can be expressed as a function of the available power PA : 
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Figure 9-18 System configuration for input and output VSWR. 

Postulating that the matching network is lossless, the same power is also present at the 
input terminal of the active device 

in the absence of any matching. Setting both equations equal and solving for lrIMNl 
yields 

Equation (9.88) can be converted into a circle equation for T s  that is centered at loca- 
tion dVIMN with radius rVIMN such that 

where 

and 

Here the subscript Vm in dvIMN and rvIMN is used to denote the VSWR at the 
IMN location. 



508 Chapter 9 RF Transistor Amplifier Designs 

In an identical procedure, the circle equation for the output VSWR is found. The 
voltage source is attached to the output side and impedance ZL is treated as source 
impedance, whereas Zs is the load impedance. Therefore, in a perfectly analogous way 
the output reflection coefficient becomes 

We convert (9.92) into a circle equation for TL that is centered at location dvOMN with 
radius rVoMN such that 

where 

and 

r.. - - ( 1 - lroutl 2, l ~ o M N l  

The previous derivations allow us to draw the following conclusions regarding the con- 
stant VSWR circles: 

For minimum VSWR (on the input side: VSWRIMN = 1 , lrIMNl = 0 ; on the 

output side: VSWRoMN = 1 ,  IroMNI = 0 )  the circles are located at 
* 

= Ti, (for the input) and dVoMN = (for the output) 
d ~ + , M N l  = o I I ~ ~ ~ ~ I  = 0 

with both radii equal to zero. 

All VSWR circles reside on the line extending from the origin to T:, (input) or 
rEut (output). 

It is important to be aware of the fact that under bilateral matching the input and 
output reflection coefficients are functions of source and load reflection coefficients 
(Ts, rL) .  Therefore, the input and output VSWR circles cannot be plotted simulta- 
neously, but rather have to be considered one at a time in the iterative process of adjust- 
ing Ts and rL. 
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c m w -  
Example 9-15: Constant VSWR design for given gain and noise 

figure 

Using the results of Example 9- 14, plot the VSWR,, = 1.5 circle in 
the rs-plane as part of the Smith Chart. Plot the graph of 
VSWRom as a function of the T s  position for a VSWR,, = 1.5. 
Find Ts that gives a minimum reflection on the output port of the 
amplifier and compute its corresponding gain. 

Solution: In Example 9-14 we have found rs = 0.29119" and 
rL = 0.45L50° as source and load reflection coefficients that meet 
specifications in terms of power gain and noise figure. Since we use 
the design based on constant operating gain circles, we obtain a per- 
fect match at the input port of the amplifier. However, the output 
port is mismatched and the VSWRo,, can be computed from 
lrOMNl , which is found from (9.92) in conjunction with (9.9b): 

The result is 

To improve the VSWRom, we can relax the requirements on 
VSWR,, and introduce some mismatch at the input. If we set 
VSWRm, = 1.5, the corresponding input VSWR circle can be plot- 
ted in the Smith Chart, as shown in Figure 9-19. 

The center of the VSWR,, = 1.5 circle and its radius are 
found from (9.90) and (9.91), respectively. The numerical values 
yield dYIMN = 0.28L19' and rVIMN = 0.18 . 

Every point on the VSWRMN = 1.5 circle can be expressed 
in the polar form 

rs = dvIMN + rv,,,exp(ja) 

where the angle a changes from 0 to 360'. As a changes, we 
obtain a changing Ts , which in turn results in a corresponding rout 
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Figure 9-19 Constant operating power gain, noise figure, and input VSWR circle 
in Ts -plane. 

and a computed VSWRom. The graph of such a dependence is 
shown in Figure 9-20. 

As can be observed in Figure 9-20, the V S W , ,  reaches its 
minimum value of 1.37 at approximately a = 85'. The corre- 
sponding source and output reflection coefficients, transducer gain, 
and noise figure are as follows: 

Ts = 0.39L45', r,,, = 0.32L-52' 

G ,  = 7.82 dB, F = 1.51 dB 

An improvement in VSWRom has been achieved at the expense of 
a reduced gain. If the gain reduction becomes unacceptable, then 
both source and load reflection coefficients have to be adjusted 
simultaneously. 

Many specijkations explicitly prescribe a maximum tolerable 
VSWR that the ampl$er design must meet. This becomes particu- 
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Angle a, deg. 

Figure 9-20 Input and output VSWR as a function of angle a 

lady important when dealing with system integration issues where 
several units are cascaded. 

9.7 Broadband, High-Power, and Multistage Amplifiers 

9.7.1 Broadband Amplifiers 

Many modulation and coding circuits require amplifier with a wide or broad fre- 
quency band of operation. From the RF point of view, one of the major problems in 
broadband amplifier design is the limitation imposed by the gain-bandwidth product of 
the active device. As pointed out in Chapter 7, any active device has a gain roll-off at 
higher frequencies due to the base-collector capacitance in the BJTs or the gate-source 
and gate-drain capacitances in the FETs. Eventually, as the frequency reaches the transi- 
tion frequency f T ,  the transistor stops functioning as an amplifier and turns attenuative. 

Unfortunately IS2,) seldom remains constant over the wide frequency band of 
operation, necessitating compensation measures. Besides forward gain IS211 degrada- 
tion, other complications that arise in the design of broadband amplifiers include 
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Increase in the reverse gain ISl2) , which degrades the overall gain even further 

and increases the possibility for a device to fall into oscillation 

Frequency variation of S1 and S22 
Noise figure degradation at high frequencies 

To account for these effects, two different amplifier design approaches are used: 
frequency compensated matching networks and negative feedback. In the subsequent 
sections we investigate both design techniques. 

Frequency Compensated Matching Networks 
Frequency compensated matching networks introduce a mismatch on either the 

input or output port of the device to compensate for the frequency variation introduced 
by the S-parameters. The difficulty with these types of matching networks is that they 
are rather difficult to design and the procedures involved are more an art than a well- 
defined engineering approach that guarantees success. Frequency compensated match- 
ing networks have to be custom tailored for each particular case. 

The following example demonstrates some of the key steps required to design a 
frequency compensated matching network. 

*&M W 
Example 9-16: Design of a broadband amplifier using a fre- 

quency compensated matching network 

Design a broadband amplifier with 7.5 dB nominal gain and k0.2 dB 
gain flatness in the frequency range from 2 GHz to 4 GHz. For the 
design use Hewlett-Packard's AT41410 BJT, which is biased with 
Zc = 10 mA collector current and Vo = 8 V collector-emitter 
voltage. The corresponding S-parameters measured at frequencies of 
2, 3, and 4 GHz under unilateral assumption are summarized in 
Table 9-4. 

Solution: According to the data provided in Table 9-4 the inser- 
tion gain of the transistor is IS2,I2 = 11.41 dB at f = 2 GHz, 
8.16 dB at 3 GHz, and 5.85 dB at 4 GHz. To realize an amplifier 
with a nominal gain of 8.7 dB, source and load matching networks 
must be designed that decrease the gain by 2.71 dB at 2 GHz and 
increase the gain by 0.54 dB at 3 GHz and 2.85 dB at 4 GHz. 
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Table 9-4 Sparameters of AT41 41 0 BJT (I, = 10 mA , 
V ,  = 8 V )  

The maximum gain provided by the source and load are found 
from (9.35) and (9.36) and are as follows: 

f = 2 GHz: Gsm, = 2.02 dB, GLm, = 0.98 dB 

f = 3 GHz: Gsm, = 2.11 dB, GLm, = 0.93 dB 

f = 4 GHz: Gsm,, = 2.11 dB, GLm, = 1.14 dB 

Although for the general case source and load matching networks 
would have to be designed, in this example an additional gain Gs 
that can be produced by the source matching is already sufficient to 
meet the amplifier specifications. Therefore, we concentrate on the 
development of the source matching network and leave the output 
port of the transistor without any matching network. 

Since the output of the transistor is directly connected to the 
load, we have GL = 0 dB. The input matching network should pro- 
duce an additional gain of (- 3.9 k0.2) dB at f = 2 GHz, 
(- 0.7 + 0.2) dB at 3 GHz, and (1.7 k 0.2) dB at 4 GHz. The corre- 
sponding constant gain circles are shown in Figure 9-21. 

The required input matching network must be capable of trans- 
forming points on the constant gain circles in Figure 9-21 to the cen- 
ter of the Smith Chart. There are a number of networks that can 
accomplish this task. One solution involves a combination of two 
capacitors, one in shunt with the transistor and one in series with the 
input port of the amplifier, as shown in Figure 9-22. From a known 
rs we can compute the transducer gain by setting rL = 0 in (9.10). 
We can next find the input and output VSWR. Since TL = 0, the 
values for VSWRom is equal to VSWR,,, and is found as 
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Figure 9-21 Smith Chart design of a broadband amplifier in Example 9-16. 

Figure 9-22 Broadband amplifier with 8.7 dB gain and k0.2 dB gain flatness over 
a frequency range from 2 to 4 GHz. 

For the computation of the VSWR at the input port we use 

where IrIMNl is computed based on (9.88): 
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The obtained values are summarized in Table 9-5. 

Table 9-5 Parameters of a broadband amplifier 

As seenfrom the values provided in Table 9-5, gain linearity is 
achieved at the expense of signfzcantly higher VSWR. 

f, GHz 

2 

3 

4 

As demonstrated in Example 9-16, the addition of a frequency compensated 
matching network to obtain an improved gain flatness may result in significant imped- 
ance mismatch, degrading the amplifier performance. To circumvent this problem, a 
balanced amplifier can be employed. 

Balanced Amplifier Design 
The typical balanced amplifier block-diagram using a 3 dB Lange or hybrid cou- 

pler and a 3 dB Wilkinson power divider and combiner are shown in Figures 9-23(a) 
and (b), respectively. The input signal power is split into two, amplified, and combined 
at the output. A complete discussion of the theory behind the operation of couplers and 
power dividers is given in Appendix G. 

Let us first discuss the operation of the balanced amplifier in Figure 9-23(a). Here 
the input power launched into port 1 of the input coupler is equally divided in magni- 
tude, but with a 90" phase shift between ports 2 and 3. No power is present at port 4. 
The output coupler combines the output signals of amplifiers A and B by introducing an 
additional 90" phase shift, thus bringing them in phase again. We denote the S-parame- 

A A A A ters of amplifier A as Sl l  , SI2, S21 , S22, and the corresponding S-parameters of ampli- 
fier B with superscript B. The equations that relate the S-parameters of the entire 
amplifier to the S-parameters of individual branches are as follows 

rs 

0.741-83" 

0.681-101 

0.661-112" 

G,, dB 

7.65 

7.57 

7.43 

VSWR,, 

13.1 

5.3 

2.0 

VSWR,,, 

2.6 

2.6 

2.8 
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nnrt 1 nnrt 7 

(a) Balanced amplifier using 3 dB coupler 

h/4 transformer 

ut 

(b) Balanced amplifier using 3 dB Wilkinson power divider and combiner 

Figure 9-23 Block diagram of a balanced broadband amplifier. 

where coefficients 112 take into account the 3 dB attenuation, and the minus sign is due 
to the 90" phase shift at port 3 that is traversed twice, adding up to 180". 

If the amplifiers in the two branches are identical, then lSlll = = 0 and the 
forward and reverse gain of the balanced amplifier are equal to the corresponding gains 
of each branch. 
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The operation of the balanced amplifier with Wilkinson power dividers [see Fig- 
ure 9-23(b)] is identical. The only difference compared to the power divider is that the 
signals are in phase, and we need to add additional h/4 transformers to produce a 90" 
phase shift between branches. 

The main advantages of balanced amplifiers are that they possess very good 
impedance match at the input and output ports (provided that the amplifiers in both 
branches have similar characteristics), and one of the two amplifiers can continue oper- 
ating even if the other branch should fail completely. The chief disadvantages of bal- 
anced amplifiers include increased circuit size and a reduction in frequency response 
introduced by the bandwidth of the couplers. 

Negative Feedback Circuits 
The alternative to frequency compensating networks is the use of negative feed- 

back. This allows a flat gain response and reduces the input and output VSWR over a 
wide frequency range. An additional advantage of the negative feedback is that it makes 
the circuit less sensitive to transistor-to-transistor parameter variations. The disadvan- 
tage of such circuits is that they tend to limit the maximum power gain of the transistor 
and increase its noise figure. 

The term negative feedback implies that part of the signal from the output of the 
transistor is coupled back to the input with opposite phase so that it subtracts from the 
input signal, thereby reducing it. If the signals are added in phase, the resulting 
response will grow and a positive feedback is obtained. The most general resistive feed- 
back circuits for BJT and FET are shown in Figure 9-24, where resistor R1 constitutes 
a shunt feedback and resistor R2 a series feedback. 

(a) Feedback in BJTs (b) Feedback in FETs 

Figure 9-24 Negative resistive feedback circuits. 
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As discussed in Chapter 7, both circuits in Figure 9-24 at low-frequencies can be 
replaced by the equivalent .n -models, as shown in Figure 9-25, where the input resis- 
tance r, is equal to infinity for FETs. 

Figure 9-25 Low-frequency model of negative feedback circuit. 

then r, in Figure 9-25 can be replaced by an open circuit and the h-parameter represen- 
tation can be written as 

Using the matrix conversion formula from Appendix D, we find the corresponding 
S-parameter representation 

1 [S] = - 
A 

where 
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Assuming ideal matching conditions S I 1  = S22 = 0 (i.e., the input and output 
VSWRs equal unity) yields the following equation relating the value of the shunt feed- 
back resistor to the series feedback resistor R1 : 

where the characteristic impedance Zo and transconductance g, are used. 
Substituting (9.101) into (9.100) and (9.99) gives 

As seen from (9.99) and (9.102), both gain flattening and perfect match can be 
achieved by choosing appropriate values for the feedback resistors R1 and R2.  The 
only limitation arises from the requirement that R2 in (9.101) must be nonnegative; that 
is, there exists a minimum value grnfin that limits the range of g, to 

Any transistor with g, satisfying condition (9.103) can be used in the negative feed- 
back configuration shown in Figure 9-24. 

The analysis of the feedback circuit is applicable only for ideal devices operated 
in the low-frequency range where all reactances are neglected. In practical applications 
the presence of the parasitic resistances in the transistor must be taken into account, 
resulting in modified values of the feedback resistors. In addition, at FW and MW fre- 
quencies the influence of internal capacitances and inductances cannot be neglected, 
and additional reactive components in the feedback loops enter the analysis. The most 
common practice is to add an inductance in series with the feedback resistor R1 . This is 
done to reduce the feedback from higher frequencies and thus compensate for S21 - 
related roll-off. 

The following example demonstrates the use of negative feedback for a broad- 
band amplifier design where the feedback resistors are first computed theoretically and 
then adjusted using a CAD software package. 
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W & M  w 
Example 9-17: Design of a negative feedback loop broadband 

amplifier 

The BJT BFG403W is biased with VcE = 3 V and Ic = 3.3 mA 
(p = 125 ). The corresponding S-parameters in common-emitter 
configuration are listed in Table 9-6, where a 500 R resistor has 
been added to ensure stability. 

Design a broad-band amplifier with G, = 10 dB and a band- 
width ranging from 10 MHz to 2 GHz by using a negative feedback 
loop. 

Table 9-6 S-parameters for the transistor in Example 9-17 

Solution: As seen from Table 9-6, the minimum gain of 14.2dB 
is attained at f = 2GH.2, which is well above the required trans- 
ducer power gain of GT = 10dB. 

Before continuing our approximate analysis, we have to ensure 
that condition (9.103) is satisfied. The value of r, is found to be 
r ,  = P/g, = 984 R ,  where the transconductance g, is com- 
puted as g, = Ic/VT = 0.127 S. Thus, the negative feedback 
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analysis is applicable since condition (9.103) is satisfied even for 
R2 = 0 .  

The next step involves an estimation of the resistances R1 and 
R2. Because the desired gain is G = 10 dB, the low-frequency Szl 
coefficient should be equal to -3.16. Here the minus sign is due to 
the 180" phase shift of the common-emitter configuration. Substitut- 
ing this value into (9.103) yields 

R1 = Zo(l -S2,) = 208 SZ 
Applying (9.101), we compute the value for the series feedback 
resistor R2 : 

The resulting insertion gain of the feedback network is listed in the 
second column of Table 9-7. It is observed that the negative feed- 
back makes the gain response of the amplifier more uniform at the 
lower frequencies, unfortunately at too low a level. The discrepancy 
between the expected gain of 10 dB and the obtained value of 
(S2,(2 = 7.5 dB is largely due to the fact that we neglected all para- 
sitic resistances in the transistor. Such parasitics include the base 
resistance that is connected in series with r ,  and thus reduces the 
effective transconductance gm . Furthermore, the emitter resistance, 
which is in series with R2, has to be subtracted from the obtained 
value of R2. 

Optimization of the circuit for frequencies up to 500 MHz 
using CAD tools results in the following modified values of the 
feedback resistances: R1 = 276 R and R2 = 1.43 R .  The corre- 
sponding insertion gain is listed in the third column of Table 9-7. 

As observed from Table 9-7, these new values for the feedback 
resistances bring the transistor gain closer to the 10 dB specification 
at lower frequency, but it degrades quickly as the frequency 
increases. This indicates that a R1 = 276 R feedback resistor is too 
small at those frequencies and has to be increased. This can be done 
by connecting an additional L1 = 4.5 nH inductor in series with 
the resistor R, (the value of L1 is predicted by a separate CAD 
optimization procedure). 
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Table 9-7 Insertion gain of the feedback amplifier 

The resulting gain is listed in the last column in Table 9-7. As 
seen from the values presented, the addition of an inductor flattens 
the frequency response and improves the gain flatness to better than 
0.1% over the entire bandwidth. 

As the frequency increases, the negative feedback design 
approach becomes increasingly prone to parasitic injuences. Above 
approximately 5 GHz, this lumped element method begins to break 
down. 

9.7.2 High-Power Amplifiers 

Thus far we have discussed the design of amplifiers based on linear, small-signal 
S-parameters. When dealing with high-power amplifiers, however, a small-signal 
approximation is usually not valid because the amplifier operates in a nonlinear region 
and large-signal S-parameters or impedances have to be obtained to conduct the appro- 
priate design. Small-signal S-parameters can still be used when designing a Class A 
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amplifier. Here the signal amplification is largely restricted to the linear region of the 
transistor. However, the small-signal S-parameters become progressively unsuitable for 
Class AB, B, or C amplifiers, which operate in the saturation region. 

One of the important characteristics of a high-power amplifier is the so-called 
gain compression. As the input signal to the amplifier approaches the saturation 
region, the gain begins to fall off, or compress. The typical relationship between input 
and output power can be plotted on a log-log scale, as shown in Figure 9-26. 

Figure 9-26 Output power of the amplifier as a function of input power. 

At low drive levels, the output is proportional to the input power. However, as the 
power increases beyond a certain point, the gain of the transistor decreases, and eventu- 
ally the output power reaches saturation. The point where the gain of the amplifier devi- 
ates from the linear, or small-signal gain by l dB is called the l dB compression point 
and is used to characterize the power handling capabilities of the amplifier. The gain 
corresponding to the 1 dB compression point is referred to as GldB and is computed as 
GldB = GO - 1 dB , where Go is the small-signal gain. If the output power Po,, la at 
the 1 dB compression point is expressed in dBm, it can be related to the corresponding 
input power Pin, as 

Another important characteristic of an amplifier is its dynamic range labeled dR . 
The dynamic range signifies the region where the amplifier has a linear power gain 
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expressed as the difference between Pout, ldB and the output power of the minimum 
detectable signal Pout, mds. The quantity Pout, ,d, is defined as a level X dB above the 
output noise power P,, out. In most of the specifications, X is chosen to be 3 dB. The 
output noise power of an amplifier is given as 

P,, out = kTBGoF (9.105) 

which, if expressed in dBm, can be cast in the form 

P ,  ,,(dBm) = lOlog(kT) + lOlogB + Go(dB) + F(dB) (9.106) 

where lOlog(kT) = -173.8 dBm at T = 300°K and B is the bandwidth. 
As with any nonlinear circuit, high-power amplifiers create harmonic distortions 

(multiples of the fundamental frequency). They appear as a power loss in the funda- 
mental frequency. In general, Class A operation produces the lowest distortion figures. 
For higher-power applications where Class A operation is not feasible, due to low effi- 
ciency, Class AB push-pull amplifiers are employed to achieve nearly comparable dis- 
tortion levels. Harmonic distortion is specified as the harmonic content of the overall 
output expressed in dB below the output power at the fundamental frequency. 

An undesirable property of power amplifiers is the occurrence of so-called inter- 
modulation distortion (IMD). Although present in any amplifier (like harmonic distor- 
tion) it is most prominent in the high-power region of an active device where the 
nonlinear behavior has to be taken into account. Unlike harmonic distortions, IMD is 
the result of applying two unmodulated harmonic signals of slightly different frequen- 
cies to the input of an amplifier and observing the output, as shown in Figure 9-27. 

2~ ' - "6  2f, -A 
Figure 9-27 Observing the intermodular distortion of an amplifier. 

