. Tredric harris






Multirate Signal Processing
for Communication Systems

Companion Software Website
http://authors.phptr.com/harris/

fredric j harris
CUBIC Signal Processing Chair

San Diego State University

Prentice Hall PTR
Upper Saddle River, New Jersey 07458
http://www.phptr.com

BICAKLAR KITABEVI
Basim Yayin ve Dagiuum Ltd. Sti. /\

Karanii Sckak Na: 27 Kizrlzy - ANKARA

Tel: (0.312) 417 5170 Pbx Fax: {0.312) 417 8146 gl I C
Gankaya V.D. 163 006 3251 e-maitinfo@hicakiarcomtr ¥ L5 o LI \
. T\a':. -‘;' . : . v—w—""_'-"—-—.‘
e N




Library of Congress Cataloging-in-Publication Data

harris, fred (fredric j.)
Multirate signal processing for communication systems, /frederic j. harris
Includes bibliographical references and index.
ISBN (-13-146511-2 (alk. paper)

1. Signal processing—Digital techniques. T K'SI’QS s+
TK5103.7.H38 2004 H3&
621.382'2--dc22 2004044419
¢ 2004

Companion Software Website http://authors.phptr.com/harris/

Editorial/Production Supervision: William Mara
Cover Design Director: Jerry Votta

Cover Design: Mary Jo DeFranco

Cover Illustration: fredric harris

Art Director: Gail Cocker-Bogusz @ METU LIBRARY
Manufacturing Manager: Carol Melville "
SECUISIL R
Editorial Assistant: Michelle Vincenti ek
Marketing Manager: Dan Depasquale 0050348939

Copy Editor: Elizabeth Martin

2004 Pearson Education, Inc.
r%ncs Publishing as Prentice Hall Professional Technical Reference

%’i Upper Saddle River, New Jersey 07458 d

Prentice Hall PTR offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact: U.S. Corporate and Govern-
ment Sales, 1-800-382-3419, corpsales@pearsontechgroup.com. For sales outside of the U.S.,
please contact: International Sales, 1-317-581-3793, international@pearsontechgronp.com,

Company and product names mentioned herein are the trademarks or registered trademarks of
their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Prentice Hall PTR, One Lake Street, Upper Saddle River, NJ 07458.

Printed in the United States of America
First Printing: May 2004
ISBN 0-13-146511-2

Pearson Education Ltd.

Pearson Education Australia Pty., Limited
Pearson Education South Asia Pte. Ltd.
Pearson Education Asia Lid.

Pearson Education Canada, Ltd.

Pearson Educacion de Mexico, 8.A. de C.V.
Pearson Education—Japan

Pearson Malaysia S.D.N. B.H.D.



To the memory of my parents,
Edith and Seymour Harris,
My wife, Penelope,
Our Children, Danielle and Robyn,
Our Grandson, Justin,
And to all my students and colleagues
with whom I share the joy of learning.



“A little learning is a dangerous thing;
drink deep, or taste not the Pierian spring:
there shallow draughts intoxicate the brain,

and drinking largely sobers us again.”

—Alexander Pope (1688-1744)
An Essay on Criticism



Contents

Preface
Purpose of Book
Organization of Book
Acknowledgements

1 Why Multirate Filters?

1.1 Compact Disc 4-to-1 Oversample
1.2 Anti-alias Filtering

2 The Resampling Process
2.1 The Sampling Sequence

2.1.1 Modulation Description of Resampled Sequence

2.2 What Is a Multirate Filter?

2.2.1 Properties of Resamplers

2.2.2 Examples of Resampling Filters
2.3 Useful Perspectives for Multirate Filters
2.4 Nyquist and the Sampling Process

3 Digital Filters
3.1 Filter Specifications
3.2 Windowing
3.3 The Remez Algorithm
3.3.1 Equiripple vs. 1/f Ripple Designs
3.3.2 Acceptable In-band Ripple Levels

4 Useful Classes of Filters

4.1 Nyquist Filter and Square-root Nyquist Filter
4.2 The Communication Path
4.3 The Sampled Cosine Taper
4.3.1 Root-raised Cosine Side-lobe Levels
4.3.2 Improving the Stop band Attenuation -
4.4 Half-band Filters

13
15
19
20
23
26
28
32

39
40
43
52
60
66

81
82
86
89
91
92
97



vi

Contents
5 Systems That Use Resampling Filters 107
3.1 Filtering with Large Ratio of Sample Rate to Bandwidth 108
5.1.1 Partial Sum Accumulator: The Dual Form i11
3.1.2 Generate Baseband Narrowband Noise 116
3.1.3 Generate Narrowband Noise af a Carrier Frequency 119
5.2 Workload of Multirate Filter 121
6 Polyphase FIR Filters 127
6.1. Channelizer 128
6.1.1. Transforming the Band-pass Filter 134
6.2 Separating the Aliases 142
7 Resampling Filters 153
7.1 Interpolators ' 154
7.1.1 Simple I-to-M Interpolator 154
7.2 Interpolator Architecture 161
7.2.1 Polyphase Partition 161
7.3 Band-pass Interpolator 164
7.4 Rational Ratio Resampling 169
7.5 Arbitrary Resampling Ratio 171
7.5.1 Nearest Neighbor Interpolation 172
7.5.2 Two Neighbor Interpolation 181 .
7.6 Farrow Fiiter 185
7.6.1 Classical Interpolator 185
7.6.2 Polynomial Approximation 189
7.6.3 Farrow Filter 192
8 Half-band Filters 201
8.1 Half-band Low Pass Filters 202
8.2 Half-band High pass Filter 204
8.3 Window Design of Half-band Filter 205
8.4 Remez Algorithm Design of Half-band Filters 207
8.4.1 Half-bard Remez Algorithm Design Trick 208
8.5 Hilbert Transform Band-pass Filter 210
8.53.1 Applying the Hilbert Transform Filter 212
8.6 Interpolating with Low Pass Half-band Filters 214

8.7 Dyadic Half-band Filters 217



Contents vii

9 Polyphase Channelizers ' 225
9.1 Demodulator Channel Bank 226
9.2 Arbitrary Output Sample Rates 229
9.2.1 Comparison of Design Options 240
10 Recursive Polyphase Filters 257
10.1 Ali-pass Recursive Filters 258
 10.1.1 Properties of All-pass Filters 260
10.1.2 Implementing First-order All-pass Networks 266
10.2 Two-path All-pass Recursive Filters 270
10.2.1 Two-path Half-band Filters: Nonuniform Phase 271
10.2.2 Two-path Half-band Filters: Linear Phase 281
10.3 Comparison of
Nonuniform and Equal-ripple Phase Two-path Filters 233
10.4 Pass band and Stop band Response in Half~band Filters 289
10.5 Transforming Half-band to Arbitrary Bandwidth 290
10.5.1 Low pass to Low-pass Transformation 291
10.5.2 Low pass to Band-pass Transformation 296
10.6 Multirate Considerations of Recursive Half-band Filters 301
10.7 Hilbert-transform Filter Variant of Two-path All-pass Filter 309
10.8 M-path Recursive All-pass Filters : 3i4
10.9 Iterated Half-band Filters 318
10.9.1 Final Comparisons 321
11 Cascade Integrator Comb Filters 325
11.1 4 Multiply-free Filter 326
11.2 Binary Integers and Overflow 333
11.3 Multistage CIC 336
11.4 Hogenauer Filter 341
11.4.1 Accumulator Bit Width 342
- 11.4.2 Pruning Accumuliator Width ' 344
11.5 CIC Interpolator Example 356

11.6 Coherent and Incoherent Gain in CIC Integrators 359



viii Contents

12 Cascade and Multiple Stage Filter Structures 369
12.1 Interpolated FIR (IFIR) Filters 370
12.1.1 Interpolated FIR Example 372

12,2 Spectral Masking Filters Based of Half-band Filters 375
12.3 Spectral Masking Filters Based on Complementary Filters 380
12.4 Proportional Bandwidth Filter Banks . 383
12.4.1 Octave Partition 384
12.4.2 Proportional Bandwidth Filters 385

13 Communication Systems Applications 395
13.1 Conventional Digital Down Converters 396
13.2 Aliasing Digital Down Converters 400
13.2.1 IF Subsampling Example 401

13.3 Timing Recovery in a Digital Demodulator 409
13.4 Modem Carrier Recovery 417
13.4.1 Background 418
13.4.2 Modern Carrier Recovery 419
-13.5 Digitally Controlled Sampled Data Delay 425
13.5.1 Recursive All-pass Filter Delay Lines 426
13.6 Interpolated Shaping Filter 433
13.7 Sigma-delta Decimating Filter 446
13.7.1 Sigma-delta Filter 450

13.8 FM Receiver and Demodulator 459
13.8.1 FM Band Channelizer 460
13.8.2 FM Demoduiator 465
13.8.3 Stereo Decoding 466

Index 473



Preface

D igital signal processing (DSP) has become a core body of material in undergraduate

electrical engineering programs. Several threads branch from this core to enable related dis-
ciplines, such as communication systems, source coding, multimedia entertainment, radar,
sonar, medical and laboratory instruments, and others. Multirate signal processing is one of
these major threads, Multirate signal processing is the body of material that deals with con-
cepts, algorithms, and architectures that embed sample rate changes at one or more sites in
the signal flow path.

There are two reasons to include multirate signal processing in the solution of a par-
ticular signal-processing task. The first is reduction in cost of the implemeritation. The sec-
ond is enhanced performance of the implementation. We might also include a third, personal
incentive, which is, that it is fun to apply clever concepts to solve problems. We can hardly
complete a multirate DSP design without a smile and the accompanying thought, “Boy, this
is neat!”

Traditional concepts developed in the DSP world are the same as those developed in
the analog-processing world. In both domains we learn and use concepts such as convolu-
tion, Fourier transforms, transfer functions, poles and zeros, and others. When required to
distinguish the two approaches we use the qualifier “discrete” when discussing the DSP
version of these fundamental concepts. The reason the two approaches are so similar is that
they both emphasize linear time invariant (LTI) systems for which the tools of analysis and
synthesis are well developed.

Multirate signal processing brings to the designer an important tool not available to
the traditional DSP designer, who to the first order applies DSP techniques to emulate ana-
log systems. We note that the interface between the two versions of the world, continuous
and discrete, is the sampling process. In the traditional DSP perspective, the sample rate is
selected to satisfy the Nyquist criterion but is otherwise incidental to the problem. In multi-
rate signal processing, selection and modification of the sample rate are primary considera-
tions and options in the signal processing chain. The option to change the sample rate is the
additional tool offered to the DSP designer. Discrete systems with embedded sample rate
changes are characterized as linear time varying (LTV) or as periodically time varying.
(PTV) Most of us have very little experience in the continuous world with LTV filters, thus
their unique properties come as a pleasant surprise as we learn how to design and use them.

The ability to change sample rate within the processing stream presents a remarkable
list of processing tricks and performance enhancements. A consistent theme in this book is
the presentation of perspectives that access these processing tricks. The first perspective we
present is that a processing task should always be performed at the lowest rate commensu-
rate with the signal bandwidth. This is the Nyquist rate of the signal component of interest.
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We note that a common processing task is to reduce the bandwidth of a signal by filtering
and then reduce the sample rate to match the reduced bandwidth. Our first processing trick
interchanges the order of filtering and sample rate change so that the processing proceeds at
the reduced output sample rate rather than at the high input sample rate. The condition under
which this interchange is permitted is known as the noble identity. Reducing the sample rate
prior to reducing the bandwidth causes aliasing of the input spectrum. Multirate signal proc-
essing permits, and in fact, supports this intentional aliasing, which can be unwrapped by
subsequent processing. In fact, most of the tricks and enhancements associated with multi-
rate signal processing are related to spectral aliasing due to the sample rate change. It seems
counterintuitive to use intentional aliasing as part of the signal processing scheme particu-
larly when we have been told over and over not to alias the signal in the data collection
process. It also seems a bit suspicious to claim that aliasing can be reversed. But in fact it
can be when the aliasing occurs with a specified structure that we ensure in the multirate
processing scheme, We can also use the change in sample rate to intentionally alias a signal
at one center frequency to another. This option inciudes aliasing a signal from an intermedi-
ate center frequency to baseband by reducing the sample rate, as well as aliasing a signal
from baseband to an intermediate center frequency by increasing the sample rate.

PURPOSE OF BOOK

The purpose of this book is to present a clear and intuitive description of the unique capa-
bilities of multirate signal processing. This is accomplished by presenting the core material
along with numerous examples supported by the liberal use of figures to illustrate the time
and frequency representations of the multirate processing options. We also present a number
of useful perspectives to facilitate development of insight of multirate systems. One such
insight is that when describing a multirate system, since the sample rate is changing, we
don’t use the sample rate as our reference as is done in conventional DSP. Rather, it is use-
ful to use the signal symbol rate or signal bandwidth as our reference since that is the single
parameter that remains fixed in the process, The book includes many practical applications
of multirate systems to help the reader see novel ways they can be applied to solve real
problems. Commentary of traditional design techniques and alternate improved options are
sprinkled throughout the text. Some of the material presented in the book, by necessity, must
mimic similar expositions found in other texts on multirate processing, while other segments
of the material reflect my unique perspective and experience. There are specific segments of
material that are covered quite extensively here that are only lightly covered in other texts.
In particular, the chapter on recursive all-pass filters is a wealth of material deserving
greater exposure than traditionalty allocated to this topic.

Much of the material presented in this textbook has been used in my graduate course,
“Multirate Signal Processing.” Significant segments of this material have found their way
into my undergraduate course, “Modem Design,” as well as a series of short courses and
presentations dealing with synchronization techniques in modern communication systems. A
light sprinkling of multirate filters can even be found in my undergraduate course in “Digital
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Signal Processing” as well as our undergraduate course in “Real-Time Digital Signal Proc-
essing.” This book can be used in an undergraduate course in advanced DSP concepts orina
graduate course in multirate signal processing. Segments can also be used in support of
various courses in communication system design and modem design, and can be used as a
source of real-world applications in 2 DSP programming lab.

One of the pleasures of being a faculty member proficient in DSP skills as well as
knowledgeable in modern communication systems is the ability to roam the halls of knowl-
edge as well as the commercial centers of excellence that feed the economic engines of our
society. I have had the good fortune of participating in the development of many systems
that require the capabilities of high-performance, cost-effective DSP solufions. These sys-
tems include laboratory instruments, cable modems, satellite modems, sonar systerns, radar
systems, wireless systems, and consumer entertainment products. With a foot in each camp,
one in academia and one in commercial, I am exposed to a rich and varied set of questions
of interest from residents of the two areas. Questions posed by commercial folks addressing
focused problems are very different from those posed by those in academics.

Some of my most creative work has been spawned by questions posed, and challenges
offered, by perceptive folks in the industrial arena. The academic environment provides me
access to promising and talented students with whom [ can share the pleasure of leamning
and understanding an established knowledge base in multirate digital processing while de-
veloping and expanding that same base. This text reflects much of that knowledge base tem-
pered by the insight gathered from problem-solving tasks in the commercial sector and nur-
tured by scholarly interaction with curious, motivated students.

ORGANIZATION OF BOOK

This book is divided info 13 chapters. Chapter 1 is an introduction to multirate signal proc-
essing. The I-to-4 up-sampler of the common consumer CD player is shown as an example
of a ubiquitous application. Chapter 2 describes the process of sampling and resampling in
time and frequency domains. Chapter 3 presents the relationship between the specifications
of a FIR filter and the number of taps, or the length, of the filter. We also compare the win-
dow design and equal-ripple or Remez design techniques. The effects of in-band ripple and
of constant level stop band side-lobes are examined and various modifications to the design
process are introduced to control stop band side-lobe levels. Chapter 4 presents special fil-
ters such as square-root Nyquist filters and half-band filters. Discussions on standard and
improved design techniques appropriate for these specific filters are also presented.

Chapter 5 presents examples of systerns that use multirate filters and illustrates appli-
cations and demonstrates the wide range of applications. Chapter 6 presents resampling low
pass and band-pass FIR filters for which the noble identity has been applied to interchange
the operations of resampling and filtering. Up-sampling, down-sampling, and cascade up-
down sampling filters are examined. Chapter 7 describes polyphase interpolators and filters
that perform arbitrary sample rate change. We also examine Farrow filters as well as filters
that interpolate while performing alias-based translation. Chapter 8 covers quadrature mirror
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filters and dyadic half-band FIR filters. Chapter 9 covers M-path modulators and demodula-
tor channel banks. Also discussed are simultaneous interpolation and channel bank forma-
tion.

Chapter 10 covers recursive all pass filters implemented as nonuniform phase and
equiripple approximations to linear phase filters. A number of structures, including half-
band, M-path filter banks, resampling structures and arbitrary bandwidth non-resampling
structures, are presented and illustrated. Chapter 11 presents the CIC filter and its resam-
pling version, the Hogenauer filter. Chapter 12 describes cascades of low-order zero-packed
up-sampled filters that exhibit periodic spectra with narrow transition band. Chapter 13 pre-
sents areas of applications in which multirate filters have significant presence.

At the end of each chapter are a number of problems designed to highlight key con-
cepts presented in the chapter. These problems also serve to test the reader’s knowledge and
understanding of the material. Following each problem set is a list of references to guide the
reader to related areas for further study.
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2 Why Multirate Filters? Chapter 1

I 1 hy would we want to change the sample rate in a filter? There are two reasons. The first

is performance. The second is cost. Multirate systems often perform a processing task with
improved performance characteristics while simultaneously offering that performance at
significantly lower cost than traditional approaches. Multirate filters are digital filters that
operate with one more sample rate change embedded in the signal processing architecture.
Occasionally, the use of a sample rate change in a filtering is the natural consequence of the
signal processing chain. In other cases, the sample rate change is imposed to access the cost
advantages related to multirate processing. We will develop examples of both scenarios
throughout this book but will identify a few examples here.

1.1 CompACT Disc 4-T0-1 OVERSAMPLE

A wonderful example of a multirate filtering application is the signal conditioning per-
formed by a compact disc (CD) player. The CD player converts the digital representation of
the music stored on the CD to analog audio for the listening pleasure of the CD user. Figure
1.1 presents the standard signal conditioning operations required when converting a digital
signal to its equivalent analog representation. It entails a succession of three operators, a
digital-to-analog converter (DAC), a sample and hold, and an analog smoothing filter. The
DAC converts the succession of digital sample values to a succession of corresponding ana-
log amplitudes. The sample and hold suppresses glitch transients in the analog amplitudes
due to bit race conditions in the multibit conversion, while the smoothing filter suppresses
out-of-band spectral components.

44,1 Kz 14‘” khz
Sampled Sample Analog
Data DAC and » low-Pass —»
Source Hold Filter
din) Lo B ) d()

Figure 1.1 Signal Conditioning to Convert a Digital Signal to its Analog Representation

Figure 1.2 presents the time domain representation of the signal at successive points in
the signal-conditioning path. Figure 1.3 presents the spectra corresponding to the time sig-
nals of Figure 1.2. The two-sided bandwidth of the input signal is 40 kHz. The CD sample
rate is 44.1 kHz, which results in the spectral replicates, due to the sampling process being
located at multiples of 44.1 kHz. The DAC replaces each sample value by a proportional DC
term valid for the interval between sample values. The process of replacing a sample value
with a data scaled rectangle is described as a zero-order hold (ZOH). The spectral response
of the ZOH is a sin(x)/x or sinc(r f/fs) function with zero crossings located at multiples of
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the samele rate. As seen in the spectral plot, the zeros of the sinc suppress the center of the
spectral replicates, the side-lobes of the sinc attenuate the remaining spectral mass, and the
sinc main lobe response distorts the desired baseband spectral region.

-------- P—
R T’- el & d[l’f] ~a "T _______ ,

v

DAC Qutput Time Function t

d(f} ~—»

v

Analog Fitter Output Time Function f

Figure 1.2 Input and Samples of Input, DAC Cutput, and Filtered Output Signals

The analog-smoothing filter must satisfy a number of signal conditioning requirements. The
first is to finish the incomplete filtering task started by the DAC, the suppression of the re-
sidual spectral replicates. The filter required to perform this task is of high-order (N=10) and
consequently relatively expensive. The high order filter is required to obtain a narrow transi-
tion bandwidth, starting at 20 kHz and achieving the required 80-dB attenuation beyond 24
kHz for a composite DAC and filter attenuation of 96-dB. The second requirement is the
correction of the in-band sin(x)/x distortion, which is accomplished by having a pass band
response matching the inverse of the sinc response over the signal bandwidth. The third re-
quirement is that the filter should not introduce severe group delay distortion in the vicinity
of its band edge. A desired constraint is that the filter be one of a pair with matching gain
and phase for the stereo audio signals. And finally, the last requirement is that the pair of
filters costs an absurdly low amount, say less than $0.50. If you are still chuckling over this
list of requirements you realize that they are not realistic specifications for an analog filter.
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Figure 1.4 Medifted Signal Conditioning to Convert Digital Signal to Analog Represen-

tation

When faced with a problem we can’t solve, we invoke a trick that Star Trek enthusi-
asts will recognize as the Kobyashi Maru Scenario (Wrath of Khan). When faced with an
unsolvable problem, change it into one you can solve, and solve that one instead. Figure 1.4
presents the modified signal conditioning tasks that employ this trick and inexpensively en-
able the conversion of a sampled data representation of a signal to its analog representation.

