
Think DSP

Digital Signal Processing in Python

Version 0.9.8

Think DSP

Digital Signal Processing in Python

Version 0.9.8

Allen B. Downey

Green Tea Press
Needham, Massachusetts

Copyright © 2014 Allen B. Downey.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify this document
under the terms of the Creative Commons Attribution-NonCommercial
3.0 Unported License, which is available at http://creativecommons.org/
licenses/by-nc/3.0/.

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Preface

The premise of this book (and the other books in the Think X series) is that if
you know how to program, you can use that skill to learn other things. I am
writing this book because I think the conventional approach to digital signal
processing is backward: most books (and the classes that use them) present
the material bottom-up, starting with mathematical abstractions like pha-
sors.

With a programming-based approach, I can go top-down, which means I
can present the most important ideas right away. By the end of the first
chapter, you can decompose a sound into its harmonics, modify the har-
monics, and generate new sounds.

0.1 Using the code
The code and sound samples used in this book are available from https:

//github.com/AllenDowney/ThinkDSP. Git is a version control system that
allows you to keep track of the files that make up a project. A collection of
files under Git’s control is called a repository. GitHub is a hosting service
that provides storage for Git repositories and a convenient web interface.

The GitHub homepage for my repository provides several ways to work
with the code:

• You can create a copy of my repository on GitHub by pressing the Fork

button. If you don’t already have a GitHub account, you’ll need to
create one. After forking, you’ll have your own repository on GitHub
that you can use to keep track of code you write while working on
this book. Then you can clone the repo, which means that you make a
copy of the files on your computer.

• Or you could clone my repository. You don’t need a GitHub account
to do this, but you won’t be able to write your changes back to GitHub.

https://github.com/AllenDowney/ThinkDSP
https://github.com/AllenDowney/ThinkDSP

vi Chapter 0. Preface

• If you don’t want to use Git at all, you can download the files in a Zip
file using the button in the lower-right corner of the GitHub page.

All of the code is written to work in both Python 2 and Python 3 with no
translation.

I developed this book using Anaconda from Continuum Analytics, which
is a free Python distribution that includes all the packages you’ll need to
run the code (and lots more). I found Anaconda easy to install. By default
it does a user-level installation, not system-level, so you don’t need admin-
istrative privileges. And it supports both Python 2 and Python 3. You can
download Anaconda from http://continuum.io/downloads.

If you don’t want to use Anaconda, you will need the following packages:

• NumPy for basic numerical computation, http://www.numpy.org/;

• SciPy for scientific computation, http://www.scipy.org/;

• matplotlib for visualization, http://matplotlib.org/.

Although these are commonly used packages, they are not included with all
Python installations, and they can be hard to install in some environments.
If you have trouble installing them, I strongly recommend using Anaconda
or one of the other Python distributions that include these packages.

Most exercises use Python scripts, but some also use the IPython note-
book. If you have not used IPython notebook before, I suggest you start
with the documentation at http://ipython.org/ipython-doc/stable/

notebook/notebook.html.

I wrote this book assuming that the reader is familiar with core Python,
including object-oriented features, but not NumPy, and SciPy.

I assume that the reader knows basic mathematics, including complex num-
bers. I use some linear algebra, but I will explain it as we go along.

Allen B. Downey

Needham MA

Allen B. Downey is a Professor of Computer Science at the Franklin W. Olin
College of Engineering.

http://continuum.io/downloads
http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
http://ipython.org/ipython-doc/stable/notebook/notebook.html
http://ipython.org/ipython-doc/stable/notebook/notebook.html

0.1. Using the code vii

Contributor List

If you have a suggestion or correction, please send email to
downey@allendowney.com. If I make a change based on your feed-
back, I will add you to the contributor list (unless you ask to be omitted).

If you include at least part of the sentence the error appears in, that makes
it easy for me to search. Page and section numbers are fine, too, but not as
easy to work with. Thanks!

• Before I started writing, my thoughts about this book benefited from con-
versations with Boulos Harb at Google and Aurelio Ramos, formerly at Har-
monix Music Systems.

• During the Fall 2013 semester, Nathan Lintz and Ian Daniher worked with
me on an independent study project and helped me with the first draft of this
book.

• On Reddit’s DSP forum, the anonymous user RamjetSoundwave helped me
fix a problem with my implementation of Brownian Noise. And andodli
found a typo.

• In Spring 2015 I had the pleasure of teaching this material along with Prof.
Oscar Mur-Miranda and Prof. Siddhartan Govindasamy. Both made many
suggestions and corrections.

viii Chapter 0. Preface

Contents

Preface v

0.1 Using the code . v

1 Sounds and signals 1

1.1 Periodic signals . 2

1.2 Spectral decomposition . 3

1.3 Signals . 5

1.4 Reading and writing Waves 7

1.5 Spectrums . 7

1.6 Exercises . 8

2 Harmonics 11

2.1 Implementing Signals and Spectrums 11

2.2 Computing the spectrum . 13

2.3 Other waveforms . 15

2.4 Harmonics . 16

2.5 Aliasing . 18

2.6 Exercises . 21

x Contents

3 Non-periodic signals 23

3.1 Chirp . 23

3.2 Exponential chirp . 25

3.3 Leakage . 26

3.4 Windowing . 27

3.5 Spectrum of a chirp . 28

3.6 Spectrogram . 29

3.7 The Gabor limit . 30

3.8 Implementing spectrograms 31

3.9 Exercises . 33

4 Noise 35

4.1 Uncorrelated noise . 35

4.2 Integrated spectrum . 38

4.3 Brownian noise . 39

4.4 Pink Noise . 41

4.5 Gaussian noise . 44

4.6 Exercises . 45

5 Autocorrelation 47

5.1 Correlation . 47

5.2 Serial correlation . 50

5.3 Autocorrelation . 51

5.4 Autocorrelation of periodic signals 52

5.5 Correlation as dot product . 56

5.6 Using NumPy . 57

5.7 Exercises . 58

Contents xi

6 Discrete cosine transform 59

6.1 Synthesis . 60

6.2 Synthesis with arrays . 60

6.3 Analysis . 62

6.4 Orthogonal matrices . 63

6.5 DCT-IV . 65

6.6 Inverse DCT . 67

6.7 Exercises . 67

7 Discrete Fourier Transform 69

7.1 Complex exponentials . 69

7.2 Complex signals . 71

7.3 The synthesis problem . 72

7.4 Synthesis with matrices . 74

7.5 The analysis problem . 76

7.6 Efficient analysis . 77

7.7 DFT . 78

7.8 Just one more thing . 79

7.9 Exercises . 80

8 Filtering and Convolution 83

8.1 Smoothing . 83

8.2 Convolution . 86

8.3 The frequency domain . 87

8.4 The convolution theorem . 88

8.5 Gaussian filter . 89

8.6 Efficient convolution . 90

8.7 Efficient autocorrelation . 92

8.8 Exercises . 94

xii Contents

9 Signals and Systems 95

9.1 Finite differences . 95

9.2 The frequency domain . 96

9.3 Differentiation . 97

9.4 LTI systems . 100

9.5 Transfer functions . 102

9.6 Systems and convolution . 104

9.7 Proof of the Convolution Theorem 107

9.8 Exercises . 109

10 Fourier analysis of images 111

A Linear Algebra 113

Chapter 1

Sounds and signals

A signal is a representation of a quantity that varies in time, or space, or
both. That definition is pretty abstract, so let’s start with a concrete exam-
ple: sound. Sound is variation in air pressure. A sound signal represents
variations in air pressure over time.

A microphone is a device that measures these variations and generates an
electrical signal that represents sound. A speaker is a device that takes an
electrical signal and produces sound. Microphones and speakers are called
transducers because they transduce, or convert, signals from one form to
another.

This book is about signal processing, which includes processes for synthe-
sizing, transforming, and analyzing signals. I will focus on sound signals,
but the same methods apply to electronic signals, mechanical vibration, and
signals in many other domains.

They also apply to signals that vary in space rather than time, like eleva-
tion along a hiking trail. And they apply to signals in more than one di-
mension, like an image, which you can think of as a signal that varies in
two-dimensional space. Or a movie, which is a signal that varies in two-
dimensional space and time.

But we start with simple one-dimensional sound.

The code for this chapter is in sounds.py, which is in the repository for this
book (see Section 0.1).

2 Chapter 1. Sounds and signals

0.000 0.001 0.002 0.003 0.004 0.005 0.006
time (s)

1.0

0.5

0.0

0.5

1.0

Figure 1.1: Segment from a recording of a tuning fork.

1.1 Periodic signals

We’ll start with periodic signals, which are signals that repeat themselves
after some period of time. For example, if you strike a tuning fork, it vi-
brates and generates sound. If you record that sound and plot the trans-
duced signal, it looks like Figure 1.1.1

This signal is similar to a sinusoid, which means it has the same shape as
the trigonometric sine function.

You can see that this signal is periodic. I chose the duration to show three
full periods, also known as cycles. The duration of each cycle is about 2.3
ms.

The frequency of a signal is the number of cycles per second, which is the
inverse of the period. The units of frequency are cycles per second, or Hertz,
abbreviated “Hz”.

The frequency of this signal is about 439 Hz, slightly lower than 440 Hz,
which is the standard tuning pitch for orchestral music. The musical name
of this note is A, or more specifically, A4. If you are not familiar with
“scientific pitch notation”, the numerical suffix indicates which octave the
note is in. A4 is the A above middle C. A5 is one octave higher. See
http://en.wikipedia.org/wiki/Scientific_pitch_notation.

A tuning fork generates a sinusoid because the vibration of the tines is a

1I got this recording from http://www.freesound.org/people/zippi1/sounds/

18871/.

http://en.wikipedia.org/wiki/Scientific_pitch_notation
http://www.freesound.org/people/zippi1/sounds/18871/
http://www.freesound.org/people/zippi1/sounds/18871/

1.2. Spectral decomposition 3

0.000 0.001 0.002 0.003 0.004 0.005 0.006
time (s)

1.0

0.5

0.0

0.5

1.0

Figure 1.2: Segment from a recording of a violin.

form of simple harmonic motion. Most musical instruments produce peri-
odic signals, but the shape of these signals is not sinusoidal. For example,
Figure 1.2 shows a segment from a recording of a violin playing Boccherini’s
String Quintet No. 5 in E, 3rd movement.2

Again we can see that the signal is periodic, but the shape of the signal
is more complex. The shape of a periodic signal is called the waveform.
Most musical instruments produce waveforms more complex than a sinu-
soid. The shape of the waveform determines the musical timbre, which is
our perception of the quality of the sound. People usually perceive complex
waveforms as rich, warm and more interesting than sinusoids.

1.2 Spectral decomposition

The most important topic in this book is spectral decomposition, which is
the idea that any signal can be expressed as the sum of simpler signals with
different frequencies.

And the most important algorithm in this book is the discrete Fourier trans-
form, or DFT, which takes a signal (a quantity varying in time) and pro-
duces its spectrum, which is the set of sinusoids that add up to produce the
signal.

2The recording is from http://www.freesound.org/people/jcveliz/sounds/92002/.
I identified the piece using http://www.musipedia.org.

http://www.freesound.org/people/jcveliz/sounds/92002/
http://www.musipedia.org

4 Chapter 1. Sounds and signals

0 2000 4000 6000 8000 10000 12000
frequency (Hz)

0

500

1000

1500

2000

2500

3000

3500

4000

am
pl

itu
de

 d
en

si
ty

Figure 1.3: Spectrum of a segment from the violin recording.

For example, Figure 1.3 shows the spectrum of the violin recording in Fig-
ure 1.2. The x-axis is the range of frequencies that make up the signal. The
y-axis shows the strength of each frequency component.

The lowest frequency component is called the fundamental frequency. The
fundamental frequency of this signal is near 440 Hz (actually a little lower,
or “flat”).

In this signal the fundamental frequency has the largest amplitude, so it is
also the dominant frequency. Normally the perceived pitch of a sound is
determined by the fundamental frequency, even if it is not dominant.

The other spikes in the spectrum are at frequencies 880, 1320, 1760, and
2200, which are integer multiples of the fundamental. These components
are called harmonics because they are musically harmonious with the fun-
damental:

• 880 is the frequency of A5, one octave higher than the fundamental.

• 1320 is approximately E6, which is a major fifth3 above A5.

• 1760 is A6, two octaves above the fundamental.

• 2200 is approximately C]7, which is a major third above A6.

These harmonics make up the notes of an A major chord, although not all
in the same octave. Some of them are only approximate because the notes

3If you are not familiar with musical intervals like "major fifth”, see https://en.

wikipedia.org/wiki/Interval_(music).

https://en.wikipedia.org/wiki/Interval_(music)
https://en.wikipedia.org/wiki/Interval_(music)

1.3. Signals 5

that make up Western music have been adjusted for equal temperament
(see http://en.wikipedia.org/wiki/Equal_temperament).

Given the harmonics and their amplitudes, you can reconstruct the signal
by adding up sinusoids. Next we’ll see how.

1.3 Signals

I wrote a Python module called thinkdsp that contains classes and functions
for working with signals and spectrums. 4 You can download it from http:

//think-dsp.com/thinkdsp.py.

To represent signals, thinkdsp provides a class called Signal, which is the
parent class for several signal types, including Sinusoid, which represents
both sine and cosine signals.

thinkdsp provides functions to create sine and cosine signals:

cos_sig = thinkdsp.CosSignal(freq=440, amp=1.0, offset=0)

sin_sig = thinkdsp.SinSignal(freq=880, amp=0.5, offset=0)

freq is frequency in Hz. amp is amplitude in unspecified units where 1.0 is
generally the largest amplitude we can play.

offset is a phase offset in radians. Phase offset determines where in the
period the signal starts (that is, when t=0). For example, a cosine signal with
offset=0 starts at cos 0, which is 1. With offset=pi/2 it starts at cos π/2,
which is 0. A sine signal with offset=0 also starts at 0. In fact, a cosine
signal with offset=pi/2 is identical to a sine signal with offset=0.

Signals have an __add__ method, so you can use the + operator to add them:

mix = sin_sig + cos_sig

The result is a SumSignal, which represents the sum of two or more signals.

A Signal is basically a Python representation of a mathematical function.
Most signals are defined for all values of t, from negative infinity to infinity.

You can’t do much with a Signal until you evaluate it. In this context, “eval-
uate” means taking a sequence of ts and computing the corresponding val-
ues of the signal, which I call ys. I encapsulate ts and ys in an object called
a Wave.

4In Latin the plural of “spectrum” is “spectra”, but since I am not writing in Latin, I
generally use standard English plurals.

http://en.wikipedia.org/wiki/Equal_temperament
http://think-dsp.com/thinkdsp.py
http://think-dsp.com/thinkdsp.py

6 Chapter 1. Sounds and signals

0.000 0.001 0.002 0.003 0.004 0.005 0.006
time (s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 1.4: Segment from a mixture of two sinusoid signals.

A Wave represents a signal evaluated at a sequence of points in time. Each
point in time is called a frame (a term borrowed from movies and video).
The measurement itself is called a sample, although “frame” and “sample”
are sometimes used interchangeably.

Signal provides make_wave, which returns a new Wave object:
wave = mix.make_wave(duration=0.5, start=0, framerate=11025)

duration is the length of the Wave in seconds. start is the start time, also
in seconds. framerate is the (integer) number of frames per second, which
is also the number of samples per second.

11,025 frames per second is one of several framerates commonly used in
audio file formats, including Waveform Audio File (WAV) and mp3.

This example evaluates the signal from t=0 to t=0.5 at 5,513 equally-spaced
frames (because 5,513 is half of 11,025). The time between frames, or
timestep, is 1/11025 seconds, or 91 µs.

Wave provides a plot method that uses pyplot. You can plot the wave like
this:

wave.plot()

pyplot.show()

pyplot is part of matplotlib; it is included in many Python distributions,
or you might have to install it.

At freq=440 there are 220 periods in 0.5 seconds, so this plot would look
like a solid block of color. To zoom in on a small number of periods, we can
use segment, which copies a segment of a Wave and returns a new wave:

1.4. Reading and writing Waves 7

period = mix.period

segment = wave.segment(start=0, duration=period*3)

period is a property of a Signal; it returns the period in seconds.

start and duration are in seconds. This example copies the first three pe-
riods from mix. The result is a Wave object.

If we plot segment, it looks like Figure 1.4. This signal contains two fre-
quency components, so it is more complicated than the signal from the tun-
ing fork, but less complicated than the violin.

1.4 Reading and writing Waves
thinkdsp provides read_wave, which reads a WAV file and returns a Wave:

violin_wave = thinkdsp.read_wave('violin1.wav')

And Wave provides write, which writes a WAV file:
wave.write(filename='example1.wav')

You can listen to the Wave with any media player that plays WAV files. On
UNIX systems, I use aplay, which is simple, robust, and included in many
Linux distributions.

thinkdsp also provides play_wave, which runs the media player as a sub-
process:

thinkdsp.play_wave(filename='example1.wav', player='aplay')

It uses aplay by default, but you can provide another player.

1.5 Spectrums
Wave provides make_spectrum, which returns a Spectrum:

spectrum = wave.make_spectrum()

And Spectrum provides plot:
spectrum.plot()

thinkplot.show()

thinkplot is a module I wrote to provide wrappers around some of the
functions in pyplot. You can download it from http://think-dsp.com/

thinkplot.py. It is also included in the Git repository for this book (see
Section 0.1).

Spectrum provides three methods that modify the spectrum:

http://think-dsp.com/thinkplot.py
http://think-dsp.com/thinkplot.py

8 Chapter 1. Sounds and signals

• low_pass applies a low-pass filter, which means that components
above a given cutoff frequency are attenuated (that is, reduced in mag-
nitude) by a factor.

• high_pass applies a high-pass filter, which means that it attenuates
components below the cutoff.

• band_stop attenuates components in the band of frequencies between
two cutoffs.

This example attenuates all frequencies above 600 by 99%:

spectrum.low_pass(cutoff=600, factor=0.01)

Finally, you can convert a Spectrum back to a Wave:

wave = spectrum.make_wave()

At this point you know how to use many of the classes and functions in
thinkdsp, and you are ready to do the exercises at the end of the chapter. In
Chapter 2.4 I explain more about how these classes are implemented.

1.6 Exercises

Before you begin this exercises, you should download the code for this
book, following the instructions in Section 0.1.

Exercise 1.1 If you have IPython, load chap01.ipynb, read through it, and
run the examples. You can also view this notebook at http://tinyurl.com/
thinkdsp01.

Go to http://freesound.org and download a sound sample that include
music, speech, or other sounds that have a well-defined pitch. Select a seg-
ment with duration 0.5 to 2 seconds where the pitch is constant. Compute
and plot the spectrum of the segment you selected. What connection can
you make between the timbre of the sound and the harmonic structure you
see in the spectrum?

Use high_pass, low_pass, and band_stop to filter out some of the harmon-
ics. Then convert the spectrum back to a wave and listen to it. How does
the sound relate to the changes you made in the spectrum?

Exercise 1.2 Synthesize a wave by creating a spectrum with arbitrary har-
monics, inverting it, and listening. What happens as you add frequency
components that are not multiples of the fundamental?

http://tinyurl.com/thinkdsp01
http://tinyurl.com/thinkdsp01
http://freesound.org

1.6. Exercises 9

Exercise 1.3 This exercise asks you to write a function that simulates the
effect of sound transmission underwater. This is a more open-ended exer-
cise for ambitious readers. It uses decibels, which you can read about at
http://en.wikipedia.org/wiki/Decibel.