Due to third-order nonlinearities of the amplifier, the input signals Pin( f and 
Pin( f 2) create, besides the expected output signals Pout( f and Pout( f 2),  additional 
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frequencies POut(2 f - f 2) and POut(2 f - f . The additional frequency components 
can serve a desirable purpose when dealing with mixer circuits (see Chapter 10). How- 
ever, for an amplifier one would like to see these contributions to be as small as possi- 
ble. The difference between the desired and the undesired power level (in dBm) at the 
output port is typically defined as IMD in dB; that is, 

In Figure 9-28 the output powers Pout( f 2) and POut(2 f , - f are plotted versus 
the input power Pin( f ,) on a log-log scale. In the region of linear amplification, the 
output power Pout( f ,) increases proportionally to the input power Pin( f .J, let us say 
Pout( f ,) = aPin( f 2) . However, the third order product POu,(2 f - f increases pro- 
portional to the third power [i.e., POJ2 f , - f l )  = a3pi,,( f ,)] Thus, the IMD is 
reduced in proportion to the inverse square of the input power. Projecting the linear 
region of Pout( f 2) and POu,(2 f - f results in a fictitious point called the intercept 
point (IP). In practice, if higher than third order products can be neglected, the IP 
becomes a fixed point, independent of the particular power gain of the amplifier. This 
allows us to us the IP as a single number to quantify the IMD behavior. 

Figure 9-28 Recording of IMD based on input-output power relation. 

Also shown in Figure 9-28 is a quantity called spurious free dynamic range, df , 
which is defined as 
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Qpical values for a MESFET are Pin,,,, = -100 dBm, IP = 40 dBm, and 
df = 85 dB. 

9.7.3 Multistage Amplifiers 

A multistage amplifier circuit should be considered if the power gain requirement 
of the amplifier is so high that a single stage may not be able to achieve it. A typical 
example of a dual-stage BJT amplifier is shown in Figure 9-29. 

Figure 9-29 Dual-stage transistor amplifier. 

Besides the typical input and output matching networks (MN1 and MN3), this 
configuration features an additional so-called interstage matching network (MN,) 
for matching the output of stage 1 with the input of stage 2. In addition to providing 
appropriate matching, MN, can also be used to condition the gain flatness. 

Under the assumption of optimally matched and lossless networks, let us sumrna- 
rize the most important dual-stage performance parameters. The total power gain G,,, 
of a dual-stage amplifier under linear operating conditions results in a multiplication of 
the individual gains G1 and G2 , or in dB 

An increase in gain performance is unfortunately accompanied by an increase in the 
noise figure, as discussed in Appendix H. Specifically, if F and F2 denote the noise 
figures associated with stages 1 and 2, we obtain a total noise figure 

In addition, if the minimal detectable signal Pin, mds at 3 dB above thermal noise at the 
input is given by Pi,, mds = kTB + 3 dB + F, , the minimal detectable output power 

Pout, mds 

'out, mds (dBm) = kTB(dBm) + 3dB + F,,(dB) + Gtot(dB) (9.1 11) 
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The dynamic properties are also affected. For instance, Rhode and Bucher (see Further 
Reading) have shown that the previously mentioned third-order intercept point changes to 

where ZP1 and IP2 are the third order intercept points associated with stages 1 and 2. 
Finally, the total spurious-free dynamic range dftot is approximately 

dftot(dBm) = IPtot(dBm) - Pout, &(dBm) (9.1 13) 

Equation (9.1 13) also reveals that the addition of a second stage reduces the total 
dynamic range. 

c & M w  
Exampleg-18: Transistor choices for multistage amplifier 

design 

Design an amplifier with Pout, dB = 18 dBm and a power gain not 
less than 20 dB. Using the transistor choices listed in Table 9-8, 
which shows pertinent characteristics at the operating frequency of 
f = 2 GHz, determine the number of stages for the amplifier and dis- 
cuss the choice of an appropriate transistor for each stage. In addi- 
tion, estimate the noise figure Fto, and the third-order intercept point 
IPtot of the amplifier. 

Table 9-8 Transistor characteristics for Example 9-1 8. 

Solution: Since the output power should be 18'dBm, the only 
transistor choice for the output stage of the amplifier is BFG540. 

Pout, l d ~ [ ~ ~ ~ l  

4 

17 

2 1 

G,,,[dBl 

10 

9 

7 

Transistor 

BFG505 

BFG520 

BFG540 

IP[dBml 

10 

26 

34 

F[dBl 

1.9 

1.9 

2 
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Because the output power of the amplifier Pout,ldB = 18 dBm is 
much lower than Pout,ldB of the BFG540, it can operate at maximum 
gain of G = 7 dB. This means that the remaining stages of the ampli- 
fier must be able to provide at least 20 dB - 7 dB = 13 dB of gain. 
Thus, our amplifier should have at least three stages. 

For the last stage to have 18 dBm output power, the second- 
stage transistor should be able to produce a power level of 
POUt2, dB = 18 dBm - 7 dBm = 11 dBm, which eliminates BFG505 
from the list of possible candidates. Since the BFG540 has a much 
higher power handling capability than necessary for the second 
stage, we choose BFG520. 

Due to the fact that Pout,, dB = 11 dBm is much lower than the 
1-dB compression power of the BFG520, the second-stage transistor 
will also operate well below the compression point and the maxi- 
mum gain will be equal to G,, = 9 dB. Therefore, the transistor 
in the first stage has to have a minimum gain of G = 13 dB - 9 dB = 
4 dB and be able to provide Pout, = 11 dBm - 9 dB = 2 dBm. Thus, 
the BFG505 is more than adequate for the task with Pout, = 2 dBm 
and G1 = 4 dB. The input power to the amplifier is then 
Pi, = -2 dBm . 

As shown in Appendix H, the noise figure of the entire ampli- 
fier is computed as 

and is minimized if the gain of the first stage is high. The BFG505 
cannot provide a gain higher than 6 dB because in this case (for a 
given Pi,) it reaches the compression point. This difficulty is avoided 
if the BFG520 is used as the first stage. We can design the first stage 
for maximum gain and the second stage for necessary power to drive 
the output transistor. We can also adjust the gains of the individual 
stages so that none of the transistors reaches the compression point. 

The block diagram of the resulting amplifier is shown in Figure 
9-30, where the gain of each stage is chosen according to the preced- 
ing discussion. The noise figure of this amplifier is predicted as 
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Figure 9-30 Block diagram of a three-stage amplifier. 

The output power at the third-order intercept point is calculated 
using (9.112) and modified for a three-stage amplifier 

where the preceding formula was obtained from (9.112) by first 
computing the IP of the first two stages and then resubstituting it 
into (9.1 12). 

The above analysis is actually one of thejrst steps required in 
an amplijier design process. Here the crucial steps of picking suit- 
able transistor types and deciding on the number of stages are 
made. They then become the starting point of a detailed perfor- 
mance analysis. 

9.8 Summary 

This chapter deals with a broad spectrum of amplifier design concepts. First, the 
various power relations are defined. Specifically, the transducer power gain 

as well as the available and operating power gains are of key importance. We next 
establish the various input and output stability circle equations and examine the mean- 
ing of unconditional stability. Specifically, the factor 
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is employed to assess the unconditional stability of an active device. If the transistor 
turns out to be unstable, additional series or shunt resistances can be used to stabilize 
the device. Next the constant unilateral gain circles are established and displayed in the 
Smith Chart. The location and radius equations 

provide insight as to where certain constant gain values are located under unilateral 
design conditions (inverse power gain is assumed negligible). The error committed by 
using the unilateral design approach over the bilateral method is quantified through the 
unilateral figure of merit. If the unilateral approach turns out to be too imprecise, a 
bilateral design has to be pursued, leading to the simultaneous conjugate matched 
reflection coefficients ( rMS,  rML ) at the input and output ports. The optimal matching 

rLs = sll + S 1 2 S 2 1 r ~ ~  and rL,= S2, + S 1 2 S 2 1 r ~ ~  

- '2zrML -'1lrMs 

results in amplifier designs with maximum gain. Starting from the operating power gain 
expression, circles of constant gain under optimal source matching are derived. Alter- 
natively, starting with the available power gain expression, circles of constant gain 
under optimal load matching are derived. 

We then investigate the influence of noise generated by an amplifier. Using the 
noise figure of a generic two-port network 

circle equations for the Smith Chart are computed. The noise figure circles can be used 
by the circuit designer to make trade-offs with the previously conducted constant gain 
analysis. 

An investigation into reducing the VSWR as part of various input and output 
matching network strategies results in an addition set of circle equations that quantify 
the VSWR at the matching network ports: 
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Combining the various circle representations permit the small-signal amplifier design 
based on constant operating gain, noise figure, and VSWR circles, jointly displayed in 
the Smith Chart. 

For broadband design, we discuss the need to develop frequency compensated 
matching networks in an effort to widen the operational frequency range. The use of 
negative feedback loops is introduced as a way to flatten the power gain over the broad- 
band frequency range. 

In high-power amplifier applications issues related to the output power compres- 
sion are of major concern since they limit the dynamic range of amplification. An 
important figure of merit is the 1-dB compression point: 

Po", ,d,(dBm) = G,(dB) - 1 dB + Pin, l,B(dBm) 

Furthermore, an additional undesirable property is the occurrence of intermodular dis- 
tortion due to the presence of nonlinearities. Finally, the influences of power compres- 
sion, noise figure, and gain are investigated in the context of a multistage amplifier 
design. 
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Problems 

9.1 The available power of an RF source driving an amplifier connected to load 
Z, = 80 Q can be represented as 

Based on the signal flow graph shown in Figure 9-2(b), 
(a) Find the power to the load PL in terms of TL , Ts , and b, . 
(b) For Zs = 40 R , Z ,  = 50 R , V, = 5 VLOO, find the available power 

PA and the power at the load PL . 

9.2 Use the signal flow graph in Figure 9-2(b) and establish the validity of equa- 
tion (9.8) in Section 9.2.2. 

9.3 An amplifier is characterized by the following S-parameters: 
Sl l  = 0.781-65" ,S2, = 2.2L78" ,S12 = 0.111-21°, S2, = 0.91-29'. 
The input side of the amplifier is connected to a voltage source with 
V ,  = 4VL0°, and impedance Z, = 65 R . The output is utilized to drive 
an antenna that has an impedance of ZL = 85 R .  Assuming that the S- 
parameters of the amplifier are measured with reference to a Zo = 75 i2 
characteristic impedance, find the following quantities: 
(a) transducer gain GT , unilateral transducer gain GTU, available gain GA , 

operating power gain G 
(b) power delivered to the load P, , available power P A ,  and incident power 

to the amplifier Pint 
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9.4 

9.5 

9.6 

9.7 

9.8 

A FET is operated at f = 5.5 GHz and under bias conditions 
V,, = 3.2 V and ID  = 24 mA. The S-parameters are Sll  = 0.731176', 
S2, = 3.32L75', S,, = 0.05L34', S2, = 0.26L-107'. In the absence 
of matching networks a load of ZL = 75 i 2  and a source of Zs = 30 R are 
attached. Assume Zo = 50 R. 
(a) Find GTU, GT, GA, and plot the magnitude of GTU for 

10 Q I Z , I  100 n .  
(b) Match the input side for the unilateral case and find G,, . 
(c) Match both input and output for the unilateral case and compute 

G~~ = G ~ ~ m a x .  

Unconditional stability in the complex rout-plane requires that the 
ITs/ = 1 domain resides completely within the T o  = 1 circle, or 
IC,I - rsl < 1 , where 

(a) Derive these two equations. 
(b) Find the circle equations for CL and rL and show that 

ISl2S2,I < 1 - IS22I2 
2 

Prove that Isll - s ; ~ A ~  = I S ~ ~ S ~ ~ ~ ~  + (1 - I S ~ ~ ~ ~ ) ( ~ S ~ ~ / ~  - 1 ~ 1 ~ ) .  This is a 
key identity in the stability factor derivation of Example 9.2. 

A BJT has the following S-parameters (see the table below) as a function of 
four frequencies. Determine the stability regions and sketch them in the 
Smith Chart. 

The S-parameters for a BJT at a particular bias point and operating fre- 
quency are as follows: SI1 = 0.60L157", S21 = 2.18L61°, 
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S12 = 0.09L77O, S22 = 0.471-29". Check the transistor stability, stabi- 
lize it if necessary, and design an amplifier for maximum gain. 

In this chapter we have derived the circle equations for constant operating 
power gain. It can be concluded that the maximum gain is obtained when the 
radius of the constant gain circle is equal to zero. Using this condition, prove 
that the maximum achievable power gain in the unconditionally stable case is 

G ~ m a x  = b!(k-&cj) 
Is121 

where k is the stability factor (k > 1 ). 

A BJT is operated at f = 750 MHz (and with the S-parameters given as 
follows: S1, = 0.561-78", S2, = 0.05L33', SI2 = 8.64L122', and 
S,, = 0.661-42' ). Attempt to stabilize the transistor by finding a series 
resistor or shunt conductance for the input and output ports. 

In Example 9-2 the stability factor k is derived based on the input stability 
circle equation. Start with the output stability circle equation and show that 
the same result (9.24) is obtained. 

A BJT is operated at f = 7.5 GHz and is biased such that the S-parameter 
is given as S, = 0.85L105" . It is assumed that the transistor is uncondi- 
tionally stable so that the unilateral approximation can be applied. Find the 
maximum source gain and plot the constant source gain circles for several 
appropriately chosen values of gs . 

A MESFET is used as a single-stage amplifier at 2.25 GHz. The S-parame- 
ters at that frequency and under given bias conditions are reported as 
S1, = 0.831-132", S12 = 0.03L22", S2, = 4.917 1 " , 
S22 = 0.361-82'. For a required 18-dB gain, use the unilateral assumption 
by setting SI2 = 0 ,  and 
(a) Determine if the circuit is unconditionally stable. 
(b) Find the maximum power gain under the optimal choice of the reflection 

coefficients. 
(c) Adjust the load reflection coefficient such that the desired gain is real- 

ized using the concept of constant gain circles. 

A BJT is used in an amplifier at 7.5 GHz. The S-parameters at that frequency 
and under given bias conditions are reported as S,, = 0.631-140°, 
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9.15 

9.16 

9.17 

9.18 

9.19 

S12 = 0.08135", S2, = 5.7L9g0, SZ2 = 0.471-57'. The design 
requires a 19 dB gain. Use the unilateral assumption and 
(a) Find the maximum power gain under the optimal choice of the reflection 

coefficients. 
(b) Adjust the load reflection coefficient such that the desired gain under 

stable operating conditions is realized. 

A small-signal amplifier for a BJT operated at 4 GHz is appropriately biased 
and has the following S-parameters: Sl l  =0.57L-150°, 
S12 = 0.12145", S2, = 2.0156', S2, = 0.351-85'. If a unilateral 
design approach is pursued, estimate the error involved. 

A BJT with Zc = 10 rnA and VcE = 6 V is operated at a frequency of 
f = 2.4 GHz. The corresponding S-parameters are Sll = 0.54L-70°, 
S12 = O.O17Ll76", S2, = l .53L91°, and S22 = O.93L-15O. Determine 
whether the transistor is unconditionally stable and find the values for source 
and load reflection coefficients that provide maximum gain. 

Using the same BJT discussed in the Problem 9.16, design an amplifier 
whose transducer power gain is 60% of G,,, . In addition, ensure a perfect 
match on the input port of the amplifier. 

A MESFET operated at 9 GHz under appropriate bias conditions has the 
following S-parameters: Sll  = 1.21-60°, S12 = 0.02L0°, 
S2, = 6.511 15" , and Sz2 = 0.61-35" . Design an amplifier that stays 
within 80% of GTUmax. Moreover, ensure that VSWR, = 1. 

In Section 9.4.4 it is mentioned that the constant gain design for a matched 
input results in the circle equation 

Show that the center d," and radius r," are given by 

and 
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9.20 For the constant available gain circle 1rs - dgal = r [see (9.66)], show 
ga 

that 

- - ga(S11- A%,)* and r,, = dl - 2kgalSl2S2lI + g:1~12~211~ 

dga 1 + g a ( l s l l 1 2 - ~ ~ ~ 2 )  11 + ga(lsll12- I A I ~ ) ~  

9.21 A BFG197X transistor is biased at VcE = 8 V and Ic = 10 mA and has 
the following S-parameters measured at f = 1 GHz: Sl l  = 0.731176', 
S,, = 0.07135', S2, = 3.32L75', and S22 = 0.261107'. Determine 
the unilateral figure of merit and compare the transducer gain of the ampli- 
fier designed under the unilateral and bilateral assumptions. 

9.22 The BFG33 BJT is biased under VcE = 5 V and Ic = 5 mA and has the 
following noise and S-parameters: 

Design a broadband low-noise amplifier with minimum gain of 10 dB and a 
noise figure not exceeding 3.5 dB. 

Design a microwave amplifier using a GaAs FET whose S-parameters at 
f = 10 GHz are Sll  = 0.79L100°, S12 = 0.201-21°, 
SZ1 = 6.51-73' , S2, = 0.741152' . Analyze the trade-offs posed by sta- 
bility, gain, and VSWRs. 

A broadband amplifier with nominal characteristics of VSWR,, = 4, 
VSWR,,, = 2.8, and GT = 10 dB is used as part of a balanced amplifier 
design. Compute the worst input and output VSWR and the insertion gain of 
the balanced amplifier if the values listed can vary by as much as 10%. 

In Section 9.7.3 we have listed equation (9.1 12) for the IP definition of a 
two-stage amplifier. 
(a) Derive a generalized formula for the IP computation of an N-stage 

amplifier. 
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(b) Compute the total IP and the noise figure of the N-stage amplifier 
assuming that all stages are identical and have ZP,, = 35 dBm, 
F = 2 d B , a n d G = 8 d B .  

9.26 Design a 15-dB broadband amplifier using a BJT with feedback loop. Cal- 
culate the value of the feedback resistor and find the minimum collector cur- 
rent of the transistor. Assume that the amplifier is operated at T = 300" K. 

9.27 A transistor has the following S-parameters: Sl l  = 0.61L152", 
S,, = O.lL79", S,, = l.89L55", and S2, = 0.47L-30". Design an 
amplifier for minimum noise figure if F ~ ,  = 3 dB, r, = 0.52L-153", 
and R, = 9 a .  

9.28 Prove equation (9.113), which states the total spurious-free dynamic range. 

9.29 An amplifier has a transducer gain of GT = 25 dB, and a 200 MHz band- 
width. The noise figure is given as F = 2.5 dB and the 1 dB gain compression 
point is measured as Po,, ldB = 20 dBm. Calculate the dynamic range and 
the spurious-free dynamic range of the amplifier if ZP,,, = 40 dBm. 
Assume that the amplifier is operated at room temperature. 

9.30 An amplifier has a gain of G = 8 dB at 1 GHz and lists a 1 dB compression 
point of Po,, dB = 12 dBm and the third order intercept point at IP,, = 25 
dBm. Find the third order intercept points for the cascaded amplifier stages 2 
and 3. What value of IP,,, is obtained in the limit of an infinite number of 
stages? 

9.31 Derive a formula for the noise figure of a balanced amplifier. Make the 
assumption that the power gains and noise figures of the amplifiers in the 
individual branches are GA , GB , and F A ,  FB , respectively. Assume that the 
balanced amplifier uses 3 dB hybrid couplers at the input and output ports. 
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Oscillators and Mixers 

ith the advent of modem radio and radar sys- w 
tems came the need to provide stable harmonic oscillations at particular carrier frequen- 
cies to establish the required modulation and mixing conditions. While the carrier 
frequencies in the early days mostly reached into the low to mid MHz range, today's 
RF systems easily surpass the 1 GHz point. This has resulted in the need for specialized 
oscillator circuits capable of providing stable and pure sinusoidal responses. What 
makes the design of oscillators such a difficult task is that we exploit an inherently non- 
linear circuit behavior that can only be described incompletely with linear system tools. 
Specifically, the small-signal linear circuit models utilized to represent the active device 
provide limited capabilities to handle the complicated feedback mechanism. Moreover, 
since an oscillator has to provide power to subsequent circuits, frequency-dependent 
output loading often plays an important role. It is for these reasons that the design pro- 
cess of oscillators remains more of an art than an exact engineering design task. This 
holds particularly true for the high-frequency regime, where parasitic component influ- 
ences can significantly impact the overall system performance. Affected in part by the 
additional resonance effects of the passive circuit element, it is possible that the oscilla- 
tor not only operates at the intended frequency but also at lower or higher harmonics. 
Certain system realizations may even cease to oscillate completely. 

In the first part of this chapter we concentrate on the negative resistance and feed- 
back harmonic oscillators as well as a number of Schottky diode mixers. Once the fun- 
damental idea is mastered of how to generate oscillations, we investigate the basic 
Colpitts and Hartley resonators before moving to the modem RF circuit design 
approaches involving the S-parameters of the active device in conjunction with the var- 
ious network configurations. 
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In the second part of this chapter, we turn our attention to the basic frequency 
translation tasks performed by mixers. Of the many different circuit implementations 
for a wide range of applications, the main emphasis in this chapter is placed on down- 
converters. A typical application of a mixer in a receiver system is to convert the RF 
input signal into a lower frequency intermediate signal that is generally more suitable 
for subsequent signal conditioning and processing. This conversion is accomplished by 
combining the RF input with a local oscillator signal as part of a multiplication opera- 
tion that requires a nonlinear, at least quadratic transfer function. Primarily transistors 
and diodes are nowadays in use where present FET technology permits the construction 
of mixer circuits up to 50 GHz and with diode mixers already exceeding the 100 GHz 
mark. 