Figure 1.5 presents the time domain representation of the signal at various points in
the modified signal-conditioning path, while Figure 1.6 presents the spectral description of
the corresponding signals shown i Figure 1.5. In the modified precessing we digitally raise
the sample rate of the input sequence by a factor of 4 from 44.1 kHz to 176.4 kHz, This
permits 4-spectral copies of the spectra to be presented to the digital filter with three of them
to be suppressed in the sampled data domain. While we can’t build an analog filter with the
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desired specifications listed in the previous paragraph, we have no difficulty meeting these
specifications in the digital filter. The output of the digital filter contains interpolated sample
points at four times the original input sample rate. The spectra of the oversampled sequence
are now separated by 176.4 kHz rather than the original 44.1 kHz. The spectral response of
the DAC operating at the new output sample rate has a much easier task of suppressing the
spectral replicates with fractional bandwidth one-eighth of the wider sinc main lobe width as
opposed to the original one-half of the original sinc main lobe width. The fransition band-
width of the analog filter required to finish the incomplete spectral suppression is now 176.4
—44.1 or 132.3 kHz, which is nearly 4 octaves, as opposed to the original transition width of

Zero Packed Sampled Data Time Series 1

- ‘ o T d (nT} [mT/4]
ot et T
Filtered (interpolated) Sampled Data Time Series t

MWWTTHWW

DAC OQutput Time Funcfion for Up-Sampled Series

M\/\

»
o

Analog Filter Quiput Time Function

Figure 1.5 Input Samples Zero Packed 1-to-4, Interpolated 1-to-4 Samples of Input,
DAC Output 1-to-4 Interpolated Samples, and Filtered Qutput

4.1 kHz which is 1/5 of an octave. With a significantly larger transition bandwidth the ana-
log filter is of lower order and can be purchased at significantly reduced cost. The analog
filter is no longer required to comrect the DAC sinc distortion since the corrective pre-
distortion is embedded in the digital up-sampling filter. In the process just described, the
conversion from input digital to ouiput analog representation is performed in two stages, a
digital up sampling by a low-cost digital filter and a low-cost analog-smoothing filter. The
CD players that invoke this option are identified as being 4-to-1 oversampled. We will see
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shortly that 4-to-1 oversampling is a common option in most DSP-based systems at the in-
terface between the digital and analog versions of the signal. For instance, it is very common
for digital modems to use 4-samples per symbol, a 4-times oversampled version of the data,
to reduce the distortion due to the analog filtering as well as the cost of the analog filter fol-
lowing the DAC.
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Figure 1.6 Spectra: Sampled Input, 1-to-4 Up Sampled Output, DAC Qutput, and Fil-
tered Output

1.2 ANTI-ALIAS FILTERING

This example is similar to the previous example in the sense we oversample to reduce the
complexity and cost of an analog filter. This differs from the previous example by being its
dval. The standard task we address here is the signal conditioning required to convert an
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analog signal to a digital signal. Figure 1.7 presents a block diagram of the primary compo-
nents similar to that shown in Figure 1.1 for the digital-to-analog signal conditioning. Note
the addition of an automatic gain control (AGC) block missing from Figure 1.1. Here we
see the analog low pass filter that performs the anti-alias function, the AGC block that ad-
justs the input signal level to maich the dynamic range of the sample and hold (S&H), and
the analog-to-digital converter (ADC). The sample rate of the S&H and ADC must satisfy
the Niyquist criterion of the input signal. The Nyquist rate of a high-quality data collection or
recording system is the signal’s two-sided bandwidth plus the transition bandwidth of the
anti-alias filter. The two-sided signal bandwidth for high-end audio is 40 kHz, and standard
sample rates are 44.1 kHz for the CD and 48 kHz for Digital Audio Tape (DAT). The transi-
tion bandwidths of the analog filters for CD and DAT are 4.1 kHz and & kHz respectively.

44,1kHz l 44.1kHz
Analog Andlog Sample
Signal »| Low-Pass » AG and ADC —»
Source Filter Hold

df) d(n)

Figure 1.7 Signal Conditioning to Convert an Analog Signal to its Digital Representa-
tion

Figure 1.8 presents the frequency domain representation of the signal at successive
points in the signal-conditioning path, The two-sided bandwidth of the input signal is 40
kHz. The CD sample rate is 44.1 kHz. The analog anti-alias filter has a pass band that ex-
tends to 20 kHz and a stop band that must attenuate adjacent spectra by 96-dB starting at
24.1 kHz. This filter must meet the performance requirements listed for the smoothing filter
in the previous section. Here again, we find the requirements to be unrealistic. In particular,
the narrow transition bandwidth of the filter requires it to be a high-order filter. IHigh-order
filters are characterized by severe group delay distortion near the band edge. High-order
filters generally do not meet consumer price requirements and it is unlikely that the cost of
the filter pair will meet the desired $0.50 target price.

Figure 1.9 presents the modified signal-conditioning task that uses multirate signal
processing to enable a Jow-cost analog filter to perform the anti-aliasing task. Here we use a
low-cost analog filter with wide transition bandwidth. The sample rate of the signal must
now be increased to account for the wider transition bandwidth and for this example is 176.4
kHz, which is 4-times oversampled relative to the desired sample rate. A digital filter that
meets the desired filter specifications filters the 4-times oversampled sequence. After filter-
ing, the filtered sequence is oversampled and the sample rate is reduced by a factor of 4
from 176.4 kHz to 44.1 kHz. Reducing the sample rate by the factor of 4 reduces the dis-
tance between the spectral copies from the input sample rate separation of 176.4 kHz to the
output sample rate separation of 44.1 kHz.

Figure 1.10 presents the frequency description of the signal at various positions in the
medified signal-processing path. The analog anti-aliasing filter in the modified form has a
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132 kHz transition bandwidth as opposed to the 4.1 kHz transition bandwidth of the non-
oversampled version shown in Figure 1.5. Consequently, the degree of the analog filter can
be reduced from a 10th order to a 4th order. The lower degree filter will exhibit reduced
group delay distortion. If the delay distortion has to be eliminated, the digital filter can be
designed to absorb the phase response required to equalize the composite analog and digital
filter to obtain linear phase.
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Figure 1.8 Spectra of Input Signal, Analog Filtered Analog Signal, and Sampled Input
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Signal —s{Low-Pass and —> Low-Pass —» 4:11 —>
Source Filter Hold Fiker
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Figure 1.9. Modified Signal Conditioning to Convert an Analog Signal to its Digital Rep-
resentation

Many DSP-based systems collect data with an oversampled ADC, This is often done
to reduce the cost of the analog anti-aliasing filter while preserving the quality of the signal
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being processed by the filter. A high-quality digital anti-alias filter suppresses the spectral
content in the excess spectral span of the extra-wide transition bandwidth. The sample rate
of the processed data is then reduced to the desired output sample rate. In some systems the
excess data rate is maintained at the 4-times oversampled rate to support additional process-
ing related to interpolation from one sample rate to an arbitrary sample rate. As we will see
in later sections, the processing task of an interpolator is reduced significantly when the in-
put data is initially oversampled by a factor of 4.

4 Andlog Fitter Response
e S Large Transition BW

441 88.2 132.3 176.4 f
Spectum at Output of Analog Anti-Alias Filler

v

N
-

4 Input Sample Rate —» 4
e Folded Jianstion B, T
[ l =Y i v i = . IR R
0 441 88.2 132.3 176.4
Spectrum at Qutput of ADC
e S Input Sample Rate ———24.....
ﬂ {*+— Digital Filtler Response l f i

0 441 88.2 132.3 176.4 f
Spectum at Quiput of Digital Anti-Alias Filter
Qutput omple_Eo\’rEA Spac’rrcl ReplicoLes
/_/_\ l_\_\ oty oy ‘/ "__,....l ey / Is .
0] 44,1 88.2 132.3 176.4 f

Specirum at Cutput of 4-t0-1 Down Sampler

Figure 1.10 Spectra: Filtered Input, 4-Times Oversampled Sampled Input, Digitally
Filtered Output, and 4-to-1 Down Sampled Qutput
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Problems

1.1 Determine the order of an analog Butterworth filter that can be used as the anti-alias filter for a
CD quality signal. This filter must have its 3-dB pass band edge at 20 kHz and its 96-dB stop
band edge at 24.1 kHz. If each component, capacitor, or inductor in this filter costs $0.05, es-
timate the cost for a pair of anti-alias filters. A digital filter, oversampled by 10 and satisfying
the same performance requirements, can be used as an estimate of the required order analog fil-
ter.

1.2 Determine the order of an analog elliptic filter that can be used as the anti-alias filter for a CD
quality signal. This filter must have its 0.1-dB pass band edge at 20 kHz and its 96-dB stop
band edge at 24.1 kHz. If each component, capacitor, or inductor in this filter costs $0.05, es-
timate the cost for a pair of anti-alias filters, A digital filter, oversampled by 10 and satisfying
the same performance requirements, can be used as an estimate of the required order analog fil-
ter. .

1.3  Determine the order of an analog elliptic filter that can be vsed as an anti-alias filter for a 4-
times oversampled CD quality signal. This filter must have its (.1-dB pass band edge at 20
kHz, and its 96-dB stop band edge at 156.4 kHz. If each component, capacitor, or inductor of
this filter costs $0.05, estimate the cost for a pair of anti-alias filters. A digital filter, oversam-
pled by 10 and satisfying the same performance requirements, can be used as an estimate of the
required order analog filter.

1.4  Determine the order of an analog elliptic filter that can be used as an anti-alias filter for an 8-
times oversampled CD quality signal, This filter must have its 0.1-dB pass band edge at 20
kHz, and you have to determine the new sample rate and the spectral location of its 96-dB stop
band edge. If each component of this filter, capacitor, or inductor costs $0.05, estimate the cost
for a pair of anti-alias filters, A digital filter, oversampled by 10 and satisfying the same per-
formance requirements, can be used as an estimate of the required order analog filter.

15 A signal uniformiy occupying a full bandwidth of £20 kHz is sampled at 48 kHz. The signal
samples are presented to a D-to-A converter, which performs the task of a ZOH with a fre-
quency response equal to sin(wf/fs)/(nf/fs). To better appreciate the distortion and incomplete
spectral suppression offered by the ZOH, generate an annotated and properly scaled figure that
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1.6

shows the in band spectral droop due to the main lobe response and the residual spectra of the
first spectral copies centered at 48 kHz.

A signal uniformly occupying a full bandwidth of £20 kHz originally sampled at 48 KHz is
digitalty up sampled 4-times to 196 kHz. The signal samples are presented to a D-to-A con-
verter, which performs the task of a ZOH with a frequency response equal to sin{nf/fs)/(nf/fs).
To better appreciate the improved levels of distortion and incomplete spectral suppression of-
fered by the ZOH, generate an annotated and properly scaled figure that shows the in band

spectral droop due to the main lobe response and the residual spectra of the first spectral copies
centered at 196 kHz.
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Central to multirate filters is the concept of sample rate change. In preparation for the

study of filters that participate in this process we first address the process of resampling a
sampled signal as opposed to the process of sampling a continuous time signal. When a con-
tinuous time signal is sampled there are no restrictions on the sample rate or the phase of the
sample clock relative to the time base of the continuous time signal. On the other hand,
when we resample an already sampled signal, the output sample locations are intimately
related to the input sample positions. The resampling operation offers a convenient visuali-
zation of a precursor process to the desired process of changing the sample rate of a time
series. A resampled time series contains samples of the original input time series separated
by a set of zero valued samples. The zero valued time samples can be the result of setting a
subset of input sample values to zero or as the result of inserting zeros between existing in-
put sample values. Both options are shown in Figure 2.1. In the first example shown here,
the input sequence is resampled 4-to-1, keeping every fourth input sample starting at sample
index 0 while replacing the interim samples with zero valued samples. In the second exam-
ple, the input sequence is resampled 1-to-2, keeping every input sample but inserting a zero
valued sample between each input sample. These two processes are sometimes called down
sampling and up sampling respectively.
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Figure 2.1 Resampling by Zeroing Sample Values and by Inserting Zero Valued Sam-
ples

Two examples of 4-t0-1 resampling of a time series are shown in Figure 2.2. The first
resampling algorithm keeps every 4th sample starting at index 0 while setting the interim
samples to zero. The second resampling algorithm keeps every 4th sample starting at index
1 while setting the interim samples to zero. In general there are Q initial starting locations
for a Q-to-1 down sampler. The spectra of the Q differert down sampled versions of the
input signal have different phase profiles related to the time offset of the initial starting point
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relative to the time origin. The different phase profiles play a central role in multirate signal
processing.
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Figure 2.2 Two Examples of 4-to-1 Down Sampling of Input Series

2.1 THE SAMPLING SEQUENCE

The process of performing sampling in the continuous time domain is often described with
the aid of the generalized sampling function, a sequence of delayed impulses, as shown in
2.1},

sp(t) = £ 8(t—nT) @.1)

>

In a similar manner, the resampling operation can be described with the aid of the discrete
time sampling sequence formed by the inverse Discrete Fourier Transform (DFT) shown in
(2.2). :

M-1
S (=37 2 expliammn) 22

m=0
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The sequence Sy(n) is seen to be the sum of M complex sinusoidal sequences of am-
plitude 1/M with frequencies equally spaced around the unit circle at multiples of (Zrn/M).
The sum formed by the relationship shown in (2.2) is the sequence shown in (2.3).

I Forn=uM, v an integer

Sp{n) =
u(®) {0 Otherwise

(2.3)

The DFT relating the time and spectral description of the sampling sequence for Ss(n) is
shown in Figure 2.3.

s5(n)

n
5-4 -3 2-10 12 3 456 7 8 9101112
RLJL 35[9]
0.5
0
1/5 0/2x
2/5
0.5

Figure 2.3 Sampling Sequence Ss(n) in Time and Frequency Domain

The sampling sequence can be offset from index 0 to index r as shown in (2.4).

_1 Ml L 2n
Sym-n= Vi Z—o exp(j M m(n ~r)) (2.4)

The sequence Sy(n-r) is seen to be the sum of M complex sinusoidal sequences with
amplitude (1/M), with phase angles exp(—j r m2n/M) at frequencies equally spaced around
the unit circle at multiples of (2n/M). The sequence satisfies the relationship shown in (2.5).

1 For {n—r) =M, or n =r+uM, v an integer

2.5
0 Otherwise (2.3)

SM(n—~r)={
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The DFT relating the time and spectral description of the sampling sequence for
Ss(n—1) is shown in Figure 2.4. Note that the time offset in the sampling sequence has re-
sulted in a phase rotation of the spectral compounents forming the offset sequence.’

Sg(n--1)

54321012 3 45246 7 8 % 101112

JL $5(6-m 21/5)

Figure 2.4 Sampling Sequence Ss{n—1) in Time and Frequency Domain

The resampling operation can be visualized as the product of the input sequence x(n)
and the sampling sequence Sy(n) to obtain the output sequence x¢(Mn). The time domain
product causes a frequency domain convolution. Hence the spectrum of the resampled signal
contains M offset replicates of the input spectrum. The spectrum of the resampled sequence
is shown in (2.6).

1 M-1
Xo {exp{0)} =7 2 X{expli0- 110 | @6)

The time and frequency representation of an oversampled time series is shown in Fig-
ure 2.5. The time and frequency version of this series resampled by the resample sequence
Ss(n) is shown in Figure 2.6. The fivefold replication of the input spectrum is seen in the
spectral representation of the resampled sequence. The time and frequency version of the
input series resampled by the resample sequence Ss(n—1) is shown in Figure 2.7. Here too
we see the fivefold replication of the input spectrum is seen in the spectral representation of
the resampled sequence. The difference in the spectral replicates of Figure 2.6 and Figure
2.7 is the phase shifts of the spectral regions inherited from the spectral terms phase shifted
by the one-sample offset of the resampled time series. Note there has not been a sample rate
change as we converted the input time series to either of the resampled time series. Sample
rate changes are yet to come.
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Figure 2.5 Time and Frequency Domain Representation of Sampled Sequence x(n)
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Figure 2.6 Time and Frequency Domain Representation of Sampled Sequence xg(5n)
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Figure 2.7 Time and Frequency Domain Representation of Sampled Sequence x1(5n}

2.1.1 Modulation Description of Resampled Sequence

A different process can be used to describe the periodic replication of the baseband spec-
trum caused by the resampling process, illustrated in Figure 2.6. The time and frequency
representation of a time series of the form illustrated in Figure 2.5 is shown in (2.7).

h(n) <> H(®) (2.7)

The spectral replicates indicated in Figure 2.6 are related to heterodyned versions of
the input time series as indicated in (2.8).

2
- h{n) exp(jmﬁn) < H(G—mzﬁﬁ) (2.8)

The replicated, translated, and phase shifted version of the resampled time series can
be represented as a sum of heterodyned versions of the original baseband signal. This form
is shown in (2.9).

h_(nM) L Nil h(n) exp(jmr=%)
r M 2, Y SRRy
" @9

1 2n . 2z
Hr {(9)= W mz:o H(G—mﬁ) exp(j mrﬁ)
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The importance of the relationship described in (2.9) is that the resampling process
appears to be equivalent to the spectral translation of the baseband spectrum. This connec-
tion suggests that resampling can be used to affect translation of spectral bands, up and
down conversion, without the use of sample data heterodynes. In fact we often embed the
spectral franslation of narrowband signals in resampling filters and describe the process as
aliasing. Derivations that use this relationship will be presented in later sections. A final
comment about the resampling process is that it can be applied to a time series or to the im-
pulse response of a filter, which, of course, is simply another time series. When the resam-
pling process is applied to a filter, the architecture of the filter changes considerably. The
altered form of the filter is called a multirate filter.

2.2 WHAT IS A MULTIRATE FILTER?

Multirate filters are digital filters that contain a mechanism to increase or decrease the sam- -
ple rate while processing input sampled signals. The simplest such filter performs integer up
sampling of 1-to-P or integer down sampling of Q-to-1. By extension, a multirate filter can
employ both up sampling and down sampling in the same process to affect a rational ratio
sample rate change of P-to-Q. More sophisticated techniques exist to perform arbitrary and -
perhaps slowly time varying sample rate changes. The integers P and Q may be selected to
be the same so that there {s no sample rate change between input and output but rather an
arbitrary time shift or phase offset between input and output sample positions of the com-
plex envelope. The sample rate change can occur at a single location in the processing chain
or can be distributed over several subsections. )

) A number of symbols have been used to represent the sample rate change element in a
block diagram. Three of the most common symbols are shown in Figure 2.8 for the down
sampling element and for the up sampling element. The two elements are duals and the sys-
tems that employ them for sample rate changes will also be seen to be duals.

Conceptually, the process of down sampling can be visualized as a two-step progres-
sion indicated in Figure 2.9. There are three distinct signals associated with this procedure.
The process starts with an input series x(n) that is processed by a filter h{n) to obtain theé
output sequence y{n) with reduced bandwidth. The sample rate of the output sequence is
then reduced Q-to-1 to a rate commensurate with the reduced signal bandwidth. In reality
the processes of bandwidth reduction and sample rate reduction are merged in a single proc-
ess called a multirate filter. The bandwidth reduction performed by the digital filter can be a
low pass process or a band-pass process.

The time and spectral descriptions of the three signal points in a 3-to-1 down sampling
version of Figure 2.9 are shown in Figure 2.10. Here the filter limits the bandwidth to the
band of interest and initially computes an output sample for each input sample. Reduction of
output bandwidth to a third of the input bandwidth permits a corresponding reduction in
output sample rate. This is accomplished by having the resample switch output selected
samples at the reduced rate and replacing discarded samples with zero-valued output sam-
ples. Since these zero-valued samples carry no information about the signal or its bandwidth
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we are free to discard the zero-valued replacement samples. In reality we do not insert the
zero-valued samples since they are immediately discarded.

— Qo — —  14o-P L
y(n) v{m) vin} y(m)

Q-to-1 1-t0-P

\/[IK ym) V(f?ﬂ y(m)

+>o—?> virn) vin) 0—«—1—

2 2 L

y(n)

Q-1 P-1
Figure 2.8 Symbols Representing Down Sampling and Up Sampling Elements
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Figure 2.9 Down Sampling Process Filtering and Sample Rate Reduction

In a similar fashion, the process of up sampling can be visualized as a two-step proc-
ess indicated in Figure 2.11. Here too there are three distinct time series. The process starts
by increasing the sample rate of an input series x(n) by resampling 1-to-P. The zero-packed
time series with P-fold replication of the input spectrum is processed by a filter h{n) to reject
the spectral replicates and output sequence y{m) with the same spectrum as the input se-
quence but sampled at the P-times higher sample rate. In reality the processes of sample rate
increase and selected bandwidth rejection are merged in a single process called a multirate
filter. The bandwidth rejection performed by the digital filter can be a low pass or a band-
pass process.
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Figure 2.10 Time Series and Spectra for Signal Points in 3-to-1 Down Sample Process
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Figure 2.11 Up Sampling Process Filtering and Sample Rate Reduction

The time and spectral descriptions of the three signal points in a 1-to-5 up sampling
process of Figure 2.11 are shown in Figure 2.12. Here the resampler increases the sample
rate by a factor of 5 by inserting four zero-valued samples between input samples. The filter
limits the bandwidth to the band of interest and computes output samples at an increased
rate (5/1) relative to input rate, replacing the zero-valued samples with interpolated values.
Since these zero-valued samples do not contribute to the filter output they are usually not
inserted in the input data sequence. Their presence here is to give us perspective and ad-
dressing guidance when forming the multirate filter.



