Building the
Modern Workplace
with SharePoint
Online

Solutions with SPFx, Power Automate,
Power Apps, Teams, and PVA

Harinarayanan V P

Apress:

Building the Modern
Workplace with
SharePoint Online

Solutions with SPFx,
Power Automate, Power Apps,
Teams, and PVA

Harinarayanan V P

Apress’

Building the Modern Workplace with SharePoint Online: Solutions with SPFx, Power
Automate, Power Apps, Teams, and PVA

Harinarayanan V P
Melbourne, VIC, Australia

ISBN-13 (pbk): 978-1-4842-6944-2 ISBN-13 (electronic): 978-1-4842-6945-9
https://doi.org/10.1007/978-1-4842-6945-9

Copyright © 2021 by Harinarayanan V P

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Matthew Moodie

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6944-2. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6945-9

This book is dedicated to the loving memory of my dear friend,
Jojo Varghese, who taught me the difference between a CPU and
a monitor. Your love, your voice, and your laughter will forever
be imprinted in our minds.

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas Xi
About the Technical ReVIEWETccsssssnsssassssassssnsssassssassssassssnsssasssssssssnsssansssannsas Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
11T 11T (1 . xvii
Chapter 1: Getting Started with SharePoint Online..........oossememmmnrnnnnssssssssssnnsseessnes 1
Not Just @ “POiNt” 10 “SRAIE”.........ccvierrrrcrer s 1
Quick CGatch-up on SharePoint Yesterday and Today.........c.ccverrevnnnieniennnensensenessssessesessssessessenes 2
Licensing and Admin CENTETccvvverererieriere s s s e sese s e sas e ssesaessesessesaesassassessesaessessssesseses 2
LU= R 4

£ TR 5
Site TEMPIALES....ccececieir e e e ne s 5
Configure and CUSTOMIZEceveerrrereresirene s sennnnn s 8
Development Tools and FrameWOrKsScc.ceevrrneerenennsesse s s 8
SNArEPOINT LiSTS......ueierreeriierinsesesese s e 10
Adding @ CUSTOM LiSt........cceiueerrrrerenenerrnsessssesssese s ssssesesss e ssssesssssssssssessssssssssssssssssssssssssenens 11
Adding and Managing Site COIUMNS........c.cuccererernsesnsesesese s sessenens 14

Data Operations in @ CUSTOM LiSt........cccccviererinnninene s se s sse e ssssesse s ssesessesaesaes 23
DOCUMENT LIDFAIY.....cce ettt e e s s r e s s d e s s a e e s 26
Permissions in SharePOiNt ..o s 28
PErmiSSioN LEVEIScccoviiiiieerce e e 28
SEBOUMLY GIOUDS 1.uveueruerrersererersersesssseressessessssessessesssssssessesssssssessessessessssessessessessnsessessesssnensesaes 29
Permissions INNEHTANCEocerrrrer e s 30

TABLE OF CONTENTS

L= 5710 T 0] L1 (] 31
Pages and Weh Partsccvvniriiinnsinene s s se s s ss e s sss s s sne s e s snes 36
Overview of CuStomization NEEASccceeerererrrerereer e 40
SUMIMAIY ...ttt e e e Re e e e e e e Re e e e e e e e e nRe e e sa e nenannnnnnnens 40
Chapter 2: Case StUAYccureemmmmsssnnnmmmssssnnmmssssnsnmmssssssnsessssnnnssssssnnnsessssnnnessssnnnnsnsss 41
BUSINESS USE CASESveerrruerrrierseessssessssese s srsse s ss e s ss s e s s sn s e sssssssnssssssssessnsesnns 41
DOCUMENT USE CASES.....coriuererreerraerrnsesssssssssssesessessssssessssesessessssssssssssssssesssssnsssssssssssnsnsensssanes 42
ProducCt LiSt USE CASES......cevrrrererreserrnsessssessssssesssssssssssssssssssssesssssssssssssssssssssssssssssssssssssssnsnsanes 44
PAQGE USE CASES.....uccerreerrisesrssenssesessssesssss s s sssse s s s e s sessesssss e sss s ssssessssssessasssensssnnssnsnsanes 45
Service POrtal USE CASES.......cccuererererrnsmrrnessssesessssessssesessssessssesessessssssssssssssssssssssssssssssssssssns 45
NaVigation USE CASESueererrererreserersesrrsessssaesessesssssssssssesessnsssanes 47
SEAICH USE CASES......covrreerreerersesersesessssesssessssese s e sesseses e e s e sessssssssssssasssssssssssssssessssnsssnns 48
High-LeVEl DESIGN...c..ciiiriereriesir s e s st s e s s b e ae s 48
Identifying the ROIES.........ccuceviieireirn e 49
Designing the SECUrity LEVEL.........ccoveieninise e s ssanes 50
Identifying and Designing REMS........c.ccvviinirnise e e 51
Site Columns and CONtENt TYPES ...cvverrerererrerrrenerrese s s se s s ses e sens 51
LiStS aNd LIDrariEscvueeerriserenesesesessssessssessssssessssessssesssssssssssesesssssssssssssssssssssssssssssssessasessnns 53
RGN o o [T OSSOSO 54
Custom Web Parts and EXtensions (SPFX).......ccccvurernsesmnesmsssesnsesssssssssessssessssssessssessssesenns 54
Custom Form (POWEr APPS FOIM)......coueeerrererenerreseresesesesessssesessesssssssssssssessssssssssssssessssssenns 55
Workflows (POWEr AUTOMALE)cccveeereerererinirese s se s 55
Integration Scenarios for Teams and PVAS.........cccccvrvnnesnsse s sessesenns 55

A QUICK BECAPvviueueuceresssseeesesesss e e sss e e s e et sss s se s ss s s nessnsssnnsnsnens 56
Creation Of RBMS.......cccoiic s 56
PnP XML Provisioning SCREMA..........cccvveriernrersereresesseresessssessessessssessessessesssssssessesssssssesseses 57
DevelopmeNt TOOIScccvceiiririe e s e 57
Creating the Provisioning SChEMA ... e snens 58
Final Base TEMPIALEcccvieriiiiriirrie i r e sr e s s d e s s s n e s n 72
Preparing the SIte ... e 73
1] 4= OSSOSO 76

TABLE OF CONTENTS

Chapter 3: Forms and Formatting.......ccuseemmmnsssnnnmmssssssnsmsssssssssssssssssssssssssssssssssssnss 77
FOrm ReqUIFEMENTS ... e e e s 78
Document Properties FOrM.........ccoiiinnsncne s 78

Pros and Cons 0f O0B FOIMS..........cccucenenerrrmnnenmsessssssssse s sesss s sssssesssssssssssesssssssas 84
Restricting the Selection of PEOPIE.........cccrricncnnic s 85
VIBWS ...t se e n et ne e e n e e R e R e e e e R e R e e e e e R e nRe e e 89
Column Formatting With JSONccoeerrirer e 91
Conditional View FOrmatting.........ccccoveermnenmnenresc s ses s s s 98
Custom Image Cards on HOVEr EVENL ... 101
Integrating the PnP SChema FileS.........cccuciriininnsnrn s 105
Project Development REVIEWcuecerurerenenesrisesrssesssesesse s ssssessssssessssessssssssssssssssssssssssnns 106
L1134 R 106
Chapter 4: POWET APPS ..ecurruisssnnmmssssssnsssssssssssssssnsssssssssssssssssnssssssssnnssssssnnnssssssnnnnss 109
Canvas and MOodel-DrVEN APPS ..o e se s se e se s se e sessesenns 109
Getting Started With CanVvas APPS......ccuvrrninine s s s s 110
Understanding the Canvas Better ..o 113
MUIiple Edit SCIEENSciceierecirere e s st nae 116
ValidAtioN ..o ———————— 121
CoNNECTING the SCIEENS.......civcercerere e re e s e s s a e e s ae e e e e s aesa e e e e naennen 124
Making a Power APP RESPONSIVEc.eiercerreerereriersee e sersesseessesessesssessessessssssessessesssessessensenns 129
Power APPS LISt FOIMS ..o s sn s s se s s st se s sne 135
=T 0T o] 1SR 137
B30T 111 T o SRS 141
Chapter 5: Power Automate........ccuemmmmssnnnmmmssssnnnmmsssssnnmsssssssnessssssnsssssssnnsessssnnnnss 143
Creating YOUr FirST FIOWccvcrererirserie et se s ss s s sae e e s ss s e saesne e s e saesnes 143
0TS 0] SO 156
AddItional APPrOVaL ..o e e e e nne s 160

L L 10 TR 163

vii

TABLE OF CONTENTS

DoCUMENTE GENEIALIONccovrviriccere s 167
Preparing a Word TEMPIALe.........cccceevrverieni s ssens 167

B30 10 1 3OS 168
Populating and Creating @ Word DOCUMENT..........ccoecrreriererensersesenssseressessesessessesssssssessesaes 170
Date and Time EXPreSSIONScvcevererrerierersrsersessessssessessessessssessessessssessessesssssssessessessssessesses 174
Creating and Updating the DOCUMENLccccrierrinrnire e eae s 175
CRIlA FIOWS....cviteeeeeeeseeeeesesssss s sss s se st ns s nenenees 177
Exporting and Importing SOIULIONS..........ccciriiniir e 186
L (0T 5T T o 188
TIMEOULcoviveerree s e e e e s R e e e e e e nRe e e e e nennn e nnn e 191
01T - OSSPSR 193
BT 11134 R 199
Chapter 6: SharePoint Frameworkcccccrrnmssnnnmnssssssnmsssssssnssssssssssssssssssssssssnnns 201
L0 T - 1o O 201
Development ENVIFONMENT...........ccociiiiininnn s s se s s s snens 203
Service Portal Webh Part ... 204
SPFX SOIUEION FlES ... e 205
Running the WED Part...........ocoirer e 207
Planning the SOIULION ... s 208
INtroduction t0 REACT..........ccoieercrre e e 208
Service POral DESIGN.....cccviviririireresirsire s s e s e sr s s s ae st p e e s p e e nnen 210
Props and STAteccvcrriirine s e 211
Creating the Request COMPONENL..........ccccviiriinniesnn s 212
Working with Multiple COmMPONENTS.........cccvceriennesene e 219
Communicating with SharePoint...........ccccvvrrninnesnes s 224
Reading MUIiple HEMS.......covceeierrese s 230
Component INTEractionc.ccvevevninin s 234
Personalized COMPONENTSccueviirninierenir st 244
Handling UPALeScccveernerrneserese s s se s se e e e e e s ssssssssssssnenns 252

viii

TABLE OF CONTENTS

APP DEPIOYMENT.....ceee e e 260
Overview Of SPFX EXIENSIONS........ccoveererererrnessesesessss s se s sassssssssssesesssssnsaes 262
SUMIMANY ..ttt s b e e e e R e b e e e R e A e e e e e Re e Ao b e e e e e Re R e e e e e aenrs 263
Chapter 7: Modern Search........ccccuseemmmmssssssmmssssssnnmsssssssnssssssnsnsssssssnnsssssnnnssssssnnnnss 265
Out-0f-the-BoX SEAICNEScccereereserre e 265
SEArCH ODJECTIVE ...vvveerreerereserre s s s s e sr e n e nne e 267

PNP MOAEIN SEAICH........civeceieceireser s nr s 267
SEAICh SCREMA ... s 273
] £ ST SR 278
SBAICN BOX...cucirirerisisiissss s 284

£ 11134 7R 288
Chapter 8: Teams and Power Virtual Agentsccccuseemnmmssssnsnsmssssssssssssssssssssssnnnss 289
What Are TEAM APPS? ..eeieiiirire s s e s e e e ae bbb e nne s 289
Linking Workplace t0 TEAmS.........cccvcvierenininiene s s sss s s sns s s s 290
POWET VIFTUAL AQENTS ... s ne e 300
Creating @ Chat Bot...........cccvviiinnsr e e 300
Publishing and Sharing the Bot...........ccccocviinininnnsn e 313
Creating Teams with MicroSoft Graph...........cccoveerrenrenrnscsrese s 319
Posting a Message 10 TRAMS.........cccvecernimrenesesene s s 323
L1134 R 334
INO@X . uueniissnnnsssnnnsssnnnsssanssssanssssanssssanssssannssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 337

ix

About the Author

Harinarayanan V P is a seasoned SharePoint professional
with more than ten years of experience in the design and
development of applications using Microsoft 365, SharePoint,
Azure, Teams, Power Platform, .NET, and React. He has built
SharePoint solutions for various clients across the world.

He is a Microsoft Certified Azure Solutions Architect, a
Microsoft 365 developer, and a Power Platform developer. He

is based in Melbourne, Australia, and works as a SharePoint
specialist in the Victorian public sector. His email is
harivpau@gmail.com.

About the Technical Reviewer

Vijai Anand Ramalingam is a Microsoft MVP in Office
apps and services and an experienced modern workplace
architect with deep knowledge of SharePoint and Office
365. He is a blogger, author, and speaker, and has published
1,300 blogs and articles on C# Corner. He currently works as
a technology architect at Cognizant Technology Solutions
in the United Kingdom. Vijai has worked on Microsoft

SharePoint on-site and online, Office 365, and Azure.

xiii

Acknowledgments

I must begin by thanking my amazing wife, Divya, for her steady motivation and
nurturing support while writing this book. I would like to thank our little daughter, Ithal,
for her adorable interruptions throughout the process &). I would like to thank my mom
for her endless care and support.

Thanks to everyone at Apress for giving me the opportunity to publish my first book.
Special thanks to Shrikant Vishwakarma, the coordinating editor, who made my job easy
by providing continuous support, and Smriti Srivastava, the acquisitions editor.

I'would also like to thank Vijai Anand Ramalingam, the technical reviewer, and
Matthew Moodie, the development editor for their excellent suggestions and corrections.
Finally, I would like to thank all my wonderful friends and coworkers, who have been an
integral part of my SharePoint journey.

Introduction

Offering endless integration capabilities, SharePoint Online is a great choice to build a
workplace solution. You might have already decided to use SharePoint Online to develop
your modern workplace solution. In this book, I'll try to help you in your decision-making
process and guide you in your building process from start to end. We'll go through
different areas of development that are possible with SharePoint Online and see how the
platform can be used to leverage your needs in building a modern digital workplace.

The chapters are designed to help you convert a set of requirements to the most
practical and modern solutions by integrating SharePoint Online with the other
Microsoft 365 suite of products. The approach used in this book is mostly focused on
requirements, solution design, and development.

The focus of the first chapter is getting you started with the basics of SharePoint
Online. Chapter 2 introduces a case study and familiarizes you with different kinds of
requirements and suggested approaches. Each chapter from there onward discusses on
different solution aspects using different methods and tools.

If you'd like to learn SharePoint Online development from scratch, this book is a great
choice. If you'd like to learn about specific customization tools like SharePoint Framework
(SPFx), Power Platform, and Teams, this book will take a problem-and-solution approach
that will definitely make you proficient in using them.

xvii

CHAPTER 1

Getting Started with
SharePoint Online

In this chapter, you will learn about the basics of SharePoint Online and how it can meet
your needs in building a modern digital workplace. With endless integration capabilities,
SharePoint is definitely a great choice for building a workplace solution.

We will start with an introduction to SharePoint and how it has evolved over the
years. Next, we will get an overview of the platform’s licensing, developer programming,
and Admin Center. We will learn about how to add users to Microsoft 365 Admin Center
and how to create a site. We will also learn about the templates, lists, list templates,
columns, and content types that are available. We will then review the different
developer tools and frameworks.

The “Permissions in SharePoint” section covers different permissions and how
access is managed. We will receive a quick overview of Document Library and
versioning. We will learn about web parts, pages, and how to add web parts to a page.
By the end of this chapter, you will be familiar with basic concepts of SharePoint and the
different tools it interacts with.

Not Just a “Point” to “Share”

I have encountered a lot of situations where it is assumed that SharePoint is just a place
to share your content, much the same as Google Drive. It is not just that.

SharePoint is a collaborative platform where employees of an organization can
access, author, publish, share, secure, automate, search their content, and much more.
That’s right, SharePoint is all about content and its presentation. You can configure it to
meet your needs. That is the reason it is one of the most powerful tools for modernizing a
workplace.

© Harinarayanan V P 2021
Harinarayanan V P, Building the Modern Workplace with SharePoint Online,
https://doi.org/10.1007/978-1-4842-6945-9_1

https://doi.org/10.1007/978-1-4842-6945-9_1#DOI

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Quick Catch-up on SharePoint Yesterday and Today

SharePoint started out in 2001 as SharePoint Portal. Following this, the platform was
upgraded to SharePoint Server 2003 and SharePoint 2007. SharePoint 2007 brought
with it the content management and publishing features. SharePoint 2010 added quite
anumber of additional features as well as a new user interface. With SharePoint 2013,
SharePoint 2016, and SharePoint 2019, the platform continued to evolve as an on-
premises solution.

In 2014, Microsoft began offering SharePoint as a cloud service among its 365 suite
of products. SharePoint Online does not require you to install anything on your current
server, and you can access it from anywhere at any time. Our focus in this book is only on
SharePoint Online.

Licensing and Admin Center

Before starting a project using SharePoint Online, you will need to purchase a Microsoft
365 license based on your specific requirements. Different regions have different
licensing plans. Individual licenses can be managed from the Microsoft 365 Admin
Center (Figure 1-1). Here, you can do such things as configure a license for a user to
use premium connectors for Power Apps and Power Automate. I will cover the different
licensing requirements in detail as we come upon them.

For the purposes of this chapter, it will be helpful to sign up for a free Microsoft
365 E5 developer subscription at https://developer.microsoft.com/en-us/
microsoft-365/dev-program. The subscription can be extended for up to a year.

Once you sign up, you'll have access to the Microsoft 365 Admin Center, which you
can find at https://admin.microsoft.com/.

https://developer.microsoft.com/en-us/microsoft-365/dev-program
https://developer.microsoft.com/en-us/microsoft-365/dev-program
https://admin.microsoft.com/

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

e _

D Darkmode §F Wrar's new?

Finish setting up Microsoft 365 E5 Developer
(without Windows and Audio Conferencing)

T g syt Beganication e Micreriolt Toama
B Resources Tinaresi Bl everyone you work mith chat, meet, call, and coliaborte Sl i one plics, no matter whiee thiy ace. Intredude
Tesarms %9 your users by sending 8 premade emasl with quidance. 1igs, and 4 Snk o it it
B3 piing
O suppon
S Semiogn
&
- cards
£ Repen
T e . Micronolt Tearms e management Y —
o ot Support remote User management Install the Office
ey workers with Teams R desktop apps
@ Compllanc
B Endpoint Mun,
@ Azve Acvwe Directory
Add user LT et Oft
@ Eschasge
Service health Meuiage corter
®
IE Aladmn cortens Some advisories 273 unread messages
reported.
+=+ Show pirned 11 Threat, profasity. i quag ﬂ

Figure 1-1. Microsoft 365 Admin Center

In the Admin Center, subscriptions can be managed from the Billing section, which
you can access on the left side of the screen. Individual user licenses and groups can be
managed from their respective sections.

You will also see a SharePoint option on the left, as highlighted in Figure 1-1. If you
do not see it, click the Show All from the bottom of the left navigation.