10.1 Basic Oscillator Model 
At the core of any oscillator circuit is a loop that causes a positive feedback at a 

selected frequency. Figure 10-l(a) illustrates the generic closed-loop system represen- 
tation, while Figure 10-l(b) provides a two-port network description. 

(a) Closed-loop circuit model (b) Network representation 

Figure 10-1 Basic oscillator configuration. 

The mathematical condition for a circuit to oscillate can be established by combining 
the transfer functions of the amplification stage HA(o)  with the feedback stage 
HF(o) to the closed-loop transfer function: 

Since there is no input to an oscillator, Vin = 0 ,  to obtain a nonzero output voltage, 
V,,,, the denominator in (10.1) has to be zero. This requirement leads to the 
Barkhausen criterion, which is also known as the loop gain equation: 

H,(o)H,(o) = 1 (10.2) 
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If the feedback transfer function HF(w) is written as a complex quantity [that is, 
HF(w) = HFr(w) + jHFi(w) ] and the amplifier transfer function possesses a real val- 
ued gain, HA(o) = HAO , we can re-express (10.2) as 

The conditions (10.2) and (10.3) apply only for a steady-state situation. Initially, we 
have to require that HAOHFr(w) > 1 . In other words, the loop gain has to be larger than 
unity to obtain an increasing output voltage. However, the voltage must reach a steady 
state (i.e., the amplitude eventually must stabilize). This nonlinear behavior of the oscil- 
lator is shown in Figure 10-2. 

Figure 10-2 Output voltage versus gain characteristic. 

H Q 

A negative slope of the curve is needed to ensure a decrease in gain for increasing 
voltage. At point IV,,,I = VQ for HAO = He = HFr(w) the stable operating point is 
reached. A similar curve can be established for the frequency versus loop gain with a 
stable resonance frequency f Q. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . Negative slope 
(negative resistance) 

10.1.1 Negative Resistance Oscillator 

To explain the idea behind an oscillator we need to understand the seemingly 
impossible concept of creating a negative resistance. The requirement of a negative 
resistance is best explained by investigating the series resonance circuit consisting of 
resistance R, inductance L, and capacitance C. As an input we use a current-controlled 
voltage source, as shown in Figure 10-3. The voltage source can represent the output of 
an active device, e.g. BJT or FET. 
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Figure 10-3 Series resonance circuit with voltage-controlled source term. 

The governing equation in terms of the current is written as 

If we set the right-hand side to zero (i.e., we reach steady state and the voltage arnpli- 
tude is stable), we obtain the standard solution 

where a = -R/(2L) and oQ = JI/(LC) - (R/(2L))2. In general, because a is a 
negative quantity, the harmonic response of the resonance circuit will reduce to zero as 
time progresses. In the limit, as R reaches zero, an undamped sinusoidal response is 
obtained. The goal of an active element in the oscillator is therefore to generate a source 
response that compensates for the resistance in the circuit. This can only be achieved if 
a negative resistance is provided. Thus, if we succeed in selecting a nonlinear device 

2 whose voltage-current response is v(i) = vo + Rli + R2i + . . . , then the terms may be 
adjusted in such a way as to compensate for R. Indeed, substituting the first two terms 
of this series expansion into (10.4), we see 

Combining the coefficients of the first derivative leads to 

R + R l  = 0 

as the requirement to set the attenuation coefficient to zero. It is now seen that (10.7) 
implies a device with a negative differential resistance: 

Rl = -R (10.8) 

Moreover, to get the oscillations started, we require a positive attenuation coefficient, 
which implies R1 to be less than -R. This situation is equivalent to the transfer fuction 
having poles in the right-hand side of the complex frequency domain. 
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A direct way to implement such a negative resistance condition is via a tunnel 
diode, whose electric circuit representation is discussed in Chapter 6 (see Figure 6-26). 
Figure 10-4 depicts both the circuit of a tunnel diode oscillator and the corresponding 
small-signal circuit model. Since the tunnel diode already possesses an inherent capaci- 
tance, an extra capacitor in the external circuit is not required. 

diode 
+ P""" - 
- vcc 

(a) Tunnel diode oscillator circuit (b) Small-signal equivalent circuit 

Figure 10-4 Tunnel diode oscillator circuit and its small-signal model. 

Circuits like the one shown in Figure 10-4 can be used for oscillators with reso- 
nance frequencies up to 100 GHz. 

10.1.2 Feedback Oscillator Design 

Because of their fundamental importance in the development of low-frequency as 
well as RF oscillators, let us next focus on the two-port feedback networks, shown 
generically in Figure 10-5. 

(a) Pi-type feedback (b) T-type feedback 

Figure 10-5 Feedback circuits with Pi- and T-type feedback loops. 
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It is straightforward to find the transfer function of the feedback loop. For instance, 
for the Pi-network we obtain under high-impedance input and output assumptions 

More complicated is the computation of the transfer function HA(u) of the amplifier. 
This depends on the chosen active element and its electric equivalent circuit model. To 
demonstrate the concept, we use a simple, low-frequency FET model with voltage gain 
pV and output resistance RB. The corresponding loop equation for the circuit depicted 
in Figure 10-6 is 

where l/Zc = Y ,  = 1/Z2+ l/(Z, +Z, ) .  

Figure 10-6 Feedback oscillator with FET electric circuit model. 

Solving (10.10) for IB and multiplying by Zc gives us the output voltage Vout from 
which the voltage gain is found to be 

The closed-loop transfer function is thus 

This equation allows us to design various oscillator types depending on the choice of 
the three impedances in the feed-back loop. To eliminate resistive losses, we choose 
purely reactive components Zi = jXi (i=1,2,3). This ensures that the numerator is 
real. Further, to make the denominator real, it is necessary that X1 + X2 + X3 = 0 ,  
which implies that one of the reactances has to be the negative sum of the others. It is 
understood that negative-valued reactances correspond to capacitors and positive- 
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valued reactances identify inductors. For instance, if we decide to use 
X3 = -(XI + X2), then, upon substitution into (10.12), the result is 

It is apparent that X1 and X2 must have the same sign but different values according to 
(10.13). In Table 10-1 a few possible configurations of the feedback loop are summarized. 

Table 10-1 Various feedback configurations for oscillator designs based on 
Figure lO-S(a) 

Hartley Colpitts 

Two often used realizations are the Hartley oscillator, where XI = oL1, 
X2 = oL2 , X3 = l / (oC3) ,  and the Colpitts oscillator, where X1 = l / ( oC1) ,  
XZ = 1/(@C2), and X3 = oL3,  as depicted in Figure 10-7, where a FET is 
employed as active device. Here resistors RA , RB , RD , and R, set the DC bias point. 
C ,  is the RF bypass capacitor, and C B  denotes DC blocking capacitors. 

The various choices of L and C element combinations are in practice limited by 
the range of realizable values for a given frequency. Often hybrid configurations are 
used; if, for instance, the inductance becomes very small, a capacitor connected in 
series can yield a larger effective inductive reactance (Clapp oscillator). 

Besides the standard common-source (or common-emitter for a BJT) configuration, 
common-gate (common-base) and common-drain (common-collector) type oscillators 
can be constructed, as shown in Figure 10-8 where all DC biasing elements are omitted. 
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(a) Hartley oscillator (b) Colpitts oscillator 

Figure 10-7 Hartley and Colpitts oscillators. 

- 
(a) Common gate (b) Common source (c) Common drain 

Figure 10-8 Common gate, source, and drain configurations. 

10.1.3 Design Steps 

What makes the oscillator design so complicated is that the nonlinear electric 
equivalent circuit describing the active device (BJT, FET) becomes increasingly com- 
plicated as the frequency increases. Moreover, the oscillator has to drive additional cir- 
cuits and must therefore provide a certain amount of power. This output loading affects 
the oscillator in terms of frequency stability and waveform purity. 

To provide the reader with a glimpse of the essential steps involved, we will at 
first examine the design of a low-frequency Colpitts oscillator. The h-parameter config- 
uration with the appropriate feedback loop is depicted in Figure 10-9. The correspond- 
ing Kirchhoff voltage mesh equations involving input, output, and feedback loops are 
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L3 

Figure 10-9 Colpitts oscillator design. 

established by utilizing the output voltage V2 = VOut = 12/h22 - Il(h21/h22). In 
matrix form for the unknown currents, we obtain 

Computing the determinant and setting its imaginary portion to zero results, after 
lengthy algebra, in the form 

Furthermore, setting the real part of the determinant of (10.14) to zero, and assuming 
that h12 << 1 , yields a quadratic equation in terms of the capacitor ratio C1/C2 : 

which, under the assumption that hi1 a 4(hllhz2 - h12h2,), can be simplified to 

The preceding treatment deals with the h-parameters as real quantities, an 
assumption that generally may not be applicable. In fact, even for moderately high fre- 
quencies, the h-parameters attain a significant phase angle. To incorporate the actual 
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frequency-dependent behavior, we need to resort to the equations given in Section 
4.3.2. For these situations, explicit formulas as (10.15) and (10.17) are impossible to 
derive, and we must resort to a mathematical spreadsheet to find numerical results. 

.,&M w 
Example 10-1: Design of a Colpitts oscillator 

\,..&"p- 

For a 200 MHz oscillation frequency, a Colpitts BJT oscillator in 
common-emitter configuration has to be designed. For the bias point 
of VCE = 3 V and Ic = 3 rnA, the following circuit parameters 
are given at room temperature of 25°C: CBC = 0.1 fF, 
r,, = 2 k R ,  rcE = 10 kR , CBE = 100 fF. If the inductance 
should not exceed Lg = L = 50 nH, find values for the capaci- 
tances in the feedback loop. 

Solution: The first step involves the determination of the h- 
parameters. We compute the values for DC (i.e., f + 0). 

At DC the h-parameters are real and we can find from (10.17) the 
ratio between the capacitances C, and C2 : 

Introducing a proportionality factor K such that C1 = KC2, equa- 
tion (10.15) is rewritten as 



Solving the resonance condition (10.15) for C2, we obtain 

where the inductance L = 50nH has been used. 
From the known C2 we next find C ,  = l166.6C2, or 

C, = 14.79 nE In the preceding design, the transistor's h -parame- 
ters are given under DC conditions. In reality, however, the oscilla- 
tor is operated at the resonance frequency of 200 MHz. Here the h - 
parameters have the following values: 

= (0.1 1 + j0.03) mS 

As seen, the h-parameters at this frequency differ only slightly from 
the DC conditions. Therefore, the analysis should equally apply for 
this frequency setting and the oscillator will require only a minimal 
amount of tuning. 

In practice, the situation often arises where the h-parameters 
at a given oscillation frequency differ signijicantly from their DC 
values, necessitating substantial tuning. The difference becomes 
more sign@cant as the frequency increases. 
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10.1.4 Quartz Oscillators 

Unlike electric resonance circuits, quartz resonators can offer a number of advan- 
tages. A much higher quality factor (up to lo5 . . . lo6), improved frequency stability, 
and immunity to temperature fluctuations are among the chief benefits. Unfortunately, 
because quartz crystals are mechanical systems, they cannot be constructed to exceed 
approximately 250 MHz. 

A quartz crystal exploits the piezoelectric effect whereby an applied electric field 
causes a mechanical deformation of the crystal. Depending on the geometric configura- 
tion and crystal cut, the crystal performs either longitudinal or shear vibrations at dis- 
tinct resonance frequencies. 

A typical electric circuit representation for a quartz crystal is shown in Figure 10- 
10. The circuit approximates the electric behavior at one of the resonance points for 
which the quartz is designed for. 

Figure 10-1 0 Quartz-resonator equivalent electric circuit representation. 

The capacitor C, along with Rq and Lq describes the mechanical resonance 
behavior while Co denotes the capacitance due to the external contacting of the crystal 
through electrodes. Normally, the ratio between Cq and Co can reach values as high as 
1000. Moreover, the inductance Lq is typically in the range from 0.1 mH to 100 H. 

The admittance of this model can be stated as 

The angular resonance frequency oo is found by setting the imaginary component B to 
zero, or 

Solution of this equation (see Problem 10.4) using a Taylor series expansion (and 
retaining the first two terms) leads to approximate expressions for the series and paral- 
lel resonance frequencies: 



where as, = l/mq and ap0 = J(C, + Co)/(L,C,Co) . A representative model 
is discussed next. 

"'mw 
Example 10-2: Prediction of resonance frequencies of quartz 

crystal 

A crystal is characterized by the parameters L, = 0.1 H, 
R, = 25 $2, C, = 0.3 pF, and Co = 1 pF. Determine the series 
and parallel resonance frequencies and compare them against the 
imaginary component of the admittance given by (10.19). 

Solution: As a first approach to compute series and parallel reso- 
nance frequencies of the quartz crystal we use (10.21a) and 
(10.21b), respectively: 

[I + $(:)I = 0.919 MHz f = f 0  ( j  = 2nmq 
f p  = fpo[l-$(z)] = o [ l - $ ( ) ]  = 1.048 MHz 

The second approach is graphical. At resonance reactance and sus- 
ceptance of the circuit equal zero; thus we can plot the imaginary 
portion of the admittance given by (10.19). Such a plot is shown in 
Figure 10- 1 1, where the absolute value of the suceptance is plotted 
versus frequency. 

Comparing the graphical results with the analytical approach 
(10.21), we see that they are virtually the same. 
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Series 
resonance 

Parallel 
resonance 

Figure 10-1 1 Susceptance response of a quartz element. 

Care has to be exercised in selecting quartz crystals due to 
their multiple resonances. Depending on the crystal these responses 
can be very closely spaced and may result in an undesired oscilla- 
tion frequency. 

10.2 High-Frequency Oscillator Configuration 
As the operating frequency approaches the GHz range, the wave nature of volt- 

ages and currents cannot be neglected. As outlined in previous chapters, reflection and 
transmission coefficients and the associated S-parameter representation are required to 
represent the circuit's functionality. This requires us to re-examine (10.1) from a trans- 
mission line point of view. The Barkhausen criterion has to be reformulated in the con- 
text of the reflection coefficients. 

Toward re-expressing the loop gain in terms of transmission line principles, we 
recall our signal flow chart representation in Section 4.4.5 (see Figure 10-12). 

The input reflection coefficient for matched source impedance (Zs = Z,) is 



High-Frequency Oscillator Contlguration 

'in ' L  

(a) Sourced and loaded transistor 

(b) Equivalent signal flow graph 

Figure 10-12 Sourced and loaded transistor and its flow chart model. 

where A = S l l S 2 2  - S12S21 . This is consistent with definitions given in Example 4-8. 
Conducting the computation with respect to the source term, 
bs = ~~f l~/ (~~ + Zo) , we can define the loop gain: 

bl - - - ' in  

b, 1 - r,r, 
The equation implies that if 

rinrs = 1 

at a particular frequency, the circuit is unstable and begins to oscillate. 
The identical circuit situation applies if the output side is considered, implying the 

condition 

for oscillations to occur. 
When the stability factor k = (1 -  IS^^^^ -  IS^^^^ + 1 ~ 1 ~ ) / ( 2 1 ~ ~ ~ 1 1 ~ ~ ~ l ) ,  see 

Chapter 9, is included, the preceding conditions for oscillation can be summarized as 
follows: 
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r o u t r ~ =  I (10.26~) 

Since the stability factor is dependent on the S-parameters of the active device we have 
to ensure that condition (10.26a) is satisfied first and foremost. If the S-parameters at 
the desired frequency do not ensure this requirement, we can switch to a common-base 
or common-collector configuration or add a positive feedback to increase instability, as 
the following example shows. 

,,&M w 
Example 10-3: Adding a positive feedback element to initiate 

oscillations 

A BJT is operated at 2 GHz and has the following S-parameters 
specified in common-base configuration: Sl l  = 0.941174", 
S12 = 0.013L-98", S2, = 1.9L-28", and S22 = 1.01L-17'. 
Determine how the Rollett stability factor is affected by adding an 
inductance to the base of the transistor ranging from 0 to 2 nH. 

Solution: Using the definition for k gives us without inductance 
the value 

k = (1 -  IS^^^^ -  IS^^/^ + 1 ~ 1 ~ ) / ( 2 1 ~ ~ ~ 1 1 ~ ~ ~ l )  = -0.25 

Accounting for the inductance can be accomplished by redrawing 
the circuit in terms of two networks depicted in Figure 10-13. 

Positive 
t/L/ feedback 

loop 

Figure 10-13 Network representation of the BJT with base inductance. 
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In this case the overall S-parameter representation can be found 
by first converting the transistor's S-parameters into impedance repre- 
sentation, followed by adding the 2-parameters of the inductor, and 
finally converting the result back into S-parameter form. 

Using the conversion formulas described in Chapter 4, we find 
the Z-representation of the transistor in common-base configuration: 

For the inductor the Z-matrix is given by 

Adding [Z], and [ZIind results in the Z-parameters of the entire 
circuit, which can then be converted into S-parameters. 

To obtain the dependence of the Rollett stability factor as a 
function of feedback inductance, we have to repeat the preceding 
computations for each value of L . The result of such calculations is 
shown in Figure 10-14 (see also file exlo-3.m). 

Feed-back inductance L, nH 

Figure 10-1 4 Rollett stability factor (k) as a function of feedback inductance in 
common-base configuration. 
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As seen from Figure 10-14, a maximum instability (minimum 
value of k) is obtained by adding a 0.6-nH inductor to the base. 

At frequencies in the GHz range, even the lengths of the leads 
can be suficient to create the desired inductance value in the base of 
the transistol: 

It is interesting to note that if the oscillation condition is met either at the input or 
output port, the circuit is oscillating at both ports. This is directly seen by comparing 
the reflection coefficients at the input and output ports. We know that 

and solving for rL yields 

However, rout can also be written as 

Therefore, we conclude that (10.28) is the inverse of (10.29), and thus 

rL = l/rout 

as required by( 10.26~). 

10.2.1 Fixed-Frequency Oscillators 

A very popular oscillator design approach involves the two-port design where the 
transistor configuration is first chosen such that it meets the requirement of k < 1 (an 
inductive feedback may have to be added). Next, we select TL such that Irin\ > 1 or rs 
such that Irou,l > 1 . Either case implies the other condition. For instance, if \Tout\ > 1 
we conclude that Irinl > 1 and vice versa. A proof is left as an exercise. The following 
example details these steps. 
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c & M w  
Example 10-4: Design of a fixed-frequency lumped element 

oscillator 

A BFQ65 BJT manufactured by Philips Semiconductors is used in 
the common-base configuration with biasing conditions specified by 
V C E  = 3 V and VBE = 0.9 V. For this case, the transistor has the 
following S-parameters measured at 1.5 GHz: S1 = 1.47 1125 " , 
S12 = 0.327L130°, S21 = 2.2L-63O, and S22 = 1.231-45'. 
Design a series feedback oscillator that satisfies conditions (10.26) 
at f = 1.5 GHz. 

Solution: As the first step in the design process we have to 
ensure that the transistor is at least potentially unstable. This can be 
tested by computing the Rollett stability factor: 

Since k is less than unity, the transistor is indeed potentially 
unstable. 

Next, we plot the input stability circle to choose a reflection 
coefficient for the input matching network. The center and radius of 
the input stability circle are computed base on the formulas provided 
in Chapter 9: 

Since ICinl < rin and IS22( > 1 ,  the stable region is outside of the 
shaded circle, as illustrated in Figure 10- 15. 

According to Figure 10-15, we have a great deal of flexibility 
in choosing the reflection coefficient for the input matching net- 
work. Theoretically, any rs residing inside of the stability circle 
would satisfy our requirements. In practice, however, we would like 
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-1.0 

Figure 10-15 Input stability circle for the oscillator design. 

to choose rs such that it maximizes the output reflection coeffi- 
cient: 

S12S21 
rout = S22 + 1 - sI1+ 

From (10.31) it is obvious that Tout achieves its maximum value 
when Ts  = s;:. In this case we obtain an infinite output reflection 
coefficient, which from (10.26~) results in T L  = 0 (i.e., 
Z L  = ZO = 50 R) .  The problem with such an approach is that in 
practical realizations it is almost impossible to achieve a perfect 
50 Q matching. Moreover, as we approach rs = S;f, the oscillator 
becomes increasingly sensitive to changes in the load impedance. At 
Ts  = s;: , the slightest deviation from the 50 R value results in 
ceasing all oscillations. Because of this phenomenon we choose rs 
somewhat close, but not exactly equal, to ST: . 

After attempting several values for the source reflection coeffi- 
cient, we finally select T s  = 0.65L-125 ' . From the knowledge of 
rs the source impedance is computed as Zs = ( 13 - j25)R, 
which is realized by a series combination of a 13 i2 resistor and a 
4.3 pF capacitor, as shown in Figure 10- 16. 

Next the output reflection coefficient is computed using 
(10.31) with the result rout = 14.671-36.85". To determine the 
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RFC E - 

rs rL 
Figure 10-16 Series-feedback BJT oscillator circuit. 

output matching network we utilize (10.26~) and obtain the value 
TL = ri:t = 0.068L36.85'. This corresponds to the impedance 
ZL = (55.6 + j4.57)R = -Z,, and can be realized as a series 
combination of a 55.6 R resistor with a 0.48 nH inductor. 