First some background information: when sound travels through water,
high frequency components are absorbed more than low frequency com-
ponents. In pure water, the absorption rate, expressed in decibels per kilo-
meter (dB/km), is proportional to frequency squared.

For example, if the absorption rate for frequency f is 1 dB/km, we expect
the absorption rate for 2 f to be 4 dB/km. In other words, doubling the
frequency quadruples the absorption rate.

Over a distance of 10 kilometers, the f component would be attenuated by
10 dB, which corresponds to a factor of 10 in power, or a factor of 3.162 in
amplitude.

Over the same distance, the 2 f component would be attenuated by 40 dB,
or a factor or 100 in amplitude.

Write a function that takes a Wave and returns a new Wave that contains
the same frequency components as the original, but where each component
is attenuated according to the absorption rate of water. Apply this function
to the violin recording to see what a violin would sound like under water.

For more about the physics of sound transmission in water, see “Under-
lying physics and mechanisms for the absorption of sound in seawater”
at http://resource.npl.co.uk/acoustics/techguides/seaabsorption/

physics.html

http://en.wikipedia.org/wiki/Decibel
http://resource.npl.co.uk/acoustics/techguides/seaabsorption/physics.html
http://resource.npl.co.uk/acoustics/techguides/seaabsorption/physics.html

10 Chapter 1. Sounds and signals

Chapter 2

Harmonics

The code for this chapter is in aliasing.py, which is in the repository for
this book (see Section 0.1).

2.1 Implementing Signals and Spectrums

If you have done the exercises, you know how to use the classes and meth-
ods in thinkdsp. Now let’s see how they work.

We’ll start with CosSignal and SinSignal:

def CosSignal(freq=440, amp=1.0, offset=0):

return Sinusoid(freq, amp, offset, func=numpy.cos)

def SinSignal(freq=440, amp=1.0, offset=0):

return Sinusoid(freq, amp, offset, func=numpy.sin)

These functions are just wrappers for Sinusoid, which is a kind of Signal:

class Sinusoid(Signal):

def __init__(self, freq=440, amp=1.0, offset=0, func=numpy.sin):

Signal.__init__(self)

self.freq = freq

self.amp = amp

self.offset = offset

self.func = func

The parameters of __init__ are:

12 Chapter 2. Harmonics

• freq: frequency in cycles per second, or Hz.

• amp: amplitude. The units of amplitude are arbitrary, usually chosen
so 1.0 corresponds to the maximum input from a microphone or max-
imum output to a speaker.

• offset: where in its period the signal starts, at t = 0. offset is in
units of radians, for reasons I explain below.

• func: a Python function used to evaluate the signal at a particular
point in time. It is usually either numpy.sin or numpy.cos, yielding a
sine or cosine signal.

Like many __init__ methods, this one just tucks the parameters away for
future use.

The parent class of Sinusoid, Signal, provides make_wave:

def make_wave(self, duration=1, start=0, framerate=11025):

dt = 1.0 / framerate

ts = numpy.arange(start, duration, dt)

ys = self.evaluate(ts)

return Wave(ys, framerate)

start and duration are the start time and duration in seconds. framerate
is the number of frames (samples) per second.

dt is the time between samples, and ts is the sequence of sample times.

make_wave invokes evaluate, which has to be provided by a child class of
Signal, in this case Sinusoid.

evaluate takes the sequence of sample times and returns an array of corre-
sponding quantities:

def evaluate(self, ts):

phases = PI2 * self.freq * ts + self.offset

ys = self.amp * self.func(phases)

return ys

PI2 is a constant set to 2π.

ts and ys are NumPy arrays. I use NumPy and SciPy throughout the book.
If you are familiar with these libraries, that’s great, but I will also explain as
we go along.

Let’s unwind this function one step at time:

2.2. Computing the spectrum 13

1. self.freq is frequency in cycles per second, and each element of ts a
time in seconds, so their product is the number of cycles since the start
time.

2. PI2 is a constant that stores 2π. Multiplying by PI2 converts from
cycles to phase. You can think of phase as “cycles since the start time”
expressed in radians; each cycle is 2π radians.

3. self.offset is the phase, in radians, at the start time. It has the effect
of shifting the signal left or right in time.

4. If self.func is sin or cos, the result is a value between −1 and +1.

5. Multiplying by self.amp yields a signal that ranges from -self.amp

to +self.amp.

In math notation, evaluate is written like this:

A cos(2π f t + φ0)

where A is amplitude, f is frequency, t is time, and φ0 is the phase offset.
It may seem like I wrote a lot of code to evaluate one simple function, but
as we’ll see, this code provides a framework for dealing with all kinds of
signals, not just sinusoids.

2.2 Computing the spectrum

Given a Signal, we can compute a Wave. Given a Wave, we can compute
a Spectrum. Wave provides make_spectrum, which returns a new Spectrum

object.

def make_spectrum(self):

hs = numpy.fft.rfft(self.ys)

return Spectrum(hs, self.framerate)

make_spectrum uses rfft, which computes the discrete Fourier transform
using an algorithm called Fast Fourier Transform or FFT.

The result of rfft is a sequence of complex numbers, hs, which is stored in
a Spectrum.

There are two ways to think about complex numbers:

14 Chapter 2. Harmonics

• A complex number is the sum of a real part and an imaginary part,
often written x + iy, where i is the imaginary unit,

√
−1. You can

think of x and y as Cartesian coordinates.

• A complex number is also the product of a magnitude and a complex
exponential, Aeiφ, where A is the magnitude and φ is the angle in
radians, also called the “argument”. You can think of A and φ as polar
coordinates.

Each element of hs corresponds to a frequency component. The magnitude
of each element is proportional to the amplitude of the corresponding com-
ponent. The angle of each element is the phase offset.

NumPy provides absolute, which computes the magnitude of a complex
number, also called the “absolute value”, and angle, which computes the
angle.

Here is the definition of Spectrum:

class Spectrum(object):

def __init__(self, hs, framerate):

self.hs = hs

self.framerate = framerate

n = len(hs)

f_max = framerate / 2.0

self.fs = numpy.linspace(0, f_max, n)

self.amps = numpy.absolute(self.hs)

Again, hs is the result of the FFT and framerate is the number of frames per
second.

The elements of hs correspond to a sequence of frequencies, fs, equally
spaced from 0 to the maximum frequency, f_max. The maximum frequency
is framerate/2, for reasons we’ll see soon.

Finally, amps contains the magnitude of hs, which is proportional to the
amplitude of the components.

Spectrum also provides plot, which plots the magnitude for each frequency:

def plot(self, low=0, high=None):

thinkplot.plot(self.fs[low:high], self.amps[low:high])

low and high specify the slice of the Spectrum that should be plotted.

2.3. Other waveforms 15

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
time (s)

1.0

0.5

0.0

0.5

1.0

Figure 2.1: Segment of a triangle signal at 200 Hz.

2.3 Other waveforms

A sinusoid contains only one frequency component, so its DFT has only one
peak. More complicated waveforms, like the violin recording, yield DFTs
with many peaks. In this section we investigate the relationship between
waveforms and their DFTs.

I’ll start with a triangle waveform, which is like a straight-line version of a
sinusoid. Figure 2.1 shows a triangle waveform with frequency 200 Hz.

To generate a triangle wave, you can use thinkdsp.TriangleSignal:

class TriangleSignal(Sinusoid):

def evaluate(self, ts):

cycles = self.freq * ts + self.offset / PI2

frac, _ = numpy.modf(cycles)

ys = numpy.abs(frac - 0.5)

ys = normalize(unbias(ys), self.amp)

return ys

TriangleSignal inherits __init__ from Sinusoid, so it takes the same ar-
guments: freq, amp, and offset.

The only difference is evaluate. As we saw before, ts is the sequence of
sample times where we want to evaluate the signal.

There are lots of ways to generate a triangle wave. The details are not im-
portant, but here’s how evaluate works:

16 Chapter 2. Harmonics

0 1000 2000 3000 4000 5000
frequency (Hz)

0

500

1000

1500

2000

2500

am
pl

itu
de

Figure 2.2: Spectrum of a triangle signal at 200 Hz.

1. cycles is the number of cycles since the start time. numpy.modf splits
the number of cycles into the fraction part, stored in frac, and the
integer part, which is ignored. 1

2. frac is a sequence that ramps from 0 to 1 with the given frequency.
Subtracting 0.5 yields values between -0.5 and 0.5. Taking the absolute
value yields a waveform that zig-zags between 0.5 and 0.

3. unbias shifts the waveform down so it is centered at 0, then normalize

scales it to the given amplitude, amp.

Here’s the code that generates Figure 2.1:

signal = thinkdsp.TriangleSignal(200)

duration = signal.period * 3

segment = signal.make_wave(duration, framerate=10000)

segment.plot()

2.4 Harmonics

Next we can compute the spectrum of this waveform:

wave = signal.make_wave(duration=0.5, framerate=10000)

spectrum = wave.make_spectrum()

spectrum.plot()

1Using an underscore as a variable name is a convention that means, “I don’t intend to
use this value”.

2.4. Harmonics 17

0.000 0.005 0.010 0.015 0.020 0.025 0.030
time (s)

1.0

0.5

0.0

0.5

1.0

Figure 2.3: Segment of a square signal at 100 Hz.

Figure 2.2 shows the result. As expected, the highest peak is at the fun-
damental frequency, 200 Hz, and there are additional peaks at harmonic
frequencies, which are integer multiples of 200.

But one surprise is that there are no peaks at the even multiples: 400, 800,
etc. The harmonics of a triangle wave are all odd multiples of the funda-
mental frequency, in this example 600, 1000, 1400, etc.

Another feature of this spectrum is the relationship between the amplitude
and frequency of the harmonics. The amplitude of the harmonics drops
off in proportion to frequency squared. For example the frequency ratio of
the first two harmonics (200 and 600 Hz) is 3, and the amplitude ratio is
approximately 9. The frequency ratio of the next two harmonics (600 and
1000 Hz) is 1.7, and the amplitude ratio is approximately 1.72 = 2.9.

thinkdsp also provides SquareSignal, which represents a square signal.
Here’s the class definition:

class SquareSignal(Sinusoid):

def evaluate(self, ts):

cycles = self.freq * ts + self.offset / PI2

frac, _ = numpy.modf(cycles)

ys = self.amp * numpy.sign(unbias(frac))

return ys

Like TriangleSignal, SquareSignal inherits __init__ from Sinusoid, so it
takes the same parameters.

18 Chapter 2. Harmonics

0 1000 2000 3000 4000 5000
frequency (Hz)

0

500

1000

1500

2000

2500

3000

3500

am
pl

itu
de

Figure 2.4: Spectrum of a square signal at 100 Hz.

And the evaluate method is similar. Again, cycles is the number of cycles
since the start time, and frac is the fractional part, which ramps from 0 to 1
each period.

unbias shifts frac so it ramps from -0.5 to 0.5, then numpy.sign maps the
negative values to -1 and the positive values to 1. Multiplying by amp yields
a square wave that jumps between -amp and amp.

Figure 2.3 shows three periods of a square wave with frequency 100 Hz, and
Figure 2.4 shows its spectrum.

Like a triangle wave, the square wave contains only odd harmonics, which
is why there are peaks at 300, 500, and 700 Hz, etc. But the amplitude of the
harmonics drops off more slowly. Specifically, amplitude drops in propor-
tion to frequency (not frequency squared).

2.5 Aliasing

I have a confession. I chose the examples in the previous section carefully, to
avoid showing you something confusing. But now it’s time to get confused.

Figure 2.5 shows the spectrum of a triangle wave at 1100 Hz, sampled at
10,000 frames per second.

As expected, there are peaks at 1100 and 3300 Hz, but the third peak is at
4500, not 5500 Hz as expected. There is a small fourth peak at 2300, not 7700

2.5. Aliasing 19

0 1000 2000 3000 4000 5000
frequency (Hz)

0

500

1000

1500

2000

2500

am
pl

itu
de

Figure 2.5: Spectrum of a triangle signal at 1100 Hz sampled at 10,000
frames per second.

Hz. And if you look very closely, the peak that should be at 9900 is actually
at 100 Hz. What’s going on?

The problem is that when you evaluate the signal at discrete points in time,
you lose information about what happens between samples. For low fre-
quency components, that’s not a problem, because you have lots of samples
per period.

But if you sample a signal at 5000 Hz with 10,000 frames per second, you
only have two samples per period. That’s enough to measure the frequency
(it turns out), but it doesn’t tell you much about the shape of the signal.

If the frequency is higher, like the 5500 Hz component of the triangle wave,
things are worse: you don’t even get the frequency right.

To see why, let’s generate cosine signals at 4500 and 5500 Hz, and sample
them at 10,000 frames per second:

framerate = 10000

signal = thinkdsp.CosSignal(4500)

duration = signal.period*5

segment = signal.make_wave(duration, framerate=framerate)

segment.plot()

signal = thinkdsp.CosSignal(5500)

segment = signal.make_wave(duration, framerate=framerate)

segment.plot()

20 Chapter 2. Harmonics

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
time (s)

1.0

0.5

0.0

0.5

1.0

4500
5500

Figure 2.6: Cosine signals at 4500 and 5500 Hz, sampled at 10,000 frames
per second. They are identical.

Figure 2.6 shows the result. The sampled waveform doesn’t look very much
like a sinusoid, but the bigger problem is that the two waveforms are exactly
the same!

When we sample a 5500 Hz signal at 10,000 frames per second, the result is
indistinguishable from a 4500 Hz signal.

For the same reason, a 7700 Hz signal is indistinguishable from 2300 Hz,
and a 9900 Hz is indistinguishable from 100 Hz.

This effect is called aliasing because when the high frequency signal is sam-
pled, it disguises itself as a low frequency signal.

In this example, the highest frequency we can measure is 5000 Hz, which
is half the sampling rate. Frequencies above 5000 Hz are folded back be-
low 5000 Hz, which is why this threshold is sometimes called the “fold-
ing frequency”, but more often it is called the Nyquist frequency. See
http://en.wikipedia.org/wiki/Nyquist_frequency.

The folding pattern continues if the aliased frequency goes below zero. For
example, the 5th harmonic of the 1100 Hz triangle wave is at 12,100 Hz.
Folded at 5000 Hz, it would appear at -2100 Hz, but it gets folded again
at 0 Hz, back to 2100 Hz. In fact, you can see a small peak at 2100 Hz in
Figure 2.4, and the next one at 4300 Hz.

http://en.wikipedia.org/wiki/Nyquist_frequency

2.6. Exercises 21

2.6 Exercises

Exercise 2.1 If you use IPython, load chap02.ipynb and try out the exam-
ples. You can also view the notebook at http://tinyurl.com/thinkdsp02.

Exercise 2.2 A sawtooth signal has a waveform that ramps up linearly from
-1 to 1, then drops to -1 and repeats. See http://en.wikipedia.org/wiki/

Sawtooth_wave

Write a class called SawtoothSignal that extends Signal and provides
evaluate to evaluate a sawtooth signal.

Compute the spectrum of a sawtooth wave. How does the harmonic struc-
ture compare to triangle and square waves?

Exercise 2.3 Sample an 1100 Hz triangle at 10000 frames per second and
listen to it. Can you hear the aliased harmonic? It might help if you play a
sequence of notes with increasing pitch.

Exercise 2.4 Compute the spectrum of an 1100 Hz square wave sampled at
10 kHz, and compare it to the spectrum of a triangle wave in Figure 2.5

Exercise 2.5 The triangle and square waves have odd harmonics only; the
sawtooth wave has both even and odd harmonics. The harmonics of the
square and sawtooth waves drop off in proportion to 1/ f ; the harmonics
of the triangle wave drop off like 1/ f 2. Can you find a waveform that has
even and odd harmonics that drop off like 1/ f 2?

http://tinyurl.com/thinkdsp02
http://en.wikipedia.org/wiki/Sawtooth_wave
http://en.wikipedia.org/wiki/Sawtooth_wave

22 Chapter 2. Harmonics

Chapter 3

Non-periodic signals

The code for this chapter is in chirp.py, which is in the repository for this
book (see Section 0.1).

3.1 Chirp
The signals we have worked with so far are periodic, which means that they
repeat forever. It also means that the frequency components they contain
do not change over time. In this chapter, we consider non-periodic signals,
whose frequency components do change over time. In other words, pretty
much all sound signals.

We’ll start with a chirp, which is a signal with variable frequency. Here is a
class that represents a chirp:
class Chirp(Signal):

def __init__(self, start=440, end=880, amp=1.0):

self.start = start

self.end = end

self.amp = amp

start and end are the frequencies, in Hz, at the start and end of the chirp.
amp is amplitude.

In a linear chirp, the frequency increases linearly from start to end. Here is
the function that evaluates the signal:

def evaluate(self, ts):

freqs = numpy.linspace(self.start, self.end, len(ts)-1)

return self._evaluate(ts, freqs)

24 Chapter 3. Non-periodic signals

ts is the sequence of points in time where the signal should be evalu-
ated. If the length of ts is n, you can think of it as a sequence of n − 1
intervals of time. To compute the frequency during each interval, we use
numpy.linspace.

_evaluate is a private method1 that does the rest of the math:

def _evaluate(self, ts, freqs):

dts = numpy.diff(ts)

dphis = PI2 * freqs * dts

phases = numpy.cumsum(dphis)

ys = self.amp * numpy.cos(phases)

return ys

numpy.diff computes the difference between adjacent elements of ts, re-
turning the length of each interval in seconds. In the usual case where the
elements of ts are equally spaced, the dts are all the same.

The next step is to figure out how much the phase changes during each
interval. Since we know the frequency and duration of each interval, the
change in phase during each interval is dphis = PI2 * freqs * dts. In
math notation:

∆φ = 2π f (t)∆t

numpy.cumsum computes the cumulative sum, which you can think of as
a simple kind of integration. The result is a NumPy array where the ith
element contains the sum of the first i terms from dphis; that is, the total
phase at the end of the ith interval. Finally, numpy.cos maps from phase to
amplitude.

Here’s the code that creates and plays a chirp from 220 to 880 Hz, which is
two octaves from A3 to A5:

signal = thinkdsp.Chirp(start=220, end=880)

wave1 = signal.make_wave(duration=2)

filename = 'chirp.wav'

wave1.write(filename)

thinkdsp.play_wave(filename)

You can run this code in chap03.ipynb or view the notebook at http://
tinyurl.com/thinkdsp03.

1Beginning a method name with an underscore makes it “private”, indicating that it is
not part of the API that should be used outside the class definition.

http://tinyurl.com/thinkdsp03
http://tinyurl.com/thinkdsp03

3.2. Exponential chirp 25

3.2 Exponential chirp
When you listen to this chirp, you might notice that the pitch rises quickly
at first and then slows down. The chirp spans two octaves, but it only takes
2/3 s to span the first octave, and twice as long to span the second.

The reason is that our perception of pitch depends on the logarithm of fre-
quency. As a result, the interval we hear between two notes depends on the
ratio of their frequencies, not the difference. “Interval” is the musical term
for the perceived difference between two pitches.

