
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Praise for Gray Hat Hacking: The Ethical Hacker’s Handbook, Fifth
Edition

“The Gray Hat Hacking book series continue to provide an up-to-date and detailed
view on a large variety of offensive IT security disciplines. In this fifth edition, a group
of respected infosec professionals spared no effort to share their experience and
expertise on novel techniques to bypass security mechanisms.

The exploit development chapters, written by Stephen Sims, reveal in great detail
what it takes to write an exploit for modern applications. In Chapter 14, Stephen uses a
recent vulnerability in a major web browser to demystify the complexity of writing
modern exploits for heap-related memory corruptions, bypassing memory protections
along the road.

This book is a must read for anyone who wants to step up and broaden their skills in
infosec.”

—Peter Van Eeckhoutte
Corelan Team (@corelanc0d3r)

“One of the few book series where I ALWAYS buy the updated version. Learn updated
exploit-dev techniques from the best instructors in the business. The volume of new
information available to the average information security practitioner is staggering. The
authors, who are some of the best in their respective fields, help us stay up to date with
current trends and techniques. GHH’s updates on Red Team Ops, Bug Bounties,
PowerShell Techniques, and IoT & Embedded Devices are exactly what infosec
practitioners need to add to their tool kits.”

—Chris Gates
Sr. Security Engineer (Uber)

“Never before has there been so much technology to attack nor such high levels of
controls and prevention mechanisms. For example, the advancements in modern
operating systems and applications to protect against exploitation are very impressive,
yet time and time again with the right conditions they are bypassed. Amongst a litany of
modern and up-to-date techniques, Gray Hat Hacking provides detailed and informative
walkthroughs of vulnerabilities and how controls like ASLR and DEP are bypassed.
Filled with real examples you can follow if you are seeking to upgrade your
understanding of the latest hacking techniques—this is the book for you.”

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

—James Lyne
Global Research Advisor (Sophos) and Head of R&D (SANS Institute)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Copyright © 2018 by McGraw-Hill Education. All rights reserved. Except as permitted
under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

ISBN: 978-1-26-010842-2
MHID: 1-26-010842-2

The material in this eBook also appears in the print version of this title: ISBN: 978-1-
26-010841-5,
MHID: 1-26-010841-4.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark
symbol after every occurrence of a trademarked name, we use names in an editorial
fashion only, and to the benefit of the trademark owner, with no intention of infringement
of the trademark. Where such designations appear in this book, they have been printed
with initial caps.

McGraw-Hill Education ebooks are available at special quantity discounts to use as
premiums and sales promotions or for use in corporate training programs. To contact a
representative, please visit the Contact Us page at www.mhprofessional.com.

All trademarks or copyrights mentioned herein are the possession of their respective
owners and McGraw-Hill Education makes no claim of ownership by the mention of
products that contain these marks.

Information has been obtained by McGraw-Hill Education from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our
sources, McGraw-Hill Education, or others, McGraw-Hill Education does not
guarantee the accuracy, adequacy, or completeness of any information and is not
responsible for any errors or omissions or the results obtained from the use of such
information.

TERMS OF USE

||||||||||||||||||||

||||||||||||||||||||

http://www.mhprofessional.com
https://technet24.ir
https://technet24.ir

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill Education’s prior consent.
You may use the work for your own noncommercial and personal use; any other use of
the work is strictly prohibited. Your right to use the work may be terminated if you fail
to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS
LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT
CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill
Education and its licensors do not warrant or guarantee that the functions contained in
the work will meet your requirements or that its operation will be uninterrupted or error
free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone
else for any inaccuracy, error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill Education has no responsibility for the
content of any information accessed through the work. Under no circumstances shall
McGraw-Hill Education and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or
inability to use the work, even if any of them has been advised of the possibility of such
damages. This limitation of liability shall apply to any claim or cause whatsoever
whether such claim or cause arises in contract, tort or otherwise.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In Memory of Shon Harris
In the previous edition, I spoke in memory of Shon Harris, my friend, mentor, and a
person I credit with jump-starting my career after my time in the Marine Corps. Simply
put, neither this book nor most of my professional accomplishments would have
happened without her. I continue to miss her and I know I speak on behalf of the other
authors that we wish she were still with us. If you did not know Shon or have never
heard of her, you owe it to yourself to learn about her inspiring story in the last edition
and elsewhere. For those of us who knew her and have our own “Shon” stories, join me
in keeping her memory alive and share her story with anyone who will listen. She was
an amazing person and is loved and missed dearly. We dedicate this book to her
memory.

—Allen Harper
Lead author and friend of Shon Harris

To my brothers and sisters in Christ, keep running the race. Let your light shine for Him,
that others may be drawn to Him through you.

—Allen Harper

Dedicado a ti mamita Adelina Arias Cruz, cuando me pregunto de donde sale mi garra
de no dejarme de nadie o el sacrificio incansable para conseguir mis metas, solo tengo
que voltear a verte, para ti no hay imposibles, te adoro!

—Daniel Regalado

To Mom, who read to me when I was little, so I could achieve the level of literacy I
needed to become an author one day.

—Ryan Linn

To my lovely wife LeAnne and my daughter Audrey, thank you for your ongoing support!
—Stephen Sims

To my lovely daughter Elysia, thank you for your unconditional love and support. You
inspire me in so many ways. I am, and will always be, your biggest fan.

—Linda Martinez

To my family and friends for their unconditional support and making this life funny and
interesting.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

—Branko Spasojevic

To my daughter Tiernan, thank you for your support and continuous reminders to enjoy
life and learning each and every day. I look forward to seeing the wonderful woman you
will become.

—Michael Baucom

To my son Aaron, thanks for all your love while I spend too much time at the keyboard,
and thanks for sharing your joy on all the projects we work on together.

—Chris Eagle

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ABOUT THE AUTHORS

Dr. Allen Harper, CISSP. In 2007, Allen Harper retired from the military as a Marine
Corps Officer after a tour in Iraq. He has more than 30 years of IT/security experience.
He holds a PhD in IT with a focus in Information Assurance and Security from Capella,
an MS in Computer Science from the Naval Postgraduate School, and a BS in Computer
Engineering from North Carolina State University. Allen led the development of the
GEN III honeywall CD-ROM, called roo, for the Honeynet Project. He has worked as a
security consultant for many Fortune 500 and government entities. His interests include
the Internet of Things, reverse engineering, vulnerability discovery, and all forms of
ethical hacking. Allen was the founder of N2NetSecurity, Inc., served as the EVP and
chief hacker at Tangible Security, and now serves the Lord at Liberty University in
Lynchburg, Virginia.

Daniel Regalado, aka Danux, is a Mexican security researcher with more than 16
years in the security field, dissecting or pen-testing malware, 0-day exploits, ATMs, IoT
devices, IV pumps, and car infotainment systems. He is a former employee of widely
respected companies like FireEye and Symantec and is currently a principal security
researcher at Zingbox. Daniel is probably best known for his multiple discoveries and
dissection of ATM malware attacking banks worldwide, with the most notorious
findings being Ploutus, Padpin, and Ripper.

Ryan Linn has over 20 years in the security industry, ranging from systems
programmer to corporate security, to leading a global cybersecurity consultancy. Ryan
has contributed to a number of open source projects, including Metasploit and the
Browser Exploitation Framework (BeEF). Ryan participates in Twitter as @sussurro,
and he has presented his research at numerous security conferences, including Black Hat
and DEF CON, and has provided training in attack techniques and forensics worldwide.

Stephen Sims is an industry expert with over 15 years of experience in information
technology and security. He currently works out of San Francisco as a consultant
performing reverse engineering, exploit development, threat modeling, and penetration
testing. Stephen has an MS in information assurance from Norwich University and is a
course author, fellow, and curriculum lead for the SANS Institute, authoring courses on
advanced exploit development and penetration testing. He has spoken at numerous
conferences, including RSA, BSides, OWASP AppSec, ThaiCERT, AISA, and many
others. He may be reached on twitter: @Steph3nSims

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Branko Spasojevic is a security engineer on Google’s Detection and Response team.
Before that he worked as a reverse engineer for Symantec and analyzed various threats
and APT groups.

Linda Martinez is the Chief Information Security Officer (CISO) and Vice President
of Commercial Service Delivery at Tangible Security. Linda is a proven information
security executive and industry expert with over 18 years of experience leading
technical teams, developing technical business lines, and providing high-quality
consulting services to clients. She is responsible for Tangible Security’s Commercial
Division, where she leads the following business lines: penetration testing, including
red and purple team operations; hardware hacking; product and supply chain security;
governance, risk management, and compliance; incident response and digital forensics.
Linda also leads a team of virtual Chief Information Security Officers (CISOs) in
providing expert guidance to many organizations. Prior to her current position, Linda
was the Vice President of Operations for N2 Net Security. Before that, she co-founded
and served as Chief Operating Officer (COO) for Executive Instruments, an information
security research and consulting firm.

Michael Baucom currently works for Tangible Security as the VP of Tangible Labs.
While at Tangible he has worked on a wide variety of projects, including software
security assessments, SDLC consulting, tool development, and penetration tests. Prior to
working at Tangible Security, he served in the Marine Corps as a ground radio
repairman. Additionally, he worked for IBM, Motorola, and Broadcom in several
capacities, including test engineering, device driver development, and system software
development for embedded systems. In addition to his work activities, Michael has been
a trainer at Black Hat, speaker at several conferences, and technical editor for Gray Hat
Hacking: The Ethical Hacker’s Handbook. His current interests are in automating pen-
test activities, embedded system security, and mobile phone security.

Chris Eagle is a senior lecturer in the computer science department at the Naval
Postgraduate School in Monterey, California. A computer engineer/scientist for more
than 30 years, he has authored several books, served as the chief architect for DARPA’s
Cyber Grand Challenge, frequently speaks at security conferences, and has contributed
several popular open source tools to the security community.

The late Shon Harris is greatly missed. She was the president of Logical Security, a
security consultant, a former engineer in the Air Force’s Information Warfare unit, an
instructor, and an author. She authored the best-selling CISSP Exam Guide (currently in
its seventh edition), along with many other books. Shon consulted for a variety of
companies in many different industries. Shon taught computer and information security
to a wide range of clients, including RSA, Department of Defense, Department of
Energy, West Point, National Security Agency (NSA), Bank of America, Defense
Information Systems Agency (DISA), BMC, and many more. Shon was recognized as

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

one of the top 25 women in the Information Security field by Information Security
Magazine.

Disclaimer: The views expressed in this book are those of the authors and not of
the U.S. government or any company mentioned herein.

About the Technical Editor
Heather Linn has over 20 years in the security industry and has held roles in corporate
security, penetration testing, and as part of a hunt team. She has contributed to open
source frameworks, including Metasploit, and has contributed to course materials on
forensics, penetration testing, and information security taught around the globe.

Heather has presented at many security conferences, including multiple BSides
conferences, local ISSA chapter conferences, and student events aimed at providing
realistic expectations for new students entering the information security field.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CONTENTS AT A GLANCE

 Part I Preparation
Chapter 1 Why Gray Hat Hacking? Ethics and Law

Chapter 2 Programming Survival Skills

Chapter 3 Next-Generation Fuzzing

Chapter 4 Next-Generation Reverse Engineering

Chapter 5 Software-Defined Radio

 Part II Business of Hacking
Chapter 6 So You Want to Be a Pen Tester?

Chapter 7 Red Teaming Operations

Chapter 8 Purple Teaming

Chapter 9 Bug Bounty Programs

 Part III Exploiting Systems
Chapter 10 Getting Shells Without Exploits

Chapter 11 Basic Linux Exploits

Chapter 12 Advanced Linux Exploits

Chapter 13 Windows Exploits

Chapter 14 Advanced Windows Exploitation

Chapter 15 PowerShell Exploitation

Chapter 16 Next-Generation Web Application Exploitation

Chapter 17 Next-Generation Patch Exploitation

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 Part IV Advanced Malware Analysis
Chapter 18 Dissecting Mobile Malware

Chapter 19 Dissecting Ransomware

Chapter 20 ATM Malware

Chapter 21 Deception: Next-Generation Honeypots

 Part V Internet of Things
Chapter 22 Internet of Things to Be Hacked

Chapter 23 Dissecting Embedded Devices

Chapter 24 Exploiting Embedded Devices

Chapter 25 Fighting IoT Malware

Index

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CONTENTS

Preface
Acknowledgments
Introduction

 Part I Preparation
Chapter 1 Why Gray Hat Hacking? Ethics and Law

Know Your Enemy
The Current Security Landscape
Recognizing an Attack

The Gray Hat Way
Emulating the Attack
Frequency and Focus of Testing

Evolution of Cyberlaw
Understanding Individual Cyberlaws

Summary
References

Chapter 2 Programming Survival Skills
C Programming Language

Basic C Language Constructs
Sample Program
Compiling with gcc

Computer Memory
Random Access Memory
Endian
Segmentation of Memory
Programs in Memory
Buffers
Strings in Memory

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Pointers
Putting the Pieces of Memory Together

Intel Processors
Registers

Assembly Language Basics
Machine vs. Assembly vs. C
AT&T vs. NASM
Addressing Modes
Assembly File Structure
Assembling

Debugging with gdb
gdb Basics
Disassembly with gdb

Python Survival Skills
Getting Python
“Hello, World!” in Python
Python Objects
Strings
Numbers
Lists
Dictionaries
Files with Python
Sockets with Python

Summary
For Further Reading
References

Chapter 3 Next-Generation Fuzzing
Introduction to Fuzzing

Types of Fuzzers
Mutation Fuzzers
Generation Fuzzers
Genetic Fuzzing

Mutation Fuzzing with Peach
Lab 3-1: Mutation Fuzzing with Peach

Generation Fuzzing with Peach
Crash Analysis

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lab 3-2: Generation Fuzzing with Peach
Genetic or Evolutionary Fuzzing with AFL

Lab 3-3: Genetic Fuzzing with AFL
Summary
For Further Reading

Chapter 4 Next-Generation Reverse Engineering
Code Annotation

IDB Annotation with IDAscope
C++ Code Analysis

Collaborative Analysis
Leveraging Collaborative Knowledge Using FIRST
Collaboration with BinNavi

Dynamic Analysis
Automated Dynamic Analysis with Cuckoo Sandbox
Bridging the Static-Dynamic Tool Gap with Labeless

Summary
For Further Reading
References

Chapter 5 Software-Defined Radio
Getting Started with SDR

What to Buy
Not So Quick: Know the Rules

Learn by Example
Search
Capture
Replay
Analyze
Preview
Execute

Summary
For Further Reading

 Part II Business of Hacking
Chapter 6 So You Want to Be a Pen Tester?

The Journey from Novice to Expert

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Pen Tester Ethos
Pen Tester Taxonomy
The Future of Hacking
Know the Tech
Know What Good Looks Like
Pen Tester Training
Practice
Degree Programs
Knowledge Transfer

Pen Tester Tradecraft
Personal Liability
Being the Trusted Advisor
Managing a Pen Test

Summary
For Further Reading

Chapter 7 Red Teaming Operations
Red Team Operations

Strategic, Operational, and Tactical Focus
Assessment Comparisons

Red Teaming Objectives
What Can Go Wrong

Limited Scope
Limited Time
Limited Audience
Overcoming Limitations

Communications
Planning Meetings
Defining Measurable Events

Understanding Threats
Attack Frameworks
Testing Environment
Adaptive Testing

External Assessment
Physical Security Assessment
Social Engineering
Internal Assessment

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lessons Learned
Summary
References

Chapter 8 Purple Teaming
Introduction to Purple Teaming
Blue Team Operations

Know Your Enemy
Know Yourself
Security Program
Incident Response Program
Common Blue Teaming Challenges

Purple Teaming Operations
Decision Frameworks
Disrupting the Kill Chain
Kill Chain Countermeasure Framework
Communication

Purple Team Optimization
Summary
For Further Reading
References

Chapter 9 Bug Bounty Programs
History of Vulnerability Disclosure

Full Vendor Disclosure
Full Public Disclosure
Responsible Disclosure
No More Free Bugs

Bug Bounty Programs
Types of Bug Bounty Programs
Incentives
Controversy Surrounding Bug Bounty Programs
Popular Bug Bounty Program Facilitators

Bugcrowd in Depth
Program Owner Web Interface
Program Owner API Example
Researcher Web Interface

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Earning a Living Finding Bugs
Selecting a Target
Registering (If Required)
Understanding the Rules of the Game
Finding Vulnerabilities
Reporting Vulnerabilities
Cashing Out

Incident Response
Communication
Triage
Remediation
Disclosure to Users
Public Relations

Summary
For Further Reading
References

 Part III Exploiting Systems
Chapter 10 Getting Shells Without Exploits

Capturing Password Hashes
Understanding LLMNR and NBNS
Understanding Windows NTLMv1 and NTLMv2 Authentication
Using Responder
Lab 10-1: Getting Passwords with Responder

Using Winexe
Lab 10-2: Using Winexe to Access Remote Systems
Lab 10-3: Using Winexe to Gain Elevated Privileges

Using WMI
Lab 10-4 : Querying System Information with WMI
Lab 10-5: Executing Commands with WMI

Taking Advantage of WinRM
Lab 10-6: Executing Commands with WinRM
Lab 10-7: Using WinRM to Run PowerShell Remotely

Summary
For Further Reading
Reference

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chapter 11 Basic Linux Exploits
Stack Operations and Function-Calling Procedures
Buffer Overflows

Lab 11-1: Overflowing meet.c
Ramifications of Buffer Overflows

Local Buffer Overflow Exploits
Lab 11-2: Components of the Exploit
Lab 11-3: Exploiting Stack Overflows from the Command Line
Lab 11-4: Exploiting Stack Overflows with Generic Exploit

Code
Lab 11-5: Exploiting Small Buffers

Exploit Development Process
Lab 11-6: Building Custom Exploits

Summary
For Further Reading

Chapter 12 Advanced Linux Exploits
Format String Exploits

Format Strings
Lab 12-1: Reading from Arbitrary Memory
Lab 12-2: Writing to Arbitrary Memory
Lab 12-3: Changing Program Execution

Memory Protection Schemes
Compiler Improvements
Lab 11-4: Bypassing Stack Protection
Kernel Patches and Scripts
Lab 12-5: Return to libc Exploits
Lab 12-6: Maintaining Privileges with ret2libc
Bottom Line

Summary
For Further Reading
References

Chapter 13 Windows Exploits
Compiling and Debugging Windows Programs

Lab 13-1: Compiling on Windows
Windows Compiler Options

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Debugging on Windows with Immunity Debugger
Lab 13-2: Crashing the Program

Writing Windows Exploits
Exploit Development Process Review
Lab 13-3: Exploiting ProSSHD Server

Understanding Structured Exception Handling (SEH)
Understanding and Bypassing Windows Memory Protections

Safe Structured Exception Handling (SafeSEH)
Bypassing SafeSEH
SEH Overwrite Protection (SEHOP)
Bypassing SEHOP
Stack-Based Buffer Overrun Detection (/GS)
Bypassing /GS
Heap Protections

Summary
For Further Reading
References

Chapter 14 Advanced Windows Exploitation
Data Execution Prevention (DEP)
Address Space Layout Randomization (ASLR)
Enhanced Mitigation Experience Toolkit (EMET) and Windows

Defender Exploit Guard
Bypassing ASLR
Bypassing DEP and Avoiding ASLR

VirtualProtect
Return-Oriented Programming
Gadgets
Building the ROP Chain

Defeating ASLR Through a Memory Leak
Triggering the Bug
Tracing the Memory Leak
Weaponizing the Memory Leak
Building the RVA ROP Chain

Summary
For Further Reading
References

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chapter 15 PowerShell Exploitation
Why PowerShell

Living Off the Land
PowerShell Logging
PowerShell Portability

Loading PowerShell Scripts
Lab 15-1: The Failure Condition
Lab 15-2: Passing Commands on the Command Line
Lab 15-3: Encoded Commands
Lab 15-4: Bootstrapping via the Web

Exploitation and Post-Exploitation with PowerSploit
Lab 15-5: Setting Up PowerSploit
Lab 15-6: Running Mimikatz Through PowerShell
Lab 15-7: Creating a Persistent Meterpreter Using PowerSploit

Using PowerShell Empire for C2
Lab 15-8: Setting Up Empire
Lab 15-9: Staging an Empire C2
Lab 15-10: Using Empire to Own the System

Summary
For Further Reading
References

Chapter 16 Next-Generation Web Application Exploitation
The Evolution of Cross-Site Scripting (XSS)

Setting Up the Environment
Lab 16-1: XSS Refresher
Lab 16-2: XSS Evasion from Internet Wisdom
Lab 16-3: Changing Application Logic with XSS
Lab 16-4: Using the DOM for XSS

Framework Vulnerabilities
Setting Up the Environment
Lab 16-5: Exploiting CVE-2017-5638
Lab 16-6: Exploiting CVE-2017-9805

Padding Oracle Attacks
Lab 16-7: Changing Data with the Padding Oracle Attack

Summary
For Further Reading

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

References

Chapter 17 Next-Generation Patch Exploitation
Introduction to Binary Diffing

Application Diffing
Patch Diffing

Binary Diffing Tools
BinDiff
turbodiff
Lab 17-1: Our First Diff

Patch Management Process
Microsoft Patch Tuesday
Obtaining and Extracting Microsoft Patches
Lab 17-2: Diffing MS17-010

Patch Diffing for Exploitation
DLL Side-Loading Bugs
Lab 17-3: Diffing MS16-009

Summary
For Further Reading
References

 Part IV Advanced Malware Analysis
Chapter 18 Dissecting Mobile Malware

The Android Platform
Android Application Package
Application Manifest
Analyzing DEX
Java Decompilation
DEX Decompilation
DEX Disassembling
Example 18-1: Running APK in Emulator
Malware Analysis

The iOS Platform
iOS Security
iOS Applications

Summary

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

For Further Reading
References

Chapter 19 Dissecting Ransomware
The Beginnings of Ransomware
Options for Paying the Ransom
Dissecting Ransomlock

Example 19-1: Dynamic Analysis
Example 19-2: Static Analysis

Wannacry
Example 19-3: Analyzing Wannacry Ransomware

Summary
For Further Reading

Chapter 20 ATM Malware
ATM Overview
XFS Overview

XFS Architecture
XFS Manager

ATM Malware Analysis
Types of ATM Malware
Techniques for Installing Malware on ATMs
Techniques for Dissecting the Malware
ATM Malware Countermeasures

Summary
For Further Reading
References

Chapter 21 Deception: Next-Generation Honeypots
Brief History of Deception

Honeypots as a Form of Deception
Deployment Considerations
Setting Up a Virtual Machine

Open Source Honeypots
Lab 21-1: Dionaea
Lab 21-2: ConPot
Lab 21-3: Cowrie
Lab 21-4: T-Pot

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Commercial Alternative: TrapX
Summary
For Further Reading
References

 Part V Internet of Things
Chapter 22 Internet of Things to Be Hacked

Internet of Things (IoT)
Types of Connected Things
Wireless Protocols
Communication Protocols
Security Concerns

Shodan IoT Search Engine
Web Interface
Shodan Command-Line Interface
Lab 22-1: Using the Shodan Command Line
Shodan API
Lab 22-2: Testing the Shodan API
Lab 22-3: Playing with MQTT
Implications of This Unauthenticated Access to MQTT

IoT Worms: It Was a Matter of Time
Lab 22-4: Mirai Lives
Prevention

Summary
For Further Reading
References

Chapter 23 Dissecting Embedded Devices
CPU

Microprocessor
Microcontrollers
System on Chip (SoC)
Common Processor Architectures

Serial Interfaces
UART
SPI

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

I2C
Debug Interfaces

JTAG
SWD (Serial Wire Debug)

Software
Bootloader
No Operating System
Real-Time Operating System
General Operating System

Summary
For Further Reading
References

Chapter 24 Exploiting Embedded Devices
Static Analysis of Vulnerabilities in Embedded Devices

Lab 24-1: Analyzing the Update Package
Lab 24-2: Performing Vulnerability Analysis

Dynamic Analysis with Hardware
The Test Environment Setup
Ettercap

Dynamic Analysis with Emulation
FIRMADYNE
Lab 24-3: Setting Up FIRMADYNE
Lab 24-4: Emulating Firmware
Lab 24-5: Exploiting Firmware

Summary
Further Reading
References

Chapter 25 Fighting IoT Malware
Physical Access to the Device

RS-232 Overview
RS-232 Pinout
Exercise 25-1: Troubleshooting a Medical Device’s RS-232

Port
Setting Up the Threat Lab

ARM and MIPS Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lab 25-1: Setting Up Systems with QEMU
Dynamic Analysis of IoT Malware

Lab 25-2: IoT Malware Dynamic Analysis
Platform for Architecture-Neutral Dynamic Analysis (PANDA)
BeagleBone Black Board

Reverse Engineering IoT Malware
Crash-Course ARM/MIPS Instruction Set
Lab 25-3: IDA Pro Remote Debugging and Reversing
IoT Malware Reversing Exercise

Summary
For Further Reading

Index

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

PREFACE

This book has been developed by and for security professionals who are dedicated to
working in an ethical and responsible manner to improve the overall security posture of
individuals, corporations, and nations.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ACKNOWLEDGMENTS

Each of the authors would like to thank the staff at McGraw-Hill Education. In
particular, we would like to thank Wendy Rinaldi and Claire Yee. You really went
above and beyond, keeping us on track and greatly helping us through the process. Your
highest levels of professionalism and tireless dedication to this project were truly
noteworthy and bring great credit to your publisher. Thanks.

Allen Harper would like to thank his wonderful wife Corann and beautiful daughters
Haley and Madison for their support and understanding as I chased yet another dream.

It is wonderful to see our family and each of us individually grow stronger in Christ
each year. Madison and Haley, I love you both dearly and am proud of the young ladies
you have become. In addition, I would like to thank the members of my former and
current employer. To the friends at Tangible Security, I am thankful for your impact on
my life—you made me better. To my brothers and sisters in Christ at Liberty University,
I am excited for the years ahead as we labor together and aim to train Champions for
Christ!

Daniel Regalado le gustaría agradecer primero a Dios por la bendición de estar
vivo, a su esposa Diana por aguantarlo, por siempre motivarlo, por festejar cada uno de
sus triunfos como si fueran de ella, por ser tan bella y atlética, te amo! A sus hijos
Fercho y Andrick por ser la luz de la casa y su motor de cada dia y finalmente pero no
menos importante a la Familia Regalado Arias: Fernando, Adelina, Susana Erwin y
Belem, sin ellos, sus triunfos no sabrían igual, los amo! Y a su Papa Fernando, hasta el
ultimo dia que respire, viviré con la esperanza de volver a abrazarte. Cape, Cone,
Rober, hermandad para siempre!

Branko Spasojevic would like to thank his family—Sanja, Sandra, Ana Marija,
Magdalena, Ilinka, Jevrem, Olga, Dragisa, Marija, and Branislav—for all the support
and knowledge they passed on.

Another big thanks goes to all my friends and colleagues who make work and play
fun. Some people who deserve special mention are Ante Gulam, Antonio, Cedric,
Clement, Domagoj, Drazen, Goran, Keith, Luka, Leon, Matko, Santiago, Tory, and
everyone in TAG, Zynamics, D&R, and Orca.

Ryan Linn would like to thank Heather for her support, encouragement, and advice as
well as his family and friends for their support and for putting up with the long hours

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

and infrequent communication while the book was coming together.
Thanks also go out to Ed Skoudis for pushing me to do awesome things, and to HD,

Egypt, Nate, Shawn, and all the other friends and family who have offered code
assistance, guidance, and support when I’ve needed it the most.

Stephen Sims would like to thank his wife LeAnne and daughter Audrey for their
ongoing support with the time needed to research, write, work, teach, and travel.

He would also like to thank his parents, George and Mary, and sister, Lisa, for their
support from afar. Finally, a special thanks to all of the brilliant security researchers
who contribute so much to the community with publications, lectures, and tools.

Chris Eagle would like to thank his wife Kristen for being the rock that allows him to
do all of the things he does. None of it would be possible without her continued support.

Linda Martinez would like to thank her mom and dad for being truly delightful
people and always setting a great example to follow. Linda would also like to thank her
daughter Elysia for the years of encouragement that allowed her to pursue her passions.

A big thanks to my friends and some of the brightest minds in the industry—Allen,
Zack, Rob, Ryan, Bill, and Shon, may she rest in peace.

Michael Baucom would like to thank his wife, Bridget, and daughter, Tiernan, for
their sacrifices and support in allowing him to pursue his professional goals.

I’d also like to thank my parents for your love, support, and instilling in me the work
ethic that has carried me to this point. Additionally, I’d like to thank the Marine Corps
for giving me the courage and confidence to understand that all things are possible.
Finally, I’d like to thank my brother in Christ, long-time friend, and colleague, Allen
Harper. Nothing can be accomplished without a great team.

We, the authors, would also like to collectively thank Hex-Rays for the generous use
of their tool, IDA Pro.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

INTRODUCTION

History teaches that wars begin when governments believe the price of aggression
is cheap.

—Ronald Reagan

You can’t say civilization don’t advance…in every war they kill you in a new way.
—Will Rogers

The supreme art of war is to subdue the enemy without fighting.
—Sun Tzu

The purpose of this book is to provide individuals the information once held only by
governments and a few black hat hackers. In this day and age, individuals stand in the
breach of cyberwar, not only against black hat hackers, but sometimes against
governments. If you find yourself in this position, either alone or as a defender of your
organization, we want you to be equipped with as much knowledge of the attacker as
possible. To that end, we submit to you the mindset of the gray hat hacker, an ethical
hacker that uses offensive techniques for defensive purposes. The ethical hacker always
respects laws and the rights of others, but believes the adversary may be beat to the
punch by testing oneself first.

The authors of this book want to provide you, the reader, with something we believe
the industry and society in general needs: a holistic review of ethical hacking that is
responsible and truly ethical in its intentions and material. This is why we keep
releasing new editions of this book with a clear definition of what ethical hacking is and
is not—something our society is very confused about.

We have updated the material from the fourth edition and have attempted to deliver the
most comprehensive and up-to-date assembly of techniques, procedures, and material
with real hands-on labs that can be replicated by the readers. Thirteen new chapters are
presented, and the other chapters have been updated.

In Part I, we prepare you for the battle with all the necessary tools and techniques to
get the best understanding of the more advanced topics. This section moves quite
quickly but is necessary for those just starting out in the field and others looking to move
to the next level. This section covers the following:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• White, black, and gray hat definitions and characteristics
• The slippery ethical issues that should be understood before carrying out any type

of ethical hacking activities
• Programming survival skills, which is a must-have skill for a gray hat hacker to be

able to create exploits or review source code
• Fuzzing, which is a wonderful skill for finding 0-day exploits
• Reverse engineering, which is a mandatory skill when dissecting malware or

researching vulnerabilities
• Exploiting with software-defined radios

In Part II, we discuss the business side of hacking. If you are looking to move beyond
hacking as a hobby and start paying the bills, this section is for you. If you are a
seasoned hacking professional, we hope to offer you a few tips as well. In this section,
we cover some of the softer skills required by an ethical hacker to make a living:

• How to get into the penetration testing business
• How to improve the enterprise security posture through red teaming
• A novel approach to developing a purple team
• Bug bounty programs and how to get paid finding vulnerabilities, ethically

In Part III, we discuss the skills required to exploit systems. Each of these topics has
been covered before, but the old exploits don’t work anymore; therefore, we have
updated the discussions to work past system protections. We cover the following topics
in this section:

• How to gain shell access without exploits
• Basic and advanced Linux exploits
• Basic and advanced Windows exploits
• Using PowerShell to exploit systems
• Modern web exploits
• Using patches to develop exploits

In Part IV, we cover advanced malware analysis. In many ways, this is the most
advanced topic in the field of cybersecurity. On the front lines of cyberwar is malware,
and we aim to equip you with the tools and techniques necessary to perform malware
analysis. In this section, we cover the following:

• Mobile malware analysis
• Recent ransomware analysis

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• ATM malware analysis
• Using next-generation honeypots to find advanced attackers and malware in the

network

Finally, in Part V, we are proud to discuss the topic of Internet of Things (IoT)
hacking. The Internet of Things is exploding and, unfortunately, so are the vulnerabilities
therein. In this section, we discuss these latest topics:

• Internet of Things to be hacked
• Dissecting embedded devices
• Exploiting embedded devices
• Malware analysis of IoT devices

We do hope you will see the value of the new content that has been provided and will
also enjoy the newly updated chapters. If you are new to the field or ready to take the
next step to advance and deepen your understanding of ethical hacking, this is the book
for you.

NOTE To ensure your system is properly configured to perform the labs, we have
provided the files you will need. The lab materials and errata may be downloaded from
either the GitHub repository at https://github.com/GrayHatHacking/GHHv5 or the
publisher’s site, at www.mhprofessional.com.

||||||||||||||||||||

||||||||||||||||||||

https://github.com/GrayHatHacking/GHHv5
http://www.mhprofessional.com
https://technet24.ir
https://technet24.ir

PART I

Preparation

 Chapter 1 Why Gray Hat Hacking? Ethics and Law
 Chapter 2 Programming Survival Skills
 Chapter 3 Next-Generation Fuzzing
 Chapter 4 Next-Generation Reverse Engineering
 Chapter 5 Software-Defined Radio

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 1
Why Gray Hat Hacking? Ethics and
Law

The purpose of this book is to support individuals who want to refine their ethical
hacking skills to better defend against malicious attackers. This book is not written to be
used as a tool by those who wish to perform illegal and unethical activities.

In this chapter, we discuss the following topics:
• Know your enemy: understanding your enemy’s tactics
• The gray hat way and the ethical hacking process
• The evolution of cyberlaw

Know Your Enemy
“We cannot solve our problems with the same level of thinking that created them.”

—Albert Eisenstein

The security challenges we face today will pale in comparison to those we’ll face in the
future. We already live in a world so highly integrated with technology that
cybersecurity has an impact on our financial markets, our elections, our families, and
our healthcare. Technology is advancing and the threat landscape is increasing. On the
one hand, vehicles that are capable of autonomous driving are being mass-produced as
smart cities are being developed. On the other hand, hospitals are being held for
ransom, power grids are being shut down, intellectual property and secrets are being
stolen, and cybercrime is a booming industry. In order to defend and protect our assets
and our people, we must understand the enemy and how they operate. Understanding
how attacks are performed is one of the most challenging and important aspects of
defending the technology on which we rely. After all, how can we possibly defend
ourselves against the unknown?

This book was written to provide relevant security information to those who are
dedicated to stopping cyberthreats. The only way to address today and tomorrow’s

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

cyberthreats is with a knowledgeable security industry. Learning offensive security
allows you to test and refine your defenses. Malicious actors know how to compromise
systems and networks. Knowing your enemies’ tactics is paramount to preparing
offensive and defensive strategies. Those who have accepted the responsibility of
defending our technology must learn how compromises occur in order to defend against
them.

The Current Security Landscape
Technology can be used for good or evil. The same technology that is used to make
organizations and countries more productive can be used to steal, surveil, and do harm.
This duality means that the technology we create to help us will sometimes hurt us, that
technology used to fight for human rights can also be used to violate them, and that tools
used to protect us can also be used to attack us. The criminal community has evolved to
abuse technology on a scale that brings in enormous profits, costing the global economy
an estimated $450 billion a year.

Respect your enemy. Malicious actors have a variety of motivations and tactics, and
the scale and complexity of their attacks are increasing. Consider the following:

• In February 2016, attackers targeted Swift, a global bank transfer system, and
fraudulently transferred $81 million from the Bangladesh Bank’s account at the
Federal Reserve Bank of New York. Most funds were not recovered after being
routed to accounts in the Philippines and diverted to casinos there.1

• In July 2016, it was discovered that the Democratic National Committee (DNC)
was compromised and damaging e-mails from officials were leaked on
WikiLeaks. The attack was attributed to two Russian adversary groups. The CIA
concluded that Russia worked during the 2016 US election to prevent Hillary
Clinton from winning the US presidency.2

• In October 2016, millions of insecure Internet of Things (IOT) cameras and
digital video recorders (DVR) were used in a distributed denial-of-service
(DDOS) attack targeting Dyn, a DNS provider. The Mirai botnet was used to take
down the likes of Twitter, Netflix, Etsy, GitHub, SoundCloud, and Spotify a month
after its source code was released to the public.3

• In December 2016, Ukraine’s capital Kiev experienced a power outage caused by
a cyberattack affecting over 225,000 people for multiple days. The attackers
sabotaged power-distribution equipment, thus complicating attempts to restore
power. The attack prompted discussions about the vulnerabilities in industrial
control systems (ICSs) and was linked to Russia.4

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In recent years, we’ve seen the Federal Bureau of Investigation (FBI), Department of
Homeland Security (DHS), Sony Entertainment, Equifax, Federal Deposit Insurance
Corporation (FDIC), and Internal Revenue Service (IRS) all have major breaches—
sometimes multiple large breaches. We’ve seen hospitals like the infamous Hollywood
Presbyterian Medical Center pay ransoms to be able to continue to operate. While some
attacks have a larger impact than others, on average a cyberattack costs organizations
about $4 million, with some breaches costing hundreds of millions of dollars.

The security industry is also evolving. Products designed to promote self-healing
networks competed in the first DARPA Cyber Grand Challenge. Malware solutions
based on machine learning are replacing signature-based solutions. Integrated Security
Operations Centers (ISOCs) are helping the security field collaborate. Cybersecurity
conferences, degree programs, and training are increasingly popular. The security
industry is responding to increasing cyberattacks with new tools, ideas, and
collaborations.

Attackers have different motivations. Some are financially motivated and aim to make
the biggest profit possible, some are politically motivated and aim to undermine
governments or steal state secrets, some are motivated by a social cause and are called
hacktivists, and some are angry and just want revenge.

Recognizing an Attack
When an attack occurs, there are always the same questions. How did the attacker get
in? How long have they been inside the network? What could we have done to prevent
it? Attacks can be difficult to detect, and bad actors can stay in the environment for a
prolonged amount of time. Ethical hacking helps you learn how to recognize when an
attack is underway or about to begin so you can better defend the assets you are
protecting. Some attacks are obvious. Denial-of-service and ransomware attacks
announce themselves. However, most attacks are stealth attacks intended to fly under the
radar and go unnoticed by security personnel and products alike. It is important to know
how different types of attacks take place so they can be properly recognized and
stopped.

Some attacks have precursors—activities that can warn you an attack is imminent. A
ping sweep followed by a port scan is a pretty good indication that an attack has begun
and can be used as an early warning sign. Although tools exist to help detect certain
activities, it takes a knowledgeable security professional to maintain and monitor
systems. Security tools can fail, and many can be easily bypassed. Relying on tools
alone will give you a false sense of security.

Hacking tools are just IT tools that are good when used for sanctioned purposes and
bad when used for malicious purposes. The tools are the same, just applied toward
different ends. Ethical hackers understand how these tools are used and how attacks are

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

performed, and that’s what allows them to defend against these attacks. Many tools will
be mentioned throughout this book. Tools that will help you recognize an attack are
covered specifically in Chapters 7 and 8 as well as dispersed throughout the book.

The Gray Hat Way
To get to the “ground truth” of their security posture and understand its risks, many
organizations choose to hire an ethical hacker, or penetration tester, to perform attack
simulations. A penetration tester will use the same tools and tactics as a malicious
attacker, but in a controlled and secure way. This allows an organization to understand
how a bad actor might get into the environment, how they might move around inside of
the environment, and how they might exfiltrate data. This also enables the organization
to determine the impact of attacks and identify weaknesses. Emulating attacks allows an
organization to test the effectiveness of security defenses and monitoring tools. Defense
strategies can then be refined based on lessons learned.

A penetration test is more than a vulnerability scan. During a vulnerability scan, an
automated scanning product is used to probe the ports and services on a range of IP
addresses. Most of these tools gather information about the system and software and
correlate the information with known vulnerabilities. This results in a list of
vulnerabilities, but it does not provide an idea of the impact those vulnerabilities could
have on the environment. During a penetration test, attack emulations are performed to
demonstrate the potential business impact of an attack. Testers go beyond creating a list
of code and configuration vulnerabilities and use the perspective of a malicious attacker
to perform controlled attacks. A penetration tester will chain together a series of attacks
to demonstrate how a malicious attacker might enter the environment, move throughout
the environment, take control of systems and data, and exfiltrate data out of the
environment. They will use weaknesses in code, users, processes, system
configurations, or physical security to understand how an attacker might cause harm.
This includes creating proof-of-concept attacks, using social engineering techniques,
and picking locks and cloning physical access badges.

In many instances, penetration tests demonstrate that an organization could potentially
lose control of its systems and, sometimes more importantly, its data. This is especially
significant in highly regulated environments or those with industry compliance
requirements where penetration testing is often required. Penetration tests often justify
the implementation of security controls and can help prioritize security tasks.

Tests will vary, depending on the information you have about the environment. Black
box testing is when you begin with no prior knowledge of the environment. White box
testing is when you are provided detailed information about the environment such as the
IP address scheme and URLs. Gray box testing is when you start with no information

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

about the environment and after demonstrating that you can penetrate the environment
you are given information to make your efforts more efficient.

Also, the nature and duration of tests will vary widely. Assessments can be focused
on a location, business division, compliance requirement, or product. The
methodologies used for exploiting embedded devices are different from those used
during red team assessments (both are described in later chapters). The variety of
exploits described in this book, from ATM malware to Internet of Things exploits, are
demonstrative of the fascinating variety of specialties available to ethical hackers.

Emulating the Attack
This book includes information about many exploits and areas of ethical hacking. An
overview of the ethical hacking process is provided here, and the process is further
described in later chapters.

When you’re performing attack emulations, maintaining good communication with the
assessment team and stakeholders is very important. Study the technical environment
and ask questions that will allow you to formulate a plan. What is the nature of their
business? What kind of sensitive information do they work with? Be sure the following
areas are accounted for:

• Ensure everyone knows the focus of the assessment. Is this a compliance-focused
penetration test that targets credit card data? Does the company want to focus on
testing its detection capabilities? Are you testing a new product that is being
released soon?

• Set up secure communication channels with your stakeholders and other members
of your communication team. Protect the output from your testing tools and
reports. Use encrypted e-mail. Ensure your document repository is secure. Set up
multifactor authentication on your e-mail, document repository, and anything that
allows remote access to your testing or reporting environment.

• Define the scope of the assessment in writing and discuss it with your assessment
team and stakeholders. Is social engineering in scope? How in depth should the
website assessment be?

• Be sure to inquire about any fragile systems—that is, systems that have
unexpectedly shut down, restarted, or slowed down recently or systems that are
critical for business operations. Formulate a plan to address them.

• Describe your methodology in detail to your stakeholders or team. Talk about the
rules of engagement. Should they try to stop your attack emulation if they detect it?
Who should know about the testing? What should they tell users who report any
testing activities?

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Remain accountable for your actions. Log and document all your testing activities.
It’s not uncommon to perform a penetration test only to discover you are not the
first one to the party and that a breach is in progress. Be sure to discuss start and
stop dates and blackout periods.

The typical steps of the penetration test are briefly described here and are discussed
in more depth in following chapters:

1. Compile Open Source Intelligence (OSINT). Gather as much information about the
target as possible while maintaining zero contact with the target. Compiling
OSINT, otherwise known as “passive scanning,” can include using the following:
• Social networking sites
• Online databases
• Google, LinkedIn, and so on
• Dumpster diving

2. Employ active scanning and enumeration. Probe the target’s public exposure with
scanning tools and the following techniques:
• Network mapping
• Banner grabbing
• War dialing
• DNS zone transfers
• Traffic sniffing
• Wireless war driving

3. Perform fingerprinting. Perform a thorough probe of the target systems to identify
the following:
• Operating system type and patch level
• Applications and patch level
• Open ports
• Running services
• User accounts

4. Select a target system. Identify the most useful target(s).
5. Exploit the uncovered vulnerabilities. Execute the appropriate attacks targeted at

the suspected exposures. Keep the following points in mind:
• Some may not work.
• Some may kill services or even kill the server.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Some may be successful.
6. Escalate privileges. Escalate the security context so that you have more control.

• Gain root or administrative rights.
• Use cracked passwords for unauthorized access.
• Carry out a buffer overflow attack to gain local versus remote control.

7. Preserve access. This step usually involves installing software or making
configuration changes to ensure access can be gained later.

8. Document and report. Document everything you found, how it was found, the tools
that were used, the vulnerabilities that were exploited, the timeline of activities,
and successes, and so on. The best methodology is to report as you go, frequently
gathering evidence and taking notes.

NOTE A more detailed approach to the attacks that are part of each methodology are
included throughout the book.

What Would an Unethical Hacker Do Differently?
The following steps describe what an unethical hacker would do instead:

1. Select a target. Motivations could be due to a grudge or for fun or profit. There are
no ground rules, no hands-off targets, and the security team is definitely blind to
the upcoming attack.

2. Use intermediaries. The attacker launches their attack from a different system
(intermediary) than their own, or a series of other systems, to make tracking back
to them more difficult in case the attack is detected. Intermediaries are often
victims of the attacker as well.

3. Proceed with the penetration testing steps described previously.
• Open Source Intelligence gathering
• Active scanning and enumeration
• Fingerprinting
• Select a target system
• Exploiting the uncovered vulnerabilities

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Escalating privileges
4. Preserve access. This involves uploading and installing a rootkit, back door,

Trojan applications, and/or bots to ensure that the attacker can regain access at a
later time.

5. Cover tracks. This step involves the following activities:
• Scrubbing event and audit logs
• Hiding uploaded files
• Hiding the active processes that allow the attacker to regain access
• Disabling messages to security software and system logs to hide malicious

processes and actions
6. Harden the system. After taking ownership of a system, an attacker may fix the

open vulnerabilities so no other attacker can use the system for other purposes.

Attackers will use compromised systems to suit their needs—many times remaining
hidden in the network for months or years while they study the environment. Often,
compromised systems are then used to attack other systems, thus leading to difficulty
attributing attacks to the correct source.

Frequency and Focus of Testing
Ethical hacking should be a normal part of an organization’s operations. Most
organizations would benefit from having a penetration test performed at least annually.
However, significant changes to a technical environment that could have a negative
impact on its security, such as operating system or application upgrades, often happen
more than just once a year. Therefore, ongoing security testing is recommended for most
organizations because of how quickly technical environments tend to change. Red
teaming exercises and quarterly penetration testing are becoming more and more
common.

Red teaming exercises are usually sanctioned but not announced. Your client will
know you are authorized to test but often doesn’t know when the testing will occur.
Many red team assessments occur over a long period of time, with the goal of helping an
organization refine its defenses—or blue team capabilities. Testing often runs over the
duration of a year, with quarterly outbriefs and a variety of reports and other
deliverables created to help an organization gauge progress. When the blue team, or
defensive security team, sees an attack, they do not know if it’s a real-world attack or a
red teaming exercise and will begin their incident response process. This allows an
organization to practice a “cat-and-mouse” game, where ethical hackers are helping the
defensive security team test and refine their security controls and incident response

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

capabilities. Red teaming is often reserved for organizations with more mature incident
response capabilities. Chapter 7 provides more information on this topic.

Many organizations are moving to a model where penetration tests occur at least
quarterly. This allows these organizations to choose a different focus for each quarter.
Many organizations align quarterly penetration testing with their change management
process, thus ensuring testing activities take a thorough look at parts of the environment
that have recently changed.

Evolution of Cyberlaw
Cybersecurity is a complex topic, and cyberlaw adds many more layers of complexity
to it. Cyberlaw reaches across geopolitical boundaries and defies traditional
governance structures. When cyberattacks range across multiple countries or include
botnets spread throughout the world, who has the authority to make and enforce laws?
How do we apply existing laws? The challenges of anonymity on the Internet and
difficulty of attributing actions to an individual or group make prosecuting attackers
even more complex.

Governments are making laws that greatly apply to private assets, and different rules
apply to protecting systems and data types, including critical infrastructure, proprietary
information, and personal data. CEOs and management not only need to worry about
profit margins, market analysis, and mergers and acquisitions; they also need to step into
a world of practicing security with due care, understand and comply with new
government privacy and information security regulations, risk civil and criminal
liability for security failures (including the possibility of being held personally liable
for certain security breaches), and try to comprehend and address the myriad ways in
which information security problems can affect their companies.

Understanding Individual Cyberlaws
Individual cyberlaws address everything from the prohibition of unauthorized account
access to the transmission of code or programs that cause damage to computers. Some
laws apply whether or not a computer is used and protect communications (wire, oral,
and data during transmission) from unauthorized access and disclosure. Some laws
pertain to copyrighted content itself and protect it from being accessed without
authorization. Together these laws create a patchwork of regulation used to prosecute
cybercrime. This section provides an overview of notable cyberlaws.

18 USC Section 1029: The Access Device Statute
The purpose of the Access Device Statute is to curb unauthorized access to accounts;

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

theft of money, products, and services; and similar crimes. It does so by criminalizing
the possession, use, or trafficking of counterfeit or unauthorized access devices or
device-making equipment, and other similar activities (described shortly) to prepare
for, facilitate, or engage in unauthorized access to money, goods, and services. It defines
and establishes penalties for fraud and illegal activity that can take place through the use
of such counterfeit access devices. Section 1029 addresses offenses that involve
generating or illegally obtaining access credentials, which can involve just obtaining the
credentials or obtaining and using them. These activities are considered criminal
whether or not a computer is involved—unlike the statute discussed next, which pertains
to crimes dealing specifically with computers.

18 USC Section 1030 of the Computer Fraud and Abuse Act
The Computer Fraud and Abuse Act (CFAA), as amended by the USA PATRIOT Act, is
an important federal law that addresses acts that compromise computer network
security. It prohibits unauthorized access to computers and network systems, extortion
through threats of such attacks, the transmission of code or programs that cause damage
to computers, and other related actions. It addresses unauthorized access to government,
financial institutions, and other computer and network systems, and provides for civil
and criminal penalties for violators. The Act outlines the jurisdiction of the FBI and
Secret Service.

18 USC Sections 2510, et seq, and 2701, et seq, of the Electronic
Communication Privacy Act
These sections are part of the Electronic Communication Privacy Act (ECPA), which is
intended to protect communications from unauthorized access. The ECPA, therefore, has
a different focus than the CFAA, which is directed at protecting computers and network
systems. Most people do not realize that the ECPA is made up of two main parts: one
that amended the Wiretap Act and the other that amended the Stored Communications
Act, each of which has its own definitions, provisions, and cases interpreting the law.
The Wiretap Act protects communications, including wire, oral, and data, during
transmission from unauthorized access and disclosure (subject to exceptions). The
Stored Communications Act protects some of the same types of communications before
and/or after the communications are transmitted and stored electronically somewhere.
Again, this sounds simple and sensible, but the split reflects a recognition that different
risks and remedies are associated with active versus stored communications.

While the ECPA seeks to limit unauthorized access to communications, it recognizes
that some types of unauthorized access are necessary. For example, if the government
wants to listen in on phone calls, Internet communication, e-mail, or network traffic, it
can do so if it complies with safeguards established under the ECPA that are intended to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

protect the privacy of persons who use those systems.

Digital Millennium Copyright Act (DMCA)
The DMCA is not often considered in a discussion of hacking and the question of
information security, but it is relevant. The DMCA was passed in 1998 to implement the
World Intellectual Property Organization Copyright Treaty (WIPO Treaty). The WIPO
Treaty requires treaty parties to “provide adequate legal protection and effective legal
remedies against the circumvention of effective technological measures that are used by
authors” and to restrict acts in respect to their works that are not authorized. Thus, while
the CFAA protects computer systems and the ECPA protects communications, the
DMCA protects certain (copyrighted) content itself from being accessed without
authorization. The DMCA establishes both civil and criminal liability for the use,
manufacture, and trafficking of devices that circumvent technological measures
controlling access to, or protection of, the rights associated with copyrighted works.

The Digital Millennium Copyright Act (DMCA) states that no one should attempt to
tamper with and break an access control mechanism that is put into place to protect an
item that is protected under the copyright law.

The DMCA provides an explicit exemption allowing “encryption research” for
identifying the flaws and vulnerabilities of encryption technologies. It also provides for
an exception for engaging in an act of security testing (if the act does not infringe on
copyrighted works or violate applicable law such as the CFAA), but it does not contain
a broader exemption covering a variety of other activities that information security
professionals might engage in.

Cyber Security Enhancement Act of 2002
Cyber Security Enhancement Act of 2002, a supplement to the PATRIOT Act, stipulates
that attackers who carry out certain computer crimes may now get a life sentence in jail.
If an attacker carries out a crime that could result in another’s bodily harm or possible
death, or a threat to public health or safety, the attacker could face life in prison. The
CSEA also increased the US government’s capabilities and power to monitor
communications. The CSEA allows service providers to report suspicious behavior
without risking customer litigation. Before this act was put into place, service providers
were in a sticky situation when it came to reporting possible criminal behavior or when
trying to work with law enforcement. If a law enforcement agent requested information
on a provider’s customer and the provider gave it to them without the customer’s
knowledge or permission, the service provider could, in certain circumstances, be sued
by the customer for unauthorized release of private information. Now service providers
can report suspicious activities and work with law enforcement without having to tell
the customer. This and other provisions of the PATRIOT Act have certainly gotten many

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

civil rights monitors up in arms.

Cybersecurity Enhancement Act of 2014
The Cybersecurity Enhancement Act of 2014 states that the director of the National
Institute for Standards and Technology (NIST) will coordinate the federal government’s
involvement in the development of a “voluntary, industry-led, and consensus-based” set
of cybersecurity standards, consulting with both federal agencies and private-sector
stakeholders. The act also states that federal, state, and local governments are
prohibited from using information shared by a private entity to develop such standards
for the purpose of regulating that entity.

Under the Cybersecurity Enhancement Act of 2014, federal agencies and departments
must develop a cybersecurity research and development strategic plan that will be
updated every four years. The strategic plan aims to prevent duplicate efforts between
industry and academic stakeholders by ensuring the plan is developed collaboratively.
The act also has an educational component, creating a “scholarship-for-service”
program for federal cybersecurity workers and stipulating the development of a
cybersecurity education and awareness program that will be developed by the director
of NIST in consultation with public- and private-sector stakeholders. The director of
NIST is also responsible for developing a strategy for increased use of cloud computing
technology by the government to support the enhanced standardization and
interoperability of cloud computing services.

Cybersecurity Information Sharing Act of 2015
The Cybersecurity Information Sharing Act of 2015, or “CISA,” establishes a
framework for the confidential, two-way sharing of cyberthreat information between
private entities and the federal government. Safe harbor protections ensure that that
private entities are shielded from liability for sharing information.

CISA also authorized some government and private entities to monitor some systems
and operate defensive measures for cybersecurity purposes. Private entities are
shielded from liability for monitoring activities that are consistent with CISA
requirements.

The authorization of private entities to use defensive measures for cybersecurity
purposes on their own information systems and on the information systems of other
consenting entities does not constitute the authorization of “hack back” activities, which
are generally illegal under the Computer Fraud and Abuse Act. The authorization to
operate “defensive measures” does not include activities that destroy, render unusable,
provide unauthorized access to, or substantially harm third-party information systems.

New York Department of Financial Services Cybersecurity Regulation

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

State laws are becoming more detailed and prescriptive, as demonstrated by the New
York Department of Financial Services (NY DFS) Cybersecurity Regulations. The
NYDFS Cybersecurity Regulations went into effect in early 2017 and require financial
firms in New York to implement specific security controls. The new regulations require
a qualified chief information security officer (CISO), penetration testing, vulnerability
assessments, annual IT risk assessments, and many other security controls. The CISO is
required to report to the entity’s board of directors annually, in writing, the material
cybersecurity risk, overall effectiveness of the cybersecurity program, and the
confidentiality, integrity, and security of the entity’s nonpublic information.

Summary
Malicious attackers are aggressive and well funded, operate globally, use sophisticated
techniques, and are constantly improving. They aim to control our hospitals, elections,
money, and intellectual property. The only way to counter today’s aggressive malicious
actors is to develop a pool of high-quality security professionals (ethical hackers) with
the skills to counter their attacks. Ethical hackers are the buffer between the “dark side”
(the cyber underworld) and those targeted by bad actors. They work to prevent
malicious attacks by finding security issues first and addressing them before they can be
exploited by the bad guys.

As the adversary increases the sophistication of their attacks, we, the ethical hackers
of the world, work diligently to oppose them. Although prosecuting an attack is
extraordinarily complex, cyberlaws are evolving to give us the mechanisms to
collaborate more in order to prevent and address cybercrime. With a booming Internet
of Things economy on the horizon, ethical hackers must expand their skill sets to focus
on modern attack techniques. This book is intended to help do just that—help ethical
hackers explore the worlds of software-defined radio, next-generation security
operations, ransomware, embedded device exploits, and more. Happy hacking!

References
1. Raju Gopalakrishnan and Manuel Mogato, “Bangladesh Bank Official’s Computer

Was Hacked to Carry Out $81 Million Heist: Diplomat,” Reuters, May 19, 2016,
www.reuters.com/article/us-cyber-heist-philippines-idUSKCN0YA0CH.

2. Dmitri Alperovitch, “Bears in the Midst: Intrusion into the Democratic National
Committee, Crowdstrike, June 15, 2016,
https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-national-
committee/.

||||||||||||||||||||

||||||||||||||||||||

http://www.reuters.com/article/us-cyber-heist-philippines-idUSKCN0YA0CH
https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-national-committee/
https://technet24.ir
https://technet24.ir

3. “Mirai: What You Need to Know about the Botnet Behind Recent Major DDoS
Attacks” Symantec, October 27, 2016,
https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-
botnet-behind-recent-major-ddos-attacks.

4. Kelly Jackson Higgens, “Lessons from the Ukraine Electric Grid Hack, Dark
Reading, March 18, 2016, www.darkreading.com/vulnerabilities—
threats/lessons-from-the-ukraine-electric-grid-hack/d/d-id/1324743.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks
http://www.darkreading.com/vulnerabilities—threats/lessons-from-the-ukraine-electric-grid-hack/d/d-id/1324743
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 2
Programming Survival Skills

Why study programming? Ethical hackers should study programming and learn as much
about the subject as possible in order to find vulnerabilities in programs and get them
fixed before unethical hackers take advantage of them. Many security professionals
come at programming from a nontraditional perspective, often having no programming
experience prior to beginning their career. Bug hunting is very much a foot race: if a
vulnerability exists, who will find it first? The purpose of this chapter is to give you the
survival skills necessary to understand upcoming chapters and then later to find the
holes in software before the black hats do.

In this chapter, we cover the following topics:
• C programming language
• Computer memory
• Intel processors
• Assembly language basics
• Debugging with gdb
• Python survival skills

C Programming Language
The C programming language was developed in 1972 by Dennis Ritchie from AT&T
Bell Labs. The language was heavily used in Unix and is therefore ubiquitous. In fact,
many of the staple networking programs and operating systems, as well as large
applications such as Microsoft Office Suite, Adobe Reader, and browsers, are written
in combinations of C, C++, Objective-C, assembly, and a couple of other lower-level
languages.

Basic C Language Constructs
Although each C program is unique, some common structures can be found in most
programs. We’ll discuss these in the next few sections.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

main()
All C programs contain a main() function (lowercase) that follows the format

where both the return value type and arguments are optional. If no return value type is
specified, a return type of int is used; however, some compilers may throw warnings if
you fail to specify its return value as int or attempt to use void. If you use command-line
arguments for main(), use the format

where the argc integer holds the number of arguments and the argv array holds the input
arguments (strings). The name of the program is always stored at offset argv[0]. The
parentheses and brackets are mandatory, but white space between these elements does
not matter. The brackets are used to denote the beginning and end of a block of code.
Although procedure and function calls are optional, the program would do nothing
without them. A procedure statement is simply a series of commands that performs
operations on data or variables and normally ends with a semicolon.

Functions
Functions are self-contained bundles of code that can be called for execution by main()
or other functions. They are nonpersistent and can be called as many times as needed,
thus preventing us from having to repeat the same code throughout a program. The
format is as follows:

The first line of a function is called the signature. By looking at it, you can tell if the
function returns a value after executing or requires arguments that will be used in
processing the procedures of the function.

The call to the function looks like this:

The following is a simple example:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Here, we are including the appropriate header files, which include the function
declarations for exit and printf. The exit function is defined in stdlib.h, and printf is
defined in stdio.h. If you do not know what header files are required based on the
dynamically linked functions you are using in a program, you can simply look at the
manual entry, such as man sscanf, and refer to the synopsis at the top. We then define the
main function with a return value of int. We specify void in the arguments location
between the parentheses because we do not want to allow arguments passed to the main
function. We then create a variable called x with a data type of int. Next, we call the
function foo and assign the return value to x. The foo function simply returns the value
8. This value is then printed onto the screen using the printf function, using the format
string %d to treat x as a decimal value.

Function calls modify the flow of a program. When a call to a function is made, the
execution of the program temporarily jumps to the function. After execution of the called
function has completed, control returns to the calling function at the virtual memory
address directly below the call instruction. This process will make more sense during
our discussion of stack operations in Chapter 11.

Variables
Variables are used in programs to store pieces of information that may change and may
be used to dynamically influence the program. Table 2-1 shows some common types of
variables.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 2-1 Types of Variables

When the program is compiled, most variables are preallocated memory of a fixed
size according to system-specific definitions of size. Sizes in Table 2-1 are considered
typical; there is no guarantee you will get those exact sizes. It is left up to the hardware
implementation to define the size. However, the function sizeof() is used in C to ensure
that the correct sizes are allocated by the compiler.

Variables are typically defined near the top of a block of code. As the compiler chews
up the code and builds a symbol table, it must be aware of a variable before that
variable is used in the code later. The word symbol is simply a name or identifier. This
formal declaration of variables is done in the following manner:

For example,

where an integer (normally 4 bytes) is declared in memory with a name of a and an
initial value of 0.

Once a variable is declared, the assignment construct is used to change the value of
the variable. For example, the statement

is an assignment statement containing a variable, x, modified by the + operator. The new
value is stored in x. It is common to use the format

where destination is the location in which the final outcome is stored.

printf

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The C language comes with many useful constructs bundled into the libc library. One of
many commonly used constructs is the printf command, generally used to print output to
the screen. There are two forms of the printf command:

The first format is straightforward and is used to display a simple string to the screen.
The second format allows for more flexibility through the use of a format type that can
be composed of normal characters and special symbols that act as placeholders for the
list of variables following the comma. Commonly used format symbols are listed and
described in Table 2-2.

Table 2-2 printf Format Types

These format types allow the programmer to indicate how they want data displayed to
the screen, written to a file, or other possibilities through the use of the printf family of
functions. As an example, say you know a variable to be a float and you want to ensure
that it is printed out as such, and you also want to limit its width, both before and after
the floating point. In this case, you could use the following:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In the first printf call, we use a total width of 5, with 2 values after the floating point. In
the second call to printf, we use a total width of 4, with 1 value after the floating point.

NOTE The examples in this chapter use 32-bit Kali Linux. If you are using 64-bit Kali
Linux, you may need to change your compiler options.

scanf
The scanf command complements the printf command and is generally used to get input
from the user. The format is

where the format string can contain format symbols such as those shown for printf in
Table 2-2. For example, the following code will read an integer from the user and store
it into a variable called number:

Actually, the & symbol means we are storing the value into the memory location
pointed to by number. This will make more sense when we talk about pointers later in
the chapter in the “Pointers” section. For now, realize that you must use the & symbol
before any variable name with scanf. The command is smart enough to change types on
the fly, so if you were to enter a character in the previous command prompt, the
command would convert the character into the decimal (ASCII) value automatically.
Bounds checking is not done in regard to string size, however, which may lead to
problems, as discussed later in Chapter 11.

strcpy/strncpy
The strcpy command is one of the most dangerous functions used in C. The format of the
command is as follows:

The purpose of the command is to copy each character in the source string (a series of
characters ending with a null character, \0) into the destination string. This is
particularly dangerous because there is no checking of the source’s size before it is

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

copied over to the destination. In reality, we are talking about overwriting memory
locations here, something which will be explained later in this chapter. Suffice it to say,
when the source is larger than the space allocated for the destination, overflow
conditions are likely present, which could result in the control of program execution.
When used properly, a safer alternative function is the strncpy. Here is the format of
that command:

The <width> field is used to ensure that only a certain number of characters are
copied from the source string to the destination string, allowing for greater control by
the programmer. The width parameter should be based on the size of the destination,
such as an allocated buffer. Another alternative function with the ability to control the
size and handle errors is snprintf. Overall, the C programming language’s handling of
strings has always been debated and highly scrutinized due to the requirement of the
developer to handle memory allocation.

CAUTION Using unbounded functions like strcpy is unsafe; however, many
traditional programming courses do not cover the dangers posed by these functions in
enough detail. In fact, if programmers would simply properly use the safer alternatives,
such as snprintf, then the entire class of buffer overflow attacks would be less
prevalent. Many programmers clearly continue to use these dangerous functions because
buffer overflows are still commonly discovered. Legacy code containing bad functions
is another common problem. Luckily, most compilers and operating systems support
various exploit-mitigation protections that help to prevent exploitation of these types of
vulnerabilities. That said, even bounded functions can suffer from incorrect width
calculations.

for and while Loops
Loops are used in programming languages to iterate through a series of commands
multiple times. The two common types are for and while loops.

for loops start counting at a beginning value, test the value for some condition,
execute the statement, and increment the value for the next iteration. The format is as
follows:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Therefore, a for loop like

will print the numbers 0 to 9 on the same line (since \n is not used), like this:
0123456789.

With for loops, the condition is checked prior to the iteration of the statements in the
loop, so it is possible that even the first iteration will not be executed. When the
condition is not met, the flow of the program continues after the loop.

NOTE It is important to note the use of the less-than operator (<) in place of the less-
than-or-equal-to operator (<=), which allows the loop to proceed one more time until
i=10. This is an important concept that can lead to off-by-one errors. Also, note that the
count started with 0. This is common in C and worth getting used to.

The while loop is used to iterate through a series of statements until a condition is
met. A basic example follows:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Loops may also be nested within each other.

if/else
The if/else construct is used to execute a series of statements if a certain condition is
met; otherwise, the optional else block of statements is executed. If there is no else
block of statements, the flow of the program will continue after the end of the closing if
block bracket (}). The following is an example of an if/else construct nested within a
for loop:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In this example, we use a while loop to loop through the if/else statements. The
variable x is set to 0 prior to going into the loop. The condition in the if statement is met
as x is equal to 0. The printf function is called, x is incremented by 1, and then we
continue. In the second iteration through the loop the condition in the if statement is not
met, and so we move on to the else statement. The printf function is called and then we
break out of the loop. The braces may be omitted for single statements.

Comments
To assist in the readability and sharing of source code, programmers include comments
in the code. There are two ways to place comments in code: //, or /* and */. The //
comment type indicates that any characters on the rest of that line are to be treated as
comments and not acted on by the computer when the program executes. The /* and */
pair starts and stops a block of comments that may span multiple lines. In this case, /* is
used to start the comment, and */ is used to indicate the end of the comment block.

Sample Program
You are now ready to review your first program. We will start by showing the program
with // comments included and will follow up with a discussion of the program.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This very simple program prints “Hello haxor” to the screen using the printf function,
included in the stdio.h library.

Now for one that’s a little more complex:

This program takes two command-line arguments and calls the greeting() function,
which prints “Hello” and the name given and a carriage return. When the greeting()
function finishes, control is returned to main(), which prints out “Bye” and the name
given. Finally, the program exits.

Compiling with gcc
Compiling is the process of turning human-readable source code into machine-readable
binary files that can be digested by the computer and executed. More specifically, a
compiler takes source code and translates it into an intermediate set of files called
object code. These files are nearly ready to execute but may contain unresolved
references to symbols and functions not included in the original source code file. These
symbols and references are resolved through a process called linking, as each object
file is linked together into an executable binary file. We have simplified the process for
you here.

When programming with C on Unix systems, most programmers prefer to use the GNU
C Compiler (gcc). gcc offers plenty of options when compiling. The most commonly
used flags are listed and described in Table 2-3.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 2-3 Commonly Used gcc Flags

For example, to compile our meet.c program, you type

Then, to execute the new program, you type

Computer Memory
In the simplest terms, computer memory is an electronic mechanism that has the ability
to store and retrieve data. The smallest amount of data that can be stored is 1 bit, which
can be represented by either a 1 or a 0 in memory. When you put 4 bits together, it is
called a nibble, which can represent values from 0000 to –1111. There are exactly 16
binary values, ranging from 0 to 15, in decimal format. When you put two nibbles, or 8
bits, together, you get a byte, which can represent values from 0 to (28 – 1), or 0 to 255
in decimal. When you put two bytes together, you get a word, which can represent
values from 0 to (216 – 1), or 0 to 65,535 in decimal. Continuing to piece data together,
if you put two words together, you get a double word, or DWORD, which can represent

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

values from 0 to (232 – 1), or 0 to 4,294,967,295 in decimal. Two DWORDs together is
a quadruple word, or QWORD, which can represent values from 0 to (264 – 1), or 0 to
18,446,744,073,709,551,615 in decimal. In terms of memory addressing on 64-bit
AMD and Intel processors, only the lower 48 bits are used, which offers 256 terabytes
of addressable memory. This is well documented in countless online resources.

There are many types of computer memory; we will focus on random access memory
(RAM) and registers. Registers are special forms of memory embedded within
processors, which will be discussed later in this chapter in the “Registers” section.

Random Access Memory
In RAM, any piece of stored data can be retrieved at any time—thus, the term random
access. However, RAM is volatile, meaning that when the computer is turned off, all
data is lost from RAM. When discussing modern Intel- and AMD-based products (x86
and x64), the memory is 32-bit or 48-bit addressable, respectively, meaning that the
address bus the processor uses to select a particular memory address is 32 or 48 bits
wide. Therefore, the most memory that can be addressed in an x86 processor is
4,294,967,295 bytes and 281,474,976,710,655 bytes (256 terabytes). On an x64 64-bit
processor, addressing can be expanded in the future by adding more transistors, but 248

is plenty for current systems.

Endian
In Internet Experiment Note (IEN) 137, “On Holy Wars and a Plea for Peace,” from
1980, Danny Cohen summarized Swift’s Gulliver’s Travels, in part, as follows in his
discussion of byte order:

Gulliver finds out that there is a law, proclaimed by the grandfather of the
present ruler, requiring all citizens of Lilliput to break their eggs only at the little
ends. Of course, all those citizens who broke their eggs at the big ends were
angered by the proclamation. Civil war broke out between the Little-Endians
and the Big-Endians, resulting in the Big-Endians taking refuge on a nearby
island, the kingdom of Blefuscu.1

The point of Cohen’s paper was to describe the two schools of thought when writing
data into memory. Some feel that the low-order bytes should be written first (called
“Little-Endians” by Cohen), whereas others think the high-order bytes should be written
first (called “Big-Endians”). The difference really depends on the hardware you are
using. For example, Intel-based processors use the little-endian method, whereas
Motorola-based processors use big-endian.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Segmentation of Memory
The subject of segmentation could easily consume a chapter itself. However, the basic
concept is simple. Each process (oversimplified as an executing program) needs to have
access to its own areas in memory. After all, you would not want one process
overwriting another process’s data. So memory is broken down into small segments and
handed out to processes as needed. Registers, discussed later in the chapter, are used to
store and keep track of the current segments a process maintains. Offset registers are
used to keep track of where in the segment the critical pieces of data are kept.
Segmentation also describes the memory layout within a process’s virtual address
space. Segments such as the code segment, data segment, and stack segment are
intentionally allocated in different regions of the virtual address space within a process
to prevent collisions and to allow for the ability to set permissions accordingly. Each
running process gets its own virtual address space, and the amount of space depends on
the architecture, such as 32-bit or 64-bit, system settings, and the OS. A basic 32-bit
Windows process by default gets 4GB, where 2GB is assigned to the user-mode side of
the process and 2GB is assigned to the kernel-mode side of the process. Only a small
portion of this virtual space within each process is mapped to physical memory, and
depending on the architecture, there are various ways of performing virtual-to-physical
memory mapping through the use of paging and address translation.

Programs in Memory
When processes are loaded into memory, they are basically broken into many small
sections. We are only concerned with six main sections, which we discuss in the
following sections.

.text Section
The .text section, also known as the code segment, basically corresponds to the .text
portion of the binary executable file. It contains the machine instructions to get the task
done. This section is marked as readable and executable and will cause an access
violation if a write attempt is made. The size is fixed at runtime when the process is
first loaded.

.data Section
The .data section is used to store global initialized variables, such as

The size of this section is fixed at runtime. It should only be marked as readable.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

.bss Section
The below stack section (.bss) is used to store certain types of global uninitialized
variables, such as

The size of this section is fixed at runtime. This segment needs to be readable and
writable, but should not be executable.

Heap Section
The heap section is used to store dynamically allocated variables and grows from the
lower-addressed memory to the higher-addressed memory. The allocation of memory is
controlled through the malloc(), realloc(), and free() functions. For example, to declare
an integer and have the memory allocated at runtime, you would use something like this:

The heap section should be readable and writable but should not be executable because
an attacker who gains control of a process could easily perform shellcode execution in
regions such as the stack and heap.

Stack Section
The stack section is used to keep track of function calls (recursively) and grows from
the higher-addressed memory to the lower-addressed memory on most systems. If the
process is multithreaded, each thread will have a unique stack. As you will see, the fact
that the stack grows from high memory toward low memory allows the subject of buffer
overflows to exist. Local variables exist in the stack section. The stack segment is
further explained in Chapter 11.

Environment/Arguments Section
The environment/arguments section is used to store a copy of system-level variables
that may be required by the process during runtime. For example, among other things,
the path, shell name, and hostname are made available to the running process. This
section is writable, allowing its use in format string and buffer overflow exploits.
Additionally, the command-line arguments are stored in this area. The sections of
memory reside in the order presented. The memory space of a process looks like this:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Buffers
The term buffer refers to a storage place used to receive and hold data until it can be
handled by a process. Since each process can have its own set of buffers, it is critical to
keep them straight; this is done by allocating the memory within the .data or .bss section
of the process’s memory. Remember, once allocated, the buffer is of fixed length. The
buffer may hold any predefined type of data; however, for our purpose, we will focus on
string-based buffers, which are used to store user input and variables.

Strings in Memory
Simply put, strings are just continuous arrays of character data in memory. The string is
referenced in memory by the address of the first character. The string is terminated or
ended by a null character (\0 in C). The \0 is an example of an escape sequence. Escape
sequences enable the developer to specify a special operation, such as a newline with
\n or a carriage return with \r. The backslash ensures that the subsequent character is not
treated as part of the string. If a backslash is needed, one can simply use the escape
sequence \\, which will show only a single \. Tables of the various escape sequences
can be found online.

Pointers
Pointers are special pieces of memory that hold the address of other pieces of memory.
Moving data around inside of memory is a relatively slow operation. It turns out that
instead of moving data, keeping track of the location of items in memory through
pointers and simply changing the pointers is much easier. Pointers are saved in 4 or 8
bytes of contiguous memory, depending on whether it is a 32-bit or 64-bit application.
For example, as mentioned, strings are referenced by the address of the first character in
the array. That address value is called a pointer. So the variable declaration of a string
in C is written as follows:

Note that even though the size of the pointer is set at 4 or 8 bytes, the size of the string
has not been set with the preceding command; therefore, this data is considered
uninitialized and will be placed in the .bss section of the process memory.

Here is another example; if you wanted to store a pointer to an integer in memory, you
would issue the following command in your C program:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

To read the value of the memory address pointed to by the pointer, you dereference the
pointer with the * symbol. Therefore, if you want to print the value of the integer
pointed to by point1 in the preceding code, you would use the command

where * is used to dereference the pointer called point1 and display the value of the
integer using the printf() function.

Putting the Pieces of Memory Together
Now that you have the basics down, we will look at a simple example that illustrates
the use of memory in a program:

This program does not do much. First, several pieces of memory are allocated in
different sections of the process memory. When main is executed, funct1() is called
with an argument of 1. Once funct1() is called, the argument is passed to the function
variable called c. Next, memory is allocated on the heap for a 10-byte string called str.
Finally, the 5-byte string “abcde” is copied into the new variable called str. The
function ends, and then the main() program ends.

CAUTION You must have a good grasp of this material before moving on in the book.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

If you need to review any part of this chapter, please do so before continuing.

Intel Processors
There are several commonly used computer architectures. In this chapter, we focus on
the Intel family of processors or architecture. The term architecture simply refers to the
way a particular manufacturer implemented its processor. The x86 and x86-64
architectures are still the most commonly used today, with other architectures such as
ARM growing each year. Each architecture uses a unique instruction set. Instructions
from one processor architecture are not understood by another processor.

Registers
Registers are used to store data temporarily. Think of them as fast 8- to 64-bit chunks of
memory for use internally by the processor. Registers can be divided into four
categories (32-bit registers are prefixed with an E and 64-bit registers are prefixed with
an R, as in EAX and RAX.). These are listed and described in Table 2-4.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 2-4 Categories of Registers

Assembly Language Basics
Though entire books have been written about the ASM language, you can easily grasp a
few basics to become a more effective ethical hacker.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Machine vs. Assembly vs. C
Computers only understand machine language—that is, a pattern of 1s and 0s. Humans,
on the other hand, have trouble interpreting large strings of 1s and 0s, so assembly was
designed to assist programmers with mnemonics to remember the series of numbers.
Later, higher-level languages were designed, such as C and others, which remove
humans even further from the 1s and 0s. If you want to become a good ethical hacker,
you must resist societal trends and get back to basics with assembly.

AT&T vs. NASM
The two main forms of assembly syntax are AT&T and Intel. AT&T syntax is used by
the GNU Assembler (gas), contained in the gcc compiler suite, and is often used by
Linux developers. Of the Intel syntax assemblers, the Netwide Assembler (NASM) is
the most commonly used. The NASM format is used by many Windows assemblers and
debuggers. The two formats yield effectively the same machine language; however,
there are a few differences in style and format:

• The source and destination operands are reversed, and different symbols are used
to mark the beginning of a comment:

• NASM format CMD <dest>, <source> <; comment>
• AT&T format CMD <source>, <dest> <# comment>

• AT&T format uses a % before registers; NASM does not. The % means “indirect
operand.”

• AT&T format uses a $ before literal values; NASM does not. The $ means
“immediate operand.”

• AT&T handles memory references differently than NASM.

This section shows the syntax and examples in NASM format for each command.
Additionally, it shows an example of the same command in AT&T format for
comparison. In general, the following format is used for all commands:

The number of operands (arguments) depends on the command (mnemonic). Although
there are many assembly instructions, you only need to master a few. These are
described in the following sections.

mov
The mov command copies data from the source to the destination. The value is not

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

removed from the source location.

Data cannot be moved directly from memory to a segment register. Instead, you must use
a general-purpose register as an intermediate step. Here’s an example:

add and sub
The add command adds the source to the destination and stores the result in the
destination. The sub command subtracts the source from the destination and stores the
result in the destination.

push and pop
The push and pop commands push and pop items from the stack.

xor
The xor command conducts a bitwise logical “exclusive or” (XOR) function—for
example, 11111111 XOR 11111111 = 00000000. Therefore, one option is to use XOR
value, value to zero out or clear a register or memory location. Another commonly used
bitwise operator is AND. We could perform a bitwise AND to determine whether a
specific bit within a register or memory location is set or unset, or to determine if a call
to a function such as malloc returns back the pointer to a chunk as opposed to a null.
This could be accomplished with assembly such as test eax, eax after a call to malloc.
If the call to malloc returns a null, then the test operation will set the “zero flag” in the
FLAGS register to a 1. The path followed during a conditional jump instruction such as
jnz after this test can be based on the result of the AND operation. The following is
how it would look in assembly:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

jne, je, jz, jnz, and jmp
The jne, je, jz, jnz, and jmp commands branch the flow of the program to another
location based on the value of the eflag “zero flag.” jne/jnz jumps if the zero flag
equals 0; je/jz jumps if the zero flag equals 1; and jmp always jumps.

call and ret
The call instruction redirects execution to another function. The virtual memory address
after the call instruction is first pushed onto the stack, serving as the return pointer, and
then redirection of execution to the called function is performed. The ret command is
used at the end of a procedure to return the flow to the command after the call.

inc and dec
The inc and dec commands increment and decrement the destination, respectively.

lea
The lea command loads the effective address of the source into the destination. This can
often be seen when passing the destination argument to a string-copying function, such as
in the following AT&T syntax gdb disassembly example where we are writing the
destination buffer address to the top of the stack as an argument to the gets function:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

System Calls: int, sysenter, and syscall
System calls are a mechanism for a process to request a privileged operation to be
performed where the context and execution of code are switched from user mode to
kernel mode. The legacy x86 instruction to invoke a system call is int 0x80. This is
considered deprecated, but is still supported on 32-bit OSs. The sysenter instruction is
its successor for 32-bit applications. For 64-bit Linux-based OSs and applications, the
syscall instruction is required. The various methods used to invoke a system call and set
up the appropriate arguments must be well understood when you’re writing shellcode
and other specialized programs or payloads.

Addressing Modes
In assembly, several methods can be used to accomplish the same thing. In particular,
there are many ways to indicate the effective address to manipulate in memory. These
options are called addressing modes and are summarized in Table 2-5.

Table 2-5 Addressing Modes

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Assembly File Structure
An assembly source file is broken into the following sections:

• .model The .model directive indicates the size of the .data and .text sections.
• .stack The .stack directive marks the beginning of the stack section and

indicates the size of the stack in bytes.
• .data The .data directive marks the beginning of the .data section and defines the

variables, both initialized and uninitialized.
• .text The .text directive holds the program’s commands.

For example, the following assembly program prints “Hello, haxor!” to the screen:

Assembling
The first step in assembling is to convert the assembly into object code (32-bit
example):

Next, you invoke the linker to make the executable:

Finally, you can run the executable:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Debugging with gdb
The debugger of choice for programming with C on Unix systems is gdb. It provides a
robust command-line interface, allowing you to run a program while maintaining full
control. For example, you can set breakpoints in the execution of the program and
monitor the contents of memory or registers at any point you like. For this reason,
debuggers like gdb are invaluable to programmers and hackers alike. For those looking
for a more graphical debugging experience on Linux, alternatives or extensions such as
ddd and edb are available.

gdb Basics
Commonly used commands in gdb are listed and described in Table 2-6.

Table 2-6 Common gdb Commands

To debug our sample program, we issue the following commands. The first command
will recompile with debugging and other useful options (refer to Table 2-3).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Disassembly with gdb
To conduct disassembly with gdb, you need the following two commands:

The first command toggles back and forth between Intel (NASM) and AT&T format. By

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

default, gdb uses AT&T format. The second command disassembles the given function
(to include main, if given). For example, to disassemble the function called greeting in
both formats, you type this:

Here are a couple more commonly used commands:

The info functions command shows all dynamically linked functions, as well as all
internal functions unless the program has been stripped. Using the disassemble function
with the /r <function name> option dumps out the opcodes and operands as well as the
instructions. Opcodes are essentially the machine code representations of the
preassembled assembly code.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Python Survival Skills
Python is a popular interpreted, object-oriented programming language similar to Perl.
Hacking tools (and many other applications) use Python because it is a breeze to learn
and use, is quite powerful, and has a clear syntax that makes it easy to read. This
introduction covers only the bare minimum you need to understand. You’ll almost surely
want to know more, and for that you can check out one of the many good books
dedicated to Python or the extensive documentation at www.python.org. Python 2.7 is
set to be retired in 2020, but at the time of this writing an official date was not
available. Many practitioners would tell you over the years that if you want to learn
Python to be able to use and modify or extend existing Python projects, you should first
learn Python 2.7. If your goal is to get working on new Python development, then you
should focus on Python 3, as it cleans up a lot of the issues in Python 2.7. There are still
countless programs with dependencies on Python 2.6 or Python 2.7, such as Immunity
Debugger from Immunity Security.

Getting Python
We’re going to blow past the usual architecture diagrams and design goals spiel and tell
you to just go download the Python version for your OS from
www.python.org/download/ so you can follow along here. Alternatively, try just
launching it by typing python at your command prompt—it comes installed by default on
many Linux distributions and macOS X 10.3 and later.

NOTE For macOS X users, Apple does not include Python’s IDLE user interface,
which is handy for Python development. You can grab that from
www.python.org/download/mac/. Or you can choose to edit and launch Python from
Xcode, Apple’s development environment, by following the instructions at
http://pythonmac.org/wiki/XcodeIntegration.

Because Python is interpreted (not compiled), you can get immediate feedback from
Python using its interactive prompt. We’ll use it for the next few pages, so you should
start the interactive prompt now by typing python.

“Hello, World!” in Python

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.python.org
http://www.python.org/download/
http://www.python.org/download/mac/
http://pythonmac.org/wiki/XcodeIntegration
https://technet24.ir
https://technet24.ir
https://technet24.ir

Every language introduction must start with the obligatory “Hello, world!” example,
and here it is for Python 2.7:

Or if you prefer your examples in file form:

Starting in Python 3, print is no longer a dedicated statement and is a true function.2
This was a necessary change and requires the use of parentheses as with normal
function calls. The following is “Hello, world!” in Python 3.0:

Python Objects
The main thing you need to understand really well is the different types of objects that
Python can use to hold data and how it manipulates that data. We’ll cover the big five
data types: strings, numbers, lists, dictionaries, and files. After that, we’ll cover some
basic syntax and the bare minimum on networking.

Strings
You already used one string object in the section “‘Hello, World!’ in Python.” Strings
are used in Python to hold text. The best way to show how easy it is to use and
manipulate strings is to demonstrate the technique. The following works with both
Python 2.7 or Python 3:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

These are the basic string-manipulation functions you’ll use when working with
simple strings. The syntax is simple and straightforward, just as you’ll come to expect
from Python. One important distinction to make right away is that each of those strings
(we named them string1, string2, and string3) is simply a pointer—for those familiar
with C—or a label for a blob of data out in memory someplace. One concept that
sometimes trips up new programmers is the idea of one label (or pointer) pointing to
another label. The following code and Figure 2-1 demonstrate this concept:

Figure 2-1 Two labels pointing at the same string in memory

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

At this point, we have a blob of memory somewhere with the Python string 'Dilbert'
stored. We also have two labels pointing at that blob of memory. If we then change
label1’s assignment, label2 does not change:

As you see next in Figure 2-2, label2 is not pointing to label1, per se. Rather, it’s
pointing to the same thing label1 was pointing to until label1 was reassigned.

Figure 2-2 Label1 is reassigned to point to a different string.

Numbers
Similar to Python strings, numbers point to an object that can contain any kind of
number. It will hold small numbers, big numbers, complex numbers, negative numbers,
and any other kind of number you can dream up. The syntax is just as you’d expect:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Now that you’ve seen how numbers work, we can start combining objects. What
happens when we evaluate a string plus a number?

Error! We need to help Python understand what we want to happen. In this case, the only
way to combine 'abc' and 12 is to turn 12 into a string. We can do that on the fly:

When it makes sense, different types can be used together:

And one more note about objects—simply operating on an object often does not
change the object. The object itself (number, string, or otherwise) is usually changed
only when you explicitly set the object’s label (or pointer) to the new value, as follows:

Lists
The next type of built-in object we’ll cover is the list. You can throw any kind of object
into a list. Lists are usually created by adding [and] around an object or a group of
objects. You can do the same kind of clever “slicing” as with strings. Slicing refers to
our string example of returning only a subset of the object’s values—for example, from
the fifth value to the tenth with label1[5:10]. Let’s look at how the list type works:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Next, we’ll take a quick look at dictionaries and then files, and then we’ll put all the
elements together.

Dictionaries

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Dictionaries are similar to lists, except that an object stored in a dictionary is
referenced by a key, not by the index of the object. This turns out to be a very convenient
mechanism for storing and retrieving data. Dictionaries are created by adding { and }
around a key-value pair, like this:

We’ll use dictionaries more in the next section as well. Dictionaries are a great way
to store any values that you can associate with a key, where the key is a more useful way
to fetch the value than a list’s index.

Files with Python
File access is as easy as the rest of Python’s language. Files can be opened (for reading
or for writing), written to, read from, and closed. Let’s put together an example using
several different data types discussed here, including files. This example assumes that
we start with a file named targets and that we transfer the file contents into individual
vulnerability target files. (We can hear you saying, “Finally, an end to the Dilbert
examples!”) Note the required indentation being used within blocks.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This example introduces a couple of new concepts. First, you now see how easy it is
to use files. open() takes two arguments: the first is the name of the file you’d like to
read or create, and the second is the access type. You can open the file for reading (r),
writing (w), and appending (a). Adding a + after the letter adds more permissions; for
example, r+ results in read and write access to the file. Adding a b after the permission
opens it in binary mode.

And you now have a for loop sample. The structure of a for loop is as follows:

CAUTION In Python, white space matters, and indentation is used to mark code
blocks. Most Python programmers stick with an indentation of four spaces. The
indentation must be consistent throughout a block.

Unindenting one level or a placing a carriage return on a blank line closes the loop.
No need for C-style curly brackets. if statements and while loops are similarly
structured. Here is an example:

Sockets with Python
The final topic we need to cover is Python’s socket object. To demonstrate Python
sockets, let’s build a simple client that connects to a remote (or local) host and sends
'Hello, world'. To test this code, we need a “server” to listen for this client to connect.
We can simulate a server by binding a netcat listener to port 4242 with the following
syntax (you may want to launch nc in a new window):

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The client code follows:

You do need to remember to import the socket library, and then the socket instantiation
line has some socket options to remember, but the rest is easy. You connect to a host and
port, send what you want, recv into an object, and then close the socket down. When
you execute this, you should see “Hello, world” show up on your netcat listener and
anything you type into the listener returned back to the client. For extra credit, figure out
how to simulate that netcat listener in Python with the bind(), listen(), and accept()
statements.

Summary
This chapter provides you with introductory programming concepts and security
considerations. An ethical hacker must have programming skills to create exploits or
review source code, and they need to understand assembly code when reversing
malware or finding vulnerabilities. Last but not least, debugging is a must-have skill in
order to analyze the malware at runtime or to follow the execution of shellcode in
memory. The only way to learn a programming language or reverse engineering is
through practice, so get working!

For Further Reading
“A CPU History,” PC Mech, March 23, 2001 (David Risley)
www.pcmech.com/article/a-cpu-history

Art of Assembly Language Programming and HLA (Randall
Hyde) webster.cs.ucr.edu/

ddd debugger frontend https://www.gnu.org/software/ddd/

Debugging with NASM and gdb www.csee.umbc.edu/help/nasm/nasm.shtml

edb debugger http://codef00.com/projects

“Endianness,” Wikipedia en.wikipedia.org/wiki/Endianness

||||||||||||||||||||

||||||||||||||||||||

http://www.pcmech.com/article/a-cpu-history
http://webster.cs.ucr.edu/
https://www.gnu.org/software/ddd/
http://www.csee.umbc.edu/help/nasm/nasm.shtml
http://codef00.com/projects
http://en.wikipedia.org/wiki/Endianness
https://technet24.ir
https://technet24.ir

Good Python tutorial https://docs.python.org/2/tutorial/

“How C Programming Works,” How Stuff Works (Marshall Brain)
computer.howstuffworks.com/c.htm

“Introduction to C Programming,” University of Leicester (Richard
Mobbs) www.le.ac.uk/users/rjm1/c/index.html

“Little Endian vs. Big Endian,” Linux Journal, September 2, 2003 (Kevin
Kaichuan He) www.linuxjournal.com/article/6788

Notes on x86 assembly, 1997 (Phil Bowman) www.ccntech.com/code/x86asm.txt

“Pointers: Understanding Memory Addresses,” How Stuff Works (Marshall
Brain) computer.howstuffworks.com/c23.htm

“Programming Methodology in C” (Hugh
Anderson) www.comp.nus.edu.sg/~hugh/TeachingStuff/cs1101c.pdf

Python home page www.python.org

Python Tutor www.pythontutor.com

“Smashing the Stack for Fun and Profit” (Aleph
One) www.phrack.org/issues.html?issue=49&id=14#article

x86 registers www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html

x64 architecture https://docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/x64-architecture

References
1. Danny Cohen, “On Holy Wars and a Plea for Peace.” Internet Experiment Note

(IEN) 137, April 1, 1980, www.ietf.org/rfc/ien/ien137.txt.
2. Guido Van Rossum, “[Python-Dev] Replacement for Print in Python 3.0,”

September 4, 2006, mail.python.org, https://mail.python.org/pipermail/python-
dev/2005-September/056154.html.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://docs.python.org/2/tutorial/
http://computer.howstuffworks.com/c.htm
http://www.le.ac.uk/users/rjm1/c/index.html
http://www.linuxjournal.com/article/6788
http://www.ccntech.com/code/x86asm.txt
http://computer.howstuffworks.com/c23.htm
http://www.comp.nus.edu.sg/~hugh/TeachingStuff/cs1101c.pdf
http://www.python.org
http://www.pythontutor.com
http://www.phrack.org/issues.html?issue=49&id=14#article
http://www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
http://www.ietf.org/rfc/ien/ien137.txt
https://mail.python.org/pipermail/python-dev/2005-September/056154.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 3
Next-Generation Fuzzing

This chapter shows you how to use fuzzing techniques for software testing and
vulnerability discovery. Originally, fuzzing (or fuzz testing) was a class of black box
software and hardware testing in which the data used to perform the testing is randomly
generated. Over the years, fuzzing evolved as it came to the attention of many
researchers who extended the original idea. (See “For Further Reading” for great works
by Charlie Miller, Michal Zalewski, Jared DeMott, Gynvael Coldwind, Mateusz
Jurczyk, and many others.) Nowadays, fuzzing tools support black box and white box
testing approaches and have many adjustable parameters. These parameters influence
the fuzzing process and are used to fine-tune the testing process for a specific problem.
By understanding the different approaches and their parameters, you will be able to get
the best results using this testing technique.
In this chapter, we discuss the following topics:

• Introduction to fuzzing
• Types of fuzzers
• Mutation fuzzing with Peach
• Generation fuzzing with Peach
• Genetic or evolutionary fuzzing with AFL

Introduction to Fuzzing
One of the fastest ways to get into vulnerability research is through software testing.
Traditional black box software testing is interesting from a vulnerability research
perspective because it doesn’t require an understanding of the internal software
mechanisms. The only requirement to start looking for vulnerabilities is knowing which
interfaces allow interaction with the software and generating the data to be passed
through those interfaces.

Fuzzing or fuzz testing is a class of software and hardware testing in which the data
used to perform the testing is randomly generated. This way, the problem of generating
the input data is vastly simplified and sometimes doesn’t require any knowledge about

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

the internal workings of software or the structure of the input data. This might seem like
an oversimplified approach, but it has been proven to produce results and find relevant
security vulnerabilities in software.

Over the years, much research has been done on improving the software testing and
fuzzing techniques. Nowadays, fuzzing no longer implies the use of randomly generated
data as a means of input testing, but is instead used more generally to describe the
validation of input through various means.

This chapter looks into the process of fuzzing and examines several ideas for
improving the different stages in fuzzing that should lead to finding more security
vulnerabilities.

Types of Fuzzers
We mentioned already that fuzzers have evolved over time and are no longer solely
based on random data generation. Because fuzzing is not an exact science,
experimentation with different fuzzing types and parameters is encouraged.

Following is a list of common fuzzer classifications based on the data-generation
algorithms:

• Mutation fuzzers
• Generation fuzzers
• Genetic or evolutionary fuzzers

Mutation Fuzzers
Mutation-based fuzzers, also called dumb fuzzers, are the simplest variant and closest to
the original idea of randomizing the input data. The name comes from changing
(mutating) the input data, usually in a random way. The mutated data is then used as
input for the target software in order to try and trigger a software crash.

Generation Fuzzers
Generation fuzzers are also called grammar-based or white box fuzz testing, due to
prior knowledge of the internal workings of the protocol. This approach is based on the
premise that efficient testing requires understanding the internal workings of the target
being tested. Generation fuzzers don’t need examples of valid data inputs or protocol
captures like the mutation-based ones. They are able to generate test cases based on
data models that describe the structure of the data or protocol. These models are usually
written as configuration files whose formats vary based on the fuzzing tools that use
them.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

One of the main problems with generation fuzzers is writing data models. For simple
protocols or data structures that have documentation available, this is not a major
problem, but such cases are rare and not so interesting because of their simplicity.

In reality, things are much more complicated, and the availability of specifications and
documentation still requires significant effort to correctly translate to a fuzzing model.
Things get even more complicated when software companies don’t follow the
specifications and slightly modify them or even introduce new features not mentioned in
the specification. In such cases, it is necessary to customize the model for the target
software, which requires additional effort.

Genetic Fuzzing
Genetic fuzzing is also called evolutionary fuzzing because the tool determines the best
set of input tests, based on maximizing code coverage over time. Actually, the fuzzer
makes notice of input mutations that reach new code blocks and saves those mutated
inputs to the body (corpus) of tests. In this sense, the fuzzing tool can learn in a
“survival of the fittest” manner—thus the term genetic or evolutionary fuzzing.

Mutation Fuzzing with Peach
This section provides an overview of the Peach mutation fuzzer, which should provide
you with enough information to start experimenting with fuzzing and looking for
vulnerabilities.

The Peach framework can be used on Windows, Linux, and OS X operating systems.
On Linux and OS X, a cross-platform .NET development framework called Mono is
necessary to run Peach. In this section, we use the 64-bit version of Windows 10. Your
steps and outputs may vary slightly from those in this chapter if you choose to use a
different platform.

As mentioned previously, mutation fuzzing is an extremely interesting idea because it
usually doesn’t require much work from the user’s perspective. A set of samples has to
be chosen as input to the mutation program, and then the fuzzing can begin.

To start fuzzing with Peach, you have to create a file called Pit. Peach Pit files are
XML documents that contain the entire configuration for the fuzzing session. Here is
some typical information contained in a Pit file:

• General configuration Defines things not related to the fuzzing parameters (for
example, the Python path).

• Data model Defines the structure of the data that will be fuzzed in the Peach-
specification language.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• State model Defines the state machine needed to correctly represent protocols
where a simple data model is not enough to capture all the protocol specification.

• Agents and monitors Define the way Peach will distribute the fuzzing workload
and monitor the target software for signs of failure/vulnerabilities.

• Test configuration Defines the way Peach will create each test case and what
fuzzing strategies will be used to modify data.

Mutation Pits are fairly easy to create, and Peach provides several templates that can
be examined and modified to suit different scenarios. Pit configurations can be created
and modified using any text editor—or, more specifically, one of the XML editors.
Peach documentation suggests using Microsoft Visual Studio Express, but even
Notepad++ or Vim can suffice for this task.

The following is the rm_fuzz.xml Peach Pit file:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The Pit file consists of several important sections that will influence and determine
the fuzzing process. Following is a list of these sections and how each one influences
the fuzzing process for this Pit file:

• DataModel (and) Defines the structure of data that will be fuzzed. In case
of black box testing, DataModel is typically unknown and will be represented by
a single data entry, <Blob/>, that describes an arbitrary binary data unit and
doesn’t enforce any constraints on the data (be it values or order). If you omit the
data model, Peach will not be able to determine the data types and their
respective sizes, resulting in a somewhat imprecise data-modification approach.
On the other hand, omitting the data model reduces the time needed to start the
fuzzing. Because black box fuzzing is very quick and cheap to set up, it is usually
worth it to start the black box testing while working on a better data model.

• StateModel (and) Defines the different states the data can go through during
the fuzzing of the application. The state model is very simple for file fuzzing
because only a single file is generated and used for testing purposes.
Fuzzing network protocols is a good example of where the state model plays an
important role. To explore the different states in the protocol implementation, it is
necessary to correctly traverse the state graph. Defining StateModel will instruct
the fuzzer how to walk through the state graph and allow for testing more code and

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

functionality, thus improving the chances for finding vulnerabilities.
• Agent (and) Defines the debugger that will be used to monitor the execution

of the target program and collect information about crashes. The collected crash
data then has to be manually reviewed and classified as relevant or irrelevant.
Relevant crashes should then be reviewed again to check for exploitable
conditions and to determine their value.

• Test (and) Defines configuration options relevant to the testing (fuzzing)
process. In this case, it will define the filename for the generated test cases as
fuzzed.rm and define logs as the logging directory containing data about program
crashes.

To test that the written Pit has a valid structure, Peach offers several solutions. The
first thing to do is to test and validate the Pit with the --test command, which will
perform a parsing pass over the Pit file and report any problems found. Following is an
example of how to test Pit XML:

The following shows how to start a new Peach session with the previously created Pit
file:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Sometimes it is necessary to stop the fuzzer and perform maintenance on the machine
it’s running on. For such cases, Peach allows for easy stopping and resuming of the
session. To stop the current Peach session, just press CTRL-C in its terminal window.
Suspending the session will result in the following Peach output:

The results of a terminated session can be examined in the session folder under the
Peach “logs” directory. Folders in the logs directory use a naming scheme in which a
timestamp with the current time at the moment of directory creation is appended to the
filename of the Pit XML configuration used for fuzzing (for example,
rm_fuzz.xml_2017051623016). Inside the session directory is the status.txt file, which
contains the information about the session, such as the number of cases tested and
information about times and filenames that generated crashes. If the session was
successful, an additional folder named Faults would exist in the session folder. The
Faults directory contains a separate folder for each class of crash detected. Inside each
of these crash clusters are one or more test cases that contain the following information:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• The mutated test case that triggered the crash.
• A debugging report collected about the program state at the time of the crash. This

report includes information about the state and values of the processor register, a
portion of stack content, and information gathered from the WinDbg plug-in
!exploitable, which provides automated crash analysis and security risk
assessment.

• The original test case name that was mutated to create this specific mutation.

The session can be resumed by skipping the already preformed test. Information about
which test case was the last performed by the fuzzer can be seen in the Logs folder
under the session name in the file status.txt:

Another way to see the progress and number of iterations performed by Peach is in the
command-line output during fuzzing, which will show in the first entry of a list iteration
number. In the following example, the iteration number of the current test is 13:

One thing to keep in mind is that resuming the fuzzing session only has real value if the
fuzzing strategy chosen is deterministic. When you use the “random” strategy, resuming
the previous session doesn’t make much difference.

To resume a session, it is enough to run the Pit file, as previously shown, and use the -
-skipto option to jump to a specific test case number. An example of skipping 100 tests
is shown here:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Lab 3-1: Mutation Fuzzing with Peach
In this lab, we look at mutation fuzzing with Peach using Pit files. To successfully
complete the lab, follow these steps (which assume the 64-bit version of Windows 10):

1. Download and install the VLC application from https://www.videolan.org/vlc.
2. Install Windows Debugger Tools for your version of Windows (for Windows 10):

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk.
During installation, select the Debugging Tools for Windows option and uncheck
the others.

3. Download and install Peach 3 from the links at
www.peachfuzzer.com/resources/peachcommunity using the instructions at
http://community.peachfuzzer.com/v3/installation.html. Right-click the file peach-
3.1.124-win-x64-release.zip. Install Peach 3 into the C:\peach3\ directory.

NOTE On Windows 10, you have to “unblock” the downloaded .zip file (right-click
under the security option Unblock) before you unzip it on Windows by default.
Otherwise, you get “Error, could not load platform assembly
‘Peach.Core.OS.Windows.dll’. This assemly [sic] is part of the Internet Security Zone
and loading has been blocked.”

||||||||||||||||||||

||||||||||||||||||||

https://www.videolan.org/vlc
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
http://www.peachfuzzer.com/resources/peachcommunity
http://community.peachfuzzer.com/v3/installation.html
https://technet24.ir
https://technet24.ir

4. Find about six .rm (RealMedia) test files and download them into the (new)
directory C:\peach3\rm_samples using the following Google search query:

CAUTION Be careful with .rm files you get on the Internet. It is best to perform this
exercise on a throwaway VM or at least to revert after completing and/or push the .rm
files up to virustotals.com prior to use.

5. Copy the rm_fuzz.xml file from book download site to C:\peach3\ folder. Test your
Peach Pit file:

6. Confirm and fix the locations of your VLC application and the other paths as
needed.

7. Run your Peach Pit from an administrator’s command prompt (required for heap
monitoring on Windows 10):

8. Let this Pit run a while (overnight) and see if you have any bugs listed in the log.
(We’ll cover crash analysis later in this chapter.)

Generation Fuzzing with Peach
As you have seen already, Peach is a capable mutation fuzzer; however, it turns out to
be an even better generation fuzzer. In this section, we attempt to discover
vulnerabilities in Stephen Bradshaw’s vulnserver—a vulnerable server created for
learning about fuzzing and exploits.

The vulnserver application comes with precompiled binaries. Alternatively, you may
compile them from source code by following the instructions provided. After launching
the vulnserver on a Windows machine, you will get the following greeting:

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://virustotals.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

This advice should be well heeded: do not run this software on anything but an isolated
test system or virtual machine in host-only mode. You have been warned!

You can test the vulnerable server by connecting via netcat (in another window) as
follows:

Now that you know a little about the vulnserver application and what commands it
takes, let’s create a Peach Pit targeting this application. Because you are already
familiar with Peach, we will jump right into the Peach Pit. However, this time we will
change the DataModel to show the structure of the valid application commands. To
keep things simple, we will fuzz the TRUN command (for no reason other than it sounds
cool). As part of the lab for this section, you may fuzz the other commands. Note that
this Peach Pit is based on an example from David Um’s excellent post, which itself was
based on an earlier post by Dejan Lukan (see the “For Further Reading” section for
more information).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Here are the main differences between this generation-based Peach Pit and the
previous mutation Peach Pit:

• DataModel The data model has been modified to describe the TRUN
command syntax, which is TRUN, followed by a space, which is mutable
(fuzzable), and then by a carriage return (\rn).

• Agent The agent has been modified to show that a remote Peach agent will be
started to monitor the progress of the application and restart it if needed.

• Publisher The publisher has been modified to demonstrate the TCP connection
capability of Peach, given the address and port of the vulnerable application.

In order to run this Peach Pit, we first need to start the Peach agent, like so:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Next, let’s fire it up within an administrator command prompt and look at the results:

The fuzzer is now running, and after watching it for a while, we notice the following:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

NOTE Depending on your seed value, your count may be different, which is just fine.

As you can see, the fuzzer found an exception and was able to reproduce it.

Crash Analysis
During a fuzzing session, if everything is going as planned, there should be some logs
for the target application crashes. Depending on the fuzzer used, different traces of a
crash will be available. Here are some of the usual traces of crashes available:

• Sample file or data records that can be used to reproduce the crash. In the case of
a file fuzzer, a sample file that was used for testing will be stored and marked for
review. In the case of a network application fuzzer, a PCAP file might be
recorded and stored when an application crash was detected. Sample files and
data records are the most rudimentary way to keep track of application crashes;
they provide no context about the crash.

• Application crash log files can be collected in many ways. Generally, a debugger
is used to monitor the target application state and detect any sign of a crash. When
the crash is detected, the debugger will collect information about the CPU context
(for example, the state of registers and stack memory), which will be stored along
with the crash sample file. The crash log is useful for getting a general idea about
the type of crash as well as for crash clustering. Sometimes an application can
crash hundreds of times because of the same bug. Without some context about the
crash, it is very hard to determine how much different the vulnerabilities are.
Crash logs provide a great first step in filtering and grouping crashes into unique
vulnerabilities.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• When an application crash is detected, many custom scripts can be run that collect
specific types of information. The easiest way to implement such scripts is by
extending the debugger. !exploitable is one such useful debugger extension. It was
developed by Microsoft for WinDbg and can be used for checking whether or not
a crash is exploitable. It should be noted that even though !exploitable is useful
and can provide valuable information regarding the crash and its classification, it
should not be fully trusted. To thoroughly determine whether or not a crash is
exploitable, you should perform the analysis manually because it is often up to the
researcher to determine the value of the vulnerability.