2.2 What Is a Multirate Filter? _ 23

X(n)

o
™™

4

012345678910 ... 15 ... 20.. 25 — i 5f, ' .

Rejected it Rejected
ilter
y{m) N Specfrum "H=

AN

Il ﬂﬂmww Mo 4 LY

25 < 5f,

v

Figure 2.12 Time Series and Specira for Signal Points in 1-to-5 Up Sample Process

2.2.1 Properties of Resamplers

In coming sections we will be manipulating and rearranging the processes of resampling and
filtering. A useful visualization tool that we have developed through exposure to linear sys-
tems is the block diagram and signal flow representations of digital filters. The block dia-
gram is, of course, an equivalent (right brain) description of sets of difference equations
connecting the variables in a set of difference equations defining the filter. The building
blocks we use in a linear time invariant filter structure are delay lines, multipliers, and ad-
ders. We now add to this list the resampler, and identify relationships satisfied by the re-
samplers as they interact with traditional block diagram entities. We will present the rela-
tionships in dual pairs, the first for the up sampler, and the second for the down sampler.

Since the addition of scaled sequences occurs without concern for their sample rate,
the two operations of scaling and summing can commute. Figure 2.13 demonstrates the re-
ordering of a scaled sum and a down sampler. Similarly, since the application of a scale fac-
tor to a sequence occurs without regard to the sample rate, the two operations of up sam-
pling and scaling can also commute. Figure 2.14 demonstrates the reordering of up sampling
and scaling. Note that the relationships shown in Figures 2.13 and 2.14 are dual signal flow
graphs. Dual graphs are formed by replacing nodes with summations, and summations with
nodes, reversing the direction of the signal flow, and then interchanging input and output
ports.
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Figure 2.13 Down Sampled Sum of Scaled Sequences Equivalent to Sum of Scaled
Down Sampled Sequences
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Figure 2.14 Scaled Up Sampled Sequences Equivalent to Up Sampled Scaled Se-
quences

Figure 2.15 illustrates that Q-units of delay followed by a Q-to-1 down sampler is the
same as 1-unit of delay following a Q-to-1 down sampler. This is true because Q clock cy-
cles at the input to the resampler span the same time interval as one clock cycle at the output
of the resampler. The resampler changes the number of samples in an interval but does not
change the length of the interval. Figure 2.16-illustrates the dual relationship that P-units of
delay following a 1-to-P resampler is the same as a 1-to-P resampler following a 1-unit de-
lay. This is true since P clock cycles at the output of the up sampler span the same time in-
terval as one clock cycle at the input to the up sampler. ‘

x(n) y(m) x(n) y(rm)
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Figure 2.15 Q-units of Delay and Q-to-1 Down Sampler Is Equivalent to Q-to-1 Down
Sampler and 1-unit of Delay.



2.2 What Is a Multirate Filter? 25

x(n} y(m) xn) yim)
—> 1P > Z_P_’ —p Z_] - 1P —r

Figure 2.16 1-to-P Up Sampler Followed by P-Units of Delay Is Equivalent to 1-Unit of
Delay and P-to-1 Up Sampler.

Figure 2.17 illustrates that a filter defined by polynomials in Z2 followed by a Q-to-1
down sampler is equivalent to a filter defined by polynomials in Z following a Q-to-1 down
sampler. We are essentially pulling the resampler through the filter and using the previous
property to replace Q-delays at the input rate with 1-delay at the output rate. In a similar
manner Figure 2.18 illustrates that a filter defined by a polynomial in Z¥ following a 1-to-P
up sampler is equivalent to a filter defined by a polynomial in Z preceding a 1-to-P up sam-
pler. In both cases we can reverse the order of filtering and resampling so that the filtering is
performed at the lower of the two rates. The equivalency of this interchange is known as the
noble identity.

x(n) y(m) x(n) yim)
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Figure 2.17 Exchanging Crder of Filtering and Down Sampling
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Figure 2.18 Exchanging Order of Up Sampling and Filtering

Figure 2.19 illustrates the interconnection of a 1-to-P up sampler and a Q-to-1 down
sampler, cascaded to obtain a Q-to-P resampler. Reversing the order of the resamplers as
shown is permitted if the integers P and Q are relatively prime and is not permitted if they
share a common factor.

x(n) y(m) Xn) yim)
o—p TP —»| @1 }——» o—>» Q] » 1P —

Figure 2.19 Reordering Cascade Up Samplers and Down Samplers
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The interchange of order is useful in the following application where a multirate filter
is to be designed that performs the resampling function of up P and down Q as shown in
Figure 2.20. If P and Q are relatively prime we can pull the 1-to-P up sampler through the
filter to its output port, then interchange the up sampler and down sampler and proceed to
puli the down sampler through the filter to its input port. The desired effect obtained by in-
terchanging the input up sampler with the output down sampler is that the filter operates at
the minimum processing rate, We will illustrate this exchange in a later example.

Xn) yim) X vim)
—> 1.P —»| H{Z) M Q1 > o—» Q1 | HZ) +— 1P —»

Figure 2.20 Interchange of Relative Prime Input and Output Resamplers

2.2.2 Examples of Resampling Filters

There is a very large class of multirate filters. Since this section has introduced what they
are, we thought this would be an appropriate place to show important examples of multirate
filters, Figure 2.21 presents three types of resampling filters used in down-sampling applica-
tions. The top subfigure shows an example of an M-stage polyphase down-sampling filter.
The center subfigure is an example of a cascade of multiple half-band filters in which each
stage performs a 1-to-2 down-sample operation. The bottom subfigure is a cascade of multi- -
ple digital integrators, a down sampler, and multiple digital differentiators configured in a
structure known as the Hogenauer filter. When the down sampler resides at the output to the
cascade chain the resulting filter is known as a Cascade Integrator Comb (CIC) filter.

Figure 2.22 presents the three types of resampling filters used in up-sampling applica-
tions. These structures are dual versions of their counterparts described in the down-
sampling application. To form a dual filter, we replace summing junctions with nodes, re-
place nodes with summing junctions, and reverse the arrows in the signal flow as well as
reverse the input and output terminals of the filter. In a linear time invariant filter structure,
a filter and its dual perform the same function and are indistinguishable at their input and
output terminals. In the periodically time varying filter structure, a filter and its dual perform
opposite functions. If the filter performs down sampling, its dual performs up sampling.

The top subfigure of Figure 2.22 shows an example of an M-stage up-sampling poly-
phase filter. The center subfigure is an example of a cascade of half-band filters in which
each stage performs a 2-to-1 down-sample operation. The bottom subfigure is a cascade of
multiple digital differentiators, an up sampler, and multiple digital integrators configured in
the Hogenauer filter structure. Here too, when the up sampler resides at the input to the cas-
cade chain the resulting filter is known as a CIC filter.
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Figure 2.21 Standard Down-Sampling Filter Architectures: M-to-1 Polyphase Filter,
8-tc-1 Dyadic Half-band Filter Chain, and M-to-1 Hogenauer (CIC with

Embedded Resampler) Filter
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HOGENAUER FILTER (CIC)

Figure 2.22 Standard Up-Sampling Filter Architectures: 1-to-M Polyphase Filter, 1-to-8
Dyadic Half-band Filter Chain, and 1-to-M Hogenauer (CIC with Embed-
ded Resampler) Filter

2.3 USEFUL PERSPECTIVES FOR MULTIRATE FILTERS

We have seen that when the resampling switch modifies a time series, the new time series
exhibits spectral replicates at equally spaced spectrai intervals. This means that samples of a
sinusoid located at a particular center frequency observed at the input to a resampler results
in a new series with replicates of the sinusoid located at other frequency locations. Here we
have output frequencies not equal to the input frequencies. This behavior would not be pos-
sible if the system is a linear time invariant (LTT) process. Thus the multirate filter is not
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LTI but in fact is a linear time varying (LTV) process. If we examine the filter structure of
the polyphase filter shown in Figure 2.22, we see that the impulse response of this system
depends on which subfilter is connected to the oufput port when the input impulse is pre-
sented to the filter. Since the output periodically revisits each commutator port, we say that
the multirate filter is a periodically time varying (PTV) process.

The sample rate change that accompanies the multirate filter leads to an interesting
quandary. We normally use the sample rate of a process as a reference interval when we
discuss signal or process bandwidth. When we change the sample rate, we change the refer-
ence making it awkward to measure relative bandwidth with a flexible ruler. For a specific
example consider Figure 2.23 which presents a simple time series, that of a low pass filter,
sampled at 4-times the bandwidth, and at S-times the bandwidth. Glancing at the spectra of
the two versions of the filter, it appears at first that raising the sample rate reduced the
bandwidth of the filter. In fact the bandwidth didn’t change, the sample rate was increased
and the image had to be rescaled to permit the larger spectral interval to fit into the same
width display interval. We find it useful to avoid the use of the sample rate as a reference
when discussing a multirate process but rather use the unchanged bandwidth as the refer-
ence. This advantage of this perspective will be obvious in applications presented in later
sections.
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A similar relationship can be illustrated in the case of a single sine wave sampled at
two different rates. Figure 2.24 presents four pairs of time and frequency descriptions of a
sinusoid. The first pair presents the waveform and spectrum of a continuous sine wave of
center frequency f). The second pair presents the sampled waveform and spectrum with the
folding frequency 0.5 fs; indicated on the same frequency axis. A normalized frequency
axis, f/fs; is also shown for the sampled data spectrum. The third pair presents the sampled
waveform and spectrum with the folding frequency 0.5 fs; indicated on the same frequency
axis. Here too a normalized frequency axis, f/fs,, is shown for the sampled data spectrum.
The second and third figure pairs present their time series on the same axis but their spectra
on a different scaled axis with the analog frequency common to both axes. The fourth pair is
a scaled version of the third with the scaled axis aligned to the same image width. This
scaled spectrum with aligned axis gives the appearance that the sine wave center frequency
has been reduced. In fact the frequency in cycles per interval is the same in the two images,
but the digital frequency in radians/sample has changed because the sample-to-sample inter-
val has changed.
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Figure 2.24 Time and Spectral Presentations of a Continuous and Sampled Data Sine
Wave for Two Different Sample Rates and Two Different Scaling Options
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While on the topic of scaling, let us describe an experiment in which we hold the time
interval fixed and then sample a complex sinusoid with different ratios of signal center fre-
quency to sample frequency. In the first experiment we accomplish this by holding the in-
terval fixed, extending over 80 samples, at a fixed sample rate of unity and selecting differ-
ent normalized center frequencies values of 0.1, 0.2, 0.4, and 0.8. In each case, the data set
contains 80 samples of the sinusoid so that the spectrum of the time series contains the same
energy. In the last case, the frequency of the sinusoid exceeds the half sample rate and ali-
ases to the negative frequency. We see this scenario in Figure 2.25.

In the second experiment, we alter the data collection process by holding the interval
fixed, extending over 80 samples at the maximum rate of unity and then selecting a se-
quence of sample rates of 1, 1/2, 1/4, and 1/8. As we collect data over the same interval at
successively lower sample rates, we accumuylate a successively smaller number of samples
so that the sequence contains proportionally less energy. As in the previous experiment, the
sample rate of the last sinusoid violates the Nyquist criterion so that the signal aliases to the
negative frequencies. This scenario is illustrated in Figure 2.26.

The point of this demonstration is that when we change the sample rate for data col-
lected over a fixed interval the energy or spectral amplitude of the sequence is changed and
it may be necessary to apply a compensating scaling factor to the resampled data.
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Figure 2.25 Time and Frequency Description of Four, Fixed Time Interval, Fixed Sam-

ple Rate = 1, with Successively Higher Center Frequencies f, = 0.1,
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Figure 2.26 Time and Frequency Description of Four, Fixed Time Interval, Fixed Input
Frequency fo = 0.1, with Successively Lower Sample Rates fs = 1, 1/2,
1/4, and 1/8

2.4 NYQUIST AND THE SAMPLING .PROCESS

Much of the signal processing discussed here deals with the process of changing the sample
rate of a time sequence. When describing the sample process we have as a primary concern,
or at least as a background concern, the task of reconstructing the continuous waveform
from the sampled data sequence. We understand the conditions under which this task is pos-
sible, and recognize the condition is a consequence of the sampling theorem. The sampling
theorem states that a band-limited signal having no frequency components above fyyax Hz
can be determined uniquely by values sampled at uniform intervals of Ts, satisfying the rela-
tionship shown in (2.10).

Ty < 3 fAlJAX (sec) (2.10)
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This relationship is known as the uniform sampling theorem, which is perhaps best
known in terms of the sample frequency restriction shown in (2.11).

fs 22 0 (FE) (2.11)

The sampling rate restriction is known as the Nyquist criterion with the minimum
sample rate from (2.11) f5 = 2fjuax, known as the Nyquist rafe. The intuitive description of
the sampling theorem is related to our understanding that when a signal is uniformly sam-
pled, its spectrum is replicated at all multiples of the sample rate fs. If the signal is strictly
band limited with a two-sided spectral support or bandwidth of 2 BW we can prevent over-
lap of the spectral copies by separating them by more than their width. This statement of the
sampling criterion is shown in (2.12).

£, > Two Sided BW (2.12)

The engineer’s response to (2.12) is, “By how much should the sample rate exceed the
two-sided bandwidth?” We have to ask this because the assumption embedded in any state-
ment of the sampling theorem is that the spectrum is isolated and free standing. In fact, most
data collection schemes require an anti-alias filter to isolate the spectrum residing in a se-
lected spectral span from other specira in adjacent spectral spans, We require a filter to per-
form the spectral separation, and the spectral response of this filter affects the sample rate.
Figure 2.27 presents a spectrum comprising three adjacent spectral spans and the effect of
the signal conditioning on the signal with this spectrum, We see that the filter rejects the
adjacent channels down to a level matching the dynamic range of the data collection proc-
ess. Typical values of dynamic range are 60, 72, and 96-dB for an ADC with spurious free
dynamic range of 10, 12, and 16 bits respectively, When the filtered signal is sampled, the
spectral copies must be separated sufficiently so that the levels of the folded remnants that
fall back into the signal bandwidth are below the dynamic range of the ADC. This is assured
when the sample rate satisfies (2.13). In words, the engineer’s version of the sampling theo-
rem is “The sample rate must equal the two-sided bandwidth plus the transition bandwidth
of the anti-aliasing filter”. This is the design criterion to which we will adhere as we develop
our applications of multirate filters.

Two-Sided BW + Filter Transition BW

Is

(2.13)
fs

2BW +Af
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Problems

2.1

2.2

2.3

2.4

25

Determine the Z-Transform and Discrete-Time Fourier series expansion of
a) 8(n)

b) 8(n—10)

¢) 8(n-20)

99
d)sp(m) = D 5(n=10k)
k=0

Determine the Z-Transform and Discrete-Time Fourier series expansion of
a) §(n-1)

b) 8(n—11)

¢} 8(n-21)

99 .
d)s,(n) = D 50110k -1)
k=0

Determine the Z-Transform and Discrete-Time Fourier series expansion of
a) 8(n-1)

b} 8(n—10-r)

c) 8(n-20-1)

99
d)s,(m) = Y, 6(n-10k-r)
k=0

Determine the Z-Transform and sampled data time sequence corresponding to
a) H@)=1

b) H(0) = exp(j 20 8)

c) H(8) = exp(j 40 0)

49
d) H(0) = ) exp(j10k6)

=0

A complex time series h(f)=exp(j 2 = 500 t) is sampled at a 4.0 kHz rate and 200 samples col-
lected for processing. Determine

a) h(n), (sample time values)
b) H(k), (DFT frequency samples)
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2.6

2.7

2.8

2.9
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¢) The number of cycles of the input time series contained in the span of collected data
d) Index k of the DFT containing the non-zero component of the DFT
¢) The amplitude of the non-zero DFT sample

A complex time series h(t) = exp(j 2 = 1000 t) is sampled at a 4.0 kIHz rate and 200 samples
collected for processing. Determine

a) h(n), (sample time values)

b) H(k), (DFT frequency samples)

¢) The number of cycles of the input time series contained in the span of collected data
d) Index k of the DFT containing the non-zero component of the DFT

¢) The amplitude of the non-zero DFT sample

A complex time series h(t) = exp{j 2 7 2000 t) is sampled at a 4.0 kHz rate and 200 samples
collected for processing. Determine

a) h(n), (sample time values)

b) H(k), (DFT frequency samples)

c} The number of cycles of the input time series contained in the span of collected data
d) Index k of the DFT containing the non-zero component of the DFT

) The amplitude of the non-zero DFT sample

A complex time series h(t) = exp(j 2 © 4000 t) is sampled at a 4.0 kHz rate and 200 samples
collected for processing. Determine

a) h{n), (sample time values)

b) H(k), (DFT frequency samples)

¢) The number of cycles of the input time series contained in the span of collected data
d) Index k of the DFT containing the non-zero component of the DFT

€) The amplitude of the non-zero DFT sample

A complex time series h(t) = exp(j 2 = 500 t) is sampled at a 2.0 kHz rate and 200 samples
collected for processing, Determine

a) h(n), (sample time values)

b) H(k), (DFT frequency samples)

¢) The number of cycles of the input time series contained in the span of collected data
d) Index k of the DFT containing the non-zero component of the DFT

e) The amplitude of the non-zero DFT sample

2.10 A complex time series h(t) = exp(j 2 = 500 t) is sampled at a 1.0 kHz rate and 200 samples

collected for processing. Determine
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2.11

2,12

a) h{n), (sample time values)

b) H(k), (DFT frequency samples)

c) The num[;cr of cycles of the input time series contained in the span of collected data
d) Index k of the DFT containing the non-zero component of the DFT

¢) The amplitude of the non-zero DFT sample

A complex time series h(t) = exp(j 2 = 500 t) is sampled at a 0.50 kHz rate and 200 samples
collected for processing. Determine

a) h(n), (sample time values)

b) H{k), (DFT frequency samples)

c} The number of input time series contained in the span of collected data
d} Index k of the DFT containing the non-zero component of the DFT

¢) The ampjlitude of the non-zero DFT sample.

Use a windowed sin(x)/x to generate the impulse response of a sampled low pass filter with the
following specifications: pass band bandwidth, 0-to-40 Hz, stop band bandwidth, 60-to-200

Hz, sample rate, 400 Hz, and stop band attenuation greater than 60-dB. The following MAT-
LAB script will accomplish this:

hl = sine(-10.0:0.25:10.0. *kaiser(81,6)’;
hi =hl/sum(hl);

Zero pack the impulse response hl to form a new sequence h2. The following MATLABR script
will accomplish this:

h2 = reshape({h1;zeros(1,81)],1,162);

Plot in two figures the time series and the log-magnitude spectrum of hl and of h2. The follow-
ing MATLAB script will accomplish this for h1. The time and frequency axis must be changed
for h2 to reflect the double sample rate,

subplot(2, 1, 1}

plot(0:0.25:20+0.25, (hl))

grid on;

axis([-2 22 -0.1 0.307)

subplot(2,1,2)
freq = (-0.5:1/1024:0.5-1/1024)}*400
plot(freq, fftshift(20*loglO(fft(h1,1024)))}
grid on

axis([-200 200 -80 107)



38

2,13

2.14

2.15
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Examine the two spectra and comment on the number and the locations of the filter bandwidths
in the two figures.

Repeat Problem 2.12 except zero pack 1-to-3 instead of 1-to-2. The following MATLAB script
accomplishes the zero packing:

h3 = reshape([h1;zeros(2,82)),1,243);

Use a windowed sin(x)/x to generate the impulse tesponse of a sampled low pass filter with the
following specifications: pass band bandwidth, 0-to-100 Hz, stop band bandwidth, 150-t0-1000
Hz, sample rate, 2 KHz, and stop band attenuation greater than 60-dB. The following MAT-
LAB script will accomplish this:

h1 = sine(—8:01:8)*kaiser(161,8)’;
hl =hl/sum(h1);
Also form h2 and h3, down sampled time series by the following MATLAB script:
h2 = zeros(1,161);
h2(1:5:161) = hi(1:5:161);
h3 = zeros(1,161);
h3(2:5:161) =h1(2:5:161);

Plot in three subplots the spectrum log magnitude of the sequence hl, 2, and h3 and comment
on the bandwidths and locations of the observed pass band(s).

Use a windowed sin{x)/x to generate the impulse response of a2 sampled low pass filter with the
following specifications: pass band bandwidth, 0-to-100 Hz, stop band bandwidth, 150-to-1000
Hz, sample rate, 2 kHz, and stop band attenuation greater than 60-dB. The following MAT-
LAB script will accomplish this:

hi = sinc(—8:01:8)*kaiser{161,8)’;
bl =hl/sum(hl);
Also form h2 and h3, down sampled time series by the following MATLAB script:
h2 =h1(1:5:161);
h3 =hI(2:5:161);

Plot in three subplots the log magnitude spectrum of the sequence hi, h2, and h3 and comment
on the bandwidths and locations of the observed pass band(s).
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T he intent of this chapter is to review the properties and performance constraints of digital

filters so that we are better able to embed them in a multirate system. There is no intent here
to present a comprehensive overview and detailed description of the many ways to design
and implement the various digital filters, What we will do is identify the important system
considerations that a designer should consider in the design process and suggest various
options as well as present guidelines to help select structures and performance trade-offs
required to finalize a digital filter design.