Clicking SharePoint will take you to the SharePoint Admin Center, where you
manage all your sites, content services, migration, policies, and other such elements, as
well as your application programming interface (API) access (Figure 1-2). You can also
manage Term store, User profiles, Search, and other features using the More Features
option.

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

i SharePoint admin center

SharePoint admin center

Actien sites

Deleted stes

E Polices A

© Viewed or edited 0 Syrced O Shared internally O Shared emermally © Toasd sines O Aetive e

Content type gallery

@ Mgration

i More fastures 100020 At M faem ks s eso0aned b1 3 Sefened ioe vestoned

S Cmelrve admn center

%P Clioniza revication Aenunciag qenersl saaisbdey of SharePeiat sosces

* Show al

Figure 1-2. SharePoint admin center

Users

Before creating your SharePoint site, you will need to create at least one user in the
Microsoft 365 Admin Center, as shown in Figure 1-3. Here, you can add a user, remove
a user, export a user, add multiple users, reset a password, and set up multifactor
authentication.

By selecting a particular user from this page, you can manage their licenses and
roles.

- douhes &) Durk made

Active users
-

(5 Due 10 4 recert nconane in Searss wiage, whee you duign & Tearms bieras 12 8 wter 1 iy Like arcaund 34 hours befons Taey B e Ry tel g LSl S, you won® be st 0 assign Team polktinn 1 T, and Tary maght not have actess 1o some Taarmn featunes b caling dred i
Contacts it Dokl
Guest uiery
Dulstact woar +adduser [User templates) Multi-Bsctor smsthartication 7, Delete s wier () Bafess 0, Reset panrmord L Exportusens - T Fiber Search
5 Gooups -
P Roles Dpimgramet Gwmaes loew o
B Resources - Hari Narayanam TR — smpre— Dok
[~ - s F wkasendakedowkrlos ikl 5 Doeniopa fmshicat Wirsdoan and

Figure 1-3. User management

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Site

A site is a website that contains different items like lists and pages. A site will have a
home page. To start a project, you first need to go to SharePoint Admin Center and create
a site. To do so, select Active Sites and then click Create, as shown in the Figure 1-4.

Active sites

Deleted sites Sitg rarne 1 uRL Storage wied (58} Primary admin ks Template

Figure 1-4. Admin interface for sites

Doing this will present you with number of templates that you can choose from.
But before getting into that, let’s have a look at what a site template is.

Site Templates

In SharePoint, site templates are prebuilt definitions for a site. These definitions are
designed with specific business needs in mind. You can make use of these templates to
create your own SharePoint site and then add in your own customizations after that.

In SharePoint Online, you will mainly come across two types of templates: the
Team Site and the Communication Site. A Team Site connects you and your team to
the content, information, and apps you rely on every day. You can use a Team Site
to store and collaborate on files or to create and manage lists of information. The
Communication Site, on the other hand, is a great place to share news, reports, status,
and other information in a visually appealing way.

How do you choose between using a Communication Site and using a Team Site? As
an example, consider a COVID-19 research department where the team members have
a Team Site that they use to collaborate on data and reports. During the preparation of
these items, the team members have the option to work privately.

Another scenario would be an intranet where managers post news and other useful
information for their employees. A Communication Site would be an ideal choice here,
as the employees do not need to know how the published information is obtained; they
just need to receive the information, provide feedback on it, and so forth.

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

For our site, let’s choose a Communication Site, as shown in Figure 1-5.

Active sites

Create a site

l:l Chocrse the type of site you'd ke 1o create.
t AL Storage used (GB) ¥

Figure 1-5. Creating a site

This will take you to a window where you can choose a design from the left-hand side
of the screen; I chose Blank. If you were to select a Topic or Showcase, certain features
would be added by default. This is a great option to use for getting started with a site, but
for our site, let’s use Blank.

As shown in Figure 1-6, you can enter the name, owner, and language for the site.

In the Advanced Settings, there are additional options for you to choose from, including
time zone and description. The availability of the site name will be checked immediately
upon entering it.

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Communication Site

h ign Site name
| Blank e ‘ Workplace
Start with a blank site and make your design come to life quickly Site address
and easily.
IO CET : J

https://cloudhadisharepoint.com/sites/Workplace

Site owner

A Hari Narayanan x

_ Select a language

English e

Select the default site language for your site. You can't change this
later.

Advanced settings

=

Figure 1-6. Creating a Communication Site

By clicking Finish, the site will be created in less than a minute. It will also be listed
on the Active Sites screen, where you can navigate to the site by clicking the relevant
URL, as show in Figure 1-7.

Active sites
& Home Lt this e 13 St andl Bty 1S and manage 1o Wtngl. Les mone 100 Ml e of 124 T8
O sees -
+ Croate Ep Permistions ~ f Web v % Shaing [Oelete £ St ites Toslected @ Al e
| aesy s
Oeleted utes Site name Hubs Template Lt sotivity (UT_ - Date created Created by -
B policies w L Taam o
@ Setrings o -

Figure 1-7. Site is created and displayed in Active Sites

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Now you have created a Communication Site. By choosing the Blank template, the
home page got created with only the headers and footers in place, as shown in Figure 1-8.

Figure 1-8. Home page of a Blank site

Configure and Customize

At the site level, what follows are the areas where you can customize and configure
SharePoint based on the user’s needs:

e Lists

e Libraries

o Pages

¢ Forms

e Search

e Web parts
o Workflows

o Security

Development Tools and Frameworks

We can customize SharePoint sites in different ways. Following are the modern and
recommended tools for customizing sites with the platform:

e JSON formatting: Using JSON formatting, you can customize a list/
library form or view to a greater extent. We will go to this in detail in
Chapter 3.

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Power Apps: Power Apps is a suite of apps, services, and connectors
that helps you to quickly build custom apps or forms for SharePoint
sites. Apps built using Power Apps have a responsive design and will

run seamlessly in your browser or mobile device.

SharePoint Framework (SPFx): SPFx is a page and web part model
that helps you develop client-side web parts and extensions for
SharePoint. You can make use of Patterns and Practices client-

side libraries (PnPjs) and Microsoft Graph to communicate with
SharePoint inside an SPFx web part. The developer tool chain

is based on open-source client development tools such as Node
Package Manager (NPM), TypeScript, Yeoman, webpack, and Gulp.
You can use any JavaScript framework for development, such as
React, Angular, Knockout etc.

Power Automate: Power Automate is a service that helps you create
automated workflows. You can connect to SharePoint Online and
communicate with many other programs using the service. In a
nutshell, Power Automate helps you simplify business processes and
manage them more effectively.

SharePoint REST service: The Representational State Transfer (REST)
service was created by SharePoint to help you interact remotely with
SharePoint data by using any technology that supports REST web
requests. PnPjs and Microsoft Graph are built using this.

PnPjs: Patterns and Practices client-side libraries is a collection of
fluent libraries for consuming SharePoint, Graph, and Office 365
REST APIs in a type-safe way. You can use it within SPFx, Node.js,
or any JavaScript project. This open-source initiative complements
existing Software Development Kits (SDKs) provided by Microsoft,
offering you another way to consume information from SharePoint
and Office 365.

Microsoft Graph: Microsoft Graph (https://graph.microsoft.com)
provides a unified programmability model that can be used to
access data in Microsoft 365. Graph API offers a single end point
that provides access to data in Microsoft cloud.

https://graph.microsoft.com

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

o PowerShell: PowerShell is a task automation and configuration
management framework. You can make use of PowerShell to
automate a huge number of things in SharePoint. It can interact with
SharePoint using PnP modules, the REST API, and Microsoft Graph.

We will review all these tools in detail in the following chapters. In addition to the
features just mentioned, we can make use of Azure services, such as Logic Apps and
Functions, to customize SharePoint, although they are beyond the scope of this book. In
the past, developers used the client-side object model, SharePoint designer, JavaScript
Injection, Add-Ins, C#, .NET MVC, and other tools to customize SharePoint Online.
Nowadays, these are no longer recommended unless there are no other options. They
are also not covered in this book.

SharePoint Lists

A SharePoint list is a place where you can store and manage a collection of data. A

list contains rows and columns, similar to an Excel table. The Calendar and Tasks are
examples of Out Of the Box (OOB) lists offered in SharePoint. You can create a list with a
variety of columns, including Text, Number, Date, and Time. Following are some of the
types of lists available in SharePoint Online.

e Announcements: Announcements allows you to share news and
status updates and to provide reminders. Announcements support
enhanced formatting with images, hyperlinks, and formatted text.

e Contacts: Contacts allows you to store information about people or
groups who you work with.

o Discussion boards: These boards provide a central place in which
to record and store team discussions. The format is like that of
newsgroups.

e Links: This list offers a central location for links to the Internet, your
company’s intranet, and other resources. For example, you might
create a list of links to your customers’ websites.

10

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

e Calendar: Here you can store all of your team’s events or set a
reminder of specific occasions, such as company holidays. A calendar
provides visual views of your team’s events in the form of features like
a desk or wall calendar. You might record meetings, social events, or
all-day events.

o Tasks: Tasks allows you to track information about projects and other
to-do events for your group. You can assign tasks to people as well as
track the status and percentage of a task completed.

e Document Library: A SharePoint library is a special type of list,
the purpose of which is to create and store documents. Document
Library, Site Assets, and others are OOB libraries in SharePoint.

In the site you created, if you go to the Settings column on the right side of the screen
and navigate to Site contents row, you can see all the OOB lists and libraries offered
(Figure 1-9). The Documents, Style Library, and other libraries are created by default,
and once you set up your site, the Events list is created.

Mame Type e Modfied

Office 365

Figure 1-9. Contents of your site

Adding a Custom List

A Custom List is a SharePoint app in which you can store and manage content. It is
like an Excel spreadsheet or a structured query language (SQL) table but with different
capabilities. We can create any number of Custom Lists in a SharePoint site.

I will now take you through list creation and data entry in detail. If you're
using SharePoint for first time, this can serve a strong basis to understand content

management concepts in SharePoint.

11

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

For example, if you wanted to store your office’s branch addresses, you could make
a list called “Branch Information” with two columns, “Name” and “Address,” and then
enter information into the list. If you wanted to record the information for 15 branches,
you would have 15 rows of information. Each row is called a list item, so you would have
15 list items.

Let’s create a list from the site we set up earlier. To start, click the Settings button on
the top right of the screen and then click Add an App, as shown in Figure 1-10.

Workplace

Home Docusents Page St

t Hew (@ Page detais

Office 365
o all

Figure 1-10. Adding an app in Settings

Next, select Custom List from the set of available apps, give it a name, and then click
Create, as shown in Figure 1-11.

Site contents » Your Apps

Your Apps. Find an app o
Apps You Can Add
Manage Licenses Noteworthy
Your Requests
SharePoint Store
Adding Custom List x
Do(umem Libr sfy tusmm lxsl Slle MaII ik
App Detal
aname Name:
DU 340 01 Bviay 0 yoor s, ot Branch Information
Apps you can add newest Name
H IEBI EYrs

Figure 1-11. Adding a Custom List

The list will now be created, and displayed in the Site Contents section along with
other items we created while making the site (Figure 1-12).

12

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Workplace

Home Documents Pages Site contents Edit

Y

-+ New

Contents Subsites

Name Type Items Modified
O Documents Document library 0 10/24/2020 6:58 AM
O Form Templates Document library 0 11/6/2020 11:11 PM
O Style Library Document library 0 10/24/2020 6:58 AM
M Branch Information List 0 11/7/2020 12:16 AM
E Events Events list 0 10/24/2020 6:58 AM
O Site Pages Page library 1 10/24/2020 6:58 AM

Figure 1-12. New list added to the Site Contents interface

Clicking Branch Information will take you to the list view, as shown in Figure 1-13.
Here you can add a new list item, edit a list item, edit the list items together in grid view,
export to Excel, and more.

As you can see in Figure 1-13, We only have the Title column available in the list. If
we wanted to add more columns, such as “Name” and “Address,” how would we create
them? The best thing to do would be to create them at the site level so that the columns
could be reused by other lists or libraries.

13

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Workplace 4 Notfollowng 1 Share
w :
Home Documnts Pages Siteconterts Edit
5 Ut grdview 15 Share G Export 1o Dxcel B Power agon - T Atomate v - e v ¥ O

Branch Information

Take Add cokemn

.

'Afe!(ome lo]:lour new I_ist
Figure 1-13. Custom List interface

Adding and Managing Site Columns

You can add a Site column to multiple lists. This type of column is reusable and ensures
consistency of the metadata across sites and lists.

You can create Site columns using PnP PowerShell, which I will explain in upcoming
chapters. For now, to understand how we can create and use a Site column, let’s create
one from a SharePoint interface.

To add a Site column, go to Site Settings from Site Contents interface, as highlighted
in Figure 1-14.

Workplace % Nothollowng £ Share
w g
Home Documents Pages Sitecontents Ecst
+ New g Site workfows) Site setmngs m

Contents Subsites

Figure 1-14. Navigating to Site Settings from Site Contents

In the Site Settings interface, click the Site columns, as shown in Figure 1-15, to get to
that interface.

14

CHAPTER 1

GETTING STARTED WITH SHAREPOINT ONLINE

EDIT LINKS

Site Settings

Home Users and Permissions

T —— People an.d groups
Site permissions

Pages Site collection administrators
Site a ermissions

Recent FED

Branch Information P
Web Designer Galleries
Site columns

e ——

Site content types

Site contents

EDIT LINKS

Site Administration
Regional settings

Figure 1-15. Site Settings interface

Look and Feel

Title, description, and logo
Quick launch

Change the look

Site Actions

Manage site features

Enable search configuration export
Delete this site

Site Collection Administration
Recycle bin

At the top of the Site Columns interface, click Create, as shown in Figure 1-16.

_ Site Settings » Site Columns o

Rase Columas

Core Contact and Calendar Cobsmns

Figure 1-16. Site Columns interface

Workpie
Workpiace
Workplse
Workpiae
Workpiae
Workplae
Workplace

In this example, we need to create a column called “Branch Name” where we will
enter the names of each branch.

As shown in Figure 1-17, add “Branch name” for the name of the branch and then
type “Single line of text.” For the Group, enter a new group name: “Workplace Columns.”

15

CHAPTER 1

Site Columns

Name and Type
Type a name for this column, and select

the type of information you want to store
in the column.

Group

Specify a site column group.
Categorizing columns into groups will
make it easier for users to find them.

Additional Column Settings

Specify detailed options for the type of
information you selected.

GETTING STARTED WITH SHAREPOINT ONLINE

» Create Column o

Column name:

Branch name |

The type of information in this column is:
@ Single line of text
(O Multiple lines of text
(O Choice (menu to choose from)
(O Number (1, 1.0, 100)
(O Currency ($, ¥, €)
(O Date and Time
(O Lookup (information already on this site)
() Yes/No (check box)
(O Person or Group
(O Hyperlink or Picture
(O Calculated (calculation based on other columns)
(O Image
() Task Outcome
O Full HTML content with formatting and constraints for publishing
(O Image with formatting and constraints for publishing
(O Hyperlink with formatting and constraints for publishing
(O Summary Links data
(O Rich media data for publishing
(O Managed Metadata

Put this site column into:
(O Existing group:

@ New group:
Workplace Columns

Description:
A

Require that this column contains information:

@ Yes (O No
Enforce unique values:
@ Yes (O No

Figure 1-17. Creating a site column

16

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

As shown in Figure 1-17, there are a number of different types of columns available
in SharePoint, most of which are self-explanatory. The Group section allows you to add
together a set of Site columns. Let’s put all of our custom Site columns into a “Workplace
Columns” group.

Figure 1-17 shows us that there are number of other properties we can assign, as
well. The Require That This Column Contains Information option allows us to choose
whether a column is mandatory or not. Let’s make the branch name mandatory here. If
you select Enforce Unique Values, the name of the branch will be unique and you won't
be able to name two different branches the same thing. Let’s select Yes here. Column
formatting helps you to have a custom look for the column. I will explain formatting and
column validation in detail in Chapter 3.

Click OK once you have filled in all the details. Since we chose to enforce unique
values, you will get a warning. Click OK and the Site column will be created. You will be
redirected back to the Site Columns page, shown in Figure 1-18. Here, you can filter Site
columns based on the group and see the new column that we created.

I Site Settings » Site Columns e

- Create w Group: | Workplace Columns -

Workplace Columrs

Figure 1-18. Site Columns filtered by group

Let’s next create another column called “Branch Address,” as shown in Figure 1-19,
by following the steps previously outlined. Select Multiple Lines of Text as the type
of information since we will need to add multiple lines for the address. Choose No
when asked whether it should be required that a column contains information and
not required to allow unlimited length in document libraries as well. Select Workplace
Columns in the Existing Group drop-down. Change the type of text to Plain Text. Leave
the other properties as is.

17

CHAPTER 1

EDIT LINKS

GETTING STARTED WITH SHAREPOINT ONLINE

Site Columns » Edit Column o

Name and Type

Type a name for this column.

Group

Specify a site column group.
Categorizing columns into groups wi
make it easier for users to find them.

Additional Column Settings

Specify detailed options for the type of
information you selected.

Column name:
l Branch Address ‘

The type of information in this column is:
() Single line of text

@ Multiple lines of text

(O Choice (menu to choose from)
(O Number (1, 1.0, 100)

(O Currency ($, ¥, €)

(O Date and Time

Put this site column into:

@ Existing group:
| Workplace Columns v

(U New group:

Description:

v

Require that this column contains information:

(O Yes @ No

Allow unlimited length in document libraries:
(O Yes @ No

Number of lines for editing:

6 |

Specify the type of text to allow:
@ Plain text

O Rich text (Bold, italics, text alignment, hyperlinks)
(O Enhanced rich text (Rich text with pictures, tables, and hyperlinks)

Figure 1-19. Editing a column

18

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Once you've finished creating the second column, we’ll add the two columns to the
Branch Information list so that they will be available in the list for entering data. Go back
to Site Contents by using the left navigation bar or the top right Settings button, as shown
in Figure 1-20.

®

Settings

_ Site Settings » Site Columns o enronn

Workplace
Werkplice Themes

Figure 1-20. Navigating to Site Contents from Site Columns

From Site Contents, navigate to the Branch Information list as you did earlier
(see Figures 1-12 and 1-13). From the list interface, select List settings as in Figure 1-21.

_ el L)

W Workplace
Home Dxuments Pages. Site conments Edit

@ EportoExoel @ Power Apps T Automane

Bt in grid view

Branch Information

Titke A ceumn

Figure 1-21. Navigating to List Settings

On the Settings page, select Add from existing site columns, as shown in Figure 1-22.

19

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Branch Information » Settings

List Information

Name: Branch Information

‘Web Address: https://cloudhadi int.comy/sites, e/l h ony/All a5

Description:

General Settings Permissions and Management Communications
© List narre, description and navigation © Delete this list © RSS settings

8 Versioning settings © Permissicns for this list

& Advanced settings © Enterprise Metadata and Keywords Settings

B Validation settings

® Audience targeting settings

® Form settings

Columns

A column stores information about each item in the list. The foll olumns are currently available in this list

Cotumn felick to edit Type Required
Title Single line of text v
Modified Date and Time

Created Date and Time

Created By Person or Group

Maodified By Person or Group

B Create column

B Add from

site calumng

® Colum

ng

® Indexed columns

Figure 1-22. List settings

As shown in Figure 1-23, select the group and then both Site columns. Click Add.
Leave the Add to Default View box checked. Click OK.