Using Peach as the framework produces some nice benefits when you’re dealing with
crashes. Peach uses WinDbg and the !exploitable extension to gather contextual
information about a crash and to be able to perform some crash clustering.

Peach will organize all crash data in the folders under the Fault directory. An example
of Peach’s Fault directory structure is shown here:

Drilling down into the second test run, we find the following directory listing in the
Faults directory:

Drilling down further, we find the actual test case ID (185) and its contents:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Out of the five files located under the test case 185 folder file,
RemoteAgent.Monitor.WindowsDebugEngine.description.txt, contains the best
information about the crash. An example of a crash log (with some lines removed for
brevity) is presented next:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The file consists of two main sections:

• Crash information collected from the debugger, including loaded module names,
information about CPU registers, and an excerpt from memory. This information
starts at in the preceding log.

• An !exploitable report that contains information about and a classification of the
crash. Information that can be found in this part of the log gives more context to
the crash and includes exception code, stack frames information, bug title, and
classification. Classification is the !exploitable conclusion about the potential
exploitability of the crash. It can contain one of four possible values: Exploitable,
Probably Exploitable, Probably Not Exploitable, or Unknown. This information
spans from to in the preceding log.

A quick glance at the classification on line will let us know if we need to spend
more time on this potential vulnerability. In this case, we see it is vulnerable, but we’ll
leave the details of further analysis and exploitation for another chapter.

Lab 3-2: Generation Fuzzing with Peach
You can follow along with the preceding example by performing the following lab

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

steps:
1. Download the vulnerable server application (the .exe and .dll) to your test lab or

build it yourself (https://github.com/stephenbradshaw/vulnserver). Then place the
executable in C:\vulnserver.

2. Launch the vulnerable server, like so (note the warning in the output):

3. Download and install the A/V safe version of netcat (without –e) for Windows
(https://joncraton.org/blog/46/netcat-for-windows/).

4. From another window, test the vulnerable server, like so:

5. Copy the fuzz_TRUN.xml file listed previously (available from the book
download site) to the C:\peach3\ folder.

6. From an administrator command prompt, start your Peach agent:

7. From a new administrator command prompt, launch the Peach Pit:

8. Monitor and review the Logs folder (C:\peach3\logs).

CAUTION Depending on your version of Windows, you may experience warnings or
the vulnerable server may crash and you need to restart testing again. Depending on how
lucky (or unlucky) you are, you may need to generate many test cases—even as many as
a thousand—before the program generates faults.

Genetic or Evolutionary Fuzzing with AFL
When it comes to genetic or evolutionary fuzzing, the best option is AFL, particularly
for file-based parsers written in C or C++. When source code is available, the
application may be instrumented with AFL during compilation with either clang or g++.
For this section, we will take a look at this file-parsing application, which would pose
a significant challenge to a mutation fuzzer. This program has been adapted from an
example given by Gynvael Coldwind (Michael Skladnikiewicz) during an excellent
video blog on genetic fuzzing (see “For Further Reading”). As Gynvael explains, when
an application has many nested if/then blocks, it is often difficult, if not impossible, for

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/stephenbradshaw/vulnserver
https://joncraton.org/blog/46/netcat-for-windows/
https://technet24.ir
https://technet24.ir
https://technet24.ir

a mutation fuzzer to reach full code coverage, at least in our lifetime. Consider this
simple example:

NOTE At this time, we will switch to Kali Linux 2017, which you can download from
kali.org.

||||||||||||||||||||

||||||||||||||||||||

http://kali.org
https://technet24.ir
https://technet24.ir

The abort() statement at will cause the program to crash. The question is whether the
fuzzer will find it. Using a mutation fuzzer, if we submit one input file at a time, we
would have a 1 in 2568 chance of hitting that innermost code block. If your computer
was able to process 1,000 files per second (and you were unlucky), it might take
upward of a number of years to complete this fuzzing task with a mutation fuzzer, as
calculated here:

That’s a lot of years! Now let’s see how AFL does with this difficult problem. First,
compile with the AFL instrumentation, like so:

Now let’s start the fuzzing with AFL:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

As shown next, AFL comes with an information-packed interface. The most important
information appears in the upper-right corner, where we see the cycles completed, total
paths found, and the number of unique crashes.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

As you can see, the fuzzer has found one crash—the one we expected it to find. Not bad.
AFL found the inner code block in a little more than five minutes.

Similar to Peach, AFL provides a log of crashes, where you will find the file input
that reached the vulnerable block of code:

As expected, the first 8 bytes of the string “abcdefgh” were parsed and hit the inner
code block, where the program aborted (crashed).

Lab 3-3: Genetic Fuzzing with AFL
For this lab, you will build and use AFL, as just shown, in the following steps:

1. From Kali Linux 2017, 32-bit image, with 2GB RAM and two cores allocated in
virtual machine, download and build AFL:
• wget lcamtuf.coredump.cx/afl/releases/afl-latest.tgz
• tar -xzvf afl-latest.tgz
• cd afl-2.41b/
• make

2. Copy the asdf3.c file or download it from the book’s web page and save it to the
afl-2.41b/ directory.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

3. Compile with AFL instrumentation:

4. Create an input/ directory under the afl-2.41b/ directory.
5. Inside that directory, create a file.txt file with “aaaaaaaa” as the content (with no

quotes).
6. Start the fuzzing with AFL by executing the following from within the afl-2.41b/

directory:

7. Inspect the GUI for a crash and then inspect crash logs, as shown previously.

Summary
Fuzzing as a testing methodology gained popularity because of its simplicity and ease of
setup. Today’s fuzzing frameworks, such as Peach, build upon the original idea of
random testing. They constantly evolve by keeping track of the latest advances in the
fuzzing community. AFL takes fuzzing to a new level, using genetic algorithms to evolve
into the best code coverage. To efficiently use these new tools, it is necessary to play
with them and understand them. This chapter should give you the necessary language and
an overview of the fuzzing world to get you started with testing and hunting for
vulnerabilities.

For Further Reading
!exploitable WinDbg plug-in msecdbg.codeplex.com

“Analysis of Mutation and Generation-Based Fuzzing” (C. Miller and Z. N.
J. Peterson) fuzzinginfo.files.wordpress.com/2012/05/analysisfuzzing.pdf

“Babysitting an Army of Monkeys” (C.
Miller) fuzzinginfo.files.wordpress.com/2012/05/cmiller-csw-2010.pdf

Bochspwn Blackhat presentation (Gynvael and Mateusz
Jurczyk) media.blackhat.com/us-13/us-13-Jurczyk-Bochspwn-Identifying-0-days-via-
System-wide-Memory-Access-Pattern-Analysis-Slides.pdf

Boofuzz (Joshua Pereyda) github.com/jtpereyda/boofuzz

“Fuzzing Panel,” YouTube (Mike Eddington, Jared DeMott, Ari
Takanen) https://www.youtube.com/watch?v=TDM-7xUPzqA

||||||||||||||||||||

||||||||||||||||||||

http://msecdbg.codeplex.com
http://fuzzinginfo.files.wordpress.com/2012/05/analysisfuzzing.pdf
http://fuzzinginfo.files.wordpress.com/2012/05/cmiller-csw-2010.pdf
http://media.blackhat.com/us-13/us-13-Jurczyk-Bochspwn-Identifying-0-days-via-System-wide-Memory-Access-Pattern-Analysis-Slides.pdf
http://github.com/jtpereyda/boofuzz
https://www.youtube.com/watch?v=TDM-7xUPzqA
https://technet24.ir
https://technet24.ir

“Fuzzing Vulnserver with Peach 3” (David
Um) www.rockfishsec.com/2014/01/fuzzing-vulnserver-with-peach-3.html

“Fuzzing Vulnserver with Peach: Part 2” (Dejan
Lukan) http://resources.infosecinstitute.com/fuzzing-vulnserver-with-peach-part-2/

“Fuzzing Workflows; a FuzzJob from Start to End” (Brandon
Perry) foxglovesecurity.com/2016/03/15/fuzzing-workflows-a-fuzz-job-from-start-to-
finish/

IANA media types www.iana.org/assignments/media-types

Microsoft Visual Studio Express www.visualstudio.com

Notepad++ editor notepad-plus-plus.org

Peach fuzzing framework peachfuzzer.com

Python language www.python.org

Radamsa fuzzer github.com/aoh/radamsa

“RAM Disks and Saving Your SSD from AFL Fuzzing” (Michael
Rash) www.cipherdyne.org/blog/2014/12/ram-disks-and-saving-your-ssd-from-afl-
fuzzing.html

Repository for multimedia samples samples.mplayerhq.hu

“Software Exploit Development – Fuzzing with AFL” (Jonathan
Racicot) thecyberrecce.net/2017/03/20/software-exploit-development-fuzzing-with-
afl/

“Tutorial – Beginner’s Guide to Fuzzing” (Hanno Böck) fuzzing-
project.org/tutorial1.html

Vblog by Gynvael www.youtube.com/watch?
v=JhsHGms_7JQandgithub.com/gynvael/stream-en/tree/master/019-genetic-fuzzing

Vulnserver (Stephen Bradshaw) github.com/stephenbradshaw/vulnserver

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.rockfishsec.com/2014/01/fuzzing-vulnserver-with-peach-3.html
http://resources.infosecinstitute.com/fuzzing-vulnserver-with-peach-part-2/
http://foxglovesecurity.com/2016/03/15/fuzzing-workflows-a-fuzz-job-from-start-to-finish/
http://www.iana.org/assignments/media-types
http://www.visualstudio.com
http://notepad-plus-plus.org
http://peachfuzzer.com
http://www.python.org
http://github.com/aoh/radamsa
http://www.cipherdyne.org/blog/2014/12/ram-disks-and-saving-your-ssd-from-afl-fuzzing.html
http://thecyberrecce.net/2017/03/20/software-exploit-development-fuzzing-with-afl/
http://fuzzing-project.org/tutorial1.html
http://www.youtube.com/watch?v=JhsHGms_7JQandgithub.com/gynvael/stream-en/tree/master/019-genetic-fuzzing
http://github.com/stephenbradshaw/vulnserver
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 4
Next-Generation Reverse Engineering

For a problem-solving activity such as reverse engineering (RE), there is no good or
bad way of arriving at a solution. Most of the time, it’s a race to extract desired
information for a variety of purposes, such as the following:

• Performing a security audit of software
• Understanding a vulnerability in order to create an exploit
• Analyzing malicious code in order to create detection signatures
In the course of this activity, reversers can become complacent with their workflow

and tools and miss out on the benefits from recent advances in the field or new tools.
This chapter is aimed at showcasing some relatively new tools and analysis

techniques that, if given a chance, may greatly improve your usual RE workflow. It is
mainly oriented toward malware analysis and vulnerability research, but ideas can be
applied to almost any reverse engineering task.

In this chapter, we cover the following topics:
• Code annotation
• Collaborative analysis
• Dynamic analysis

Code Annotation
No reverse engineering discussion is complete without a mention of the Interactive
Disassembler, or IDA. This section explores ways to improve IDA functionality and
usability with better disassembly annotations of IDA database files (IDB). These
extensions were developed by IDA users who wanted to improve their workflow and
overcome problems encountered during analysis. As such, they serve as good examples
of common problems and solutions that reversers encounter while doing malware or
vulnerability research.

IDB Annotation with IDAscope

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

IDAscope is an interesting open-source plug-in developed by Daniel Plohmann and
Alexander Hanel. It was awarded second place in the 2012 Hex-Rays plug-in contest
and is mainly oriented toward reversing Windows files. However, it does have
extensible architecture, making it easy to modify and add functionality. Here’s a list of
some of the functionality offered by the IDAscope plug-in:

• Renaming and annotating functions
• Converting code blocks to functions
• Identifying cryptographic functions
• Importing Windows API documentation to IDA
• Semantic code coloring

You can install this plug-in by downloading the code from
https://bitbucket.org/daniel_plohmann/simplifire.idascope. To start the plug-in, run the
IDAscope.py script from IDA. If the plug-in initializes successfully, the following
information will be present in the IDA output window:

Figure 4-1 shows the IDAscope user interface in IDA. The plug-in provides a great
set of functionalities that can help with the initial file analysis. Following is a typical
workflow using this plug-in when working on a new sample:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://bitbucket.org/daniel_plohmann/simplifire.idascope
https://technet24.ir
https://technet24.ir
https://technet24.ir

 Figure 4-1 IDAscope plug-in user interface

1. Fix all unknown code as functions. Several heuristics are used to convert data and
code not recognized as functions in IDA into proper IDA functions.
The pass first performs the “Fix unknown code that has a well-known function
prolog to functions” sweep. This ensures that during this first pass, only code that
has strong indicators gets converted into a function. In this case, the standard
function prolog (push ebp; mov ebp, esp or 55 8B EC) is used as a heuristic.
After that, the plug-in will try to convert all other instructions into function code.

2. Rename potential wrapper functions. This is a quick and easy way to get high-

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

quality annotations for IDB. A wrapper function is typically a simple function that
implements error-checking code for another function (for example, an API). In this
context, a function wrapper can call only one other function, which makes it trivial
to determine which function is wrapped and to apply that name to the wrapper.
Wrapper functions use the following naming template: WrappingApiName + _w
(for example, CreateProcessA_w).

3. Rename the function according to identified tags. This very cool approach can
significantly speed up the reverse engineering process. It’s based on grouping API
functions and adding the group’s name as a prefix to the function name. For
example, the function sub_10002590 that calls CryptBinaryToStringA will be
renamed Crypt_sub_10002590. In cases where a function calls APIs from
multiple groups, it will get prefixed with all of the group names (for example,
Crypt_File_Reg_sub_10002630).

4. Toggle semantic coloring. This step will color every basic block that calls an API
function from a predefined group. Different colors represent different API groups,
which allows for easier location of interesting basic blocks based on color. This
can come in especially handy in bigger graphs when you’re looking at an overview
to get an idea of how different functions are called across the graph.

At this point, IDB should be populated with all the annotations from the IDAscope
plug-in, and sample analysis can now begin.

When you’re reverse-engineering on Windows, it is common to come across
unfamiliar API function names. In those situations, the most common approach is to look
for their descriptions on Microsoft Developer Network (MSDN). The WinAPI
Browsing tab in IDAscope supports looking up MSDN function description pages
directly from the IDA UI (Figure 4-2 shows an example). These pages are accessible in
two modes: online and offline. For online mode, it is necessary to have Internet
connectivity. For the offline availability, it is necessary to download the API
descriptions and unpack them to the default location of C:\WinAPI, after which it is no
longer necessary to have Internet connectivity to search for and read the descriptions.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 Figure 4-2 The WinAPI Browsing tab in IDAscope

Reverse-engineering malware is often about identifying and classifying the correct
malware family. YARA is probably the most popular and well-known tool for writing
malware signatures in the open source world. It supports writing simple byte signatures
with wildcards as well as more complex regular expressions. In addition, it uses
supported file format modules.

As more researchers and malware intelligence feeds support and include YARA
signatures in their reports, being able to check them directly from IDA comes in handy.
IDAscope can load and check all the available YARA signatures against the loaded
sample. It outputs a table containing information on how many signatures matched and at
which locations. Following is an example YARA signature for the Tidserv malware:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Checking the previous signature against the Tidserv sample (MD5:
0E288102B9F6C7892F5C3AA3EB7A1B52) gives us the results in Figure 4-3, which
shows that two YARA rules—Tidserv_generic and Tidserv_cmd32—matched all their
string signatures. From here, it is possible to analyze and check for potential false-
positive matches by inspecting the addresses at which the matches occurred.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 Figure 4-3 IDAscope YARA Scanner table

NOTE Using YARA signatures is a good way to document malware analysis and
create a personal repository of signatures. These signatures can be used for malware
clustering purposes or threat intelligence to track specific attacker groups and then
associate malware variants with them.

As a final step in exploring this plug-in’s functionality, we’ll use it to identify
cryptographic functions. The first and most common way of doing so is to identify
various cryptographic constants. Many other plug-ins for IDA as well as other

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

debuggers implement this functionality, including FindCrypt, FindCrypt2, KANAL for
PeID, SnD Crypto Scanner, and CryptoSearcher. IDAscope, in addition to using this
standard approach, implements a static heuristic based on loops to detect cryptographic
code. The detection heuristic consists of three configurable parameters:

• ArithLog Rating This parameter uses limits to determine the minimum and
maximum percentage of arithmetic instructions in a basic block. A high percentage
of arithmetic instructions inside a loop is a good indicator of an encryption,
decryption, or hashing-related functionality.

• Basic Blocks Size This parameter defines the minimum and maximum range for
the number of instructions a basic block needs to have. Because encryption and
hashing algorithms often have unrolled loops, looking for larger basic blocks can
be an indicator of an encryption algorithm.

• Allowed Calls This parameter defines the minimum and maximum range for the
number of call instructions inside a basic block for it to be considered related to
cryptography. A low number of call instructions can be used to strengthen the
identification of cryptographic functions, if we assume that most cryptographic
functions are self-contained in an effort to increase performance.

It is very difficult to recommend a best configuration of parameters because it greatly
depends on the implemented crypto. The best approach is to modify parameters and
examine the results in an iterative manner. If a specific parameter configuration doesn’t
produce satisfactory results, you can lower the boundaries in cases of a small number of
results or increase the limits for noisy results.

Figure 4-4 shows a sample configuration of parameters for identifying the XOR
decryption locations that precede the RC4 algorithm.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 Figure 4-4 IDAscope crypto identification

By examining the code at the reported addresses, we can confirm the XOR decryption.
Here is the code listing for the first two basic blocks reported by IDAscope:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

At locations and , we see the visible update of the XOR rolling key, with a value
of 0x51. At locations and , we see the instruction that decrypts memory with the key
calculated in the previous instruction. These two loops decrypt different memory
regions using the same style of algorithm and are good examples of identifying custom
cryptographic algorithms that can’t be identified using the traditional matching of
cryptographic constants.

Getting familiar with IDAscope and its capabilities will surely pay off and improve
your speed and efficiency at reverse engineering with IDA.

C++ Code Analysis
C++ is a somewhat more complex language than C, offering member functions and
polymorphism, among other things. These two features require implementation details
that make compiled C++ code look rather different from compiled C code when they are
used.

Quirks of Compiled C++ Code
First, all nonstatic member functions in C++ require a this pointer; second,
polymorphism is implemented in C++ through the use of vtables.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE In C++, a this pointer is available in all nonstatic member functions that points
to the object for which the member function was called. You can use a single function to
operate on many different objects merely by providing different values for this each
time the function is called.

The means by which this pointers are passed to member functions vary from compiler
to compiler. Microsoft compilers take the address of the calling object and place it in
the ecx/rcx register prior to calling a member function. Microsoft refers to this calling
convention as a “this call.” Other compilers, such as Borland and g++, push the address
of the calling object as the first (leftmost) parameter to the member function, effectively
making this an implicit first parameter for all nonstatic member functions. C++
programs compiled with Microsoft compilers are very recognizable as a result of their
use of the this call. Here’s a simple example:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Because Borland and g++ pass this as a regular stack parameter, their code tends to
look more like traditional compiled C code and does not immediately stand out as
compiled C++.

C++ Vtables
Virtual tables (or vtables) are the mechanism underlying virtual functions and
polymorphism in C++. For each class that contains virtual member functions, the C++
compiler generates a table of pointers, called a vtable, that contains an entry for each
virtual function in the class, and the compiler fills each entry with a pointer to the
virtual function’s implementation. Subclasses that override any virtual functions receive
their own vtable. The compiler copies the superclass’s vtable, replacing the pointers of
any functions that have been overridden with pointers to their corresponding subclass
implementations. The following is an example of superclass and subclass vtables:

As you can see, the subclass overrides func3 and func4 but inherits the remaining
virtual functions from its superclass. The following features of vtables make them stand
out in disassembly listings:

• Vtables are usually found in the read-only data section of a binary.
• Vtables are referenced directly only from object constructors and destructors.
• By examining similarities among vtables, you can understand inheritance

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

relationships among classes in a C++ program.
• When a class contains virtual functions, all instances of that class will contain a

pointer to the vtable as the first field within the object. This pointer is initialized
in the class constructor.

• Calling a virtual function is a three-step process. First, the vtable pointer must be
read from the object. Second, the appropriate virtual function pointer must be read
from the vtable. Finally, the virtual function can be called via the retrieved
pointer.

PythonClassInformer
Runtime type information (RTTI) is a C++ mechanism that exposes information about an
object’s data type at runtime. RTTI is only generated for polymorphic classes (that is,
classes with virtual functions). When reversing C++ code, RTTI provides valuable
metadata about class names, inheritance, and class layout. IDA unfortunately doesn’t
parse this object by default, but several plug-ins are available that can annotate the IDB
with necessary metadata as well as visualize the class inheritance.

PythonClassInformer improves the traditional RTTI parsing capabilities of IDA plug-
ins such as ClassInformer1 by providing a class hierarchy diagram in IDA. Visualization
of the class hierarchy helps you understand the relationship of classes, especially when
you’re dealing with complex C++ code.

To apply the PythonClassInformer RTTI annotations on the IDB, run the
classinformer.py file by selecting File | Script File or by pressing ALT-F7. Once the
analysis is finished, a Class Diagram window similar to the one shown Figure 4-5 will
appear with the recovered classes (if the file contains RTTI information).

 Figure 4-5 Example of the PythonClassInformer class diagram object hierarchy

HexRaysCodeXplorer
HexRaysCodeXplorer is one of the first plug-ins to showcase the power and

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

capabilities of building plug-ins on top of IDA’s Hex-Rays decompiler. The Hex-Rays
abstract syntax tree (AST), called “ctree,” provides developers with a structure that can
be used for manipulating decompiler output and performing additional modification
passes on top of this data (for example, de-obfuscation or type analysis).

HexRaysCodeXplorer implements the following functionality on top of Hex-Rays:

• Display Ctree Graph Displays the Hex-Rays ctree graph for the currently
decompiled function.

• Object Explorer Similar to PythonClassInformer, this view will parse RTTI
information and list all identified vtables along with their names and method
counts. However, unlike the PythonClassInformer, it will not name the vtables in
the disassembly view. A useful functionality exposed through the Object Explorer
view is “Make VTBL_struct,” which automatically creates an IDA structure and
names the elements the same as the vtable function names.

• Extract Types to File Saves all type information to the types.txt file in the
current IDB directory.

• Extract Ctrees to File Saves ctree in a text file.
• Jump to Disasm Provides an interesting capability that is not exposed directly

in Hex-Rays and allows navigation to the assembly instruction in the disassembly
view from the associated decompiled line of code. Note, however, that this is not
an exact one-to-one mapping because there are usually multiple assembly
instructions associated with a single line of decompiled C.

Collaborative Analysis
Collaboration and information documentation during reverse engineering are interesting
yet often overlooked topics. When you’re dealing with a complex RE target, it is often
the case that multiple people are looking at it at the same time. Over the years, several
attempts and various approaches have been made to implement efficient collaboration
workflows. Following is a timeline of the notable IDA plug-ins and their approach to
collaboration using IDA:

• IDA Sync A plug-in developed by Pedram Amini that uses client/server
architecture. Clients connect to a server, and all changes to the IDB done using the
specific plug-in hotkeys are immediately transmitted to other clients. The server
keeps a copy of the changes and makes them available for new clients. This plug-
in is not actively developed anymore, and the last update was in 2012.

• CollabREate A plug-in developed by Chris Eagle and Tim Vidas that provides

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

similar functionality as IDA Sync but improves support for different actions that
are monitored and shared with clients. It works similar to a software versioning
and revision control system because it allows users to upload and download
changes made to the IDB but also to fork the IDB markups to the new project.

• BinCrowd A plug-in developed by Zynamics that uses a different approach to
collaboration. Unlike the previous two plug-ins, BinCrowd is not designed for
active collaboration on the same IDB. Instead, it builds an annotated function
database that can be reused on many different samples that share some of the
functions. It uses fuzzy matching to find similar functions and renames the matched
functions in IDB. The client tool is released as an open source plug-in, but the
server component was never released and the project has been discontinued.

• IDA Toolbag A plug-in developed by Aaron Portnoy, Brandon Edwards, and
Kelly Lum. This plug-in offers limited collaboration capabilities and is aimed
mainly at sharing annotations made with the plug-in. Unfortunately, the plug-in is
no longer actively developed.

• CrowdRE A plug-in developed by CrowdStrike that is the reincarnation of the
BinCrowd plug-in. Unlike the other mentioned plug-ins, this one hasn’t been
open-sourced. The IDA plug-in is tied to the CrowdStrike server, which provides
a function-matching service. This service-based approach may not be appealing to
researchers who don’t wish to share their samples or IDB information with a third
party, so you are encouraged to read the EULA before using this plug-in.

• FIRST A plug-in developed by Cisco TALOS that provides functionality similar
to CrowdRE and BinCrowd, but unlike them FIRST also provides the ability to
run your own private repository. This plug-in is actively developed and
maintained.

• BinNavi A reverse engineering disassembler front end aimed at vulnerability
researchers and malware analysts. BinNavi supports collaborative analysis
workflows and Reverse Engineering Intermediate Language (REIL) for writing
platform-independent analysis.

Leveraging Collaborative Knowledge Using FIRST
As its name suggests, FIRST (Function Identification and Recovery Signature Tool)
provides the ability to manage a database of annotated functions and perform similarity
lookups. The collaboration aspect is achieved by allowing everyone to share their
function names as well as query the repository for fuzzy function matches. The authors
have indexed a corpus of well-known library function names like OpenSSL as well as
function names from leaked malware like Zeus.

Although it doesn’t provide a true collaborative experience like CollabREate, the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIRST plug-in does enable analysts working on the same binary to push and pull
function names from a central repository. However, the real power of FIRST is the
ability to reuse the function names across different binaries and leverage old data to
identify and rename similar functionality. By growing the function repository, you can
more easily track malware families or identify common libraries statically linked in the
analyzed samples, which significantly reduces the time needed to understand the code
functionality.

Plug-in installation is trivial and well documented on the FIRST website.2 Once the
plug-in is installed in IDA, it can be invoked by pressing 1 or selecting Edit | Plugins |
FIRST. The resulting dialog box contains a configuration section that needs to be
populated with FIRST server information, which can be either the public FIRST server
located at first-plugin.us on port 80 or a custom server in case you decide to run your
own. The authentication to the server is done using the API key that’s available after you
register at http://first.talosintelligence.com/.

Here’s a typical FIRST workflow:

1. After opening a new binary in IDA, you’ll want to annotate as many functions with
names and prototypes as possible before starting manual analysis. Right-click
anywhere in the disassembly window and select Query FIRST for All Function
Matches, as shown next.

2. In the Check All Functions menu, you should first filter all the already named
functions by selecting the Show Only “sub_” Function filter. This ensures that any
named functions in the IDA database aren’t overwritten by FIRST. Another
convenient option is to use Select Highest Ranked–matched functions as the default
selection criteria and then manually review the results and remove or change the
selected functions if alternatives make more sense.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://first.talosintelligence.com/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Here are a few parameters you should take into consideration when deciding on
function names with multiple matches:

• Rank This social popularity metric shows how many times the specific name
has been chosen and applied by FIRST users. This is not a very high-quality
metric but does provide insight into what other users thought was a good name.

• Similarity This metric shows the percentage of similarity between the queried
function and the matched results.

• Prototype This is the function prototype of matched results. In cases when
there are several results with close similarity, it’s useful to consider the
functions that have better prototype definitions because this will improve IDA’s
analysis and thus produce better annotations.

3. Once FIRST is finished with analysis, it is a good practice for you to upload all
function names back to the FIRST database by selecting Add Multiple Functions to
FIRST in the context menu shown previously. The easiest way to upload all named
functions is to select the Filter Out “sub_” Functions filter and the Select All filter
in the Mass Function Upload dialog box, shown here.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

4. You can manage the uploaded function metadata from the FIRST plug-in menu in
the Management section, where it’s possible to view the history of every uploaded
function and, if necessary, delete it.

Collaboration with BinNavi
Disassembly listings for complex programs can become difficult to follow because
program listings are inherently linear, whereas programs are very nonlinear as a result
of all the branching operations they perform. BinNavi (short for Binary Navigator) from
Zynamics (now Google) is an open source tool that provides graph-based analysis and
debugging of binaries. BinNavi operates on top of a disassembler back end such as IDA
Pro–generated databases and fREedom (a Capstone Engine–powered disassember back
end). BinNavi offers sophisticated graph-based views of the binary by utilizing the
concept of proximity browsing to prevent the display from becoming too cluttered.
BinNavi graphs rely heavily on the concept of the basic block, which is a sequence of
instructions that, once entered, is guaranteed to execute in its entirety. The first
instruction in any basic block is generally the target of a jump or call instruction,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

whereas the last instruction in a basic block is typically either a jump or return. Basic
blocks provide a convenient means for grouping instructions together in graph-based
viewers, because each block can be represented by a single node within a function’s
flow graph. Figure 4-6 shows a selected basic block and its immediate neighbors.

 Figure 4-6 Sample BinNavi display

The selected node has a single parent and two children. The proximity settings for this
view are one node up and one node down. The proximity distance is configurable

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

within BinNavi, allowing users to see more or less of a binary at any given time. Each
time a new node is selected, the BinNavi display is updated to show only the neighbors
that meet the proximity criteria. The goal of the BinNavi display is to decompose
complex functions sufficiently to allow analysts to comprehend the flow of those
functions quickly.

BinNavi provides a true collaborative experience because all analysts working on the
same database project get real-time updates of all comments and project changes, along
with information about the users who made them. The following four comment types are
supported:

• Global line comments Similar to repeatable function comments in IDA, global
line comments will be visible in all instances (basic blocks) where that line
appears.

• Local line comments Similar to nonrepeatable comments in IDA, local
comments are visible only in the specific basic block where they are defined.

• Node comments This type of comment is visualized in its own block and is
attached to a specific basic block or block group.

• Function comments Similar to repeatable function comments in IDA, function
comments are associated with a function and will appear in all calls to the
specific function.

Figure 4-7 shows how two comments from different users are visualized in the
disassembly view.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 Figure 4-7 BinNavi collaboration comments (BinNavi_collaboration.png)

Dynamic Analysis
Reverse engineering to determine the full functionality of a binary is the ultimate form of
static analysis—but there’s another way to approach it. Dynamic analysis can provide a
valuable head start in understanding what the malware binaries are designed to do. With
this approach, you run malware in a sandbox where the binaries execute in a safe
environment and extract desired file-system or network artifacts.

Dynamic analysis jumpstarts your reverse engineering efforts with rapid “first pass”
information that reveals immediately what the binaries are trying to do. You can then
drill down into how they’re doing it with your other reverse engineering tools. This can
save you a lot of time: you might not even need to undertake a full manual reverse
engineering effort once you have the information from the dynamic analysis.

Automated Dynamic Analysis with Cuckoo Sandbox

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In 2017, the AV-TEST Institute registered around 20 million unique malware samples
per day. The number has been growing steadily year over year for the last 10 years and
is expected to keep growing.

Automated file analysis systems provide malware researchers with a templatized
report of the observed file behavior. The automation is a key aspect of scaling the time-
consuming manual analysis efforts. Automated analysis reports help researchers tackle
the following issues:

• Identification of interesting files that require deeper and more time-consuming
manual analysis by surfacing new observable artifacts not seen before.

• Clustering of new samples to existing threat families based on observable
artifacts, which helps identify new malware families or the evolution of existing
families.

• Overview of the malware functionality without using any of the reverse
engineering tools. This helps analysts have a good overview of file functionality
and concentrate their analysis efforts on the specific task at hand (for example,
documenting the C2 protocol).

Cuckoo Sandbox is an advanced, extremely modular, and open source automated
malware-analysis system with various applications. By default, it is able to do the
following:

• Analyze many different types of malicious files (executables, Office documents,
PDF files, e-mails, and so on) as well as malicious websites under the Windows,
Linux, macOS, and Android virtualized environments.

• Trace API calls and general behavior of the file and distill this into high-level
information and signatures that are comprehensible by anyone.

• Dump and analyze network traffic, even when encrypted with SSL/TLS, using
native network routing support to drop all traffic or route it through INetSIM, a
network interface, or a virtual private network (VPN).

• Perform advanced memory analysis of the infected virtualized system using the
memory forensics tool Volatility,3 as well as using YARA4 scanning of a process
memory.

Another very convenient outcome of releasing a project as open source is that there
are several online instances of Cuckoo running and available to process files. For
analysts who are dealing with public samples, this is the simplest way to get the
analysis for free and without the hassle of running and maintaining Cuckoo instances.
Here are some of the well-known online Cuckoo instances:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• https://sandbox.pikker.ee
• https://zoo.mlw.re/
• https://linux.huntingmalware.com/
• https://malwr.com/

The Cuckoo interface is divided into multiple categories, which are themed around
typical malware analysis objectives such as the following:

• Summary General overview of the file format metadata (file size, type, hashes,
and so on), matched YARA signatures, a list of important execution artifacts
(service or task creation, network communication, and so on), screenshots, and a
list of contacted domains and IP addresses

• Static analysis Summary of the specific file format metadata, such as PE
headers, imported and exported APIs, and PEiD signatures to identify packers

• Behavioral analysis Process tree with the analyzed sample as the root node,
along with the list of called APIs with their respective arguments

• Network analysis List of network connections grouped by protocol
• Dropped files Static file metadata for all files written to disk by analyzed

sample
• Process memory A snapshot of process memory that can be downloaded to

examine any unpacked or injected code.

Cuckoo successfully merges static and dynamic analysis results and presents a holistic
picture about the capability and functionality of a malicious file. By automatically
processing files, analysts can reduce the manual work of collecting the needed data to
understand the threat or make informed decisions about the maliciousness of the files.
By automating repeatable work, analysts can spend more time researching and
discovering new malicious techniques.

Bridging the Static-Dynamic Tool Gap with Labeless
Static and dynamic analysis tools both have their respective strengths and weaknesses.
Depending on the specific task at hand, or analysts’ respective preferences for tools, one
might need to use several tools during a single analysis project. A common reverse
engineering setup involves using a static analysis tool like IDA together with a debugger
of choice on the target OS platform (for example, x64dbg on Windows).

The issue with a multitool setup, however, is that annotated information from one tool
is difficult to integrate with the other tools, thus resulting in some duplicate work and

||||||||||||||||||||

||||||||||||||||||||

https://sandbox.pikker.ee
https://zoo.mlw.re/
https://linux.huntingmalware.com/
https://malwr.com/
https://technet24.ir
https://technet24.ir

slower analysis speed. Especially when you’re using a function-renaming and IDB
annotation IDA plug-in like FIRST or IDAscope, it helps to have this metadata
available in the debugger.

Enter Labeless, which is described by its authors as “a plugin system for dynamic,
seamless and realtime synchronization between IDA Database and debug backend.”5

Currently, the following Labeless debug back ends are supported:
• OllyDbg 1.10
• OllyDbg 2.01
• DeFixed 1.10
• x64dbg (x32 and x64 versions)

Setting up Labeless is a painless process that requires copying the precompiled plug-
in to the IDA plug-ins directory and running one of the supported debuggers, which are
packaged together with the Labeless release archive.6

Following is a typical reverse engineering workflow that showcases Labeless’s
usefulness:

1. Open the reverse engineering target in the IDA disassembler to get a basic idea of
the code complexity.

2. Fetch the function annotations from the community using the FIRST plug-in.
3. Identify the function or functionality that would benefit from dynamic analysis.

Lab 4-1: Applying IDA Annotations to x64dbg Debugger
To start this lab, open the x64dbg.exe binary, located in the Labeless release package
under the x64dbg folder, in both IDA and x64dbg. The following snippet is the start
function (entry point) disassembly, as shown by IDA:

IDA FLIRT (Fast Library Identification and Recognition Technology) signatures
matched the cookie initialization __security_init_cookie and CRT startup
__tmainCRTStartup and named them accordingly. At the same time, the x86dbg
disassembly looks more raw and lacks any annotations, as visible from the following

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

snippet:

You can port all available annotations from IDA quickly by following these steps:

1. Open the target binary in IDA and the supported debugger (for example, x64dbg).
2. Find out the module base address in the debugger by opening the Memory Map

window (ALT-M in x64dbg and OllyDbg). The module’s base address will appear
on the same line as the target binary (for example, test.exe if the debugged binary
is named test.exe in the file system).

3. In the IDA toolbar, select Labeless | Settings. In the resulting dialog box, shown in
Figure 4-8, change the following options:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 Figure 4-8 Labeless Configuration settings window

a. Enter the module’s base address found in the previous step in the Remote
Module Base field.

b. In the Sync Labels section, select all the options except Func Name as
Comment. This is more of a personal preference, but it is usually easier to read
disassembly if the function names are annotated directly in the disassembly
instead of written as comments.

c. Enable the Auto-sync on Rename option.

d. Click the Test Connection button to make sure the connection between IDA and
the debugging back end is working correctly.

4. In the IDA toolbar under Labeless, run the Sync Labels Now option or use the ALT-
SHIFT-R hotkey to apply all of the IDA’s annotations to the debugging back end.

After the names have propagated to the debugging back end, the debugger’s
disassembly listing becomes very similar to IDA’s, and all further renaming in IDA will
be automatically propagated to the debugger’s view. The following is the disassembly
listing in x64dbg after the IDA names have been applied:

Lab 4-2: Importing Debugger Memory Regions into IDA
Another useful feature of Labeless when dealing with packers or memory injection
malware is the ability to import memory segments from the debugger back to IDA.
Labeless supports two main workflows for combining static and dynamic analysis:

• Starting from the static analysis session in IDA, the analyst wants to deepen their
understanding of specific inner workings of the target application by way of
dynamic execution using debugger.

• Starting with the dynamic analysis, the analyst wants to leverage IDA annotations
to enrich the debugging experience as well as import the additional runtime
decoded/decrypted code into IDA.

Whereas the first workflow has been discussed already, the second one shouldn’t be
overlooked. When you’re analyzing obfuscated or memory-injecting malware, it helps
to have the ability to persist the execution state and memory in a more permanent manner

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

like an IDA database.
Labeless has two memory-importing options:

• Wipe all and import This option deletes all segments from the current IDB and
imports selected memory pages from the debugger.

• Keep existing and import Unlike the previous option, this one will keep the
current IDB as it is and only import additional memory pages from the debugger.

The second importing option solves the likely more common scenario of extending the
current database with additional memory pages from the debugger. When you select the
Labeless | IDADump | Keep Existing menu option and import from the IDA toolbar, a
Select Memory to Dump window will appear that lists all mapped memory pages in the
debugged process. To import memory, you can select either one or more memory
regions from the list or define a desired virtual address range.

By efficiently combining static and dynamic analysis tools and leveraging their
respective strengths, analysts can reap the benefits of both without sacrificing usability.

Summary
The highly active reverse engineering community is constantly evolving tools and
techniques used to analyze a variety of file formats for different analysis goals.
Sometimes interesting tools and research may fall through the cracks and be unjustly
overlooked in this active community. This chapter presented some relatively new tools
and plug-ins that, if given a chance, might significantly improve your analysis
confidence and speed.

For Further Reading
BinCrowd IDA plug-in code.google.com/p/zynamics/source/checkout?repo=bincrowd-
plugin

BinNavi www.zynamics.com/binnavi.html

CollabREate IDA plug-in sourceforge.net/projects/collabreate/

CrowdDetox IDA plug-in github.com/CrowdStrike/CrowdDetox

CrowdRE IDA plug-in www.crowdstrike.com/crowdre/downloads/

funcap IDA plug-in github.com/deresz/funcap

Hexrays_tools IDA plug-in www.hex-rays.com/contests/2013/hexrays_tools.zip

||||||||||||||||||||

||||||||||||||||||||

http://code.google.com/p/zynamics/source/checkout?repo=bincrowd-plugin
http://www.zynamics.com/binnavi.html
http://sourceforge.net/projects/collabreate/
http://github.com/CrowdStrike/CrowdDetox
http://www.crowdstrike.com/crowdre/downloads/
http://github.com/deresz/funcap
http://www.hex-rays.com/contests/2013/hexrays_tools.zip
https://technet24.ir
https://technet24.ir

HexRaysCodeXplorer IDA plug-in github.com/REhints/HexRaysCodeXplorer

IDA Plug-In Contest www.hex-rays.com/contests/index.shtml

IDA Pro FindCrypt www.hexblog.com/?p=27

IDA Pro FindCrypt2 www.hexblog.com/?p=28

IDA Sync plug-in www.openrce.org/downloads/details/2

IDA Toolbag plug-in thunkers.net/~deft/code/toolbag/

IDA2Sql plug-in wiki.github.com/zynamics/ida2sql-plugin-ida

IDAScope plug-in bitbucket.org/daniel_plohmann/simplifire.idascope/

Optimice IDA plug-in code.google.com/p/optimice/

PatchDiff2 IDA plug-in code.google.com/p/patchdiff2/

References
1. ClassInformer IDA Plug-In, SourceForge,

https://sourceforge.net/projects/classinformer/.
2. Angel M. Villegas, “Installing Plugin,” FIRST IDA Pro Integration, FIRST IDA

Python Plugin, 2016, http://first-plugin-ida.readthedocs.io/en/latest/installing.html.
3. Volatility, An advanced memory forensics framework, GitHub,

www.volatilityfoundation.org/.
4. YARA, The pattern matching Swiss knife, GitHub,

https://github.com/virustotal/yara.
5. Axel Souchet (aka 0vercl0k) and Duncan Ogilvie (aka mrexodia), Labeless IDA

plug-in, GitHub, https://github.com/a1ext/labeless.
6. Labeless IDA plug-in releases, GitHub,

https://github.com/a1ext/labeless/releases/.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://github.com/REhints/HexRaysCodeXplorer
http://www.hex-rays.com/contests/index.shtml
http://www.hexblog.com/?p=27
http://www.hexblog.com/?p=28
http://www.openrce.org/downloads/details/2
http://thunkers.net/~deft/code/toolbag/
http://wiki.github.com/zynamics/ida2sql-plugin-ida
http://bitbucket.org/daniel_plohmann/simplifire.idascope/
http://code.google.com/p/optimice/
http://code.google.com/p/patchdiff2/
https://sourceforge.net/projects/classinformer/
http://first-plugin-ida.readthedocs.io/en/latest/installing.html
http://www.volatilityfoundation.org/
https://github.com/virustotal/yara
https://github.com/a1ext/labeless
https://github.com/a1ext/labeless/releases/
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 5
Software-Defined Radio

Wireless devices are found in all aspects of our lives. Although these devices afford us
greater freedom by eliminating wires, they also open proximity and remote attack
surfaces. For example, a sensor that is hard-wired and not exposed to the public is far
more difficult to access than a wireless sensor that has a range exceeding the perimeter
of the building. Of course, simply having access to the wireless signal does not
guarantee that nefarious activities can be accomplished, but it certainly opens a door.

Radio frequency (RF) hacking is far too complicated of a subject to adequately cover
in a single chapter. Our goal is to use a simple device to introduce you to affordable
software-defined radio (SDR), open source software for SDR, and a process to
evaluate and test products that utilize custom or semi-custom wireless protocols for
communications.

In this chapter, we discuss the following topics:
• Getting started with SDR
• A step-by-step process (SCRAPE) for analyzing simple RF devices

Getting Started with SDR
SDR is a radio that is implemented using modifiable software components to process
raw data instead of relying solely on application-specific RF hardware and digital
signal processors. SDR uses the resources of a general-purpose processor, such as a
computer running Linux, to provide the signal processing, along with general-purpose
RF hardware to capture and transmit data. Advantages of SDR include the ability to
process a wide variety of signals and frequencies within a single (and potentially
remotely updateable) firmware package. Additionally, SDR provides the
developer/researcher flexibility when prototyping new systems.

What to Buy
Now that you have an idea of what SDR is, it is time to find your new toy. Some
examples of SDR are HackRF, bladeRF, and USRP. Each of these use a USB port on the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

computer and may be used with open source software such as GNU Radio. Table 5-1
provides a quick comparison of these three devices.

Table 5-1 Comparison of Affordable SDR

The operating frequency determines what frequencies the radio can tune to. For
example, Bluetooth operates between 2.4 GHz and 2.48 GHz over 40 to 80 channels,
depending on the version. FM radio operates between 87.8 MHz and 108 MHz over
101 channels. Although the bladeRF operating frequency is significantly smaller than the
other two devices, add-on boards can effectively drop the low frequency to 60 KHz. (I
am unaware of any add-on board to increase the upper limit of the bladeRF.) Add-ons
are also available for HackRF and USRP B200 that effectively lower their lower limits.

The bandwidth is the amount of the RF spectrum that can be scanned by the
application/device. The listed bandwidths are published on the respective websites, but
may differ depending on the firmware loaded. For example, HackRF firmware version
2017.02.01 now supports a sweep mode that allows the device to sweep over the full 6
GHz range. Support is added to bladeRF to extend its bandwidth to 124 MHz. One
potential benefit of the increased bandwidth is the ability to monitor all channels of
Bluetooth simultaneously (80 MHz).

Duplex refers to how two systems can communicate with one another. Full duplex
means that the device can both transmit and receive simultaneously. Half duplex, as you
have no doubt guessed, means that the device can transmit and receive data, but not at
the same time. Examples of half-duplex communications are walkie-talkies and many
computer Voice over IP applications. When both parties attempt to speak at the same
time, collisions occur and data is lost. Although full duplex is more flexible, the duplex
of SDR will likely not hinder the effectiveness of the analysis.

Analog-to-digital conversion (ADC) resolution refers to the number of distinct
voltage values each sample can take on. For example, an 8-bit ADC with a voltage

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

range of 4V has a resolution of 15.6 mV, or 0.39 percent. In combination with the
sampling rate, more bits of ADC resolution result in a more accurate digital
representation of the analog signal.

The published samples per second are dependent on the USB throughput, the CPU, the
ADC converter, and the size per sample. For example, the USRP B200 value of 61
MSps is based on using 16-bit quadrature samples; however, the system can be
configured to use 8-bit quadrature samples, which effectively doubles the samples per
second throughput. The lower supported HackRF sample per second value is both a
result of the ADC chosen and the USB throughput.

In addition to purchasing an SDR, you will likely need to purchase several cables,
dummy loads, attenuators, and antennas with differing frequency ranges. For testing
devices in your lab, directional antennas come in handy to help isolate the sources.
Finally, although not necessary, a simple isolation chamber (or box) can be extremely
useful when dealing with common frequencies such as 2.4 GHz. Each of the SDRs listed
in Table 5-1 has an SMA (Subminiature version A) female connector on the board for
connecting cables, attenuators, and antennas.

Not So Quick: Know the Rules
When you consider the number of wireless devices we are surrounded by—radios,
telephones, satellite, Wi-Fi, and so on—it stands to reason that a governing body
controls the air. Two such governing bodies are the Federal Communications
Commission (FCC) and the International Telecommunication Union (ITU). In the US, the
FCC regulates the RF spectrum, and you must be licensed to transmit on much of the RF
spectrum with an unlicensed device such as an SDR. To become licensed to operate a
radio, you must take an exam to demonstrate your knowledge of the rules and
regulations. Visit www.arrl.org to learn more about licensing and the rules for operating
a radio legally.

Learn by Example
Now that you’ve been introduced to SDR, we’ll go through the process of assessing a
new device so that you can learn how to use an SDR and the associated software. For
the remainder of this chapter, we will be using an Ubuntu system with the HackRF SDR
and gnuradio tools to evaluate an Indoor Wireless Power Outlet device. There’s nothing
special about this device choice, other than it was in my current inventory and is simple
enough to cover within a single chapter. HackRF was chosen because of its combination
of features, price, and ease of access. The software used throughout the chapter should
work with any of the affordable SDR platforms.

||||||||||||||||||||

||||||||||||||||||||

http://www.arrl.org
https://technet24.ir
https://technet24.ir

The general process we will follow in this chapter is known as SCRAPE, which
stands for Search, Capture, Replay, Analyze, Preview, and Execute.

NOTE Because the devices have to be purchased and the versions of the outlet/remote
are not guaranteed when purchasing them, this section does not contain a lab. In the
event that you have the hardware or want to simulate the work, the GNU Radio flow
graphs, installation instructions, capture files, and source code can be found on the
book’s download site.

Search
During the Search phase of the SCRAPE process, we aim to find out as much as
possible about the radio’s characteristics without having to use any specialized
equipment.

You already know that the FCC regulates the radio spectrum, but you might not know
that most devices that transmit must be certified by the FCC to ensure they operate
within the rules established. When the product or module is certified, an FCC ID is
issued and must be visible on the product or module. This FCC ID is going to be our
search key for researching the RF characteristics.

The device we are going to look at is the Prime Indoor Wireless Power Outlet remote
(see Figure 5-1). It is not required that you purchase this device in order to follow along
in the chapter. The remote’s FCC ID is QJX-TXTNRC. The ID can be found on a label
on the exterior of the product. An FCC Equipment Authorization Search fails to find the
report for this device unless you use “-TXTNRC” for the product code. In order to get
around issues like this, I simply use Google for the search, like so:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 5-1 Picture of the remote

www.google.com/search?q=fcc+QJX-TXTNRC

The website fccid.io typically shows up among the top hits. In our case, the top link was
https://fccid.io/QJX-TXTNRC.

At fccid.io, we find several linked documents and reports that tell us the operating
frequency range for this device is 315.0 MHz to 315.0 MHz (or simply 315.0 MHz).
These reports contain operating frequencies, sample waveforms that indicate the type of
transmission, time measurements that indicate the packet length, and various pulse
widths. We will use the operating frequency range as our starting point and leave the
remainder of the test report as a sanity check after we complete the testing.

Capture
Armed with the operating frequency, we have enough information to begin
experimenting with SDR and the device under test (DUT). At this point, we need to
have the SDR (HackRF) and the software (gnuradio and HackRF tools) installed and an
antenna capable of receiving 315 MHz (ANT500 75 MHz to 1 GHz). Although we will
not go through the install process directly, I do recommend using PyBOMBS and
installing the tools to your home directory using the prefix argument to PyBOMBS. By

||||||||||||||||||||

||||||||||||||||||||

http://www.google.com/search?q=fcc+QJX-TXTNRC
https://fccid.io/QJX-TXTNRC
https://technet24.ir
https://technet24.ir

installing it to your home directory, you will have the ability to experiment with several
configurations and more easily recover from any future update issues. On the book’s
download site, you can find a README.txt file with instructions for installing the tools,
the flow graphs referenced throughout the chapter for use in GNU Radio Companion,
and capture files to use for analysis in the event you don’t have the device being
referenced.

GNU Radio Companion (launched by running gnuradio_companion) is a GUI tool that
allows the user to create a software radio by chaining one or many signal-processing
blocks together. The tool generates Python code under the covers and allows the user to
define variables and use Python statements within the GUI. To capture the signal for
future analysis, refer to the flow graph represented in Figure 5-2. I encourage you to
browse the block panel tree and become familiar with the available blocks. However,
for the time being, refer to Table 5-2 for descriptions of the blocks used within the flow
graph. To minimize the amount of transmissions required, a file sink is used to write the
data for both replay and offline analysis.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 5-2 Capture flow graph: remote_analysis.grc

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 5-2 Description of GNU Radio Blocks Needed for Capture

NOTE The sample rate and channel frequency must be noted because they will be
necessary when using offline tools and replay attacks.

During the Capture phase, I attempted to capture a file for each known stimulus. With
our DUT, the known stimuli are pushing the on/off button for each receptacle.
Additionally, to aid in our understanding of the device’s protocol, two remotes are used
for comparison. At this point, based on our understanding from the test report, we
should see a spike at or around 315 MHz, as shown in Figure 5-3. You will also notice
that a spike occurs at 316 MHz; this is an artifact of the test equipment (DC offset) and
is not of concern for our testing. The DC offset shows up at the center frequency and is
the reason we tuned the receiver to 316 MHz to move it out of the way. At this point, we
have enough data captured to move on to the next phase, Replay.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 5-3 Captured signal

Replay
Now that we have captured signals, it is time to attempt to replay the data. Although the
inability to successfully replay the data does not necessarily mean that we failed to
capture the data correctly, the ability to successfully replay the data does indicate a
potential communication flaw. For systems where security is of concern, antireplay
mitigations should be in place to prevent unauthorized access. The general use case of a
device like this is to simply turn on or off a light, fan, or some other simple device.
Therefore, I would suspect that replay attacks are likely not mitigated. The main goal of
the replay attack is to successfully exercise the device with minimal understanding of
the actual protocol.

The flow graph of the Replay phase will look like the Capture phase, with the
exception that we now use a file as the source and an osmocom as the sink. We have to
reuse the same sample rate and frequency in order for the signal to be reproduced as it
was received. Additionally, Multiply Const, QT GUI Time Sink, and Throttle blocks
have been added to the graph in Figure 5-4 to facilitate adjustments that may be
required. Throttle is added to keep the CPU utilization down if we do not have an

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

external sink to effectively rate-limit the data. Essentially, if the osmocom sink is
disabled and the throttle is missing, the data being read from the file is not rate-limited
and CPU utilization may be high.

Figure 5-4 Replay flow graph: remote_analysis_replay.grc

NOTE Make sure to use the Kill (F7) function to close the running flow graph in order
to allow the SDR to clean up properly. I have found that on occasion, the transmitter
does not stop transmitting, even when the Kill function is used, so be careful not to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

continue transmitting after you are done. Unfortunately, without a secondary SDR to
monitor the transmission, it is difficult to determine if there is continuous transmission.
A reset of the device can be used to ensure that transmission has stopped.

When the flow graph was originally run with a multiplier constant of 1, the power
outlet did not turn on. From the frequency plot in Figure 5-5, it looks like we are at least
transmitting on the correct frequency, so something else must be impeding our progress.
Because we are in the Replay phase and are not trying to completely reverse-engineer
the protocol at this time, we have a few more knobs that can be turned. The time plot
shows the signal in the time domain, with time on the X axis and amplitude on the Y
axis. The transmitted signal’s amplitude in Figure 5-5 ranges from –0.2 to 0.2, which is
likely not enough power for the outlet’s receiver. In this case, we can simply change the
multiplier constant to 4 and play it again (already reflected in the flow graph in Figure
5-4).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 5-5 Time and frequency plots

In many cases, the ability to successfully replay is “game over.” For example, if a
door access control device does not have replay mitigations, an attacker could acquire a
sample and gain unauthorized access. Now that we have successfully replayed the
captured signal, we can move to the Analyze phase.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Analyze
Up until now, we have proven that we can capture and replay the signal, but we really
don’t know what is being transmitted. During this phase, we will attempt to learn how
the device differentiates between different button pushes and whether it is intelligent
enough to exclude other remotes. To accomplish both of those tasks, we must learn how
the data is encoded. Although we could use the gnuradio_companion to do the analysis,
we are going to use another tool that makes the task a bit easier: inspectrum.

Inspectrum (https://github.com/miek/inspectrum) is an offline radio signal analyzer
that works on captured radio signals. At the time of this writing, the version of
inspectrum installed by apt in Ubuntu lags the latest version and does not include some
extremely useful features. I recommend building it from Github. In order to build
inspectrum from source, you will also need to install liquid-dsp. On a base install of
Ubuntu, inspectrum can be installed with the commands located in the Analyze
directory’s README.txt file from the book’s download site.

To transmit data between stations, a carrier signal is modulated with the data to be
transmitted. The carrier signal, or frequency, is known by both parties and “carries” the
data. On-off keying is a simple amplitude modulation method that results in presence or
absence of the carrier frequency to convey information (see Figure 5-6). A simple form
of on-off keying may only have pulses of one duration, where the presence of the pulse
is a 1 and the absence of a pulse for that duration is a 0. A slightly more complicated
form could use a long pulse as a 1 and a short pulse for a 0. The smallest amount of time
for a transition from some amplitude to no amplitude is called the symbol period.

||||||||||||||||||||

||||||||||||||||||||

https://github.com/miek/inspectrum
https://technet24.ir
https://technet24.ir

Figure 5-6 Time plot illustrating on-off keying

With inspectrum installed, we simply run it and make the adjustments necessary for
our samples in the GUI. If you do not have the device, you can use the capture files
included in the Capture directory from the book’s download site to follow along. In
Figure 5-7, you will notice that we have opened the capture for turning outlet 1 on
(remote1-1on-4m-316mhz) and set the sample rate to 4000000 (the rate at which we
captured the signal). The horizontal axis is time, and the vertical axis is frequency. The
color of the information can be thought of as intensity and can be adjusted by moving the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Power Max and Min sliders. Adjust the Power Max and Min sliders such that you see
more distinct edges in this case. The –1 MHz on the vertical scale refers to 316 MHz to
1 MHz (or 315 MHz). Furthermore, if you follow the diagram horizontally from there,
you will see a bunch of dashes of differing sizes with a space between them. The dashes
at our operating frequency look like Morse code and are indicative of a form of on-off
keying.

Figure 5-7 Inspectrum diagram

To decode the data, we need to calculate the symbol period and translate the symbols
of a single packet. Fortunately, inspectrum provides several tools to measure the signal
and capture the symbol data. The cursor function provides a means to graphically
partition the diagram into symbols of a specified length. Additionally, hidden on the
middle mouse button is the ability to add an amplitude plot and extract symbols. In
Figure 5-8, you see the addition of the cursor at a symbol period of 272μs and eight
periods overlaid on the signal. To determine the symbol period, align the front edge of
the cursor at the beginning of the smallest symbol and scale the cursor to align at the end
of the same symbol. Then simply move the region to align at the start of all symbols and
increase the number of symbols. The original symbol period will not be precise, but it
should be in the ballpark. The main idea is to ensure that the edges of all symbols align
with an edge of a period. Even with such a simple plot, several pieces of important
information are conveyed:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 5-8 Measuring the symbols

• The smallest duration pulse is 272μs.
• The longest duration pulse is three times the smallest duration pulse.
• Four 272μs symbol periods occur between the beginning of one pulse and the

beginning of the next pulse.

Now that we have what appears to be the symbol period, we should increase the
number of symbols and see if we continue to line up with the edges of the dashes
throughout the entire packet of data. Simply zoom out on the diagram and see where the
last pulse aligns. In our case, we were slightly off, and I needed to stretch the period
slightly such that the symbol period is 275μs instead of 272μs. This is not unexpected,
considering that any errors in the initial measurement are multiplied by 100 in this case.

With the symbol rate and period confirmed, we can now extract the symbols and
translate them into binary data. To accomplish this, we use the amplitude plot from the
middle mouse. When the amplitude plot is added, a new bracket is added to the
spectrum graph with three horizontal lines. The bracket must be aligned (centered) on
the symbol data to get an amplitude plot of the symbol data on the newly added
amplitude plot. In this case, when the brackets are centered over the symbol data and the
Power Max/Min settings are reasonable, the plot begins to look like a square wave (see
Figure 5-9). Once the square wave looks like a square wave, we use the middle mouse
once again to extract the symbols to standard output (stdout). The extracted values are

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

then printed out on the command line where inspectrum was invoked (see Figure 5-10).
At this point, we’ll move into a little Python programming to translate the amplitude
vector into a binary vector for further processing.

Figure 5-9 Amplitude plot

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 5-10 Extracted symbols

The symbols that have been extracted are between –1 and 45, so we need to convert
them to binary data for easier processing. A reasonable method of conversion is to pick
a threshold value where anything greater than the threshold is a binary 1 and anything
lower is a binary 0. The decode-inspectrum.py script, shown next, allows the user to
select a threshold based on the values extracted from inspectrum.

NOTE The actual minimum and maximum values will vary depending on the Power
Min/Max settings. I’ve added thresh (for threshold) to the decode function to allow you
to account for different values.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

To interactively play with the data, I use ipython , but feel free to run the code
however you choose. One benefit of ipython is that you can modify the routine and
reload it at will. The decode routine takes the output of the extract symbols from
inspectrum and prints the decoded data in the form of the raw hex decode , the
translated symbols decode , and the raw binary decode . The translated symbols
decode is based on the fact that on-off keying appeared to have two symbols. The binary
data reflects the same two symbols, with the long pulse being 0xe and the short pulse

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

being 0x8. The result of running the decode on all captures is shown next:

It is not quite clear what the beginning of each packet is, but it consistently appears to
begin with binary 10 (represented as 0xe8 in hex). After that, the data differs only
between remotes, which may indicate an addressing scheme since the remotes only
work on the paired outlets. If we compare the same operation on both remotes, the last 4
bits are clearly the operation being performed (that is, turn on Outlet 1). If it wasn’t
obvious before, we now know that replay attacks will only work with the paired outlet.

Preview
We are now at the point where all the effort hopefully pays off and we can synthesize
our own data using the results of the analysis. The goal of the Preview step is to verify
that the data we are going to send looks like what we expect prior to sending it over the
air. This step could be combined with the Execute step, but I think it is important enough
to warrant its own step to ensure we do not skip it and start transmitting.

Up until now, the flow graphs we created have been relatively simple with very few

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

moving parts. To create the signal from scratch, we will be using several new blocks, as
described in Table 5-3. The flow graph in Figure 5-11 includes the osmocom sink
block, but notice that the arrow is grey and the block is a different color. The grey arrow
and block indicate that they are disabled. Another subtle change is that we have
switched to 1 MSps instead of our typical 4 MSps. Because we are synthesizing the
data, we do not have to use the same sample rate as before. Additionally, the selected
sample rate made it easier to show that the symbol rate was 275μs.

Table 5-3 Description of New GNU Radio Blocks for Signal Synthesis

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 5-11 Replay flow graph: test-preview.grc

The patterns are taken from the binary representation of the remote one on command:

Once you have run the flow graph, you will have a new capture file called test-
preview. Repeating the steps of the analysis on the test-preview capture should yield the
same (or similar) results if you did not make any mistakes in the flow graph (see Figure
5-12).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 5-12 Inspectrum diagram of preview

Note that the total number of symbol periods is 128, which matches the pattern with
the gap.

Execute
We have verified that the synthesized data looks like the data we received over the air.
The only thing left is to enable the osmocom sink (see Figure 5-13), transmit by
executing the flow graph, and watch the power outlet turn on. To enable the sink, simply
right-click the block and select Enable. If you are playing along, you will likely want to
disable the file sink to minimize the storage used. At this point, you can take a bow
because you have successfully replicated the functionality of the remote from scratch
using an SDR.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 5-13 Final execute flow graph: test-execute.grc

Summary
Although we have barely scratched the surface of what can be done using an SDR with
GNU Radio, we were able to analyze a very simple RF device. Using the SCRAPE
process, we discovered the operating frequency, captured data, performed a replay
attack, got an understanding of the structure of the data, and synthesized the data from
scratch. You also saw how GNU Radio allows you to simulate signals without having to
interface with hardware. Hopefully, this chapter has piqued your interest in SDR and
given you some confidence that the subject is not beyond your reach.

For Further Reading
bladeRF https://www.nuand.com/

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.nuand.com/
https://technet24.ir
https://technet24.ir
https://technet24.ir

GNU Radio
tutorials https://wiki.gnuradio.org/index.php/Guided_Tutorial_Introduction,
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GRC, and
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GNU_Radio_in_Python

HackRF One https://greatscottgadgets.com/hackrf/

Inspectrum https://github.com/miek/inspectrum

IPython https://ipython.readthedocs.io/en/stable/index.html

PyBOMBS https://github.com/gnuradio/pybombs

The National Association for Amateur Radio www.arrl.org

Software Defined Radio with HackRF (tutorial by Michael Ossmann, the creator
of HackRF) https://greatscottgadgets.com/sdr/

USRP https://www.ettus.com/product/category/USRP-Bus-Series

||||||||||||||||||||

||||||||||||||||||||

https://wiki.gnuradio.org/index.php/Guided_Tutorial_Introduction
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GRC
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GNU_Radio_in_Python
https://greatscottgadgets.com/hackrf/
https://github.com/miek/inspectrum
https://ipython.readthedocs.io/en/stable/index.html
https://github.com/gnuradio/pybombs
http://www.arrl.org
https://greatscottgadgets.com/sdr/
https://www.ettus.com/product/category/USRP-Bus-Series
https://technet24.ir
https://technet24.ir

PART II

Business of Hacking

 Chapter 6 So You Want to Be a Pen Tester?
 Chapter 7 Red Teaming Operations
 Chapter 8 Purple Teaming
 Chapter 9 Bug Bounty Programs

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 6
So You Want to Be a Pen Tester?

Penetration testing is an exciting and challenging field. However, many aspiring
penetration testers don’t know where to start. For example, you might be wondering:
How do I enter the field? Once I’m an established practitioner, how do I get to the next
level and really refine my tradecraft? How can I begin to work for myself? How can I
provide as much value as possible to the entities that have put their trust in me? You
should strive to try to be the best in the world at what you do because the pursuit of
excellence is a noble thing. If penetration testing is your chosen field, this chapter will
guide you through the development and refinement of your pen-testing career.

This chapter covers material intended to provide a career roadmap for aspiring
penetration testers. The chapter also provides a model for existing practitioners who
wish to become industry experts in penetration testing. We’ll discuss what you can do to
optimize your efforts, improve your skill set, and reduce the risk of working as a pen
tester. We’ll cover training and degree programs, hacking games, and Capture the Flag
(CTF) competitions, as well as give you an idea of the resources available to you to
refine your tradecraft. With a little study, a little practice, and a little guidance, you’ll
find that developing from a novice to an expert is an achievable goal.

In this chapter, we discuss the following topics:
• The journey from novice to expert Pen tester ethos, pen tester taxonomy,

practice resources, training, degrees, professional organizations, conferences, and
so on.

• Pen tester tradecraft Liability reduction, operational risk reduction, insurance,
managing and executing a pen-testing project, reporting efficiencies, and so on.

The Journey from Novice to Expert
To become a master in any field, a combination of adeptness, passion, commitment to
practice, and resiliency is needed. The challenge of developing from a novice to an
expert is eased with study, practice, mentorship, and the understanding that neither
success nor failure is permanent. A rewarding career as an ethical hacker means that

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

you will fail (many times), learn from your mistakes, and then master the skill—only to
then find the industry evolving to present you with your next challenge. The cycle is
relentless and wonderful.

Pen Tester Ethos
Curiosity of spirit is the heart of the pen tester ethos. An ethical hacker strives to
understand the systems in play and acts to subvert them—to not use them as they were
intended, but to use them in novel ways. To hack a system is to understand it, to turn a
system’s nature against itself, to challenge the common way. Ethical hackers reinvent
and transform systems when they make them act in unintended ways. Curiosity is not a
sin or a crime—nor is knowledge. In fact, knowledge applied ethically, and with the
intent of doing good, is one of the most powerful weapons we have against those who
mean to harm us. We aim to understand the attack vectors that the bad guys would use
against us and to use that knowledge to prevent attacks.

Ethical hacking is still misunderstood by many, evoking fear and curiosity alike. The
heavy prosecution of early hackers and a general fear of those who possess that skill set
has led to a culture where ethical hackers have a heavy focus on fighting injustices,
preserving our rights and freedoms, and pushing back when privacy is put at risk. The
tumultuous history between security researchers and the courts have led to the hacker
community building close alliances with organizations like the Electronic Frontier
Foundation (EFF) and the American Civil Liberties Union (ACLU). The often-cited
Hacker’s Manifesto gives us insight into the anger, frustration, and rebelliousness of the
early hacking community. The Hacker’s Manifesto also touches on aspects of the pen
tester ethos that promote equality, justice, and an inclusiveness not seen in other
industries or communities.

NOTE See the “For Further Reading” section at the end of the chapter for pointers to
the websites, organizations, and sources mentioned in this chapter.

Pen Tester Taxonomy
As we discuss curiosity, the trait that all hackers have in common, it’s important to
discuss the differences among us as well. There is no shortage of areas a pen tester can
specialize in. Although there are exceptionally talented individuals among us who have

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

many areas of expertise, most pen testers specialize in only a few areas. When
beginning a pen-testing career, it’s important to play to your strengths.

Penetration testers who have a software development background may focus more on
exploit development and manipulating code. Those who have specialized in physical
security in past military careers may have more of a specialty in bypassing locks or
manipulating cameras and doors. Those with engineering backgrounds may be more apt
to work with embedded device testing. Many pen testers have a broad focus, using their
experience in IT operations to specialize in hacking the enterprise. Those who have
experience working on supervisory control and data acquisition (SCADA) systems tend
to focus on pen testing of industrial control systems (ICSs) simply because they have a
basic understanding to expand upon. The goal is to acknowledge the experience that you
have and learn to build on that knowledge.

The Future of Hacking
As different technology becomes available to the masses, like software-defined radio
(SDR), or new technology is developed, like artificial intelligence (AI) and machine
learning systems, we’ll see pen testers develop specialties in assessing and mitigating
their attack vectors. Almost any “smart” device of the future will need to be understood,
assessed, and have its vulnerabilities remediated. Currently, biomedical device
manufacturers are beginning to understand the importance of securing their devices. I
imagine a future where advanced nanotechnology-based medical technology is
ubiquitous and pen testers are researching how to prevent and detect attack vectors.
Technology that today seems like science fiction will become tomorrow’s reality.
Technological advancements of the future will require smart penetration testers and
security researchers who are up to the challenge of securing these advancements. I look
forward to seeing what we come up with.

Know the Tech
Technology is going to continue to advance, becoming more complex and connected.
The skills needed to assess the attack vectors of future technology will evolve as
technology evolves. Ethical hackers must possess the aptitude to solve complex
problems, as well as the curiosity and work ethic needed to keep up with emerging
technology. The best pen testers have a diverse skill set that’s complemented by several
specialties. A critical aspect of developing into an expert penetration tester is learning
how to code. That is why Chapter 2 provides you with some information on programing
survival skills.

At the most basic level, a pen tester should understand the technology they are
assessing. Understanding basic technical information related to your target is necessary.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

If you are working with embedded hardware or Internet of Things (IOT) devices, an
understanding of system engineering and embedded Java would be beneficial. If you are
assessing the perimeter security of a company that provides cloud services, then
understanding the programing language used to create the applications and database
technology is a good starting point. Penetration testers working on assessing an
enterprise would benefit from understanding the operations systems, applications, and
networking technology in use. For example, if you are testing an environment centered
around AS400 systems, then it’s important to understand the nuance of the technology
and how it differs from other technology.

Know What Good Looks Like
In addition to understanding the technology you are assessing, it’s important to have a
solid fundamental understanding of security operations and best practices. Knowing
what “good security” looks like for a certain device or technology will allow you to
properly remediate issues that are discovered. For this reason, Chapter 8 focuses on
next-generation security operations.

Understanding how attacks are performed is one aspect of cybersecurity. However,
the true intent of a pen tester is to be able to protect an organization by understanding
how to detect and, when possible, prevent the attacks they can perform. An ethical
hacker who lacks the knowledge to remediate the vulnerabilities they discover is
missing an important perspective. For this reason, we’ve included information about
defensive security controls in Chapter 8.

Knowing what good looks like can take many forms. One of the most valuable
resources a new pen tester can have is finding a seasoned professional to mentor them.
Mentors don’t have to be people you know well or even interact with in person. The
ethical hacking community has always put a premium value on knowledge transfer.
Many ethical hackers provide valuable information on Twitter, via blogs and articles,
and in various books available on the subject. Novice pen testers would benefit from
reading Penetration Testing: A Hands-On Introduction to Hacking, by Georgia Weidman
(No Starch Press, 2014). It is a beginner’s guide that takes you through the basics, like
setting up a virtual machine and learning what a man page is. The book then expands
into topics like antivirus evasion and smartphone pen testing. Another excellent
resource is the many Hacking Exposed books that have been released. The Hacking
Exposed books (also published by McGraw-Hill Professional) have a variety of
focuses, including mobile, wireless, and industrial control systems.

Pen Tester Training
Many training options are available that will help you develop the skill set needed to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

become a great pen tester. Each year Black Hat offers a variety of training options at its
well-known conferences; the SANS Institute offers many onsite and remote training
options; and Offensive Security offers some well-respected options as well. Numerous
penetration-testing certifications exist that vary in difficulty and quality, so getting
training from an industry-recognized source is important. Courses from the SANS
Institute that prepare you for the Global Information Assurance Certification (GIAC)
Certified Penetration Tester (GPEN) exam are a good starting point. However,
Offensive Security’s family of certifications, beginning with the Offensive Security
Certified Professionals (OSCP), are widely recognized as the cream of the crop of pen-
testing certifications. During the OSCP exam, you are given access to a lab and 24 hours
to demonstrate your hacking skills. Your ability to successfully execute attacks and write
a professional report are what earn you an OSCP certification.

Other penetration-testing certifications include the E-Council’s Certified Ethical
Hacking (CEH) certification. However, unless a certification requires you to
demonstrate your hacking abilities in a lab, quite frankly, I would take it for what it is—
a valuable resource that teaches you the vocabulary and process of hacking without
mandating that you demonstrate your hacking skills or ability to write a pen test report.
There’s certainly value to any knowledge acquired via certifications like the GPEN and
CEH that don’t require you to demonstrate your ability at the keyboard. Those
certifications are certainly valuable to the industry and to pen testers alike, but it’s
important to know the difference between the approaches taken by different
certifications to choose what’s most valuable to you in your career right now. It may be
best to learn the “lay of the land” with a traditional certification and then expand to
OSCP-style certifications once you’ve established confidence in your abilities on a
keyboard.

Practice
Some of the best training doesn’t occur in the classroom or in training sessions; it
occurs on the job or in a home lab. Nothing beats real work experience when it comes
to ethical hacking. Penetration-testing skills are best refined at your keyboard. The vast
amount of resources available include many companies offering labs to practice
hacking. These resources make it much easier today to develop pen-testing skills.

Virtual technology, including intentionally vulnerable virtual machines like
Metasploitable, and other resources exist that can allow you to build entire
environments for testing purposes with a fraction of the work previously required.
Vulnhub.com, an industry gem, allows you access to many vulnerable systems built to
allow ethical hackers a way to practice (see Figure 6-1). The resources available on
vulnhub.com allow for easier skill acquisition than in the past.

||||||||||||||||||||

||||||||||||||||||||

http://Vulnhub.com
http://vulnhub.com
https://technet24.ir
https://technet24.ir

Figure 6-1 Vulnhub.com is a wonderful resource of vulnerable virtual machines and virtual environments designed to
give pen testers hands-on experience.

The ethical hacking community truly has its own culture. Pen testing is not only a
career choice, it’s a hobby. Many pen testers spend their free time, evenings, and
weekends attending security conferences and participating in CTF events, hackathons,
and other hacking competitions. CTF events can come in many forms. Some events are
based on the traditional CTF structure, where two opposing teams try to penetrate each
other’s CTF environment and “get the flag” while simultaneously trying to harden and
protect their own environment against the other team’s attacks. Notable events for
beginners include “Joes vs. Pros” competitions where beginners, with some coaching
and mentorship, compete against professional penetration testers. CTF events can also
be Jeopardy-style tournaments, where ethical hackers compete individually to solve
puzzles to reveal the “flag.” For those ethical hackers who live in small towns and
might not have easy access to in-person CTF events, a multitude of online CTF events
exists. Notable websites like CTF365.com and CTFtime.org (shown Figure 6-2) are

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://Vulnhub.com
http://CTF365.com
http://CTFtime.org
https://technet24.ir
https://technet24.ir
https://technet24.ir

valuable resources for those who want to refine their skills at home.

Figure 6-2 CTFTime.org provides an avenue for virtual Capture the Flag competitions so that anyone, anywhere can
participate in a CTF event.

There are also skill-building games designed to teach and develop hacking skills,
starting at the novice level. OverTheWire.org, pictured in Figure 6-3, offers war games
at a variety of levels. The war game Bandit is an especially valuable resource for
beginners.

||||||||||||||||||||

||||||||||||||||||||

http://CTFTime.org
http://OverTheWire.org
https://technet24.ir
https://technet24.ir

Figure 6-3 OverTheWire.org’s offering of war games

The Internet is full of resources for an ethical hacker to practice on to refine their
skills. You should consider participating in the SANS Institute’s NetWars or using the
OSCP labs, even if you aren’t taking the certification test or already have it. Also, the
Arizona Cyber Warfare Range, a nonprofit, is an excellent resource, along with many of
the university-backed and private cyber ranges in existence. As always, be mindful of
your activities and research sites before participating in their games. Enjoy the
resources that exist now—previous generations of pen testers didn’t have these types of
resources available to them.

Degree Programs
Although there are many ways to acquire a refined pen-testing skill set, formal
education via college or university will always be the most comprehensive way. The
comprehensive nature of a cybersecurity, computer science, or engineering degree
cannot be underestimated when striving to shore up knowledge gaps. The National
Security Agency (NSA) and Department of Homeland Security (DHS) jointly sponsor
two programs: the National Centers of Academic Excellence in Cyber Defense and the
National Centers of Academic Excellence in Cyber Operations. The goal of these
programs is to broaden the pool of skilled workers capable of supporting a cybersecure
nation. Well-known and respected universities such as Carnegie Mellon and the Naval
Postgraduate School are among the NSA’s Centers of Academic Excellence.

Alternatives to a traditional degree program also exist. For example, Harvard
University created the Harvard Extension School, which allows students to take courses
without first having to be admitted into Harvard University. If a student excels in three
courses at the Harvard Extension School, they qualify for admission into a degree
program. The CS50 course, an introduction to computer science at Harvard, is a
particularly good place to start. This creates a path for anyone to take courses at
Harvard, and those who do well may pursue a degree from one the most respected

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://OverTheWire.org
https://technet24.ir
https://technet24.ir
https://technet24.ir

universities in the country. Other well-respected universities like the Massachusetts
Institute of Technology make their courses available online for free, and Stanford
University offers up to 100 free online courses to make their classes accessible to the
masses.

On the other hand, a multitude of innovative higher learning institutions are offering
accredited programs to facilitate cybersecurity degrees based on work experience,
aptitude, and industry certifications. This newer approach to traditional education
combines traditional degree programs with programs that allow adults to receive
college credit for their technical industry certifications or to test out of classes by
demonstrating their on-the-job knowledge. This approach works well for the “hands-
on” nature of ethical hacking skills. Newer competency-based schools such as Western
Governors University are attempting to shift the paradigm in education and redefine
higher education with new, and somewhat controversial, approaches to online degree
programs. Most of the technical classes lead to an industry certification, providing
immediate value to a working professional’s career.

Knowledge Transfer
One of the best sources of information about penetration testing comes from other
security professionals in the community. An endless number of videos can be found
online that span most aspects of penetration testing. For example, videos of talks at
cybersecurity conferences are regularly released online. Videos of talks at the Black Hat
and DEF CON security conferences are useful even to those who were able to attend the
conference in person, because no one is ever able to see all of the talks. Irongeek.com’s
repository, which contains DerbyCon and ShmooCon content, might also be useful. For
international readers, ZeroNights and SyScan conference content may be of particular
interest.

Unlike in many other industries, the cybersecurity community treats the acquisition of
skills more like a hobby than a chore. The amount of community groups focused on the
development of new pen testers shows that our community is remarkably committed to
sharing knowledge and building an inclusive culture for newcomers. Sites like
SecurityTube.net have been used for years to share knowledge.

An active pen-testing community is a necessity because new attack techniques are
introduced all the time. Malicious actors and security researchers reveal new attack
vectors regularly. The security community is constantly working to develop security
controls to remediate the current issues pen testers take advantage of. This means that
the best pen testers stay abreast of offensive and defensive security techniques. They
understand that while some issues persist, new attack vectors, devices, and technologies
are constantly being revealed. Professional organizations like Information Systems
Security Association (ISSA) and InfraGard also help with an ethical hacker’s ongoing

||||||||||||||||||||

||||||||||||||||||||

http://Irongeek.com
http://SecurityTube.net
https://technet24.ir
https://technet24.ir

development, and Infosec-conferences.com has useful information about conferences
that can be attended.

Pen Tester Tradecraft
So far we’ve discussed building a good foundation as a penetration tester. Let’s now
take the perspective that you’d like to use your ethical hacking skills professionally, for
profit or for charity. Let’s suppose you’ve gotten some experience as a professional pen
tester and now want to take on more responsibility. Perhaps you even want to start your
own small operation with the goal of ensuring that your team can scale to handle just
one large project at a time. You’re no longer a lone wolf, so you have to learn to
collaborate now. In this section, we won’t cover the basics of starting a small business,
but we will cover specific things to consider if you decide to start a pen-testing
business.

Personal Liability
Choosing ethical hacking as a career is a fun yet gutsy move. Therefore, it’s best to think
through the inevitable risks you’ll face in your chosen path. Performing a risk
assessment for your small pen-testing business will be similar to risk assessments you
may have been exposed to in the past. You need to consider the threats to your business,
understand the vulnerabilities, and try to reduce your risk to a level that is acceptable to
you.

Business Structure
When starting any business, you should structure it to reduce your personal liability as
the owner. Consider creating a limited liability company (LLC) or incorporating and
creating an S corp. When either of these business structures is properly implemented, it
can shield your personal assets as the owner from lawsuits stemming from the business.
Because penetration testing is a well-paying field, it’s best to set aside some funds to
work with a lawyer and accountant to ensure you understand the nuances and limitations
of operating an S corp or LLC.

Insurance
You should purchase insurance for many reasons. First and foremost, it’s important to
protect your business since you’ll be investing your time and money into it. Also, you’ll
often find that your business partners and clients have set minimum thresholds for the
insurance types and coverage required for vendors to do business with them. You’ll
want to speak to an insurance broker to guide you through the process, and the

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://Infosec-conferences.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

information provided is only a general recommendation intended to aid your
conversations with your insurance broker. You may want to consider purchasing several
types of insurance. General liability is recommended to protect your business as a
whole. Technology errors and omissions (E&O) provides critical coverage in case you
“make a mistake or miss something.” If you can get it, you should also consider
cyberinsurance. Security companies are valuable targets for attackers, and
cyberinsurance helps to protect your organization if it’s the victim of an attack.

Reducing Operational Risk
It’s always a good idea to run a criminal background check for anyone who has access
to sensitive information in any environment. The ethical hacking field has more potential
for “bad apples” than other fields. The responsibility is yours to ensure that your team
members are ethical hackers and have the judgment and maturity to not put your clients
at risk. Make sure you are performing criminal background checks that include both
local and national database searches. Do a meticulous job checking references,
verifying degree programs, and verifying past military experience. Sit down and take the
time to talk to potential team members. Listen for conflicting statements and
inaccuracies. I’m shocked to see how many resumes are fabricated and how often I
encounter “stolen valor,” a false claim of past military experience.

Create a strategy for securely operating within your technical environment. You
should have technical, administrative, and physical security policies and technical
security controls in place to protect your client’s data. Even small teams need well-
thought-out procedures in order to stay organized, reduce risk, and increase efficacy.

Being the Trusted Advisor
Your clients are depending on you to be their trusted advisor. You have the
responsibility of making good recommendations to them. Often clients will have budget
constraints and will ask for assessments that don’t meet their regulatory requirements or
that are just too small to provide true value to them. You must be wary of giving clients
a false sense of security. Take the time to ensure you have a good understanding of
what’s going on in the organization. The ultimate responsibility for making good
decisions related to penetration testing belongs to the organization’s leaders. However,
they’ll rely on your input and recommendations to steer them in the right direction.

Penetration tests are performed for the greater good. Testing activities are often
detailed, arduous, and require a good amount of effort and resolve. You aren’t doing this
for your health, after all—you are doing it to protect the assets you’ve been entrusted
with. To provide as much value as possible, you need to understand and define the
appropriate nature, duration, frequency, and scope of your work. Most importantly, you
must tie all your efforts back to the business impact and focus on what your assessment

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

results mean to the organization.
An overview of the pen-testing process was provided in Chapter 1. This chapter

expands on those topics and aligns them to provide as much value as possible to an
organization. This means selecting the correct methodology and tools and refining your
choices until you find solutions that make you the best pen tester you can be.

At an absolute minimum, an organization should perform an enterprise penetration test
once per year. Having a penetration test once a year is often insufficient for most
organizations. However, when we take into consideration that most systems change and
are updated frequently and that new attacks appear all the time, it’s often necessary to
perform a penetration test more than once a year. Many compliance requirements, such
as PCI and HIPAA, require a penetration test only once a year or after significant
changes are made to the environment. The trouble with such vague requirements is that it
is often hard to define what meets the threshold to count as a “significant change,” and
they don’t take into consideration the uniqueness of each environment. An organization
whose security program is in its infancy might not benefit from frequent penetration
testing. It may only need to have an initial test done to determine its likely attack vectors
and then focus on building a robust security program before having another test
performed. Annual penetration tests are often performed by an external entity, thus
allowing for more objectivity in testing.

Frequent penetration testing is recommended for most environments that have an
established security program and a dynamic environment. Conducting quarterly or
monthly testing allows for faster identification and remediation of exploitable
cybersecurity issues. It also allows for a greater focus on certain areas of the
environment or security program, and the tests can be tailored to align with the
organization’s goals. For example, the first quarter can be dedicated to internal
penetration testing, the second quarter to web application testing, the third quarter to
testing the organization’s security response and incident response capabilities, and the
fourth quarter can focus on social engineering. Large entities with disparate locations
can focus on a different location each quarter (or more frequently, if needed). When
quarterly penetration tests are performed by internal staff, it is often necessary to have
an annual penetration test performed by a third party to ensure objectivity is maintained.

Many entities that grow through acquisitions will have penetration testing built into
their merger and acquisition (M&A) process. Penetration testing that occurs prior to an
acquisition can help set the price of an entity. Many preacquisition penetration tests
reveal issues that can cost millions of dollars to resolve. Testing activities that occur
after a purchase can help an organization understand the amount of risk it has acquired
and to formulate a plan to address it. Using a penetration test to address risk that must be
managed during the integration of disparate networks “post-merger” can provide a
valuable perspective to an organization.

Entities with mature security programs understand that the risk information provided

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

by a penetration test is valuable and needed on an ongoing basis. Some organizations
with a mature security program work penetration-testing and security assessment
activities into their change management program, requiring that potential risk due to
compromise or unauthorized access be addressed before new deployments can gain
approval to be deployed into the production environment. Mature organizations that
develop software often have implemented Secure Software Development Lifecycle
(SSDLC) processes that require penetration testing to ensure that risk to the
organization’s environment and software is limited. Long-term red or purple team
exercises can last six months to a year and allow an organization to test its incident
response capabilities in greater detail. These long-term assessments often involve
regular meetings and monthly or quarterly out-briefs to provide input to the organization.

When you’re pen-testing a product, it is best to include time in the schedule to fix any
issues identified prior to the launch of the product. High- or critical-level
vulnerabilities can often delay the release of a product when time is allocated for
testing, but not for remediation of the issues the test revealed. Product penetration tests
should also be performed when significant updates are released.

Managing a Pen Test
Managing a penetration test is like managing other technical projects. You can reduce
the risk to the project’s success via proper planning and good communication. Some of
the basics of a pen test were covered in the “Emulating the Attack” section of Chapter 1.
The content provided in this chapter assumes that you understand the basics now and
want to learn ways to improve your processes and optimize your efforts.

Organizing a Pen Test
White or gray box assessments begin with some knowledge or full knowledge of the
environment. You’ll need a “data call” to gather the information about the technical
environment. It’s best to prepare a question set ahead of time or use one of the many
checklists available on the Internet. Gather information about personnel, IP address
ranges, out-of-scope systems and networks, technical details of particular systems and
targets, active security controls the client has in place, and so on. If phishing attacks are
in scope, try to perform some early reconnaissance and submit a list of e-mail targets
for approval ahead of time. The question set will vary depending on what you’re
assessing, but it’s best to get into the habit of communicating early and often.

Briefly mentioned in Chapter 1 is the importance that all parties understand the scope
of the assessment. A detailed statement of work (SOW) helps to ensure there are no
misunderstandings. Always have a clear description of the nature and scope of the
assessment in your paperwork; whether you call it a contract, proposal, statement of
work, or scoping paper, it’s best to define the scope in writing in a document that your

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

client will sign. If your assessment has a physical security component, be sure to get a
signed “Get Out of Jail Free Card” or authorization letter. The letter should be used to
defuse potentially hostile situations in case your client’s security guards or staff
encounter or detain anyone on the pen test team. The letter should state that a penetration
test is occurring and that the members of the assessment team, listed in the letter by
name, are authorized to perform testing activities. The authorization letter should have a
contact number for the security guards to call, usually the head of physical security or
cybersecurity at the client’s company.

You’ll likely have a scheduling phone call and a detailed kick-off meeting. Use the
kick-off meeting to confirm the scope and focus of the assessment and to discuss fragile
systems. You should also talk through the methodology, step by step. It’s best to discuss
the ideas you have in mind for any phishing campaigns and try to get preapproval.
Review the schedule and logistics, and be sure to define client milestones so your client
knows what you’ll need from them and when you’ll need it. Logistical issues you may
need to cover include getting a small conference room or office to work out of,
discussing access to network ports and internal VLANs, and obtaining physical access
badges and parking passes. You may want to request working out of a room with a door
that locks at night so you can leave equipment at the client site during the internal phase
of the pen test.

Also, for most short-term penetration tests, you’ll want to avoid “cat-and-mouse”
scenarios where your client is actively blocking and trying to defend against your
attacks. Some assessments are intended to allow a defensive security team to actively
protect the network and thus “practice” those skills. Regardless of the type of
assessment, it’s necessary to have detailed discussions about the “rules of engagement.”
When discussing the rules of engagement, you’ll want to talk about the client’s “active
defenses” (security controls in place that can slow down or stop an attack). Be sure to
always give a client credit in their report for the security controls they have in place.

One of the best methodologies I’ve seen used to address “active defenses” is simple.
If a control is stopping you from moving forward during your pen test, just ask the client
to allow you to bypass it. Then you can continue with your testing until you’re sure
you’ve provided value to the client, testing each security layer. Afterward—and this is
crucial—go back and work to bypass that original control you had trouble with. Many
security controls can be bypassed one way or the other, time permitting.

Another aspect of the rules of engagement is determining the best course of action for
the IT help desk to take if a user calls in and reports something related to the pen test.
Usually, it’s best to disclose the fact that a pen test is occurring to the fewest number of
people possible, and often the IT help desk is not aware that an assessment is occurring
at the beginning of the test. After all, the IT help desk is a frequent target during a pen
test. However, this is always a balancing act, and the IT help desk will frequently get
“read in” during that assessment so they can appropriately respond to user inquiries and

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

reports. Ideally, the IT help desk will begin to execute triage procedures when an event
is reported, and the pen test team can begin to gauge the client’s response.

As simple as it seems, be sure to exchange contact information with your client and
their team. You may need to call your client outside of business hours, so be sure to get
mobile phone numbers and know who the best person to call is after hours. You might
decide to call your client after hours for a variety of reasons. Occasionally, a
penetration tester will encounter indictors of compromise (IOC) in the client’s
environment, indicating that the client has an active breach occurring. Also, sometimes a
critical vulnerability is discovered on the client’s perimeter, and it’s best to not wait
until the next morning to disclose this fact to your client.

You’ll need to e-mail different types of sensitive information during a penetration test.
It’s best to ensure you have a secure e-mail system in place that includes encryption and
multifactor authentication. Make sure it provides your client a secure way to send and
receive information. This way, when they are sending you information about their
personnel or environment, or when you are sending them their pen test report, an
established and secure communication channel can be used.

Executing a Pen Test
There are so many pen-testing tools and techniques that it’s impossible to cover them
all. We cover more specific information on hacking methodologies in the next couple of
chapters. Because in this chapter we are discussing the pen tester tradecraft, let’s talk
about some ideas that can help you work effectively and present yourself in a more
refined manner while executing a pen test.

There’s always value in collaborating with others and taking advantage of their skills
and experience. A variety of pen-testing collaboration tools make it easy to take a team
approach. While executing a penetration test with a team, consider using a collaboration
tool like Armitage with Cobalt Strike or Faraday. These tools allow for a team
approach so that team members can stay in sync, and they add visualization features that
facilitate team work.

Accountability is important. Ensure your team members are accountable for their
actions by enabling logging on their tools and devices. Occasionally, a client
environment may experience a technical problem during your pen test and the client will
want to know if it was caused by your testing activities. If logging is properly enabled
on your software and testing infrastructure devices, you’ll be able to confirm precisely
who was working on what testing activities and when.

One of the most arduous parts of a penetration test is writing the report. Reports can
often be 60 pages or more in length. A great report will have an executive summary, a
variety of diagrams, a summary of findings, and a section with in-depth information
about each finding. Each finding should have evidence and remediation guidance. Also,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

it’s always nice to give credit where credit is due. Add a section to your report that
describes the client’s current security controls so that the client’s efforts are recognized.

Now let’s talk about report generation and supporting processes and technologies.
Each day leading up to the pen test and throughout the assessment, you’ll learn
information about the client. Be sure to document the things you learn as “findings” and
“good findings.” If an attack was successful, you may have a “finding” for your report. If
the attack wasn’t successful, then stop to ask yourself, “What prevented the attack from
working? What made it difficult? Is there anything I can give the client credit for?” Then
record those thoughts as “good findings.” Add information and findings to your report
on an ongoing basis. Jot down details while the information is fresh in your mind. End
each day by recording and reviewing your findings. You can make writing the final
report a less arduous task by reporting as you go.

Also, pen test reporting technology exists that we as technologists can put to good use.
Pen test reporting tools integrate or include databases so that you can create a findings
repository. You’ll find that many of your clients have similar findings, and it’s not
efficient to write the same findings repeatedly. Therefore, every time you have a new
finding, be sure to sanitize it and put it in your findings database. This way, the next time
you must write a new finding, you can see if some existing verbiage can be used from
previous findings. Several great pen test reporting tools are available, including the
tried-and-true Dradis, shown in Figure 6-4. Dradis allows you to create report
templates and pull information from findings you’ve entered into VulnDB, the findings
database. Whatever tool you decide to use, be sure it allows you to assign a risk rating
to your findings.

Figure 6-4 Dradis integrates with VulnDB, allows you to categorize your pen test findings, and offers project
management features to help you track overall progress.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Finally, guide your clients through any “close-out” activities at the end of your pen
test. Ensure you tell them what computers they’ll need to reboot. If you created any
accounts, be sure to tell the client so they can delete those accounts. Also, discuss any
changes made to the environment so that they can be appropriately reviewed or
disabled. You need to establish a data retention period as well. Your clients are much
better off if you only retain data about their environment for a limited amount of time.
Therefore, be sure to talk your clients through your retention and destruction policies.

Summary
In this chapter, we discussed a wide range of topics intended to help you continue down
the path to becoming an expert pen tester. This entire book is designed to give you
guidance through the many activities that will help you become an advanced pen tester.
We discussed the pen tester ethos and gave a nod to our history with a mention of the
Hacker’s Manifesto. Many different paths can lead a person to becoming a pen tester.
We covered a variety of resources that will help you practice your skills and keep them
fresh, including training, formal education, and hacking games.

After discussing ways to refine your pen-testing skills, we discussed how to refine
your tradecraft. Guidance was provided about starting a small operation to allow you to
profit from your abilities. We discussed reducing your legal liability while optimizing
your efforts. The benefits gained from working with others using collaboration and
reporting tools cannot be overstated. We also discussed the responsibilities that come
with being a pen tester or running a small pen-testing operation. These include screening
your team, organizing your efforts, maintaining accountability for your actions, and
logging everything. The responsibility that comes with being a trusted advisor means
that you should always strive to make ethical recommendations that are in your client’s
best interest.

For Further Reading
American Civil Liberties Union (ACLU) https://www.aclu.org/

Arizona Cyber Warfare Range http://azcwr.org/

Armitage www.fastandeasyhacking.com/

Black Hat www.blackhat.com/

Cobalt Strike https://www.cobaltstrike.com/

CTF Time https://ctftime.org/

||||||||||||||||||||

||||||||||||||||||||

https://www.aclu.org/
http://azcwr.org/
http://www.fastandeasyhacking.com/
http://www.blackhat.com/
https://www.cobaltstrike.com/
https://ctftime.org/
https://technet24.ir
https://technet24.ir

CTF365 https://ctf365.com/

DEF CON https://www.defcon.org/

DerbyCon https://www.derbycon.com/

Dradis https://dradisframework.com/ce/

E-Council’s Certified Ethical Hacking
(CEH) https://www.eccouncil.org/programs/certified-ethical-hacker-ceh/

Electronic Frontier Foundation (EFF) www.eff.org

Faraday https://www.faradaysec.com/

GIAC GPEN www.giac.org/certification/penetration-tester-gpen

Hackers Manifesto – Phrack.org, January 8, 1986 http://phrack.org/issues/7/3.html

Hacking Exposed https://www.mhprofessional.com/9780071780285-usa-hacking-
exposed-7-grou

Harvard Extension School https://www.extension.harvard.edu/

Information Systems Security Association (ISSA) www.issa.org/

Infosec Conferences https://infosec-conferences.com/

InfraGard https://www.infragard.org/

Irongeek www.irongeek.com/

Massachusetts Institute of Technology Open
Courseware https://ocw.mit.edu/index.htm

National Centers of Academic Excellence in Cyber
Operations https://www.nsa.gov/resources/educators/centers-academic-
excellence/cyber-operations/

NSA – National Centers of Academic Excellence in Cyber
Defense https://www.nsa.gov/resources/educators/centers-academic-
excellence/cyber-defense/

Offensive Security Certified Professional https://www.offensive-
security.com/information-security-certifications/oscp-offensive-security-certified-
professional/

Offensive Security https://www.offensive-security.com/

OverTheWire: Wargames http://overthewire.org/wargames/

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://ctf365.com/
https://www.defcon.org/
https://www.derbycon.com/
https://dradisframework.com/ce/
https://www.eccouncil.org/programs/certified-ethical-hacker-ceh/
http://www.eff.org
https://www.faradaysec.com/
http://www.giac.org/certification/penetration-tester-gpen
http://Phrack.org
http://phrack.org/issues/7/3.html
https://www.mhprofessional.com/9780071780285-usa-hacking-exposed-7-grou
https://www.extension.harvard.edu/
http://www.issa.org/
https://infosec-conferences.com/
https://www.infragard.org/
http://www.irongeek.com/
https://ocw.mit.edu/index.htm
https://www.nsa.gov/resources/educators/centers-academic-excellence/cyber-operations/
https://www.nsa.gov/resources/educators/centers-academic-excellence/cyber-defense/
https://www.offensive-security.com/information-security-certifications/oscp-offensive-security-certified-professional/
https://www.offensive-security.com/
http://overthewire.org/wargames/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Penetration Testing: A Hands-On Introduction to Hacking (Georgia Weidman) No
Starch Press, 2014

SANS NetWars https://www.sans.org/netwars

SecurityTube.net https://www.securitytube.net/

ShmooCon http://shmoocon.org/

Stanford University Online http://online.stanford.edu/about

SyScan https://www.syscan360.org/en/

The SANS Institute https://www.sans.org/

Vulnhub https://www.vulnhub.com/

Western Governors University https://www.wgu.edu/

ZeroNights https://2017.zeronights.org/

||||||||||||||||||||

||||||||||||||||||||

https://www.sans.org/netwars
http://SecurityTube.net
https://www.securitytube.net/
http://shmoocon.org/
http://online.stanford.edu/about
https://www.syscan360.org/en/
https://www.sans.org/
https://www.vulnhub.com/
https://www.wgu.edu/
https://2017.zeronights.org/
https://technet24.ir
https://technet24.ir

CHAPTER 7
Red Teaming Operations

The concept of red teaming is as old as war itself. The red team is an independent group
that assumes an adversarial point of view to perform stealthy attack emulations that can
trigger active controls and countermeasures. The goal is to challenge an organization to
significantly improve the effectiveness of its security program. Red teaming is exercised
in business, technology, and the military, and it can be applied to any situation where
offensive and defensive controls are used.

The members of the blue team are the cyberdefenders. We cover blue team operations
in other chapters. The blue team, by far, has the hardest job. It guards an organization’s
assets and sensitive data from both the red team and actual adversaries. Protecting an
organization’s attack surface is a complex task. Blue teams do not sit around passively
waiting for an event to occur. They are hunters, actively searching for threats and
eradicating them from the environment. Granted, not all blue team activities are as
exciting as threat hunting; some blue team activities are focused on detecting malicious
activity, hardening, and maintaining an environment’s security posture.

Our goal as ethical hackers is to help mature an organization’s defenses. Ethical
hackers must have an understanding of the blue team’s perspective, the other side of the
coin, in order to provide the most valuable information possible. This chapter expands
on ethical hacking methodologies and describes an enterprise red teaming effort, but it
also highlights critical touchpoints with the blue team because, as ethical hackers,
providing value to the blue team is our primary focus.

In this chapter, we cover the following topics:
• Red team operations
• Red team objectives
• What can go wrong
• Communications
• Understanding threats
• Attack frameworks
• The red team testing environment
• Adaptive testing
• Lessons learned

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Red Team Operations
Red team operations differ from other ethical hacking activities in a couple of
significant ways. First, they are unannounced tests that are mostly stealthy in nature.
Second, because the tests are unannounced, they allow the blue team to respond to them
as if they were an actual security event. Red team operations are intended to
demonstrate the insufficiency of response procedures or security controls. The concept
of red teaming, if applied holistically, can help an organization mature at the strategic,
operational, and tactical levels.1 The beauty of red teaming is taking war-game
exercises out of the abstract and allowing your defenders to practice responding to
challenges at a tactical level.

Red teaming has many definitions. Department of Defense Directive (DoDD) 8570.1
defines red teaming as “an independent and focused threat-based effort by an
interdisciplinary, simulated adversary to expose and exploit vulnerabilities to improve
the security posture of Information Security.”2 The US Military Joint Publication 1-16
defines a red team as “a decision support element that provides independent capability
to fully explore alternatives in plans, operations, and intelligence analysis.”3 Both
sources stress the fact that a level of independence and objectivity is needed to
successfully execute a red team function.

Red team efforts often start with defining a specific goal and the rules of engagement.
They can focus on accessing or exfiltrating actual data or even a token with no real
value. Red team efforts can also focus on a test or QA environment or can occur in a
live production environment. Either way, the goal is to understand how to refine an
organization’s detection, response, and recovery activities. Typically, when
professionals discuss incident response, the focus is on improving three metrics:

Mean time to detect
Mean time to respond
Mean time to eradicate

Eradication vs. Containment vs. Remediation
Remediation might not be complete for years after an exercise, depending on the
nature of the failure, the results of root cause analysis, and the resolution of any
project initiatives resulting from lessons learned discussions. Containment, on the
other hand, should limit the impact of the attack within acceptable parameters of
observation, and eradication should define full removal of all attacker capabilities

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

in the environment, and (sometimes temporary) mitigation against further attack
using the same vector(s).

The ability to measure and report on the aforementioned metrics and the focus on
improving the security team’s agility are the major benefits of conducting red teaming
exercises.

Strategic, Operational, and Tactical Focus
Red teaming should focus on improvements in how an organization responds at the
strategic, operational, and tactical levels. Organizations that focus solely on how their
technical incident responders react are missing a great opportunity to ensure that all
decision makers have the opportunity to participate in war games. An organization’s
executive management, technical leadership, legal, public relations, risk management,
and compliance teams can all benefit from participating in red team exercises.

Assessment Comparisons
Let’s take some time to discuss how red teaming exercises differ from other technical-
based assessments.

Vulnerability Assessment
Vulnerability assessments often use tools to scan for vulnerabilities inside of an
environment. Vulnerabilities are often validated as a part of the vulnerability assessment
process. However, a vulnerability assessment will not show the business impact of
what could happen if the vulnerabilities in an environment were combined in a targeted
attack. It also doesn’t show the impact of missing security controls in the environment.
Vulnerability assessments are important and should occur regularly, monthly in most
circumstances, and should be supplemented with a penetration test or a red or purple
team exercise.

Penetration Test
A penetration test can show the business impact of how missing security controls and
existing vulnerabilities in the technical environment can be combined and taken
advantage of by an attacker. The goal is to gain unauthorized access and demonstrate the
business impact of the problems identified. Some penetration tests also have an
exfiltration component to demonstrate to the business how easy or hard it is to remove
data from its environment. Most penetration tests do not allow the blue team to respond
to attacks and only note when the penetration testing team’s actions trigger an alert.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Penetration tests are often required for compliance purposes and can give an
organization valuable information. They are also ideal for organizations that are just
starting to refine their security program and perhaps are not ready for red team or purple
team exercises. Penetration tests are often point-in-time assessments and do not feature
an ongoing testing component. Enterprise penetration tests often include social
engineering and physical security assessments, as described later in this chapter.

Red Teaming
Red teaming can combine all the assessments just mentioned; a stealthy vulnerability
assessment, penetration test, social engineering assessment, and physical security
assessment can focus on a specific goal or application. Red team exercises vary in
scope and focus in a variety of ways. Most significantly, red team exercises are
unannounced. The blue team does not know if it is looking at a real-world attack or an
attack simulation. The blue team must detect, respond, and recover from the security
incident, thereby refining and practicing its incident response skills.

Communication between the blue team and red team is very limited during testing
activities. This allows for the red team exercise to closely simulate a real-world attack.
The white team is made up of key stakeholders from different business units or technical
teams, project managers, business analysts, and so on. The white team provides a layer
of abstraction and ensures that communication between the red and blue teams is
appropriately limited.

Red team assessments also have a goal and an assertion. Often the assertion is “the
network is secure” or “sensitive data cannot be exfiltrated without our knowledge.”
Testing activities are then focused on proving whether the assertion is true or false. One
of the main goals of a red team assessment is to try to go undetected to truly simulate a
determined adversary. The red team should be independent of the blue team. Red
teaming is usually performed on organizations with a mature security program. Many
organizations use purple teaming, described next, to refine their detection, response, and
recovery processes.

Purple Teaming
Purple teaming is covered in depth in the next chapter. A purple team exercise can have
all of the components of a red team exercise, but communication and interaction
between the blue team and the red team are encouraged, not discouraged.
Communication between the two teams can be ongoing, and often many of the testing
activities are automated. The red team is still independent of the blue team, but they
work hand in hand to refine security controls as the assessment is in progress.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Red Teaming Objectives
Red teaming exercises can be very valuable in getting to the “ground truth” of the
effectiveness of the security controls you have in place. The red team’s independence
from the blue team minimizes bias and allows for a more accurate assessment. Red team
exercises, like penetration tests, can be used for compliance purposes. For example, a
red team’s goal can be to determine whether credit card data can be exfiltrated.

The heart of red teaming is centered on identifying a goal for the assessment based on
an assertion. The assertion is really an assumption. The organization, often, is assuming
that the controls it has put in place are effective and can’t be bypassed. However, new
vulnerabilities are created and human error or environmental changes occur that have an
impact on the effectiveness of security controls such as segmentation, proxies, and
firewalls.

Red team engagements are often performed in cycles. Repetitive cycles allow a blue
team to go through a red team assessment, create a hypothesis on how to improve its
controls and processes, and then test the hypothesis in the next cycle. This process can
be repeated until the organization is satisfied with the level of residual risk.

Mitre’s “Cyber Exercise Playbook” has valuable information that can be applied to
red team exercises.4 The following testing objective list is adapted from this resource:

• Determine the effectiveness of the cybereducation provided to the organization’s
personnel prior to the start of the exercise.

• Assess the effectiveness of the organization’s incident reporting and analysis
policies and procedures.

• Assess the ability of the blue team to detect and properly react to hostile activity
during the exercise.

• Assess the organization’s capability to determine operational impacts of
cyberattacks and to implement proper recovery procedures for the exercise.

• Determine the effectiveness of scenario planning and execution, and gauge the
effectiveness in communication between the red team, the blue team, and the white
team.

• Understand the implications of losing trust in IT systems, and capture the
workarounds for such losses.

• Expose and correct weaknesses in cybersecurity systems.
• Expose and correct weaknesses in cyberoperations policies and procedures.
• Determine what enhancements or capabilities are needed to protect an information

system and provide for operations in a hostile environment.
• Enhance cyber awareness, readiness, and coordination.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Develop contingency plans for surviving the loss of some or all IT systems.