The final point that has to be taken into account in our design 
is the fact that as the output power of the oscillator begins to build 
up, the transistor's small-signal S-parameters become invalid. Usu- 
ally, the power dependence of the transistor's S-parameters results in 
a less negative Rout = Re{Zout} for increasing output power. Thus, 
it is necessary to choose RL = Re{ZL} such that RL + Rout < 0 .  In 
practice, a value of RL = -ROu,/3 is often used. However, we have 
to be careful with such a choice because it is only applicable if Ts is 
sufficiently far away from ST:, as discussed previously. Another 
implication of RL # -Rout is a shift in the oscillation frequency. 

In our design we have chosen RL = 50 R , as shown in Figure 
10-16. The output power for this oscillator at the fundamental fre- 
quency is Pout = 16 dBm, which corresponds to sinusoidal oscilla- 
tions with 2 V amplitude. For our design the load resistance is very 
close to -Rout so that the frequency shift is insignificant. 

Although the component values assure that this oscillator 
project meets design spec@ations and the electric behavior is suc- 
cessfully modeled, the jnal circuit implementation will pose addi- 
tional problems. This is apparent when considering, for instance, 
the 0.48 nH induct06 which is comparable with the inductance of 
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PCB through hole connections (vias) and parasitics of the individ- 
ual components. 

For high-frequency applications, a more realistic design requires the use of dis- 
tributed elements. A typical oscillator example involving a FFiT with connection to a 50 
R load is seen in Figure 10-17. Here, TL,  ( i  = 1, . . . ,6) represent microstrip lines. 

- 
Figure 10-1 7 GaAs FET oscillator implementation with microstrip lines. 

The design approach is presented in the following example, which provides 
details of how to increase the instability through a microstrip line attached to the com- 
mon gate and how to select appropriate microstrip lines to match the load impedance. 

Y , & M  w 
Example 10-5: Microstrip design of a GaAs FET oscillator 

The S-parameters of the GaAs FET (Hewlett-Packard ATF13100) in 
common-gate configuration are measured at 10 GHz and have the 
following values: S l l  = 0.371-176", S I 2  = 0.17119.8O, 
S,, = 1.371-20.7' , and S2, = 0.90L-25.6' . Design an oscilla- 
tor with 10 GHz fundamental frequency. Furthermore, match the 
oscillator to a 50 R load impedance. 
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Solution: Similar to Example 10-4, we first check the stability of 
the transistor by computing the Rollett stability factor: 

Even though k c 1 indicates that the transistor is potentially unstable, 
we can attempt to increase the instability by connecting a feedback 
inductor to the gate of the transistor. Following the same approach as 
discussed in Example 10-3, we plot the dependence of the stability 
factor as a function of inductance (see Figure 10-18). 

0 0.4 0.8 1.2 1.6 2.0 
Feedback inductance L, nH 

Figure 10-18 Stability factor for FET in common-gate mode as a function of gate 
inductance. 

It is seen that maximum instability is achieved for L = 0.9 nH. 
Due to the high operating frequency of the oscillator, the use of 
lumped elements is undesirable and we have to replace the inductor 
by its distributed equivalent. One of the ways to realize an inductance 
is to replace it with a short-circuit transmission line stub. Referring 
back to Chapter 2, we can calculate the electrical length of the trans- 
mission line assuming 50 Q characteristic line impedance: 

-1 oL O = p l  = tan (%) = 48.5' 
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The resulting S-parameters for the FET with a short-circuited stub 
connected to the gate contact are as follows: 

The next step in the design procedure is the development of an 
input matching network. As mentioned in Example 10-4, for a real- 
izable oscillator we should choose a source reflection coefficient 
close to the inverse of the S l l  parameter of the transistor. In our 
design we have selected Ts = 11-160°, which corresponds to a 
source impedance of Zs = -j8.8 R and which can be realized as 
an open-circuit stub with a 50 R characteristic impedance and 80" 
electrical length. 

The output reflection coefficient is computed as 

which is equivalent to Z,, = (-74.8 + j17.1)R. To satisfy 
(10.26c), we would have to choose a load impedance of 
ZL = -Zout, but due to the power dependence of the transistor's S- 
parameters (see Example 10-4) we choose the real portion of the 
load impedance to be slightly smaller than -Rout : 

ZL = (70 - j l7 . l )R 

The transformation of the 50 SZ load impedance to ZL is done 
through a matching network consisting of a 50 R transmission line 
with an electrical length of 67" and a short-circuit stub of 66' 
length. 

The conversion of the electric parameters of the transmission 
lines into physical dimensions is done using the same approach as 
described in Example 2-5 in Chapter 2. The dimensions of the lines 
computed for a FR-4 substrate of 40 mil thickness are summarized 
in Table 10-2. 

Based on the oscillator circuit diagram shown in Figure 10-17, 
the 123 line is cut into two halves, TL3A and TL3B, to accommo- 
date the blocking capacitor. The lines TL5 and TL6 can have any 
length since they are connected to a 50 !2 load. 
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Table 10-2 Dimensions of the transmission lines in the FET oscillator 

Transmission line Electrical length, deg. 

The microstrip line design allows for an extremely small 
circuit board implementation as seen by the individual line lengths. 

I 

10.2.2 Dielectric Resonator Oscillators 

When dealing with mircostrip line realizations, a dielectric resonator (DR) can 
5 

be added to provide a very high-Q oscillator design (up to 10 ) with extraordinary tem- 
perature stability of better than k10 ppmI0C. This resonator, simply called a puck, can 
either be placed on top or next to the microstrip line in a metallic enclosure. The electric 
field coupling between the strip line and the cylindrical resonator (see Figure 10-19), 
can be modeled near resonance as a parallel RLC circuit. The tuning screw permits a 
geometric adjustment which translates into a change of the resonance frequency. 

I Width, mil 

TLl 

Tuning 
screw\- 

Length, mil 

~ield coupling reg 

Figure 10-19 Dielectric resonator (DR) placed in proximity to a microstrip line. 

I 

80 

We will not investigate the various waveguide modes (TE and TM modes) that are 
established inside the resonator, but rather concentrate on the use of DRs under TEM 
conditions. 

74 141 
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In general, the circuit model of a DR (see Figure 10-20) is specified in terms of 
the unloaded Q, or Q, , 

and the coupling coefficient, P , 

at the desired angular resonance frequency wo = l / ( K c ) .  The value of the external 
resistance Rex, is equal to twice the line impedance because of the symmetric termina- 
tion into 2,. Similar to a transformer, the coupling coefficient quantifies the electro- 
magnetic linkage between the resonator and the microstrip line, with typical values in 
the range of 2 to 20. Additionally, P is also employed to describe the relationship 
between the unloaded (Q,), loaded (Q,), and external (QE) quality factors: 

Qu = PQ, = (1 + P>Q, (10.34) 

For the oscillator design it is required to specify the DR behavior in terms of the S- 
parameters. The modified transmission line configuration is illustrated in Figure 
10-2O(b). 

(a) Terminated microstrip line with DR (b) Transmission line model 

Figure 10-20 Placement of DR along a transmission line and equivalent circuit 
representation for Sparameter computation. 

Recalling our discussion of parallel resonance circuits in Section 5.1.4, we can 
compute the impedance ZDR as 

which simplifies to 
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where Af = f - fo is the deviation from the center frequency. The last equation is only 
valid around the resonance point, where o + oo = 200.  Normalized with respect to Zo 
near resonance, it is seen that 

The transmission line segments on either side can now be included, leading to 

DR Depending on the direction, we can determine the reflection coefficient as either Sll 
or sf.. If the electric line length is equal on both sides of the DR, we obtain 
8, = 8, = 8 = (2?c/h)(1/2), and therefore 

The selection and purchase of a DR can be carried out quickly and efficiently, 
often over the manufacturers' websites. The design engineer specifies a particular reso- 
nance frequency and board material (thickness, dielectric constants) and the manufac- 
turer will provide a particular DR in terms of diameter, length, tuning screw extension, 
distance d from the microstrip line, and cavity material. In addition, the coupling 
parameter and the unloaded Q are given as well as the lumped parallel resonant circuit 
elements needed in the CAD simulation programs. 

c & M w  
Example 10-6: Dielectric resonator oscillator design 

Design an 8 GHz dielectric resonator oscillator (DRO) using a GaAs 
FET whose S-parameters at fo = 8 GHz are S1 = 1.1 L170° , 
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S I 2  = 0.4L-98", S,, = 1.5L-163", and S22 = 0.91-170'. A 
dielectric resonator that is used in the design has the following 
parameters at resonant frequency f ,, = f : fl = 7 ,  Q, = 5000. 
Find the length of the 50 R rnicrostrip line at the input port side of 
the FET, if the DR is located in the middle. Assume the DR is termi- 
nated with a 50 R resistor. Examine the difference in the DRO 
response to the frequency fluctuations as compared to the conven- 
tional designs discussed previously. 

Solution: The input stability circle of the FET at fo = 8 GHz is 
shown in Figure 10-21. 

-1.0 

Figure 10-21 Input stability circle of the FET in the DRO design example. 

To satisfy the oscillation conditions we have to chose a source 
reflection coefficient somewhere in the non-shaded area of Figure 
10-2 1. Since the termination resistance for the dielectric resonator is 
equal to the characteristic line impedance, the output reflection coef- 
ficient of the DR is computed according to (10.39): 
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As discussed in the previous examples, to maximize the output 
reflection of the transistor, we have to chose T s  close to the inverse 
of the Sll parameter. Since the absolute value of T s  is fixed, the 
best we can do is to select O such that the phase angle of T s  is 
equal to the phase angle of s;: , or -28  = LS;: = -LSll, leading 
to O = 85'. The resulting electric circuit for the input matching 
network of the oscillator is shown in Figure 10-22. 

i Dielectric resonator 

Figure 10-22 DR-based input matching network of the FET oscillator. 

If the DR is not used in the input matching network of the tran- 
sistor, then the simplest network that yields the same 
T s  = 0.875L-170" at the oscillation frequency fo would be a 
series combination of a 3.35 R resistor and a 4.57 pF capacitor. A 
comparison of (rout( for the DR versus no DR realization as a func- 
tion of frequency is shown in Figure 10-23, where the FET S-pararn- 
eters are assumed to be frequency independent and the DR is 
approximated by its equivalent circuit shown in Figure 10-20 with 
parameters computed using (10.32) and (10.33): 

As clearly seen in Figure 10-23, the DRO design has a IrOutl > 1 in 
a much narrower frequency band than the conventional oscillator 
without the DR. This approach generally results in high selectivity 
and reduced drifts of the oscillation frequency. With the tuning 
screw small frequency adjustments can be done, typically in the 
range k0.01 f ,, around the target frequency. 
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Frequencyf; GHz 

(a) Oscillator design with DR 
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(b) Conventional oscillator without DR 

Figure 10-23 Frequency response of the output reflection coefficient for an 
oscillator design with and without DR. 

The dielectric resonator is an inexpensive and easy way to 
improve the quality factor of an oscillator: Unfortunately, its geo- 
metric size depends on the resonance frequency and typically gets 
too large at low frequencies. 



10.2.3 YIG-Tuned Oscillator 

The dielectric resonator allows tuning over a very narrow band around the reso- 
nance frequency, typically between 0.01 and 1%. As an alternative, a magnetic element 
offers a wideband tunable oscillator design with a tuning range of more than a decade 
of bandwidth. Such a tunable element, often of spherical shape, derives its name from 
yittrium iron garnet (YIG), a femmagnetic material whose effective permeability can 
be externally controlled through a static magnetic bias field Ho. This applied field 
directly influences the Q of the equivalent parallel resonant circuit consisting of con- 
ductance Go, inductance Lo, and capacitance Co . Figure 10-24 depicts a typical YIG 
element oscillator circuit. 

YIG 

Figure 10-24 Oscillator design based on a YlG tuning element. 

The unloaded quality factor is given as 

where M, is the saturation magnetization in the sphere and HL is the resonance line 
width of 0.2 Oe. The saturation magnetization can be linked to the precessional motion 
of the magnetic moments at the angular frequency om via 

where y is the gyromagnetic ratio recorded in 2.8 MHdOe. The resonance frequency 
follows from the bias field: 

wo = 2.nyHo (10.42) 

From these equations the circuit elements of the parallel resonance circuit can be quan- 
tified. Specifically, the inductance is found to be 
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with a being the radius of the YIG sphere. This also determines Co from the resonance 
2 condition oo = 1 /(LOCO) ; that is, 

Finally, the conductance is 

In (10.42a)-(10.42~) d is the diameter of the coupling loop. 

10.2.4 Voltage-Controlled Oscillator 

It is mentioned in Chapter 6 that certain diodes exhibit a large change in capaci- 
tance in response to an applied bias voltage. A typical example is the varactor diode, 
with its variable capacitance CV = CVo(l - V~/V,,)-"~ that can be affected by the 
reverse bias V Q  . Figure 10-25 illustrates how the feedback loop for the Clapp oscillator 
can be modified, by replacing C3 in Figure 10-25(a) with the varactor diode and an 
appropriate DC isolation. The modified circuit is shown in Figure 10-25(b). This circuit 
can readily be analyzed if a simplified BJT model ( R L  << h22) is employed. 

(a) Pi-type feedback loop (b) Redrawn circuit with DC isolation 

Figure 10-25 Varactor diode oscillator. 

In Figure 10-26 the varactor diode and a transmission line element, whose length 
is adjusted to be inductive, form the termination circuit connected to the input of the 
oscillator. If the varactor diode and the transmission line segment is disconnected, the 
input impedance Z, can be computed from two loop equations: 
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Figure 10-26 Circuit analysis of varactor diode oscillator. 

Rearranging leads to 

The equation can be simplified by noting that (1 + P) = P and assuming that 
hll  >> Xcl , which results in 

As expected from our previous discussion, the input resistance is negative. Therefore, 
with gm = P/hll ,  

and 

where C, = C, C2/(C + C2) . The resonance frequency follows from the previously 
established condition X1 + X2 + X3 = 0 (see Section 10.1.2), or 

with the result 
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It can be concluded from (10.46a) that the combined resistance of the varactor diode 
must be equal to or less than JRmI in order to create sustained oscillations. 

.,&M w 
Example 10-7: Design of a varactor-controlled oscillator 

A typical varactor diode has an equivalent series resistance of 45 R 
and a capacitance ranging from 10 pF to 30 pF for reverse voltages 
between 30 V and 2 V. Design a voltage controlled Clapp-type oscil- 
lator with center frequency of 300 MHz and &lo% tuning capabil- 
ity. Assume that the transconductance of the transistor is constant 
and equal to gm = 1 15 mS. 

Solution: To create sustained oscillations, we have to ensure that 
the series resistance of the varactor diode is smaller or equal to 
lRml over the entire frequency range as computed in (10.46a). From 
(10.46a) we can conclude that lRml achieves its minimum value at 
maximum frequency of operation. Substituting om, = 2nf,, 
(with f ,, = 1.1 f = 330 MHz being the maximum oscillation 
frequency) into (10.46a), it is found that the capacitances C1 and 
C2 are related as 

where Rs = 45 $2 is the varactor's equivalent series resistance. 
Since the maximum oscillation is obtained when the varactor 

capacitance has its minimum value, and the minimum frequency 
corresponds to the maximum C3 , we can rewrite (10.48) as 
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where relation (10.49) is used to eliminate C ,  . Dividing (10.50) by 
(10.51) and taking the square of the result, the following quadratic 
equation is obtained for C2 : 

1 a2 
k(1- a2)c: + (- - -)c, + (1 - a2) = 0 (10.52) 

C3max C3min 

where a = f f ,, . Solving (10.52) and substituting the result 
in (10.49) and (10.50) or (10.51), we find C1 = 12.4 pF, 
C2 = 48 pF, and L3 = 46.9 nH as our desired values. 

Unlike a mechanically adjustable dielectric resonator; the var- 
actor diode permits dynamic tuning over a substantial frequency 
range. 

10.2.5 Gunn Element Osclllator 

The GUM element can be employed to create oscillators from 1 to 100 GHz at 
low power outputs of roughly up to 1 W. It exploits a unique negative resistance phe- 
nomenon first discovered by Gum in 1963. When certain semiconductor structures are 
subjected to an increasing electric field, they begin to shift, or transfer, electrons from 
the main valley to side valleys in the energy band structure. The accumulation of up to 
9695% of the electron concentration into these valleys results in a substantial decrease 
in effective carrier mobility and produces a technologically interesting I-V characteris- 
tic. Semiconductors with these band structures are primarily GaAs and InP. Figure 
10-27 depicts a Gunn element and its current versus applied voltage response. 

We notice that in the presence of an applied DC voltage to the GUM element it 
behaves like a normal ohmic contact resistor for low field strength. However, if a certain 
threshold voltage V o  is exceeded, dipole domains begin to be created below the cathode 
triggered by doping fluctuations. The formation of these domains lowers the current, as 
indicated in Figure 10-27 (b). The current then remains constant while the domains 
travel from cathode to anode. After collection, the process repeats itself. The frequency 
can be estimated from the drift velocity of the domain motion vd = 10' mls and the 
travel length L of the active zone of the GUM element. For a length of 10 pm, we obtain 
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(a) Gunn element structure (b) Current vs. applied voltage response 

Figure 10-27 Gunn element and current versus voltage response. 

If an external DC voltage is applied, the domain motion can be influenced and thus the 
resonance frequency is varied. The tuning range is approximately within 1% of the res- 
onance frequency. 

Figure 10-28 shows a rnicrostrip line implementation of a Gunn element oscilla- 
tor. Here the Gunn element is connected to a h/4  rnicrostrip line, which in turn is cou- 
pled to a dielectric resonator. The bias voltage for the Gunn element is fed through an 
RFC onto the microstrip line. 

Figure 10-28 Gunn element oscillator circuit with dielectric resonator (DR). 

10.3 Basic Characteristics of Mixers 
Mixers are commonly used to multiply signals of different frequencies in an effort 

to achieve frequency translation. The motivation for this translation stems from the fact 
that filtering out a particular RF signal channel centered among many densely popu- 
lated, narrowly spaced neighboring channels would require extremely high Q filters. 
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The task, however, becomes much more manageable if the RF signal carrier frequency 
can be reduced or downconverted within the communication system. Perhaps one of the 
best known systems is the downconversion in a heterodyne receiver, schematically 
depicted in Figure 10-29. 

Mixer -. - - - - - . . . . . . . . . . . . . . . . . . . . - - - . - . - - . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
LNA i Combiner Detector 

Figure 10-29 Heterodyne receiver system incorporating a mixer. 

I . . : i 

Here the received FW signal is, after preamplification in a low-noise amplifier 
(LNA), supplied to a mixer whose task is to multiply the input signal of center fre- 
quency f RF with a local oscillator (LO) frequency f Lo. The signal obtained after the 
mixer contains the frequencies f RF k f LO, of which, after low-pass (LP) filtering, the 
lower frequency component f RF - f LO, known as the intermediate frequency (IF), is 
selected for further processing. 

The two key ingredients constituting a mixer are the combiner and detector. The 
combiner can be implemented through the use of a 90' (or 180") directional coupler. 
A discussion of couplers and hybrids is found in Appendix G. The detector traditionally 
employs a single diode as a nonlinear device. However, antiparallel dual diode and dou- 
ble-balanced quadrupole diode configurations are also utilized, as discussed later. In 
addition to diodes, BJT and MESFBT mixers with low noise figure and high conversion 
gain, have been designed up to the X-band. 

LP Filter 
fw f -  ~ R F  *.LO j 

10.3.1 Basic Concepts 

-+ 
AF 

Before going into details of the circuit design, let us briefly review how a mixer is 
capable of taking two frequencies at its input and producing multiple frequency compo- 
nents at the output. Clearly a linear system cannot achieve such a task, and we need to 
select a nonlinear device such as a diode, FET, or BJT that can generate multiple har- 
monics. Figure 10-30 depicts the basic system arrangement of a mixer connected to an 
FW signal, VRF(t), and local oscillator signal, VLo(t), which is also known as the 
pump signal. 

I 
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Figure 10-30 Basic mixer concept: two input frequencies are used to create new 
frequencies at the output of the system. 

It is seen that the RF input voltage signal is combined with the LO signal and sup- 
plied to a semiconductor device with a nonlinear transfer characteristic at its output side 
driving a current into the load. Both diode and BJT have an exponential transfer charac- 
teristic, as expressed for instance by the Shockley diode equation discussed in Chapter 6: 

Alternatively, for a MESFET we have approximately a square behavior: 

where the subscripts denoting drain current and gate-source voltage are omitted for 
simplicity. The input voltage is represented as the sum of the RF signal 
vRF = V R F ~ ~ ~ ( ~ R F t )  and the LO signal vLO = VLOco~(oLOt) and a bias VQ; that 
is, 

V = VQ + VRFco~(oRFt) + VL0co~(oLot) (10.55) 

This voltage is applied to the nonlinear device whose current output characteristic can 
be found via a Taylor series expansion around the Q-point: 

where the constants A and B refer to (dI/dV) I and (1/2)(d21/dV2) 1, , respec- 
v~ Q 

tively. Neglecting the constant bias VQ and IQ, the substitution of (10.55) into (10.56) 
yields 

I(V) = A{VRFcos(oRFt) + VLocos(oLot)} 
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The factors containing the cosine square terms can be rewritten, via the trigono- 
2 metric identity cos ( a t )  = (1/2){ 1 - cos(2at)) , into DC terms and terms involving 

2aRFt and 2aLot.  The key lies in the last term of (10.57), which becomes 

This expression makes clear that the nonlinear action of a diode or transistor can gener- 
ate new frequency components of the form aRF f a,, . It is also noted that the arnpli- 
tudes are multiplied by VRFVLo, and B is a device-dependent factor. 