Digital filters can be classified in many ways, including allusion to their general char-
acteristics such as low pass, band-pass, band-stop, and others and secondary characteristics
such as uniform and nonuniform group delay. An important classification is the filter’s ar-
chitectural structure with a primary consideration being that of finite (duration) impulse re- .
sponse (FIR) and infinite (duration) impulse response (ITR). Except for special cases, in-
volving pole-zero cancellation, FIR and TIR filters are implemented by nonrecursive and
recursive structures. Further subclassifications, such as canonic forms, cascade forms, lattice
forms, and the like are primarily driven by consideration of sensitivity to finite arithmetic,
memory requirements, ability to pipeline arithmetic, and hardware constraints.

The choice to perform a given filtering task with a recursive or a nonrecursive filter is
driven by a number of system considerations, including processing resources, clock speed,
and various filter specifications. Performance specifications, which include operating sam-
ple rate, pass band and stop band edges, pass band ripple, and out-of-band attenuation, all
interact to determine the complexity required of the digital filter. We first examine how the
performance parameters of the FIR filter interact to determine the filter length and hence the
FIR filter’s complexity. We then examine the similar relationship between the parameters of
IIR filters that we eventually cast into multirate architectures.

3.1 FILTER SPECIFICATIONS

The relationships between filter length and filter specifications are valid for any FIR filter.
Since the most common filtering task is that of a low pass filter we examine the prototype
low pass filter to understand the coupling between the filter parameters. These interactions
remain valid for other filter types. The frequency response of a prototype low pass filter is
shown in Figure 3.1. The pass band is seen to be an ideal rectangle that has unity gain be-
tween frequencies *+ f; Hz with zero gain elsewhere. The filter is designed to operate at a
sample rate of f5 Hz. For the convenience of dealing with a specific example, we chose the
single-sided band edge to be 10 kHz and the sample rate to be 100 kHz. The attraction of the
ideal low pass filter H(f) as a prototype is that we have an exact expression for its impulse
response h(t) from its closed form inverse Fourier transform, the ubiquitous sin(x)/x as
shown in (3.1).
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H(f)
7 1
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1 L
-3 s 0 f; 7 Ts
Figure 3.1 Frequency Response Prototype Low pass Filter
sin(Zn%f't)
h(t) = 2f —7 — (3.1)
(271:7]{'.)

In words, the argument of the sin(x)/x function is always the product of 2z, half the
spectral support (2f,)/2, and the independent variable t. The numerator is periodic and be-
comes zero when the argument is a multiple of =, in general at & kr. The location of the first
zero occurs as shown in (3.2) at;

1

£ G.2)

_ 21,
First zero: 2w Tlt =7, tzppo~

The nonrealizable impulse response of the prototype filter is shown in Figure 3.2. For the
two-sided bandwidth of 20 kHz, the first zero occurs at 30 usec.

h(t)

Figure 3.2 Impulse Response of Prototype Low pass Filter

The sin(x)/x filter shown in Figure 3.2 is a continuous function which we have to
sample to obtain the prototype sampled data impulse response. To preserve the filter gain
during the sampling process we scale the sampled function by the sample rate as shown in
(3.3). The sampled impulse response of the prototype low pass is shown in (3 A4) while Fig-
ure 3.3 presents a visualization of the sampling process.
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1
hn) = = h(®),, 1 (3.3)
S fg
o
. 2, snn(anf;n)
B
e g (3.4)

2f) sin(nd,) fi
=— , where 6, =2x—
fs  (nd) P

An important observation is that when used in a fixed-point arithmetic processor the
composite scale factor 2f}/f; shown in (3.4) is removed from the impulse response weights
and is reinserted as a scaling factor when clearing the accumulator after the accumulation
process. Without the scaling factor the filter exhibits processing gain proportional to the
ratio of sample rate to bandwidth. Accumulators are designed with extra bit width to ac-
cominodate this expected bit growth due to processing gain. While the scaling factor is re-
quired to cancel the processing gain of the filter weights, it should not be applied to the co-
efficient set since it reduces the precision with which the coefficients are represented, which
leads to an increase in arithmetic noise of the filter process. This is a common source of er-
ror in filter design routines, one that is easily corrected by scaling the filter coefficients by
the maximum weight so that the maximum weight is unity rather than 2f\/f,. For the specific
example we are using, this scale factor is 20/100 or 0.2, which represents a loss in coeffi-
cient precision of more than 2 bits. This loss in coefficient precision is significant when the
filter bandwidth is a small fraction of the sample rate. This scaling factor will be seen to be
an important concern when the filter is used in a resampling configuration.
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Figure 3.3 Sampled Data Impulse Response of Prototype Filter

An insightful observation is to be had by examining Figure 3.3 and asking, “How
many samples are there between the peak and first zero crossing of the prototype impulse
response?” The number of samples is seen to be f5/(2f)), the ratio of sample rate to two-
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sided bandwidth, which for our specific example is 5. We thus have an interesting measure
of the filter bandwidth: if we examine a filter impulse response and note that there are 50
samples from peak to first zero crossing, we can conclude that the two-sided bandwidth is
1/50th of the sample rate. If we can count, we can estimate the fractional bandwidth of a FIR
filter!

The sampling process, of course, causes the spectra to be periodically extended with
spectral replicates at all multiples of the sample rate. The expression for the spectrum of the
sampled data impulse response is shown in (3.5) where the sampled data frequency variable
oT; is denoted by 6 with units of radians/sample. In this coordinate system, the spectrum is
periodic in 27

H®)= Y h(n)e ™ (3.5)

n=—aw

3.2 WINDOWING

The problem with the sample set of the prototype filter is that the number of samples is un-
bounded and the filter is noncausal. If we had a {inite number of samples, we could delay
the response to make it causal. Our first task then is to form a finite list of filter coefficients
from the unbounded set. The process of pruning an infinite sequence fo a finite sequence is
called windowing. In this process, a new sequence is formed as the product of the finite se-
quence w{n) and the infinite sequence as shown in (3.6) where the .* operator is the standard
MATLAB point-by-point multiply. _

h (n) = w(n) .* h(n) (3.6)

The expression for the spectrum of the windowed impulse response is shown in (3.7) as
the transform of the product h{n) and w{n) and once again in (3.8) as the circular convolu-
tion of their spectra H(0) and W(B). We will examine the effect of the convolution shortly.

H, @ 3 hmwe i

e o G.7)
= Y hm)wme I8
n=—N/2

' 1 7
1,0 = 35 | HWp-0)dp (3.9)
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Our first contender for a window is the symmetric rectangle, sometimes called the de-
fault window. This weighting function abrupfly turns off the coefficient set at its boundaries.
The sampled rectangle weighting function has a spectrum described by the Dirichlet kernel
as shown in (3.9). The Dirichlet kernel is seen to be the periodic extension of the
SIN(27ef Tsuppor2)/(27f Tsuppor2) spectrum, the transform of a continuous time rectangle fanc-
tion. -

. ¢
we sin(N 5)
Wager (€)= Z 1/ = —a (3.9)
n=-N/2 Sll’]('2—)

Figure 3.4 presents the spectrum of a 100-tap rectangle window as well as a zoom to
the neighborhood of its main lobe. The frequency axis here is normalized frequency /s so
that the first spectral zero occurs at frequency 1/N =1/100 =0.01. Note that the first side-lobe
has an amplitude of approximately —22 which, relative to the peak of amplitude 100, repre-
sents a power ratio of —13.2-dB, a handy relationship to remember.
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Figure 3.4 Spectrum of 100-point Rectangle Window with Zoom to Main Lobe

The convolution between the spectra of the prototype filter with the Dirichlet kernel
forms the spectrum of the rectangle windowed filter coefficient set. This convolution is
shown in Figure 3.5. The convolution shows the main lobe of the Dirichlet kernel in three
distinct spectral regions: out-of-band, straddling the band edge, and in-band. The contribu-
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tion to the corresponding output spectrum is seen to be stop band ripple, transition band-
width, and pass band ripple. The pass band and stop band ripple are due to the side-lobes of
the Dirichlet kernel moving through the pass band of the prototype filter while the transition
bandwidth is due to the main lobe of the kernel moving from the stop band to the pass band
of the prototype. Note that the transition bandwidth is the same as the main lobe width of the
kernel, approximately 1/Nth of the sample rate for a filter of length N,
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Figure 3.5 Spectrum of Rectangle Windowed Prototype Filter Obtained as Convalution
- Between Spectrum of Prototype Filter and Spectrum of Rectangle
Window

A property of the Fourier series is that a truncated version of the series forms a new
series exhibiting the minimum mean-square approxXimation to the original function. We thus
note that the coefficient set obtained by a rectangle window exhibits the minimum mean
square (MMS) approximation to the prototype frequency response. The problem with MMS
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approximations in numerical analysis is that there is no mechanism to control the location or
value of the error maxima. The local maximum errors are attributed to the Gibbs phenom-
ena, the failure of the series to converge in the neighborhood of a discontinuity. These errors
can be objectionably large. Figure 3.6 presents a log-magnitude display of the spectrum
formed by the rectangle windowed coefficient set. We see here that the stop band side-lobes .
only present 22-dB attenuation near the filter band edge.
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Figure 3.6 Log Display of Spectrum to Emphasize High Levels of Qut-of-band Side-
lobe Respoense of Rectangle Windowed Prototype Filter

A process must now be invoked to control the objectionably high side-lobe levels. We
have two ways to approach the problem. First we can redefine the frequency response of the
prototype filter so that the amplitude discontinuities are replaced with specified transition
bandwidth tapers. In this process, we exchange transition bandwidth for side-lobe control.
How to make that change effectively is the next question. Equivalently, knowing the objec-
tionable stop band side-lobes are caused by the side-lobes in the specirum of the window,
we can replace the rectangle window with other even symmetric functions with reduced
amplitude side-lobe levels. Here the question to be addressed is how do we select weighting
functions with low spectral side-lobes. As we will now show, the two techniques, side-lobe
control and transition-bandwidth control are tightly coupled. The easiest way to visualize
control of the side-lobes is by destructive cancellation between the spectral side-lobes of the
Dirichlet kernel associated with the rectangle and the spectral side-lobes of translated and
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scaled versions of the same kernel. Figure 3.7 presents the window formed by the addition
of a single cycle of a cosine to the rectangle window as well as the transforms of the time
domain components. Note that the single cycle of cosine is the lowest frequency sinusoid
orthogonal to the rectangle. This orthogonality is observed in the frequency domain as the
placement of the cosine’s spectral components at the first spectral zeros of the rectangle’s
spectrum. We note that the side-lobes of the DC-centered kernel and the side-lobes of the
translated kernels have opposite polarities in the spectral region outside the main lobe spec-
tral support. By judicious choice of weighting terms, the side-lobe amplitudes are signifi-
cantly reduced.
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Figure 3.7 Raised Cosine Window and Transform lllustrating Sum of Translated and
Scaled Dirichlet Kernels

In Figure 3.7 we easily see that adding the translated kernels to the original spectrum
has doubled the distance from peak to first spectral null. Thus the cost we incur to obtain
reduced side-lobe levels is an increase in main lobe bandwidth, Table 3-1 presents a list of
window functions formed as the sum of translated kernels with their peak side-lobe levels
along with their main lobe widths.

Scanning Table 3-1 we can estimate the rate at which we can trade side-lobe levels for
main lobe width. This rate is approximately —22-dB/spectral bin so that in order to obtain
~60-dB side-lobes, we have to increase the main lobe bandwidth to 2.7 fg/N. Remembering
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that the window’s two-sided main lobe width is an upper bound to the filter’s transition
bandwidth, we can estimate the transition bandwidth of a filter required to obtain a specified
side-lobe level. Equation (3.10) presents an empirically derived approximate relationship
valid for window-based design while (3.11) rearranges (3.10) to obtain an estimate of the
filter length required to meet a set of filter specifications.

Table 3-1 Windows Formed as Weighted Sum of Cosines

Window Name Weights Maximum Main lobe Width
Side-lobe Peak-to-First Zero

Rectangle a= 10 -13.5-dB 1
Hann ag= 0.5 —32-dB 2

a= -0.5
Hamming 2= 0.54 —43-dB 2

a= -046
Blackman a= 042 —-58-dB 3
(Approximation) a = -0.50

2= (.08 )
Blackman ag= 0.426 59 —68-dB 3
(Exact) aj= —0.496 56

1= 0.076 85
Blackman-harris gp= 0.42323 -72-dB 3
(3-Term) a,= —0.497 55

az= 0079 22
Blackman-harris ap= 035875 -92-dB 4
(4-Term) a;= —0.48829

ar= 0.141 28

2;= —0.011 68

I
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The primary reason we examined windows and their spectral description as weighted
Dirichlet kernels was to develop a sense of how we trade window main lobe width for win-
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dow side-lobe levels and in turn filter transition bandwidth and side-lobe levels. Some win-
dows perform this exchange of bandwidth for side-lobe level very efficiently while others
do not. The Kaiser-Bessel window is very effective while the triangle (or Fejer) window is
not. The Kaiser-Bessel window is in fact a family of windows parameterized over B, the
time-bandwidth product of the window. The main lobe width increases with  while the
peak side-lobe level decreases with B. The Kaiser-Bessel window is a standard option in
filter design packages such as MATLAB and QED-2000. For completeness we describe it
here in (3.12) where I, is the zero-order modified Bessel function of the first kind. The series
shown converges quite rapidly due to the k! term in the denominator of the expansion. Typi-
cal range of the parameter B is 3 to 10 to obtain filter side-lobe levels in the range 40-to-
100-dB. We note that the window defaults to a rectangle for p =0.

3
H
I 1’1.0—
O{w (N/ZJ ]
—N/2<n<N/2

Io[#f] (3.12)

© | x2)f g
where 1,(x) = kz() o ‘

win) =

The transform of the Kaiser-Bessel window is approximately that shown in (3.13).

. sinh[\/(ﬂﬁ)z— (N9/2)2]

w(g)=
@B iy (noi2y?

(3.13)

We still have to relate the window side-lobe levels, which are integrated in the convo-
lution process, to form the filter side-lobe levels. As an example the first side-lobe of the
Dirichlet kernel is —13.5-dB relative to the spectral peak while the first side-lobe in the re-
sulting low pass filter is —22-dB relative to pass band gain. We will only concern curselves
with this relationship for the Kaiser-Bessel class of windows. Figure 3.8 presents a curve
showing the spectral side-lobe levels realized by windowing a prototype impulse response
with the Kaiser-Bessel window of specified parameter B along with a second curve showing
the spectral side-lobe levels of the corresponding window. Note that at B = 0, the two levels
correspond to the rectangle window.
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Figure 3.8 Side-lobe Levels of Kaiser-Bessel Windowed FIR Filter and of the Kaiser-
Bessel Window as a Function of Window Parameter [

Example 3.1 Window Design of Low pass FIR Filter
Design a FIR filter with the following specifications:

Sample Rate 100 kHz
Pass band Band Edge +10 kHz
Stop band Band Edge +15 kHz
Minimum Attenvation 60-dB

From the filter specifications and from (3.11) we estimate the filter length N:
N = (fs/Af) * (Atten(-dB)-8)/14
= (100/5) * (60-8)/14 = 75 taps

Using the sinc function in MATLAB to form samples of the prototype impulse re-
sponse and the Kaiser-Bessel window to control the spectral side-lobe levels we esti-
mate from Figure 3.8, or as the result of a few trials, that 60-dB side-lobe levels are
obtained with parameter § = 5.7. Two versions of the filter were designed. The first
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was designed for the pass band parameter, which resulted in the band edges being cen-
tered about the 6-dB frequency of the filter, this being a consequence of the Fourier
transform converging to the midpoint of a discontinuity. The second design shifted the
pass band parameter to the midpoint of the transition band. Both designs are described
compactly in the following two sets of MATLAB script. The time and frequency re-
sponses of the two designs are shown in Figure 3.9.

hhl=sinc((2*f,} /fs)*{-0.5%(N-1):0.5*(¥-1));
hhl=hhl.*kaiser (N,B}";
hhl=sinc(0.2*{-37:1:37)).*kaiser{75,5.7}';
hh2=sinc ({{2f+Af/2)/£fs)*{-0.5*%(N-1):0.5%(N-1));
hh2=hh2.*kaiser (N,p)’;

hh2 = sinc{0.25%(-37:1:37)).*kaiser{75,5.7}";

: 5 kH1 Transition BW
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Figure 3.9 Time and Frequency Response of FIR Filter Windowed with Kaiser-Bessel;
First Designed for 6-dB Band Edge, Second for Pass band and Stop
band Edges

Note in both filter designs, the in-band ripple has the same structure as the out-of-band
ripple with peak values on the order of 1-part-1000. For the first design the ripple pass band
extends from 0-to-7.5 kHz while in the second design the ripple pass band extends from 0-
to-10 kHz.

CRYU vt -
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3.3 THE REMEZ ALGORITHM

In the previous section we learned that FIR filters always exhibit ripple in the pass band and
in the stop band as well as bandwidth to transition between the pass band and the stop band.
Thus filters must be specified in accord with the parameters indicated in Figure 3.10 and
identified in the following parameter list. )

Filter Specification Parameters
fs: Sample Rate
fi: Frequency at End of Pass Band
fy: Frequency at Start of Stop Band
8;: Maximum Pass band Ripple
8,: Maximum Stop band Ripple

Figure 3.10 Parameters Required to Spécify Sampled Data Low pass Filter
N=function( 3, 1./2,01:92) (3.14)

As indicated in (3.14) N, the number of coefficient taps required of the FIR filter to
meet the specifications, is a function of five parameters. How we select most of the parame-
ters is self-evident. The sample rate must satisfy the Nyquist criterion, the pass band and
stop band frequencies must satisfy the filtering requirements, and the stop band ripple must
satisfy the out-of-band attenuation requirement. The pass band ripple requirement is related
to a signal distortion criterion modeled as signal echoes caused by the pass band ripple. We
discuss the pass band ripple criterion in terms of system performance in the next section.
Maximum pass band ripple values for many system designs are on the order of 1-part in 100
to 5-parts in 100 (i.e., 1% to 5%). These levels are significantly larger than the stop band
ripple values that are on the order of 1-part in 1000 to 1-part in 10000 (i.e., 60 to 80-dB).
FIR filters designed by the windowing technique exhibit equal pass band and stop band rip-
ple levels. We now seek a design process that permits different levels of pass band and stop
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band ripple. Filters with relaxed pass band ripple requirements will require fewer coeffi-
cients, hence require fewer resources to implement.

The window design of a FIR filter occurs in the time domain as the point-by-point
product of a prototype impulse response with the smooth window sequence. The quality of
the resultant design is verified by examining the transform of the windowed impulse re-
sponse. By contrast, the equiripple design is performed entirely in the frequency domain by
an iterative adjustment of the location of sampled spectral values to obtain a Tchebyschev
approximation to a desired spectrum. The desired, or target, spectrum has accompanying
tolerance bands that define acceptable deviations from the target spectrum in distinct spec-
tral regions. The alternation theorem assures us that there exists a Tchebyschev approxima-
tion to the target spectrum and that this solution exhibits equiripple errors with local extrema
of alternating signs meeting the tolerance boundaries. This approximation and error function
are shown for a desired set of tolerance bands in Figure 3.11.

1+8
H(? r'y ‘1

Figure 3.11 Frequency Response of Equiripple Filter and Error Frequency Profile

When the FIR filter has 2M+1 even symmetric coefficients, its spectrum can be ex-
panded as a trigonometric polynomial in 6 as shown in (3.15).

M
H(®) = Y. a(n)cos(nd) (3.15)

n=0

Defining a positive valued weighting function W{8) and the target function T(0), we
can define the weighted error function E(8) as shown in (3.16).

E(@) =W [H@) -T(O)] (3.16)
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The Mth order polynomial H(8) is defined by M+1 coefficients a(n) or equivalently by the
M-1 local extrema H(B;} and the 2-boundary values at H(B,s,) and H(Oy,). The problem is
that we don’t know the locations of the local extrema. The Remez multiple exchange algo-
rithm rapidly locates these extremal positions by iterating from an initial guess of their posi-
tions to their actual positions. A ubiquitous design algorithm written by McClellan, Parks,
and Rabiner expanded on the original Parks and McClellan design and has become the stan-
dard implementation of the Remez algorithm. It is embedded in most FIR filter design rou-
tines. The process proceeds as follows: An initial estimate of the extremal frequencies 6 is
assigned to the target function T(0,) with alternating sign offsets of the form shown in (3.17)
and in Figure 3.12. A polynomial is generated that passes through these initial points using
the Lagrange interpolator as shown in (3.18).