What Can Go Wrong
It’s important to understand where a red team engagement can go “off the rails.” There
are common challenges that red teams face, and it’s important to be aware of them so
that these issues can be addressed ahead of time. Justin Warner’s Common Ground blog
series has a wealth of information about red teaming assessments and is a recommended
resource.5

Limited Scope
To be successful, a red team must be able to maneuver through an environment just as an
adversary would. However, most organizations have assets that they consider
invaluable that they are not willing to put at risk in the case something goes wrong. This
can severely hinder a red teaming effort and limit the benefit of such an engagement.

Limited Time
Many organizations have a hard time differentiating between a penetration test and a red
teaming engagement. In order to truly mimic a real-world adversary, the red team must
be able to take sufficient time to evaluate and gain access without raising alarms. The
bad guys have months or years to prepare and execute, whereas most red teams are
expected to accomplish the same goals within a limited time period. It’s too expensive
for a lot of organizations to have an ongoing red teaming exercise, which is exactly the
scenario most adversaries enjoy. The assessment should be long enough to be beneficial
to the organization, but also have a clear-cut end where the team can be debriefed.

Limited Audience
To be able to get the most out of an engagement, an organization will want to include as
many key personnel as possible. It would be ideal to have every person from an
organization playing a part of the engagement, but at the end of the day, work still needs
to be done and people are unlikely to participate unless necessary. Try to get as much
involvement as possible, especially from C-level executives, but be cognizant that
people are busy.

Overcoming Limitations
Overcoming limitations may take some creativity and collaboration, but several tactics

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

can be used. If your scope is limited and you are not permitted to test specific critical
systems, then perhaps a test or QA lab is available where testing could yield similar
results to what would have been found in the production environment.

Limitations can be overcome by using a concept called the white card, which is a
simulated portion of the assessment designed to help overcome limitations. It is often
assumed that at least one user will click a phishing e-mail, so a white card approach
would be to simulate a user clicking a phishing e-mail, thereby letting the red team into
the environment. Granted, phishing isn’t the only way into an environment; white cards
can be used to simulate a malicious insider, collusion, bringing a compromised asset
into an organization, backdoor access through a trusted vendor, and so on.

Communications
Red teaming exercises vary greatly in duration. It’s important to determine the most
appropriate cadence for communication for each exercise. For example, if you are
working on a red team assessment that has a 12-month duration, you may want to break
the exercise up into 3-month testing and communication cycles. This would allow the
red team three months to perform its attack emulations. The blue team would be briefed
after the three-month testing cycle and could then begin to research and implement
improvements based on what was learned—granted that communication between the red
team and the blue team is facilitated by the white team. In most instances, the white team
will ensure that interaction between the red and blue teams does not occur and instead
will bring the teams together at the end of the testing cycle.

Planning Meetings
The red and blue teams, with the support of the white team, will have to work together
during a series of planning meetings. Red team assessment planning meetings initially
begin with conceptual discussions that eventually lead to detailed plans that are
completed before the assessment begins.

Planning begins with a high-level description of the red team assessment’s goals,
assertions, and the rules of engagement. These items will be refined and finalized and
should require the signature of the red team lead as well as the leaders from other teams
involved in the assessment.

The different components of the red team assessment will be outlined in the planning
meetings. Discussion points should include the following:

• In addition to the technical test, will tabletop exercises be performed?
• What types of scenarios will be involved?

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• What types of deliverables will be created and at what frequency?
• What environment will be tested?

Depending on the nature of the assessment, the assessment team may be provided either
no technical information or a lot of technical information, such as architecture and
network diagrams, data flows, and so on.

Logistical considerations will also need to be accounted for, including the following:

• Will onsite work be performed?
• What types of visas, translators, transportation, and travel considerations need to

be addressed to support onsite work?

Meetings should result in action items, general assessment timelines, target dates for
deliverables, and the identification of a point of contact (POC) for each team.

Defining Measurable Events
For each step in the attack cycle, a set of activities should be measured to determine the
following:

• If the activity was visible to the blue team
• How long it took the blue team to initially detect the activity
• How long it took the blue team to begin response activities
• How long it took to remediate the incident

Both the red team and the blue team will have to keep close track of their efforts. The
frequency of communication depends on a variety of factors, but typically information is
exchanged at least every three months, and frequently more often, depending on the
duration of a testing cycle. Documentation is critical during a red team assessment.
Often the red and blue teams are submitting information to the white team on an on-going
basis.

Red Team
Having testing activity logs is critical. Accurately tracking what day and time certain
actions were performed allows the organization to determine which red team activities
were detected and, more importantly, which were not. Each day of the assessment the
red team should be documenting its testing activities, the time they were performed,
exactly what was done, and the outcome of the test.

In addition to creating deliverables to report on the red team’s efforts, it is imperative

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

that testing activities be logged. A red team should be able to determine who or what
acted on the environment, exactly what was done, and the outcome of every testing
action. This means that logs should be maintained from every red team system and tool.

Blue Team
The blue team should always be tracking its response activities. This includes events
that were categorized as incidents, events that were categorized as false positives, and
events that were categorized as low severity. Once the blue team’s documentation is
synced with the red team’s testing activities, an analysis will be performed. The
analysis will determine which defensive tactics were effective and which were not, as
well as which events were categorized incorrectly—for example, incidents determined
to be low or medium severity when they should have been considered high priority.
Some organizations only track events that become security incidents. This is a mistake.
It’s important to be able to go back in time and understand why something was marked a
false positive or categorized inappropriately.

Understanding Threats
As discussed in earlier chapters, knowing your enemy is key to defining your tactics and
creating realistic emulations. The goal is to develop an early warning system based on
historical context. Knowing who has attacked you in the past and what tools and tactics
they’ve used is crucial in understanding how to best protect your organization. Context
is often gleaned by looking at the bigger picture and understanding who is attacking your
industry and your competitors. Information sharing among companies within the same
industry is encouraged now, and industry-specific threat feeds can be a valuable source
of information.

Performing an analysis of the adversaries that have attacked your organization in the
past is vital. Who is targeting you? What are their motives? How do they normally
operate? What malware has been used against you? What other attack vectors have been
attempted in the past? An analysis of your adversaries can help you determine the
potential impact of likely attacks. Understanding the threat can also help you test for
blind spots and determine the best strategy for addressing them. It’s important to
understand whether you are being targeted by sophisticated nation-states, your
competitors, hacktivists, or organized crime. Your approach to red teaming will be
customized by your adversaries’ profiles and their capabilities.

Equally important is to understand what is being targeted specifically. This is where
traditional threat modeling can help. Threat modeling helps you apply a structured
approach to address the most likely threats. Threat modeling typically begins with the
identification of the assets you must protect. What are your business-critical systems?

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

What sensitive information resides within the environment? What are your critical and
sensitive data flows?

Next, you need to evaluate the current architecture of the asset you are targeting in
your red teaming exercises. If these exercises are enterprise-wide, then the whole
environment must be understood, including trust boundaries and connections in and out
of the environment. The same applies if your red team exercises are targeting a specific
data set or application. In the case of a product or application, all the components and
technologies need to be documented.

Decomposing the architecture is key to documentation. What underlying network and
infrastructure components are used? Breaking down the environment or application will
allow you to spot deficiencies in how it was designed or deployed. What trust
relationships are at play? What components interact with secure resources like directory
services, event logs, file systems, and DNS servers?

Use a threat template to document all threats identified and the attributes related to
them. The Open Web Application Security Project (OWASP) has an excellent threat risk
model that uses STRIDE, a classification scheme for characterizing known threats
concerning the kind of exploits used or the motivations of the attacker, and DREAD, a
classification scheme for quantifying, comparing, and prioritizing the amount of risk
presented by each evaluated threat.6 Creating a system to rate the threats will help you
refine your testing methodologies.

Attack Frameworks
Using an attack framework is one of the most comprehensive ways you can plan the
attack portion of your red teaming activities. Several attack frameworks and lists are
available that can be excellent resources for a red team. One of the most useful ones is
the Mitre Adversarial Tactics Techniques & Common Knowledge (ATT&CK) Matrix.7
The Mitre ATT&CK Matrix has a variety of focuses, including specific matrixes for
Windows, Mac, and Linux systems, as well as a matrix focused on enterprises. The
matrix categories include attacks focused on persistence, privilege escalation, defense
evasion, credential access, discovery, lateral movement, execution, collection,
exfiltration, and command and control (C2).

In general, it is always advised that security efforts be based on industry frameworks
or standards. There’s no need to re-create the wheel when you can stand on the
shoulders of giants. Basing your efforts on a framework lends credibility to your efforts
and ensures that your attack list has the input of its many contributors. Another notable
source for attack information is the tried-and-true OWASP Attack list.8 The OWASP
Attack list contains categories of attacks like resource protocol manipulation, log
injection, code injection, blind SQL injection, and so on.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

There is rarely a discussion about cyberattacks without the mention of the Cyber Kill
Chain framework developed by Lockheed Martin. The framework is based on the fact
that cyberattacks often follow the similar patterns—reconnaissance, weaponization,
delivery, exploitation, installation, command and control (C2), and acts on objectives—
the idea being that if you can disrupt the chain, you can disrupt the attacker’s attempt.
The Cyber Kill Chain framework also has a corresponding countermeasure component.
The goal is to detect, deny, disrupt, degrade, or deceive an attacker and break the chain.

Testing Environment
When mimicking a determined adversary, it’s important to defend your testing
environment in a variety of ways. Let’s start with the basics. Keep your testing
infrastructure updated and patched. The blue team will eventually try to shut you down,
but a determined adversary will anticipate this and defend against it using several
methods.

Use redirectors to protect your testing infrastructures. Redirectors are typically
proxies that look for a specific value and will only redirect traffic that meets a certain
criterion. The blue team should have a tough time figuring out what the redirector is
looking for, thereby providing a basic layer of abstraction. Redirectors come in many
forms. Raphael Mudge, the creator of Cobalt Strike, provides excellent information on
redirectors as well as a ton of other useful information in his Infrastructure for Ongoing
Red Team Operations blog.9

Be sure to segregate your testing infrastructure assets based on function to minimize
overlap. Place redirectors in front of every host—never let targets touch backend
infrastructure directly. Maximize redundancy by spreading hosts across providers,
regions, and so on. Monitor all relevant logs throughout the entire test. Be vigilant, and
document your setup thoroughly!

You can use “dump pipe” or “smart” redirectors. Dump pipe redirectors redirect all
traffic from point A to point B. Smart redirectors conditionally redirect various traffic
to different destinations or drop traffic entirely. Redirectors can be based on HTTP
redirection in a variety of ways, such as using iptables, socat, or Apache mod-write.
Apache mod-write can be configured to only allow whitelisted URIs through. Invalid
URIs will result in redirection to a benign-looking web page, as pictured here.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

DNS redirectors can also be set up with socat or iptables. Along the same lines,
domain fronting can be used to route traffic through high-trust domains like Google App
Engine, Amazon CloudFront, and Microsoft Azure. Traffic can be routed through
legitimate domains using domain fronting, including .gov top-level domains (TLDs)!

Adaptive Testing
Although stealth activities are a big part of red team assessments, there’s a lot of value
in taking an adaptive testing approach. The stealth activities in a red teaming
engagement closely mimic what an advanced adversary would do. However, adaptive
testing takes the perspective that there’s value in performing simulations that mimic
unsophisticated adversaries too—adversaries that are easier to detect than others.

Because longer-term red team assessments allow for testing cycles, an organization
can set a certain cadence to its work to build in an “adaptive testing” perspective and
move from clumsy, noisy attacks to testing activities that are stealthy and silent. For
example, a three-month testing cycle can be performed where activities progress from
easy to detect to hard to detect. After the three-month cycle, outbrief meetings and a
post-mortem analysis can occur, and the blue team can gain perspective on at what point
testing activities stopped being detected or stopped “hitting its radar.” The blue team
would then use this information to mature its detection capabilities. The next three-
month cycle could then begin, giving the blue team the opportunity to test the
improvements it has made.

Many different tactics can be used to employ an adaptive approach. You can begin
testing by sending out a large phishing campaign to measure how the organization
responds and then move to a quieter spear-phishing attack. Scanning activities can begin
with aggressive scanning tactics and move to a low-and-slow approach.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

External Assessment
Many people automatically think of a perimeter security assessment when they hear the
term penetration test or red team engagement. Although it is not the only component of a
red team engagement, performing adversarial emulations on your perimeter is very
important. When I think of a red team engagement with an external focus, I think of the
importance of understanding what a bad actor anywhere in the world could do with a
computer.

Most red teaming activities will combine using tools to scan the environment for
information and then using manual testing activities and exploits to take advantage of
weakness identified. However, this is only one part of an external assessment. It’s
important to also remember that there can be a “near site” component to a red team
exercise, where the red team can show up in person to perform attacks. In addition to
Internet-accessible resources, the red team should ensure it is looking for weakness in
an organization’s wireless environment and vulnerabilities related to how mobile
technology connects to an organization’s technical assets.

External assessments can focus on any IT asset that’s perimeter facing, including e-
mail servers, VPNs, websites, firewalls, and proxies. Often an organization will have
exposed internal protocols that aren’t intended to be exposed to the Internet, such as the
Remote Desktop Protocol (RDP).

Physical Security Assessment
Protecting physical access to an organization’s devices and networks is just as
important as any other security control. Many red teaming engagements find problems
with the way that locks, doors, camera systems, and badge systems are implemented.
Many organizations can’t tell the difference between an easy-to-pick lock and a good
door lock and protective plate. Lock picking is a skill that most red teams will have
because picking locks is a relatively easy skill to learn and grants unparalleled access
to a target.

Motion detectors often open or unlock doors when someone walks past them. This
feature is also convenient for attackers attempting to gain physical access to an
organization. Many red team assessors have manipulated motion detectors to gain
physical access. It can be as easy as taping an envelope to a coat hanger, sliding it
between two doors, and wiggling it to trigger the motion detector on the other side of the
door. Compressed air can also be used to trigger motion detectors.

Many physical security badges lack encryption. A favorite tactic of red team assessors
is to obtain a badge cloner and then go to the local coffee shop or deli and stand in line
behind an employee who has a physical security badge. Badge cloners are inexpensive,
and all it takes to use one is to stand within three feet of the target to be able to clone

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

their badge and gain the same level of physical access to the organization’s facilities.
Camera systems often have blinds spots or resolution that’s so poor that a vehicle’s

license plate isn’t legible when captured by the camera. Touchpad locks rarely have
their codes changed. Wear and tear often causes fading so that simply looking at the lock
can reveal which four numbers are used in the code. All an attacker has to do then is
enter the four digits in the right order.

The possibilities for physical compromise of an environment are endless, and like red
teaming activities, they are only limited by your imagination.

Social Engineering
Humans will always be your security program’s weakest link. They are by far a red
team’s easiest target. Humans can be targeted via phishing e-mails, USB drives, phone
calls, and in person. Consider purchasing inexpensive pens or eyeglasses that contain
cameras and replaying video of your in-person social engineering attempts for your
client or organization.

Phishing e-mails can be crafted to be very high quality with spoofed e-mail addresses
and an impressively accurate look and feel. There’s also a benefit to seeing how users
respond to poorly crafted e-mails with generic greetings and misspellings. The two
components to phishing are delivery and execution. Object linking and embedding
(OLE), .iso files or ISO images, hyperlinks, and e-mail attachments are common
payload delivery mechanisms, and .lnk files, VBScript, JavaScript, URL, and HTML
applications (HTA) are common payloads.

When attempting to gather information about your target, don’t underestimate the
effectiveness of developing online personas for use in social networking or in other
capacities. Cat phishing is a term that describes creating enticing profiles online and
then selectively making connections with your targets. The anonymity of the Internet
means that people need to be wary of their new online friends. People also tend to
disclose a surprising amount of information via tech forums, for example.

Finally, don’t be afraid to hide in plain sight. Consider performing a somewhat noisy
attack with the intention of getting caught as a distraction for a stealthy attack that you
are carrying out using a different tactic.

Internal Assessment
To my surprise, organizations sometimes still have to be convinced of the value of an
internally focused red team assessment. An internal assessment can mimic a malicious
insider, a piece of malware, or an external attacker who has gained physical access. An
internal assessment is a great way to gauge how your protections stand up to a person
who has made it onto your network.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A person with no credentials but access to a network port can gain a ton of
information if the environment is not configured correctly. A variety of man-in-the-
middle attacks can prove fruitful when you have access to the wire. SMB relay attacks
and Windows Proxy Auto-discovery (WPAD) attacks are consistently effective in
leading to credential harvesting, privilege escalation, and frequently the compromise of
an enterprise.

Once you have code running in the desktop session of a user, many mechanisms are
available to put a keylogger on a machine or to capture screenshots. Using Cobalt
Strike’s Beacon is an extremely reliable method. The custom-written Start-
ClipboardMonitor.ps1 will monitor the clipboard on a specific interval for changes to
copied text. KeePass, a popular password safe, has several attack vectors (including
KeeThief, a PowerShell version 2.0 compatible toolkit created by @tifkin_ and
@harmj0y) that can extract key material out of the memory of unlocked databases.
However, KeePass itself contains an event-condition-trigger system stored in
KeePass.config.xml and does not need malware to be abused.

Once credentials are gained, using a low-tech or human approach can also yield
fruitful results for the red team. Simply looking through a company’s file shares can
reveal a ton of information due to an overly permissive setting and a lack of data
encryption. Although some red teams will be capable of creating their own
sophisticated tools, the reality is that in a lot of cases the investment needed to make
custom tools is not worth the reward. In fact, blending into the environment by using
tools that will not set off red flags is called “living off the land.”10 Living off the land
could include using wmic.exe, msbuild.exe, net.exe, nltest.exe, and the ever-useful
Sysinternals and PowerShell.

Also consider targeting user groups that are likely to have local admin permissions on
their desktops. An organization’s developers are often treated like VIPs and have fewer
security controls on their systems. Same goes for an organization’s IT team. Many IT
personnel still use their domain admin account for day-to-day use and don’t understand
that it should be used sparingly. Also consider targeting groups that are likely to bypass
user security awareness training. An organization’s executive leadership is frequently an
attacker’s target, and ironically these people are the first to request an exemption from
security training.

Privilege escalation methods used to focus on escalating privileges to local admin.
However, organizations are getting wise to this risk of allowing everyone to be a local
administrator. Tools like PowerUp—a self-contained PowerShell tool that automates
the exploitation of a number of common privilege escalation misconfigurations—is
perfect for escalating privileges. Many privilege escalation options are available,
including manually manipulating a service to modify binPath to trigger a malicious
command, taking advantage of misconfigured permissions on the binary associated with

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

a service, %PATH% hijacking, and taking advantage of DLL load order, to name a few.
Search for unprotected virtual machine backups. It’s amazing what you can find on a

regular file server. Using default credentials is still a tried-and-true approach to gaining
access in many organizations.

When exfiltrating data from an environment, first of all, be sure it is sanctioned via the
assessment’s rules of engagement. Then find creative ways to remove the data from the
environment. Some red team assessors have masqueraded their data as offsite backup
data, for example.

Lessons Learned
Postmortem exercises performed as a part of a red team engagement are often detailed
and have a strong emphasis on knowledge transfer. Red team assessments need to have a
heavy focus on “documenting as you go,” in order to capture all the information that will
allow an organization to perform a detailed analysis of what is working and what needs
to be redesigned. This postassessment analysis is often called an after action report
(AAR).

An AAR should include lessons learned from different perspectives. It’s also
important to document what went right. A detailed understanding of which tools and
processes were effective can help an organization mimic that success in future
endeavors. Including different perspectives also means capturing information from
different teams and sources. “Lessons” can come from unlikely sources, and the more
input that goes into the AAR, the less likely an important observation will be lost.

The AAR should be used by the organization’s leadership to inform strategic plans
and create remediation plans for specific control gaps that need to be addressed.

Summary
Red team exercises are stealthy ethical hacking exercises that are unannounced to the
blue team. They allow the blue team to defend a target and an organization to gauge how
its controls and response processes perform in an emulation situation that closely
mimics a real-world attack. Red team exercises limit communication and interaction
between the red and blue teams. They are most beneficial to organizations that have
mature security programs, those that have invested a significant amount of effort in
establishing and testing their security controls. Organizations that are still in the process
of building a security program and refining their security controls and processes may
benefit more from the collaboration and communication inherent to purple team
exercises, covered in the next chapter. Purple team exercises are ideal for getting an
organization to the point where it is ready for the stealthy nature of a red team exercise.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

References
1. Carl von Clausewitz, On War, 1832. For more information, see

https://en.wikipedia.org/wiki/On_War.
2. Department of Defense Directive (DoDD) 8570.1, August 15, 2004,

https://static1.squarespace.com/static/5606c039e4b0392b97642a02/t/57375967ab48de6e3b4d00.15/1463245159237/dodd85701.pdf
3. US Military Joint Publication 1-16: “Department of Defense Dictionary of

Military and Associated Terms,” Joint Publication 1-02, January 31, 2011,
www.people.mil/Portals/56/Documents/rtm/jp1_02.pdf; “Multinational
Operations,” Joint Publication 3-16, July 16, 2013,
www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_16.pdf.

4. Jason Kick, “Cyber Exercise Playbook,” The Mitre Corporation, November 2014,
https://www.mitre.org/sites/default/files/publications/pr_14-3929-cyber-exercise-
playbook.pdf.

5. Justin Warner, Common Ground blog, https://www.sixdub.net/?p=705.
6. “Threat Risk Modeling,” OWASP,

https://www.owasp.org/index.php/Threat_Risk_Modeling.
7. Adversarial Tactics, Techniques & Common Knowledge, ATT&CK, Mitre,

https://attack.mitre.org/wiki/Main_Page.
8. Category:Attack, OWASP, https://www.owasp.org/index.php/Category:Attack.
9. Raphael Mudge, “Infrastructure for Ongoing Red Team Operations,” Cobalt Strike,

September 9, 2014, https://blog.cobaltstrike.com/2014/09/09/infrastructure-for-
ongoing-red-team-operations/.

10. Christopher Campbell and Matthew Graeber, “Living Off the Land: A Minimalist
Guide to Windows Post-Exploitation,” DerbyCon 2013, www.irongeek.com/i.php?
page=videos/derbycon3/1209-living-off-the-land-a-minimalist-s-guide-to-
windows-post-exploitation-christopher-campbell-matthew-graeber.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://en.wikipedia.org/wiki/On_War
https://static1.squarespace.com/static/5606c039e4b0392b97642a02/t/57375967ab48de6e3b4d00.15/1463245159237/dodd85701.pdf
http://www.people.mil/Portals/56/Documents/rtm/jp1_02.pdf
http://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_16.pdf
https://www.mitre.org/sites/default/files/publications/pr_14-3929-cyber-exercise-playbook.pdf
https://www.sixdub.net/?p=705
https://www.owasp.org/index.php/Threat_Risk_Modeling
https://attack.mitre.org/wiki/Main_Page
https://www.owasp.org/index.php/Category:Attack
https://blog.cobaltstrike.com/2014/09/09/infrastructure-for-ongoing-red-team-operations/
http://www.irongeek.com/i.php?page=videos/derbycon3/1209-living-off-the-land-a-minimalist-s-guide-to-windows-post-exploitation-christopher-campbell-matthew-graeber
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 8
Purple Teaming

If you know the enemy and know yourself, you need not fear the result of a hundred
battles. If you know yourself but not the enemy, for every victory gained you will also
suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every
battle.

Sun Tzu, The Art of War1

Purple teaming may be the absolute most valuable thing an organization can do to
mature its security posture. It allows the defensive security team, your blue team, and
your offensive security team, your red team, to collaborate and work together. This
attack and defense collaboration creates a powerful cycle of continuous improvement.
Purple teaming is like sparring with a partner instead of shadowboxing. The refinement
of the skills and processes used during purple teaming can only be rivaled by the
experience gained during actual high-severity events. Purple teaming combines your red
team and blue team’s efforts into a single story with the end goal of maturing an
organization’s security posture.

In this chapter we discuss purple teaming from different perspectives. First, we cover
the basics of purple teaming. Next, we discuss blue team operations. Then we will
explore purple team operations in more detail. Finally, we discuss how the blue team
can optimize its efforts during purple team exercises.

In this chapter, we discuss the following topics:
• Introduction to purple teaming
• Blue team operations
• Purple team operations
• Purple team optimization and automation

Introduction to Purple Teaming
Collaboration is at the heart of purple teaming. The goal of purple teaming is to improve
the skills and processes of both the red and blue teams by allowing them to work
closely together during an exercise to respectively attack and defend a particular target.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This is vastly different from red teaming, where communication between the red and
blue teams is restricted and prohibited during most of the exercise and where the red
team typically has little knowledge of the target. During a purple teaming exercise, the
red team will attack a specific target, device, application, business or operational
process, security control, and so on, and will work with the blue team to understand and
help refine security controls until the attack can be detected and prevented, or perhaps
just detected and resolved with efficacy. It’s vital that you read Chapter 7 before
reading this chapter because this chapter builds on Chapter 7’s content.

I’ve seen some confuse the concept of purple teaming with the role of a white cell or
white team. As described in the previous chapter, the white team facilitates
communications between the red and blue teams and provides oversight and guidance.
The white team usually consists of key stakeholders and those that facilitate the project.
The white team isn’t a technical team and does not attack or defend the target. A purple
team is not a white team. A purple team is a technical team of attackers and defenders
who work together based on predefined rules of engagement to attack and defend their
target. However, they do work with a white team (their project managers, business
liaisons, and key stakeholders).

Purple teaming doesn’t have to be a huge, complex operation. It can start simple with
a single member of the blue team working with a single member of the red team to test
and harden a specific product or application. Although we will discuss how purple
teaming can be used to better secure the enterprise, it’s okay to start small. There is no
need to boil the ocean. Purple teaming doesn’t require a large team, but it does require a
team with a mature skill set. If you task your best blue team member to work with your
best red team member, you can sit back and watch the magic happen.

Many organizations begin purple teaming efforts by focusing on a specific type of
attack (for example, a phish). It is most important to start with an attainable goal. For
example, the goal could be to specifically test and improve a blue team skill set or to
improve the ability to respond to a specific type of attack, such as a denial-of-service
(DoS) attack or a ransomware attack. Then, for each goal, the purple team exercise will
focus on improving and refining the process or control until it meets the criteria for
success outlined for that particular effort.

One of the beautiful things about purple teaming is the ability to take into
consideration past attacks and allow the security team to practice “alternate endings.”
Purple teaming exercises that reenact different responses to past attacks have a “chose
your own adventure” look and feel and can be very effective at helping to decide the
best course of action in the future. Purple teaming exercises should encourage blue and
red teams to use current standard operating procedures (SOPs) as guides but should
allow responders to have flexibility and be creative. Much of the value provided by
purple teaming exercises is in requiring your defenders to practice making improvised
decisions. The goal is to perform simulations in order to give your team the ability to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

put into practice those issues identified as “lessons learned” often cited during an
incident’s postmortem phase, with the goal of encouraging further reflection and mature
decision making.

We discussed red teaming in Chapter 7. Most of the topics in Chapter 7 also apply to
purple team exercises. There are, of course, a few differences, but many of the same
considerations apply. For example, setting objectives, discussing the frequency of
communication and deliverables, planning meetings, defining measurable events,
understanding threats, using attack frameworks, taking an adaptive approach to your
testing, and capturing lessons learned all apply to purple team exercises. The fact that
during a purple team exercise the red team collaborates and interacts with the blue team
will have an impact on how efforts are planned and executed. This chapter begins by
discussing the basics of blue teaming and then progresses to discuss ways that both the
red and blue teams can optimize their efforts when working together on a purple team
exercise.

Blue Team Operations
The best cyberdefenders in the world have accepted the challenge of outthinking every
aggressor.2 Operating an enterprise securely is no small task. As we’ve seen in the
news, there are a variety of ways in which protective and detective security controls
fail. There are also a variety of ways to refine how you respond to and recover from a
cyber incident. The balance between protecting an organization from cyberthreats and
from mistakes its team members can make, all while ensuring that it can meet its
business objectives, is achieved when strategic security planning aligns with well-
defined operational security practices. Before we begin discussing purple teaming and
advanced techniques for protecting an environment from cyberthreats, we’ll first discuss
the basics of defense.

As exciting and glamorous as hunting down bad guys may be, there are many aspects
of cyberdefense that are far less glamorous. The planning, preparation, and hardening
efforts that go into defending an environment from cyberthreats are some of the most
unappreciated and overlooked aspects of security, but they are necessary and important.
It is my intent to provide an overview of some of the important foundational aspects of a
security program so that you can build on the information presented to you here. The
intent is to provide a foundation for you to take your blue teaming knowledge and
overlay information about purple team exercises, thus planting ideas and providing you
with resources on frameworks, tools, and methodologies so that your purple teaming
efforts have the appropriate context.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Know Your Enemy
Having relevant information about who has attacked you in the past will help you
prioritize your efforts. It goes without saying that some of the most relevant information
will be internal information on past attacks and attackers. There are also external
information sources like threat intelligence feeds that are free. In addition, many
commercial products are supplemented with threat intelligence feeds. Past indicators of
compromise (IOCs) and information from threat intelligence gathering can be collected
and stored for analysis of attack trends against an environment. These can, in turn,
inform strategies for defense, including playbooks, controls selection and
implementation, and testing.

Many incidents will stem from within an organization. As long as humans are
involved in operating companies, then human error will always account for some
security incidents. Then there’s always the insider threat, when data exfiltration happens
using valid credentials. An insider threat can take the form of a disgruntled employee or
one who has been blackmailed or paid to act maliciously. Supplementing your security
program by overlaying an insider threat program will help you prepare for protecting
yourself against an insider threat. The best preparation is a focused purple team effort
on insider threats. Organizations exist that investigate the human factor surrounding
insider threat security incidents, whether the causes are rooted in human error, human
compromise, or human malcontent.

Know Yourself
Controlling the environment means knowing it better than your adversary does.
Controlling your technical environment starts with granular inventory information about
your hardware, software, and data, especially your sensitive/protected/proprietary data
and data flows. It means having a slice-in-time accurate understanding of the processes,
data flows, and technical components of a system or environment. In addition to having
detailed information about your environment, the ability to control it means preventing
unauthorized changes and additions, or at least detecting and resolving them quickly. It
may even be able to highlight where inventory and configuration practices deviate from
expectation. These are familiar concepts in the security world. Having an approved
secure build and preventing unauthorized changes to it should be standard practice for
most organizations.

Another consideration for maintaining a higher level of control of an environment is
trying to limit or prohibit humans/users from interacting with it. This works especially
well in cloud environments. Consider using tools to create a headless build, using a
command line instead of a user interface (GUI), and scripting and automating activities
so that users are not normally interacting with the environment. Terraform, an open

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

source project, uses the concept of Infrastructure as Code (IAC) to describe defining
your infrastructure using code that can create configuration files and be shared, edited,
and versioned like any other code.

Preparing for purple team exercises can somewhat differ from red team exercises in
that in some instances more information is shared with the red team during a purple team
exercise. This is especially true when scoping a purple team engagement. Often those
people familiar with the testing target are interviewed, and system documentation and
data flows are shared with the red team. This allows the red team to fine-tune its testing
efforts and identify administrative roles, threat models, or other information that needs
to be considered to scope the engagement.

Security Program
Organizing the many important functions that a security team has to fulfill is best done
when aligned to a security framework. There’s no reason to reinvent the wheel; in fact,
I’d discourage any organization from developing a framework that’s completely
different from a tried-and-true framework like the National Institute of Standards in
Technology (NIST) Cyber Security Framework or the International Standards
Organization (ISO) 27001 and 27002 frameworks. These frameworks were developed
over time with the input of many experts.

Now, I’m not saying that these frameworks can’t be adapted and expanded on. In fact,
I’ve often adapted them to create custom versions for an organization. Just be wary of
removing entire sections, or subcategories, of a framework. I’m often very concerned
when I see a security program assessment where an entire area has been marked “not
applicable” (N/A). It’s often prudent to supplement the basic content of a framework to
add information that will allow an organization to define priorities and maturity level. I
like to overlay a Capability Maturity Model (CMM) over a framework. This allows you
to identify, at a minimum, the current state and target state of each aspect of the security
program. Purple team exercises can help assess the effectiveness of the controls
required by the security program and also help identify gaps and oversights in it.

Incident Response Program
A mature incident response (IR) program is the necessary foundation for a purple team
program to be built on. A mature process ensures that attacks are detected and promptly
and efficiently responded to. Purple teaming can aid in maturing your IR program by
focusing on specific areas of incident response until detection, response, and ultimately
recovery time improve. For a good IR process, like many other areas of security, it’s
best to use an industry standard like NIST’s Computer Security Incident Handling Guide
(SP 800-61r2). When reading each section of the document, try to understand how you

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

could apply its information to your environment. The NIST Computer Security Incident
Handling Guide defines four phases of an IR life cycle:

• Preparation
• Detection and Analysis
• Containment, Eradication, and Recovery
• Post-Incident Activity

Using this guide as the basis of an IR plan is highly recommended. If you were to base
your IR plan on the NIST Computer Security Incident Handling Guide, you’d cover
asset management, detection tools, event categorization criteria, the structure of the IR
team, key vendors and service-level agreements (SLAs), response tools, out-of-band
communication methods, alternate meeting sites, roles and responsibilities, IR
workflow, containment strategies, and many other topics.

An IR plan should always be supplemented with IR playbooks, which are step-by-
step procedures for each role involved in a certain type of incident. It’s prudent for an
organization to develop playbooks for a wide variety of incidents, including phishing
attacks, distributed denial of service (DDOS) attacks, web defacements, and
ransomware, to name a few. Later in this chapter we discuss the use of automated
playbooks. These playbooks should be refined as lessons are learned via purple
teaming efforts and improvements are made to the IR process.

Threat Hunting
Passive monitoring is not effective enough. Today and tomorrow’s aggressors are going
to require more active and aggressive tactics, such as threat hunting. During a threat
hunting exercise, you are looking to identify and counteract adversaries that may have
already gotten past your security controls and are currently in your environment. The
goal is to find these attackers early on before they have completed their objectives. You
need to consider three factors when determining if an adversary is a threat to your
organization: capability, intent, and opportunity to do harm. Many organizations are
already performing some form of threat hunting, but it may not be formalized so that the
hunting aligns with the organization’s strategic goals.

Most organizations’ threat hunting capabilities begin with some security tools that
provide automated alerting and little to no regular data collection. Typically, you start
off by using standard procedures that haven’t been customized that much yet. Usually the
next step is to add threat feeds and increase data collection. You begin really
customizing your procedures once you start routine threat hunting. As your threat hunting
program matures, you’ll collect more and more data that you’ll correlate with your
threat feeds, and this provides you with real threat intelligence. In turn, this results in
targeted hunts based on threat intelligence specific to your environment.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Logs, system events, NetFlows, alerts, digital images, memory dumps, and other data
gathered from your environment are critical to the threat hunting process. If you do not
have data to analyze, it doesn’t matter if your team has an advanced skill set and best-
of-breed tools because they’ll have a limited perspective based on the data they can
analyze. Once the proper data is available, the threat hunting team will benefit most
from ensuring that they have good analytics tools that use machine learning and have
good reporting capabilities. Thus, once you have established procedures and have the
proper tools and information available to you for threat hunting, the blue team can
effectively hunt for the red team during red team and purple team exercises.

Data Sources
A mature threat hunting capability requires that large data sets must be mined for
abnormalities and patterns. This is where data science comes into play. Large data sets
are a result of the different types of alerts, logs, images, and other data that can provide
valuable security information about your environment. You should be collecting security
logs from all devices and software that generate them—workstations, servers,
networking devices, security devices, applications, operating systems, and so on. Large
data sets also result from the storage of NetFlow or full packet capture and the storage
of digital images and memory dumps. The security tools that are deployed in the
environment will also generate a lot of data. Valuable information can be gathered from
the following security solutions: antivirus, data loss protection, user behavior analytics,
file integrity monitoring, identity and access management, authentication, web
application firewalls, proxies, remote access tools, vendor monitoring, data
management, compliance, enterprise password vaults, host- and network-based
intrusion detection/prevention systems, DNS, inventory, mobile security, physical
security, and other security solutions. You’ll use this data to identify attack campaigns
against your organization. Ensuring that your data sources are sending the right data,
with sufficient detail, to a central repository, when possible, is vital. Central
repositories used for this purpose often have greater protections in place than the data
sources sending data to them. It’s also important to ensure that data is sent promptly and
frequently in order to better enable your blue team to respond quickly.

Incident Response Tools
You’ll need tools to help collect, correlate, analyze, and organize the vast amount of
data you’ll have. This is where you have to do a little strategic planning. Once you
understand the data and data sources you’ll be working with, then selecting tools to help
with the analysis of those systems and data becomes easier. Most organizations begin
with a strategy based on what data they have to log for compliance purposes and what
data they are prohibited from logging. You may want to also consider “right to be

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

forgotten” laws like those required by the European Union’s (EU) General Data
Protection Regulation (GDPR). Then consider the data and data sources mentioned in
the previous section and any other data source that would facilitate an investigation.

It’s important to understand how the tools you select for IR can work together.
Especially important is the ability to integrate with other tools to facilitate the
automation and correlation of data. Of course, the size of the environment and the budget
will have an impact on your overall tool strategy. Take, for instance, the need to
aggregate and correlate a large amount of security data. Large enterprises may end up
relying on highly customized solutions for storing and parsing large data sets, like data
lakes. Medium-size organizations may opt for commercial products like a security
information event management (SIEM) system that integrates with the types of data
warehouses already in use by a large number of organizations. Smaller organizations,
home networks, and lab environments may opt for some of the great free or open source
tools available to act as a correlation engine and data repository.

When you’re selecting IR tools, it’s important to ensure that your analysis tools used
during investigations can be easily removed without leaving artifacts. The ability to
easily remove a tool is an important factor in allowing you the flexibility to take an
adaptive approach to your investigations. There are a lot of tried-and-true commercial
products, but there are also a ton of open source or free tools that can be used. I’d
encourage you to experiment with a combination of commercial and free tools until you
know what works best in your environment and in what situation. For example, an
organization that has invested in Carbon Black Response may want to experiment with
Google Rapid Response (GRR) as well and really compare and contrast the two. Purple
team exercises give the blue team an opportunity to use different tools when responding
to an incident. This allows an organization to gain a better understanding of which tools
work best in its environment and which tools work best in specific scenarios.

Common Blue Teaming Challenges
Like all aspects of technology, blue teaming has its challenges. Signature-based tools
may lead to a false sense of security when they are not able to detect sophisticated
attacks. Many organizations are hesitant to replace signature-based tools with machine-
learning-based tools, often planning on upgrading after their current signature-based
tools’ licenses expire. Those same organizations often fall prey to attacks, including
ransomware, that could have been prevented if they would have performed red or
purple team exercises that could have highlighted the importance of replacing less
effective signature-based tools and revealed the false sense of security that many of
these tools provide.

Some organizations undervalue threat hunting and are hesitant to mature their threat
hunting program, fearing that it will detract from other important efforts. Organizations

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

that find themselves understaffed and underfunded often benefit the most from maturing
their blue (and purple) team operations in order to ensure they are making the best
decisions with their limited resources. Taking a passive approach to cybersecurity is
extraordinarily risky and a bit outdated. We now understand how to better prepare for
cyberattacks with threat hunting and purple teaming efforts. Since free tools exist to
support red, blue, and purple teaming efforts, it is important that investments in staffing
and training be made and that the value of hunting the threat be demonstrated and
understood across the organization.

Demonstrating the value of “hunting the threat” and getting organizational buy-in are
difficult in organizations that are very risk tolerant. This tends to happen when an
organization relies too much on risk transference mechanisms, such as using service
providers, but doesn’t monitor them closely, or relies heavily on insurance and chooses
to forgo implementing certain security controls or functions. As with most aspects of
security, you must always focus your arguments on what is important to the business. If
your argument for good security is rooted in something the company already cares about,
like human safety or maximizing profits, then it is best to base your arguments by
demonstrating, for example, how a cyberattack could put human life at risk or how the
loss of operations from a cyberattack could have an impact on profitability and the
overall valuation of the company.

Purple Teaming Operations
Now that we have covered the basics of red teaming in Chapter 7 and blue teaming in
this chapter, let’s get into more detail about purple teaming operations. We start by
discussing some core concepts that guide our purple teaming efforts—decision
frameworks and methodologies for disrupting an attack. Once we’ve covered those core
principles, we discuss measuring improvements in your security posture and purple
teaming communications.

Decision Frameworks
United States Air Force Colonel John Boyd created the OODA Loop, a decision
framework with four phases that create a cycle. The OODA loop’s four phases—
Observe, Orient, Decide, and Act—are designed to describe a single decision maker,
not a group. Real life is a bit more challenging because it usually requires collaborating
with others and reaching a consensus. Here’s a brief description of the OODA Loop’s
phases:

• Observe Our observations are the raw input into our decision process. The raw
input must be processed in order to make decisions.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Orient We orient ourselves when we consider our previous experiences,
personal biases, cultural traditions, and the information we have at hand. This is
the most important part of the OODA Loop, the intentional processing of
information where we are filtering information with an awareness of our
tendencies and biases. The orientation phase will result in decision options.

• Decide We must then decide on an option. This option is really a hypothesis that
we must test.

• Act Take the action that we decided on. Test our hypothesis.

Since the OODA Loop repeats itself, the process begins over again with observing the
results of the action taken. This decision-making framework is critical to guiding the
decisions made by both the attacking and defending team during a purple team
engagement. Both teams have many decision points during a purple team exercise. It is
beneficial to discuss the decisions made by both teams, and the OODA Loop provides a
framework for those discussions.

One of the goals of using a decision framework is to better understand how we make
decisions so that we can improve the results of those decisions. A better understanding
of ourselves helps us obscure our intentions in order to seem more unpredictable to an
adversary. The OODA Loop can also be used to clarify your adversary’s intentions and
attempt to create confusion and disorder for your adversary. If your OODA Loop is
operating at a faster cadence than your adversary’s, it puts you in an offensive mode and
can put your adversary in a defense posture.

Disrupting the Kill Chain
Let’s look at the Lockheed Martin Cyber Kill Chain framework from a purple teaming
or an attack-and-defense perspective. After all, the goal of the framework is for the
identification and prevention of cyberintrusions. We will look at the framework from the
attack-and-defense perspective for each of the framework’s phases: reconnaissance,
weaponization, delivery, exploitation, installation, command and control (C2), and acts
on objectives.

Purple team efforts differ from red team exercises in several ways, including the
amount of information shared between teams. Some purple team exercises begin with a
reconnaissance phase during which the red team will perform open source intelligence
(OSINT) gathering and will harvest e-mail addresses and gather information from a
variety of sources. Many purple team efforts have less of a focus on the reconnaissance
phase and instead rely more on interviews and technical documentation to gather
information about the target. There is still value in understanding what type of
information is available to the public. The red team may still opt to perform research

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

using social media and will focus on the organization’s current events and press
releases. The red team may also gather technical information from the target’s external
facing assets to check for information disclosure issues.

Disrupting the reconnaissance phase is a challenge because most of the red team’s
activities are passive in this phase. The blue team can collect information about
browser behaviors that are unique to the reconnaissance phase and work with other IT
teams to understand more information about website visitors and queries. Any
information that the blue team learns will go into prioritizing defenses around
reconnaissance activities.

During the weaponization phase, the red team prepares the attack. It prepares a
command and control (C2) infrastructure, selects an exploit to use, customizes malware,
and weaponizes the payload in general. The blue team can’t detect weaponization as it
happens but can learn from what it sees after the fact. The blue team will conduct
malware analysis on the payload, gathering information, including the malware’s
timeline. Old malware is typically not as concerning as new malware, which may have
been customized to target the organization. Files and metadata will be collected for
future analysis, and the blue team will identify whether artifacts are aligned with any
known campaigns. Some purple team exercises can focus solely on generating a piece of
custom malware to ensure that the blue team is capable of reversing it in order to stage
an appropriate response.

The attack is launched during the delivery phase. The red team will send a phishing e-
mail, introduce malware via USB, or deliver the payload via social media or watering
hole attacks. During the delivery phase, the blue team finally has the opportunity to
detect and block the attack. The blue team will analyze the delivery mechanism to
understand upstream functions. The blue team will use weaponized artifacts to create
indicators of compromise in order to detect new payloads during its delivery phase, and
will collect all relevant logs for analysis, including e-mail, device, operating system,
application, and web logs.

The red team gains access to the victim during the exploitation phase. A software,
hardware, physical security, human vulnerability, or configuration error must be taken
advantage of for exploitation to occur. The red team will either trigger exploitation
itself by taking advantage of, for example, a server vulnerability, or a user will trigger
the exploit by clicking a link in an e-mail. The blue team protects the organization from
exploitation by hardening the environment, training users on security topics such as
phishing attacks, training developers on security coding techniques, and deploying
security controls to protect the environment in a variety of ways. Forensic investigations
are performed by the blue team to understand everything that can be learned from the
attack.

The installation phase is when the red team establishes persistent access to the
target’s environment. Persistent access can be established on a variety of devices,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

including servers or workstations, by installing services or configuring Auto-Run keys.
The blue team performs defensive actions like installing host-based intrusion prevention
systems (HIPSs), antivirus, or monitoring processes on systems prior to this phase in
order to mitigate the impact of an attack. Once the malware is detected and extracted,
the blue team may extract the malware’s certificates and perform an analysis to
understand if the malware requires administrative privileges. Again, try to determine if
the malware used is old or new to help determine if the malware was customized to the
environment.

In the command and control (C2) phase, the red team or attacker establishes two-way
communication with a C2 infrastructure. This is typically done via protocols that can
freely travel from inside a protected network to an attacker. E-mail, web, or DNS
protocols are used because they are not typically blocked outbound. However, C2 can
be achieved via many mechanisms, including wireless or cellular technology, so it’s
important to have a broad perspective when identifying C2 traffic and mechanisms. The
C2 phase is the blue team’s last opportunity to block the attack by blocking C2
communication. The blue team can discover information about the C2 infrastructure via
malware analysis. Most network traffic may be controlled if all ingress and egress
traffic goes through a proxy or if the traffic is sinkholed.

During the “acts on objectives” phase of the kill chain, the attacker, or red team,
completes their objective. Credentials are gathered, privilege escalation occurs, lateral
movement is achieved throughout the environment, and data is collected, modified,
destroyed, or exfiltrated. The blue team aims to detect and respond to the attack. This is
where “alternate endings” can be played out. The blue team can practice different
approaches and use different tools when responding to an attack. Often the IR process is
fully implemented, including the involvement of the executive and legal teams, key
business stakeholders, and anyone else identified in the organization’s IR plan. In a real-
world attack, this is when the involvement of the communications and public relations
teams, law enforcement, banks, vendors, partners, parent companies, and customers may
be necessary. During a purple team exercise, this is where an organization may opt to
perform tabletop exercises, allowing for full attack simulation. The blue team will aim
to detect lateral movement, privilege escalation, account creation, data exfiltration, and
other attacker activity. The predeployment of incident response and digital forensics
tools will allow rapid response procedures to occur. In a purple team exercise, the blue
team will also aim to contain, eradicate, and fully recover from the incident, often
working with the red team to optimize its efforts.

Kill Chain Countermeasure Framework
The Kill Chain Countermeasure framework is focused on being able to detect, deny,
disrupt, degrade, deceive, and contain an attacker and to break the kill chain. In reality,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

it’s best to try to catch an attack early on in the detect or deny countermeasure phase,
rather than later on in the attack during the disrupt or degrade phase. The concept is
simple: for each phase in the Lockheed Martin Kill Chain, discussed in the preceding
section, ask yourself what can you do, if anything, to detect, deny, disrupt, degrade,
deceive, or contain this attack or attacker? In fact, purple team exercises can focus on a
phase in the countermeasure framework. For example, a purple team exercise can focus
on detection mechanisms until they are refined.

Let’s focus on the detect portion of the Kill Chain Countermeasure framework. We’ll
walk through some examples of detecting an adversary’s activities in each phase of the
kill chain. Detecting reconnaissance is challenging, but web analytics may provide some
information.

Detecting weaponization isn’t really possible since the preparation of the attack often
doesn’t happen inside the target environment, but network intrusion detection and
prevention systems (NIDSs and NIPSs) can alert you to some of the payload’s
characteristics. A well-trained user can detect when a phishing attack is delivered, as
may proxy solutions. End-point security solutions including host-based intrusion
detection systems (HIDSs) and antimalware solutions may detect an attack in the
exploitation and installation phases. Command and control (C2) traffic may be detected
and blocked by an NIDS/NIPS. Logs or user behavior analytics (UBA) may be used to
detect attacker (or red team) activity during the “actions on objectives” phases. These
are only a few examples of how the Kill Chain Countermeasure framework can be
applied. Each environment is different, and each organization will have different
countermeasures.

Now let’s take a different approach and focus on the C2 phase of the kill chain and
discuss examples of how each countermeasure phase—detect, deny, disrupt, degrade,
deceive, and contain—can counteract it. A network intrusion detection system may
detect C2 traffic. Firewalls can be configured to deny C2 traffic. A network intrusion
prevention system can be used to disrupt C2 traffic. A tarpit or sinkhole can be used to
degrade C2 traffic, and DNS redirects can be used for deceptive tactics on C2 traffic.
I’ve seen organizations use these frameworks to create matrices to organize their purple
teaming efforts. It’s a great way of ensuring that you have the big picture in mind when
organizing your efforts.

Communication
Purple teaming involves detailed and frequent communication between the blue and red
teams. Some purple teaming projects are short term and don’t produce a vast amount of
data (for example, a purple team effort to test the security controls on a single device
that is being manufactured). However, purple teaming efforts that are ongoing and are
intended to protect an enterprise can produce a vast amount data, especially when you

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

take into consideration guides like the Mitre ATT&CK Matrix and the Lockheed Martin
Cyber Kill Chain and Countermeasure framework.

A communication plan should be created for each purple team effort prior to the
beginning of testing and response activities. Communication during a purple team
exercise can take the form of meetings, collaborative work, and a variety of reports,
including status reports, reports of testing results, and after-action reports (AARs).
Some deliverables will be evidence based. The blue team will be incorporating
indicators of compromise (IOCs) into the current security environment whenever they
are discovered. The red team will have to record all details about when and how all its
testing activities were performed. The blue team will have to record when and how
attacks were detected and resolved. Lots of forensic images, memory dumps, and packet
captures will be created and stored for future reference. The goal is to ensure that no
lesson is lost and no opportunity for improvement is missed.

Purple teaming can fast-track improvements in measures such as mean time to
detection, mean time to response, and mean time to remediation. Measuring
improvements in detection or response times and communicating improvements to the
organization’s security posture will help foster support for the purple teaming efforts.
Many of the communication considerations in Chapter 7 also apply to purple teaming,
especially the need for an AAR that captures input from different perspectives.
Feedback from a variety of sources is critical and can lead to significant improvements
in the ability to respond to cyberthreats. AARs have led organizations to purchase better
equipment, refine their processes, invest in more training, change their work schedules
so there are no personal gaps during meal times, refine their contact procedures, invest
more in certain tools, or remove ineffective tools. At the end of the day, the blue and red
teams should feel like their obstacles have been addressed.

Purple Team Optimization
The most mature organizations have security automation and orchestration configured in
their environment to greatly expedite their attack-and-defense efforts. Security
automation involves the use of automatic systems to detect and prevent cyberthreats.
Security orchestration occurs when you connect and integrate your security applications
and processes together. When you combine security automation and orchestration, you
can automate tasks, or playlists, and integrate your security tools so they work together
across your entire environment. Many security tasks can be automated and orchestrated,
including attack, response, and other operational processes such as reporting.

Security automation and orchestration can eliminate repetitive, mundane tasks and
streamline processes. It can also greatly speed up response times, in some cases
reducing the triage process down to a few minutes. Many organizations begin working

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

with security automation and orchestration on simple tasks. A good start may be the
repetitive tasks involved with phishing investigations or the blocking of indicators.
Also, automation and orchestration for malware analysis is a great place to start
experimenting with process optimization.

Optimizing your purple teaming efforts can lead to some really exciting advancements
in the security program. Using an open source tool like AttackIQ’s FireDrill for attack
automation and combining it with a framework like the Mitre ATT&CK Matrix can
quickly lead to improvements in your purple teaming capabilities and security posture.

After optimizing your attacks, it’s important to see how your defensive activities can
be automated and orchestrated. Nuanced workflows can be orchestrated. Phantom has a
free community edition that can be used to experiment with IR playbooks. Playbooks
can be written without the need for extensive coding knowledge or can be customized
using Python. Consider applying the following playbook logic to an environment and
orchestrating interactions between disparate tools:

Malware detected by antivirus (AV) or IDS, endpoint security → snapshot taken
of virtual machine → device quarantined using Network Access Control (NAC)
→ memory analyzed → file reputation analyzed → file detonated in sandbox →
geolocation looked up → file on endpoints hunted for → hash blocked → URL
blocked

Process optimization for purple teaming is also possible. There are many great open
source IR collaboration tools. Some of my favorites are from TheHive Project. TheHive
is an analysis and security operations center (SOC) orchestration platform, and it has
SOC workflow and collaboration functions built in. All investigations are grouped into
cases, and cases are broken down into tasks. TheHive has a Python API that allows an
analyst to send alerts and create cases out of different sources such as a SIEM system or
e-mail. TheHive Project has also made some supplementary tools such as Cortex, an
automation tool for bulk data analysis. Cortex can pull IOCs from TheHive’s
repositories. Cortex has analyzers for popular services such as VirusTotal,
DomainTools, PassiveTotal, and Google Safe Browsing, to name just a few. TheHive
Project also created Hippocampe, a threat-feed-aggregation tool that lets you query it
through a REST API or a web UI.

Organizations that have healthy budgets or organizations that prohibit the use of open
source tools have many commercial products available to assist them with automation
and orchestration of their processes and attack-and-defense activities. Tools like
Phantom’s commercial version, Verodin, ServiceNow, and a wide variety of
commercial SIEMs and log aggregators can be integrated to optimize processes.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary
Becoming a master in any skill will always take passion and repetitive practice. Purple
teaming allows for cyber-sparring between your offensive and defensive security teams.
The result is that both teams refine their skill sets, and the organization is much better
off for it. Purple team efforts combine red teaming attacks and blue team responses into
a single effort where collaboration breeds improvement. No organization should assume
that its defenses are impregnable. Testing the effectiveness of both your attack and
defense capabilities protects your investment in cybersecurity controls and helps set a
path forward toward maturation.

For Further Reading
A Symbiotic Relationship: The OODA Loop, Intuition, and Strategic Thought
(Jeffrey N. Rule) www.dtic.mil/dtic/tr/fulltext/u2/a590672.pdf

AttackIQ FireDrill https://attackiq.com/

Carbon Black Response https://www.carbonblack.com/products/cb-response/

Cyber Kill Chain https://www.lockheedmartin.com/us/what-we-do/aerospace-
defense/cyber/cyber-kill-chain.html

Google Rapid Response https://github.com/google/grr

International Standards Organization, ISOs 27001 and
270 https://www.iso.org/isoiec-27001-information-security.html

National Institute of Standards and Technology’s Computer Security Incident
Handling Guide (NIST IR 800-61r2) https://csrc.nist.gov/publications/detail/sp/800-
61/archive/2004-01-16

National Institute of Standards in Technology (NIST) Cybersecurity
Framework https://www.nist.gov/cyberframework

Terraform https://www.terraform.io

TheHive, Cortex, and Hippocampe https://thehive-project.org/

References
1. Lionel Giles, Sun Tzu On The Art of War, Abington, Oxon: Routledge, 2013.
2. William Langewiesche, “Welcome to the Dark Net, a Wilderness Where Invisible

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.dtic.mil/dtic/tr/fulltext/u2/a590672.pdf
https://attackiq.com/
https://www.carbonblack.com/products/cb-response/
https://www.lockheedmartin.com/us/what-we-do/aerospace-defense/cyber/cyber-kill-chain.html
https://github.com/google/grr
https://www.iso.org/isoiec-27001-information-security.html
https://csrc.nist.gov/publications/detail/sp/800-61/archive/2004-01-16
https://www.nist.gov/cyberframework
https://www.terraform.io
https://thehive-project.org/
https://technet24.ir
https://technet24.ir
https://technet24.ir

World Wars Are Fought and Hackers Roam Free,” Vanity Fair, September 11,
2016.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 9
Bug Bounty Programs

This chapter unpacks the topic of bug bounty programs and presents both sides of the
discussion—from a software vendor’s point of view and from a security researcher’s
point of view. We discuss the topic of vulnerability disclosure at length, including a
history of the trends that led up to the current state of bug bounty programs. For example,
we discuss full public disclosure, from all points of view, allowing you to decide which
approach to take. The types of bug bounty programs are also discussed, including
corporate, government, private, public, and open source. We then investigate the
Bugcrowd bug bounty platform, from the viewpoint of both a program owner (vendor)
and a researcher. We also look at the interfaces for both. Next, we discuss earning a
living finding bugs as a researcher. Finally, the chapter ends with a discussion of
incident response and how to handle the receipt of vulnerability reports from a software
developer’s point of view.

This chapter goes over the whole vulnerability disclosure reporting and response
process.

In this chapter, we discuss the following topics:
• History of vulnerability disclosure
• Bug bounty programs
• Bugcrowd in-depth
• Earning a living finding bugs
• Incident response

History of Vulnerability Disclosure
Software vulnerabilities are as old as software itself. Simply put, software
vulnerabilities are weakness in either the design or implementation of software that may
be exploited by an attacker. It should be noted that not all bugs are vulnerabilities. We
will distinguish bugs from vulnerabilities by using the exploitability factor. In 2015,
Synopsys produced a report that showed the results of analyzing 10 billion lines of
code. The study showed that commercial code had 0.61 defects per 1,000 lines of code

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

(LoC), whereas open source software had 0.76 defects per 1,000 LoC; however, the
same study showed that commercial code did better when compared against industry
standards, such as OWASP Top 10.1 Since modern applications commonly have LoC
counts in the hundreds of thousands, if not millions, a typical application may have
dozens of security vulnerabilities. One thing is for sure: as long as we have humans
developing software, we will have vulnerabilities. Further, as long as we have
vulnerabilities, users are at risk. Therefore, it is incumbent on security professionals
and researchers to prevent, find, and fix these vulnerabilities before an attacker takes
advantage of them, harming the user.

First, an argument can be made for public safety. It is a noble thing to put the safety of
others above oneself. However, one must consider whether or not a particular action is
in the interest of public safety. For example, is the public safe if a vulnerability is left
unreported and thereby unpatched for years and an attacker is aware of the issue and
takes advantage of the vulnerability using a zero-day to cause harm? On the other hand,
is the public safe when a security researcher releases a vulnerability report before
giving the software vendor an opportunity to fix the issue? Some would argue that the
period of time between the release and the fix puts the public at risk; others argue that it
is a necessary evil, for the greater good, and that the fastest way to get a fix is through
shaming the software developer. There is no consensus on this matter; instead, it is a
topic of great debate. In this book, in the spirit of ethical hacking, we will lean toward
ethical or coordinated disclosure (as defined later); however, we hope that we present
the options in a compelling manner and let you, the reader, decide.

Vendors face a disclosure dilemma: the release of vulnerability information changes
the value of the software to users. As Choi et al. have described, users purchase
software and expect a level of quality in that software. When updates occur, some users
perceive more value, others less value.2 To make matters worse, attackers make their
own determination of value in the target, based on the number of vulnerabilities
disclosed as well. If the software has never been updated, then an attacker may perceive
the target is ripe for assessment and has many vulnerabilities. On the other hand, if the
software is updated frequently, that may be an indicator of a more robust security effort
on the part of the vendor, and the attacker may move on. However, if the types of
vulnerabilities patched are indicative of broader issues—perhaps broader classes of
vulnerability, such as remotely exploitable buffer overflows—then attackers might
figure there are more vulnerabilities to find and it may attract them like bugs to light or
sharks to blood.

Common methods of disclosure include full vendor disclosure, full public disclosure,
and responsible disclosure. In the following sections, we describe these concepts.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

NOTE These terms are controversial, and some may prefer “partial vendor
disclosure” as an option to handle cases when proof of concept (POC) code is withheld
and when other parties are involved in the disclosure process. To keep it simple, in this
book we will stick with the aforementioned.

Full Vendor Disclosure
Starting around the year 2000, some researchers were more likely to cooperate with
vendors and perform full vendor disclosure, whereby the researcher would disclose the
vulnerability to the vendor fully and would not disclose to any other parties. There were
several reasons for this type of disclosure, including fear of legal reprisals, lack of
social media paths to widely distribute the information, and overall respect for the
software developers, which led to a sense of wanting to cooperate with the vendor and
simply get the vulnerability fixed.

This method often led to an unlimited period of time to patch a vulnerability. Many
researchers would simply hand over the information, then wait as long as it took,
perhaps indefinitely, until the software vendor fixed the vulnerability—if they ever did.
The problem with this method of disclosure is obvious: the vendor has a lack of
incentive to patch the vulnerability. After all, if the researcher was willing to wait
indefinitely, why bother? Also, the cost of fixing some vulnerabilities might be
significant, and before the advent of social media, there was little consequence for not
providing a patch to a vulnerability.

In addition, software vendors faced a problem: if they patched a security issue
without publically disclosing it, many users would not patch the software. On the other
hand, attackers could reverse-engineer the patch and discover the issue, using
techniques we will discuss in this book, thus leaving the unpatched user more
vulnerable than before. Therefore, the combination of problems with this approach led
to the next form of disclosure—full public disclosure.

Full Public Disclosure
In a response to the lack of timely action by software vendors, many security
researchers decided to take matters into their own hands. There have been countless
zines, mailing lists, and Usenet groups discussing vulnerabilities, including the infamous
Bugtraq mailing list, which was created in 1993. Over the years, frustration built in the
hacker community as vendors were not seen as playing fairly or taking the researchers

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

seriously. In 2001, Rain Forest Puppy, a security consultant, made a stand and said that
he would only give a vendor one week to respond before he would publish fully and
publically a vulnerability.3 In 2002, the infamous Full Disclosure mailing list was born
and served as a vehicle for more than a decade, where researchers freely posted
vulnerability details, with or without vendor notification.4 Some notable founders of the
field, such as Bruce Schneier, blessed the tactic as the only way to get results.5 Other
founders, like Marcus Ranum, disagreed by stating that we are no better off and less
safe.6 Again, there is little to no agreement on this matter; we will allow you, the reader,
to determine for yourself where you side.

There are obviously benefits to this approach. First, some have claimed the software
vendor is most likely to fix an issue when shamed to do it.7 On the other hand, the
approach is not without issues. The approach causes a lack of time for vendors to
respond in an appropriate manner and may cause a vendor to rush and not fix the actual
problem.8 Of course, those type of shenanigans are quickly discovered by other
researchers, and the process repeats. Other difficulties arise when a software vendor is
dealing with a vulnerability in a library they did not develop. For example, when
OpenSSL had issues with Heartbleed, thousands of websites, applications, and
operating system distributions became vulnerable. Each of those software developers
had to quickly absorb that information and incorporate the fixed upstream version of the
library in their application. This takes time, and some vendors move faster than others,
leaving many users less safe in the meantime as attackers began exploiting the
vulnerability within days of release.

Another advantage of full public disclosure is to warn the public so that people may
take mitigating steps prior to a fix being released. This notion is based on the premise
that black hats likely know of the issue already, so arming the public is a good thing and
levels the playing field, somewhat, between attackers and defenders.

Through all of this, the question of public harm remains. Is the public safer with or
without full disclosure? To fully understand that question, one must realize that attackers
conduct their own research and may know about an issue and be using it already to
attack users prior to the vulnerability disclosure. Again, we will leave the answer to
that question for you to decide.

Responsible Disclosure
So far, we have discussed the two extremes: full vendor disclosure and full public
disclosure. Now, let’s take a look at a method of disclosure that falls in between the
two: responsible disclosure. In some ways, the aforementioned Rain Forest Puppy took
the first step toward responsible disclosure, in that he gave vendors one week to
establish meaningful communication, and as long as they maintained that communication,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

he would not disclose the vulnerability. In this manner, a compromise can be made
between the researcher and vendor, and as long as the vendor cooperates, the researcher
will as well. This seemed to be the best of both worlds and started a new method of
vulnerability disclosure.

In 2007, Mark Miller of Microsoft formally made a plea for responsible disclosure.
He outlined the reasons, including the need to allow time for a vendor, such as
Microsoft, to fully fix an issue, including the surrounding code, in order to minimize the
potential for too many patches.9 Miller made some good points, but others have argued
that if Microsoft and others had not neglected patches for so long, there would not have
been full public disclosure in the first place.10 To those who would make that argument,
responsible disclosure is tilted toward vendors and implies that they are not responsible
if researchers do otherwise. Conceding this point, Microsoft itself later changed its
position and in 2010 made another plea to use the term coordinated vulnerability
disclosure (CVD) instead.11 Around this time, Google turned up the heat by asserting a
hard deadline of 60 days for fixing any security issue prior to disclosure.12 The move
appeared to be aimed at Microsoft, which sometimes took more than 60 days to fix a
problem. Later, in 2014, Google formed a team called Project Zero, aimed at finding
and disclosing security vulnerabilities, using a 90-day grace period.13

Still, the hallmark of responsible disclosure is the threat of disclosure after a
reasonable period of time. The Computer Emergency Response Team (CERT)
Coordination Center (CC) was established in 1988, in response to the Morris worm,
and has served for nearly 30 years as a facilitator of vulnerability and patch
information.14 The CERT/CC has established a 45-day grace period when handling
vulnerability reports, in that the CERT/CC will publish vulnerability data after 45 days,
unless there are extenuating circumstances.15 Security researchers may submit
vulnerabilities to the CERT/CC or one of its delegated entities, and the CERT/CC will
handle coordination with the vendor and will publish the vulnerability when the patch is
available or after the 45-day grace period.

No More Free Bugs
So far, we have discussed full vendor disclosure, full public disclosure, and
responsible disclosure. All of these methods of vulnerability disclosure are free,
whereby the security researcher spends countless hours finding security vulnerabilities
and, for various reasons not directly tied to financial compensation, discloses the
vulnerability for the public good. In fact, it is often difficult for a researcher to be paid
under these circumstances without being construed as shaking down the vendor.

In 2009, the game changed. At the annual CanSecWest conference, three famous
hackers, Charlie Miller, Dino Dai Zovi, and Alex Sotirov, made a stand.16 In a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

presentation led by Miller, Dai Zovi and Sotirov held up a cardboard sign that read
“NO MORE FREE BUGS.” It was only a matter of time before researchers became
more vocal about the disproportionate number of hours required to research and
discover vulnerabilities versus the amount of compensation received by researchers.
Not everyone in the security field agreed, and some flamed the idea publically.17 Others,
taking a more pragmatic approach, noted that although these three researchers had
already established enough “social capital” to demand high consultant rates, others
would continue to disclose vulnerabilities for free to build up their status.18 Regardless,
this new sentiment sent a shockwave through the security field. It was empowering to
some, scary to others. No doubt, the security field was shifting toward researchers over
vendors.

Bug Bounty Programs
The phrase “bug bounty” was first used in 1995 by Jarrett Ridlinghafer at Netscape
Communication Corporation.19 Along the way, iDefense (later purchased by VeriSign)
and TippingPoint helped the bounty process by acting as middlemen between
researchers and software, facilitating the information flow and remuneration. In 2004,
the Mozilla Foundation formed a bug bounty for Firefox.20 In 2007, the Pwn2Own
competition was started at CanSecWest and served as a pivot point in the security field,
as researchers would gather to demonstrate vulnerabilities and their exploits for prizes
and cash.21 Later, in 2010, Google started its program, followed by Facebook in 2011,
followed by the Microsoft Online Services program in 2014.22 Now there are hundreds
of companies offering bounties on vulnerabilities.

The concept of bug bounties is an attempt by software vendors to respond to the
problem of vulnerabilities in a responsible manner. After all, the security researchers,
in the best case, are saving companies lots of time and money in finding vulnerabilities.
On the other hand, in the worst case, the reports of security researchers, if not handled
correctly, may be prematurely exposed, thus costing companies lots of time and money
due to damage control. Therefore, an interesting and fragile economy has emerged as
both vendors and researchers have interest and incentives to play well together.

Types of Bug Bounty Programs
Several types of bug bounty programs exist, including corporate, government, private,
public, and open source.

Corporate and Government
Several companies, including Google, Facebook, Apple, and Microsoft, are running

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

their own bug bounty programs directly. More recently, Tesla, United, GM, and Uber
launched their programs. In these cases, the researcher interacts directly with the
company. As discussed already in this chapter, each company has its own views on bug
bounties and run how it runs its programs. Therefore, different levels of incentives are
offered to researchers. Governments are playing too, as the U.S. government launched a
successful “Hack the Pentagon” bug bounty program in 2016,23 which lasted for 24
days. Some 1,400 hackers discovered 138 previously unknown vulnerabilities and were
paid about $75,000 in rewards.24 Due to the exclusive nature of these programs,
researchers should read the terms of a program carefully and decide whether they want
to cooperate with the company or government, prior to posting.

Private
Some companies set up private bug bounty programs, directly or through a third party, to
solicit the help of a small set of vetted researchers. In this case, the company or a third
party vets the researchers and invites them to participate. The value of private bug
bounty programs is the confidentiality of the reports (from the vendor’s point of view)
and the reduced size of the researcher pool (from the researcher’s point of view). One
challenge that researchers face is they may work tireless hours finding a vulnerability,
only to find that it has already been discovered and deemed a “duplicate” by the vendor,
which does not qualify for a bounty.25 Private programs reduce that possibility. The
downside is related: the small pool of researchers means that vulnerabilities may go
unreported, leaving the vendor with a false sense of security, which is often worse than
having no sense of security.

Public
Public bug bounty programs are just that—public. This means that any researcher is
welcome to submit reports. In this case, companies either directly or through a third
party announce the existence of the bug bounty program and then sit back and wait for
the reports. The advantage of these programs over private programs is obvious—with a
larger pool of researchers, more vulnerabilities may be discovered. On the other hand,
only the first researcher gets the bounty, which may turn off some of the best
researchers, who may prefer private bounty programs. In 2015, the Google Chrome
team broke all barriers for a public bounty program by offering an infinite pool of
bounties for their Chrome browser.26 Up to that point, researchers had to compete on
one day, at CanSecWest, for a limited pool of rewards. Now, researchers may submit all
year for an unlimited pool of funds. Of course, at the bottom of the announcement is the
obligatory legalese that states the program is experimental and Google may change it at
any time.27 Public bug bounty programs are naturally the most popular ones available
and will likely remain that way.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Open Source
Several initiatives exist for securing open source software. In general, the open source
projects are not funded and thereby lack the resources that a company may have to
handle security vulnerabilities, either internally or reported by others. The Open Source
Technology Improvement Fund (OSTIF) is one such effort to support the open source
community.28 The OSTIF is funded by individuals and groups looking to make a
difference in software that is used by others. Support is given through establishing bug
bounties, providing direct funding to open source projects to inject resources to fix
issues, and arranging professional audits. The open source projects supported include
the venerable OpenSSL and OpenVPN projects. These grassroots projects are noble
causes and worthy of researchers’ time and donor funds.

NOTE OSTIF is a registered 501(c)(3) nonprofit organization with the U.S.
government and thereby qualifies for tax-deductible donations from U.S. citizens.

Incentives
Bug bounty programs offer many unofficial and official incentives. In the early days,
rewards included letters, t-shirts, gift cards, and simply bragging rights. Then, in 2013,
Yahoo! was shamed into giving more than swag to researchers. The community began to
flame Yahoo! for being cheap with rewards, giving t-shirts or nominal gift cards for
vulnerability reports. In an open letter to the community, Ramses Martinez, the director
of bug finding at Yahoo!, explained that he had been funding the effort out of his own
pocket. From that point onward, Yahoo! increased its rewards to $150 to $15,000 per
validated report.29 From 2011 to 2014, Facebook offered an exclusive “White Hat Bug
Bounty Program” Visa debit card.30 The rechargeable black card was coveted and,
when flashed at a security conference, allowed the researcher to be recognized and
perhaps invited to a party.31 Nowadays, bug bounty programs still offer an array of
rewards, including Kudos (points that allow researchers to be ranked and recognized),
swag, and financial compensation.

Controversy Surrounding Bug Bounty Programs
Not everyone agrees with the use of bug bounty programs because some issues exist that
are controversial. For example, vendors may use these platforms to rank researchers,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

but researchers cannot normally rank vendors. Some bug bounty programs are set up to
collect reports, but the vendor might not properly communicate with the researcher.
Also, there might be no way to tell whether a response of “duplicate” is indeed
accurate. What’s more, the scoring system might be arbitrary and not accurately reflect
the value of the vulnerability disclosure, given the value of the report on the black
market. Therefore, each researcher will need to decide if a bug bounty program is for
them and whether the benefits outweigh the downsides.

Popular Bug Bounty Program Facilitators
Several companies have emerged to facilitate bug bounty programs. The following
companies were started in 2012 and are still serving this critical niche:

• Bugcrowd
• HackerOne
• SynAck

Each of these has its strengths and weaknesses, but we will take a deeper look at only
one of them: Bugcrowd.

Bugcrowd in Depth
Bugcrowd is one of the leading crowd-source platforms for vulnerability intake and
management. It allows for several types of bug bounty programs, including private and
public programs. Private programs are not published to the public, but the Bugcrowd
team maintains a cadre of top researchers who have proven themselves on the platform,
and they can invite a number of those researchers into a program based on the criteria
provided. In order to participate in private programs, the researchers must undergo an
identity-verification process through a third party. Conversely, researchers may freely
submit to public programs. As long as they abide with the terms of the platform and the
program, they will maintain an active status on the platform and may continue to
participate in the bounty program. If, however, a researcher violates the terms of the
platform or any part of the bounty program, they will be banned from the site and forfeit
any potential income. This dynamic tends to keep honest researchers honest. Of course,
as they say, “hackers gonna hack,” but at least the rules are clearly defined, so there
should be no surprises on either side.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CAUTION You have been warned: play nicely or lose your privilege to participate on
Bugcrowd or other sites!

Bugcrowd also allows for two types of compensation for researchers: monetary and
Kudos. Funded programs are established and then funded with a pool to be allocated by
the owner for submissions, based on configurable criteria. Kudos programs are not
funded and instead offer bragging rights to researchers, as they accumulate Kudos and
are ranked against other researchers on the platform. Also, Bugcrowd uses the ranking
system to invite a select set of researchers into private bounty programs.

The Bugcrowd web interface has two parts: one for the program owners and the other
for the researchers.

Program Owner Web Interface
The web interface for the program owner is a RESTful interface that automates the
management of the bug bounty program.

Summary
The first screen within the bug bounty program is the Summary screen, which highlights
the number of untriaged submissions. In the example provided here, five submissions
have not been categorized. The other totals represent the number of items that have been
triaged (shown as “to review”), the number of items to be resolved (shown as “to fix”),
and the number of items that have been resolved (shown as “fixed”). A running log of
activities is shown at the bottom of the screen.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Submissions
The next screen within the program owner’s web interface is the Submissions screen.
On the left side of this screen you can see the queue of submissions, along with their
priority. These are listed as P1 (Critical), P2 (High), P3 (Moderate), P4 (Low), and P5
(Informational), as shown next.

In the center pane is a description of the submission, along with any metadata,
including attachments. On the right side of the screen are options to update the overall
status of a submission. The “Open” status levels are New, Triaged, and Unresolved, and

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

the “Closed” status levels are Resolved, Duplicate, Out of Scope, Not Reproducible,
Won’t Fix, and Not Applicable. Also from this side of the screen you can adjust the
priority of a submission, assign the submission to a team member, and reward the
researcher.

Researchers
You can review the researchers by selecting the Researchers tab in the top menu. The
Researchers screen is shown here. As you can see, only one researcher is participating
in the bounty program, and he has five submissions.

Rewarding Researchers
When selecting a reward as the program owner, you will have a configurable list of
rewards to choose from on the right. In the following example, the researcher was
granted a bounty of $1,500.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Rewards
You can find a summary of rewards by selecting the Rewards tab in the top menu. As
this example shows, a pool of funds may be managed by the platform, and all funding
and payment transactions are processed by Bugcrowd.

Insights
Bugcrowd provides the program owner with key insights on the Insights screen. It
shows key statistics and offers an analysis of submissions, such as target types,
submission types, and technical severities.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Resolved Status
When you as the program owner resolve or otherwise adjudicate an issue, you can
select a new status to the right of the submission’s detailed summary. In this example,
the submission is marked as “resolved,” which effectively closes the issue.

API Access Setup
An application programming interface (API) for Bugcrowd functionality is provided to
program owners. In order to set up API access, select API Access in the drop-down
menu in the upper-right corner of the screen. Then you can provide a name for the API
and create the API tokens.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The API token is provided to the program owner and is only shown on the following
screen. You will need to record that token because it is not shown beyond this screen.

NOTE The token shown here has been revoked and will no longer work. Contact
Bugcrowd to establish your own program and create an API key.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Program Owner API Example
As the program owner, you can interact with the API by using Curl commands, as
illustrated in the API documentation located at
https://docs.bugcrowd.com/v1.0/docs/authentication-v3.

The bug-crowd-api.py Wrapper
An unofficial wrapper to the Bugcrowd API may be found at
https://github.com/asecurityteam/bug_crowd_client.

The library may be installed with Pip, as follows:

Get Bug Bounty Submissions
Using the preceding API key and the bug-crowd-api wrapper, you can interact with
submissions programmatically. For example, you can use the following code to pull the
description from the first submission of the first bug bounty program:

As you can see, the API wrapper allows for easy retrieval of bounty or submission
data. Refer to the API documentation for a full description of functionality.

Researcher Web Interface
As a researcher, if you are invited to join a private bug bounty by the Bugcrowd team,
you would receive an invitation like the following, which can be found under the Invites

||||||||||||||||||||

||||||||||||||||||||

https://docs.bugcrowd.com/v1.0/docs/authentication-v3
https://github.com/asecurityteam/bug_crowd_client
https://technet24.ir
https://technet24.ir

menu by accessing the drop-down menu in the upper-right corner of the screen.

After joining Bugcrowd as a researcher, you are presented with the options shown
here (accessed from the main dashboard). You may view “quick tips” (by following the
link), review the list of public bounty programs, or submit a test report.

When submitting a test report, you will be directed to the Hack Me! bug bounty
program, which is a sandbox for new researchers to play in. By completing the form and
clicking Submit, you may test the user interface and learn what to expect when
submitting to a real program. For example, you will receive a thank-you e-mail with a
link to the submission. This allows you to provide comments and communicate with the
program owner.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Earning a Living Finding Bugs
So you want to be a bug bounty hunter, but how much does it pay? Some have reportedly
made $200,000 or more a year in bug bounties.32 However, it would be safe to say that
is the exception, not the rule. That said, if you are interested in honing your bug-finding
skills and earning some money for your efforts, you’ll need to take into consideration the
following issues.

Selecting a Target
One of the first considerations is what to target for your bug-hunting efforts. The best
approach is to start searching for bounty programs on registries such as Firebounty.com.
The newer the product and the more obscure the interface, the more likely you will find
undiscovered issues. Remember, for most programs, only the first report is rewarded.
Often sites such as Bugcrowd.com will list any known security issues, so you don’t
waste your time on issues that have been reported already. Any effort you give to
researching your target and its known issues is time well spent.

Registering (If Required)
Some programs require you to register or maybe even be vetted by a third party to
participate in them. This process is normally simple, provided you don’t mind sending a
copy of your identification to a third party such as NetVerify. If this is an issue for you,
move on—there are plenty of other targets that do not require this level of registration.

||||||||||||||||||||

||||||||||||||||||||

http://Firebounty.com
http://Bugcrowd.com
https://technet24.ir
https://technet24.ir

Understanding the Rules of the Game
Each program will have a set of terms and conditions, and you would do yourself a
favor to read them carefully. Often, you will forfeit the right to disclose a vulnerability
outside the program if you submit to a bug bounty program. In other words, you will
likely have to make your disclosure in coordination with the vendor, and perhaps only if
the vendor allows you to disclose. However, sometimes this can be negotiated, because
the vendor has an incentive to be reasonable with you as the researcher in order to
prevent you from disclosing on your own. In the best-case scenario, the vendor and
researcher will reach a win/win situation, whereby the researcher is compensated in a
timely manner and the vendor resolves the security issue in a timely manner—in which
case the public wins, too.

Finding Vulnerabilities
Once you have found a target, registered (if required), and understand the terms and
conditions, it is time to start finding vulnerabilities. You can use several methods to
accomplish this task, as outlined in this book, including fuzzing, code reviews, and
static and dynamic security testing of applications. Each researcher will tend to find and
follow a process that works best for them, but some basic steps are always necessary:

• Enumerate the attack surfaces, including ports and protocols (OSI layers 1–7).
• Footprint the application (OSI layer 7).
• Assess authentication (OSI layers 5–7).
• Assess authorization (OSI layer 7).
• Assess validation of input (OSI layers 1–7, depending on the app or device).
• Assess encryption (OSI layers 2–7, depending on the app or device).

Each of these steps has many substeps and may lead to potential vulnerabilities.

Reporting Vulnerabilities
Not all vulnerability reports are created equal, and not all vulnerabilities get fixed in a
timely manner. There are, however, some things you can do to increase your odds of
getting your issue fixed and receiving your compensation. Studies have shown that
vulnerability reports with stack traces and code snippets and that are easy to read have
a higher likelihood of being fixed faster than others.33 This makes sense: make it easy on
the software developer, and you are more likely to get results. After all, because you are
an ethical hacker, you do want to get the vulnerability fixed in a timely manner, right?
The old saying holds true: you can catch more flies with honey than with vinegar.34

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Simply put, the more information you provide, in an easy-to-follow and reproducible
format, the more likely you are to be compensated and not be deemed a “duplicate”
unnecessarily.

Cashing Out
After the vulnerability report has been verified as valid and unique, you as the
researcher should expect to be compensated. Remuneration may come in many forms—
from cash to debit cards to Bitcoin. Be aware of the regulation that any compensation
over $20,000 must be reported to the IRS by the vendor or bug bounty platform
provider.35 In any event, you should check with your tax advisor concerning the tax
implications of income generated by bug bounty activities.

Incident Response
Now that we have discussed the offensive side of things, let’s turn our attention to the
defensive side. How is your organization going to handle incident reports?

Communication
Communication is key to the success of any bug bounty program. First, communication
between the researcher and the vendor is critical. If this communication breaks down,
one party will become disgruntled and may go public without the other party, which
normally does not end well. On the other hand, if communication is established early
and often, a relationship may be formed between the researcher and the vendor, and both
parties are more likely to be satisfied with the outcome. Communication is where bug
bounty platforms such as Bugcrowd, HackerOne, and SynAck shine. It is the primary
reason for their existence, to facilitate fair and equitable communication between the
parties. Most researchers will expect a quick turnaround on communications sent, and
the vendor should expect to respond to researcher messages within 24 to 48 hours of
receipt. Certainly, the vendor should not go more than 72 hours without responding to a
communication from the researcher.

As a vendor, if you plan to run your own bug bounty program or any other
vulnerability intake portal, be sure that the researcher can easily find how to report
vulnerabilities on your site. Also be sure to clearly explain how you expect to
communicate with the researcher and your intentions to respond within a reasonable
time frame to all messages. Often, when researchers become frustrated working with
vendors, they cite the fact that the vendor was nonresponsive and ignored
communications. This can lead to the researcher going public without the vendor. Be
aware of this pitfall and work to avoid it as a vendor. The researcher holds critical

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

information that you as a vendor need to successfully remediate, before the issue
becomes public knowledge. You hold the key to that process going smoothly:
communication.

Triage
After a vulnerability report is received, a triage effort will need to be performed to
quickly sort out if the issue is valid and unique and, if so, what severity it is. The
Common Vulnerability Scoring System (CVSS) and Common Weakness Scoring System
(CWSS) are helpful in performing this type of triage. The CVSS has gained more
traction and is based on the factors of base, temporal, and environmental. Calculators
exist online to determine a CVSS score for a particular software vulnerability. The
CWSS has gained less traction and has not been updated since 2014; however, it does
provide more context and ranking capabilities for vulnerabilities by introducing the
factors of base, attack surface, and environmental. By using either the CVSS or CWSS,
a vendor may rank vulnerabilities and weaknesses and thereby make internal decisions
as to which ones to prioritize and allocate resources to first in order to resolve them.

Remediation
Remediation is the main purpose for vulnerability disclosure. After all, if the vendor is
not going to resolve an issue in a timely manner, the researchers will fall back on full
public disclosure and force the vendor to remediate. Therefore, it is imperative that a
vendor schedule and remediate security vulnerabilities within a timely manner, which is
generally 30 to 45 days. Most researchers are willing to wait that long before going
public; otherwise, they would not have contacted the vendor in the first place.

It is critical that not only the vulnerability be resolved, but any surrounding code or
similar code be reviewed for the existence of related weaknesses. In other words, as the
vendor, take the opportunity to review the class of vulnerability across all your code
bases to ensure that next month’s fire drill will not be another one of your products. On
a related note, be sure that the fix does not open up another vulnerability. Researchers
will check the patch and ensure you did not simply move things around or otherwise
obfuscate the vulnerability.

Disclosure to Users
To disclose (to users) or not to disclose: that is the question. In some circumstances,
when the researcher has been adequately compensated, the vendor may be able to
prevent the researcher from publically disclosing without them. However, practically
speaking, the truth will come out, either through the researcher or some other anonymous
character online. Therefore, as the vendor, you should disclose security issues to users,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

including some basic information about the vulnerability, the fact that it was a security
issue, its potential impact, and how to patch it.

Public Relations
The public vulnerability disclosure information is vital to the user base recognizing the
issue and actually applying the patch. In the best-case scenario, a coordinated
disclosure is negotiated between the vendor and the researcher, and the researcher is
given proper credit (if desired) by the vendor. It is common that the researcher will then
post their own disclosure, commending the vendor for cooperation. This is often seen as
a positive for the software vendor. In other cases, however, one party may get out ahead
of the other, and often the user is the one who gets hurt. If the disclosure is not well
communicated, the user may become confused and might not even realize the severity of
the issue and therefore not apply the patch. This scenario has the potential of becoming a
public relations nightmare, as other parties weigh in and the story takes on a life of its
own.

Summary
In this chapter, we discussed bug bounties. We started with a discussion of the history of
disclosure and the reasons that bug bounties were created. Next, we moved into a
discussion of different types of bug bounties, highlighting the Bugcrowd platform. Then,
we discussed how to earn a living reporting bugs. Finally, we covered some practical
advice on responding to bug reports as a vendor. This chapter should better equip you to
handle bug reports, both as a researcher and a vendor.

For Further Reading
Bugcrowd bugcrowd.com

HackerOne hackerone.com

Iron Geek blog (Adrian Crenshaw) www.irongeek.com/i.php?page=security/ethics-
of-full-disclosure-concerning-security-vulnerabilities

Open Source Technology Improvement Fund (OSTIF) ostif.org/the-ostif-mission/

SynAck synack.com

Wikipedia on bug bounties en.wikipedia.org/wiki/Bug_bounty_program

Wikipedia on Bugtraq en.wikipedia.org/wiki/Bugtraq

||||||||||||||||||||

||||||||||||||||||||

http://bugcrowd.com
http://hackerone.com
http://www.irongeek.com/i.php?page=security/ethics-of-full-disclosure-concerning-security-vulnerabilities
http://ostif.org/the-ostif-mission/
http://synack.com
http://en.wikipedia.org/wiki/Bug_bounty_program
http://en.wikipedia.org/wiki/Bugtraq
https://technet24.ir
https://technet24.ir

References
1. Synopsys, “Coverity Scan Open Source Report Shows Commercial Code Is More

Compliant to Security Standards than Open Source Code,” Synopsys, July 29,
2015, https://news.synopsys.com/2015-07-29-Coverity-Scan-Open-Source-
Report-Shows-Commercial-Code-Is-More-Compliant-to-Security-Standards-than-
Open-Source-Code.

2. J. P. Choi, C. Fershtman, and N. Gandal, “Network Security: Vulnerabilities and
Disclosure Policy,” Journal of Industrial Economics, vol. 58, no. 4, pp. 868–894,
2010.

3. K. Zetter, “Three Minutes with Rain Forest Puppy | PCWorld,” PCWorld, January
5, 2012.

4. “Full disclosure (mailing list),” Wikipedia, September 6, 2016.
5. B. Schneier, “Essays: Schneier: Full Disclosure of Security Vulnerabilities a

‘Damned Good Idea.’” Schneier on Security, January 2007,
https://www.schneier.com/essays/archives/2007/01/schneier_full_disclo.html.

6. M. J. Ranum, “The Vulnerability Disclosure Game: Are We More Secure?” CSO
Online, March 1, 2008, www.csoonline.com/article/2122977/application-
security/the-vulnerability-disclosure-game--are-we-more-secure-.html.

7. Schneier, “Essays.”
8. Imperva, Inc., “Imperva | Press Release | Analysis of Web Site Penetration Retests

Show 93% of Applications Remain Vulnerable After ‘Fixes,’” June 2004,
http://investors.imperva.com/phoenix.zhtml?c=247116&p=irol-
newsArticle&ID=1595363. [Accessed: 18-Jun-2017]

9. A. Sacco, “Microsoft: Responsible Vulnerability Disclosure Protects Users,” CSO
Online, January 9, 2007, www.csoonline.com/article/2121631/build-ci-
sdlc/microsoft--responsible-vulnerability-disclosure-protects-users.html.
[Accessed: 18-Jun-2017].

10. Schneier, “Essays.”
11. G. Keizer, “Drop ‘Responsible’ from Bug Disclosures, Microsoft Urges,”

Computerworld, July 22, 2010,
www.computerworld.com/article/2519499/security0/drop--responsible--from-
bug-disclosures--microsoft-urges.html. [Accessed: 18-Jun-2017].

12. Keizer, “Drop ‘Responsible’ from Bug Disclosures.”
13. “Project Zero (Google),” Wikipedia, May 2, 2017.
14. “CERT Coordination Center,” Wikipedia, May 30, 2017.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://news.synopsys.com/2015-07-29-Coverity-Scan-Open-Source-Report-Shows-Commercial-Code-Is-More-Compliant-to-Security-Standards-than-Open-Source-Code
https://www.schneier.com/essays/archives/2007/01/schneier_full_disclo.html
http://www.csoonline.com/article/2122977/application-security/the-vulnerability-disclosure-game--are-we-more-secure-.html
http://investors.imperva.com/phoenix.zhtml?c=247116&p=irol-newsArticle&ID=1595363
http://www.csoonline.com/article/2121631/build-ci-sdlc/microsoft--responsible-vulnerability-disclosure-protects-users.html
http://www.computerworld.com/article/2519499/security0/drop--responsible--from-bug-disclosures--microsoft-urges.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

15. CERT/CC, “Vulnerability Disclosure Policy," Vulnerability Analysis | The CERT
Division, www.cert.org/vulnerability-analysis/vul-disclosure.cfm? [Accessed: 18-
Jun-2017].

16. D. Fisher, “No More Free Bugs for Software Vendors,” Threatpost | The First Stop
for Security News, March 23, 2009, https://threatpost.com/no-more-free-bugs-
software-vendors-032309/72484/. [Accessed: 18-Jun-2017].

17. P. Lindstrom, “No More Free Bugs,” Spire Security Viewpoint, March 26, 2009,
http://spiresecurity.com/?p=65.

18. A. O’Donnell, “‘No More Free Bugs’? There Never Were Any Free Bugs,”
ZDNet, March 24, 2009, www.zdnet.com/article/no-more-free-bugs-there-never-
were-any-free-bugs/. [Accessed: 18-Jun-2017].

19. “Bug Bounty Program,” Wikipedia, June 14, 2017.
20. Mozilla Foundation, “Mozilla Foundation Announces Security Bug Bounty

Program,” Mozilla Press Center, August 2004,
https://blog.mozilla.org/press/2004/08/mozilla-foundation-announces-security-
bug-bounty-program/. [Accessed: 25-Jun-2017].

21. “Pwn2Own,” Wikipedia, June 14, 2017.
22. E. Friis-Jensen, “The History of Bug Bounty Programs,” Cobalt.io, April 11, 2014,

https://blog.cobalt.io/the-history-of-bug-bounty-programs-50def4dcaab3.
[Accessed: 18-Jun-2017].

23. C. Pellerin, “DoD Invites Vetted Specialists to ‘Hack’ the Pentagon,” U.S.
Department of Defense, March 2016.
https://www.defense.gov/News/Article/Article/684616/dod-invites-vetted-
specialists-to-hack-the-pentagon/. [Accessed: 24-Jun-2017].

24. J. Harper, “Silicon Valley Could Upend Cybersecurity Paradigm,” National
Defense Magazine, vol. 101, no. 759, pp. 32–34, February 2017.

25. B. Popper, “A New Breed of Startups Is Helping Hackers Make Millions—
Legally,” The Verge, March 4, 2015,
https://www.theverge.com/2015/3/4/8140919/get-paid-for-hacking-bug-bounty-
hackerone-synack. [Accessed: 15-Jun-2017].

26. T. Willis, “Pwnium V: The never-ending* Pwnium,” Chromium Blog, February
2015.

27. Willis, “Pwnium V.”
28. “Bug Bounties—What They Are and Why They Work,” OSTIF.org,

https://ostif.org/bug-bounties-what-they-are-and-why-they-work/. [Accessed: 15-
Jun-2017].

||||||||||||||||||||

||||||||||||||||||||

http://www.cert.org/vulnerability-analysis/vul-disclosure.cfm?
https://threatpost.com/no-more-free-bugs-software-vendors-032309/72484/
http://spiresecurity.com/?p=65
http://www.zdnet.com/article/no-more-free-bugs-there-never-were-any-free-bugs/
https://blog.mozilla.org/press/2004/08/mozilla-foundation-announces-security-bug-bounty-program/
https://blog.cobalt.io/the-history-of-bug-bounty-programs-50def4dcaab3
https://www.defense.gov/News/Article/Article/684616/dod-invites-vetted-specialists-to-hack-the-pentagon/
https://www.theverge.com/2015/3/4/8140919/get-paid-for-hacking-bug-bounty-hackerone-synack
http://OSTIF.org
https://ostif.org/bug-bounties-what-they-are-and-why-they-work/
https://technet24.ir
https://technet24.ir

29. T. Ring, “Why Bug Hunters Are Coming in from the Wild,” Computer Fraud &
Security, vol. 2014, no. 2, pp. 16–20, February 2014.

30. E. Mills, “Facebook Hands Out White Hat Debit Cards to Hackers,” CNET,
December 2011, https://www.cnet.com/news/facebook-hands-out-white-hat-debit-
cards-to-hackers/. [Accessed: 24-Jun-2017].

31. Mills, “Facebook Hands Out White Hat Debit Cards to Hackers.”
32. J. Bort, “This Hacker Makes an Extra $100,000 a Year as a ‘Bug Bounty Hunter,’”

Business Insider, May 2016, www.businessinsider.com/hacker-earns-80000-as-
bug-bounty-hunter-2016-4. [Accessed: 25-Jun-2017].

33. H. Cavusoglu, H. Cavusoglu, and S. Raghunathan, “Efficiency of Vulnerability
Disclosure Mechanisms to Disseminate Vulnerability Knowledge,” Transactions of
the American Institute of Electrical Engineers, vol. 33, no. 3, pp. 171–185, March
2007.

34. B. Franklin, Poor Richard’s Almanack (1744).
35. K. Price, “US Income Taxes and Bug Bounties,” Bugcrowd Blog, March 17, 2015,

http://blog.bugcrowd.com/us-income-taxes-and-bug-bounties/. [Accessed: 25-Jun-
2017].

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.cnet.com/news/facebook-hands-out-white-hat-debit-cards-to-hackers/
http://www.businessinsider.com/hacker-earns-80000-as-bug-bounty-hunter-2016-4
http://blog.bugcrowd.com/us-income-taxes-and-bug-bounties/
https://technet24.ir
https://technet24.ir
https://technet24.ir

PART III

Exploiting Systems

 Chapter 10 Getting Shells Without Exploits
 Chapter 11 Basic Linux Exploits
 Chapter 12 Advanced Linux Exploits
 Chapter 13 Windows Exploits
 Chapter 14 Advanced Windows Exploitation
 Chapter 15 PowerShell Exploitation
 Chapter 16 Next-Generation Web Application Exploitation
 Chapter 17 Next-Generation Patch Exploitation

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 10
Getting Shells Without Exploits

One of the key tenets in penetration testing is stealth. The sooner we are seen on the
network, the faster the responders can stop us from progressing. As a result, using tools
that seem natural on the network and using utilities that do not generate any noticeable
impact for users is one of the ways we can stay under the radar. In this chapter we are
going to look at some ways to gain access and move laterally through an environment
while using tools that are native on the target systems.

In this chapter, we discuss the following topics:
• Capturing password hashes
• Using Winexe
• Using WMI
• Taking advantage of WinRM

Capturing Password Hashes
When we look at ways to gain access to systems that don’t involve exploits, one of the
first challenges we have to overcome is how to gain credentials to one of these target
systems. We’re going to focus on our target Windows 10 system for this chapter, so first
you need to know what hashes we can capture, and second you need to know how we
can use those hashes to our advantage.

Understanding LLMNR and NBNS
When we look up a DNS name, Windows systems go through a number of different steps
to resolve that name to an IP address for us. The first step involves searching local files.
Windows will search the hosts or LMHosts file on the system to see if there’s an entry
in that file. If there isn’t, then the next step is to query DNS. Windows will send a DNS
query to the default nameserver to see if it can find an entry. In most cases, this will
return an answer, and we’ll see the web page or target host we’re trying to connect to.

In situations where DNS fails, modern Windows systems use two protocols to try to
resolve the hostname on the local network. The first is Link Local Multicast Name

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Resolution (LLMNR). As the name suggests, this protocol uses multicast in order to try
to find the host on the network. Other Windows systems will subscribe to this multicast
address, and when a request is sent out by a host, if anyone listening owns that name and
can turn it into an IP address, a response is generated. Once the response is received,
the system will take us to the host.

However, if the host can’t be found using LLMNR, Windows has one additional way
to try to find the host. NetBIOS Name Service (NBNS) uses the NetBIOS protocol to try
to discover the IP. It does this by sending out a broadcast request for the host to the local
subnet, and then it waits for someone to respond to that request. If a host exists with that
name, it can respond directly, and then our system knows that to get to that resource, it
needs to go to that location.

Both LLMNR and NBNS rely on trust. In a normal environment, a host will only
respond to these protocols if it is the host being searched for. As a malicious actor,
though, we can respond to any request sent out to LLMNR or NBNS and say that the host
being searched for is owned by us. Then when the system goes to that address, it will try
to negotiate a connection to our host, and we can gain information about the account that
is trying to connect to us.

Understanding Windows NTLMv1 and NTLMv2
Authentication
When Windows hosts communicate among themselves, there are a number of ways in
which systems can authenticate, such as via Kerberos, certificates, and NetNTLM. The
first protocol we are going to focus on is NetNTLM. As the name suggests, NetNTLM
provides a safer way of sending Windows NT LAN Manager (NTLM) hashes across the
network. Before Windows NT, LAN Manager (LM) hashes were used for network-
based authentication. The LM hash was generated using Data Encryption Standard
(DES) encryption. One of the weaknesses of the LM hash was that it was actually two
separate hashes combined together. A password would be converted to uppercase and
padded with null characters until it reached 14 characters, and then the first and second
halves of the password would be used to create the two portions of the hash. As
technologies progressed, this became a bigger deal because each half of the password
could be cracked individually, meaning that a password cracker would at most have to
crack two 7-character passwords.

With the advent of rainbow tables, cracking became even easier, so Windows NT
switched to using the NT LAN Manager (NTLM) hashes. Passwords of any length could
be hashed, and the RC4 algorithm was used for generating the hash. This is vastly more
secure for host-based authentication, but there’s an issue with network-based
authentication. If someone is listening and we’re just passing raw NTLM hashes around,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

what stops that person from grabbing a hash and replaying it? As a result, the
NetNTLMv1 and NetNTLMv2 challenge/response hashes were created to give
additional randomness to the hashes and make them slower to crack.

NTLMv1 uses a server-based nonce to add to the randomness. When we connect to a
host using NTLMv1, we first ask for a nonce. Next, we take our NTLM hash and re-hash
it with that nonce. Then we send that to the server for authentication. If the server knows
the NT hash, it can re-create the challenge hash using the challenge that was sent. If the
two match, then the password is correct. The problem with this protocol is that a
malicious attacker could trick someone into connecting to their server and provide a
static nonce. This means that the NTLMv1 hash is just slightly more complex than the
raw NTLM credential and can be cracked almost as quickly as the raw NTLM hash.
Therefore, NTLMv2 was created.

NTLMv2 provides two different nonces in the challenge hash creation. The first is
specified by the server, and the second by the client. Regardless of whether the server is
compromised and has a static nonce, the client will still add complexity through its
nonce, thus ensuring that these credentials crack more slowly. This also means that the
use of rainbow tables is no longer an efficient way to crack these types of hashes.

NOTE It is worth noting that challenge hashes cannot be used for pass-the-hash
attacks. If you don’t know what type of hash you are dealing with, refer to the entry for
hashcat Hash Type Reference in the “For Further Reading” section at the end of this
chapter. Use the URL provided to identify the type of hash you’re dealing with.

Using Responder
In order to capture hashes, we need to use a program to encourage the victim host to
give up the NetNTLM hashes. To get these hashes, we’ll use Responder to answer the
LLMNR and NBNS queries issued. We’re going to use a fixed challenge on the server
side, so we’ll only have to deal with one set of randomness instead of two.

Getting Responder
Responder already exists on our Kali Linux distribution. However, Kali doesn’t always
update as frequently as the creator of Responder, Laurent Gaffie, commits updates.
Because of this, we’re going to use git to download the latest version of Responder. To
ensure we have all the software we need, let’s make sure our build tools are installed in

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Kali:

Now that git is installed, we need to clone the repository. Cloning the repository will
download the source code as well as create a location where it is easy to keep our
software up to date. To clone the repository, do the following:

In order to update our repository, simply do the following:

If there are any updates, our code would now be up to date. By verifying that our code
is up to date before each execution, we can make sure we’re using the latest techniques
to get the most out of Responder.

Running Responder
Now that we have Responder installed, let’s look at some of the options we can use.
First of all, let’s look at all the help options:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

There are a lot of options here, so let’s concentrate on the ones that are most useful
and less likely to break anything. Some of these options, such as wredir, will break
networks under certain conditions. Also, some actions will give us away, such as
forcing basic authentication. When we force basic authentication, the victim will see a
pop-up box asking for a username and password. The upside is that we will get the
password in plain text, but the downside is that the user might realize that something is
up.

Now that we’ve covered what not to do, let’s take a look at how to call Responder.
The most important option is specifying the interface . For our test, we’re going to be
using our primary network interface, eth0. If you are in a system that has multiple
interfaces, you could specify an alternate interface or use ALL to listen to all interfaces.
The next option we’ll specify is fingerprint . This option gives us some basic
information about hosts using NetBIOS on the network, such as the names being looked
up and the host OS versions. This will give us an indication of what types of boxes are
on the network.

Finally, we’ll specify to set up the WPAD server . WPAD is the Web Proxy Auto-
Discovery protocol. It is used by Windows devices to find a proxy server on the
network. This is safe to use if your Kali box has direct access to the Internet. However,
if you’re on a network where your Kali box has to go through a proxy, then this will
break the clients you poison, so don’t use it. The benefit of setting this up is that if hosts
look for a WPAD server for web traffic, any web traffic will trigger Responder’s
poisoning to get a hash—whereas without it, you have to wait for someone to go to a
share that doesn’t exist.

Lab 10-1: Getting Passwords with Responder

NOTE This lab has a README file that discusses the setup of the network for this
and other labs in this chapter. Therefore, you should read this file before continuing to
make sure these labs work for you.
Now that you have the basics down, let’s put your knowledge to work. In our network
we have a Windows 10 server with the settings applied from the README file. We
need to make sure that both our systems are on the same network. Then we run
Responder and start the poisoning process:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Now that Responder is listening, we should be able to make a simple request with our
Windows 10 host for a share that doesn’t exist, and Responder should take care of the
rest.

As you can see in Figure 10-1, our Windows system just returns an “Access is
denied” message when we try to access the share. We don’t see any other strange
behavior on the Windows system. On the Kali box, though, we see a lot of activity.

Figure 10-1 Requesting a file from a share that doesn’t exist

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Notice that two different types of poisoning are being done here. The first is NBNS
poisoning and the second is LLMNR . Because of the fingerprinting, both requests
give us information about the underlying host OS, and we can see the IP address of the
requesting host as well as what system it was trying to connect to. The final piece of
data we are given is the NetNTLMv2 hash along with the username . We can try to
crack this credential and see if it works on the system.

Now that we have a valid hash, press CTRL-C on the Responder window to stop it
from running. The next step is to dump the hashes out of Responder in a format that John
the Ripper can process:

We can see our NetNTLMv2 hash here, but we also see two new files created in the
directory: DumpNTLMv2.txt and DumpNTLMv1.txt. We know that the hash passed to
Responder was Version 2 (v2), so we can just run John against the v2 file and see if it
can crack the password:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

John has successfully cracked our password, and it found the password “Password1”
for the “User” user. With these credentials, we can access the system remotely. In the
rest of this chapter, we’re going to use these credentials to further interact with our
victim machine.

Using Winexe
Winexe is a remote administration tool for Windows systems that runs on Linux. With
Winexe, we can run applications on the target system or open up an interactive
command prompt. One additional benefit is that we can ask Winexe to launch our shell
as “system” if we are targeting a system where our user has elevated credentials, giving
us additional privileges to the system.

Lab 10-2: Using Winexe to Access Remote Systems
We have a password to our victim system from using Responder, but how do we now
interact with our victim system? Using Winexe is a common way for attackers to access
remote systems. It uses named pipes through the hidden IPC share on the target system to
create a management service. Once that service is created, we can connect to it and call
commands as the service.

To verify that the target system is sharing the IPC share, we use smbclient to list the
shares on the target system:

For many of the tools we use in the rest of this chapter, we’re going to see this
common way of specifying the logon credentials for the target system. The format is
<DOMAIN>\<USERNAME>%<PASSWORD>. Here, we specified our user
credentials as User%Password1, our username and password. The -L option asks
smbclient to list the shares on the system. We can see that there are a number of shares,
including our IPC$ share.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

With knowledge that our IPC share is available, let’s see if we have the ability to
launch a command prompt. We’ll use the same syntax for specifying the username, only
this time, we’ll use the syntax //<IP ADDRESS> to specify the target system. We also
add the --uninstall flag, which will uninstall our service on exit. Finally, we specify
cmd.exe for the cmd.exe application, which gives us an interactive shell on the target
system.

We now see the Windows banner and command prompt, which means we succeeded.
Next, we want to check our privilege level so that we can determine the rights we are
operating with. By typing in whoami, we can print out the user ID of our shell. In this
case, our user is the “user” user, which means that we will have privileges as that user.

WARNING If you exit the shell by using CTRL-C or if you don’t use the --uninstall flag,
the service that’s created will remain on the target system. As an attacker, this is bad
because you’re leaving a trace of the techniques you’re using for remote access. As a
penetration tester, leaving artifacts makes it difficult to determine if another breach has
occurred, and it may set off red flags after you’ve left a system. This doesn’t always
come up right away. In six months, someone might ask if you left the service around. So,
if you aren’t cleaning up, you’ll be left relying on notes to answer some very
uncomfortable questions.

Finally, to leave our shell, we can just type exit at the command prompt. We should
then see the Bash prompt, which lets us know that we have left the shell. On the server
side, our service is being uninstalled and our connection closed.