20

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

EDIT LINKS

Settings » Add Columns from Site Columns o

Select Columns
Select which site columns to add Select site columns from:
to this list Workplace Columns v

Available site columns: Columns to add:

Branch Address
Branch name

Add >

Description:
Naone

Group: Workplace Columns

Options
Add to default view

OK Cancel

Figure 1-23. Adding site columns to a list

You will now be able to see both columns in List settings page (Refer Figure 1-22
above) under Columns.

Looking back at Figure 1-22, there is a Title column you can see on the first row of
the section Columns, which is marked as required by default. Let’s instead make it non-
mandatory, as we do not need that column for this list. We can do that by clicking Title,
changing Require This Column Contains Information to No, and clicking OK.

Scroll down and click All Items under Views section from the List settings page. List
settings is page is shown in Figure 1-22, but you need to scroll down to see the section
Views. A view is a way to show list or library data where you can define which columns to
view and in which order. You can also define the filtering, grouping, and more. Clicking
All Items will take you to the Edit View page, as shown in Figure 1-24. Uncheck Title and
then click OK. The reason we’re doing this is to remove the unnecessary Title column
from view, so that you can get a basic idea of what a view is.

21

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Settings » Edit View o

Figure 1-24. Editing a view

Clicking OK takes you to the list interface where you can see the two new columns in
the view.

If you go to list settings, you can always add a column directly without having to
add a site column. But in most of the cases, this is not recommended. The following
table differentiates when you should use a site column and when you should use a list
column.

Table 1-1. Choosing Between Site and List Columns

Scenario Column Reason

Column only needs to be used ina List column The list column is quick and easy to use
single list or library here, as it will only be used only once.
Column needs to be reused across ~ Site column The site column can be reused across list
different lists and libraries and library boundaries.

Search Site column Creating a site column is easier for

search functions, as doing so will create a
managed property automatically.

In addition to the reasons for using site columns mentioned in the table, better
maintenance is possible when using them.

Also, instead of adding Site columns directly to the list, you can add them to a Site
Content type and later add the Content type to the list. A Content type is a reusable
collection of metadata (columns)for a category of items or documents in a SharePoint
list or Document Library. For example, you can create a Content type called “Product”

22

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

and add multiple columns to it. From the list, you can add the Content type “product.”
All the columns in the Content type will be added to the list. Content types enable you to
manage the settings for a category of information in a centralized, reusable way.

If you go to Site Settings » Site Content Types, you can create a Content type. Once
you create the Content type, you can add columns to it using the Create link. To add a
Content type to a List or Library, you need to enable the management of Content types
by clicking Advanced Settings from the List or Library settings. After that, you can add
the Content type to the list. We will see this process in action in upcoming chapters.

Now, let’s see how we can add a new item to a Custom List.

Data Operations in a Custom List

In this section, we will learn how to add and manage data in a Custom List. Let’s start
by clicking the New button from the List interface, as shown in Figure 1-25. A sliding
window will then open on the right of the screen. You want to remove the Title column
in the form and put the Branch Name on top of the Address. You can do this by clicking
the pencil icon on the top right and click on Edit Columns. from the dropdown.

Figure 1-25. New item form of a Custom List in SharePoint With the latest
changes from Microsoft on OOB forms, you will see only a pencil icon in place of
the ‘Edit form’ in Figure 1-25. Clicking on the icon will take you to Edit columns as
in Figure 1-26)

Clicking Edit Columns in the Form will give you the option to uncheck the Title box.
(See the areas outlined in red in Figure 1-26 to follow along with the instructions here.)
To move the Branch Name to the top, hover over Branch Name, click the three dots, and
then select Move Up. Alternatively, you can just select Branch Name and drag it over
Branch Address. Click Save to save your changes.

23

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Bl save X Cancel @ Copylink & 3 Save |X Cancel e

Edit columns in the form

New item Select a column to show or hide it in the form. To
reorder columns, use drag and drop, or find more
options next to each column. Required columns and
columns with conditional formulas can't be hidden.

Enter value here 1 _
Title

Branch Address
Branch Address

= Title

Branch name

Move Up

= Branch name *

Enter value here

Figure 1-26. Editing the columns in the list form

The Edit Columns in the Form window will now be closed and you can enter data in the
New Item form. Save your changes using the top or bottom Save button. See Figure 1-27.

Save |X Cancel @ Copylink 4 Edit form X

New item
= Branch name *

Bourke St

= Branch Address

AS56 Bourke Street

Melbourne @

VIC 4024

i Attachments

Add attachments

Figure 1-27. Entering data in the New Item form

24

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE
You have now created a new item, which will be displayed in the list view, as shown

in Figure 1-28. You can select the item to edit or delete it.

Workplace

Home Documents Pages Site contents Edit

¢ Edit | [§ Editin grid view |2 Share <@ Copy link | [i] Delete | #8 Automate

Branch Information

(] Branch Address Branch name + Add column -

AS6 Bourke Street Bourke St
Melbourne
VIC 4024

Figure 1-28. List of items

You also have the option to create and edit items in grid view (see Figure 1-29). Once
you have created and/or edited an item, click Exit Grid View to save your changes.

Workplace

Home Documents Pages Site contents Edit

W

5 Exit grid view | Share K3l Exportto Excel (® Power Apps ~ #§ Automate

Branch Information

(O Branch Address Branch name * =+
ASE Bourke Street

O Melbourne Bourke St
VIC 4024

+ Add new item

Figure 1-29. Grid view

25

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

You can add multiple items to this list either by using grid view, using New button or
using the Add new item.

That should give you an overall idea of how to work with Custom Lists and site
columns in SharePoint. You can explore more and play around with all the available
options if you'd like to get more familiar with the features.

Document Library

Document Library is another SharePoint OOB app. In Document Library, you can store
and manage documents, and add metadata to them. In a list, you can attach documents
to a list item. However, list attachments cannot be searched as documents. Version
control of a document is possible only in Document Library, which is what you should
use if you want to collaborate and organize documents.

There are few OOB document libraries available in a communication site by default.
Let’s create a new one. We'll start by Clicking Add an App on the top right Settings button
from anywhere on the site. Select Document Library from the Your Apps page, as shown

in Figure 1-30.

_ Site contents » Your Apps

Your Apps Find an app 0
Apps You Can Add
Manage Licenses NOTE‘WOI’thy
Your Requests
fl

SharePoint Store .
Document Library Custom List Site Mailbox
Popular built-in app Popular built-in app Popular built-in app
App Details App Details App Details

Mewest Name

o

Document Library Calendar Custom List Import Spreadsheet
App Details App Details App Details App Details

Figure 1-30. Selecting the Document Library app

26

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

A popup will appear where you can enter the library name. Enter “Policy” as the
Document Library name and click Create. This is like adding a Custom List (see Figure 1-11);
the only difference is that we're choosing a different app here. You'll be redirected to the Site
Contents interface, where you can see that the Policy library has been created. Clicking this
library takes you to the library interface.

Let’s add the two site columns that we created earlier to this library. You can add
more site columns if you'd like to. Go to the library settings and repeat the steps we took
for the Branch Information list exactly (see Figures 1-21, 1-22, and 1-23). You do not have
to update the Title field, as it is not a mandatory field by default here. After adding the
site columns, the library interface will look like Figure 1-31.

W Workplace Nat tollowirg Shace
ome Do Pages Site conents :
T Upload Edit i grid view Sy Add she o OneOrie @ Export 1o Excol Power Apy Autom; All Documants
Policy
3 Name Modified Madified By Branch Addres Branch name Add column

Drag files here

Figure 1-31. Site columns added to the library

You can create a new document or upload the document from the library interface.
To upload, you can use the Upload button or drag and drop. Once you upload a
document, you can select the document and edit the Properties in the left-hand drop-
down to fill in the metadata, as shown in Figure 1-32. Alternatively, you can use Edit in
Grid View option like we did for the list.

W Workplace

Home Documents Pages Site contents Edit

B Editingrid view @ Open 12 Share & Copylink L Download [§] Delete - Pintotop =b Rename £ Automate ~ EJ Moveto [Copytg -+
3 & Properties

Policy D Version history

0 Alert me
@ [0 Name Modified Modified By Branch Address Branch name Add colu

1 [Manage my alerts
@ Bourke Branch Data.docx (- A few seconds ago Hari Narayanan (T} Required info.
J Check out

Figure 1-32. Editing document properties
27

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

When the Properties window opens, click Edit All and fill in the metadata. Enter the
data like you did for the Custom List in the “Data Operations in a Custom List” section
(see Figure 1-27). You can fillin the properties as you filled it for the custom list item in
Figure 1-27 Also, if you'd like to arrange the columns or want to remove any of the
columns from the form, use Edit Form, as explained in the “Data Operations in a Custom
List” section (see Figures 1-25 and 1-26). I advise keeping the Branch Name in the form,
as itis a mandatory field.

Clicking the document will open it in Word. You can edit the content in a browser
or desktop application. Save the changes once you're done and it will be updated in
SharePoint.

This way, you can have multiple documents uploaded to a document library. What
we just did is author the content. You uploaded the documents and set its metadata.
But how will you ensure that it is visible to end users? How will you ensure that the
documents are read-only for some users? How will you set up an approval before
itis available to end users? How will you make sure that someone else from your
organization/team can coauthor the content? We will get answers to all these questions.
But before we do, let’s have a quick look at the permissions in SharePoint.

Permissions in SharePoint

Permissions control access to the content in SharePoint. You can define who can read

specific information and who can update that information. You can enable permission to

access the entire site, a specific list or library, or even just a specific list item or document.
Let’s take a look at the various permission levels and various security groups.

Permission Levels

What follows are the default permission levels for a site:
e Full Control: User has full control.
o Design: User can view, add, update, delete, approve, and customize.

e Edit: User can add, edit, and delete lists; and view, add, update, and
delete list items and documents.

o Contribute: User can view, add, update, and delete list items and
documents.

28

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

e Read: User can view pages and list items and download documents.

e View: User can view pages, list items, and documents, but not
download.

Security Groups

On a site level, users can be added to security groups. Each group has an assigned
SharePoint permission level. Permission levels tell the group what users can and cannot
do. We can classify the user roles into the following three security groups:

o Visitors: Visitors can only read and download content from a site. The
permission level assigned to them is Read.

e Members: In addition to reading and downloading, Members can
add, share, edit, or delete content. Edit is their assigned permission
level.

e Owners: Owners have a Full Control permission level assigned to
them. They can do everything that Visitors and Members can do. In
addition, they can manage settings, security, navigation, and other
features. They can add users or remove users from the site.

To set site permission levels, go to the Site Contents interface (see Figure 1-12) and
then Site Settings, where you will see a Site Permissions link (see Figure 1-15). Clicking
that link will take you to the Permissions page, where the security groups and assigned
permissions are selected. See Figure 1-33.

BROWSE

L] .
ar . e
+ '.““ X Q [t Access Request Settings.
Grant Create F Check —
Permissions Group Per ons Permissions [site Collection Administrators

] Mame Type Permission Levels

O Workplace Members SharePgint Group Edit
O Workplace Owners SharePgint Group Full Control
Recent O Workplace Visitors SharePoint Group Read

Policy

Figure 1-33. Site permissions

29

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

In addition to the groups just mentioned, you can create your own groups and assign
custom-level permissions to them. But it is recommended that you avoid customizing
these features unless required.

If you click Permission Levels on the Permissions page, (Figure 1-33), you will be
taken to the Permission Levels page. Here, you can see the default permission levels and
a list of additional permissions you can choose from (Figure 1-34).

_ Permissions » Permission Levels o

Dadd a Permission Level | ¥ Delete Selected Permission Levels

Full Contral Has full control

Design Can view, add, update, delete, approve, and customize.

Edit Can add, edit and delete lists; can view. add, update and delete list items and documents.

dd, update, and delet items and documents.

Read Can view pages and list iterns and download documents

Figure 1-34. Permission levels

Permissions Inheritance

By default, Subsites, Libraries, and Lists inherit permissions from the site on which
they were created (the parent site). If you break the permissions inheritance, the List,
Document Library, or a document will be able to form its own unique permissions.

If you go to a list or library settings, you will be given the option to define
permissions at the list or library level. Clicking Permission for this list will take you to
the list permissions page. If you click Stop Inheriting Permissions, you will be able to
stop the inheritance. You can then remove or add groups or users to the list. If you want
to start inheriting permissions again, click Delete unique permissions. This will revert
the permissions to being inherited from the site. We will look further at this action in
upcoming chapters.

The best practice is to, as much as possible, have your lists and libraries inherit most
of their permissions from the site. This enables easier management of permissions.

Now, let’s go back to the Document Library and look further at the questions we had.

30

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE
Version Control

Version control helps you easily track and manage data. For example, if more than one
person wanted to update the content in a document called Bourke Branch Data.docx,
version control could help you set that up. To get versioning set up, go to the library
settings and click Versioning Settings, as shown in Figure 1-35.

_ Policy » Settings

Home List Infermation

Do Name: Palicy
. Web Address: hittps:ticlowdhadi point.comysi kplace;Policy/F jAlltterms.aspx
i Description:
Recent
General Settings

Permissions and Management Communications

Figure 1-35. Navigating to Versioning Settings

In Versioning Settings, set Require Content Approval and Require Documents to Be
Checked Out to “Yes.” Leave the other settings as is. Then, click OK. See Figure 1-36.

31

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

peqUme content approval for submitted items?

Create a version each time you edit a file in this document library?
O Mo versioning
() Create major versions
Example: 1.2 3. 4
reate major and minor (draft) version
Example: 1.0, 1.1, 1.2, 2.0

Keep the following number of major versions:
500

[Keep drafts for the following number of major versions:

Who should see draft items in this document library?
O Any user who can read items
(O Only users who can edit items
@ Only users who can approve items (and the author of the ilem]v

cuments to be checked out before they can be edited?
O No

oK Cancel

Figure 1-36. Versioning Settings page

Since we've enabled checkouts, documents will be checked out to users while they
are editing a document. When they’re finished making their changes, they can check the
document back in. This guarantees that no two users can edit a document at the same
time. As we enabled content approval and set Draft Item visibility for only certain set of
users, users with only the Read permission won’t be able to see a document unless they
get approval. Let me explain this with an example.

If you upload a document to the Document Library, the document will be checked
out to you by default. You can hover over the document and click the three dots to the
right of it to navigate to the Version History, as shown in Figure 1-37.

32

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Workplace

Home Documents Pages Sitecontents Edit

W

BS Editin grid view @ Open 12 Share [I] Submitfor approval @ Copylink & Download [i] Delete 2 Pintotop =B Rename $#f Automate ~ 53 Moveto [} Copyte -

Policy

MName Madified Maodified By Branch Address Branch name Approval Status + Add column

B¢ " Bourke Branch Datadock Haei Macayanan Ba

® B broocldoo: i Open > i Naeayanan () Requined info Diaft

Share

Copy link
Maniage atcess
Download
Delete
Automate
Rename

Pin to top
Move 1o

Copy to

Version history

Figure 1-37. Navigating to Version History

When the Version History pop-up opens, you can see that the version is 0.1 and
approval status is Draft. Close the pop-up and fill in the metadata as you did earlier by
going to the context menu » Properties » Edit All. Until now, no other user could see
the document, as it was not checked in yet. You can select the document and check it in
using the context menu, as shown in Figure 1-38.

W Workplace
Home Documents Pages Site contents Edit
B Editin grid view @] Open ¥ Shace [I] Submit for approval & Copylink & Download [i] Delete = Pintotop =3 Rename $I Automate B Mevete [y Copy mE]z
& Properties
Policy R Version history
: [Alem me
[Name Modified Madified By Branch Address Branch name Approval Status Add calum

[Manage my alerts

@ “Bourke Branch Data.docx 48 minutes ag Hari Narayanan Sourke 5t Bourke Approwd
Melbcurng N Check in 3

1 & “brbocidoc B Adewsecondhage Hai Macayanan br test Branch Drat) Discard check out
o sareet
4000

Figure 1-38. Checking in a document

33

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

A pop-up then opens. Select the major version and you provide comments if you
choose, then click Check In. After the document is checked in, the document will be
visible to all users with Approve permission. (See Figure 1-36, where we set the Draft
visibility only to approvers).

In this site, all users added to the Workplace Owners group have Full Control
permission. A Full Control level of permission is assigned when you have Approve
permission and therefore users will be able to view, edit, or approve the document.
Note that users with an Edit or Contribute permission will not even be able to view the
document unless it is approved.

Select the document and click Approve/Reject on the context menu, as shown in
Figure 1-39.

w Workplace
Home Documents °a_qe< Site contents Edit
[editin grid view @ Open 1 Share @ Copylink L Downlead [§ Delete =3 Pintotop =D Rename £% Automate ~ EJ Movete [y Copy |o|:| 2
& Properties
Policy s Version history
0 Alert me
[nName Modified Maodified By Branch Address Branch name Approval 51
[Manage my alerts
B “Bourke Branch Data.docx 3 hours g0 Hani Narayanan Bourke St Bourke Approved
N Check out
1 B “brboct.docx B 1 3minutesage Hari Narayanan br test Brarich Pending [} Approve/Reject 3
stroat
4000

Figure 1-39. Using the context menu to approve or reject a document

The Approve/Reject window then pops up, giving you three options and explaining
each option. Let’s select Approved and then OK, as shown in Figure 1-40.

34

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE
Approve/Reject brDocl.docx

Approval status

@ Approved - This item will become visible to all users.

(O Rejected - This item will be returned to its creator and only
be visible to its creator and all users who can see draft items.

O Pending - This item will remain visible to its creator and all
users who can see draft items.

Comment

Approved.

©

&

Figure 1-40. Setting a document to Approved, Rejected, or Pending

Since we set the draft visibility only to approvers, only users with Full Control
can view a document unless it is approved. Since the document is now approved, all
users with Read permission can view or download the document. Users with Edit or
Contribute permission can edit the document content or metadata.

If you recheck the Version History (see Figure 1-37), you can see the current version
as the published major version, 1.0, and the Approval Status as Approved.

Now that we've learned the basics of document management, you can go back to
the questions at the end of the section “Document Library” and try to answer them
yourself. I'm sure that you'll be able to. You've also learned about coauthoring, approval,
and publishing, as well as how SharePoint maintains versions of a document and how
you can define versioning settings. If you'd like, you can play around more with the
Document Library, possibly enabling different users to edit one document, establishing
different version settings, and anything else you'd like to try.

35

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Pages and Web Parts

Pages in SharePoint are used to display content and web parts. A web part is something
you use to store content and information. It is the building block of a page. Lists,
libraries, and other features can be added to a page as web parts. The home page for
our site is basically a page that got created as a blank page when we chose the Blank
template. Let’s now create a page and add some web parts to it to get a better idea of
pages and web parts.

From anywhere on the site, click New » Page from the context menu on the left side
of the screen, as shown in Figure 1-41.