For example, an octave is an interval where the ratio of two pitches is 2. So
the interval from 220 to 440 is one octave and the interval from 440 to 880
is also one octave. The difference in frequency is bigger, but the ratio is the
same.

As a result, if frequency increases linearly, as in a linear chirp, the perceived
pitch increases logarithmically.

If you want the perceived pitch to increase linearly, the frequency has to
increase exponentially. A signal with that shape is called an exponential
chirp.

Here’s the code that makes one:
class ExpoChirp(Chirp):

def evaluate(self, ts):

start, end = math.log10(self.start), math.log10(self.end)

freqs = numpy.logspace(start, end, len(ts)-1)

return self._evaluate(ts, freqs)

Instead of numpy.linspace, this version of evaluate uses numpy.logspace,
which creates a series of frequencies whose logarithms are equally spaced,
which means that they increase exponentially.

That’s it; everything else is the same as Chirp. Here’s the code that makes
one:

signal = thinkdsp.ExpoChirp(start=220, end=880)

wave1 = signal.make_wave(duration=2)

filename = 'expo_chirp.wav'

wave1.write(filename)

thinkdsp.play_wave(filename)

Run this code and listen. If you have a musical ear, this might sound more
like music than the linear chirp.

26 Chapter 3. Non-periodic signals

0 200 400 600 800
0

50

100

150

200

250

300

350

400

0 200 400 600 800
0

50

100

150

200

250

300

350

0 200 400 600 800
0

50

100

150

200

Figure 3.1: Spectrum of (a) a periodic segment of a sinusoid, (b) a non-
periodic segment, (c) a tapered non-periodic segment.

3.3 Leakage

In previous chapters, we used the Fast Fourier Transform (FFT) to compute
the spectrum of a wave. When we discuss how FFT works in Chapter 7,
we will learn that it is based on the assumption that the signal is periodic.
In theory, we should not use FFT on non-periodic signals. In practice it
happens all the time, but there are a few things you have to be careful about.

One common problem is dealing with discontinuities at the beginning and
end of a segment. Because FFT assumes that the signal is periodic, it implic-
itly connects the end of the segment back to the beginning to make a loop.
If the end does not connect smoothly to the beginning, the discontinuity
creates additional frequency components in the segment that are not in the
signal.

As an example, let’s start with a sine wave that contains only one frequency
component at 440 Hz.

signal = thinkdsp.SinSignal(freq=440)

If we select a segment that happens to be an integer multiple of the period,
the end of the segment connects smoothly with the beginning, and FFT be-
haves well.

duration = signal.period * 30

wave = signal.make_wave(duration)

spectrum = wave.make_spectrum()

Figure 3.1a shows the result. As expected, there is a single peak at 440 Hz.

3.4. Windowing 27

0.000 0.005 0.010 0.015 0.020
1.0

0.5

0.0

0.5

1.0

0.000 0.005 0.010 0.015 0.020
1.0

0.5

0.0

0.5

1.0

0.000 0.005 0.010 0.015 0.020
time (s)

1.0

0.5

0.0

0.5

1.0

Figure 3.2: (a) Segment of a sinusoid, (b) Hamming window, (c) product of
the segment and the window.

But if the duration is not a multiple of the period, bad things happen. With
duration = signal.period * 30.25, the signal starts at 0 and ends at 1.
Figure 3.1b shows the spectrum of this segment. Again, the peak is at 440
Hz, but now there are additional components spread out from 240 to 640
Hz. This spread is called “spectral leakage”, because some of the energy
that is actually at the fundamental frequency leaks into other frequencies.

In this example, leakage happens because we are using FFT on a segment
that is not periodic.

3.4 Windowing

We can reduce leakage by smoothing out the discontinuity between the be-
ginning and end of the segment, and one way to do that is windowing.

A “window” is a function designed to transform a non-periodic segment
into something that can pass for periodic. Figure 3.2a shows a segment
where the end does not connect smoothly to the beginning.

Figure 3.2b shows a “Hamming window”, one of the more common win-
dow functions. No window function is perfect, but some can be shown to

28 Chapter 3. Non-periodic signals

0 100 200 300 400 500 600 700
frequency (Hz)

0

50

100

150

200

250

300

350

400

450

am
pl

itu
de

Figure 3.3: Spectrum of a one-second one-octave chirp.

be optimal for different applications, and Hamming is a commonly-used,
all-purpose window.

Figure 3.2c shows the result of multiplying the window by the original sig-
nal. Where the window is close to 1, the signal is unchanged. Where the
window is close to 0, the signal is attenuated. Because the window tapers
at both ends, the end of the segment connects smoothly to the beginning.

Figure 3.1c shows the spectrum of the tapered signal. Windowing has re-
duced leakage substantially, but not completely.

Here’s what the code looks like. Wave provides hamming, which applies a
Hamming window:

def hamming(self):

self.ys *= numpy.hamming(len(self.ys))

numpy.hamming computes the Hamming window with the given number of
elements. NumPy provides functions to compute other window functions,
including bartlett, blackman, hanning, and kaiser. One of the exercises at
the end of this chapter asks you to experiment with these other windows.

3.5 Spectrum of a chirp

What do you think happens if you compute the spectrum of a chirp? Here’s
an example that constructs a one-second one-octave chirp and its spectrum:

signal = thinkdsp.Chirp(start=220, end=440)

3.6. Spectrogram 29

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

0

100

200

300

400

500

600

700

fre
qu

en
cy

 (H
z)

Figure 3.4: Spectrogram of a one-second one-octave chirp.

wave = signal.make_wave(duration=1)

spectrum = wave.make_spectrum()

Figure 3.3 shows the result. The spectrum shows components at every fre-
quency from 220 to 440 Hz with variations, caused by leakage, that look a
little like the Eye of Sauron (see http://en.wikipedia.org/wiki/Sauron).

The spectrum is approximately flat between 220 and 440 Hz, which in-
dicates that the signal spends equal time at each frequency in this range.
Based on that observation, you should be able to guess what the spectrum
of an exponential chirp looks like.

The spectrum gives hints about the structure of the signal, but it obscures
the relationship between frequency and time. For example, we cannot tell
by looking at this spectrum whether the frequency went up or down, or
both.

3.6 Spectrogram

To recover the relationship between frequency and time, we can break the
chirp into segments and plot the spectrum of each segment. The result is
called a short-time Fourier transform (STFT).

There are several ways to visualize a STFT, but the most common is a spec-
trogram, which shows time on the x-axis and frequency on the y-axis. Each
column in the spectrogram shows the spectrum of a short segment, using
color or grayscale to represent amplitude.

http://en.wikipedia.org/wiki/Sauron

30 Chapter 3. Non-periodic signals

Wave provides make_spectrogram, which returns a Spectrogram object:

signal = thinkdsp.Chirp(start=220, end=440)

wave = signal.make_wave(duration=1)

spectrogram = wave.make_spectrogram(seg_length=512)

spectrogram.plot(high=32)

seg_length is the number of samples in each segment. I chose 512 because
FFT is most efficient when the number of samples is a power of 2.

Figure 3.4 shows the result. The x-axis shows time from 0 to 1 seconds.
The y-axis shows frequency from 0 to 700 Hz. I cut off the top part of the
spectrogram; the full range goes to 5012.5 Hz, which is half of the framerate.

The spectrogram shows clearly that frequency increases linearly over time.
Similarly, in the spectrogram of an exponential chirp, we can see the shape
of the exponential curve.

However, notice that the peak in each column is blurred across 2–3 cells.
This blurring reflects the limited resolution of the spectrogram.

3.7 The Gabor limit

The time resolution of the spectrogram is the duration of the segments,
which corresponds to the width of the cells in the spectrogram. Since each
segment is 512 frames, and there are 11,025 frames per second, there are
0.046 seconds per segment.

The frequency resolution is the frequency range between elements in the
spectrum, which corresponds to the height of the cells. With 512 frames,
we get 256 frequency components over a range from 0 to 5012.5 Hz, so the
range between components is 21.5 Hz.

More generally, if n is the segment length, the spectrum contains n/2 com-
ponents. If the framerate is r, the maximum frequency in the spectrum is
r/2. So the time resolution is n/r and the frequency resolution is

r/2
n/2

which is r/n.

Ideally we would like time resolution to be small, so we can see rapid
changes in frequency. And we would like frequency resolution to be small

3.8. Implementing spectrograms 31

0 100 200 300 400 500 600 700 800
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.5: Overlapping Hamming windows.

so we can see small changes in frequency. But you can’t have both. Notice
that time resolution, n/r, is the inverse of frequency resolution, r/n. So if
one gets smaller, the other gets bigger.

For example, if you double the segment length, you cut frequency resolu-
tion in half (which is good), but you double time resolution (which is bad).
Even increasing the framerate doesn’t help. You get more samples, but the
range of frequencies increases at the same time.

This tradeoff is called the Gabor limit and it is a fundamental limitation of
this kind of time-frequency analysis.

3.8 Implementing spectrograms

Here is the Wave method that computes spectrograms:

def make_spectrogram(self, seg_length):

n = len(self.ys)

window = numpy.hamming(seg_length)

start, end, step = 0, seg_length, seg_length / 2

spec_map = {}

while end < n:

ys = self.ys[start:end] * window

hs = numpy.fft.rfft(ys)

32 Chapter 3. Non-periodic signals

t = (start + end) / 2.0 / self.framerate

spec_map[t] = Spectrum(hs, self.framerate)

start += step

end += step

return Spectrogram(spec_map, seg_length)

seg_length is the number of samples in each segment. n is the number of
samples in the wave. window is a Hamming window with the same length
as the segments.

start and end are the slice indices that select the segments from the wave.
step is the offset between segments. Since step is half of seg_length, the
segments overlap by half. Figure 3.5 shows what these overlapping win-
dows look like.

Inside the while loop, we select a slice from the wave, multiply by the win-
dow, and compute the FFT. Then we construct a Spectrum object and add it
to spec_map which is a map from the midpoint of the segment in time to the
Spectrum object.

Finally, the method constructs and returns a Spectrogram. Here is the defi-
nition of Spectrogram:

class Spectrogram(object):

def __init__(self, spec_map, seg_length):

self.spec_map = spec_map

self.seg_length = seg_length

Like many __init__ methods, this one just stores the parameters as at-
tributes.

Spectrogram provides plot, which generates a pseudocolor plot:

def plot(self, low=0, high=None):

ts = self.times()

fs = self.frequencies()[low:high]

copy amplitude from each spectrum into a column of the array

size = len(fs), len(ts)

array = numpy.zeros(size, dtype=numpy.float)

copy each spectrum into a column of the array

3.9. Exercises 33

for i, t in enumerate(ts):

spectrum = self.spec_map[t]

array[:,i] = spectrum.amps[low:high]

thinkplot.pcolor(ts, fs, array)

plot uses times, which the returns the midpoint of each time segment in
a sorted sequence, and frequencies, which returns the frequencies of the
components in the spectrums.

array is a numpy array that holds the amplitudes from the spectrums, with
one column for each point in time and one row for each frequency. The
for loop iterates through the times and copies the amplitudes from each
spectrum into a column of the array.

Finally thinkplot.pcolor is a wrapper around pyplot.pcolor, which gen-
erates the pseudocolor plot.

And that’s how Spectrograms are implemented.

3.9 Exercises

Exercise 3.1 Run and listen to the examples in chap03.ipynb, which is in
the repository for this book, and also available at http://tinyurl.com/

thinkdsp03.

In the leakage example, try replacing the Hamming window with one of
the other windows provided by NumPy, and see what effect they have on
leakage. See http://docs.scipy.org/doc/numpy/reference/routines.

window.html

Exercise 3.2 Write a class called SawtoothChirp that extends Chirp and
overrides evaluate to generate a sawtooth waveform with frequency that
increases (or decreases) linearly.

Hint: combine the evaluate functions from Chirp and SawtoothSignal.

Draw a sketch of what you think the spectrogram of this signal looks like,
and then plot it. The effect of aliasing should be visually apparent, and if
you listen carefully, you can hear it.

Exercise 3.3 Another way to generate a sawtooth chirp is to add up a har-
monic series of sinusoidal chirps. Write another version of SawtoothChirp
that uses this method and plot the spectrogram.

http://tinyurl.com/thinkdsp03
http://tinyurl.com/thinkdsp03
http://docs.scipy.org/doc/numpy/reference/routines.window.html
http://docs.scipy.org/doc/numpy/reference/routines.window.html

34 Chapter 3. Non-periodic signals

Exercise 3.4 In musical terminology, a “glissando” is a note that slides from
one pitch to another, so it is similar to a chirp. A trombone player can play a
glissando by extending the trombone slide while blowing continuously. As
the slide extends, the total length of the tube gets longer, and the resulting
pitch is inversely proportional to length.

Assuming that the player moves the slide at a constant speed, how does
frequency vary with time? Is a trombone glissando more like a linear or
exponential chirp?

Write a function that simulates a trombone glissando from C3 up to F3 and
back down to C3. C3 is 262 Hz; F3 is 349 Hz.

Exercise 3.5 George Gershwin’s Rhapsody in Blue starts with a famous clar-
inet glissando. Find a recording of this piece and plot a spectrogram of the
first few seconds.

Exercise 3.6 Make or find a recording of a series of vowel sounds and look
at the spectrogram. Can you identify different vowels?

Chapter 4

Noise

In English, “noise” means an unwanted or unpleasant sound. In the context
of digital signal processing, it has two different senses:

1. As in English, it can mean an unwanted signal of any kind. If two
signals interfere with each other, each signal would consider the other
to be noise.

2. “Noise” also refers to a signal that contains components at many fre-
quencies, so it lacks the harmonic structure of the periodic signals we
saw in previous chapters.

This chapter is about the second kind.

The code for this chapter is in noise.py, which is in the repository for this
book (see Section 0.1). You can listen to the examples in chap04.ipynb,
which you can view at http://tinyurl.com/thinkdsp04.

4.1 Uncorrelated noise

The simplest way to understand noise is to generate it, and the simplest
kind to generate is uncorrelated uniform noise (UU noise). “Uniform”
means the signal contains random values from a uniform distribution; that
is, every value in the range is equally likely. “Uncorrelated” means that the
values are independent; that is, knowing one value provides no information
about the others.

This code generates UU noise:

http://tinyurl.com/thinkdsp04

36 Chapter 4. Noise

0.00 0.02 0.04 0.06 0.08 0.10
time (s)

1.0

0.5

0.0

0.5

1.0

am
pl

itu
de

Figure 4.1: Waveform of uncorrelated uniform noise.

duration = 0.5

framerate = 11025

n = framerate * duration

ys = numpy.random.uniform(-1, 1, n)

wave = thinkdsp.Wave(ys, framerate)

wave.plot()

The result is a wave with duration 0.5 seconds at 11,025 samples per second.
Each sample is drawn from a uniform distribution between -1 and 1.

If you play this wave, it sounds like the static you hear if you tune a ra-
dio between channels. Figure 4.1 shows what the waveform looks like. As
expected, it looks pretty random.

Now let’s take a look at the spectrum:

spectrum = wave.make_spectrum()

spectrum.plot_power()

Spectrum.plot_power is similar to Spectrum.plot, except that it plots
power density instead of amplitude. Power density is the square of ampli-
tude, expressed in units of power per Hz. (I am switching from amplitude
to power in this section because it is more conventional in the context of
noise.)

Figure 4.2 shows the result. Like the signal, the spectrum looks pretty ran-
dom. And it is, but we have to be more precise about the word “random”.
There are at least three things we might like to know about a noise signal or
its spectrum:

4.1. Uncorrelated noise 37

0 1000 2000 3000 4000 5000
frequency (Hz)

0

2000

4000

6000

8000

10000

12000

14000

16000

po
w

er
 d

en
si

ty

Figure 4.2: Spectrum of uncorrelated uniform noise.

• Distribution: The distribution of a random signal is the set of possible
values and their probabilities. For example, in the uniform noise sig-
nal, the set of values is the range from -1 to 1, and all values have the
same probability. An alternative is Gaussian noise, where the set of
values is the range from negative to positive infinity, but values near
0 are the most likely, with probability that drops off according to the
Gaussian or “bell” curve.

• Correlation: Is each value in the signal independent of the others, or
are there dependencies between them? In UU noise, the values are
independent. An alternative is Brownian noise, where each value is
the sum of the previous value and a random “step”. So if the value
of the signal is high at a particular point in time, we expect it to stay
high, and if it is low, we expect it to stay low.

• Relationship between power and frequency: In the spectrum of UU
noise, the power at all frequencies is drawn from the same distribu-
tion; that is, there is no relationship between power and frequency (or,
if you like, the relationship is a constant). An alternative is pink noise,
where power is inversely related to frequency; that is, the power at fre-
quency f is drawn from a distribution whose mean is proportional to
1/ f .

38 Chapter 4. Noise

0 1000 2000 3000 4000 5000
frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

po
w

er

Figure 4.3: Integrated spectrum of uncorrelated uniform noise.

4.2 Integrated spectrum

For UU noise we can see the relationship between power and frequency
more clearly by looking at the integrated spectrum, which is a function of
frequency, f , that shows the cumulative total power in the spectrum up to
f .

Spectrum provides a method that computes the IntegratedSpectrum:

def make_integrated_spectrum(self):

cs = numpy.cumsum(self.power)

cs /= cs[-1]

return IntegratedSpectrum(cs, self.fs)

self.power is a NumPy array containing power for each frequency.
numpy.cumsum computes the cumulative sum of the powers. Dividing
through by the last element normalizes the integrated spectrum so it runs
from 0 to 1.

The result is an IntegratedSpectrum. Here is the class definition:

class IntegratedSpectrum(object):

def __init__(self, cs, fs):

self.cs = cs

self.fs = fs

Like Spectrum, IntegratedSpectrum provides plot_power, so we can com-
pute and plot the integrated spectrum like this:

integ = spectrum.make_integrated_spectrum()

integ.plot_power()

4.3. Brownian noise 39

0.00 0.02 0.04 0.06 0.08 0.10
time (s)

1.0

0.5

0.0

0.5

1.0

am
pl

itu
de

Figure 4.4: Waveform of Brownian noise.

thinkplot.show(xlabel='frequency (Hz)',

ylabel='cumulative power')

The result, shown in Figure 4.3, is a straight line, which indicates that power
at all frequencies is constant, on average. Noise with equal power at all
frequencies is called white noise by analogy with light, because an equal
mixture of light at all visible frequencies is white.

4.3 Brownian noise

UU noise is uncorrelated, which means that each value does not depend on
the others. An alternative is Brownian noise, in which each value is the sum
of the previous value and a random “step”.

It is called “Brownian” by analogy with Brownian motion, in which a parti-
cle suspended in a fluid moves apparently at random, due to unseen inter-
actions with the fluid. Brownian motion is often described using a random
walk, which is a mathematical model of a path where the distance between
steps is characterized by a random distribution.

In a one-dimensional random walk, the particle moves up or down by a
random amount at each time step. The location of the particle at any point
in time is the sum of all previous steps.

This observation suggests a way to generate Brownian noise: generate un-
correlated random steps and then add them up. Here is a class definition
that implements this algorithm:

40 Chapter 4. Noise

101 102 103

frequency (Hz)

10-3

10-2

10-1

100

101

102

103

104

105

106

po
w

er
 d

en
si

ty

Figure 4.5: Spectrum of Brownian noise on a log-log scale.

class BrownianNoise(_Noise):

def evaluate(self, ts):

dys = numpy.random.uniform(-1, 1, len(ts))

ys = numpy.cumsum(dys)

ys = normalize(unbias(ys), self.amp)

return ys

We use numpy.random.uniform to generate an uncorrelated signal and
numpy.cumsum to compute their cumulative sum.