Lab 10-3: Using Winexe to Gain Elevated Privileges
In many cases, the things we want to do on a target system will require elevated
privileges. In the previous lab, we were able to get access as a normal user, but we
really want access as the SYSTEM user. Because this user has full privileges over the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

system, we can access credentials, memory, and other valuable targets.
To execute our attack, we’re going to use all the same options as our previous lab, but

we’ll add in the --system flag. This will take care of escalation for us, and the end
result is a highly privileged shell, as shown here:

As you can see here, we’re now accessing the victim machine as the SYSTEM user.
Although not part of the scope of this exercise, this allows us to dump credentials,
create new users, reconfigure the device, and perform many other tasks that a normal
user might not be able to do.

Using WMI
Windows Management Instrumentation (WMI) is a set of specifications for accessing
system configuration information across an enterprise. WMI allows administrators to
view processes, patches, hardware, and many other pieces of information about the
target system. It has the ability to list information, create new data, delete data, and
change data on the target system based on the permissions of the calling user. As an
attacker, this means that we can use WMI to find out quite a bit about a target system as
well as manipulate the system state.

Lab 10-4 : Querying System Information with WMI
Knowing that we can query system information with WMI, we might want to know a
number of things about our target system. For example, we might want to know who is
logged on interactively to see if there is a risk of us getting caught. In this lab, we’re
going to use two different WMI queries to see what user or users are logged into the
target system.

To query WMI, we have to build a WMI Query Language (WQL) query that will get
the information we are looking for. WQL looks similar to Structured Query Language
(SQL), which is used for database queries. To build our query, though, we have to know
a little bit more about how WMI works. The most important of the things we need to
know is the class we will be querying. The “For Further Reading” section at the end of
this chapter contains an entry that points to Microsoft’s list of classes that are accessible

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

through WMI. However, we’re going to look at just two in this exercise.
The first class we’re going to be querying is the win32_logonsession class.1 This

class contains information about the sessions that are logged in, the type of logon that
has been performed, the start time, and other data. Let’s put together a query to use first,
and then we’ll look at how to execute this query using WMI:

Using this query, we select two different pieces of data from the win32_logonsession
class. The first is LogonType, which contains information about the type of login being
performed. The second, LogonId, is the internal ID number for the logon session. To
execute this query, we have to use a WMI client. Kali has two different clients for WMI
queries: the first is pth-wmic, and the second is part of Impacket’s scripts. The pth-
wmic client is easier for scripting, so we’re going to be focusing on that.

The syntax for pth-wmic is similar to that of the Winexe tool we used in the last lab.
We’ll specify the user and the host the same way, and then add our WQL query to the
end of the command, like so:

Looking at the output from our query, we see the session and the logon type. A number
of logon types are shown here, so how do we know which sessions we are interested
in? To determine this, refer to Table 10-1, which shows the different types of logons and
what they mean.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 10-1 Logon Types for Logon Sessions

Now that we know what the types mean, let’s limit our query to just type 2 logons.
This should tell us what logon IDs we need to look for in order to find the interactive
user logons.

We still see a number of different logons. Let’s take a look at three of them: one in the
30K series, one in the 50K series, and one in the “over 1 million” series. The logon
sessions are mapped to users in the win32_loggedonuser table. Unfortunately, this is
hard to query through WQL for specific logon IDs because the values are strings and not
integers, so we’re going to script this with pth-wmic and egrep to target the values we
want:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

We see three users: User, DWM-1, and UMFD-0. DWM and UMFD are driver-based
accounts, so we can safely ignore them. We see a pattern here, so let’s look at only the
processes above 1 million:

Finally, we can see the sessions logged into the box. Both are for the User user. Using
WMI, we have determined that User is logged in interactively to the system. Therefore,
if we do anything that pops up a window or causes disruptions, we might be detected.

Lab 10-5: Executing Commands with WMI
Now that we know a bit more about WMI, let’s look at how to execute commands. We
have two options for executing commands using WMI: we could create a new process
with WMI and then monitor the output, or we could use one of the tools built into Kali.
For this example, we’ll use the pth-wmis binary to launch commands. However, this
requires us to create a place to capture the output of our commands.

In the setup for this exercise, we are going to load up the latest Impacket source code
and use a stand-alone SMB server provided with it. Impacket is a series of Python
scripts that allow us to interact with things outside of Samba. It’s frequently used in
exploit tool development for things that require SMB interaction. Here are the
instructions for getting and installing the latest tools:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Next, we want to start our SMB server. Let’s do this in another window so that we
can have our current window for doing work. We’re going to use the smbserver.py
script that we just installed to launch our share. We want to map the /tmp directory to a
share called “share.” Let’s try it:

Now that our SMB server is started, let’s verify that it works. We’re going to do this
by using the smbclient tool along with the -N flag to tell it not to use authentication, and
we’re going to list the shares on our local system.

We see that our share is present. This share is mapped to the Kali system tmp
directory and it allows for writes, so we can redirect output to the share. One of the nice
things about Windows is that you don’t have to map a share to read and write to it, so
the logged-in user won’t notice a strange share being loaded.

To do a basic test, let’s run a pth-wmis command that will just echo something simple
to a file. In this example, we’re going to use a similar command to pth-wmic, but we’ll
include our command at the end. We run this command against our Windows target:

Next, let’s do something a bit more interesting. Let’s create a backdoor user so that we
can get back in later. We want to add this user to the Administrators group locally so
that we have full access when we connect back. This ensures that if the user changes
their password, we still have access to the target system. To start with, we’re going to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

use the net user command to create a new user called evilhacker:

We can see that our command succeeded, but with WMI, that just means it
successfully launched the binary; this doesn’t mean the activity worked. We logged the
output from our command to a file so we can see what the application printed out. In this
case, the file says that the command completed successfully. So now that we have a new
user on the system, let’s add this new user to the local Administrators group using net
localuser:

Now that we’ve added our user evilhacker to the Administrators group, let’s make
sure our activity worked. We’ll go back in and use net localgroup for the
Administrators group to make sure our user appears. We check our output file, and it is
in the group, so we have succeeded. Last but not least, let’s check to make sure we have
access:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We’ve successfully created a backdoor into the system that will allow us to come
back later and access it. We have added it to the Administrators group so that we can
escalate privileges to the SYSTEM user. When we tried our winexe command, we
successfully got back a shell, verifying that we have access when we need it in the
future, regardless of what the user changes their password to.

Taking Advantage of WinRM
WinRM is a relatively new tool that is supported on Windows systems. Starting with
Windows 8 and Windows Server 2012, this tool creates an additional way of remotely
interacting with Windows systems. WinRM uses SOAP over web-based connections to
interact with a target system. It supports both HTTP and HTTPS, as well as
authentication based on Basic Auth, hashes, and Kerberos. Along with the ability to do
scripting with WMI-based interfaces, launch applications, and interact with
PowerShell, this is a very powerful tool we can use when we find it available.

Lab 10-6: Executing Commands with WinRM
One of the ways that WinRM can help us is by allowing us to execute commands on
remote systems. Unfortunately, at the time of this writing, there weren’t a lot of
command-line tools from Kali to do this. However, a Python library called pywinrm is
available that will interact with WinRM. We are going to use that library to execute
commands. We’ve included a script in the Ch10 directory of the Gray Hat Hacking
github repo for Chapter 5 that will help us execute our commands. But first, we need to
install the pywinrm Python module.

To do this, open a Kali shell and type in pip install pywinrm. This will download and
install the Python module as well as any other required submodules. Once the install is
finished, make sure you have the ghwinrm.py script from the book material. The
ghwinrm.py script uses pywinrm to allow us to call either PowerShell commands or
shell scripts over WinRM.

The syntax for ghwinrm.py is similar to the other tools we’ve used. Let’s use it to run
a simple whoami command. We just need to specify the user, target, and command
we’re going to run:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You can see that we specified -U for the user credentials, as normal, but there are
some additional syntax pieces here. The -c flag means “run a command.” The -t flag
specifies the target, and the command is added to the end. Although we can see that we
successfully ran a command, one of the differences with running commands with
WinRM versus WMI is that the commands don’t maintain any kind of state and you can’t
do an interactive session. Let’s look at an example:

You can see here that when we print the current directory with cd, we are in the User
directory. When we cd to the root of C:, it doesn’t maintain state. This means that we’ll
have to stack commands if we need to move around, as shown here:

By stacking commands using the && operator, we can move around and run
commands on the same line. The && operator says that if the first command was
successful, run the second command. We can use multiple && operators in a row, but in
this case, we just cd into the root of C: and then perform a dir command. We can see the
contents of the root of C:, showing we successfully moved around and ran a command.

This is just a quick example of the things you can do; using WinRM will allow you to
execute any command you don’t need an interactive session to run. This includes
creating and manipulating services, processes, and other system states.

Lab 10-7: Using WinRM to Run PowerShell Remotely

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

One of the popular techniques attackers are employing right now is to use PowerShell to
interact with systems. Because many systems don’t log PowerShell very well, attackers
can hide their activities. This is part of the reason why Chapter 15 is devoted to
exploitation using PowerShell. Although we’re not going to look at exploitation in this
chapter, let’s take a look at using our ghwinrm.py script to launch some basic
PowerShell commands:

You can see we changed our -c option to -p so that we run PowerShell instead of a
command shell. The user and target options are the same, and we pass a PowerShell
method to the script to get it to run. In this case, we get a process list, and it prints the
same things it would in a regular PowerShell shell. This is all well and good, but being
able to put together more complex scripts will allow us to get a lot further in working
with a target system.

Let’s create a basic script that prints who logged onto the system. We’re going to save
this file as psscript.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This script prints information about the user who logged in or out of the system, the
type of action, and when it happened. We’ve saved this information to a file because the
ghwinrm.py script can also take a file as an argument to be run on the remote system
with PowerShell. It doesn’t actually drop any files on the target system; instead, it runs
them encoded with PowerShell, so we don’t have to worry about script signing and
other security constraints.

Here, you can see that we’ve specified our file to run using the -f option, and when it
runs on the remote system, it returns the logon information for us. This is just one
example of a script we might want to run, but the possibilities are almost limitless.
However, keep in mind that there is a size constraint. Large files won’t work, but we
can combine multiple techniques to get these larger files across. We’ll look more at that

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

topic in Chapter 15.

Summary
In this chapter, we looked at a number of ways to get onto a target system without using
an exploit. We looked at stealing and cracking credentials using Responder to spoof
LLMNR and NetBIOS Name Services responses. This allowed us to gather credentials
that were passed using NetNTLM, and then we cracked those credentials with John the
Ripper.

We looked at different ways to run commands as well with the credentials we
captured. This includes using Winexe, which gives us a remote interactive shell. We
also used WMI to query system information and run commands. With WinRM, we went
beyond simply launching shells to being able to pass PowerShell scripts to the target.

While doing this, we were able to “live off the land” and use built-in tools and
processes on these target systems. This reduces the risk of being caught and reduces the
possibility we’ll leave something bad on a victim system.

For Further Reading
hashcat Hash Type Reference https://hashcat.net/wiki/doku.php?id=example_hashes

Pass the Hash Toolkit https://github.com/byt3bl33d3r/pth-toolkit and
https://media.blackhat.com/us-13/US-13-Duckwall-Pass-the-Hash-Slides.pdf

Responder Blog http://g-laurent.blogspot.com/

Responder GitHub Repository https://github.com/lgandx/Responder

Winexe Tools Page https://tools.kali.org/maintaining-access/winexe

WMI Class Lists https://msdn.microsoft.com/en-us/library/aa394554(v=vs.85).aspx

WMI Reference https://msdn.microsoft.com/en-us/library/aa394572(v=vs.85).aspx

Reference
1. Microsoft, “Win32_LogonSession class,” August 1, 2017,

https://msdn.microsoft.com/en-us/library/aa394189(v=vs.85).aspx.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://hashcat.net/wiki/doku.php?id=example_hashes
https://github.com/byt3bl33d3r/pth-toolkit
https://media.blackhat.com/us-13/US-13-Duckwall-Pass-the-Hash-Slides.pdf
http://g-laurent.blogspot.com/
https://github.com/lgandx/Responder
https://tools.kali.org/maintaining-access/winexe
https://msdn.microsoft.com/en-us/library/aa394554(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394572(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394189(v=vs.85).aspx
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 11
Basic Linux Exploits

Why study exploits? Ethical hackers should study exploits to understand whether
vulnerabilities are exploitable. Sometimes security professionals mistakenly believe
and will publicly state that a certain vulnerability isn’t exploitable, but black hat
hackers know otherwise. One person’s inability to find an exploit for a vulnerability
doesn’t mean someone else can’t. It’s a matter of time and skill level. Therefore, ethical
hackers must understand how to exploit vulnerabilities and check for themselves. In the
process, they might need to produce proof-of-concept code to demonstrate to a vendor
that a vulnerability is exploitable and needs to be fixed.

In this chapter, we discuss the following topics:
• Stack operations and function-calling procedures
• Buffer overflows
• Local buffer overflow exploits
• Exploit development process

Stack Operations and Function-Calling Procedures
The concept of a stack in computer science can best be explained by comparing it to a
stack of lunch trays in a school cafeteria. When you put a tray on the stack, the tray that
was previously on top is now covered up. When you take a tray from the stack, you take
the tray from the top of the stack, which happens to be the last one put there. More
formally, in computer science terms, a stack is a data structure that has the quality of a
first in, last out (FILO) queue.

The process of putting items on the stack is called a push and is done in assembly
language code with the push command. Likewise, the process of taking an item from the
stack is called a pop and is accomplished with the pop command in assembly language
code.

Every program that runs has its own stack in memory. The stack grows backward from
the highest memory address to the lowest. This means that, using our cafeteria tray
example, the bottom tray would be the highest memory address, and the top tray would

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

be the lowest. Two important registers deal with the stack: Extended Base Pointer
(EBP) and Extended Stack Pointer (ESP). As Figure 11-1 indicates, the EBP register is
the base of the current stack frame of a process (higher address). The ESP register
always points to the top of the stack (lower address).

Figure 11-1 The relationship of the EBP and ESP on a stack

As explained in Chapter 2, a function is a self-contained module of code that can be
called by other functions, including the main() function. When a function is called, it
causes a jump in the flow of the program. When a function is called in assembly code,
three things take place:

• By convention, the calling program sets up the function call by first placing the
function parameters on the stack in reverse order.

• Next, the Extended Instruction Pointer (EIP) is saved on the stack so the program
can continue where it left off when the function returns. This is referred to as the
return address.

• Finally, the call command is executed, and the address of the function is placed in
the EIP to execute.

NOTE The assembly shown in this chapter is produced with the following gcc
compile option: –fno-stack-protector (as described in Chapter 2). This disables stack
protection, which helps you to learn about buffer overflows. A discussion of recent
memory and compiler protections can be found in Chapter 12.

In assembly code, the call looks like this:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The called function’s responsibilities are first to save the calling program’s EBP
register on the stack, then to save the current ESP register to the EBP register (setting the
current stack frame), and then to decrement the ESP register to make room for the
function’s local variables. Finally, the function gets an opportunity to execute its
statements. This process is called the function prolog.

In assembly code, the prolog looks like this:

The last thing a called function does before returning to the calling program is to clean
up the stack by incrementing ESP to EBP, effectively clearing the stack as part of the
leave statement. Then the saved EIP is popped off the stack as part of the return process.
This is referred to as the function epilog. If everything goes well, EIP still holds the next
instruction to be fetched, and the process continues with the statement after the function
call.

In assembly code, the epilog looks like this:

You will see these small bits of assembly code over and over when looking for buffer
overflows.

Buffer Overflows
Now that you have the basics down, we can get to the good stuff. As described in
Chapter 2, buffers are used to store data in memory. We are mostly interested in buffers
that hold strings. Buffers themselves have no mechanism to keep you from putting too
much data into the reserved space. In fact, if you get sloppy as a programmer, you can
quickly outgrow the allocated space. For example, the following declares a string in
memory of 10 bytes:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

So what happens if you execute the following?

Let’s find out:

Now compile and execute the program as follows:

NOTE In Linux-style operating systems, it’s worth noting the convention for prompts
that helps you distinguish between a user shell and a root shell. Typically, a root-level
shell will have a # sign as part of the prompt, whereas user shells typically have a $
sign in the prompt. This is a visual cue that shows when you’ve succeeded in escalating
your privileges, but you’ll still will want to verify this using a command such as
whoami or id.

Why did you get a segmentation fault? Let’s see by firing up gdb (the GNU Debugger):

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

As you can see, when you run the program in gdb, it crashes when trying to execute
the instruction at 0x41414141, which happens to be hex for AAAA (A in hex is 0x41).
Next, you can check whether the EIP was corrupted with A’s. Indeed, EIP is full of A’s
and the program was doomed to crash. Remember, when the function (in this case,
main) attempts to return, the saved EIP value is popped off of the stack and executed
next. Because the address 0x41414141 is out of your process segment, you got a
segmentation fault.

CAUTION Most modern operating systems use address space layout randomization
(ASLR) to randomize stack memory calls, so we will have mixed results for the rest of
this chapter. To disable ASLR, run the following:

Now, let’s look at attacking meet.c.

Lab 11-1: Overflowing meet.c
You were introduced to the meet.c program in Chapter 2. It looks like this:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

To overflow the 400-byte buffer in meet.c, you will need another tool, Perl. Perl is an
interpreted language, meaning that you do not need to precompile it, which makes it very
handy to use at the command line. For now, you only need to understand one Perl
command:

NOTE Backticks (`) are used to wrap a Perl command and have the shell interpreter
execute the command and return the value.

This command will simply print 600 A’s to standard out—try it!
Using this trick, you will start by feeding ten A’s to the meet program (remember, it

takes two parameters):

Next, you will feed 600 A’s to the meet.c program as the second parameter, as
follows:

As expected, your 400-byte buffer has overflowed; hopefully, so has the EIP. To

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

verify, start gdb again:

NOTE Your values will be different. Keep in mind that it is the concept we are trying
to get across here, not the memory values. Depending on the version of gcc you are
using and other factors, it may even crash in a different portion of the program.

Not only did you not control the EIP, you have moved far away to another portion of
memory. If you take a look at meet.c, you will notice that after the strcpy() function in
the greeting function, there is a printf() call, which in turn calls vfprintf() in the libc
library. The vfprintf() function then calls strlen. But what could have gone wrong? You
have several nested functions and therefore several stack frames, each pushed on the
stack. When you caused the overflow, you must have corrupted the arguments passed
into the printf() function. Recall from the previous section that the call and prolog of a
function leave the stack looking like the following illustration:

If you write past the EIP, you will overwrite the function arguments, starting with
temp1. Because the printf() function uses temp1, you will have problems. To check out
this theory, let’s check back with gdb. When we run gdb again, we can attempt to get the
source listing, like so:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

You can see in the preceding bolded line that the arguments to the function, temp1 and
temp2, have been corrupted. The pointers now point to 0x41414141 and the values are
"" (or null). The problem is that printf() will not take nulls as the only input and
therefore chokes. So let’s start with a lower number of A’s, such as 405, and then
slowly increase it until we get the effect we need:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

As you can see, when a segmentation fault occurs in gdb, the current value of the EIP
is shown.

It is important to realize that the numbers (400–412) are not as important as the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

concept of starting low and slowly increasing until you just overflow the saved EIP and
nothing else. This is due to the printf call immediately after the overflow. Sometimes
you will have more breathing room and will not need to worry too much about this. For
example, if nothing was following the vulnerable strcpy command, there would be no
problem overflowing beyond 412 bytes in this case.

NOTE Remember, we are using a very simple piece of flawed code here; in real life,
you will encounter many problems like this. Again, it’s the concepts we want you to get,
not the numbers required to overflow a particular vulnerable piece of code.

Ramifications of Buffer Overflows
When you’re dealing with buffer overflows, basically three things can happen. The first
is denial of service. As you saw previously, it is really easy to get a segmentation fault
when dealing with process memory. However, it’s possible that this is the best thing that
can happen to a software developer in this situation, because a crashed program will
draw attention. The alternatives are silent and much worse.

The second thing that can happen when a buffer overflow occurs is that the EIP can be
controlled to execute malicious code at the user level of access. This happens when the
vulnerable program is running at the user level of privilege.

The third and absolutely worst thing that can happen when a buffer overflow occurs is
that the EIP can be controlled to execute malicious code at the system or root level. In
Unix systems, there is only one superuser, called root. The root user can do anything on
the system. Some functions on Unix systems should be protected and reserved for the
root user. For example, it would generally be a bad idea to give users root privileges to
change passwords. Therefore, a concept called Set User ID (SUID) was developed to
temporarily elevate a process to allow some files to be executed under their owner’s
privilege level. So, for example, the passwd command can be owned by root, and when
a user executes it, the process runs as root. The problem here is that when the SUID
program is vulnerable, an exploit may gain the privileges of the file’s owner (in the
worst case, root). To make a program an SUID program, you would issue the following
command:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The program will run with the permissions of the owner of the file. To see the full
ramifications of this, let’s apply SUID settings to our meet program. Then later, when
we exploit this program, we will gain root privileges.

The first field of the preceding line indicates the file permissions. The first position of
that field is used to indicate a link, directory, or file (l, d, or –). The next three positions
represent the file owner’s permissions in this order: read, write, execute. Normally, an
x is used for execute; however, when the SUID condition applies, that position turns to
an s, as shown. That means when the file is executed, it will execute with the file
owner’s permissions (in this case, root—the third field in the line). The rest of the line
is beyond the scope of this chapter and can be learned about by following the
KrnlPanic.com reference for SUID/GUID listed in the “For Further Reading” section.

Local Buffer Overflow Exploits
Local exploits are easier to perform than remote exploits because you have access to
the system memory space and can debug your exploit more easily.

The basic goal of buffer overflow exploits is to overflow a vulnerable buffer and
change the EIP for malicious purposes. Remember, the EIP points to the next instruction
to be executed. An attacker could use this to point to malicious code. A copy of the EIP
is saved on the stack as part of calling a function in order to be able to continue with the
command after the call when the function completes. If you can influence the saved EIP
value, when the function returns, the corrupted value of the EIP will be popped off the
stack into the register (EIP) and then executed.

Lab 11-2: Components of the Exploit
To build an effective exploit in a buffer overflow situation, you need to create a larger
buffer than the program is expecting by using the following components: a NOP sled,
shellcode, and a return address.

NOP Sled
In assembly code, the NOP (no operation) command simply means to do nothing but
move to the next command. Hackers have learned to use NOP for padding. When placed
at the front of an exploit buffer, this padding is called a NOP sled. If the EIP is pointed
to a NOP sled, the processor will ride the sled right into the next component. On x86

||||||||||||||||||||

||||||||||||||||||||

http://KrnlPanic.com
https://technet24.ir
https://technet24.ir

systems, the 0x90 opcode represents NOP. There are actually many more, but 0x90 is
the most commonly used.

Shellcode
Shellcode is the term reserved for machine code that will do the hacker’s bidding.
Originally, the term was coined because the purpose of the malicious code was to
provide a simple shell to the attacker. Since then, the term has evolved to encompass
code that is used to do much more than provide a shell, such as to elevate privileges or
to execute a single command on the remote system. The important thing to realize here is
that shellcode is actually binary, often represented in hexadecimal form. You can find
tons of shellcode libraries online, ready to be used for all platforms. Chapter 7 covered
writing your own shellcode. We will use Aleph1’s shellcode (shown within a test
program) as follows:

Let’s check it out by compiling and running the test shellcode.c program:

It worked—we got a root shell prompt.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE We used compile options to disable memory and compiler protections in recent
versions of Linux. We did this to aid in your learning of the subject at hand. See Chapter
12 for a discussion of those protections.

Repeating Return Addresses
The most important element of the exploit is the return address, which must be aligned
perfectly and repeated until it overflows the saved EIP value on the stack. Although it is
possible to point directly to the beginning of the shellcode, it is often much easier to be
a little sloppy and point to somewhere in the middle of the NOP sled. To do that, the
first thing you need to know is the current ESP value, which points to the top of the
stack. The gcc compiler allows you to use assembly code inline and to compile
programs as follows:

Remember the ESP value; we will use it soon as our return address, though yours will
be different.

At this point, it may be helpful to check whether your system has ASLR turned on. You
can check this easily by simply executing the last program several times in a row, as
shown here. If the output changes on each execution, then your system is running some
sort of stack randomization scheme.

Until you learn later how to work around this situation, go ahead and disable ASLR,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

as described in the Caution earlier in this chapter:

Now you can check the stack again (it should stay the same):

Now that we have reliably found the current ESP, we can estimate the top of the
vulnerable buffer. If you are still getting random stack addresses, try another one of the
echo lines shown previously.

These components are assembled in the order shown here:

As you can see, the addresses overwrite the EIP and point to the NOP sled, which then
“slides” to the shellcode.

Lab 11-3: Exploiting Stack Overflows from the Command
Line
Remember that in this case, the ideal size of our attack is 408. Therefore, we will use
Perl to craft an exploit of that size from the command line. As a rule of thumb, it is a
good idea to fill half of the attack buffer with NOPs; in this case, we will use 200 with
the following Perl command:

A similar Perl command, shown next, will allow you to print your shellcode into a
binary file (notice the use of the output redirector, >):

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You can calculate the size of the shellcode with the following command:

Next, we need to calculate our return address. We could do this one of two ways: by
using math based on the stack pointer address or by finding exactly where our data sits
on the stack with gdb. The gdb method is more accurate, so let’s take a look at how to
do that. To begin with, we want our application to crash and for us to be able to easily
identify the data. We already know that our buffer length is 412, so let’s build a sample
overflow and see if we can find our return address.

Our first step is to load a crash scenario into gdb. To do this, we are going to issue the
command:

We have now successfully crashed our program and can see that our EIP overwrite is
0x41414141. Next, let’s take a look at what’s on the stack. To do that, we are going to
use the “examine memory” command and ask gdb to give us the output in hex. Because
looking at individual chunks isn’t always super helpful, we are going to look in batches
of 32 words (4 bytes) at a time.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We still don’t see our A’s, so to get more data from the stack, we can just press
enter again. We’ll keep going until we see something like this:

You can see at the bottom that our A’s (0x41) are visible. We can safely use the stack
address 0xbffff3ac as our jump address. (Remember, your address may be different.)
This will put us into our NOP sled and is a few words in, so it gives us a little room to
be wrong by a byte or two. Now we can use Perl to write this address in little-endian
format on the command line:

The number 39 was calculated in our case with some simple modulo math:

If you put this into a calculator, you will notice that the value is 38.25; however, we
rounded up.

When Perl commands are wrapped in backticks (`), they may be concatenated to make
a larger series of characters or numeric values. For example, we can craft a 412-byte
attack string and feed it to our vulnerable meet.c program as follows:

This 412-byte attack string is used for the second argument and creates a buffer

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

overflow, as follows:

• 200 bytes of NOPs ("\x90")
• 59 bytes of shellcode
• 156 bytes of repeated return addresses (remember to reverse this due to the little-

endian style of x86 processors)

The segmentation fault showed that the exploit crashed. The likely reason for this lies
in the fact that we have a misalignment of the repeating addresses. Namely, they don’t
correctly or completely overwrite the saved return address on the stack. To check for
this, simply increment the number of NOPs used:

It worked! The important thing to realize here is how the command line allowed us to
experiment and tweak the values much more efficiently than by compiling and debugging
code.

Lab 11-4: Exploiting Stack Overflows with Generic

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Exploit Code
The following code is a variation of many stack overflow exploits found online and in
the references. It is generic in the sense that it will work with many exploits under many
situations.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The program sets up a global variable called shellcode, which holds the malicious
shell-producing machine code in hex notation. Next, a function is defined that will return
the current value of the ESP register on the local system. The main function takes up to
three arguments, which optionally set the size of the overflowing buffer, the offset of the
buffer and ESP, and the manual ESP value for remote exploits. User directions are
printed to the screen, followed by the memory locations used. Next, the malicious buffer
is built from scratch, filled with addresses, then NOPs, then shellcode. The buffer is
terminated with a null character. The buffer is then injected into the vulnerable local
program and printed to the screen (useful for remote exploits).

Let’s try our new exploit on meet.c:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

It worked! Notice how we compiled the program as root and set it as an SUID program.
Next, we switched privileges to a normal user and ran the exploit. We got a root shell,
which worked well. Notice that the program did not crash with a buffer size of 500 as it
did when we were playing with Perl in the previous section because we called the
vulnerable program differently this time, from within the exploit. In general, this is a
more tolerant way to call the vulnerable program; however, your results may vary.

Lab 11-5: Exploiting Small Buffers
What happens when the vulnerable buffer is too small to use an exploit buffer as
previously described? Most pieces of shellcode are 21–50 bytes in size. What if the
vulnerable buffer you find is only 10 bytes long? For example, let’s look at the
following vulnerable code with a small buffer:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Now compile it and set it as SUID:

Now that we have such a program, how would we exploit it? The answer lies in the
use of environment variables. You could store your shellcode in an environment
variable or somewhere else in memory and then point the return address to that
environment variable, as follows:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Why did this work? It turns out, this technique, which was published by a Turkish
hacker named Murat Balaban, relies on the fact that all Linux ELF files are mapped into
memory with the last relative address as 0xbfffffff. Remember from Chapter 2 that the
environment variables and arguments are stored in this area, and just below them is the
stack. Let’s look at the upper process memory in detail:

Notice how the end of memory is terminated with null values; next comes the program
name, then the environment variables, and finally the arguments. The following line of

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

code from exploit2.c sets the value of the environment for the process as the shellcode:

That places the beginning of the shellcode at the precise location:

Let’s verify this with gdb. First, to assist with the debugging, place a \xcc at the
beginning of the shellcode to halt the debugger when the shellcode is executed. Next,
recompile the program and load it into the debugger:

When we executed with our \xcc character in, we see that when the execution stopped,
the message was a little bit different. In this case, the program stopped with a SIGTRAP
because the \xcc we added created a soft breakpoint. When our execution encountered
the \xcc, the program stopped, indicating that the application successfully made it to our
shellcode.

Exploit Development Process
Now that we have covered the basics, you are ready to look at a real-world example. In
the real world, vulnerabilities are not always as straightforward as the meet.c example

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

and require a repeatable process to successfully exploit. The exploit development
process generally follows these steps:

1. Control the EIP.
2. Determine the offset(s).
3. Determine the attack vector.
4. Build the exploit.
5. Test the exploit.
6. Debug the exploit, if needed.

At first, you should follow these steps exactly; later, you may combine a couple of the
steps as required.

Lab 11-6: Building Custom Exploits
In this lab, we’re going to look at a sample application you haven’t seen before. This
application, called ch11_6, can be retrieved from the Gray Hat Hacking Github
repository.

Controlling the EIP
The program ch11_6 is a network application. When we run it, we can see it listening
on port 5555:

When testing applications, we can sometimes find weaknesses just by sending long
strings. In another window, let’s connect to the running binary with netcat:

Now, let’s use Perl to create a very long string and to send it as the username with our
netcat connection:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Our binary behaves differently with a big string. To figure out why, we need to put this
into a debugger. We will run our vulnerable program in one window, using gdb, and
send our long string in another window.

Figure 11-2 shows what happens in the debugger screen when we send the long string.

Figure 11-2 Using a debugger in one window and our long string in another, we can see that we have overwritten
the EIP and EBP.

We now have a classic buffer overflow and have overwritten the EIP. This completes
the first step of the exploit development process. Let’s move to the next step.

Determining the Offset(s)
With control of the EIP, we need to find out exactly how many characters it took to
cleanly overwrite it (and nothing more). The easiest way to do this is with Metasploit’s
pattern tools.

First, let’s create a shell of a Python script to connect to our listener:

When we launch our binary in gdb again and run the Python script in the other
window, we should still see our crash. If we do, the Python script is working correctly.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Next, we want to figure out exactly how many characters it takes to overflow the buffer.
To do this, we can use Metasploit’s pattern_create tool, like so:

We will add this to our exploit:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Now, when we run the exploit, we get a different overwrite in gdb:

Here, we see 0x41386941, from our pattern, in the EIP. Metasploit’s pattern_create
tool has a sister tool called pattern_offset. We can put the value from the EIP into
pattern_offset to find out where it appeared in our original pattern. This gives us the
length of the buffer, as shown here:

We now know that the exact offset is 264 bytes before the EIP will be overwritten.
This give us the initial padding length we need before sending our EIP overwrite
location. The total exploit should stay 1,024 bytes in size to ensure that offsets don’t
change while we create the exploit. This should give us plenty of room for a basic
reverse shell payload.

Determining the Attack Vector
Once we know where the EIP is overwritten, we have to determine what address on the
stack we need to jump to in order to execute the payload. To do this, we modify our
code to add in a NOP sled. This gives us a bigger area to jump to, so that if something
minor occurs and our location changes a bit, we will still land somewhere within our
NOP instructions. By adding in 32 NOPs, we should overwrite the ESP and have some
additional flexibility for addresses to jump to. Remember, any address with "\x00" in it
won’t work because that is treated as a string termination.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Once we restart gdb and run our new exploit code, we should see that the EIP is
overwritten with the four B’s, if our EIP calculations are successful. With the new
changes, we should be able to check our stack to see where the NOP sled is:

We can see that the EIP was overwritten. At 0xbffff368 , we see the values are
filled with our NOP instructions, so we now have a return address. The final area is the
address range following the NOP sled, which is where our C characters lie . This is
where our shellcode would be dumped; therefore, if we jump into the NOP sled , it
should lead us directly into our shellcode.

Building the Exploit
We could build our exploit from scratch, but Metasploit has the ability to do that for us.
With msfvenom, we can generate some shellcode that will work in our module. We will
use the linux/x86/shell_reverse_tcp module to create a socket attached to a shell that
will call back to us on a listener:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The LHOST and LPORT options are our listening host and listening port,
respectively. The N option says to generate Python code. However, there is a problem
with our output. A null character appears in the middle of our string. That won’t work
for our exploit because it will be seen as the end of the string, so the rest of the payload
won’t execute. Fortunately, Metasploit has a fix—msfvenom can also encode a binary
to eliminate bad characters:

Adding -b '\x00' as an argument will force encoding to make sure there are no null
characters in the output. This gives us shellcode that we can put into our Python script
for the final exploit.

Verifying the Exploit
After leaving gdb and killing off any remaining instances of our vulnerable application,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

we can start it up again and test it with the final exploit:

If we start up our listener and then run the Python script, we should get back our shell:

Woot! It worked! After setting up our listener and then running the exploit, we got
back a connection to our listener. After the connection, we don’t see a prompt.
However, we can execute commands in our shell. If we type in id, we get a response.
Anything that requires a terminal, such as pico or another editor, won’t show up well.
However, with root access, we can add our own users if we need interactive logins. We

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

have full control over the system.

Summary
While exploring the basics of Linux exploits, we have investigated a number of ways to
successfully overflow a buffer to gain elevated privileges or remote access. By filling
up more space than a buffer has allocated, we can overwrite the Extended Stack Pointer
(ESP), Extended Base Pointer (EBP), and Extended Instruction Pointer (EIP) to control
elements of code execution. By causing execution to be redirected into shellcode that
we provide, we can hijack execution of these binaries to get additional access.

It’s worth noting that we can elevate privileges by using vulnerable SUID binaries as
targets for exploitation. When we exploit these, we obtain access at the same level as
the owner of the SUID binary. During exploitation, we can flexibly generate payloads by
injecting a shell, a socket that calls out to a listener, or other functionality, as needed.

When building exploits, we use a number of tools (such as pattern_create and
pattern_offset) and constructs (such as NOP sleds and padding) to help position our
code in the right place. When we put all these things together, following the steps
outlined in this chapter will help us to create a common framework for building
exploits.

For Further Reading
Buffer overflow https://en.wikipedia.org/wiki/Buffer_overflow

“Buffer Overflows Demystified” (Murat
Balaban) www.enderunix.org/docs/eng/bof-eng.txt

Hacking: The Art of Exploitation, Second Edition (Jon Erickson) No Starch Press,
2008

Intel x86 Function-Call Conventions – Assembly View (Steve
Friedl) www.unixwiz.net/techtips/win32-callconv-asm.html

“Linux File and Directory Permissions Explained” (Richard
Sandlin) www.krnlpanic.com/tutorials/permissions.php

“Smashing the Stack for Fun and Profit” (Aleph One, aka
Aleph1) www.phrack.com/issues.html?issue=49&id=14#article

||||||||||||||||||||

||||||||||||||||||||

https://en.wikipedia.org/wiki/Buffer_overflow
http://www.enderunix.org/docs/eng/bof-eng.txt
http://www.unixwiz.net/techtips/win32-callconv-asm.html
http://www.krnlpanic.com/tutorials/permissions.php
http://www.phrack.com/issues.html?issue=49&id=14#article
https://technet24.ir
https://technet24.ir

CHAPTER 12
Advanced Linux Exploits

Now that you have the basics under your belt from reading Chapter 11, you are ready to
study more advanced Linux exploits. The field is advancing constantly, with new
techniques always being discovered by hackers and countermeasures being
implemented by developers. No matter how you approach the problem, you need to
move beyond the basics. That said, we can only go so far in this book—your journey is
only beginning. The “For Further Reading” section at the end of this chapter will give
you more destinations to explore.

In this chapter, we discuss the following topics:
• Format string exploits
• Memory protection schemes

Format String Exploits
Format string exploits became public in late 2000. Unlike buffer overflows, format
string errors are relatively easy to spot in source code and binary analysis. In spite of
this, they are still common in applications today. Many organizations still don’t utilize
code analysis or binary analysis tools on software before releasing it, so these errors
still occur in the wild. Once spotted, they are usually eradicated quickly. As more
organizations start to use code analysis tools as part of their build processes, these types
of attacks will continue to decline. However, this attack vector is still fairly easy to find
and can result in some interesting code execution.

Format Strings
Format strings are used by various print functions, and these functions may behave in
many ways depending on the format strings provided. Following are some of the many
format functions (see the “References” section for a more complete list2):

• printf() Prints output to the standard input/output (STDIO) handle (usually the
screen)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• fprintf() Prints output to a file stream
• sprintf() Prints output to a string
• snprintf() Prints output to a string with length checking built in

When someone calls one of these functions, the format string dictates how and where
the data is compiled into the final string. Format strings are very versatile, though, and if
the creator of the application allows data specified by the end user to be used directly in
one of these format strings, the user can change the behavior of the application. This can
include disclosing additional information that the creator did not want disclosed, such
as memory locations, data variables, and stack memory.

Other parameters can also read and write to memory addresses. Because of this type
of functionality, the risk of a string format vulnerability can occur anywhere, from
information disclosure to code execution. Throughout this chapter, we’re going to look
at both information disclosure and code execution and see how we can combine them to
use string format vulnerabilities as part of our exploits.

The Problem
As you may recall from Chapter 2, the printf() function can have any number of
arguments. We will discuss two forms here:

In the first example, the programmer has specified a format string and then the
variables that will fill in the spaces designated by the format string for data. This
prevents unexpected behavior from printf. The second example allows the user to
specify the format string. This means that a user can cause the printf function to behave
however they want.

Table 12-1 introduces two more format tokens, %hn and %<number>$, that may be
used in a format string (the first four symbols, originally listed in Table 2-2, are
included for your convenience).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 12-1 Commonly Used Format Symbols

The Correct Way
Recall the correct way to use the printf() function. For example, the code

The Incorrect Way
Now take a look at what happens if we forget to add a value for %s to replace:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

What’s that? It looks like Greek, but it’s actually machine language (binary) shown in
ASCII. In any event, it is probably not what you were expecting. To make matters
worse, consider what happens if the second form of printf() is used like this:

The cursor is at the end of the line because we did not use a carriage return (\n), as
before. But what if the user supplies a format string as input to the program?

Wow, it appears that we have the same problem. However, as it turns out, this latter
case is much more deadly because it may lead to total system compromise. To find out
what happened here, we need to look at how the stack operates with format functions.

Stack Operations with Format Functions
To illustrate how the stack works with format functions, we will use the following
program:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

During execution of the printf() function, the stack looks like Figure 12-1. As always,
the parameters of the printf() function are pushed on the stack in reverse order, as
shown in the figure. The addresses of the parameter variables are used. The printf()
function maintains an internal pointer that starts out pointing to the format string (or top
of the stack frame) and then begins to print characters of the format string to the STDIO
handle (the screen in this case) until it comes upon a special character.

Figure 12-1 Depiction of the stack when printf() is executed

If % is encountered, the printf() function expects a format token to follow and thus
increments an internal pointer (toward the bottom of the stack frame) to grab input for
the format token (either a variable or absolute value). Therein lies the problem: the
printf() function has no way of knowing if the correct number of variables or values
was placed on the stack for it to operate. If the programmer is sloppy and does not
supply the correct number of arguments, or if the user is allowed to present their own
format string, the function will happily move down the stack (higher in memory),
grabbing the next value to satisfy the format string requirements. So what we saw in our
previous examples was the printf() function grabbing the next value on the stack and
returning it where the format token required.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE The backslash (\) is handled by the compiler and used to escape the next
character after it. This is a way to present special characters to a program and not have
them interpreted literally. However, if \x is encountered, the compiler expects a number
to follow and converts that number to its hex equivalent before processing.

Implications
The implications of this problem are profound indeed. In the best case, the stack value
might contain a random hex number that can be interpreted as an out-of-bounds address
by the format string, causing the process to have a segmentation fault. This could
possibly allow an attacker to create a denial of service for the application.

In the worst case, however, a careful and skillful attacker might be able to use this
fault to both read arbitrary data and write data to arbitrary addresses. In fact, if the
attacker can overwrite the correct location in memory, they may be able to gain root
privileges.

Example of a Vulnerable Program
For the remainder of this section, we will use the following piece of vulnerable code to
demonstrate the possibilities:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

NOTE The canary value is just a placeholder for now. It is important to realize that
your value will be different. For that matter, your system might produce different values
for all the examples in this chapter; however, the results should be the same.

Lab 12-1: Reading from Arbitrary Memory
We will now begin to take advantage of the vulnerable program. We will start slowly
and then pick up speed. Buckle up, here we go!

NOTE This lab, like all the labs, has a unique README file with instructions for
setup. See the Introduction for more information.

Using the %x Token to Map Out the Stack
As shown in Table 12-1, the %x format token is used to provide a hex value. So, by
supplying a few %08x tokens to our vulnerable program, as shown here, we should be
able to dump the stack values to the screen:

In this example, 08 is used to define the precision of the hex value (in this case, 8
bytes wide). Notice that the format string itself was stored on the stack, which is proven
by the presence of our AAAA (0x41414141) test string. In our case, it took seven %08x
tokens to get to our 0x41414141. However, this may vary from system to system,
depending on the OS version, compiler version, or other issues. To find this value,
simply start with two %08x tokens and use brute force by increasing the number of
tokens, until the beginning of the format string is found. For our simple example
(fmtstr), the number of %08x tokens is called the offset and would be defined as an
offset of 7.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the %s Token to Read Arbitrary Strings
Because we control the format string, we can place anything in it we like (well, almost
anything). For example, if we wanted to read the value of the address located in the
fourth parameter, we could simply replace the fourth format token with %s, as shown
here:

Why did we get a segmentation fault? Because, as you’ll recall, the %s format token
takes the next parameter on the stack (in this case, the fourth one) and treats it like a
memory address to read from (by reference). In our case, the fourth value is AAAA,
which is translated in hex to 0x41414141—and as you saw in the previous chapter, this
causes a segmentation fault.

Reading Arbitrary Memory
So how do we read from arbitrary memory locations? Simple: we supply valid
addresses within the segment of the current process. We will use the getenv helper
program to assist us in finding a valid address:

The purpose of this program is to fetch the location of environment variables from the
system. To test this program, let’s check for the location of the SHELL variable, which
stores the location of the current user’s shell:

NOTE Remember to disable the ASLR on current Kali versions (see the section

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

“Address Space Layout Randomization (ASLR),” later in this chapter). Otherwise, the
found address for the SHELL variable will vary and the following exercises won’t
work.

Now that we have a valid memory address, let’s try it. First, remember to reverse the
memory location because this system is little-endian:

Success! We were able to read up to the first null character of the address given (the
SHELL environment variable). Take a moment to play with this now and check out
other environment variables. To dump all environment variables for your current
session, type env | more at the shell prompt.

Simplifying the Process with Direct Parameter Access
To make things even easier, you can access the seventh parameter from the stack by
what is called direct parameter access. The #$ format token is used to direct the format
function to jump over a number of parameters and select one directly. Here is an
example:

Now when you use the direct parameter format token from the command line, you
need to escape the $ character with a backslash (\) in order to keep the shell from
interpreting it. Let’s put all of this to use and reprint the location of the SHELL
environment variable:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Notice how short the format string can be now.

CAUTION The preceding format works for bash. Other shells, such as tcsh, require
other formats, such as the following:$./fmtstr `printf "\x84\xfd\xff\xbf"`'%7\$s'
Notice the use of a single quote at the end. To make the rest of the chapter’s examples
easy, use the bash shell.

Using format string errors, we can specify formats for printf and other printing
functions that can read arbitrary memory from a program. Using %x, we can print hex
values in order to find a parameter’s location in the stack. Once we know where our
value is being stored, we can determine how printf processes it. By specifying a
memory location and then specifying the %s directive for that location, we cause the
application to print out the string value at that location.

Using direct parameter access, we don’t have to work through the extra values on the
stack. If we already know where positions are in the stack, we can access parameters
using %3$s to print the third parameter or %4$s to print the fourth parameter on the
stack. This will allow us to read any memory address within our application space as
long as it doesn’t have null characters in the address.

Lab 12-2: Writing to Arbitrary Memory
For this example, we will try to overwrite the canary address (in our case, 0xbffff6dc)
with the address of shellcode (which we will store in memory for later use). Remember
that your canary address may be different. We will use the canary address because it is
visible to us each time we run fmtstr, but later you will see how to overwrite nearly
any address.

Magic Formula
As shown by Blaess, Grenier, and Raynal, the easiest way to write 4 bytes in memory is
to split them up into two chunks (2 high-order bytes and 2 low-order bytes) and then use
the #$ and %hn tokens to put the two values in the right place.1

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

For example, let’s put our shellcode from the previous chapter into an environment
variable and retrieve the location:

If we want to write the value of SC into memory, we would split it into two values:
• Two high-order bytes (HOB): 0xbfff
• Two low-order bytes (LOB): 0xff1c

As you can see, in our case, HOB is less than (<) LOB, so we would follow the first
column in Table 12-2, which presents the magic formula to help us construct the format
string used to overwrite an arbitrary address (in our case, the canary address,
0xbffff6dc).

Table 12-2 The Magic Formula to Calculate Your Exploit Format String

Using the Canary Value to Practice
Using Table 12-2 to construct the format string, let’s try to overwrite the canary value
with the location of our shellcode.

CAUTION At this point, you must understand that the names of our programs (getenv
and fmtstr) need to be the same length because the program names are stored on the
stack at startup. Therefore, the two programs will have different environments (and

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

locations of the shellcode in this case) if their names are of different lengths. If you
named your programs something different, you will need to play around and account for
the difference or simply rename them to the same size for these examples to work.

To construct the injection buffer to overwrite the canary address 0xbffff6dc with
0xbfffff1c, follow the formula in Table 12-2. Values are calculated for you in the right
column and used in the following command:

Which produces this result:

CAUTION Once again, your values will be different. Start with the getenv program
and then use Table 12-2 to get your own values. Also, there actually isn’t a newline
between printf and the double quotation mark.

Using string format vulnerabilities, we can also write to memory. By leveraging the
formula in Table 12-2, we can pick memory locations within the application and
overwrite values. This table makes the math easy to compute what values need to be set
to manipulate values and then write them into a specific memory location. This will
allow us to change variable values as well as set up for more complex attacks.

Lab 12-3: Changing Program Execution
Okay, so we can overwrite a staged canary value…big deal. However, it is a big deal
because some locations are executable and, if overwritten, may lead to system
redirection and execution of your shellcode. Now, we just have to find some memory
that will allow us to gain control of program execution. To do this, we need to look at
how a program executes functions. When a function is executed, a number of things are
saved, including where the program was when we went into the function. This data is
saved so that we can easily return to our program after a function call and the
application will know where we left off.

The state of the application that is saved when going into a function is called a frame.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This frame contains important data such as the location of the Extended Instruction
Pointer (EIP) before the program call, where variables are stored, and other relevant
control information. When we look at this frame, we can take the address of the saved
pointer to EIP and then overwrite that pointer. Then, when the function returns back to
the application, instead of returning back where it left off, it will execute our shellcode.

Finding a Target
To find a target address to overwrite, we need to use gdb to help us determine the frame
information inside a function. When we look at functions that might be handy, we can
see after our string format executes in printf that execution will return for additional
printf statements. So let’s see what our frame looks like inside printf, because after our
code has done its job and overwritten an address, we can immediately take control of
program flow by overwriting the printf-saved EIP address.

Let’s take a look at the fmtstr binary again, this time in gdb:

Once we start gdb, we need to set a breakpoint . This will stop execution when the
breakpoint is reached. In this case, we are going to make our breakpoint the printf
function. This way, when printf executes, it will pause execution so that we can look at
what’s going on.

Next, we run the program with the argument asdf so that the program will run as
expected. When the program starts running, we see the breakpoint pop up. From here,
we see that the program stopped in printf, and we can see the arguments and line
numbers associated with the function.

To figure out where we might want to redirect execution, we need to find the saved
EIP address in the frame. To do this, we’re going to use the info command, as shown
next:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Note that the info command is called using the shorthand i f , which is an
abbreviation of the command info frame. This command returns frame data that
describes the current state. However, we want to know the original EIP address that it
will return to. That information is in the “Saved registers” section , where we see that
the pointer to EIP is set to 0xbfffee8c. This is the address we want to overwrite. The
frame also shows other EIP-related information, such as the current EIP value and the
saved value of EIP. This is different from the saved registers because those registers are
where the values are stored, whereas the preceding saved EIP value is the value stored
at the location where the pointer points.

Putting It All Together
Now that we have a target to overwrite, we need to build a new format string. To do
this, we must get the address of our shellcode again. We are going to use Aleph One’s
shellcode from shellcode.c, and we’re going to save that value into the environment
variable SC. Because we are going to be executing this from a non-root account, we’ll
assume the following is being done as the joeuser user we created earlier.

Here, you can see that we used the same shellcode as before, but to make this exercise
a little more forgiving, we’re padding the beginning with eight NOP instructions so that
we can land anywhere in our NOP sled. Because we have a new address to overwrite
and a new SC location, we’re going to have to do some recalculation.

Again, follow the first column of Table 12-2 to calculate the required format string to
overwrite the new memory address 0xbfffee8c with the address of the shellcode:
0xbfffff2e. We’ll need to perform some additional math to change the position of our
shellcode address. To do this, we use the formula from Table 12-2, which tells us the
value should be 0xff2e – 0xbfff, which is 16175. We also replace the starting two

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

addresses with our target for overwrite, plus two, and then our actual memory location:

Well, that didn’t work. The reason is that the place where we told it to go, our
shellcode location, isn’t in executable memory space. By default, the stack where our
environment variables and other variable information are stored is read/write-only. We
need it to be read/write/execute. Therefore, we’re going to cheat and recompile the
binary with an executable stack. So, as root, let’s re-create our vulnerable binary:

Which produces the following:

Success! You can relax now—you earned it.
Here are some examples of other useful locations to overwrite:

• The global offset table
• Global function pointers
• The atexit handlers
• Stack values
• Program-specific authentication variables

And you can get many more ideas in the “For Further Reading” section at the end of this

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

chapter.
By leveraging string format weaknesses, we have the ability to overwrite memory,

including function pointers. By using the techniques from Lab 12-2 along with the
information from the frame, we can alter application flow. By putting shellcode into an
environment variable and identifying the location of that shellcode, we can know where
the application should be diverted to. Using the printf statement, we can overwrite the
saved value of EIP so that when execution returns back to the calling function, it
executes our shellcode instead.

Memory Protection Schemes
Since buffer overflows and heap overflows have come to be, many programmers have
developed memory protection schemes to prevent these attacks. As you will see, some
work, some don’t.

Compiler Improvements
Several improvements have been made to the gcc compiler, starting in GCC 4.1.

Libsafe
Libsafe is a dynamic library that allows for the safer implementation of the following
dangerous functions:

• strcpy()
• strcat()
• sprintf() and vsprintf()
• getwd()
• gets()
• realpath()
• fscanf(), scanf(), and sscanf()

Libsafe overwrites these dangerous libc functions by replacing the bounds and input-
scrubbing implementations, thereby eliminating most stack-based attacks. However, no
protection is offered against the heap-based exploits described in this chapter.

StackShield, StackGuard, and Stack Smashing Protection (SSP)
StackShield is a replacement to the gcc compiler that catches unsafe operations at
compile time. Once it’s installed, the user simply issues shieldgcc instead of gcc to

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

compile programs. In addition, when a function is called, StackShield copies the saved
return address to a safe location and restores the return address upon returning from the
function.

StackGuard was developed by Crispin Cowan3 and is based on a system of placing
“canaries” between the stack buffers and the frame state data. If a buffer overflow
attempts to overwrite the saved EIP, the canary will be damaged and a violation will be
detected.

Stack Smashing Protection (SSP), formerly called ProPolice, is now developed by
Hiroaki Etoh of IBM and improves on the canary-based protection of StackGuard by
rearranging the stack variables to make them more difficult to exploit. In addition, a new
prolog and epilog are implemented with SSP.

The following is the previous prolog:

And here is the new prolog:

As shown in Figure 12-2, a pointer is provided to ArgC and checked after the return
of the application, so the key is to control that pointer to ArgC instead of the saved Ret.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 12-2 Old and new prolog

Because of this new prolog, a new epilog is created:

Lab 11-4: Bypassing Stack Protection
Back in Chapter 11, we discussed how to handle overflows of small buffers by using
the end of the environment segment of memory. Now that we have a new prolog and
epilog, we need to insert a fake frame, including a fake Ret and a fake ArgC, as shown
in Figure 12-3.

Figure 12-3 Using a fake frame to attack small buffers

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using this fake-frame technique, we can control the execution of the program by
jumping to the fake ArgC, which will use the fake Ret address (the actual address of
the shellcode). The source code of such an attack follows:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE The preceding code actually works both with and without stack protection on.
This is a coincidence that’s due to the fact that it takes 4 bytes less to overwrite the
pointer to ArgC than it did to overwrite the saved Ret using the previous way of
performing buffer overflows.

The preceding code can be executed as follows:

SSP has been incorporated in GCC (starting in version 4.1) and is on by default. It
may be disabled with the –fno-stack-protector flag, and it can be forced by using –
fstack-protector-all.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

You may check for the use of SSP by using the objdump tool:

Notice the call to the stack_chk_fail@plt function, compiled into the binary.

NOTE As implied by their names, the tools described in this section do not offer any
protection against heap-based attacks.

Non-Executable Stack (GCC Based)
GCC has implemented a non-executable stack using the GNU_STACK ELF markings.
This feature is on by default (starting in version 4.1) and may be disabled with the –z
execstack flag, as shown here:

Notice that in the first command, the RW flags are set in the ELF markings, and in the
second command (with the –z execstack flag), the RWE flags are set in the ELF
markings. The flags stand for read (R), write (W), and execute (E).

In this lab, we looked at how to determine if stack protections are in place, as well as
how to bypass them. Using a fake frame, we can get our shellcode to execute by
controlling where the application returns.

Kernel Patches and Scripts
Although many protection schemes are introduced by kernel-level patches and scripts,
we will cover only a few of them in this section.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Non-Executable Memory Pages (Stacks and Heaps)
Early on, developers realized that program stacks and heaps should not be executable
and that user code should not be writable once it is placed in memory. Several
implementations have attempted to achieve these goals.

The Page-eXec (PaX) patches attempt to provide execution control over the stack and
heap areas of memory by changing the way memory paging is done. Normally, a page
table entry (PTE) exists for keeping track of the pages of memory and caching
mechanisms called data and instruction translation look-aside buffers (TLBs). The
TLBs store recently accessed memory pages and are checked by the processor first
when accessing memory. If the TLB caches do not contain the requested memory page (a
cache miss), the PTE is used to look up and access the memory page. The PaX patch
implements a set of state tables for the TLB caches and maintains whether a memory
page is in read/write mode or execute mode. As the memory pages transition from
read/write mode into execute mode, the patch intervenes, logging and then killing the
process making this request. PaX has two methods to accomplish non-executable pages.
The SEGMEXEC method is faster and more reliable, but splits the user space in half to
accomplish its task. When needed, PaX uses a fallback method, PAGEEXEC, which is
slower but also very reliable.

Red Hat Enterprise Server and Fedora offer the ExecShield implementation of non-
executable memory pages. Although quite effective, it has been found to be vulnerable
under certain circumstances and to allow data to be executed.

Address Space Layout Randomization (ASLR)
The intent of ASLR is to randomize the following memory objects:

• Executable image
• Brk()-managed heap
• Library images
• Mmap()-managed heap
• User space stack
• Kernel space stack

PaX, in addition to providing non-executable pages of memory, fully implements the
preceding ASLR objectives. grsecurity (a collection of kernel-level patches and scripts)
incorporates PaX and has been merged into many versions of Linux. Red Hat and
Fedora use a Position Independent Executable (PIE) technique to implement ASLR.
This technique offers less randomization than PaX, although both protect the same
memory areas. Systems that implement ASLR provide a high level of protection from
“return into libc” exploits by randomizing the way the function pointers of libc are

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

called. This is done through the randomization of the mmap() command and makes
finding the pointer to system() and other functions nearly impossible. However, using
brute-force techniques to find function calls such as system() is possible.

On Debian- and Ubuntu-based systems, the following command can be used to disable
ASLR:

On Red Hat–based systems, the following commands can be used to disable ASLR:

Lab 12-5: Return to libc Exploits
“Return to libc” is a technique that was developed to get around non-executable stack
memory protection schemes such as PaX and ExecShield. Basically, the technique uses
the controlled EIP to return execution into existing glibc functions instead of shellcode.
Remember, glibc is the ubiquitous library of C functions used by all programs. The
library has functions such as system() and exit(), both of which are valuable targets. Of
particular interest is the system() function, which is used to run programs on the system.
All you need to do is munge (shape or change) the stack to trick the system() function
into calling a program of your choice (say, /bin/sh).

To make the proper system() function call, we need our stack to look like this:

We will overflow the vulnerable buffer and overwrite the old saved EIP exactly with
the address of the glibc system() function. When our vulnerable main() function returns,
the program will return into the system() function as this value is popped off the stack
into the EIP register and executed. At this point, the system() function will be entered
and the system() prolog will be called, which will build another stack frame on top of
the position marked “Filler,” which for all intents and purposes will become our new

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

saved EIP (to be executed after the system() function returns). Now, as you would
expect, the arguments for the system() function are located just below the newly saved
EIP (marked “Filler” in the diagram). Because the system() function is expecting one
argument (a pointer to the string of the filename to be executed), we will supply the
pointer of the string "/bin/sh" at that location. In this case, we don’t actually care what
we return to after the system function executes. If we did care, we would need to be sure
to replace Filler with a meaningful function pointer such as exit().

NOTE Stack randomization makes these types of attacks very hard (though not
impossible) to do. Basically, brute force needs to be used to guess the addresses
involved, which greatly reduces your odds of success. As it turns out, the randomization
varies from system to system and is not truly random.

Let’s look at an example. Start by turning off stack randomization:

Take a look at the following vulnerable program:

As you can see, this program is vulnerable due to the strcpy command that copies
argv[1] into the small buffer. Compile the vulnerable program, set it as SUID, and
return to a normal user account:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Now we are ready to build the “return to libc” exploit and feed it to the vuln2
program. We need the following items to proceed:

• The address of glibc system() function
• The address of the string "/bin/sh"

It turns out that functions like system() and exit() are automatically linked into
binaries by the gcc compiler. To observe this fact, start the program with gdb in quiet
mode. Set a breakpoint on main() and then run the program. When the program halts on
the breakpoint, print the locations of the glibc function called system():

Another cool way to get the locations of functions and strings in a binary is by
searching the binary with a custom program, as follows:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The preceding program uses the dlopen() and dlsym() functions to handle objects
and symbols located in the binary. Once the system() function is located, the memory is
searched in both directions , looking for the existence of the "/bin/sh" string. The
"/bin/sh" string can be found embedded in glibc and keeps the attacker in this case from
depending on access to environment variables to complete the attack. Finally, the value
is checked to see if it contains a NULL byte and then the location is printed. You may
customize the preceding program to look for other objects and strings. Let’s compile the
preceding program and test-drive it:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A quick check of the preceding gdb value shows the location of the system() function
isn’t exactly the same. Let’s use gdb to figure out the correct values for our exploit:

As you can see, the value we found for system is 0x1000 off from what search
found. When we look at the other values and add in the offset we computed for system,
we can see that exit and "/bin/sh" are at the newly computed locations. The reason that
these are in a slightly different place is due to how the linker puts together a binary.
When we use ldd to look at where the different shared objects are attached to each file,
we can see that the location where libc is attached is different for the two binaries, thus
leading to this 0x1000 discrepancy:

We can see using ldd that the addresses for libc , are different between the two
binaries. Through gdb and some math, we now have everything required to successfully

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

attack the vulnerable program using the “return to libc” exploit. Putting it all together,
we see this:

Notice that we got a shell that is EUID root, and when we exited from the shell, we
got a segmentation fault. Why did this happen? The program crashed when we left the
user-level shell because the filler we supplied (0x42424242) became the saved EIP to
be executed after the system() function. So, a crash was the expected behavior when the
program ended. To avoid that crash, we can simply supply the pointer to the exit()
function in that filler location:

Congratulations, we now have a shell with the effective UID (EUID) of root.
Using “return to libc” (ret2libc), we have the ability to direct application flow to

other parts of the binary. By loading the stack with return paths and options to functions,
when we overwrite EIP, we can direct the application flow to other parts of the
application. Because we’ve loaded the stack with valid return locations and data
locations, the application won’t know it has been diverted, allowing us to leverage
these techniques to launch our shell.

Lab 12-6: Maintaining Privileges with ret2libc
In some cases, we may end up without root privileges. This is because the default
behavior of system and bash on some systems is to drop privileges on startup. The bash
installed in Kali does not do this; however, in Red Hat and others, it does.

For this lab, we will be using Kali Rolling. To get around the privilege dropping, we
need to use a wrapper program that contains the system function call. Then, we can call
the wrapper program with the execl() function, which does not drop privileges. The
wrapper looks like this:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Notice that we do not need the wrapper program to be SUID.
Next, we’ll call the wrapper with the execl() function, like this:

We now have another issue to work through: the execl() function contains a NULL
value as the last argument. We will deal with that in a moment. First, let’s test the
execl() function call with a simple test program and ensure that it does not drop
privileges when run as root:

Compile and make SUID like the vulnerable program vuln2.c:

Run it to test the functionality:

Great, we now have a way to keep the root privileges. Now all we need is a way to
produce a NULL byte on the stack. There are several ways to do this; however, for
illustrative purposes, we will use the printf() function as a wrapper around the execl()
function. Recall that the %hn format token can be used to write into memory locations.
To make this happen, we need to chain together more than one libc function call, as

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

shown here:

Just like we did before, we will overwrite the old saved EIP with the address of the
glibc printf() function. At that point, when the original vulnerable function returns, this
new saved EIP will be popped off the stack and printf() will be executed with the
arguments starting with %6\$n, which will write the number of bytes in the format string
up to the format token (0x0000) into the third direct parameter. Because the third
parameter contains its own location, the value of 0x0000 will be written into that spot.
Next, the execl() function is called with the arguments from the first ./wrapper string
onward. Voilà, we have created the desired execl() function on the fly with this self-
modifying buffer attack string.

In order to build the preceding exploit, we need the following information:

• The address of the printf() function
• The address of the execl() function
• The address of the %6\$n string in memory (we will use the environment section)
• The address of the ./wrapper string in memory (we will use the environment

section)
• The address of the location we want to overwrite with a NULL value

Starting at the top, let’s get the addresses:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We will use the environment section of memory to store our strings and retrieve their
location with our handy getenv utility. Remember that the getenv program needs to be
the same size as the vulnerable program—in this case, vuln2 (five characters):

Okay, we are ready to place the strings into memory and retrieve their locations:

We have everything except the location of the last memory slot of our buffer. To
determine this value, first we find the size of the vulnerable buffer. With this simple
program, we have only one internal buffer, which will be located at the top of the stack
when inside the vulnerable function main(). In the real world, a little more research
will be required to find the location of the vulnerable buffer by looking at the
disassembly and using some trial and error.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Now that we know the size of the vulnerable buffer,(8) we can calculate the location
of the sixth memory address by adding 8 + 6 * 4 = 32 = 0x20. Because we will place 4
bytes in that last location, the total size of the attack buffer is 36 bytes.

Next, we send a representative-size (52 bytes) buffer into our vulnerable program and
find the location of the beginning of the vulnerable buffer with gdb by printing the value
of $esp:

Now that we have the location of the beginning of the buffer, add the calculated offset
from earlier to get the correct target location (sixth memory slot after our overflowed
buffer):

Finally, we have all the data we need, so let’s attack!

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Woot! It worked. You may have realized that a shortcut exists here. If you look at the
last illustration, you will notice the last value of the attack string is a NULL.
Occasionally, you will run into this situation. In that rare case, you won’t care if you
pass a NULL byte into the vulnerable program because the string will terminate by a
NULL anyway. Therefore, in this canned scenario, you could have removed the printf()
function and simply fed the execl() attack string, as follows:

Try it:

Both ways work in this case. You will not always be as lucky, so you need to know
both ways. See the “For Further Reading” section for even more creative ways to return
to libc.

When privileges are being dropped, we can leverage other function calls to work
around the calls that are dropping privileges. In this case, we leveraged the printf
memory overwrite capability to null-terminate the options to execl. By chaining these
function calls using ret2libc, we don’t have to worry about putting executable code on
the stack, and we can use complex options to functions we’ve pushed onto the stack.

Bottom Line
We have discussed some of the more common techniques used for memory protection,
but how do they stack up? Of the ones we reviewed, ASLR (PaX and PIE) and non-
executable memory (PaX and ExecShield) provide protection to both the stack and the
heap. StackGuard, StackShield, SSP, and Libsafe provide protection to stack-based
attacks only. The following table shows the differences in the approaches:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Summary
In this chapter, we investigated string format weaknesses and how to leverage those
weaknesses to expose data and impact application flow. By requesting additional data
through the format string, we can expose memory locations leaking information about the
contents of variables and the stack.

Additionally, we can use the format string to change memory locations. Using some
basic math, we can change values in memory to alter application flow, or we can impact
program execution by adding arguments to the stack and changing EIP values. These
techniques can lead to arbitrary code execution, allowing for local privilege escalation
or remote execution for network services.

We also looked at memory protection techniques such as stack protection and layout
randomization and then investigated some basic ways to bypass them. We leveraged a
ret2libc attack to control program execution. By leveraging the libc functions, we were
able to redirect application flow into known function locations with arguments we had
pushed onto the stack. This allowed the functions to run without executing code on the
stack and avoid having to guess at memory locations.

Combining these techniques, we now have a better toolkit for dealing with real-world
systems and the ability to leverage these complex attacks for more sophisticated
exploits. Protection techniques change, and strategies to defeat them evolve, so to better
understand these techniques, the “For Further Reading” section has additional material
for you to review.

For Further Reading
“Advanced return-into-lib(c) Exploits (PaX Case Study)”
(nergal) www.phrack.com/issues.html?issue=58&id=4#article

Exploiting Software: How to Break Code (Greg Hoglund and Gary McGraw)
Addison-Wesley, 2004

“Getting Around Non-Executable Stack (and Fix)” (Solar

||||||||||||||||||||

||||||||||||||||||||

http://www.phrack.com/issues.html?issue=58&id=4#article
https://technet24.ir
https://technet24.ir

Designer) http://seclists.org/bugtraq/1997/Aug/63

Hacking: The Art of Exploitation (Jon Erickson) No Starch Press, 2003

Shaun2k2’s libc exploits www.exploit-db.com/exploits/13197/

The Shellcoder’s Handbook: Discovering and Exploiting Security Holes (Jack
Koziol et al.) Wiley, 2004

“When Code Goes Wrong – Format String Exploitation”
(DangerDuo) www.hackinthebox.org/modules.php?
op=modload&name=News&file=article&sid=7949&mode=thread&order=0&thold=0

References
1. Christophe Blaess, Christophe Grenier, and Frédéreric Raynal, “Secure

Programming, Part 4: Format Strings,” February 16, 2001,
www.cgsecurity.org/Articles/SecProg/Art4/.

2. Wikipedia, “Printf format strings,”
https://en.wikipedia.org/wiki/Printf_format_string.

3. Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton , Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle and Qian Zhang, “StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks,”
Originally published in the Proceedings of the 7th USENIX Security Symposium
San Antonio, Texas, January 26-29, 1998,
www.usenix.net/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://seclists.org/bugtraq/1997/Aug/63
http://www.exploit-db.com/exploits/13197/
http://www.hackinthebox.org/modules.php?op=modload&name=News&file=article&sid=7949&mode=thread&order=0&thold=0
http://www.cgsecurity.org/Articles/SecProg/Art4/
https://en.wikipedia.org/wiki/Printf_format_string
http://www.usenix.net/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 13
Windows Exploits

Microsoft Windows is by far the most commonly used operating system, for both
professional and personal use, as shown in Figure 13-1. The percentages shown in this
figure change often; however, it provides a good sense of the overall OS market share.
Windows 7 remains dominant at almost 50 percent of the market, with Windows 10
quickly growing. In terms of general exploitation and hunting for 0-day exploits, it
should be relatively clear as to which Windows operating systems you should target.
Windows 7 often makes for an easier target in comparison to Windows 10 because
certain security features and exploit mitigations are unavailable to Windows 7, such as
Control Flow Guard (CFG). Examples of the most notable features and mitigations are
given later in this chapter and in Chapter 14.

Figure 13-1 Overall OS market share1

In this chapter, we discuss the following topics:
• Compiling and debugging Windows programs
• Writing Windows exploits
• Understanding Structured Exception Handling (SEH)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Understanding and bypassing basic exploit mitigations such as SafeSEH and SEH
Overwrite Protection (SEHOP)

Compiling and Debugging Windows Programs
Development tools are not included with Windows, but fortunately Windows
Community Edition allows you to compile programs for purposes such as education. (If
you have a licensed copy already, great—feel free to use it for this chapter.) You can
download for free the same compiler that Microsoft bundles with Visual Studio 2017
Community Edition. In this section, we show you how to set up a basic Windows exploit
workstation.

Lab 13-1: Compiling on Windows
The Microsoft C/C++ Optimizing Compiler and Linker are available for free from
https//www.visualstudio.com/vs/visual-studio-express/. You may use a 32-bit or 64-bit
version of Windows 7, 8, or 10 for this lab. Download and run the installer from the
previous link. When prompted, select the Desktop Development with C++ option and
deselect all other options except for the following:

• VC++ 2017 v141 toolset (x86,x64)
• Windows 10 SDK (10.0.15063.0) for Desktop C++ x86 and x64

You may also accept all the optional defaults; however, keep in mind that each one takes
up additional space on your hard drive. The specific SDK build number may vary
depending on when you perform the download. After the download and a
straightforward installation, you should have a Start menu link to the Visual Studio 2017
Community version. Click the Windows Start button and type prompt. This will bring
up a window showing various command prompt shortcuts. Double-click the one titled
Developer Command Prompt for VS 2017. This is a special command prompt with the
environment set up for compiling your code. If you are unable to locate it via the Start
menu, try searching for “Developer Command Prompt” from the root of the C: drive. It
is often located in C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Visual
Studio 2017\Visual Studio Tools. With the Developer Command Prompt up, navigate to
your C:\grayhat folder. To test out the command prompt, let’s start with the hello.c and
meet.c programs. Using a text editor such as Notepad.exe, type in the following sample
code, and save it into a file called hello.c located in your C:\grayhat folder:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.visualstudio.com/vs/visual-studio-express/
https://technet24.ir
https://technet24.ir
https://technet24.ir

The Windows compiler is cl.exe. Passing the name of the source file to the compiler
generates hello.exe, as shown here:

Pretty simple, eh? Let’s move on to building the next program, meet.exe. Create the
meet.c source code file with the following code and compile it on your Windows system
using cl.exe:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Windows Compiler Options
If you type cl.exe /?, you’ll get a huge list of compiler options. However, most are not
interesting to us at this point. The following table lists and describes the flags you’ll be
using in this chapter.

Because we’re going to be using the debugger next, let’s build meet.exe with full
debugging information and disable the stack canary functions:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE The /GS switch enables Microsoft’s implementation of stack canary
protection, which is quite effective in stopping buffer overflow attacks. To learn about
existing vulnerabilities in software (before this feature was available), we will disable
it with the /GS– flag.

Great, now that you have an executable built with debugging information, it’s time to
install the debugger and see how debugging on Windows compares to the Unix
debugging experience.

In this exercise, you used Visual Studio 2017 Community Edition to compile the
hello.c and meet.c programs. We compiled the meet.c program with full debugging
information, which will help us in our next exercise. We also looked at various
compiler flags that can be used to perform actions, such as the disabling of the /GS
exploit mitigation control.

Debugging on Windows with Immunity Debugger
A popular user-mode debugger is Immunity Debugger, which you can download at
https://www.immunityinc.com/products/debugger/. At the time of this writing, version
1.85 is the stable version and is the one used in this chapter. The Immunity Debugger
main screen is split into five sections. The “Code” or “Disassembler” section (top left)
is used to view the disassembled modules. The “Registers” section (top right) is used to
monitor the status of registers in real time. The “Hex Dump” or “Data” section (bottom

||||||||||||||||||||

||||||||||||||||||||

https://www.immunityinc.com/products/debugger/
https://technet24.ir
https://technet24.ir

left) is used to view the raw hex of the binary. The “Stack” section (bottom right) is
used to view the stack in real time. You can see these sections in the screen shown on
the next page. The “Information” section (middle left) is used to display information
about the instruction highlighted in the Code section. Each section has a context-
sensitive menu available by right-clicking in that section. Immunity Debugger also has a
Python-based shell interface at the bottom of the debugger window to allow for the
automation of various tasks, as well as the execution of scripts to help with exploit
development. Before continuing, download and install Immunity Debugger from the
aforementioned link.

You can start debugging a program with Immunity Debugger in several ways:

• Open Immunity Debugger and choose File | Open.
• Open Immunity Debugger and choose File | Attach.
• Invoke Immunity Debugger from the command line—for example, from a

Windows IDLE Python prompt, as follows:

For example, to debug our favorite meet.exe program and send it 408 A’s, simply type
the following:

The preceding command line will launch meet.exe inside of Immunity Debugger,
shown next:
I13-01.jpg

When learning Immunity Debugger, you will want to know the following common
commands (if you are using a macOS host to pass these commands to a Windows virtual
machine, you may need to map the key bindings):(continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Next, to be consistent with the examples in this book, adjust the color scheme by right-
clicking in any window and selecting Appearance | Colors (All) and then choosing from
the list. Scheme 4 is used for the examples in this section (white background). Also, the
“No highlighting” option has been selected. Immunity Debugger sometimes does not
support persistence for an unknown reason, so you may need to make these appearance
changes more than once.

When you launch a program in Immunity Debugger, the debugger automatically pauses.
This allows you to set breakpoints and examine the target of the debugging session

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

before continuing. It is always a good idea to start off by checking the dynamic
dependencies of your program (ALT-E), as shown here.

In this case, only kernel32.dll, KERNELBASE.dll, and ntdll.dll are linked to
meet.exe. This information is useful because, as you will see later, these programs
contain opcodes that are available to you when exploiting. Note that addressing will be
different on each system due to address space layout randomization (ASLR) and other
factors.

Lab 13-2: Crashing the Program
For this lab, you need to download and install Immunity Debugger onto your Windows
system from the aforementioned link. Immunity Debugger has a dependency on Python
2.7 that will be installed automatically if it’s not already on your system. You will be
debugging the meet.exe program you previously compiled. Using Python IDLE on your
Windows system, type in the following:

With the preceding code, we have passed in a second argument of 408 A’s. The
program should automatically start up under the control of the debugger. The 408 A’s
will overrun the buffer. We are now ready to begin the analysis of the program. We are
interested in the strcpy() call from inside the greeting() function because it is known to
be vulnerable due to a lack of bounds checking. Let’s find it by starting with the
Executable Modules window, which can be opened with ALT-E. Double-click the “meet”
module, and you will be taken to the function pointers of the meet.exe program. You will
see all the functions of the program (in this case, greeting and main). Arrow down to
the JMP meet.greeting line (you may have to dig for it) and then press ENTER to follow

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

that JMP statement into the greeting function, as shown here.

NOTE If you do not see the symbol names, such as greeting, strcpy, and printf, then
you may not have compiled the binary with debugging symbols. You might also see a
much larger jump table, depending on the version of Windows you are using. Even
compiling on Windows 10 Enterprise instead of Windows 7 Professional can produce
different results. If you still do not see the symbols to the right when looking at the
screen, simply follow the instructions in the next paragraph to look for the string ASCII
"Hello %s %s" and break on the CALL instruction a few lines above it.

Now that we are looking at the greeting() function in the Disassembler window, let’s
set a breakpoint at the vulnerable function call (strcpy). Arrow down until you get to the
line 0x00191034. Again, the addressing and symbols on your version of Windows may
be different. If so, simply look for the call instruction a few lines above the disassembly
showing ASCII "Hello %s %s" to the right to see where to set the breakpoint. You can
verify that it is the correct call by clicking the instruction and pressing ENTER. This
should show you that the call is being made to the strcpy() function. At this line, press
F2 to set a breakpoint; the address should turn red. This breakpoint allows you to return
to this point quickly. For example, at this point, restart the program with CTRL-F2 and
then press F9 to continue to the breakpoint. You should now see that Immunity Debugger
has halted on the function call we are interested in (strcpy).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

NOTE The addresses presented in this chapter will likely vary on your system due to
rebasing and ASLR. Therefore, you should follow the techniques, not the particular
addresses. Also, depending on your OS version, you may need to manually set the
breakpoint each time you start the program because Immunity Debugger seems to have
issues with breakpoint persistence on some versions of Windows. WinDbg is a great
alternative, but it’s not as intuitive.

Now that we have a breakpoint set on the vulnerable function call (strcpy), we can
continue by stepping over the strcpy function (press F8). As the registers change, you
will see them turn red. Because we just executed the strcpy function call, you should
see many of the registers turn red. Continue stepping through the program until you get to
the RETN instruction, which is the last line of code in the greeting function. For
example, because the “return pointer” has been overwritten with four A’s, the debugger
indicates that the function is about to return to 0x41414141. Also notice how the
function epilog has copied the address of EBP (Extended Base Pointer) into ESP
(Extended Stack Pointer) and then popped the value off the stack (0x41414141) into
EBP, as shown next.

As expected, when you press F8 one more time, the program will fire an exception, or
simply crash with 0x41414141 showing in the EIP (Extended Instruction Pointer)
register. This is called a first chance exception because the debugger and program are
given a chance to handle the exception before the program crashes. You may pass the
exception to the program by pressing SHIFT-F9. In this case, because no exception
handlers are provided within the application itself, the OS exception handler catches the
exception and terminates the program. You may need to press SHIFT-F9 multiple times to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

see the program terminate.
After the program crashes, you may continue to inspect memory locations. For

example, you may click in the stack window and scroll up to see the previous stack
frame (which we just returned from, and is now grayed out). As shown next, you can see
the beginning of the buffer on our system.

To continue inspecting the state of the crashed machine, within the stack window,
scroll back down to the current stack frame (the current stack frame will be highlighted).
You may also return to the current stack frame by selecting the ESP register value and
then right-clicking that selected value and choosing Follow in Stack. You will notice
that a copy of the buffer can also be found at the location ESP+4, as shown next.
Information like this becomes valuable later as we choose an attack vector.

As you can see, Immunity Debugger is easy to use.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

NOTE Immunity Debugger only works in user space and only for 32-bit applications
at the time of this writing. If you need to dive into kernel space, you will have to use a
Ring0 debugger such as WinDbg from Microsoft.

In this lab, we worked with Immunity Debugger to trace the execution flow with our
malicious data as input. We identified the vulnerable call to strcpy() and set a software
breakpoint to step through the function. We then allowed execution to continue and
confirmed that we can gain control of the instruction pointer. This was due to the fact
that the strcpy() function allows us to overwrite the return pointer used by the
greeting() function to return control back to main().

Writing Windows Exploits
Next, you will use the default Python installation on Kali Linux. The target OS running
the vulnerable application used in the examples is Windows 10 x64 Enterprise.

In this section, we continue using Immunity Debugger and also use the Mona plug-in
from the Corelan Team (https://www.corelan.be). The goal is to continue building on
the exploit development process covered so far. Then, you learn how to go from a
vulnerability advisory to a basic proof-of-concept exploit.

Exploit Development Process Review
The exploit creation process often consists of the following steps:

1. Control the instruction pointer.
2. Determine the offset(s).
3. Determine the attack vector.
4. Build the exploit.
5. Test the exploit.
6. Debug the exploit if needed.

Lab 13-3: Exploiting ProSSHD Server
The ProSSHD server is a network SSH server that allows users to connect “securely”
and provides shell access over an encrypted channel. The server runs on port 22. A

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.corelan.be
https://technet24.ir
https://technet24.ir
https://technet24.ir

number of years back, an advisory was released that warned of a buffer overflow for a
post-authentication action. This means the user must already have an account on the
server to exploit the vulnerability. The vulnerability may be exploited by sending more
than 500 bytes to the path string of an SCP (Secure Copy Protocol) GET command.

At this point, we will set up the vulnerable ProSSHD v1.2 server on a VMware guest
virtual machine (VM) running Windows 10 x64 Enterprise. You may choose to use
Windows 7 or 8 as well. Each version of Windows running Immunity Debugger may
produce slightly different results; however, the final exploit used in this chapter has
been tested across multiple versions of Windows. We will use VMware because it
allows us to start, stop, and restart our virtual machine much quicker than rebooting.

CAUTION Because we are running a vulnerable program, the safest way to conduct
testing is to place the virtual network interface card (VNIC) of VMware in host-only
networking mode. This will ensure that no outside machines can connect to our
vulnerable virtual machine. See the VMware documentation (www.vmware.com) for
more information.

Inside the virtual machine, download and install the ProSSHD application using the
following link: www.labtam-inc.com/articles/prosshd-1-2.html. You will also need to
sign up for the free 30-day trial in order to activate the server. After successful
installation using the “typical” install option, start up the xwpsetts.exe program from the
installation directory (for example, the installation could be at C:\Users\Public\Program
Files (x86)\Lab-NC\ProSSHD\xwpsetts.exe). Once the program has started, click Run

||||||||||||||||||||

||||||||||||||||||||

http://www.vmware.com
http://www.labtam-inc.com/articles/prosshd-1-2.html
https://technet24.ir
https://technet24.ir

and then Run as exe (as shown next). You also may need to click Allow Connection if
your firewall pops up.

NOTE If Data Execution Prevention (DEP) is running for all programs and services
on your target virtual machine, you will need to set up an exception for ProSSHD for the
time being. We will turn DEP back on in a later example to show you the process of
using a technique know as return-oriented programming (ROP) to modify permissions
when DEP is enabled. The fastest way to check is by holding the Windows key and
pressing BREAK from your keyboard to bring up the System Control Panel. On the left
side of the control panel, click Advanced System Settings. In the pop-up menu, click
Settings in the Performance area. Click the right pane titled Data Execution Prevention.
If the option “Turn on DEP for all programs and services except those I select” is the
one already selected, you will need to put in an exception for the wsshd.exe and
xwpsshd.exe programs. Simply click Add, select those two EXEs from the ProSSHD
folder, and you’re done! We will build the exploit in the next chapter to disable DEP
through ROP.

Now that the SSH server is running, you need to determine the system’s IP address
and use an SSH client to connect to it from your Kali Linux machine. In our case, the
virtual machine running ProSSHD is located at 192.168.10.104. You will need to either
turn off the Windows firewall from an Administrative command shell with the command
NetSh Advfirewall set allprofiles state off or simply add a rule to allow TCP port 22
inbound for SSH.

At this point, the vulnerable application and the debugger are running on a vulnerable

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

server, but they are not attached yet, so it is suggested that you save the state of the
VMware virtual machine by creating a snapshot. After the snapshot is complete, you
may return to this point by simply reverting to the snapshot. This trick will save you
valuable testing time because you can skip all the previous setup and reboots on
subsequent iterations of testing.

Controlling the Instruction Pointer
Open up your favorite editor in your Kali Linux virtual machine and create the
following script, saving it as prosshd1.py, to verify the vulnerability of the server:

NOTE The paramiko and scpclient modules are required for this script. The paramiko
module should already be installed, but you will need to verify that your version of Kali
includes scpclient. If you attempt to run the following script and get an error about
scpclient, you will need to download and run setup.py for the scpclient module from
https://pypi.python.org/packages/source/s/scpclient/scpclient-0.4.tar.gz. You will also
need to connect once with the default SSH client from a command shell on Kali Linux so
that the vulnerable target server is in the known SSH hosts list. You need to create a
user account on the target Windows virtual machine running ProSSHD that you will use
in your exploit. We are using the username test1 with a password of asdf. Create that
account or a similar one and use it for this exercise.

||||||||||||||||||||

||||||||||||||||||||

https://pypi.python.org/packages/source/s/scpclient/scpclient-0.4.tar.gz
https://technet24.ir
https://technet24.ir

This script will be run from your attack host, pointed at the target (running in VMware).

NOTE Remember to change the IP address to match your vulnerable server and verify
that you have created the test1 user account on your Windows VM.

It turns out in this case that the vulnerability exists in a child process, wsshd.exe, that
only exists when there is an active connection to the server. Therefore, we will need to
launch the exploit and then quickly attach the debugger to continue our analysis. This is
why the sleep() function is being used with an argument of 15 seconds, giving us time to
attach. Inside the VMware machine, you may attach the debugger to the vulnerable
program by choosing File | Attach. Select the wsshd.exe process and then click the
Attach button to start the debugger.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE It may be helpful to sort the Attach screen by the Name column to quickly find
the process. If you need more time to attach, you may increase the number of seconds
passed as an argument to the sleep() function.

Here goes! Launch the attack script from Kali with the following command and then
quickly switch to the VMware target and attach Immunity Debugger to wsshd.exe:

Once the debugger starts and loads the process, press F9 to “continue” the program.
At this point, the exploit should be delivered and the lower-right corner of the

debugger should turn yellow and say “Paused.” Depending on the Windows version you
are using as the target, the debugger may require you to press F9 again after the first
pause. Therefore, if you do not see 0x41414141 in the EIP register, as shown next,
press F9 once more. It is often useful to place your attack window in a position that
enables you to view the lower-right corner of the debugger to see when the debugger
pauses.

As you can see, we have control of EIP, which now holds 0x41414141.

Determining the Offset(s)
You will next need to use the mona.py PyCommand plug-in from the Corelan Team to
generate a pattern to determine the number of bytes where we get control. To get

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

mona.py, go to https://github.com/corelan/mona and download the latest copy of the
tool. Save it to the PyCommands folder under your Immunity Debugger folder. We will
be using the pattern scripts ported over from Metasploit. We first want to set up our
working directory where output generated by Mona will be written. Therefore, start up
an instance of Immunity Debugger. Do not worry about loading a program at this point.
Click in the Python command shell at the bottom of the debugger window and then enter
the command shown here:

If Immunity Debugger jumps to the log window, you can simply click the “c” button on
the ribbon bar to jump back to the main CPU window. We must now generate a 500-byte
pattern to use in our script. From the Immunity Debugger Python command shell, type in

which will generate a 500-byte pattern, storing it in a new folder and file where you
told Mona to write its output. Check your C:\grayhat\mona_logs\ directory for a new
folder, likely titled _no_name. In that directory should be a new file called pattern.txt.
This is the file from which you want to copy the generated pattern. As Mona tells you,
do not copy the pattern from Immunity Debugger’s log window because it may be
truncated.

Save a new copy of the prosshd1.py attack script on your Kali Linux virtual machine
(this example uses the name prosshd2.py). Copy the ASCII pattern from the pattern.txt
file and change the req line to include it, as follows:

NOTE The pattern, when copied, will be a very long line. We have formatted the line
shown here so that it will fit on the printed page.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/corelan/mona
https://technet24.ir
https://technet24.ir
https://technet24.ir

Run the new script from your Kali Linux terminal window with python prosshd2.py.
The result is shown next.

This time, as expected, the debugger catches an exception and EIP contains the value
of a portion of the pattern (41337141). Also, notice that the Extended Stack Pointer
(ESP) points to a portion of the pattern.

Use the pattern offset command in Mona to determine the offset of EIP, as shown
here.

You can see that after 489 bytes of the buffer, we overwrite the return pointer from
bytes 490 to 493 with 41337141. This is visible when looking at the Stack section of
Immunity Debugger. Then, 4 bytes later, after byte 493, the rest of the buffer can be
found at the top of the stack after the program crashes. The Metasploit pattern offset tool
we just used with Mona shows the offset before the pattern starts.

Determining the Attack Vector

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

On Windows systems, the stack resides in the lower memory addresses. This presents a
problem with the Aleph 1 attack technique we used in Linux exploits. Unlike the canned
scenario of the meet.exe program, for real-world exploits, we cannot simply control
EIP with a return address on the stack. The address will likely contain 0x00 at the
beginning and cause us problems as we pass that NULL byte to the vulnerable program.

On Windows systems, you will have to find another attack vector. You will often find
a portion (if not all) of your buffer in one of the registers when a Windows program
crashes. As demonstrated in the preceding section, we control the area of the stack
where the program crashes. All we need to do is place our shellcode beginning at byte
493 and overwrite the return pointer with the address of an opcode to jmp or call esp.
We chose this attack vector because either of those opcodes will place the value of ESP
into EIP and execute the code at that address. Another option is to find a sequence of
instructions that executes push esp followed by a ret.

To find the address of a desired opcode, we need to search through the loaded
modules (DLLs) that are dynamically linked to the ProSSHD program. Remember,
within Immunity Debugger, you can list the linked modules by pressing ALT-E. We will
use the Mona tool to search through the loaded modules. First, we will use Mona to
determine which modules do not participate in exploit-mitigation controls such as
/REBASE and address space layout randomization (ASLR). It is quite common for
modules bundled with a third-party application to not participate in some or all of these
controls. To find out which modules we want to use as part of our exploit, we will run
the !mona modules command from inside of Immunity Debugger. You may also use
!mona modules -o to exclude OS modules. The instance of wsshd.exe that we attached
to previously with Immunity Debugger should still be up, showing the previous pattern
in EIP. If it is not still up, go ahead and run the previous steps again, attaching to the
wsshd.exe process. With the debugger attached to the process, run the following
command to get the same results:

As you can see from the sampling of Mona’s output, the module MSVCR71.dll is not

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

protected by the majority of the available exploit-mitigation controls. Most importantly,
it is not being rebased and is not participating in ASLR. This means that if we find our
desired opcode, its address should be reliable in our exploit, bypassing ASLR!

We will now continue to use the Mona plug-in from Peter Van Eeckhoutte (aka
corelanc0d3r) and the Corelan Team. This time we will use it to find our desired
opcode from MSVCR71.DLL. Run the following command:

The jmp argument is used to specify the type of instruction for which we want to
search. The argument –r allows us to specify to which register’s address we would like
to jump and execute code. The –m argument is optional and allows us to specify on
which module we would like to search. We are choosing MSVCR71.dll, as previously
covered. After the command is executed, a new folder should be created at
C:\grayhat\mona_logs\wsshd. In that folder is a file called jmp.txt. When viewing the
contents, we see the following:

The address 0x7c345c30 shows the instructions push esp # ret. This is actually two
separate instructions. The push esp instruction pushes the address where ESP is
currently pointing onto the stack, and the ret instruction causes EIP to return to that
address and execute what is there as instructions. If you are thinking that this is why
DEP was created, you are correct.

NOTE This attack vector will not always work for you. You will have to look at
registers and work with what you’ve got. For example, you may have to use jmp eax or
jmp esi.

Before crafting the exploit, you may want to determine the amount of stack space
available in which to place shellcode, especially if the shellcode you are planning to
use is large. If not enough space is available, an alternative would be to use multistaged
shellcode to allocate space for additional stages. Often, the quickest way to determine
the amount of available space is to throw lots of A’s at the program and manually
inspect the stack after the program crashes. You can determine the available space by

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

clicking in the stack section of the debugger after the crash and then scrolling down to
the bottom of the stack and determining where the A’s end. Then, simply subtract the
starting point of your A’s from the ending point of your A’s. This may not be the most
accurate and elegant way of determining the amount of available space, but it’s often
accurate enough and faster than other methods.

We are ready to create some shellcode to use with a proof-of-concept exploit. Use the
Metasploit command-line payload generator on your Kali Linux virtual machine:

Take the output of the preceding command and add it to the attack script (note that we
will change the variable name from buf to sc).

Building the Exploit
We are finally ready to put the parts together and build the exploit:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE Sometimes the use of NOPs or padding before the shellcode is required. The
Metasploit shellcode needs some space on the stack to decode itself when calling the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

GETPC routine as outlined by “sk” in his Phrack 62 article2

Also, if the addresses held in EIP and ESP are too close to each other (which is very
common if the shellcode is on the stack), then using NOPs is a good way to prevent
corruption. But in that case, a simple stack adjust or pivot instruction might do the trick
as well. Simply prepend the shellcode with the opcode bytes (for example, add
esp,-450). The Metasploit assembler may be used to provide the required instructions
in hex, as shown here:

Debugging the Exploit If Needed
It’s time to reset the virtual system and launch the preceding script. Remember to attach
to wsshd.exe quickly and press F9 to run the program. Let the program reach the initial
exception. Click anywhere in the disassembly section and press CTRL-G to bring up the
“Enter expression to follow” dialog box. Enter the address from Mona that you are
using to jump to ESP, as shown next. For this example, it was 0x7c345c30 from
MSVCR71.dll. Press F9 to reach the breakpoint.

If your program crashes instead of reaching the breakpoint, chances are you have a
bad character in your shellcode or there is an error in your script. Bad character issues
happen from time to time as the vulnerable program (or client SCP program, in this
case) may react to certain characters and cause your exploit to abort or be otherwise

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

modified.
To find the bad character, you will need to look at the memory dump of the debugger

and match that memory dump with the actual shellcode you sent across the network. To
set up this inspection, you need to revert to the virtual system and resend the attack
script. When the initial exception is reached, click the stack section and scroll down
until you see the A’s. Continue scrolling down to find your shellcode and then perform a
manual comparison. Another simple way to search for bad characters is by sending in
all possible combinations of a single byte sequentially as your input. You can assume
0x00 is a bad character, so you would enter in something like this:

NOTE You may have to repeat this process of looking for bad characters many times
until your code executes properly. In general, you will want to exclude all whitespace
characters: 0x00, 0x20, 0x0a, 0x0d, 0x1b, 0x0b, and 0x0c. You would exclude one
character at a time until all the expected bytes appear in the stack segment.

Once this is working properly, you should reach the breakpoint you set on the
instructions PUSH ESP and RETN. Press F7 to single-step. The instruction pointer
should now be pointing to your NOP padding. The short sled or padding should be
visible in the disassembler section, as shown here.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Press F9 to let the execution continue. A calculator should appear on the screen, as
shown next, thus demonstrating shellcode execution in our working exploit! We have
now demonstrated the basic Windows exploit-development process on a real-world
exploit.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In this lab, we took a vulnerable Windows application and wrote a working exploit to
compromise the target system. The goal was to improve your familiarity with Immunity
Debugger and the Mona plug-in from the Corelan Team, as well as try out basic
techniques commonly used by exploit developers to successfully compromise an
application. By identifying modules that were not participating in various exploit-
mitigation controls, such as ASLR, we were able to use them to have a reliable exploit.
Coming up next, we will take a closer look at various memory protections and bypass
techniques.

Understanding Structured Exception Handling (SEH)
When programs crash, the operating system provides a mechanism, called Structured
Exception Handling (SEH), to try to recover operations. This is often implemented in
the source code with try/catch or try/exception blocks:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Windows keeps track of the SEH records by using a special structure2:

The EXCEPTION_REGISTRATION structure is 8 bytes in size and contains two
members:

• prev Pointer to the next SEH record
• handler Pointer to the actual handler code

These records (exception frames) are stored on the stack at runtime and form a chain.
The beginning of the chain is always placed in the first member of the Thread
Information Block (TIB), which is stored on x86 machines in the FS:[0] register. As
shown in Figure 13-2, the end of the chain is always the system default exception
handler, and the prev pointer of that EXCEPTION_REGISTRATION record is
always 0xFFFFFFFF.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 13-2 Structured Exception Handling (SEH)

When an exception is triggered, the operating system (ntdll.dll) places the following
C++ function3 on the stack and calls it:

In the past, the attacker could just overwrite one of the exception handlers on the stack
and redirect control into the attacker’s code (on the stack). However, things were later
changed:

• Registers are zeroed out, just prior to calling exception handlers.
• Calls to exception handlers, located on the stack, are blocked.

The SEH chain can be an interesting target because, oftentimes, even though you may

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

be overwriting the return pointer on the stack, execution never reaches the return
instruction. This is commonly due to a read or write access violation happening prior to
reaching the function epilog, caused by the large number of characters you sent into the
buffer. In this case, further down the stack past the buffer is the location of the SEH
chain for the thread. The read or write access violation will cause FS:[0] to get
dereferenced, which is the thread’s stack address where the first “Next SEH” (NSEH)
value is stored. Directly below the NSEH position on the stack is the address of the first
handler to be called. Overwriting this address with a custom address is often an easy
way to gain control if you are unable to via the return pointer overwrite. SafeSEH aims
to stop this technique from working, but as you will see, it is easily bypassed.

Understanding and Bypassing Windows Memory
Protections
As could be expected, over time, attackers learned how to take advantage of the lack of
memory protections in previous versions of Windows. In response, around the time of
Windows XP SP2 and Server 2003, Microsoft started to add memory protections, which
were quite effective for some time. However, the attackers eventually learned ways
around these protections too. This is the continuous evolution of exploitation techniques
and protections for thwarting the success of those techniques.

Safe Structured Exception Handling (SafeSEH)
The purpose of the SafeSEH protection is to prevent the overwriting and use of SEH
structures stored on the stack. If a program is compiled and linked with the /SafeSEH
linker option, the header of that binary will contain a table of all valid exception
handlers; this table will be checked when an exception handler is called to ensure that it
is in the list. The check is done as part of the RtlDispatchException routine in ntdll.dll,
which performs the following tests:

• It ensures that the exception record is located on the stack of the current thread.
• It ensures that the handler pointer does not point back to the stack.
• It ensures that the handler is registered in the authorized list of handlers.
• It ensures that the handler is in an image of memory that is executable.

So, as you can see, the SafeSEH protection mechanism takes steps to protect
exception handlers, but as you will see in a bit, it is not foolproof.

Bypassing SafeSEH

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

As previously discussed, when an exception is triggered, the operating system places
the except_handler function on the stack and calls it, as shown in Figure 13-3.

Figure 13-3 The stack when handling an exception

First, notice that when an exception is handled, the _EstablisherFrame pointer is
stored at ESP+8. The _EstablisherFrame pointer actually points to the top of our
exception handler chain. Therefore, if we change the _next pointer of our overwritten
exception record to the assembly instruction EB 06 90 90 (which will jump forward 6
bytes), and we change the _handler pointer to somewhere in a shared DLL/EXE, at a
POP/POP/RETN sequence, we can redirect control of the program into our attacker
code area of the stack. When the exception is handled by the operating system, the
handler will be called, which will indeed pop 8 bytes off the stack and execute the
instruction pointed to at ESP+8 (which is our JMP 06 command), and control will be
redirected into the attacker code area of the stack, where shellcode may be placed.

NOTE In this case, we needed to jump forward only 6 bytes to clear the following
address and the 2 bytes of the jump instruction. Sometimes, due to space constraints, a
jump backward on the stack may be needed; in that case, a negative number may be used
to jump backward (for example, EB FA FF FF will jump backward 6 bytes).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A great tutorial on the most common technique used to exploit the behavior of SEH is
located on the Corelan.be website
(https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-exploits-a-
quick-and-basic-tutorial-part-2/). The easiest way to defeat SafeSEH is to simply
bypass it by finding a module that is not compiled with the protection and use the same
technique described.

SEH Overwrite Protection (SEHOP)
In Windows Server 2008, another protection mechanism was added, called SEH
Overwrite Protection (SEHOP). SEHOP is implemented by the RtlDispatchException
routine, which walks the exception handler chain and ensures it can reach the
FinalExceptionHandler function in ntdll.dll. If an attacker overwrites an exception
handler frame, then the chain will be broken and normally will not continue to the
FinalExceptionHandler function. The key word here is normally—as was demonstrated
by Stéfan Le Berre and Damien Cauquil of Sysdream.com, this can be overcome by
creating a fake exception frame that does point to the FinalExceptionHandler function
of ntdll.dll. We will demonstrate their technique later in the chapter. SEHOP is not
enabled by default on Windows 7, 8, or 10; however, it is enabled by default on
Windows Server 2012 and later. It can be turned on through the registry or by using
Microsoft’s Enhanced Mitigation Experience Toolkit (EMET), which is the most
common way to manage the protection. When SEHOP is enabled with EMET, the end of
the SEH chain on a thread’s stack no longer has 0xFFFFFFFF in its NSEH position.
Instead, it points to a region of memory created for EMET.dll. At this memory region is
the expected 0xFFFFFFFF, with a pointer below into EMET.dll that contains a specific
set of instructions described in the next section.

Bypassing SEHOP
The team from Sysdream.com developed a clever way to bypass SEHOP by
reconstructing a proper SEH chain that terminates with the actual system default
exception handler (ntdll!FinalExceptionHandler).4 It should be noted at the outset that
this type of attack only works under limited conditions when all of the following
conditions are met:

• When you have local system access (local exploits)
• When memcpy types of vulnerabilities where NULL bytes are allowed are

possible
• When the third byte of the memory address of the controlled area of the stack is

between 0x80 and 0xFB

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/
http://Sysdream.com
http://Sysdream.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

• When a module/DLL can be found that is not SafeSEH protected and contains the
following sequence of instructions (this will be explained in a moment):

• XOR [register, register]
• POP [register]
• POP [register]
• RETN
 These instructions replicate what is stored in EMET.dll.

As the Sysdream team explained, the last requirement is not as hard as it sounds—this is
often the case at the end of functions that need to return a zero or NULL value; in that
case, EAX is XOR’ed and the function returns.

NOTE You can use !mona fw –s xor eax, eax # pop * # pop * # ret –m <module> to
search for the required sequence, but you may need to experiment with different
wildcards.

As shown in Figure 13-4, a fake SEH chain will be placed on the stack, and the last
record will be the actual location of the system default exception handler.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 13-4 Sysdream.com technique to bypass SEHOP (used with permission)

The key difference between this technique and the traditional SafeSEH technique is
the use of the JE (74) “conditional jump if equal to zero” instruction instead of the
traditional JMP short (EB) instruction. The JE instruction (74) takes one operand, a
single byte, used as a signed integer offset. Therefore, if you wanted to jump backward
10 bytes, you would use a 74 F7 opcode. Now, because we have a short assembly
instruction that may also be a valid memory address on the stack, we can make this
attack happen. As shown in Figure 13-4, we will overwrite the “Next SEH” pointer

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://Sysdream.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

with a valid pointer to memory that we control and where we will place the fake SEH
record containing an actual address to the system default exception handler. Next, we
will overwrite the “SEH handler” pointer with an address to the
XOR/POP/POP/RETN sequence in a module/DLL that is not SafeSEH protected. This
will have the desired effect of setting the zero bit in the special register and will make
our JE (74) instruction execute and jump backward into our NOP sled. At this point, we
will ride the sled into the next opcode EB 08, which will jump forward, over the two
pointer addresses, and continue in the next NOP sled. Finally, we will jump over the
last SEH record and into the real shellcode.

To summarize, our attack in this case looks like this:

• NOP sled
• EB 08 (or EB 0A to jump over both addresses)
• Next SEH: the address we control on the stack ending with (negative byte) 74
• SEH handler: the address to an XOR/POP/POP/RETN sequence in a non-

SafeSEH module
• NOP sled
• EB 08 (or EB 0A to jump over both addresses)
• At the address just given: 0xFFFFFFFF
• Actual system default exception handler
• Shellcode

To demonstrate this exploit, we will use the following vulnerable program (with
SafeSEH protection) and associated DLL (no SafeSEH protection):

NOTE Although this is a canned program, it is indicative of programs found in the
wild. This program will be used to bypass /GS, SafeSEH, and SEHOP protections.
Feel free to try and run this program yourself.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Next, we will show the associated DLL of the foo1.c program:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This program and DLL may be created in Visual Studio 2017 Community Edition. The
main foo1.c program was compiled with /GS and /SafeSEH protection (which adds
SEHOP), but not DEP (/NXCOMPAT) or ASLR (/DYNAMICBASE) protection. The
DLL was compiled with only /GS protection. If SEHOP seems to be missing, you may
enable it with EMET.

NOTE The foo1 and foo1dll files may be compiled from the command line by
removing the reference to stdafx.h and using the following command-line options:

After compiling the programs, let’s look at them in OllyDbg, or Immunity Debugger,
and verify the DLL does not have /SafeSEH protection and that the program does. We
will use the OllySSEH plug-in, shown next, which you can find on the Downloads page
at OpenRCE.org. Mona can do the same with the aforementioned fw (find wildcard)
command.

||||||||||||||||||||

||||||||||||||||||||

http://OpenRCE.org
https://technet24.ir
https://technet24.ir

Next, let’s search for the XOR/POP/POP/RETN sequence in our binary, as shown
next:

NOTE Various good plug-ins are available for OllyDbg and Immunity Debugger that
can do this search for you. You can also manually search by pressing CTRL-S in the
disassembler pane and putting in the exact desired instructions.

Now, using the address we discovered, let’s craft the exploit in a program, which we
will call sploit.c. This program creates the attack buffer and writes it to a file so it can
be fed to the vulnerable program. This code is based on the Sysdream.com team code
but was heavily modified, as mentioned in the credit comment at the beginning of the
code.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://Sysdream.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Let’s compile this program with the Visual Studio 2017 Community Edition command-
line tool (cl):

Next, we run it to create the attack buffer:

And then we feed it to the debugger and see what we get:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE The offsets and size of the attack buffer took some trial and error to get right,
which involved repeatedly launching in the debugger and testing until everything was
correct.

After running the program in the debugger (using several buffer sizes and stack
addresses), we managed to build the exact SEH chain required. Notice that the first
record points to the second, which contains the system exception handler address. Also
notice the JMP short (EB) instructions to ride the NOP sled into the shellcode (below
the final exception handler).

Finally, notice that after the program crashes, we have controlled the SEH list (shown
on the left in the screenshot). Looks like we are ready to continue in the debugger or to
run the exploit without a debugger.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We have bypassed /GS, SafeSEH, and SEHOP as well.

Stack-Based Buffer Overrun Detection (/GS)
The /GS compiler option is the Microsoft implementation of a stack canary concept,
whereby a randomly generated secret value, generated once per process invocation, is
placed on the stack above the saved EBP and saved RETN address. Then, upon the
return of the function, the stack canary value is checked to see if it has been changed.
This feature was introduced in Visual C++ 2003 and was initially turned off by default.

The new function prolog looks like this:

So, as you can see, the security cookie is XOR’ed with EBP and placed on the stack,
just above the saved EBP, also known as the saved frame pointer (SFP). Later, when the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

function returns, the security cookie is retrieved and XOR’ed with EBP and then tested
to see if it still matches the system value. This seems straightforward, but as we will
show you later, it is not always sufficient.