A O)=T @)+~ 21w (6y) 3.17)
0% g 5=, (0)
8 =8/W,(0)
? ----------- -’- -------------- 1 N

-+
0 8 8; Oy Bsep 8,6, 05 =
Figure 3.12 Distribution of Initial Estimates of Extrema for Multiple Exchange Algorithm
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The polynomial A(B) passes through the initial sample points, but generally these
points do not correspond to the local extrema points, The polynomial is sampled at a dense
grid, on the order of 16 times the number of extremal points, and the samples are searched to
locate the true extremal points as indicated in Figure 3.13. The locations of the previous
estimate are replaced with the locations of the extremal positions of the polynomial formed
from the previous estimate. This exchange is illustrated in Figure 3.14. The process of ex-
changing previous estimates with improved estimates continues until the amplitudes of the
local extrema are within the specified error exit criteria. The algorithm converges quite rap-
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idly, typically on the order of 4-to-6 iterations. After convergence, the polynomial is sam-
pled at M+1 equally spaced positions and inverse transformed to determine its impulse re-
sponse.
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Figure 3.13 Polynomial Passed Through Initial Estimate Sample Points
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Figure 3.14 Exchanging Sample Peints for iteration k+1 with Sample Points Located at
Extremal Values Obtained from Estimate at lteration k

The example we cited to describe the manner by which the Remez algorithm itera-
tively converges to the Tchebyschev solution is an even symmetric filter with an odd num-
ber of coefficients. A slight variation of the design process is required when the filter is even
symmetric with an even number of taps, or when the filter is odd symmetric with an even or
an odd number of coefficients, The variation is transparent to the user of standard design
tools so we will not discuss the details here. The interested reader should read the material
presented in Handbook for Digital Signal Processing, edited by Mitra and Kaiser,

The Remez algorithm is also known by other nmames. These include the Parks-
McClellen or P-M, the McClellen, Parks, and Rabiner or MPR, the Equiripple, and the Mul-
tiple Exchange. As mentioned earlier, the MPR version of the algorithm permeates the
community. It is very versatile, capable of designing FIR filters with various frequency re-
sponses including multiple pass bands and stop bands and with independent control of ripple
levels in the multiple bands. We limit our discussion to low pass filters.

The first question we address is what is the functional description of (3.14) which re-
lates the filter length and the filter parameters. A number of empirically derived approxima-
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tions have been published that provide an estimate of filter lengths designed by the Remez
algorithm from the filter specifications. A simple estimate based on the relationship between
transition bandwidth stop band side-lobe levels presented in Table 3-1, published by harris
[sic], is shown in (3.19) and one published by Herrmann is shown in (3.20). The Herrmann
approximation is used in the MATLAB function remezord with the standard caveat that the
estimate often underestimates the filter order, and the user should verify performance and
increment the filter length if necessary and repeat the design and verify process. '

f} ( 5 )= f_} Arte;z(dB) (3.19)
N = fj.K(Jl,Jz,Af )
K(51,52,Af,fs)=61(f5})105(52)+Cz(51)+03(51:52)(Tf)2
¢1(8,)=(0.0729*10g(8,))* +0.07114*log(5,)--0.4761 (3.20)

¢>(8,)=(0.0518*l0g(8))*+0.59410%l0g(5,)-0.4278
¢3(8,,8,) = 1101217 + 0.541244 * (log(5, ) — log(5,))

Figure 3.15 is a parameterized set of plots showing how the Herrmann estimate (3.20)
of the multiplier factor K(§,,5,) varies with Pass band Ripple &,, Stop band Ripple 8,, and
Transition Bandwidth Af/fs. The curves correspond to values of in-band ripple equal to 10%,
1%, 0.1%, and 0.01% and further for three values of transition bandwidth equal to 1%, 5%,
and 10% of the sample rate. We note that the filter length increases when the filter requires
reduced levels of either in-band or out-band ripple as well as reductions in transitional
bandwidth. The lesson here is that we should not over satisfy filter specifications, since do-
ing so results in additional processing load for the filter. Plotted on the same figure is the
harris [sic] estimate (3.19), which supplies estimates in the center of the solution space from
which interaction with design routines can be used to refine the estimate.
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Herrnann Approximation for Filter Length Parameter

! harrig Apdroximation :
{ K=20log, (8,122 | § e
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Figure 3.15 Multiplier Parameter K(84,52,Af) as Function of Pass band Ripple 81, Stop
band Ripple 82, and Transition Bandwidth Afffs

The weighting function W(8) shown in (3.16) is embedded in the MPR version of the
Remez algorithm as the penalty function P(B) and the weight vector W in the MATLAB
implementation of the same algorithm. The MATLAB call to the Remez algorithm uses a
frequency vector and gain vector to form a connect-the-dot target function and a weight vec-
tor specifying a weight value per interval. MATLAB has two curious conventions of which
the user should be aware. The first is that the N in the call to the Remez algorithm is the
polynomial order rather than the number of filter coefficients. An Nth order polynomial is
defined by N+1 coefficients, thus if we want a 57 tap filter we use 56 in the function call.
MATLAB also uses a frequency axis normalized to the half sample rate rather than normal-
ized to the sample rate: ie., fom, = F/(fs/2). A MATLAB call to design a low pass filter
would have this form:

hh=remez (N-1,

[0 £ £, £,/2]1/(£,/2), [1 1 0 0], [w, w1]);
hh=remez (N-1, [0 £, £,1/(£

;0. 111001, [w wl);

3
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The remez function call builds the initial arrays T(f) and W(f) introduced in (3.17) and
shown in Figure 3.16. The algorithm then builds the function H(f) with ripple levels &; and

8, that satisfy (3.21).

S, =8 W, (3.21)

To obtain a design with out-of-band ripple 8; equal to 1/10th of in-band ripple 8, we
set W, to be 10 W), or the weight vector W=[1 10].
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Figure 3.16 Input and Qutput Arrays in the Remez Algorithm
Example 3.2 Remez Design of Low pass FIR Filter

Design a low pass FIR filter with the Remez algorithm that meets the
same specifications as the window design Example 3.1.
The expanded filter specifications are:

Sample Rate 100 kHz
Pass Band +10 kHz
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Stop Band +15 kHz
Min. Atten. 60-dB
Pass band Ripple 0.1-dB (1.2%)
From the filter specifications we estimate the filter length N from Figure 3.15 to be:
N = (fs/Af)* K(5,,5,)
= (100/5)*2.5 = 50 taps

We can also obtain a comparable estimate from the Herrmann estimate in
MATLAB by using the call to remezord as shown:

NN = remezord([fi n].[a1 2,],[&: &).15)
NN =remezord ([10 15], [1 0], [0.01 0.001], 100)
The response to this call is: NN = 51

Note this filter requires a smaller number of coefficients, 51 as opposed to 75, for the
same filter designed by the Kaiser-Bessel window design. The filter length is smaller be-
cause the in-band ripple for the Remez design is larger than the in-band ripple of the win-
dow design. We now use the MATLAB Remez function to design the filter. The estimated
filter length of 51 taps did not meet the 60-dB specifications. The filter length had to be in-
creased to 55 to satisfy the attenuation requirement. The call is of the form shown next and
the time and frequency response of the filter is shown in Figure 3.17. Note the equal ripple
spectral response in both pass band and stop band. By design, the pass band ripple is 1-part-
100 (0.1-dB) while the stop band ripple is 1-part-1000 (60-dB).

h3=remez (NK-1, {0 £1 £2 f£fs5/21/(fs/2),[1 1 0 01, [wl w2]1)};
h3=remez(54, [0 10 15 50]/50, [1 1 0 0], [1 10]);
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Figure 3.17 Time and Frequency Response of FIR Filter Designed with the Remez
Algorithm

3.3.1 Equiripple vs. 1/f Ripple Designs

We note that the filter designed by the equiripple design routine exhibits equal ripple in both
pass band and stop band. We would be surprised had it not since we designed it for that
property, the property being optimum in the weighted Tchebyschev sense. The stop band
spectrum has a rate of attenuation of 0-dB per octave. We recall that a spectrum has a rate of
decay related to the order of the discontinuity of its time domain signal. For instance, a time
signal with discontinuous amplitude (such as a rectangle) has a spectrum that decays as 1/f
or —6-dB per octave. Similarly a time signal that has a discontinuous first derivative (such as
a triangle) has a spectrum that decays as 1/f* or —12-dB per octave. The rate of decay for the
envelope of a spectrum is shown in (3.22) where k is the order of the time derivative in
which a discontinuity appears. Thus if the discontinuity resides in the zeroth derivative, the
signal itself is discontinuous, and the spectrum decays as 1/f.

1
Asymptotic Decay Rate = i) (3.22)

This leads to an interesting observation! If the rate of decay is zero, then the disconti-
nuity resides in the —1 derivative, in fact in the first integral of the signal. But if the integral
is discontinuous, then the function must contain an impulse. Stated more directly, a FIR
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filter that exhibits constant level side-lobes has impulses in its time series. We may recall
that the Dolph-Tchebyshev window, the window with minimum main lobe width for a given
side-lobe level, is characterized by constant level side-lobes. It exhibits a pair of end-point
impulses that prevented its use as a shading function in beam-forming applications. The
Taylor window was devised to suppress the boundary value impulses and is a common
shading function in the radar community.

If we pay particular attention to the end points of the filter designed by the Remez al-
gorithm we often find what appear to be end-point outliers but are in fact the impulses re-
sponsible for the constant level spectral side-lobes. The size of the impulse is on the order of
the size of the spectral side-lobes and might be overlooked on the scale of the filter coeffi-
cient set. '

Figure 3.18 shows the impulse response and frequency response of a filter designed
with the Remez algorithm. A close-up detail of the end segment of the impulse response
clearly shows the outlier. When this sample is clipped to match the amplitude of its
neighbor, the filter loses its constant side-lobe characteristic and exhibits a 1/f rate of spec-
tral decay. The 1/f asymptotic spectral decay is usually accompanied by a 6-dB increase of
near-in side-lobes. If we use the clipping to obtain the 1/f side-lobe we can compensate for
the spectral rise by designing the Remez filter with 6-dB additional attenuation for which
the spectrum after clipping the end point can rise by the allotted margin, While most filters
exhibit this outlier occasionally it is not apparent, and for those cases, rather than clip the
end point, we can atteruate the boundary samples to modify the side-lobe behavior.
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Figure 3.18 Remez Impulse Response, Showing Detail of End Point, Close-up of End
Point, and Spectra of Origina! Filier and of Filter with Clipped End Point
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Why would we want to have the spectrum have a 1/f decay rate rather than exhibit
equiripple? There are two reasons, both related to system performance. The first is inte-
grated side-lobes levels. We often build systems, as shown in Figure 3.19, comprising a
digital filter and a resampling switch., Here the digital filter reduces the bandwidth and is
followed by a resampling switch that reduces the output sample commensurate with the re-
duced output bandwidth. When the filter output is resampled, the low-level energy residing
in the out-of-band spectral region aliases back into the filter pass band. When the reduction
in sample rate is large, there are multiple spectral regions that alias or fold into the pass
band. For instance, in a 16-to-1 reduction in sample rate, there are 15 spectral regions that
fold into the pass band. The energy in these bands is additive and if the spectral density in
each band is equal, as if is in an equiripple design, the folded energy level is increased by a
factor of sqrt(15). To prevent the piling-up of the aliased energy we redesign the filter so
that it exhibits 1/f side-lobe attenuation.

Digital
Low-Pass M-to-1
o—> h(n) —)f —

X(n) y(n) y(nM)

Figure 3.19 Resampling Low pass Filter

For a specific example, the filter presented in Figure 3.20 designed for 60-dB ‘side-
lobe levels is used in a 32-to-1 down sampling application. If the side-lobes are equiripple at
60-dB the integrated side-lobe level is —36.1-dB which, when distributed over the remaining
bandwidth of /32 (—15.1-dB) of input sample rate, results in an effective alias side-lobe
suppression of —51.2-dB, equivalent to a 9-dB loss. The filter was redesigned for —-67.5-dB
equiripple, and the numbers obtained for this design are an integrated side-lobe level of —
43.7-dB and an effective alias side-lobe level of —58.8-dB, which matched the expected 7.5-
dB improvement. Afier clipping the end point of the redesigned filter, the close-in side-lobe
rose to ~62-dB as the side-lobes acquired the 1/f attenuation rate, The numbers for this vari-
ant are impressive, the filter exhibiting —51.1-dB integrated side-lobes and an effective alias
side-lobe level of —66.2-dB. This represents a 14-dB improvement in aliased spectral levels
relative to the uniform side-lobe filter operating in the same resampling mode.

The second reason we may prefer FIR filters with 1/ side-lobe attenuation as opposed
to uniform side-lobes is finite arithmetic. A filter is defined by its coefficient set and an ap-
proximation to this filter is realized by a set of quantized coefficients. Given two filter sets
h(n) and g(n), the first with equiripple side-lobes, the second with 1/f side-lobes, we form
two new sets, ho(n) and gg(n), by quantizing their coefficients. The quantization process is
performed in two steps: first we rescale the filters by dividing by the peak coefficient. Sec-
ond, we represent the coefficients with a fixed number of bits to obtain the quantized ap-
proximations. These operations are shown in (3.23).
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Figure 3.20 Frequency Response of Reference Filters with Equiripple and 1/ Side-
lobes and of 10-bit Quantized Version of Same Filters

Rorqrpp = h/ max(h)
. . 3.23)
bits—1 bits—1 (
hQUANT = round(hgeyren * 2( ))1' 2( )

The zeros of a FIR filter residing on the unit circle perform the task of holding down
the frequency response in the stop band. The interval between the zeros contains the spectral
side-lobes. When the interval between adjacent zeros is reduced, the amplitude of the side-
lobe between them is reduced and when the interval between adjacent zeros is increased the
amplitude of the side-lobe between them is increased. The zeros of the filters are the roots of
the polynomials H(Z) and G({Z). The roots of the polynomials formed by the quantized set of
coefficients Hyuan(Z) and Gguane (Z) differ from the roots of the unquantized polynomials.
For small changes in coefficient size, the roots exhibit small displacements along the unit
circle from their nominal position. The amplitude of some of the side-lobes must increase
due to this root shift. In the equiripple design, the initial side-lobes exactly meet the design
side-lobe level with no margin for side-lobe increases due to root shift caused by coefficient
quantization. On the other hand, the filter with 1/{ side-lobe levels has plenty of margin for
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side-lobe increases due to root shift caused by coefficient quantization. Figure 3.20 presents
the frequency response of two reference filters, one with equiripple side-lobes and the other
with 1/f side-lobes. We see their spectra for unquantized and for their 10-bit quantized ver-
sions, As expected the side-lobes of the quantized version of the equiripple filter exceed the
60-dB attenuation level while the side-lobes of the quantized 1/f side-lobes continue to meet
the required 60-dB attenuation level. For reference, the integrated side-lobes for the four
cases are listed in Table 3-2. :

Table 3-2 Integrated Side-lobe Levels for Equiripple and 1/ Side-lobe FIR Filters,
Unquantized and 10-bit Quantized Versions

Equiripple Side-lobes 1/f Side-lobes
Unquantized ~36.1-dB —49.3-dB
Quantized (10-bits) —35.4-dB —45.1-dB

The final question we address is how do we design FIR filters with 1/f side-lobes? We
need a design technique to replace the trick we illustrated earlier that obtained the desired
1/f side-lobes by clipping the end-point outliers because the process also affects the in-band
ripple and may not work for a particular filter design. The tool we apply to side-lobe control
is the weighting function described in (3.17) and in Figure 3.16. If we have access to the
weight function array we can modify the weight function in the stop band so that it increases
linearly with frequency as shown in Figure 3.21. When the weight function increases with
frequency, the resultant side-lobe levels vary inversely with frequency. The frequency de-
pendent weighting function is used in the QED-2000 design package. If the weight function
array is not directly accessible, we can use a stair-step weighting function in adjacent fre-
quency intervals, This option is also shown in Figure 3.21. A MATLAB call to the Remez
algorithm that uses the staircase weight function is shown here.

ff={0 0.6 3.4 5.0 5.1 7.5 7.6 10.0 10.1 15.0. 60.1 64.0]
ff=ff/64.0; '

aa=[1 1 0 0 0 0 0 0 0 0 0 ¢ 1;
ww=[ 1 1.5 3 4.5 6 21 1;
hh=remez {154, £f, aa, ww)};
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Figure 3.21 Modified Weight Functions for Remez Algorithm to Obtain Staircase
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Figure 3.22 Remez Filter Time and Frequency Response Designed with Linear
Frequency and with Staircase Frequency Weight Function

Figure 3.22 shows the time and frequency response of FIR filters designed with the
two types of frequency-dependent weight functions. We can see the staircase change in side-
lobes in the spectrum shown in the lower-right subplot. The two filters exhibit comparable
integrated side-lobe levels of —47.5 and —48.5-dB.
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The MATLAB script file that sets the penalty function for the Remez algorithm is re-
mezfrfm (here fif means frequency response function). A modified version called myfitfm,
available from the book’s companion website listed on the title page, forms a 1/f stop band
ripple. The MATLAB call for a standard filter and for a modified filter design that uses the
script file is shown here,

64]1/64,[1 1 0 01,[1 101);
64]/64, {*myfrf’,[1 1 0 01},[1 10]);

hl=remez (154, [0

0.6 3.
hZ2=remez (154, [0 0.6 3.

4
4

Figure 3.23 shows the frequency response of FIR filters designed with the default re-
mezfrfm and the myfifm frequency-dependent penalty functions. Also shown is a zoom to

the pass band ripple to illustrate that there is only minor effect in the pass band when tilting
the stop band ripple.

Equal Ripple Remez Filter 1/ Stopband Rollo Remez Filter
0 T T 0 : T

1] 5 0 5 10 ] -5 1] s 10

Figure 3.23 Spectral Response of Filters Designed by the Default remezfrf and by the
myfirf Routines in Remez Call

3.3.2 Acceptable In-band Ripple Levels

This section addresses the matter of selecting the in-band ripple specifications for a FIR
filter. The classic problem is that we know how to specify the in-band ripple in a filter but
have little guidance of how to determine that desired level. To assist in the task of selecting
an acceptable level of in-band ripple it is useful to understand the effect of in-band ripple on
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signals moving through the filter. We start with the requirements for a distortionless chan-
nel, one for which the output signal is at most a delayed and scaled version of the input sig-
nal. Figure 3.24 identifies the input and output parameters of a linear filter.

Xo) | He) ( Y
—_—) | IS
x(1) hit) vit)

Figure 3.24 Input and Output of a Linear Filter

In order for a wave shape to pass through a filter without distortion, often referred to
as distortionless transmission, we require the relationship of (3.24) to be valid for all x(t)
with bandwidth less than the filter’s bandwidth.

y() = Ax(t—T) (3.24)
Equation (3.25) is the Fourier transform of the two sides of (3.24),

T

Y(@) = A X(@) e 1O7 = x(wy e (3.25)

v

Since the output fransform Y(w) is the product of the input transform X(w) and the fil-
ter transform H(w), we conclude that H(w), the distortionless filter, satisfies (3.26).

Hoy=de 127

(3.26)

We recognize that the distortionless filter must exhibit a constant, but otherwise arbi-
trary, nonzero amplitude gain A, and a phase shift proportional to frequency, often identified
as linear phase shift, with the proportionality factor being the time delay. We usually em-
phasize the requirement for linear phase, because linear phase is not an aitribute of recursive
analog filters, and is purchased by the use of additional filters known as phase equalizer
filters. We know that linear phase shift, a property equivalent to pure time delay, can never
be achieved exactly with lumped linear circuit components but can be achieved with distrib-
uted components which form transmission lines that respond with solutions to the wave
equation. Analog phase equalizers in the analog domain are used to obtain equiripple ap-
proximations to linear phase slope.

The atiraction, and an often-cited advantage, of nonrecursive filters is the ease with
which they can achieve linear phase shift. To achieve linear phase in a FIR filter, its impulse
response must exhibit symmetry with respect to its center point. We thus find that linear
phase shift, a difficult attribute to achieve in the analog domain, is essentially free in the
sampled data domain. For reasons that escape us, additional discussion of distortion effects
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seems to stop here as if access to linear phase has solved the problem. This is a bit prema-
ture since we still have to address the effect of equiripple deviation from constant amplitude
gain as well as the effect of the equiripple deviation from uniform phase shift of the phase
equalized recursive filter.

x(f) y(f)

Figure 3.25 Frequency Response of Equiripple FIR Filter and Spectrum of Input Signal

Figure 3.25 presents the frequency response of an equiripple FIR filter and the spec-
trum of an input signal with bandwidth completely contained within the. filter bandwidth.
Here the amplitude response is modeled as a nominal gain of unity with a cosine ripple of
amplitude £ and of period wp = 2n/Tp. The filter also has a uniform group delay of Ty, sec-
onds to reflect the causality of its impulse response. The spectral response of the filter is
described in (3.27). Note that the output spectrum is composed of two components, one due
to the nominal unity gain with its linear phase shift and one due to the cosine ripple in addi-
tion to its linear phase shift. We partition the cosine modulation into a pair of complex ex-
ponential terms and combine these terms with the linear group delay phase term to obtain a
total of three spectral components observed at the filter output.