Since the sum is likely to escape the range from -1 to 1, we have to use
unbias to shift the mean to 0, and normalize to get the desired maximum
amplitude.

Here’s the code that generates a BrownianNoise object and plots the wave-
form.

signal = thinkdsp.BrownianNoise()

wave = signal.make_wave(duration=0.5, framerate=11025)

wave.plot()

Figure 4.4 shows the result. The waveform wanders up and down, but there
is a clear correlation between successive values. When the amplitude is
high, it tends to stay high, and vice versa.

If you plot the spectrum of Brownian noise, it doesn’t look like much.
Nearly all of the power is at the lowest frequencies; on a linear scale, the
higher frequency components are not visible.

4.4. Pink Noise 41

To see the shape of the spectrum, we have to plot power density and fre-
quency on a log-log scale. Here’s the code:

spectrum = wave.make_spectrum()

spectrum.plot_power(low=1, linewidth=1, alpha=0.5)

thinkplot.show(xlabel='frequency (Hz)',

ylabel='power density',

xscale='log',

yscale='log')

The slope of this line is approximately -2 (we’ll see why in Chapter 9), so
we can write this relationship:

log P = k− 2 log f

where P is power, f is frequency, and k is the intercept of the line (which is
not relevant for our purposes). Exponentiating both sides yields:

P = K/ f 2

where K is ek, but still not relevant. More important is that power is propor-
tional to 1/ f 2, which is characteristic of Brownian noise.

Brownian noise is also called red noise, for the same reason that white noise
is called “white”. If you combine visible light with the same relationship
between frequency and power, most of the power would be at the low-
frequency end of the spectrum, which is red. Brownian noise is also some-
times called “brown noise”, but I think that’s confusing, so I won’t use it.

4.4 Pink Noise

For red noise, the relationship between frequency and power is

P = K/ f 2

There is nothing special about the exponent 2. More generally, we can syn-
thesize noise with any exponent, β.

P = K/ f β

When β = 0, power is constant at all frequencies, so the result is white noise.
When β = 2 the result is red noise.

42 Chapter 4. Noise

0.00 0.02 0.04 0.06 0.08 0.10
time (s)

1.0

0.5

0.0

0.5

1.0

am
pl

itu
de

Figure 4.6: Waveform of pink noise with β = 1.

When β is between 0 and 2, the result is between white and red noise, so it
is called “pink noise”.

There are several ways to generate pink noise. The simplest is to gener-
ate white noise and then apply a low-pass filter with the desired exponent.
thinkdsp provides a class that represents a pink noise signal:

class PinkNoise(_Noise):

def __init__(self, amp=1.0, beta=1.0):

self.amp = amp

self.beta = beta

amp is the desired amplitude of the signal. beta is the desired exponent.
PinkNoise provides make_wave, which generates a Wave.

def make_wave(self, duration=1, start=0, framerate=11025):

signal = UncorrelatedUniformNoise()

wave = signal.make_wave(duration, start, framerate)

spectrum = wave.make_spectrum()

spectrum.pink_filter(beta=self.beta)

wave2 = spectrum.make_wave()

wave2.unbias()

wave2.normalize()

return wave2

duration is the length of the wave in seconds. start is the start time of
the wave, which is included so that make_wave has the same interface for

4.4. Pink Noise 43

100 101 102

frequency (Hz)

10-4

10-3

10-2

10-1

100

101

102

103

104

105

po
w

er

white
pink
red

Figure 4.7: Spectrum of white, pink, and red noise on a log-log scale.

all types of noise, but for random noises, start time is irrelevant. And
framerate is the number of samples per second.

make_wave creates a white noise wave, computes its spectrum, applies a
filter with the desired exponent, and then converts the filtered spectrum
back to a wave. Then it unbiases and normalizes the wave.

Spectrum provides pink_filter:

def pink_filter(self, beta=1.0):

denom = self.fs ** (beta/2.0)

denom[0] = 1

self.hs /= denom

pink_filter divides each element of the spectrum by f β/2. Since power is
the square of amplitude, this operation divides the power at each compo-
nent by f β. It treats the component at f = 0 as a special case, partly to avoid
dividing by 0, but also because this element represents the bias of the signal,
which we are going to set to 0 anyway.

Figure 4.6 shows the resulting waveform. Like Brownian noise, it wanders
up and down in a way that suggests correlation between successive values,
but at least visually, it looks more random. In the next chapter we will come
back to this observation and I will be more precise about what I mean by
“correlation” and “more random”.

Finally, Figure 4.7 shows a spectrum for white, pink, and red noise on the
same log-log scale. The relationship between the exponent, β, and the slope
of the spectrum is apparent in this figure.

44 Chapter 4. Noise

4 3 2 1 0 1 2 3 4
normal sample

200

100

0

100

200

po
w

er
 d

en
si

ty

model
real

4 3 2 1 0 1 2 3 4
normal sample

200

100

0

100

200

model
imag

Figure 4.8: Normal probability plot for the real and imaginary parts of the
spectrum of Gaussian noise.

4.5 Gaussian noise

We started with uncorrelated uniform (UU) noise and showed that, because
its spectrum has equal power at all frequencies, on average, UU noise is
white.

But when people talk about “white noise”, they don’t always mean UU
noise. In fact, more often they mean uncorrelated Gaussian (UG) noise.

thinkdsp provides an implementation of UG noise:

class UncorrelatedGaussianNoise(_Noise):

def evaluate(self, ts):

ys = numpy.random.normal(0, self.amp, len(ts))

return ys

numpy.random.normal returns a NumPy array of values from a Gaussian
distribution, in this case with mean 0 and standard deviation self.amp. In
theory the range of values is from negative to positive infinity, but we expect
about 99% of the values to be between -3 and 3.

UG noise is similar in many ways to UU noise. The spectrum has equal
power at all frequencies, on average, so UG is also white. And it has one
other interesting property: the spectrum of UG noise is also UG noise. More
precisely, the real and imaginary parts of the spectrum are uncorrelated
Gaussian values.

4.6. Exercises 45

To test that claim, we can generate the spectrum of UG noise and then gen-
erate a “normal probability plot”, which is a graphical way to test whether
a distribution is Gaussian.

signal = thinkdsp.UncorrelatedGaussianNoise()

wave = signal.make_wave(duration=0.5, framerate=11025)

spectrum = wave.make_spectrum()

thinkstats2.NormalProbabilityPlot(spectrum.real)

thinkstats2.NormalProbabilityPlot(spectrum.imag)

NormalProbabilityPlot is provided by thinkstats2, which is included in
the repository for this book. If you are not familiar with normal probability
plots, you can read about them in Think Stats at http://thinkstats2.com.

Figure 4.8 shows the results. The gray lines show a linear model fit to the
data; the dark lines show the data.

A straight line on a normal probability plot indicates that the data come
from a Gaussian distribution. Except for some random variation at the ex-
tremes, these lines are straight, which indicates that the spectrum of UG
noise is UG noise.

The spectrum of UU noise is also UG noise, at least approximately. In fact,
by the Central Limit Theorem, the spectrum of almost any uncorrelated
noise is approximately Gaussian, as long as the distribution has finite mean
and standard deviation and the number of samples is large.

4.6 Exercises

Exercise 4.1 The algorithm in this chapter for generating pink noise is con-
ceptually simple but computationally expensive. There are more efficient
alternatives, like the Voss-McCartney algorithm. Research this method, im-
plement it, compute the spectrum of the result, and confirm that it has the
desired relationship between power and frequency.

Exercise 4.2 “A Soft Murmur” is a web site that plays a mixture of natural
noise sources, including rain, waves, wind, etc. At http://asoftmurmur.
com/about/ you can find their list of recordings, most of which are at http:
//freesound.org.

Download a few of these files and compute the spectrum of each signal.
Does the power spectrum look like white noise, pink noise, or Brownian
noise? How does the spectrum vary over time?

http://thinkstats2.com
http://asoftmurmur.com/about/
http://asoftmurmur.com/about/
http://freesound.org
http://freesound.org

46 Chapter 4. Noise

Exercise 4.3 In a white noise signal, the mixture of frequencies changes over
time. In the long run, we expect the power at all frequencies to be equal, but
in any sample, the power at each frequency is random.

To estimate the long-term average power at each frequency, we can break
a long signal into segments, compute the power spectral density for each
segment, and then compute the average across the segments. You can read
more about this algorithm at http://en.wikipedia.org/wiki/Bartlett'

s_method.

At http://www.coindesk.com you can download the daily price of a Bit-
Coin as a CSV file. Read this file and compute the power spectrum of Bit-
Coin prices as a function of time. Does it resemble white, pink, or Brownian
noise?

http://en.wikipedia.org/wiki/Bartlett's_method
http://en.wikipedia.org/wiki/Bartlett's_method
http://www.coindesk.com

Chapter 5

Autocorrelation

In the previous chapter I characterized white noise as “uncorrelated”, which
means that each value is independent of the others, and Brownian noise as
“correlated”, because each value depends on the preceding value. In this
chapter I define these terms more precisely and present the autocorrelation
function, which is a useful tool for signal analysis.

But before we get to autocorrelation, let’s start with correlation.

The code for this chapter is in autocorr.py, which is in the repository for
this book (see Section 0.1).

5.1 Correlation

In general, correlation between variables means that if you know the value
of one, you have some information about the other. There are several
ways to quantify correlation, but the most common is the Pearson product-
moment correlation coefficient, usually denoted ρ. For two variables, x and
y, that each contain N values:

ρ =
∑i(xi − µx)(yi − µy)

Nσxσy

Where µx and µy are the means of x and y, and σx and σy are their standard
deviations.

Pearson’s correlation is always between -1 and +1 (including both). If ρ is
positive, we say that the correlation is positive, which means that when one

48 Chapter 5. Autocorrelation

0.000 0.002 0.004 0.006 0.008 0.010
time (s)

1.0

0.5

0.0

0.5

1.0

am
pl

itu
de

wave1
wave2

Figure 5.1: Two sine waves that differ by a phase offset of 1 radian; their
coefficient of correlation is 0.54.

variable is high, the other tends to be high. If ρ is negative, the correlation
is negative, so when one variable is high, the other is low.

The magnitude of ρ indicates the strength of the correlation. If ρ is 1 or -1,
the variables are perfectly correlated, which means that if you know one,
you can make a perfect prediction about the other.

If ρ is near zero, the correlation might be weak, or there might be a nonlinear
relationship that is not captured by this coefficient of correlation. Nonlin-
ear relationships are often important in statistics, but less often relevant for
signal processing, so I won’t say more about them here.

Python provides several ways to compute correlations. numpy.corrcoef

takes any number of variables and computes a correlation matrix that in-
cludes correlations between each pair of variables.

I’ll present an example with only two variables. First, I define a function
that constructs sine waves with different phase offsets:

def make_wave(offset):

signal = thinkdsp.SinSignal(freq=440, offset=offset)

wave = signal.make_wave(duration=0.5, framerate=10000)

return wave

Next I instantiate two waves with different offsets:

wave1 = make_wave(offset=0)

wave2 = make_wave(offset=1)

5.1. Correlation 49

0 1 2 3 4 5 6
offset (radians)

1.0

0.5

0.0

0.5

1.0

co
rr

el
at

io
n

Figure 5.2: The correlation of two sine waves as a function of the phase
offset between them. The result is a cosine.

Figure 5.1 shows what the first few periods of these waves look like. When
one wave is high, the other is usually high, so we expect them to be corre-
lated.

>>> corr_matrix = numpy.corrcoef(wave1.ys, wave2.ys, ddof=0)

[[1. 0.54]

[0.54 1.]]

The option ddof=0 indicates that corrcoef should divide by N rather than
the default, N − 1.

The result is a correlation matrix: the first element is the correlation of wave1
with itself, which is always 1. Similarly, the last element is the correlation of
wave2 with itself.

The off-diagonal elements contain the value we’re interested in, the corre-
lation of wave1 and wave2. The value 0.54 indicates that the strength of the
correlation is moderate.

As the phase offset increases, this correlation decreases until the waves are
180 degrees out of phase, which yields correlation -1. Then it increases until
the offset differs by 360 degrees. At that point we have come full circle and
the correlation is 1.

Figure 5.2 shows the relationship between correlation and phase offset for a
sine wave. The shape of that curve should look familiar; it is a cosine.

thinkdsp also provides a simple interface for computing the correlation be-
tween waves:

50 Chapter 5. Autocorrelation

>>> wave1.corr(wave2)

0.54

5.2 Serial correlation

Signals often represent measurements of quantities that vary in time. For
example, the sound signals we’ve worked with represent measurements of
voltage (or current), which represent the changes in air pressure we perceive
as sound.

Measurements like this almost always have serial correlation, which is the
correlation between each element and the next (or the previous). To com-
pute serial correlation, we can shift a signal and then compute the correla-
tion of the shifted version with the original.

def corrcoef(xs, ys):

return numpy.corrcoef(xs, ys, ddof=0)[0, 1]

def serial_corr(wave, lag=1):

n = len(wave)

y1 = wave.ys[lag:]

y2 = wave.ys[:n-lag]

corr = corrcoef(y1, y2)

return corr

corrcoef is a convenience function that simplifies the interface to
numpy.corrcoef.

serial_corr takes a Wave object and lag, which is the integer number of
places to shift the waves.

We can test this function with the noise signals from the previous chapter.
We expect UU noise to be uncorrelated, based on the way it’s generated (not
to mention the name):

signal = thinkdsp.UncorrelatedGaussianNoise()

wave = signal.make_wave(duration=0.5, framerate=11025)

serial_corr(wave)

When I ran this example, I got 0.006, which indicates a very small serial
correlation. You might get a different value when you run it, but it should
be comparably small.

In a Brownian noise signal, each value is the sum of the previous value and
a random “step”, so we expect a strong serial correlation:

5.3. Autocorrelation 51

0.0 0.5 1.0 1.5 2.0
pink noise parameter, β

0.0

0.2

0.4

0.6

0.8

1.0

se
ria

l c
or

re
la

tio
n

Figure 5.3: Serial correlation for pink noise with a range of parameters.

signal = thinkdsp.BrownianNoise()

wave = signal.make_wave(duration=0.5, framerate=11025)

serial_corr(wave)

Sure enough, the result I got is greater than 0.999.

Since pink noise is in some sense between Brownian noise and UU noise,
we might expect an intermediate correlation:

signal = thinkdsp.PinkNoise(beta=1)

wave = signal.make_wave(duration=0.5, framerate=11025)

serial_corr(wave)

With parameter β = 1, I got a serial correlation of 0.851. As we vary the pa-
rameter from β = 0, which is uncorrelated noise, to β = 2, which is Brown-
ian, serial correlation ranges from 0 to almost 1, as shown in Figure 5.3.

5.3 Autocorrelation

In the previous section we computed the correlation between each value
and the next, so we shifted the elements of the array by 1. But if you no-
ticed the lag parameter in serial_corr, you realize we can compute serial
correlations with different lags.

You can think of serial_corr as a function that maps from each value of
lag to the corresponding correlation, and we can evaluate that function by
looping through values of lag:

52 Chapter 5. Autocorrelation

0 50 100 150 200
lag

0.0

0.2

0.4

0.6

0.8

1.0

co
rr

el
at

io
n

β = 1.2
β = 1.0
β = 0.7

Figure 5.4: Autocorrelation functions for pink noise with a range of param-
eters.

def autocorr(wave):

lags = range(len(wave.ys)//2)

corrs = [serial_corr(wave, lag) for lag in lags]

return lags, corrs

autocorr takes a Wave object and returns the autocorrelation function as a
pair of sequences: lags is a sequence of integers from 0 to half the length of
the wave; corrs is the sequence of serial correlations for each lag.

Figure 5.4 shows autocorrelation functions for pink noise with three values
of β. For low values of β, the signal is less correlated, and the autocorrela-
tion function drops toward zero relatively quickly. For larger values, serial
correlation is stronger and drops off more slowly. With β = 1.2 serial cor-
relation is strong even for long lags; this phenomenon is called long-range
dependence, because it indicates that each value in the signal depends on
many preceding values.

If you plot these autocorrelation functions on a log-x scale, they are approxi-
mately straight lines, which indicates that they are decreasing exponentially.
An exponential autocorrelation function is one of the identifying character-
istics of pink noise.

5.4 Autocorrelation of periodic signals

The autocorrelation of pink noise has interesting mathematical properties,
but limited applications. The autocorrelation of periodic signals is more

5.4. Autocorrelation of periodic signals 53

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

fre
qu

en
cy

 (H
z)

Figure 5.5: Spectrogram of a vocal chirp.

useful.

As an example, I downloaded from freesound.org a recording of some-
one singing a chirp; the repository for this book includes the file: 28042_

_bcjordan__voicedownbew.wav. And you can use the IPython notebook for
this chapter, chap05.ipynb, to play it.

Figure 5.5 shows the spectrogram of this wave. The fundamental frequency
and some of the harmonics show up clearly. The chirp starts near 500 Hz
and drops down to about 300 Hz, roughly from C5 to E4.

To estimate pitch at a particular point in time, we can take a short segment
from the wave and plot its spectrum:

duration = 0.01

segment = wave.segment(start=0.2, duration=duration)

spectrum = segment.make_spectrum()

spectrum.plot(high=15)

This segment starts at 0.2 seconds and lasts 0.01 seconds. Figure 5.6 shows
its spectrum. There is a clear peak near 400 Hz, but it is hard to identify the
pitch precisely. The length of the segment is 441 samples at a framerate of
44100 Hz, so the frequency resolution is 100 Hz (see Section 3.7).

If we take a longer segment, we get better frequency resolution, but since
the pitch is changing over time, we would see “motion blur”; that is, the
peak would be spread between the start and end pitch of the segment.

We can estimate pitch more precisely using autocorrelation. If a signal is
periodic, we expect the autocorrelation to spike when the lag equals the

freesound.org
28042__bcjordan__voicedownbew.wav
28042__bcjordan__voicedownbew.wav

54 Chapter 5. Autocorrelation

0 200 400 600 800 1000 1200 1400 1600
frequency (Hz)

0

10

20

30

40

50

60

am
pl

itu
de

Figure 5.6: Spectrum of a segment from a vocal chirp.

period.

To show why that works, I’ll plot two segments from the same recording.

def plot_shifted(wave, shift=0.0023, start=0.2):

thinkplot.preplot(2)

segment1 = wave.segment(start=start, duration=0.01)

segment1.plot(linewidth=2, alpha=0.8)

segment2 = wave.segment(start=start-shift, duration=0.01)

segment2.plot(linewidth=2, alpha=0.4)

thinkplot.config(xlabel='time (s)', ylim=[-1, 1])

One segment starts at 0.2 seconds; the other starts 0.0023 seconds later. Fig-
ure 5.7 shows the result. The segments are similar, and their correlation
is 0.94. This result suggests that the period is near 0.0023 seconds, which
corresponds to a frequency of 435 Hz.