In Visual C++ 2005, Microsoft had the /GS protection turned on by default and added
other features, such as moving the buffers to higher addresses in the stack frame and
moving the buffers below other sensitive variables and pointers so that a buffer
overflow would have less local damage.

It is important to know that the /GS feature is not always applied. For optimization
reasons, there are some situations where the compiler option is not applied. This
depends greatly on the version of Visual Studio being used to compile the code. Here
are some examples where a canary might not be used:

• Functions that don’t contain a buffer
• Optimizations not enabled
• Functions marked with the naked keyword (C++)
• Functions containing inline assembly on the first line
• Functions defined to have a variable argument list
• Buffers less than 4 bytes in size

In Visual C++ 2005 SP1, an additional feature was added to make the /GS heuristics
stricter so that more functions would be protected. This addition was prompted by a
number of security vulnerabilities discovered on /GS-compiled code. To invoke this
new feature, you include the following line of code:

Later, in Visual Studio 2008, a copy of the function arguments is moved to the top of
the stack frame and retrieved at the return of a function, thus rendering the original
function arguments useless if overwritten. In Visual Studio 2015 and 2017, the /GS
protection continues to get more aggressive, protecting most functions by default.

Bypassing /GS
The /GS protection mechanism can be bypassed in several ways, as described in this
section.

Guessing the Cookie Value
Guessing the cookie value is not as crazy as it sounds. As discussed and demonstrated
by Skape, the /GS protection mechanism uses several weak entropy sources that may be

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

calculated by an attacker and used to predict (or guess) the cookie value.5 This only
works for local system attacks, where the attacker has access to the machine.

Overwriting Calling Function Pointers
When virtual functions are used, each instantiated object receives a pointer to a virtual
function table, known as a vptr. Though not targeting the implementation of the /GS
control, a common technique to avoid security cookies altogether is to target instantiated
C++ Class objects that have been deleted prematurely, as with Use-After-Free (UAF)
bugs. If we can cause an allocation to occur after the object is deleted, carefully
selecting the size to match that of the deleted object, we can reuse that location with our
own data. If a reference to this object occurs once we have replaced it, we control the
vptr. By using techniques such as corelanc0d3r’s DOM Element Property Spray
(DEPS), we can create a fake virtual function table at a known location. When the
vptr+offset is dereferenced, it will call our controlled value.

Replacing the Cookie with One of Your Choosing
The cookie is placed in the .data section of memory and is writable due to the need to
calculate and write it into that location at runtime. If (and this is a big “if”) you have
arbitrary write access to memory (through another exploit, for example), you may
overwrite that value and then use the new value when overwriting the stack.

Overwriting an SEH Record
It turns out that the /GS protection does not protect the SEH structures placed on the
stack. Therefore, if you can write enough data to overwrite an SEH record and trigger
an exception prior to the function epilog and cookie check, you may control the flow of
the program execution. Of course, Microsoft has implemented SafeSEH to protect the
SEH record on the stack, but as you will see, it is vulnerable as well. One thing at a
time, though; let’s look at bypassing /GS using this method of bypassing SafeSEH. Later,
when bypassing SEHOP, we will bypass the /GS protection at the same time.

Heap Protections
In the past, a traditional heap exploit would overwrite the heap chunk headers and
attempt to create a fake chunk that would be used during the memory-free routine to
write an arbitrary 4 bytes at any memory address. In Windows XP SP2 and beyond,
Microsoft implemented a set of heap protections to prevent this type of attack:

• Safe unlinking Before unlinking, the operating system verifies that the forward
and backward pointers point to the same chunk.

• Heap metadata cookies One-byte cookies are stored in the heap chunk header

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

and checked prior to unlinking from the free list. Later, in Windows Vista, XOR
encryption was added to several key header fields and checked prior to use, to
prevent tampering.

Starting primarily with Windows Vista and Server 2008 onward (although there was
some support in prior Windows versions), the low fragmentation heap (LFH) was
available to service heap allocations. The LFH replaced the prior front-end heap
allocator known as the Lookaside List in user land. The Lookaside List had security
issues around singly linked pointers and a lack of security cookies. The LFH can
service allocation requests meeting a certain criteria, and it does so much more
efficiently to avoid fragmentation. Discrepancies have been seen, but LFH is typically
triggered when 18 consecutive allocation requests come in for the same size. The first 4
bytes of each chunk header are encoded to help prevent heap overflows, acting as a
security cookie.6 Be sure to check out the research done by Chris Valasek on LFH.

Additional heap and C++ object-oriented protections were made available on
Windows 8 and later, such as sealed optimization to remove indirection associated with
virtual function calls. Virtual function table protection was also added to MSHTML.dll,
called vtguard. It works by placing an unknown entry into a C++ virtual function table
that is validated prior to calling a virtual function. Guard pages are used under certain
situations, also aiding in protection. If a guard page is reached during an overflow, an
exception is raised. See the presentation by Ken Johnson and Matt Miller listed in the
“For Further Reading” section.

Summary
The techniques shown in this chapter should get you up and running with the basics of
Windows exploitation via stack overflows as well as bypassing simple exploit
mitigations. As you have seen, there are many memory protections in Microsoft
operating systems, depending on the compiler options selected and other factors. With
each protection comes new challenges for attackers to overcome, resulting in a cat-and-
mouse game. Protections such as those offered by EMET can help stop canned exploits,
but as discussed, a skilled attacker can customize an exploit to evade many of these
controls. In the next chapter, we will move into advanced exploitation and associated
exploit mitigations.

For Further Reading
Corelan Team www.corelan.be

||||||||||||||||||||

||||||||||||||||||||

http://www.corelan.be
https://technet24.ir
https://technet24.ir

“Exploit Mitigation Improvements in Windows 8” (Ken Johnson and Matt Miller),
Microsoft Corp. media.blackhat.com/bh-us-
12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf

“Exploit Writing Tutorial Part 3: SEH Based Exploits” (Peter Van
Eeckhoutte) www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-
exploits-a-quick-and-basic-tutorial-part-3-seh

Microsoft Debugging Tools for
Windows www.microsoft.com/whdc/devtools/debugging/default.mspx

“mona.py – the manual”
(corelanc0d3r) www.corelan.be/index.php/2011/07/14/mona-py-the-manual/

“ProSSHD v1.2 20090726 Buffer Overflow Exploit” and a link to a vulnerable
application (original exploit by S2 Crew) www.exploit-db.com/exploits/11618/

“ProSSHD 1.2 remote post-auth exploit (w/ASLR and DEP bypass)” and a link to a
vulnerable application with ROP (Alexey Sintsov) www.exploit-
db.com/exploits/12495/

“ProSSHD Version 1.2 Download” and a link to a free trial www.labtam-
inc.com/articles/prosshd-1-2.html

References
1. NETMARKETSHARE, “Desktop Operating System Market Share,”

https://www.netmarketshare.com/operating-system-market-share.aspx?
qprid=10&qpcustomd=0 (accessed August 30th, 2017).

2. sk, “History and Advances in Windows Shellcode,” Phrack 62, June 22, 2004,
phrack.org/issues/62/7.html.

3. Matt Pietrek, “A Crash Course on the Depths of Win32 Structured Exception
Handling,” MSDN, January 1997,
www.microsoft.com/msj/0197/exception/exception.aspx.

4. Stefan Le Berre and Damien Cauquil, “Bypassing SEHOP,” Sysdream, 2009,
https://www.exploit-db.com/docs/english/15379-bypassing-sehop.pdf.

5. Matt Miller, “Reducing the Effective Entropy of GS Cookies,” Uninformed v7,
May 2007, uninformed.org/?v=7&a=2.

6. Chris Valasek, “Understanding the Low Fragmentation Heap,” illmatics.com,
August 2010, illmatics.com/Understanding_the_LFH.pdf.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
http://www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
http://www.exploit-db.com/exploits/11618/
http://www.exploit-db.com/exploits/12495/
http://www.labtam-inc.com/articles/prosshd-1-2.html
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
http://phrack.org/issues/62/7.html
http://www.microsoft.com/msj/0197/exception/exception.aspx
https://www.exploit-db.com/docs/english/15379-bypassing-sehop.pdf
http://uninformed.org/?v=7&a=2
http://illmatics.com
http://illmatics.com/Understanding_the_LFH.pdf
https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 14
Advanced Windows Exploitation

In the last chapter we took a look at basic Windows exploitation via return pointer
overwrites, Structured Exception Handling (SEH) overwrites, and some basic exploit-
mitigation bypass techniques related to SafeSEH and Structured Exception Handling
Overwrite Protection (SEHOP). For quite a few years now, exploit writers have been
taking advantage of a technique known as return-oriented programming (ROP) to bypass
memory protections such as hardware Data Execution Prevention (DEP). A number of
controls are aimed at preventing the technique from working, including various controls
implemented in Microsoft’s Enhanced Mitigation Experience Toolkit (EMET). EMET
will be end-of-life as of July 2018; however, it is set to live on with modern
implementations of Windows Defender Exploit Guard. The first introduction of Exploit
Guard started with the Windows 10 Fall Creators Update in October 2017. Other
common general controls include address space layout randomization (ASLR), Control
Flow Guard (CFG), isolated heaps, MemGC, and others.

In this chapter, we cover the following topics:
• Utilizing ROP to bypass hardware DEP
• Abusing browser-based memory leaks to bypass ASLR

Data Execution Prevention (DEP)
Data Execution Prevention is meant to prevent the execution of code placed in the heap,
stack, and other sections of memory where code execution should not be permitted. This
has long been a goal of operating systems, but until 2004, the hardware did not include
support. In 2004, AMD came out with the NX bit in its CPU. This allowed, for the first
time, the hardware to recognize the memory page as executable or not and to act
accordingly. Soon after, Intel came out with the XD feature, which did the same thing.

Windows has been able to use the NX/XD bit since XP SP2. Applications can be
linked with the /NXCOMPAT flag, which will enable hardware DEP for that
application depending on the OS version and support for various critical functions
related to memory permissions and protections. There are arguably three primary

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

categories of exploit mitigations:
• Application optional
• OS controls
• Compiler controls

The “application optional” category is not considered as effective as the other two
categories of exploit mitigations because applications can be compiled to not
participate in selected controls and are also victim to anyone with a hex editor going in
and changing meaningful flags. Microsoft removed support for two critical functions
(NtSetInformationProcess and SetProcessDEPPolicy) starting with Windows 7 to
prevent applications from having the choice as to whether they would participate in
DEP. Those functions were often used with a technique discovered by researchers
Skape and Skywing to disable DEP on a running process.1

The “OS control” category includes those exploit mitigations that are supported by the
OS, some of which are configurable, like DEP. The administrator of a system can select
which third-party applications participate in DEP, as opposed to allowing the
applications to decide. OS controls such as address space layout randomization (ASLR)
are enabled by default as of Windows Vista, which includes randomizing segments in
memory, including the stack and heap.

The “compiler controls” category includes protections such as security cookies,
rebasing, and Control Flow Guard. If a library is not compiled with the
/DYNAMICBASE option, then it will request to be mapped to the same static memory
address each time it is loaded by an application. Tools such as Microsoft’s EMET and
Windows Defender Exploit Guard can allow this to be overridden with a control called
Force ASLR.

The topic of exploit mitigations requires its own chapter and is not the focus of this
chapter in a general sense. This chapter is focused on defeating DEP and ASLR—hence
the limited focus on other mitigations. That being said, we must also cover isolated
heaps and MemGC when appropriate.

Address Space Layout Randomization (ASLR)
The purpose of address space layout randomization is to introduce randomness
(entropy) into the memory addressing used by a process. This increases the difficulty
during exploitation as memory addresses keep changing. Microsoft formally introduced
ASLR in Windows Vista and subsequent operating systems. Applications and DLLs can
opt for using the /DYNAMICBASE linker flag (this is the default behavior), which
ensures that loaded modules also enjoy the benefits of randomization. The entropy is

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

different on each version of Windows. As you can imagine, 64-bit Windows 10 supports
much better randomization than a 32-bit Vista system (the system where ASLR was first
introduced). In fact, 64-bit versions of Windows can benefit from high-entropy ASLR
(HEASLR), which greatly increases the available virtual address space range. Imagine
if there were 1,000 chairs in a room and you could choose to sit in one of them. Each
time you come back into the room, you can choose a new seat out of the 1,000 available.
Someone would have a 1 in 1,000 chance of guessing where you are sitting, barring that
you are truly randomizing your seat selection. Let’s pretend that is a 32-bit example.
Next, imagine if you went into a stadium with 50,000 available seats. You still only
need one seat, but the location would be more difficult to guess because there is a larger
number of seats. This example certainly isn’t to scale, but it gets the point across.

Some segments in memory have less entropy when randomizing addressing, especially
on 32-bit OSs and 32-bit applications. This may allow the process to fall victim to
brute-force attacks, depending on the conditions, such as whether or not a process
crashes during an attempted exploit. Randomization in the kernel, such as that with
driver addressing and the hardware abstraction layer (HAL), has also been more
limited historically. High-entropy ASLR was introduced with Windows 8, as presented
by Ken Johnson and Matt Miller at the Black Hat 2012 conference in Las Vegas,
Nevada. It greatly increases the number of bits in the entropy pool, making
predictability more difficult, as well as makes use of spraying techniques.2 At Black Hat
2016, Matt Miller and David Weston presented a talk titled, “Windows 10 Mitigation
Improvements.” You can find the link to the presentation in the “For Further Reading”
section at the end of the chapter.

Enhanced Mitigation Experience Toolkit (EMET) and
Windows Defender Exploit Guard
For quite a while now, Microsoft has offered increased exploit mitigation support with
the Enhanced Mitigation Experience Toolkit (EMET). At the time of this writing, EMET
5.5x was the most stable release. Examples of exploit mitigations in EMET, or managed
by EMET, include Export Address Table Access Filtering (EAF/EAF+), stack pivot
protection, deep hooks, ASLR improvements, SEHOP support, font protection,
additional ROP protections, and several other controls. Each of these poses additional
challenges to attackers. Known (as well as novel) techniques must be used to bypass or
disable a control. Administration of EMET has improved from prior versions, allowing
for easy selection of applications opted in for participation, as well as granular control
over which exploit mitigations to enforce per each application. Some of the EMET
controls are available to Windows 7 and Windows 8 natively, but require some level of
configuration, often involving interfacing with the registry. EMET provides a much

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

more straightforward approach to administering these controls at a granular level. Many
EMET controls are not available natively and require EMET to be installed.

Microsoft’s Security Intelligence Report, Volume 12, showed an example of an
unpatched Windows XP SP3 system that was run against 184 exploits, of which 181
were successful. They then applied a version of EMET, ran the testing again, and 163 of
the exploits were blocked due to EMET.3

Microsoft announced that EMET would be end-of-life in July 2018, and that date is
after an 18-month extension.4 However, when many in the security community expressed
disappointment, Microsoft listened and announced that EMET would live on through
Windows Defender. Windows Defender Exploit Guard includes support for the majority
of controls in EMET. The main concern is that, at least at the time of this writing,
Exploit Guard is only offered to Windows 10 users, starting with the fall 2017 Creators
Update. This means that continued use of EMET on Windows 7 and 8 will be
unsupported after July 2018.

Bypassing ASLR
The easiest way to bypass ASLR is to return into modules that are not compiled with the
/DYNAMICBASE option. The Mona tool discussed in Chapter 13 has an option to list
all non-ASLR linked modules:

When this mona command is run against the wsshd.exe process, the following table is
provided on the log page.

As you can see, the MSVCR71.dll module is not protected with ASLR. We will use
that in the following example to bypass DEP. The on-screen results on your system may
differ due to the version of Mona used, as well as other factors such as debugger
appearance settings.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

NOTE This method doesn’t really bypass ASLR, but for the time being, as long as
some developers continue to compile modules without the /DYNAMICBASE option, it
will be a viable method to at least “avoid” ASLR. This is certainly the easiest option.
Sometimes, partial return pointer overwrites can be used to bypass ASLR, especially in
32-bit processes.

A more difficult but lucrative method to defeat ASLR is to find a memory leak. If the
address of a known object from a loaded module can be leaked, we can subtract its
known relative virtual address offset from the full address to determine the rebased
module load address. Armed with this information, an ROP chain can be generated on
the fly. Later in this chapter we walk through a use-after-free memory leak against
Internet Explorer 11 that allows for a full ASLR bypass. A use-after-free bug is
commonly the result of a C++ object being prematurely freed. If a reference still exists
to the freed object, it may be susceptible to exploitation by allocating a malicious,
controlled object to the freed location.

Bypassing DEP and Avoiding ASLR
To demonstrate bypassing DEP, we will use the program we are familiar with,
ProSSHD v1.2, from Chapter 13.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

VirtualProtect
If a process needs to execute code in the stack or heap, it may use the VirtualAlloc or
VirtualProtect function to allocate memory and/or mark the existing pages as
executable. The API for VirtualProtect follows:

Therefore, we will need to put the following on the stack and call VirtualProtect():
• lpAddress The base address of the region of pages to be marked executable.
• dwSize The size, in bytes, to mark executable; you need to allow for the

expansion of shellcode. However, the entire memory page will be marked, so “1”
may be used.

• flNewProtect New protection option: 0x00000040 is
PAGE_EXECUTE_READWRITE.

• lpflOldProtect The pointer to the variable to store the old protection option
code.

Using the following command, we can determine the address of pointers to
VirtualProtect() inside the MSVCR71.dll:

This command provides the output in a file called ropfunc.txt, which can be found in
the output folder Mona was configured to use.

Return-Oriented Programming
So, what can we do if we can’t execute code on the stack? Execute it elsewhere? But
where? In the existing linked modules are many small sequences of code that end with a
RETN instruction. These sequences of code may or may not ever be executed by the
program. Imagine we have control of a process via a buffer overflow. If we lay out a
series of pointers to these desired code sequences, pointed to by the stack pointer, and
return to each of them in succession, we can maintain control of the process and have it
do our bidding. This is called return-oriented programming and was pioneered by
Hovav Shacham. It is the successor to techniques such as ret2libc.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Gadgets
The small sections of code mentioned in the previous section are what we call gadgets.
The word code is used here because it does not need to be an instruction used by the
program or module; you may jump to an address in the middle of an intended instruction,
or anywhere else in executable memory, as long as it performs the task you are looking
to perform and returns execution to the next gadget pointed to by the stack pointer. The
following example shows an intended instruction used inside of ntdll.dll at memory
address 0x778773E2:

Watch what happens when we go from 0x778773E2 to 0x778773E3:

The sequence of code still ends with a return, but the instruction above the return has
changed. If this code is meaningful to us, we can use it as a gadget. Because the next
address pointed to by ESP or RSP on the stack is another ROP gadget, the return
statement has the effect of calling that next sequence of code. Again, this method of
programming is similar to ret2libc, and is actually the successor to it, as discussed in
Chapter 11. With ret2libc, we overwrite the return pointer with the address of the start
of a function, such as system(). In ROP, once we gain control of the instruction pointer,
we point it to the location of the pointers to our gadgets and return through the chain.

Some gadgets include unwanted instructions in them for which we must compensate,
such as a POP or other instruction that could negatively modify the stack or a register.
Take a look at the disassembly:

In this example, we desire to have the EAX register zeroed out, followed by a return.
Unfortunately, there is a POP EDI instruction in between. To compensate for this, we
can simply add 4 bytes of padding onto the stack so that it doesn’t pop the address of
our next gadget into EDI. If EDI has something we need in it, then this gadget may not
be usable. Let’s pretend that the unwanted instruction in this gadget can be tolerated, and
so we compensate by adding the padding onto the stack. Now, look at the following
example:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In this example, we simply changed the POP EDI to a POP EAX. If our goal is to zero
out the EAX register, then the unwanted POP EAX would make this gadget unusable.
There are other types of unwanted instructions, some of which can be quite challenging
to resolve, such as a memory address being accessed that is not mapped.

Building the ROP Chain
Using the Mona PyCommand plug-in from corelanc0d3r, we can find a list of
recommended gadgets for a given module (-cp nonull is being used to ensure that no null
bytes are used as part of the ROP chains):

The execution of this command results in the creation of several files, including the
following:

• An rop_chains.txt file that has completed or semi-completed ROP chains that can
be used to disable DEP, using functions such as VirtualProtect() and
VirtualAlloc(). These chains can save you countless hours manually going through
and building an ROP chain.

• An rop.txt file that contains a large number of gadgets that may be of use as part of
your exploit. It is often uncommon for generated ROP chains to work straight out
of the box. You will often find yourself looking for gadgets to compensate for
limitations, and the rop.txt file can help.

• A file called stackpivot.txt, which will only contain stack pivot instructions.
• Depending on the version of Mona being used, other files may be generated, such

as rop_suggestions.txt and XML files containing completed ROP chains. Also, the
ROP chains generated may vary depending on the version of Mona you are using
and the options you select.

More info about the function and its parameters can be found in the Mona usage page.
The rop command will take a while to run and will produce the output files to

whatever folder you selected with Mona using the !mona config -set workingfolder
<PATH>/%p command. The contents of the very verbose rop.txt file will include
entries such as this:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

From this output, you may chain together gadgets to perform the task at hand, building
the arguments for VirtualProtect() and calling it. It is not quite as simple as it sounds;
you have to work with what you have available. You may have to get creative. The
following code, when run against the ProSSHD program, demonstrates a working ROP
chain that calls VirtualProtect() to modify the permissions where the shellcode is
located on the stack, so that it becomes executable. DEP has been turned back on for
wsshd.exe. The script has been named prosshd_dep.py.

NOTE You may or may not need the # -*- coding: utf-8 -*- line.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Although following this program may appear to be difficult at first, when you realize
that it is just a series of pointers to areas of linked modules that contain valuable
instructions, followed by a RETN instruction that simply returns the next gadget, then
you can see the method to the madness. There are some gadgets to load the register
values (preparing for the call to VirtualProtect). There are other gadgets to compensate
for various issues to ensure the correct arguments are loaded into the appropriate
registers. When using the ROP chain generated by Mona, this author determined that
when aligned properly, the call to VirtualProtect() is successfully made; however,
upon return from SYSEXIT out of Ring0, we are returning too far down the stack and
into the middle of our shellcode. To compensate for this, some gadgets were manually
added to ensure EBP is pointing into our NOP sled. One could spend the time to line
things up with precision so that so much padding is not necessary; however, that time
can also be spent on other tasks.

In the following code, we are first popping the value 0xfffffcdf into EAX. When this
gets added to the address in EBP that points into our shellcode, it will roll over 2^32
and point into our NOP sled.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

To calculate this, all you need to do is some basic math to ensure that EBP points to a
location inside the NOP sled. The final instruction performs this addition. To
demonstrate the before and after, take a look at the following images.

In this first image, the program is paused before the adjustment to EBP. As you can see,
EBP points into the middle of the shellcode. The next image shows the address of
where EBP is pointing after the adjustment has been made.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

As you can see, EBP points to our NOP sled, just before the shellcode. The shellcode
used in the exploit, generated with Metasploit, binds a shell to port TCP 31337. When
the exploit is allowed to continue, the shellcode is successfully executed and the port is
open, as shown here.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Defeating ASLR Through a Memory Leak
In the prior example, getting around ASLR was trivial. Let’s take a look at a more
complex example of defeating ASLR by exploiting a memory leak bug. This bug comes
from Ivan Fratric of Google’s Project Zero team and was assigned CVE-2017-0059,
available at www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0059. The bug
was reported to Microsoft on January 10, 2017, and trigger code was made available
publicly on March 20, 2017, once Microsoft released a patch. Fratric stated the
following in the release: “There is a use-after-free bug in IE which can lead to info leak
/ memory disclosure.”5 Per Microsoft, the bug affects Internet Explorer 9 and 11. We
will use IE 11 in this walkthrough.

After working through this bug for Gray Hat Hacking, Fifth Edition in early 2017, we
discovered that in July 2017, Claudio Moletta had done some fantastic work combining
this bug with a type confusion bug, also discovered by Ivan Fratric to demonstrate full
code execution.6 The second bug is a type confusion bug that allows full control of the
instruction pointer.7 It is highly recommended that you take a look at the fully working
exploit put together by Claudio once you work through this first bug. We will do a
detailed walkthrough of the use-after-free memory leak bug showing the complexities
involved in browser object and text allocations. Various trigger code files are provided

||||||||||||||||||||

||||||||||||||||||||

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0059
https://technet24.ir
https://technet24.ir

in the event you wish to try walking through this bug on your own. You will need an
unpatched version of Windows 7 x64 running IE 11 Version 11.0.9600.18537.
Debugging Tools for Windows 8.0 was used for debugging, as coalescing behavior in
Windows 10 Debugging Tools was interfering with the use of PageHeap functionality.

If you have trouble locating a Windows 7 x64 VM, Microsoft provides some for
various forms of testing web applications at the following location:
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/. You would then need
to revert back to the following Internet Explorer update before the bug was patched by
Microsoft: https://www.catalog.update.microsoft.com/search.aspx?q=kb3207752.

Triggering the Bug
Let’s first take a look at the trigger code provided by Ivan Fratric:

We’ll start with the HTML at the bottom. A Text Area object is being created with an
ID of textarea. The cols="80" attribute sets the size, in characters, of the visible text
area, and it’s being filled with a value of 25 lowercase a’s. Inside of MSHTML.DLL
exists the CTextArea class:

The disassembly within the CreateElement member function of CTextArea shows a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://www.catalog.update.microsoft.com/search.aspx?q=kb3207752
https://technet24.ir
https://technet24.ir
https://technet24.ir

call to HeapAllocClear with an object size of 0x78 bytes, and it allocates the object
into the Isolated Heap, as shown here:

This behavior is part of the MemGC and Isolated Heap exploit mitigations introduced
into MSHTML.DLL by Microsoft, which greatly mitigates the exploitability of use-
after-free bugs. In Fratric’s disclosure he stated, “Note: because the text allocations
aren’t protected by MemGC and happen on the process heap, use-after-free bugs dealing
with text allocations are still exploitable.”4 As we work our way through the bug, you
will see that text allocations are allocated into the default process heap and do not
utilize protected free, which gets us around MemGC.

In the trigger, also at the bottom in the HTML, you can see that the function run is
executed immediately as the page loads. A form element is also created with an ID of
"form". Let’s move on to the run function, which consists of the following:

First, the JavaScript document.getElementById method is used to get the Text Area
element and assign it to a variable called textarea. An iframe object is then created
and assigned to a variable named frame. The iframe object is then appended to the
textarea node as a child. Next is the line
frame.contentDocument.onreadystatechange = eventhandler;. First, let’s talk about
the readystate property of a document. While a document is loading, it can be in one of
several states: loading, interactive, and full. “When the value of this property changes, a
readystatechange event fires on the document object.”8 So when a “ready state change”
event occurs on the iframe object, the eventhandler function is called. The
form.reset() call will reset all values. This results in a state change to the frame node
and the calling of the eventhandler function. Let’s take another look at the
eventhandler function:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This function changes the value property of the textarea object to the string “foo.” It’s
followed with an alert to the screen that says, “Text value freed, can be reallocated
here.” For some reason, resetting the values of the form, followed by setting the text of
the textarea object to something else, results in a memory leak. As you will see, the
text displayed in the browser window inside the textarea object after the call to
eventhandler does not show the text “foo” and instead shows some garbled information
followed by the old a’s. As Fratric suggested, allocating memory after the value
property is changed to “foo” inside the eventhandler function could result in memory
allocations to freed memory associated with the textarea value that is still referenced.
If we can replace it with something useful, then perhaps the memory leak could be
meaningful. We are jumping ahead of ourselves and speculating a bit here, but now we
need to confirm our assumptions and work toward an ASLR bypass.

Let’s run the original trigger code from Ivan Fratric. The file is named trigger.html.
Here are two images. The first one shows the browser window before the alert is
clicked, and the second shows the browser window after the alert is clicked.

Clearly, after the OK button on the alert is clicked, the result is abnormal. It shows
what looks to be part of a function name. When we refresh again and then click OK, we
get the following result, which appears to be some strange characters, followed by some
a’s.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://trigger.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

Let’s turn on PageHeap and run the trigger file again. We first navigate to c:\Program
Files (x86)\Windows Kits\8.0\Debuggers\x86> from an Administrator command shell
and execute the command gflags.exe /p /enable iexplore.exe /full. This turns on
PageHeap, which tracks memory allocations on the heap with much more detail. More
information about the inner workings of PageHeap can be found at
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-
pageheap. In this same command prompt session we also run windbg.exe -I. This will
set WinDbg as our postmortem debugger. With PageHeap now running for IE 11 and our
postmortem debugger set up, we are ready to run the trigger file. This time WinDbg
pops up with the following result (note that we had to refresh the browser screen once
to get the debugger to catch the exception):

The crash occurred at the msvcrt!wcscpy_s+0x46 location on the instruction movzx
eax,word ptr [esi]. This is the Move with Zero-Extend instruction, which should be
loading the WORD of memory pointed to by ESI into the 32-bit EAX register. ESI is
pointing to unmapped or freed memory, noted by the ????, resulting in the crash. This is
typical behavior of a use-after-free bug. The following shows the result of using the k
command to dump the call stack. Only the first few hits are shown:

In the function names are mentions of DoReset and InjectInternal, which could lead
one to believe that this might be the result of the form.reset() JavaScript code and the
setting of the default value to “foo,” but we have not verified anything at this point.

Next, let’s take a look at the memory pointed to by ESI with the WinDbg extension
command !heap -p -a esi:

||||||||||||||||||||

||||||||||||||||||||

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://technet24.ir
https://technet24.ir

We can see that the function MSHTML!BASICPROPPARAMS:SetStringProperty
made a call to HeapReAlloc. The HeapReAlloc function is used to resize an existing
chunk of memory. The behavior typically results in a call to the function memmove from
inside NTDLL. The old location of the chunk is then freed. Let’s turn off PageHeap
using our Administrator command shell with gflags.exe /p /disable iexplore.exe.

Tracing the Memory Leak
The next trigger file we will work with is trigger_with_object.html. Let’s take a look at
the source code and see what we are doing:

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://trigger_with_object.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

You need to take note of a couple of important changes. First, we increased the
number of a’s in the value property of the textarea object. Increasing and decreasing
the number of bytes changes the allocation size. This has an effect on what ends up
replacing the freed memory. Feel free to experiment with changing the size of this field
and examine the result. The type of object you create in the eventhandler function after
the value is set to “foo,” and its resulting allocations, has a direct correlation to the size
of the value property for the textarea object. This requires experimentation to
understand fully. We have also added a button to the screen that calls the function setBs.
This function simply changes the value property to a set of B’s. You could also use
innerHTML, but value is per the specification. Next, take a look back up at the
eventhandler function to see the object we are creating. You should notice the
following two new lines:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We are simply creating an object instance of an HTML INPUT element and setting it
to a type of range. When attempting to replace the freed memory involved in the use-
after-free, we tried many objects/elements. Some of them resulted in the ability to
control the memory leak and others failed. The creation of HTML objects results in their
allocation ending up in the Isolated Heap. Some of the properties of these elements
result in allocations of various types in the default process heap. A large number of
attributes and properties are associated with a large number of HTML elements. The
way that allocations work requires you to spend a lot of time disassembling and
debugging. Sometimes the allocations intentionally being made to try and leak something
useful are unrelated to what we actually end up accessing. Although that is a bit of a
strange sentence, the freed memory may be taken by something completely unrelated to
your memory allocations, or at least indirectly related. A couple of alerts can also be
seen in the preceding source code so that we can attach with the debugger accordingly.

We will now walk through the execution of this script inside of WinDbg. The selected
breakpoints were based on looking at the call stack during the crashes, using PageHeap
and analyzing chunks in memory, and reversing MSHTML.DLL in IDA. We will first
open up the trigger_with_object.html file in IE 11. We get a pop-up alert that says,
“Before Creation of Text Area Object: Attach and Set Breakpoints.” We then open up
WinDbg and press F6 to attach to the Internet Explorer process, as shown here.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://trigger_with_object.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

Notice that we are attaching to the bottom of two iexplore.exe processes. By starting
IE with a single tab open, two processes are started automatically. This goes back to IE
8, where Microsoft split the control of the broker, used by IE protected mode, and the
frame from the individual tabs. This was primarily used to help improve the user
experience by preventing errors from crashing the whole browser and allowing for
auto-recovery. If you open a second tab, another process should be created. Regardless,
for our purposes, just know that we need to attach to the lower instance.

Now that we are attached, let’s add the following breakpoints:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We cover each breakpoint in the following list:

• MSHTML!CTextArea::CreateElement+13 This is set for the return from the
call to HeapAlloc. Examining EAX at this point will show us the address of the
textarea object.

• MSHTML!BASICPROPPARAMS::SetStringProperty If you recall from
earlier, this function is seen in the call chain of the object involved in the use-
after-free. It leads to the call to HeapReAlloc and a likely free.

• MSHTML:CTxtPtr::InsertRange This function leads to a memcpy call that
copies the a’s from an initial memory allocation associated with the textarea
object to the destination where it displays on the screen in the browser.

• MSHTML!CStr::_Alloc+0x4f We use this breakpoint to track some BSTR
allocations made that will store our a’s. We’ll then see that one or more of these
allocations are freed, reallocated with our object, and involved in the use-after-
free. You may need to double-check the offset to ensure that it matches up with the
expected test eax, eax instruction.

• bm MSHTML!_HeapRealloc<0> We use the “break match (bm)” option
because the function name has special characters. We will only use this
breakpoint once to track the object being freed.

• urlmon!CoInternetCreateSecurityManager This breakpoint is associated
with the INPUT object we are creating. This function will lead to an allocation
that ends up storing a virtual function table pointer that we’ll eventually use to
bypass ASLR.

• ole32!CoTaskMemAlloc+0x13 This is the actual moment of allocation related
to the preceding breakpoint. The offset is when the pointer to the allocation is
returned. The addresses of the allocations should match up to the earlier
allocations from MSHTML!CStr::_Alloc, showing that they are involved in the
use-after-free.

We will be enabling and disabling these breakpoints at various points in order to debug
efficiently. Next, let’s issue the command bl to list out our breakpoints, then disable all
of them with bd *, and then enable breakpoint 0 and 1 with the command be 0 1. We
then tell the debugger to continue execution by pressing F5 or entering g.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

With the breakpoints set and IE 11 running in the debugger, we then click OK on the
alert pop-up. We instantly hit breakpoint 0 on
MSHTML!CTextArea::CreateElement+0x13:

At this point, inside EAX is the memory address 0x03018300, which is the textarea
object just after creation. At this point we want to enable breakpoint 2 for
MSHTML!CTxtPtr::InsertRange so that we can track the copying of the a’s from an
allocation associated with the textarea element. After enabling this breakpoint with be
2, we press F5 twice to hit breakpoint 2 a second time. Once we hit the breakpoint, we
hold down F8 to single-step until we reach the call to memcpy, as shown here:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

You can see we have reached the call from MSTHML!CTxtPtr::InsertRange to
memcpy_s. The EAX register holds the address 0x0050dafa, which is the destination
address for where the a’s will be written. The following shows the memory at the
address before the completion of the memcpy_s function, followed by the gu command
to step out of the function, and then another dump:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You can see that our a’s were copied into memory. This is the actual address of the a’s
that you can visibly see in the browser windows. This will become apparent soon when
the memory leak occurs. Next, we disable breakpoint 2 and enable breakpoint 3 for
MSHTML!CStr::_Alloc+0x43. We also need to set a “break on access” breakpoint on
the address of where the a’s were just written because this location is important for the
memory leak. We need to subtract 2 bytes from the address 0x0050dafa so that it is 4-
byte aligned. After making these changes, we list out the breakpoints to verify they are
correct.

You can see whether the breakpoints are enabled or disabled by the e or d,
respectively, next to the breakpoint number. We are ready to continue execution with F5.
We instantly hit the breakpoint on MSHTML!CStr::_Alloc+43. For whatever reason,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

even though we put the breakpoint in as +4f, it shows as +43. You can disregard that for
now because it still looks to be breaking on the appropriate location of the test eax,
eax instruction. Let’s record the 0x04ec71b8 address held in EAX because it will also
store our a’s, to be shown in a moment. After executing gu a couple of times, our a’s
show up at the address. This chunk address is important because it will get reallocated
shortly due to the eventhandler function.

Also, note the following disassembly for the memory allocation performed by
CStr:_Alloc:

The allocations are using the process heap, and tracing execution shows that MemGC
is not protecting the allocations. Next, we continue execution in the debugger and
immediately hit the MSHTML!CStr::_Alloc+43 breakpoint again:

We record the address of 0x04ec74b8 stored in EAX because it also is related to the
prior hit on this breakpoint and our source code. Next, we disable breakpoint 3 and
continue execution. After continuing execution, we reach the breakpoint on
MSHTML!BASICPROPPARAMS::SetStringProperty, which is reached while
inside the eventhandler function triggered by the form.reset() state change:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This is just before the text area default value is set to “foo.” We will now enable the
breakpoint for MSHTML!_HeapRealloc<0>. This causes execution to pause when
realloc is called on the initial chunk allocated by MSHTML!CStr::_Alloc to be
resized.

As you can see, EAX holds the address 0x04ec71bc, which is the same address as the
initial chunk we tracked from MSHTML!CStr::_Alloc. Actually, it is a couple of bytes
off, but that is simply due to alignment. The next output shown is after we hold the F8 key
down for a few seconds, carefully stopping as soon as we see the call to memmove
reached.

A few instructions into the memmove function, the source and destination arguments
are loaded into ESI and EDI. In EDI is the destination address for the resized chunk that
will eventually get set to “foo.” ESI holds the address of the chunk we just saw in the
realloc call. Let’s use the !heap command to check the status of the source chunk before
the move, and then again after we step out of these function calls:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

You can see that the chunk is now free and available for reallocation. If you track the
other chunk we saw allocated from the MSHTML!CStr::_Alloc function, you’ll see
that it is also freed at various points. We will continue by enabling the breakpoint on
urlmon!CoInternetCreateSecurityManager:

We are hitting this breakpoint due to the OBJECT we are creating after the freeing of
the preceding object, along with setting it to the type range. We now must enable the
breakpoint on ole32!CoTaskMemAlloc+0x13 to track the address being used for
allocation:

The address in EAX should look familiar. It is the chunk address we have been
tracking thus far. Let’s dump out the contents, followed by stepping out of a couple of
functions, and then dump it again:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Take a look at the addresses at the top of the chunk. They are 0x7725442c,
0x77254504, 0x772544d4, and 0x77254514. Let’s run the dt command on these
addresses to see what they are:

Pointers to various CSecurityManager virtual function tables have been written, as
well as a pointer to the CSecurityManager::CPrivUnknown table. Let’s continue
execution, where you may see the same VTable information written to other locations:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Note that we hit the “break on access” breakpoint we created early on, where our a’s
were originally written to the visible window in the browser user interface. This
address is 0x0050dafa and is stored in the EDI register at this breakpoint. The address
in the ESI register is the object we have been tracking all along that was freed after the
realloc call. You may actually hit this breakpoint multiple times. After dumping contents
of the address after each break on memcpy associated with that address, we finally get
the preceding output. After entering gu to step out of this last memcpy call, we get the
following result:

After letting the process continue, we look back at the browser window and see the
result shown here.

The Chinese characters are the displayed result when the VTable address is converted
from Unicode, but we know what they really are! As a final validation, we will click
the “Replace Text With B’s” button. We hit our breakpoint:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You can see here that we hit the breakpoint, caused by clicking the alert button. We
dump out the memory at the breakpoint to show that it is unchanged, followed by a gu,
and then another dump. You can see that our B’s have been written to the address.
Allowing execution to continue results in the following result in the browser window.

When inspecting the element in the browser, we get the result shown next.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We need to get the Unicode of the characters printed onto the screen and convert it to
hexadecimal so that we can see if it matches what we are expecting to see. We have
confirmed and tracked the memory leak bug, so now let’s move on to weaponizing it!

Weaponizing the Memory Leak
We are now at the point where we need to add some simple lines of JavaScript in order
to utilize the leaked address. We first want to confirm that we are able to successfully
access and convert the Unicode to a hexadecimal value. We then need to locate the RVA
offset and subtract it from the leaked address to get the base address. Once we do that,
we can use mona.py from corelanc0d3r—or another tool, such as Ropper by Sascha
Schirra—to generate an ROP chain based on the RVA offsets.

We will use the file Leaked_urlmon.html for this next run. First, let’s look at the
addition of the printLeak function that will convert our leaked address:

Let’s go through each line. Here’s the first one:

This line simply gets the textarea element based on its ID and assigns it to the variable
text. In the second line, we are creating a variable called leak and accessing the first
two Unicode characters printed on the page:

The first character we saw earlier was . Let’s use an online converter to print out
the hexadecimal value for that character. We will use the converter at
https://unicodelookup.com. The result is shown here.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://eaked_urlmon.html
https://unicodelookup.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

As you can see, the hexadecimal value is 0x4504. When we convert the first two
characters, and , we get the following in Unicode Lookup.

The hex value for the two values concatenated is 0x77254504. Until we reboot the
system and the DLL is rebased, this address will remain the same. Let’s take a look
inside the debugger to confirm this address:

Let’s also analyze the address:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We can see that the address belongs to urlmon.dll and that the base address is
0x77250000, making the RVA offset 0x4504. Now back to the line of code we were
looking at:

This code simply assigns the first two Unicode values that we just looked at to the
variable leak. Here’s the next line:

As shown in the comment in the source code, this line was lifted from
https://github.com/rapid7/metasploit-
framework/blob/master/modules/exploits/windows/browser/ms13_037_svg_dashstyle.rb
on April 20, 2017. It simply takes the leak variable and converts it from Unicode to
hexadecimal in reverse order so that the value is 0x77254504 and not 0x45047725, due
to the storage in memory. The following is the last line in the printLeak function:

Here, we are simply setting text.value or “innerHTML” to the leaked and converted
hexadecimal address so that it is displayed in the textarea location on the screen. Next
to it we print “urlmon!CSecurityManager:`vftable’” because we confirmed this to be the
destination of the leaked pointer.

In the HTML source, we also created a CButton that executes the printLeak function
when it is clicked. The following images show the result before and after the button is
clicked, respectively.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/ms13_037_svg_dashstyle.rb
https://technet24.ir
https://technet24.ir
https://technet24.ir

Everything looks to be in order. Let’s add and modify the following to subtract the
RVA offset of 0x4504 to calculate the base address:

The following is the result on the screen in the browser.

Building the RVA ROP Chain
Our final effort in this chapter is to use mona.py from corelanc0d3r to generate an RVA
ROP chain. Though Mona is available for WinDbg, we will use Immunity Debugger
from Immunity Security. With Immunity Debugger attached to IE 11, we execute the
following command to generate the ROP chain:

The following is an example of one of the generated ROP chains for VirtualProtect:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

It looks like all but one gadget was found. We are missing the gadget to put 0x201 into
EBX to serve as the size argument to VirtualProtect. This can easily be resolved by
looking for gadgets to compensate. At quick glance, the following gadgets were
manually found and could be added:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

There are likely many ways to accomplish that goal. In this example, you would need
to reorder the gadgets because EAX needs to dereference the IAT entry for
VirtualProtect and then exchange it with ESI, as shown in the first portion of the ROP
chain. For now, we’ll just take the ROP chain with the unresolved gadget and add it to
our memory leak HTML file to demonstrate the point. The following script is partially
unnecessary; however, it has been created as such so that you can visually see how the
RVA offsets are added to the recovered base address. Here is part of the updated
Final_leaked.html file:

As you can see, we are creating our gadget variables using the leaked base address
and the RVA offsets from Mona. Another button was created that prints out the generated
ROP chain after the memory leak. Again, this is totally unnecessary, but it shows you
how the final addresses are calculated. The following images show the results, with the
final one showing the full ROP chain.

||||||||||||||||||||

||||||||||||||||||||

http://Final_leaked.html
https://technet24.ir
https://technet24.ir

At this point, we need only fix the one ROP gadget, as previously described, and then
combine it with another bug that gets control of the instruction pointer. This is left as an
exercise for the reader, and this author highly recommends taking a look at the
previously mentioned work of Claudio Moletta.

Summary

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This chapter provided a brief introduction to a couple of common exploit mitigations:
DEP and ASLR. We then took the SSH exploit from Chapter 13 and modified it to
disable DEP using a ROP chain generated with Mona that gets around ASLR by using a
non-rebased module. Finally, we took a detailed look at a full ASLR bypass through the
use of a memory leak bug in IE 11 discovered by Ivan Fratric. We weaponized it into a
working example to bypass DEP in a situation when all modules are rebased.
Techniques such as these are fairly standard nowadays, and as the mitigations improve,
new techniques will be required.

For Further Reading
“Windows 10 Mitigation Improvements” https://www.blackhat.com/docs/us-
16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf

References
1. skape and Skywing, “Bypassing Windows Hardware-enforced Data Execution

Prevention,” October 2, 2005, www.uninformed.org/?v=2&a=4&t=txt.
2. Ken Johnson and Matt Miller, “Exploit Mitigation Improvements in Windows 8,”

BlackHat, August 2012, media.blackhat.com/bh-us-
12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf.

3. Microsoft, “Microsoft Security Intelligence Report, Volume 12,” MSDN,
December 2011, www.microsoft.com/en-us/download/confirmation.aspx?
id=29569.

4. Swiat, “Moving Beyond EMET,” TechNet, November 2016,
https://blogs.technet.microsoft.com/srd/2016/11/03/beyond-emet/.

5. Ivan Fratric, “Microsoft IE: textarea.defaultValue Memory Disclosure,”
blog.chromium.org, March 2017, https://bugs.chromium.org/p/project-
zero/issues/detail?id=1076.

6. Claudio Moletta, “IE11 Exploit for Windows 7 x64,” Redr2e, July 2017,
https://redr2e.com/cve-to-exploit-cve-2017-0037-and-0059/.

7. Ivan Fratric, “Microsoft Edge and IE: Type Confusion in
HandleColumnBreakOnColumnSpanningElement,” blog.chromium.org, February
2017, https://bugs.chromium.org/p/project-zero/issues/detail?id=1011.

8. anonyco, “Document.readyState,” Mozilla Developer’s Network, May 2017,
https://developer.mozilla.org/en-US/docs/Web/API/Document/readyState.

||||||||||||||||||||

||||||||||||||||||||

https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf
http://www.uninformed.org/?v=2&a=4&t=txt
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
http://www.microsoft.com/en-us/download/confirmation.aspx?id=29569
https://blogs.technet.microsoft.com/srd/2016/11/03/beyond-emet/
http://blog.chromium.org
https://bugs.chromium.org/p/project-zero/issues/detail?id=1076
https://redr2e.com/cve-to-exploit-cve-2017-0037-and-0059/
http://blog.chromium.org
https://bugs.chromium.org/p/project-zero/issues/detail?id=1011
https://developer.mozilla.org/en-US/docs/Web/API/Document/readyState
https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 15
PowerShell Exploitation

The majority of corporate systems are still Windows based, so it’s important that we
have a good grasp of the available tools in Windows systems. One of the most powerful
of these tools is PowerShell. In this chapter, you learn about what makes PowerShell
such a powerful tool, and we look at some ways to use it as part of our exploitation
toolkit.

In this chapter, we cover the following topics:
• Why PowerShell
• Loading PowerShell scripts
• Creating shells with PowerShell
• PowerShell post exploitation

Why PowerShell
Although the PowerShell language has been a blessing for Windows systems
automation, it also gives hackers leverage. PowerShell gives us access to almost all of
the Windows features in a programmatic way, and it’s extendable and can be used to
administrate Active Directory, e-mail systems, SharePoint, workstations, and more.
PowerShell also gives us access to .NET libraries from a scripting standpoint, making it
one of the most flexible tools you can use in a Windows environment.

Living Off the Land
When we talk about “living off the land,” we mean using the tools already present on
systems to further our exploitation. This is valuable because whenever we add things to
a system, we increase the possibility of detection. Not only that, when we leave tools
behind, it helps disclose our tactics, techniques, and procedures (TTPs) so that it is
easier to find our activity across other systems. When we live off the land, we can leave
fewer artifacts behind and limit the tooling we have to move from system to system.

PowerShell is useful as an already existing tool on a system because it gives us the
ability to easily script and also includes .NET integration, so almost anything we can

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

write in .NET we can write in PowerShell. This means we can go beyond basic
scripting and actually interact with kernel functions and more, which gives us additional
flexibility that would normally require the use of separate programs.

One of the main benefits of PowerShell is that it can use the Internet Explorer options,
so things like proxy support are built into PowerShell. As a result, we can use the built-
in web libraries to load code remotely, meaning we don’t have to download any code to
the target system. Therefore, when someone looks at the file-system timeline, these pulls
from websites won’t show up, which allows us to be even stealthier.

PowerShell Logging
In earlier versions of PowerShell (pre v4.0), only a handful of logging options were
available. This allowed us to operate without creating a lot of log alerts when we
loaded PowerShell, and also made it very difficult for forensics folks to figure out what
we had been doing. The only logging that was really shown was the fact that
PowerShell loaded. With newer versions of PowerShell, however, additional options
are available to increase PowerShell logging. Because of this, targeting the latest
Windows version may give away more about what you are doing than the older
versions.

NOTE We cover just a few of the logging aspects of PowerShell that might impact
your hacking detection. For more information, we have added a reference from FireEye
that lays out the different options in more depth and explains how to enable them.1

Module Logging
Module Logging enables a number of features concerning how scripts are loaded and
the basics of what was executed. This includes what modules and variables were
loaded, and even some script information. This logging greatly increases the verbosity
when PowerShell scripts are run, and it may be overwhelming to an administrator.
Module Logging has been available since PowerShell v3.0 and is not enabled by
default, so you need to enable a Group Policy Object (GPO) on systems to get this
logging.

Although this type of logging increases the visibility into what was run, much of the
time it doesn’t provide the actual code that was run. Therefore, for a forensics
investigation, this level of logging is still insufficient. It will, however, tip off

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

investigators to the types of things you have been doing, although the specifics will
likely not be logged.

Script Block Logging
Script block logging is used to record when scripting blocks are executed, which
allows one to get a lot more in depth into what is being executed. Starting with
PowerShell v5.0, script block logging provides a lot of data about potentially
suspicious events to give the forensics folks something to go on.

Items that are logged include scripts started with the encodedcommand option as
well as any basic obfuscation performed. Therefore, when script block logging is
enabled, defenders will likely have some additional insight into what you were doing.
This is a better solution for defenders than module logging because it highlights things
you would likely care about from a forensics standpoint, while not creating as much of a
log-parsing burden.

PowerShell Portability
One of the nice aspects of PowerShell is that the modules are very portable and can be
loaded in a variety of different ways. This give us the ability to load both system install
modules and modules in other locations. We also have the ability to load modules from
Server Message Block (SMB) shares as well as the Web.

Why is being able to load from these remote locations so valuable? We want to leave
as few traces as possible, and we want to have to duplicate as little work as possible.
This means we can leave items we will use frequently on an SMB share, or even a
website, and then reference them from there. Because a script is just text, we don’t have
to worry about blocks for binary or similar file types. We can also obfuscate the code
and then decode it on the fly, which potentially makes bypassing antivirus (AV) easier.

Because a script is just text, we can include it almost anywhere. Frequently, code sites
such as GitHub are handy for this type of activity, as such sites have many business-
related purposes. We can include our scripts in a repository or as basic gist commands
that we load from inside our PowerShell environment to bootstrap other activities.
PowerShell can even use a user’s proxy settings, so this is a great way to establish
persistence in an environment.

Loading PowerShell Scripts
Before we can do any exploitation with PowerShell, you need to know how to execute
scripts. In most environments, unsigned PowerShell scripts aren’t allowed by default.
We’re going to take a look at this behavior so you can identify it, and then we’ll look at

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

how to bypass it you so can bootstrap any code you want to run.

Lab 15-1: The Failure Condition
Before we look at how to get around security, we should take a look at how the security
works when in action. To do this, we’re going to build a very simple script on our
Windows 10 box that we set up in Chapter 10, and then we’ll try to execute this script.
For our script, we’re just going to create a directory listing of the root of C:\. First, we
need to open up a command prompt as Administrator and then run the following the
code:

You can see here that the execution of our test.ps1 script was blocked because running
scripts on the system has been disabled. Let’s take a look at what the current execution
policy is:

This shows that the current execution policy is “Restricted.” Table 15-1 provides a
breakdown of what each of the possible execution policies does.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 15-1 PowerShell Execution Policies

Let’s try changing the execution policy to Unrestricted and then run our test.ps1 script
again:

As you can see, once we change the policy to Unrestricted, our script runs just fine.
Based on Table 15-1, it looks like RemoteSigned should also work. Let’s try it:

The RemoteSigned policy works as well. In theory, we could just reset the execution
policy to one of these two values. Unfortunately, in many environments, this value is
enforced by Group Policies. In such a situation, it’s not that easy to change the policy.
Therefore, let’s set the value back to Restricted, as shown here, and we’ll just proceed
through the rest of the chapter with the strictest controls enabled:

Lab 15-2: Passing Commands on the Command Line
In Lab 15-1, we executed a number of PowerShell commands from the command line. In
this lab, we’re going to look at how to execute more complex commands. In the
previous examples, you saw that the -command option can be used to pass a command
on the command line; however, many of the PowerShell options can be shortened. In this
case, we can just use -com, as shown here, and save ourselves some typing:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Here, we were able to issue a simple WMI query with PowerShell, and without any
additional quotation marks around our query. For basic queries this will work fine;
however, for more complex queries, we may run into a problem. Let’s see what happens
when we try to get additional information about the user who owns the system:

You can see here that we couldn’t use the pipe character to pass data from one method
to another because it is interpreted by the operating system. The easiest way to get
around this is through the use of double quotes, like so:

This time, the pipe character wasn’t interpreted by the operating system, so we could
get just the username information from the output of the WMI query. For simple
commands, this works well, and if we’re just doing a few of these commands, it’s easy
enough to add them into a batch script and run them from there.

Lab 15-3: Encoded Commands
When we have a more complex task, not having to worry about formatting is nice.
PowerShell has a handy mode that allows us to pass in a Base64-encoded string as a
script to run—as long as the script is not very long. The total length for a Windows
command-line command is about 8,000 characters, so that’s your limit.

We have to make a few changes to create an encoded command. First of all, the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

encodedcommand option of PowerShell takes a Base64-encoded Unicode string, so we
need to convert our text to Unicode first and then encode it as Base64. To do this, we
need an easy way to convert to Base64 encoding. Although we could use the tools
already on Kali to do this, we’re going to use one of my favorite toolkits, Ruby
BlackBag by Eric Monti. This Ruby gem contains lots of encoding and decoding tools to
help with both malware analysis and hacking. First, we need to install it before we can
use it:

Once this toolkit is installed, it not only adds Ruby functionality but also creates some
helper scripts—one of which is called b64, a Base64 conversion tool. Next, we’ll take
the same command we used in the last lab and convert it to a PowerShell-compatible
Base64 string:

Here, we are using echo with the -n option to print out our PowerShell command
without incorporating a newline. Next, we pass that into iconv, a character set
converter, which will convert our ASCII text into UTF-16LE, the Windows Unicode
format. Finally, we pass all of that into b64, as shown next. The string that it outputs is
the string we’re going to use with PowerShell.

You can see here that when we pass our string with the -enc option, we get the
expected output. Now we can build more complex scripts and pass an entire script on
the command line so that we don’t have to worry about script execution prevention.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lab 15-4: Bootstrapping via the Web
For complex scripts, encoding them may not always be our best bet. One of our other
options is to put them on a website, load the scripts, and then bootstrap them into our
code. Two functions in PowerShell help us do this: Invoke-Expression and Invoke-
WebRequest.

Invoke-WebRequest will go out and fetch a web page and then return the contents of
the page. This allows us to throw a page on the Internet with our code in it and then
fetch it from within PowerShell. This function uses the IE engine by default, which our
Windows 10 box doesn’t have, so we’re going to have to use a workaround to make
sure it can fetch our web pages. We can use the -UseBasicParsing option to tell the
function not to try to parse the results, but instead to just return them to us.

The Invoke-Expression function evaluates the code passed to it. We could load the
code from a file and then pass it via stdin or another option. One of the most common
methods attackers use, though, is to pass Invoke-Expression the output from a web
request so that they can bootstrap in larger programs without having to worry about
script blocking.

To begin, let’s copy our command to a file in our web root and then make sure that
Apache is running:

Our file is named t.ps1 because we want to type the least amount possible. With our
web server running on Kali (192.168.1.92, in this example) and our code in t.ps1, we
can execute the code through our PowerShell command line in Windows without having
to worry about using the encodedcommand option:

Here, we have chained our two commands together to pull in the file from our Kali
box and execute it. This gives us the same output as running locally, and we didn’t get
any of the error messages we saw before when we were trying to execute scripts.

We can do this same thing with Universal Naming Convention (UNC) paths. For this
part of the lab, we’re going to set up Samba so that our web directory is accessible. But
first, let’s make sure Samba is set up in Kali:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Once Samba is installed, add the following to /etc/samba/smbd.conf:

Finally, we can start our Samba service:

Once our service is started, we create a share listing using smbclient to verify that our
share was successfully added. With the shares set up, now we can reference the same
script via a UNC path. Instead of using the command line, let’s launch the PowerShell
executable without any command-line options and try this out:

Here we have used the same basic approach with our UNC path instead of a URL.
This gives us a few different ways to execute code on boxes without having to change
policies for PowerShell.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Exploitation and Post-Exploitation with PowerSploit
PowerSploit is a collection of tools designed to help pen testers establish a foothold
and escalate in an environment. The tools have been included in other frameworks such
as PowerShell Empire and the Social Engineering Toolkit (SET). These tools help us
establish shells, inject code into processes, detect and mitigate AV, and more. Once
we’ve established access on a box, these tools can help us escalate and dump critical
system information.

Understanding how these tools work together with the rest of our toolset will help us
get and maintain access to boxes as well as to propagate throughout a domain. In this
section, we’re going to look at a handful of the useful tools in the PowerSploit suite and
use them to create a foothold without having to drop any additional tools on the system.

Lab 15-5: Setting Up PowerSploit
Earlier in the chapter we looked at different ways to run scripts within PowerShell. In
this section of the chapter, we need to get PowerSploit set up so we can access it easily.
Because we’ve already mapped an SMB share to our web root, we only need to
download PowerSploit from GitHub and set it up.

To begin with, we’ll clone the repository for PowerSploit. To do this, we need to
make sure git is installed:

In the example, git should already be present, but if it’s not, install it now. Next, we’re
going to go into our web root and download PowerSploit:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

WARNING Some tutorials online will have you access the files in PowerSploit and
other exploit code directly from GitHub using the raw.githubusercontent.com site. This
is incredibly dangerous because you don’t always know the state of that code, and if you
haven’t tested it, you could be running something destructive on your target. Always
clone the repository and test the scripts you are going to run on a VM before you run
them on a target system so that you, your client, and your lawyers aren’t surprised.

Typing out long URLs isn’t a ton of fun, so we’ve gone into our web root and cloned
the PowerSploit repository into a directory called “ps.” It’s called ps instead of a
longer name because we want our URLs to be as small as possible to make them easier
to type correctly when we are on our target system. We could go through all the different
subdirectories and rename each script, but that’s not practical.

When we “cd” into the ps directory, we see a number of files and a directory
structure. Let’s take a high-level look at what we can find in each directory:

The AntiVirusBypass subdirectory contains scripts to help us determine where in a
binary the antivirus (AV) may be identifying a file as malware. The scripts in here help
split a binary into pieces, and then those pieces are run through AV. Then, when you
narrow the scope down as far as it will go, you can identify the bytes in the binary that
need to be changed in order to bypass an AV signature.

The CodeExecution subdirectory contains different utilities to get shellcode into
memory. Some of these techniques include DLL injection, shellcode injection into a
process, reflective injection, and remote host injection using Windows Management
Instrumentation (WMI). We’ll take a look at some of these techniques later in the chapter
as a way to get Metasploit shellcode injected into a system without using files.

When you want to get information from a system, you’d look in the Exfiltration folder.
This folder has tools to help you copy locked files, get data from Mimikatz, and more.
Some of the other highlights include keyloggers, screenshot tools, memory dumpers, and
tools to help with Volume Shadow Services (VSS). These tools don’t help you get the
data off the system, but they’re great for generating data that is worth exfiltrating.

If you want to follow a scorched earth policy, the Mayhem folder is for you. The
scripts in this directory will overwrite the Master Boot Record (MBR) of a system with

||||||||||||||||||||

||||||||||||||||||||

http://raw.githubusercontent.com
https://technet24.ir
https://technet24.ir

a message of your choosing. This requires the system be restored from backup in many
cases, so if your target contains something you like, stay away from this directory.

The Persistence directory contains tools that help you maintain access to a system. A
variety of persistence mechanisms are available, including the registry, WMI, and
scheduled tasks. These tools help you create both elevated and user-level persistence;
that way, regardless of what level of access you need, you can easily maintain
persistence on target systems.

The PrivEsc directory contains tools to help you get elevated access. They range from
utilities that help you identify weak permissions that can be exploited, to tools that
actually do some of the work for you. We’ll take a look at how to use some of these
tools later in the chapter.

Although it doesn’t help in exploiting the system in any way, the Recon directory
contains tools that can help you better understand the environment in which you’re
working. These tools are handy for gathering basic information, port scanning, and
getting information about domains, servers, and workstations. They can help you
identify what you want to target, as well as help you build profiles for what exists in an
environment.

Lab 15-6: Running Mimikatz Through PowerShell
One of the amazing features of PowerSploit is the ability to invoke Mimikatz through
PowerShell. To do this, we have to call the Invoke-Mimikatz.ps1 script out of the
Privesc folder. Let’s give it a shot:

No error messages pop up when we run it, but a few seconds later, we see a Windows
Defender pop-up indicating that the script has been flagged as malicious. When we try
to run Invoke-Mimikatz after we’ve loaded the script, it’s not defined. Therefore, we
have to do some work to make this function. We’re going to use some of the work done
by Black Hills Security to bypass AV and make the script load.2 Let’s start with deleting
some spaces and comments from our web root (/var/www/html/ps/Exfiltration) in Kali:

Now we can go back to our Windows box and try it again:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

We got a bit further this time, but we still see that the script was blocked. We’re going
to have to make some additional changes to make it work. In Kali, let’s change the
function names around to see if we can fool the security controls that way:

Here, we’ve renamed the main command as well as one of the subcommands. This
should let us get around the AV that’s flagging the script as malicious based on function
names. Let’s try again:

Our script loaded, and we were able to run Invoke-Mimidogz, but the default
execution didn’t get us anything. The default is to try to pull credentials from memory,
which Windows 10 blocks. However, we can get information from Local Security
Authority Subsystem Service (LSASS). We’re going to have to run Invoke-Mimidogz
with the -command flag to tell it to dump the lsadump::sam:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We see here that our privileges weren’t high enough to get to the LSASS-owned file,
so we’re going to have to escalate. Fortunately, PowerSploit has a tool to allow us to do
that as well. We’ll use the Get-System.ps1 tool in Privesc to get a SYSTEM token so
that we can access the SAM file:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Here we load our Get-System.ps1 file from the Privesc directory of PowerSploit.
Then, when we run Get-System, it gets a token for the SYSTEM user. The SYSTEM
user has the ability to access the SAM file through LSA. This time, when we run the
Invoke-Mimidogz script and ask for our lsadump::sam, it’s successful. We can see the
NTLM hash for User. We can copy that and then take it over to our Kali box and crack it
with John the Ripper:

When we run John against our creds.txt file, we see that the password for User is
Password1. We have successfully changed Invoke-Mimikatz so that it won’t be blocked
by AV, and we ran Get-System to get a SYSTEM token so that we could use Mimikatz to
dump credentials out of the LSASS process. We were able to do all these tasks using
just PowerShell, so no additional binaries were left on the system.

Lab 15-7: Creating a Persistent Meterpreter Using
PowerSploit
During a penetration test, one of the things you might need to do is create a persistent
backdoor. For this lab, we’re going to look at how to load shellcode with PowerSploit
and then how to use PowerSploit to make our access persistent across reboots. The first
step in the process is making sure you understand how to load Meterpreter using
PowerSploit.

We will be using the Invoke-Shellcode module as part of the CodeExecution
directory. We’re also going to set up our Meterpreter callback using Metasploit. Let’s
do the groundwork for the process by setting up our Meterpreter callback handler. We
are going to use a reverse_https payload. This payload is most likely to avoid
detection by AV and other security controls because it uses a common protocol and it
calls back to us from inside the target’s network.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Now that our callback is set up, let’s generate the shellcode to go with it. The
PowerSploit module takes shellcode in the format 0x00 (instead of the \x00 convention
of most languages). We’re going to create some shellcode and then perform some
conversions. We use msfvenom to generate our payload and then do some additional
scripting to clean it up:

When we generate our payload, we specify that the C format should be used. Because
the output won’t look right for us, we’re going to use tr to delete new lines, double
quotes, and semicolons from the output. Next, we take every occurrence of \x and
change it to ,0x so that we can have our delimiter and the 0x that’s required before each
hex character. Finally, we’ll have the variable declaration and an extra comma in our
output, so we’re going to cut the output on that first command and take everything after
it. We’ll copy this shellcode and then go over to our Windows box, load up PowerShell
as a regular user instead of as Administrator, and load our Invoke-Shellcode.ps1 file
from the web server:

We start up PowerShell and load our Invoke-Shellcode script. Once it’s loaded, we
call Invoke-Shellcode with the shellcode we copied from the previous step. When we
paste it after the -Shellcode option, we are asked if we want to carry out our evil plan.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Answer Y for yes and then press ENTER. In the Kali window, we should see a connect
back and an open Meterpreter session:

Our session was successfully started and we got our callback, so we now have a way
to launch Metasploit shellcode with PowerShell to get interactive shells. This is great,
but we’ll frequently need persistence. Therefore, we need to come up with a good way
of causing the code to execute reliably. To do this, we’re going to create a single
command that can run and will execute our shellcode. To make this easier, we’ll start
out by creating a bootstrap file that contains the core commands we need to inject our
shellcode. Save the following content to /var/www/html/bs.ps1:

We put the shellcode from Metasploit in the <shellcode> section and then save the
file. Note that we added the -Force option to Invoke-Shellcode so that it doesn’t ask if
we’re sure we want to execute the payload. Next, we’re going to go to our Windows
box and use one of the helper functions in PowerSploit to create our persistence. Inside
PowerShell, we need to create a script block based on our bootstrap file:

With the script block created, now we have to create our persistence. To do this, we
use the Add-Persistence function from PowerSploit. First, we need to load the code
from PowerSploit:

Creating persistence requires a few steps. To begin with, we need to decide how we
want our persistence to work. For this example, we use WMI so that files aren’t left on
disk. Ideally, we’d have the command run as SYSTEM so that we have as much access
as possible. We also want it to run at startup so whenever the system reboots, we
immediately get a callback. With our script block created, we can start assembling our
persistence options:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We have set our elevated persistence so that it uses WMI and loads at startup. Next,
we have to specify user behavior for when we want callbacks. Ideally, we don’t want to
tip our hand, so we’ve set a new persistence option for creating a new session when the
user becomes idle. Finally, we combine all these together with our Add-Persistence
function.

Finally, we have to run our persistence script. To do this, we can’t use iwr because
the file is local. Instead, we’re going to use the Get-Content applet to get the data and
use iex to execute it:

Now, to test and make sure the script worked, we must reboot our Windows box. We
obviously wouldn’t want to do this in production, but this is a good test in our virtual
environment to see how the tools work. We should see a shell when the system comes
up in the Metasploit console. We have requested that two types of persistence be
created here, and each is unique to the user context. When the script runs as
Administrator, it will use WMI, and when it runs as a user, it will run a scheduled task.
This is because regular users don’t have the ability to create the WMI subscriptions.

NOTE If you don’t see a shell when you reboot, it could be that you no longer have
elevated permissions from the previous exercises. Either you can regain system-level
permissions so that you can write to the WMI subscriptions, or you can wait for your
“User” user to become idle and a new shell to be triggered through scheduled tasks.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using PowerShell Empire for C2
Being able to run individual scripts is nice, but having a comprehensive framework for
interacting with PowerShell remotely works better for real-world engagements. This is
where Empire comes into play. Empire gives us the capabilities of PowerSploit in a
framework with modules. It also follows a beaconing approach that’s customizable, so
you can better hide your interactions with the Command and Control (C2). In this
section, we’re going to set up a basic C2, escalate privileges, and add persistence in
Empire.

Lab 15-8: Setting Up Empire
Our first step is to clone Empire from the GitHub repository, as shown here. We’re
going to do this in our home directory because these files don’t need to be accessible
from the Web.

Now that we are in our Empire directory, the next step is to make sure we have all the
prerequisites. Let’s run the setup script for Empire to install all the prerequisites:

Once everything is set up, we can run Empire by just typing .\empire. But first, we
need to turn off Apache so that we can use port 80 for our communication. Once Empire
is loaded, we can explore the framework. Typing help will give you an overview of the
potential commands.

Lab 15-9: Staging an Empire C2
With Empire set up, we need to create a listener and then a stager. The stager enables us
to bootstrap execution of our C2 on the target system. The listener receives
communications from the compromised systems. We set up specific listeners for
specific protocols of communication. For our example, we’re going to use an HTTP-
based listener so that when a C2 connects back to us, it looks like web traffic.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The first step is to set up our listener. To do this, we go into the listeners menu and
choose the HTTP listener. Then we enable some basic settings and execute our listener,
like so:

Now that our listener is started, our next step is to create our bootstrap file. To do
this, we go back out to the main menu and choose a stager, as shown here:

We select the windows/launcher_bat module for our stager. This will give us a
PowerShell command that we can copy and paste on the target system to launch our C2.
We specify the listener we want it to connect back to, and finally we generate the file.

Lab 15-10: Using Empire to Own the System
In this lab, we deploy our agent and then work toward escalation and full compromise
of the system. Our /tmp/launcher.bat file has three lines, and we want the second one
(our PowerShell command). Let’s copy that line and then execute it on our Windows
host:

This will launch our PowerShell payload. In this example, the encoded command is
truncated (yours will be much longer). Once the command is launched, though, we
should see activity in our Empire console:

Once our agent is active, our next step is to interact with that agent, as shown next.
Note that agents are specified by name (in our case 5CXZ94HP).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Now that we are interacting with our agent, we need to bypass the User Account
Control (UAC) environment so that we can get an escalated shell. To do this, we run the
bypassuac command, which will spawn a new elevated shell for us to work with:

We now have a new agent that should have elevated privileges. On the Windows box,
you might see a prompt to allow administrative access to a program. Whether you do
completely depends on how UAC is configured on the target system. We can verify that
we have an elevated shell by typing in agents and looking for an asterisk (*) by the
user, which indicates elevated privileges:

The next step is to use those elevated privileges to become the SYSTEM user. We’re
going to execute the getsystem module to do this:

Now that we’re running as SYSTEM, we can gather credentials from the box. We’re
going to use mimikatz to do this, similar to how we did in the PowerSploit section.
We’ll execute the mimikatz/sam module under the credentials section to get our SAM
dump, just as we did with PowerSploit:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We now have an NTLM hash that we can work on cracking. The next step is to add
persistence so that we can get our connection back over reboots. This is much simpler
in Empire than it was in PowerSploit. We just have to use our persistence module and

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

execute it:

We now have startup persistence set through WMI, so we should be able to reboot our
Windows box and get a shell back.

Summary
PowerShell is one of the most powerful tools on a Windows system. In this chapter, we
looked at the different security constraints around running PowerShell scripts. We also
looked at how to bypass these constraints using a variety of different techniques.

Once you bypass these restrictions, the door is open for you to use other frameworks
such as PowerSploit and PowerShell Empire. These tools allow you to get additional
access on systems, maintain persistence, and exfiltrate data.

By using these techniques, you can “live off the land,” meaning that you only use
what’s already on your target system. No additional binaries are required. Because
some of your pages may be caught by network AV, we also looked at how to work
around signatures to get code execution. In the end, you’ll have agents that maintain
persistence across reboots, as well as a number of tools to maintain access to your
target systems while gathering and exfiltrating data.

For Further Reading
PowerShell Empire home page www.powershellempire.com/

PowerSploit documentation http://powersploit.readthedocs.io/en/latest/

References
1. Matthew Dunwoody, “Greater Visibility Through PowerShell Logging,” FireEye,

February 11, 2016, https://www.fireeye.com/blog/threat-

||||||||||||||||||||

||||||||||||||||||||

http://www.powershellempire.com/
http://powersploit.readthedocs.io/en/latest/
https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html
https://technet24.ir
https://technet24.ir

research/2016/02/greater_visibilityt.html.
2. Carrie Roberts, “How to Bypass Anti-Virus to Run Mimikatz,” Black Hills

Information Security, January 5, 2017, https://www.blackhillsinfosec.com/bypass-
anti-virus-run-mimikatz/.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.blackhillsinfosec.com/bypass-anti-virus-run-mimikatz/
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 16
Next-Generation Web Application
Exploitation

The basics of web exploitation have been covered in previous editions and exhaustively
on the Web. However, some of the more advanced techniques are a bit harder to wrap
your head around, so in this chapter we’re going to be looking at some of the attack
techniques that made headlines from 2014 to 2017. We’ll be digging into these
techniques to get a better understanding of the next generation of web attacks.

In particular, this chapter covers the following topics:
• The evolution of cross-site scripting (XSS)
• Framework vulnerabilities
• Padding oracle attacks

The Evolution of Cross-Site Scripting (XSS)
Cross-site scripting (XSS) is one of the most misunderstood web vulnerabilities around
today. XSS occurs when someone submits code instead of anticipated inputs and it
changes the behavior of a web application within the browser. Historically, this type of
vulnerability has been used by attackers as part of phishing campaigns and session-
stealing attacks. As applications become more complex, frequently some of the things
that worked with older apps don’t work anymore. However, because with each new
technology we seem to have to learn the same lessons about security again, XSS is alive
and well—it’s just more convoluted to get to.

Traditionally, this type of vulnerability is demonstrated through a simple alert dialog
that shows that the code ran. Because of this fairly benign type of demonstration, many
organizations don’t understand the impact of XSS. With frameworks such as the
Browser Exploitation Framework (BeEF) and with more complex code, XSS can lead
to everything from browser exploitation to data stealing to denial of service. Some folks
are using browsers for mining cryptocurrency, and all of this can be executed through
XSS.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Now that you know some of the history behind XSS, let’s look at a number of
examples in practice. For this section of the chapter, we are going to be walking through
progressively more difficult XSS examples to help further your understanding of what
XSS is and how you can interact with it in today’s browsers.

Setting Up the Environment
For this chapter, we’re going to be using Kali 64 bit with at least 4GB of RAM
allocated for the system. We have most of the software we need already, but to make it
easier to work with our environment, we’re going to install a devops tool called Docker
that lets us deploy environments quickly—almost like running a virtual machine (VM).
We’ll also be using a number of files from the Chapter 16 area on the GitHub repository
for this book.

First, clone the GitHub repository for the book. Now we need to set up Docker. To do
this, run (as root) the setup_docker.sh program from Chapter 16. This will install the
necessary packages after adding the required repositories to Kali, and then it will
configure Docker to start upon reboot. This way, you won’t have to deal with the
Docker mechanisms on reboot, but rather just when starting or stopping an instance.
Once the script is finished, everything should be installed to continue.

We need to install Google Chrome, so go to
https://www.google.com/chrome/browser/ inside the Kali browser and download the
.deb package. Install Chrome as follows:

NOTE If you get an error with the Chrome package install, it is likely because of a
dependency issue. To fix the issue, run the command apt --fix-broken install and allow
it to install the prerequisites. At the end, you should see a successful installation of
Chrome.

Next, we need to build the Docker image for our website for the XSS portion of this
chapter. From the GitHub repository for Chapter 16, cd into the XSS directory, create
the Docker image, and then run it, like so:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.google.com/chrome/browser/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Now, run the Docker:

You can see that our VM is now running and that apache2 has started. We can safely
leave this window in place and continue with our XSS labs.

Lab 16-1: XSS Refresher
Our first lab is a basic refresher of how XSS works. At its essence, XSS is an injection
attack. In our case, we’re going to be injecting code into a web page so that it is
rendered by the browser. Why does the browser render this code? Because in many
XSS situations, it’s not obvious where the legitimate code ends and where the attacking
code starts. As such, the browser continues doing what it does well and renders the
XSS.

We’ll start this lab using Firefox. At the time of writing, the latest version is Firefox
56, so if you have problems with the instructions because things are being filtered,
revert back to an earlier version of Firefox.

Go to http://localhost/example1.html and you should see the form shown in Figure 16-
1. This simple form page asks for some basic information and then posts the data to a
PHP page to handle the result.

||||||||||||||||||||

||||||||||||||||||||

http://localhost/example1.html
https://technet24.ir
https://technet24.ir

Figure 16-1 The form for Lab 16-1

To begin, let’s put in some regular data. Enter the name asdf and an address of fdsa
and click Register. You should see the following response:

Our next step is to use a string that should help us sort out whether or not the
application is filtering our input. When we use a string like asdf<'"()=>asdf and click
Register, we would expect that the application will encode this data into a HTML-
friendly format before returning it back to us. If it doesn’t, then we have a chance at
code injection. Use the preceding string and try it for both the Full Name and Address
fields. You should see the following response:

The browser has returned the same string you put in, but this only tells part of the
story. Frequently, things may look okay, but when you look at the HTML source of the
page, it may tell a different story. In the Firefox window, press CTRL-U to display the
source code for the page. When we look at the source code, we see the following:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Here, we can see that none of the characters were escaped. Instead, the strings are put
directly back into the body of the HTML document. This is an indication that the page
might be injectable. In a well-secured application, the < and > characters should be
translated to > and <, respectively. This is because HTML tags use these
characters, so when they aren’t filtered, we have the opportunity to put in our own
HTML.

Because it looks like we can inject HTML code, our next step is to try a real example.
A simple one that provides an immediate visual response to injection is popping up an
alert box. For this example, enter <script>alert(1)</script> in the Full Name field.
This will cause an alert box to pop up with a “1” inside, if it is successful. Use the
string for just the Full Name; you can put anything you like in the Address field. When
you click Register, you should see a box pop up like in Figure 16-2.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 16-2 Our successful alert box

Success! This worked well in Firefox, but Firefox doesn’t put a lot of effort into
creating XSS filters to protect the user. Both Internet Explorer (IE) and Chrome have
filters to catch some of the more basic XSS techniques and will block them so that users
aren’t impacted. To run Chrome, type in the following:

We have to add the --no-sandbox directive because Chrome tries to keep our browser
from running as root in order to protect the system. Click through the pop-ups when
Chrome starts, and try the steps in this lab again. This time, we get a much different
response. Figure 16-3 shows that Chrome has blocked our simple XSS.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 16-3 Our XSS being blocked by Chrome

At first glance, the screen shown in Figure 16-3 looks like a normal page-loading
error. However, note the error message “ERR_BLOCKED_BY_XSS_AUDITOR.” XSS
Auditor is the functionality of Chrome that helps protect users from XSS. Although this
example didn’t work, there are many ways to execute an XSS attack. In the following
labs, we’ll see some progressively more difficult examples and start looking at evasion
techniques for these types of technologies.

Lab 16-2: XSS Evasion from Internet Wisdom
Many people, when introduced to their first XSS vulnerability, go to the Internet for
information on how to defend against XSS attacks. Luckily for us, the advice is
frequently incomplete. That’s great for us but bad for the application owners. For this
lab, we’re going to look at a PHP page that has some very basic protections in place.

In the previous chapter, we talked about escaping special characters. In PHP, this is
done with the htmlspecialchars function. This function takes unsafe HTML characters
and turns them into their encoded version for proper display. Let’s start out by taking a
look at how our marker from the previous lab is treated in this new environment.

Browse to http://localhost/example2.php in Firefox, and you should see a form that
looks similar to the one in the previous lab. To see how the application behaves, we

||||||||||||||||||||

||||||||||||||||||||

http://localhost/example2.php
https://technet24.ir
https://technet24.ir

want to see a success condition. Put in asdf for the name and fdsa for the address and
then click Register. You should see the following output:

This looks like we’d expect it. When we tried our marker before, we got get an alert
box. Let’s see what it looks like now. Submit the page again with asdf<'"()=>asdf for
the name and address. Figure 16-4 shows that the page returns with some subtle
changes. The first is that the lines that suggest sample input are bolded. The second is
that only part of the data that we submitted is shown filled back into the document.

Figure 16-4 Submission using Firefox with the XSS marker

To see what’s really happening, press CTRL-U again to view the source. When we look
at the code, we want to find our marker to see where our data has been put in.
Therefore, search using CTRL-F for the phrase “asdf.” You should see something similar
to the following text:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You’ll notice that some of the characters have been changed in the string. The
characters for greater than and less than and the quotation marks have been substituted
with the HTML code to render them. In some cases, this might be sufficient to thwart an
attacker, but there is one character here that isn’t filtered—the single quote (') character.
When we look at the code, we can see that the placeholder field in the INPUT box is
also using single quotes. This is why the data was truncated in our output page.

In order to exploit this page, we have to come up with a way of injecting code that
will be rendered by the browser without using HTML tags or double quotes. Knowing
that the placeholder uses single quotes, though, maybe we can modify the input field to
run code. One of the most common ways to do this is using events. There are a number
of events that fire in different places in a document when it’s loaded.

For INPUT fields, the number of events is much smaller, but there are three that may
be helpful here: onChange, onFocus, and onBlur. onChange is fired when the value of
an INPUT block changes. onFocus and onBlur fire when the field is selected and when
someone leaves the field, respectively. For our next example, let’s take a look at using
onBlur to execute our alert message.

For the name, put in ' onFocus='alert(1) and for address type in asdf. When you click
Register, the output for what you submitted to the form is printed out. That’s not really
what we wanted, but let’s look to see if the input was altered at all:

The input wasn’t changed at all, so this code might work if we are able to add another
element. This time, use the same input as before for the Full Name field, and use >asdf
instead of asdf for the Address field. When you click Register, you should see the alert
box pop up with the number 1 in it. Click OK and then take a look at our code in the
document source and search for “alert”:

We see here that the opening single quote we used closed out the placeholder field
and then a new file is created inside the input block called onFocus. The content of the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

event is our alert dialog box, and then we see the closing quote. We didn’t use a closing
quote in our string, but this was part of the initial field for placeholder, so when we left
it off of our string, we were using the knowledge that our string would have a single
quote appended. If we had put a single quote at the end of our string, it would have been
invalid HTML when it was rendered, and our code wouldn’t have executed.

Let’s take a look at the same thing in Chrome. When we submit the same values, we
see that our input is blocked by the XSS Auditor again. We’re seeing a trend here.
Although Chrome users may be protected, other types of users might not be, so testing
with a permissive browser like Firefox can aid in our ability to successfully identify
vulnerabilities.

Lab 16-3: Changing Application Logic with XSS
In the previous labs, the web pages were very simple. Modern web applications are
JavaScript heavy, and much of the application logic is built into the page itself instead
of the back end. These pages submit data using techniques such as Asynchronous
JavaScript (AJAX). They change their contents by manipulating areas within the
Document Object Model (DOM), the object inside the web browser that defines the
document.

This means that new dialog boxes can be added, page content can be refreshed,
different layers can be exposed, and much more. Web-based applications are becoming
the default format for applications as binary applications are being transitioned to the
Web. This push for such full functionality in websites creates a lot of opportunity for
oversight. For this example, we’re going to look at an application that uses JQuery, a
popular JavaScript library, to interact with our back-end service.

For this lab, use Firefox to load the page http://localhost/example3.html. This page
looks like the others, but when we submit data, instead of being sent to a submission
page, we are shown a pop-up window with the submission and the status. Once again,
let’s try with the values asdf and fdsa for the name and address, respectively. Figure
16-5 shows the output.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://localhost/example3.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 16-5 A successful submission for Lab 16-3

Now change the name to our marker asdf<'"()=>asdf and leave the address as fdsa.
When we submit these values, we see a failure message. We could stop there because
they blocked our marker, but there’s not much fun in that. When we view the source for
the page like we have in previous examples, we don’t see our marker at all.

What has happened here is that the page was modified with JavaScript, so the content
we put in was never loaded as part of the source code. Instead, it was added to the
DOM. Unfortunately, our old tricks won’t work in determining whether or not this page
is vulnerable, so we’ll have to switch to some new tools.

Firefox has a built-in set of developer tools that can help us look at what the current
rendered document is doing. To get to the developer tools, press CTRL-SHIFT-I. A box
should come up at the bottom of the window with a number of tabs. The Inspector tab
allows us to view the rendered HTML. Click that tab and then use CTRL-F to find the
string “asdf.” Figure 16-6 shows our code in the Inspector window of the developer
tools.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 16-6 Viewing code in the developer tools

Our string looks like it has made it into the dialog box without modification. This is
great, because the same trick we used for Lab 16-1 will work here. Let’s go back and
try the same thing we used for the name in Lab 16-1: <script>alert(1)</script>. When
we submit this value, we get the alert box with a 1, so our code ran successfully. When
we close the alert box, we see the fail message, and when we go back to the Inspection
tab and search for “alert,” we can see it clearly in the rendered HTML source.

Frequently when new technologies are implemented, knowledge about previous
failures hasn’t been incorporated, so old vulnerabilities re-emerge frequently in new
technologies. To see how this attack behaves in Chrome, let’s try it again using the same
inputs.

When you run this attack in Chrome, you should see an alert box like the one in Figure
16-7, showing that our code ran. The XSS Auditor is good at checking on page load, but
dynamically loaded content can frequently prove evasive. We were able to render a
very simple XSS string in both browsers. This highlights the fact that when a constraint

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

is blocking exploitation of a page in one browser, others may still be vulnerable—and
evasion techniques may be available to get around filtering technology. The short of it
is, if you know a page is vulnerable to XSS, fix it; don’t rely on the browsers to keep
your users safe.

Figure 16-7 Exploitation of example3.html in Chrome

Lab 16-4: Using the DOM for XSS
In the previous labs, we used some very basic tricks to execute XSS. However, in more
secure applications, there is usually a bit more to get around. For this lab, we are going
to look at the same app, but with additional checks and countermeasures. Frequently
web apps will have data-validation functions, and there are three ways to defeat them:
modify the code to remove the check, submit directly to the target page without going
through JavaScript, and figure out how to bypass the code. Because we’re talking about
XSS, let’s look at how we can get around the filters.

To begin with, let’s try the same tactics from previous labs for the page at
http://localhost/example4.html. When we load the page in Firefox, it looks the same as
the others at first glance, so we need to figure out what success and error conditions
look like with this new version. For our success condition, enter asdf and fdsa again.
When you click Register, you see a success message, indicating that our content was
valid. Let’s now try throwing a script tag into the Full Name field. Enter <script> for

||||||||||||||||||||

||||||||||||||||||||

http://example3.html
http://localhost/example4.html
https://technet24.ir
https://technet24.ir

the name and fdsa for the address. Now you should see our error condition. Take note of
the error message because we’ll need that to track down in the JavaScript how we got
to that point. To do that, go to the source by pressing CTRL-U in Firefox. Then search for
the phrase “Please Try.” Here’s the code block that’s returned:

This code block where our error was found is part of the JQuery event that occurs when
you submit the form. The first line in the function stops the form from submitting
normally u, which means that this function handles the submission of the data for the
form. Next we see that the submitted data is being turned into an array v. This array is
used to iterate through each item from the form submission.

The checkXSS w function is run against each item in the array, and if true is returned,
our error message is printed. The header and the body of the message box are updated
and then the message box is turned on x. This is clearly the code that causes the pop-up
box with our error. Unfortunately, we don’t know how checkXSS evaluates what we put
in, so let’s take a look at that next. When we search for checkXSS in the code, we find
the function definition for our code block:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The checkXSS function has a list of regular expressions y it is using to check the
inputs. We want to try to pop up an alert box again, but the alert function z is blocked.
We also can’t inject an HTML tag because anything that starts or ends with the < or >
character is blocked {. So when the data is submitted, each of these regular expressions
is checked, and then true is returned if there are any matches. The author of this function
has tried to block the most impactful functions of JavaScript and HTML tags.

To figure out how we can get around this, it is worth looking at how the success
message is printed to the screen. Understanding how the string is built will help us
figure out how to get around some of these protections.

The place where the output string is built { adds the elements in with just
 tags
separating them. In order for us to get a script tag in, we are going to have to split it
between the Full Name and the Address fields, but the
 is going to mess
everything up. Therefore, to get around this, we’ll create a fake field value in the script
tag. Let’s try to see if this will work by making the Full Name field <script qq=" and
the Address field "> and then clicking Register.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Pull up the pop-up box in the developer tools in the Inspector tab and search for
“registration of.” Looking at the second instance, we see that our script tag was
successfully inserted, but now we have to actually create our JavaScript to execute our
function. To do this, we need to leverage the DOM. In JavaScript, most of the functions
are sub-objects of the window object. There, to call alert, we could use
window["alert"](1).

Let’s submit our form with the name <script qq= and the address ">window["alert"]
(1) and see what happens. We get failure message, but no text. That is likely good, but
we won’t know for sure until we look at the code:

We see here that our alert message was successfully inserted, but there is still text
after it. To fix this problem, let’s put a semicolon after our JavaScript and make the rest
of the line a comment and then try again. This way, the rest of the line will not be
interpreted, our command will execute, and then the browser takes care of closing the
script tag for us and we have valid code. To test for this, use <script qq=" for the name
and ">window["alert"](1);// for the address.

Figure 16-8 shows that our alert message was successful. When we try this in
Chrome, though, what happens? It works as well because the XSS is occurring due to
JavaScript manipulation. Now we have some additional ideas on how we can get
around different types of XSS protection. This is just the start, though; as technologies
change, we will have to keep changing tactics. Thus, understanding JavaScript and
common libraries will help make us more proficient at creating XSS in more restrictive
environments.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 16-8 Our successful alert message

The alert message is nice, but sometimes we want to do more than just pop up a box.
For these instances, we don’t want to have to type all of our JavaScript into the XSS.
Instead, we want our XSS to load a remote script and then execute the content. For this
example, we’re going to load some code from GitHub directly and then execute the
function inside our app. We’ll still use <script qq=" in the Full Name field, but we’re
going to use some code from the JQuery library that is included with our example to
load remote code.

JQuery is a helper library that has helpers for many different tasks. You can find many
tutorials on how to use JQuery, so we won’t get into that now, but we are going to make
our address different to show how this technique can work. Our Address field will now
read like so:

This loads code directly from GitHub. When the script is loaded, it will execute the
success function that we specify. In our case, the success function just runs a function
called hacked that’s in the remotely loaded file. When the hacked function runs, it just

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

creates a new alert box, but it can do anything that you can do with JavaScript, such as
spoofing a login box or keylogging a victim.

Framework Vulnerabilities
Using frameworks is an amazing way to develop code more quickly and to gain
functionality without having to write a ton of code. In 2017, a number of these
frameworks were being used, but two of the higher-profile vulnerabilities occurred in a
framework called Struts that is part of the Apache projects. Struts is a framework that
aids in web application development by providing interfaces such as REST, AJAX, and
JSON through the Model-View-Controller (MVC) architecture. Struts was the source of
one of the biggest breaches of the decade—the Equifax1 breach that impacted 143
million individuals.

Setting Up the Environment
For the labs in this section, we’re going to use a web server with a vulnerable version
of Struts. To do that, we need to build a different Docker image from the GitHub
repository for this chapter. To begin with, we need to make sure our previous Docker
image is stopped:

If the first command returns a container, then issue the stop for that container ID. That
should ensure our previous image is stopped. Next, we need to create our Tomcat image
that has the vulnerable Struts libraries installed. The following commands assume that
you are in the Ch16 directory of the GitHub repository for this book:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Now our Tomcat instance should be up on port 8080. You can verify it is working by
visiting http://localhost:8080 on the Kali 64-bit image.

Lab 16-5: Exploiting CVE-2017-5638
The CVE-2017-5638 vulnerability in Struts is a weakness in the exception handler that
is called when invalid headers are put into a request.2 This vulnerability is triggered
when the Multipart parser sees an error. When the error occurs, the data in the headers
is evaluated by Struts, allowing for code execution. We are able to see the code
execution for this example, so we can interactively run commands on the target instance.

One of the demo applications that comes with Struts is known as the Struts Showcase.
It showcases a number of features so you can see the types of things you can do with
Struts. On vulnerable versions of Struts, though, the Showcase is a great exploit path. To
view the Showcase on our VM, navigate to http://localhost:8080/struts-showcase/ and
you should see the sample app.

For our exploit, we’re going to use one of the exploits posted to Exploit-DB.com.
Exploit number 41570 can be found at https://www.exploit-db.com/exploits/41570/, or
you can use searchsploit on your Kali image, and it will show you on the file system
where the exploit resides. Exploit-DB exploits are present by default on Kali installs,
so you won’t have to download anything special. We’re going to copy the exploit into
our local directory first and then try something basic—getting the ID of the user running
Tomcat:

When we run our exploit, we’re running it against the showcase.action file in the
struts-showcase directory. This is the default action for the Struts Showcase app. We
specify the command to use as id, which will retrieve the ID the server is running as. In
this case, it’s running as root because we are running this exploit inside Docker, and
most apps run as root inside Docker.

Let’s take a look at what’s going on here. To do this, we need to make a quick
modification to our script to make it print out debug information. We’re going to use our
favorite editor to make the top section of the script look like the following:

||||||||||||||||||||

||||||||||||||||||||

http://localhost:8080
http://localhost:8080/struts-showcase/
http://Exploit-DB.com
https://www.exploit-db.com/exploits/41570/
https://technet24.ir
https://technet24.ir

This will cause debug output to be logged when we run our script. Next, we’ll run our
script again with the id command and look at the output. The output is going to look
pretty jumbled up, but we can just grab the part we’re interested in by filtering the
output with the command line:

This looks better, but the exploit code in the middle is a lot to take in, so let’s break
down what’s happening here. First, the exploit is being triggered in the Content-Type
header. The value for Content-Type is set to our code that will create the process. The
code is creating an action container inside Struts and then invoking a utility class that
allows us to work within the context of that action . Next, the code clears out the
blocked functions and specifies the command to run .

Because the code doesn’t know if the script will be running on Linux or Windows, it
has a check for each operating system name and builds either a cmd.exe syntax or bash
syntax to run the script. Next, it uses the ProcessBuilder class, which allows for the
creation of a process. The process is then started and the output is captured by the
script so that it will get all of the output and print it to the screen. Basically, all this is
creating a context to run a process in, running it, and grabbing the output and printing it
back out to the screen.

Lab 16-6: Exploiting CVE-2017-9805
A few months later in 2017, another Struts vulnerability was released that led to remote
code execution. This vulnerability impacts a different part of Struts: the REST interface.
This vulnerability occurs because the data sent to the server is deserialized without a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

check to make sure the data is valid. As a result, objects can be created and executed.
Unfortunately, with this vulnerability, we can’t really see the impact. Because of this,
we’re going to have to do some additional work to get any sort of interaction with the
target system.

To begin, we need an exploit for this vulnerability. Exploit-DB has an exploit that we
can use. You can get it from https://www.exploit-db.com/exploits/42627/ or you can use
searchsploit again to find the local copy. Let’s take that local copy and copy it into our
directory:

With a local copy of the exploit, we need to make sure our target location is correct.
To make sure you can get to the page, visit http://localhost:8080/struts-rest-
showcase/orders.xhtml. This is the home page for the Struts Rest Showcase, but this
page itself doesn’t have what we need to exploit. Because the vulnerability is in the
message handling, we need to find a page to which we can submit data. Click view for
“Bob” and you’ll see that we’re at the orders/3 page. This is what we’re going to use.
Next, let’s do a quick test:

TIP If you get an error about invalid UTF-8 characters, just use your favorite editor to
remove the line in 42627.py that reads as follows:

Our test resulted in a ton of errors, but that doesn’t necessarily mean anything. This
type of exploit creates an exception when it runs, so the errors might actually mean
something good. So how do we tell if our test is working? We can do a ping check for

||||||||||||||||||||

||||||||||||||||||||

https://www.exploit-db.com/exploits/42627/
http://localhost:8080/struts-rest-showcase/orders.xhtml
https://technet24.ir
https://technet24.ir

our command. In one window, we’re going to start a pcap capture:

In another window, we’re going to run our exploit. This will call five pings—and if it
works, we should see it on our Docker0 interface:

Our Docker instances will be bound to the Docker0 interface, so to verify our exploit
is working, we will ping the address of our Docker0 interface five times, and we should
see the pings in the pcap capture. The pings show that we are able to successfully run
commands on the host. Unfortunately, Docker containers are pretty bare-bones, so we
need to put something up there that’s going to allow us to actually interact with the host.
With our pcap still running, let’s see what commands we have available to us. The two
ideal commands we could use are curl and wget to send data around. First, let’s try
curl:

This command will try to ping back to our host, but the trick here is that we’re using
the -p payload option for ping to get a success or error condition. If curl doesn’t exist,
then we will get pings back; if it does exist, we won’t get anything back because the
command will be invalid. We see pings, so curl doesn’t exist in the image. Let’s try
wget:

We didn’t get a response back, so it looks like wget exists. In the Vuln_Tomcat
directory of the Ch16 directory, we see a file called webcatcher.py. We’re going to run
this in order to catch some basic wget data, and we’ll use wget to send POST data with
output from commands:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Now for our exploit, we need to build something that allows us to get data back using
wget. For this, we’re going to use the --post-data option to send command output back
in post data. Our webcatcher will catch that POST data and print it out for us. Let’s
build the command to do a basic ls:

We are going to use the wget program to post to our web server. We specify the output
file to /dev/null so it doesn’t try to actually download anything, and we set the post data
to the command output from our command. We’re starting off with an echo command to
give us a new line for easier readability, and then we perform an ls. In our web server,
we should see the request and our post data:

It worked, and now even though our exploit doesn’t return data back to the web page,
we can create success and error conditions to get information about what’s happening
on the back end. We can also use built-in tools to send data around so that we can see
the interaction.

The source code is too long to include in this chapter, but if you want to see the code
that’s being executed, look at the 42627.py file for the code. At its heart, this exploit is
similar to the last one we did in that it’s using ProcessBuilder to execute a command. In
this instance, though, the exploit is in XML that’s parsed as part of the exception.

Padding Oracle Attacks
Padding oracle attacks first became mainstream with a .NET vulnerability in 2014 that
allowed you to change viewstate information. The viewstate contains information about
the user’s state within an application, so the user could potentially change access rights,
execute code, and more with this exploit. After the exploit was released, people
realized that lots of devices and applications were vulnerable to the same attack, so the
exploit got more attention and tools were released to help with this type of attack.

What is a padding oracle attack, though? When an encryption type called Cipher
Block Chaining (CBC) is used, data is split into blocks for encryption. Each block is

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

seeded for encryption by the previous block’s data, which creates additional
randomness so that the same message sent to different people will appear differently.
When there isn’t enough data to fill out a block, the block is padded with additional data
to reach the block length. If all the blocks are full at the end, then an additional block is
added that is empty.

With the padding oracle attack, we can take advantage of the way the encryption
works to figure out the data in the last block based on possible padding values. With the
last block solved, we can move back through the data while decrypting it. Once the data
is decrypted, we can re-encrypt it and send it in place of the original data. Ideally, the
data being sent would have a checksum to identify whether it has been modified, but
vulnerable hosts don’t do this computation, so we can modify things at will.

NOTE This is a very complex subject with tons of math at play. A great article by
Bruce Barnett on the subject is provided in the “For Further Reading” section. If you
want to know more about the math behind the encryption, that’s a great place to start.

Lab 16-7: Changing Data with the Padding Oracle Attack
For this lab, we will be changing an authentication cookie in order to demonstrate the
attack. We are going to be using a sample web app from http://pentesterlab.com that will
act as our target. We’ll be deploying it through another Docker image, so let’s get that
set up first. From a new window, execute the following commands from the
Ch16/padding directory:

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://pentesterlab.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

Next, open a web browser to http://localhost to verify that the page is loaded. We’re
going to be using Firefox for this lab. The first thing you need to do is create a new
account, so click the Register button and create a new account with the username
hacker and the password hacker. When you click Register, you should see a page that
shows that you are logged in as hacker.

Now that you have a valid account, let’s get our cookie out of the app. To do this,
press CTRL-SHIFT-I to get the developer toolbar back up. Click the Console tab and then
click in the window at the bottom with the “>>” prompt. We want to get the cookies, so
try typing in document.cookie. The output should look similar to Figure 16-9, but your
cookie value will be different.

Figure 16-9 The cookie value of our logged-in user

NOTE If nothing shows up for your search, try clearing all the filters in the debugger.
This could prevent your content from displaying.

Now that we have the cookie, let’s see if we can abuse the padding oracle to get the
data back out of the cookie. To do this, we’re going to use a tool called padbuster. We
specify our cookie value, the value we’re trying to decrypt, and the URL that uses the
cookie for padbuster to decrypt.

We need to specify a few things for our padbuster script. The first is the URL, and the
second is the value we want to change. Because this script is using crypto with a block
size of 8, we specify 8. Finally, we specify the cookies and the encoding. An encoding
of 0 means Base64 is used. Now we’re ready to try our padding attack:

||||||||||||||||||||

||||||||||||||||||||

http://localhost
https://technet24.ir
https://technet24.ir

When padbuster prompted us for the success or error condition, we chose 2 because it
was the most frequent occurrence and there should be more errors than successes with
the test. It is also the value recommended by padbuster, so it’s a good choice. We see

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

that the cookie was decrypted and that the value was user=hacker.
Now that we know what the value of the cookie looks like, wouldn’t it be great if we

could change the cookie so that it reads user=admin? Using padbuster, we can do that
as well. We’ll need to specify our cookie again and give it the data to encode, and it
will give us back the cookie value we need. Let’s give it a try:

Now we have our encrypted cookie value. The next step is to add that value back into
our cookie and reload the page to see if it works. We can copy the output and then set
the cookie by running the following two commands:

Our output should show that after we set the cookie and then query it again, the cookie
is indeed set to our new value. Figure 16-10 shows the initial query of the cookie,
changing the cookie value, and then querying it again. Once the cookie is set, click
Refresh in the browser and you should now see that you’ve successfully logged in as
admin (in green at the bottom of your screen).

Figure 16-10 Changing the cookie value

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary
Here’s a rundown of what you learned in this chapter:

• Progressively more difficult methods of attacking cross-site scripting
vulnerabilities in web applications

• How to exploit two different types of serialization issues in the demo Struts
applications

• How to chain commands together to determine when a command is succeeding or
failing when there is a blind attack

• How the oracle padding attack works, and how to use it to change the value of
cookies

For Further Reading
“CBC Padding Oracle Attacks Simplified: Key Concepts and Pitfalls” (Bruce
Barnett, The Grymoire, December 5, 2014)
https://grymoire.wordpress.com/2014/12/05/cbc-padding-oracle-attacks-simplified-
key-concepts-and-pitfalls/

OWASP deserialization
explanation https://www.owasp.org/index.php/Deserialization_of_untrusted_data

References
1. “Dan Godwin, “Failure to Patch Two-Month-Old Bug Led to Massive Equifax

Breach,” Ars Technica, September 9, 2017, https://arstechnica.com/information-
technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-
month-old-bug/.

2. “An Analysis of CVE 2017-4638,” Gotham Digital Science, March 27, 2017,
https://blog.gdssecurity.com/labs/2017/3/27/an-analysis-of-cve-2017-5638.html.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://grymoire.wordpress.com/2014/12/05/cbc-padding-oracle-attacks-simplified-key-concepts-and-pitfalls/
https://www.owasp.org/index.php/Deserialization_of_untrusted_data
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://blog.gdssecurity.com/labs/2017/3/27/an-analysis-of-cve-2017-5638.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 17
Next-Generation Patch Exploitation

In response to the lucrative growth of vulnerability research, the interest level in the
binary diffing of patched vulnerabilities continues to rise. Privately disclosed and
internally discovered vulnerabilities typically offer limited technical details publicly.
The process of binary diffing can be compared to a treasure hunt, where researchers are
given limited information about the location and details of a vulnerability, or “buried
treasure.” Given the proper skills and tools, a researcher can locate and identify the
code changes and then develop a working exploit.

In this chapter, we cover the following topics:
• Application and patch diffing
• Binary diffing tools
• Patch management process
• Real-world diffing

Introduction to Binary Diffing
When changes are made to compiled code such as libraries, applications, and drivers,
the delta between the patched and unpatched versions can offer an opportunity to
discover vulnerabilities. At its most basic level, binary diffing is the process of
identifying the differences between two versions of the same file, such as version 1.2
and 1.3. Arguably, the most common target of binary diffs are Microsoft patches;
however, this can be applied to many different types of compiled code. Various tools
are available to simplify the process of binary diffing, thus quickly allowing an
examiner to identify code changes in disassembly view.

Application Diffing
New versions of applications are commonly released. The reasoning behind the release
can include the introduction of new features, code changes to support new platforms or
kernel versions, leveraging new compile-time security controls such as canaries or
Control Flow Guard (CFG), and the fixing of vulnerabilities. Often, the new version can

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

include a combination of the aforementioned reasoning. The more changes to the
application code, the more difficult it can be to identify any patched vulnerabilities.
Much of the success in identifying code changes related to vulnerability fixes is
dependent on limited disclosures. Many organizations choose to release minimal
information as to the nature of a security patch. The more clues we can obtain from this
information, the more likely we are to discover the vulnerability. These types of clues
will be shown in real-world scenarios later in the chapter.

A simple example of a C code snippet that includes a vulnerability is shown here:

The problem with the first snippet is the use of the gets() function, which offers no
bounds checking, resulting in a buffer overflow opportunity. In the patched code, the
function fgets() is used, which requires a size argument, thus helping to prevent a buffer
overflow. The fgets() function is considered deprecated and is likely not the best
choice due to its inability to properly handle null bytes, such as in binary data; however,
it is a better choice than gets(). We will take a look at this simple example later on
through the use of a binary diffing tool.

Patch Diffing
Security patches, such as those from Microsoft and Oracle, are some of the most
lucrative targets for binary diffing. Microsoft has historically had a well-planned patch
management process that follows a monthly schedule, where patches are released on the
second Tuesday of each month. The files patched are most often dynamic link libraries
(DLLs) and driver files, though plenty of other file types also receive updates. Many

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

organizations do not patch their systems quickly, leaving open an opportunity for
attackers and penetration testers to compromise these systems with publicly disclosed
or privately developed exploits through the aid of patch diffing. Starting with Windows
10, Microsoft is being much more aggressive with patching requirements. Depending on
the complexity of the patched vulnerability, and the difficulty in locating the relevant
code, a working exploit can sometimes be developed quickly in the days following the
release of the patch. Exploits developed after reverse-engineering security patches are
commonly referred to as 1-day exploits.

As we move through this chapter, you will quickly see the benefits of diffing code
changes to drivers, libraries, and applications. Though not a new discipline, binary
diffing has only continued to gain the attention of security researchers, hackers, and
vendors as a viable technique to discover vulnerabilities and profit. The price tag on a
1-day exploit is not as high as a 0-day exploit; however, it is not uncommon to see five-
figure payouts for highly sought-after exploits. Exploitation framework vendors desire
to have more exploits tied to privately disclosed vulnerabilities than their competitors.

Binary Diffing Tools
Manually analyzing the compiled code of large binaries through the use of
disassemblers such as the Interactive Disassembler (IDA) can be a daunting task to even
the most skilled researcher. Through the use of freely available and commercially
available binary diffing tools, the process of zeroing in on code of interest related to a
patched vulnerability can be simplified. Such tools can save hundreds of hours of time
spent reversing code that may have no relation to a sought-after vulnerability. Here are
the five most widely known binary diffing tools:

• Zynamics BinDiff (free) Acquired by Google in early 2011, Zynamics BinDiff
is available at www.zynamics.com/bindiff.html. It requires a licensed version of
IDA, version 5.5 or later.