Y(w) = X(0)H (o)

= X(@)[1 + ecos(@Tp)] ¢/ @D

= X(@)e /D +eX (w)cos(wTp) e ¥ID (3.27)
= x(@e 0 1 £ x(@ye I L £ (e O TDTR)
YO =X = Ty) 45 50~ (T + Tp) 5 300 = (T = Tp) (3.28)

When we interpret the time domain response from the spectral description of the out-
put we find three distinct time response contributions. The major component of the output
signal is the time-delayed version of the input signal denoted by x{(t—Tp). The remaining two
components are a pair of scaled and translated versions of the input signal. These compo-
nents are called paired echoes. A pre-echo and a post-echo, each of amplitude &/2, form the
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paired echoes residing on each side of the primary response time and translated by the
reciprocal period of the filter ripple frequency. The structure of the paired echoes is shown
in {3.28) and in Figure 3.26. Higher frequency (i.e., shorter period) spectral ripple causes
larger amounts of echo time offset. Similar paired echo responses can be derived for phase
ripple, except that phase ripple exhibits odd symmetry from which we establish that the
echoes are also odd symmetric about the main response.

TD-TP T, To+Ts

Figure 3.26 Time Signals at Input and Output of Filter with Equiripple Spectral
Response

Note the dual relationship: When we multiply a time function by a time domain cosine
wave, its transform, a spectrum, is scaled and translated in the frequency domain by the re-
ciprocal period. of the temporal cosine, Similarly when we multiply a frequency function by
a frequency domain cosine, its transform, a time signal, is scaled and translated in the time
domain by the reciprocal period of the spectral cosine.

While on the topic of dual relationships, we recognize that time domain echoes cause
a periedic ripple in the frequency response of a channel often modeled as multipath related
frequency selective fading. Hence, in retrospect, it is not surprising that filters exhibiting
periodic frequency domain ripple are characterized by time domain echo structures. We may
recall from our first course in transmission lines that the time domain interaction between
the incident and reflected sinusoid due to a reflection causes periodic frequency dependent
constructive and destructive cancellation. We also note that time domain reflectometers
(TDRs) use this coupling between echo time-response and spectral ripple to extract time
position and amplitade information from frequency domain measurement of a transmission
line,

We now know why the amplitude of the filter pass band ripple is of concern to us.
When used in a communication system, the ripple is a source of distortion called inter-
symbol interference (ISI). We use the next figure to demonstrate how a filter in a receiver
signal path generates ISI. Figure 3.27 shows the impulse response and frequency response of
a FIR filter that processes a selected input signal. The spectral response of the input signal is
overlaid on the filter response, and as we see, the bandwidth of the input signal is fully con-
tained in the filter bandwidth.
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We also see a detail of the filter pass band region where we see that the filter exhibits
1-dB ripple. One-dB ripple is approximately 12% that presents amplitude of 0.12-ripple to
the input spectrum. We also see the filter contains nearly three cycles of ripple in the band-
width of the input signal. The number of ripple cyeles in the bandwidth of the input signal is
important, and we will explain why in a moment. Figure 3.28 shows the input signal from
which the input spectrum of the previous figure was formed, and the time-aligned output
obtained from the filter output. Also shown is the difference between the input and the time-
aligned output. This difference clearly shows the pre- and postechoes due to the filter in-
band ripple. These echoes are seen to be located three sample intervals either side of the
main response with three cycles per signal bandwidth being the frequency of the filter rip-
ple.

Incidentally, pre- and postechoes are formed by ripple in the phase response as well as
by ripple in the magnitude response. The subtle difference is that magnitude response ripple
results in an even symmetric echo pair while phase response ripple results in an odd sym-
metric echo pair. This is, of course, related to the even and odd symmetry of the magnitude
and phase characteristics of a filter. Recursive filters, with their nonuniform phase response,
are the contributors of the odd symmetric echoes. To illustrate this we examine Figure 3.29,
which in the left-hand column presents the impulse response, frequency response, and the
in-band group delay of an 8th order elliptic filter. The right-hand column presents the same
curves for the elliptic filter in cascade with an 8th order phase equalizer. Notice the symmet-
ric impulse response and the equal-ripple group delay response of the equalized filter. Fig-
ure 3.30 presents the input and time-aligned output time series from the elliptic filter. Also
seen is the difference between the two series in which we see the odd symmetric echoes
caused by the filter’s group delay. Figure 3.31 presents the input and time-aligned series
from the phase equalized elliptic filter, The final subplot of this figure shows the difference
between the input and time-aligned output and the odd symmetric echo pair is clearly seen.
We note that the IIR echo components are not exactly odd symmetric and we attribute this
to even symmetric echo components due to the amplitude ripple response of the elliptic fil-
ter which also contributes echoes to the composite response.
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Figure 3.31 Time-Aligned Input and Output Waveforms from Phase Equalized 1R
Filter with the Difference of Two Waveforms to Show Paired Echoes

We can now compare the filter responses we examined to illustrate the pre- and postecho
distortion. As mentioned earlier, the input signal was a Nyquist pulse, oversampled by a
factor of 8, so that the pulse has exactly 8-samples per symbol. Every 8th sample of this
input pulse coincides with an expected zero crossing. The distance between the pulse peak
and the zero crossing is the symbol time for this pulse. Symbols or waveforms separated by
exactly this interval are orthogonal and do not interact. When signaling with the Nyquist
pulse, the receiver can collect and measure each waveform independently and is thus able to
communicate through band-limited channels without ISI. When we illustrated the echoes
with the FIR filter, the input and output were time aligned to extract the added echoes. The
filter ripple parameters of 0.12 amplitude ripple with frequency of 3 cycles per input band-
width told us to expect a pair of echoes of amplitude 0.06 separated by three symbol dura-
tions from the primary time response. To verify this, the bottom graph in Figure 3.29 was
formed as the difference between the time-aligned input and cutput waveforms. Here we can
verify that the amplitude and location of the paired echoes closely match the values pre-
dicted from the parameters of the in band ripple. The offsets tell us the period of the fre-
quency domain ripple was slightly less than 3 cycles per signal bandwidth. Similarly, the
ripple parameters of the IIR filter, the 2.2 *27/360 peak phase ripple with frequency of 5
cycles per input bandwidth, told us that we should expect a pair of echoes of amplitude
0.019 separated by five symbol durations from the primary time response. This echo pair is
seen in subplot three of Figure 3.31.
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A receiver attributes the ISI caused by the filters in the signal flow path to channel dis-
tortion, and if the receiver contains an equalizer it will attempt to remove the-distortion by
forming the opposing pass band gain and phase ripple. There are receivers that may not in-
clude an equalizer for which the filter-induced IST would likely cause performarnce degrada-
tion. Examples include DSP-based processing of video signals as part of source coding, sig-
nal reconstruction, and simple signal processing of NTSC (National Television Standards
Committee) or PAL (Phase Alternating Line) composite video signals. Radar signal process-
ing for imaging radars suffers the same degradation due to inadequate attention to paired
echoes from equiripple digital FIR filters as well as equiripple analog Tchebyschev filters in
the signal-processing path,

A properly designed system would have part of its implementation loss budget as-
signed to the pass band ripple and then the specifications would have to convert budget into
acceptable ripple level. We commented earlier that 1-dB is 12% ripple from which it follows
that 0.1-dB is 1.2%, and if a system has budgeted 0.1-dB to filter losses, the composite filter
chain must exhibit less than 1.2% ripple. We often design systems with 0.1-dB in-band rip-
ple, which, except for the most stringent specifications, satisfies most system requirements.
Reasonable specifications for a FIR filter might have in-band ripple of 1-part-in-100 and
out-of-band ripple of 1-part-in-1000 or 1-part-in-10000. This is the justification for the use
of the Remez algorithm and its variants that modify the out-of-band ripple slope.

Figure 3.32 is a block diagram of an end-to-end modulator and demodulator that will
be used to illustrate the effect of in-band ripple. Here the output of the shaping filter is fed
directly to the input of the matched filter without the intermediate channel that would add
noise and channel distortion. The output of the matched filter is passed to the equalizer that
would normally remove the distortion caused by the channel. The equalizer delivers its
processed signal to a detector that forms an estimate of the data. This estimate is compared
with the input to the detector and differences between the detector input and output are at-
tributed to noise and channel distortion, The error, along with the data, directs the adaptive
algorithm to adjust the equalizer weights in the direction that resulis in a reduction in the
average detector error,

The upper-left subplot of Figure 3.33 presents the 16-QAM constellation set observed
at the matched filter output. The constellation points correspond to the range of amplitudes,
four for each of the in-phase and quadrature-phase components of the received and proc-
essed waveform. In the absence of noise and distortion these amplitudes are + 1/3 and + 1.0.
We see a small variance cloud centered on the constellation points. This cloud is the ob-
served effect of the ISI caused by in-band ripple of the shaping filter and matched filter. The
upper-right subplot presents the log-magnitude of the energy in the error sequence as the
adaptive equalizer whitens the error sequence by acquiring the inverse of the distortion
process. The subplot in the lower-left shows the constellation diagram obtained at the equal-
izer output after convergence. Note the reduction in the variance cloud due to the ISI cancel-
lation by the equalizer. Finally, the lower-right subplot presents a close up of the spectral
ripple exhibited by the cascade of the shaping filter and matching filter along with the fre-
quency response of the adaptive equalizer. Note that the spectral gain of the equalizer is the
inverse of the spectral gain of the filter pair.
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Problems

3.1  First examine the MATLAB sinc function by typing help in the command window. Now exam-
ine the call sinc(—4:0.1:4) and describe how the sinc call responds to the arguments. Plot the
subplots for the stem of the sequence and the log magnitude spectrum. The following MAT-
LAB script accomplishes this:

subplot(2,1,1);

dat=sinc(-4:0.1:4);

stemn(-4:0.1:4,dat);

grid :

subplot(2,1,2);
f=(-0.5:1/1024:0.5-1/1024)*10;

f dat=ffi(dat/surn(dat),1024);

plot(ft, fiishift{20*logl0(abs(f_dat))))
grid

axis([-5 5 —60 10]}

Examine the time series and the spectrum and then describe what will change if the dat line is
changed to sinc(—8:0.1:8), and then again if it changed to sinc(—4:0.02:4). How should the
scale factor on the ffline change for the two new sinc options? Why in the £ dat line is dat di-
vided by sum(dat)? Replace £ dat with f dat={fi(dat, 1024) and examine its spectral plot.

3.2 The DTF series expansion of an N point sampled rectangle is shown next,
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3.3

34

35

3.6

37

3.8

39

3.10

sin(ge)
s |

sm(EG)

H(O)=exp(-j2226)

Determtine the locations of this function’s zero crossings.

Determine the amplitude of this function at 6 = 0.

Determine the value of this function at 8 = .

Determine the location and amplitude of this function’s first side-lobe.

Is the ratio of the peak value to the first side-lobe level of this function dependent on N? Show
this!

Form and plot the magunitude of the 200-point FFT for a 20-point rectangle sequence (ones
(1,20)) and on the same plot, plot the magnitude of the 200-point FFT of the 20-point sequence
exp(j*2*pi*(0:19)/20). What can you say about the location of each transform and the zeros of
the two transforms?

Form and plot the magnitude of the 200-point FFT for a 20-point sequence
exp(j*2*pi*(0:19)/20) and on the same plot, plot the magnitude of the 200-point FFT of the 20-
point sequence exp(-j*2*pi*(0:19)/20). What can you say about the location of each transform
and the zeros of the two transforms?

Form and plot the magnitude of the 200-point FFT for a 20-point rectangle sequence {ones
(1,20)) and on the same plot, plot the magnitude of the 200-point FFT of the 20-point sequence
exp(j*2*pi*(0:19)/20). What can you say about the location of each transform and the zeros of
the two transforms?

Using the log magnitude spectrum of the 512-point FFT of 51-point sequences, determine the
main lobe widths and maximum side-lobe levels of the following traditional window functions:
Rectangle, Hann, Hamming, Blackman-harris 3-term, Blackman-harris 4-term, and Kaiser with
parameter 10.

Form a plot showing the progression of main lobe width and side-lobe levels (in-dB) for the
Kaiser window over a range of the parameter §§ equal to the integer values 1-through-10.

The expression defining the Fourier transform of the Kaiser window is listed in Equation
(3.13). Determine and form a plot of the first 10 zeros of this spectrum for a range of parameter
P equal to the integers 0-through-10.

Form plots of log magnitude spectrum of 512-point FTT of 51-point rectangle windowed by
Kaiser window for range of parameter values 0-through-10

Use the Remez algorithm to design a low pass FIR filter satisfying the following specifications;

Fs: 20 kHz
Pass Band:  0-to-3 kHz In-band Ripple:  0.1-dB
Stop Band: 5-to-10kHz  Stop Band: 60-dB

Estimate the length of the filter using Figure 3.15, then verify this estimate with MATLAB re-
mezord.
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Verify the results of the Remez design by examining in-band Ripple and out-of-band attenua-
tion levels. Change filter length and weighting vector as appropriate to achieve filter design
specifications.

3.11 Design a low pass filter with the Remez algorithm to meet the following three specifications:

Filter 1 Filter 2 Filter 3
Fs: 20 kHz 20 kHz 20 kHz
Pass Band: 0-to-3 kHz 0-to-4 kHz 0-to-5kHz
Stop Band: 5-to-10 kHz 7-to-10 kHz 8-t0-10 kHz
Pass band Ripple: 0.1-dB 0.1-dB 0.1-dB
Stop Band: 60-dB 60-dB 60-dB

The three filters have the same specifications, including transition bandwidth, but different pass
band band edges: Using 6 subplots, plot the impulse response and frequency response of the
three filters.

Comment on how transition bandwidth affects filter length and on how pass band bandwidth
affects the length and shape of filter impulse response.

3.12 Repeat Problem 3.11 but change stop band attenuation from 60-dB to 80-dB.

Comment on how increased out-of-band attenuation affects length and shape of filter impulse
response.

3.13 Repeat Problem 3.11 but change in-band ripple from 0.1 to 0.01.
Comment on how decreased in-band ripple affects Iength and shape of filter impulse response.

3.14 A low pass FIR filter is to be designed with the following specifications:

Fs: 100 kHz
Pass Band:  0-to-20 kHz, - In-band Ripple:  0.1-dB
Stop Band:  25-to-50 kHz; Stop Band: 60-dB

a) Use the standard MATLAB remez algorithm with weights appropriate to obtain the 0.1-dB
in-band ripple and the 60-dB out-of-band attenuation.

b} Use the MATLAB remez algorithm with the modified myfif script file to obtain sloping
side-lobes.

¢) Plot and compare the pass band ripple, and the in-band ripple of the two designs.
3.15 A low pass FIR filter is to be designed with the following specifications:

Fs: 100 kHz
Pass Band: (-to-25kHz  In-band Ripple: 0.1-dB
Stop Band: 35-to-50kHz  Stop Band: 60-dB

a) Use the MATLAB remez algorithm with the modified myfif script file to obtain a design
with sloping side-lobes.
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3.16

317

3.18

319

b) Use a Kaiser window for a windowed design to meet the same filter specifications.

¢} Plot and compare the impulse response and the log magnitude spectrum of the pass band
ripple, and the in-band ripple of the two designs.

Use the Remez algorithm to design an equiripple low pass filter with the following specifica-
tions:
Fs: 100 kHz
Pass Band:  O-to-10kHz In-band Ripple:  0.1-dB
Stop Band:  15-t0-50 kHz Stop Band: 60-dB

Use the following MATLAB script to simulate quantizing coefficients to b-bits:
hh=remez(N,[0 10 15 501/50,[1 1 0 0],[1 10]);
hh_g=floor(2*(b-1y*hh)/2*(b-1};

Plot a sequence of speetra corresponding to a range of quantization bit levels of 8, 10, 12, and
14 bits. How many bits are required to maintain 60-dB side-lobes?

Use the remez algorithm and the myfif script file to design a —6-dB/octave stop band low pass
filter with the following specifications:

Fs: 100 kHz
Pass Band:  0-to-10kHz In-band Ripple:  0.1-dB
Stop Band:  15-to-50 kHz Stop Band: 60-dB

Use the following MATLAR script to simulate quantizing coefficients to b-bits:
hh=remez(N,[0 10 15 50]/50,{*myfrf>,[1 1 0 0]},{1 10])
hh_g=floor(2*(b-1)*hh)/2"(b-1)

Plot a sequence of spectra corresponding to a range of quantization bit levels of &, 10, 12, and
14 bits. How many bits are required to maintain 60-dB side-lobes?

Repeat Problem 3.16 but scale the impulse response by its maximum value prior to quantiza-
tion.

The following MATLAB script can accomplish this:
hh=remez(N,[0 10 15 503/50,[1 1 0 0],[1 10]);
hh_scl=hh/max(hh};
hh_sel_g=floor(2*(b-1)*hh_scl)/2*(b-1);

Repeat Problem 3.17 but scale the impulse response by its maximum value prior to quantiza-
tion.

The following MATLAB script can accomplish this:
hh=remez(N,[0 10 15 50]/50,{*myftf,[1 1 0 01},[1 10]);
hh_scl=hh/max{hh);
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hh_sel_g=floor(2~(b-1)*hh_scl)/2*(b-1);
3.20 Use the Remez algorithm to implement the impulse response of the following two filters:
hhl=remez(55,[0 10 11.5 401/40,[1 1 0 0], [1 100]);
hh2=remez(15,[0 1 10 40]/40,[1 1 0 O));

Use subplots to show the impulse response and the frequency response of the two filters. Note
and comment on the in-band ripple of the hhl filter.

Now pass the time series hh2 through the filter hh1 and plot the response.

Relate the position, amplitude, and sign of the pre- and postechoes to the frequency, amplitude,
and sign of the in-band ripple of filter hh1,

3.21 Repeat Problem 3.20 except change the two filters to match the following:
hhl=remez{65,[0 10 11.5 40)/40,[1 1 0 0], [1 100});
hh2=remez(15,[0 1 10 40]/40,[1 1 0 O]}
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Elters come in all flavors and sizes. We generally describe them with broad stroke cover-

age such as low pass, high pass, band pass, and the like. We then apply secondary qualifiers
such as recursive and nonrecursive or nonlinear phase and linear phase. Certain subclasses
of digital filters appear so ofien in systems that we hardly apply the qualifiers because we
know the filter structure by where it resides in the system. One example of such a filter is
the ubiquitous filter that shapes the spectrum in modems designed to operate over band-
limited channels without intersymbol interference (ISI. This shaping filter is the cosine-
tapered square root Nyquist filter compactly described by the term SORT-Nyquist filter or
simply the SORT filter. Every book in communication theory describes the properties of the
continuous versions of this family of filters while a number of DSP books describe the coef-
ficients of the sampled data version of this same filter. Every designer who has worked on a
cable modem or satellite modem has brushed against the same SQRT-Nyquist filter. In this
chapter we look very carefully at the digital versions of the SQRT- Nyquist filter from the
viewpoint of a filter and then as a system component. Another filter that we see very often
in systems is the half-band filter. The half-band appears in many variants, in particular as the
Quadrature Mirror filter and the Hilbert transform filter. Both of these are common building
blocks in multirate systems and warrant our careful attention and understanding. Another
conunon workhorse, the Cascade Integrator Comb {CIC) appears in its own chapter.

4.1 NYQUIST FILTER AND SQUARE-ROOT NYQUIST FILTER

The Nyquist pulse is the waveshape required to communicate over band-limited channels
with no ISL. In many communication systems, the waveform delivered to the receiver’s de-
tector is the sum of scaled and offset waveforms as shown in (4.1).

s(t) = Zd(;}) h(t-nT) @.1)

The scaling terms d(n) are selected from a small finite alphabet such as {1, +1}, or
{-1,-1/3, +1/3, +1} in accord with a specified mapping scheme between input bits and out-
put levels. The signal s(t) is sampled at equally spaced time increments identified by a tim-
ing recovery process in the receiver to obtain output samples as shown in (4.2).

s(mT) = Y. d(n) h(mT - nT) 4.2)

We can partition this sum as shown in (4.3), to emphasize the desired and the unde-
sired components of the measurement. Here the desired component is d{m) and the unde-
sired component is the remainder of the sum which, if non-zero, is the ISI.
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s(mT) = d(m)h(0) + 2., d(n)h[(m - n)T] (4.3

HEm

In order to have zero ISI, the wave shape h(t) must satisfy the specifications identify-
ing sample values at the equally spaced sample increments h(nT) shown in (4.4). This rela-
tionship is known as the Nyquist pulse criterion for zero ISI.