In this example, I estimated the period by trial and error. To automate this
process, we can use the autocorrelation function.

lags, corrs = autocorr(segment)

thinkplot.plot(lags, corrs)

Figure 5.8 shows the autocorrelation function for the segment starting at
t = 0.2 seconds. The first peak occurs at lag=101. Then we can compute the
frequency that corresponds to that period:

period = lag / segment.framerate

frequency = 1 / period

5.4. Autocorrelation of periodic signals 55

0.000 0.002 0.004 0.006 0.008 0.010
time (s)

1.0

0.5

0.0

0.5

1.0

ρ= 0.94

Figure 5.7: Two segments from a chirp, one starting 0.0023 seconds after the
other.

0 50 100 150 200
lag (index)

1.0

0.5

0.0

0.5

1.0

co
rr

el
at

io
n

Figure 5.8: Autocorrelation function for a segment from a chirp.

56 Chapter 5. Autocorrelation

The estimated fundamental frequency is 437 Hz. To evaluate the precision
of the estimate, we can run the same computation with lags 100 and 102,
which correspond to frequencies 432 and 441 Hz. So the frequency precision
using autocorrelation is less than 10 Hz, compared with 100 Hz using the
spectrum.

5.5 Correlation as dot product

I started this chapter with this definition of Pearson’s correlation coefficient:

ρ =
∑i(xi − µx)(yi − µy)

Nσxσy

Then I used ρ to define serial correlation and autocorrelation. That’s consis-
tent with how these terms are used in statistics, but in the context of signal
processing, the definitions are a little different.

In signal processing, we are often working with unbiased signals, where
the mean is 0, and normalized signals, where the standard deviation is 1. In
that case, the definition of ρ simplifies to:

ρ =
1
N ∑

i
xiyi

And it is common to simplify even further:

r = ∑
i

xiyi

This definition of correlation is not “standardized”, so it doesn’t generally
fall between -1 and 1. But it has other useful properties.

If you think of x and y as vectors, you might recognize this formula as the
dot product, x · y. See http://en.wikipedia.org/wiki/Dot_product.

The dot product indicates the degree to which the signals are similar. If they
are normalized so their standard deviations are 1,

x · y = cos θ

where θ is the angle between the vectors. And that explains why Figure 5.2
is a cosine curve.

http://en.wikipedia.org/wiki/Dot_product

5.6. Using NumPy 57

0 50 100 150 200 250 300 350 400
lag

30

20

10

0

10

20

30

40

co
rr

el
at

io
n

Figure 5.9: Autocorrelation function computed with numpy.correlate.

5.6 Using NumPy

NumPy provides a function, correlate, that computes the correlation of
two functions or the autocorrelation of one function. We can use it to com-
pute the autocorrelation of the segment from the previous section:

corrs2 = numpy.correlate(segment.ys, segment.ys, mode='same')

The option mode tells correlate what range of lag it should use. With the
value 'same', the range is from −N/2 to N/2, where N is the length of the
wave array.

Figure 5.9 shows the result. It is symmetric because the two signals are
identical, so a negative lag on one has the same effect as a positive lag on
the other. To compare with the results from autocorr, we can select the
second half:

N = len(corrs2)

half = corrs2[N//2:]

If you compare Figure 5.9 to Figure 5.8, you’ll notice that the correlations
computed by numpy.correlate get smaller as the lags increase. That’s be-
cause numpy.correlate uses the unstandardized definition of correlation;
as the lag gets bigger, the overlap between the two signals gets smaller, so
the magnitude of the correlations decreases.

We can correct that by dividing through by the lengths:

lengths = range(N, N//2, -1)

half /= lengths

Finally, we can standardize the results so the correlation with lag=0 is 1.

58 Chapter 5. Autocorrelation

half /= half[0]

With these adjustments, the results computed by autocorr and
numpy.correlate are nearly the same. They still differ by 1-2%. The rea-
son not important, but if you are curious: autocorr standardizes the corre-
lations independently for each lag; for numpy.correlate, we standardized
them all at the end.

More importantly, now you know what autocorrelation is, how to use it to
estimate the fundamental period of a signal, and two ways to compute it.

5.7 Exercises

Exercise 5.1 If you did the exercises in the previous chapter, you down-
loaded the historical price of BitCoins and estimated the power spectrum
of the price changes. Using the same data, compute the autocorrelation of
BitCoin prices. Does the autocorrelation function decay exponentially? Is
there evidence of periodic behavior?

Exercise 5.2 Estimate the pitch of a segment from the saxophone recording.

Chapter 6

Discrete cosine transform

The code for this chapter is in dct.py, which is in the repository for this
book (see Section 0.1).

The topic of this chapter is the Discrete Cosine Transform (DCT), which is
used in MP3 and related formats for compressing music, JPEG and similar
formats for images, and the MPEG family of formats for video.

DCT is similar in many ways to the discrete Fourier transform (DFT), which
we have been using for spectral analysis. Once we learn how DCT works,
it will be easier to explain DFT.

Here are the steps we’ll follow to get there:

1. We’ll start with the synthesis problem: given a set of frequency com-
ponents and their amplitudes, how can we construct a waveform?

2. Next we’ll rewrite the synthesis problem using NumPy arrays. This
move is good for performance, and also provides insight for the next
step.

3. We’ll look at the analysis problem: given a signal and a set of frequen-
cies, how can we find the amplitude of each frequency component?
We’ll start with a solution that is conceptually simple but slow.

4. Finally, we’ll use some principles from linear algebra to find a more
efficient algorithm. If you already know linear algebra, that’s great,
but I will explain what you need as we go.

Let’s get started.

60 Chapter 6. Discrete cosine transform

6.1 Synthesis

Suppose I give you a list of amplitudes and a list of frequencies, and ask
you to construct a signal that is the sum of these frequency components.
Using objects in the thinkdsp module, there is a simple way to perform this
operation, which is called synthesis:

def synthesize1(amps, freqs, ts):

components = [thinkdsp.CosSignal(freq, amp)

for amp, freq in zip(amps, freqs)]

signal = thinkdsp.SumSignal(*components)

ys = signal.evaluate(ts)

return ys

amps is a list of amplitudes, freqs is the list of frequencies, and ts is the
sequence of times where the signal should be evaluated.

components is a list of CosSignal objects, one for each amplitude-frequency
pair. SumSignal represents the sum of these frequency components.

Finally, evaluate computes the value of the signal at each time in ts.

We can test this function like this:

amps = numpy.array([0.6, 0.25, 0.1, 0.05])

freqs = [100, 200, 300, 400]

framerate = 11025

ts = numpy.linspace(0, 1, framerate)

ys = synthesize1(amps, freqs, ts)

wave = thinkdsp.Wave(ys, framerate)

wave.play()

This example makes a signal that contains a fundamental frequency at 100
Hz and three harmonics (100 Hz is a sharp G2). It renders the signal for one
second at 11,025 frames per second and plays the resulting wave.

Conceptually, synthesis is pretty simple. But in this form it doesn’t help
much with analysis, which is the inverse problem: given the wave, how do
we identify the frequency components and their amplitudes?

6.2 Synthesis with arrays

Here’s another way to write synthesize:

6.2. Synthesis with arrays 61

M

0.6

0.25
0.1

0.05

 = amps

.

.
tk
.
.

. . . .
. . . .
a b c d
. . . .
. . . .

.

.
e
.
.

 = ys

. f j . .

Figure 6.1: Synthesis with arrays.

def synthesize2(amps, freqs, ts):

args = numpy.outer(ts, freqs)

M = numpy.cos(PI2 * args)

ys = numpy.dot(M, amps)

return ys

This function looks very different, but it does the same thing. Let’s see how
it works:

1. numpy.outer computes the outer product of ts and freqs. The result
is an array with one row for each element of ts and one column for
each element of freqs. Each element in the array is the product of a
frequency and a time, f t.

2. We multiply args by 2π and apply cos, so each element of the result is
cos(2π f t). Since the ts run down the columns, each column contains
a cosine signal at a particular frequency, evaluated at a sequence of
times.

3. numpy.dot multiplies each row of M by amps, element-wise, and then
adds up the products. In terms of linear algebra, we are multiplying a
matrix, M, by a vector, amps.

Figure 6.1 shows the structure of this computation. Each row of the matrix,
M, corresponds to a time from 0.0 to 1.0 seconds; tk is the time of the kth
row. Each column corresponds to a frequency from 100 to 400 Hz; f j is the
frequency of the jth column.

62 Chapter 6. Discrete cosine transform

I labeled the kth row with the letters a through d; as an example, the value
of a is cos[2π(100)tk].

The result of the dot product, ys, is a vector with one element for each row
of M. The kth element, labeled e, is the sum of products:

e = 0.6a + 0.25b + 0.1c + 0.05d

And likewise with the other elements of ys. So each element of y is the sum
of four frequency components, evaluated at a point in time, and multiplied
by the corresponding amplitudes. And that’s exactly what we wanted. We
can use the code from the previous section to check that the two versions of
synthesize produce the same results.

ys1 = synthesize1(amps, freqs, ts)

ys2 = synthesize2(amps, freqs, ts)

print max(abs(ys1 - ys2))

The biggest difference between ys1 and y2 is about 1e-13, which is what we
expect due to floating-point errors.

Writing this computation in terms of linear algebra makes the code smaller
and faster. Another benefit of linear algebra is that it provides concise no-
tation for operations on matrices and vectors. For example, we could write
synthesize like this:

M = cos(2πt⊗ f)
y = Ma

where a is a vector of amplitudes, t is a vector of times, f is a vector of
frequencies, and ⊗ is the symbol for the outer product of two vectors.

6.3 Analysis

Now we are ready to solve the analysis problem. Suppose I give you a
wave and tell you that it is the sum of cosines with a given set of frequen-
cies. How would you find the amplitude for each frequency component? In
other words, given ys, ts and freqs, can you recover amps?

In terms of linear algebra, the first step is the same as for synthesis: we
compute M = cos(2πt⊗ f). Then we want to find a so that y = Ma; in other
words, we want to solve a linear system. NumPy provides linalg.solve,
which does exactly that.

6.4. Orthogonal matrices 63

Here’s what the code looks like:

def analyze1(ys, freqs, ts):

args = numpy.outer(ts, freqs)

M = numpy.cos(PI2 * args)

amps = numpy.linalg.solve(M, ys)

return amps

The first two lines use ts and freqs to build the matrix, M. Then
numpy.linalg.solve computes amps.

But there’s a hitch. In general we can only solve a system of linear equations
if the matrix is square; that is, the number of equations (rows) is the same
as the number of unknowns (columns).

In this example, we have only 4 frequencies, but we evaluated the signal at
11,025 times. So we have many more equations than unknowns.

In general if ys contains more than 4 elements, it is unlikely that we can
analyze it using only 4 frequencies.

But in this case, we know that the ys were actually generated by adding
only 4 frequency components, so we can use any 4 values from the wave
array to recover amps.

For simplicity, I’ll use the first 4 samples from the signal. Using the values
of ys, freqs and ts from the previous section, we can run analyze1 like this:

n = len(freqs)

amps2 = analyze1(ys[:n], freqs, ts[:n])

print(amps2)

And sure enough, we get

[0.6 0.25 0.1 0.05]

This algorithm works, but it is slow. Solving a linear system of equations
takes time proportional to n3, where n is the number of columns in M. We
can do better.

6.4 Orthogonal matrices

One way to solve linear systems is by inverting matrices. The inverse of
a matrix M is written M−1, and it has the property that M−1M = I. I is
the identity matrix, which has the value 1 on all diagonal elements and 0
everywhere else.

64 Chapter 6. Discrete cosine transform

So, to solve the equation y = Ma, we can multiply both sides by M−1, which
yields:

M−1y = M−1Ma

On the right side, we can replace M−1M with I:

M−1y = Ia

If we multiply I by any vector a, the result is a, so

M−1y = a

This implies that if we can compute M−1 efficiently, we can find a with a
simple matrix multiplication (using numpy.dot). That takes time propor-
tional to n2, which is better than n3.

In general inverting a matrix is slow, but some special cases are faster. In
particular, if M is orthogonal, the inverse of M is just the transpose of M,
written MT. In NumPy transposing an array is a constant-time operation. It
doesn’t actually move the elements of the array; instead, it creates a “view”
that changes the way the elements are accessed.

Again, a matrix is orthogonal if its transpose is also its inverse; that is, MT =
M−1. That implies that MT M = I, which means we can check whether a
matrix is orthogonal by computing MT M.

So let’s see what the matrix looks like in synthesize2. In the previous ex-
ample, M has 11,025 rows, so it might be a good idea to work with a smaller
example:

def test1():

amps = numpy.array([0.6, 0.25, 0.1, 0.05])

N = 4.0

time_unit = 0.001

ts = numpy.arange(N) / N * time_unit

max_freq = N / time_unit / 2

freqs = numpy.arange(N) / N * max_freq

ys = synthesize2(amps, freqs, ts)

amps is the same vector of amplitudes we saw before. Since we have 4 fre-
quency components, we’ll sample the signal at 4 points in time. That way,
M is square.

ts is a vector of equally spaced sample times in the range from 0 to 1 time
unit. I chose the time unit to be 1 millisecond, but it is an arbitrary choice,
and we will see in a minute that it drops out of the computation anyway.

6.5. DCT-IV 65

Since the frame rate is N samples per time unit, the Nyquist frequency is
N / time_unit / 2, which is 2000 Hz in this example. So freqs is a vector
of equally spaced frequencies between 0 and 2000 Hz.

With these values of ts and freqs, the matrix, M, is:

[[1. 1. 1. 1.]

[1. 0.707 0. -0.707]

[1. 0. -1. -0.]

[1. -0.707 -0. 0.707]]

You might recognize 0.707 as an approximation of
√

2/2, which is cos π/4.
You also might notice that this matrix is symmetric, which means that the
element at (j, k) always equals the element at (k, j). This implies that M is
its own transpose; that is, MT = M.

But sadly, M is not orthogonal. If we compute MT M, we get:

[[4. 1. -0. 1.]

[1. 2. 1. -0.]

[-0. 1. 2. 1.]

[1. -0. 1. 2.]]

And that’s not the identity matrix.

6.5 DCT-IV

But if we choose ts and freqs carefully, we can make M orthogonal. There
are several ways to do it, which is why there are several versions of the
discrete cosine transform (DCT).

One simple option is to shift ts and freqs by a half unit. This version is
called DCT-IV, where “IV” is a roman numeral indicating that this is the
fourth of eight versions of the DCT.

Here’s an updated version of test1:

def test2():

amps = numpy.array([0.6, 0.25, 0.1, 0.05])

N = 4.0

ts = (0.5 + numpy.arange(N)) / N

freqs = (0.5 + numpy.arange(N)) / 2

ys = synthesize2(amps, freqs, ts)

66 Chapter 6. Discrete cosine transform

If you compare this to the previous version, you’ll notice two changes. First,
I added 0.5 to ts and freqs. Second, I cancelled out time_units, which
simplifies the expression for freqs.

With these values, M is
[[0.981 0.831 0.556 0.195]

[0.831 -0.195 -0.981 -0.556]

[0.556 -0.981 0.195 0.831]

[0.195 -0.556 0.831 -0.981]]

And MT M is
[[2. 0. 0. 0.]

[0. 2. -0. 0.]

[0. -0. 2. -0.]

[0. 0. -0. 2.]]

Some of the off-diagonal elements are displayed as -0, which means that the
floating-point representation is a small negative number. So this matrix is
very close to 2I, which means M is almost orthogonal; it’s just off by a factor
of 2. And for our purposes, that’s good enough.

Because M is symmetric and (almost) orthogonal, the inverse of M is just
M/2. Now we can write a more efficient version of analyze:
def analyze2(ys, freqs, ts):

args = numpy.outer(ts, freqs)

M = numpy.cos(PI2 * args)

amps = numpy.dot(M, ys) / 2

return amps

Instead of using numpy.linalg.solve, we just multiply by M/2.

Combining test2 and analyze2, we can write an implementation of DCT-
IV:
def dct_iv(ys):

N = len(ys)

ts = (0.5 + numpy.arange(N)) / N

freqs = (0.5 + numpy.arange(N)) / 2

args = numpy.outer(ts, freqs)

M = numpy.cos(PI2 * args)

amps = numpy.dot(M, ys) / 2

return amps

Again, ys is the wave array. We don’t have to pass ts and freqs as param-
eters; dct_iv can figure them out based on N, the length of ys.

We can test dct_iv like this

6.6. Inverse DCT 67

amps = numpy.array([0.6, 0.25, 0.1, 0.05])

N = 4.0

ts = (0.5 + numpy.arange(N)) / N

freqs = (0.5 + numpy.arange(N)) / 2

ys = synthesize2(amps, freqs, ts)

amps2 = dct_iv(ys)

print max(abs(amps - amps2))

Starting with amps, we synthesize a wave array, then use dct_iv to see if we
can recover the amplitudes. The biggest difference between amps and amps2

is about 1e-16, which is what we expect due to floating-point errors.

6.6 Inverse DCT

Finally, notice that analyze2 and synthesize2 are almost identical. The
only difference is that analyze2 divides the result by 2. We can use this
insight to compute the inverse DCT:

def inverse_dct_iv(amps):

return dct_iv(amps) * 2

inverse_dct_iv takes the vector of amplitudes and returns the wave ar-
ray, ys. We can confirm that it works by starting with amps, applying
inverse_dct_iv and dct_iv, and testing that we get back what we started
with.

amps = [0.6, 0.25, 0.1, 0.05]

ys = inverse_dct_iv(amps)

amps2 = dct_iv(ys)

print max(abs(amps - amps2))

Again, the biggest difference is about 1e-16.

6.7 Exercises

Exercise 6.1 Test the algorithmic complexity of analyze1, analyze2 and
scipy.fftpack.dct.

Exercise 6.2 One of the major applications of the DCT is compression for
both sound and images. In its simplest form, DCT-based compression
works like this:

68 Chapter 6. Discrete cosine transform

1. Break a long signal into segments.

2. Compute the DCT of each segment.

3. Identify frequency components with amplitudes so low they are in-
audible, and remove them. Store only the frequencies and amplitudes
that remain.

4. To play back the signal, load the frequencies and amplitudes for each
segment and apply the inverse DCT.

Implement a version of this algorithm and apply it to a recording of music
or speech. How many components can you eliminate before the difference
is perceptible?

Chapter 7

Discrete Fourier Transform

We’ve been using the discrete Fourier transform (DFT) since Chapter 1, but
I haven’t explained how it works. Now is the time.

If you understand the discrete cosine transform (DCT), you will understand
the DFT. The only difference is that instead of using the cosine function,
we’ll use the complex exponential function. I’ll start by explaining complex
exponentials, then I’ll follow the same progression as in Chapter 6:

1. We’ll start with the synthesis problem: given a set of frequency com-
ponents and their amplitudes, how can we construct a signal? The
synthesis problem is equivalent to the inverse DFT.

2. Then I’ll rewrite the synthesis problem in the form of matrix multipli-
cation using NumPy arrays.

3. Next we’ll solve the analysis problem, which is equivalent to the DFT:
given a signal, how to we find the amplitude and phase offset of its
frequency components?

4. Finally, we’ll use linear algebra to find a more efficient way to compute
the DFT.

The code for this chapter is in dft.py, which is in the repository for this
book (see Section 0.1).