• turbodiff (free) Developed by Nicolas Economou of Core Security, turbodiff is
available at http://corelabs.coresecurity.com/index.php?
module=Wiki&action=view&type=tool&name=turbodiff. It can be used with the
free version of IDA 4.9 or 5.0.

• patchdiff2 (free) Developed by Nicolas Pouvesle, patchdiff2 is available at
https://code.google.com/p/patchdiff2/. It requires a licensed version of IDA 6.1 or
later.

• DarunGrim (free) Developed by Jeong Wook Oh (Matt Oh), DarunGrim is
available at www.darungrim.org. It requires a recent licensed version of IDA.

• Diaphora (free) Developed by Joxean Koret. Diaphora is available at

||||||||||||||||||||

||||||||||||||||||||

http://www.zynamics.com/bindiff.html
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=turbodiff
https://code.google.com/p/patchdiff2/
http://www.darungrim.org
https://technet24.ir
https://technet24.ir

https://github.com/joxeankoret/diaphora. Only the most recent versions of IDA are
officially supported.

Each of these tools works as a plug-in to IDA, using various techniques and heuristics
to determine the code changes between two versions of the same file. You may
experience different results when using each tool against the same input files. Each of
the tools requires the ability to access IDA Database (.idb) files, hence the requirement
for a licensed version of IDA, or the free version with turbodiff. For the examples in
this chapter, we will use the commercial BinDiff tool as well as turbodiff because it
works with the free version of IDA 5.0 that can still be found online at various sites.
This allows those without a commercial version of IDA to be able to complete the
exercises. The only tools from the list that are actively maintained are Diaphora and
BinDiff, though BinDiff is not often updated. The authors of each of these should be
highly praised for providing such great tools that save us countless hours trying to find
code changes.

BinDiff
As previously mentioned, in early 2011 Google acquired the German software company
Zynamics, with well-known researcher Thomas Dullien, also known as Halvar Flake,
serving as the head of research. Zynamics was widely known for the tools BinDiff and
BinNavi, both of which aid in reverse engineering. After the acquisition, Google greatly
reduced the price of these tools to one-tenth their original price, making them much
more accessible. In March 2016, Google announced that going forward BinDiff would
be free. New versions are not commonly released, with BinDiff 4.3 being the most
recent version at the time of this writing. Version 4.3 offers support for macOS. BinDiff
is often praised as one of the best tools of its kind, providing deep analysis of block and
code changes. As of early 2018, BinDiff had not been ported to work on IDA 7.1 or
later. This could change at any time.

BinDiff 4.3 is delivered as a Windows Installer Package (.msi). Installation requires
nothing more than a few clicks, a licensed copy of IDA, and Java SE Runtime
Environment 8. To use BinDiff, you must allow IDA to perform its auto-analysis on the
two files you would like to compare and save the IDB files. Once this is complete, and
with one of the files open inside of IDA, you press CTRL-6 to bring up the BinDiff GUI,
as shown here.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/joxeankoret/diaphora
https://technet24.ir
https://technet24.ir
https://technet24.ir

The next step is to click the Diff Database button and select the other IDB file for the
diff. Depending on the size of the files, it may take a minute or two to finish. Once the
diff is complete, some new tabs will appear in IDA, including Matched Functions,
Primary Unmatched, and Secondary Unmatched. The Matched Functions tab contains
functions that exist in both files, which may or may not include changes. The other tab
can be closed. Each function is scored with a value between 0 and 1.0 in the Similarity
column, as shown next. The lower the value, the more the function has changed between
the two files. As stated by Zynamics/Google in relation to the Primary Unmatched and
Secondary Unmatched tabs, “The first one displays functions that are contained in the
currently opened database and were not associated to any function of the diffed
database, while the Secondary Unmatched subview contains functions that are in the
diffed database but were not associated to any functions in the first.”1

It is important to diff the correct versions of the file to get the most accurate results.
When going to Microsoft TechNet to acquire patches published before April 2017,
you’ll see column on the far right titled “Updates Replaced.” The process of acquiring
patches starting in April 2017 is addressed shortly. Clicking the link at that location
(Updates Replaced) takes you to the previous most recent update to the file being
patched. A file such as mshtml.dll is patched almost every month. If you diff a version of
the file from several months earlier with a patch that just came out, the number of
differences between the two files will make analysis very difficult. Other files are not
patched very often, so clicking the aforementioned Updates Replaced link will take you

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

to the last update to the file in question so you can diff the proper versions. Once a
function of interest is identified with BinDiff, a visual diff can be generated either by
right-clicking the desired function from the Matched Functions tab and selecting View
Flowgraphs or by clicking the desired function and pressing CTRL-E. The following is an
example of a visual diff. Note that it is not expected that you can read the disassembly
because it is zoomed out to fit onto the page.

turbodiff
The other tool we will cover in this chapter is turbodiff. This tool was selected due to
its ability to run with the free version of IDA 5.0. DarunGrim and patchdiff2 are also
great tools; however, a licensed copy of IDA is required to use them, making it
impossible for those reading along to complete the exercises in this chapter without
already owning or purchasing a licensed copy. DarunGrim and patchdiff2 are both user
friendly and easy to set up with IDA. Literature is available to assist with installation
and usage (see the “For Further Reading” section at the end of this chapter). Diaphora is
another fantastic alternative to BinDiff, and you are encouraged to try it out and compare
it to BinDiff.

As previously mentioned, the turbodiff plug-in can be acquired from the
http://corelabs.coresecurity.com/ website and is free to download and use under the
GPLv2 license. The latest stable release is Version 1.01b_r2, released on December 19,
2011. To use turbodiff, you must load the two files to be diffed one at a time into IDA.
Once IDA has completed its auto-analysis of the first file, you press CTRL-F11 to bring up
the turbodiff pop-up menu. From the options when you’re first analyzing a file, choose
“take info from this idb” and click OK. Repeat the same steps against the other file to be
included in the diff. Once this has been completed against both files to be diffed, press
CTRL-F11 again, select the option “compare with…,” and then select the other IDB file.
The following window should appear.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://corelabs.coresecurity.com/
https://technet24.ir
https://technet24.ir
https://technet24.ir

In the category column you can see labels such as identical, suspicious +, suspicious
++, and changed. Each label has a meaning and can help the examiner zoom in on the
most interesting functions, primarily the labels suspicious + and suspicious ++. These
labels indicate that the checksums in one or more of the blocks within the selected
function have been detected, as well as whether or not the number of instructions has
changed. When you double-click a desired function name, a visual diff is presented,
with each function appearing in its own window, as shown here.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lab 17-1: Our First Diff

NOTE This lab has a unique README file with instructions for setup. See this
book’s Introduction for more information. For this lab in particular, copy the two ELF
binary files name and name2 from Lab1 of the book’s repository and place them in the
folder C:\grayhat\app_diff\. You will need to create the app_diff subfolder. If you do not
have a C:\grayhat folder, you can create one now, or use a different location.

In this lab, you will perform a simple diff against the code previously shown in the
“Application Diffing” section. The ELF binary files name and name2 are to be
compared. The name file is the unpatched one, and name2 is the patched one. You must
first start up the free IDA 5.0 application you previously installed. Once it is up and
running, go to File | New, select the Unix tab from the pop-up, and click the ELF option
on the left, as shown here, and then click OK.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Navigate to your C:\grayhat\app_diff\ folder and select the file “name.” Accept the
default options that appear. IDA should quickly complete its auto-analysis, defaulting to
the main() function in the disassembly window, as shown next.

Press CTRL-F11 to bring up the turbodiff pop-up. If it does not appear, go back and
ensure you properly copied over the necessary files for turbodiff. With the turbodiff
window on the screen, select the option “take info from this idb” and click OK,
followed by another OK. Next, go to File | New, and you will get a pop-up box asking if
you would like to save the database. Accept the defaults and click OK. Repeat the steps
of selecting the Unix tab | ELF Executable, and then click OK. Open up the name2 ELF
binary file and accept the defaults. Repeat the steps of bringing up the turbodiff pop-up

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

and choosing the option “take info from this idb.”
Now that you have completed this for both files, press CTRL-F11 again, with the name2

file still open in IDA. Select the option “compare with…” and click OK. Select the
name.idb file and click OK, followed by another OK. The following box should appear
(you may have to sort by category to replicate the exact image).

Note that the getName() function is labeled “suspicious ++.” Double-click the
getName() function to get the following window.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In this image, the left window shows the patched function and the right window shows
the unpatched function. The unpatched block uses the gets() function, which provides no
bounds checking. The patched block uses the fgets() function, which requires a size
argument to help prevent buffer overflows. The patched disassembly is shown here:

There were a couple of additional blocks of code within the two functions, but they
are white and include no changed code. They are simply the stack-smashing protector
code, which validates stack canaries, followed by the function epilog. At this point, you
have completed the lab. Moving forward, we will look at real-world diffs.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Patch Management Process
Each vendor has its own process for distributing patches, including Oracle, Microsoft,
and Apple. Some vendors have a set schedule as to when patches are released, whereas
others have no set schedule. Having an ongoing patch release cycle, such as that used by
Microsoft, allows for those responsible for managing a large number of systems to plan
accordingly. Out-of-band patches can be problematic for organizations because there
may not be resources readily available to roll out the updates. We will focus primarily
on the Microsoft patch management process because it is a mature process that is often
targeted for the purpose of diffing to discover vulnerabilities for profit.

Microsoft Patch Tuesday
The second Tuesday of each month is Microsoft’s monthly patch cycle, with the
occasional out-of-band patch due to a critical update. The process has been changing
ever since the introduction of Windows 10 cumulative updates, taking effect on
Windows 7 and 8 as of October 2016, as well as a change in the way patches are
downloaded. Up until April 2017, a summary and security patches for each update
could be found at https://technet.microsoft.com/en-us/security/bulletin. Starting in April
2017, patches are acquired from the Microsoft Security TechCenter site at
https://portal.msrc.microsoft.com/en-us/security-guidance, with summary information at
https://portal.msrc.microsoft.com/en-us/security-guidance/summary. Patches are
commonly obtained by using the Windows Update tool from the Windows Control Panel
or managed centrally by a product such as Windows Server Update Services (WSUS)
or Windows Update for Business (WUB). When patches are desired for diffing, they can
be obtained from the aforementioned TechNet link.

Each patch bulletin is linked to more information about the update. Some updates are
the result of a publicly discovered vulnerability, whereas the majority are through some
form of coordinated private disclosure. The following image shows an example of one
such privately disclosed vulnerability.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet.microsoft.com/en-us/security/bulletin
https://portal.msrc.microsoft.com/en-us/security-guidance
https://portal.msrc.microsoft.com/en-us/security-guidance/summary
https://technet24.ir
https://technet24.ir
https://technet24.ir

As you can see, only limited information is provided about the vulnerability. The
more information provided, the more likely someone is quickly able to locate the
patched code and produce a working exploit. Depending on the size of the update and
the complexity of the vulnerability, the discovery of the patched code alone can be
challenging. Often, a vulnerable condition is only theoretical, or can only be triggered
under very specific conditions. This can increase the difficulty in determining the root
cause and producing proof-of-concept code that successfully triggers the bug. Once the
root cause is determined and the vulnerable code is reached and available for analysis
in a debugger, it must be determined how difficult it will be to gain code execution, if
applicable.

Obtaining and Extracting Microsoft Patches
We will get to a lab soon, but first let’s look at an example of acquiring and extracting a
cumulative update for Windows 10. Cumulative updates before April 2017 are
available on Microsoft TechNet at https://technet.microsoft.com/en-
us/library/security/dn631937.aspx. Cumulative updates from April 2017 are available
at https://portal.msrc.microsoft.com/en-us/security-guidance. For our example, we are
looking at MS17-010, which fixed multiple bugs with SMB and was released in March
2017. Information about this disclosure is available at https://technet.microsoft.com/en-
us/library/security/ms17-010.aspx. The security fix titles are shown in the following
image.

||||||||||||||||||||

||||||||||||||||||||

https://technet.microsoft.com/en-us/library/security/dn631937.aspx
https://portal.msrc.microsoft.com/en-us/security-guidance
https://technet.microsoft.com/en-us/library/security/ms17-010.aspx
https://technet24.ir
https://technet24.ir

We will be focusing on CVE-2017-0147, “Windows SMB Information Disclosure
Vulnerability,” to simply identify the fix, but first we must download and extract the
update. Using the aforementioned link to MS17-010, click and download the 32-bit
Windows 10 update via the Microsoft Catalog Server, shown next.

The outlined area on the left is the link to download the update via the Catalog Server.
The outlined link on the right is the Updates Replaced field. Clicking this link takes you
to the update information for the last time the file or files in question were patched. If
the file srv.sys was patched in October 2017, and the last time it was patched prior to
that was in July 2017, the Updates Replaced link would take you to that update. This is
important to note because you always want to diff the versions closest together so that
any changes to functions are associated with the CVEs in which you are interested.

Now that the Windows 10 32-bit cumulative update for March 2017 has been
downloaded, we will use a tool created by Greg Linares called PatchExtract to allow
for easy extraction. PatchExtract is a PowerShell script that uses the Microsoft
“expand” tool and other commands to extract and organize the many files contained
within the downloaded MSU file and subsequent cabinet files. At the time of this

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

writing, PatchExtract Version 1.3 is still the most recent. It is available at
https://pastebin.com/VjwNV23n. Greg goes by the Twitter handle @Laughing_Mantis.
There is also an associated PowerShell script called PatchClean to help further
organize extracted updates and ensure that only files that have been modified within the
past 30 days are marked as interesting. The reasoning for this is that the cumulative
updates contain all the updates related to that version of Windows, going back many
months. PatchClean moves all files older than 30 days into an “Old” folder so that
attention can be given to recently updated files. This still requires that you perform
validation, and you must also be cognizant of the date when extraction is being
performed. If you are performing an extraction and running PatchClean after the initial
patch release date, you may need to adjust your date and time accordingly.

The following command is an example of running PatchExtract with an Administrator
command prompt to extract the files and patches from within the March 2017 cumulative
update:

The command may look long, but this is mostly due to the path being typed in and the
long filename of the cumulative update. Once this is entered in, PatchExtract will
perform extraction, which can take several minutes depending on the size of the file.
Windows 10 x64 cumulative updates can be over 1GB in size, hence why we opted for
the x86 version. Once it is finished, we are left with a few folders. In our example here,
we want to go inside the “x86” folder and take a look. There are 1,165 subfolders. Take
a moment to think about our goal. We want to identify only files related to the March
2017 patch cycle, but we are left with 1,165 subfolders. This is where the PatchClean
tool comes into play. We first want to go in and change the date of the system being used
for analysis to the date of Patch Tuesday for the month of March 2017. That would be
Tuesday, March 14. By default, PatchClean goes back 30 days from the date and moves
anything with a modified time greater than that into an “Old” folder. This allows us to
see which files have been changed within the last 30 days.

Once the script is finished, we are left with 318 out of the original 1,165 folders. This
large number is not surprising because Patch Tuesday was skipped by Microsoft for
February 2017 due to delays in fixing SMB vulnerabilities.2

Lab 17-2: Diffing MS17-010

||||||||||||||||||||

||||||||||||||||||||

https://pastebin.com/VjwNV23n
https://technet24.ir
https://technet24.ir

In this lab, you will use the two srv.sys files available in the Gray Hat repository. One
is located in a folder called “Old” and the other in a folder called “New.” The new one
is from the March 2017 update. The examples shown in this lab are from IDA 7.0 in x86
compatibility mode in order for the BinDiff 4.3 plug-in to be used.

The first step is to open up your licensed copy of IDA, or the free version 5.0 if you
do not have a licensed version, and open up the “New” srv.sys file. Allow IDA to
complete its analysis. Once finished, save the database and open up the “Old” version
of srv.sys. Once analysis is finished, you are ready to perform the diff. With the “Old”
srv.sys file loaded, press CTRL-6 to bring up the BinDiff menu and then click Diff
Database.... If you are using turbodiff, press CTRL-F11 to bring up its menu and use the
same method shown in Lab 17-1.

After clicking the Diff Database… button, navigate to the “New” srv.sys IDB file and
perform the diff. After a few moments the diff should be finished, and you should have
some new tabs open inside IDA. The one we are interested in is “Matched Functions.”
In the diff results shown next, we have selected the function SrvSmbTransaction().
Often, when there are more than a few functions with changes, you must look at the
function names when determining potential functions of interest.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Press CTRL-E to perform a graphical diff. If using turbodiff, be sure to use the method
described earlier to perform the graphical diff. Here is the “zoomed out” overview of
the graphical diff.

If you click any of the assembly blocks as opposed to simply zooming in, the screen
will change configuration to only showing a group around the selected block. If you
want to go back to the main overview, you must click the Select Ancestors icon on the
main BinDiff ribbon bar, as shown.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In this example, the unpatched version of srv.sys is on the left and the patched version
is on the right. After zooming in and taking a look around at the differences, we identify
an interesting change. The following image is from the unpatched version, and you can
see that the function ExecuteTransaction is called as indicated.

Now look at the patched version. The same block of code that leads to the
ExecuteTransaction function call now instead first hits some calls to the memset
function.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You can still see the ExecuteTransaction function in the middle block, but flow must
first pass through the memset function calls before hitting that block. Feel free to follow
the couple of blocks in this path. The memset function calls are likely taking care of the
information leak associated with CVE-2017-0147.

Patch Diffing for Exploitation
In the previous Microsoft patch diff with MS17-010, we identified code changes that
resolved an information disclosure issue; however, this did not lead us to exploitation
of the bug. In this next example, we will take a look at a DLL side-loading bug that may
allow for remote code execution and get a working exploit up and running. Both MS16-
009 and MS16-014 claim to resolve CVE-2016-0041, which relates to a “DLL Loading
Remote Code Execution Vulnerability.”3 This author found that the actual file we are
interested in was made available in the MS16-009 patch. To remain consistent, the bug
was discovered by Greg Linares, who wrote the previously covered PatchExtract tool.

DLL Side-Loading Bugs
When checking online, you may get various definitions as to what constitutes a DLL
side-loading bug. From a high level, depending on settings in the registry, as well as
arguments passed to a DLL-loading function, such as the LoadLibrary() suite of

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

functions, there may be one or more ways to force the loading of an undesired DLL.
Let’s use a simple analogy to describe an example of the problem. We will assume that
you always put the salt and pepper used on food at a very specific location in a kitchen
cabinet. Imagine that the next time you go to use them, they are not at that location. You
could forgo using the salt and pepper, or you could go looking for them at other common
locations, such as other cabinets, tables, and counters. Eventually, you will either locate
the salt and pepper or give up. This is not so different from the search order used in
relation to DLL loading. A more secure setting would be to only allow a desired DLL to
be loaded from a very specific location, such as C:\Windows\System32\. A less secure
option would be to allow the DLL to be loaded from various locations based on a
search order precedence.

Let’s get into a bit more detail about how and from where DLLs can be loaded. First,
for the past few versions of Windows there is a registry container, typically at
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\KnownDLLs\. An example is shown here.

This container stores DLLs that are commonly used to help expedite program loading,
but it’s also seen by some as a security control because it specifies that the DLLs listed
can only be loaded from the System32 folder under C:\Windows\System32\ or
C:\Windows\SysWOW64\.4 Next, the LoadLibraryEX function can be used to
dynamically load DLLs requested by a process:

One of the required arguments is dwFlags, which is used to specify from where the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

DLL can potentially be loaded and other behaviors, such as that related to AppLocker
and what will happen upon entry in regard to code execution. More information can be
found at https://msdn.microsoft.com/en-
us/library/windows/desktop/ms684179(v=vs.85).aspx. If the dwFlags argument is left
to the default of 0, behavior will be that of the older LoadLibrary function, which
implements SafeDllSearchMode. As stated by Microsoft:

“If SafeDllSearchMode is enabled, the search order is as follows:

1. The directory from which the application loaded.
2. The system directory. Use the GetSystemDirectory function to get the path of this

directory.
3. The 16-bit system directory. There is no function that obtains the path of this

directory, but it is searched.
4. The Windows directory. Use the GetWindowsDirectory function to get the path of

this directory.
5. The current directory.
6. The directories that are listed in the PATH environment variable.

Note that this does not include the per-application path specified by the App Paths
registry key. The App Paths key is not used when computing the DLL search path.”5

Out of these options, numbers 5 and 6 are potentially a security concern because they
may include locations that can be influenced by an attacker, such as world-writable
locations. A common dwFlags option used to secure LoadLibraryEX calls is 0x800
“LOAD_LIBRARY_SEARCH_SYSTEM32.” This option restricts the loading of the
DLL to only the System32 folder.

Lab 17-3: Diffing MS16-009
In this lab, we analyze a security fix related to MS16-009 and MS16-014, which both
claim to resolve CVE-2016-0041. The patch extraction process has been completed for
you and is available in the Gray Hat Hacking code repository. The patch diffing
examples shown use IDA 7.0 x64 and BinDiff 4.3. The OSs involved in the exploitation
piece are Kali Linux x64 and Windows 10 x64 Home Edition, build number 10586. The
version of Skype used on the base build of Windows 10 is 7.18.0.112.

When extracting the MS16-009 patch, we determined that the file urlmon.dll was
updated. Both the updated version of urlmon.dll and the prior version have been
provided to you as part of this lab. The first step is to disassemble these using IDA and
perform a diff. You must use BinDiff 4.3 with IDA Professional, which supports
disassembling 64-bit input files, as this bug only affected 64-bit Windows. If you do not

||||||||||||||||||||

||||||||||||||||||||

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684179(v=vs.85).aspx
https://technet24.ir
https://technet24.ir

have the ability to disassemble 64-bit input files and save the IDA .idb database files,
you will not be able to complete this lab, but instead can only read through the
following sections. You may also investigate radare2 as an alternative to IDA.

Perform the diff now using one of those options. The following image shows you the
results when using BinDiff.

Only one function has changed according to BinDiff. It doesn’t get much easier than
that in terms of enabling us to home in on the function related to the bug fix. The
function’s name is BuildUserAgentStringMobileHelper(). Let’s press CTRL-E to
perform a graphical diff. The following image shows the high-level results.

When zooming in on the code changes, we can quickly identify the following block.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You should immediately notice that in the unpatched version on the left, the dwFlags
argument is being XORed to 0. This will cause the SafeDllSearchMode to take effect.
In the patched version on the right, dwFlags is being set to 0x800, which will restrict
loading of the desired DLL to the System32 folder. We want to see what DLL is being
loaded at this location within the code. To do that, we can simply go back to IDA and
jump to the function BuildUserAgentStringMobileHelper(). The easiest way to get
there quickly is to simply click in the functions window within IDA and start typing the
desired function name. Then, double-click it to bring up the disassembly. You can also
skip that step by clicking in the main disassembly window of IDA, pressing G, and
typing in the address to where you want to jump. Looking back at the unpatched results
in BinDiff, we can see the address of interest is 0x18003BCB1. After jumping to that
address, we get the desired result, as shown next.

As you can see, the DLL being loaded at this point in the code is phoneinfo.dll. You
may skip the following step, but the goal is to show you how to identify what
applications desire this DLL. First, an exhaustive search was performed from the root of
the file system to see if the file phoneinfo.dll exists on the base install of Windows 10
x64. It was confirmed that the file does not exist. Next, we want to start up the Process
Monitor tool from Microsoft (available at https://docs.microsoft.com/en-
us/sysinternals/downloads/procmon). The following image shows two filters applied to
the Process Monitor tool after it was started up.

||||||||||||||||||||

||||||||||||||||||||

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://technet24.ir
https://technet24.ir

The first filter takes effect if the “Result” is “NAME NOT FOUND.” The second
filter is for “Path” and ends with “phoneinfo.dll.” After applying these filters, we run
various applications, such as IE11, Edge, Skype, OneDrive, Word, and others. Because
the DLL is named phoneinfo.dll, it makes sense to try certain applications based on the
name alone. The following is an example of the results.

You can see that both Internet Explorer and Skype attempt to load the DLL. On the
right you can see all the locations checked. This is the behavior of
SafeDllSearchMode. Notably, we see that C:\Python27\ is one of the locations
checked. If we can craft a malicious DLL with msfvenom using Meterpreter as our
payload, we should be able to get a remote session with the vulnerable Windows 10
system. The next image shows the creation of the malicious phoneinfo.dll file, which
contains a Meterpreter payload that connects to our Kali Linux system. Immediately
after that, we use the Python SimpleHTTPServer module to serve up the malicious DLL
to the victim system. We have not applied any type of antivirus (AV) evasion encoding,
ghostwriting, or other technique, so we’ve disabled Windows Defender to test the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

exploit.

Next, we start up a Metasploit listener to receive the incoming connection if our attack
is successful.

With both the Python and Metasploit listeners running, we navigate back over to the
Windows system and use Internet Explorer to connect to the Kali system on port 8080.
We then download the phoneinfo.dll file and save it to C:\Python27\, as shown here.

Next, we start up Skype, which should load the malicious DLL from the C:\Python27\
folder as part of the SafeDllSearchMode of operation, as shown next.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

With the Skype application running, we switch back over to Kali Linux to see if the
Meterpreter session has been established.

Success! If we wanted to perform this in the wild, there are a couple of things to
consider. First, we would certainly want to encode the payload in such a way as to
evade AV detection. Second, we would want to find a way to trick a victim into
downloading the malicious DLL onto their system to a specific location. This can be
attempted via a phishing scam. Tricking the victim into thinking there is a critical Skype
update and that the DLL needs to be placed to a specific location might do the trick.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Summary
This chapter introduced binary diffing and the various tools available to help speed up
your analysis. We looked at a simple application proof-of-concept example, and then
we looked at real-world patches to locate the vulnerabilities and validate our
assumptions. This is an acquired skill that ties in closely with your experience
debugging and reading disassembled code. The more you do it, the better you will be at
identifying code changes and potential patched vulnerabilities. Microsoft has
discontinued support for Windows XP and Vista; however, some versions, such as those
with XP Embedded, are still supported and receiving patches. This may offer
opportunities to continue to analyze patches on an operating system that does not have as
much complexity. It is not uncommon for Microsoft to also sneak in silent code changes
with another patch. This sometimes differs between versions of Windows, where diffing
one version of Windows may yield more information than diffing another version.

For Further Reading
BinDiff Manual (Zynamics) https://www.zynamics.com/bindiff/manual/

“DarunGrim 4 Pre-Alpha Testing,” (Jeong Wook
Oh) https://mattoh.wordpress.com/2014/04/21/darungrim-4-pre-alpha-testing/

“Feedback-Driven Binary Code Diversification” (Bart Coppens, Bjorn De Sutter,
and Jonas
Maebe) users.elis.ugent.be/~brdsutte/research/publications/2013TACOcoppens.pdf

“Fight against 1-day exploits: Diffing Binaries vs. Anti-Diffing Binaries”
(Jeong Wook Oh) www.blackhat.com/presentations/bh-usa-09/OH/BHUSA09-Oh-
DiffingBinaries-PAPER.pdf

patchdiff2 (Nicolas Pouvesle) https://code.google.com/p/patchdiff2/

References
1. Zynamics, BinDiff Manual, 2017, https://www.zynamics.com/bindiff/manual/.
2. Peter Bright, “Microsoft Delays Patch Tuesday as World Awaits Fix for SMB

Flaw,” ARS Technica, 2017, https://arstechnica.com/information-
technology/2017/02/microsoft-delays-patch-tuesday-as-world-awaits-fix-for-smb-
flaw/.

3. Microsoft, “Microsoft Security Bulletin MS16-009 – Critical,” Microsoft Security

||||||||||||||||||||

||||||||||||||||||||

https://www.zynamics.com/bindiff/manual/
https://mattoh.wordpress.com/2014/04/21/darungrim-4-pre-alpha-testing/
http://users.elis.ugent.be/~brdsutte/research/publications/2013TACOcoppens.pdf
http://www.blackhat.com/presentations/bh-usa-09/OH/BHUSA09-Oh-DiffingBinaries-PAPER.pdf
https://code.google.com/p/patchdiff2/
https://www.zynamics.com/bindiff/manual/
https://arstechnica.com/information-technology/2017/02/microsoft-delays-patch-tuesday-as-world-awaits-fix-for-smb-flaw/
https://technet24.ir
https://technet24.ir

TechCenter, 2016, https://technet.microsoft.com/en-us/library/security/ms16-
009.aspx.

4. Larry Osterman, “What Are Known DLLs Anyway?” Microsoft Developer Blogs,
2004, https://blogs.msdn.microsoft.com/larryosterman/2004/07/19/what-are-
known-dlls-anyway/.

5. Microsoft, “Dynamic-Link Library Search Order,” Microsoft Windows Dev
Center, 2017, https://msdn.microsoft.com/en-
us/library/windows/desktop/ms682586(v=vs.85).aspx.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet.microsoft.com/en-us/library/security/ms16-009.aspx
https://blogs.msdn.microsoft.com/larryosterman/2004/07/19/what-are-known-dlls-anyway/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx
https://technet24.ir
https://technet24.ir
https://technet24.ir

PART IV

Advanced Malware Analysis

 Chapter 18 Dissecting Mobile Malware
 Chapter 19 Dissecting Ransomware
 Chapter 20 ATM Malware
 Chapter 21 Deception: Next-Generation Honeypots

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 18
Dissecting Mobile Malware

Smartphone devices replace the traditional “mobile phones” as a pocket-sized personal
computer and multimedia device, all in one. These personal devices provide a window
into the owner’s life. A calendar containing the user’s daily schedule, a phone book
with a list of contacts, social media accounts, and banking applications are only a small
subset of all the information that can be found on a typical smartphone. Malware authors
have already tapped into this rich platform and are exploiting it in various ways.
Understanding the architecture of mobile devices and application analysis techniques
empowers users to determine whether applications accessing their personal data are
doing it in a nonmalicious way.

This chapter provides analysis techniques and tools that can be used to determine the
functionality and potential maliciousness of mobile applications.

In this chapter, we cover the following topics:
• How the Android and iOS platforms work
• Static and dynamic analysis with a focus on malicious software analysis

The Android Platform
Before we start with malware analysis, it is necessary to get familiar with the Android
platform. Probably the most interesting information from an analysis point of view
involves how applications work and are executed. The following sections explain the
Android application package (APK), important configuration files such as
AndroidManifest, and the executable file format DEX running on a Dalvik virtual
machine.

Android Application Package
The Android application package (APK) is an archive format used to distribute
applications for the Android operating system. The APK archive contains all the files
needed by the application and is a convenient way to handle and transfer applications as
a single file. The archiving file format is the widely popular ZIP file format. This makes

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

it very similar to the Java archive (JAR), which also uses ZIP.
Because APK files are just ZIP archives with a different file extension, there is no

way to differentiate them from other ZIP archives. Magic bytes is the name for a
sequence of bytes (usually at the beginning of a file) that can be used to identify a
specific file format. The Linux file command can be used to determine the file type.
Following is the output of the file command for an APK:

As expected, the file type is reported as a ZIP archive. The following output shows
the magic bytes of the ZIP file format:

The first two bytes are the printable characters PK, which represent the initials of the
ZIP file format’s inventor, Phil Katz, followed by an additional two bytes: 03 04. To
examine the content of an APK archive, simply “unzip” it with any of the tools
supporting the format. Following is an example of unzipping the content of an APK
archive:

This output shows a generic structure of a somewhat minimalistic APK archive.
Depending on the APK type and content, it can contain various files and resources, but a
single APK can only be up to a maximum of 50MB on Android 2.2 or lower and

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

100MB on Android 2.3 and higher.1

NOTE An APK archive can have a maximum size of 100MB, but it can have up to two
additional expansion files, with each of them up to 2GB in size. These additional files
can also be hosted on the Android Market. The size of expansion files is added to the
size of the APK, so the size of the application on the market will be the total of the APK
and the expansion files.

Following is an overview of the APK directory structure and common files:

• AndroidManifest.xml This XML file is present in the root directory of every
APK. It contains the necessary application information for it to run on the Android
system. More information about this file is provided in the upcoming section.

• META-INF This directory contains several files that are related to the APK
metadata, such as certificates or manifest files.

• CERT.RSA The certificate file of the application. In this case, this is an RSA
certificate, but it can be any of the supported certificate algorithms (for
example, DSA or EC).

• CERT.SF Contains the list entries in the MANIFEST.MF file, along with
hashes of the respective lines in it. CERT.SF is then signed and can be used to
validate all entries in the MANIFEST.MF file using transitive relation. The
following command can be used to check the entries in the manifest file:

• MANIFEST.MF Contains a list of filenames for all the files that should be

signed, along with hashes of their content. All entries in this file should be
hashed in CERT.SF, which can then be used to determine the validity of the files
in the APK.

• classes.dex This Dalvik executable (DEX) file contains the program byte code
to be executed by the Dalvik virtual machine on the Android operating system.

• res This folder contains raw or compiled resource files such as images, layouts,
strings, and more.

• resources.arsc This file contains only precompiled resources such as XML
files.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Application Manifest
The Android application manifest file AndroidManifest.xml is located in the root
directory of every Android application. This file contains essential information about
the application and its components, required permissions, used libraries, Java packages,
and more. The AndroidManifest.xml file is stored in a binary XML format in the APK
and therefore has to be converted to textual representation before it can be analyzed.
Many tools are available that can convert from binary XML format, and in this section
we use apktool, which is a collection of tools and libraries that can be used to decode
manifest files, resources, decompile DEX files to smali, and so on. To decode the APK,
execute apktool with the d option, as shown here:

After apktool extracts and decodes all the files, the manifest can be examined in any
text editor. An example of the AndroidManifest.xml file is shown here:

Here are the important fields in the manifest file when you’re reverse-engineering
Android malware:

• The manifest element s defines the package element, which is a Java package
name for the application. The package name is used as a unique identifier and
resembles the Java package naming scheme. The package name represents the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

package hierarchy, similar to domain names, but is reversed. The top-level
domain (TLD) is leftmost and represents the root node, as shown at line , which
when flipped resolves to androidapplication1.me.org.

• The application element declares the application section, whereas its sub-
elements declare various application components—icon, permission, process,
and so on.

• The activity element defines the visual representation of the application that
will be shown to the users. The label "Movie Player" under the android:label
attribute defines the string that is displayed to the user when the activity is
triggered (for example, the UI shown to the users). Another important attribute is
android:name , which defines the name of the class implementing the activity.

• The intent-filter element , along with the elements action and category ,
describes the intent, which is a messaging object that can be used to request an
action from another application’s component.2 The action element defines the
main entry to the application using the following action name:
android.intent.action.MAIN. A category element classifies this intent and
indicates that it should be listed in the application launcher using the following
name: android.intent.category.LAUNCHER. A single activity element can
have one or more intent-filters that describe its functionality.

• The uses-permission element is relevant when you’re looking for suspicious
applications. One or more of these elements define all the permissions that the
application needs to function correctly. When you install and grant the application
these rights, it can use them as it pleases. The android:name attribute defines the
specific permission the application is requesting. In this case, the application
(which describes itself as a movie player) requires
android.permission.SEND_SMS, which would allow it to send Short Message
Service (SMS) messages with the desired content to arbitrary numbers. This
clearly raises suspicion as to the legitimacy of this application and requires
further investigation.

NOTE This example contains just a small subset of the possible manifest elements
and attributes. When you’re analyzing a complex manifest file, consult the Android
Developer Reference3 to fully understand the different elements and attributes.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://androidapplication1.me.org
https://technet24.ir
https://technet24.ir
https://technet24.ir

Analyzing DEX
The Dalvik executable (DEX) format contains the byte code that is executed by the
Android Dalvik virtual machine. DEX byte code is a close relative of the Java byte
code that makes up class files. The instructions used in disassembly are fairly similar,
and someone familiar with Java instructions wouldn’t need much time to get used to the
Dalvik. One evident difference with disassembling Dalvik compared to Java is the
dominant use of registers instead of a stack. The Dalvik virtual machine (VM) has a
register-based architecture, whereas Java has a stack-based one. Dalvik VM
instructions operate on 32-bit registers, which means that registers provide data to an
instruction that operates on them. Each method has to define the number of registers it
uses. That number also includes registers that are allocated for argument passing and
return values. In a Java VM, instructions take their arguments from the stack and push
the results back to the stack. To illustrate this difference, the following listing shows a
Dalvik disassembly of the start of a function in the Interactive Disassembler (IDA):

The lines labeled , , and are part of the function definition, which shows the
number of registers used by the method and their allocation between input arguments
and output return values. The instructions at , , , , and use two registers: v2 and
v3. Registers in Dalvik use the character prefix v, followed by a register number. The
prefix is used to denote these registers as “virtual” and distinguish them from the
physical hardware CPU registers. Now, here’s the same function disassembly using
Java byte code:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

As you can see, there are no referenced registers; instead, all operations are done
over the stack. Examples of instructions that operate using a stack can be found at , ,

, , and . For example, the dup instruction will duplicate the value on top of the
stack so that there are two such values at the top of the stack.

Because DEX and Java class files are related, it is possible to go from one format to
the other. Because Java has a longer history and a lot of tools have been developed for
analysis, disassembling, and especially decompilation, it is useful to know how to
translate from DEX to JAR. The Dex2jar project4 is a collection of several programs
that work with DEX files. The most interesting of them is dex2jar, which can convert
DEX files to Java byte code. The following listing shows how to run the dex2jar
command and convert from DEX to JAR, which was used in the previous example when
comparing the two disassembler outputs with IDA:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Java Decompilation
Most people find it much easier to read high-level code like Java instead of Java
Virtual Machine (JVM) disassembly. Because JVM is fairly simple, the decompilation
process is doable and can recover Java source code from class files. Dex2jar brings all
the Java decompiler tools to the Android world and allows for easy decompilation of
Android applications written in Java.

Many Java decompilers are available online, but most of them are outdated and no
longer maintained. The JD decompiler5 is probably the most popular and well-known
decompiler. It also supports three different GUI applications for viewing source code:
JD-GUI, JD-Eclipse, and JD-IntelliJ. JD-GUI is a custom GUI for quick analysis of
source code without the need to install big Java editors. JD-GUI is available for the
Windows, macOS, and Linux operating systems.

To decompile a DEX file, you first have to convert it to a JAR file using dex2jar and
then open it with JD-GUI. The following shows how to use dex2jar:

To see the source code in JD-GUI, open the file classes-dex2jar.jar. Figure 18-1
shows JD-GUI with decompiled Java source code. It is possible to export all
decompiled class files from JD-GUI using the File | Save All Sources option.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 18-1 JD-GUI decompiled Java source code

One problem with decompilers is that they are very sensitive to byte code
modification, which can prevent them from recovering any sensible source code.
Another problem with decompilers is that they don’t offer a side-by-side comparison
with disassembly, and wrong decompilation can cause functionality to be missing from
the output. When you’re dealing with malicious code, it is always recommended that
you double-check the disassembly for any suspicious code and functionality that might
have been hidden from the decompiler. In cases where JD cannot determine the
decompilation code, it will output the disassembly of a class file. The following is JD
disassembly output for a function that couldn’t be decompiled:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

DEX Decompilation
The problem with the previously mentioned DEX decompilation is that the file first has
to be converted to JAR format and then decompiled using Java tools. In such a scenario,
there are two locations for failure: the conversion of DEX and the decompilation of
JAR. The JEB decompiler6 aims to solve this problem by performing decompilation
directly on DEX files. It comes with a handy GUI that’s very similar to IDA, making it a
familiar user experience. Unlike the JD decompiler, JEB is a commercial product, and a
single license costs US$1,080.7 Following is some of the functionality offered by JEB:

• Direct decompilation of Dalvik byte code
• Interactive analysis GUI with capabilities for cross-referencing and renaming

methods, fields, classes, and packages
• Exploring full APK, including manifest file, resources, certificates, strings, and so

on
• Supports saving the modifications made during analysis to disk and sharing the

file for collaboration
• Support for Windows, Linux, and macOS

Figure 18-2 shows a decompiled DEX file using JEB. The same DEX file was used
to generate decompiled Java code with the JD in the previous section.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 18-2 DEX decompilation with JEB

Overall, JEB is the only commercial software aimed at reverse engineers that
provides capabilities for analyzing DEX files directly. With the look and feel of IDA,
JEB will certainly appeal to those familiar with IDA.

Another native DEX decompiler is DAD,8 which is part of the open source
Androguard project.9 This project contains everything needed to analyze Android
applications and also has many interesting scripts aimed at malware analysis. You can
use the DAD decompiler by simply invoking the androdd.py script, as shown here:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

DAD doesn’t come with a GUI for reading decompiled source, but any text or Java
editor (such as IntelliJ or NetBeans) is probably better for analyzing source code
anyway. Decompiled code is stored in the specified directory dad_java and can be
opened with any text editor. The following shows part of the decompiled
MoviePlayer.java:

DEX Disassembling
When everything else fails, there is always a disassembler waiting. Reading
disassembly output might not be the most appealing task, but it is a very useful skill to
acquire. When you’re analyzing complex or obfuscated malware, disassembling the
code is the only reliable way to understand the functionality and devise a scheme for
deobfuscation.

Smali/baksmali is an assembler/disassembler for the DEX format used by Dalvik.
The syntax is loosely based on the Jasmin/Dedexer syntax, and it supports the full
functionality of the DEX format (annotations, debug info, line info, and so on).10

The assembling functionality is a very interesting benefit because it allows for
modifications and code transformations on the assembly level without patching and
fiddling with the bytes. The syntax for disassembling a DEX file with baksmali is very
straightforward and can be seen in the following listing:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

As shown, the output of the baksmali command are files named after their respective
Java class names with the .smali file extension. Smali files can be examined with any
text editor. The following listing shows a snippet of the MoviePlayer.smali file:

To make reading smali files more enjoyable, there are many syntax highlighters for
various editors such as VIM, Sublime, and Notepad++. Links to plug-ins for various
editors can be found in the “For Further Reading” section.

Another way to generate baksmali disassembly directly from APK involves using
apktool, which is a convenient wrapper for decoding all binary XML files, including
Android manifests and resources, but also disassembling the DEX file with baksmali.
Just by running apktool, you can decompose the APK file and make it ready for
inspection, as shown in the following listing:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Example 18-1: Running APK in Emulator

NOTE This exercise is provided as an example rather than as a lab due to the fact that
in order to perform the exercise, malicious code is needed.

When you’re analyzing applications, it is valuable to see them running on the phone as
well as to check how they behave and what functionality they implement. A safe way to
run untrusted applications on an Android phone is to use an emulator. The Android SDK
includes an emulator and various versions of operating systems that run on many
different device types and sizes. Virtual machines are managed using the Android
Virtual Device (AVD) Manager. The AVD Manager is used to create and configure
various options and settings for the virtual devices. The AVD Manager GUI can be
started using the android command and passing it avd as a parameter, like so:

After the Android Virtual Device Manager starts, click the New button on the right
side of the menu and create the new device in the resulting dialog box, as shown in
Figure 18-3.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 18-3 New AVD configuration

The next step is to start the previously created AVD by running the following
command:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

APK packages can be installed on the running emulator using the adb command, as
shown in the following listing:

After installation, the application can be found in the application listing on the device
running in the emulator. Figure 18-4 shows the application listing and the application
Movie Player among the other installed applications. Information about the installed
application, its permissions, memory usage, and more is available in the application
menu under Settings | Apps | org.me.androidapplication1.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 18-4 Installed application listing

Dynamic analysis is a very important reverse engineering technique. The ability to run
and observe the application in action can give important hints about functionality and
potential malicious activities. The Android emulator comes with a variety of Android
operating system versions and can be used to test vulnerability and malware impact
across the Android ecosystem.

Malware Analysis
This section outlines an Android malware analysis workflow and introduces the tools
needed for the analysis. Reverse engineering and malware analysis on Android follow
the same principles and techniques as analysis on Windows, Linux, or macOS. There
are still some Android architecture–specific details that can give important hints when
looking at malicious samples.

For malware analysis, there are usually two different tasks:

• Determine whether the sample is malicious.
• Determine the malicious functionality of the sample.

It is usually much easier to determine whether or not something is malicious (or
suspicious) instead of understanding the malicious functionality. To answer the
maliciousness question, you can use the following checklist:

• Is the application popular and used by many people or installed on a large number
of machines? The more popular the application, the less likely it contains
something very bad. This, of course, doesn’t mean that there is nothing bad, but
the risk is usually lower because a big user group means that bugs and problems
with the application are easier to surface. Therefore, if there are many user
complaints, it is still worth investigating.

• Has the application been present in Google Play for a long time without any bad
history? This check is related to the first one and can be used to strengthen the
decision. Very popular applications with a long history without problems are less
obvious candidates for shipping something bad, as that would damage their
reputation.

• Does the author have other applications published with good ratings?
• Does the application request sensitive permissions? In the Android world,

applications are as dangerous as the permissions they are granted. Here are some
of the sensitive permissions that should be allowed with care, especially if many

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

are requested:
• Phone READ_PHONE_STATE, CALL_PHONE, READ_CALL_LOG,

WRITE_CALL_LOG, ADD_VOICEMAIL, USE_SIP,
PROCESS_OUTGOING_CALLS

• Calendar READ_CALENDAR, WRITE_CALENDAR
• Contacts READ_CONTACTS, WRITE_CONTACTS, GET_ACCOUNTS
• Microphone RECORD_AUDIO
• Location ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION
• SMS SEND_SMS, READ_SMS, RECEIVE_SMS, RECEIVE_WAP_PUSH,

RECEIVE_MMS
• Storage READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE

• Does the application contain obfuscation or crashes known analysis tools?
Malware authors are known to exploit various vulnerabilities and weaknesses in
the analysis software to thwart the analysis process. Some commercial
applications also employ various obfuscations to prevent crackers from pirating,
but it is not a very common occurrence among free or simple applications.

• Does the application contact any suspicious domains? Malware authors like to
reuse domains, so it is common to find the same bad domain in different malware
samples.

• When examining the strings table, can you identify any suspicious-looking strings?
Similar to malware analysis of Windows executables, looking at the strings list of
the application can provide a hint about malicious applications.

Malware Analysis Primer
This section takes a look at a sample Android application and tries to determine
whether there is anything malicious in it. Because the application doesn’t come from the
Google Play market, the first three checks from the previous section will be skipped and
analysis will continue from the question Does the application request sensitive
permissions?

The answer to this question lies in the AndroidManifest.xml. Because we already
discussed how to convert the manifest file and read its content, we can speed up the
process using some handy Androguard scripts. Androperm is a simple script that just
outputs the APK permissions. An example of the script output is given here:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

SEND_SMS is definitely a suspicious-looking permission. It is typically associated
with premium SMS scams that inflict monetary damages onto infected users. The
androapkinfo script can be used next to get a summary overview of the application with
various malware-oriented details. Following is the abbreviated output of androapkinfo:

Once again, we have the list of permissions the application requires, along with a
handy message about the potential malicious use of it. The checks at and are
indicators for suspicious code-obfuscation techniques. Also, we have a list of activities

 that can be used as an entry point to start code analysis. Finally, we have a list of
class files that use the SMS functionality and should be investigated to confirm that
SMS permissions are not misused.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

To check the code of the classes MoviePlayer and HelloWorld, we decompile the
application and locate the two interesting classes:

The main activity is implemented in MoviePlayer.java, which makes it a good
candidate for analysis. The file can be examined in any text editor, but preferably one
with Java syntax highlighting. The full code listing of the function onCreate, which uses
SMS functionality, is given next:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The first suspicious thing about this function is the Unicode text buffer . This is
nothing more than a safe way for a decompiler to output Unicode strings that a textual
editor might not display properly. In this case, the string is in Cyrillic, and translated
into English it has the following meaning: “Wait, access to the video library
requested....” Next, the variable v0 is initialized as the SmsManager object . On the
lines labeled , , and , the code is trying to send an SMS message. The function
sendTextMessage has the following prototype:

In this case, the destinationAddress is the numbers 3353 and 3354, whereas the text
argument is 798657 in all three cases. The two numbers belong to the premium SMS
service, which is more expensive than the regular SMS service, and the custom text
message is probably used to distinguish the affiliate who is sending the money.

The code definitely doesn’t look like a movie player application, and a quick look at
other decompiled files shows very little code and nothing that could indicate anything
related to the advertised functionality. This kind of malware is very common on phones
because it can bring immediate financial gain to the authors.

Black-box emulator environments are very useful tools for monitoring malware
samples and understanding their functionality without reading code. Droidbox is a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

modified Android image that offers API monitoring functionality. It uses baksmali/smali
to rewrite the application and a custom Android emulator image to log all the monitored
APIs with their arguments. This approach is a good first step for understanding the
malicious applications or for confirming the findings from the static analysis approach.

Example 18-2: Black Box APK Monitoring with Droidbox

NOTE This exercise is provided as an example rather than as a lab due to the fact that
in order to perform the exercise, malicious code is needed.

Droidbox comes with a modified Android image and can be easily started after the
Droidbox image archive is unpacked. The first step is running the custom Android
image, as follows:

After the image has booted up, it is time to run the malicious application inside the
emulator and collect the logs. The application can be instrumented in the emulator via
the droidbox.sh script, like so:

After an arbitrary amount of time has passed, you can stop the monitoring by pressing

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CTRL-C, which will output logs in JavaScript Object Notation (JSON) format. The output
in the previous listing was reduced for brevity. To format the JSON in a nicer way, use
the following command:

From the output, it quickly becomes evident that the application is sending three SMS
messages, as we have already discussed. The ability to observe and get insight into the
application activity in such an easy way makes this approach very useful for malware-
analysis purposes. It should be noted that this approach cannot be used by itself and has
to be accompanied by the reverse engineering of the application. Black box approaches
like this one don’t guarantee that malicious functionality will be executed during the
time of monitoring, so it can miss some or all of the malicious code. In such cases, it is
possible to wrongly assume that the application is not malicious while in fact it is just
hiding that functionality.

For best results, it is recommended that you use both static analysis of application
code and black box monitoring.

Black box malware analysis is a cheap way to get an overview of malware
functionality. It can be used to find interesting entry points for deeper static analysis.
Droidbox is a simple-to-use black box Android analysis system. It can easily be
extended and turned into an automatic analysis system to classify and process a large
number of samples and build knowledge on top of the resulting reports.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The iOS Platform
Apple’s mobile operating system iOS in Q1 2017 held second place in the mobile OS
landscape, with 14.7 percent market share, per IDC’s Worldwide Quarterly Mobile
Phone Tracker.11 iOS runs on several Apple devices, including iPhone, iPad, and iPod.
Unlike Android’s open philosophy, iOS is used only on Apple products, which ensures
a more tightly controlled ecosystem. Due to this and aggressive iOS application
reviews, the Apple application store has very little malicious software present, and
anything suspicious or remotely suspicious of violating Apple’s policy gets flagged and
removed from the store. However, there are still commercially available spyware tools
targeting iOS, such as the infamous Pegasus spyware, which used three different
vulnerabilities to compromise the iPhone’s security and spy on infected users.12

iOS Security
iOS has evolved over the years to become one of the most secure mobile device
platforms today. It contains a comprehensive security stack, which from the ground up
encompasses all aspects of phone security: hardware, application isolation, data
encryption, and exploit mitigations.

In this section, we take a closer look at some of these security mechanisms, as they
provide the basis to understanding the iOS threat landscape.

Secure Boot
Secure initialization of the operating system during the boot process is a requirement for
a secure and trusted platform. Without an untampered-with boot process being ensured,
we can’t trust any of the security mechanisms provided and enforced by the operating
system. To address this issue, all modern operating systems leverage hardware
capabilities to ensure that the code executed before the operating system’s code, as well
as validating the OS code itself, is unchanged. This verification is done using code
signatures and allows the code at every step of the process to check and validate
Apple’s signature of the code, which runs next.

The boot process starts by executing the Boot ROM code, which has been baked onto
the physical chip during manufacturing and contains Apple’s Root CA public key. This
key is used to verify that all code executed during the boot process (for example,
bootloader, baseband firmware, kernel, and kernel modules) is signed by Apple.
Because nothing executes before the Boot ROM, this code needs to be implicitly trusted;
however, because it’s physically imprinted on the chip, this is an accepted risk. Secure
boot is one of the lowest levels attackers can target in an effort to jailbreak the phone
and gain full control of the device.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Encryption and Data Protection
iOS leverages native hardware encryption capabilities to provide fast and secure
cryptographic operations. iOS uses Advanced Encryption Standard (AES) with 256-bit
keys to encrypt data on the memory chips providing full-disk encryption. Full-disk
encryption protects data from attackers who have physical access to the device but don’t
have the ability to run code.

Apple also uses Data Protection technology to address the issue when the attacker has
the ability to run code on the device. This technology allows developers to use custom
encryption keys to encrypt applications’ data and, in case of compromise, securely
destroy those keys. Access control for these application-specific keys is managed by the
OS so that a malicious application running at the same time on the device is not able to
access another application’s keys, thus preventing the malicious application from
reading the private data.

In 2015/2016, Apple’s encryption was discussed in media due to the FBI-Apple
encryption lawsuit.13 The lawsuit against Apple focused on problems law enforcement
agencies had in accessing the encrypted data on the devices used to perform crimes and
the ability of the courts and law enforcement agencies to compel manufacturers to assist
in unlocking and accessing encrypted data on such devices. Although the FBI managed
to find a company with the capability to bypass this protection, it still showcases how
protections like this require specialized resources to bypass them.

Application Sandbox
Application sandboxing is a security mechanism for isolating execution environments of
different applications running on the same system. In an environment that uses sandbox
isolation, compromising one application should not compromise or in any way impact
other sandbox environments. This isolation is achieved by fine-grained access control
to system resources. Sandbox applications need to explicitly state which system
entitlements they require to function correctly. Following are some of the available
entitlement classes to which applications can request access:

• Hardware Access to resources such as the camera, microphone, and USB
• Network connections Permission to send and receive network traffic
• Application data Access to resources such as the calendar, contacts, and

location
• User files Permission to access user folders for pictures, downloads, and music

Any attempt to access resources from a sandbox that wasn’t explicitly requested in the
project definition is rejected by the operating system at runtime.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

iOS Applications
The iOS application archive (.ipa extension) has a format and structure similar to the
Android APK. Both are ZIP archives with a custom file extension containing all the
necessary files for the application to function correctly. As visible in the following hex
dump, the magic bytes of the IPA archive are the same as those of a typical ZIP header:

The application archive includes the application’s executable, configuration files, and
any data or image resources. The common file types located in the archive, as described
by Apple,14 are as follows:

• Info.plist The information property list file is the iOS version of the
AndroidManifest.xml configuration file. It is a mandatory configuration file and
contains information about the application such as permissions, supported
platforms, and names of other relevant configuration files.

• Executable A mandatory file that contains the application code.
• Resource files Additional optional data files such as images and icons. These

resources can be localized for a specific language or region or shared across
them.

• Support files Additional files that are not resources, such as private frameworks
and plug-ins.

iOS applications, like macOS applications, are typically written in Objective-C or
Swift programming languages.

Objective-C is a general-purpose, object-oriented programming language that was
used as the main language for developing applications on Apple platforms until the
introduction of Swift in 2014.

Swift is a successor of Objective-C and, among other things, brings simplicity, speed,
and type safety while maintaining compatibility with both Objective-C and C.

Lab 18-1: Analyzing Binary Property List Files
Property list files (.plist) store a serialized object representation of hierarchy objects
and provide developers with a lightweight and portable way to store small amounts of
data. These files can contain various data types, including arrays, dictionaries, strings,
data, integers, floating-point values, or booleans.

Plist files can be stored either in XML or binary format. Because XML files are
readable with any text editor, they are easy to open and analyze. Binary .plist files,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

however, need to be parsed or converted to XML format before they can be displayed in
human-readable format.

In this lab we analyze a binary .plist file from the malicious file available on
VirusTotal.15 The first step after downloading the iOS application archive is to unpack
the content using the unzip utility . To identify the type of .plist file, we can use the
available file utility . macOS ships with the plutil utility, which can convert between
binary, XML, and JSON .plist formats. To do this, we just need to specify the desired
format as an argument to the –convert option . Following is the output of the
commands needed to convert a binary .plist file to XML and read its content :

Lab 18-2: Jailbreaking iPhone 4s
While performing iOS research, it is useful to have available a jailbroken iOS device
such as an iPhone or iPad. A jailbroken device will allow us to execute more easily any
unsigned code and to instrument the device.

The cheapest device to start with would be iPhone 4s, which costs around US$50
secondhand. The latest iOS version supported by 4s is iOS 9.3.5,16 for which there is
semi-untethered jailbreak. There are several different classes of jailbreaks17 based on
their persistence of bypassing security mitigations. They are classified as follows:

• Untethered This is the most persistent class of jailbreaks because it bypasses
security mitigations, even after the device is power-cycled, without the need to
connect the device to a computer or run the exploit again.

• Semi-untethered This is similar to untethered, as it doesn’t require connecting

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

the device to the computer, but it does require running the exploit after power-
cycling the device.

• Tethered This is the least persistent class of jailbreaks because it’s only a
temporary bypass. As soon as the device is power-cycled, a previous unpatched
version of the kernel will be running and might not work correctly due to the
inconsistent jailbreak state.

• Semi-tethered Similar to a tethered jailbreak, this is also a temporary bypass,
but the device will continue working correctly after power-cycling and booting
into an unpatched version of iOS.

To jailbreak an iPhone 4s, we’ll use the Phoenix18 jailbreak tool by following these
steps:

1. Before running the jailbreak application on the phone, it’s necessary to download
and transfer the Phoenix4.ipa and Cydia Impactor tools to your desktop OS.

2. Install the Cydia Impactor and connect the 4s device to the machine.
3. Run the Cydia Impactor and then drag and drop the Phoenix4.ipa into the Cydia UI.
4. Enter your Apple ID when prompted to install the IPA on the phone.
5. On the phone, open Settings | General | Device Management and select the Apple

ID profile used during installation. Select the Trust button to enable running the
installed IPA application on the phone.

6. Launch the Phoenix application on the phone and then select Prepare for Jailbreak,
Begin Installation, and Use Provided Offsets.

7. After the device restarts, launch the Phoenix application again. It should now
report the following: “Your iPhone4,2 is jailbroken. You may launch Cydia from
the home screen.”

Lab 18-3: Decrypting Apple Store Applications
Applications downloaded from Apple’s App Store have their code encrypted as part of
the FairPlay digital rights management (DRM) license. This prevents researchers from
simply downloading applications and analyzing the code outside the designated iPhone
device.

To check if the executable is encrypted, we can use otool, which comes with macOS,
and look for crypt* parameter values. A cryptid value of 1 indicates encrypted
executable code, which can’t be analyzed before decryption.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The easiest way to retrieve the actual application code is to extract it decrypted from
the jailbroken phone. We are going to use the dumpdecrypted tool developed by Stefan
Esser.19 The tool works by injecting a dynamic library into the application’s address
space, reading decrypted content directly from the memory, and writing it to disk. The
application we’ll decrypt in this lab is the VLC player for mobile platforms, available
on iTunes.20

We start by setting up SSH over USB using iproxy21 and connecting to the iPhone
device using SSH . Next, we make sure that we have the correct location of the VLC
application folder . To inject the dumpencrypted tool in VLC, we use
DYLD_INSERT_LIBRARIES environment variable to instruct the loader to insert the
additional library in the address space of VLC . Once the tool finishes saving the
memory dump, we can check for the *.decrypted file .

We can download the dumped payload from the phone using sftp:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

To make sure that we have actually decrypted the code, we can again use otool and
look at the cryptid value, which should now be 0 to indicate an unprotected file:

At this point, we have the actual executable code available for analysis using one of
the usual binary analysis tools, such as IDA, Binary Ninja, Hopper, GNU Project
Debugger (GDB), or LLDB Debugger, and the malware analysis methodology discussed
in the Android section.

Summary
As consumers are adopting new technologies and making them part of their lives,
malware authors are changing their approach and migrating to these technologies. The
smartphone as an omnipresent device that makes the Internet always available has a
growing malware concern. Trojans trying to steal personal data, backdoors trying to
allow attackers to access the device, and adware trying to generate revenue for their
authors are just some of the potential threats present in the mobile world.

Android and iOS malware analysis and reverse engineering follow mostly the
traditional Windows malware analysis approaches, but they also bring some new
challenges. Understanding the specific platform ecosystem and design differences will
allow you to efficiently analyze applications and determine any malicious intent. As
malware shifts its focus to new technologies, it important that malware researchers
follow up and develop adequate analysis tools and techniques.

For Further Reading
Android application signing process developer.android.com/tools/publishing/app-
signing.html

Android manifest
introduction developer.android.com/guide/topics/manifest/manifest-intro.html

||||||||||||||||||||

||||||||||||||||||||

http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
https://technet24.ir
https://technet24.ir

Android Studio https://developer.android.com/studio/index.html

App Sandboxing, Apple Developer https://developer.apple.com/app-sandboxing/

Binary Ninja https://binary.ninja/

Cydia Impactor www.cydiaimpactor.com/

“Demystifying the Secure Enclave Processor” https://www.blackhat.com/docs/us-
16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf

DEX file format source.android.com/devices/tech/dalvik/dex-format.html

Droidbox, GitHub https://github.com/pjlantz/droidbox

GDB: The GNU Project Debugger, GNU.org https://www.gnu.org/software/gdb/

Hopper v4 https://www.hopperapp.com/

“IDA: About,” Hex-Rays, https://www.hex-rays.com/products/ida/index.shtml

iOS app reverse engineering https://github.com/iosre/iOSAppReverseEngineering

“iOS Instrumentation Without Jailbreak” https://www.nccgroup.trust/uk/about-
us/newsroom-and-events/blogs/2016/october/ios-instrumentation-without-jailbreak/

Jarsigner
documentation docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html

The LLDB Debugger https://lldb.llvm.org/

Phoenix https://phoenixpwn.com/download.php

Smali syntax highlight for Sublime github.com/strazzere/sublime-smali

Smali syntax highlight for various editors sites.google.com/site/lohanplus/files/

SmsManager API
documentation developer.android.com/reference/android/telephony/SmsManager.html

Study on Android Auto-SMS www.symantec.com/connect/blogs/study-android-auto-
sms

TaintDroid appanalysis.org/index.html

Various Android analysis tools:
• code.google.com/p/droidbox/
• github.com/honeynet/apkinspector/
• code.google.com/p/androguard/

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://developer.android.com/studio/index.html
https://developer.apple.com/app-sandboxing/
https://binary.ninja/
http://www.cydiaimpactor.com/
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
http://source.android.com/devices/tech/dalvik/dex-format.html
https://github.com/pjlantz/droidbox
https://www.gnu.org/software/gdb/
https://www.hopperapp.com/
https://www.hex-rays.com/products/ida/index.shtml
https://github.com/iosre/iOSAppReverseEngineering
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/october/ios-instrumentation-without-jailbreak/
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
https://lldb.llvm.org/
https://phoenixpwn.com/download.php
http://github.com/strazzere/sublime-smali
http://sites.google.com/site/lohanplus/files/
http://developer.android.com/reference/android/telephony/SmsManager.html
http://www.symantec.com/connect/blogs/study-android-auto-sms
http://appanalysis.org/index.html
http://code.google.com/p/droidbox/
http://github.com/honeynet/apkinspector/
http://code.google.com/p/androguard/
https://technet24.ir
https://technet24.ir
https://technet24.ir

• bitbucket.org/androguard/community/
• code.google.com/p/android-apktool/
• github.com/tracer0tong/axmlprinter
• bitbucket.org/mstrobel/procyon/
• github.com/Storyyeller/Krakatau/
• developer.android.com/tools/devices/emulator.html
• code.google.com/p/smali/
• varaneckas.com/jad/
• www.android-decompiler.com/

Virustotal www.virustotal.com/

References
1. “Manage APK Files,” Google, https://support.google.com/googleplay/android-

developer/answer/113469#apk
2. “Intents and Intent Filters, API Guides, Android Developers,”

https://developer.android.com/guide/components/intents-filters.html.
3. “Android Developer Reference,” https://developer.android.com/index.html
4. dex2jar, GitHub, https://github.com/pxb1988/dex2jar.
5. “JD Project,” Java Decompiler, http://jd.benow.ca/.
6. JEB, PNF Software, https://www.pnfsoftware.com/jeb2/.
7. “JEB Subscriptions,” JEB, PNF Software,

https://www.pnfsoftware.com/jeb2/buy.
8. DAD, Androguard, GitHub,

https://github.com/androguard/androguard/tree/master/androguard/decompiler/dad.
9. Androguard, GitHub, https://github.com/androguard/androguard.

10. Smali, https://github.com/JesusFreke/smali/wiki.
11. “Smartphone OS Market Share, 2017 Q1,” IDC,

https://www.idc.com/promo/smartphone-market-share/os.
12. “So, you heard about Pegasus and Trident. Here’s what you should do now,”

Lookout blog, September 2, 2016, https://blog.lookout.com/pegasus-trident-cio-
ciso-what-to-do/pegasus-trident-ios-update.

13. “FBI—Apple Encryption Dispute,” Wikipedia,

||||||||||||||||||||

||||||||||||||||||||

http://bitbucket.org/androguard/community/
http://code.google.com/p/android-apktool/
http://github.com/tracer0tong/axmlprinter
http://bitbucket.org/mstrobel/procyon/
http://github.com/Storyyeller/Krakatau/
http://developer.android.com/tools/devices/emulator.html
http://code.google.com/p/smali/
http://varaneckas.com/jad/
http://www.android-decompiler.com/
http://www.virustotal.com/
https://support.google.com/googleplay/android-developer/answer/113469#apk
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/index.html
https://github.com/pxb1988/dex2jar
http://jd.benow.ca/
https://www.pnfsoftware.com/jeb2/
https://www.pnfsoftware.com/jeb2/buy
https://github.com/androguard/androguard/tree/master/androguard/decompiler/dad
https://github.com/androguard/androguard
https://github.com/JesusFreke/smali/wiki
https://www.idc.com/promo/smartphone-market-share/os
https://blog.lookout.com/pegasus-trident-cio-ciso-what-to-do/pegasus-trident-ios-update
https://technet24.ir
https://technet24.ir

https://en.wikipedia.org/wiki/FBI%E2%80%93Apple_encryption_dispute.
14. “Bundle Structures,” Bundle Programming Guide, Apple Developer,

https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.xhtml#//apple_ref/doc/uid/10000123i-
CH101-SW1.

15. Virus Total,
https://www.virustotal.com/#/file/98e9e65d6e674620eccaf3d024af1e7b736cc889e94a698685623d146d4fb15f/detection

16. “iOS Version History: iOS 9,” Wikipedia,
https://en.wikipedia.org/wiki/IOS_version_history#iOS_9.

17. “Jailbreak,” The iPhone Wiki, https://www.theiphonewiki.com/wiki/Jailbreak.
18. Phoenix, https://phoenixpwn.com/.
19. Stefan Esser, “Dumps Decrypted,” GitHub, 2011–2014,

https://github.com/stefanesser/dumpdecrypted.
20. VideoLAN, “VLC for Mobile,” iTunes Preview,

https://itunes.apple.com/us/app/vlc-for-mobile/id650377962.
21. “SSH over USB,” iPhoneDevWiki,

http://iphonedevwiki.net/index.php/SSH_Over_USB#SSH_over_USB_using_usbmuxd

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://en.wikipedia.org/wiki/FBI%E2%80%93Apple_encryption_dispute
https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.xhtml#//apple_ref/doc/uid/10000123i-CH101-SW1
https://www.virustotal.com/#/file/98e9e65d6e674620eccaf3d024af1e7b736cc889e94a698685623d146d4fb15f/detection
https://en.wikipedia.org/wiki/IOS_version_history#iOS_9
https://www.theiphonewiki.com/wiki/Jailbreak
https://phoenixpwn.com/
https://github.com/stefanesser/dumpdecrypted
https://itunes.apple.com/us/app/vlc-for-mobile/id650377962
http://iphonedevwiki.net/index.php/SSH_Over_USB#SSH_over_USB_using_usbmuxd
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 19
Dissecting Ransomware

This chapter dissects a unique family of malware known as ransomware. This malware
is able to take control of a system unless a ransom is paid to its creators.

In this chapter, we cover the following topics:
• History of ransomware
• Options for paying a ransom
• Dynamic and static analysis of Ransomlock
• Decoding in memory
• Anti-debugging checks
• Taking control of the Desktop
• Identifying and analyzing Wannacry encryption

The Beginnings of Ransomware
Ransomware is a unique family of malware that is able to take full control of a machine
until a ransom is paid by the victim. In order to increase the chances of getting money,
the malicious program will pretend to look like it’s coming from a legitimate source,
such as a law enforcement agency, stating that the end user has been caught visiting
unauthorized websites and therefore needs to pay the violation fee. Other strategies to
fool the end user include presenting a fake Windows Product Activation screen, asking
the victim to pay to reactivate the system due to a specific fraud being detected.
Normally, the crooks will set an expiration period in which to pay the ransom, forcing
the victim to send the money right after being infected. An excellent video from
Symantec explaining ransomware can be found in the “For Further Reading” section at
the end of the chapter.

Ransomware can be classified in a few different ways, based on the way it
manipulates the data:

• Crypters A type of ransomware that encrypts user data, effectively holding it for
ransom until the victim decides to exchange money for the decryption key.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Lockers A type of ransomware that utilizes various techniques to prevent users
from interacting with their operating system. In this case, the operating system is
held for ransom; the user’s data on disk is not modified by the malware.

• Leakware (doxware) Unlike the previous two classes, where the attacker
doesn’t have access to the data, leakware typically employs a remote
administration tool to exfiltrate the victim’s data. The attacker then threatens to
publish the data unless a ransom is paid.

This kind of malware is not new. The first ransomware utilizing encryption, called the
“AIDS Trojan,” was created by Dr. Joseph Popp and documented around 1989. At that
time, the name of this family of malware was a little bit different: it was called
“cryptoviral extortion.” The AIDS Trojan encrypted all files from the hard drive and
asked the victims to pay US$189 to “PC Cyborg Corporation.” When Popp was caught,
he said the money he earned was going to be used to support AIDS research.

The AIDS Trojan used symmetric keys to encrypt the information. Because the key
was embedded in the binary, it was easy to recover the encrypted files. Later on, the
researchers Adam Young and Moti Yung fixed this issue by implementing public key
cryptography. That way, the files were encrypted with a public key, and once the ransom
was paid, the corresponding private key needed to decrypt data was given to the victim.
In this scenario, there was no way to find the key needed to decrypt the information, thus
improving the extortion attack.

Due to its popularity, ransomware malware spread to other platforms, and in mid-
2014 the first ransomware designed for Android devices was discovered:
Simplelocker.

Options for Paying the Ransom
From the criminal’s point of view, the most important part is to remain anonymous when
receiving the money. That is why the methods of payments mentioned here have evolved
over time:

• Premium-rate SMS This is an easy method for sending the payment, but it’s
also easy for tracking the receiver. The victim just needs to send a text message to
recover their computer.

• Online cash payment providers This method of payment does not require the
use of a credit card. A victim can go to the nearest local provider and buy some
credit with cash in order to receive a specific code to spend the money. This code
is sent to the criminals in order to recover the machine. Here, the only way to
know the receiver getting the money is by reversing the piece of malware. Some

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

of the well-known online cash providers are Ukash, MoneyPak, and Paysafecard.
• Bitcoin Described as digital cash and considered a digital currency (because it

is not considered a true currency), bitcoin is a peer-to-peer method of payment
that has gained massive attention in recent months. Because the bitcoin can be
transferred from one person to another person directly, it is significantly more
difficult to track the sender and receiver, making it easier than ever for crooks to
capitalize on their malicious efforts.

CAUTION Before you consider paying the ransom, it’s suggested that you consult the
nearest technical support person to try to regain control of your data.

Now that you have an overview of how ransomware works, let’s dissect a couple of
examples to understand their inner workings.

Dissecting Ransomlock
When you’re dealing with ransomware, dynamic analysis is useless most of the time.
This is because once you run it, your Desktop will be controlled by the malware;
therefore, you will not be able to review the logs or results from the monitoring tool.
However, there are many tricks you can perform in order to recover the machine after
running the malware to get access to the monitoring results. In this section, we take a
look at a Ransomlock malware sample that belongs to the Locker ransomware family
and implements the techniques typical for this class of ransomware.

NOTE The exercises in this chapter are provided as examples rather than as labs due
to the fact that in order to perform these exercises, you need a malicious binary.

Example 19-1: Dynamic Analysis

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

NOTE The MD5 hash of the Ransomlock sample that will be analyzed in this section
is ED3AEF329EBF4F6B11E1C7BABD9859E3.
Ransomlock will lock the screen but will not try to kill any processes or deny network
access to the machine. Therefore, as analysts, we can leave a backdoor in the virtual
machine (VM) to kill the malicious process at any time and recover control of the
infected system. Let’s see how this works:

1. We need to create a bind shell to get remote access to the infected machine. We can
use Metasploit in our Kali machine to do that, as shown here, making sure to
change the RHOST to your IP. Because no port is defined, the default one will be
4444.

Now download malo.exe onto the victim machine by browsing to http://<kali-
IP>/GH5/malo.exe.

2. Run netcat on Kali to wait for the remote shell and then run malo.exe on the victim
machine. Here, you can see that a Windows shell has been received:

3. Fire up Procmon and set a filter to only monitor locker.exe. Select Filter | Filter…
and then create the condition “Process Name is locker.exe,” as shown next. Click
Add and then click Apply.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

4. Run the malware. After a few seconds, the screen will be locked with a message
in a Russian-like language, as shown next. Due to the lack of a language pack being
installed, you’ll see many weird characters. However, the content of the message
is not relevant for this exercise.

5. To unlock the screen by killing the malicious process, go to the shell obtained in
Step 2, run tasklist /v | find locker.exe, and then kill it (assuming the PID of

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

locker.exe is 1508):

6. After all the malicious processes have been killed, the Desktop should be
unlocked, and you can review the results of Procmon or any other dynamic
analysis tool.
Another way to get the Desktop back to the victim is to start explorer.exe from the
remote shell (which was killed by the malware before it controlled the machine).

CAUTION The fact that you killed locker.exe does not mean the system is disinfected.
The purpose of this step is only to unlock the screen to analyze the malware after
infection.

We are done with the remote shell, so let’s go back to Windows in the VM, which
should be unlocked by now:

1. Review the Procmon results in detail. You can see that the malware is searching
for taskkill.exe (it was probably used to kill explorer.exe). It also looks like it is
trying to find custom DLLs such as NATIONA_PARK23423.DLL and
HERBAL_SCIENCE2340.DLL, but not many details can be found from this tool.

2. Run the Autoruns tool from Sysinternals and go to the Logon tab, as shown next.
Here, you can see the malware will be executed upon every reboot because the
explorer value has been added under the Run key and the default shell has been set
to locker.exe by changing the Winlogon\Shell key (normally, explorer.exe is the
expected value). This way, Ransomlock takes control as soon as the end user logs
in.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

So, we now have a better idea of the malware’s behavior. However, we are far from
understanding the inner workings. Dynamic analysis is good for a quick glance because
sometimes it gives us enough information to be able to understand the key points.
However, we still do not know how the screen is locked, whether the malware will try
to call out to a command-and-control (C2) server, or if any other damage is caused to
the infected machine. Those different questions can be better understood by debugging
the malicious program and performing static analysis with IDA—a perfect combination
when doing in-depth malware analysis.

Example 19-2: Static Analysis

NOTE The MD5 hash of the Ransomlock sample that will be analyzed in this section
is ED3AEF329EBF4F6B11E1C7BABD9859E3.
Typically, ransomware is known to use sophisticated obfuscation, anti-debugging, anti-
disassembly, and anti-VM techniques, aiming to make it really hard to understand the
inner workings of the malware.

NOTE In this chapter, the term decoding will be used as a synonym of de-obfuscation,
unpacking, or decryption.

Therefore, we have two goals:

• To understand the “anti” techniques used to avoid detection, debugging, and

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

virtualization, if any.
• To understand the techniques used to take control of our Desktop. After this

example, we should be able to respond to questions such as the following: Why
did my mouse and keyboard stop working? Why did all the windows disappear?
Why does running the malware through a debugger not work?

Decoding in Memory
We will again play with the locker.exe binary we used in the previous exercise, so let’s
open it up in Immunity Debugger within a VM. If you just press F9 to run it, for some
reason the Desktop will not be locked, probably due to some anti-debugging checks.
Let’s find out why. When we reopen it with the debugger, we land on the following entry
point:

These instructions are just gibberish code pretending to look as if the program is
performing normal actions. If we keep stepping into the code (using F7), we will
eventually realize there are dozens of repetitive lines of code decoding new sets of
instructions. A good example is shown here:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

We can see that the double words at offsets 0x420240 and 0x420248 (from the data
section) are being modified after some calculations. These kinds of decoding
instructions will be found multiple times in the whole binary, and it can be really
tedious and time consuming to step into each instruction. Therefore, we need to find a
way to skip over those instructions to reach the interesting code that will help us to
understand the malware behavior.

A good strategy for a faster analysis is to find calls to addresses generated at runtime.
Normally, those addresses are found once the decoding steps have been completed; such
an instruction can be found at address 0x00401885:

NOTE Something to keep in mind that will be useful during our analysis is that the
preceding instruction was found at the relative address 0x1885 from the base address
0x00400000.

Let’s step into this instruction to find out the value of EAX. We can set a breakpoint at
0x00401885, and once we hit that instruction we see that the value of EAX is equal to
0x0041FD12, which is located in the resources (.rsrc) section.

Before pressing F7 to step into the call, let’s make sure to remove any breakpoints (by
pressing ALT-B to get the list of breakpoints and using the DELETE button) because
internally the debugger changed the value of the first byte of the command to 0xCC
(which tells the debugger to stop at that instruction). Therefore, instead of the original
opcode equal to FF D0 , the value has been altered in memory to CC D0. Later on, the
malware will copy these instructions to a new location and therefore will spoil the next
instruction to be executed. When we remove the breakpoint, the byte altered by the
debugger is restored to its original value. That is one of the reasons the malware copies
itself to other memory locations—to carry over breakpoints that will spoil the execution
commands in the next round.

Once we remove the breakpoint and press F7, we jump to the address 0x0041FD12.
From there, we follow the same strategy to find a command such as CALL <register>.
In the following commands, we will find one here:

By stepping into the preceding call, we jump to a new address space. In this example,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

EAX is now equal to 0x002042C2. Here is the content of some instructions at this
offset:

In case you did not notice it yet, this code is the same as the one shown in the entry
point, just in a new location, as expected. Let’s again apply our formula to find a CALL
EAX, which is base_address + 0x1885 (in this case, 00200000 + 0x1885). And there it
is—we found our instruction again at the expected offset:

This time, EAX is equal to 0x0021FD12 at runtime, so after stepping into this call, we
get the following instructions:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

A couple of things happened here. First, we cannot find another CALL EAX
instruction in the addresses, so we are probably close to the end of the decoding phase.
Actually, if we step over the call at 0x0021FD44 (by pressing F8), the malware will
terminate itself. Therefore, let’s step into that call. For the sake of brevity, we will take
a shortcut. Eventually, the malware will jump back to the resources section at offset
0x0041FB50, where new decoded instructions are waiting. So let’s go there quickly by
setting a hardware breakpoint on execution at that address; we can do this by executing
the instruction dd 0x41fb50 at the command box from the debugger and then right-
clicking the first byte (in the lower-left pane, which is the Memory window) and
selecting Breakpoint | Hardware, On Execution, as shown here.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Now when we press F9 to run the malware, we hit our hardware breakpoint
successfully. Here are the first instructions at our offset; as expected, we can see a new
set of decoded instructions ready to be executed:

The common instruction PUSHAD is used to preserve the current values of the CPU
registers. This is normally used before decoding data in memory, which is the case here
because the “.text” section of the malware was zeroed out and will be filled with the
next instructions. This clearly tells us that the malware is decoding itself in memory
with the real malicious set of instructions. We can print the current content by entering

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

the command dd 0x401000 in the command box from the debugger:

By stepping into the next instructions, we see that the whole text section is loaded
with the real malicious instructions. If we keep stepping into the code, we see that the
processes are enumerated. Therefore, let’s set a breakpoint on the proper API in the
debugger command box again:

Press F9, and when the breakpoint is hit, press ALT-F9 to return to the malware code at
the address 0x0040DE6B. There, we see instructions without them being properly
disassembled by the debugger, as shown here:

Let’s make the debugger display those instructions properly by right-clicking any
instruction in the upper-left window and selecting the option Analysis | Remove
Analysis from Module, as shown here:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

After this step, we see the proper assembly code displayed. Here are some important
addresses that give us evidence that the processes are being enumerated:

Anti-Debugging Checks
As shown in the previous steps, the first anti-debugging technique of the ransomware is
to copy itself to other locations so that if an int3 (0xCC) is set, it will be carried over to
the next memory space and will break the code changing the opcodes. Let’s see what
other anti-debugging techniques will be used by the malware.

Let’s remove all the breakpoints (ALT-B). Then, in the upper-left disassembly window,
press CTRL-G, go to the address 0x0040E185, set a breakpoint there, and press F9. At this
point, the malware will check whether a well-known debugger is running in the infected
system by enumerating all the processes and its related modules, trying to find a process

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

or module with the name OLLYDBG, DBG, DEBUG, IDAG, or W32DSM, as shown
here.

Because we are using Immunity Debugger, we are not going to be caught by this check,
but even if we were using OllyDbg, we could either change the name of the executable
before running it or patch the binary in memory to force the malware to keep running.

Then, if we keep “stepping into,” the malware will try to find a debugger based on the
common names of the drivers installed in the system inside
c:\windows\system32\drivers, such as sice.sys and ntice.sys (related to SoftICE) and
syser.sys (related to the Syser Kernel Debugger), among others. Also, other checks exist
for old virtual drivers (with a .vxd extension), as well as loaded services with paths
such as \\.\SICE, \\.\TRW, \\.\SYSER, and so on. Here’s an example of this anti-
debugging check.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Moving forward, we will find another anti-debugging check:

This is a very old and easy-to-bypass technique to check whether the malware is being
debugged. After the call, if EAX = 0, no debugger was found.

At the end of all the checks to detect a debugger, the content of ESI will have a 1 if a
debugger is present and 0 if not; that value is saved at the BL register:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

We can easily fool the malware into thinking there is no debugger by patching the
preceding instruction (by double-clicking the instruction in the debugger, we can modify
it) with something like this:

Unfortunately, we cannot patch the binary permanently because those instructions are
decoded at runtime, and therefore the file on disk is different. However, we can create a
VM snapshot right after patching it to always start debugging from that point onward
during the analysis.

Eventually the new value of BL will be copied to AL. We can see that at 0x410C52,
we are able to bypass the debugger check (if AL = 1, the program will terminate;
otherwise, it will jump to 0x00410C60):

Taking Control of the Desktop
At this point, all the checks are done, and the malware is ready to start preparing the
steps to own the Desktop:

The malicious window has been created with a unique window name (the window’s
title) . The window will be found at 0x00410CA3 and hides from the Desktop at
0x00410CAD. This happens within milliseconds, so the end user will not even notice it.
Later, two very important tasks take place: The explorer.exe process will be killed so
that, among other things, the task bar is removed and is not accessible by the end user .
Then, the keyboard will be intercepted so it cannot be used by the victim once the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

malicious window is activated. We know the keyboard is being hooked by stepping into
the call and checking the HookType parameter in the stack, which is 2 (for
WH_KEYBOARD):

NOTE Many other actions are performed by the malware. We are just listing the more
relevant ones to keep the chapter’s length reasonable.

Moving forward, we find a loop whose only purpose is to find and minimize all the
windows on the Desktop:

This check is self-explanatory. It gets the title of the current window displayed via
GetWindowTextA and finds that window. If the window is visible, it is minimized via
a PostMessage with the following parameters:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The last step in the loop is to call GetWindow to get the next available window
currently being displayed. This loop is done until no more windows are found
maximized.

Once all windows have been minimized, the loop identifies the malicious one by
calling FindWindowA again and restores it via a PostMessageA call:

For this call, the following parameters are used:

Again, another jump to a different set of instructions is done, so we step into (F7) the
following call to follow it:

The content of the malicious window starts to be added:

The following parameters appear in the stack:

Let’s set a breakpoint at SetWindowPos and press F9 to go there. Then, press ALT-F9 to
return to the malware program. We should see a pop-up ransomware window displayed.
This API was called with the HWND_TOPMOST option, which essentially means that
any window displayed in the system will always be behind this one:

We can see that the Ransomlock window has been displayed! However, the locking
process has not yet been done. Thanks to the debugger, the malware is under our control,
as shown here.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Because the mouse and keyboard are not being blocked, we can interact with the
Desktop and bring up other windows. However, because the malicious window is set to
be at the top of any other one, even if we maximize other windows, they will remain
behind it. This is done so the infected user can only interact with the ransomware
window. In our environment, we’ll just maximize IE and the Calculator, but as expected,
they are displayed behind the window, as shown here.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

We can check all the windows associated with this process by going to the View |
Windows option in the menu. Here, we can confirm that the malicious window is set as
the topmost. We can also see in the ClsProc column that the procedure address of the
topmost window is 0x00405428, as shown here. We can set a breakpoint there to catch
every single action related to that window.

Especially with ransomware, it is highly recommended that you use a tool such as
Spy++ from Microsoft Visual Studio to be able to identify all the hidden windows in the
system and their properties during the analysis.

The hotkey ALT-TAB is defined for the malicious window via the RegisterHoyKey API
at 0x00411005. This way, once the Desktop is locked, if the user tries to switch to
another window, they will be rejected:

Here are the stack parameters:

In some later instructions, we find a call to the ClipCursor API:

Here are the stack parameters:

This API will keep the cursor or the mouse inside the malicious window rectangular

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

area; therefore, the coordinates are passed as parameters.
After this call, the victim will be forced to only interact with the ransomware window

via the mouse! If we try to click a different area of the screen, it will not be possible. At
this point, your Desktop should already be locked, but because the malware has not
completed yet, some more steps are needed for it to be owned completely. Let’s set a
breakpoint on SetFocus (via the command-line bp SetFocus). Press F9, press ALT-F9,
and the game is over.

Internally, the malware will run an infinite loop to make sure all windows from the
Desktop are minimized. We can confirm this behavior by pressing CTRL-ALT-DEL and then
ALT-T to bring up the Task Manager window. As soon as it is displayed, it will be
minimized by the ransomware.

Interestingly, if we try to capture the network traffic to the C2 by entering a fake
number in the text box and then click OK to send the payment, no action will be
performed by the malware. However, although this makes it look like the malware is not
active, unfortunately, it does not prevent our machine from being owned.

Other tasks were performed by the malware trying to take control of the Desktop;
some of them were not successful because they are pretty old techniques. We’ve just
focused on the most important ones to help us in understanding the inner workings.

The malware uses old but still useful techniques to take control of the Desktop (see
the “For Further Reading” section for some examples). We learned that the core
techniques implemented by the ransomware to own the Desktop are related to the
windowing system. Here are the most important steps used to take control of the
Desktop:

1. Minimize all the windows in an infinite loop. As soon as a new window is
maximized, it will be minimized immediately.

2. Hook the keyboard so that it cannot be used by the victim.
3. Set up specific hotkeys such as ALT-TAB to prevent the victim from switching to

other windows.
4. Set the malicious window as the topmost so that any other window that might pop

up will always be behind it.
5. Restrict the usage of the mouse to the area where the malicious window is located.

Although the consequence of having your Desktop locked by the malware is scary,
most of the time this kind of malware comes as a stand-alone program that is executed
from a specific location in your file system. Therefore, it is pretty easy to deactivate it:
just boot the machine with a live CD, mount the Windows hard drive if you’re using a
Linux distro, and search for executables under the infected user’s account. Here are the
common paths you should check:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

c:\Users\<user>AppDatac
:\Users\<user>Local Settings
c:\Users\<user>Application Data

Alternatively, you can boot in Safe mode and go to the Run registry key, where you
might find the executable name (although multiple places in the Registry are used to start
the malware after reboot):

HKLM\Software\Microsoft\Windows\CurrentVersion\Run

Wannacry
Wannacry is an infamous ransomware worm that appeared in May 2017 and quickly
made headlines worldwide. It is labeled a worm because it used the CVE-2017-0144
vulnerability, named ETERNALBLUE, in the Server Message Block (SMB) protocol to
infect vulnerable Windows hosts on the Internet. The ETERNALBLUE vulnerability
was famous because it was disclosed as part of the information leak by the Shadow
Brokers hacking group. The group released to the public several exploits that were
developed and used by the NSA, one of which was ETERNALBLUE.

Wannacry is part of the crypter ransomware family because it encrypts the victim’s
data and holds it for ransom. In this section, we examine different approaches to
analyzing Wannacry ransomware and try to answer following questions:

• How are the files encrypted and which cryptographic algorithms are used?
• Is it possible to decrypt the ransomed files?

Example 19-3: Analyzing Wannacry Ransomware
Identifying and understanding the encryption scheme used by ransomware is one of the
most important pieces of information for the affected victims. This information can help
reveal any vulnerabilities in the implementation of file encryption or key management,
which could lead to recovering ransomed files. On the other hand, confirming that the
encryption scheme used by ransomware is secure allows the victims to prioritize their
efforts and proceed with remediation.

Two main classes of encryption algorithms are employed by ransomware:

• Symmetric-key algorithms These algorithms use the same key for encryption
and decryption. They are typically much faster at encrypting/decrypting the data
than asymmetric algorithms but typically require the ransomware to “leak” the
decryption key on the infected machine since the same key is used to encrypt data.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Asymmetric-key algorithms These algorithms split the secret in two keys:
public and private. The public key can be distributed with the malware and is
used only for encrypting data. To decrypt the data, one would need the private part
of the key, which is managed by malware authors and sold to victims for a
ransom. Asymmetric algorithms are mostly used for secure key exchange of
symmetric keys, which allows for much faster encryption/decryption.

Designing a secure crypto system is a complex endeavor; to be truly secure, the
system requires a careful design that depends on various interconnected pieces such as
algorithms, key parameters, key handling, and a security-aware implementation.

Because implementing cryptographic algorithms is a fairly complex and security-
sensitive undertaking, most developers decide to use operating system crypto APIs or to
import, either statically or dynamically, third-party crypto libraries. Checking the
imported functions is the easiest way to identify if the malware uses one of the native
crypto APIs.

One of the oldest and simplest ways to identify the usage of cryptographic algorithms,
in the case of statically linked libraries, has been by using static signatures for various
constants on which the algorithms depend. One of the early tools that leveraged these
constants for detection was KANAL – Crypto Analyzer, a plug-in for the PEiD signature
scanner. Nowadays, most tools rely on the YARA format for static signatures or allow
users to leverage signatures using third-party plug-ins. Some of the common reverse
engineering tools that support YARA are IDA, x64dbg, Binary Ninja, and Radare2.

NOTE The MD5 hash of the t.wnry Wannacry component, which will be analyzed in
this section, is F351E1FCCA0C4EA05FC44D15A17F8B36.

To start with the identification of cryptographic algorithms, we will open the t.wnry
component in IDA and examine the Imports section of the PE file. By sorting the
imported functions by name, we organize the functions by the functionality they provide,
which allows us to spot several crypto APIs:

• CryptExportKey This function exports a cryptographic key or a key pair from a
cryptographic service provider (CSP) in a secure manner.

• CryptReleaseContext This function releases the handle of a CSP and a key
container.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• CryptGenRandom This function fills a buffer with cryptographically random
bytes.

• CryptGetKeyParam This function retrieves data that governs the operations of
a key.

Imported functions give a glimpse of the cryptographic functionality but don’t reveal
any details about the algorithms we are dealing with. They do, however, provide
shortcuts for the analyst to find the functions responsible for the desired functionality (in
this case, encryption).

NOTE This analysis methodology is known as a bottom-up approach. It keeps the
focus on answering a specific question by efficiently guiding the analysis efforts using
available clues. This approach is especially useful when dealing with overwhelmingly
big and complex binaries.

For the second preliminary crypto identification step, the findcrypt-yara IDA plug-in
will be used. This plug-in comes with various open source YARA rules that can detect
both imported or dynamically resolved crypto functions as well as different
cryptographic constants associated with crypto algorithms. The included YARA
signatures are missing some of the common crypto API functions, so before running them
on the analyzed sample, we’ll add the following YARA rule:

Running the FindCrypt plug-in on the analyzed file reports nine signature matches—
three RijnDael_AES and six Crypt* APIs—that weren’t present in the Imports section

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

we analyzed previously. By looking at the identified constants, we can safely assume
that the ransomware is using AES encryption and potentially some other algorithms.
Identifying the CSP used in CryptAcquireContextA will narrow down the available
algorithms, so we’ll start by finding cross-references (XREFs) from the address of the
CryptAcquireContextA string located here:

The string is only used in one location, and that function is responsible for
dynamically resolving the crypto functions. After the variable names and types are
annotated, the code looks like the following in the Hex-Rays decompiler:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE Dynamic resolution of API functions using LoadLibrary and GetProcAddress
is a common occurrence in malware. It allows the authors to hide the functionality from
the static analysis tools relying on the import table. Another improvement on this
approach is obfuscating or encrypting the strings of API functions, which further
prevents static signatures and reasoning about executable functionality. When analyzing
malware, make sure you check LoadLibrary and GetProcess API references in code
and determine if they are resolving additional APIs.

When dealing with dynamically resolved APIs in IDA, you can name the variables as
the resolved functions, and IDA will automatically apply the corresponding API
prototype. Here is an example of naming the variable CryptAcquireContextA:

Although this prototype might look correct, it won’t allow IDA to propagate argument
names in the disassembly and will result in a somewhat messy decompiler
representation. The issue here is that the automatic type assigned to the variable by IDA
is a function declaration instead of a function pointer. To fix the variable’s type,
remember to change it to a function pointer by wrapping the function name in curly
braces and adding a pointer (*) in front of the name, as follows:

To identify the CSP, we continue with looking at cross-references of
CryptAcquireContextA and will analyze a function at .text:10003A80. Having
annotated the function pointer, we can easily identify the names of arguments and find
the value of the pszProvider argument:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The CSP used by malware supports the AES and RSA algorithms. We already
identified AES constants in the sample, so this is just another confirmation that this
algorithm is used in some form, either for encryption, decryption, or both. The usage of
RSA hasn’t been confirmed yet, so the next step is to understand how this cryptographic
provider is used. We continue by analyzing XREFs of the current function and will look
at sub_10003AC0. Because this function likely contains crypto-related logic, we need
to understand the code and all surrounding functions.

In situations like this where an in-depth understanding of a function is necessary, a
top-down approach makes the most sense. In this case, all functions are very simple
wrappers around APIs, so we won’t go into many details. Shown next is an IDA
proximity view of the functions called from sub_10003AC0, which has been renamed
InitializeKeys.

NOTE The IDA proximity browser provides a convenient way to explore the call
graph and get a better overview of the related functions. Proximity view is most useful
after the surrounding functions are named during the top-down analysis pass.

The InitializeKeys function reveals several important properties of the crypto setup:
• Malware comes with a hardcoded 2048-bit RSA public key.
• Sample generates a new 2048-bit RSA public/private key pair.
• The public key is saved unencrypted to the file system as 00000000.pky.
• The private key is saved encrypted with the hardcoded public RSA key as

00000000.eky.
• Destroys the keys from memory using the CryptDestroyKey API.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The fact that the generated private key is encrypted with a hardcoded public key and
destroyed after use hints that the public part of the generated key pair is used to encrypt
something important. Because the private key was encrypted with the author’s public
key, only the author can access the encrypted key, giving them the exclusive ability to
decrypt everything encrypted with the generated public key. Because the generated
public key is used to encrypt something important, the next step is to identify what
exactly that is.

To find the code location where the key is used to encrypt data, we will once again
leverage XREFs to identify locations that use CryptEncrypt API. There are five
references in total, and three of them we already analyzed while investigating
InitializeKeys. Therefore, we’ll take a look at sub_10004370.

The function is very simple; it generates a random 16-byte buffer using the
CryptGenRandom API and encrypts the buffer with the generated RSA public key. Both
the unencrypted and encrypted buffers are returned to the calling function. By following
the use of both buffers in the calling function, we can notice the following differences:

• The encrypted buffer is written to a file as a part of a header.
• The unencrypted buffer is used as the AES key to encrypt the content of ransomed

files.

Now that we have collected all the pieces, here is how Wannacry utilizes AES and
RSA for encrypting files:

1. A new 2048-bit RSA key pair is generated per infected machine.
2. The private RSA key is encrypted with the attacker’s hardcoded public RSA key,

preventing anyone other than the attacker from decrypting the machine’s private
key.

3. A random 128-bit AES key is generated for every victim’s file the Wannacry
encrypts.

4. The public part of the generated RSA pair is used to encrypt the AES key used for
encrypting the user’s files and is saved as part of the victim’s encrypted file
header.

This is a pretty robust crypto design that prevents anyone other than the attackers, who
have the private part of the hardcoded public key, from decrypting the AES keys used to
encrypt the victim’s files.

However, luckily for victims, the theoretical concepts and practical implementation
often leave enough room for the security researcher to find subtle differences and attack
the shortcomings of implementation. In this case, researchers have found that on some

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

versions of Windows, it is possible to recover the prime number of the private RSA key
due to inadequate memory wiping. This allows the victims who haven’t killed the
ransomware process to look for the private RSA key in memory and use it to decrypt all
the affected files.

Another vulnerability was identified in the way the files are deleted if they are
located outside the predefined list of locations. The cleartext files located in the
predefined list of directories were overwritten with random data before they were
deleted. All other files are simply deleted from the file system without the file content
being overwritten. This has allowed users to employ common forensic tools to recover
the deleted cleartext files and partially remediate the impact of ransomware.

It is not always possible to find vulnerabilities in the ransomware and provide
workarounds for victims, but without even looking, one can’t hope to find any. By using
the presented bottom-up approach, the analyst can quickly identify the relevant parts of
the code, dive into large binaries, concentrate on answering the important questions, and
look for implementation vulnerabilities.

Summary
Dealing with ransomware can be a real challenge from a reverse engineering point of
view. The criminals put a lot of effort into making it hard to detect and reverse the
malware in an attempt to get as much money as possible before the malware gets
detected.

Studying and understanding methods and techniques used by attackers help private
users and corporations protect themselves from the ever-growing new malware
families. Wannacry ransomware took the world by surprise and once again proved that
attackers don’t need 0-day vulnerabilities to wreak havoc and that software patches are
still a worldwide problem.

Regular backup of your personal data on a cloud provider and regular software
updates are probably the most effective protections against ransomware.

For Further Reading
The AIDS trojan en.wikipedia.org/wiki/AIDS_(trojan_horse)

Android Simplelocker
ransomware nakedsecurity.sophos.com/2014/06/06/cryptolocker-wannabe-
simplelocker-android/

Bitcoin en.wikipedia.org/wiki/Bitcoin

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://en.wikipedia.org/wiki/AIDS_(trojan_horse)
http://nakedsecurity.sophos.com/2014/06/06/cryptolocker-wannabe-simplelocker-android/
http://en.wikipedia.org/wiki/Bitcoin
https://technet24.ir
https://technet24.ir
https://technet24.ir

EternalBlue https://en.wikipedia.org/wiki/EternalBlue

“Lock Windows Desktop” www.codeproject.com/Articles/7392/Lock-Windows-
Desktop

Symantec Ransomware Video symantec.com/tv/allvideos/details.jsp?
vid=1954285164001

Trojan.Cryptolocker.E www.symantec.com/security_response/writeup.jsp?
docid=2014-050702-0428-99

Wannacry https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

||||||||||||||||||||

||||||||||||||||||||

https://en.wikipedia.org/wiki/EternalBlue
http://www.codeproject.com/Articles/7392/Lock-Windows-Desktop
http://symantec.com/tv/allvideos/details.jsp?vid=1954285164001
http://www.symantec.com/security_response/writeup.jsp?docid=2014-050702-0428-99
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://technet24.ir
https://technet24.ir

CHAPTER 20
ATM Malware

The automated teller machine, or ATM, is a major target for criminals, and the reason is
simple: it’s loaded with cash! Twenty years ago, the challenge for criminals was to
break into a secure ATM vault where the money was kept, but in recent years attackers
find a potentially easier path to money by infecting ATMs with malware. In this chapter,
we take a look at some of the most dangerous ATM malware in recent years and, more
important, techniques that aid in dissecting and identifying indicators of compromise. In
addition, we look at ways to mitigate the risks presented by ATM malware.

In this chapter, we discuss the following topics:
• Automated teller machines (ATMs)
• Extensions for Financial Services (XFS)
• XFS architecture
• XFS manager
• ATM malware
• ATM malware countermeasures

ATM Overview
Automated teller machines have existed for more than 50 years now, and their main
purpose is to dispense cash. However, nowadays these machines can also be used to
pay utility bills, add credit to phones, or even deposit checks. In this chapter, we are
going to be working with a real NCR Personas 5877 ATM (P77), which is a Windows
PC–based self-service ATM. Figure 20-1 shows the external components of the
machine. Some of these components are self-explanatory, but the following deserve
more explanation:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 20-1 External view of the NCR Personas 5877

• Fascia The fascia covers only the upper portion of the ATM and allows access
to the PC hardware. The fascia is opened via the top lock key.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Keylock This keylock protects the lower portion of the ATM and is where the
secure vault (and money) is located.

• Display/touchscreen Even old monitors have touchscreen support to enable
interaction with the ATM.

• Keyboard Also known as the pinpad, the keyboard allows the user to interact
with the ATM.

• Dispenser This is the main ATM component for users making cash withdrawals
and is described in detail later in this chapter.

Next, Figure 20-2 shows the inside of the ATM once the upper and lower portions are
open. The upper portion contains the PC core, which is basically the CPU running the
operating system (OS), along with the peripherals and ports, and the following two
important components:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 20-2 Internal view of the NCR Personas 5877

• On/off switch Used to turn the ATM on and off
• Supervisor/operator panel Used to put the ATM in configuration mode,

normally by technicians who are testing or configuring the machine

The lower portion shows the following components inside the secure vault:

• Purge bin Holds the rejected bills that were not able to be dispensed
• Currency cassettes Hold the cash available in the ATM. Each cassette holds a

different denomination (for example, $20, $50, or $100 bills). Depending on the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

vendor, an ATM can have one or more cassettes.
• Interlock switch This is a sensor that allows the ATM to know when the secure

door is open.

Now that we have covered the main components, how do they interact with each
other? We can understand this by looking at the steps taken during a cash withdrawal
(the ATM components are bolded):

1. The cardholder enters a debit card into the card reader.
2. The cardholder enters his or her personal identification number (PIN) through the

keyboard (pinpad).
2. Both the card data and PIN are handled by the XFS manager (PC core) and sent

to the bank for validation.
4. The bank validates the card and returns the authorization result.
5. If the card is approved, the XFS manager sends notification to the dispenser,

located in the secure vault, to dispense the money.
6. The dispenser interacts with the cassette holding the denomination needed and

starts dispensing cash.
7. The receipt printer is called to provide a transaction receipt to the cardholder.

XFS Overview
The Extensions for Financial Services (XFS) were initially created by the Banking
Solutions Vendor Council (BSVC), a group started by Microsoft back in 1995 and later
adopted in 1998 by the European Committee for Standardization (also known as CEN)
as an international standard.

Initially, the BSVC decided to use Microsoft Windows as the operating system for
XFS, but then adopted and enhanced the Windows Open Service Architecture (WOSA)
with XFS, defining a Windows-based client/server architecture for financial
applications, and hence the name WOSA/XFS. The WOSA/XFS contains specifications
for access to financial peripherals, which includes but is not limited to the printer, card
reader, pinpad, dispenser, and cassettes.

This section provides an overview of WOSA/XFS. For more details, it is
recommended that you read the full specification created by CEN, CWA 13449-1.1

XFS Architecture

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

All major ATM vendors nowadays use Windows as the operating system and therefore
must adhere to the XFS standard defined by CEN. The workflow is shown in the
following steps:

1. The Windows-based application communicates with peripherals via the XFS
manager using a predefined set of app-level APIs (WFS prefix).

2. The XFS manager maps the specified app-level API to the corresponding service
provider’s APIs (WFP prefix).

a. The XFS manager uses the configuration information stored in the registry for
the mapping process.

b. The XFS manager and service provider are vendor-specific implementations.

3. Any results from the peripheral are sent back to the Windows-based application
via the XFS manager’s APIs (WFM prefix).

The XFS architecture is shown in Figure 20-3.

Figure 20-3 XFS architecture

The following example shows the common app-level APIs used during an interaction
between the Windows-based application and the XFS manager:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• WFSStartUp() Connects the Windows-based application with the XFS manager.
• WFSOpen() Establishes a session between the Windows-based application

and the service provider via the XFS manager.
• WFSRegister() Configures messages to receive from the service provider.
• WFSLock() Provides exclusive access to the peripheral.
• WFSExecute() Multiple calls of this function specify different commands,

such as Dispense, Read Card, Print, and so on.
• WFSUnlock() Releases control of the peripheral.
• WFSDeregister() Stops the receiving of messages from the service provider.
• WFSClose() Ends the session.

• WFSCleanUp() Disconnects the application from the XFS manager.

NOTE Every XFS API has synchronous and asynchronous versions that, when called,
work as follows:

Synchronous call The program will be blocked until the function completes the
entire operation. In this case, the application executes in a sequential manner.

Asynchronous call The function returns immediately but will be completed in an
uncertain amount of time.

XFS Manager
Every ATM vendor implements its own XFS manager via its own middleware, always
following the WOSA/XFS standard defined by CEN. Here is a list of the most notable
XFS middleware currently available:

• Diebold: Agilis Power
• NCR: APTRA ActiveXFS
• KAL: Kalignite
• Wincor Nixdorf: Probase (merged with Diebold)

As mentioned in the previous section, the XFS manager is responsible for mapping the
API functions (DLLs starting with WFS) to SPI functions (DLLs starting with WFP) and

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

calling the vendor-specific service providers. To see this process in action, let’s use the
FreeXFS Framework (OpenXFS_V0.0.0.5.rar), which comes with the full
implementation of XFSManager, service provider interfaces (SPIs) of various devices,
and sample application code based on CEN XFS 3.0.2

If we look at the XFSManager implementation via FreeXFS, which is located in the
\Manager\NI_XFSManager.h file, we can clearly see the definition of the supported
WFS and WFM APIs:

NOTE The implementation of these APIs can be found in
\Manager\NI_XFSManager.cpp.

Let’s explore the code in \Samples\WosaXFSTest20100106\WosaXFSTestView.cpp to
fully understand the XFS manager’s operation.

Step 1: WFSStartUp
The first step is to connect the Windows-based app with the XFS manager:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Before anything else, the XFS manager must be loaded in memory; then it is
implemented in a DLL and the associated path is stored in the registry. In this example,
the FindXMLManagerPath() function (duplicated to also show the function
implementation; the same for callout) helps to retrieve this value. Once the DLL path
is identified, the LoadManagerFunction() helps to load it in memory via the
LoadLibrary API. Within the same function, all WFS* and WFM* functions are
supported by the XFS manager and loaded via the GetProcAddress API .

At this point, the XFS manager is loaded in memory and now needs to be connected
with the Windows-based application via the WFSStartUp API , which passes as its
first parameter the range of SPI versions that are expected to be handled by the XFS
manager. If those are not supported by middleware, the call will return an error.

Step 2: WFSOpen
Once the Windows-based application and the XFS manager are synchronized, it’s time
to interact with an ATM peripheral (also known as logical service) to perform any
desired action, such as opening the card reader or dispensing some money. The
interaction with the peripheral is done via its SPI, so we first need to identify all the
logical services available by querying
HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\ in the Windows registry.