Workplace

Home Documents Pages Site contents Edit

+New1

List

w

Page
2-%%¢
Document library
App
Subsite Type Items Modified

o Documents Document library 1] 10/24/2020 6:58 AM
Figure 1-41. Adding a new page

A new page will be created, and you can provide a name for it. I named mine
“Policy.” If you click the Edit icon on the top toolbar, you can change the layout,
alignment, and other features in the Title Area, as shown in Figure 1-42. Your changes
will be autosaved upon closing. If you hover over your name below the Text, you can

remove it using the Cross icon if you want to.

36

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Policy

vrlap
[QS T—

Comments @D o

Figure 1-42. Configuring the Title Area

Clicking the + icon on left-hand side of the middle of the page brings up a Section

Layout window, which allows you to add a section to the page and has different layout
options. See Figure 1-43.

W Workplace

Home Documents Pages Sit

B saveasdraft ~ % Undo ~ i Pagedet

@ Section layout

O ao 000

One column Two columns Three columns

og tg (18]

One-third left One-third right Full-width
column column

0

Vertical section

section

Figure 1-43. Adding a section layout

37

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

If we select two columns, a section with two columns will be created. Clicking
the + icon in the first column will open different web parts that we can add. Selecting
Highlighted Content, as shown in Figure 1-44, will display the most recent documents
from the site.

W Workplace

Home Documents Pages Site contents Edit

B saveasdraft ~ %) Undo i3 Page details

Policy
@ Hari Narayanan

u &
1.7
B search &
) Featured
L A A O
Test Image File viewer
@ <P s
Highlighted
conte
; All Ato Z

A B
Figure 1-44. Adding a web part

Once the web part is added, you can configure its different properties by using the
Edit icon, in the same way as we did for the Title Area. You can try adding another web
part of your choice to column 2. You can add multiple sections and web parts to the
page. Have a look at different web parts available. The Properties pane will help you to
configure the web part you choose. We will see how can add a web part in Chapter 6.

Once you finish adding the web parts, click Publish on the top right side of the
screen. The page will then be published and visible to all users. If you want to make
further changes, click Edit on the top right-hand corner of the screen (see Figure 1-45).

38

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

¥r Notfollowing 12 Share

Published 11/20/2020

Figure 1-45. Editing the page

Now you can make changes and republish, as shown in Figure 1-46.

¥r Not following 12 Share

Republish

Figure 1-46. Republishing the page

You can customize the home page in the same way as you've done here.

39

CHAPTER 1 GETTING STARTED WITH SHAREPOINT ONLINE

Overview of Customization Needs

Let’s take a look at what our custom requirements might be and how they will be
addressed by various development tools.

When you approve a document or publish a page, it gets published. But what if you
want to include few approvers and other conditions before publishing the page? We
will need to bring in customized workflows to do that. Workflows are preprogrammed
applications that allow you to automate the business process. We can use Power
Automate or a third-party solution like Nintex workflow to create customized workflows.
We will be covering Power Automate in detail in Chapter 5.

And what if you want to customize the list or library forms? We have option of using
OOB JSON formatting to change the look and feel of the fields in the form to some extent.
If you want to add complex validation and other such features, we can use Power Apps
and SPFx forms. SPFx will give us more flexibility and performance.

If you want to create your own web parts and add them to a page, you can make use
of SPEx web parts. In addition to this, you can use SPFx extensions to customize context
menus, field behaviors, headers, footers, and more.

In SharePoint Online, we also have integration options with Teams, Power BI, and
other options from the Microsoft 365 suite of products.

Summary

This chapter was mostly about getting you started. I gave you a quick overview of
SharePoint Online and what is offered out of the box. You became familiarized with the
Admin Center. You learned about site templates and different types of lists in SharePoint.
We reviewed the different development tools and frameworks. You learned how
columns, list items, documents, and web parts and pages are managed in SharePoint.
We also went over how to manage security in SharePoint. In the upcoming chapters, I
will take you through different customization options in detail and offer an application
case study.

40

CHAPTER 2

Case Study

In the first chapter, we reviewed the basics of SharePoint Online. SharePoint Online can
be integrated with many applications in and out of the Microsoft 365 suite. There are
endless possibilities for designing an enterprise application using the platform. Let’s
look at an application case study and solve our business needs with the best available
modern technology solutions.

From here on in, we will be doing a project together. At the end of the project,
having finished converting some of the requirements into the final solution, you will
have learned most of the modern customization scenarios and integration scenarios
of SharePoint Online. This includes SharePoint out- of-the-box (OOB) capabilities;
SharePoint Framework(SPFx) web parts; SPFx Extensions; the Patterns and Practices
(PnP) provisioning framework; Search; Power Apps; Power Automate; Teams; and Power
Virtual Agents (PVAs).

In case you do not understand the high-level solution mentioned for each use
case, don’t worry; I will be explaining each use case solution in detail in the following
chapters. I provide the use cases mainly to give you an overview of the requirements
before we design the solution.

By the end of this chapter, you will be familiar with how to design a solution in
SharePoint Online. In addition, you will have learned about SharePoint site provisioning
using PnP. This chapter will serve as a foundation for the upcoming chapters, as
we will learn about requirements, design, and site preparation. Each upcoming
chapter will concentrate on an area of technology while fulfilling the case study
application requirements.

Business Use Cases

Let’s say that an organization called Cloudhadi manufactures various types of products,
including food, electronics, and furniture. Cloudhadi wants to build a portal where the
employees can collaborate on documents and store and display product information.

41
© Harinarayanan V P 2021

Harinarayanan V P, Building the Modern Workplace with SharePoint Online,
https://doi.org/10.1007/978-1-4842-6945-9_2

https://doi.org/10.1007/978-1-4842-6945-9_2#DOI

CHAPTER 2 CASE STUDY

The portal should serve as a central source where all of the information and its
presentations are stored. The organization is the stakeholder for our project.

The stakeholder also wants to have a service desk option in the same portal. They
want the home page to highlight the organization’s products, achievements, news, and
more.

Let’s go through some of the use cases and see how SharePoint Online can be used
to address them. Some of applications we will use are available OOB. Some will need
customization and require that we use the best option available.

First, we will list out all of the use cases and mention the approach which can be
used to solve each of the use case (high-level apprach). After that, we will organize the
requirement and bring it into a design. In the following use cases, the use cases are
denoted as “UC-" followed by respective category and number. The “Solution” that
follows denotes the high-level approach of converting the use case into a business

product.

Document Use Cases

There are many documents needs to be stored and published in relation to
manufacturing each type of product: food, electronics, and furniture. The following use
cases relate to managing the documents that accompany these products.

e UC-DI: “As a product executive, I need a place where I can create and
upload product-related documents.”

e Solution: Create a Document Library called Product Data.

e UC-D2: “As a product executive, I want to create, upload, and read
documents that are related to my product area.”

e Solution: Create a Document set for each product and set up
permissions for the different groups of users.

e UC-D3: “As a product executive, I want to read and download
documents related to other products.”

o Solution: Set Read permissions for other product Document sets.

42

CHAPTER 2 CASE STUDY

UC-D4: “As a product lead, I want to restore a previous version of
my document in case of any wrong changes get made in the current

version.”
e Solution: Enable versioning.

UC-D5: “As a product lead, I want to see the history of changes made
in the product document.”

o Solution: Use the version history feature.

UC-D6: “As a product executive, I want my documents to be approved
by the product lead before they are visible to end users.”

e Solution: Enable content approval and give the Approval
permission to the appropriate product lead at the document set
level.

UC-D7: “As a product executive, I want the option to submit a
product document for approval.”

o Solution: Create a field and use JSON formatting to provide a
button so that it can call a Power Automate flow to submit for
approval.

UC-D8: “As a product executive, [want the option to choose a
product lead from a set of product leads from different product

areas.”

o Solution: Create SharePoint groups for each of the product leads
in the different product areas and create a Person field to choose
from the different groups.

UC-D9: “As a product lead, I want to be notified if any user submits a
document for approval”

e Solution: Use Power Automate flow approvals.

UC-D10: “As a product executive, I want to have the option to choose
an inspection lead from out of the product leads in case a document
needs their approval”

o Solution: Create a Person field like we did in UC-D8 and use a
Power Automate flow.

43

CHAPTER 2 CASE STUDY

e UC-D11I: “As an inspection lead, I want to be notified if any user

submits a document for approval.”
e Solution: Use Power Automate flow approvals.

e UC-D12: “As a product lead, I want to enter metadata about my
product and validate on a custom welcome page.’

e Solution: Use OOB forms with JSON formatting to create a
custom welcome page for the Document set.

e UC-D13: “As a product executive, I want to enter information about a
document I'm uploading and do basic validations for the metadata.”

e Solution: Use SharePoint OOB form.

e UC-DI14: “As a product executive, I want to have a quick update
option for the command set for documents where I can update only

the document target date.”

e Solution: Create a custom list view command set extension using
SPFx. The use case requirement cannot be achieved via OOB, as
we need to introduce a custom button in the context menu.

Product List Use Cases

Let’s say a stakeholder wants to maintain a list for storing product-related information.
This list should contain all the products that are already manufactured, those where the

manufacturing is in progress, and those that are in the pipeline.

e UC-PLI: “As a product lead, I want to enter project-related
information into a product list and be able to update the status
as needed. I want to have custom validations in the form such as
autopopulating a field based on another field”

e Solution: Use a Power Apps form. We won’t be able to add the
mentioned custom validation using OOB or JSON formatting. We
won't require an SPFx web part for this task. Power Apps would

be an ideal solution.

44

CHAPTER 2 CASE STUDY

Page Use Cases

In this case, a stakeholder wants to set up a few webpages for an organization he is

involved with, including a home page, an about us page, and other pages.

UC-P1I: “As a business user, I want to view recent company updates
on the home page in a visually appealing way.”

e Solution: Use the Hero web part which is available OOB.

UC-P2: “As a business user, I want to view the most recently
manufactured products and details on the company’s home page.”

e Solution: Use the OOB Highlighted content web part with product
information.

UC-P3: “As a business user, I want to be able to see the recent news
and events on the home page.”’

o Solution: Use OOB news and event web parts.

UC-P4: “As a site administrator, I want to configure news and recent

company updates on the home page.”

e Solution: Create a SharePoint group with Full Control permission
to configure the information.

UC-P5: “As a site administrator, I want to configure about us and
employee offers pages on the site.”

e Solution: Create pages and provide a SharePoint group with Full

Control permissions to configure the information.

Service Portal Use Cases

This scenario involves a stakeholder who would like to a set up a service portal on her

company’s site where employees can put in a request for services, like getting machinery

and licenses, and the service desk team can respond to the request.

45

CHAPTER 2

46

CASE STUDY

UC-SD1I: “As a business user, I want an interface where I can submit a
request and view the status of existing requests.”

e Solution: Create SPFx web part and add it to a modern page,
and also create a SharePoint list at the back end to store the
requests. OOB JSON-formatted forms will not be suitable for
this purpose, as we need to create a document with multiple
forms that can handle different validations. You could, of course,
do this using Power Apps forms, but we will opt for an SPFx for
better performance in creating and retrieving service requests.
Another scenario where you should choose SPFx is when you
have more than 12 lookup columns in a list. Lookup columns
include lookup, metadata, and person columns. Note that Power
Apps forms cannot handle data if there are more than 12 lookup

columns.

UC-SD2: “As a business user, want to have a live chat option where
I can ask common questions and check the status of my request
through Teams.”

o Solution: Create a chat bot using PVAs and deploy it to Teams.

UC-SD3: “As a business user, I want to be notified via email when I

putin a request and my request is responses to.”

o Solution: Create a Power Automate flow to get Outlook
notifications.

UC-SD4: “As a service desk executive, I want to be notified via both
Outlook and Teams when a request is in my queue.”

e Solution: Create a Teams channel for service desk and set up a
Power Automate flow for both notifications.

CHAPTER 2 CASE STUDY

Navigation Use Cases

Navigation is an important part of a site. Users should be able to navigate to their desired

location, where their access should be restricted according to their role.

UC-NI: “As a business user, I want to have a link to view all products

and a link to a service portal”
o Solution: Make use of top navigation available OOB.

UC-N2: “As a product executive, I should be able to navigate to
product documents library where I can upload documents related to
my product area.”

e Solution: Create SPFx Application Customizer to create a
navigation link based on the current user. Because we need to
add a link to the navigation and customize it based on the logged-
in user, we should have an SPFx extension here.

UC-N3: “As a site administrator, I want to configure a footer to
provide a link to an about us page and other information about the
company.’

e Solution: Use OOB footer settings.

UC-N4: “As a business user, I want to be able to navigate to about us
and employee offers pages.’

o Solution: Use OOB footer.

UC-N5: “As a business user, I should be able to notify the Service
Executives team immediately from the home page if an urgent issue
arises, before raising a service request.’

e Solution: Use SPFx Application Customizer to create a link in the
footer that posts an urgent issue message to the teams channel
for service executives. As we need to communicate to Teams for
this, we can make use of an SPFx extension to do the work.

47

CHAPTER 2 CASE STUDY

Search Use Cases

Search is an important part of the requirements. Users should be able to search for

documents or products and also refine their searches.

e UC-SI: “As a business user, I want to be able to search for all the
documents related to all the products from the company’s home

page.”
o Solution: Use a SharePoint online OOB search box and search

results page.

e UC-S2: “As a product executive, I want to be able to search for

documents related to my product only.”

e Solution: Build a custom search page with a custom result source

configured to filter for each product.

e UC-S3: “As a product executive, I want to be able to see specific
metadata related to my product documents while searching for it””

e Solution: Use a PnP modern search solution and update the
display templates to reflect the required metadata.

e UC-54: “As a product executive, I want to be able to filter documents

based on metadata.”

o Solution: Use PnP modern search filters.

High-Level Design

Now we have identified the use cases and high-level approach for building a modern
workplace for our theoretical company, Cloudhadi. In the following sections, let’s
analyze the above identified requirements and put them into a high-level design.

48

CHAPTER 2 CASE STUDY

Identifying the Roles

If you were to go through all use cases, you could identify few roles, each of which needs
to have its own access levels. Let’s take a look at what the roles are.

e Product executives: Product executives are all the employees working
to make a certain product, including the product lead. Product
executives need to have access to view all the information on the
site. In addition, they need to have access to creating and uploading
documents for their respective products.

e Product leads: Product leads are responsible for approving the
documents. Each product lead needs to have access to view all
information on the site. In addition, they need to have Approval
permission for their product document set. You might have come
across an inspection lead in use cases. This is part of the same role.

o Service executives: This role needs to have access to viewing all
information on the site. In addition, they need to have Edit access to
the service portal list.

o Site administrators: This group needs to have Full Control access to
the site.

e Business users: This category of users includes all the previous four
sets of users, plus all the employees of the stakeholder. These users
should be able to view all the information on the site. In addition,
they should have access to add an item to the service portal list so
that they can raise service requests. These users should not have
access to editing the service requests, however.

One of the important things that we have identified is that business users require
the most basic level of access for the site. For all the other roles, we need to set up
permissions on top of the business users’ permissions.

49

CHAPTER 2 CASE STUDY

Designing the Security Level

Let’s now decide on the SharePoint groups and permission levels. The following steps
should satisfy the security requirements. These permission settings follow the principle
of minimum privilege. The steps outline how we’re planning to design the security for
the site.

1. Let’s start by creating a SharePoint group called Cloudhadi Users
with Read permission for the site, and then add “Everyone except
external users” to the group, thereby adding all business users.
Once the service portal list is created, let’s set unique permissions
for the list and provide Add Item access for Cloudhadi Users.

2. Next, let’s create three groups called Food Executives,
Electronics Executives, and Furniture Executives, all with
Read permission for the site. Once the library product data is
created, set up unique permissions for each document set. For
example, give Edit access to the Food Executives for the Food
Product document set.

3. Now, we will create three groups called Food Leads, Electronics
Leads, and Furniture Leads, each with Read permission to
the site. Once the library product data is created, set unique
permissions for each document set. For example, give Approve
access to the Food leads for the Food Product document set.

4. Let’s go on to create a group called Service Executives with
Read permission for the site. Once the service portal list is created,
set unique permission to the service portal list and give Edit
access to the Service Executives.

5. Finally, we should create a group called Site Administrators
with Full Control permissions for the site.

We now have a total of nine groups. Except for the Site Administrators group, all the
other groups will only have Read permission at the site level. This is our base design
for the security level. If required, we can make any adjustments during our project
development and update the design accordingly.

50

CHAPTER 2 CASE STUDY

Identifying and Designing Items

At this stage, we need to identify all the items that we will create.
We'll be creating all the items using Patterns and Practices (PnP) Schema and then
deploy them to the SharePoint site using PnP PowerShell.

Site Columns and Content Types

Let’s start with the Site columns. Table 2-1 shows all the Site columns that we need
to create for the portal. Of course, we may need to alter or add some columns during
development, and we can update the design accordingly. For now, let’s start with the
information we already have to design the solution.

In Table 2-1, the first column shows the site column title; the second column shows
the type of column; the third column shows any special requirements for the column;
and the last column displays the content types to which the site column belongs.

A Content type is a reusable collection of Site columns. A list or library can inherit
Content types. In this case, we will need to create four Content types: Cloudhadi
Product for the Product List; Cloudhadi Document for documents in the Product Data
document library; Cloudhadi Service for the service portal; and Cloudhadi Document
Set for Document sets. The latter will inherit from the existing OOB Document Set
Content type in SharePoint.

Note If you're new to SharePoint and find the terms here confusing, don’t worry.
They will be clarified in the upcoming chapters. And you can always refer back to
the design if you need to later on.

51

CHAPTER 2

CASE STUDY

Table 2-1. Site Columns and Content Types

Site Column Title

Type

Special conditions

Content Type

Product Name

Product Type

Product Lead

Materials Used

Datelnspection
Completed

Date ofManufacture
Expiration Date
Product Features
Product Status

Review Date

Required to Do
Inspection?

Inspection Lead

Document Type

Single line of text

Choice

Person or group

Multiple lines of text

Date

Date
Date
Multiple lines of text

Choice

Date

Boolean

Person or group

Choice

Mandatory

MandatoryPossible values:
food, electronics, furniture
no default value

Single person, restrict
to product lead group,
mandatory

Mandatory

Mandatory

Mandatory, possible
values: new, in production,
completed Default is new

Mandatory
Yes or No toggle

Single person, restrict to
product lead group

Mandatory, possible values:

product information, product

inspection details, product
tooling data, product
materials information, other

Cloudhadi Product,
Cloudhadi Document

Cloudhadi Product,
Cloudhadi Document,
Cloudhadi Service,
Cloudhadi Document Set

Cloudhadi Document,
Cloudhadi Product

Cloudhadi Product
Cloudhadi Product

Cloudhadi Product
Cloudhadi Product
Cloudhadi Product
Cloudhadi Product

Cloudhadi Document

Cloudhadi Document

Cloudhadi Document

Cloudhadi Document

52

(continued)

Table 2-1. (continued)

CHAPTER 2 CASE STUDY

Site Column Title

Type

Special conditions Content Type

Date of Activity
Date Started On
Capacity

License Valid Until
Goal

Quality Rating
Request Title

Request Description

Related To

Request Status

Single line of text
Date

Number

Date

Single line of text
Number

Single line of text
Multi line of text

Choice

Choice

Request Assigned To Person or group

Mandatory Cloudhadi Document Set
Mandatory Cloudhadi Document Set
Mandatory Cloudhadi Document Set
Mandatory Cloudhadi Document Set
Mandatory Cloudhadi Document Set
Mandatory Cloudhadi Document Set
Mandatory Cloudhadi Service

Mandatory Cloudhadi Service

Possible values: Access, Cloudhadi Service

Materials, Equipment, General

Mandatory Cloudhadi Service
Possible values: New,
In Progress, Resolved,
Completed, Rejected,

Reopened, Default Is New.