Equation (10.58) is the Taylor series representation up to the third term, and thus 
up to second-order intermodular product (v2B ). Any higher-order products, such as 
third-order intermodular product ( v3 c ), are neglected. For diodes and BJTs these 
higher-order harmonic terms can significantly affect the performance of a mixer. How- 
ever, the second-order intermodular product is the only surviving term if a ITT with 
quadratic transfer characteristic is utilized. Thus, a FET is less prone to generate undes- 
ired higher-order intermodular products. 

The following example discusses the down conversion process from a given RF 
signal frequency to a desired intermediate frequency. 

c m w  
Example 10-8: Local oscillator frequency selection 

An RF channel with a center frequency of 1.89 GHz and bandwidth 
of 20 MHz is to be downconverted to an IF of 200 MHz. Select an 
appropriate f,,. Find the quality factor Q of a bandpass filter to 
select this channel if no downconversion is involved, and determine 
the Q of the bandpass filter after downconversion. 

Solution: As seen in (10.58), by mixing RF and LO frequencies 
through a nonlinear device we produce an IF frequency that is equal 
to either fIF = f R F -  f L O  or fIF = fLO- fRF,  depending on 
whether fRF or f, is higher. Thus, to produce a fIF = 200 MHz 
from f ,, = 1.89 GHz we can use either 

f L O  = f R F -  fIF = 1.69 GHzor fLo = f R F +  fIF = 2.09 GHz 

These two choices are equally valid and are both used in practice. 
When f R F  > f L O  is chosen, the mixer is said to have low-side 
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injection, whereas when f RF c f LO the design is called high-side 
injection. The first approach is generally preferred since lower LO 
frequencies are easier to generate and process. 

Before down conversion, the signal has a bandwidth of 
B W = 20 MHz at a center frequency of f RF = 1.89 GHz. There- 
fore, if we attempted to filter out the desired signal we would have to 
use a filter with Q = f R F / B W  = 94.5. However, after downcon- 
version, the bandwidth of the signal does not change but the center 
frequency shifts to f ,  = 200 MHz, thus requiring a bandpass fil- 
ter with a quality factor of only Q = f l F / B  W = 10. 

This example shows that less selective jiltenng is required 
once the mixer has downconverted the RF signal. 

10.3.2 Frequency Domain Considerations 

It is important to place the previous section into a frequency domain perspective. 
To this end it is assumed that the angular RF signal is centered at WRF with two extra 
frequency components situated ow above and below wRF . The LO signal contains one 
single component at wLo . After performing mixing, according to (10.58), the resulting 
spectral representation contains both upconverted and downconverted frequency 
components. Figure 10-3 1 graphically explains this process. 

Typically the upconversion process is associated with the modulation in a trans- 
mitter, whereas the downconversion is encountered in a receiver. Specifically, when 
dealing with modulation, the following terminology is common: 

Lower sideband, or LSB ( w ,  - wLo ) 
Upper sideband, or USB (aw + wLO ) 
Double sideband, or DSB ( W ,  + wLO, W ,  - wLO ) 

A critical question to answer is the choice of an LO frequency that shifts the RF fre- 
quency to a suitable IF level. 

An interrelated issue is the problem of image frequencies mapping into the same 
downconverted frequency range. To understand this problem, assume an RF signal is 
downconverted with a given LO frequency. In addition to the desired signal, we have 
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(a) RF signal 

(b) LO signal 

kt <a>, 

A 

- 
%-w, %+% 

(c) Down- and upconverted spectral products 

Figure 10-31 Spectral representation of mixing process. 

placed symmetrically an interferer about IF (see Figure 10-32). The desired RF signal 
transforms as expected: 

However, the image frequency om transforms as 
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Since cos(-o,t) = cos(o,t) , we see that both frequency spectra are shifted to the 
same frequency location, as Figure 10-32 illustrates. 

Undesired 
image signal 

A 

I 
0, 

- 0 

Figure 10-32 Problem of image frequency mapping. 

To avoid the presence of undesired image signals that can be greater in magnitude 
than the RF signal, a so-called image filter is placed before the mixer circuit to sup- 
press this influence, provided sufficient spectral separation is assured. More sophisti- 
cated measures involve an image rejection mixer. 

10.3.3 Single-Ended Mixer Design 

The simplest and least efficient mixer is the single-ended design involving a 
Schottky diode, as shown in Figure 10-33(a). The RF and LO sources are supplied to an 
appropriately biased diode followed by a resonator circuit tuned to the desired IF. In 
contrast, Figure 10-33(b) shows an improved design involving a FET, which, unlike the 
diode, is able to provide a gain to the incoming RF and LO signals. 

In both cases the combined RF and LO signal is subjected to a nonlinear device 
with exponential (diode) or nearly quadratic (FET) transfer characteristic followed by a 
bandpass filter whose task is to isolate the IF signal. The two very different mixer real- 
izations allow us to contrast a number of parameters important when developing suit- 
able designs: 

Conversion loss or gain between the RF and IF signal powers 
Noise figure 
Isolation between LO and RF signal ports 
Nonlinearity 
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(a) Diode mixer 

(b) FET mixer 

Figure 10-33 Two single-ended mixer types. 

Since LO and RF signals are not electrically separated in Figure 10-33(a), there is the 
potential danger that the LO signal can interfere with the RF reception, possibly even 
reradiating portions of the LO energy through the receiving antenna. The FET realization 
in Figure 10-33(b) allows not only for LO and RF isolation but also provides signal gain 
and thus minimizes conversion loss. The conversion loss (CL) of a mixer is generally 
defined in dB as the ratio of supplied input power PRF over the obtained IF power PIF : 

When dealing with BJTs and FETs, it is preferable to specify a conversion gain (CG) 
defined as the inverse of the power ratio. 

Additionally, the noise figure of a mixer is generically defined as 
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with CG again being the conversion gain, and P,  , Pnin the noise power at the output 
due to the RF signal input (at RF) and the total Gise power at the output (at IF). The 
FET generally has a lower noise figure than a BJT, and because of a nearly quadratic 
transfer characteristic (see Section 7.2) the influence of higher-order nonlinear terms is 
minimized. Instead of the FET design, a BJT finds application when high conversion 
gain and low voltage bias conditions are needed (for instance, for systems relying on 
battery operation). 

Nonlinearities are customarily quantified in terms of conversion compression 
and intermodular distortion (IMD). Conversion compression relates to the fact that 
the IF output power as a function of RF input power begins to deviate from the linear 
curve at a certain point. The point where the deviation reaches 1 dB is a typical mixer 
performance specification. As already encountered in the amplifier discussion, the 
intermodulation distortion is related to the influence of a second frequency component 
in the RF input signal, giving rise to distortion. To quantify this influence, a two-tone 
test is typically employed. If f RF is the desired signal and f is a second input fre- 
quency, then the mixing process produces a frequency component at 2 f - f RF f f LO, 
where the +/- sign denotes up- or downconversion. The influence of this intermodula- 
tion product can be plotted in the same graph as the conversion compression (see Fig- 
ure 10-34). 

Ideal Po, vs. P,, curve 

Third order intercept point 

Real Po,, vs. 4, curve 

1 dB compression point 

' e n  (dBm) 
0 dBm 

Figure 10-34 Conversion compression and intermodulation product of a mixer. 

The intercept point between the desired linear output response and the undesirable 
third-order IMD response is a common figure of merit, indicating the ability of a mixer 
to suppress this influence. 
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Additional mixer definitions include distortion generated inside the mixer which 
is defined as harmonic IMD; isolation between RF and IF ports, which is directly 
linked to the influence of the combiner (hybrid coupler; see Appendix G); and dynamic 
range, which specifies the amplitude range over which no performance degradation 
occurs. 

The circuit design of an RF mixer follows a similar approach as discussed when 
dealing with an RF amplifier. The RF and LO signals are supplied to the input of an 
appropriately biased transistor or diode. The matching techniques of the input and out- 
put side are presented in Chapter 8 and directly apply for mixers as well. However, one 
has to pay special attention to the fact that there is a large difference in frequencies 
between RF, LO on the input side, and IF on the output side. Since both sides have to be 
matched to the typical 50 SZ line impedance, the transistor port impedances (or S- 
parameter representation) at these two different frequencies have to be specified. Fur- 
thermore, to minimize interference at the output side of the device, it is important to 
short circuit the input to IF, and conversely short circuit the output to RJ? (see Figure 
10-35). Including these requirements as part of the matching networks is not always an 
easy task. 

Figure 10-35 General single-ended mixer design approach. 

Input 
matching 
network 

These short-circuit conditions in general affect the transistor's behavior through 
internal feedback mechanism. Ideally, rin(uRF) should be known based on the short- 
circuit output condition and similarly rout(uIF) requires a short-circuit input condi- 
tion. >pically, an additional load resistance is added to the output port to adjust the 
conversion gain. In the following example, the salient design steps are explained. 
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.,&M \N4 
Example 10-9: Design of a single-ended B JT mixer 

For the DC-biasing topology shown in Figure 10-36, compute the 
values of the resistors R1 and R2 such that biasing conditions are 
satisfied. Using this network as a starting point, design a low-side 
injection mixer for f RF = 1900 MHz and f IF = 200 MHz. The 
BJT is measured at IF to have an output impedance of 
Z,,, = (677.7 - j2324)R for short-circuit input, and an input 
impedance of Zi, = (77.9 - j130.6)Q for short-circuit output at 
RF frequency. Attempt to minimize the component count in this 
design. 

Figure 10-36 DC-biasing network for BJT mixer design. 

Solution: Since the voltage drop across resistor R2 is equal to 
the difference between Vcc and Vc, and the current is the sum of 
the base and collector currents, R2 is computed as 
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Similarly, the base resistor R1 is computed as a ratio of VCE - VBE 
over the base current: 

Before beginning the design of an input matching network, we 
have to decide on how to supply the LO signal. The simplest 
arrangement is to connect the LO source directly to the base of the 
transistor via a decoupling capacitor, as shown in Figure 10-37. 

Figure 10-37 Connection of RF and LO sources to the BJT. 

The value of this capacitor CLO has to be chosen small enough 
so as to prevent RF signal coupling into the LO source. We arbitrary 
pick CLo = 0.2 pF. In this case the series combination of CLO and 
ZLo creates a return loss RL,  of only 0.24 dB, since 

Unfortunately, the LO frequency is very close to fRF SO that the 
same capacitance will attenuate not only the RF signal but the LO as 
well. We can compute the insertion loss ZLW due to this capacitor 
a t f ~ o  = fw- IF 
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Thus, if the LO source pumps at -20 dBm, only -33.6 dBm reaches 
the transistor. This seemingly high power loss is still tolerable since 
we can adjust the power provided by the local oscillator. 

The presence of CLO and ZLO modifies the value of the input 
impedance. A new total input impedance z;,, can be computed as a 
parallel combination of CLo and ZLo , and the input impedance of 
the transistor connected to the LO source is 

The output impedance does not change since the input is shorted 
during the measurement of Z,, . 

Knowing Zin, we can next design an input matching network 
using any of the methods described in Chapter 8. One of the possi- 
ble topologies consists of a shunt inductor followed by a series 
capacitor, as shown in Figure 10-38, where we added the blocking 
capacitor CB1 to prevent DC short circuit to ground. 

Figure 10-38 Input matching network for a single-ended BJT mixer. 
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There are several modifications that can be made to the circuit 
in Figure 10-38. First we notice that instead of biasing the base of 
the transistor through an RFC, we can connect R1 directly to the 
contact between L1 and C B 1 .  In this case we still bias the base of 
the transistor through L1 and maintain isolation of the RF signal 
from the DC supply by grounding the RF through CBl  . One more 
task of this matching network is to provide a short-circuit condition 
for the IF signal. Even though the impedance of the inductor L1 is 
rather small at f,, we still can lower it by choosing the value of 
CB1 such that L1 and C B 1  exhibit a series resonance at E For 
example, if we choose CB1 = 120 pF, we still maintain a solid 
short circuit for the RF signal and we improve the path to ground for 
the f, signal. The modified input matching network is shown in 
Figure 10-39. 

, . - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input matching 
network 

- 
Figure 10-39 Modified input matching network. 

The output matching network is developed using a similar 
approach. The original matching network again consisted of a shunt 
inductance L2 followed by a series capacitance C 2 .  The values are 
L2 = 416 nH and C2 = 1.21 pF. This topology allows us to elimi- 
nate the RFC at the collector terminal of the transistor. However, the 
problem with this topology is that it does not provide a short circuit 
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to ground for the RF signal that may interfere with the output. To 
remedy this drawback we replace L2 with an equivalent LC combi- 
nation where the additional capacitance C g  = 120 pF is chosen to 
provide solid ground condition for the fw signal and L2 is 
adjusted to L2 = 5.2 nH. The complete circuit of the designed sin- 
gle-ended BJT mixer is shown in Figure 10-40. 

Input matching 
network 

fw 

f, blocking 
capacitor 

Figure 10-40 Complete electrical circuit of the low-side injection, single-ended 
BJT mixer with f,, = 1900 MHz and f,, = 200 MHz. 

This design shows the multiple purposes that a matching net- 
work can p e g o m .  At jrst  glance they are often dificult to under- 
stand. Specijically, the dual network purposes of matching and 
isolation provide challenges for the circuit designer. 

10.3.4 Single-Balanced Mixer 

From the previous section it is seen that the single-ended mixers are rather easy to 
construct circuits. The main disadvantage of these designs is the difficulty associated 
with providing LO energy while maintaining separation between LO, RF, and IF sig- 
nals for broadband applications. The balanced dual-diode or dual-transistor mixer in 
conjunction with a hybrid coupler offers the ability to conduct such broadband opera- 
tions. Moreover, it provides further advantages related to noise suppression and spuri- 
ous mode rejection. Spurs arise in oscillators and amplifiers due to parasitic resonances 
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and nonlinearities and are only partially suppressed by the front end. Thermal noise can 
critically raise the noise floor in the receiver. Figure 10-41 shows the basic mixer design 
featuring a quadrature coupler and a dual-diode detector followed by a capacitor acting 
as summation point. 

90" branch line 
coupler 

- 
Figure 10-41 Balanced mixer involving a hybrid coupler. 

Besides an excellent VSWR (see Appendix G), it can be shown that this design is 
capable of suppressing a considerable amount of noise because the opposite diode 
arrangement in conjunction with the 90" phase shift provides a good degree of noise 
cancellation. The proof is left as an exercise, see Problem 10.22. 

A more sophisticated design, involving two MESFETs and 90" and 180" hybrid 
couplers is shown in Figure 10-42. The 180" phase shift is needed since the second 
MESFET cannot easily be reversed as done in the anti-parallel diode configuration seen 
in Figure 10-41. It is also important to point out that this circuit exhibits LO to RF as 
well as LO to IF signal isolation, but no RF to PF signal isolation. For this reason, a low- 
pass filter is typically incorporated into the output matching networks of each of the 
transistors in Figure 10-42. 

- - 
Figure 10-42 Single-balanced MESFET mixer with coupler and power combiner. 
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10.3.5 Double-Balanced Mixer 

The double-balanced mixer can be constructed by using four diodes arranged in a 
rectifier configuration. The additional diodes provided better isolation and an improved 
suppression of spurious modes. Unlike the single-balanced approach, the double-bal- 
anced design eliminates all even harmonics of both the LO and RF signals. However, 
the disadvantages are a considerably higher LO drive power and increased conversion 
loss. Figure 10-43 depicts a typical circuit of the double-balanced design. All three sig- 
nal paths are decoupled, and the input and output transformers enable a symmetric mix- 
ing with the LO signal. 

Figure 10-43 Double-balanced mixer design. 

For design details of double-balanced mixers the reader is referred to the books by 
Vendelin and Mass listed at the end of this chapter. 

10.4 Summary 
Oscillators and mixers require a nonlinear transfer characteristic and are therefore 

more difficult to design than standard linear amplifiers. It is not uncommon to encoun- 
ter circuits that perform as desired, but the design engineer does not understand exactly 
why they behave this way. Today's extensive reliance on CAD tools has often reduced 
our thinking to trial-and-error approaches. This certainly applies both to oscillators and 
mixer RF circuits. 

One of the key design requirements of an oscillator is the negative resistance con- 
dition as a result of the feedback loop equation, which can be formulated as the 
Barkhausen criterion: 

For instance, the feedback Pi-type network results in a host of different oscillator types, 
of which we discussed the Hartley, Colpitts, and Clapp designs. At frequencies up to 
approximately 250 MHz one of the passive feedback elements can be replaced by a 
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quartz crystal whose mechanical vibrations allow substantial improvements in fre- 
quency and temperature stability. 

For higher frequencies the S-parameters again become the preferred design proce- 
dure. For a two-port oscillator, the stability condition and the input and output oscilla- 
tion conditions assume primary importance: 

k c 1 ,  rinr,= 1 ,  r,,rL= 1 

A typical approach would start with the test of the stability circle k. Next, from a partic- 
ular output loading condition, the output reflection coefficient is determined from the 
knowledge of the input reflection coefficient. Conversely, the design can also be con- 
ducted from the input side. To enhance the Q-factor of the high-frequency performance 
a dielectric resonator can be added whose behavior is that of a parallel resonance circuit 
with normalized line impedance: 

Instead of the dielectric resonator a magnetically induced resonance condition can be 
established with the help of a YIG element. A Gunn diode finds applications in very 
high frequency oscillators. To add frequency tuning flexibility, a varactor diode is often 
employed to adjust the resonant circuit capacitively. 

Besides oscillators, mixers are the second group of practical circuits directly 
exploiting the nonlinear transfer characteristic of active solid-state elements such as 
diodes and bi- and monopolar devices. The ability of a mixer to achieve frequency trans- 
lation finds applications in heterodyne receiver and transmitter circuits. An RF signal 
a,, mixed with a local oscillator frequency aLO results in a main current product of 

where the first term signifies upconversion and the second term downconversion. This 
second-term response can, for instance, be utilized as the required intermediate output 
signal in a receiver. To isolate the desired signal frequency, extensive filtering is 
required on the input (image filter) and output (low-pass) sides of the mixer. Single- 
ended, single-balanced, and double-balanced designs can be constructed by appropriate 
impedance matching of the source and load to the active device. One additional compli- 
cation over the amplifier matching network design arises because of the need to isolate 
the RF and LO inputs from the IF output and, conversely, to isolate the IF output from 
both RF and LO input signals. While balanced mixers offer improved signal perfor- 
mance through partial cancellation of undesired harmonic responses, they require the 
additional complexity of couplers to accomplish the required phase shifts. 
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Problems 

10.1 Derive the transfer function for the series resonance circuit depicted in Fig- 
ure 10-3 with v(i) = 0 and zero initial conditions. In particular, show that 
a, = (LC)-"~(~  - R ~ c / ( ~ L ) ) " ~  and a = -R/(2L). For the values 
R = 5 52 ,  L = 50 nH, andC = 270 pF, plot the frequency response. 

10.2 In Section 10.1.3 the Colpitts oscillator centered around the h-parameter 
description of the BJT in emitter configuration is derived. Follow similar 
steps and derive the Hartley oscillator. Specifically, find the oscillator fre- 
quency in terms of L1, L2, C3, and the h-parameters. Further, establish the 
ratio of L2 to L1 . 



A Colpitts oscillator is to be designed for 250 MHz. At the bias point 
VcE = 2.7 V and Ic = 2 mA, the following circuit parameters are given at 
room temperature of 25" C: CBC = 0.2 fF, rBE = 3 k R ,  rCE = 12 k R ,  
CBE = 80 fF. If the inductance is fixed at 47 nH, find values for the capaci- 
tances in the feedback loop. Examine whether it is appropriate to use the h- 
parameters obtained under DC conditions. 

In Section 10.1.4 the quartz element is discussed. Show that solving (10.20) 
results in the approximate series and parallel resonance conditions of equa- 
tions (10.21a) and (10.21b). Hint: Use the Taylor Series expansion and retain 
the first two terms. 

Quartz resonators are typically specified in terms of their series and parallel 
resonance frequency. For the electric equivalent circuit parameter of 
R, = 50 Q ,  Lq = 50 mH, Cq = 0.4 pF,and C,, = 0.8 pF,findtheseries 
and parallel resonance frequencies based on (10.21a) and (10.21b). Plot the 
reactance of this quartz resonator over a suitable frequency range. 

A particular crystal oscillator operates with the crystal in the parallel reso- 
nance mode. Then a lossless inductor is added in parallel with the crystal. If 
the combination of inductor and crystal is required to have the same reac- 
tance as the crystal originally did, will the oscillator frequency go up or 
down? Explain your answer. 

In an oscillator design it is often required that we need the S-parameters of 
the transistor operating in common-base (CB) mode. Unfortunately, the 
manufacturer typically supplies the S-parameters for the transistor measured 
in common-emitter (CE) mode. We therefore have to convert them into CB 
S-parameters. The usual practice is that the S-parameters are first converted 
into Y-parameters, then the CE Y-parameters are converted into CB mode, 
and the result is finally converted into S-parameter representation. Derive CE 
to CB conversion formulas for the Y-parameter representation. 