7.1 Complex exponentials
One of the more interesting moves in mathematics is the generalization of
an operation from one type to another. For example, factorial is a function

70 Chapter 7. Discrete Fourier Transform

that operates on integers; the natural definition for factorial of n is the prod-
uct of all integers from 1 to n.

If you are of a certain inclination, you might wonder how to compute the
factorial of a non-integer like 3.5. Since the natural definition doesn’t apply,
you might look for other ways to compute the factorial function, ways that
would work with non-integers.

In 1730, Leonhard Euler found one, a generalization of the factorial function
that we know as the gamma function (see http://en.wikipedia.org/wiki/
Gamma_function).

Euler also found one of the most useful generalizations in applied mathe-
matics, the complex exponential function.

The natural definition of exponentiation is repeated multiplication. For ex-
ample, φ3 = φ · φ · φ. But this definition doesn’t apply to non-integers,
including complex numbers.

However, exponentiation can also be expressed as a power series:

eφ = 1 + φ + φ2/2! + φ3/3! + ...

This definition works with imaginary numbers and, by a simple extension,
with complex numbers. It turns out that:

eiφ = cos φ + i sin φ

You can see the derivation at http://en.wikipedia.org/wiki/Euler's_

formula. This formula implies that eiφ is a complex number with magni-
tude 1; if you think of it as a point in the complex plane, it is always on the
unit circle. And if you think of it as a vector, the angle in radians between
the vector and the positive x-axis is the argument, φ.

In the case where the argument is a complex number, we have:

ea+iφ = eaeiφ = Aeiφ

where A is a real number that indicates amplitude and eiφ is a unit complex
number that indicates angle.

NumPy provides a version of exp that works with complex numbers:

>>> i = complex(0, 1)

>>> phi = 1.5

>>> z = numpy.exp(i * phi)

http://en.wikipedia.org/wiki/Gamma_function
http://en.wikipedia.org/wiki/Gamma_function
http://en.wikipedia.org/wiki/Euler's_formula
http://en.wikipedia.org/wiki/Euler's_formula

7.2. Complex signals 71

>>> z

(0.0707+0.997j)

complex is a built-in function that takes the real and imaginary parts of a
complex number and returns a Python complex object.

When the argument to numpy.exp is imaginary or complex, the result is a
complex number; specifically, a numpy.complex128, which is represented by
two 64-bit floating-point numbers. The result is 0.0707+0.997j. Note that
Python uses j to represent the imaginary unit, rather than i.

Complex numbers have attributes real and imag:

>>> z.real

0.0707

>>> z.imag

0.997

To get the magnitude, you can use the built-in function abs or
numpy.absolute:

>>> abs(z)

1.0

>>> numpy.absolute(z)

1.0

To get the angle, you can use numpy.angle:

>>> numpy.angle(z)

1.5

This example confirms that eiφ is a complex number with magnitude 1 and
angle φ radians.

7.2 Complex signals

If φ(t) is a function of time, eiφ(t) is also a function of time. Specifically,

eiφ(t) = cos φ(t) + i sin φ(t)

This function describes a quantity that varies in time, so it is a signal. Specif-
ically, it is a complex exponential signal.

In the special case where the frequency of the signal is constant, so φ(t) =
2π f t, the result is a complex sinusoid:

ei2π f t = cos 2π f t + i sin 2π f t

72 Chapter 7. Discrete Fourier Transform

Or more generally, the signal might start at a phase offset φ0, yielding

ei(2π f t+φ0)

thinkdsp provides an implementation of this signal, ComplexSinusoid:

class ComplexSinusoid(Sinusoid):

def evaluate(self, ts):

i = complex(0, 1)

phases = PI2 * self.freq * ts + self.offset

ys = self.amp * numpy.exp(i * phases)

return ys

ComplexSinusoid inherits __init__ from Sinusoid. It provides a version
of evaluate that is almost identical to Sinusoid.evaluate; the difference is
that it uses numpy.exp instead of numpy.sin.

The result is a NumPy array of complex numbers:

>>> signal = thinkdsp.ComplexSinusoid(freq=1, amp=0.6, offset=1)

>>> wave = signal.make_wave(duration=1, framerate=4)

>>> print(wave.ys)

[0.324+0.505j -0.505+0.324j -0.324-0.505j 0.505-0.324j]

The frequency of this signal is 1 cycle per second; the amplitude is 0.6 (in
unspecified units); and the phase offset is 1 radian.

This example evaluates the signal at 4 places equally spaced between 0 and
1 second. The resulting samples are complex numbers. You might wonder
how to interpret these values. We’ll get to it soon.

7.3 The synthesis problem

We can create compound signals by adding up complex sinusoids with dif-
ferent frequencies. And that brings us to the synthesis problem: given the
frequency and amplitude of each component, how do we evaluate the sig-
nal?

The simplest solution is to instantiate ComplexSignal objects and add them
up.

def synthesize1(amps, freqs, ts):

components = [thinkdsp.ComplexSinusoid(freq, amp)

for amp, freq in zip(amps, freqs)]

7.3. The synthesis problem 73

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
time (s)

1.0

0.5

0.0

0.5

1.0

w
av

e

real
imag

Figure 7.1: Real and imaginary parts of a mixture of complex sinusoids.

signal = thinkdsp.SumSignal(*components)

ys = signal.evaluate(ts)

return ys

This solution is almost identical to synthesize1 in Section 6.1; the only dif-
ference is that I replaced CosSignal with ComplexSinusoid.

Here’s an example:
>>> amps = numpy.array([0.6, 0.25, 0.1, 0.05])

>>> freqs = [100, 200, 300, 400]

>>> framerate = 11025

>>> ts = numpy.linspace(0, 1, framerate)

>>> ys = synthesize1(amps, freqs, ts)

>>> print(ys)

[1.000 +0.000e+00j 0.995 +9.093e-02j 0.979 +1.803e-01j ...,

0.979 -1.803e-01j 0.995 -9.093e-02j 1.000 -5.081e-15j]

At the lowest level, a complex signal is a sequence of complex numbers. But
how should we interpret it? We have some intuition for real signals: they
represent quantities that vary in time; for example, a sound signal repre-
sents changes in air pressure. But nothing we measure in the world yields
complex numbers.

So what is a complex signal? I don’t have a good answer to this question.
The best I can offer is two unsatisfying answers:

1. A complex signal is a mathematical abstraction that is useful for com-
putation and analysis, but it does not correspond directly with any-
thing in the real world.

74 Chapter 7. Discrete Fourier Transform

2. You can think of a complex signal as a sequence of complex numbers
that contains two signals as its real and imaginary parts.

Taking the second point of view, we can split the previous signal into its real
and imaginary parts:

n = framerate / 25

thinkplot.plot(ts[:n], ys[:n].real, label='real')

thinkplot.plot(ts[:n], ys[:n].imag, label='imag')

Figure 7.1 shows a segment of the result. The real part is a sum of cosines;
the imaginary part is the sum of sines. Although the waveforms look differ-
ent, they contain the same frequency components in the same proportions.
To our ears, they sound the same; in general, we don’t hear phase offsets.

7.4 Synthesis with matrices

As we saw in Section 6.2, we can also express the synthesis problem in terms
of matrix multiplication:
PI2 = 2 * math.pi

i = complex(0, 1)

def synthesize2(amps, freqs, ts):

args = numpy.outer(ts, freqs)

M = numpy.exp(i * PI2 * args)

ys = numpy.dot(M, amps)

return ys

Again, amps is a NumPy array that contains a sequence of amplitudes.

freqs is a sequence containing the frequencies of the components. ts con-
tains the times where we will evaluate the signal.

args contains the outer product of ts and freqs, with the ts running down
the rows and the freqs running across the columns (you might want to refer
back to Figure 6.1).

Each column of matrix M contains a complex sinusoid with a particular fre-
quency, evaluated at a sequence of ts.

When we multiply M by the amplitudes, the result is a vectors whose el-
ements correspond to the ts; each element is the sum of several complex
sinusoids, evaluated at a particular time.

Here’s the example from the previous section again:

7.4. Synthesis with matrices 75

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
time (s)

1.0

0.5

0.0

0.5

1.0

w
av

e

φ0 =0

φ0 =1.5

Figure 7.2: Real part of two complex signals that differ by a phase offset.

>>> ys = synthesize2(amps, freqs, ts)

>>> print(ys)

[1.000 +0.000e+00j 0.995 +9.093e-02j 0.979 +1.803e-01j ...,

0.979 -1.803e-01j 0.995 -9.093e-02j 1.000 -5.081e-15j]

The result is the same.

In this example the amplitudes are real, but they could also be complex.
What effect does a complex amplitude have on the result? Remember that
we can think of a complex number in two ways: either the sum of a real and
imaginary part, x + iy, or the product of a real amplitude and a complex ex-
ponential, Aeiφ0 . Using the second interpretation, we can see what happens
when we multiply a complex amplitude by a complex sinusoid. For each
frequency, f , we have:

Aeiφ0 · ei2π f t = Aei2π f t+φ0

Multiplying by Aeiφ0 multiplies the amplitude by A and adds the phase
offset φ0.

We can test that claim by running the previous example with φ0 = 1.5 for
all frequency components:

amps2 = amps * numpy.exp(1.5j)

ys2 = synthesize2(amps2, freqs, ts)

thinkplot.plot(ts[:n], ys.real[:n])

thinkplot.plot(ts[:n], ys2.real[:n])

76 Chapter 7. Discrete Fourier Transform

Python recognizes 1.5j as a complex number. Since amps is an array of
reals, multiplying by numpy.exp(1.5j) yields an array of complex numbers
with phase offset 1.5 radians, and the same magnitudes as amps.

Figure 7.2 shows the result. The phase offset φ0 = 1.5 shifts the wave to
the left by about one quarter of a cycle; it also changes the waveform, be-
cause the same phase offset applied to different frequencies changes how
the frequency components line up with each other.

Now that we have the more general solution to the synthesis problem – one
that handles complex amplitudes – we are ready for the analysis problem.

7.5 The analysis problem

The analysis problem is the inverse of the synthesis problem: given a se-
quence of samples, y, and knowing the frequencies that make up the signal,
can we compute the complex amplitudes of the components, a?

As we saw in Section 6.3, we can solve this problem by forming the syn-
thesis matrix, M, and solving the system of linear equations, Ma = y for
a.

def analyze1(ys, freqs, ts):

args = numpy.outer(ts, freqs)

M = numpy.exp(i * PI2 * args)

amps = numpy.linalg.solve(M, ys)

return amps

analyze1 takes a (possibly complex) wave array, ys, a sequence of real fre-
quencies, freqs, and a sequence of real times, ts. It returns a sequence of
complex amplitudes, amps.

Continuing the previous example, we can confirm that analyze1 recovers
the amplitudes we started with. For the linear system solver to work, M has
to be square, so we need ys, freqs and ts to have the same length. I’ll insure
that by slicing ys and ts down to the length of freqs:

>>> n = len(freqs)

>>> amps2 = analyze1(ys[:n], freqs, ts[:n])

>>> print(amps2)

[0.60 +4.6e-13j 0.25 -1.4e-12j 0.10 +1.4e-12j 0.05 -4.6e-13j]

Each component of amps has a small imaginary part due to floating-point
errors, but the results are approximately correct.

7.6. Efficient analysis 77

7.6 Efficient analysis

Unfortunately, solving a linear system of equations is slow. For the DCT, we
were able to speed things up by choosing freqs and ts so that M is orthog-
onal. That way, the inverse of M is the transpose of M, and we can compute
both DCT and inverse DCT by matrix multiplication.

We’ll do the same thing for the DFT, with one small change. Since M is
complex, we need it to be unitary, rather than orthogonal, which means
that the inverse of M is the conjugate transpose of M, which we can compute
by transposing the matrix and negating the imaginary part of each element.
See http://en.wikipedia.org/wiki/Unitary_matrix.

The NumPy methods conj and transpose do what we want. Here’s the
code that computes M for N = 4 components:

>>> N = 4

>>> ts = numpy.arange(N) / N

>>> freqs = numpy.arange(N)

>>> args = numpy.outer(ts, freqs)

>>> M = numpy.exp(i * PI2 * args)

If M is unitary, M∗M = I, where M∗ is the conjugate transpose of M, and I
is the identity matrix. We can test whether M is unitary like this:

>>> MstarM = M.conj().transpose().dot(M)

The result, within the tolerance of floating-point error, is 4I, so M is unitary
except for an extra factor of N, similar to the extra factor of 2 we found with
the DCT.

We can use this result to write a faster version of analyze1:

def analyze2(ys, freqs, ts):

args = numpy.outer(ts, freqs)

M = numpy.exp(i * PI2 * args)

amps = M.conj().transpose().dot(ys) / N

return amps

And test it with appropriate values of freqs and ts:

>>> N = 4

>>> amps = numpy.array([0.6, 0.25, 0.1, 0.05])

>>> freqs = numpy.arange(N)

>>> ts = numpy.arange(N) / N

>>> ys = synthesize2(amps, freqs, ts)

>>> amps2 = analyze2(ys, freqs, ts)

http://en.wikipedia.org/wiki/Unitary_matrix

78 Chapter 7. Discrete Fourier Transform

>>> print(amps2)

[0.60 +2.1e-17j 0.25 +1.3e-17j 0.10 -3.9e-17j 0.05 -8.3e-17j]

Again, the result is correct within the tolerance of floating-point arithmetic.

7.7 DFT

As a function, analyze2 would be hard to use because it only works if freqs
and ts are chosen correctly. So the usual definition of dft takes ys and
computes freqs and ts accordingly:

def dft(ys):

N = len(ys)

ts = numpy.arange(N) / N

freqs = numpy.arange(N)

args = numpy.outer(ts, freqs)

M = numpy.exp(i * PI2 * args)

amps = M.conj().transpose().dot(ys)

return amps

Notice that I made one small change; this version of DFT does not divide
through by N. I did that to make it consistent with the conventional defini-
tion of DFT. Here’s my version:

>>> print(dft(ys))

[2.4 +8.3e-17j 1.0 +5.6e-17j 0.4 -1.6e-16j 0.2 -3.3e-16j]

And here’s the version in numpy.fft:

>>> print(numpy.fft.fft(ys))

[2.4 +8.0e-17j 1.0 -2.5e-17j 0.4 -3.1e-17j 0.2 -2.5e-17j]

They are approximately the same.

The inverse DFT is almost the same, except now we have to divide through
by N:

def idft(amps):

ys = dft(amps) / N

return ys

Finally, we can confirm that dft(idft(amps)) yields amps.

>>> ys = idft(amps)

>>> print(dft(ys))

[0.60 -2.1e-17j 0.05 +0.0e+00j 0.10 -2.5e-17j 0.25 -1.4e-17j]

7.8. Just one more thing 79

0 2000 4000 6000 8000 10000
frequency (Hz)

0

50

100

150

200

250

300

350

am
pl

itu
de

Figure 7.3: DFT of a 500 Hz sawtooth signal sampled at 10 kHz.

If I could go back in time, I might change the definition of DFT so it divides
by N and the inverse DFT doesn’t. That would be more consistent with my
presentation of the synthesis and analysis problems.

Or I might change the definition so that both operations divide through by√
N. Then the DFT and inverse DFT would be identical.

I can’t go back in time (yet!), so we’re stuck with a slightly weird convention.
But for practical purposes it doesn’t really matter.

7.8 Just one more thing

The Spectrum class in thinkdsp is based on numpy.ftt.rfft, which com-
putes the “real DFT”; that is, it works with real signals. The DFT is more
general than the real DFT; it works with complex signals.

So what happens when we apply DFT to a real signal? Let’s look at an
example:

>>> framerate = 10000

>>> signal = thinkdsp.SawtoothSignal(freq=500)

>>> wave = signal.make_wave(duration=0.1, framerate=framerate)

>>> hs = dft(wave.ys)

>>> amps = numpy.absolute(hs)

This code makes a sawtooth wave with frequency 500 Hz, sampled at fram-
erate 10 kHz. hs contains the complex DFT of the wave; amps contains the

80 Chapter 7. Discrete Fourier Transform

amplitude at each frequency. But what frequency do these amplitudes cor-
respond to? If we look at the body of dft, we see:

>>> fs = numpy.arange(N)

So it’s tempting to think that these values are the right frequencies. The
problem is that dft doesn’t know the sampling rate. The DFT assumes that
the duration of the wave is 1 time unit, so the sampling rate is N per time
unit. In order to interpret the frequencies, we have to convert from these
arbitrary time units back to seconds, like this:

>>> fs = numpy.arange(N) * framerate / N

With this change, the range of frequencies is from 0 to the actual framerate,
10 kHz. Now we can plot the spectrum:

>>> thinkplot.plot(fs, amps)

>>> thinkplot.config(xlabel='frequency (Hz)',

ylabel='amplitude')

Figure 7.3 shows the amplitude of the signal for each frequency component
from 0 to 10 kHz. The left half of the figure is what we should expect: the
dominant frequency is at 500 Hz, with harmonics dropping off like 1/ f .

But the right half of the figure is a surprise. Past 5000 Hz, the amplitude of
the harmonics start growing again, peaking at 9500 Hz. What’s going on?

The answer: aliasing. Remember that with framerate 10000 Hz, the folding
frequency is 5000 Hz. As we saw in Section 2.5, a component at 5500 Hz is
indistinguishable from a component at 4500 Hz. So when we evaluate the
DFT at 5500 Hz, we get the same value as at 4500 Hz. Similarly, the value at
6000 Hz is the same as the one at 4000 Hz, and so on.

So the DFT of a real signal is symmetric around the folding frequency. Since
there is no additional information past this point, we can save time be eval-
uating only the first half of the DFT, and that’s exactly what rfft does.

7.9 Exercises

Exercise 7.1 In this chapter, I showed how we can express the DFT and in-
verse DFT as matrix multiplications. These operations are relatively fast,
taking time proportional to N2, where N is the length of the wave array.
That would be fast enough for many applications, but it turns out that there
is a faster algorithm, the Fast Fourier Transform (FFT), which takes time
proportional to N log N.

7.9. Exercises 81

Read about the FFT at http://en.wikipedia.org/wiki/Cooley-Tukey_

FFT_algorithm, and write an implementation. Hint: I suggest you write a
simple version as a recursive function; don’t worry about “data reordering,
bit reversal, and in-place algorithms”.

http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm

82 Chapter 7. Discrete Fourier Transform

Chapter 8

Filtering and Convolution

In this chapter I present one of the most important and useful ideas related
to signal processing: the Convolution Theorem. But before we can under-
stand the Convolution Theorem, we have to understand convolution. I’ll
start with one of the simplest examples: smoothing.

The code for this chapter is in convolution.py, which is in the repository
for this book (see Section 0.1).

8.1 Smoothing

Smoothing is an operation that tries to remove short-term variations from
a signal in order to reveal long-term trends. For example, if you plot daily
changes in the price of a stock, it would look noisy; a smoothing operator
might make it easier to see whether the price was generally going up or
down over time.

A common smoothing algorithm is a moving average, which computes the
mean of the previous n values, for some value of n.

For example, Figure 8.1 shows the daily closing price of BitCoin from July
18, 2010 to December 28, 2014 (downloaded from http://www.coindesk.

com). The gray line is the raw data, the darker line shows the 30-day mov-
ing average. In the short term, the price of BitCoin is quite volatile, often
changing by more than 10% in a day. Smoothing removes the most extreme
changes and makes it easier to see long-term trends.