Person only, restricted to Cloudhadi Service

service executive groups

Lists and Libraries

Table 2-2 shows the possible lists and libraries for the solution.

Table 2-2. Lists and Libraries

List/Library Content type Purpose

name

Products Cloudhadi Product List to capture the product information

Product Data Cloudhadi Document Set, ~ Document Library for document upload, approval,

Cloudhadi Document

Service Portal

Cloudhadi Service

and publishing

List to capture service request information

53

CHAPTER 2 CASE STUDY

Site Pages

Table 2-3 shows the possible pages we can create for the solutions.

Table 2-3. Site Pages

Page title Web parts Purpose
Home Hero, news, events, Highlighted content, Home page of the site
SPFx custom Application Customizer
About Us Text About us page
Employee Offer ~ Text Employee offers page
Service Portal SPFx custom web part To display the service requests by

pulling data from the service list

Search Product ~ PnP modern search box, search filter and Custom search page for products
search results web parts

Custom Web Parts and Extensions (SPFx)

There are few custom web parts and extensions we need to create according to the use
cases. Table 2-4 identifies and lists them.

Table 2-4. SPFx Components

Web part/ Purpose Use case
extension

Welcome Set A custom form for entering metadata for each product area. It will be UC-D12
added to the welcome page of the document set.

Quick Updater ~ An extension for quickly updating the metadata of documents from UC-D14
the library interface.

Navigator Application Customizer extension for creating navigation links based ~ UC-N2
on the current user.

Notify App Application Customizer extension for notifying service executive team UC-N5

Customizer of urgent issues

Service SPFx web part for service portal page to display the service request. ~ UC-SD1

54

CHAPTER 2 CASE STUDY

Custom Form (Power Apps Form)

Table 2-5 identifies some of the list/library form/forms that can be developed using
Power Apps.

Table 2-5. Power Apps Forms

Form Purpose Use case

Product List form For product list form and validations ~ UC-PL1

Workflows (Power Automate)

Table 2-6 shows the scenarios where we need to create a workflow in Power Automate.

Table 2-6. Power Automate Workflows

Workflow Purpose Trigger
Product Document For the document approval process, which includes On custom button
Publishing inspection and product leads approval and notifications

Product Document To reset the document status when editing the document On file modified
Reset

Service Request To notify the service desk via teams and email on raising a On item created in

service request service portal
Service Action To notify a requester once a service request has been On item modified
activated in service portal

Integration Scenarios for Teams and PVAs

Related to the service chat bots, we have some requirements to have Teams and PVAs
integrated. See Table 2-7.

55

CHAPTER 2 CASE STUDY

Table 2-7. Integration Scenarios

Action Purpose

Teams channel creation To create a channel for service executives to receive request notifications
Chat bot To create a chat bot using PVAs and deploying to Teams

Integration To integrate the Teams channel and bot to the service portal in SharePoint

A Quick Recap

To summarize what we have done so far, we planned how to build the solution, and we
decided on the security, creation of items, customization scenarios, and more. During
development, we can make minor changes to this design if required.

The purpose of this requirement gathering and design is to familiarize you with how
to design a solution in SharePoint. Also, in this requirement I included all the technical
areas I'm going to cover in this book. In the upcoming chapters, we will work on each of
the technical areas and learn the technical solution and its real implementation. We will
implement at least one of the use cases for each of the technical areas, such as Power
Apps, SPFx web parts, extension, and Teams.

Creation of Items

In the first chapter, we went over how to create site columns, lists, and other tools from a
SharePoint interface. In a real project, we would have three or four environments. There
are multiple approaches to creating and deploying the items.

We could create all the items from SharePoint interface in a development site, then
run a PowerShell command to take them all out in an Extensible Markup Language
(XML) format. This is called the Get Provisioning Template command. We would then
run another PowerShell command to deploy all the items to test and prod environments.
The Apply Provisioning Template command is used here. In this approach of getting
the template and then applying it to a site in another environment, there will be lot of
unnecessary items and properties in the XML. So, we always need to do a cleanup before
applying to another site.

56

CHAPTER 2 CASE STUDY

Another approach is to create all the items in an XML format by referring to the PnP
provisioning schema. Then use the Apply Provisioning Template command to deploy it
to dev, test, and prod environments. Here, we’re not taking any manual action from the
SharePoint interface. The disadvantage of this approach is that you initially need more
time to analyze and create the schema and may not be a practical solution for larger
projects. Also, you need to acquire some knowledge of the schema. The advantage is
that you will become aware of the schema and have much cleaner code. We will use this
approach for creating items for our workplace project.

Whenever you want to make any updates to the schema, even if they are minor
modifications, you can edit the schema and then deploy it using PowerShell without
touching the SharePoint interface. This keeps the site protected from any manual
changes.

PnP XML Provisioning Schema

We will use the PnP Provisioning Schema to prepare the items. The XML PnP
Provisioning Schema is an open-source solution. The SharePoint PnP community is an
open-source initiative coordinated by SharePoint engineering. The PnP Provisioning
Schema is available in the GitHub community source code location: https://github.
com/pnp/PnP-Provisioning-Schema.

At the time of writing, the latest schema available is the February 2020 version, which
you can find here: https://github.com/pnp/PnP-Provisioning-Schema/blob/master/
ProvisioningSchema-2020-02.md.

Before start creating this schema, let’s have quick look at what development tools are
needed for writing this schema.

Development Tools
Visual Studio Code

We will use an awesome code editor to create our XML schema. You can download and
install it from the Visual Studio Code site: https://code.visualstudio.com/.

Once the code is installed, you can get an extension called Guid that allows you to
generate GUID by pressing Ctrl+Shift+[. As shown in Figure 2-1, select the extension icon
from VS code (selected in red), search for “guid,” and click Install.

57

https://github.com/pnp/PnP-Provisioning-Schema
https://github.com/pnp/PnP-Provisioning-Schema
https://github.com/pnp/PnP-Provisioning-Schema/blob/master/ProvisioningSchema-2020-02.md
https://github.com/pnp/PnP-Provisioning-Schema/blob/master/ProvisioningSchema-2020-02.md
https://code.visualstudio.com/

CHAPTER 2 CASE STUDY

g F

spywhere
Create GUID oo
A command that

guid

Generate short GUID Crieate guid is an extension for Visual Studio Code wsing multi cursor functionality. Can be evecuted via kiy
vates the first part of a GUID (firs Generate guid

Figure 2-1. Installing the Guid extension

In a similar way, you can search for and install any XML formatter extension of your
choice. I personally use an extension called XML for XML formatting.

SharePoint Online Management Shell

SharePoint Online Management Shell is a Windows PowerShell module that helps you
to connect to SharePoint and deploy SharePoint items. You can download and install it
here: https://www.microsoft.com/en-au/download/details.aspx?id=35588.

You also have the option of using Windows PowerShell Integrated Scripting
Environment (ISE), which will make the PowerShell scripting easier.

Creating the Provisioning Schema

Let’s create a new XML file and name it “ProvisioningWorkplace.xml” and open it in
Visual Studio Code. Then, let’s add the schema section by section and then put all of
the sections into the parent schema. This “bottom-to-top” approach should help you to

learn easier.

Security Groups

We can start creating the XML provisioning schema by setting up security groups and
assigning them the permissions required at the site level. The design is based on the
analysis we did earlier. If you want to refer back to it, go to the “Designing the Security
Level” section.

58

https://www.microsoft.com/en-au/download/details.aspx?id=35588

CHAPTER 2 CASE STUDY

Similar to HTML, a PnP element will have an opening and closing tag. Every PnP
element will have properties in property name = property value format. Each property is
a separated by a space.

Following is an example of a site group element that is called pnp: SiteGroup. Since
we have a total of nine groups, there will be nine site groups and role assignment tags to
add.

<pnp:SiteGroup Title="Cloudhadi Users" Description="Group for all business
users" Owner="i:0#.f|membership|CHWorkplaceAdmin@cloudhadi.onmicrosoft.com"
AllowMembersEditMembership="false" AllowRequestToJoinLeave="false"
AutoAcceptRequestToJoinLeave="false" OnlyAllowMembersViewMembership="true" />

Each site group will have the following properties: title, description, and owner.
You can add a specific user account as the owner for all groups. The user should have
Full Control permissions for the site. You will need to have at least one user with a Full
Control permission, as an owner needs to be specified while creating the site. The other
properties are explained as follows:

e AllowMembersEditMemberShip set to false implies a member can’t
add or remove another member.

o AllowRequestsToJoinLeave set to true means users can request to
join or leave the group to a specified email ID. We're setting it to false.

e AutoAcceptRequestToJoinLeave set to true means users can request
to join or leave the group and it will be autoaccepted. We are also
setting this to false.

e OnlyAllowMembersViewMembership set to true means only
members can view the list of group members.

All the pnp:sitegroup elements are be wrapped under the parent element
pnp:SiteGroups.
Here is an example of a role assignment for the previous site group:

<pnp:RoleAssignment Principal="Cloudhadi Users"
RoleDefinition="{roledefinition:Reader}" />

Role Assignment has a role definition for each site group, which is the element
Principal. In our requirement, only Site Administrators have the Administrator role
definition, and all others have the Reader definition.

59

CHAPTER 2 CASE STUDY

Asyou can see from the code, all the pnp:RoleAssignment elements are wrapped
under the parent element pnp:RoleAssignments, which is in turn is a child element of
pnp:Permissions

It is important to follow this structure while designing the schema.

The final schema for all the site groups and its role assignments is given in the
following code section. We will not add any users to any of the groups for now.

Note The source code for this book is available on GitHub via the book’s product
page: https://github.com/Apress/building-modern-workplace-
sharepoint-online. You can use it for reference any time during our review.
The files are organized chapter wise.

<pnp:Security>
<pnp:SiteGroups>
<pnp:SiteGroup Title="Cloudhadi Users" Description="Group for all business
users" Owner="i:0#.f|membership|CHWorkplaceAdmin@cloudhadi.onmicrosoft.com"
AllowMembersEditMembership="false" AllowRequestToJoinlLeave="false"
AutoAcceptRequestToJoinlLeave="false" OnlyAllowMembersViewMembership="true" />
<pnp:SiteGroup Title="Food Executives" Description="Group for product
executives for Food" Owner="i:0#.f|membership|CHWorkplaceAdmin@cloudhadi.
onmicrosoft.com" AllowMembersEditMembership="false" AllowRequestToJoinlLeave=
"false" AutoAcceptRequestToJoinLeave="false" OnlyAllowMembersViewMembership=
"true" />
<pnp:SiteGroup Title="Electronics Executives" Description="Group for
product executives for Electronics" Owner="1i:0#.f|membership|
CHWorkplaceAdmin@cloudhadi.onmicrosoft.com" AllowMembersEditMembership=
"false" AllowRequestToJoinLeave="false" AutoAcceptRequestToJoinLeave=
"false" OnlyAllowMembersViewMembership="true" />
<pnp:SiteCGroup Title="Furniture Executives" Description="Group for
product executives for Furniture" Owner="i:0#.f|membership|
CHWorkplaceAdmin@cloudhadi.onmicrosoft.com"” AllowMembersEditMembership=
"false" AllowRequestToJoinlLeave="false" AutoAcceptRequestToJoinLeave=
"false" OnlyAllowMembersViewMembership="true" />

60

https://github.com/Apress/building-modern-workplace-sharepoint-online
https://github.com/Apress/building-modern-workplace-sharepoint-online

CHAPTER 2 CASE STUDY

<pnp:SiteGroup Title="Food Leads" Description="Group for product leads
for Food" Owner="i:0#.f|membership|CHWorkplaceAdmin@cloudhadi.onmicrosoft.
com” AllowMembersEditMembership="false" AllowRequestToJoinLeave="false"
AutoAcceptRequestToJoinLeave="false" OnlyAllowMembersViewMembership="true" />
<pnp:SiteGroup Title="Electronics Leads" Description="Group for product
leads for Electronics" Owner="1i:0#.f|membership|CHWorkplaceAdmin@
cloudhadi.onmicrosoft.com" AllowMembersEditMembership="false"
AllowRequestToJoinlLeave="false" AutoAcceptRequestToJoinlLeave="false"
OnlyAllowMembersViewMembership="true" />
<pnp:SiteGroup Title="Furniture Leads" Description="Group for product
leads for Furniture" Owner="i:0#.f|membership|CHWorkplaceAdmin@
cloudhadi.onmicrosoft.com"” AllowMembersEditMembership="false"
AllowRequestToJoinLeave="false" AutoAcceptRequestToJoinLeave="false"
OnlyAllowMembersViewMembership="true" />
<pnp:SiteGroup Title="Service Executives" Description="Group for
service desk executives" Owner="i:0#.f|membership|CHWorkplaceAdmin@
cloudhadi.onmicrosoft.com" AllowMembersEditMembership="false"
AllowRequestToJoinLeave="false" AutoAcceptRequestToJoinlLeave="false"
OnlyAllowMembersViewMembership="true" />
<pnp:SiteGroup Title="Site Administrators" Description="Group for
site administrators” Owner="i:0#.f|membership|CHWorkplaceAdmin@
cloudhadi.onmicrosoft.com"” AllowMembersEditMembership="false"
AllowRequestToJoinLeave="false" AutoAcceptRequestToJoinLeave="false"
OnlyAllowMembersViewMembership="true" />
</pnp:SiteGroups>
<pnp:Permissions>
<pnp:RoleAssignments>
<pnp:RoleAssignment Principal="Cloudhadi Users" RoleDefinition="{rolede
finition:Reader}" />
<pnp:RoleAssignment Principal="Food Executives" RoleDefinition="{rolede
finition:Reader}" />
<pnp:RoleAssignment Principal="Electronics Executives" RoleDefinition="
{roledefinition:Reader}" />

61

CHAPTER 2 CASE STUDY

<pnp:RoleAssignment Principal="Furniture Executives" RoleDefinition=
"{roledefinition:Reader}" />
<pnp:RoleAssignment Principal="Food Leads" RoleDefinition=
"{roledefinition:Reader}" />
<pnp:RoleAssignment Principal="Electronics Leads" RoleDefinition=
"{roledefinition:Reader}" />
<pnp:RoleAssignment Principal="Furniture Leads" RoleDefinition=
"{roledefinition:Reader}" />
<pnp:RoleAssignment Principal="Service Executives" RoleDefinition=
"{roledefinition:Reader}" />
<pnp:RoleAssignment Principal="Site Administrators" RoleDefinition=
"{roledefinition:Administrator}" />
</pnp:RoleAssignments>
</pnp:Permissions>
</pnp:Security>

Note In the previous schema, make sure you replace the user
CHWorkplaceAdmin@cloudhadi.onmicrosoft.com with a user from your
site. To create a user, go to the Users section in the M365 Admin Center. See
Chapter 1 Users section for details.

We now have security schema ready that we can add to our provisioning schema file,
ProvisioningWorkplace.xml

Site Fields

We can start creating the provisioning schema XML by defining our site fields.
To create a field, we can use <Field> element. For example, let’s create XML for the
site field Product Name. The field will look like this:

<Field ID=" B9114FE0-6ABO-4AC8-986F-6E8EF9515B56" DisplayName="Product
Name" Name="ProductName" Type="Text" Group="Cloudhadi Columns" />

The field ID can be generated by pressing Ctrl+Shift+[in Visual Studio Code. The
GUID should be unique across all fields. DisplayName is the name that should be
displayed in forms. Name denotes the internal name of the column that we’ll use in the

62

CHAPTER 2 CASE STUDY

SPFx components, Representational State Transfer (REST) application programming
interface (API) calls, and more. The type is set to Text, as the column is a single line of
text. The Group property helps us to group site columns, which can all be grouped into
Cloudhadi Columns

Similarly, we can create the field XML for all the site columns that are listed in
Table 2-1. Press Shift+Alt+Down to easily copy and paste the field XML below one
line and then modify according to the field type and other properties. Once all fields
are added, we need to wrap all the pnp:SiteField elements with its parent element,
pnp:SiteFields

Use the following code for the final XML for the site fields. See the site columns in
Table 2-1 for the design.