A GaAs MESFET chip has the following S-parameters in common-source 
configuration measured at 4 GHz: Sll  = 0.83L-67", SZ1 = 2.16L119", 
S,, = 0.17L61° , S22 = 0.66L-23" . Using conversion formulas derived 
in the previous problem, compute the transistor S-parameters in cornmon- 
base mode. Determine the stability circles for both configurations without 
and with a positive feedback of L = 0.5 nH at 4 GHz. 
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10.9 In Section 10.2.1 we discussed the case where T L  is chosen such that Irin( 
becomes greater than unity. Show that (rin( > 1 implies (Tout( > 1 and vice 
versa. 

10.10 In designing oscillators based on the S-parameter approach, it was stated that 
the following conditions must be satisfied: k < 1 and rsrin = rLrout = 1 . 
By representing the input impedance as Zin = Rin + jX i ,  and output imped- 
ance Zout = Rout + jXOut as well as the source Z s  = Rs + j X s  and load 
Z L  = RL + j X L  impedances, show that Rin = -Rs ,  Xi,  = - X s ,  
Rout = -RL , and Xout = -XL . This proves that the S-parameter design is 
equivalent to the negative resistance design. 

10.11 An oscillator has to be designed for 3.5 GHz. The S-parameters of the BJT 
in common-base configuration are determined to be S,, = l.lL127", 
S12 = 0.86L128O, S2, = 0.941-61°, and Sp = 0.91-44'. By adding 
an inductance to the base, the instability can be enhanced. Determine the 
inductance for which the instability of the BJT is maximized. 

10.12 In Section 10.2.2 the dielectric resonator is introduced and the S-parameters 
for the angular resonance frequency oo are derived in (10.38). Show that 
near resonance (10.38) has to be modified to the form 

r 7 

10.13 Since Irinl > 1 and )Tout) > 1 ,  they cannot be displayed in a conventional 
Smith Chart. Extend the Smith Chart in such a way as to be able to display 
these quantities. What happens with the circles of constant resistance when 
the reflection coefficients are larger than unity? 

10.14 Design a 7.5 GHz oscillator in common-emitter BJT configuration. The S- 
parameters at VCE = 5.0 V and IC = 20 mA are as follows: 
Sll  = 0.87L-40°, S12 = 0.251-32", S2, = 0.6L100°, and 
S22 = 1.21 A165 . Sketch the circuit, including the DC biasing network 
(P = 80). 



Problems 

10.15 A BJT is used in common-base configuration with biasing conditions speci- 
fied at VCE = 3 V and VBE = 0.9 V. For this case, the transistor has the 
following S-parameters at 2.5 GHz: SI1 = 1.41L125O, 
S12 = 0.389L130°, S2, = 1.51-63", and S22 = 1.89L-45O. Design a 
series feedback oscillator that satisfies the three conditions (10.26). 

10.16 The S-parameters of a GaAs FET in common-source configuration are mea- 
sured at 9 GHz and have the following values: Sll  = 0.30L-l67O, 
SI2 = 0.15L21.3", S2, = 1.12.L-23S0, and S22 = 0.9OL-25.6O. 
Design an oscillator with 9 GHz fundamental frequency and match the cir- 
cuit to a 50 s2 load impedance. Use microstrip lines for a substrate FR-4 with 
40 mil thickness (E, = 3.6) and determine the widths and lengths of the 
elements. 

10.17 A tunable oscillator involving a varactor diode has to be designed. For the 
varactor diode, the following data is known: equivalent series resistance of 
35 s2 and a capacitance ranging from 15 pF to 35 pF for reverse voltages 
between 30 V and 2 V. Design a voltage controlled Clapp-type oscillator 
with center frequency of 300 MHz and *lo% tuning capability. Assume that 
transconductance of the transistor is constant and equal to g, = 115 mS. 

10.18 The output power of an oscillator can be approximated by 

where P,,, is the saturated output power, Go = J S ~ , I ~  is the small signal 
power gain, and Pin is the input power. For maximum output power we 
obtain 

Show that this leads to the maximum oscillator output power 

For a typical MESFET at 7 GHz, with Go = 7 dB and P,,, = 2 W, find the 
maximum oscillator power. 
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10.19 The basic downconverting receiver system is shown in Figure 10-2 1. Draw a 
similar block diagram describing an upconversion transmitter system and 
explain its functionality. 

10.20 When building BJT and diode-based mixers, the third-order intermodulation 
distortion (IMD) is an important design criterion. Ideally, over the entire 
range of RF input signal magnitudes the mixer should not generate any inter- 
modulation. In reality, however, there may be a significant influence. Follow 
the same derivation as discussed in Section 10.3.1 and derive the first-, sec- 
ond-, and third-order harmonics for the combined mixer input signal 
V = V,cos(o,t) + V,ocos(o,ot). If the RF signal is 1.9 GHz and the 
output IF is 2 MHz, determine all frequencies up to the third-order harmon- 
ics that are generated by this mixer. 

10.21 Design a single-ended BJT mixer as shown in Figure 10-36. Compute values 
for the resistors R1 and R2 such that biasing conditions Vm = 2.5 V, 
VBE = 0.8 V, IC = 2.5 mA, and IB = 40 pA are satisfied based on a 
supply voltage of Vcc = 3.2 V. RF and IF frequencies are 
f RF = 2.5 GHz and fIF = 250 MHz. The BJT is measured at IF to have 
an output impedance of Z,,, = (650 - j2400)R for short-circuit input and 
an input impedance of Zi, = (80 - j 136) R for short-circuit output at RF 
frequency. 

10.22 For the balanced diode mixer in Figure 10-41 assume the following voltages: 

vRF(t) = VRFc0s(wRFt) and vLo(t) = [VLO + V , ( ~ ) I C O S ( W ~ ~ ~ )  
where the constant amplitudes are such that VRF << VLO and where the noise 
voltage vn is much smaller than V,,. 
(a) Find the currents through the upper diode i,(t) and lower diode i2(t) if 

the transfer characteristic is 

in = C(-l)"+ ', (n = 1,2) 

where C is a constant, and v,, v2 is the respective diode voltage. 
(b) Explain how some of the noise cancellation occurs and show that the IF 

current, after suitable low-pass filtering (behind each diode), can be 
written as 



Useful Physical Quantities 
and Units 

Table A-1 Physical constants 

Quantity 

Permittivity in vacuum 

Permeability in vacuum 

Speed of light in vacuum 

Boltzmann's constant 

Electron charge 

Electron rest mass 

Electon volt 

Units 

F/m 

Wm 

m/s 

J/K 

Coulomb 

kg 

J 

Symbol 

Eo 

Po 

c 

k 

e 

mo 

eV 

Value 

8.85418~10-'~ 

41r10-~ 

2.99792~10' 

1.38066~10-~~ 

1.60218~10-'~ 

0.91095~10-~~ 

1.60218~10-'~ 
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Table A-2 Relevant quantities, units, and symbols 

Quantity 

femto 

pic0 

nano , I 

Symbol 

f 

P 
n 

micro I m 
L 

milli 

kilo 

mega 

, gigs 

Conductivity 1 Q Slm 

Mil 

Unit 
- 
- 
- 
- 

m 

k 

M 

G 

Value 

10-l5 

10-l~ 

1 o - ~  
10" 

Mil 

Resistivity I P 

Frequency I Hz I Hertz = cycles per second I l / s  

- 
- 

- 
- 

0.001 inch = 25.4pm 

n. m 

Voltage 

1 Electric field I E 1 ~ l m  I 

1 o - ~  
lo3 

lo6 

lo9 

International System of Units 

V 

Quantity 

Electric Charge 

Current 

Magnetic field 

Magnetic flux 

I power I w I watt I J/S 

Volts 

I Energy J 

Symbol 

C 

A 

J/C 

H 

Wb 
-- - - -  

Joule N . m  

Capacitance I F 

Unit 

Coulomb 

Ampere 

A/m 

Weber 

Inductance 

Resistance 

Conductance 

Dimensions 

A . s  

C/s 

V . s 

Farad C /  V 

H 
R 
S 

H e w  
Ohm 

Siemens 

Wb/A 

V/A 

A/V 
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Table A-3 Loss angle tangent for different dielectric materials 

Material 

Aluminum oxide 
Barium titanate 
Porcelain 
Silicon dioxide 
Araldite CN-501 
Epoxy resin RN-48 
Foamed polystyrene 
Bakelite BM120 
Polyethylene 
Polystyrene 

Loss Tangent 
f = l  kHz I f = 1  MHz I f=100MHz I f=3GHz 

- .  
I I I I 

Teflon 1 <0.0003 1 <0.0002 1 <0.0002 1 0.00015 

Table A-4 American wire gauge chart 

Sodium chloride 
Water (distilled) 

<0.0001 

Wire Size 
(AwG) 

1 - 

3 - 

5 
6 
7 
8 
9 

11 
12 
13 
14 
15 
16 
17 

<0.0002 
0.0400 

Diameter in 
Mils 
289.3 

257.6 
229.4 

204.3 
181.9 

162.0 
144.3 
128.5 
114.4 

10- 101.9 
90.7 
80.8 
72.0 
64.1 
57.1 
50.8 
45.3 

Area In 
Square 

Millimeters 
169.6345 

134.4959 
106.6606 

84.59682 

53.19212 
42.20364 
33.46752 
26.52585 

16.67370 
13.23244 
10.50709 
8.327859 
6.608296 
5.230518 
4.159237 

Diameter in 
Millimeters 

7.34822 
6.54304 

5.82676 

4.62026 
4.1148 
3.66522 
3.2639 
2.90576 

2.58826 
2.30378 
2.05232 
1.8288 
1.628 14 
1 A5034 
1.29032 
1.15062 

0.0050 

Area in 
Square Mils 

262934 
208469 

165324 
5.18922- 131125 

10394867.06296 
82448.0 
65415.8 
51874.8 
41 115.2 

32621.121.04581 
25844.2 
20510.3 
16286.0 
12908.2 
10242.9 
8107.32 
6446.83 

<0.0005 
0.1570 
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Table A-4 American wire gauge chart (Continued) 

Wire Size 
(AWG) 

18 
19 
20 
21 
22 

Diameter in 
Mils 
40.3 
35.9 
32.0 
28.5 
25.3 

Diameter in 
Millimeters 

1.02362 
0.91 186 
0.8 128 
0.7239 
0.64262 

Area in 
Square Mils 

5 102.22 
4048.92 
3216.99 
255 1.76 
2010.90 

Area in 
Square 

Millimeters 
3.291754 
2.612199 
2.075474 
1.646293 
1.297354 



Skin Equation for a 
Cylindrical Conductor 

T h e  starting point of the slcin effect analysis is 
Maxwell's equations expressed by the laws of Ampere and Faraday in differential form: 

where the displacement current density &(aE/at) in (B.la) is neglected inside a con- 
ductor. This is permissible since the electric field in conjunction with the dielectric con- 
stant is very small, even for rapidly changing fields, when compared with the 
conduction current. We evaluate these equations in a cylindrical coordinate system 
where E,, E,, and H,+ are the only non-zero components. Carrying out the curl in 
cylindrical coordinates, results in 

The second equation is zero because H,+ does not depend on the z-coordinate. Conse- 
quently, E,  is also zero. Differentiating the last equation with respect to r, and then 
substituting the first into it, yields a second-order differential equation: 
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For time harmonic fields, the time derivative can be replaced by j o  and combined with 
2 p.0 to form the new parameter p = - j o p o .  The final form 

is the standard Bessel equation with the solution E, = A J o ( p r )  , where A is a constant 
and Jo is the Bessel function of zeroth order. Substituting this solution into the time 
harmonic form of (B.2c) gives us 

j w H O  = ApJ0' (pr)  03.5) 
with the prime denoting differentiation with respect to the argument. The current is 
related to the line integral of HO along the outer perimeter, r = a ,  of the conductor: 
He27ca = I. Thus, we can write 

I 
H~ = A(P)J, ' (Pu) J ~ P  = ( ~ ~ 6 )  

which allows us to determine the constant A. Substituting A into the solution of the 
Bessel equation leads to 

An interesting property of the Bessel function is the fact that Jo'(pa)  = - J l ( p a ) ,  
which gives us, after a small algebraic manipulation, the final result 

p J o ( p r )  
Ez = -I ( - )  2 7 ~ 0 ~  J ,  ( p a )  

This equation is used in Chapter 1. The validity of (B.8)  for the case of zero frequency, 
or DC condition, can be proved easily. For low frequency we see that 

Substituting (B.9) into (B.8) yields Ohm's law for uniform current density Jz : 

(B .  10) 



Complex Numbers 

his appendix provides a brief summary of several T 
useful concepts and definitions regarding complex numbers and their manipulations as 
repeatedly used throughout this textbook. Emphasis is placed on the basic definition of 
a complex number, its use in the magnitude computations, and its meaning in terms of 
the circle equation. 

C.l Basic Definition 
A complex number z ,  such as the normalized impedance, can be represented in 

rectangular and polar forms as 

j 0  
z = x + j y  = JzJe 

where the magnitude is given by 

and the phase is 

0 = t a r l (y /x)  (C.3) 
The star notation denotes the complex conjugate (i.e., z* = x - j y  ). 

C.2 Magnitude Computations 
Let us apply the preceding definition to a typical computation involving the mag- 

nitude of two complex numbers such as 

11 + w*12 
where w is another complex number of the form w = u + jv . Substituting w yields 
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lz + w*12 = (Z + w*) . (z* + W) = /z12 + 1w12 + 2Re{z w} (c.4) 
where we used the fact that the terms z . w = ux - vy + j(uy + vx) and 
z* . w* = ux - vy - j(uy + vx) can be combined to 2Re{z . w ) . Here Re{.., ) repre- 
sents the real part. 

C.3 Circle Equation 
Perhaps one of the most useful equations involving complex numbers in RF cir- 

cuits is the circle equation 

2 2 Jz - W I  = r or (z - W I  = r (C.3 
which forms the foundation of the Smith Chart. We can verify that this is indeed a circle 
equation by going through the magnitude computation 

2 2 2 2 Iz-wl = (z-w).(z-w)* = (x-u)  +(y-v)  = r (C.6) 
It is seen that u and v are the coordinates of the circle center in the complex z-plane and 
r is its radius, as depicted in Figure C-1. 

Figure C-1 Circle representation in the complex z-plane. 



Matrix Conversions 

Conversion between 2, Y, h, and ABCD representations 

rz1 

[YI 

[hl 

[ABCD] 

A AABCD -- 
C C 

[ABCD] 
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Conversion from S-parameters to 2, Y, h, or ABCD representations 

where Y, = ( 1  - SI1)(1 -S22) -S12S21 

where Y2 = (1 - Sl l ) ( l  - S2,) - S12S2, 

where Y3 = (1 -SI1)(1 +S22)+S12S21 
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Conversion from Z, Y, h, and ABCD representations to S-parameters. 

where Y, = ( Z l l  + Z O ) ( Z 2 ,  + Z,)  - Z12Z2,  

where Y5 = ( 1  + Z o Y l l ) ( l  + z O Y 2 , )  - Y12Y2,Z,2 

where Y, = ( h l l / Z o  + l ) (h2 ,Z0  + 1 )  - h12h2, 

where Y7 = A + B / Z ,  + C Z ,  + D  

2 ( A D  - B C )  2 
s12 = = - 

'4'7 '4'7 



Physical Parameters of 
Semiconductors 

Table E-1 Properties of Ge, Si, and GaAs at 300°K 

Properties 

Intrinsic carrier concentration ( ~ m - ~ )  

Intrinsic resistivity (R . cm) 

Minority carrier lifetime (s) 

Electron mobility (drift) (cmL/v.s) 

Normalized effective mass of the electron (rni/rn,) 

Hole mobility (drift) (cm2/v-s) 

Normalized effective mass of the hole (rn;/rn,) 

Electron affinity, x(V) 

Specific heat (J/(g . OK)) 

Thermal conductivity : W/(cm . OK)) 

Thermal diffusivity (cmL/s) 



Long and Short Diode 
Models 

T h e  current flow through a diode under an applied 
forward bias voltage (see Chapter 6) can be evaluated based on the concentration of the 
injected excess charge carriers in each semiconductor region. Depending on the 
length of the semiconductor layers, we need to differentiate between a long and short 
diode model. In the following discussion the current flow is derived for both cases. 

With reference to Figure F-1, let us examine the pn-junction under forward bias 
voltage V A  . 

Figure F-1 pn-junction under forward bias. 

Under this applied voltage the junction is no longer in thermal equilibrium, and 
minority concentrations are created that exceed the equilibrium condition npo in the p- 
layer and pno in the n-layer. Indeed, thermodynamic considerations predict the rninor- 
ity concentrations in each layer as 

The corresponding excess charge concentrations 
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A ~ n  = pn - pno and An, = n P - n PO ( F a  
begin to diffuse into the semiconductor layers, a process governed by the steady-state 
diffusion equation. For the n-layer, the equation reads 

where D, , Z~ are the diffusion constant of holes in the n-layer and excess charge car- 
rier lifetime (on the order of . . . s), respectively. It is the so-called diffusion 
length 

L, = mp and Ln = fin (F.4) 
with respect to the length of each semiconductor layer that determines whether we have 
to deal with a long or short diode model. The general solution to (F.3) is 
Ap, = ~ , e ~ / ~ p  + C , ~ - ~ / ~ P ,  with two unknown constants to be determined through 
the boundary conditions on either end of the semiconductor layer. The following two 
cases are considered: 

F.l Long Diode (w, > L,, Ap, + 0 as x -+ -) 
Since the excess carriers completely decay to zero before reaching the end of the 

layer, only C2 has to be specified and C1 = 0. Applying (El) as a boundary condi- 
tion, we can find C, and insert it into the general solution, with the result 

VA/VT - ) le+ - d")/Lp 
AP, = ~ n o ( e  I (F.9 

In an identical way we can find for the p-layer ( W, > L, , An, + 0 as x -+ -m ) 

An, = npO(e VA/VT - 1 ) [e(x + d ~ ) ' L ~  I 

F.2 Short Diode (w, < Lp, Ap, + 0 as x -+ d, + w,) 
Here the situation is more complicated since the decay takes place over a finite 

distance. As as result, both coefficients have to be retained. The additional boundary 
condition on the right-hand layer now reads p,(d, + W,) = pno.  Going through the 
mathematics eventually leads to 

which can be further simplified by approximating the hyperbolic sine function, sinh, by 
its argument. This is permissible as long as the layer length is less than the diffusion 
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length ( W, < L, ). The final result is 

Similarly for the p-layer ( W, < L, , An, + 0 as x + -(d, + W,) ) 

v,/v, l ) ~ - ( d p + W p ) )  
An, = npO(e - =, 

Similar to (6.14), equations (FS), (F.6) or (FA), (F.9) can be used to find the total cur- 
rent through the diode: 

Inserting (FS), (F.6) or (Fog), (F.9) into (F.10) finally results in the Shockley equation: 

where the reverse saturation current is for the long diode 

and for the short diode 

(F. 11) 

(F. 12) 

(F. 13) 

A typical numerical example for a short Si diode involves the following 
parameters: 

10 16 -7 
n i =  1 ~ x 1 0  C ~ - ' , N ~ =  3x10 c m - ' , r , = r , =  10 s ,  

W, = W, = 25 pm. 

With these data we can compute the minority carrier electron and hole concentrations 
in thermal equilibrium: 

2 2 3 -3 
p,, = ni / N D  = 7.5 x 10' cm-' , n,, = ni / N ,  = 15 x 10 cm 

Inserting into (F. 13) results in a reverse saturation current of 0.5 fA. 



Couplers 

B ranchline couplers and power dividers play 
important roles in RF circuits and measurement arrangements since they allow the sep- 
aration and combination of RF signals under fixed phase references. Notably, in the 
mixer section of Chapter 10 and the measurement protocol of characterizing a device 
under test in Chapter 4, we see their usefulness. The purpose of this appendix is to dis- 
cuss some of the couplers and dividers encountered most often in terms of their S- 
parameters and figures of merit. 

G.l Wilkinson Divider 
The transmission line configuration and its microstip line implementation of this 

power divider are shown in Figure G- 1. The S-parameters for such a three-port network 
are given by the matrix 

The figures of merit are the return loss at ports 1 and 2 

RLI = -2OloglS,,J and RL2 = -2010g(S~~( 

the coupling between ports 1 and 2 

CP,, = -2Ol0glS,~J 

and isolation between ports 2 and 3 

IL,, = -2O1ogJS2,I ((-3.4) 

Figure G-2 provides a typical frequency response of RLI , CPI2,  and IL23 for a center 
frequency of f ,, = 1 GHz. 
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Port 

i-0 
2, Port 2 

(a) Transmission line model 

Port 2 

Port 1 

Port 3 

h/4 

(b) Microstrip line realization 

Figure G-1 3 dB Wilkinson power divider. 

1 I I -30 
5 0.75 1.0 1.25 1.5 0.5 0.75 1.0 1.25 1.5 

Normalized frequency, flf, Normalized frequency, f& 

Figure G-2 Frequency response of Wilkinson power divider. 
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Ideally, return loss and isolation should approach negative infinity at the center 
frequency and the coupling should be as close to the 3 dB value as possible. We also 
note that a coupler is not a broadband device. Typical frequency bandwidths do not 
exceed 20% of the center frequency. 

The derivation of matrix (G.l) is most conveniently carried out by an even and 
odd mode analysis, as depicted in Figure G-3 for the computation of the SI2 coeffi- 
cient. We attach a source Vs to port 2 and terminated the other two ports with a Zo 
load. To make the circuit symmetric the source Vs at port 2 is divided into a series 
combination of two Vs/2 sources operating in phase. At port 3 two Vs/2 sources 
have a 180" phase shift and their sum is equal to zero. Also, the Zo load impedance 
connected to port 1 is replaced by the parallel combination of two 2Z0 impedances. 

even mode c2 %I odd mode 

O.C. O.C. 