0 10
h(nT) = { (4.4)
1: n=0

There are an infinite number of functions that satisty this set of restrictions. Examples
of wave shapes that exhibit equally spaced zeros are shown in Figure 4.1. Note here that one
wave shape has duration of exactly one symbol, two of the wave shapes have durations of
exactly two symbols, and one wave shape has a duration of four symbols. We restrict the
range of possible wave shapes by considering spectral characteristics as well as time domain
characteristics. We start by identifying the wave shape with minimum bandwidth. This wave
shape is the ubiquitous sin(x)/x in (4.5).

sin(27 f Z)
h(t)=—T~Z“ (4.5)
@rzf 5)
—o ——e—>if] o ——e—>{/T
2 -1 0 1 2 2 a1 0 1 2
Uil vi)

2 1 0 1 2 2 -1 0 1 2

Figure 4.1 Various Wave Shapes Satisfying Condition for Zero IS

The sin(x)/x wave shape is zero at every sample time, t = nT except for t =0, and i3
non-zero elsewhere. This pulse is variously known as the cardinal pulse when used for band
limited interpolation and the Nyquist pulse when used in pulse shaping. The transform of
this wave shape is the unit area rectangle with spectral support 1/T Hz. A segment of the
sin(x)/x waveform and its Fourier transform is shown in Figure 4.2,
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H(f)

T

0

Figure 4.2 Sin{x)/x Waveform and Uniform Pass band Spectrum

The problem with the sin(x)/x waveform is that it is noncausal and further resides on
an infinite support. If the pulse resided on a finite support we could delay the response suffi-
ciently for the response to be causal. We have to form finite support approximations to the
Nyquist pulse. Our first approximation to this pulse is obtained by convolving the rectangu-
lar spectrum H(f) with an even symmetric, continuous spectrum W(f) with finite support
o/T. The convelution between H(f) and W(f) in the frequency domain is equivalent to a
product in the time domain between the h(t) and w(t), where w(t) is the inverse transform of
W(f). The spectral convolution and time product is shown in Figure 4.3 where we see the
effect of the spectral convolution is to increase the two-sided bandwidth from UT to
{1+u)/T. The excess bandwidth /T is the cost we incur to form filters on finite support. The
term o is called the roll-off factor and is typically on the order of 0.5 to 0.1 with many sys-
tems using values of o = 0.2. The transition bandwidth caused by the convolution is seen to
exhibit odd symmetry about the half amplitude point of the original rectangular spectrum.
This is a desired consequence of requiring even symmetry for the convolving spectral mass
function. When the windowed signal is sampled at the symbol rate 1/T Hz, the spectral
component residing beyond the 1/T bandwidth folds about the frequency +1/2T into the
original bandwidth. This folded spectral component supplies the additional amplitude re-
quired to bring the spectrum to the constant aniplitude of H(f).
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Figure 4.3 Spectral Convolution of Prototype Nyquist Spectrum with Even Symmetric
Spectral Mass and Equivalent Time Domain Product of Nyquist Pulse
with Window

We also note that the significant amplitude of the windowed wave shape is confined to
an interval of approximate width 4T/w. so that a filter with o = 0.2 spans approximately 20T,
or 20 symbol durations. We can elect to simply truncate the windowed impulse response to
obtain a finite support filter, and often choose the truncation points at £ 2T/a. A second
window, a rectangle, performs this truncation. The result of this second windowing opera-
tion is a second spectral convolution with its transform, This second convolution induces
pass band ripple and out-of-band side-lobes in the spectrum of the finite support Nyquist
filter, Before performing this truncation, we first address one additional aspect in the design
of the Nyquist pulse, which is how the pulse is actoally used in a transmitter-receiver pair.
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4.2 THE COMMUNICATION PATH

A communication system can be modeled most simply by the signal flow shown in Figure
4.4. Here d(n) represents the sequence of symbol amplitudes presented at symbol rate to the
shaping filter h,(t).

Hy{w) Hy() .
d sty ) t y(n) dfn)
[n]_>< 1y (1) »H—» hy(t) il >§——> Defector —»
fsvmeoL T fansol
H(h)

Figure 4.4 Simple Model of Signal Flow in Communication

The superposition of scaled and translated versions of h,(t) formed by the shaping fil-
ter combine to form the transmitter signal s(t) described in (4.6). The channel adds noise to
the transmitted signal to form the received signal r(t} as shown in {4.7). The received signal
r(t) is processed in the receiver filter hy(t) to reduce the contribution of the channel noise at
¥(t), the output of the filter. The receiver filter output is shown in (4.8) which we see is a
sum of scaled and translated versions of g(t), the combined impulse response of the trans-
mitter filter and receiver filter plus filtered noise N(t). The filter output y(t) is sampled at
the symbol rate and time offset to obtain y(n) as shown in (4.9). The sampled output con-
tains three terms, the first proportional to the desired input sample d(m), the second being a
sample of filtered noise, and the third containing a weighted sum of earlier and later input
samples d(m—n). This last term is the combined ISI due to the memory of the shaping filter
hy(t) and the receiver filter ho(t).

s(f) = 2. d(m)h (t-mT) (4.6)

) =s@)+ N, ()

= > d(m) byt - mT)+ Ny (£) (4.7)
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Yy =r(0)* by (1)
= [r-T)iy(T)dT
= [Zd(m) hy(t ~mT - T) by (T)AT + [N, (¢ - T) by (T)dT (4.8)

=3 d(m) g(t-mT) + N, (1)

where g(t) = [h, (1 = T) by(T) AT, and N, (1) = [N,(t = T) by (T)dT

y(nT) = 2, d(m)gl(n— m)T1+ N, (nT)

(4.9)
= d(mg(®) + Ny (nT)+ 2 d(m)gl(n —-nm)T]

m¥n

We can obtain from the terms in (4.9) an unbiased estimate of d(n) if g(0) is 1, and
zero ISI if g{[n-m]T) is zero for all m not equal to n. This is the same requirement presented
in (4.4) as the requirement for a zero ISI filter. Thus the convolution of the shaping filter at
the transmitter and the noise control filter at the receiver filter must form the Nyquist filter
as shown in (4.10).

B ()% o () = gy (1= T)
. (4.10)
H\ (0)H, (@) = Hyyy(@)e 7 @Tp

To maximize the signal-to-noise (SNR) in (4.10), the receiver filter must be matched
to the transmitter-shaping filter. The matched filter is a time-reversed and delayed version of
the shaping filter, which is described in the frequency domain as shown in (4.11).

Hy(o)=H, ()¢ /TP @.11)

Combining the requirements in (4.10) and (4.11) we obtain the result in (4.12) from
which we determine the relationship between the shaping filter and the desired Nyquist filter
response shown in (4.13). The shaping filter is called a SQRT-Nyquist filter.

%I

H@)H, @ e P = Hyp (@) (4.12)

| Hy(@) = Hyyo (@)

(4.13)
H(w)= \,HNYQ () = SQRT[HNyQ (@)]
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Reviewing the result of this last derivation we expect the shaping filter and the re-
ceiver filter to accomplish two tasks. The two filters in cascade form a Nyquist filter and
further interact to maximize SNR. We say that the SQRT-Nyquist filter performs half the
spectral shaping at the transmitter and half the spectral shaping at the receiver.

We now examine the frequency response and the time domain response of the SQRT-
Nyquist filter. The square-root operation applied to the magnitude spectrum of the Nyquist
filter does not affect the zero-valued nor the unit-valued segments of the filter response.
Thus the square root affects only the spectrum in the transition bandwidth. The Nyquist fil-
ter has a gain of 0.5 or —6.0-dB at the nominal band edge while the square-root filter has a
gain of 0.707 or —3.0-dB at the same frequency. The shaping filter and the matched filter
each applies 3.0-dB attenuation at the band edge to obtain the desired band-edge attenuation
of 6.0-dB. Hence the —6.0-dB bandwidth of the SQRT filter is wider than the —6,0-dB band-
width of the Nyquist filter and the wider bandwidth square-root Nyquist filter must have a
narrower main lobe impulse response than the Nyquist filter. These relationships are illus-
trated in Figure 4.5.
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Figure 4.5 Spectrum and Time Response of the Nyquist Filter and SQRT-Nyquist Filter

We now address the taper in the excess bandwidth Nyquist pulse. As mentioned ear-
lier, any even symmetric spectral mass can be used to perform the spectral convolution that
forms the transition bandwidth of the tapered Nyquist spectrum, The most common spectral
mass selected for communication systems is the half cosine of width a.-fgy. The half cosine
convolved with the spectral rectangle forms the spectrum known as the cosine-tapered Ny-
quist pulse with rolloff a. The description of this band-limited spectrum normalized to unity
pass band gain is presented in (4.14).
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1 : forﬂ <(l-a)
Byym
@ o]
H ey (@) = 4 0.5*{1 +cos {1[— —(l—a)]}}: for (I-@) £ ——=(1+a) (4.14)
g 2a wsny Osyn
0 : forﬂ ={1+ax)
Dsyr

The continuous time domain expression for the cosine-tapered Nyquist filter is shown
in (4.15). Here we see the windowing operation of the Nyquist pulse as a product with the
window that is the transform of the half-cosine spectrum.

By (1) = f. SIn(Z fsym 1) COS(Z & fsym 1)
VYO ST s 1) [1-Qafspy 1)

(4.15)

4.3 THE SAMPLED COSINE TAPER

Since the Nyquist filter is band limited, we can form the samples of a digital filter by sam-
pling the impulse response of the continuous filter. Normally this involves two operations.
The first is a scaling factor applied to the impulse response by dividing by the sample rate,
and the second is the sampling process in which we replace t with n-Tsmpy or n/fyypr. The
sample rate must exceed the two-sided bandwidth of the filter that, due to the excess band-
width, is wider than the symbol rate. It is standard to select the sample rate fyypp to be an
integer multiple of the symbol rate fsyy; so that the filter operates at M-samples per symbol.
It is common to operate the filter at 4 or 8 samples per symbol but for generality we select
fSMp[_ =M fSYM so that fSYM tis replaced by fSYM n/(M-fSYM) or n/M. After applylng these
operations to (4.15) we obtain the results shown in (4.16).

. _ 1 sinf(mn/M) cos(aZ n/M)
NYQ(”)‘M (TnlM) [-Qan/M)?*]

(4.16)

The filter described in (4.16) has a two-sided bandwidth that is approximately 1/Mth
of the sample rate. A digital filter exhibits a processing gain proportional to the ratio of input
sample rate to output bandwidth, in this case a factor of M. The 1/M scale factor in (4.16)
cancels this processing gain to obtain unity gain. When the filter is used for shaping and up
sampling, as it is at the transmitter, we remove the 1/M scale factor since we want the im-
pulse response to have unity peak value rather than unity processing gain.

The square root of the cosine-tapered Nyquist filter results in a quarter cycle cosine-
tapered filter, This description is normally contracted to square-root raised cosine or root
raised cosine Nyquist filter. The description of this band-limited spectrum normalized to
unity pass band gain is shown in (4.17).
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1 Sor—2l < (1-a)
DYM
T
Hgorr_nvo (@) =1 cos{a [@.::’M —(l—a)]}: for(l-a) < m';i{ <(1+a) (4.17)
0 : jbrﬂﬁ 2 (H+a)
DgyM

.

The continuous time domain expression for the square-root raised cosine Nyquist filter
is shown in (4.18).

_ (4(1 fSYM f)COS[ﬁ(I+¢Z)fSYM l] + sin[ir(l+a)fSYM I]
“sorr-w0® = fome [1-(4e fsnr Y17 fo 0 19

We perform the same scaling and sampling operation we performed in (4.18) to obtain
the sampled data version of the square-root raised cosine Nyquist pulse shown in (4.19).

7T n(l+a) 7T n{l+a)

4ot ncos| 1 + sin[ 1
N Y] M M
hsorr-nro () =37 e A 4.19)
M M

When the impulse response is used as an up-sampler and shaping filter at the transmit-
ter, {4.19) must be rescaled. For this application we want unity peak impulse response rather
than unity processing gain. Multiplying by the term shown in (4.20) scales the coefficients
of (4.19).

Transmitter Scale Factor: —~4M— (4.20)
1H{——-De
T

When the impulse response is used in a matched filter at the receiver, (4.19) must be

rescaled again to account for the scaling applied at the transmitter. Multiplying by the term
shown in (4.21) scales the coefficients of (4.19).

Receiver Scale Factor:  1+( 4. e (4.21)
T
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4.3.1 Root-raised Cosine Side-lobe Levels

We commented earlier that when we implement the SQRT-Nyquist filter, we actually apply
two windows; the first window is a smooth continuous function used to control the transi-
tion bandwidth and the second is a rectangle used to limit the impulse respense to a finite
duration. This second window forces side-lobes in the spectrum of the SQRT-Nyquist filter.
These side-lobes are quite high, on the order of 24 to 46-dB below the pass-band gain de-
pending on roll-off factor and the length of the filter in number of symbols. The reason for
the poor side-lobe response is the discontinuous first derivative at the boundary between the
half-cosine transition edge and the start of the stop band. Consequently the envelope of the
time function falls off, as seen in (4.18), as 1/t enabling a significant time discontinuity
when the rectangle window is applied to the filter impulse response. In retrospect, the co-
sine-tapered Nyquist pulse was a poor choice for the shaping and matched filter in commu-
nication systems.

Figure 4.6 presents measured levels of side-lobe levels for a range of roll-off factors
as a function of filter length in number of symbol. We see that side-lobe levels fall very
slowly with increased filter length and increase with reduced transition bandwidth. These
levels of attenmation will not meet realistic speciral mask requirements for out-of-band at-
tenuation that are typicaily on the order of 60 to 80-dB. Some mechanism must be invoked
to confrol the filter out-of-band side-lobe levels related to the rectangle window. Whatever
process is invoked should preserve the ISI levels obtained by convolving the fixed-length
SQRT-Nyquist filter with itself,
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Figure 4.6 Highest Out-of-band Side-lobe Levels for SQRT Raised Cosine Nyquist
Filter for a Range of Roll-off Bandwidths, and Filter Lengths
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Attempting to control the spectral side-lobes by applying a second window, to the al-
ready windowed, prototype filter leads to significant increases in the receiver ISI levels.
This is shown in Figure 4.7, which illustrates the effect on spectral side-lobes and ISI levels
as a result of applying windows to the prototype impulse response. The increase in ISI is
traced to the shift of the filter’s 3-dB point away from the nominal band edge. The require-
ment for zero ISI at the output of the matched filter requires that the shaping and matched
filters each exhibit 3-dB attenuation at the filter band edge, half the symbol rate. A design
technique must control side-lobe levels while maintaining the 3-dB frequency at the symbol
band edge.
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Figure 4.7 Spectrum of Windowed SQRT-Raised Cosine Nyquist Filter, Kaiser(N,0)
-37-dB), Kaiser(N,2) (-50-dB), and Kaiser(N,3) (-60-dB), Inserted
Details of Spectrum near 3-dB Bandwidth and Detail of 1Sl in Matched
Filter Outputs

4.3.2 Improving thé Stop band Attenuation

The important attributes of the SQRT-Nyquist spectrum are the transition bandwidth or roll-
off defined by o and the 3-dB attenuation at the band edge. A very simple iterative algo-
rithm based on the Remez algorithm will transform an initial low pass filter to a SQRT-
Nyquist spectrum with the specified roll-off while preserving the ability to independently
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control pass band ripple and stop band ripple. Figure 4.8 illustrates the form of the algorithm
by starting the Remez algorithm with pass band and stop band edges matched to the roll-off
boundaries of the Nyquist spectrum. The resulting filter will cross the band edge (ffgym =
0.5) with more attenuation than the desired -3-dB level. We can raise the attenuation level
toward the desired -3-dB level by increasing the frequency of the pass band edge. The algo-
rithm performs the successive shifts to the right of the pass band edge (frequency ) until
the error between the desired 0.707 and the H;(0.5) level is reduced to zero by using the
gradient descent method shown in (4.22).

error(n) = J2i2- abs(Hl (0.5) 1n )

_ (4.22)
L+ = fi(m) -+ p-error(n))

A f] [ﬂ]
Hif | 4

) A \_ o 0.707 (desired)
- H,[O.S]I
n

: I\.IA\J, » 1/ fSVM

0.5(1-a) 0.5 0.5(1+a)
f,(n+1)

F 3

H{f quma)

e - 0.707 (desirad)
E \'4-‘.*- Hy(0.5)
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Figure 4.8 Spectrum of Remez Algorithm Output at lteration n Matching Band Edges
of Nyquist Pulse and then Increase of Frequency f; for lteration n+1 to
Raise hy(n) to hi{n+1) and Eventually to Desired -3-dB Level

A MATLAB script file named nygq2, available from the book’s companion website
listed on the title page, implements the algorithm just described. Figure 4.9 presents the
spectra of the filter response at its first and final iteration as the initial —-6-dB gain is raised
to ~3-dB gain at the normalized frequency band edge of 0.5. Also seen here is the detail of
the filter -3-dB gain at frequency 0.5. Figure 4.10 presents a comparison of the frequency
response of a SQRT-Nyquist filter designed by the MATLAB rcosine script file and de-
signed by the #yq2 script file. The nyq2 design is designated as the 3-dB harris filter. In both
cases, the filter sample rate is 5 times the symbol rate with roli-off factor o equal to 0.25.
The filters are both of length 20 symbols, the length suggested by #y42 in response to the
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input specifications. The first item of interest in the nyg2 design is the side-lobe level ob-
tained by the design. The highest side-lobe level is approximately —72-dB as opposed to the
—40-dB of the rcosine design. The second feature of note is the reduced level of in-band
ripple of the nyq2 design relative to the rcosine design. Note that by permitting the transition
bandwidth to differ from the cosine taper of the standard SQRT-Nyquist pulse we obtain
significant improvement in filter characteristics. The resulting pulse is still a SQRT-Nyquist
pulse but the transition is no longer cosine tapered.

Pass-band Spactrum of Filter: Inflial Condition
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Pass-band Spectrum of Filler: Conwerged 10 3-dB Gain at Band Edge
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Figure 4.9 Spectra of SQRT-Nyquist Filter at First and Last lieration Plus Detail of
Spectra Near —3-dB Gain
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Comparison of nyqz (hanis) and Standard rcosine Design
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Figure 4.10 Spectra of Converged and of SQRT-Cosine Filters, Detail of Same
Spectra, and Finer Detail of Same Spectra

Figure 4.11 presents the details of the matched filter output time series after
resampling to symbol rate. The three subfigures show the result of convolving the nyg2 filter
with itself, the result of convolving the reosine filter with itself, and the result of convolving
the nyq2 with the rcosine filter. Each subplot indicates the maximum ISI level as well as the
RMS IST level. The values are repeated in Table 4-1.

Table 4-1, Peak and RMS [S] Levels for Three Operating Conditions for Shaping and
Matched Filters: Remez and Remez, SQRT and SQRT, and Remez and SQRT

Operating Condition PEAK 18] RMS iSI
nyq2 Filter * nyq2 Filter 0.00589 0.0012
rcosine Filter * rcosine Filter 0.0136 0.0048
nyg2 Filter * rcosine Filter 0.0293 0.0074

Note that the filter designed by the nyg2 algorithm exhibits smatler ISI levels than the
reosine filter of the same length. Thus we pay no ISI penalty for using the 7vg2 Remez-
based design that was initially attractive for its low out-of-band side-lobe levels. We also
addressed the possibility of designing the shaping filter with the nyg2 algorithm but using an
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rcosine filter for a matched filter to determine the effect of the mismatch. This is the third
operating condition in the table and in Figure 4.11.

%10 Detail: Auto Corelation of nyg2 (fed) Filter
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Figure 4.11 Details of Matched Filter Outputs. nyq2 Filter Convalved with nyq2 Filter,
rcosine Filter Convolved with rcosine Filter, and nyg2 Filter Convolved
with rcosine Filter .

The mismatch between the two filters increases the Peak ISI by a factor of 5 from
0.6% to 2.9% and the RMS ISI by a factor of 6 from 0.12% to 0.74%. As a reference 1% ISI
is approximately a 0.12-dB implementation loss if uncorrecied. Most digital receiver sys-
tems include an equalizer that would strip the ISI from the matched filter output prior to the
detection process. Thus the nyg2 filter can be used for a shaping filter to access the im-
proved out-of-band attenuation without penalty when received by a matched filter or with a
mismatched approximate matched filter and a channel equalizer.

Figure 4.12 presents the linear spectra obtained from the impulse responses of the two
filters we have been examining. As expected, both filters pass through the 0.707 gain point
at their band edge. It appears that the nyq2 spectrum has a steeper slope and perhaps, a re-
duced roll-off factor. In fact the two filters have the same roll off of 0.25 but the #yg2 has a
smoother transition, which is the standard practice required to achieve side-lobes with
deeper out-of-band attenuation. The square of two spectra is the composite spectra that
should be the Nyquist spectra with odd symmetric transition through the gain of 0.5 at the
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filter band edge. This appears to be what we see. The third subfigure is the frequency de-
rivative of the two transition bandwidths. These should be unit-area, even symmetric spec-
tral masses that when convolved with the rectangle spectrum forms the transition bandwidth
of the Nyquist filter. For the ideal Nyquist pulse, this spectral mass should be a half cosine.

Surprisingly, the spectral mass obtained from the rcosine filter is not symmetric. This
is due to the high side-lobes added to the spectrum by truncating the impulse response with
the rectangle window. The spectral mass of the nyg2 filter does not suffer this asymmetry.
We would expect some of the ISI formed in the rcosine filier to be related to this asymmetry
and poor approximation to an odd-symmetric transition.

Spectrum; fred Filter and rcosing Filter
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Figure 4.12 Spectra of nyg2 and rcosine SQRT-Cosine Filters, Squared Spectra of
Both Filters, and Derivative of Squared Spectra

4.4 HALF-BAND FILTERS

A halflband filter has a particularly-attractive property that makes it uniquely desirable for
use in multirate filters. We now identify that attribute. The frequency response and the im-
pulse response of a zero-phase, hence nonrealizable, half-band filter is shown in Figure 4.13.
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We note in a normalized frequency axis, the pass band is the interval between the plus and
minus quarter sample rate. The equation describing the impulse response is shown in (4.23).