Smoothing operations also apply to sound signals. As an example, I’ll start
with a square wave at 440 Hz. As we saw in Section 2.4, the harmonics of

http://www.coindesk.com
http://www.coindesk.com

84 Chapter 8. Filtering and Convolution

0 200 400 600 800 1000 1200 1400 1600
time (days)

0

200

400

600

800

1000

1200

pr
ic

e

Figure 8.1: Daily closing price of BitCoin and a 30-day moving average.

a square wave drop off slowly, so it contains many high-frequency compo-
nents.

>>> signal = thinkdsp.SquareSignal(freq=440)

>>> wave = signal.make_wave(duration=1, framerate=44100)

>>> segment = wave.segment(duration=0.01)

wave is a 1-second segment of the signal; segment is a shorter segment I’ll
use for plotting.

You can try out this example, and listen to it, in chap08.ipynb, which is
in the repository for this book and also available at http://tinyurl.com/
thinkdsp08.

To compute the moving average of this signal, I’ll create a window with 11
elements and normalize it so the elements add up to 1.

>>> window = numpy.ones(11)

>>> window /= sum(window)

Now I can compute the average of the first 11 elements by multiplying the
window by the wave array:

>>> padded = zero_pad(window, len(segment))

>>> prod = padded * segment.ys

padded is a version of the window with zeros added to the end so it has the
same length as segment.ys (zero_pad is defined in convolution.py). prod
is the product of the window and the wave array.

The first 11 elements of this wave array are -1, so their average is -1, and
(sure enough) that’s the value of prod.

http://tinyurl.com/thinkdsp08
http://tinyurl.com/thinkdsp08

8.1. Smoothing 85

0.000 0.002 0.004 0.006 0.008 0.010
1.0

0.5

0.0

0.5

1.0

Figure 8.2: A square signal at 400 Hz (gray) and an 11-element moving
average (darker).

To compute the next element of the smoothed signal, we shift the window
to the right and compute the average of the next 11 elements of the wave
array, starting with the second.

The following code computes the rolling average for the whole wave:

>>> smoothed = numpy.zeros_like(segment.ys)

>>> rolled = padded

>>> for i in range(len(segment.ys)):

smoothed[i] = sum(rolled * segment.ys)

rolled = numpy.roll(rolled, 1)

smoothed is the wave array where I store the results. rolled is a copy of
padded that gets shifted to the right by one element each time through the
loop. Inside the loop, we multiply the segment by rolled to select 11 ele-
ments, and then add them up.

Figure 8.2 shows the result. The gray line is the original signal; the darker
line is the smoothed signal. The smoothed signal starts to ramp up when
the leading edge of the window reaches the first transition, and levels off
when the window crosses the transition. As a result, the transitions are less
abrupt, and the corners less sharp. If you listen to the smoothed signal, it
sounds less buzzy and slightly muffled.

86 Chapter 8. Filtering and Convolution

8.2 Convolution
The operation we just computed is called convolution, and it is such a com-
mon operation that NumPy provides an implementation that is simpler and
faster than my version:
>>> ys = numpy.convolve(segment.ys, window, mode='valid')

>>> smooth2 = thinkdsp.Wave(ys, framerate=wave.framerate)

numpy.convolve computes the convolution of the wave array and the win-
dow. The mode flag valid indicates that it should only compute values
when the window and the wave array overlap completely, so it stops when
the right edge of the window reaches the end of the wave array. Other than
that, the result is the same as in Figure 8.2.

Actually, there is one other difference. The loop in the previous section
actually computes cross-correlation:

(f ? g)[j] =
N−1

∑
k=0

f [k]g[k− j]

where f is a wave array with length N, g is the window, and ? is the symbol
for cross-correlation. To compute the jth element of the result, we shift g to
the right, which is why the index is k− j.

The mathematical definition of convolution is slightly different:

(f ∗ g)[j] =
N−1

∑
k=0

f [k]g[j− k]

The symbol ∗ represents convolution. The difference is that the index of g
has been negated, which has the same effect as reversing the elements of g
(assuming that negative indices wrap around to the end of the array).

Because the moving average window is symmetric, cross-correlation and
convolution yield the same result. When we use other windows, we will
have to be more careful.

You might wonder why convolution is defined the way it is. There are two
reasons:

• Convolution comes up naturally for several applications, especially
analysis of signal-processing systems, which is the topic of Chapter 9.

• Also, convolution is the basis of the Convolution Theorem, coming up
very soon.

8.3. The frequency domain 87

0 5000 10000 15000 20000
frequency (Hz)

0

5000

10000

15000

20000

25000

30000

am
pl

itu
de

Figure 8.3: Spectrum of the square wave before and after smoothing.

8.3 The frequency domain

Smoothing makes the transitions in a square signal less abrupt, and makes
the sound slightly muffled. Let’s see what effect this operation has on the
spectrum. First I’ll plot the spectrum of the original wave:

>>> spectrum = wave.make_spectrum()

>>> spectrum.plot(color='0.7')

Then the smoothed wave:

>>> ys = numpy.convolve(wave.ys, window, mode='same')

>>> smooth = thinkdsp.Wave(ys, framerate=wave.framerate)

>>> spectrum2 = smooth.make_spectrum()

>>> spectrum2.plot()

Figure 8.3 shows the result. The fundamental frequency is almost un-
changed; the first few harmonics are attenuated, and the higher harmon-
ics are almost eliminated. So smoothing has the effect of a low-pass filter,
which we saw in Section 1.5 and Section 4.4.

To see how much each component has been attenuated, we can compute the
ratio of the two spectrums:

>>> amps = spectrum.amps

>>> amps2 = spectrum2.amps

>>> ratio = amps2 / amps

>>> ratio[amps<560] = 0

>>> thinkplot.plot(ratio)

88 Chapter 8. Filtering and Convolution

0 5000 10000 15000 20000
frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

am
pl

itu
de

 ra
tio

Figure 8.4: Ratio of spectrums for the square wave, before and after smooth-
ing.

ratio is the ratio of the amplitude before and after smoothing. When amps

is small, this ratio can be big and noisy, so for simplicity I set the ratio to 0
except for where the harmonics are.

Figure 8.4 shows the result. As expected, the ratio is high for low frequen-
cies and drops off at a cutoff frequency near 4000 Hz. But there is another
feature we did not expect: above the cutoff, the ratio seems to oscillate be-
tween 0 and 0.2. What’s up with that?

8.4 The convolution theorem

The answer is the convolution theorem. Stated mathematically:

DFT(f ∗ g) = DFT(f) · DFT(g)

where f is a wave array and g is a window. In words, the convolution
theorem says that if we convolve f and g, and then compute the DFT, we
get the same answer as computing the DFT of f and g, and then multiplying
the results element-wise. More concisely, convolution in the time domain
corresponds to multiplication in the frequency domain.

And that explains Figure 8.4, because when we convolve a wave and a win-
dow, we multiply the spectrum of the wave with the spectrum of the win-
dow. To see how that works, we can compute the DFT of the window:

padded = zero_pad(window, len(wave))

8.5. Gaussian filter 89

0 5000 10000 15000 20000
frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

am
pl

itu
de

 ra
tio

Figure 8.5: Ratio of spectrums for the square wave, before and after smooth-
ing, along with the DFT of the smoothing window.

dft_window = numpy.fft.rfft(padded)

thinkplot.plot(abs(dft_window))

padded contains the window, padded with zeros to be the same length as
wave. dft_window contains the DFT of the smoothing window.

Figure 8.5 shows the result, along with the ratios we computed in the pre-
vious section. The ratios are exactly the amplitudes in dft_window. Mathe-
matically:

abs(DFT(f ∗ g))/abs(DFT(f)) = abs(DFT(g))

In this context, the DFT of a window is called a filter. For any convolution
window in the time domain, there is a corresponding filter in the frequency
domain. And for any filter than can be expressed by element-wise multipli-
cation in the frequency domain, there is a corresponding window.

8.5 Gaussian filter

The moving average window we used in the previous section is a low-pass
filter, but it is not a very good one. It cuts off at around 4000 Hz, but then it
bounces around for a while. For reasons we will see soon, we can do better
with a Gaussian window.

SciPy provides functions that compute many common convolution win-
dows, including gaussian:

90 Chapter 8. Filtering and Convolution

0 2 4 6 8 10
index

0.00

0.05

0.10

0.15

0.20

0.25

am
pl

itu
de

boxcar
Gaussian

Figure 8.6: Boxcar and Gaussian windows.

gaussian = scipy.signal.gaussian(M=11, std=2)

gaussian /= sum(gaussian)

M is the number of elements in the window; std is the standard deviation
of the Gaussian expression used to compute it. Figure 8.6 shows the shape
of the window. It is a discrete approximation of the Gaussian “bell curve”.
The figure also shows the moving average window from the previous ex-
ample, which is sometimes called a “boxcar” window because it looks like
a rectangular railway car.

I ran the computations from the previous sections again with this curve,
and generated Figure 8.7, which shows the ratio of the spectrums before
and after smoothing, along with the DFT of the Gaussian window.

As a low-pass filter, Gaussian smoothing is much better than a simple mov-
ing average. The cutoff frequency is a little higher; near 7000 Hz, the ratio is
0.1. But above that, the ratio drops quickly and stays low, with almost none
of the oscillation we saw with the boxcar window.

In Figure 8.7, the shape of the filter might look familiar. As it turns out,
the DFT of a Gaussian curve is also a Gaussian curve. In this example, the
window is a discrete approximation, so the resulting filter is only approxi-
mately Gaussian.

8.6 Efficient convolution
One of the reasons the FFT is such an important algorithm is that, combined
with the Convolution Theorem, it provides an efficient way to compute con-

8.6. Efficient convolution 91

0 5000 10000 15000 20000
frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

am
pl

itu
de

 ra
tio

Figure 8.7: Ratio of spectrums before and after Gaussian smoothing, and
the DFT of the window.

volution, cross-correlation, and autocorrelation.

Again, the Convolution Theorem states

DFT(f ∗ g) = DFT(f) · DFT(g)

So one way to compute a convolution is:

f ∗ g = IDFT(DFT(f) · DFT(g))

where IDFT is the inverse DFT. A simple implementation of convolution
takes time proportional to N2; this algorithm, using FFT, takes time propor-
tional to N log N.

We can confirm that it works by computing the same convolution both
ways. As an example, I’ll apply it to the BitCoin data shown in Figure 8.1.

df = pandas.read_csv('coindesk-bpi-USD-close.csv',

nrows=1625,

parse_dates=[0])

ys = df.Close.values

This example uses Pandas to read the data from the CSV file (included in the
repository for this book). If you are not familiar with Pandas, don’t worry:
I’m not going to do much with it in this book. But if you’re interested, you
can learn more about it in Think Stats at http://thinkstats2.com.

The result, df, is a DataFrame, one of the data structures provided by Pan-
das. ys is a NumPy array that contains daily closing prices.

http://thinkstats2.com

92 Chapter 8. Filtering and Convolution

Next I’ll create a Gaussian window and convolve it with ys:

window = scipy.signal.gaussian(M=30, std=6)

window /= window.sum()

smoothed = numpy.convolve(ys, window, mode='valid')

With mode='valid', numpy.convolve returns values only where the win-
dow and the signal overlap completely, avoiding bogus values at the begin-
ning and end.

fft_convolve computes the same thing using FFT:

def fft_convolve(signal, window):

fft_signal = numpy.fft.fft(signal)

fft_window = numpy.fft.fft(window)

return numpy.fft.ifft(fft_signal * fft_window)

We can test it by padding the window to the same length as ys and then
computing the convolution:

padded = zero_pad(window, len(ys))

smoothed2 = fft_convolve(ys, padded)

The result has M− 1 bogus values at the beginning, where M is the length
of the window. If we slice off the bogus values, we get the same result as
before, with about 12 digits of precision.

M = len(window)

smoothed2 = smoothed2[M-1:]

You can run this example in chap08.ipynb, which is in the repository for
this book and also available at http://tinyurl.com/thinkdsp08.

8.7 Efficient autocorrelation

In Section 8.2 I presented definitions of cross-correlation and convolution,
and we saw that they are almost the same, except that in convolution the
window is reversed.

Now that we have an efficient algorithm for convolution, we can also use
it to compute cross-correlations and autocorrelations. Using the data from
the previous section, we can compute the autocorrelation of BitCoin prices:

N = len(ys)

corrs = numpy.correlate(ys, ys, mode='same')

corrs = corrs[N//2:]

http://tinyurl.com/thinkdsp08

8.7. Efficient autocorrelation 93

0 100 200 300 400 500 600 700 800
lags

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

co
rr

el
at

io
n

1e8

Figure 8.8: Autocorrelation functions computed by NumPy and
fft_correlate.

With mode='same', the result has the same length as ys, corresponding to
lags from −N/2 to N/2− 1. By selecting the second half, we get only the
non-negative lags. The gray line in Figure 8.8 shows the result. Except at
lag=0, there are no peaks, so there is no apparent periodic behavior in this
signal.

To compute autocorrelation using convolution, we make a copy of the sig-
nal and reverse it. Then we pad the copy and the original to double their
length. This trick is necessary because the FFT is based on the assump-
tion that the signal is periodic; that is, that it wraps around from the end
to the beginning. With time-series data like this, that assumption is invalid.
Adding zeros, and then trimming the results, removes the bogus values.

def fft_autocorr(signal):

N = len(signal)

window = signal[::-1]

signal = zero_pad(signal, 2*N)

window = zero_pad(window, 2*N)

corrs = fft_convolve(signal, window)

corrs = corrs[N//2: 3*N//2]

return corrs

When fft_autocorr calls fft_convolve, the result has length 2N, corre-
sponding to lags from −N + 1 to N. From these I slice out the middle half,
corresponding to lags from −N/2 to N/2− 1.

Finally, we call fft_autocorr and select the second half, which contains

94 Chapter 8. Filtering and Convolution

correlations with non-negative lags.

corrs2 = fft_autocorr(ys)

corrs2 = corrs2[N//2:]

The thin, dark line in Figure 8.8 shows the result, which is identical to the
result from numpy.correlate, with about 7 digits of precision.

Notice that the correlations in Figure 8.8 are large numbers; we could nor-
malize them (between -1 and 1) as shown in Section 5.6.

The strategy we used here for auto-correlation also works for cross-
correlation. Again, you have to prepare the signals by flipping one and
padding both, and then you have to trim the invalid parts of the result. This
packing and unpacking is a nuisance, but that’s why libraries like NumPy
provide functions to do it for you.

8.8 Exercises

Exercise 8.1 Experiment with the parameters of the Gaussian window to see
what effect they have on the cutoff frequency.

Chapter 9

Signals and Systems

The code for this chapter is in systems.py, which is in the repository for this
book (see Section 0.1).

9.1 Finite differences

In Section 8.1, I applied a smoothing window to the historical price of Bit-
Coin, and we found that a smoothing window in the time domain corre-
sponds to a low-pass filter in the frequency domain.

In this section, we’ll look at daily price changes, and we’ll see that comput-
ing the difference between successive elements, in the time domain, corre-
sponds to a high-pass filter.

Here’s the code to read the data, store it as a wave, and compute its spec-
trum.

df = pandas.read_csv('coindesk-bpi-USD-close.csv',

nrows=1625,

parse_dates=[0])

ys = df.Close.values

wave = thinkdsp.Wave(ys, framerate=1)

spectrum = wave.make_spectrum()

The framerate is 1 sample per day. Figure 9.1 shows the time series and
its spectrum plotted on a log-log scale. Visually, the time series resembles
Brownian noise (see Section 4.3). The estimated slope of the spectrum is
-1.8, which is consistent with Brownian noise.

Now let’s compute the daily price change using numpy.diff:

96 Chapter 9. Signals and Systems

0 200 400 600 800 1000 1200 1400 1600
days

0

200

400

600

800

1000

1200
do

lla
rs

10-4 10-3 10-2 10-1 100

frequency (1/days)

101

102

103

104

105

106

po
w

er
Figure 9.1: Daily closing price of BitCoin and the spectrum of this time se-
ries.

diff = numpy.diff(ys)

wave2 = thinkdsp.Wave(diff, framerate=1)

Figure 9.2 shows the resulting wave and its spectrum. The daily changes
and their spectrum resemble white noise, and the estimated parameter, -
0.023, is near zero, which is what we expect for white noise.

9.2 The frequency domain

To see the effect of this operation in the frequency domain, we can compute
the ratio of amplitudes before and after:

amps = spectrum.amps

amps2 = spectrum2.amps

n = min(len(amps), len(amps2))

ratio = amps2[:n] / amps[:n]

thinkplot.plot(ratio)

We can also characterize the effect in the frequency domain by computing
the DFT of the window. Computing the difference between successive ele-
ments is the same as convolution with the window [1, -1].

window = numpy.array([1.0, -1.0])

padded = zero_pad(window, len(wave))

fft_window = numpy.fft.rfft(padded)

thinkplot.plot(abs(fft_window), color='0.7')

9.3. Differentiation 97

0 200 400 600 800 1000 1200 1400 1600
days

250

200

150

100

50

0

50

100

150

200

do
lla

rs

10-4 10-3 10-2 10-1 100

frequency (1/days)

101

102

103

104

po
w

er

Figure 9.2: Daily price changes of BitCoin and their spectrum.

If the order of the elements in the window seems backward, remember that
convolution reverses the window before applying it to the signal.

Figure 9.3 shows the computed ratio and the DFT of the window, which is
the filter. The computed ratio is noisy, but generally follows the shape of
the filter.

The filter increases with frequency, linearly for low frequencies, and then
sublinearly after that. In the next section, we’ll see why.

9.3 Differentiation

The window we used in the previous section is a numerical approximation
of the first derivative, so the filter approximates the effect of differentiation,
which we can figure out mathematically.

Suppose we have a complex sinusoid with frequency f :

E f (t) = e2πi f t

The first derivative of E f is

d
dt

E f (t) = 2πi f e2πi f t

98 Chapter 9. Signals and Systems

0 100 200 300 400 500 600 700 800
frequency (1/days)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

am
pl

itu
de

 ra
tio

ratio
filter

Figure 9.3: Ratio of amplitudes before and after filtering, and the filter cor-
responding to the diff operation.

which we can rewrite as

d
dt

E f (t) = 2πi f E f (t)

In other words, taking the derivative of E f is the same as multiplying by
2πi f , which is a complex scalar (more specifically, an imaginary scalar).

As we saw in Section 7.4, multiplying a complex sinusoid by a complex
scalar has two effects: it multiplies the amplitude, in this case by 2π f , and
shifts the phase offset, in this case by π/2 (because that’s the angle of a
positive imaginary number).

If you are familiar with the language of operators and eigenfunctions, each
E f is an eigenfunction of the differentiation operator, with the correspond-
ing eigenvalue 2πi f . See http://en.wikipedia.org/wiki/Eigenfunction.

If you are not familiar with that language, I’ll tell you what it means:

• An operator is a function that takes a function and returns another
function. For example, differentiation is an operator.

• A function, g, is an eigenfunction of an operator, A, if applying A to g
has the effect of multiplying the function by a scalar. That is,Ag = λg.

• In that case, the scalar λ is the eigenvalue that corresponds to the
eigenfunction g.

http://en.wikipedia.org/wiki/Eigenfunction

9.3. Differentiation 99

0 200 400 600 800 1000 1200 1400 1600
days

300

200

100

0

100

200

300

do
lla

rs

diff
derivative

Figure 9.4: Comparison of daily price changes computed by numpy.diff

and by filtering in the frequency domain.