(a) Even mode (b) Odd mode 
Figure G-3 Even and odd mode representation of Wilkinson divider 

(ox. = open circuit). 

The reason for choosing the odd and even mode decomposition becomes imrnedi- 
ately apparent. Let us consider at first the circuit in Figure G-3(a), which is driven by an 
even mode, meaning that the drive signals at ports 2 and 3 are in phase. In this case both 
ends of the 2Z0 cross impedance have the same potential. Thus, there is no current flow 
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and the impedance can be neglected. The input impedance seen at port 2 for this case is 
the impedance of a &z, quarter-wave transformer terminated with a 2Z0 load [i.e., 
Z2 = ( J ~ z , ) ~ / ( ~ z , )  = Z,]. Consequently, in the even mode excitation, port 2 is 
perfectly matched and the voltage at port 2 is V; = 0.5(Vs/2) = Vs/4. The corre- 
sponding voltage at port 1 can be found based on our discussion regarding the voltage 
distribution along a transmission line (see Chapter 2): 

v; = V+(l +re,) (G.3 

where I-'; = (22, - $ 2 ~ ~ ) / ( 2 ~ ,  + $ 2 ~ ~ )  is the even mode reflection coefficient at 
port 1. Therefore, the even mode voltage at port 1 is 

and where the factor j is due to the M4 transmission line. For the odd mode excitation 
voltages at ports 2 and 3 have opposite polarities and there is a zero potential along the 
middle of the circuit. This means that the middle is shorted to ground. Since the input 
impedance seen from port 2 is again Zo and port 1 is grounded, we find that V; = 0 
and V; = Vs/4. 

The total voltage at ports 1 and 2 is found by adding the even and odd mode volt- 
ages. The corresponding S12 parameter is then computed as 

An identical analysis for the port 3 to 1 configuration results in S13 = - j /  h . 
Furthermore, because the divider is a linear, passive network we conclude that 
S,, = S,, and S3i = S13. Also, both in the even and odd mode analysis port 2 is iso- 
lated from port 3 by either an open circuit or ground, we find that S23 = S32 = 0 .  
Thus, all off-diagonal terms in (G. 1) are verified. 

In addition, SZ2 = S33 = 0 is due to the matching of the odd and even modes. 
This leaves us only to prove that S , ,  = 0 .  We notice that when port 1 is driven, the 
current through the 22, resistor between ports 2 and 3 is again zero and has no influ- 
ence on the circuit. Thus, the impedance Z1 seen at port 1 is a parallel combination of 
two Z, terminations connected through $22, quarter-wave transformers 

This proves that port 1 is matched (i.e., S, = 0 ). 
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G.2 Branch Line Coupler 
There are two 3 dB branch line couplers of importance. According to their phase 

shifts, they are either referred to as 90" (quadrature) or 180" couplers. The S-parameter 
representation for the 90" coupler is 

and a circuit schematic is shown in Figure G-4. 

Figure G-4 Microstrip line realization of quadrature hybrid. 

Besides return loss, isolation, and coupling definitions given in (G.2)-(G.4), the direc- 
tivity of a branch coupler is a key parameter and defined as 

D34 = -201ogIS3,( (G. 10) 

where D34 ideally approaches infinity at f o .  
In our derivation of (G.9) we begin by using an even and odd mode analysis, as 

depicted in Figure G-5. We drive the hybrid at port 1 with an RF source Vs and termi- 
nate the remaining ports into the characteristic line impedance Zo.  An equivalent cir- 
cuit results if the source voltage at port 1 is written as the sum of an even (V1,) and odd 
(V1,) voltage such that V1 = Vs = V,, + V,, with V,, = Vs/2 and V1, = Vs/2. 
At port 4 we can enforce zero voltage condition by setting V4 = 0 = V4, + V,,, 
where V,, = Vs/2 and V4, = -Vs/2. 

The total transmitted voltage at port 2 due to the input voltage at port 1 can be 
established as 

(G. 11) 
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Even mode $ Odd mode 

and similarly 

v s V3 = (T, -  to)^ = S3, Vs 

vs V4 = (T, -  to)^ = S4, Vs 

The reflected signal at port 1 is 

(G. 12) 

(G. 13) 

(G. 14) 

We must next turn our attention toward finding T, , To, T, , and To. The transmission 
line circuits in Figure G-5(a) and (b) can be represented as a three-element model 
involving either short or open-ended stub lines h/8  in length. 

The even mode and odd mode stub lines have an admittance of 

oc 1 ye = y = -tan(:) and Yo = Y" = 
zo 

(G. 15) 
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The three-component circuit in ABCD network representation is then 

where YA = l /ZA is the admittance of the h / 4  line element. Multiplying the three 

matrices and converting the result into S-parameter form yields, after some rather tedious 
computations, the following nonzero coefficients: S21 = S12 = - j(ZA/ZO) , 

2 112 
S43 = S34 = -j(ZA/ZO), and S31 = SI3 = -[ 1 - (ZA/ZO) ] = S42 = S24. Set- 

ting ZA = zo/& gives the desired matrix listed in (G.9). Again, it is noted that all four 

ports are matched into Zo . 
The 180" coupler can be constructed by adjusting the lengths of the four transmis- 

sion line segments and arranging the impedances in a ring configuration, as shown in 
Figure G-6. 

Port 1 Port 2 
P 

Port 3 Port 4 

Figure G-6 A 180" ring coupler. 

The S-parameter matrix for this configuration, also known as "rat race," is given by 

(G. 17) 
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G.3 Lange Coupler 

Port 1 Port 2 

Port 4 Port 3 

Figure G-7 A 3 dB Lange coupler. 

A popular implementation of the quadrature hybid in microstrip line form is the 
so-called Lange coupler shown in Figure G-7 for a four-strip configuration. Additional 
variations involve six- and eight-strip realizations. The interdigital form of the micro- 
strips permits a very compact geometric size and provides for tight coupling. 

Typical coupling values range between -5 and -1 dB. By choosing the length of 
the microstrip elements appropriately, a very broadband realization of up to 40% band- 
width can be achieved. 

Further Reading 

P. Karmel, G. Colef, and R. Camisa, Introduction to Electromagnetic and Microwave 
Engineering, John Wiley, New York, 1998. 

J. Lange, "Interdigitated Stripline Quadrature Hybrid," ZEEE Trans. on MTI: Vol. 17, 
pp. 1150-1151,1969. 



Noise Analysis 

T he intent of this appendix is to provide an over- 
view of the most important noise definitions and concepts as related to the noise figure 
analysis conducted in Chapter 9. 

H.l Basic Definitions 
In a broad sense noise can be characterized as any undesired signal that interfers 

with the main signal to be processed. Examples of noisy signals are AC power cou- 
pling, crosstalk between circuits and electromagnetic (EM) radiation to name but a few 
sources. Mathematically we use random variables of Gaussian distribution and zero 
mean to describe the noise behavior. Although the mean is zero, the root mean square 
(RMS) value of a noisy voltage signal v,(t) is not. This can be expressed as 

where T I  is an arbitrary point in the time and T M  is the measurement interval. 
In 1928 Johnson first observed the fact that a resistor in the absence of any exter- 

nal current flow generates noise due to the random motion of charge carriers in the con- 
ductor. The noise power in a conductor is quantified as 

Pn = kTAf = kTB (H.2) 
where k is Boltzmann's constant, T is the absolute temperature in O K ,  and Af = B is 
the noise bandwidth of the measurement system. The noise bandwidth is defined as the 
integration of the instrument's gain G( f )  over all frequencies normalized with the 
respect to the maximum gain G,, : 

We next turn our attention to the noise voltage. Let us consider the simple circuit 
shown in Figure H- 1.  
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Figure H-1 Noise voltage of a circuit. 

According to this circuit, the noise power is treated as if a noise voltage source 
drives a noiseless resistor Rs . Under matching condition Rs = RL,  the noise power of 
the resistor is given as 

from which the RMS noise voltage is found 

V,, = Jm, 
To keep the notation simple (and since no ambiguity will arise) the subscript RMS is 
dropped (i.e., VnmS = V, ). In general, we represent a noisy resistor R as a noise volt- 
age source in series with the noise free resistor R (ThCvenin equivalent circuit) or as a 
noise current source I ,  = ,/WR in shunt with a noise free resistor, as shown in 
Figure H-2. 

R 
(noise free) 

R =3 3 (noisy) 

6 
Figure H-2 Equivalent voltage and current models for noisy resistor. 

If the the bandwidth is eliminated from (H.5) we can define a so-called spectral 
noise voltage and a spectral noise current: 

- 
v, = v,/& and 5, = z , / h  (H.6) 

whose units are given in V/ &z and A/ &z . 



622 Appendix H Noise Analysis 

Frequently, the spectral density S@ is used to quantify the noise content in a unit 
bandwidth of 1 Hz. For the thermal noise source associated with resistor R, it is given 

by 

If S@ is a constant (i.e., independent of frequency), we speak of white noise. Care is 
required when noisy elements are added in a circuit. For instance, if two noisy resistors 
R1 and R2 are added, the associated noise sources V n l  and Vn2 cannot be linearly 
summed. Instead, the resultant noise source V ,  is 

provided both noise sources are uncorrelated. This is equivalent to saying that only 
power proportional voltage square quantities can be added because of their random dis- 
tribution of amplitudes and phases as well as different nonharmonic frequencies. 

If the noise sources are correlated, a correlation coefficient C n l ,  n2  enters (H.8) 
such that 

2 2 2 
Vn = Vnl +Vn2+2Cnl,n~VnlVn2 (H.9) 

where -1 I Cn n2 < 1 . It is interesting to observe that if V n l  and V,,  are 100% corre- 
2 2 2 2 lated ( C n l ,  n2 = 1 ), then V ,  = Vnl  + Vn2 + 2  Vnl  Vn2 = (Vnl  + V n 2 )  and the volt- 

ages can again be added, in agreement with Kirchhoff's linear circuit theory. 
The thermal noise of a resistor is also referred to as an internal noise source, 

since no external current has to be impressed to observe the noise voltage. However, 
many noise mechanisms only occur due to externally impressed current flow through 
the device. They are collectively known as excess noise. Chief among them are the llf 
noise (also known as flicker noise, semiconductor noise, pink noise) and shot noise. 
The llf noise is most prominent at low frequencies and exhibits, as the name implies, 
an inverse frequency-dependent spectral distribution. It was first encountered in vaccum 
tubes as a result of "flickering" noticed on the plates. The shot noise is most important 
in semiconductor devices and can be attributed to the discontinuous current flow across 
junction potential barriers. As an example, in a semiconductor diode the reverse bias 
noise current Is, is given as 

where Is is the reverse saturation current and q is the electron charge. 
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H.2 Noisy Two-Port Networks 
The previous analysis can be expanded to two-port networks. Figure H-3 shows a 

noisy network and the equivalent noise-free network augmented by two current noise 
sources Inl  and I n 2 .  

Figure H-3 Noisy two-port network and its equivalent representation. 

In Y-parameter matrix representation we can write 

A more useful representation is obtained when rearranging (H. 11) as follows: 

and 

Defining the transformed voltage and current noise sources 

1 Y l l  V ,  = --In2 and I ,  = Z n 1  - - I , ,  
y 2  1 y21  

(H. 1 1) 

(H. 12a) 

(H. 12b) 

(H. 13) 

we arrive at the network model shown in Figure H-4. 
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Noisy network 

Figure H-4 Transformed network model with noise sources at the input. 

To apply the various noise definitions and concepts to a practical example, let us 
consider a simplified BJT amplifier. 

C & M W  
Example H-1: Noise analysis of a low-frequency BJT amplifier 

In Figure H-5 a simplified BJT amplifier is treated as a two-port net- 
work consisting of the following parameters: Vs = 25 mV, 
Rs = 50 Q , Rin = 200 Q , voltage gain gv = 50, and measure- 
ment bandwidth B = 1 MHz. The spectral noise voltage and current 
of the amplifier are iven by the manufacturer as V, = 9 n v / m z  
and I,  = 9fA p Hz. Find the signal-to-noise ratio 
SNR = 2010g(V2/Vn2) at the output. 

Figure H-5 Amplifier model and network representation with noise sources. 

The output voltage V2 is directly found from 
V2 = gVRi,/(Ri, + Rs)Vs = 1 V. The spectral noise sources of 
the network are next expressed in RMS noise voltage and current: 

V, = Eh= 9pV and I ,  =ch = 9 p A  
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The voltage source creates through the voltage divider rule the fol- 

lowing noise voltage across Rin : 

' i n  Vn = 7.2 nV 
R i n  + ' S  

The noise current source is responsible for the noise voltage of 

'in's In = 0.36 nV 
' i n  + RS 

Finally, the source resistor contributes the voltage 

R i n  V,, = 728 nV 
R i n  + RS 

where Vn, = Jms = 910 nV, assuming T = 3OO0K. 

Therefore, the total noise voltage at the output is 

Finally, the signal to noise ratio is 

SNR = 2 0 l o g ( 5 )  = 122.8 dB 
vn2 

We notice that the noise voltage is dominated by the source. 

The example makes clear how the noise voltages are individu- 
ally computed, added, and ampl$ed to provide the output noise 
voltage. This is in stark contrast to linear circuit theory. 

H.3 Noise Figure for Two-Port Network 
The noise figure is defined as the ratio between the SNR at the input to the SNR 

at the output port of a network. Specifically, Figure H-6 depicts the relevant power flow 
conventions, including the noise representation of the source Zs  . 

The noise figure F can be cast into several equivalent representations. The first 
form involves the ratios of the signal to noise power at the input and output ports: 

(H. 14) 
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81 Pn2 

Figure H-6 Generic noise model for noise figure computation. 

Employing the available power gain G A  from Section 9.2.3 to express P2 = G A P l  
and Pn2 = GAPn,  + Pni , (H. 14) is re-expressed as 

where Pni is the internally generated noise power within the amplifier. 
Based on Figure H-6, we see that the signal power P I  is 

which is less than the power under source matching (Zs = Zi:, ): 

The thermal noise at the input side is with Zs = 

The power ratio is therefore 

(H. 16) 

(H. 17) 

(H. 18) 

(H. 19) 

The signal power P2 is simply P2 = G A P l ,  where P I  is given by (H.16). For the 
noise power Pn2 we set Pn2 = GAPnl + P n i ,  where the internally generated noise 
power Pni takes into account the noise sources associated with the two-port network 

2 
V ,  and I , .  Thus, V, ,  in (H.18) has to be replaced by all three noise sources: 



Appendix H Noise Analysis 827 

2 2 2 Vns + Vn + (InRin) , where Rin = Re{Zin} is the input resistance of the network. 
Since the gain applies equally to signal and noise, it cancels and we arrive at 

The noise figure therefore takes the form 

The preceding treatment does not take into account the fact that the same noise 
mechanisms are usually responsibe for both V, and I,. Thus, these sources are, to a 
certain degree, correlated. This can be incorporated into the noise model by splitting I, 
into an uncorrelated, I,, , and a correlated current, I,, , iontribution, respectively. The 
correlated current contribution is related to the noise voltage V, via a complex correla- 
tion factor Yc = Gc + jBc, such that I,, = YcVn. Since it is more convenient to 
deal with noise currents than voltages for our network, we convert the source into an 
equivalent Norton representation, as seen in Figure H-7. 

Figure H-7 Noise sources modeled at network input. 

The total RMS noise current I,,,, under short circuit input conditions can be expressed 
as 

2 2 2 2 2 
I n t ~ ~ = Z n s + V J Y s + Y ~ )  +I,, (H.22) 

where I,, = Y cVn and I, = V, Ys are combined because of their correlation. We can 
now rewrite (H.21) as 

'ns 

Under the assumption that all noise sources are represented by an equivalent thermal 
noise source, we identify in (H.23) 
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I(; ,  = 4kTBGs : noise due to the source Ys = Gs + jBs (H.24) 

I(;, = 4kTBGu : noise due to the equivalent noise conductance Gu (H.25) 

V: = 4kTBR, : noise due to the equivalent noise resistance R, (H.26) 

Inserting (H.24)-(H.26) into (H.23) gives 

The circuit designer can minimize (H.27) through an appropriate choice of source 
admittance Ys . This process is accomplished by first observing that the imaginary part 

2 
can be chosen such that Bs = -Bc. This eliminates the (Bs + B,) term in (H.27). 
Next, the remaining expression is minimized with respect to Gs ; that is, 

which yields the explicit optimum value 

- -q'ZU %opt - (H.29) 
f i n  

The minimum noise figure is thus obtained by the optimal source admittance 

Substituting (H.29) into (H.27) results in the expression 

2 2 Eliminating Gu in (H.31) by using Gu = R,Gsop, - R,Gc from (H.29) gives 

= 1 + 2Rn(Gsopt + Gc) (H.32) 

This number is typically provided by the device manufacturer. It is dependent on fre- 
quency and bias conditions. Equation (H.32) can be incorporated into (H.27) with the 
result 

F = F,, - 2RnGsopt - 2R,Gc + 5 + s [ ( G s  + G,)' + (B, - B ~ ~ ~ ~ ) ~ ]  (H.33) 
Gs Gs 
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2 2 
Replacing G, by G, = RnGsopt - R,Gc and rearranging terms provides the final 
result 

This is the starting point of our noise circle analysis in Section 9.5. Based on the char- 
acteristic line impedance Zo = I /Yo, (H.34) is often expressed in terms of normalized 
noise resistance r, = Rn/Zo, conductance gs = Gs/Yo, and admittances 

- Y  /Yointheform YS = Ys/Yo, Ysopt - Sopt 

H.4 Noise Figure for Cascaded Multiport Network 
The previous noise figure discussion for a single two-port network, with Pnl 

being the input noise and Pn2 = GAPnl + Pni being the output noise, can be extended 
to multiple cascaded networks, as shown in Figure H-8. 

Figure H-8 Cascaded network representation. 

In accordance with Figure H-8, we adopt a suitable notation such that GAk and 
Pnik denote power gain and internal noise generated by amplifier block k = 1,2, . . . 
Thus, for the noise power at the second amplifier section it is seen that 

'n3 = G~2(G~1Pn l  + Pnil) "ni2 (H.36) 

or for the total noise figure FtOt we see 

It is customary to retain the same noise figure expression for the individual blocks as 
derived for the single network; that is, 
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For two networks this concept leads to the expression 

or for multiple cascaded networks 

The preceding considerations have important practical implications. For instance, if 
two amplifier stages with different gains and noise figures ( F 1 ,  G A  and F2,  G A 2 )  are 
to be cascaded, which sequence of these stages results in the lowest noise figure? To 
answer this question, let us hypothetically assume amlifier block 1 ( F , ,  G A l  ) is fol- 
lowed by amplifier block 2 ( F 2 ,  G A 2  ). The total noise figure for this configuration is 

On the other hand, if block 2 is followed by block 1, we obtain 

Under the assumption that Ftot ( l ,  2) has a lower noise figure than F,,,(2, 1 )  , the fol- 
lowing inequality must hold: 

Rewriting (H.43) 

allows us to define 

N M ,  < N M ,  (H.45) 
1 

where N M l  = ( F l  - 1 ) / ( 1  - G i l )  and N M ,  = ( F 2 -  1 ) / ( 1 -  G : ~ )  are the noise 
measures of amplifiers 1 and 2, respectively. In other words, it is a combination of 
noise figure and gain that determines the noise measure as a basis of an overall noise 
performance comparison. 



Introduction to MATLAB 

A considerable number of MATLAB simulations 
have been created to enable the reader to reproduce the results presented in the exarn- 
ples. Moreover, it is hoped that these so-called M-files will stimulate and encourage the 
reader to develop code on his or her own relative to the RF topics covered in the ten 
chapters. This appendix is neither a tutorial of MATLAB nor a detailed discussion of the 
software written in support of this textbook. Rather, it is hoped that sufficient back- 
ground is provided to understand how MATLAB routines are created, and how code can 
be written to reproduce some of the results and graphs presented in the text. Being a gen- 
eral-purpose mathematical spreadsheet tool, MATLAB does not replace specifically 
developed RF and MW CAD programs, such as MMICAD and ADS, with their power- 
ful circuit analysis, optimization, and even layout utilities. Such dedicated simulation 
packages cannot be expected to be available to the general reader. For this reason, the 
authors have attempted to use MATLAB as a package that is widely available to students 
and at very reasonable cost. For more information regarding the use of MATLAB the 
reader should refer to the following Web site: http://www.mthworks.com. 

This appendix first provides some general background as to how we created the 
M-files, followed by a brief example of how they are used in the context of a stability 
analysis, as done in Chapter 9. All M-files can be downloaded from our Web site: 
http:/%ww. wpi.edu/ece/EM-RF-UB/book. 

1.1 Background 
MATLAB is an easy-to-use mathematical spreadsheet with the capabilities to write 

special routines for mathematically evaluating the equations discussed in the main text 
and to display the results graphically. The authors have MATLAB implemented on a PC 
with a 450 MHz Pentium I1 processor, 128 MB RAM and 8 GB disk space. This does 
not constitute a mimimal configuration; it merely reflects the environment used during 
the writing of this textbook. 
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Upon executing MATLAB, a window is opened with a command line indicator >>. 