It is important to mention that each ATM vendor has its own naming convention; for
example, NCR names its dispenser CurrencyDispenser1, whereas Diebold uses the
name DBD_AdvFuncDisp. These indicators are really helpful when we’re trying to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

identify the target of the ATM malware. Another use of this registry key is to query the
status of the peripheral via the WFSGetInfo API before we start interacting with it.
More details are provided in the section “ATM Malware Analysis,” later in this
chapter.

Once the logical service to interact with is identified, the WFSOpen API (or the
WFSAsyncOpen API, depending on the application’s needs) will receive this value as
the first argument, following our example based on WosaXFSTestView.cpp. That value
is passed via the m_strLocalService variable , shown next:

The remaining parameters passed to the function are self-explanatory and are not
important for the purpose of our analysis.

Now, how does the XFS manager know the SPI DLL to interact with? It also comes
from the registry key \XFS\SERVICE_PROVIDERS\ and is based on the logical
services previously identified. Figure 20-4 shows that the DLL of the pinpad SPI is
NCR_PINSP.DLL. Note that the SPIs are independently implemented by every vendor.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 20-4 Identifying the SPI DLL

Step 3: WFSRegister
Now it’s time to configure the messages to receive from the service provider via the
WFSRegister API. In the following code, we see that the events from SYSTEM, USER,
SERVICE, and EXECUTE are being configured :

Step 4: WFSExecute
Finally, the last main step (we’re skipping some steps not needed for our purposes) is to
request the peripheral (or logical service) to execute an action via the SPI
implementation. Common actions include asking the card reader to read the data from
tracks 1 and 2 on the debit card and asking the dispenser to dispense some money!

Figure 20-5 shows the Ripper3 malware in action (this sample malware,
15632224b7e5ca0ccb0a042daf2adc13, will be used throughout the chapter), calling the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

WFSAsyncExecute API and receiving in its second parameter the action to be executed
(in this case, WFS_CMD_PIN_GET_DATA, to read the information entered at the
pinpad).

Figure 20-5 Interacting with the pinpad

We have gone through all details an XFS-compliant ATM follows when dealing with
daily operations, and we discussed the importance of the XFS manager in coordinating
this effort. In the next section, we look at some techniques for analyzing ATM malware.

ATM Malware Analysis
Now that you understand how the XFS-compliant ATM works from end to end, let’s
look at some useful techniques for dissecting ATM malware based on real threats found
in the wild.

We’ll take a quick overview of the main features of ATM malware so that you
understand what types of threats are seen in the wild, how are they installed in the
ATMs, how the malware interacts with the attackers, and how the malware steals
information or money!

Types of ATM Malware
There are two types of ATM malware: those affecting cardholders and those affecting
banks.

Malware Affecting Cardholders
This type of malware focuses on stealing information from the ATM such as the victims’
full names, debit card numbers, expiration dates, and encrypted PINs. All of this data is
then sold on the black market, where cloned cards are created and unauthorized online
payments are made. From a malware analysis perspective, these threats act like
information stealers—no knowledge about ATMs is necessarily needed during the
analysis. Examples of these kind of threats are PanDeBono and NeaBolsa, found in

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Latin America.4 These threats steal information via a USB device that’s inserted into the
machine and is recognized and validated by the malware running inside.

Even though skimmer devices are related to physical attacks, and are therefore outside
the scope of this chapter, it is worth mentioning them because they affect cardholders.
These devices are physically attached to the ATM in a hidden way so that the victim
cannot see them (see Figure 20-6). Those devices can come either with a camera or as a
fake pinpad or card reader, mainly to capture entered PIN numbers or steal card data.
They are able to send the stolen information in real time to the attackers via Bluetooth,
GSM, or any other wireless communication.

Figure 20-6 Skimmers attached to ATMs

There was a known case in Cancun, Mexico, where the skimmers were installed
inside the ATMs and communicated with the attackers via Bluetooth. The fact that most
of those infected machines were inside hotels and airports suggests that local gangs are
supported by people from “legitimate” businesses. “Going to the cops would be useless
at best, and potentially dangerous; Mexico’s police force is notoriously corrupt, and for
all my source knew the skimmer scammers were paying for their own protection from
the police,” wrote Brian Krebs.5

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Malware Affecting Banks
This type of malware empties the ATMs; therefore, the cardholders are not affected, but
the banks are. This is done either by reusing the XFS middleware installed in the
machines or by creating an XFS-compliant application. Examples of these type of
threats include Ploutus, Alice, SUCEFUL, Ripper, Padpin (later named Tyupkin by
Kaspersky), and GreenDispenser.

Techniques for Installing Malware on ATMs
This section will describe the different techniques that attackers employ to infect ATMs
with malicious software.

Physical and Virtual Attacks
For a physical attack, the attackers open the upper portion of the ATM (refer back to
Figure 20-1) and transfer the malware via the following techniques:

• Attaching a USB or CD-ROM and rebooting the machine. Once this happens, the
BIOS order is changed to boot into the newly attached device and start the
malware installation.

• Removing the hard disk of the ATM, connecting it as slave disk on the attacker’s
laptop, and transferring the malware. Alternatively, the ATM hard disk is
replaced with one from the attacker that is already prepared to work with the
targeted model.

NOTE The Ploutus gang is known to use these two techniques in ATMs across Latin
America.

For a virtual attack, the attackers break into the bank’s network or payment gateway.
Once inside, the goal is to find the network segment where the ATMs are connected and
to locate a vulnerability in order to drop the malware through the network to the teller
machines. This attack is powerful because it can infect any ATM worldwide. This was
the case with the Ripper ATM malware; the attackers infected the machines in Thailand
through the bank’s network and then the mules (the people in charge of receiving the
cash coming out of the machine) flew to that territory to empty the machines within
hours!

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Malware Interacting with the Attackers
Once the malware has been installed inside the ATM, the attackers need to have a way
to interact with it without getting noticed by the cardholders. This means the malware
interface will pop up on the screen only after receiving some sort of activation.

The first known case of interaction (used by Ploutus malware with MD5:
488acf3e6ba215edef77fd900e6eb33b) involved an external keyboard attached to the
ATM. Ploutus performs what is known as “keylogging,” which allows the attackers to
intercept any keystrokes entered, and as soon as it finds the right combination of
keystrokes, it will activate the GUI that allows the attackers to dispense cash on
demand. In the following code listing, Ploutus is checking if any of the F keys were
entered in order to execute a specific command. The F4 key, for example, will hide the
GUI interface.

The second form of interaction is via the pinpad, where the attackers enter a
combination of numbers in order to bring up the malware interface. In order to
accomplish this, the malware needs to use the XFS APIs, as shown earlier in Figure 20-
5, where the command PIN_GET_DATA is reading the information entered.

The last form of interaction is via the ATM’s card reader. Similar to the pinpad
strategy, the malware uses the XFS APIs, but this time to interact with the target device
and read the data on tracks 1 and 2 from the debit card. If the magic number expected by
the attackers is provided, the GUI will be activated. In cases like Ripper, that’s the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

trigger to start emptying the ATM.

How the Information or Money Is Stolen
In cases where the cardholder data is the target, if skimmers are used, these devices
already come with wireless protocols such as GSM that allow the attackers to receive
the stolen information in real time. When malware is used to accomplish this goal, as in
the cases of PanDeBono or NeaBolsa malware, the stolen information is copied into the
attackers’ USB that’s plugged into the ATM.

Regarding cash, all the threats interact with the ATM dispenser (no need for an exploit
or authentication bypass) just by using the XFS APIs, and without any restrictions the
dispenser will start providing money. Refer to the section “ATM Malware
Countermeasures,” later in this chapter, for recommendations of how to mitigate these
risks.

Techniques for Dissecting the Malware
In this section, we talk about how to dissect ATM malware and extract the most
important indicators of compromise (IOCs). The main goals during a malware
investigation should be the following:

1. Confirm the sample is targeting ATMs.
2. Confirm the sample is malicious.
3. Identify how the malware was installed. Normally it is very difficult to know this,

unless the customer affected provides that information.
4. Identify how the malware interacts with the attackers.
5. Identify the purpose of the malware: either targeting the cardholder or the cash

inside the ATM.

All these steps are detailed in this section.

Confirm the Sample Is Targeting ATMs
If your job requires you to perform analysis on ATM malware, the first thing you need to
do is to confirm that the sample provided is actually targeting these machines. One way
to validate this is to check whether the binary in question is importing MSXFS.dll,
which is the DLL that implements the default XFS manager in the teller machine (all the
WFS* and WFM* functions described earlier in the chapter). This is a strong indicator.
Figure 20-7 shows the Import Table from Ripper ATM malware (after UPX has
unpacked the malware), and you can see that MSXFS.dll has been imported. This is the
case with other malware families as well, such as GreenDispenser, Alice, SUCEFUL,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

and Padpin.

Figure 20-7 Ripper ATM malware importing MSXFS.dll

Malware such as Ploutus does not follow the same strategy, so you won’t find the
same indicator. Instead, you should look for references to the XFS middleware. Ploutus
is able to control the APTRA middleware from NCR or the middleware from Kalignite,
which is a multivendor solution. For these cases, you should look for the presence of
libraries such as NCR.APTRA.AXFS and K3A.Platform.dll and verify them
accordingly.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE This approach assumes the malware is not packed or obfuscated. If that is the
case (Ploutus always comes highly obfuscated), the first step would be to deobfuscate
or unpack the sample and then try to find the aforementioned indicators.

Confirm the Sample Is Malicious
Now that we’ve confirmed the sample we’re dealing with is definitely created to work
on an ATM machine, it is important for us to confirm whether it is malicious. Otherwise,
we could be dealing with ATM testing tools that use the same libraries for legitimate
purposes (for example, to perform withdrawals or card readings to confirm the
peripheral works as expected).

One way to verify maliciousness is by looking for logging or custom error messages
in the sample. Sometimes it’s very easy to spot those custom messages. For example, the
latest Ploutus-D variant at the time of this writing had the message “PLOUTUS-MADE-
IN-LATIN-AMERICA-XD,” which clearly lets us know it is malware. Figure 20-8
shows an extract of strings found in the Ripper malware. When you look at the custom
messages here, such as “Dispensing %d items from cash unit” as well as “CLEAN
LOGS” and “NETWORK: DISABLE,” you can see that they highly suggest something
malicious is being done with this sample.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 20-8 Custom error messages in Ripper

Another important verification is related to the code that is trying to dispense cash
(and, even better, if the withdrawal is within a loop attempting to empty the ATM). The
following code listing shows the famous loop from the Ploutus version. It retrieves the
denomination of Cassette 4 ($5, $20, $50, or $100) and then multiplies by the maximum
number of bills allowed by the dispenser (in this scenario, this is 40 for NCR Personas,
which is one of the targets of Ploutus) in order to calculate the total amount to withdraw

. If the number of bills in the cassette is less than 40, it moves to the next cassette and
performs the same actions . Ploutus wants to start with a cassette with more bills
loaded! This process is repeated until no more cash is left in the cassettes.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Identify How the Malware Interacts with the Attackers
This step separates traditional malware analysis from ATM-based analysis. Here, we
focus on the analysis of the XFS APIs to understand the purpose of the malware. The
two main APIs to focus on are WFSOpen and WFSExecute (or their asynchronous
versions).

As explained in previous sections, the WFSOpen API allows us to know the
peripheral the malware is trying to interact with. This will give us a clue as to what the
malware is trying to do. For example, if we see only interactions with the pinpad, then
that is probably the way to interact with the malware.

If you go to the Imports tab in IDA Disassembler and then press X on the API in
question, all the references to that API within the binary will be displayed (see Figure
20-9).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 20-9 Cross-reference feature in IDA

Once you’ve identified the calls to WFSOpen, you just need to look at the content of
the first parameter, which is a string identifying the peripheral to interact with (keep in
mind this name changes depending on the ATM vendor). In Figure 20-10, an example of
the SUCEFUL ATM malware6 is shown interacting with the card reader peripheral of
two vendors: Diebold (known as DBD_MotoCardRdr) and NCR (known as
IDCardUnit1).

Figure 20-10 WFSOpen calls from different vendors

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Once you know the peripheral or logical device the malware is trying to interact with,
it’s time to find out the command to execute it, making sure to correlate the WFSOpen
calls with the WFSExecute calls to distinguish among the operations requested. Once
you identify the WFSExecute calls, you need to focus on the second parameter, which is
a number that indicates the action to be performed. Again, let’s take Ripper as an
example. In the following code listing, the second parameter being pushed is the number
302 (see line .text:004090B8), but what is the purpose of this number?

In order to know the answer, you need to have the headers of the XFS SDK ready (see
Figure 20-11).

Figure 20-11 OpenXFS header files

Every header represents one of the peripherals and is located within a range as
follows:

• 100 - XFSPTR Banking printer definitions
• 200 - XFSIDC Identification card unit definitions
• 300 - XFSCDM Cash dispenser definitions
• 400 - XFSPIN Personal identification number keypad definitions

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• 800 - XFSSIU Sensors and indicators unit definitions
• 900 - XFSVDM Vendor-dependent mode definitions

Since the number in question is 302, let’s have a look at the XFSCDM file definition
within the SDK. We focus on the “CDM Execute Commands” section because
WFSExecute was called (the “CDM Info Commands” section is used when WFSGetInfo
is called). Following is the formula to calculate the target number:

We are able to identify the 302 command in question, WFS_CMD_CDM_DISPENSE ,
which refers to dispensing money.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

There is more useful information in these definition files that can help the reverser to
fully understand the malware logic, such as status messages, error messages, and even
structure definitions .

Now you should be able to dissect the command executed in the next code listing
taken from Ripper malware:

We can see that the command 201 belongs to the XFSIDC definitions file (see
Figure 20-11), and because the WFSGetInfo call is being used, we focus on the “IDC
Info Commands” section this time. Next, we identify that the WFS_INF_IDC_STATUS

 command is being called, basically to know the status of the card reader!

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

For malware such as Ploutus that focuses on controlling the XFS middleware (Agilis,
APTRA, Kalignite, and so on), this approach won’t work. Fortunately, Ploutus likes
.NET. Therefore, once the malware is deobfuscated, full source code is available for
analysis, without any need for reversing the majority of the components (although some
components are implemented in Delphi and require reversing).

ATM Malware Countermeasures
Here is a list of best practices when dealing with ATM malware that are definitely
recommended but not applicable to all attack scenarios:

• An antivirus or Host Intrusion Prevention System (HIPS) is useful if and only if it
is “ATM environment” aware. These products normally won’t be able to detect
malicious behavior in the dispenser, for example.

• Disk encryption helps with offline attacks that transfer the malware to the teller
machine by disconnecting the storage device from the ATM.

• Application whitelisting helps to execute the expected processes only.
• Penetration testing helps to proactively identify issues before hackers do.
• BIOS with password protection should be enabled.
• ATM malware training is useful for understanding how to dissect and detect

specific threats.
• The “ATM Software Security Best Practices Guide” and the “ATM Security

Guidelines” should be followed. See the “For Further Reading” section for more
specifics.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary
In this chapter, we described the different components of an ATM and the role that each
plays while dispensing money. We explored the different types of malware that affect
these teller machines, dissecting their inner workings. Finally we presented
countermeasures to try to mitigate the risk of this threat, which has led to the theft of
millions of dollars from banks worldwide.

For Further Reading
ATM Security
Guidelines https://www.pcisecuritystandards.org/pdfs/PCI_ATM_Security_Guidelines_Info_Supplement.pdf

ATM Software Security Best Practices
Guide https://www.atmia.com/files/Best%20Practices/ATMIA%20Best%20Practices%20v3.pdf

XFS middleware https://en.wikipedia.org/wiki/CEN/XFS

References
1. “CWA 13449 - XFS Interface Specification Release 2.0,” European Committee for

Standardization,
https://www.cen.eu/work/areas/ICT/eBusiness/Pages/CWA13449.aspx.

2. OpenXFS Repository, freexfs, https://code.google.com/archive/p/freexfs/.
3. Daniel Regalado, “RIPPER ATM Malware and the 12 Million Baht Jackpot,”

FireEye, August 26, 2016, https://www.fireeye.com/blog/threat-
research/2016/08/ripper_atm_malwarea.html.

4. Infostealer.PanDeBono, Symantec, June 26, 2014,
https://www.symantec.com/security_response/writeup.jsp?docid=2014-042323-
5548-99&tabid=2; Infostealer.Neabolsa, Symantec, April 23, 2014,
https://www.symantec.com/security_response/writeup.jsp?docid=2014-042214-
1330-99&tabid=2.

5. Brian Krebs, “Tracking a Bluetooth Skimmer Gang in Mexico,” Krebs on Security,
September 15, 2015, https://krebsonsecurity.com/2015/09/tracking-a-bluetooth-
skimmer-gang-in-mexico/.

6. Daniel Regalado, “SUCEFUL: Next Generation ATM Malware,” FireEye,
September 11, 2015, https://www.fireeye.com/blog/threat-
research/2015/09/suceful_next_genera.html.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.pcisecuritystandards.org/pdfs/PCI_ATM_Security_Guidelines_Info_Supplement.pdf
https://www.atmia.com/files/Best%20Practices/ATMIA%20Best%20Practices%20v3.pdf
https://en.wikipedia.org/wiki/CEN/XFS
https://www.cen.eu/work/areas/ICT/eBusiness/Pages/CWA13449.aspx
https://code.google.com/archive/p/freexfs/
https://www.fireeye.com/blog/threat-research/2016/08/ripper_atm_malwarea.html
https://www.symantec.com/security_response/writeup.jsp?docid=2014-042323-5548-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2014-042214-1330-99&tabid=2
https://krebsonsecurity.com/2015/09/tracking-a-bluetooth-skimmer-gang-in-mexico/
https://www.fireeye.com/blog/threat-research/2015/09/suceful_next_genera.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 21
Deception: Next-Generation Honeypots

This chapter covers the topic of deception for defensive purposes. The chapter first
covers deception in conflict from a historical perspective and then moves into the use of
deception for protection of information systems using honeypots. The chapter provides
many hands-on examples and explores the latest in deception and honeypot
technologies.

In this chapter, we cover the following topics:
• Brief history of deception
• Honeypots as a form of deception
• Open source honeypots
• Commercial options

Brief History of Deception
Deception is as old as conflict. In fact, earlier than 800 bce, Sun Tzu, in his book The
Art of War, said, “All warfare is based on deception.”1 A notable example of using
deception in war includes Operation Bodyguard during WWII, when Allied forces used
deception to feint attacks and make the Germans think the attacks were coming from
another direction.2 Several fake airfields and a small army of Hollywood set builders
created inflatable tanks and planes and buildings. All of this effort was successful in
deceiving the Germans and caused them to hold a portion of their forces in reserve on
D-Day.

As far as using deception to protect information systems, Fred Cohen is considered by
many to be the grandfather of deception and derivative concepts such as honeypots.
Cohen is also known as the person who first published the term computer virus, in
1984,3 by citing Len Adleman, who coined the term. Later, Cohen wrote the seminal
work, “A Note on the Role of Deception in Information Protection,” in 1998.4 Although
Cohen gave credit to others before him, such as Bill Cheswick and researchers at
AT&T, it was Cohen and his associates who created the Deception Toolkit, which
served as one of the first real honeypots.5

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

If Fred Cohen is the grandfather of modern deception technologies and honeypots, then
Lance Spitzner should be considered the father of those technologies. Spitzner, in 1999,
with little more than a computer connected to the Internet from his spare bedroom,6
inspired a generation of enthusiasts and founded the honeynet.org group,7 which
continues to contribute to the field of deception technologies to this day. The
honeynet.org group defined and built many levels and types of honeypots, many of which
were the precursors of what we have today. We stand on the shoulders of these giants as
we present some of the latest technologies in this chapter.

Honeypots as a Form of Deception
A honeypot may be simply defined as a system that has no legitimate purpose other than
to be attacked and thereby give alerts of such activity. As has already been discussed,
honeypots have been used for deception for many years. One of the problems with early
honeypot technologies was the lack of the ability to scale. It often took an experienced
security expert to deploy and monitor the technology, which was a full-time job in some
environments, even just to monitor a few honeypots. In today’s corporate environments,
the older honeypot technology is simply too labor intensive to deploy effectively.
However, what was old is new again! With the advent of greater virtual technologies,
container technologies such as Docker, and analytic tools such as the Elasticsearch,
Logstash, Kibana (ELK) stack, what was once a full-time challenge has turned into a
valuable asset of any organization’s cyberdefense, which may be managed part time. As
we will demonstrate in this chapter, modern honeypots are easy to deploy and manage,
at scale. Even industry analysts have noted that modern deception technologies should
be deployed in order to supplement the other enterprise security technologies.8
Honeypot technology will not replace other layers of technology, but once an attacker is
inside a network, it may be your best shot at catching them.

The main reason to deploy honeypots as a form of deception is to delay, disrupt, and
distract the attacker in order to detect and stop them. The key attribute of honeypot
technology is its low false-positive nature. By the very definition we used, honeypots
should not be touched by anyone but an attacker. Therefore, when a connection is made
to a honeypot, there is either a misconfigured server that needs attention, a curious user
who needs attention, or an attacker who needs attention. There are no other options;
therefore, honeypot technology is about as false-positive proof as you can get. In today’s
high-false-positive environment, the ability to deploy a low or no false-positive
technology should get your attention.

We’ll take a closer look at the following types of honeypot technologies:

• High-interaction honeypots

||||||||||||||||||||

||||||||||||||||||||

http://honeynet.org
http://honeynet.org
https://technet24.ir
https://technet24.ir

• Low-interaction honeypots
• Medium-interaction honeypots
• Honeyclients
• Honeytokens

High-Interaction Honeypots
High-interaction honeypots are most often real systems that are instrumented to monitor
and catch an attacker in a near real-time manner. The problem, of course, with high-
interaction honeypots is that real systems may be rooted and then used by the attacker to
further their attack on the hosting network or other networks. Therefore, high-interaction
honeypots are risky and often avoided.

Low-Interaction Honeypots
Low-interaction honeypots are at the other end of the spectrum; they are simulated
services that run in some sort of emulated environment, whereby the service is
simulating realistic responses. However, there is often a limit to that simulation. For
example, the commands of the Telnet service may be emulated using Python or another
scripting language, but not all of the commands work. If an attacker attempts to
download a file with wget, for example, perhaps the command appears to work but the
file is not provided to the attacker; instead, it is provided to the defender for further
analysis. There are other practical limits as well in that it might not be feasible to
emulate all the commands of Telnet. Therefore, if an attacker tries one of those
commands and it fails, the deception could be over. We will take a look at some popular
low-interaction honeypots in the coming sections and labs.

Medium-Interaction Honeypots
Medium-interaction honeypots were purposely listed after the other two, as they are a
newer concept of deeply emulating services. This includes fully reproducing complex
operating system processes, such as the SMB network protocol, to a degree that an
attacker can run real exploits against the seemingly vulnerable service and in some
cases even return a shell. This is a marked improvement over low-interaction
honeypots, which would normally fail on those types of attacks. Some medium-
interaction honeypots actually proxy the commands to the real operating system to
achieve this level of deception.9,10 Another form of medium-interaction honeypot would
be a canary service, running on a real system, whose purpose is to alert the defender to
attacker behavior.

Honeyclients

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Honeyclients are the other side of the honeypot coin. Whereas honeypots are generally
services, soliciting a connection and request from an attacker, honeyclients are client
applications, seeking to make connections to potentially compromised systems and
extract binaries and potential malware for the purpose of analysis and defensive use of
that knowledge elsewhere in the enterprise. There are web-based honeyclients and other
forms of honeyclients available as well.11

Honeytokens
Honeytokens are any form of bait that falls outside the traditional server/client model. A
common form of honeytokens is a file that contains fake data that is attractive to the
attacker. When used by the attacker, this file alerts the defender to their presence. For
example, imagine a file called passwords.txt that sits in the root directory of a user on a
honeypot system. The file contains fake accounts and fake passwords that do not exist.
However, the attacker does not know that when they try to use those accounts, and an
alert is fired off in the enterprise’s Security Information Event Management (SIEM)
system, notifying the defender to the attack. A great open source resource for generating
and tracking honeytokens is canarytokens.org.12 Another great open source project
providing honeytokens to be deployed in a Linux environment is honeybits.13

Deployment Considerations
When you’re deploying honeypots, a few things should be considered. First, the
honeypot should look as real as possible and thus attractive to an attacker. The level of
verisimilitude—the appearance of being real—will make the difference between
catching an attacker and wasting your time, or worse.14 After all, if an attacker
discovers you are running a honeypot, don’t expect them to be kind. At best, they will
simply leave; at worst, they may start deleting things—and not only on your honeypot.
Therefore, great care should be given to the realism of the honeypot, particularly if it’s
placed in a production environment. For example, if the honeypot is supposed to be a
Linux system, then don’t run Windows services, and vice versa. Further, if the attacker
gains access to the system, leave them something real to find, such as honeytokens or
other realistic user-level documents and configurations.

Second, where you place your honeypot will make a difference. When considering an
Internet-accessible honeypot, you may ask yourself whether SCADA (supervisory
control and data acquisition) services would really be hosted in Amazon AWS IP space.
When you’re considering an internal honeypot, the configuration and services running
should blend into the environment where you place the honeypot. If the entire enterprise
is running Windows, except for one host, what would you suspect as an attacker? Also,
if there are user VLANs and server VLANs, then host-based honeypots, with few, if any,

||||||||||||||||||||

||||||||||||||||||||

http://canarytokens.org
https://technet24.ir
https://technet24.ir

services, should be found in the user VLAN and server-type configurations with
multiple but realistic services should be found in the server VLAN.

However, for the security researcher, there is another alternative. When using
honeypots in a nonproduction environment, for the purpose of research, you may be
more liberal in spreading your net (or honeynet), so to speak. By running one system on
the cloud with multiple ports open (ports that don’t even make sense together), you may
certainly deter a sophisticated attacker, but the latest variant of a worm will happily
connect and donate a sample binary specimen for you to analyze. You see, it all depends
on your purpose in establishing a honeypot in the first place.

Setting Up a Virtual Machine
You may decide to install your honeypot on an actual full operating system, but you will
likely want to benefit from the protections afforded by a virtual machine, in terms of
snapshots, significant isolation from the host, and virtual network settings. In this
chapter we use 64-bit Kali Linux 2017.1, running in a virtual machine, to take advantage
of Docker. However, you may also decide to run your honeypots within the cloud, on
Amazon AWS, Digital Ocean, or a similar platform.

NOTE See the “For Further Reading” section for a reference to setting up Ubuntu
16.04 on Amazon AWS, but user beware: do not violate any user agreements of Amazon
or your hosting service. You have been warned.

Open Source Honeypots
In this section, we demonstrate several open source honeypots.

Lab 21-1: Dionaea
In this lab, we investigate the Dionaea honeypot, a lightweight honeypot that emulates
several services.15

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE The labs in this chapter require 64-bit Linux, as Docker does not support 32-
bit operating systems. We use 64-bit Kali 2017.1, if you want to follow along.

First, set up a folder to transfer files off the Docker:

Pull down and run the Dionaea Docker image:

Now, from the new shell of the container, let’s make some changes and enable
logging:

Next, let’s enable stream capture of sessions in the dionaea.cfg file:

Now, enable the processors:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Now, let’s launch it:

Open another terminal session to Kali and, from that new shell, attack the honeypot
with Metasploit:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Notice that the exploit from Metasploit failed. However, that was expected since we
are running a low-interaction honeypot. The payload was transmitted and captured,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

though, which was the point of this lab.
Now, from that second Kali shell, connect to your honeypot with FTP, as shown next.

If you have a new install of Kali, you will have to install FTP first.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Now, let’s look at the logs. From the honeypot shell, press ctrl-c to stop the honeypot
and then view the logs as follows:

Binaries may be found at

and streams of session data may be found at

NOTE Because our honeypot is running in a Docker, the files are not persistent.
Therefore, if you want to further inspect a file, you need to move it to the shared folder
we set up. From within the Docker container, use tar to copy files to the /data folder,
which maps to our working directory on Kali, as follows:

Lab 21-2: ConPot
In this lab, we investigate the ConPot honeypot, which emulates an ICS/SCADA
device.16

Again, make a directory, this time to hold the logs (another common use case):

Now pull and run the ConPot honeypot:

Now, from another Linux or Mac shell, run snmpwalk against the host:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Open a web page and view the web interface, shown next. Be sure to click Refresh a
few times to see the changes.

NOTE The system name and other fingerprint items may be adjusted in the templates
directory of the source files. It is strongly advised that you change these; otherwise, you
will not have a very active ConPot.

Logs may be found in the shared folder:

Lab 21-3: Cowrie
In this lab, we pull and use the Cowrie honeypot, which, as described by the author, is a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

medium-interaction honeypot,17 capable of emulating SSH and Telnet and, most
importantly, capturing each command. It is also able to replay the key sequences for an
entertaining view of hacker activity.

Clone the honeypot GitHub repository, and then configure, build, and run the
honeypot:

Due to the fact that this particular Docker image sets the username as “cowrie” and
because we don’t want to set up a shared folder that’s world writable (so that users can
write to logs), we will use the Docker volume functionality this time. Set up a Docker
volume, as follows:

Now, confirm creation of the volume and check its location (to be used later):

Build the Docker image and run it:

As you can see here, the ./run.sh script runs the honeypot on ports 2222 (SSH) and
2223 (Telnet). You may choose to run these on their normal ports, 22 and 23, but you
will need to move any real services running there. For example, to change SSH to
another port, edit /etc/ssh/sshd_config, change the port setting, and issue the following

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

command to restart the service:

From another Linux or Mac shell, interact with the honeypot. You may log in using
root and any password besides root or 123456:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Notice that the system only appears to download a file (it is not really there, the file size
is zero). Press ctrl-c on the Docker instance to stop the container.

Now, one of the neat things about Cowrie is the ability to replay attacks in the same
time sequence as the hacker. Using the preceding volume location, pull down the
Cowrie playlog script and run it against the tty logs:

Now that’s cool: we see exactly what has been typed or run by an automated bot in
real time. The playlog script also has options to slow down or speed up the playback.

Lab 21-4: T-Pot
In this lab, we pull it all together and download and install the T-Pot honeypot, which is
an automated install of several other honeypots, including the ones we’ve used in

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

previous labs. Further, T-Pot includes a user interface that’s built on an Elasticsearch,
Logstash, and Kibana (ELK) stack.18 The version of T-Pot tested in this lab may be
downloaded from the book’s website. The latest version may be downloaded from the
T-Pot GitHub (see the “For Further Reading” section).

The minimum system requirements of the T-Pot honeypot are 4GB of RAM and 64GB
of hard drive space for the standard honeypot (it may run with less, but these are the
posted minimums). The easiest option to run the T-Pot honeypot is to download the ISO
image or build your own and then mount it to a virtual CD in VMware or VirtualBox and
launch the machine. The ISO is a 64-bit Ubuntu build, as shown next. Again, be sure to
establish the minimum settings just given. For limited testing, you can get by with a
smaller (5GB) hard drive.

Press ENTER to select the default installer (T-Pot 17.10). You will be prompted to
select your language and keyboard. The installation will then begin and will take 20–30
minutes, depending on your system resources. Along the way, you will also be asked
some configuration questions, such as type of honeypot (we selected Standard for this
lab), password for the tsec user account, and a second username and password for the
web interface (do not lose that). When finished, you will be prompted to log in. Use the
tsec account and first password you supplied. On the login screen, you will see the IP of
the honeypot and web URL, as shown next. Use the second user account you established
and password for the web interface.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

From another Linux or Mac system, scan the IP with Nmap. Next, open the web
interface, using the preceding IP (https://IP:64297), and select the T-Pot dashboard. You
will need to place your honeypot on a public Internet connection and/or scan it to see
some activity in the dashboards. However, the following screenshot shows the potential
of this tool.

NOTE The following two images were used with permission of the developer of the
latest version of T-Pot and may have changed in format or functionality by the time of
this book’s publication.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Scroll down to see further details.

The web interface has several tools, including an Elasticsearch head (starting point
for searches), shown here.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Another tool is the SpiderFoot search page, which allows you to find out information
about attackers.

Also, the web interface includes a Docker container UI, called Portainer, that allows
you to control the Docker containers (for example, Dionaea, shown here).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

You may also interact by shell with each container, as shown next.

Also, a Netdata page shows vital server information, which seemingly scrolls down
endlessly.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Finally, if needed, you have full access to the web console via Wetty, shown next. For
nonlocal access, you will need to upload your SSH keys.

All data is stored in the /data folder, which is accessible from the host.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

NOTE To run this honeypot on a cloud-based Ubuntu 16.04 system, simply run the
following commands. You will also need to open TCP ports 0–64000 to the public and
64001 and above to your IP (see the T-Pot website link at end of this chapter if you want
to be more selective in what ports you expose).

Commercial Alternative: TrapX
When it comes to commercial solutions, you have several to choose from, including
these:

• TrapX
• Attivo
• Illusive Networks
• Cymmetria

Each one has its merits and deserves a trial. However, in this chapter, we highlight only
one: TrapX DeceptionGrid. TrapX was highlighted in the last edition of this book and
was impressive then. Yet it has improved greatly since that time.

When logging into TrapX, you will be presented with a dashboard displaying various
forms of data, including inbound and outbound threats, top-10 events, threat statistics,
and the health status of workstation, server, and network decoy traps.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

When displaying events using the Event Analysis screen, shown next, you may filter
events (for example, you might filter on infections).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In order to inspect an event, simply double-click it to see all recorded actions in a kill
chain view, as shown here.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Notice how the attacker started the PSEXEC service and created a file (file.exe). You
may view the dynamic analysis of that file in a sandbox report that includes behavior,
network activity, processes, artifacts, registry key activity, and file-system activity.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Further, as shown next, you may view a static and reputation analysis of that file.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Where things really get interesting is when TrapX is used to emulate SMB commands
and allow an attacker to exploit a decoy system, all while TrapX monitors and controls
the impact of those commands.

Beyond the classical decoys of Linux and Windows systems, TrapX is able to emulate
a wide array of devices, such as Juniper and Cisco devices; various medical, Internet of
Things (IOT), and SCADA devices; and financial services like Swift and ATM. For this
lab, we enable a Cisco switch, as shown here, but notice the other services available.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

When running the Cisco decoy, the attacker may interact with the Cisco command-line
interface (CLI) over SSH/Telnet. Further, the decoy sends Cisco Discovery Protocol
(CDP) packets that may attract an attacker and divert them into interacting with the
realistic but fake web GUI, shown next. Again, all actions taken on this fake GUI are
logged and the Security Operations Center (SOC) analyst is alerted.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Also, TrapX can interface with Cisco Identity Services Engine (ISE) and ForeScout to
use Network Access Control (NAC) and divert suspicious connections to an isolated
deception network for further analysis. See the “For Further Reading” section at the end
of this chapter for a link to a video of TrapX diverting Wannacry to an isolated network.

TrapX allows for deception (honey) tokens. For example, a fake network drive may
be established on a host (in this case, fileserver004), as shown next. Notice how the
fake network drive (R:\) is not visible to the user via the desktop; instead, only the
attacker can see it when using command-line tools, which is how attackers normally
operate. Also, notice how fake files are presented on the fake network drive.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

All of the attacker’s actions are tracked back at the SOC (the fake share mapped to
C:\data).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

TrapX has web-based deception tokens as well, providing three levels of deception:

• Browser history Fake URLs that look interesting to an attacker
• Browser credentials Fake URL with a fake saved username and password
• Browser bookmark Fake browser bookmark links to a decoy web application

All this information is configurable; for example, the browser credentials are shown
here.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This browser data may lure an attacker to a decoy web application, as shown next.

Back in the SOC, the analyst gets an alert, as shown next, because no one is supposed
to connect to this site.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

One of the most advanced features of TrapX is the ability to safely proxy commands to
a full operating system, providing the highest levels of emulation possible. TrapX calls
this Full Operating System (FOS) decoy. For example, an attacker might gain a foothold
using a phishing e-mail and then find deliberately placed deception token information,
pointing to a file share running Remote Desktop Protocol (RDP). The attacker might
even run Mimikatz, as shown next, thinking they are obtaining real credentials.

As shown next, the attacker might then use those stolen credentials to establish an
RDP session with that full but fake system, whose only purpose is to be touched and
provide alerts to the SOC analyst, which matches our earlier definition of a honeypot.

The attacker might not know this is a honeypot because it is a full operating system
and might think they have full access to the system. However, they are under the
watchful eye of the SOC team, as shown here.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

As you can see, the commercial offerings are quite substantial. It is hoped that you are
now better informed as to your options and can select a honeypot technology (open
source or commercial) that suits your needs.

Summary
In this chapter, we discussed the subject of deception, as it relates to defending a
network, using honeypot technologies. We started with a discussion of the history of
deception and honeypots in general. Next, we moved to a discussion of modern
honeypots, in terms of types and deployment considerations. Then, we worked through a
series of labs, using the latest open source honeypot tools. Finally, we took a look at a
commercial solution, TrapX, to see an example of what vendors are bringing to the
deception battle.

For Further Reading
Attivo Networks https://attivonetworks.com/

Awesome list of honeypot resources https://github.com/paralax/awesome-honeypots

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://attivonetworks.com/
https://github.com/paralax/awesome-honeypots
https://technet24.ir
https://technet24.ir
https://technet24.ir

Cymmetria https://cymmetria.com/product/

Good article on controlling and killing Docker
containers https://medium.com/@lherrera/life-and-death-of-a-container-
146dfc62f808

Good place to deposit malware samples for analysis https://malwr.com/submission/

Good tutorial on manually deploying Cowrie and Dionaea
honeypots http://executemalware.com/?p=302

Illusive Networks https://illusivenetworks.com/

Installing Dionaea on EC2 in 40
minutes https://tazdrumm3r.wordpress.com/2012/08/26/dionaea-honeypot-on-ec2-in-
40-minutes/

Installing Docker on Kali 2017.1, 64
bit https://gist.github.com/nikallass/e5124756d0e2bdcf8981827f3ed40bcc

Installing Ubuntu 16.04 https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-
server#0

Installing Ubuntu 16.04 on Amazon
AWS http://mobisoftinfotech.com/resources/mguide/launch-aws-ec2-server-set-
ubuntu-16-04/

Modern honey network https://github.com/threatstream/mhn

T-Pot Honeypot 17.10 https://github.com/dtag-dev-sec/tpotce/releases

TrapX https://trapx.com

Ubuntu 16.04 64-bit ISO http://releases.ubuntu.com/xenial/ubuntu-16.04.3-server-
amd64.iso

Video of TrapX trapping Wannacry in a honeypot https://vimeo.com/218929440

References
1. “Sun Tzu,” Wikiquote, https://en.wikiquote.org/wiki/Sun_Tzu. [Accessed: 26-

Aug-2017].
2. “Operation Bodyguard,” Wikipedia, June 5, 2017.
3. F. Cohen, “Computer Viruses – Theory and Experiments,” IFIPsec 84, 1984.
4. F. Cohen, “A Note on the Role of Deception in Information Protection,” Computers

||||||||||||||||||||

||||||||||||||||||||

https://cymmetria.com/product/
https://medium.com/@lherrera/life-and-death-of-a-container-146dfc62f808
https://malwr.com/submission/
http://executemalware.com/?p=302
https://illusivenetworks.com/
https://tazdrumm3r.wordpress.com/2012/08/26/dionaea-honeypot-on-ec2-in-40-minutes/
https://gist.github.com/nikallass/e5124756d0e2bdcf8981827f3ed40bcc
https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-server#0
http://mobisoftinfotech.com/resources/mguide/launch-aws-ec2-server-set-ubuntu-16-04/
https://github.com/threatstream/mhn
https://github.com/dtag-dev-sec/tpotce/releases
https://trapx.com
http://releases.ubuntu.com/xenial/ubuntu-16.04.3-server-amd64.iso
https://vimeo.com/218929440
https://en.wikiquote.org/wiki/Sun_Tzu
https://technet24.ir
https://technet24.ir

& Security, vol. 17, no. 6, pp. 483–506, 1998.
5. F. Cohen, “Deception Toolkit,” http://all.net/dtk/.
6. K. Johnson, “Hackers Caught in Security ‘Honeypot,’” ZDNet, December 19,

2000, www.zdnet.com/article/hackers-caught-in-security-honeypot/. [Accessed:
26-Aug-2017].

7. “Blogs | The Honeynet Project,” http://honeynet.org/. [Accessed: 26-Aug-2017].
8. L. Pingree, “Deception Related Technology – It’s Not Just a ‘Nice to Have’, It’s a

New Strategy of Defense,” Lawrence Pingree, September 28, 2016.
9. D. Katz, “MongoDB-HoneyProxy: A Honeypot Proxy for mongodb. When Run,

This Will Proxy and Log All Traffic to a Dummy mongodb Server,” 2017,
https://github.com/Plazmaz/MongoDB-HoneyProxy.

10. T. Nicholson, “honssh: HonSSH Is Designed to Log All SSH Communications
Between a Client and Server,” 2017, https://github.com/tnich/honssh.

11. “Client Honeypot,” Wikipedia, August 9, 2017.
12. “Canarytokens.org – Quick, Free, Detection for the Masses,”

http://blog.thinkst.com/2015/09/canarytokensorg-quick-free-detection.html.
13. A. Karimi, Honeybits: A Simple Tool Designed to Enhance the Effectiveness of

Your Traps by Spreading Breadcrumbs & Honeytokens Across Your
Production Servers and Workstations to Lure the Attacker Toward, 2017,
https://github.com/0x4D31/honeybits.

14. “Verisimilitude | Define Verisimilitude at Dictionary.com,” Dictionary.com,
www.dictionary.com/browse/verisimilitude. [Accessed: 19-Aug-2017].

15. “Home of the Dionaea Honeypot,” GitHub, August 9, 2017,
https://github.com/DinoTools/dionaea. [Accessed: 19-Aug-2017]

16. “Conpot: ICS/SCADA Honeypot,” GitHub, August 18, 2017,
https://github.com/mushorg/conpot. [Accessed: 19-Aug-2017].

17. M. Oosterhof, “docker-cowrie: Docker Cowrie Honeypot Image,” GitHub, July
19, 2017, https://github.com/micheloosterhof/docker-cowrie. [Accessed: 19-Aug-
2017].

18. “DTAG Community Honeypot Project,” GitHub, http://dtag-dev-sec.github.io/.
[Accessed: 19-Aug-2017].

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://all.net/dtk/
http://www.zdnet.com/article/hackers-caught-in-security-honeypot/
http://honeynet.org/
https://github.com/Plazmaz/MongoDB-HoneyProxy
https://github.com/tnich/honssh
http://Canarytokens.org
http://blog.thinkst.com/2015/09/canarytokensorg-quick-free-detection.html
https://github.com/0x4D31/honeybits
http://Dictionary.com
http://Dictionary.com
http://www.dictionary.com/browse/verisimilitude
https://github.com/DinoTools/dionaea
https://github.com/mushorg/conpot
https://github.com/micheloosterhof/docker-cowrie
http://dtag-dev-sec.github.io/
https://technet24.ir
https://technet24.ir
https://technet24.ir

PART V

Internet of Things

 Chapter 22 Internet of Things to Be Hacked
 Chapter 23 Dissecting Embedded Devices
 Chapter 24 Exploiting Embedded Devices
 Chapter 25 Fighting IoT Malware

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 22
Internet of Things to Be Hacked

This chapter covers the topic of Internet-connected devices, called the Internet of
Things (IoT). The phrase “Internet of Things” was first coined in a 1999 presentation at
MIT by Kevin Ashton.1 In 2008, the number of connected devices surpassed the number
of humans on the planet at 8 billion,2 so the security of these devices is becoming
increasingly important. The pace at which IoT devices are connected is staggering.
Cisco expects the number of IoT devices to exceed 50 billion by 2020.3 Think about that
for a moment: that is more than 8 connected devices for each human on the planet by
2020. With connected devices controlling an increasing amount of our lives and even
acting on our behalves, it is crucial to understand the security risks these devices
impose on their unsuspecting users, if misconfigured, poorly designed, or just connected
to the Internet with default credentials.

In this chapter, we cover the following topics:
• Internet of Things (IoT)
• Shodan IoT search engine
• IoT worms: it was a matter of time

Internet of Things (IoT)
The Internet of Things may very well become the Internet of things to be hacked if we
are not careful.4 In fact, as we discuss in this chapter, we are already too late and this
statement is well on its way to becoming a reality. What is really scary is that users
often trade convenience over security and are currently not as concerned about security
as we security professionals would prefer.5

Types of Connected Things
There are various types of connected things: some are of large form factors, such as
robotic machines in factories, and others are very small, such as implanted medical
devices. The smaller devices suffer from limitations that affect security, such as limited

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

memory, processing capacity, and power requirements. Power sources include batteries,
solar, radio frequency (RF), and networks.6 The scarcity of power, particularly in
remote small devices, is a direct threat to security controls such as encryption, which
might be deemed too expensive, power-wise, and therefore be left out of the design
altogether.

The list of connected things is too long to provide here, but to get you thinking of the
various potential security issues, the following short list is provided7:

• Smart things Smart homes, appliances, offices, buildings, cities, grids, and so
on

• Wearable items Devices for the monitoring of movement, such as fitness and
biomedical wearables (for example, smart devices with touch payment and
health-monitoring options)

• Transportation and logistics RFID toll sensors, tracking of shipments, and cold
chain validation for produce and medical fluids (such as blood and medicine)

• Automotive Manufacturing, sensors on cars, telemetry, and autonomous driving
• Manufacturing RFID supply chain tracking, robotic assembly, and part

authenticity
• Medical and healthcare Health tracking, monitoring, and delivery of drugs
• Aviation RFID part tracking (authenticity), UAV control, and package delivery
• Telecommunications Connecting smart devices with GSM, NFC, GPS, and

Bluetooth
• Independent living Telemedicine, emergency response, and geo-fencing
• Agriculture and breeding Livestock management, veterinarian health tracking,

food supply tracking and cold chaining, and crop rotation and soil sensors
• Energy industry Power generation, storage, delivery, management, and payment

Wireless Protocols
Most connected devices have some form of wireless communication. The wireless
protocols include the following:

Cellular Cellular networks, including GSM, GPRS, 3G, and 4G, are used for long-
range communications.8 This form of communication is helpful when great distances
exist between nodes, such as connected buildings, automobiles, and smartphones. At the
time of this writing, this form of communication remains the most secure of the
alternatives and is difficult to attack directly, but it may be jammed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wi-Fi The venerable IEEE 802.11 protocol has been in place for decades and is well
known and understood. Of course, there are many security issues with Wi-Fi that are
also well known. This form of communication has become the de facto standard for
mid-range communications of connected devices.9

Zigbee The IEEE 802.15.4 protocol is a popular standard for short-to-medium-range
communications, normally up to 10 meters and in some conditions up to 100 meters. The
protocol is very useful in applications with low power requirements. The protocol
allows for a mesh network, enabling intermediate nodes to relay messages to distant
nodes.10 Zigbee operates in the 2.4 GHz range, which competes with Wi-Fi and
Bluetooth.

Z-Wave The Z-Wave protocol is also a popular standard used in the short-to-medium
range, but offers a longer range due to the lower frequency (908.42 MHz in the US).
Due to the separate frequency range, it does not compete with other common radios such
as Wi-Fi and Bluetooth and experiences less interference.

Bluetooth (LE) The ubiquitous Bluetooth protocol has undergone a facelift of late and
has been reborn as Bluetooth Low Energy (LE), emerging as a viable alternative.11

Although it is backward compatible with Bluetooth, the protocol is considered “smart”
due to its ability to save power.12 As with Zigbee and Z-Wave, Bluetooth and Bluetooth
LE cannot communicate directly with the Internet; they must be relayed through a
gateway device, such as a smartphone or smart bridge/controller.

6LoWPAN The Internet Protocol version 6 (IPv6) over low-power Wireless Personal
Area Networks (6LoWPAN) is emerging as a valuable method to deliver IPv6 packets
over 802.15.4 (Zigbee) networks. Because it can ride over Zigbee and other forms of
physical networks, it competes with Zigbee, but some would say it completes Zigbee
because it allows for connection with other IP-connected devices.13

Communication Protocols
IoT has several communication protocols—far too many to list—but here are a few of
the commonly used ones14:

• Message Queuing Telemetry Transport (MQTT)
• Extensible Messaging and Presence Protocol (XMPP)
• Data Distribution Service for Real-Time Systems (DDS)
• Advanced Message Queuing Protocol (AMQP)

Security Concerns

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The traditional view of confidentiality, integrity, and availability applies to security
devices, but often not in the same way. When it comes to traditional network devices, a
premium is normally placed on confidentiality, then integrity, and then availability.
However, when it comes to connected devices, the order is often reversed, with a
premium being placed on availability, then integrity, and then confidentiality. This
paradigm is easy to understand when we consider an embedded medical device that is
connected via Bluetooth to the user’s phone and thereby the Internet. The primary
concern is availability, then integrity, and then confidentiality. Even though we are
talking about sensitive medical information, there is no need to be concerned with
confidentiality if the device can’t be reached or trusted.

There are, however, some additional security concerns:

• Vulnerabilities may be difficult, if not impossible, to patch.
• Small form factors have limited resources and power constraints, often preventing

security controls such as encryption.
• Lack of a user interface makes the device “out of sight, out of mind.” It’s often

online for years with little to no thought on the owner’s part.
• Protocols such as MQTT have limitations, including no encryption, often no

authentication, and cumbersome security configuration, as you will see later in
this chapter.

Shodan IoT Search Engine
The Shodan search engine is focused on Internet-connected devices15 and is slowly
becoming known as the Internet of Things (IoT). It is important to realize that this is not
your father’s Google. Shodan searches for banners, not web pages. In particular, Shodan
scans the Internet looking for banners it recognizes and then indexes that data. You can
submit your own banner fingerprints and IPs for scanning, but that requires a paid
license.

Web Interface
If you want to lose an afternoon, or even weekend, simply go to https://images.shodan.io
(requires $49/year membership). Perhaps you will find a large toddler, napping, as
shown next. (That’s a joke; this is obviously a tired adult.)

||||||||||||||||||||

||||||||||||||||||||

https://images.shodan.io
https://technet24.ir
https://technet24.ir

On a more serious note, with a little more searching, using the search string
“authentication disabled” and filtering on VNC, you’ll receive more interesting results
(notice the “Motor Stop” button).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

If you’re interested in industrial control systems (ICS) and are looking for uncommon
services, you can use the search string “category:ics -http -html -ssh -ident country:us,”
which yields the following view.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

From this view, we can tell there are more than 200,000 ICS services running besides
HTTP, HTML, SSH, and IDENT (which are common services). Further, we can tell the
most common cities, top services, and top organizations hosting these ICS services. Of
course, we would need to do further filtering and rule out honeypots—but more on that
later.

If we wanted to show this data in a report format, we could generate a free report, as
shown here.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Shodan Command-Line Interface
For those who prefer the command line, Shodan does not disappoint. It offers a
powerful command-line tool, with full functionality.

NOTE The labs in this chapter were performed on Kali Linux 2017 (32 bit), but
should work on other versions of Linux. Also, an API key is required from Shodan,
which you can get for free by registering an account there.

Lab 22-1: Using the Shodan Command Line
In this lab, we will explore the Shodan command line. Install the toolset using
easy_install, like so:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Then, initialize the API key:

Next, test for credits available in your account:

Finally, run a scan to find VNC services (RFB), showing IP, port, org, and hostnames:

One feature of the command-line tool is the ability to check the honeyscore, a score
that tests whether a site is a honeypot using heuristics developed by Shodan:

Shodan API
Others may prefer a Python interface to the Shodan data, and, of course, you can use
that, too. The Shodan Python library comes with the Shodan command-line tools, but the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

library may be installed separately, as well, using pip.

Lab 22-2: Testing the Shodan API
In this lab, we test out the Shodan API. You need an API key; a free one will do for this
test case because we are not using any filters. We will build a Python script to search
for MQTT services that include the word alarm in the banner. This code and all code in
this chapter can be found on the book’s download site and GitHub repository.

Next, we run the MQTT search and observe the results:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lab 22-3: Playing with MQTT
In the previous lab, the search string “mqtt alarm” was supplied to Shodan to identify IP
addresses running MQTT with an alarm listening. In this lab, we scan one of the
resulting IPs for additional information. The following code was adapted from an
example by Victor Pasknel.16

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This Python program is simple: after loading the mqtt.client library, the program defines
a callback for both the initial connection (print the connection message and subscribe
to all topics on the server) and when a message is received (print the message). Next,
the client is initialized and the callbacks are registered . Finally, the client is
connected (be sure to change the masked IP on this line) and sent into a loop .

NOTE No authentication is involved here (unfortunately), so no kittens were harmed
in the filming of this movie!

Next, we run the MQTT scanner:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The output will be analyzed in the next section.

Implications of This Unauthenticated Access to MQTT
Much to our surprise, the output of the MQTT scanner shows the home not only has
alarm information (Disarmed) but garage status as well. Also, through the magic of the
creepy OwnTracks app running on the user’s phone, we know the owner is not home and
is on the move, because every few seconds new LAT/LONG data is provided. That’s
like having a police scanner telling you how long until the owner is home. Wow, now
that is scary! As if that weren’t bad enough, some home automation systems allow for
writing, not just reading.17 Writing is done through the publish command, so instead of
subscribing, you can publish. For example, we can issue a fake command to a fake
system (really, it does not exist; it is just an example).

NOTE To issue commands and change a configuration on a system that does not
belong to you may cross some legal lines and certainly crosses ethical lines, unless you
are authorized to test the system. You have been warned!

Here’s our fake system example (given for illustrative purposes only), again adapted
from the example given by Victor Pasknel18:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

IoT Worms: It Was a Matter of Time
In late 2016, attackers became upset with Brian Krebs, an Internet journalist who
documented several hacks, and knocked him offline using a massive distributed denial-
of-service (DDOS) attack.19 Now, DDOS attacks are not uncommon, but what is new is
the method of attack. For the first time in history, an army of vulnerable IoT devices,
namely cameras, were used in the attack. Further, DDOS attacks are normally reflective
types of attacks, whereby an attacker tries to amplify the attack by leveraging protocols
that require a simple command request and have a massive response. In this case, it was
not a reflective attack at all—just normal requests, coming from countless infected
hosts, which generated some 665 Gbps of traffic, nearly doubling the previous record.20

On the sending end of the attack were Internet-connected cameras that were found by
attackers to have default passwords. The worm, dubbed Mirai, after a 2011 anime
series, logs into Internet-based cameras using a table of more than 60 default
passwords, commonly known from different vendors. The worm was careful to avoid
the United States Post Office and Department of Defense IPs, but all others were fair
game.21 The servers that hosted Krebs’ website had no chance, and even their hosting
service, Akamai, who is known for protecting against DDOS attacks, dropped him after
reportedly painful deliberations.22 The Mirai worm hit others as well, becoming the
most notorious worm at that time and garnering much publicity and causing worldwide
concern. Later, Mirai-infected hosts were used to exploit other vulnerabilities in
routers, extending the threat of the original vulnerability.23 Eventually, copycats joined
in and many Mirai variants sprung up.24 The number of infected hosts nearly doubled to
493,000 after the source code was released.25

At the time of this writing, attackers are beginning to target IoT devices more and
more. No longer are attackers checking for default passwords; authors of the IoT Reaper
worm are wielding vulnerabilities that leave millions of online cameras vulnerable.26

One thing is for sure: IoT devices cannot hide, as this chapter has shown. If they are
connected to the Internet, they will be found.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lab 22-4: Mirai Lives
Even after more than a year of battling Mirai, many infected hosts are still online. With
Shodan, we can search for Mirai-infected hosts:

Prevention
Now that you have seen the implications of open systems with no authentication on the
Internet, here is some practical advice: hack yourself! Seriously, Shodan has many free
searches, so why not take advantage of that service—before someone else does?
Conduct a search of your home IP address, using www.whatismyip.com or a similar
service, as well as the IP addresses of your family members, business, or anyone you
know. Another valuable resource you should know about is the Internet of Things
Scanner by BullGuard (see the “For Further Reading” section). It allows you to scan
your home and see whether or not you are in Shodan.

Summary
In this chapter, we discussed the increasing array of Internet-connected things that
comprise the IoT and discussed the network protocols they use. Next, we explored the
Shodan search engine, which specializes in finding IoT devices. Finally, we discussed
what was bound to happen: the advent of IoT worms. After reading this chapter, you
should be better prepared to identify, protect, and defend your things and those of your
friends, family, and clients.

For Further Reading
“Distinguishing Internet-Facing Devices using PLC Programming

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.whatismyip.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

Information” https://www.hsdl.org/?abstract&did=757013

Internet of Things Scanner by BullGuard https://iotscanner.bullguard.com/

NIST Special Publication 800-82, Revision 2, “Guide to Industrial
Control Systems (ICS) Security”
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf

“Quantitatively Assessing and Visualizing Industrial System Attack
Surfaces” https://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf

References
1. X. Xu, “Internet of Things in Service Innovation,” The Amfiteatru Economic

Journal, 4(6, November 2012): 698–719.
2. M. Swan, “Sensor Mania! The Internet of Things, Wearable Computing, Objective

Metrics, and the Quantified Self 2.0,” Journal of Sensor and Actuator Networks,
1(3, November 8, 2012): 217–253.

3. D. Evans, “The Internet of Things How the Next Evolution of the Internet Is
Changing Everything [Internet],” Cisco, April 2011,
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

4. The Economist, “The Internet of Things (to Be Hacked),” July 12, 2014,
https://www.economist.com/news/leaders/21606829-hooking-up-gadgets-web-
promises-huge-benefits-security-must-not-be.

5. A. Harper, “The Impact of Consumer Security Awareness on Adopting the Internet
of Things: A Correlational Study,” Dissertation, Capella University, 2016,
https://pqdtopen.proquest.com/doc/1853097232.html?FMT=ABS.

6. D. Bandyopadhyay, J. Sen, “Internet of Things: Applications and Challenges in
Technology and Standardization,” Wireless Personal Communications, 58(1, May
2011): 49–69.

7. Harper, “The Impact of Consumer Security Awareness on Adopting the Internet of
Things.”

8. Z. Chen, F. Xia, T. Huang, F. Bu, and H. Wang, “A Localization Method for the
Internet of Things,” The Journal of Supercomputing, 63(3, March 2013): 657–674.

9. H. Jayakumar, K. Lee, W. Lee, A. Raha, Y. Kim, and V. Raghunathan, “Powering
the Internet of Things,” in Proceedings of the 2014 International Symposium on
Low Power Electronics and Design, ACM, 2014, 375–380,
http://doi.acm.org/10.1145/2627369.2631644.

||||||||||||||||||||

||||||||||||||||||||

https://www.hsdl.org/?abstract&did=757013
https://iotscanner.bullguard.com/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.economist.com/news/leaders/21606829-hooking-up-gadgets-web-promises-huge-benefits-security-must-not-be
https://pqdtopen.proquest.com/doc/1853097232.html?FMT=ABS
http://doi.acm.org/10.1145/2627369.2631644
https://technet24.ir
https://technet24.ir

10. Zigbee, Wikipedia, 2017, https://en.wikipedia.org/w/index.php?
title=Zigbee&oldid=809655996.

11. Harper, “The Impact of Consumer Security Awareness on Adopting the Internet of
Things.”

12. H. Jayakumar, et al., “Powering the Internet of Things.”
13. J. Sarto, “ZigBee VS 6LoWPAN for Sensor Networks,” LSR,

https://www.lsr.com/white-papers/zigbee-vs-6lowpan-for-sensor-networks.
14. S. Schneider, “Understanding the Protocols Behind the Internet of Things,”

Electronic Design, October 9, 2013,
www.electronicdesign.com/iot/understanding-protocols-behind-internet-things.

15. J. Matherly, Complete Guide to Shodan: Collect. Analyze. Visualize. Make Internet
Intelligence Work for You, Lean Publishing, 2017.

16. V. Pasknel, “Hacking the IoT with MQTT,” Morphus Labs, July 19, 2017,
https://morphuslabs.com/hacking-the-iot-with-mqtt-8edaf0d07b9b.

17. Pasknel, “Hacking the IoT with MQTT.”
18. Pasknel, “Hacking the IoT with MQTT.”
19. Mirai (malware), Wikipedia, 2017, https://en.wikipedia.org/w/index.php?

title=Mirai_(malware)&oldid=807940975.
20. S. M. Kerner, “DDoS Attacks Heading Toward 1-Terabit Record,” eWEEK,

September 25, 2016, www.eweek.com/security/ddos-attacks-heading-toward-1-
terabit-record.

21. Mirai (malware), Wikipedia.
22. Kerner, “DDoS Attacks Heading Toward 1-Terabit Record.”
23. C. Farivar, “Computer Science Student Pleads Guilty to Creating Mirai Botnet,”

Mirai | Tim’s Tablet Web Site, October 13, 2017,
http://tablets.yourfreewordpress.com/?tag=mirai.

24. B. Krebs, “New Mirai Worm Knocks 900K Germans Offline,” Krebs on Security,
November 16, 2016, https://krebsonsecurity.com/2016/11/new-mirai-worm-
knocks-900k-germans-offline/.

25. M. Mimoso, “Mirai Bots More Than Double Since Source Code Release,”
October 19, 2016, https://threatpost.com/mirai-bots-more-than-double-since-
source-code-release/121368/.

26. T. Fox-Brewster, “A Massive Number of IoT Cameras Are Hackable—And Now
the Next Web Crisis Looms,” Forbes, October 23, 2017,
https://www.forbes.com/sites/thomasbrewster/2017/10/23/reaper-botnet-hacking-

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://en.wikipedia.org/w/index.php?title=Zigbee&oldid=809655996
https://www.lsr.com/white-papers/zigbee-vs-6lowpan-for-sensor-networks
http://www.electronicdesign.com/iot/understanding-protocols-behind-internet-things
https://morphuslabs.com/hacking-the-iot-with-mqtt-8edaf0d07b9b
https://en.wikipedia.org/w/index.php?title=Mirai_(malware)&oldid=807940975
http://www.eweek.com/security/ddos-attacks-heading-toward-1-terabit-record
http://tablets.yourfreewordpress.com/?tag=mirai
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://threatpost.com/mirai-bots-more-than-double-since-source-code-release/121368/
https://www.forbes.com/sites/thomasbrewster/2017/10/23/reaper-botnet-hacking-iot-cctv-iot-cctv-cameras/
https://technet24.ir
https://technet24.ir
https://technet24.ir

iot-cctv-iot-cctv-cameras/.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 23
Dissecting Embedded Devices

This chapter provides a high-level view of embedded devices with the intention of
providing a vocabulary for and high-level understanding of potential areas of concern.
Embedded devices are electrical or electro-mechanical devices that meet a specific
need or have a limited function. A few examples of embedded devices include security
systems, network routers/switches, cameras, garage door openers, smart thermostats,
controllable light bulbs, and mobile phones. As our devices gain remote connectivity
for our convenience, they also provide more opportunity for an attacker to enter our
lives through our networks.

Much of the discussion in this chapter revolves around integrated circuits (ICs). An IC
is a collection of electrical components within a small package, often referred to as a
chip. A simple example is the quad 2-input OR1 gate IC, where four 2-input OR circuits
are implemented inside a single chip. In our case, the ICs will be much more complex
and contain the entire multiple-computing elements inside a single IC. Also, note that
this chapter assumes you are familiar with a multimeter and the basic concepts of
electrical circuits, such as voltage, current, resistance, and ground.

In this chapter, we discuss the following topics:
• CPU
• Serial interfaces
• Debug interfaces
• Software

CPU
Unlike the desktop systems that most people are familiar with, the embedded world uses
many different processing architectures based on embedded functionality, required
complexity of the system, price, power consumption, performance, and other
considerations. Because embedded systems generally have much more defined
functionality, they tend to lend themselves to more quantifiable performance
requirements. As a result, a blend of software and hardware requirements are used to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

determine the appropriate microprocessor, microcontroller, or system on chip (SoC).

Microprocessor
Microprocessors do not include memory or program storage internal to the chip.
Microprocessor-based designs can utilize a large amount of memory and storage and
can run sophisticated operating systems such as Linux. The common PC is an example of
a device utilizing a microprocessor-based design.

Microcontrollers
Common to the embedded world is the microcontroller. The microcontroller generally
has a CPU core (or cores), memory, storage, and I/O ports, all within a single chip. The
microcontroller is well suited to highly embedded designs that perform simple or well-
defined lower-performance applications. Due to the simplicity of the applications and
hardware, the software on the microcontroller is typically written in a lower language
such as assembly or C and does not include an operating system (OS). Applications for
a microcontroller include an electronic door lock and a TV remote.

Depending on the specific microcontroller, protections may be implemented in
hardware to help secure the applications. Examples are read protections for the
program storage and disabling the on-chip debugging interface from becoming active.
Although these protections provide a layer of protection, there are no guarantees that the
protections cannot be bypassed.

System on Chip (SoC)
The SoC is one or more microprocessor cores or microcontrollers with a wide variety
of integrated hardware features within a single IC. For example, the SoC for a phone
may contain a Graphics Processing Unit (GPU), sound processor, Memory Management
Unit (MMU), cellular, and network controller. The main benefit of the SoC is reduced
cost due to fewer chips and smaller-size applications. These are typically used in a
more custom fashion. Whereas the microcontroller stores the program internally and
provides limited memory, the SoC typically utilizes external storage and memory.

Common Processor Architectures
Although there are many microcontroller architectures, such as Intel 8051, Freescale
(Motorola) 68HC11, and Microchip PIC, two architectures show up much more in
Internet-connected devices: ARM and MIPS. Knowing the processor architecture is
important when using tools such as disassemblers, build tools, and debuggers.
Identification of the processor architecture can typically be done by visually inspecting

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

the board and locating the processor.
ARM is a licensed architecture that is used by many microprocessor, microcontroller,

and SoC manufacturers such as Texas Instruments, Apple, Samsung, and more. The
ARM cores are licensed in multiple profiles based on the intended applications. ARM
cores come in both 32- and 64-bit architectures and can be configured as either big or
little endian. Table 23-1 illustrates the profiles and applications that would typically use
them.

Table 23-1 ARM Profiles2

MIPS is now owned by Tallwood MIPS, Inc., but has been licensed to several
manufacturers such as Broadcom, Cavium, and others.3 Like ARM, MIPS has 32- and
64-bit variants and can be run in either big or little endian mode. It is commonly found
in networking devices such as wireless access points and small home routers.

Serial Interfaces
A serial interface communicates with a peer one bit at a time, serially, over a
communication channel. Being that only one bit is being transmitted at a time, fewer pins
are required on an IC. In contrast, parallel interface communications transmit multiple
bits at a time and require more pins (one pin per bit). Several serial protocols are used
in embedded systems, but we will only discuss the Universal Asynchronous Receiver-
Transmitter (UART), Serial Peripheral Interface (SPI), and Inter-Integrated-Circuit
(I2C) protocols.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

UART
The Universal Asynchronous Receiver-Transmitter protocol allows two devices to
communicate serially over a communications channel. UART is commonly used for
connecting to a console to allow a human to interact with the device. Although most
devices will not have an externally available interface for communicating serially, many
will have an internal interface that was used during device development and testing.
While performing device testing, I have found both authenticated and unauthenticated
consoles on internally accessible serial interfaces.

UART requires three pins to communicate and usually comes in a gang of four pins
(see Figure 23-1). You may see labels on the board, but generally these pads or headers
are not labeled and need to be discovered. Although Figure 23-1 shows a nice example
where the headers stand out as candidates for serial communications, the layout of the
pins might not always be as straightforward and could be mingled within a larger
number of pins.

Figure 23-1 Unlabeled gang of four serial ports on a Ubiquiti ER-X

The main reason for locating and connecting to the internal serial ports is to attempt to
locate information that was not intended to be accessible to the user of the system. For
example, the web interface does not generally yield access to the file system directly,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

but the serial console on a Linux-based system will give the user access to the file
system. When the serial port is authenticated, you will have to brute-force the
credentials or attempt to bypass the authentication by altering the boot process
(potentially by using a JTAG debug port).

To discover the serial pads, a tool such as JTAGulator, developed by Joe Grand, can
be used to brute-force signals and yield the pad layout and baud rate. The following is
an example of running the UART identification test against the Ubiquiti ER-X shown in
Figure 23-1, where the labeled pins were identified using JTAGulator. Here are the
steps involved:

1. Locate the headers or pads you believe could be UART by inspecting the board.
(Seeing two to four pads/pins grouped together on the board is a good sign, but as
mentioned earlier, they can be intermingled within other functional pads/pins.)

2. Discover the target voltage by probing the board with a multimeter or identifying
an IC and looking up the datasheet.

3. Discover a ground that is easy to connect to by measuring resistance (Ohms)
between a known ground (such as the chassis ground) and pins that are easy to
connect to (effectively 0 Ohms between the known ground and the pin in question).

4. Connect the board to your JTAGulator if you are fortunate enough to find headers,
or solder a header to the board and then connect (see Figure 23-2).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 23-2 Connection between JTAGulator and Ubiquiti ER-X

5. Verify the version of JTAGulator firmware . The version can be checked against
the code on the repository at
https://github.com/grandideastudio/jtagulator/releases. If the version is not the
latest, follow the directions at www.youtube.com/watch?v=xlXwy-weG1M.

6. Enable UART mode and set the target voltage .
7. Run the UART identification test .
8. On success, look for reasonable responses such as carriage returns or line feeds

(0D or 0A).
9. Verify the identified settings by running in pass-thru mode with the baud rate

candidate (57600 in our case).

||||||||||||||||||||

||||||||||||||||||||

https://github.com/grandideastudio/jtagulator/releases
http://www.youtube.com/watch?v=xlXwy-weG1M
https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

If the test is successful, you should be able to interact with the serial console now.
Resetting the device with the serial console connected is typically very revealing. The
text is too long to include here, so I’ve provide snippets from the boot messages:

• The processor is a MT-7621A (MIPS):

• It can be reprogrammed via U-Boot:

• It is running Linux version 3.10.14-UBNT:

• MTD partitions aid in understanding the storage layout:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Once the layout is determined, you can use a tool such as Bus Pirate to connect to the
pads and communicate with the embedded system. The main thing to remember is to
connect the TX on the device to the RX of your Bus Pirate and to connect the RX on the
device to the TX of your Bus Pirate.

As with the JTAG interface, some may discount the severity of having enabled serial
ports on a device. However, with console access, an attacker can extract the
configuration and binaries, install tools, and look for global secrets that facilitate
remote attacks against all devices of this type.

SPI
Serial Peripheral Interface (SPI) is a full-duplex synchronous serial interface that is
popular in embedded systems. Unlike UART, SPI was designed to allow
communications between two or more devices. SPI is a short-distance protocol that is
used for communications between ICs within an embedded system. The protocol uses a
master/slave architecture and supports multiple slaves.4 In its simplest form, SPI
requires four pins to communicate, which puts it on par with the UART example but
with faster communications (at the cost of distance). It is important to note that SPI is
not standardized,5 and the datasheets will need to be consulted to determine the exact
behavior of each device. The four pins are as follows:

• SCK Serial Clock
• MOSI Master Out Slave In
• MISO Master In Slave Out
• SS or CS Slave/Chip Select (output from master to address slave; active low)

For systems with a few slave devices, the master typically addresses each slave
device using a dedicated chip select. Due to the additional chip selects, this requires
more pins/traces and increases the cost of the system. For example, a system with three
slave devices in this configuration requires six pins on the microcontroller (see Figure
23-3).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 23-3 SPI in a three-chip configuration with individual chip selects

Another common configuration for multiple-slave devices is the daisy chain.6 The
daisy chain configuration, shown in Figure 23-4, is typically used when the master does
not need to receive data for applications such as LEDs or when there are many slave
devices. Because the output of chip 1 is connected to the input of chip 2, and so on,
there is a delay proportionate to the number of chips between the master and the
intended recipient.

Figure 23-4 SPI in a three-chip configuration using a daisy chain

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

A common use of the SPI protocol is to access EEPROM (electrically erasable
programmable read-only memory) and flash devices. By using Bus Pirate and flashrom
(or something similar), you should be able to extract the contents of an EEPROM or
flash device. The contents can then be analyzed to locate the file system and hunt for
secrets.

I2C
Inter-Integrated-Circuit, pronounced I-squared-C and written as I2C,7 is a multimaster,
multislave, packetized serial communications protocol. It is slower than SPI but only
uses two pins instead of three, plus chip selects for each slave. Like SPI, I2C is used for
short distances between ICs on the board, but it can be used in cabling. Unlike SPI, I2C
is an official specification.

Although multiple masters are supported, they cannot communicate with each other
and cannot use the bus at the same time. To communicate with a specific device, the
master uses an address packet, followed by one or more data packets. The two pins are
as follows:

• SCL Serial Clock
• SDA Serial Data

From Figure 23-5, you can see that the SDA pin is bidirectional and shared for all
devices. Additionally, the SCL pin is driven by the master that has acquired the data
bus.

Figure 23-5 A two-master, three-slave sample configuration

Like SPI, I2C is commonly used to communicate with EEPROM or NVRAM
(nonvolatile random access memory). By using something like the Bus Pirate, you can

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

dump the contents for offline analysis or write new values.

Debug Interfaces
Whereas debugging an application on a computer running Windows or Linux is
relatively easy, by simply attaching to a process with a software debugger, embedded
systems have many obstacles that make such a process a bit trickier. For example, how
do you debug the embedded system when there is no operating system or the operating
system is not booted? Modern embedded systems also have many complicated ICs on
potentially densely populated boards with little to no access to the pins on the chips.
Fortunately for the developers and testers, the hardware manufacturing industry
developed methods for accessing IC internals for testing, debugging, and writing
firmware to nonvolatile storage, and many other uses.

JTAG
The Joint Test Action Group (JTAG) was created in the 1980s as a method to facilitate
debugging and testing ICs. In 1990, the method was standardized as IEEE 1149.1, but it
is commonly referred to as simply JTAG.8 Although it was initially created to help with
board-level testing, the capabilities allow debugging at the hardware level.

Although this is an oversimplification, JTAG defines a mechanism of utilizing a few
externally accessible signals to access IC internals via a standardized state-machine.
The mechanism is standardized, but the actual functionality behind it is IC specific. This
means that you must know the IC being debugged to use JTAG effectively. For example,
a bit sequence to an ARM processor and an MIPS processor will be interpreted
differently by the internal logic of the processor. Tools such as OpenOCD require
device-specific config files to operate properly. Although manufacturers may define
more pins, the four/five JTAG pin description is provided in Table 23-2. The collection
of pins is also known as the test access port (TAP).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 23-2 Four/Five Pin JTAG Interface Description

Although you might think that five pins would have a standard layout, board and IC
manufacturers define their own layouts. Some common pinouts are defined in Table 23-
3 and include 10-, 14-, and 20-pin configurations. The pinouts in the table are only a
sampling and need to be verified before they are used with a debugger.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 23-3 Typical JTAG Pinouts9,10

For the developer and tester, the following capabilities are commonly used:

• Halting the processor while debugging
• Reading and writing the internal program store (when code is stored inside the

microcontroller)
• Reading and writing flash (firmware modification or extraction)
• Reading and writing memory
• Modifying the program flow to bypass functionality to gain restricted access

As you can see, the functionality available to the JTAG interface is quite powerful.
Equipment manufacturers are in a quandary. To develop, test, and debug the embedded
system throughout its life cycle, the JTAG port is indispensable; however, its existence

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

on the board provides researchers and attackers the ability to discover secrets, alter
behavior, and find vulnerabilities. Manufacturers will typically attempt to make it more
difficult to use the JTAG interface after production by severing the lines, not populating
the pins, not labeling the pinout, or using chip capabilities to disable it. Although this is
reasonably effective, a determined attacker has many means in their arsenal to
circumvent the protections, including fixing broken traces, soldering pins on the board,
or possibly even shipping an IC to a company that specializes in extracting data.

Some may dismiss JTAG as a weakness since physical, possibly destructive, access
is required to use it. The problem with dismissing the attack is that the attacker can learn
a great deal about the system using JTAG. If a global secret such as a password, an
intentional backdoor for support, a key, or a certificate is present on the system, it may
be extracted and subsequently used to attack a remote system.

SWD (Serial Wire Debug)
Serial Wire Debug (SWD) is an ARM-specific protocol for debugging and
programming. Unlike the more common five-pin JTAG, SWD uses two pins. SWD
provides a clock (SWDCLK) and bidirectional data line (SWDIO) to deliver the debug
functionality of JTAG. As can be seen in Table 23-4, SWD and JTAG can coexist,11

which is important to note.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 23-4 Typical JTAG/SWD Pinouts

The capabilities for developers and testers are the same as those mentioned for JTAG.
As with JTAG, the capabilities that help manufacturers also enable attackers to discover
vulnerabilities.

Software
All the hardware we’ve discussed so far would be useless without something defining
its functionality. In microcontroller/microprocessor-based systems, software defines the
capabilities and breathes life into the system. A bootloader is used to initialize the
processor and start the system software. The system software for these systems typically
falls into one of these three scenarios:

• No operating system For simple systems

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Real-time operating system For systems with rigid processing time
requirements (for example, VxWorks and Nucleus)

• General operating system For systems that typically don’t have hard time
constraints and have many functional requirements (for example, Linux and
Embedded Windows)

Bootloader
For higher-level software to run on a processor, the system must be initialized. The
software that performs the initial configuration of the processor and the required initial
peripheral devices is called the bootloader. The process typically requires multiple
stages to get the system ready to run the higher-level software. The oversimplified
process is generally described as follows:

1. The microprocessor/microcontroller loads a small program from a fixed location
of an off-processor device based on the boot mode.

2. The small program initializes RAM and structures required to load the remainder
of the bootloader in RAM (U-Boot, for example).

3. The bootloader initializes any devices necessary to start the main program or OS,
loads the main program, and transfers execution to the newly loaded program. For
Linux, the main program would be the kernel.

If U-Boot is used, this bootloader may have been configured to allow alternative
means of loading the main program. For example, U-Boot is capable of loading from an
SD card, NAND or NOR flash, USB, a serial interface, or TFTP over the network if
networking is initialized. In addition to loading the main program, it can be used to
replace the main program in a persistent storage device. The Ubiquiti ER-X, from our
earlier example of using the JTAGulator, uses U-Boot (see Figure 23-6). In addition to
loading the kernel, it allows reading and writing memory and storage.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 23-6 U-Boot from Ubiquiti ER-X

No Operating System
For many applications, the overhead of an OS and the simplicity of the system do not
justify or allow for an OS. For example, a sensor that performs measurements and sends
them to another device likely uses a low-power microcontroller such as a PIC and has
very little need for an operating system. In this example, the PIC likely does not have
enough resources (storage, RAM, and so on) to allow it to run an OS.

In systems with no OS, the data storage will likely be very crude based on address
offsets or using NVRAM. Additionally, they typically do not have a user interface, or

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

the interface is extremely simple, such as LEDs and buttons. After the program has been
acquired, either from extraction from storage or via downloading, the format can be
entirely custom and not easily identifiable to frequently used file analysis tools. The
best bet is to read the documentation for the microcontroller to understand how the
device loads code and attempts to deconstruct it manually with a disassembler.

You might be thinking that a system this simple would not be very interesting, but keep
in mind that it might have connectivity to a more complex system with Internet
connections. Don’t dismiss these devices as not having a valuable attack surface without
first considering the total use case, including connected devices and its purpose. The
limited instruction space might mean that the device doesn’t have the ability to
adequately protect itself from malicious input, and the protocols are likely not
encrypted. Additionally, connected systems might explicitly trust any data coming from
these devices and therefore not take appropriate measures to ensure that the data is
valid.

Real-Time Operating System
Systems that are more complex and have hard time-processing requirements will
typically use a real-time operating system (RTOS) such as VxWorks. The advantages of
the RTOS are that it provides the functionality of an OS, such as tasks, queues,
networking stacks, file systems, interrupt handler, and device management, with the
added capability of a deterministic scheduler. For example, autonomous or driver-
assisted automotive systems likely use an RTOS to ensure that reactions to various
sensors are happening within the safety tolerance of the system (rigid).

For those used to systems running Linux, VxWorks is much different. Linux has a fairly
standard file system with common programs such as telnet, busybox, ftp, and sh, and
applications run as separate processes on the OS. With VxWorks, many of the systems
run with effectively a single process, with multiple tasks and no standard file system or
secondary applications. Whereas Linux has a lot of information regarding extraction of
firmware and reverse engineering, there is very little information regarding VxWorks.

Extracting the firmware with SPI or I2C or using a downloaded file will provide you
with strings and code that can be disassembled. But unlike with Linux, you will not
generally get easily digestible data. Analyzing the strings for passwords, certificates,
keys, and format strings can yield useful secrets to use against the live system.
Additionally, using JTAG to set breakpoints and perform actions on the device is likely
the most effective method of reversing the functionality.

General Operating System
The term general operating system is being used to describe non-RTOS operating

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

systems. Linux is the most common example of a general operating system. Linux for
embedded systems is not much different from Linux for a desktop system. The file
systems and architecture are the same. The main differences between embedded and
desktop versions are peripherals, storage, and memory constraints.

To accommodate the generally smaller storage and memory, the OS and file system
are minimized. For example, instead of using the common programs installed with
Linux, such as bash, telnetd, ls, cp, and such, a smaller monolithic program called
busybox is typically used. Busybox14 provides the functionality within a single
executable by using the first argument as the desired program. Although I’d like to say
that unused services are removed to reduce the attack surface, they are likely only
removed to save space.

Although most devices do not intentionally provide console access to the user, many
do have a serial port for console access on the board. As soon as you have access to the
root file system, either via the console or by extracting the image from storage, you will
want to look for the versions of applications and libraries, world-writable directories,
any persistent storage, and the initialization process. The initialization process for
Linux, found in /etc/inittab and /etc/init.d/rcS, will give you an idea of how the
applications are started on boot.

Summary
In this chapter, we briefly discussed the differences between different CPU packages
(microcontroller, microprocessor, and SoC), several serial interfaces of interest, JTAG,
and embedded software. In our discussion of serial interfaces, you were introduced to
the JTAGulator in an example of discovering UART (serial) ports. JTAGulator can also
be used to discover JTAG debug ports and potentially several other interfaces. We also
briefly discussed different software use cases, including bootloaders, no OS, an RTOS,
and a general OS. At this point, you should have a common vocabulary for embedded
systems and a few areas of concern when attempting to gain a further understanding.

For Further Reading
ARM:
https://developer.arm.com/products/architecture/a-profile
https://www.arm.com/products/processors/cortex-a?tab=Resources
https://developer.arm.com/products/architecture/r-profile
https://www.arm.com/products/processors/cortex-r?tab=Resources

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://developer.arm.com/products/architecture/a-profile
https://www.arm.com/products/processors/cortex-a?tab=Resources
https://developer.arm.com/products/architecture/r-profile
https://www.arm.com/products/processors/cortex-r?tab=Resources
https://technet24.ir
https://technet24.ir
https://technet24.ir

https://developer.arm.com/products/architecture/m-profile
https://www.arm.com/products/processors/cortex-m?tab=Resources

Bus Pirate http://dangerousprototypes.com/docs/Bus_Pirate

Embedded Linux https://www.elinux.org/Main_Page

Firmware extraction and reconstruction https://www.j-
michel.org/blog/2013/09/16/firmware-extraction-and-reconstruction

Firmware security information https://github.com/advanced-threat-
research/firmware-security-training

Free RTOS https://www.freertos.org/

I2C https://learn.sparkfun.com/tutorials/i2c

JTAG:
http://blog.senr.io/blog/jtag-explained
https://developer.arm.com/docs/dui0499/latest/arm-dstream-target-interface-
connections/signal-descriptions/serial-wire-debug

JTAGulator www.grandideastudio.com/jtagulator/

MT-7621A:
https://www.mediatek.com/products/homeNetworking/mt7621n-a
https://wikidevi.com/wiki/MediaTek_MT7621

OpenOCD http://openocd.org/

Reverse-engineering VxWorks firmware www.devttys0.com/2011/07/reverse-
engineering-vxworks-firmware-wrt54gv8/

SPI https://www.maximintegrated.com/en/app-notes/index.mvp/id/3947

Understanding ARM HW debug
options https://elinux.org/images/7/7f/Manderson5.pdf

VxWorks https://www.windriver.com/products/vxworks/

References
1. OR Gate, Wikipedia, https://en.wikipedia.org/wiki/OR_gate.
2. “ARM Architecture Profiles,” ARM Developer,

||||||||||||||||||||

||||||||||||||||||||

https://developer.arm.com/products/architecture/m-profile
https://www.arm.com/products/processors/cortex-m?tab=Resources
http://dangerousprototypes.com/docs/Bus_Pirate
https://www.elinux.org/Main_Page
https://www.j-michel.org/blog/2013/09/16/firmware-extraction-and-reconstruction
https://github.com/advanced-threat-research/firmware-security-training
https://www.freertos.org/
https://learn.sparkfun.com/tutorials/i2c
http://blog.senr.io/blog/jtag-explained
https://developer.arm.com/docs/dui0499/latest/arm-dstream-target-interface-connections/signal-descriptions/serial-wire-debug
http://www.grandideastudio.com/jtagulator/
https://www.mediatek.com/products/homeNetworking/mt7621n-a
https://wikidevi.com/wiki/MediaTek_MT7621
http://openocd.org/
http://www.devttys0.com/2011/07/reverse-engineering-vxworks-firmware-wrt54gv8/
https://www.maximintegrated.com/en/app-notes/index.mvp/id/3947
https://elinux.org/images/7/7f/Manderson5.pdf
https://www.windriver.com/products/vxworks/
https://en.wikipedia.org/wiki/OR_gate
https://technet24.ir
https://technet24.ir

http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.dui0471i/BCFDFFGA.html.

3. “Completion of Sale of MIPS,” Imagination, October 25, 2017,
https://www.imgtec.com/news/press-release/completion-of-sale-of-mips/.

4. “Serial Peripheral Interface (SPI),” Sparkfun,
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi.

5. “Serial Peripheral, Interface Bus, SPI Standards,” Wikipedia,
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus#Standards.

6. “SPI,” https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi.
7. “I2C—What’s That?,” Wikipedia, I2C, https://www.i2c-bus.org/.
8. Joint Test Action Group, Wikipedia, https://en.wikipedia.org/wiki/JTAG.
9. “JTAG Pinouts,” JTAG Test, www.jtagtest.com/pinouts/.

10. “JTAG Pin Descriptions,” ARM DS-5 DSTREAM System and Interface Design
Reference Guide Version 5, https://developer.arm.com/docs/dui0499/latest/arm-
dstream-target-interface-connections/the-arm-jtag-20-connector-pinouts-and-
interface-signals/arm-jtag-20-interface-signals.

11. “Structure of the SWJ-DP” (JTAG/SWD Coexist as SWJ-DP), ARM Developer,
http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0314h/Chdjjbcb.html.

12. “10-Way Connector Pinouts” (SWD/JTAG 10 Pin), ARM Developer,
http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0314h/Chdhbiad.html.

13. ”20-Way Connector Pinouts Including Trace” (SWD/JTAG 20 Pin), ARM
Developer,
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/Chdfccbi.html.

14. “BusyBox: The Swiss Army Knife of Embedded Linux,” BusyBox,
https://busybox.net/about.html.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471i/BCFDFFGA.html
https://www.imgtec.com/news/press-release/completion-of-sale-of-mips/
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus#Standards
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://www.i2c-bus.org/
https://en.wikipedia.org/wiki/JTAG
http://www.jtagtest.com/pinouts/
https://developer.arm.com/docs/dui0499/latest/arm-dstream-target-interface-connections/the-arm-jtag-20-connector-pinouts-and-interface-signals/arm-jtag-20-interface-signals
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0314h/Chdjjbcb.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0314h/Chdhbiad.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/Chdfccbi.html
https://busybox.net/about.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 24
Exploiting Embedded Devices

This chapter covers the topic of exploiting embedded devices. This topic is becoming
increasingly important with the emergence of the Internet of Things (IoT), as covered in
previous chapters. From elevators to cars, toasters, and everything “smart,” embedded
devices are becoming ubiquitous, and the security vulnerabilities and threats are
becoming innumerable. As Bruce Schneier has observed, it is like the Wild West of the
1990s all over again; everywhere we look, there are vulnerabilities in these embedded
devices. Schneier explains that this is because of many factors, including the limited
resources of the devices themselves and the limited resources of the manufacturers in
the low-margin field of producing embedded devices.1 Hopefully, more ethical hackers
will rise to meet this challenge and make a dent in the tide of vulnerabilities of
embedded devices. To that end, in this chapter, we discuss the following topics:

• Static analysis of vulnerabilities in embedded devices
• Dynamic analysis with hardware
• Dynamic analysis with emulation

Static Analysis of Vulnerabilities in Embedded Devices
Static analysis of vulnerabilities involves looking for vulnerabilities by inspecting the
update packages, file systems, and binaries of the system without having to power up the
device being evaluated. In fact, in most cases, the attacker doesn’t need to have the
device to do most of the static analysis. In this section, you are exposed to some tools
and techniques for conducting static analysis on an embedded device.

Lab 24-1: Analyzing the Update Package
In most cases, the update packages for the device can be downloaded from the vendor
site. Currently, most updates are not encrypted and therefore can potentially be
deconstructed with various tools such as unzip, binwalk, and Firmware Mod Kit. For
instruction purposes, we will look at a Linux-based system since you are most likely
familiar with these systems.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In Linux-based embedded systems, the update packages often contain a new copy of
all the essential files and directories required to operate the system. The required
directories and files are referred to as the root file system (RFS). If an attacker can gain
access to the RFS, they will have the initialization routines, web server source code,
any binaries that are required to run the system, and possibly some binaries that provide
the attacker with an advantage when attempting to exploit the system. For example, if a
system uses Busybox and includes the telnetd server, an attacker might be able to
leverage the Telnet server to provide remote access to the system. Specifically, the
telnetd server included in Busybox provides an argument that allows it to be invoked
without authentication and bind to any program (/usr/sbin/telnetd –l /bin/sh).

As an example, we will investigate an older version of the D-Link DAP-1320
wireless range extender’s firmware update (version 1.1 of the A hardware). This update
was chosen because it is an older update that has been patched, and the vulnerability
disclosure (www.kb.cert.org/vuls/id/184100) was reported by several of the authors.

The first step is to create the environment for deconstructing the firmware. In our case,
we will use the Firmware Mod Kit. The base host system for our analysis is Kali Linux
2017.1. In order to install the Firmware Mod Kit, the prerequisites must first be
installed using the package manager apt-get . Once the prerequisites are met, the
install only requires cloning the project from GitHub . The first time extract-
firmware.sh is run, it compiles the necessary tools and results in a lot of output (the first
run has been omitted in the example). We then attempt to extract the firmware , and if
the package and content types are known by the tool, they will be extracted for further

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.kb.cert.org/vuls/id/184100
https://technet24.ir
https://technet24.ir
https://technet24.ir

analysis. From the output, we can see that the tool has found both an MIPS Linux kernel
image and a squashfs file system , and they have been successfully extracted to the
fmk directory . By browsing the extraction, we identify it to be the rootfs and verify
that the binaries are compiled for MIPS .

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Now that the update package has been extracted, it is time to browse the files, looking
for features, configurations, or unknown applications. Table 24-1 defines some items to
look for while browsing.

Table 24-1 Examples of Interrogating the File System

NOTE Any executable or library found that has a version needs to be cross-checked
against known vulnerabilities. For example, use a Google search of <name> <version
number> vulnerability.

Once you’ve collected all this information, you will want to understand what is
processing requests from the browser or any services running. Because I’ve already
done all the preceding steps, I reduced the following example in order to make the
analysis more condensed and straightforward. The web server was found to be lighttpd

, which uses lighttpd*.conf and modules.conf for the configuration. Furthermore, it
uses cgi.conf , which points almost all handling to /bin/ssi (a binary executable).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

At this point, we have an idea of how to proceed and will begin our vulnerability
analysis.

Lab 24-2: Performing Vulnerability Analysis
At this point, vulnerability analysis is not much different from what has been taught in
previous chapters. Command-injection, format-string, buffer-overflow, use-after-free,
misconfiguration, and many more vulnerabilities can be searched for. In this case, we
will use a technique to find command-injection-type vulnerabilities in executables.
Since /bin/ssi is a binary, we will look for format strings that use %s (for string) and
then redirect the output to /dev/null (meaning we don’t care about the output). This
pattern is interesting because it may indicate a sprintf function that’s creating a
command, with a potentially user-controlled variable, to use with popen or system. For

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

example, a command to see if another host is alive might be created as follows:

If the variable is controlled by the attacker and not sanitized, and the cmd is used to
execute in a shell, the attacker can inject their command into the intended command. In
this case, we have two interesting strings that appear to download a file:

Armed with these two strings, we will begin to do some reversing of the binary to see
if we have control over the variable, URL. IDA Pro will be our tool of choice for this
exercise.

The main objective of the IDA Pro analysis is to determine whether the string is used
in a way that the attacker has a chance to alter it. After opening the ssi binary in IDA Pro
and ensuring that the processor is set to MIPS, we then take the following steps:

1. Search for the string of interest.
2. Determine how the string is used.
3. Determine where the URL comes from (if it is hardcoded, we are not interested in

it).

Press ALT-T to bring up the text search screen and then select Find All Occurrences for
the string, as shown next.

We find only two occurrences of the string: one is the static format string and the other
is a reference to the static string, as shown next. (Note that you can ignore the function

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

name; it was not there during the initial analysis but rather was added by the author.)

By double-clicking on the highlighted result, we are taken to that instruction in the
disassembly. Scrolling down, we see that the string is being used in a sprintf to
construct a download command and that is being passed to system at 00409064, as
shown next.

At this point, we at least know that the string is being used to make a call to system.
From here, we need to understand how the URL in the format string is provided. This
requires us to trace the control flow of the program to this point.

To trace the control flow to the entry of this subroutine/function, we need to scroll to
the top of the function and select the address on the left. Once the address is selected,
we simply press X to jump to the cross-reference to it, as shown here.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The cross-reference to the download routine is actually a lookup table with function
pointers to the entry points for each command. The code searches for the command and
jumps to the routine pointer that is adjacent to it. You will see the commands for “IPv6
Function,” “Download FW and language to DUT,” and “get_wan_ip,” as shown next.
Note that the commands are in the form of the short name, function pointer, and long
name. Because this is a lookup table, we need to find the beginning of the table in order
to locate a cross-reference to it.

Although we have not completely traced the origin of the system call back to the root,
it is safe to say that it points back to the cgi command to download the firmware. A few
greps of the “download_fw_lp” string give us the origin . At this point, we will
move on to attempting to exploit the device through the firmware update.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Dynamic Analysis with Hardware
The static analysis portion of the assessment is complete. From this point forward, we
will be looking at the system as it runs. We need to set up an environment for
intercepting requests from the device to the WAN, connect the DAP-1320 to our test
network, and begin exercising the firmware update process. The end goal is to execute
something on the wireless extender through command injection.

The Test Environment Setup
The test setup we’ve chosen uses 64-bit Kali Linux 2017, Ettercap, the DAP-1320
wireless range extender with firmware version 1.11, and a stock wireless network. The
idea is to ARP-spoof the DAP-1320 so that all traffic to and from the device goes
through our Kali Linux system. Although we could have simply put a device inline
between the extender and the router that can forward traffic after inspection and
modification, ARP spoofing would be the likely attack mechanism used in the field.

Ettercap
As a quick refresher, Address Resolution Protocol (ARP) is the mechanism for
resolving an IP address to its Media Access Control (MAC) address. The MAC address
is a unique address assigned by the manufacturer of the network device. Simply put,
when a station needs to communicate with another station, it uses ARP to determine the
MAC address associated with the IP to use. ARP spoofing effectively poisons the ARP
tables of the stations, causing them to use the attacker’s MAC address instead of the
actual MAC address of the target station. Therefore, all traffic to a destination traverses
through the attacker’s station. This effectively puts a device inline without having to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

physically modify the network.
Ettercap is a tool that allows us to ARP-spoof for the purposes of man-in-the-middle

(MITM) attacks, parse the packets, modify them, and forward them to the recipient. To
begin with, we use Ettercap to see the traffic between the device and the Internet by
issuing the following command (where the device is 192.168.1.173 and the gateway is
192.168.1.1 in this example):

Once Ettercap has started, we will use Wireshark to view the traffic as we interact with
the device. Once Wireshark is started and the capture has been initiated, we can check
for a firmware update on the device’s upgrade page, as shown here.

Click the Check for New Firmware button and then follow the TCP stream within
Wireshark. We now see that the device goes to
http://wrpd.dlink.com.tw/router/firmware/query.asp?model=DAP-1320_Ax_Default in
the first two lines and the response is XML-encoded data, as shown next.

||||||||||||||||||||

||||||||||||||||||||

http://wrpd.dlink.com.tw/router/firmware/query.asp?model=DAP-1320_Ax_Default
https://technet24.ir
https://technet24.ir

By going to the URL we captured, we can see that the XML contains the FW version’s
major and minor numbers, the download site, and release notes.

Armed with this information, we can assume that if we change the minor number to 12
and the firmware link to a shell command, we will force the device to attempt to update
and, consequently, run our command. In order to accomplish this task, we need to create
an Ettercap filter (previously saved and displayed here), compile it , and then run it

, as follows:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In order to determine if our command is getting executed, we need to ping the box and
monitor the ping messages as we issue an upgrade. But first, notice that after clicking the
Check for New Firmware button, we now see that there is a 1.12 version available to
download.

Prior to clicking the Upgrade Firmware button, we need to set up our ping to monitor
the device. When we click the Upgrade Firmware button, we should see the following

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

download progress box:

You will notice that the host becomes nonresponsive and later comes back online .
This indicates that the box was rebooted. At this point, we’ve proven that we can inject
a command into the upgrade URL and the device will execute it. Without uploading an
executable to the device, you are limited by what is on the device. For example, as
previously explained, if telnetd is compiled into the Busybox (it is not on this system),
you can just start it to access the shell without a password, as follows:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This approach is demonstrated in the next section. If needed, you could cross-compile a
binary such as netcat for this processor and then upload it via tftp or tfcp, as Craig
Heffner has demonstrated,2 or you could use another method.

Dynamic Analysis with Emulation
It turns out, in some cases, not to be necessary to have hardware in hand to perform
vulnerability analysis and exploit firmware.

FIRMADYNE
The FIRMADYNE3 tool allows for the emulation of firmware by using the QEMU
hypervisor. The beauty of this approach is that you do not have to buy the hardware to
test the firmware. This powerful approach allows for scaled testing in parallel.
Dominic Chen downloaded and tested more than 23,000 specimens of firmware and
was able to successfully run about 9,400 of them (approximately 40 percent),4 which is
not bad at all. In the following labs, we will set up and execute FIRMADYNE.

Lab 24-3: Setting Up FIRMADYNE
If you want to follow along in this lab, we will be using Ubuntu 16.04.3 server, running
in VMware or VirtualBox, with NAT network settings, only OpenSSH installed, with a
username of firmadyne. First, we need to set up the FIRMADYNE tool by using the
instructions found on the FIRMADYNE GitHub (see the “For Further Reading” section
at the end of this chapter):

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Next, install the PostgreSQL database:

Then, set up user firmadyne with the password “firmadyne” (when prompted):

Now, create the database and initialize it. Notice firmware is appended to the end of
the next command:

Download the pre-built binaries for FIRMADYNE (or build binaries using

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

instructions on the FIRMADYNE GitHub):

Now install QEMU:

Finally, set the FIRMWARE_DIR variable in the firmadyne.config file to the location
of the firmadyne files:

Lab 24-4: Emulating Firmware
Now that you have set up the environment, you may emulate a sample firmware (again,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

as described on the FIRMADYNE GitHub).
First, using the extractor script, extract the firmware:

Now, you may use the getArch script to get the architecture and store it in the database
(enter the firmadyne DB password when prompted, which is “firmadyne”):

Now, store the location of the extracted file system into the database:

Next, make a virtual image to launch with QEMU, using the makeImage script:

Then, infer the network (this command will run for up to 60 seconds, so be patient):

Now that you know what the IP is, run the emulator:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

If at any time you mess up the preceding commands and want to reset the database and
environment, simply run the following commands:

At this point, the firmware should be running on the preceding IP as a tap device. You
should also be able to connect to this virtual interface from the machine on which you
are running QEMU. This is fine if you are working from that machine with a desktop
environment (GUI) running. However, in our case, because we are running the QEMU in
a virtual machine with no desktop environment running, we will need to get creative if
we want to play with the interface from another host.

NOTE It is important to be running in NAT mode on your virtual machine in order for
the following instructions to work.

To do this, we can use the Python sshuttle5 program to tunnel all network traffic
through SSH to the virtual host. In this manner, we can access the remote tap device, as
if we were local to the virtual machine. Because sshuttle runs in Python, it works on
Linux, macOS, and Windows.

To begin, install sshuttle with pip:

Now launch it:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Here’s an example from a Mac:

Now, from the system that is running sshuttle, open a web browser and try to connect
to that IP, as shown next. You may need to wait a minute for the web service to fully
start after the emulator launches the firmware.

The credentials are admin/password, which can be found online. And just like that,
we are logged into an emulated router, as shown here.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

If your web browser hangs, check the sshuttle application; it may have crashed and
needs to be restarted.

Lab 24-5: Exploiting Firmware
So far we have emulated the Netgear WNAP320 firmware in QEMU. Now it is time to
do what we came for: exploit the firmware. Dominic Chen and his team found a
command injection vulnerability in this firmware, running in FIRMADYNE. Let’s test it
and see if it can be exploited:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

From the previous output, you should note that we have injected a command to start
the telnet server. The “telnet –l /bin/sh” argument starts the telnet server on the default
port and binds it to the “/bin/sh” shell. The nmap scan shows that port 23 is now open.
After connecting to telnet, you will note that the user is root. Although this has been

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

done on emulated firmware, the same can be accomplished on the actual firmware. At
this point, the attacker has root access on the device and can potentially use the device
as a launching point for other attacks on the network.

Summary
This chapter demonstrated vulnerability analysis, both from a static and dynamic point
of view. It also demonstrated exploiting a command-injection attack both from a
dynamic and emulated point of view. In the latter case, you learned that vulnerabilities
can be discovered and proof-of-concept exploits can be developed without even
purchasing the hardware equipment. Using these techniques, it is hoped that ethical
hackers will find security vulnerabilities in embedded devices and disclose them in an
ethical manner, thus making us all more secure.

Further Reading
ARP spoofing https://en.wikipedia.org/wiki/ARP_spoofing

Busybox https://busybox.net

Craig Heffner’s Binwalk GitHub, https://github.com/ReFirmLabs/binwalk.

Craig Heffner’s blog (creator of binwalk) http://www.devttys0.com/blog/

Craig Heffner’s Firmware Mod Kit GitHub, https://github.com/rampageX/firmware-
mod-kit.

Ettercap https://ettercap.github.io/ettercap

Firmadyne GitHub https://github.com/firmadyne/firmadyne

Firmware Mod Kit Prerequisites https://github.com/rampageX/firmware-mod-
kit/wiki

IDA Pro Hex-Rays, https://www.hex-rays.com/products/ida

References
1. Bruce Schneier, “Security Risks of Embedded Systems,” Schneier on Security,

January 9, 2014,
https://www.schneier.com/blog/archives/2014/01/security_risks_9.html.

2. Craig Heffner, “Hacking the Linksys WMB54G, Using tfcp to Upload a Binary,”

||||||||||||||||||||

||||||||||||||||||||

https://en.wikipedia.org/wiki/ARP_spoofing
https://busybox.net
https://github.com/ReFirmLabs/binwalk
http://www.devttys0.com/blog/
https://github.com/rampageX/firmware-mod-kit
https://ettercap.github.io/ettercap
https://github.com/firmadyne/firmadyne
https://github.com/rampageX/firmware-mod-kit/wiki
https://www.hex-rays.com/products/ida
https://www.schneier.com/blog/archives/2014/01/security_risks_9.html
https://technet24.ir
https://technet24.ir

/DEV/TTYS0, July 12, 2012, www.devttys0.com/2012/07/hacking-the-linksys-
wmb54g/.

3. Dominic Chen, FIRMADYNE, https://github.com/firmadyne/firmadyne.
4. Dominic Chen, “D-Link/Netgear FIRMADYNE Command Injection/ Buffer

Overflow,” Packet Storm, February 26, 2016, CVE 2016-1555,
https://packetstormsecurity.com/files/135956/D-Link-Netgear-FIRMADYNE-
Command-Injection-Buffer-Overflow.html.

5. Brian May, “sshuttle: Where Transparent proxy Meets VMS Meets SSH,” sshuttle,
July 8, 2017, http://sshuttle.readthedocs.io/en/stable/.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.devttys0.com/2012/07/hacking-the-linksys-wmb54g/
https://github.com/firmadyne/firmadyne
https://packetstormsecurity.com/files/135956/D-Link-Netgear-FIRMADYNE-Command-Injection-Buffer-Overflow.html
http://sshuttle.readthedocs.io/en/stable/
https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 25
Fighting IoT Malware

As mentioned in Chapter 22, the Internet of Things (or IoT, as used throughout this
chapter) is expected to exceed 20 billion devices by 2020. Those devices will be part
of our lives at home, on the job, in the hospital, and so on, while we are running,
bathing, driving, watching TV, and even sleeping. Unfortunately, this explosion of
devices also allows attackers to have more options to steal our information, and the
most scary part is that it could allow them to cause physical damage to society—by
hacking into a pacemaker and causing a heart attack, by controlling a car remotely and
making it speed up until it crashes, by hijacking an airplane or ship, or by sending an
overdose via an infusion pump, just to mention a few scenarios.
This chapter will help you prepare to respond to malware targeting IoT devices by
having tools and techniques to dissect malware running on ARM or MIPS architectures
in order to detect, stop, and hopefully prevent such attacks in our organizations.

In this chapter, we cover the following topics:
• Physical access to an IoT device
• Setting up the threat lab
• Dynamic analysis
• Reversing ARM and MIPS malware

Physical Access to the Device
Having physical access to the IoT device via a serial port is recommended for many
reasons:

• Incident response Scenarios where a device is infected and the malware
running inside needs to be analyzed, but the device is not accessible either from a
local or remote console because it has been hijacked by ransomware.

• Penetration testing This is the most common scenario, where gaining physical
access to the device’s console can give you root access if it’s not configured
securely.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The section “Serial Interfaces” in Chapter 23 provides a great explanation of serial
ports like UART and even provides a description of the JTAG interface. Refer to that
chapter for more information on these topics. In this chapter, we focus on interacting
with the RS-232 serial port because it is widely used to allow console access on many
IoT devices.

RS-232 Overview
Our discussion of the RS-232 serial port focuses on the information needed for an
incident responder or penetration tester to be able to interact with the serial port. For a
more complete overview of the RS-232, refer to the link provided in the “For Further
Reading” section at the end of this chapter.

Back in its heyday, RS-232 was the standard communication port in personal
computers; however, due to its low transmission speed (among other factors), it was
eventually replaced by USB technology. However, in the IoT world, it is still a very
common communication protocol used mainly to provide console access to medical,
networking, entertainment, and industrial devices.

RS-232 can transmit or receive data synchronously and asynchronously, and it can
operate in full duplex mode, exchanging data in both directions concurrently. The data is
transmitted via voltage levels where a logical 1 (mark) is between –15 and –3 VDC and
a logic 0 (space) is between +3 and +15 VDC. Figure 25-1 presents a typical example
of an RS-232 waveform; the transmission begins with a “start” bit (logic 0), followed
by the data bits enclosed between the least significant bit (LSB) and the most significant
bit (MSB), and finishes with a “stop” bit (logic 1) to signal the end of the data. Although
it’s not reflected in the figure, a parity bit can also be used or discarded in order to
validate data integrity. Last but not least is the baud rate, which measures the number of
bits transferred per second (bps). The most common values are standardized at 9600,
38400, 19200, 57600, and 115200 bps.