• A given operator might have many eigenfunctions, each with a corre-
sponding eigenvalue.

For a complex signal with only one frequency component, differentiation is
easy. For signals with more than one component, the process is only slightly
harder:

1. Express the signal as the sum of complex sinusoids.

2. Compute the derivative of each component by multiplication.

3. Add up the differentiated components.

If that process sounds familiar, that’s because it is identical to the algorithm
for convolution in Section 8.6: compute the DFT, multiply by a filter, and
compute the inverse DFT.

Spectrum provides a method that applies the differentiation filter:

class Spectrum:

def differentiate(self):

i = complex(0, 1)

filtr = PI2 * i * self.fs

self.hs *= filtr

We can use it to compute the derivative of the BitCoin time series:

100 Chapter 9. Signals and Systems

spectrum3 = wave.make_spectrum()

spectrum3.differentiate()

wave3 = spectrum3.make_wave()

And then plot wave3, compared to the previous result using numpy.diff,
wave3:

wave2.plot(color='0.7', label='diff')

wave3.plot(label='derivative')

Figure 9.4 shows the results. They are similar except where the changes
are most abrupt. They also differ at the boundaries, because the DFT-based
derivative is based on the assumption that the signal is periodic. It wraps
around from the end to the beginning, creating artifacts at the boundaries.

To summarize, we have shown:

• Computing the difference between successive values in a signal can
be expressed as convolution with a simple window. The result is an
approximation of the first derivative.

• Differentiation in the time domain corresponds to a simple filter in the
frequency domain.

The second conclusion is the basis of spectral methods for solving differen-
tial equations (see http://en.wikipedia.org/wiki/Spectral_method).

In particular, it is useful for the analysis of linear, time-invariant systems,
which is the next topic.

9.4 LTI systems

In the context of signal processing, a system is an abstract representation of
anything that takes a signal as input and produces a signal as output.

For example, an electronic amplifier is a circuit that takes an electrical signal
as input and produces a (louder) signal as output.

As another example, for one of the exercises in Chapter ??, we computed the
sound of a violin as heard through a kilometer of sea water. In that case, we
model the sea water as a system that takes the original recording as input
and produces a filtered version as output.

A linear, time-invariant system1 is a system with these additional proper-
ties:

1My presentation here follows http://en.wikipedia.org/wiki/LTI_system_theory.

http://en.wikipedia.org/wiki/Spectral_method
http://en.wikipedia.org/wiki/LTI_system_theory

9.4. LTI systems 101

1. Linearity: If the input x1 produces output y1 and input x2 produces
y2, then ax1 + bx2 produces ay1 + by2, where a and b are scalars. In
other words, if you put two inputs into the system at the same time,
the result is the sum of their outputs.

2. Time invariance: If x1 and x2 differ by a shift in time, y1 and y2 differ
by the same shift. In other words, the effect of the system doesn’t vary
over time, or depend on the state of the system.

Many physical systems have these properties, at least approximately.

• Circuits that contain only resistors, capacitors and inductors are LTI,
to the degree that the components behave like their idealized models.

• Mechanical systems that contain springs, masses and dashpots are
also LTI, assuming linear springs (force proportional to displacement)
and dashpots (force proportional to velocity).

• Also, and most relevant to applications in this book, the media that
transmit sounds (including air, water and solids) are well-modeled by
LTI systems.

LTI systems are described by linear differential equations, and the solutions
of those equations are complex sinusoids (see http://en.wikipedia.org/

wiki/Linear_differential_equation).

This result provides an algorithm for computing the effect of an LTI system
on an input signal:

1. Express the signal as the sum of complex sinusoids.

2. For each input component, compute the corresponding output com-
ponent.

3. Add up the output components.

At this point, I hope this algorithm sounds familiar. It’s the same algorithm
we used for convolution in Section 8.6, and for differentiation in Section 9.3.
This process is called spectral decomposition because we “decompose” the
input signal into its spectral components.

In order to apply this process to an LTI system, we have to characterize
the system by finding its effect on each component of the input signal. For
mechanical systems, it turns out that there is a simple and efficient way to
do that: you kick it and measure the output.

http://en.wikipedia.org/wiki/Linear_differential_equation
http://en.wikipedia.org/wiki/Linear_differential_equation

102 Chapter 9. Signals and Systems

Technically, the “kick” is called an impulse and the output is called the
impulse response. You might wonder how a single impulse can completely
characterize a system. You can see the answer by computing the DFT of an
impulse. Here’s a wave array with an impulse at t = 0:

>>> impulse = numpy.zeros(8)

>>> impulse[0] = 1

>>> print(impulse)

[1. 0. 0. 0. 0. 0. 0. 0.]

And here’s its spectrum:

>>> spectrum = numpy.fft.fft(impulse)

>>> print(spectrum)

[1.+0.j 1.+0.j 1.+0.j 1.+0.j 1.+0.j 1.+0.j 1.+0.j 1.+0.j]

That’s right: an impulse is the sum of components with equal magnitudes
at all frequencies (and a phase offset of 0).

What that means is that when you test a system by inputting an impulse,
you are testing the response of the system at all frequencies. And you can
test them all at the same time because the system is linear, so simultaneous
tests don’t interfere with each other.

9.5 Transfer functions

For characterizing the acoustic response of a room or open space, a simple
and effective way to generate an impulse is to fire a gun (or a starter pistol).
The gunshot puts an impulse into the system; the sound you hear is the
impulse response.

As an example, I’ll use a recording of a gunshot to characterize the room
where the gun was fired, then use the impulse response to simulate the
effect of that room on a violin recording.

This example is in chap09.ipynb, which is in the repository for this book;
you can also view it, and listen to the examples, at http://tinyurl.com/
thinkdsp09.

Here’s the gunshot:

response = thinkdsp.read_wave('180961__kleeb__gunshots.wav')

response = response.segment(start=0.26, duration=5.0)

response.normalize()

response.plot()

http://tinyurl.com/thinkdsp09
http://tinyurl.com/thinkdsp09

9.5. Transfer functions 103

0 1 2 3 4 5
time

1.0

0.5

0.0

0.5

1.0

am
pl

itu
de

0 5000 10000 15000 20000
frequency

0

50

100

150

200

250

300

350

am
pl

itu
de

Figure 9.5: Waveform of a gunshot.

I select a segment starting at 0.26 seconds to remove the silence before the
gunshot. Figure ?? (left) shows the waveform of the gunshot. Next we
compute the DFT of response:

transfer = response.make_spectrum()

transfer.plot()

Figure ?? (right) shows the result. This spectrum encodes the response of the
room; for each frequency, the spectrum contains a complex number that rep-
resents an amplitude multiplier and a phase shift. This spectrum is called
a transfer function because it contains information about how the system
transfers the input to the output.

Now we can simulate the effect this room would have on the sound of a
violin. Here is the violin recording we used in Chapter ??

wave = thinkdsp.read_wave('92002__jcveliz__violin-origional.wav')

wave.ys = wave.ys[:len(response)]

wave.normalize()

The violin and gunshot waves were sampled at the same framerate, 44,100
Hz. And coincidentally, the duration of both is about 5 seconds. I trimmed
the violin wave to the same length as the gunshot.

Next I’ll compute the DFT of the violin wave:

spectrum = wave.make_spectrum()

Now I know the magnitude and phase of each component in the input, and
I know the transfer function of the system. Their product is the DFT of the
output:

104 Chapter 9. Signals and Systems

0 1 2 3 4 5 6
time (s)

1.0

0.5

0.0

0.5

1.0

am
pl

itu
de

Figure 9.6: Sum of a gunshot waveform with a shifted, scaled version of
itself.

output = (spectrum * transfer).make_wave()

output.normalize()

output.plot()

Figure ?? shows the output of the system superimposed on the input. The
overall shape is similar, but there are substantial differences. And those
differences are clearly audible. Load chap09.ipynb and listen to them. One
thing I find striking about this example is that you can get a sense of what
the room was like; to me, it sounds like a long, narrow room with hard
floors and ceilings. That is, a firing range.

There’s one things I glossed over in this example that I’ll mention in case it
bothers anyone. The violin recording I started with has already been trans-
formed by one system: the room where it was recorded. So what I really
computed in my example is the sound of the violin after two transforma-
tions. To really simulate the sound of a violin in a different room, I should
have characterized the room where the violin was recorded and applied the
inverse of that transfer function first.

9.6 Systems and convolution

If you think the previous example is black magic, you are not alone. I’ve
been thinking about it for a while and it still makes my head hurt.

In the previous section, I suggested one way to think about it:

9.6. Systems and convolution 105

• An impulse is made up of components with amplitude 1 at all fre-
quencies.

• The impulse response contains sum of the responses of the system to
all of these components.

• The transfer function, which is the DFT of the impulse response, en-
codes effect of the system on each frequency component in the form
of an amplitude multiplier and a phase shift.

• For any input, we can compute the response of the system by break-
ing the input into components, computing the response to each com-
ponent, and adding them up.

But if you don’t like that, there’s another way to think about it altogether:
convolution!

Suppose that instead of firing one gun, you fire two guns: a big one with
amplitude 1 at t = 0 and a smaller one with amplitude 0.5 at t = 1.

We can compute the response of the system by adding up the original im-
pulse response and a scaled, shifted version of itself. Here’s a function that
makes a shifted, scaled version of a wave:

def shifted_scaled(wave, shift, factor):

res = wave.copy()

res.shift(shift)

res.scale(factor)

return res

Here’s how we use it to compute the response to a two-gun salute:

dt = 1

shift = dt * response.framerate

factor = 0.5

response2 = response + shifted_scaled(response, shift, factor)

Figure 9.6 shows the result. You can hear what it sounds like in
chap09.ipynb, which you can view at http://tinyurl.com/thinkdsp09.
Not surprisingly, it sounds like two gunshots, the first one louder than the
second.

Now suppose instead of two guns, you add up 100 guns, with a shift of 100
between them. This loop computes the result:

total = 0

for j in range(100):

total += shifted_scaled(response, j*100, 1.0)

http://tinyurl.com/thinkdsp09

106 Chapter 9. Signals and Systems

f [0] [g[0] g[1] g[2] ...]
f [1] [g[0] g[1] g[2] ...]
f [2] [g[0] g[1] g[2] ...]

[h[2]]

Figure 9.7: Diagram of the sum of scaled and shifted copies of g.

At a framerate of 44,100 Hz, there are 441 gunshots per second, so you don’t
hear the individual shots. Instead, it sounds like a periodic signal at 441 Hz.
If you play this example, it sounds like a car horn in a garage.

And that brings us to a key insight: you can think of any wave as a series of
samples, where each sample is an impulse with a different magnitude.

As a example, I’ll generate a sawtooth signal at 410 Hz:
signal = thinkdsp.SawtoothSignal(freq=410)

wave = signal.make_wave(duration=0.1,

framerate=response.framerate)

Now I’ll loop through the series of impulses that make up the sawtooth,
and add up the impulse responses:

total = 0

for j, y in enumerate(wave.ys):

total += shifted_scaled(response, j, y)

The result is what it would sound like to play a sawtooth wave in a firing
range. Again, you can listen to it in chap09.ipynb.

Figure 9.7 shows a diagram of this computation, where f is the sawtooth, g
is the impulse response, and h is the sum of the shifted, scaled copies of g.

For the example shown:

h[2] = f [0]g[2] + f [1]g[1] + f [2]g[0]

And more generally,

h[i] =
N−1

∑
j=0

f [j]g[i− j]

You might recognize this equation from Section 8.2. It is the convolution of
f and g.

9.7. Proof of the Convolution Theorem 107

In summary, there are two ways to think about the effect of a system on a
signal:

1. The input is a sequence of impulses, so the output is the sum of scaled,
shifted copies of the impulse response, which is the convolution of the
input and the impulse response.

2. The DFT of the impulse response is a transfer function that encodes
the effect of the system on each frequency component as a magnitude
and phase offset. The DFT of the input encodes the magnitude and
phase offset of the frequency components it contains. Multiplying the
DFT of the input by the transfer function yields the DFT of the output.

The equivalence of these two descriptions should not be a surprise; it is
basically a statement of the Convolution Theorem: convolution in the time
domain corresponds to multiplication in the frequency domain.

9.7 Proof of the Convolution Theorem

Well, I’ve put it off long enough. It’s time to prove the Convolution Theorem
(CT), which states:

DFT(f ∗ g) = DFT(f)DFT(g)

where f and g are vectors with the same length, N.

I’ll proceed in two steps:

1. I’ll show that in the special case where f is a complex exponential,
convolution with g has the effect of multiplying f by a scalar.

2. In the more general case where f is not a complex exponential, we
can use the DFT to express it as a sum of exponential components,
compute the convolution of each component (by multiplication) and
then add up the results.

The second step demonstrates the Convolution Theorem.

First, let’s assemble the pieces we’ll need. The DFT of g, which I’ll call G, is:

G[n] = ∑
k

g[k] exp(−2πink/N)

108 Chapter 9. Signals and Systems

where N is the length of g, and n is an index that runs from 0 to N − 1. So
G is a vector of complex numbers, with length N.

And here’s the definition of convolution:

(f ∗ g)[j] = ∑
k

f [k]g[j− k]

This is the definition we saw in Section 8.2, except that I’ve changed the
names of the index variables.

Convolution is commutative, so I could equivalently write:

(f ∗ g)[j] = ∑
k

f [j− k]g[k]

Now let’s consider the special case where f is a complex exponential; specif-
ically,

fn[κ] = exp(2πinκ/N)

where N is the length of f and g, and n is one of the integers from 0 to
N − 1. I’m using κ here as a placekeeper to avoid confusion because very
soon I will need to substitute j− k for κ.

Plugging fn into the second definition of convolution yields

(fn ∗ g)[j] = ∑
k

exp(2πin(j− k)/N)g[k]

We can split the first term into a product:

(fn ∗ g)[j] = ∑
k

exp(2πinj/N) exp(−2πink/N)g[k]

The first half does not depend on k, so we can pull it out of the summation:

(fn ∗ g)[j] = exp(2πinj/N)∑
k

exp(−2πink/N)g[k]

Now we recognize the first term is fn (with j substituted for κ), and the
summation is G[n]. So we can write:

(fn ∗ g)[j] = fn[j]G[n]

which shows that for each complex exponential, fn, convolution with g has
the effect of multiplying fn by G[n]. In other words, each fn is an eigenvector
of this operation, and G[n] is the corresponding eigenvalue.

9.8. Exercises 109

9.8 Exercises

Exercise 9.1 Are kazoos nonlinear?

Also see http://www.google.com/patents/US20140256218

And http://designingsound.org/2014/07/

spectral-analysis-interview-with-rob-blake/

http://www.google.com/patents/US20140256218
http://designingsound.org/2014/07/spectral-analysis-interview-with-rob-blake/
http://designingsound.org/2014/07/spectral-analysis-interview-with-rob-blake/

110 Chapter 9. Signals and Systems

Chapter 10

Fourier analysis of images

112 Chapter 10. Fourier analysis of images

Appendix A

Linear Algebra

Dot product

In the special case where y has length 1, we have

x · ŷ = norm(x) cos θ

which is the scalar projection of x onto ŷ; that is, it is the length of the
component of x that points in the direction of ŷ.

I mention this now because it will come in handy when we talk about trans-
forms.

In the context of computation, it is common to think of a vector as a se-
quence of numbers, and people often use “vector” and “array” interchange-
ably. But it is more correct to think of a vector as an abstract mathematical
concept, with an array as one way to represent one.

From a mathematical point of view, a vector is a sequence of coordinates rel-
ative to a basis. Most vectors are implicitly defined relative to the “standard
basis”, which is a sequence of unit vectors.

For example, in a 3-D Euclidean space, the standard basis is the sequence of
vectors:

ex = (1, 0, 0) (A.1)
ey = (0, 1, 0) (A.2)
ez = (0, 0, 1) (A.3)

(A.4)

114 Appendix A. Linear Algebra

Relative to this basis, the vector (1, 2, 3) is understood to mean 1ex + 2ey +
3ez. This is similar to the way we understand that the number 123 means
100 + 20 + 3, provided that it is in base 10.

But just as we can write numbers in other bases, we can define vectors
relative to other bases. A basis is a sequence of vectors that are linearly-
independent, which means that no vector in the set can be written as a
weighted sum of the others.

One note on linear algebra vocabulary: I am using “matrix” to refer to a two-
dimensional array, and “vector” for a one-dimensional array or sequence.
To be pedantic, it would be more correct to think of matrices and vectors
as abstract mathematical concepts, and NumPy arrays as one way (and not
the only way) to represent them.

This chapter explores the relationship between the synthesis problem and
the analysis problem. By writing the synthesis problem in the form of ma-
trix operations, we derive an efficient algorithm for computing the DCT.

That’s useful for analysis and synthesis, but it also provides an alternative
way to think about these operations: in the vocabulary of linear algebra,
they are linear transformations, or transforms.

To understand transforms, we have to start with bases. A basis is a set of
linearly-independent vectors, which means that no vector in the set can be
written as a weighted sum of the others.

In this context, a vector is a sequence of coordinates defined relative to a
basis.

This algorithm is based on a matrix, M, that is orthogonal and symmetric,
so it has the unusual property that the inverse of M is M (within a factor of
two, anyway). As a result, the function we wrote to compute DCT-IV also
computes the inverse DCT.

From

For the analysis problem, we started with a solution that takes time propor-
tional to n3 and improved it to take time proportional to n2. It turns out that
there is another optimization that gets the run time down to n log n. We’ll
see how that works in Chapter 7.

	Preface
	Using the code

	Sounds and signals
	Periodic signals
	Spectral decomposition
	Signals
	Reading and writing Waves
	Spectrums
	Exercises

	Harmonics
	Implementing Signals and Spectrums
	Computing the spectrum
	Other waveforms
	Harmonics
	Aliasing
	Exercises

	Non-periodic signals
	Chirp
	Exponential chirp
	Leakage
	Windowing
	Spectrum of a chirp
	Spectrogram
	The Gabor limit
	Implementing spectrograms
	Exercises

	Noise
	Uncorrelated noise
	Integrated spectrum
	Brownian noise
	Pink Noise
	Gaussian noise
	Exercises

	Autocorrelation
	Correlation
	Serial correlation
	Autocorrelation
	Autocorrelation of periodic signals
	Correlation as dot product
	Using NumPy
	Exercises

	Discrete cosine transform
	Synthesis
	Synthesis with arrays
	Analysis
	Orthogonal matrices
	DCT-IV
	Inverse DCT
	Exercises

	Discrete Fourier Transform
	Complex exponentials
	Complex signals
	The synthesis problem
	Synthesis with matrices
	The analysis problem
	Efficient analysis
	DFT
	Just one more thing
	Exercises

	Filtering and Convolution
	Smoothing
	Convolution
	The frequency domain
	The convolution theorem
	Gaussian filter
	Efficient convolution
	Efficient autocorrelation
	Exercises

	Signals and Systems
	Finite differences
	The frequency domain
	Differentiation
	LTI systems
	Transfer functions
	Systems and convolution
	Proof of the Convolution Theorem
	Exercises

	Fourier analysis of images
	Linear Algebra