<pnp:SiteFields>
<Field ID="B9114FEO0-6AB0-4AC8-986F-6E8EF9515B56" DisplayName="Product
Name" Name="ProductName" Type="Text" Group="Cloudhadi Columns" />
<Field ID="4298CA83-4D90-4826-903C-755649CFB45C" DisplayName="Product
Type" Name="ProductType" Type="Choice" Group="Cloudhadi Columns">
<CHOICES>
<CHOICE>Food</CHOICE>
<CHOICE>Electronics</CHOICE>
<CHOICE>Furniture</CHOICE>
</CHOICES>
<Default>Draft</Default>
</Field>
<Field ID="746D7D9C-7A08-4E7D-9480-804601EF2111" DisplayName="Product
Lead" Name="ProductlLead" Type="User" UserSelectionMode="PeopleOnly"
Group="Cloudhadi Columns" />
<Field ID="28FFOBE4-2408-46F2-AA7E-A3B7EA1A93F8" DisplayName="Materials
Used" Name="MaterialsUsed" Type="Note" Group="Cloudhadi Columns" />
<Field ID="(C88176A1-20F0-451D-AB09-C72EE53944CF"
DisplayName="Inspection Completed Date" Name="InspectionCompletedDate"
Type="DateTime" Format="DateOnly" Group="Cloudhadi Columns" />
<Field ID="DF798B76-8622-439D-BF85-E47202A8B72C"
DisplayName="Manufactured Date" Name="ManufacturedDate" Type="DateTime"
Format="DateOnly" Group="Cloudhadi Columns" />

63

CHAPTER 2 CASE STUDY

64

<Field ID="728C8D74-8364-4531-9396-8D74267C069B" DisplayName="Expiry
Date" Name="ExpiryDate" Type="DateTime" Format="DateOnly"
Group="Cloudhadi Columns" />
<Field ID="B6555F8B-946A-4EF3-8C19-5344D52F6A2F" DisplayName="Product
Features" Name="ProductFeatures" Type="Note" Group="Cloudhadi Columns" />
<Field ID="4C2DA4DD-3AF6-4775-8967-8C45411518CB" DisplayName="Product
Status" Name="ProductStatus" Type="Choice" Group="Cloudhadi Columns">
<CHOICES>
<CHOICE>New</CHOICE>
<CHOICE>In production</CHOICE>
<CHOICE>Completed</CHOICE>
</CHOICES>
<Default>New</Default>
</Field>
<Field ID="B1970C42-76FB-4FE4-AF12-65A3AE8A4E49" DisplayName="Review
Date" Name="ReviewDate" Type="DateTime" Format="DateOnly"
Group="Cloudhadi Columns" />
<Field ID="6757A127-3692-4548-878A-6596F4DED93B" DisplayName="Do
inspection required" Name="InspectionRequired" Type="Boolean"
Group="Cloudhadi Columns" />
<Field ID="555653F3-12BC-4487-8ED9-C1F87D73DC91"
DisplayName="Inspection Lead" Name="InspectionlLead" Type="User"
UserSelectionMode="PeopleOnly" Group="Cloudhadi Columns" />
<Field ID="8D6E884A-C16B-430D-8410-415E1F4E3981" DisplayName="Document
Type" Name="DocumentType" Type="Choice" Group="Cloudhadi Columns">
<CHOICES>
<CHOICE>Product Information</CHOICE>
<CHOICE>Product Inspection details</CHOICE>
<CHOICE>Product Tooling Data</CHOICE>
<CHOICE>Product Materials Information</CHOICE>
<CHOICE>Other</CHOICE>
</CHOICES>
<Default>New</Default>
</Field>

CHAPTER 2 CASE STUDY

<Field ID="F65BB8F3-D1E0-4FDF-B783-45940F23638E" DisplayName="Activity"
Name="Activity" Type="Text" Group="Cloudhadi Columns" />
<Field ID="73610C4A-C4E8-4C90-AE1D-A9955D6E2FBC" DisplayName="Started
on" Name="Startedon" Type="DateTime" Format="DateOnly" Group="Cloudhadi
Columns" />
<Field ID="5BDDD9A5-DDEA-4976-B5C2-BE2247C1CB4E" DisplayName="Capacity"
Name="Capacity" Type="Number" Group="Cloudhadi Columns" />
<Field ID="F7AD6719-9669-4D32-AFE8-2BC8FA7E8DB7" DisplayName="Licence
valid till" Name="Licencevalidtill" Type="DateTime" Format="DateOnly"
Group="Cloudhadi Columns" />
<Field ID="F3512954-565F-4AEB-AD29-A080FFE34D88" DisplayName="Goal"
Name="Goal" Type="Text" Group="Cloudhadi Columns" />
<Field ID="11D219F2-E845-47F2-B9E4-75F904659783" DisplayName="Quality
Rating" Name="QualityRating" Type="Number" Group="Cloudhadi Columns" />
<Field ID="05D34EF6-9F98-42D5-99D4-63EC96086302" DisplayName="Request
Title" Name="RequestTitle" Type="Text" Group="Cloudhadi Columns" />
<Field ID="0B501881-098F-45F9-89BD-77A0C4443C9C" DisplayName="Request
Description" Name="RequestDescription" Type="Note" Group="Cloudhadi
Columns™ />
<Field ID="94FA1F37-2171-4E46-A20E-2B8ED283A92F" DisplayName="Related
to" Name="Related to" Type="Choice" Group="Cloudhadi Columns">
<CHOICES>
<CHOICE>Access</CHOICE>
<CHOICE>Materials</CHOICE>
<CHOICE>Equipments</CHOICE>
<CHOICE>General</CHOICE>
</CHOICES>
<Default>New</Default>
</Field>
<Field ID="F4F0127E-E953-4D86-92D0-EDCAC10BCO5A" DisplayName="Request
Status" Name="RequestStatus" Type="Choice" Group="Cloudhadi Columns">
<CHOICES>
<CHOICE>New</CHOICE>
<CHOICE>In progress</CHOICE>
<CHOICE>Resolved</CHOICE>

65

CHAPTER 2 CASE STUDY

<CHOICE>Completed</CHOICE>
<CHOICE>Rejected</CHOICE>
<CHOICE>Reopened</CHOICE>
</CHOICES>
<Default>New</Default>
</Field>
<Field ID="079FF054-1F50-4BD5-932F-9F651A1958AF" DisplayName="Request
Assigned To" Name="RequestAssignedTo" Type="User" UserSelectionMode=
"PeopleOnly"” Group="Cloudhadi Columns" />
</pnp:SiteFields>

For choice columns, possible values can be added using the CHOICE element, and the
default choice value using Default. For the Person field, the Type of which is of User, we
need to specify UserSelectionMode as PeopleOnly to restrict it to only selected people
and not groups.

Content Types

Now we can create XML for content types on the site and then put it in the same XML
file. To create an ID for content types, we need to generate GUID and append it to its
parent Content type. For example, the Cloudhadi Document Content type inherits from
the Document Content type. So, while adding the content type ID, we should generate
GUID like we did for site fields and then append it to 0x0101, which is the ID for the
Document Content type. While appending the generated GUID, remove the dash
characters from it and append the two zeros.

Table 2-8 shows the ID of parent content types for each of the Content types.

Table 2-8. Content Type ID

Content type Parent content type ID of parent content type
Document Document 0x0101

Cloudhadi Product [tem 0x01

Cloudhadi Service [tem 0x01

Cloudhadi Document Set Document set 0x0120D520

66

CHAPTER 2 CASE STUDY

So, a GUID for the Document content type looks like this:
0x010100C1B123C08DD74EB7B8ABE22C7D89C293. The parent ID is highlighted in bold, the
two zeros are appended, and then there is the generated ID without the dashes.

Let’s create a schema for the Cloudhadi Document Content type. Part of the XML will
be similar to the following:

<pnp:ContentType ID="0x010100C1B123C08DD74EB7B8ABE22C7D89C293"
Name="Cloudhadi Document" Description="For product documents."
Group="Cloudhadi Content Types">
<pnp:FieldRefs>
<pnp:FieldRef ID="B9114FE06AB04AC8986F6E8EF9515B56"
Name="ProductName" Required="true" UpdateChildren="true" />
</pnp:FieldRefs>
<pnp:ContentType>

The Content type has a child property, pnp:FieldRefs, which can include all the
Site columns. Each of the Site columns needs to be referred to using the pnp:FieldRef
element. With respect to the properties, the ID refers to the ID of the column, which we
specified while creating the XML for site fields, and Name refers to the Name property
of site field. As the product name is a required field for the Document Content type, we
need to set Required to true. Setting UpdateChildren to true ensures that if any changes
are made to the Content type or Site column, those changes will be propagated to all the
lists and libraries that inherit the Content type. Similarly, we can add all the Site columns
that are specified for documents to the Content type using pnp:FieldRef.

Likewise, we can create templates for the remaining Content types and add
Site columns. Once XML is prepared for all Content types, wrap it inside the
pnp:ContentTypes element.

The final XML for Content types follows, which is per Table 2-1. Check the Content
Type column in the table against the Site Column Title column.

<pnp:ContentTypes>
<pnp:ContentType ID="0x010100C1B123C08DD74EB7B8ABE22C7D89C293"
Name="Cloudhadi Document" Description="For product documents"
Group="Cloudhadi Content Types">
<pnp:FieldRefs>
<pnp:FieldRef ID="B9114FE0-6ABO-4AC8-986F-6E8EF9515B56"
Name="ProductName" Required="true" UpdateChildren="true" />

67

CHAPTER 2 CASE STUDY

<pnp:FieldRef ID="4298CA83-4D90-4826-903C-755649CFB45C"
Name="ProductType" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="746D7D9C-7A08-4E7D-9480-804601EF2111"
Name="ProductlLead" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="B1970C42-76FB-4FE4-AF12-65A3AE8A4E49"
Name="ReviewDate" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="6757A127-3692-4548-878A-6596F4DED93B"
Name="InspectionRequired" Required="false" UpdateChildren="true" />
<pnp:FieldRef ID="555653F3-12BC-4487-8ED9-C1F87D73DC91"
Name="InspectionLead" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="8D6E884A-C16B-430D-8410-415E1F4E3981"
Name="DocumentType" Required="true" UpdateChildren="true" />
</pnp:FieldRefs>
</pnp:ContentType>
<pnp:ContentType ID="0x0120D52000A0759C7CB1BD41F3A46AC682755F0FA1"
Name="Cloudhadi Document Set" Description="For product document set"
Group="Cloudhadi Content Types">
<pnp:FieldRefs>
<pnp:FieldRef ID="4298CA83-4D90-4826-903C-755649CFB45C"
Name="ProductType" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="F65BB8F3-D1E0-4FDF-B783-45940F23638E"
Name="Activity" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="73610C4A-C4E8-4C90-AE1D-A9955D6E2FBC"
Name="Startedon" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="5BDDD9A5-DDEA-4976-B5C2-BE2247C1CB4E"
Name="Capacity" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="F7AD6719-9669-4D32-AFE8-2BC8FA7ESDB7"
Name="Licencevalidtill" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="F3512954-565F-4AEB-AD29-A080FFE34D88" Name="Goal"
Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="11D219F2-E845-47F2-B9E4-75F904659783"
Name="QualityRating" Required="true" UpdateChildren="true" />
</pnp:FieldRefs>
</pnp:ContentType>

68

CHAPTER 2 CASE STUDY

<pnp:ContentType ID="0x010067B88C4E585D4F2BA6496757590983F2"
Name="Cloudhadi Product" Description="For products" Group="Cloudhadi
Content Types">
<pnp:FieldRefs>
<pnp:FieldRef ID="B9114FE0-6AB0-4AC8-986F-6E8EF9515B56"
Name="ProductName" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="4298CA83-4D90-4826-903C-755649CFB45C"
Name="ProductType" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="28FFOBE4-2408-46F2-AA7E-A3B7EA1A93F8"
Name="MaterialsUsed" Required="false" UpdateChildren="true" />
<pnp:FieldRef ID="C88176A1-20F0-451D-AB09-C72EE53944CF"
Name="InspectionCompletedDate" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="DF798B76-8622-439D-BF85-E47202A8B72C"
Name="ManufacturedDate" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="728C8D74-8364-4531-9396-8D74267C069B"
Name="ExpiryDate" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="B6555F8B-946A-4EF3-8C19-5344D52F6A2F"
Name="ProductFeatures" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="4C2DA4DD-3AF6-4775-8967-8C45411518CB"
Name="ProductStatus" Required="true" UpdateChildren="true" />
</pnp:FieldRefs>
</pnp:ContentType>
<pnp:ContentType ID="0x0100C0C6636718D340F1B92019A3D33D5DES"
Name="Cloudhadi Service" Description="For service requests"
Group="Cloudhadi Content Types">
<pnp:FieldRefs>
<pnp:FieldRef ID="05D34EF6-9F98-42D5-99D4-63EC96086302"
Name="RequestTitle" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="0B501881-098F-45F9-89BD-77A0C4443C9C"
Name="RequestDescription" Required="true" UpdateChildren="true" />
<pnp:FieldRef ID="94FA1F37-2171-4E46-A20E-2B8ED283A92F" Name="Related
to" Required="false" UpdateChildren="true" />
<pnp:FieldRef ID="F4F0127E-E953-4D86-92D0-EDCAC10BCO5A"
Name="RequestStatus" Required="true" UpdateChildren="true" />

69

CHAPTER 2 CASE STUDY

<pnp:FieldRef ID="079FF054-1F50-4BD5-932F-9F651A1958AF"
Name="RequestAssignedTo" Required="true" UpdateChildren="true" />
</pnp:FieldRefs>
</pnp:ContentType>
</pnp:ContentTypes>

We have four Content types and the respective columns are added inside using
pnp:FieldRef elements. You can see that some of the columns, like Product Type, are
reused across multiple Content types. We now have the schema for both site fields and
Content types in the ProvisioningWorkplace.xml file along with the Security schema.

Lists and Libraries

Let’s create a list schema and add those Content types to it. By default, all Site columns
will be added to the list while we add the Content types. The schema for the Product
Data Document Library will be as follows:

<pnp:ListInstance Title="Product Data" Description="Product Data
library" TemplateType="101" Url="ProductData" EnableModeration="true"
ContentTypesEnabled="true" EnableVersioning="true" MinorVersionLimit="0"
MaxVersionLimit="500" DraftVersionVisibility="2">
<pnp:ContentTypeBindings>
<pnp:ContentTypeBinding ContentTypeID="0x010100C1B123C08DD74EB7B8ABE22C7D
89C293" Default="true" />
<pnp:ContentTypeBinding ContentTypeID="0x0120D52000A0759C7CB1BD41F3A46AC6
82755F0FAL" />
<pnp:ContentTypeBinding ContentTypeID="0x0101" Remove="true"/>
</pnp:ContentTypeBindings>
</pnp:ListInstance >

As you can make out from this schema, pnp:ListInstance is the root element
for creating a list or library. TemplateType denotes the type of list. 101 stands for
“library,” whereas 100 for “list” Content approval will be enabled if EnableModeration
is set to true. You need to set ContentTypesEnabled to true to use the content types.
DraftVersionVisibility determines who can see the draft items in the library. In this
case, it is set to Only Users with Edit Permissions. Basically, all the versioning properties
in this instance of the list point to the versioning settings of the library.

70

CHAPTER 2 CASE STUDY

pnp:ContentTypeBinding adds a content type to the library. In our case, Cloudhadi
Document and Cloudhadi Document Set are added, and Cloudhadi Document being the
default. There will be a Content type called Document that gets added by default; we can
remove it as it is not needed. Add it as another binding with its ID and Remove equals
true in properties. Once all Content type bindings are added, wrap it inside the parent
element pnp:ContentTypeBindings.

Lastly, we need to place all the list instances under the parent element pnp:Lists.
The final schema for lists follows. See Table 2-2 for a design reference.

<pnp:Lists>
<pnp:ListInstance Title="Product Data" Description="Product Data
library" TemplateType="101" Url="ProductData" EnableModeration="true"
ContentTypesEnabled="true" EnableVersioning="true" MinorVersionLimit="0"
MaxVersionLimit="500" DraftVersionVisibility="2">
<pnp:ContentTypeBindings>
<pnp:ContentTypeBinding ContentTypeID="0x010100C1B123C08DD74EB7B8ABE2
2C7D89C293" Default="true" />
<pnp:ContentTypeBinding ContentTypeID="0x0120D52000A0759C7CB1BD41F3A4
6AC682755FOFAL" />
<pnp:ContentTypeBinding ContentTypeID="0x0101" Remove="true"/>
</pnp:ContentTypeBindings>
</pnp:ListInstance >
<pnp:ListInstance Title="Products" Description="Products list"
TemplateType="100" Url="Products" ContentTypesEnabled="true">
<pnp:ContentTypeBindings>
<pnp:ContentTypeBinding ContentTypeID="0x010067B88C4E585D4F2BA6496757
590983F2" Default="true" />
<pnp:ContentTypeBinding ContentTypeID="0x01" Remove="true"/>
</pnp:ContentTypeBindings>
</pnp:ListInstance>
<pnp:ListInstance Title="Service Portal" Description="Service portal
list" TemplateType="100" Url="ServicePortal" ContentTypesEnabled="true">
<pnp:ContentTypeBindings>
<pnp:ContentTypeBinding ContentTypeID="0x0100C0C6636718D340F1B92019A3
D33D5DE8" Default="true" />
<pnp:ContentTypeBinding ContentTypeID="0x01" Remove="true"/>

71

CHAPTER 2 CASE STUDY

</pnp:ContentTypeBindings>
</pnp:ListInstance>
</pnp:Lists>

We have the schema ready for the Product Data library and the lists, Products, and
Service Portal. The lists inherit their respective Content types: Product and Service
Portal. For lists, the default Content type which is set to be removed is the Item Content
type. As you can see, we're not required to add the versioning for the lists per the
requirements.

Next, append the pnp:Lists schema to the ProvisioningWorkplace.xml. Now the site
security, site fields, content types, and lists are ready in the base template.

Final Base Template

To deploy the ProvisioningWorkplace.xml template, we need to wrap all the prepared
schema into parent elements. See the below parent element section.

<pnp:Provisioning xmlns:pnp="http://schemas.dev.office.com/PnP/2020/02/
ProvisioningSchema">
<pnp:Templates ID="CONTAINER-TEMPLATE-57A385BB2A25469BB111BF5A8
4D34815">
<pnp:ProvisioningTemplate ID="TEMPLATE-57A385BB2A25469BB111BF5
A84D34815" Version="1" BaseSiteTemplate="SITEPAGEPUBLISHING#0"
Scope="RootSite">
<! - - Add all schema code here -->
</pnp:ProvisioningTemplate>
</pnp:Templates>
</pnp:Provisioning>

Now add the schema for site security, site fields, content types, and lists inside the
element pnp:ProvisioningTemplate. See the comment Add all schema code herein
the previous code. We need to provide ID, Version, BaseTemplate and Scope properties
to the pnp:ProvisioningTemplate element, as in the code. You can generate the ID by
pressing Ctrl+Shift+[as mentioned earlier and append to the respective text as in the
previous code.

72

CHAPTER 2 CASE STUDY

pnp:Templates acts as a parent element to pnp:ProvisioningTemplate.
pnp:Provisioning is the topmost element of the schema. Always follow this structure
while building a provisioning schema. Also note that the property xmlns : pnp of the
pnp:Provisioning element is pointing to the latest schema available. In future, you can
update this URL when a new schema is published. All updates will be available in the
PnP GitHub repository: https://github.com/pnp/PnP-Provisioning-Schema.

Note The ProvisioningWorkplace.xml template is available in the Chapter 2
folder in the GitHub repository. Other individual schema files and the PowerShell
scripts in the section Preparing the Site, are also available there. You can refer
to it via book’s product page, https://github.com/Apress/building-
modern-workplace-sharepoint-online. You can also use the upgraded
version of PnP PowerShell (Install-Module -Name PnP.PowerShell) instead

of the version used in the below section - Preparing the Site (Install-Module
SharePointPnPPowerShellOnline). With the latest module, You use ‘Get-
PnPSiteTemplate’ command in place of ‘Get-PnpProvisioningTemplate’ and
‘Invoke-PnPTenantTemplate’ in place of ‘Apply-PnPProvisioningTemplate’. New
commands also available in the same Chapter 2 folder location.

Preparing the Site

Let’s deploy this base template to our workplace site and get started. Once the template
is deployed, all items will be provisioned and we can start with form development in the
next chapter. Search for command prompt, right-click, and run as administrator. Enter
the following commands in the order they appear here.

1. Install-Module SharePointPnPPowerShellOnline: This
command installs all the required PnP modules. You are only
required to enter it the first time.

2. Connect-PnPOnline -Url [SiteURL] -UseWeblogin: This
command connects you to the SharePoint site. Provide a site
URL in place of “[SiteURL]”” I'm using https://cloudhadi.
sharepoint.com/sites/Workplace. UseWebLogin will help you
supply your credentials to connect from the browser.

73

https://github.com/pnp/PnP-Provisioning-Schema
https://github.com/Apress/building-modern-workplace-sharepoint-online
https://github.com/Apress/building-modern-workplace-sharepoint-online
https://cloudhadi.sharepoint.com/sites/Workplace
https://cloudhadi.sharepoint.com/sites/Workplace

CHAPTER 2 CASE STUDY

3. Enable-PnPFeature -Identity 3bae86a2-776d-499d-9db8-
fa4cdc7884f8 -Scope Site -ErrorAction Stop: This command
will enable the document set feature, which is a requirement for

our site.

4. Apply-PnPProvisioningTemplate -Path .\Provisioning
Workplace.xml: This command will create all the schema in
the site. Make sure ProvisioningWorkplace.xml is placed in your
directory or provide the exact path to the XML file location.

In a few minutes, the site will be provisioned with all the items. You can see the
progress in the Management Shell. Once the provisioning is completed, browse to the
site and you will see that all the groups, fields, content types, lists are there now without
even having touched the site manually until this point. Go through the site and have a
look at all those items.