Figure 25-1 RS-232 waveform example

RS-232 Pinout
The most common RS-232 connectors are the DB-9 and DB-25. In this chapter, we
focus on the DB-9 because it is the most common connector on IoT devices. Before the
pinout details are listed, it is important for you to understand how these devices are

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

classified, because a pinout is defined based on the device classification. There are two
types of RS-232 devices: data terminal equipment (DTE) and data circuit-terminating
equipment (DCE). Commonly, a DTE is tied to a computer and a DCE to a modem.
However, modems are not so common anymore. So, the best way to identify whether
you are dealing with a DCE or DTE is by measuring the voltage in the transmit pin,
which in a DB-9 can be either pin 3 or pin 2. If you get a voltage between –15 and –3
VDC in pin 3, the device is a DTE. If you get that voltage on pin 2, you are dealing with
a DCE device.

Why is it important to identify whether a device is a DCE or DTE? Because the pinout
is different, as shown in Figure 25-2. Pay attention to the differences between pins 2 and
3, because a wrong connection will cause null communication with the serial port.

Figure 25-2 DTE and DCE DB-9 pinouts

Identifying the proper pinout is very important for interacting with the IoT device.
Exercise 25-1 provides a practical example of this.

Exercise 25-1: Troubleshooting a Medical Device’s RS-232
Port
Here is the scenario: as an incident responder, you receive an IV pump infected with
malware. Your mission, should you choose to accept it, is to extract the malware
running inside. However, when you plug your serial cable into the device to get console
access, you receive no response, even after trying different baud rates. Therefore, a
more detailed analysis is needed. Following are the recommended steps to deal with
such a scenario. Please keep in mind that this is an ongoing investigation with a real
medical device at the time of this writing, so we are focusing on the knowledge needed

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

to deal with this type of scenario, not teaching the full details of the resolution.

Step 1: Understand the Device You Are Dealing With
The very first step is to take the time needed to understand the hardware and serial
protocol you are dealing with. This is normally done by disassembling the equipment,
identifying the chipset in question, and finding on the Internet what is known as the
datasheet, which is basically the technical specification of that particular device. On the
datasheet, you want to find the pinout (in other words, how the pins in the chipset are
being used). This exercise uses the RS-232 board from an IV pump. Figure 25-3 shows
the front of the device (left) and the board itself (right). At this point, you do not know
anything about the board yet. You can see it has an RJ-45 connector, which normally is
used for Ethernet communication, and on the right side of the figure you can see the
entire board and its components.

Figure 25-3 Serial device extracted

If you are new to the hardware-analysis world, and therefore are not familiar with the
chipsets embedded in the board, you can just buy a cheap magnifying glass so you can
easily see the small numbers on the chips. Then you can start Googling these numbers;
normally, you will find a lot of information about the purpose of that hardware, such as
whether it’s simply SDRAM, a microcontroller, a field-programmable gate array
(FPGA), or (as in our case) a serial interface. It’s recommended that the magnifying
glass come with clips because particularly when you need to solder something onto the
printed circuit board (PCB), you need to have your hands free due to the precision
required. Figure 25-4 shows using a magnifying glass to identify this device as a Maxim

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

MAX3227E.

Figure 25-4 Looking at the device through a magnifying glass

A quick search on the Internet reveals the datasheet at
www.ti.com/lit/ds/symlink/max3227e.pdf. Just by reading the description “3-V TO 5.5-
V SINGLE CHANNEL RS-232 LINE DRIVER/RECEIVER,” it is clear that you have
found your serial port and that it is using the standard RS-232 port, which means that the
RJ-45 jack is not for Ethernet communication. Now, prepare a cup of coffee and get
ready to read the entire specification, because it is very important to understand, in a
general way, how this device works. For the purposes of this exercise, you need to
identify the description of the pinout. What you want to find are the pins to transmit data,
receive data, and the ground.

Step 2: Map the Pins from the Devices
Now that you have identified the datasheet, you need to understand the pinout of the
MAX3227E. Figure 25-5 shows the pinout taken from the datasheet.

||||||||||||||||||||

||||||||||||||||||||

http://www.ti.com/lit/ds/symlink/max3227e.pdf
https://technet24.ir
https://technet24.ir

Figure 25-5 MAX3227E pinout

Page 3 of the datasheet provides the description of the pins. You are interested in the
following:

• GND (14) Ground
• RIN (8) RS-232 receiver input
• DOUT (13) RS-232 driver output

Now that you know the pins needed to interact with the device, it’s time to create your
patch cable. You need to identify the corresponding RJ-45 pins, for which it’s normally
easier to go by cable color rather than pin number. Here are the necessary steps to
accomplish this:

1. Grab a standard Ethernet cable (the kind you would use to plug into a computer)
and cut it so that you can get access to each wire separately.

2. Plug the RJ-45 connector into the device where the MAX3227E chip is embedded.
3. Get a multimeter and perform a connectivity test, as follows:

a. Turn the dial to Continuity Test mode (it looks like the Wi-Fi icon).

b. Touch the black and red test leads and make sure you hear a sound.

c. With the help of a magnifying glass, touch one test lead to pin 14 (ground) on
the MAX3227E.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

d. With the second test lead, start touching each wire of the Ethernet cable until
you hear a sound. Write down the color of the wire. Conventionally, the wire is
solid blue, but be sure to double-check.

e. Repeat the same process with pin 8 (RIN) and pin 13 (DOUT).
The mapping results are shown in the following table:

At this point, you have your patch cable ready to understand RS-232 communication
coming out of the IV pump. Now you need to work with the other side of the
communication, the PC, which will be using its DB-9 port. Therefore, you just need to
map the previously identified wires with the corresponding DB-9 read, transmit, and
ground pins, and you are set!

As you’ll recall, in every RS-232 communication, you need to identify the DCE and
DTE components. Thus, your laptop will be acting as the DTE and the IV pump as the
DCE. This is important because you will be using the DTE pinout (refer to Figure 25-2)
to interface with the IV pump via RJ-45. The following table provides the final
configuration.

Finally, now that all the mapping is done, it is time to connect all the components, as
shown in Figure 25-6. Here’s the final configuration:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 25-6 Final setup for RS-232 connectivity

IV pump RS-232 (MAX3227E) patch cable RS-232 (DB-9 connector
breakout)

The double (male and female) DB-9 interface is handy for these engagements because
it allows you to easily manipulate every single wire. These devices are called a “DB-9
connector breakout” and can be found in many hardware stores at a decent price (less
than $30 USD).

Step 3: Interface with the IV Pump’s Serial Port
Now it’s time to check whether everything works correctly in the IV pump, so put the
RS-232 PCB back into the medical device, connect all the wires as shown in Figure 25-
6, and use a DB-9-male-to-USB cable to plug into your laptop. You can see the final
setup in Figure 25-7.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 25-7 Final test for IV pump

Without turning on the IV pump yet, and with the USB cable plugged into the laptop,
fire up your Ubuntu virtual machine (VM) on VirtualBox in order to read from the serial
port. You need to attach the USB device to the VM, which is done by going to the menu
Devices | USB | FTDI FT232R USB UART [0600].

Depending on the USB you use, the name of the device will be different, but the rule
of thumb is to always look for a new device you haven’t seen before in the list.

Now you need to make sure the USB device has been identified by Ubuntu by
executing the lsusb command. The output should display the device you just saw in the
menu in the previous step, plus other devices already present in the system. Here’s an
example:

Now that you know the USB device is connected to your Ubuntu box, there are many
ways to interact with it, depending on the client you are using. Here are three ways to
identify your USB:

Looks like everything is set for your production test. However, you still do not know
the serial communication configuration (in other words, the values of the baud rate as

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

well as the parity and stop bits). There are three ways to approach this. The easiest
method is to look for technical manuals about the device and try to find those
parameters. The second option is to brute-force the values until you find the right ones.
This should be fast because the available baud rates are around 5. The final option is to
use a logic analyzer. You can think of this device as a sniffer for the serial port. It
identifies pulses being sent and measures what is called the “frequency between those
pulses,” which eventually can help you to identify the baud rate. It also helps to identify
the serial port’s transmit and receive pins, like in this exercise. If you noticed, only two
cables from the RJ-45 connector were used for this purpose. The Saleae logic analyzer
is recommended for this task, although it is expensive. For this exercise, a logic
analyzer was used to identify the parameters.

Let’s create a quick script to read from the serial port and see what you get. You can
use Python’s “serial” module for this. Here is an example of a serial port reading. You
can see that we are using the “/dev/ttyUSB0” device to interact with the port and are
using a baud rate of 57600, which is taken from the logic analyzer:

Run this script and turn on the IV pump to see if you get something. Voilà! You start
getting data—actually, the same data is sent every 2 seconds, which looks like a
heartbeat or synchronization data. This confirms you have properly identified the
receive pin! In Figure 25-8, you can see the test just run explained.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 25-8 Receiving data from the IV pump serial port

What about the transmit pin? You need to see if you can send something and get a
response. At the end of the day, if you want to break—sorry, to interact with—the IV
pump, you need to be able to send data through the serial port.

To send data, you just need to use the following line of code. You also need to send
back to the pump the same data you received to see if you get something different:

Success again! In Figure 25-9, you can see that after sending some bytes to the port,
you get a different response (‘\xfd\x90\x00\x8d\xfc\x16’), which confirms two things:
one, your transmit pin is properly working, and, two, the IV pump is reacting differently
based on the data sent.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 25-9 Transmitting data to the IV Pump serial port

At this point, I should thank John McMaster for his great contribution! His experience
and equipment were invaluable to this exercise. Also, thanks to Zingbox, Inc., for
supporting these kinds of efforts (that is, trying to identify issues with medical devices
proactively and working with the affected vendors). Unfortunately, we cannot publish
more details at this point because it is an ongoing investigation. However, at this stage,
it is just about understanding the serial packets, playing or fuzzing them to see if we can
accomplish unexpected behavior. If you are interested in the latest findings on this
device, go to https://ics-cert.us-cert.gov/advisories/ICSMA-17-017-02A.

Setting Up the Threat Lab
Traditional malware runs in Windows environments, and tools like sandboxes and
virtual machines already support these systems transparently. However, when dealing
with IoT malware, two different architectures are put into place that are far from being
supported transparently. These two architectures are ARM and MIPS, and in this
section, we discuss multiple options for emulating those environments in what we’ll
call our “threat lab.” As a quick overview, here are the different ways to get a system up
and running for the ARM and MIPS architectures:

• Use a QEMU (short for “Quick Emulator”). QEMU is an open source

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://ics-cert.us-cert.gov/advisories/ICSMA-17-017-02A
https://technet24.ir
https://technet24.ir
https://technet24.ir

machine emulator and virtualizer. This is the most common way to emulate the
ARM and MIPS architectures, and it’s very convenient for malware analysis
because snapshots can be used to avoid permanent changes in the hard disk.

• Use a development platform such as BeagleBone or Raspberry Pi. Although
not recommended for malware analysis, sometimes you need to run the malware
in a real environment. The good news is that these boards can always be reimaged
if needed.

• Use a sandbox such as the Cuckoo sandbox. Cuckoo can be customized to run
ARM and MIPS because, behind the scenes, it uses QEMU for the emulation part.
However, the results are still limited and far from the details you can obtain in
Linux environments, especially in terms of process execution indicators. Also the
Volatility plug-in is not supported. Still, it’s worth mentioning the effort done by
the team at https://linux.huntingmalware.com/, who were able to make Cuckoo
available.

In the next section, we use emulation through QEMU because it is the most stable and
mature platform for emulation.

ARM and MIPS Overview
Before we start playing with ARM and MIPS, let’s quickly look at what these
architectures are and how they work. ARM and MIPS are reduced instruction set
computers (RISCs) whose instruction set architectures (ISAs) have sets of attributes that
allow them to have lower cycles per instruction (CPI) and low operating voltages. This
reduces energy consumption, allowing these architectures to run on small devices (so-
called embedded devices) like a wristband with Wi-Fi capabilities or a finger ring with
Bluetooth connectivity. This architecture is different from the complex instruction set
computing (CISC) used by x86 processors found in the Windows and macOS X laptops
used on a daily basis. These RISC architectures support 32-bit and 64-bit versions.

ARM offers a 16-bit-long instruction set called Thumb that is basically a compressed
representation of the 32-bit instruction set, decompressed in real time, allowing for
code size reduction that directly impacts application performance.

Although both architectures are commonly used in game consoles, like those from
Nintendo and PlayStation, and in network equipment such as routers and residential
gateways, there is one main distinction: ARM is the architecture of choice for mobile
devices and is the most commonly supported in development boards like the
BeagleBone and Raspberry Pi.

Although the binaries are wrapped in the ELF Linux binary format, the header of the
binary will describe the machine and object file type. Figure 25-10 displays the ELF

||||||||||||||||||||

||||||||||||||||||||

https://linux.huntingmalware.com/
https://technet24.ir
https://technet24.ir

header. For a full understanding of the entire structure, refer to the great description
from CMU provided in the “For Further Reading” section.

Figure 25-10 ELF binary header

By looking at the header, you can see that the first 4 bytes of the e_ident member
(which has a size of 16 bytes) represent the magic number as \x7F\x45\x4c\x46, which is
always the same across architectures. However, right after those 16 bytes, the e_type (2
bytes) and e_machine (2 bytes) display the type of object being loaded. We are
interested in the number 2, which corresponds to an executable file, and the machine
type, which for ARM is equal to 0x28 and for MIPS is equal to 0x08. In Figure 25-11,
you can clearly see this; if you look at offset 16 (0x10 hexadecimal), you can see the
fields just described.

Figure 25-11 ELF header machine identification

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Also, it is important to understand that these architectures can support different
instruction sets. For example, ARMEL supports the ARMv4 version (mainly used for
compatibility issues), and ARMHF supports the ARMv7 platform (for the latest
technologies). The endianness is also important to properly execute the binary; MIPS
supports big-endian and MISEL little-endian.

More specific details are provided in the next sections for those architectures, while
we dig more into their internals.

Lab 25-1: Setting Up Systems with QEMU
Following are the requirements to replicate the lab:

• Physical PC Referred to as P-PC in this lab, this can be your Windows, Linux,
or macOS X machine where VirtualBox will be installed.

• Ubuntu 16.04 on VirtualBox Referred as Ubuntu-VM in this lab, this is the
machine where QEMU will be installed to emulate IoT devices.

• QEMU ARM/MIPS Referred as QEMU-Guest in this lab, these are the
machines emulating the ARM and MIPS environments.

• VNC client Used to connect to Ubuntu-VM during QEMU-Guest bootup
(optional).

Multiple sites on the Internet describe methods for getting ARM and MIPS up and
running. After a lot of tries, we found a great repository of pre-built VMs for ARM and
MIPS at https://people.debian.org/%7Eaurel32/qemu/ (thanks to Aurelien Jarno for
uploading these).

As you can see in the repository displayed in Figure 25-12, multiple directories
represent the architectures supported, and inside each directory, all the necessary files
and command lines are presented.

||||||||||||||||||||

||||||||||||||||||||

https://people.debian.org/%7Eaurel32/qemu/
https://technet24.ir
https://technet24.ir

Figure 25-12 QEMU VMs repository

Download all the wheezy release binaries from the “armel” directory into your
Ubuntu-VM. Also, make sure you configure the Ubuntu-VM in bridge mode.

NOTE The main difference between armel and armhf is the supported ARM versions:
armel supports older versions and is very useful when dealing with legacy systems.

Now fire up the ARM system by executing the following command:

The monitor option provides a QEMU shell to interact with QEMU-Guest, which is
useful to shut down the machine in case something goes wrong. We also add the vnc
option, providing the IP address of the Ubuntu-VM to spawn a VNC Server instance on
port 5901 by default. A VNC client will be needed to access it; no credentials are

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

required, although those can be set via the QEMU shell. This is useful to watch the
booting process and detect any problems during this phase. Finally, the redir option is
used to connect to QEMU-Guest via SSH from Ubuntu-VM. This is done via port
redirection because by default QEMU-Guest is configured as a NAT device and is not
reachable directly. Therefore, we need to connect to local port 6666 on the Ubuntu-VM,
which will be redirected to the QEMU-Guest machine on port 22 (SSH). Here’s the
command to use:

The default username and password for the machine are both “root.” Figure 25-13
shows that the ARMEL system has started and we are already logged into the system.

Figure 25-13 Watching the boot process via a VNC client

Now it’s time to install all the tools needed during our malware analysis:

• GDBServer Allows us to perform remote debugging
• Tcpdump Allows us to capture network traffic
• Strace Allows us to record syscalls during malware execution

Before going any further, it is important to update the system by running the following
command:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Note that those pre-built images always throw the following error:

In order to fix this, execute the following command:

Now, execute the update command again and it should work. Finally, the necessary
tools are installed as follows:

Now that all the tools needed are installed, you are ready to run the malware.
However, that is outside the scope of this exercise. See Lab 25-2 for those details. Note
that you can follow exactly the same process to run other architectures such as MIPS
through QEMU. You just need to download the proper files from the repository.

Dynamic Analysis of IoT Malware
As mentioned earlier, multiple options are available to execute Windows-based
malware in a monitored environment to extract indicators dynamically. Solutions such
as Cuckoo Sandbox and Payload Security are two examples. However, when it comes
to dynamic analysis on ARM or MIPS, there is still no solid solution—at least one
that’s freely available. Therefore, we need to create our own environments. Lab 25-2
details the steps to follow to replicate an IoT malware known as Satori and extract
network- and host-based indicators.

Lab 25-2: IoT Malware Dynamic Analysis
Before starting this lab, note that we will be using real malware found in the wild.
Therefore, you are highly encouraged to run it in a virtual environment, totally
segregated from your corporate or home network. It is also recommended that you make
sure any inbound communications started from the guest VM to the host machine are
rejected.

Sample MD5 to be used during this Lab =
ad52832a507cede6521e11556f7cbb95

Fire up your armel emulated machine via QEMU, as previously described in Lab 25-

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

1, but this time with a significant change: you need to add the option -snapshot to the
command line to prevent the malware from causing permanent damage on the guest’s
hard disk. With this option, the next time you reboot the machine, any modifications
made by the malware will be gone, which perfectly fits our need during malware
analysis. We do not want to reuse an infected host multiple times; it must be a fresh start
for each iteration. You can monitor the booting process via VNC access. Once the login
prompt appears, copy the malware (470.arm) to QEMU via the following scp command:

In case you forgot, the credentials are root/root. Once the file is copied successfully,
log into the ARM machine and make sure the file is there. Then change the permissions
to 755 and get ready for execution!

You will need another shell in order to run tcpdump to capture network traffic. You
can start the network traffic capture with the following command:

We are basically saying to listen on network interface eth0 and only focus on the IP of
the guest machine and only listen to TCP or UDP ports (to avoid ARP or other noisy
traffic). Also, because we are dealing with Mirai-based malware, we want to avoid
port 23, which is normally used for scanning the Internet and will quickly increase the
size of our capture file with the same destination port. It is highly recommended that you
avoid doing this on your local network because your IP might be banned by your ISP.

On another terminal, trace the execution of the malware by executing the following
command. Probably the most important options are -f for following child processes
(very important since Mirai-based malware uses fork to eventually hide from the parent
process) and -o for storing the gathered information into a file.

Once strace and tcpdump are running, you can always monitor the size of those files
and transfer the current captured file at intervals. Depending on the malware, it can be
left running for minutes, hours, or even days. For this lab, after 5 minutes you can stop
the malware execution (normally by shutting down the machine).

By taking a look at the captured traffic, you can identify the attacker’s host (C2) where
the malware is trying to connect, as shown in Figure 25-14.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 25-14 C2 used by the malware

If you want more details about the actions performed on that site, you can take a look
at the satori.out output file, where you can easily identify a telnet connection to the
resolved IP 177.67.82.48, as shown in Figure 25-15.

Figure 25-15 Telnet connection with the C2

The duration of this particular capture shows an infinite loop of the malware trying to
get a response from the host, which is not available at the time of testing. That’s the
normal behavior of Mirai-based malware, waiting to receive the command to be
executed.

Feel free to play with the malware or execute other samples following the same
approach. You will eventually need a strace output parser for a good-looking report.

Platform for Architecture-Neutral Dynamic Analysis
(PANDA)
PANDA is an open source platform for architecture-neutral dynamic analysis. Although
it does not fully support MIPS and is in an early experimental phase, it is definitely a
framework to keep an eye on. PANDA is being developed collaboratively among MIT
Lincoln Laboratory, New York University (NYU), and Northeastern University. It is
built on QEMU for emulation and adds the ability to record and replay malware
executions multiple times, going through different plug-ins that allow for syscall
monitoring, taint analysis, and so on. It also includes a mechanism to share functionality
between plug-ins in order to avoid duplication of efforts. Unfortunately, we did not find
a stable version during our ARM malware analysis, so we decided not to prepare a lab.
However, be sure to keep an eye on PANDA and give it a try. If it can move into a stable
release, it has the potential to be one of the must-have frameworks for IoT dynamic
malware analysis.

PANDA can be built from its GitHub repository, which also includes a Docker image
to simplify the installation process.

BeagleBone Black Board
Sometimes the malware won’t run on a virtual machine or is heavily hardware
dependent, or perhaps you are just reversing a piece of code of a Car infotainment. For

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

those cases, a real device running an ARM system is highly recommended, and the
BeagleBone Black board device is the way to go in this scenario: it cost less than $60
and you can always re-flash the firmware if it gets affected by the malware. This board
runs on a Cortex-A8 ARM system, with USB, Ethernet, HDMI, and 2 x 46 pin headers
for connectivity.

You just need to download the USB drivers for your computer, set up the SD card for
booting, if needed (check the “For Further Reading” section for the Beaglebone Black
Getting Started URL), and then just plug your BeagleBone device into your computer via
USB, which should automatically assign you an IP in the 192.168.6.x or 192.168.7.x
segment. Then you can use an SSH client to log into your ARM system that is waiting
for you at the IP 192.168.7.2 or 192.168.6.2.

Reverse Engineering IoT Malware
Reverse engineering is a skill that requires knowledge of assembly, which is the
language used by the microprocessors. The goal is to understand how a program works
without having the source code. Traditionally, most of the work is done on Intel
microprocessors running Windows or Linux operating systems, but with the exponential
growth of IoT devices, the need to understand ARM and MIPS architectures is
mandatory. This section summarizes the key concepts needed to be able to reverse-
engineer malware running on these architectures.

Crash-Course ARM/MIPS Instruction Set
Before jumping into the IoT malware debugging, you need to understand key concepts
that will make your life easier when reversing these type of threats. The good news is
that the number of instructions in ARM/MIPS is significantly lower than in the x86
architecture and therefore it won’t be hard for you to get up to speed.

Calling Convention
As usual, when you’re learning new architectures, understanding the calling convention
is mandatory. You need to understand how the parameters are passed to the functions
and where you get the response back.

Let’s create some quick ARM code and compile it to see the calling convention in
action:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Now we just need to compile it with a cross-compiler:

NOTE A VM with cross-compilers and other useful tools like GDB and Objdump for
ARM, MIPS, PowerPC, and many other architectures can be found at
http://kozos.jp/vmimage/burning-asm.html. Note that this is the Japanese version.

Let’s look at the disassembly by running the following command:

Figure 25-16 shows the calling convention. We will refer to the assembly code based
on the line numbers in the left column, starting with 0, 4, 8, c ... all the way to the line
40.

Figure 25-16 ARM calling convention

The numbers 0 to 3 ➊ are passed directly to the registers r0 to r3 in the assembly
code. Look at the line numbers 2c, 20, 8, and 28 (left side) in Figure 25-16. The

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://kozos.jp/vmimage/burning-asm.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

parameter with the value 4 is first moved to the register ip at line 14 and then stored in
the stack via (stack pointer) register [sp] at line 1c. The same process is used for the
parameter with the value 5; it is assigned at line 18 and then stored at [sp, #4] (stack
pointer + 4) at line 30. Finally, for the last parameter with the value 6, its value is first
calculated at line 24 by adding the current value of “ip = 4” (calculated at line 14), plus
the current value of “r2 = 2” (assigned at line 8), for a total of 6. This is finally stored
in the stack at offset [sp, #8] (stack pointer + 8) at line 34.

Now let’s do the same, but this time compile with MIPS toolchain (mips-elf-gcc). The
result can be seen in Figure 25-17. Again, we will refer to the assembly code based on
the line numbers along the left side.

Figure 25-17 MIPS calling convention

This time, the function parameters from 0 to 3 are passed directly via registers a0–a3
at lines 14, 18, 1c, and 20 (left side). Then, the parameter with the value 4 is assigned at
line 4 and then stored at [stack pointer + 16]. Then, the parameter with the value 5 is
assigned at line c and then stored at [stack pointer + 20] at line 28. Finally, the
parameter with the value 6 is assigned at line 10 and then stored at [stack pointer + 24]
at line 30.

Feel free to perform this same exercise for other architectures to validate the calling
conventions.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

IoT Assembly Instruction Set Cheat Sheet
Table 25-1 provides a pretty handy cheat sheet, where you can easily find the usage for
common registers as well as operations that can aid in your reversing efforts.

Table 25-1 Multiarchitecture Reference

For full details for architecture-specific instructions, check the following URLs:

• ARM http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042f/IHI0042F_aapcs.pdf
• MIPS www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html

Lab 25-3: IDA Pro Remote Debugging and Reversing
Here are the requirements for Lab 25-3:

• IDA Pro licensed
• Ubuntu 16.04 VM
• MIPS Qemu environment (see Lab 25-1)
• Okiru malware (MIPS 32-bit): okiru.mips (MD5:

7a38ee6ee15bd89d50161b3061b763ea)

Now that you are armed with an understanding of basic assembly instructions, we can
start debugging malware.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042f/IHI0042F_aapcs.pdf
http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

NOTE The best recommendations during this type of effort are to perform static
analysis via a disassembler like IDA Pro or radare2 and to use dynamic debugging with
a tool like IDA Pro, Immunity Debugger (OllyDBG fork), or GDB.

This lab presents two approaches to debugging IoT malware: the quick approach via
the QEMU stand-alone version, and the full system emulation via the QEMU system
option. We will also discuss pros and cons of each approach.

Emulating the Binary
The fast way to start debugging an IoT malware sample is by emulating the binary only
and not the entire system. This has some limitations, due to the restricted environment,
and because network communication and system checks might fail, but it’s definitely a
great and fast start to get into the malware details.

To get this running, log into your Ubuntu VM (running VirtualBox in this case), copy
the malware binary to the system (via SSH or drag and drop), and execute these
commands in order:

Figure 25-18 shows that our instance has been started with QEMU, and thanks to the -
g option, we have also spawned a GDBServer that has stopped the binary execution at
the entry point and is waiting for a debugger to attach to it at TCP port 12345.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 25-18 Launching a stand-alone emulation with QEMU

Now, on the system where IDA Pro is installed, open exactly the same okiru-mips
binary just executed and then go to Debugger | Select Debugger | Remote GDB
Debugger.

Select the Debugger | Process Options and fill out the options, making sure you enter
the path of the binary as it appears in the Ubuntu VM (Debuggee), as well as the IP
address and port, and then click OK (see Figure 25-19).

Figure 25-19 Debugger process options

Last but not least, set a breakpoint at the entry point of the program in IDA (by
pressing F2 on the desired line) to make sure the malware execution stops at the
beginning. Although that is the expected behavior, sometimes it fails and executes all the
way to the end. This is simply a sanity check. To run it, click Debugger | Start Process.

A warning will prompt to make sure you know what you are doing. Click the Yes
button. You should receive a message saying that there is a process already being
debugged, which confirms we are heading in the right direction (see Figure 25-20).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 25-20 Confirmation of a process already being debugged

If the process was successfully attached, you should receive a success message, as
shown in Figure 25-21. If an error occurred, check the configured parameters.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 25-21 Success confirmation

Finally, you can see IDA has stopped at the binary entry point at the address 0x400260
(see Figure 25-22). From here, you can start stepping into every function (by pressing
F7) or stepping out of functions (by pressing F8).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 25-22 Debugger breakpoint at the entry point

The limitation of this approach is that because the malware is not running in a full
environment, it might fail during TCP/UDP connections or while trying to read/write at
specific locations. To avoid this limitation, a full system emulation is recommended.
For that, check the next section.

Emulating the Full System
Now let’s run the malware via full QEMU emulation. In order to do this, you can install
a GDBServer inside the QEMU VM and then follow the same process to attach to the
IDA Pro Debugger remotely.

You can fire up your MIPS 32-bit system with the following command, taking into
consideration the option -standalone, which makes sure there are no permanent changes
in the image, and the redirection to port 12345, which will enable port redirection from
the Ubuntu host machine port 12345 to QEMU VM port 12345, where GDBServer will
be running:

Once the system is up and running, you can copy the malware over to QEMU and fire

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

up GDBServer on port 12345 with the malware attached:

At this point, simply follow the same process described earlier to attach IDA Pro to
the malware via GDBServer. The only difference is that the path on the MIPS system is
/root/okiru-p.mips, so make this change accordingly.

Figure 25-23 shows the GDBServer receiving the connection from IDA Pro Remote
Debugger (IP 192.168.1.185).

Figure 25-23 Remote debugging on full QEMU system

This time, because you have full emulation of the system, you can run iptables,
tcpdump, strace, or any other tool to trace or restrict malware execution.

IoT Malware Reversing Exercise
At this point, we have all the environments ready to analyze IoT malware targeting the
ARM and MIPS architectures, so let’s perform an exercise for reversing these threats.

Looking at the sample being analyzed, you can see that it has been stripped of
symbols. This is done to make the reverser’s life harder. Because we do not have
function names, the time for analysis increases dramatically and sometimes isn’t even
doable.

Fortunately, the syscalls are there, so either by creating an IDA Pro plug-in or by
manually documenting the syscalls, you can start renaming those multiple functions.

Figure 25-24 shows a syscall to the service ID 0x104C (passed via the V0 register),
which corresponds to the API getsockname.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 25-24 Renaming syscalls on MIPS

You can find an excellent syscall reference for multiple architectures at
https://w3challs.com/syscalls/. Kudos to whoever uploaded it.

When you’re dealing with syscalls in ARM, the syntax is different. In newer versions,
the svc command is used, and the service ID is hardcoded for every call. Figure 25-25
shows an ARM version of the okiru malware (ad52832a507cede6521e11556f7cbb95)
with the ID 0x900005, which in this case corresponds to the “open” function call.

Figure 25-25 Renaming syscalls on ARM

||||||||||||||||||||

||||||||||||||||||||

https://w3challs.com/syscalls/
https://technet24.ir
https://technet24.ir

Once the syscalls are renamed, the entire binary will make more sense; from there,
you can apply the same reversing process as used in Windows environments. One of the
most important pieces of information is the IP or domain the malware is trying to reach.
Let’s see how that looks in IoT (since it is Linux-based, there’s really no difference).

We put a breakpoint at 0x4065C4, and thanks to the syscall renaming, you know it
corresponds to the “connect” function call (see Figure 25-26). Because of that, you can
also now identify the parameters by looking at the definition:

Figure 25-26 Displaying the sockaddr structure in IDA Pro

Because you know that the second parameter passed via register A1 holds a sockaddr
structure, you can ask IDA to show you the memory content of that register by right-
clicking Memory Windows (lower-left window) and selecting “Synchronize with” ->
A1, as displayed in the aforementioned figure. By looking at the sockaddr_in structure
definition in the following code, you can see that the first parameter is the length of the
structure, which is optional and is not being used in this case. You can also see that the
second parameter is the sin_family, which has the number in memory equal to 00 02
(big-endian), corresponding to AF_INET. Then follows the port content, 00 35, which

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

is the hexadecimal representation of 53 (domain port). Finally, you see the IP address,
which corresponds to 08 08 08 08, a public domain IP address.

Although this specific connection is not related to the C2 server, it serves as an
example of how to identify structures in memory and how to get the proper values out of
it.

Summary
This chapter presented an approach to tackling challenges when dealing with RS-232
interfaces in medical devices—something very common when dealing with IoT
hardware. The chapter then described the different ways to perform dynamic analysis on
IoT malware and the setup needed to accomplish that. Last but not least, the labs in this
chapter showed you how to perform remote debugging with IDA Pro on ARM and MIPS
architectures, as well as how to perform basic reverse engineering.

For Further Reading
BeagleBone Black http://beagleboard.org/getting-started

Development platforms:

BeagleBone Black https://beagleboard.org/black

Raspberry Pi https://www.raspberrypi.org/

ELF reference www.cs.cmu.edu/afs/cs/academic/class/15213-f00/docs/elf.pdf

Endianness https://en.wikipedia.org/wiki/Endianness

Logic analyzer https://www.saleae.com/

PANDA framework https://github.com/panda-re/panda

QEMU https://www.qemu.org/

RS-232 serial port https://en.wikipedia.org/wiki/RS-232

||||||||||||||||||||

||||||||||||||||||||

http://beagleboard.org/getting-started
https://beagleboard.org/black
https://www.raspberrypi.org/
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f00/docs/elf.pdf
https://en.wikipedia.org/wiki/Endianness
https://www.saleae.com/
https://github.com/panda-re/panda
https://www.qemu.org/
https://en.wikipedia.org/wiki/RS-232
https://technet24.ir
https://technet24.ir

Sandboxes:

Cuckoo https://cuckoosandbox.org/blog/cuckoo-sandbox-v2-rc1

Detux https://github.com/detuxsandbox/detux

Satori IoT malware http://blog.netlab.360.com/warning-satori-a-new-mirai-variant-
is-spreading-in-worm-style-on-port-37215-and-52869-en/

VirtualBox https://www.virtualbox.org/wiki/Downloads

VirtualBox bridge mode
configuration https://www.virtualbox.org/manual/ch06.xhtml#network_bridged

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://cuckoosandbox.org/blog/cuckoo-sandbox-v2-rc1
https://github.com/detuxsandbox/detux
http://blog.netlab.360.com/warning-satori-a-new-mirai-variant-is-spreading-in-worm-style-on-port-37215-and-52869-en/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/manual/ch06.xhtml#network_bridged
https://technet24.ir
https://technet24.ir
https://technet24.ir

INDEX

& symbol, 19
&& operator, 195
\ (backslash) character, 229
` (backtick) character, 203
' (single quote) character, 347
< (less-than operator), 21
<= (less-than-or-equal-to operator), 21
%s format token, 230
%x format token, 230
#$ format token, 231
0-day exploits, 365
1-day exploits, 364, 365
6LoWPAN protocol, 499
32-bit Kali Linux, 19, 503
64-bit Kali Linux, 19, 468, 469

A
AARs (after-action reports), 140, 154
abstract syntax tree (AST), 76
Access Device Statute, 10
action element, 392
activity element, 392
acts on objectives phase, 152–153
adaptive testing, 136–139
adb command, 401
add command, 31
Add-Persistence function, 335

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Address Resolution Protocol (ARP), 537
address space layout randomization. See ASLR
addressing modes, 33
Adleman, Len, 465
AES encryption, 408, 440–441
AFL fuzzer, 61–64
after-action reports (AARs), 140, 154
Agent section, Peach Pit, 51
AIDS Trojan malware, 418
AJAX (Asynchronous JavaScript), 348
alert function, 352
Allowed Calls parameter, 72
alternative endings, 153
American Civil Liberties Union (ACLU), 112
Amini, Pedram, 77
AMQP protocol, 499
analog-to-digital conversion (ADC) resolution, 90
analysis

black-box, 405, 406–407
collaborative, 77–82
crash, 57–60
DEX, 393–395
malware, 402–407
network, 84
ransomware, 422–441
vulnerability, 533–536
See also dynamic analysis; static analysis

Analyze phase for SDR, 96–103
Androguard project, 397
android:name attribute, 392
Android application package. See APK
android command, 400
Android Developer Reference, 393
Android platform, 389–407

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

APK archive format, 389–391
application manifest, 391–393
DEX analysis, 393–395
DEX decompilation, 396–398
DEX disassembling, 398–399
Droidbox analysis, 405, 406–407
emulation of APK, 399–402
Java decompilation, 395–396
malware analysis, 402–407

Android Virtual Device (AVD) Manager, 400–401
AndroidManifest.xml file, 391–393, 403
Androperm script, 403
anti-debugging checks, 427–430
APIs (application programming interfaces)

Bugcrowd functionality, 168–170
Shodan search engine, 504–505
XFS synchronous/asynchronous, 447

APK (Android application package), 389–391
decoding with apktool, 391–392
directory structure/files, 391
explanation of, 389–390
running in emulator, 399–402

apktool
baksmali disassembly using, 399
decoding the APK using, 391–392

App Paths registry key, 379
Apple Store application decrypting, 411–413
application diffing, 363–364
application element, 392
application optional exploit mitigation, 290
application programming interfaces. See APIs
applications

Android platform, 389–393
decrypting from Apple Store, 411–413

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

exploitation of web, 341–362
iOS platform, 409, 411–412
XSS changes to, 348–350, 363–364
See also mobile applications

apt-get package manager, 530
arbitrary memory

reading from, 229–232
writing to, 232–234

architecture
ARM, 512, 558–559
evaluation of, 135
master/slave, 518–519
MIPS, 513, 558–559
processor, 28–29
RISC, 558
WOSA, 446
XFS, 446–447

ArithLog Rating parameter, 72
Arizona Cyber Warfare Range, 117
ARM architecture, 512, 558–559

ARMEL and ARMHF, 559, 561
calling convention, 565–566
cheat sheet reference, 567
profiles and applications, 513
resources about, 526
syscall renaming, 573

Art of War, The (Sun Tzu), 143, 465
Ashton, Kevin, 497
ASLR (address space layout randomization), 202

bypassing, 292–293
defeating through memory leaks, 299–316
disabling on Kali Linux, 231
explanation of, 290–291
high-entropy, 291

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Linux use of, 242, 251
Windows use of, 289, 290–291

assembly language, 30–34
addressing modes, 33
assembling, 34
file structure, 33–34
machine language vs., 30
NASM vs. AT&T syntax, 30–33

assessments
external, 137
internal, 138–139
penetration test, 19
physical security, 137–138
red teaming, 129–130, 136–139
vulnerability, 129, 533–536

asymmetric-key algorithms, 436
asynchronous call, 447
AT&T assembly syntax, 30–33
ATM machines

component overview, 443–445
functional steps in using, 445–446
physical and virtual attacks on, 453
skimmers installed on, 452
XFS standard for, 446–451

ATM malware, 443, 451–463
banks affected by, 453
countermeasures for, 462
customers affected by, 452–453
dissection techniques, 455–462
installation techniques, 453–455
interaction methods, 453–454, 458–462
resources about, 462

attack frameworks, 135
attack vector

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Linux exploit, 219–220
Windows exploit, 267–269

AttackIQ FireDrill, 155
attacks

disrupting, 151–153
emulating, 6–9
recognizing, 5

automated dynamic analysis, 83–84
automated teller machines. See ATM machines
automation, security, 154–155
AVD (Android Virtual Device) Manager, 400–401
AV-TEST Institute, 83

B
backdoor, persistent, 333–336
bad characters, 271
baksmali disassembler, 398–399
Bandit war game, 116
bandwidth, 90
Banking Solutions Vendor Council (BSVC), 446
banks

ATM malware affecting, 453
XFS standard used by, 446–451

Barnett, Bruce, 359
bash shell, 232
basic blocks, 80–81
Basic Blocks Size parameter, 72
BeagleBone development platform, 558, 564
behavioral analysis, 84
binary diffing, 363–371

application diffing as, 363–364
describing the process of, 363
exploitation based on, 378–384
lab exercises on, 369–371, 375–378, 379–384

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Microsoft patches, 375–378, 379–384
patch diffing as, 364–365, 378–384
resources about, 384–385
tools used for, 365–371

binary .plist files, 410
BinCrowd plug-in, 77
BinDiff tool, 365, 366–367
BinNavi tool, 78, 80–82, 366
bitcoin, 418
bits, 24
Black Hat conferences, 114
black-box emulator environments

APK monitoring with Droidbox in, 406–407
monitoring malware samples in, 405

bladeRF device, 90
blue team operations, 9, 127, 145–150

common challenges of, 149–150
incident response program, 147–150
knowing your enemy for, 145–146
security frameworks, 146–147
tracking response activities of, 134
understanding your environment for, 146
See also purple teaming operations; red teaming operations

Bluetooth protocols, 499
boot process security, 408
bootloaders, 523–524
bootstrapping, PowerShell, 326–328
bottom-up approach, 437
Boyd, John, 150
Bradshaw, Stephen, 54
breakpoints

hardware, 425–426
memory leak bug, 306–313
removing, 423–424, 428

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

strcpy function, 259–260
Browser Exploitation Framework (BeEF), 341
.bss section in memory, 26
BSTR allocations, 306
buffer

explained, 27, 201
exploiting a small, 214–216
overrun detection, 284–286

buffer overflows, 201–216
explanation of, 201–202
local exploits, 207–216
meet.c program lab, 202–205
ramifications of, 206
small buffer exploits, 214–216
stack overflow exploits, 209–214

bug bounty programs, 161–175
BugCrowd platform, 164–171
controversy surrounding, 163
earning a living through, 171–172
history and concept of, 161
incentives offered through, 163
incident response and, 173–174
popular facilitators of, 163
resources about, 175
types of, 161–163

BugCrowd platform, 164–171
API setup and example, 168–170
overview of how it works, 164
program owner web interface, 164–170
researcher web interface, 170–171

bugs
DLL side-loading, 378–379
memory leak, 299–316
type confusion, 299

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

use-after-free, 286, 299–303
BuildUserAgentStringMobileHelper() function, 380
Bus Pirate tool, 517, 519
business structure, 119
Busybox program, 525, 530
bypassing memory protections

ASLR protections, 292–293, 299–316
DEP protections, 293–299
/GS protections, 285–286
SafeSEH protections, 275–277
SEHOP protections, 277–284
stack protections, 238–240

bypassuac command, 338
bytes, 24

C
C programming language, 15–24

basic constructs, 15–22
comments, 22
compiling with gcc, 23–24
for and while loops, 20–21
functions, 16–17
if/else construct, 22
main() function, 16
printf command, 18–19
sample program, 22–23
scanf command, 19
strcpy/strncpy commands, 20
variables, 17–18

C++ code, 74–77
HexRaysCodeXplorer, 76–77
quirks of compiled, 74–75
runtime type information, 76
virtual tables, 75

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

call command, 32, 200
calling conventions

ARM code, 565–566
MIPS code, 566

Capability Maturity Model (CMM), 147
Capture phase for SDR, 92–94
Capture the Flag (CTF) events, 111, 116
Carbon Black Response, 149
cat phishing, 138
category element, 392
Cauquil, Damien, 277
CButton creation, 316
cellular networks, 498
CERT Coordination Center, 160
CERT.RSA file, 391
CERT.SF file, 391
Certified Ethical Hacking (CEH) certification, 114
Certified Penetration Tester (GPEN) exam, 114
CFAA (Computer Fraud and Abuse Act), 10–11
CFG (Control Flow Guard), 253, 289, 363
challenge hashes, 183
char variable, 17
checkXSS function, 351–352
Chen, Dominic, 546
Cheswick, Bill, 465
chief information security officer (CISO), 13
chips, embedded device, 511
Chrome browser. See Google Chrome
Cipher Block Chaining (CBC), 358
CISA (Cybersecurity Information Sharing Act), 12–13
Cisco device decoy emulation, 486
Cisco Discovery Protocol (CDP) packets, 486
classes.dex file, 391
Cobalt Strike software, 136, 139

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

code annotation, 67–77
C++ code analysis, 74–77
IDB with IDAscope, 67–73

Cohen, Danny, 25
Cohen, Fred, 465
Coldwind, Gynvael, 61
collaboration tools, 123
collaborative analysis, 77–82

BinNavi tool for, 80–82
FIRST plug-in for, 78–80
IDA plug-ins developed for, 77–78

CollabREate plug-in, 77
command and control (C2) phase, 152–153, 336
command line

exploiting stack overflows from, 209–212
interacting with decoy system, 486, 487
Shodan search engine, 503–504

commands
C language, 18–20
gdb debugger, 35
Immunity Debugger, 257–258
Perl, 202–203, 209
PowerShell, 325–326
WinRM for executing, 194–195
WMI for executing, 191–194
See also specific commands

comments
BinNavi collaboration, 82
C programming language, 22

commercial honeypots, 480
Common Ground blog, 131
Common Vulnerability Scoring System (CVSS), 173
Common Weakness Scoring System (CWSS), 173
communication protocols, 499

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

communications
bug bounty program, 173
purple teaming, 154
red teaming, 132–134

compiler controls exploit mitigation, 290
compilers

gcc, 23–24
Windows, 254–256

compiling process, 23
complex instruction set computing (CISC), 558
Computer Emergency Response Team (CERT), 160
Computer Fraud and Abuse Act (CFAA), 10–11
computer memory. See memory
ConPot honeypot, 472–473
containment, 128
ContentType header, 356
Control Flow Guard (CFG), 253, 289, 363
cookies

guessing the value of, 285
heap metadata, 286
padding oracle attacks on, 359–361
replacing with your own, 286

Coordinated Vulnerability Disclosure (CVD), 160
Corelan team, 266, 273
corporate bug bounty programs, 161–162
Cortex tool, 155
Cowrie honeypot, 473–475
CPUs, embedded system, 511–513
crash analysis, 57–60
crashing Windows programs, 258–261
Cross-Site Scripting. See XSS
CrowdRE plug-in, 77
CryptAcquireContextA variable, 437–439
crypter ransomware, 417, 435–441

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CryptExportKey function, 436
CryptGetKeyParam function, 437
CryptGetRandom function, 437
cryptid value, 412, 413
cryptographic functions

IDAscope identification of, 72–73
ransomware employing, 436, 440–441
See also encryption

CryptReleaseContent function, 437
CSecurityManager virtual function tables, 312
CTF (Capture the Flag) events, 111, 116
CTF365.com website, 116
CTFtime.org website, 116
Cuckoo Sandbox, 83–84, 558
curiosity of spirit, 112
Curl commands, 169
custom Linux exploits, 217–222

attack vector, 219–220
building, 220–221
EIP control, 217–218
offset determination, 218–219
verifying, 221–222

CVE-2016-0041 Windows vulnerability, 379
CVE-2017-0147 Windows vulnerability, 373
CVE-2017-5638 Struts vulnerability, 354–356
CVE-2017-9805 Struts vulnerability, 356–358
“Cyber Exercise Playbook” (Mitre Corporation), 130
Cyber Kill Chain framework, 135, 151–153
Cyber Security Enhancement Act (CSEA), 12
cyberlaw, evolution of, 10–13
cybersecurity

automation of, 154–155
current landscape of, 4–5
frameworks for, 146–147

||||||||||||||||||||

||||||||||||||||||||

http://CTF365.com
http://CTFtime.org
https://technet24.ir
https://technet24.ir

Internet of Things and, 499–500
iOS mechanisms for, 407–409
laws pertaining to, 10–13

Cybersecurity Information Sharing Act (CISA), 12–13
Cydia Impactor, 411

D
DAD decompiler, 397–398
Dai Zovi, Dino, 161
daisy chain configuration, 518–519
Dalvik executable (DEX) format

analysis of, 393–395
Java code related to, 393, 394
See also DEX code

DarunGrim tool, 365, 367
.data section in memory, 26
data circuit-terminating equipment (DCE), 550
Data Encryption Standard (DES), 182
Data Execution Prevention. See DEP
Data Protection technology, 408
data sources, threat hunting, 148
data terminal equipment (DTE), 550
DataModel section, Peach Pit, 50
datasheet for devices, 551
DB-9 connector, 550, 554
DDS protocol, 499
debug interfaces, 520–523

JTAG, 520–522
SWD, 522–523

debuggers
crash analysis and, 57–60
embedded device, 520–523
!exploitable extension for, 57–58
gdb debugger, 34–37

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Immunity Debugger, 256–258
OllyDbg, 281
WinDbg, 261, 305
Windows 8.0, 300
x64dbg, 85–87

dec command, 32
deception, 465–493

brief history of, 465–466
open source honeypots for, 466–480
resources on honeypots and, 491–492
TrapX DeceptionGrid for, 480–491
See also honeypots

deception tokens, 487, 488
Deception Toolkit, 465
decision frameworks, 150–151
decode function, 102, 103
decompilation

of DEX code, 395, 396–398
of Java code, 395–396

decoy systems, 485–486
decryption

Apple Store application, 411–413
cookie value, 360–361

delivery phase, 152
DEP (Data Execution Prevention)

bypassing, 293–299
explanation of, 289–290
ProSSHD exception for, 263
ROP exploitation of, 263, 289

Department of Defense Directive (DoDD), 128
Department of Homeland Security (DHS), 117
DES (Data Encryption Standard), 182
Desktop ownership, 430–433
detection mechanisms, 153

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

device under test (DUT), 92
DEX code

analysis of, 393–395
decompilation of, 395, 396–397
disassembling of, 398–399
Java code related to, 393, 394

Dex2jar project, 394, 395
Diaphora tool, 365, 367
dictionaries, Python, 42
diffing process. See binary diffing
Digital Millennium Copyright Act (DMCA), 11
digital rights management (DRM), 411
Dionaea honeypot, 469–472
direct parameter access, 231–232
disassembling code

binary diffing tools for, 365–371
DEX file disassembly, 398–399
disassemblers for, 365, 398–399
gdb debugger for, 36–37

distributed denial-of-service (DDOS) attacks, 507
DLLs (dynamic link libraries), 364

side-loading bugs, 378–379
SPI interaction with, 450

dlopen() function, 245
dlsym() function, 245
DNS redirectors, 136
Docker tool, 342, 354, 357, 359, 472
Document Object Model (DOM), 348, 350–353
documentation, red team assessment, 133
DOM (Document Object Model), 348, 350–353
DOM Element Property Spray (DEPS), 286
double variable, 17
double word (DWORD), 24
downloading

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

IDAscope plug-in, 68
patches, 373–374
PowerSploit, 329
Python, 37
Responder, 183

Dradis reporting tool, 124
DREAD classification scheme, 135
Droidbox, 405, 406–407
dropped files, 84
Dullien, Thomas, 366
dumb fuzzers, 48
dumbdecrypted tool, 412
dump pipe redirectors, 136
duplex communications, 90
dwFlags argument, 379, 381
dynamic analysis, 83–87

automated with Cuckoo Sandbox, 83–84
bridging gap with static analysis, 84–85
emulation used for, 541–547
hardware as basis of, 536–540
of IoT malware, 562–564
lab exercises for working with, 85–87
Labeless plugin for, 85, 86, 87
of Ransomlock malware, 419–422
reverse engineering with, 83–87, 402
See also static analysis

dynamic link libraries. See DLLs
/DYNAMICBASE option, 290, 292

E
Eagle, Chris, 77
EAX register, 306, 307–311
EBP register, 199, 200, 260
EBX register, 317

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

echo command, 358
Economou, Nicolas, 365
EDI register, 310, 312
Edwards, Brandon, 77
EEPROM access, 519
Einstein, Albert, 3
EIP (Extended Instruction Pointer), 200, 217–218

checking for corruption, 202
controlling for exploits, 206, 217–218, 264–265
determining offset to overwrite, 218–219
first chance exceptions, 260
frame data on location of, 234
function-calling procedure and, 200–201
local buffer overflow exploits and, 207–209

Elasticsearch tool, 475, 478
Electronic Communication Privacy Act (ECPA), 11
Electronic Frontier Foundation (EFF), 112
ELF header, 559
embedded devices, 511–548

debug interfaces for, 520–523
dynamic analysis of, 536–547
emulating firmware on, 541, 543–545
exploiting firmware on, 546–547
processing architectures for, 511–513
resources about, 526–527, 547
serial interfaces for, 513–520
static analysis of vulnerabilities in, 529–536
system software used on, 523–525
update package analysis of, 529–533
upgrading firmware on, 539–540
vulnerability analysis of, 533–536
See also Internet of Things

EMET (Enhanced Mitigation Experience Toolkit), 277, 289, 291
emulating

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

attacks, 6–9
embedded device firmware, 541, 543–545
IoT threats, 557–562, 568–571

emulators
black-box, 405, 406–407
firmware, 541, 543–545
QEMU, 558, 560–562, 568–571
running APK in, 399–402

encoded commands, 325–326
encodedcommand option, 322, 326
encryption

ATM disk, 462
cookie value, 361
iOS data, 408
ransomware, 436, 440–441

endian methods, 25
Enhanced Mitigation Experience Toolkit (EMET), 277, 289, 291
environment/arguments section in memory, 27
environments

black-box emulator, 405, 406–407
hardware analysis test, 536–537
sandbox, 408–409
setting up for XSS, 342–343
User Account Control, 338

epilog, function, 201
eradication, 128
ESI register, 310, 312
ESP register, 199, 200, 260
Esser, Stefan, 412
_EstablisherFrame pointer, 275
ETERNALBLUE vulnerability, 435
ethical hacking

attack emulation, 6–9
explained, 5–6

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

red team operations vs., 128
testing process, 9–10
unethical hacking vs., 8–9

Etoh, Hiroaki, 238
Ettercap tool, 537–540
European Committee for Standardization (CEN), 446
eventhandler function, 301, 304
events, webpage, 347
evolutionary fuzzing. See genetic fuzzing
exception_handler function, 275
EXCEPTION_REGISTRATION record, 273
exceptions

first chance, 260
handler function for, 275, 276
SEH mechanism for, 273–274

execl() function, 247, 248
ExecShield, 242, 251
Execute phase for SDR, 105–106
ExecuteTransaction function, 377–378
exit() function, 242, 244
!exploitable debugger extension, 57–58, 60
exploitation phase, 152
Exploit-DB repository, 356
exploits

categories for mitigating, 290
embedded device, 529–548
firmware, 546–547
format string, 225–237
local buffer overflow, 207–216
PowerShell, 321–340
ProSSHD server, 262–273
return to libc, 242–247
SEH chain, 274
small buffer, 214–216

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

stack overflow, 209–214
web application, 341–362
See also Linux exploits; Windows exploits

Extended Instruction Pointer. See EIP
Extensions for Financial Services. See XFS
external assessments, 137

F
Facebook bug bounty program, 163
fake-frame technique, 238–239
FCC IDs, 91–92
Federal Communications Commission (FCC), 91
fgets() function, 364, 371
file command, 390
files

DEX disassembly of, 398–399
Python access to, 42–44
structure of assembly, 33–34
TrapX analysis of, 484

FinalExceptionHandler function, 277
FindCrypt plug-in, 437
FindXMLManagerPath() function, 449
Firebounty.com registry, 171
FireDrill tool, 155
Firefox browser

developer tools, 348, 349
padding oracle attacks, 359–361
XSS attacks, 343–344, 346, 348

FIRMADYNE tool, 541–545
firmware emulation, 543–545
setting up, 541–543

firmware
emulating, 543–545
exploiting, 546–547

||||||||||||||||||||

||||||||||||||||||||

http://Firebounty.com
https://technet24.ir
https://technet24.ir

upgrading, 539–540
Firmware Mod Kit, 530
first chance exception, 260
FIRST plug-in, 78–80
flags, gcc, 24
flashrom tool, 519
FLIRT signatures, 85
float variable, 17
fmtstr program, 232, 233
for loop, 20–21
ForeScout tools, 487
form.reset() state change, 309
format functions, 225–229

commonly used symbols for, 226
correct vs. incorrect use of, 227–228
stack operations with, 228–229

format string exploits, 225–237
format functions and, 225–229
reading from arbitrary memory, 229–232

format symbols, 226
fprintf() function, 225
frames, 234
framework vulnerabilities, 354–358

Struts CVE-2017-5638 exploits, 354–356
Struts CVE-2017-9805 exploits, 356–358

Fratric, Ivan, 299, 300, 302
free() function, 26
FreeXFS Framework, 448
frequency channels, 90
Full Disclosure mailing list, 159
full duplex communications, 90
Full Operating System (FOS) decoy, 490
full public disclosure, 159–160
full system emulation, 571

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

full vendor disclosure, 158–159
function comments, 82
functions

C program, 16–17
Linux format, 225–229
procedures for calling, 199–201
wrapper, 68–69
See also specific functions

fuzzing, 47–65
crash analysis, 57–60
explanation of, 47
generation, 48, 54–60
genetic, 48–49, 61–63
mutation, 48, 49–54
resources about, 64–65

G
gadgets, 294–295
Gaffie, Laurent, 183
gcc (GNU C Compiler), 23–24
gdb debugger, 34–37

commands in, 35
determining frame info with, 234–235
disassembly with, 36–37

GDBServer tool, 562
General Data Protection Regulation (GDPR), 149
general operating systems, 525
general registers, 29
generation fuzzing, 48

crash analysis and, 57–60
lab exercise on, 60
Peach fuzzer for, 54–60

generic exploit code, 212–214
genetic fuzzing, 48–49

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

AFL fuzzer for, 61–64
lab exercise on, 63–64

getenv utility, 230, 233, 234, 249
getName() function, 371
GETPC routine, 270
GetProcAddress function, 438
gets() function, 364, 371
getsystem module, 338
GitHub repository, 329, 336, 342
Global Information Assurance Certification (GIAC), 114
global line comments, 82
GNU Assembler (gas), 30
GNU C Compiler (gcc), 23–24
GNU Radio Companion, 93
gnuradio software, 92–93
Google Chrome

installing, 342
XSS filters, 344–345, 348, 350

Google Play, 402, 403
Google Rapid Response (GRR), 149
government bug bounty programs, 162
GPEN (Certified Penetration Tester) exam, 114
grammar-based fuzzers, 48
Grand, Joe, 514
graphical diff, 376, 380
greeting() function, 23, 259
Group Policy Objects (GPOs), 322
/GS protection feature, 256, 284–286

description of, 284–285
methods of bypassing, 285–286

guard pages, 287

H
Hack Me! bug bounty program, 170–171

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

hacked function, 353
Hacker’s Manifesto, 112
hacking

future of, 113
radio frequency, 89
unethical, 8–9
See also ethical hacking

Hacking Exposed books, 114
HackRF device, 90, 91
half duplex communications, 90
Hanel, Alexander, 67
hardware

breakpoints for, 425–426
dynamic analysis of, 536–540

hardware abstraction layer (HAL), 291
Harvard University, 117
hashes, capturing password, 181–187
!heap command, 310
HeapReAlloc function, 303, 306
heaps, 26

isolated, 300, 304
metadata cookies, 286
non-executable, 241
protecting in Windows, 286–287

Heffner, Craig, 540
“Hello, world!” example, 38
hexadecimal values, 314–316
HexRaysCodeXplorer, 76–77
high-entropy ASLR, 291
high-interaction honeypots, 466–467
high-order bytes (HOB), 232, 233
Hippocampe threat-feed-aggregation tool, 155
home automation systems, 507
honeyclients, 467

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

honeynet.org group, 466
honeypots, 466–493

commercial, 480
ConPot, 472–473
Cowrie, 473–475
deception using, 466
deployment of, 468
Dionaea, 469–472
open source, 468–480
resources on, 491–492
T-Pot, 475–480
TrapX, 480–491
types of, 466–467
virtual machine, 468

honeytokens, 467
host-based intrusion detection system (HIDS), 153
host-based intrusion prevention system (HIPS), 152, 462
htmlspecialchars function, 346

I
I2C protocol, 519–520
ICA/SCADA emulation, 472
iconv tool, 326
id command, 201, 355
IDA (Interactive Disassembler), 67

binary diffing plug-ins, 365–371
code annotation, 67–73, 85–87
collaborative analysis, 77–82
cross-reference feature in, 458
Dalvik disassembly, 393
importing memory regions into, 87
IoT malware debugging, 567–571
resources about, 88
vulnerability analysis, 534

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://honeynet.org
https://technet24.ir
https://technet24.ir
https://technet24.ir

IDA Pro tool, 534, 567–571
IDA proximity browser, 440
IDA Sync plug-in, 77
IDA Toolbag plug-in, 77
IDAscope plug-in, 67–73

crypto identification, 72–73
functionality list, 68
user interface illustration, 69
WinAPI Browsing tab, 70
workflow overview, 68–70
YARA Scanner table, 71

IDB annotation, 67–73
Identity Services Engine (ISE), 487
IDLE user interface, 37
IEEE 802.11 protocol, 498
if/else construct, 22
Immunity Debugger, 256–258

commands list, 257–258
crashed programs and, 258–261
methods for using, 257
plug-ins for, 281
ROP chain generation, 316–317

inc command, 32
incident response (IR) program, 147–150

data sources, 148
incident response tools, 149
IoT devices and, 549
threat hunting, 147–148

indicators of compromise (IOCs), 123, 145, 154, 455
industrial control systems (ICSs), 112, 502
info command, 235
info frame command, 235
info functions command, 37
information property list (info.plist) file, 409

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

information resources. See resources
Information Systems Security Association (ISSA), 118
information theft, 452
InfraGard organization, 118
Infrastructure as Code (IAC), 146
Infrastructure for Ongoing Red Team Operations blog, 136
InitializeKeys function, 439–440
injection attacks, 343
inspectrum analyzer, 97–101
installation phase, 152
instruction set architectures (ISAs), 558
insurance considerations, 119
int variable, 17, 32–33
integrated circuits (ICs), 511
Integrated Security Operations Centers (ISOCs), 4
Intel processors

architecture, 28–29
registers, 29

intent-filter element, 392
Interactive Disassembler. See IDA
interactive logon, 190
internal assessments, 138–139
International Standards Organization (ISO), 146
International Telecommunications Union (ITU), 91
Internet Explorer

memory leak bug in, 299
PowerShell exploitation and, 322
XSS filters in, 344

Internet of Things (IoT), 497–510
communication protocols, 499
device access, 549–551
hack prevention, 508
resources about, 509, 574
security concerns, 499–500

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Shodan search engine for, 500–505
types of connected things, 497–498
unauthenticated access to, 506–507
wireless protocols, 498–499

Internet of Things (IoT) malware, 549–574
debugging and reversing, 567–574
dynamic analysis of, 562–564
lab on troubleshooting, 551–557
physical access to device for, 549
resources related to, 574
reverse engineering, 565–574
threat lab setup for, 557–562
worm attacks as, 507–508

Internet of Things Scanner, 508
Invoke-Expression function, 327
Invoke-WebRequest function, 327
iOS platform, 407–413

applications, 409
boot process security, 408
encryption and data protection, 408
labs on malware related to, 410–413
sandbox environments, 408–409
security mechanisms, 407–409

IoT. See Internet of Things
IPA archive, 409
iPhone 4s jailbreak, 410–411
IR playbooks, 155
ISO security frameworks, 146
isolated heaps, 300, 304
IV pump troubleshooting, 551–557

J
jailbreaking

classes of, 411

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

iPhone 4s, 410–411
Java archive (JAR), 389
Java code

decompilation of, 395–396
DEX code related to, 393, 394

Java Virtual Machine (JVM), 395
JavaScript

Asynchronous, 348
error tracking, 351–352
JQuery library, 348, 353
prevalence for web applications, 348
XSS manipulation of, 352–353

JavaScript Object Notation (JSON) format, 406
JD decompiler, 395
JD-GUI, 395, 396
je command, 32
JEB decompiler, 396–397
jmp command, 32, 269
jne command, 32
jnz command, 32
John the Ripper, 186, 333
Johnson, Ken, 287, 291
Joint Test Action Group (JTAG), 520
JQuery library, 348, 353
JTAG interfaces, 520–522, 526
JTAGulator tool, 514–515
jz command, 32

K
Kali Linux, 19, 61, 503
KANAL - Crypto Analyzer, 436
Katz, Phil, 390
KeePass password safe, 139
kernel patches and scripts, 241–242

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

keylogging process, 454
Kibana (ELK) stack, 475
Kill Chain Countermeasure framework, 153–154
Koret, Joxean, 365
Krebs, Brian, 453, 507

L
Labeless plugin, 85, 86, 87
labels, Python, 39–40
Le Berre, Stéfan, 277
lea command, 32
leak variable, 314, 315
leakware (doxware), 418
leave statement, 200
less-than operator (<), 21
less-than-or-equal-to operator (<=), 21
LFH (low fragmentation heap), 286–287
liability considerations, 119
Libsafe library, 237, 251
limited liability company (LLC), 119
Linares, Greg, 374, 378
Link Local Multicast Name Resolution (LLMNR), 181–182
linking process, 23
Linux exploits, 199–252

advanced, 225–252
attack vector for, 219–220
buffer overflows and, 201–207
building custom, 220–221
bypassing stack protection, 238–240
development process, 216–222
EIP control process, 206, 217–218
format string exploits, 225–237
function-calling procedures and, 199–201
local buffer overflow exploits, 207–216

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

memory protection schemes against, 237–251
offset determination for, 218–219
program execution changes, 234–237
reading from arbitrary memory, 229–232
resources about, 223, 252
return to libc exploits, 242–247
small buffer exploits, 214–216
stack overflow exploits, 209–214
summary review of, 222, 251
verifying custom, 221–222
writing to arbitrary memory, 232–234

Linux memory protections, 237–251
ASLR objectives for, 242
bypassing for stacks, 238–240
kernel patches and scripts, 241–242
Libsafe library, 237
non-executable stacks, 241
privilege maintenance, 247–251
return to libc exploits and, 242–247
Stack Smashing Protection, 238
StackShield and StackGuard, 237
summary list of, 251

lists, Python, 41–42
living off the land, 321–322
LoadLibrary function, 378, 438
LoadLibraryEX function, 379
LoadManagerFunction(), 449
local buffer overflow exploits, 207–216

components of, 207–209
small buffers and, 214–216
stack overflows and, 209–214

local line comments, 82
Local Security Authority Subsystem Service (LSASS), 331–332
locker ransomware, 417, 419–435

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

logging, PowerShell, 322
logic analyzer, 555–556
logical services, 449
LogonID information, 190
LogonType information, 190
Logstash tool, 375
Lookaside List, 287
low fragmentation heap (LFH), 286–287
low-interaction honeypots, 467
low-order bytes (LOB), 232, 233
lsusb command, 555
Lukan, Dejan, 55
Lum, Kelly, 77

M
MAC addresses, 537
machine language, 30
machine-learning-based tools, 149
magic bytes, 390
main() function, 16, 199, 369
malloc() function, 26
malware

Android, 402–407
ATM, 443–463
black-box analysis of, 405, 406–407
Internet of Things, 549–574
labs on iOS-related, 410–413
reverse-engineering, 70
YARA signatures and, 72
See also ransomware

manifest element, 392, 393
MANIFEST.MF file, 391
man-in-the-middle (MITM) attacks, 537
Martinez, Ramses, 163

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Massachusetts Institute of Technology (MIT), 117
master/slave architecture, 518–519
McMaster, John, 557
measurable events, 133–134
Media Address Control (MAC) addresses, 537
medical device troubleshooting, 551–557
medium-interaction honeypots, 467
meet.c program, 202–205
memcpy call, 306, 307, 312
memmove function, 310
memory, 24–28

arbitrary, 229–234
buffers in, 27
decoding ransomware in, 422–427
example of using, 28
explanation of, 24
importing segments from, 87
leaks in, 299–316
pointers in, 27–28
programs in, 26–27
protecting, 237–251, 275–287
random access, 24–25
segmentation of, 25
strings in, 27
writing data into, 25

memory leak bug, 299–319
breakpoints, 306–313
description of, 299–300
RVA ROP chain, 316–319
tracing, 303–313
triggering, 300–303
weaponizing, 314–316

memory protections
Linux schemes as, 237–251

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Windows mechanisms as, 275–287
See also Linux memory protections; Windows memory protections

memset function, 377–378
META-INF directory, 391
Metasploit

building exploits with, 220–221
Meterpreter callback handler, 333–336, 382
pattern tools, 218, 219, 267

Meterpreter callback handler, 333–336, 382
microcontrollers, 512
microprocessors, 512
Microsoft

diffing patches from, 375–378, 379–384
obtaining/extracting patches from, 373–375
patch Tuesday updates cycle, 372–373
vulnerability disclosures, 160, 372
See also Windows systems

Microsoft C/C++ Optimizing Compiler and Linker, 254
Microsoft Catalog Server, 373–374
Microsoft Developer Network (MSDN), 70
Microsoft Internet Explorer. See Internet Explorer
middleware for XFS, 448
Miller, Charlie, 161
Miller, Mark, 160
Miller, Matt, 287, 291
Mimikatz tool

running through PowerShell, 330–333
TrapX DeceptionGrid and, 490

MIPS architecture, 513, 558–559
calling convention, 566
cheat sheet reference, 567
syscall renaming, 572

Mirai worm, 507–508
mitigation

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

categories of exploit, 290
Windows 10 improvements in, 319

Mitre ATT&CK Matrix, 135, 155
mmap() command, 242
mobile applications, 389–415

Android platform for, 389–407
iOS platform for, 407–413
malware analysis for, 402–407
resources about, 413–414
summary review of, 413

Model-View-Controller (MVC) architecture, 354
module logging, 322
Moletta, Claudio, 299, 319
Mona plug-in, 266–267, 268, 295
Monti, Eric, 326
mov command, 31
Move with Zero-Extend instruction, 303
MoviePlayer application, 404–405
MQTT protocol, 499

lab on playing with, 505–506
security concerns with, 500
unauthenticated access to, 506–507

MS16-009 patch, 379–380
MS17-010 patch, 373

binary diffing of, 375–378
exploitation of, 379–384

msfvenom command, 220–221, 334, 382
MT-7621A processor, 517, 526–527
Mudge, Raphael, 136
mutation fuzzing, 48

lab exercise on, 53–54
Peach fuzzer for, 49–54

N

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NASM assembly syntax, 30–33
National Institute of Standards and Technology (NIST), 12

Computer Security Incident Handling Guide, 147
Cyber Security Framework, 146

National Security Agency (NSA), 117
NeaBolsa malware, 452, 454
.NET, PowerShell integration, 321
net localgroup command, 193
net localuser command, 193
net user command, 193
NetBIOS Name Service (NBNS), 182
netcat listener, 44, 420
Netdata page view, 479
NetNTLM authentication, 182–183
Network Access Control (NAC), 487
network analysis, 84
network intrusion detection system (NIDS), 153
network intrusion prevention system (NIPS), 153
network logon, 190
Next SEH (NSEH) value, 274
nibbles, 24
NIST. See National Institute of Standards and Technology
Nmap command, 476
no OS devices, 524–525
node comments, 82
NOP command, 207
NOP sled, 207
--nosandbox directive, 344
NTLM authentication, 182–183
numbers, Python, 40–41
NYDFS Cybersecurity Regulations, 13

O
object code, 23

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Objective-C programming language, 409
objects, Python, 38–44
Offensive Security Certified Professionals (OSCP), 114
offset registers, 29
offsets

Linux EIP, 218–219
RVA, 314–316
Windows EIP, 266–267

Oh, Jeong Wook, 365
OllyDbg debugger, 281
OllySSEH plug-in, 281
onCreate function, 404
OODA Loop, 150–151
opcodes, 37
open source bug bounty programs, 162–163
open source honeypots, 468–480

ConPot, 472–473
Cowrie, 473–475
Dionaea, 469–472
T-Pot, 475–480

Open Source Intelligence (OSINT), 7, 151
Open Source Technology Improvement Fund (OSTIF), 162–163
Open Web Application Security Project (OWASP), 135
OpenOCD tool, 520
OpenXFS header files, 459
operating frequency, 90
Operation Bodyguard, 465
operational risk reduction, 119
optimization, purple teaming, 154–155
orchestration, security, 155
OS control exploit mitigation, 290
OSINT (Open Source Intelligence), 7, 151
osmocom sink, 105
otool utility, 412, 413

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

OverTheWire.org website, 116, 117

P
package element, 392
padbuster tool, 360–361
padding oracle attacks, 358–361

changing data with, 359–361
explanation of, 358–359

page table entry (PTE), 241
PAGEEXEC method, 241
Page-eXec (PaX) patches, 241, 242
PageHeap tool, 302
PANDA platform, 564
PanDeBono malware, 452, 454
parallel interfaces, 513
paramiko module, 264
Pasknel, Victor, 505, 507
passwd command, 206
passwords

capturing hashes for, 181–186
cracking with John the Ripper, 186–187
getting with Responder, 185–187

patch diffing, 364–365
PatchClean script, 374
patchdiff2 tool, 365, 367
patches, 363–385

binary diffing of, 363–371, 378–384
downloading/extracting, 373–375
exploitation based on diffing of, 378–384
lab exercises on diffing, 369–371, 375–378, 379–384
management process for, 373–378
Microsoft updates and, 372–375
PaX (Page-eXec), 241, 242

PatchExtract script, 374

||||||||||||||||||||

||||||||||||||||||||

http://OverTheWire.org
https://technet24.ir
https://technet24.ir

PATRIOT Act, 10, 12
pattern_create tool, 218
pattern_offset tool, 219
PaX (Page-eXec) patches, 241, 242
pcap capture, 357
Peach fuzzer

generation fuzzing with, 54–60
mutation fuzzing with, 49–54

Pegasus spyware, 407
PEiD signature scanner, 436
penetration testing, 5–6, 111–126

assessment comparison, 129
degree programs, 117–118
ethos of, 112
frequency of, 120–121
future of hacking and, 113
hands-on practice of, 115–117
IoT device, 549
knowledge required for, 113
liability considerations for, 119
managing the process of, 121–124
recognizing good security for, 113–114
report generation, 123–124
resources about, 118, 125–126
steps in process of, 7–8
taxonomy of, 112
tradecraft for, 118–124
training and education, 114, 117–118
trusted advisor role, 120

Penetration Testing: A Hands-On Introduction to Hacking (Weidman), 114
Perl commands, 202–203, 209
permissions, SEND_SMS, 403–404
persistent meterpreter, 333–336
Phantom community edition, 155

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

phishing e-mails, 138
phoneinfo.dll file, 381, 382, 383
physical ATM attacks, 453
physical security assessment, 137–138
PIC microcontroller, 524
PIN_GET_DATA command, 454
pins/pinouts

JTAG, 520–522
MAX3227E, 553–554
RS-232, 550–551
SWD, 522

pipe character, 325
Pit files, 49–51
planning meetings, 132–133
Plohmann, Daniel, 67
Ploutus malware, 454, 455, 457, 462
pointers, memory, 27–28
pop command, 31, 199
Popp, Joseph, 418
Portainer UI, 478
Portnoy, Aaron, 77
Position Independent Executable (PIE) technique, 242
Pouvesle, Nicolas, 365
PowerShell, 321–340

benefits of using, 321–322
bootstrap process, 326–328
command execution, 325
Empire framework, 328, 336–339
encoded commands, 325–326
execution policies, 324
logging options, 322
Mimikatz run through, 330–333
portability of, 323
PowerSploit tools for, 328–330

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

remotely running using WinRM, 195–196
resources about, 340
script execution, 323–328
summary review of, 339–340

PowerShell Empire, 328, 336–339
setting up, 336
staging an Empire C2, 337
using to own the system, 337–339

PowerSploit, 328–330
overview on setting up, 329–330
persistent meterpreter creation, 333–336

PowerUp tool, 139
Preview phase for SDR, 103–105
printf command, 18–19, 23
printf() function, 204, 225, 226–228, 248
printLeak function, 314, 316
private bug bounty programs, 162
private key encryption, 440
privileges

elevating with Winexe, 188–189
maintaining with ret2libc, 247–251
methods for escalating, 139

procedure statement, 16
process memory, 84
ProcessBuilder class, 356, 368
processors

architecture of, 28–29, 512–513
embedded system, 511–513

Procmon (Process Monitor), 420
program execution changes, 234–237
programming, 15–45

assembly language, 30–34
C language, 15–24
computer memory, 24–28

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

debugging with gdb, 34–37
Intel processor, 28–29
Objective-C language, 409
Python language, 37–44
reasons for studying, 15
resources about, 45
return-oriented, 294
Swift language, 409

Project Zero, 160
prolog, function, 200
Proof of Concept (POC) code, 158
property list (.plist) files, 410
ProSSHD server exploits, 262–273
protocols

communication, 499
wireless, 498–499

proximity browsing, 80
proximity view, 439–440
PSEXEC service, 484
pszProvider argument, 439
public bug bounty programs, 162
public key cryptography, 418, 440
public vulnerability disclosure, 159–160, 174
purple teaming operations, 130, 143, 150–156

communications in, 154
decision frameworks for, 150–151
disrupting attacks in, 151–153
explanatory overview of, 143–145
incident response programs and, 147
Kill Chain Countermeasure framework, 153–154
optimization of, 154–155
resources about, 156
See also blue team operations; red teaming operations

push command, 31, 199, 269

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

PUSHAD instruction, 426
Pwn2Own competition, 161
PyBOMBS system, 92
PyCommand plug-in, 266, 295
Python, 37–44

dictionaries, 42
downloading, 37
file access, 42–44
“Hello, world!” example, 38
lists, 41–42
numbers, 40–41
objects, 38–44
pywinrm library, 194
Shodan library, 504
sockets, 44
sshuttle program, 544–545
strings, 38–40

PythonClassInformer, 76

Q
QEMU (Quick Emulator), 558

binary emulation, 568–571
firmware emulation, 541, 544
full system emulation, 571
setting up systems with, 560–562

quadruple word (QWORD), 24

R
radio frequency (RF) hacking, 89
Rain Forest Puppy, 159, 160
rainbow tables, 182, 183
random access memory (RAM), 24–25
Ransomlock malware, 419–435

dynamic analysis of, 419–422

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

static analysis of, 422–435
ransomware, 417–442

analyzing, 435–441
anti-debugging checks, 427–430
deactivation process, 435
decoding in memory, 422–427
Desktop ownership by, 430–433
dynamic analysis of, 419–422
encryption methods, 436, 440–441
historical origins of, 418
payment methods, 418–419
Ransomlock, 419–435
resources about, 441–442
static analysis of, 422–435
summary review of, 441
types of, 417–418
Wannacry, 435–441

Ranum, Marcus, 159
Raspberry Pi platform, 558
RDP (Remote Desktop Protocol), 137, 490
realloc() function, 26
real-time operating system (RTOS), 525
reconnaissance phase, 151
red teaming operations, 9, 127–141

adaptive testing in, 136–139
after action report on, 140
attack frameworks for, 135
communications required for, 132–134
compared to other assessments, 129–130
explanatory overview of, 128
external assessment, 137
internal assessment, 138–139
levels of focus for, 129
measurable events in, 133–134

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

objectives of, 130–131
physical security assessment, 137–138
planning meetings for, 132–133
potential limitations of, 131–132
purple teaming and, 130
social engineering assessment, 138
testing infrastructure for, 136
understanding threats for, 134–135
See also blue team operations; purple teaming operations

redirectors, 136
reflective attacks, 507
registers, 29
remediation, 128, 174
Remote Desktop Protocol (RDP), 137, 490
remote interactive logon, 190
remote systems

accessing with Winexe, 187–188
artifacts left on, 188
code execution on, 356–358
running PowerShell on, 195–196

RemoteSigned policy, 324
renaming

functions, 69
syscalls, 572–573

repeating return addresses, 208–209
Replay phase for SDR, 94–96
reports

penetration test, 123–124
Shodan search engine, 503
vulnerability, 172

res folder, 391
resources

on ATM malware, 462
on binary diffing, 384–385

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

on bug bounty programs, 175
on embedded devices, 526–527, 547
on fuzzing, 64–65
on honeypots, 491–492
on Internet of Things, 509, 574
on Linux exploits, 223, 252
on mobile applications, 413–414
on pen testing, 118, 125–126
on PowerShell, 340
on programming, 45
on purple teaming, 156
on ransomware, 441–442
on reverse engineering, 88
on software-defined radio, 106–107
on web application exploits, 362
on Windows exploits, 287–288, 319

resources.arsc file, 391
Responder program, 183–187

downloading, 183
getting passwords with, 185–187
resources about, 197
running, 184–185

responsible vulnerability disclosure, 160
REST interface, 356
ret2libc, 247–251
ret command, 32
RETN instruction, 260
return address, 200, 208–209
return-oriented programming (ROP)

chain building, 295–299, 316–319
DEP exploits, 263, 289
explanation of, 294
gadgets, 294–295
RVA ROP chain, 316–319

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

reverse engineering (RE), 67–88
code annotation for, 67–77
collaborative analysis for, 77–82
dynamic analysis for, 83–87, 402
IoT malware, 565–574
resources about, 88

Reverse Engineering Intermediate Language (REIL), 78
reverse_https payload, 333
Ridlinghafer, Jarrett, 161
Ring0 debugger, 261
Ripper malware, 451, 455, 456, 457, 458
RISC architectures, 558
Ritchie, Dennis, 15
.rm files, 54
root file system (RFS), 530
root shell, 201
ROP. See return-oriented programming
Ropper tool, 314
RS-232 serial port, 549–551

overview, 550
pinouts, 550–551
troubleshooting, 551–557

RSA encryption, 439, 440–441
Ruby BlackBag toolkit, 326
run function, 301
runtime type information (RTTI), 76
RVA offset, 314–316
RVA ROP chain, 316–319

S
S corporations, 119
safe unlinking, 286
SafeDllSearchMode, 379, 381, 382, 383
SafeSEH

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

bypassing, 275–277
memory protection with, 275

Saleae logic analyzer, 556
Samba service, 327–328
samples per second, 90
sandbox environments, 408–409, 558
SANS Institute, 114, 116
saved frame pointer (SFP), 285
SCADA systems, 112, 472
scanf command, 19
Schirra, Sascha, 314
Schneier, Bruce, 159, 529
scpclient module, 264
SCRAPE process, 91–106

Analyze phase, 96–103
Capture phase, 92–94
Execute phase, 105–106
Preview phase, 103–105
Replay phase, 94–96
Search phase, 91–92

script block logging, 322
scripts

Androperm, 403
PatchClean, 374
PatchExtract, 374
PowerShell, 323–328
See also XSS

SDR. See software-defined radio
Search phase for SDR, 91–92
searchsploit function, 355, 356
Secure Software Development Lifecycle (SSDLC), 121
security. See cybersecurity
security automation, 154–155
security frameworks, 146–147

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

security information event management (SIEM), 149, 467
security operations center (SOC), 155, 486, 491
security orchestration, 155
SecurityTube.net website, 118
segment registers, 29
segmentation fault, 202
segmentation of memory, 25
SEGMEXEC method, 241
SEH (Structured Exception Handling)

description of, 274–275
exploitation of, 275
overwriting records for, 286
protecting with SafeSEH, 275
SEHOP overwrite protection, 277–284

SEHOP (SEH Overwrite Protection), 277–284
bypassing, 277–284
description of, 277

semantic coloring, 69
semi-tethered jailbreaks, 411
semi-untethered jailbreaks, 411
SEND_SMS permission, 403–404
sendTextMessage function, 405
serial interfaces, 513–520

I2C, 519–520
RS-232 port, 549–551
SPI, 518–519
UART, 513–518

Serial Peripheral Interface (SPI), 518–519
Serial Wire Debug (SWD) protocol, 522–523
Server Message Block (SMB) shares, 323
service logon, 190
service provider interface (SPI), 448, 450
Set User ID (SUID), 206
Shacham, Hovav, 294

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://SecurityTube.net
https://technet24.ir
https://technet24.ir
https://technet24.ir

Shadow Brokers hacking group, 435
SHELL variable, 231
shellcode, 207–208, 213, 235
shells

user vs. root, 201
See also PowerShell

Shodan search engine, 500–505
command line interface, 503–504
Python library API, 504–505
report generation, 503
web interface, 500–503

SIEM (security information event management), 149, 467
signature-based tools, 149
SimpleHTTPServer module, 382
sizeof() function, 17
skimmers, ATM, 452
Skype application exploit, 383–384
sleep() function, 265
smali/baksmali tool, 398–399
small buffer exploits, 214–216
smart redirectors, 136
smartphone apps. See mobile applications
smbclient, 187–188, 328
SMS scams, 403–404
SmsManager object, 405
snmpwalk command, 472
snprintf() function, 225
SOC (security operations center), 155, 486, 491
social engineering assessment, 138
Social Engineering Toolkit (SET), 328
sockaddr structure, 572–573
sockets, Python, 44
software

disclosing vulnerabilities in, 157–161

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

embedded device system, 523–525
software-defined radio (SDR), 89–107

Analyze phase, 96–103
buying considerations, 89–91
Capture phase, 92–94
Execute phase, 105–106
explanatory overview, 89
licensing requirement, 91
Preview phase, 103–105
Replay phase, 94–96
resources about, 106–107
SCRAPE process, 91–106
Search phase, 91–92

Sotirov, Alex, 161
special registers, 29
SPI (Serial Peripheral Interface), 518–519
SPI (service provider interface), 448, 450
SpiderFoot search page, 478
Spitzner, Lance, 465
sprintf() function, 225, 533
Spy++ tool, 433
SQL (Structured Query Language), 189
SrvSmbTransaction() function, 375
SSH emulation, 473, 474
sshuttle program, 544–545
stack

bypassing protection for, 238–241
explanation of, 26, 199
format functions and, 228–229
function-calling procedures and, 199–201
GCC-based non-executable, 241
memory protections, 237–238
overflow exploits, 209–214
randomization process, 243

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

token used to map out, 230
stack canary protection, 256, 284
stack overflows, 209–214

command line exploits, 209–212
generic code exploits, 212–214

Stack Smashing Protection (SSP), 238
stack-based buffer overrun detection (/GS), 284–286

description of, 284–285
methods of bypassing, 285–286

StackGuard, 237, 251
StackShield, 237, 251
standard operating procedures (SOPs), 144
Stanford University, 117
statement of work (SOW), 122
StateModel section, Peach Pit, 50
static analysis

Cuckoo Sandbox, 84
of embedded devices, 529–536
of Ransomlock malware, 422–435
See also dynamic analysis

static signatures, 436
strace tool, 562, 563, 564
strcpy command, 20, 203, 205, 244, 259
STRIDE classification scheme, 135
strings

format, 225–229
memory, 27
Python, 38–40
reading arbitrary, 230

strncpy command, 20
Structured Exception Handling. See SEH
Structured Query Language (SQL), 189
Struts framework, 354–358

CVE-2017-5638 vulnerability, 354–356

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CVE-2017-9805 vulnerability, 356–358
setting up the environment for, 354

Struts Showcase application, 355
sub command, 31
SUCEFUL malware, 458
SUID program, 206
Sun Tzu, 143, 465
svc command, 572
SWD (Serial Wire Debug) protocol, 522–523
Swift programming language, 409
symbol period, 98, 100
symmetric-key algorithms, 436
synchronous call, 447
Synopsys report, 157
syscall instructions, 33, 572–573
Sysdream.com team, 277
sysenter instruction, 33
system calls, 32–33
--system flag, 189
system() function, 242–247
system information queries, 189–191
System on Chip (SoC), 512
SYSTEM user, 338

T
tactics, techniques, and procedures (TTPs), 321
tar command, 472
target addresses, 234–235
tcpdump tool, 562, 563
Telnet emulation, 473, 474
Terraform project, 146
test access port (TAP), 520
Test section, Peach Pit, 51
testing

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://Sysdream.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

adaptive, 136–139
frequency and focus of, 9
infrastructure for, 136
See also fuzzing

tethered jailbreaks, 411
.text section in memory, 26
textarea object, 300, 301, 304
TheHive Project, 155
this pointers, 74–75
Thread Information Block (TIB), 273
threat hunting, 147–148, 150
threats

IoT lab for emulating, 557–562
understanding for red team assessments, 134–135

thresh parameter, 102
Thumb instruction set, 558
tokens

%s format, 230
%x format, 230
#$ format, 231

Tomcat, 354, 355
tools

binary diffing, 365–371
collaboration, 123
Firefox developer, 348, 349
incident response, 149
pattern, 218, 219, 267
PowerSploit, 328–330
virtual machine, 565
See also specific tools

top-level domains (TLDs), 136
T-Pot honeypot, 475–480
tracing memory leaks, 303–313
translation look-aside buffers (TLBs), 241

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

TrapX DeceptionGrid, 480–491
dashboard, 481
deception tokens, 487, 488
emulation process, 485–491
Event Analysis screen, 482
file analysis, 484
kill chain view, 483

triage efforts, 173
TRUN command, 55, 56
trusted advisor role, 120–121
tsec user account, 476
turbodiff tool, 365, 367–371
type confusion bugs, 299

U
UAF (use-after-free) bugs, 286, 299–303
UART protocol, 513–518
Ubiquiti ER-X, 514, 515, 523
U-Boot bootloader, 523
Ubuntu systems, 476, 480, 555, 560
unethical hacker pen tests, 8–9
Unicode, 312, 313, 314–316, 405
--uninstall flag, 188
Universal Naming Convention (UNC) paths, 327
untethered jailbreaks, 411
update packages, 529–533
use-after-free (UAF) bugs, 286, 299–303
-UseBasicParsing option, 327
User Account Control (UAC) environment, 338
user behavior analytics (UBA), 153
user shell, 201
user vulnerability disclosure, 174
uses-permission element, 393
USRP B200 device, 90

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

UTF-8 characters, 357

V
Valasek, Chris, 287
Van Eeckhoutte, Peter, 268
variables, C program, 17–18
vendor vulnerability disclosure, 158–159
verifying exploits, 221–222
Vidas, Tim, 77
viewstate information, 358
virtual ATM attacks, 453
virtual machines (VM)

honeypots installed on, 468
QEMU system setup, 560–562
running in NAT mode on, 544
setting up VMware, 262–263
tools and cross-compilers for, 565
unprotected backups of, 139

virtual network interface card (VNIC), 263
virtual tables (vtables), 75
virtual technology pen testing, 115
VirtualAlloc() function, 293, 295
VirtualBox, 560
VirtualProtect() function, 293, 295, 296, 317
viruses, computer, 465
VMs. See virtual machines
VMware, 262–263
volatile memory, 24
Volume Shadow Services (VSS), 330
vtguard protection, 287
VulnDB database, 124
vulnerability analysis, 533–536
vulnerability assessments, 129
vulnerability disclosure, 157–175

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

bug bounty programs for, 161–171
compensation issues with, 160–161
earning a living through, 171–172
full public disclosure, 159–160
full vendor disclosure, 158–159
history and overview of, 157–158
incident response and, 173–174
resources about, 175
responsible disclosure, 160

vulnerability reports, 172
vulnerability scans, 5
Vulnhub.com resources, 115
vulnserver application, 54–55
VxWorks systems, 525

W
Wannacry ransomware, 435–441, 487
war games, 116, 128
Warner, Justin, 131
weaponization phase, 151–152, 153
weaponizing memory leak bug, 314–316
web application exploitation, 341–362

framework vulnerabilities and, 354–358
padding oracle attacks and, 358–361
resources about, 362
summary review of, 362
XSS vulnerabilities and, 341–353

web console, 479
Web Proxy Auto-Discovery (WPAD) protocol, 185
web resources. See resources
Weidman, Georgia, 114
Western Governors University, 118
Weston, David, 291
Wetty tool, 479

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://Vulnhub.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

WFSExecute API, 451, 458, 460
WFS_INF_IDC_STATUS command, 461
WFSOpen API, 449–451, 458, 459
WFSRegister API, 451
WFSStartUp API, 448–449
wget command, 357–358
while loop, 21
white box fuzz testing, 48
white card approach, 132
white teams, 130, 132, 144
whoami command, 188, 194, 201
Wi-Fi networks, 498
win32_logonsession class, 189–190
WinDbg debugger, 261, 305
window object, 352
Windows Community Edition, 254
Windows Defender Exploit Guard, 289, 291
Windows exploits, 253–288

advanced, 289–319
attack vector for, 267–269
building, 270–271
bypassing memory protections, 275–287, 292–319
compilers and, 254–256
controlling the EIP, 264–265
crashed programs and, 258–261
debugging process, 256–257, 271–273
exploit development process, 262–273
Immunity Debugger for, 256–261
memory leak bug, 299–319
offset determination for, 266–267
ProSSHD server exploits, 262–273
resources about, 287–288, 319
SEH process and, 273–274

Windows Management Instrumentation. See WMI

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Windows memory protections, 275–287
ASLR, 290–291
bypassing, 275–287, 292–319
DEP, 289–290
EMET, 291
/GS compiler, 284–286
heap protections, 286–287
SafeSEH, 275–277
SEHOP, 277–284
Windows Defender Exploit Guard, 291

Windows Open Service Architecture (WOSA), 446
Windows Server Update Services (WSUS), 372
Windows systems

compiling programs on, 254–261
crashing programs on, 258–261
debugging programs on, 256–258
exploitation of, 253–320
LLMNR and NBNS on, 181–182
market share of, 253
memory protections for, 275–287
mitigation improvements on, 319
NTLM authentication on, 182–183
Update tool for, 372
WOSA/XFS standard, 446–451

Windows Update for Business (WUB), 372
Winexe, 187–189

accessing remote systems using, 187–188
gaining elevated privileges using, 188–189

WinRM tool, 194–196
executing commands with, 194–195
remotely running PowerShell with, 195–196

WIPO Treaty, 11
wireless protocols, 498–499
Wireshark analyzer, 537–538

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

WMI (Windows Management Instrumentation), 189–194
executing commands with, 191–194
PowerSploit tools using, 330
querying system information with, 189–191

WMI Query Language (WQL), 189
words (data), 24
worms

Internet of Things, 507–508
ransomware, 435

WQL (WMI Query Language), 189
wrapper functions, 68–69
wsshd.exe process, 265

X
x64dbg debugger, 85–87
XFS (Extensions for Financial Services), 446–451

architecture overview, 446–447
middleware available for, 448
XFS manager operation, 448–451

XML files, 410
XMPP protocol, 499
xor command, 31
XOR decryption locations, 72–73
XSS (Cross-Site Scripting), 341–353

browser filters for, 344–345, 348
changing application logic with, 348–350
evasion from Internet wisdom, 346–348
history and overview of, 341
JavaScript DOM used for, 350–353
refresher on how it works, 343–345
setting up the environment for, 342–343

XSS Auditor, 344, 348, 350

Y

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Yahoo! bug bounty program, 163
YARA signatures, 70–72, 436, 437
Young, Adam, 418
Yung, Moti, 418

Z
Zigbee protocol, 498–499
Zingbox, Inc., 557
ZIP archives, 390
Z-wave protocol, 499
Zynamics BinDiff, 365, 366–367

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Acknowledgments
	Introduction
	Part I Preparation
	Chapter 1 Why Gray Hat Hacking? Ethics and Law
	Know Your Enemy
	The Current Security Landscape
	Recognizing an Attack

	The Gray Hat Way
	Emulating the Attack
	Frequency and Focus of Testing

	Evolution of Cyberlaw
	Understanding Individual Cyberlaws

	Summary
	References

	Chapter 2 Programming Survival Skills
	C Programming Language
	Basic C Language Constructs
	Sample Program
	Compiling with gcc

	Computer Memory
	Random Access Memory
	Endian
	Segmentation of Memory
	Programs in Memory
	Buffers
	Strings in Memory
	Pointers
	Putting the Pieces of Memory Together

	Intel Processors
	Registers

	Assembly Language Basics
	Machine vs. Assembly vs. C
	AT&T vs. NASM
	Addressing Modes
	Assembly File Structure
	Assembling

	Debugging with gdb
	gdb Basics
	Disassembly with gdb

	Python Survival Skills
	Getting Python
	“Hello, World!” in Python
	Python Objects
	Strings
	Numbers
	Lists
	Dictionaries
	Files with Python
	Sockets with Python

	Summary
	For Further Reading
	References

	Chapter 3 Next-Generation Fuzzing
	Introduction to Fuzzing
	Types of Fuzzers
	Mutation Fuzzers
	Generation Fuzzers
	Genetic Fuzzing

	Mutation Fuzzing with Peach
	Lab 3-1: Mutation Fuzzing with Peach

	Generation Fuzzing with Peach
	Crash Analysis
	Lab 3-2: Generation Fuzzing with Peach

	Genetic or Evolutionary Fuzzing with AFL
	Lab 3-3: Genetic Fuzzing with AFL

	Summary
	For Further Reading

	Chapter 4 Next-Generation Reverse Engineering
	Code Annotation
	IDB Annotation with IDAscope
	C++ Code Analysis

	Collaborative Analysis
	Leveraging Collaborative Knowledge Using FIRST
	Collaboration with BinNavi

	Dynamic Analysis
	Automated Dynamic Analysis with Cuckoo Sandbox
	Bridging the Static-Dynamic Tool Gap with Labeless

	Summary
	For Further Reading
	References

	Chapter 5 Software-Defined Radio
	Getting Started with SDR
	What to Buy
	Not So Quick: Know the Rules

	Learn by Example
	Search
	Capture
	Replay
	Analyze
	Preview
	Execute

	Summary
	For Further Reading

	Part II Business of Hacking
	Chapter 6 So You Want to Be a Pen Tester?
	The Journey from Novice to Expert
	Pen Tester Ethos
	Pen Tester Taxonomy
	The Future of Hacking
	Know the Tech
	Know What Good Looks Like
	Pen Tester Training
	Practice
	Degree Programs
	Knowledge Transfer

	Pen Tester Tradecraft
	Personal Liability
	Being the Trusted Advisor
	Managing a Pen Test

	Summary
	For Further Reading

	Chapter 7 Red Teaming Operations
	Red Team Operations
	Strategic, Operational, and Tactical Focus
	Assessment Comparisons

	Red Teaming Objectives
	What Can Go Wrong
	Limited Scope
	Limited Time
	Limited Audience
	Overcoming Limitations

	Communications
	Planning Meetings
	Defining Measurable Events

	Understanding Threats
	Attack Frameworks
	Testing Environment
	Adaptive Testing
	External Assessment
	Physical Security Assessment
	Social Engineering
	Internal Assessment

	Lessons Learned
	Summary
	References

	Chapter 8 Purple Teaming
	Introduction to Purple Teaming
	Blue Team Operations
	Know Your Enemy
	Know Yourself
	Security Program
	Incident Response Program
	Common Blue Teaming Challenges

	Purple Teaming Operations
	Decision Frameworks
	Disrupting the Kill Chain
	Kill Chain Countermeasure Framework
	Communication

	Purple Team Optimization
	Summary
	For Further Reading
	References

	Chapter 9 Bug Bounty Programs
	History of Vulnerability Disclosure
	Full Vendor Disclosure
	Full Public Disclosure
	Responsible Disclosure
	No More Free Bugs

	Bug Bounty Programs
	Types of Bug Bounty Programs
	Incentives
	Controversy Surrounding Bug Bounty Programs
	Popular Bug Bounty Program Facilitators

	Bugcrowd in Depth
	Program Owner Web Interface
	Program Owner API Example
	Researcher Web Interface

	Earning a Living Finding Bugs
	Selecting a Target
	Registering (If Required)
	Understanding the Rules of the Game
	Finding Vulnerabilities
	Reporting Vulnerabilities
	Cashing Out

	Incident Response
	Communication
	Triage
	Remediation
	Disclosure to Users
	Public Relations

	Summary
	For Further Reading
	References

	Part III Exploiting Systems
	Chapter 10 Getting Shells Without Exploits
	Capturing Password Hashes
	Understanding LLMNR and NBNS
	Understanding Windows NTLMv1 and NTLMv2 Authentication
	Using Responder
	Lab 10-1: Getting Passwords with Responder

	Using Winexe
	Lab 10-2: Using Winexe to Access Remote Systems
	Lab 10-3: Using Winexe to Gain Elevated Privileges

	Using WMI
	Lab 10-4: Querying System Information with WMI
	Lab 10-5: Executing Commands with WMI

	Taking Advantage of WinRM
	Lab 10-6: Executing Commands with WinRM
	Lab 10-7: Using WinRM to Run PowerShell Remotely

	Summary
	For Further Reading
	Reference

	Chapter 11 Basic Linux Exploits
	Stack Operations and Function-Calling Procedures
	Buffer Overflows
	Lab 11-1: Overflowing meet.c
	Ramifications of Buffer Overflows

	Local Buffer Overflow Exploits
	Lab 11-2: Components of the Exploit
	Lab 11-3: Exploiting Stack Overflows from the Command Line
	Lab 11-4: Exploiting Stack Overflows with Generic Exploit Code
	Lab 11-5: Exploiting Small Buffers

	Exploit Development Process
	Lab 11-6: Building Custom Exploits

	Summary
	For Further Reading

	Chapter 12 Advanced Linux Exploits
	Format String Exploits
	Format Strings
	Lab 12-1: Reading from Arbitrary Memory
	Lab 12-2: Writing to Arbitrary Memory
	Lab 12-3: Changing Program Execution

	Memory Protection Schemes
	Compiler Improvements
	Lab 11-4: Bypassing Stack Protection
	Kernel Patches and Scripts
	Lab 12-5: Return to libc Exploits
	Lab 12-6: Maintaining Privileges with ret2libc
	Bottom Line

	Summary
	For Further Reading
	References

	Chapter 13 Windows Exploits
	Compiling and Debugging Windows Programs
	Lab 13-1: Compiling on Windows
	Windows Compiler Options
	Debugging on Windows with Immunity Debugger
	Lab 13-2: Crashing the Program

	Writing Windows Exploits
	Exploit Development Process Review
	Lab 13-3: Exploiting ProSSHD Server

	Understanding Structured Exception Handling (SEH)
	Understanding and Bypassing Windows Memory Protections
	Safe Structured Exception Handling (SafeSEH)
	Bypassing SafeSEH
	SEH Overwrite Protection (SEHOP)
	Bypassing SEHOP
	Stack-Based Buffer Overrun Detection (/GS)
	Bypassing /GS
	Heap Protections

	Summary
	For Further Reading
	References

	Chapter 14 Advanced Windows Exploitation
	Data Execution Prevention (DEP)
	Address Space Layout Randomization (ASLR)
	Enhanced Mitigation Experience Toolkit (EMET) and Windows Defender Exploit Guard
	Bypassing ASLR
	Bypassing DEP and Avoiding ASLR
	VirtualProtect
	Return-Oriented Programming
	Gadgets
	Building the ROP Chain

	Defeating ASLR Through a Memory Leak
	Triggering the Bug
	Tracing the Memory Leak
	Weaponizing the Memory Leak
	Building the RVA ROP Chain

	Summary
	For Further Reading
	References

	Chapter 15 PowerShell Exploitation
	Why PowerShell
	Living Off the Land
	PowerShell Logging
	PowerShell Portability

	Loading PowerShell Scripts
	Lab 15-1: The Failure Condition
	Lab 15-2: Passing Commands on the Command Line
	Lab 15-3: Encoded Commands
	Lab 15-4: Bootstrapping via the Web

	Exploitation and Post-Exploitation with PowerSploit
	Lab 15-5: Setting Up PowerSploit
	Lab 15-6: Running Mimikatz Through PowerShell
	Lab 15-7: Creating a Persistent Meterpreter Using PowerSploit

	Using PowerShell Empire for C2
	Lab 15-8: Setting Up Empire
	Lab 15-9: Staging an Empire C2
	Lab 15-10: Using Empire to Own the System

	Summary
	For Further Reading
	References

	Chapter 16 Next-Generation Web Application Exploitation
	The Evolution of Cross-Site Scripting (XSS)
	Setting Up the Environment
	Lab 16-1: XSS Refresher
	Lab 16-2: XSS Evasion from Internet Wisdom
	Lab 16-3: Changing Application Logic with XSS
	Lab 16-4: Using the DOM for XSS

	Framework Vulnerabilities
	Setting Up the Environment
	Lab 16-5: Exploiting CVE-2017-5638
	Lab 16-6: Exploiting CVE-2017-9805

	Padding Oracle Attacks
	Lab 16-7: Changing Data with the Padding Oracle Attack

	Summary
	For Further Reading
	References

	Chapter 17 Next-Generation Patch Exploitation
	Introduction to Binary Diffing
	Application Diffing
	Patch Diffing

	Binary Diffing Tools
	BinDiff
	turbodiff
	Lab 17-1: Our First Diff

	Patch Management Process
	Microsoft Patch Tuesday
	Obtaining and Extracting Microsoft Patches
	Lab 17-2: Diffing MS17-010

	Patch Diffing for Exploitation
	DLL Side-Loading Bugs
	Lab 17-3: Diffing MS16-009

	Summary
	For Further Reading
	References

	Part IV Advanced Malware Analysis
	Chapter 18 Dissecting Mobile Malware
	The Android Platform
	Android Application Package
	Application Manifest
	Analyzing DEX
	Java Decompilation
	DEX Decompilation
	DEX Disassembling
	Example 18-1: Running APK in Emulator
	Malware Analysis

	The iOS Platform
	iOS Security
	iOS Applications

	Summary
	For Further Reading
	References

	Chapter 19 Dissecting Ransomware
	The Beginnings of Ransomware
	Options for Paying the Ransom
	Dissecting Ransomlock
	Example 19-1: Dynamic Analysis
	Example 19-2: Static Analysis

	Wannacry
	Example 19-3: Analyzing Wannacry Ransomware

	Summary
	For Further Reading

	Chapter 20 ATM Malware
	ATM Overview
	XFS Overview
	XFS Architecture
	XFS Manager

	ATM Malware Analysis
	Types of ATM Malware
	Techniques for Installing Malware on ATMs
	Techniques for Dissecting the Malware
	ATM Malware Countermeasures

	Summary
	For Further Reading
	References

	Chapter 21 Deception: Next-Generation Honeypots
	Brief History of Deception
	Honeypots as a Form of Deception
	Deployment Considerations
	Setting Up a Virtual Machine

	Open Source Honeypots
	Lab 21-1: Dionaea
	Lab 21-2: ConPot
	Lab 21-3: Cowrie
	Lab 21-4: T-Pot

	Commercial Alternative: TrapX
	Summary
	For Further Reading
	References

	Part V Internet of Things
	Chapter 22 Internet of Things to Be Hacked
	Internet of Things (IoT)
	Types of Connected Things
	Wireless Protocols
	Communication Protocols
	Security Concerns

	Shodan IoT Search Engine
	Web Interface
	Shodan Command-Line Interface
	Lab 22-1: Using the Shodan Command Line
	Shodan API
	Lab 22-2: Testing the Shodan API
	Lab 22-3: Playing with MQTT
	Implications of This Unauthenticated Access to MQTT

	IoT Worms: It Was a Matter of Time
	Lab 22-4: Mirai Lives
	Prevention

	Summary
	For Further Reading
	References

	Chapter 23 Dissecting Embedded Devices
	CPU
	Microprocessor
	Microcontrollers
	System on Chip (SoC)
	Common Processor Architectures

	Serial Interfaces
	UART
	SPI
	I2C

	Debug Interfaces
	JTAG
	SWD (Serial Wire Debug)

	Software
	Bootloader
	No Operating System
	Real-Time Operating System
	General Operating System

	Summary
	For Further Reading
	References

	Chapter 24 Exploiting Embedded Devices
	Static Analysis of Vulnerabilities in Embedded Devices
	Lab 24-1: Analyzing the Update Package
	Lab 24-2: Performing Vulnerability Analysis

	Dynamic Analysis with Hardware
	The Test Environment Setup
	Ettercap

	Dynamic Analysis with Emulation
	FIRMADYNE
	Lab 24-3: Setting Up FIRMADYNE
	Lab 24-4: Emulating Firmware
	Lab 24-5: Exploiting Firmware

	Summary
	Further Reading
	References

	Chapter 25 Fighting IoT Malware
	Physical Access to the Device
	RS-232 Overview
	RS-232 Pinout
	Exercise 25-1: Troubleshooting a Medical Device’s RS-232 Port

	Setting Up the Threat Lab
	ARM and MIPS Overview
	Lab 25-1: Setting Up Systems with QEMU

	Dynamic Analysis of IoT Malware
	Lab 25-2: IoT Malware Dynamic Analysis
	Platform for Architecture-Neutral Dynamic Analysis (PANDA)
	BeagleBone Black Board

	Reverse Engineering IoT Malware
	Crash-Course ARM/MIPS Instruction Set
	Lab 25-3: IDA Pro Remote Debugging and Reversing
	IoT Malware Reversing Exercise

	Summary
	For Further Reading

	Index