The appropriate directory can be checked with the command pwd, which yields 

>>pwd 
ans  = 
d:\RF\simulations 

indicating that the directory is located on d-drive under subdirectories ~s imula t ions .  
Changing to a different directory can be initiated througth the command cd, and a list- 
ing of the files within a directory is done with the commands 1s or dir. 

By way of an example from Chapter 2, let us consider the following command 
lines, which can be executed sequentially, each line terminated by pressing ENTER. 

1=5 
a=0.005 
N=100 
M=10 
r=(O:N)/N*(M*a) 
for k=l:N+l 

i f ( r (k)<=a)  
H(k)=1*r(k)/(2*pi*a*a) 

else 
H(k)=I / (2*p i* r (k ) )  

end 
end 
plot(r*lOOO,H,'k') 

In the first line of the program we specify a current through the wire. The second 
line defines the wire radius. Variables N and M specify the number of points and the max- 
imum distance from the center of the wire at which the magnetic field will be computed. 
In our case M=IO, which means that we will look at distances ranging from 0 to 10 wire 
radii, and the number of points is set to N=IOO. The fifth line of the code defines a one- 
dimentional array of points that determine the actual position from the center of the 
wire. The command ( o :N) creates an array of N + 1 elements with values of 0,1,2,3, etc. 
After dividing this array by N, the values range between o to 1. Next, the array is scaled 
so that the distance changes from o to M*a. An alternative way to define this array would 
be r = ( O  :M*a/N:M*a), where the parameter between the two colons defines the step size. 

The next line of the code starts a for loop cycle for k ranging from I to N+I. For 
each k we take the corresponding radius from the array r and check whether it is less or 
greater than the wire radius. As discussed in Chapter 2, the field inside the wire is linear 
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with respect to the radial distance, whereas outside the wire we observe 

The last line of the code instructs the program to plot a graph of the magnetic field 
H versus radius r. The graph is shown in black, which is specified in the last parameter 
of the plot instruction. Some of the possible choices for color include 'k'-black, 'r'- 
red, 'y'-yellow, 'b'-blue, and '9'-green. Other useful1 options for creating graphs 
include the following: 

semilogx-logarithmic scale along x-axis, linear scale on y-axis 
semilogy-logarithmic scale along y-axis, linear scale on x-axis 
l~~ l~~- loga r i thmic  scale on both axes 
polar-polar plot 

The entire list of commands can be entered in an interactive mode by using the 
command line. Alternatively, the commands can be placed in a file for batch-mode exe- 
cution. For example, we can save this program in a file with name f ie1d.m; then to exe- 
cute this program we simply type >>field on the MATLAB command line. Note that .m 
is a file extension resevered for use by MATLAB. 

1.2 Brief Example of Stability Evaluation 
Another useful capability of MATLAB is the creation of functions. For example, 

the following listing is a function that takes an array of S-parameter data (sjaram) and 
computes two output parameters: the stability factor k and 1A1, denoted as K and delta. 

function [K,delta] = K-factor(sjaram) 
% Usage: [K,delta] = K-factor(sgaram) 
% 
% Purpose: re turns  K factor for a given s-parameter matrix 
% i f  K>1 and de l t a4  then circuit  i s  unconditionally stable 
% otherwise circuit  might be unstable 



634 Appendlx I lntroductlon to MATLAB 

The first line in the listing defines a function K-factor that takes one input param- 
eter sqaram and returns two values as a result: K and delta, which are computed inside 
the function. Unlike program scripts, files containing functions must have the same 
name as the function name. Therefore, this function is stored in the file K-factor .m 

If the user does not know or forgot how to use the function, he or she can type 
help  factor in the command line of MATLAB, and the comments that follow the first 
line in the function will be displayed. 

The program file for creating the S-parameter matrix of a particular transistor and 
the stability check as well as the display of the stability circles is shown in the next file, 
entitled test .m 

% s-parameters for hypothetical transistor 
close all; 

sll=0.7*exp(j*(-70 
s12=0.2*exp(j*(-10 
s21=5.5*exp(j*(+85 
s22=0.7*exp(j*(-45 

% check stability 
[K,delta] = K-factor(sgaram) 

% create a Smith Chart 
smith-chart; 

% plot input and output stability circles 
input-stability(sqaram, 'r'); 
output-stability(sgaram, 'b'); 

% create Postscript copy of the figure 
print -deps 'fig9-8.eps' 

This file is not a function; it is a collection of commands (program script) and 
therefore can have any name. In our case we use the name test .m 

We notice that the S-parameters are given in magnitude and phase and stored in an 
array called sqaram. Next, a stability check is performed by passing on the sjaram 
array into the M-file K-factor.m, whose task is to find the stability factor and 1A1 based 
on equations (9.24) and (9.29). After this we call three user-defined functions: 

smith-chart--creates a figure containing the 2-Smith Chart. 
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input-stability-draw~ the input stability circles computed from the supplied S- 
parameters. Circles are drawn in the currently active figure (Smith Chart) and use 
a specified color (red in our case). 
output-stability-draws the output stability circles in the currently active 
figure. 

The last line of the script creates a file called figg-8.eps, which contains the figure 
stored in Postscript format. This is the format employed to produce most of the simula- 
tion results throughout the book. 

1.3 Simulation Software on Compact Disk 

1.3.1 Overview 
The intent of the software contained on this CD is to provide support for the mate- 

rial covered in the textbook. All programs have been developed and tested using MAT- 
LAB Version 5.2. Although the authors believe that all routines should be compatible 
with earlier versions of MATLAB, this may not be the case. The software is maintained 
and regularly updated through our Web-site at www.wpi.edu/ece/EM_RF_lab/book. 

1.3.2 Software Installation 
The installation of the RF software involves the following steps: 

1. Copy the entire directory rf-mat lab onto the desired harddrive location. 
2. Invoke MATLAB. 
3. At the command prompt in the main MATLAB window type: cd 
c : \ r f-mat lab, (here it is assumed that all files are copied to disc-drive C) 

4. At the MATLAB command line type setgath. This will add all necessary paths 
to the search tree of the MATLAB. If you do not wish to save this information for 
future use you can stop the installation process now. In this case you will be able 
to run all programs but all path information will be deleted after closing MATLAB. 
If you decide to store the path information for future use, continue with the next 
step. 

5. In the MATLAB command window go to the f ile\set path option. This will 
launch the path browser. 

6. In the path browser go to the f ile\save path option shown the main win- 
dow. 

7. At this step all path information is stored and you can begin to run the M-file rou- 
tines from the command line. 



636 Appendlx I lntroductlon to MATLAB 

1.3.3 File Organization 
All files are organized in the directory structure shown below and the content of 

each folder is described in the table. 

Folder name 1 Description 
RF-matlab I Root directory 

tools 

amplifiers 

Selected examples and figures for chapters 
1 through 10. 

Common files for simulations 

Programs for computation of stability fac- 
tor and simultaneous complex-conjugate 
matching for the bilateral design 

quality I Constant Q, circles 

circles 

gain 
noise 

stability I Stability circles 

Various circle equations 

Constant gain circles 

Constant noise circles 

conversion 

global 

Conversion routines between different two- 
port network representations 

I Some useful routines for the computation 
of the input and output reflection coeffi- 

, cients, VSWR, etc. 

networks 

Additional information for each of the programs can be obtained by executing the 

Routines for the definition of matching net- 
work circuit topologies 

smith 

command help <program-name>, where <program-name> is the name of the 
particular m-file. For example, to obtain help about the program smith-chart . m, 
you execute the command help smith-chart in MATLAB'S main window. 

Programs related to the construction and 
plotting of various arcs in the Smith Chart 

Further Reading 

Student Edition  MATLA LAB, The Mathworks, Inc., 1995. 
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ments, 261-62 

frequency transformation, 235-37 
Bandstop filters, 201,21&17,249 

frequency transformation, 237-38 
response, 212-13 

Bandwidth. 204 
nolse, 620 
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Butteworth filters, 203,220,221-24 
coefficients for, 223 
compared to linear phasse Buttewonh 

and Chebyshev filters, 229-31 
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design, 54749 
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basic definition, 603 
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Compressed Smith Charts, 109 
Computer-aided design (CAD), 119-21.351 
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Conduction parameter, 380 
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thermal, 608 
Conformal mapping, 65 
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netic field generated by, 5&52 



Constant gain, 483-502 
bilateral design, 492-95 
operating and available power gain cir- 

cles, 495-502 
unilateral design, 483-92 

applicability test. 491-92 
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Constant gain circles, derivation of, 485-86 
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design for given gainlnoise figure, 
509-1 1 

Conversion compression, mixers, 582 
Conversion gain (CG), mixers, 581 
Conversion loss (CL), mixers. 581 
Correlated noise sources, 622 
Coulomb, 597,598 
Coupled filter, 253-62 

bandpass filter section. 257-58 
cascading bandpass filter elements, 

259-60 
design example, 2-2 
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Couplers, 612-19 
branch line coupler, 616-18 
dual-dictional, 394-95 
Lange coupler, 619 
W~lkinson wwer divider. 612-15 

Coupling, 612 ' 
Coupling coefficient, 564 
Coupling factor, 395 
Current, 598 
Cut-off frequency, 201,202,321 
Cylindrical conductor, skin equation for, 

601-2 

D 
Device under test (DUT), 168, 189, 195,393, 

395-96 
Dielectric constant, 608 
Dielectric resonator oscillators, 563-68 

design of, 565-68 
Diffision length, 610 
Digital-to-analog converter (DAC), 4 
Dimensions. &8 
Diode models, 352-57 

linear diode model. 35457 
nonlinear diode model, 352-54 

Diodes: 
Gunn, 3 1 1 
IMPA'IT. 304-7 
leakage, 354-55 
PIN. 296-301 
RE 293-311 
schottky, 293-96 
TRAPATT, 331 1 
tunnel. 307-10 
varactor, 3 0 2 4  

Dipole domains, 573 
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design of, 442-44 
Downconvened frequency components, 578 
Drain saturation voltage, 332 
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181-84 
Dynamic Ebers-Moll chipmodel, 359-61 
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amulifiers. 523-24 
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spurious free, 525-26 

&ly effect, 363 
Ebers-Moll BJT model. 351.357-66.387. 

dynamic Ebers-Moll chip-model. 359-61 
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of, 36144 

popularitylacceptance of, 363 
Edison, Thomas, 2 
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Electron rest mass, 597 
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Excess charge carriers. 609 
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F 
Farad, 598 
Faraday's induction law, 2 
Faraday's law, 47.51-53,59 
Feedback loop, 180 
Feedback oscillator design, 54346 
Femto. 598 
~ield&G transistor biasing networks. 455 
Field effect transistors WETS). 328-38 

construction of, 32'9-30 
frequency response, 337 
functionalitv. 33 1-37 
hetero ~ ~ ~ ~ ' 3 2 9  
junction FET (JFET), 329 
limiting values. 337-38 
metal insulator semiconductor FET 

(MISFET), 329 
metal oxide semiconductor FET (MOS- 

FET), 329 
MEtal Semiconductor FET (MESFET), 

729 --. 
Filter implementation. 241-53 

Kuroda's identities, 24345 
unit elements (UEs), 243 

Filter 0.206 
~ i l t e g '  

bandpass, 201,210-17,261-62 
binomial low-pass, 203 
Butterworth, 203, 220, 221-24.229-31 
Cauer low-pass, 203 
Chebyshev, 203.220.224-31 
coupled, 253-62 
elliptic low-pass, 203 
high-pass, 201,20%10,233-35 
image, 580 
linear phase low-pass. 224 
low-pass. 201,203,206-9.233 
RF filter design, 201-69 

Fixed-frequency oscillators, 556-63 
design of, 557-60 
GaAs FET oscillator, microstrip design 

of, 560-63 
Flat coils, 27-28 
Flow charts. 178-84 

branches, 178 
nodes, 178 

Forbidden rgions, 415-17 
Forward active mode, 3 17-19 
Forward Early voltage, 365 
Forward power gain, 172 
Forward voltage gain, 172 
Frequency, 598 

center, 202 
cut-off, 201 

Frequency compensated matching networks, 
512-15 --- -- 

Frequency domain considerations. 578-80 
Frequency response. 417-22 

bipolar-junction transistor (BJT), 321-23 

field effect transistors (FETs), 337 
high electron mobility transistors 

(HEMTs), 343 
input reflection coefficient, 419 
matching networks. 417-22.426 
RF field effect transistors. 337 
W~Mnson power divider, 613 

Frequency spectrum, 8-9 
Frequency transformation. 232-38 

bandpass filters, 235-37 
bandstop filters, 237-38 

~ a A s  field effect transistors (GaAs FETs), 
312-14 

GaAs MESFET. 379 
determination of cut-off frequency of. 

38485 
~ain-bandwidth pruduct. 372 
Gain compression. 523 
Generic RF system, block diagram of, 3 
Giga 598 
Global positioning systems (GPS). 1.2 
Gradualshamel approximaiton. 332 
Gummel-Poon BJT model, 351,357,36345, 

387.398 
Gum diodes. 3 1 1 
Gunn element oscillator, 573-74 

H 
Harmonic distortions, 524 
Harmonic IMD, mixers, 583 
Hartley oscillator, 545-46 
Henry. 598 
Hem, 598 
Hem, Heinrich, 2 
Heterodyne receiver, 575 
Hetero FET, 329 
Heternjunction bipolar transistors (HBTs). 

312-11 . .- .. 
High electron mobility transistors (HEMTs), 

312.338-43 
computation of HEMT-related electric 

characteristics. 34142 
construction frequency response, of, 339 343 

functionality of, 339-42 
pseudomorphic HEMTs (pHEMTs). 339 

High-frequency capacitors. 17-21 
series loss rangenl 18 

High-frequency inductors. 21-24 
RF coils (RFCs), 21 

High-ftequency resistors. 14-17 
surface mounted devices (SMDs). 14 

High-pass filters. 201,209-10 
frequency transformation, 23-5 

High-power amplifiers. 522-26 
High-side injection. 578 
H-matrix, 14849,194 
Hole mobility, 608 
Hybrid circuits. 27-28 
Hybridlh-matrix. 148-49.194 

I 
IEEE frequency spectrum, 8-9 
I-layer, 2% 
Image filter, 580 
Image frequencies mapping. 578-80 
Image impedance, 257 
Impact ionization, 304 
IMPA'IT diodes, 304-7 
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characteristic line. 63 
general definition, 63-64 
input impedance matching, 90-91 
intrinsic, 6.7-8 
normalized impedance equation. 104 
wave, 64 

Impedance matching, using discrete compo- 
nents, 406-31 

Impedance matrix. 144-45 
Impedance transformation, 1 l&21,232, 

239-41 
computer simulations, 119-21 



for general load. 11&12 
special transformation conditions. 

115-19 
open-circuit transformtions, 116-17 
short-circuit transformations, 

117-19 
standing wave ratio (SWR), 113-14 

ImpedanceIZ-matrix, 144-45, 148 
Induced voltage, in a stationruy wire loop, 

52-53 
Inductance. 598 
Inductors: 

high-frequency, 21-24 
surface-mounted, 26-28 

Injection version. 358 
Input impedance matching, 9&91 
Input matching network (IMN), 4,506 
Inout reflection coefficient, frequency - .  

response of, 419 
Input resistance, 367 
Input stability circle equation, 471-72 
Input VSWR, 506 
Insertion loss (IL), 92-93,204,217-20 
Institute of Electrical and Electronic Engi- 

neers (IEEE), 8-9 
Intercept point (IP), 525 
Interconnectine networks. 153-61 

ABCD necwork represenations. 156-61 
cascading networks. 155-56 
parallel connection ot networks. 15155 
series connwuon of networks. 153-54 

lntermed~ate frequency (IF). 575 
Intermodular distonion (IMD). 524 
lntermodulatron diston~on (IMD). 

amolifiers. 52425 
mixers, 582 

Internal noise source, 622 
International Svstem of Units. 598 
Interstage m a t c h g  network, 4,526 
Intrinsic carrier concentration. 608 
Intrinsic impedance, 6.7-8 
Intrinsic resistivity, 608 
Inverse Early voltage, 365 
Isolation, 298, 583, 612 

joule, 598 
Junction FET (JFET), 329 
Junction grading coefficient, 352 

-- 
Kiln TOR . -. . -, - > - 
Kirchoff's voltage and clrcult laws 

(KVUKCL). 3941.15.58-62 
Kuroda'c identrries. 242. 24345 

L 
Lambda-quarter transformer, 8 1 
Lange coupler, 619 
Large-scale diode model, 352 
Large-signal BIT models. 357-66 
Large-signal Ebers-Moll circuit model, 358 
Large-signal FET models, 378-81 

FET-related benefits, 378-79 
linear region, 380 
noninsulated-gate FET, 379 
reverse linear region, 38 I 
reverse saturation region, 380 
saturation region. 379-80 

Large-signal S-parameters, 522-23 
Lead resistance, 15 
Leakaee diodes. 354-55 
~ibra,-120 
Linear active mode, 314 
Linear diode model. 35457 
Linear phase behavior, 222 
Linear ~has.5 low-oass filters, coefficients for, 

224 ' 
Loaded Q, 205-6 
Local oscillator (LO) frequency, 575 

selection of, 577-78 
Long and short diode models. 609-1 1 
Loop gain equation. 540 
Loss factor. 218 

Loss tangent, 599 
Low- to high-frequency circuit operations, 

evolution of, 1-36 
Low-pass filters, 201,206-9 

actual attenuation profiles for, 203 
frequency transformation, 233 

Low-side injection, 577-78 
L-section matching networks, -15 

analytical approch to design of, 407-8 
graphical approach to design of, 41&12 

M 
Magnetic field, 598 
Magnetic flux, 598 
Magnitude computations, 6 0 3 4  
Mapping: 

conformal, 65 
image frequencies, 578-80 

Matched load reflection coefficient, 493 
Matched source reflection coefficient, 492 
Matching networks: 

design approaches, 406 
double-stub matching networks, 440-44 
forbidden reeions. 415-17 
frequency c~mpensated matching net- 

works. 512-15 
freauencv reswnse, 417-22.426 
imkdanre mkhing using discrete com- 

ponents, 4 0 6 3  1 
interstage matching network, 4, 526 
with lumped and distributed components, 

design of, 432-35 
microship line matching networks. 

4 3 1 4  
narrow-band matching network, design 

of, 424-26 
quality factor, 422-26 
series C, shunt L matching network, 414 
series L, shunt L matching network, 414 
shunt C, series L matching network, 414 
shunt L, series L matching network, 414 
single-stub matching networks, 43540 
T and Pi matching networks, 426-31 
transfer function of, 219 
two-component matching networks. 

6 1 5  
Mathcad, 134, 167 
Mathematics, 134,167 
MATLAB, 12&21, 132, 134,167,631-35 

background, 631-33 
stability evaluation, brief example of, 

h??-?T --- "- 
Matrix conversions, 605-7 
Maximally flat filters, See Butteworth filters 
Maximum gain, amplifier design for, 494-95 
Maximum power hyperbola. 327 
Maximum power transfer, 466 
Maxwell, James, 2 
Mega, 598 
Mesa processing technology, 2% 
Metal-film resistors, 14 
Metal film resistors, RF impedance response 

nf 1 6 1 7  -. , - - - . 
Metal insulator semiconductor FET (MIS- 

FET), 329 
Metal oxide semiconductor FET (MOSFET), 

329 
MEtal Semiconductor FET (MESFET), 329 

drain saturation current in, 333-35 
GaAs MESFET. determination of cut-off 

frequency of.384-85 
idealized MESFET device smcture, 382 
I-Vcharacteristic of, 335-37 
small-signal MESFET model, 382 
SPICE modeline mameters for. 381 -. 

m.files, 134, 631 
Micro, 598 
Microstrip filter design. examples of. 245-52 
Microsmp line match~ng networks. 4 3 1 4  

from-discrete comwnents to microstrio 
lines. 431-35 

Microstrip transmission lines, 42-44, 64.69 
design of, 67-68 

Microwave (MW), 2 

Mil, 598 
Miller effect, 36%72 
Milli, 598 
Minimum detectable signal, 524 
Minimum noise figure, 502,628 

design of small-signal amplifier for, 
504-6 

Minority carrier lifetime, 608 
Mixers, 574-91 

basic characteristics of, 574-90 
basic concepts, 575-78 
conversion compression, 582 
conversion gain (CG). 581 
conversion loss (CL), 581 
double-balanced mixer, 590 
dynamic range, 583 
frequency domain considerations, 

578-80 
harmonic IMD. 583 
intermodular distortion (IMD), 582 
local oscillator (LO) frequency, 575 

selection of, 577-78 
noise figure, 581-82 
single-balanced mixer, 588-89 
single-ended mixer design, 580-88 

BIT mixer, 584-88 
See also Oscillators 

Mixing process, spectral representation of, 
<70 <,, 

Modulation-doped field effect transistors 
(MODFETs). See High electron mob~llty 
transistors 

Monolithic and Microwave Integrated Circuit 
Analysis and Design (MMICAD), 120, 
131.134.252.351.410 

Monoplar devices, 328 
Multistage amplifiers, 52629 

transistor cho~ces for des~ng of. 527-29 

N 
Nano, 598 
Nmw-band matching network, design of, 

424-26 
N-channel, 328 
Negative feedback, defined. 517 
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in phasor form, 102-3 

series connections, 127-33 
of R and C elements, 129-30 
of R and L elements, 127-29 
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