If you go to Site Settings » Site Columns, you can see all the site columns that have

been created, as in Figure 2-2.

Site Settings + Site Columns o

Figure 2-2. Site columns that have been created

Similarly, you can go to Site Settings » Site Content Types to view the content types
that have been created. To view site groups, you can go to [SiteURL]/ layouts/15/
groups.aspx and view the groups, settings, and permission levels.

Figure 2-3 is a screenshot of the Site Contents page that shows the lists.

74

Workplace

Home Documents

w

-+ New

Contents Subsites

Name

k] Documents

0 Form Templates

B Policy

O Product Data

B Style Library
M Branch Information
M Products
M Service Portal
B Events

Site contents

Type

Document library
Document library
Document library
Document library
Document library
List

List

List

Events list

Figure 2-3. Site Contents page

You can click each list to go to its interface, and click ... on the right of the list or

Edit

Items

CHAPTER 2 CASE STUDY

Modified

10/24/2020 6:58 AM

11/6/2020 11:11 PM

11/16/2020 8:10 PM

12/26/2020 7:16 PM

10/24/2020 6:58 AM

11/14/2020 8:58 PM

12/26/2020 7:16 PM

12/26/2020 7:16 PM

10/24/2020 6:58 AM

library to go to settings and verify the respective list or library settings.

Note If you followed along with Chapter 1 using the same site, the Policy and
Branch Information lists you previously created may now be shown on the site.

Feel free to delete them.

75

CHAPTER 2 CASE STUDY

Summary

In this chapter, we went through the requirements of a project, planned a design, and
identified the components that need to be developed. Now you have an idea of the
project and its design.

In addition to that, we created the base provisioning schema for the site items,
which are site security, site fields, content types, lists, and libraries. The provisioning
template ProvisioningWorkplace.xml will serve as a base template. We can also add
other components such as pages, web parts, and navigation to the same template once
we have completed their development.

We also deployed the base template and prepared the site to get started with the
development. The site is now provisioned with all the required items and we are ready to
kick of the OOB forms development. That will be the focus of the next chapter.

76

CHAPTER 3

Forms and Formatting

In the last chapter, we went over planning and designing a SharePoint Online solution
based on a case study. You learned about provisioning and provisioned the site with
basic items. The next step in building our solution is to provide the users with an option
to enter data into SharePoint in a user-friendly manner.

SharePoint serves as both a front end and back end of your application. Lists
and libraries store various information. Forms serve as the front end where you can
enter data, validate data, and so forth. There are many ways to customize forms in the
platform. Within the scope of this book, we will be focusing only on the most modern
and recommended ways to customize forms.

SharePoint Online out-of-the-box (OOB) forms offer quite a number of
functionalities with a stylish look and feel. However, they do have lot of limitations when
it comes to customizing. There are number of modern options to customize forms such
as Power Apps, SharePoint Framework (SPFx) web parts, and Nintex forms. You will
learn about SharePoint OOB forms in this chapter and how to implement them in a
workplace site. I will cover Power Apps and SPFx forms in the upcoming chapters.

We will touch upon the views and how to set up a default view quickly from the
modern interface. In addition to the forms and views, one of the other things this chapter
will focus on will be formatting columns and views in a list and library. We will go
through some examples of how to format columns and views in the Product Data library
and Products list.

At the end of this chapter, you will learn about OOB forms and views. You'll become
familiar with setting up a SharePoint form, validations, views, formatting, and other
features. You'll be able to customize the columns and views using OOB design and JSON

formatting.

77
© Harinarayanan V P 2021

Harinarayanan V P, Building the Modern Workplace with SharePoint Online,
https://doi.org/10.1007/978-1-4842-6945-9_3

https://doi.org/10.1007/978-1-4842-6945-9_3#DOI

CHAPTER 3 FORMS AND FORMATTING

Form Requirements

Our requirements for Cloudhadi mainly consist of four forms: the Product Data
document set form, the Product Data document properties form, the Products List

list properties form, and the Service Portal list form. Let’s develop the Product Data
document form using SharePoint OOB. For other forms, we’ll be using custom solutions,
as mentioned in the use cases. Let’s get started.

Document Properties Form

The Product Data library is where the user uploads documents, which will go into
three document sets. We'll be creating document sets in a later section. We'll start by
uploading a document to the library and then we’ll organize the Document Properties
form according to our requirements. In the process, you will learn about using
SharePoint OOB forms.

In the first chapter, we looked at about the basics of a Document Library and how
you can edit and save properties of a document. Let’s now get into a little more detail
and see how we can set up a good-looking form for the properties of a Product Data
document and provide some validations. We'll start by going to the Product Data library
from the Site Contents interface and uploading a document. As shown in Figure 3-1,
select the document and go to the top context menu and click the ... icon in the right-
hand corner, then click Properties.

w Workplace
Home Documents Pages Sitecontents Edit 2
B Editin grid view (l Open 1 Share @ Copylink | Download [Delete 3 Pintotop =B Rename $§ Automate Bl Moveto [y Copyt
& Properties
Product Data @y Version history
0 Alert me
®@ [0 nName Modified Modified By Approval Status - Add column

1 [# Manage my alerts
B° Food quality check info.docx = A few seconds ago Hari Marayanan Pending
) Check out

% Approve/Reject

Figure 3-1. Selecting document properties

The properties window will then open, as shown in Figure 3-2. You can see that the
mandatory fields will be marked per the Content type properties.

78

CHAPTER 3 FORMS AND FORMATTING

& Editall @ Copy link o ~
' | Edit columns
Food quality check info.docx Configure layout

Customize with Power Apps

[=] Content Type

Cloudhadi Document

[Product Name *

Enter value here

& Product Type *

Select an option

S Product Lead *

Enter a name or email address

[T Review Date *

Enter value here

Do inspection required

Enter value here

£ Inspection Lead

Enter a name or email address

(Z Document Type *

Select an option

M Name *

Food quality check info.docx

E= Title

Enter value here

Figure 3-2. Document Properties form

Note Insome cases, the UpdateChildren property of Patterns and Practices (PnP)
schema may not work as expected. This is a known bug. If this happens, the mandatory
fields will not get reflected at the library level. To fix this, go to Site Contents » Content
Types » Cloudhadi Document. Click each required column inside the content type and
then click OK at the bottom of the screen. This will ensure that the library fields reflect
the required property. The same applies to other content types as well.

79

CHAPTER 3 FORMS AND FORMATTING

Let’s arrange the fields using the options selected on the right-hand side of the form,
as shown in Figure 3-2. To do so, click the selected icon in the right-hand corner, choose
Edit Columns, and then drag the fields to the required position. Alternatively, you can
use the Move Up and Move Down options, as selected in Figure 3-3. Once you're done,
save your work.

If you want to hide a column, uncheck the checkbox on the left side of its name. You
only want to show the Inspection Lead column when the Do Inspection Required is
selected. You can use Edit Conditional Formula to do that. These options are shown in
Figure 3-3 along with the move options.

7 Editall <@ Copy link Save | X Cancel X

Food quality check info.docx Edit columns in the form

Select a column to show or hide it in the form. To

Content Type reorder columns, use drag and drop, or find more
options next to each column. Required columns and
Cloudhadi Document columns with conditional formulas can't be hidden.

Product Name Product Name
nter value here Product Type
Product Lead
Product Type
Draft Review Date
Do inspection required
Product Lead Inspection Lead
ENTEr a name or emall adaaress
Document[T Move Up
1 Review Date Name Move Down
e e Title Edit conditional formula

Do inspection required

Figure 3-3. Moving and hiding columns

Let’s now see how we can use conditional formula to show or hide a column. Click
the ... icon next to the Inspection Lead column and select Edit Conditional Formula. In
the pop-up window, enter the condition. See Figure 3-4.

80

CHAPTER 3 FORMS AND FORMATTING

Edit conditional formula for

Inspection Lead field:

To determine whether this field is shown or
hidden, specify a conditional formula based
on the value of another field. Leave it blank
to clear the condition.

Learn to use conditional formulas in a list
form.

Enter your custom formula here:

=if{[$InspectionRequired]==true. 'true’,
‘false’)

Figure 3-4. Conditional formula for columns

The condition =if([$InspectionRequired]==true, 'true', 'false') means the
Inspection Lead column will be visible only if Do Inspection Required is selected as Yes.
Note that we use the internal name of the column here. Save the pop-up as well as the
form once the formula is entered.

Note Be aware that we will not be able to hide the Content Type column from
the form with SharePoint O0B. The only way to hide the Content Type column is to
disallow the management of content types, but we don’t want to do this here, as
we need to use the content types.

Now you can enter the properties for the document and save. To do so, select
document and properties like we did before, type in the values, and it will be saved when
you enter it. See Figure 3-5.

81

CHAPTER 3 FORMS AND FORMATTING

Editall @ Copy link
Yy

Food quality check info.docx
[s] Content Type

Cloudhadi Document

[Product Name *

Chocolates

& Product Type *

Electronics

S, Product Lead *

test 1

& Document Type *

Product Information

[Review Date *
1/27/2021

[] Do inspection required
Yes

= Inspection Lead

test 2

= Title

Food quality check info

M MName*

Food quality check info.docx

Figure 3-5. Doing a quick edit of Document properties

You can see that the Inspection Lead column is hidden, but as soon as you select
Yes for Do Inspection Required, the Inspection Lead column will appear again. For the
Product Lead and Inspection Lead columns, you can enter any person for now. Each
field data will be saved when you enter data into it. This is called the quick edit option.

Alternatively, you can click Edit All and put in the properties, as shown in Figure 3-6.
In this case, you will need to click Save at the top or bottom of the screen once you enter
the data.

82

CHAPTER 3 FORMS AND FORMATTING

Save [<{ Cancel @ Copy link pe

Food quality check info.docx

[=] Content Type

Cloudhadi Document e

Product Name *

Chocolates

& Product Type *

Food v

2 Product Lead *

o test1 X Enter a name or email address

& Decument Type *

Product Information v

71 Review Date *

1/27/2021

Do inspection required
@ ves

2 Inspection Lead

o test2 X Enter a name or email address

= Title

Food quality check info

[) Name *

Food quality check info docx

Save Cancel

Figure 3-6. Editing the document properties using Edit All

We have now set up the OOB list form now with the field arrangements, validations,
and visibility settings. You learned how to organize fields, how validation works, how
to conditionally show and hide columns, and different ways to edit the properties of a
document.

83

CHAPTER 3

FORMS AND FORMATTING

Pros and Cons of 00B Forms

SharePoint OOB forms are quite powerful, but they do have some limitations. The

following pros and cons of the OOB forms will help you to choose whether they are the

right choice for your needs:

84

Pros:

Cons:

Look and feel: OOB forms have the modern look and feel that align
well with that of the rest of the SharePoint site. If you were to choose
Power Apps, SPFx, or Nintex forms, you'd have to explicitly match
their style with the site theme.

Built-in validation: Because they have built-in validation, OOB forms
allow you to validate mandatory columns, show or hide a column
based on another, calculate a column value from another, and more

without having to do any custom coding.

Organizing fields: These forms offer the option to move fields and
show or hide the columns using the Edit Form option, which comes
in very handy.

Headers: You cannot add a custom header to a form with OOB

forms. For example, if you wanted to add “Enter your Product Data
properties here” to the top of the Properties form, it wouldn’t be
possible. You would have to choose a different type of form to do that.

Visibility of Content Type: You don’t have the option to hide content
types other than disallowing their management when using these
forms. This can be a deal breaker when deciding on which form to
choose.

Editing form security: The Edit Form option to arrange or hide

the fields can sometimes be a problem when using OOB forms.
This option is available to all users who have Edit permission

in the library. Therefore, if any of the users updates the column
arrangements, all users will be affected. Ideally, site administrators
should have the option to hide this option from other users.

CHAPTER 3 FORMS AND FORMATTING

Custom watermarks: The watermarks of the columns can’t be
changed. For example, if the watermark in the Product Name field
says, “Enter value here” and you want to change it to “Enter product
name here,” this wouldn’t possible with OOB forms.

Restricting the Selection of People

As of now, you can select any user from the site as the product or inspection lead. With
an OOB form, we can restrict the Lead field to only one SharePoint group. So, if you
wanted to restrict it to Food Leads, Electronics Leads, and Furniture Leads, three groups,

it would not be possible to achieve using this form.

The only way we could achieve this with an OOB form is to create a common
SharePoint group, say “Product Leads,” where all the leads from the three groups could
be added, and then restrict the Person field to the Product Leads group.

Note

To avoid the extra work of having to add the same user to both groups, we

can automate this process by using a Power Automate flow to add a user to the
Product Leads group when a user is added to any of the three lead groups.

Let’s see how we can make this change using PnP. To do so, we’ll create a new
provisioning template called ProvisioningWorkplace_CHO03.xml, and at the end of this

chapter, we'll integrate it into our main template, ProvisioningWorkplace.xml.

1.

Let’s start by creating a new XML file called
ProvisioningWorkplace_ CH03.xml and adding the parent
elements to it like we did in Chapter 2 Final Base Template section
(see Step 2 for an example). The only difference is that in this
case, we going to use a unique GUID for pnp:Templates and
pnp:ProvisioningTemplate.

Now, let’s add a Site Security section to the XML with a new site
group within the site groups tag. We don’t need role assignments
here as the individual product lead groups already have the
permissions assigned. The template will look the following now:

85

CHAPTER 3 FORMS AND FORMATTING

<pnp:Provisioning xmlns:pnp="http://schemas.dev.office.com/PnP/2020/02/
ProvisioningSchema">
<pnp:Templates ID="CONTAINER-TEMPLATE-AAE59FE314734AFAA5C86866441D8A98">
<pnp:ProvisioningTemplate ID="TEMPLATE-67AB254EB99240DFA53F78C
C753AE8D7" Version="1" BaseSiteTemplate="SITEPAGEPUBLISHING#0"
Scope="RootSite">
<pnp:Security>
<pnp:SiteGroups>
<pnp:SiteGroup Title="Product Leads"
Description="Group for all product leads"
Owner="1:0#.f|membership|CHWorkplaceAdmin@cloudhadi.
onmicrosoft.com" AllowMembersEditMembership="false"
AllowRequestToJoinlLeave="false" AutoAcceptRequestToJoin
Leave="false" OnlyAllowMembersViewMembership="true" />
</pnp:SiteGroups>
</pnp:Security>
</pnp:ProvisioningTemplate>
</pnp:Templates>
</pnp:Provisioning>

3. Next, we'll connect to the site using the Connect-PnPOnline
-Url [SiteURL] -UseWebLogin command. Replace the site
URL with your site URL. Apply the provisioning template using the
command Apply-PnPProvisioningTemplate -Path
.\ProvisioningWorkplace CHO03.xml. Provide the full path to the
provisioning template

4. Once Step 3 is completed, execute the command
Get-PnPGroup -Identity 'Product Leads'.This will give
you the ID of the group.

5. Now go to the main template ProvisioningWorkplace.xml
and copy the Product Lead and Inspection Lead columns
to ProvisioningWorkplaceCHO03.xml. Add a new property
UserSelectionScope to both columns and set it to the ID from
Step 4.

86

CHAPTER 3 FORMS AND FORMATTING

The final template will now look like the following:

<pnp:Provisioning xmlns:pnp="http://schemas.dev.office.com/PnP/2020/02/
ProvisioningSchema">
<pnp:Templates ID="CONTAINER-TEMPLATE-AAE59FE314734AFAA5C86866441D8A98" >
<pnp:ProvisioningTemplate ID="TEMPLATE-67AB254EB99240DFA53F78C
C753AE8D7" Version="1" BaseSiteTemplate="SITEPAGEPUBLISHING#0"
Scope="RootSite">
<pnp:Security>
<pnp:SiteGroups>
<pnp:SiteGroup Title="Product Leads" Description=
"Group for all product leads" Owner="i:0#.f|membership|
CHWorkplaceAdmin@cloudhadi.onmicrosoft.com" AllowMembers
EditMembership="false" AllowRequestToJoinLeave="false"
AutoAcceptRequestToJoinlLeave="false" OnlyAllowMembers
ViewMembership="true" />
</pnp:SiteGroups>
</pnp:Security>
<pnp:SiteFields>
<Field ID="746D7D9C-7A08-4E7D-9480-804601EF2111"
DisplayName="Product Lead" Name="ProductlLead" Type="User"
UserSelectionMode="PeopleOnly" UserSelectionScope="24"
Group="Cloudhadi Columns" />
<Field ID="555653F3-12BC-4487-8ED9-C1F87D73DC91"
DisplayName="Inspection Lead" Name="InspectionlLead"
Type="User" UserSelectionMode="PeopleOnly"
UserSelectionScope="24" Group="Cloudhadi Columns" />
</pnp:SiteFields>
</pnp:ProvisioningTemplate>
</pnp:Templates>
</pnp:Provisioning>

6. Connect to the site and apply the provisioning template like we
did in Step 3.

87

CHAPTER 3 FORMS AND FORMATTING

In the previous steps, you created a site group and restricted
the selection of people for that group in the Product Lead and
Inspection Lead columns.

If you go to the library settings and click Product Lead in the
Columns section, you can see that the column is now limited to
the group Product Leads (see Figure 3-7). The same applies to the
Inspection Lead.

_ Settings » Edit Column o

Home Name and Type
. : 4 Column name;
Documents ype @ name for this column
g Product Lead
Pz
ages The type of information in this column is:
Recent Person or Group

Service Portal
Pk Additional Column Settings

raducts Description:
Specify detailed options for the type of information you selected
Product Data
Palicy

Enforce unique values:
Branch Information _q
(O Yes @ No

Site contents Allow multiple selections:
, O Yes @ No
EDIT LINKS A :

Allow selection of:
@ People Only (O People and Groups
Choose from:
(O All Users
(@ SharePoint Group:
Product Leads v

Figure 3-7. Person field column settings

Note Every time you deploy PnP site fields for the Inspection Lead column, you
need to manually re-add the condition allowing the column’s visibility, or it will

be lost. As the conditional formula for columns is a recent feature introduced by
Microsoft, this is still not incorporated into PnP and the manually added conditional
formula gets lost on PnP deployments.

Let’s add some users to the Product Lead group now.

88

CHAPTER 3 FORMS AND FORMATTING

Go to Site Settings » Peoples and Group. Click More... from the left navigation bar,
and you will be redirected to the Groups page. There, you can click the Product Lead
group. Alternatively, you can access the group directly using [SiteURL]/ layouts/15/
people.aspx?MembershipGroupId={Id}.

For example, [use https://cloudhadi.sharepoint.com/sites/Workplace/_
layouts/15/people.aspx?MembershipGroupId=24 to access the group in my site.

Now if you go back to the document we edited before and try to enter product lead or
inspection lead, you will only be able to select the members of product leads.

Note If you don’t have enough test users, go to the Microsoft 365 Admin Center
and add few users. See Chapter 1. When assigning the licenses, choose the
Microsoft 365 and Power Automate free licenses. Both will be available with a
developer trial E3 or E5 account. Newly added users may take few hours to appear
in the SharePoint site.

Views

Views are virtual representations of content in a list or library. Different views may show
different columns and have different sorting, filtering, grouping, and styles. We touched
on views in Chapter 1. Here, I want to take you through how we can edit the columns of a
view quickly from the modern interface without having to go to the list or library settings.