4 Hif)

L f../fs

Figure 4.13. Impulse Response and Spectrum of Ideal Low pass Half-band Filter

1 sin(nr/2)

" =2 oy

(4.23)

The first thing we note about the impulse response is that, except for the sample value
at the origin, all the even indexed sample values are zero. It is this property that makes the
half-band filter interesting to us. The impulse response of the filter shown in (4.23) extends
over all integers and our first modification to this filter is to apply a window as shown in
(4.24), to make it finite duration. The window, of course causes, a ripple in the pass band
and in the stop band of the filter as well as induces an odd symmetric transition bandwidth
that passes through the quarter sample rate with a gain of 0.5, the midpoint of the gain dis-
continuity. To control the amplitude of the in-band and out-of-band ripple we apply a
smooth window such as a Hann or Kaiser window. The time-iimited version of the impulse
response and its related finite transition bandwidth spectrum is shown in Figure 4.14.

By op (1) = B(n) - w(n) (4.24)

The windowed impulse response continues to exhibit zero amplitude at all even in-
dexed data samples as well as amplitude 0.5 for the data sample at index zerc. The window
only affects the odd indexed filter coefficients.
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Figure 4.14 Impulse Response and Spectrum of Finite Duration Low pass Half-band
Filter

The half-band low pass can be converted to a half-band high pass filter by using the
modulation theorem to translate the spectral center from DC, © = 0, to the half sample rate, 6

= . This is shown in (4.25). The impulse response and the frequency response of the trans-
lated filter are shown in Figure 4.15.

hrigr (7)) = hyoy (n) - cos(7Tn) (4.25)

We note that the heterodyning cosine is alternately +1 and —1 and that the +1 occurs
on the even indices and the —1 occurs on the odd indices. We already noted that except for
the zero index, all the non-zero coefficients of the low pass impuise response occur on the
odd indices. Thus the product formed in (4.25) simply changes the sign of all the coeffi-
cients except the coefficient at index zero, As a result of sign changes just described, we can
relate the even-indexed and odd-indexed coefficients of the two filters hyg(n) and hgy(n) as
shown in (4.26),

hgeu(@n) = Doy 2o

(4.26)
hipgu@n+1)=—h; yw (20+1)
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H,(f)

Figure 4.15 Impulse Response and Spectrum of FIR High pass Half-band Filter

It is convenient to identify the Z-transform of the even-indexed coefficients and the Z-
transform of the odd-indexed coefficients of the low pass filter. This is shown in (4.27). The
two units of delay between successive samples .in the two sequences are accounted for in
their Z-transforms by the Z” in the argument of the transform.

H,(Z%)= ¥ hpow@n) 720

L 4.27)
2 H,(Z°) =Y hgw@n+1) Z {20+

Using the relationships identified in (4.27) and the sign reversals described in (4.26)
we can form the transform of the low pass and of the high pass filters as a weighted sum of
the sub transforms as shown in (4.28).

H -, 23y + 27, 2
Low (£ 0Z) ) @5 428)
Hyou @) =Hy (") - Z H,Z”)
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The block diagram of the filter structure suggested in (4.28) is shown in Figure 4.16.
This form of filter is known as a polyphase partition of the prototype filter, and since it of-
fers both the low pass and the high pass version of the half-band filter, it is also known as a
guadrature mirror filter.

H(Z) Y,o(2) = X(2) Hel2)
X(2)

H,(Z) YulZ) = X@ Hy(D

2_1

b, A
h

Figure 4.16 Polyphase Partition of Hali-band Filter Pair

If we form the sum of the two transforms identified in (4.28) we obtain twice the
transform of the even-indexed coefficients. But the even-indexed coefficients have only a
single non-zero term, which is the index zero term. The resultant transform can be seen in
{(4.29) to be zero everywhere except at index zero.

Hyow (2 + Hyer (D) = 2H, (@)
=2h(0)=1

(4.29)

Equation (4.29) can be rearranged to form (4.30), which demonstrates that Hyow(Z),
the low pass filter, and Hy;gy(2), the high pass filter are complementary.

Hyow @ =1 - Hypou (@ (4.30)

An alternate representation of the quadrature mirror filter pair presented in Figure 4.16
is shown in Figure 4.17 as a complementary filter pair.

A

HiolZ) YLO[Z) = X{Z) HLO(Z]

X(2)

>\.U » Y|.||(Z] = X(Z] HH[[Z)

Figure 4.17 Complementary Partition of Nonrealizable Half-band Filter Pair
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102

The filter presented in Figures 4.14 and 4.15 are noncausal, To make them causal a
delay of length (N-1)/2 must be inserted in the time response so that the impulse response
values for negative time indices are exactly zero. The redefinition of the origin for the im-
pulse response of the half-band filter is shown in Figure 4.18. When the delay is inserted in
the filter path to make it realizable, a matching delay has to be inserted in the second path
containing the direct input-to-output connection. This change is shown in Figure 4.19.
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Figure 4.18 Noncausal and Causal Forms of Half-band Low pass Filter
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Figure 4.19 Complementary Partitions of Realizable Half-band Filter Pair
,
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Problems

4.1

4.2

4.3

4.4

The following sequences all are time limited to an interval that permits modulation with inde-
pendent peak samples every 10 output samples.

h1 = rectpuls([—0.5:0.1:0.5]);
h2 = tripuls([—0.5:0.1:0.5]);
h3 = cos(pi*(-0.5:0.1:0.5));
h4 = cos(pi*(-0.5:0.1:0.5)}.”2;
h5 = exp(-20*(-0.5:0.1:0,5).~2);
On a set of subplots plot the time response and the frequency response of each wave shape.

Comment on their respective bandwidths, side-lobe levels, and relative smoothness of the time
series.

The following sequences all are time limited to an interval that permits modulation with over-
lapped but independent peak samples every twenty output samples.

hl = tripuls([-1.0:0.1:1.07);
h2 = cos(pi*(-1.0:0.1:1.0));
h3 = cos(pi*(-1.0:0.1:1.0)).72;
h4 = exp(-5*(-1.0:0.1:1.0).72);
hS = sine(-1.0:0.1:0.1);
On a set of subplots plot the time response and the frequency response of each wave shape.

Comment on their respective bandwidths, side-lobe levels, and relative smoothness of the time
series.

Use the MATLAR script file reosine to generate samples of the root-raised cosine Nyquist
filter. The following MATLAB script will accomplish this;

hh1 = rcosine(1,8,’sqrt’,0.5,6);

Convolve the sequence hhl with itself and plot the two sequences hhl/max(bil) and
conv(hhl,hhl) and their spectra. Comment on the locations of the zero crossings of the two
time series hh1/max(hh1) and conv(hhl,hhl). Comment on the amplitude response of the two
spectra, particularly at the band edges, £1/16 of the sample rate,

Use the MATLAB script file rcosine to generate samples of the root-raised cosine Nyquist
filter and then penerate a time series or random medulated data and pass it through the receiver
matched filter. Finally form eye diagrams for the input and output of the matched filter. The
following MATLAB script will accomplish this;
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4.5

4.6

4.7

4.8

4.9
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hh1 = rcosine(1,8,’sqrt’,0.25);

datl = (floor(4*rand(1,1000))-1.5)/1.5;
dat2 = reshape([dat1; zeros(7,1000)1,1,8000)
dat3 = conv(dat2,hh1)max(hhl),

dat4 = conv{dat3,hh1}

plot(0,0);

hold on

for nn=116:8000-16
plot(—1:1/8:1,dat3(nn:nn+16)}

end

hold off

grid

% Repeat for datd

Examine and comment on the two eye diagrams paying particular attention to the width and
height of the eye opening.

Repeat Problem 4.4 except change the excess bandwidth parameter from 0.25 to 0.125. The
following MATLAB script will accomplish this:

hhl = rcosine(1,8, sqrt’,0.125);

Repeat Problem 4.4 except change the excess bandwidth parameter from 0.25 to 0.50. The fol-
lowing MATLAB script will accomplish this:

hh1 = rcosine(1,8,’sqri’,0.50);

Design a half-band low pass FIR by windowing a sinc series filter with transition bandwidth
10% of the sample rate and with in-band and out-of-band ripple less than 0.001. Plot the im-
pulse response and the frequency response. Plot the frequency response with linear and with log
magnitude coordinates.

Design a half-band high pass FIR by windowing a sinc series filter with transition bandwidth
10% of the sample rate and with in-band and out-of-band ripple less than 0.001, The high pass
is formed from the low pass as a heterodyned filter or as a complementary filter. Try both! Plot
the impulse response and the frequency response. Plot the frequency response with linear and
with log magnitude coordinates.

Design a half-band low pass FIR with the Remez algorithm, The filter has a transition band-
width 10% of the sample rate and with in-band and out-of-band ripple less than 0.001. Plot the
impulse response and the frequency response. Plot the frequency response with linear and with
log magnitude coordinates.
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4.10 Design a half-band high pass FIR with the Remez algorithm. The filter has a transition band-
width 10% of the sample rate and with in-band and out-of-band ripple less than 0.001. The high
pass is formed from the low pass as a heterodyned filter, as a complementary filter, or by chang-
ing the gain vector in the Remez algorithm. Try all three. Are they the same? Plot the impulse
response and the frequency response. Plot the frequency response with linear and with log
magnitude coordinates.
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ﬂere are many applications for multirate filters that, when invoked, lead to reduced cost

to implement the desired processing task. A common theme in many of these applications is
that the filtering should occur at a rate matching the Nyquist rate. The next two examples
illustrate this concept.

5.1 FILTERING WITH LARGE RATIO OF SAMPLE RATE TO
BANDWIDTH

A common application for multirate signal processing is the task of filtering to reduce the
signal bandwidth without changing the sample rate. This might occur when the output of the
filter is to be presented to a DAC operating at a fixed output rate matching the input rate. Let
us examine the specifications of a filter with a small bandwidth relative to sample rate. The
specifications required for the filter are listed in Table 5-1 and are illustrated in Figure 5.1.

Table 5-1 Filter Specifications

Parameter Specification
Sample Rate 20 kHz
Pass band Frequency 100 Hz
Stop band Frequency 300 Hz
Pass band Ripple 0.1-dB
Stop band Ripple 80-dB

Rate of Side-lobe Attenuation " 6-dB/Octave

;’[

20 kHz

| +—200 Hz

A

v

Figure 5.1 Specifications of Low pass Filter

We determine that a 360-tap FIR filter is required to meet these specifications. The
processing task implemented directly with this FIR filter is indicated in Figure 5.2. The
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computational workload required of this implementation is 360 ops per cutput or, since
there is no sample rate change, 360 ops per input.

20 kHz Input 360-Tap 20 kHz Ouiput
Sample Rate FIR Filter Sample Rate

Figure 5.2 Initial Implementation of a Filtering Task

The Nyquist rate for this filter, equal to the filter two-sided bandwidth plus the transi-
tion bandwidth, is seen to be 400 Hz. This rate is 1/50th of the input sample rate. If we were
to permit sample rate changes, we could reduce the sample rate by 50 and operate the filter
at an output rate of 400 Hz. Let us examine this option. A 50-stage polyphase partition of
the 360-tap filter is shown in Figure 5.3.

360 Taps

20 kHz Po[yphqse 400 Hz
{ ’ Low-pass Filker >

50-t0-1
o— ¢|0
o0—p ¢]
O-—mipd ¢2
20 kHz 400 Hz
o—>» g
$’°_’ a0

Figure 5.3 50-to-1 Polyphase Parition and Down Sampling of Low pass Filter

By simple division, we determine the average length of each polyphase filter stage is
360/50 or 7.2 taps. In actuality, when loading the filter coefficients by successive columns
of length 50, we would find that the first 10 subfilters contain 8 taps and the remaining 40
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subfilters contain 7 taps. There is no problem with the subfilters being different lengths. The
hardware or sofiware implementation of the filter would, in the interest of regularity, simply
zero extend all the subfilters to length 8. Another option would alter the filter length to be a
multiple of 50, or relax a design specification to design the filter with 350 taps, or oversatis-
fying the specification and design the filter with 400 taps. With the 350-tap version, the
polyphase partition would require 350 ops per output but would only require 7 ops per input.
This is significantly less than that required by the direct implementation suggested by Figure
5.2. Further, while we require all 350 coefficients to implement the filter, we only require 7
storage registers for data storage as opposed to the 350 registers required in the direct form.
Our only problem at this point is we have not satisfied one of the filter specifications,
namely that the output sample rate be the same as the input sample rate.

350 Taps A 350 Taps
20 kHz Polyphase 00 Ha Polyphase '7& 20 Kz
Ji — - > : —
Low-pass Fiter Low-pass Filfer
50-io-1 1-t0-50
7 taps 7 faps
o—» ({)0 » ¢g —o4 |
o—d »
— ¢, " ¢, —>
—_— ) —
20 IHz . : : ) . : : 20 kHz
400 Hz
o—> Oy M g [
4""_” g9 " obee [

Figure 5.4 Cascade 50-to-1 and 1-to-50 Polyphase Maintains Constant Sample Rate

We respond to this last objection by following the down-sample filter by an up-sample
filter. This cascade filter form is shown in Figure 5.4. In this form, we output one sample
from the input process for every 50 input samples and then output 50 output samples for
every intermediate input sample. This process generates one output sample for each input
sample. We note that when the filter is implemented in this form there are 7 ops per input
and 7 ops per output for a total workload of only 14 ops per input-output pair. This com-
pares with 350 ops per input-output pair in the direct implementation. Similarly, since only
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one arm of the polyphase filter is engaged at any one time, we only require 7 data registers
for the input and 7 data registers for the output, a total of 14 registers which is certainly a
reduction from the 350 data registers for the direct implementation. Figure 5.5 presents the
same filter but reflects the reduced resources required for this filter. Compare Figure 5.5 to
Figure 5.2. The lesson we have learned in this example is that a filter shouid be operated at
its Nyquist rate. If the desired output sample rate is different from the Nyquist rate, consider
that a problem to be addressed in a second filter.

20 kHz 400 Hz 20 kHz
o——p 7iap

F 3

v

7tap —»

" Coefficient Coefficient [$——
Select Bank Bank Select

Figure 5.5 Minimum Resource Cascade 50-to-1 and 1-to-50 Polyphase Filter

Examining Figure 5.4, in particular the up sampling half of the cascade, we can clearly
see that a single stage 7-tap FIR filter can perform the sequential processing tasks of the
entire polyphase filter. This is obvious since all the stages of the filter store and process the
same input series obtained from the previous stage. With this awareness, when we examine
the input down-sampling structure we face a quandary. The separate stages store and proc-
ess different input data streams and it would appear that the resource sharing of the output
stage is not applicable to the input stage, The quandary is that if we can share resources in
the output filter we must be able to do the same in the input filter since the two processes
perform dual functions. The statement of the problem contains the solution to the problem.
The two filter banks must be dual structures; they cannot both be tapped delay line imple-
mentations of the filter stages. We now examine the dual form or aliemate form of the FIR
filter.

5.1.1 Partial Sum Accumulator: The Dual Form

We start with the up-sampling filter to first establish a sequence of transformations that we
then apply to the down-sampling filter. Figure 5.6 presents the polyphase partition of a
three-stage up-sampling filter. The separate arms of the filter are implemented as the stan-
dard tapped delay line filter structure that supports the conventional inner product form or
multiplier-accumulator (MAC) form of the FIR filtering process, We note that the data reg-
isters of the three filters all contain the same input samples. In Figure 5.7 we implement the
filter with a single register set that is accessed by the three sets of MACs that feed the output
commutator. We note that even though there are three sets of MACs we use them sequen-
tially, one at a time. Rather than use three MACs, we can time share one MAC and commu-
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tate filter weights to synthesize successive filter sections. This structure is shown in Figure
5.8. Note here that one polyphase filter segment and a commutator pointing to filter weights
can form a filter with any number of polyphase arms. The process of presenting successive
weight sets to the single stage can be likened to the operation of a Gatling gun in which sets
of weights are successively rolled into the filtering task.
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Figure 5.6 Standard Three-stage, Three-MAC, Polyphase Up-sampling Filter

The sequence of transformations just applied to the up-sampling filter is now applied
to the dual down-sampling filter. Figure 5.9 presents the polyphase partition of a 1-to-3
down-sampling filter. The separate stages are implemented in the conventional MAC struc-
ture,

Note that the three stages are combined as a dual of the three stages in the correspond-
ing up-sampling process of Figure 5.6. Comparing the two figures, we see that the input
node of Figure 5.6 has become the output-summing junction of Figure 5.9, and that the ar-
rows indicating signal flow to and from the three stages and the commutator direction have
been reversed. Since the tasks of up sampling and down sampling are dual processes it is not
surprising that the stages are connected in dual forms. What we now realize is that dual
structures should also be applied to the stage implementations. This dual form with nodes
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replacing summing junctions, summing junctions replacing nodes, and reversed arrow direc-
tions and coefficient ordering is shown in Figure 5,10,
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Figure 5.7 Shared Registers of Three-stage, Three-MAC, Polyphase Up-sampling Fil-
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Figure 5.8 Minimum Resource Version of Three-stage Polyphase Up-sampling Filter

This structure represents an alternate implementation of a FIR filter structure and is
known as the partial sum accumulator form. Interestingly, the tapped delay line model per-
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forms an inner product and is the mental image of a FIR filter conjured by an imbedded sys-
tem programmer, The partial sum accumulator model performs simultaneous parallel proc-
essing and is the mental image of a FIR filter conjured by an application-specific integrated
circuit (ASIC) designer. Note that in the tapped delay line model, the registers contain input
data samples. These samples are stored and accessed by shifting to apply the successive
filter weights to form the sum for successive output samples. In the partial surn accurnulator,
the registers contain the sum of products. The products are formed between each input sam-
ple and all filter coefficients. The products are accumulated over successive inputs and then
shifted towards the filter output port to form the final sum for successive output samples.

x(3n)

a

z
n(0) h(3) h(6) R(9) h(12)

h 4
™~
¥
~
h 4
~N

¥, (3n)

Figure 5.9 Standard Three-stage, Three-MAC, Palyphase Down-sampling Filter

In Figure 5.10 we note that the sum formed at the output of the three filters and at the
output of the combined filter is in fact performed in the same accumulator. We also note that
the outputs of the earlier accumulators eventually arrive at the output accumulator where
they are combined to form the composite filter output. We can save memory by combining
the outputs of the separate accumulators as a single accumulator. This combining is shown
in Figure 5.11, which is seen to be the dual form of Figure 5.7.
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We note here that even though there are three sets of multipliers to apply coefficients
to the data that feed the common accumulators we use them sequentially, one at a time.
Rather than use three multiplier sets we can time share one set of multipliers and commutate
filter weights to synthesize successive filter sections. This structure is shown in Figure 5.12.
Note here again that one polyphase filter segment and a commutator pointing to filter
weights can form a filter with any number of polyphase arms. This process of presenting
successive weight sets to the single stage can again be likened to the operation of a Gatling
gun as was the dual process presented in Figure 5.8, Note in particular the dual structure of
the filters shown in Figures 5.8 and 5.11. These two efficient forms of the polyphase filter
are used in their appropriate position in the filter structure presented in Figure 5.5.
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Figure 5.10 Dual Form Three-stage Polyphase Down-sampling Filter
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Figure 5.11 Shared Registers of Three-stage, Mulfiplier-accumulator, Polyphase
Down-sampling Filter
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Figure 5.12 Minimum Rescurce Version of Three-stage Polyphase Down-sampling
Filter

5.1.2 Generate Baseband Narrowband Noise

We now address a related signal-processing task: that of forming a baseband time series
with a narrow bandwidth at a sample rate that is large compared to the signal bandwidth.
The specific example we examine is that of forming a digital narrowband noise source. The
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spectral characteristics of the filtered noise, by a remarkable coincidence, are the same as
those presented in Table 5-1. The narrowband noise is to be sampled at 20 kHz, have a
bandwidth of 100 Hz, a transition bandwidth of 200 Hz, and a dynamic range of 80-dB.In a
previous section, we learned that the FIR filter that meets these specifications has a length of
350 taps. Figure 5.13 presents a brute-force solution to the processing task, We operate a
long period PN noise generator at the desired 20 kHz output rate and deliver the noise se-
quence to the 350-tap filter. As shown in-Figure 5.14, the output spectrum is equal to the
product of the input spectrum and the power spectral response of the filter. The output time
series of the filter will inherit the spectral properties of the filter and hence meets the spec-
tral requirements placed on the processing task.

White Noise 350-Tap
Generator FIR Fiter ’
Broadband Narowband
20 kMz Clock _T Noise af 20 kHz Noise at 20 kHz
Sample Rate Sample Rate

Figure 5.13 Block Diagram of Simple Narrowband Noise Generator
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Figure 5.14 Input Spectrum, Filter Spectral Response, and Output Spectrum

The problem with the noise generation process presented in Figure 5.13 is the high
workload per cutput noise sample of 350 ops per output, Following the lesson taught in an
earlier section, that the filter should operate at its Nyquist rate, we recast the solution in the
following way. We operate the noise generator at the filter’s Nyquist rate of 400 Hz and
then use the polyphase partition of the 350-tap filter as a 1-to-50 up sampler. This is shown
in Figure 5.15. The polyphase partition is implemented as a single 7-tap filter with the 50
coefficient sets applied sequentially to the filter for each input sample to the filter. In this
structure, the workload is 7 ops per output point, a rather significant improvement relative to
the 350 ops per output point of the simple solution.

Conceptually, the input noise spectrum at 400 Hz sample rate has been up sampled by
1-to-50 zero packing which gives us access to the desired output sample rate of 20 kHz. The
350-tap f