Go to the Product Data library, upload a few documents, and update the properties
for each document. To view the properties of an individual document, you need to select
and click the properties.

To view the properties of multiple documents from the library interface, we depend
on the view. By default, the library is in the All Items view, as shown in Figure 3-8.

89

https://cloudhadi.sharepoint.com/sites/Workplace/_layouts/15/people.aspx?MembershipGroupId=24
https://cloudhadi.sharepoint.com/sites/Workplace/_layouts/15/people.aspx?MembershipGroupId=24

CHAPTER 3 FORMS AND FORMATTING

s + Add columD

Single line of text
Multiple lines of text
Location
Number

Yes/MNo

Person

Date and time
Choice

Hyperlink
Currency

Image

More...

Show/hide columns

Figure 3-8. Library default view

If we want to view the product details such as Product Name and Product Type, as
well as set an order for how they appear in the view, we can take the following steps.

Start by clicking Add Column in the library interface and then clicking Show/hide
Column, as selected in Figure 3-8.

From the sliding panel, you can select and deselect the columns, and order them
using drag and drop or the up and down arrows. Click Apply to save the view. See
Figure 3-9.

90

CHAPTER 3 FORMS AND FORMATTING

+ Apply X

Edit view columns
Select the columns to display in the list view.
To change ordering, use drag-and-drop or

the "up® and "down” buttons next to each
column,

Type
MName

[T compliance Asset Id

Product Name
Product Type

Product Lead
Document Type
Review Date

Do inspection required
Inspection Lead
Modified

Modified By

Approval Status

J Activity

Figure 3-9. Customizing the view

By clicking Apply, the library view will be updated with the changes you made and
all the columns in the view will be in the order you chose. Now let’s add a button to the
view that we can use later to initiate a Power Automate flow for approval. We'll create the
button using JSON formatting.

Column Formatting with JSON

Column formatting and view formatting allow you to make front-end changes to a list or
library view. These kinds of customizations won’t make any changes to the underlying
data; they are only intended for customizing the presentation of the data for the user.

If you want to add a custom button to a library view, you can do it without having
an SPFx extension. Column formatting with JSON can help you with that. JSON data is
written as name-value pairs. Let’s learn about it by implementing a custom button for
the initiation of document approval.

91

CHAPTER 3 FORMS AND FORMATTING

Initially we need to create a text column, which we didn’t do during our initial PnP
deployment. Let’s add this column to the ProvisioningWorkplaceCH03.xml and execute.
Update the site fields element and add a Content types element to include the new
field Cloudhadi Document. Remember to comment out the Inspection Lead field to
avoid having to add the conditional formula again. Just put your cursor in front of the
Inspection Lead <Field> line and press Ctrl+/. If you'd like to, you can comment out the
SiteGroups element as well. The template ProvisioningWorkplaceCH03.xml will now
look like the following:

<pnp:Provisioning xmlns:pnp="http://schemas.dev.office.com/PnP/2020/02/
ProvisioningSchema">
<pnp:Templates ID="CONTAINER-TEMPLATE-AAE59FE314734AFAA5(C86866441D8A98">
<pnp:ProvisioningTemplate ID="TEMPLATE-67AB254EB99240DFA53F78C
C753AE8D7" Version="1" BaseSiteTemplate="SITEPAGEPUBLISHING#0"
Scope="RootSite">
<pnp:Security>
<pnp:SiteGroups>
<pnp:SiteGroup Title="Product Leads"
Description="Group for all product leads"
Owner="1i:0#.f|membership|CHWorkplaceAdmin@cloudhadi.
onmicrosoft.com" AllowMembersEditMembership="false"
AllowRequestToJoinlLeave="false" AutoAcceptRequestToJoin
Leave="false" OnlyAllowMembersViewMembership="true" />
</pnp:SiteGroups>
</pnp:Security>
<pnp:SiteFields>
<Field ID="746D7D9C-7A08-4E7D-9480-804601EF2111"
DisplayName="Product Lead" Name="ProductlLead" Type="User"
UserSelectionMode="PeopleOnly" UserSelectionScope="24"
Group="Cloudhadi Columns" />
<!-- <Field ID="555653F3-12BC-4487-8ED9-C1F87D73DC91"
DisplayName="Inspection Lead" Name="InspectionlLead"
Type="User" UserSelectionMode="PeopleOnly"
UserSelectionScope="24" Group="Cloudhadi Columns" /> -->

92

CHAPTER 3 FORMS AND FORMATTING

<Field ID="F7EE4F85-3496-4CB6-B8AE-310644769F45"
DisplayName="Initiate Approval" Name="InitiateApproval"
Type="Text" Group="Cloudhadi Columns" />
</pnp:SiteFields>
<pnp:ContentTypes>
<pnp:ContentType ID="0x010100C1B123C08DD74EB7B8ABE22C7D8
9C293" Name="Cloudhadi Document" Description="For product
documents" Group="Cloudhadi Content Types">
<pnp:FieldRefs>
<pnp:FieldRef ID="F7EE4F85-3496-4CB6-B8AE-
310644769F45" Name="InitiateApproval"
Required="false" UpdateChildren="true" />
</pnp:FieldRefs>
</pnp:ContentType>
</pnp:ContentTypes>
</pnp:ProvisioningTemplate>
</pnp:Templates>
</pnp:Provisioning>

Run the apply provisioning template command using Apply-
PnPProvisioningTemplate -Path .\ProvisioningWorkplace CHO3.xml. The field
Initiate Approval will be created and added to the Content type. It will now be
available in the Product Data library.

Note You may find it a bit tedious to do each small step using PnP templates.
Let’s stick to it, though, and by the end of development we’ll have a final
provisioning script with minimum number of templates. Moving the code to another
environment will be fully automated and much easier with this approach.

Let’s go back to the Product Data library and add the column Initiate Approval to the
view we made earlier (see Figures 3-8 and 3-9 for the existing view). While adding the
column, we can move it up. Let’s put it below to the Product Name column. Once the
column is added to the view, click the downward-facing arrow next to the column, go to
Column Settings, and then click Format This Column, as shown in Figure 3-10.

93

CHAPTER 3 FORMS AND FORMATTING

Workplace

Home Documents Pages Site contents Edit

w

T Upload ~ F5 Editin grid view ©2 Sync 5 Add shortcut to OneDrive il Export to Excel <% Power Apps ~ #% Au

Product Data

O Name Product Name Initiate Approval U Product Type Product Lead

@] Confectionary materials.docx Dairy Milk AtoZ Food Lead-1
Zto A

@ Food quality check info.docx Chocolates cs Food Lead-1
Filter by

Group by Initiate Approval

Column settings > ‘ Edit

Totals >| Format this column
Move left
Move right

Hide this column
Pin to filters pane
Show/hide columns

Add a column >

Figure 3-10. Formatting a column

In the window that opens, click Advanced mode on the bottom and a JSON editor
will become available. While in advanced mode, you can Switch to design mode using
the same button. Drag it to the left to give yourself more space to enter the JSON code.
Leave Intake Approval as the choice for Apply Formatting To. See Figure 3-11.

94

CHAPTER 3 FORMS AND FORMATTING

Format Initiate Approval column x

Apply formatting to

Initiate Approval

Change the display of this column by adding JSON below. Remave the text from the box to clear the custom
formatting. Learn more

Paste or type your column-formatting JSON here

Switch to design mode

Preview m Cancel
Figure 3-11. Advanced mode for JSON formatting

We will keep the formatting simple for now. The button text will be Initiate
Approval and it will have a flow icon to its left. We will add some basic styling and
placeholders for custom actions.

Following is the JSON code, after which I'll explain each property.

"elmType": "span",

"style": {
"color": "white",
"background-color": "#3d7b80",
"border": "1px solid",
"border-radius": "8px",
"padding-left": "8px",
"visibility": true

1

95

CHAPTER 3 FORMS AND FORMATTING

"children": [

{
"elmType": "span",
"attributes": {
"iconName": "flow"

}
})
{
"elmType": "button",
"style": {
"background-color": "inherit",
"border": "none",
"color": "white",
"cursor": "pointer"
}s
"txtContent": "Initiate Approval”,
"customRowAction": {
"action": "",
"actionParams": ""
}
}

In the code, we are placing the value of the Initiate Approval field into a span element.
Itis set to a style where we choose the span text color, background color, and so forth.

The span has two child elements, a span and a button. The child span element is set
to the flow icon. The button element is also set to have some styles. The text content
of the button is set using the txtContent property. There is also a customRowAction
property, which sets an action on the button click. For now, we will leave the action and
actionParams blank.

In upcoming chapters, we will modify this same formatting to invoke a flow, to set
the visibility based on Content type, to set conditions for disabling the button and for
text change of the button based on approval status, and so forth.

As shown in Figure 3-12, by clicking Preview, you can see that the field is now
changed to a button.

96

CHAPTER 3 FORMS AND FORMATTING

Format Initiate Approval column

3 Apply formatting to

Initiate Approval Product Type Product Lead | Initiate Approval

Food B e Change the display of this column by adding JSOM below. Remove the text from the box to dlear the custom formatting. Leam maore

|1
"elnType": “span”,
"style”: {
“color”: “white®,

“background-color”: "#3d7b80",
“border™: “1px solid”,
“border-radius®: "Bpx™,
“padding-left™: “Bpx",
“wisibility™: true

I
“children™: [
{

“elmType™: “span”,

“attributes”: {

1 “icorName": "flow"
}

1

“elmType”: “button”,
"style™: {
“background-color™: "inherit”,
"border”: “none”,
“color”: “white",
"gursor”: “pointer”

“txtContent™: “Initiate Approval®,

“customRowaction”: {
"action": "7,
"actionParams”: =*

}

}
1
}

Switch to design maode

_ Goneel
.

Figure 3-12. Applying JSON formatting

Click Save to save the changes.

You can use Visual Studio Code to create the JSON and then copy and paste it here to
have a better editing experience.

You can update the field Initiate Approval in ProvisioningWorkplaceCH03.xml to
include the JSON using CustomFormatter property, but you need to formatting of the
JSON content. I updated this in the template. Refer to Chapter 3 folder of the GitHub
repository.

There are a lot of options available for formatting columns. You can create various
rules and apply different styles. Figure 3-13 shows how we can add colors to choices in

the Document Type column.

97

CHAPTER 3 FORMS AND FORMATTING

Format Document Type column

Product Data 5

dduct Name Initiate Appraval Product Type Procisct Lead Document Type Review Date Do inspection r
m : R SR
m : i —

Figure 3-13. Using Choice Pills

As seen in Figure 3-10, if you click Format This Column under Document Type, you
will be given an option called Choice Pills. From here, click Edit Styles to choose your
desired color. Let’s keep the preselected colors for our example. If you click Advanced
mode on the bottom of the screen, you can see the JSON code that was created.

In the same way, you can add different conditional styling using the built-in column
formatting. If you want to add a people icon to the Product Lead column, you can do
that using the default formatting options. I recommend spending some time playing
around with different options the formatting provides. We will have a look at conditional
formatting in the next section, which is also similar in the case of columns.

Conditional View Formatting

In the previous section, we went over formatting individual columns using JSON code
as well as using the design options available. Now let’s see how we can format the entire
item view.

Let’s say we're required to highlight an item if the review date has already passed. We
can make this happen by viewing the formatting.

To view the formatting, click All Documents in the drop-down list on the right side of
the screen, then click Format Current View, as selected in Figure 3-14.

98

CHAPTER 3 FORMS AND FORMATTING

All Documents Yy O J
" = List
= Compact List

H Tiles

Do inspection r... Inspection Lead ed By
Files that need attention

No ayanan
~ All Documents

Yes Food Lead-2 ‘ayanan

Approve/reject ltems
My submissions
Create new view
Save view as

Edit current view

Format current view

Figure 3-14. Selecting the format view

Now the Format View window will open as shown Figure 3-15. Choose Conditional
Formatting, then click on Manage Rules.
Cu e = AllDocuments ~ VY @

Format view X

Apply formatting to

Entire Row ~

Alternating row styles

Format odd rows differently than even rows

Edit row styles

] Conditional formatting
Use custom rules to format your list

Manage rules

Figure 3-15. Conditional formatting

In the window that opens, click Add Rule, as shown in Figure 3-16.

99

CHAPTER 3 FORMS AND FORMATTING

o e = AllDocuments ~ %Y @O

X

Format view > Conditional formatting

< Conditional formatting

Show all values as

kv

Sample text

—+ Add rule

Figure 3-16. Adding a rule

Now create a rule, as shown in Figure 3-17. The rule sets the color of the item row to
light yellow if the review date is before the current date.

mal view 3 Condiional formatting Create e
Product Data
“ Create rule 1
[Name Prodisct Nare Initiate Appeoval Product Type Presdusct Lead If
: | - o
B Confectianary materials docx Dy Mite e Lead | Rl Date |
r :
| s before -]
@ Food qusiity check infoudoce Chocolates ol L L |
Today (relative) B
-+ Add condition
Show list item as Z

e @

Figure 3-17. Creating and saving a rule

100

CHAPTER 3 FORMS AND FORMATTING

After selecting an option in Show List Item As, click More Styles from the pop-up,
which will give you different options, such as standard colors, fonts, and borders. When
you add a rule, the library view will reflect that. I updated the review date to the previous
day before formatting the view. You'll be able to add multiple rules like this. Save and
close once you're done. You can edit or delete the created rules using the same settings.

Custom Image Cards on Hover Event

Now that we've done some formatting for the library columns and view, let’s head to the
product list and do some work there in terms of displaying the data.

Go to Site Contents » Products and click Show/Hide More Columns like we did for
the library (look back at Figure 3-8). Then check off the columns as done in Figure 3-18,
and click Apply.

B e

1 B rive
Add eolum s
| Compliance Asset id

2 Product Name

Product Type
Aj B Materials Used
5
OO B manufactured Date

. B epiry Date
“ Product Features
Product Status

Welcome to your new list

Inspection Completed Date

Llwo

Figure 3-18. Product list columns

Next, add few items to the product list using the New button. Make sure you have at
least one product for each status. See Figure 3-19.

101

CHAPTER 3 FORMS AND FORMATTING

Products

Y Title Product Name Product Type Materials Used Manufactured .. Expiry Date Product Features. Product Status. Inspection Com..

Figure 3-19. Products added to the product list

We want to add a hover to the Production Status column that displays three different
images for three different status values. To do this, first navigate to Site Contents »
Documents Library and upload three images of your choice. Make sure the names of the
files are “Completed.jpg,” “InProduction.jpg,’ and “New.jpg,’ respectively. See Figure 3-20.

Note You're free to use the same images | used here. Refer to the images

folder from Chapter 3 section of the GitHub repository: https://github.com/
Apress/building-modern-workplace-sharepoint-online/tree/main/
Chapter%203/Images/Documents¥%20Library.

Home Documents Pages Site contents Edit

T Upload ~ [Editin grid view 3 Sync) Add shortcut to OneDrive il Export to Excel (% Power

Documents
[Name Modified Modified By + Add column
sl
| “Completed,jpg 4 hours ago Hari Narayanan
_\Ilnproduction_jpg 4 hours ago Hari Marayanan
J _\INew.jpg 4 hours ago Hari Narayanan

Figure 3-20. Uploading images in the Documents library

102

https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 3/Images/Documents Library
https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 3/Images/Documents Library
https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 3/Images/Documents Library

CHAPTER 3 FORMS AND FORMATTING

Now, go to the product list, click the Production Status column arrow, and choose
format this column, as you did for the library, and paste the following code and save.
I will explain the code in detail after it.

{
"elmType":"div",
"style":{
"font-size":"12px"
})
"txtContent":"[$ProductStatus]"”,
"customCardProps":{
"formatter":{
"elmType":"img",
"style":{
"width":"150px",
"height":"100px",
"border-radius":"8px",
"border":"1px solid #ddd",
"padding":"10px"
}J
"attributes":{
"src":"=if([$ProductStatus]=="Completed', '/sites/Workplace/
Shared%20Documents/Completed.jpg', if([$ProductStatus] == "In
production’,'/sites/Workplace/Shared%20Documents/Inproduction.
jpg', '/sites/Workplace/Shared%20Documents/New.jpg')",

"title":"[$ProductStatus]"

}
b

"openOnEvent": "hover",
"directionalHint":"bottomCenter",
"isBeakVisible":true,
"beakStyle":{
"backgroundColor":"blue"

103

CHAPTER 3 FORMS AND FORMATTING

By setting elmType as div, we're placing the ProductStatus field into a div. The
content of the div is set to ProductStatus. After that, we're creating a custom card and
setting its properties using customCardProps. We're putting an image element inside
the card and setting its style and attributes. In the attributes section, we're adding a
condition to check the ProductStatus. If the ProductStatus is Completed, the src is set
to the relative path of Completed. jpg. The path to the Documents library is [SiteURL]/
Shared Documents/.In my case the complete path is sites/Workplace/Shared’%20
Documents/Completed. jpg.

If the status is In Production, src should be set to the path inproduction. jpg. In all
other cases, it will point to New. jpg.

In the next line, we will set the openOnEvent property, which means the custom card
will open only on an event, the even being hover in this case. The directionalHint
ensures that the card will appear on the bottom center when we hover over the
ProductStatus column. The isBeakVisible and beakStyle properties are to make the
arrow point to the card.

If you hover over the product status for each of the items and see how it appears.

In Figure 3-21, you can see how it appears for an item where the product status is
Completed.

Products

Figure 3-21. Column formatting image that appears upon hover event

In the Completed. jpg image that appears upon hovering, note that the color of the
top arrow is blue as we set it to be. The image style, direction, and other elements are all
appearing as expected. If you hover over items with the New or In Production status, the
image that appears will be different, as we have conditionally based images.

This is one of example where you can customize the front end of the list
using column formatting. Using JSON formatting, you can make quite number of
customizations, such as displaying a progress bar in columns, setting text as a hyperlink,
and setting custom layouts for list or library items.

104

CHAPTER 3 FORMS AND FORMATTING

Integrating the PnP Schema Files

Now that we're approaching the end of the chapter, it’s time to merge the
ProvisioningWorkplace-CH3.xml file with our main template, ProvisioningWorkplace.
xml. But before we do that, let’s review the changes we made manually in this chapter.
We customized the ProductStatus, InitiateApproval, and DocumentType columns
using JSON. We added the CustomFormatter property for those columns to the
provisioning template files. The product data and product list views will also be added
to both templates. Inside the pnp:ListInstance, you will be able to see pnp:Views.
The All Items view is added inside that root element using the View element. Go to
ProvisioningWorkplace-CH3.xml and have a detailed look at the changes we made in
this chapter.

Note If you would like to, feel free to skip the PnP integration sessions in each
chapter. When doing deployment at the end of the development, you can go
through the templates in detail and understand them better. As mentioned earlier,
all code samples used in this book are available in the GitHub repository.

Now go to each section and copy each of the modified child elements from
ProvisioningWorkplace-CH3.xml to ProvisioningWorkplace.xml For example, copy the
pnp:SiteGroup element for Product Leads and paste it inside pnp:SiteGroups. Do
the same with each of the site fields and content types. For any fields that are changed,
replace the old <Field> line with the new one. Product Leadis an example, as we added
the UserSelectionScope property to it. For content types, copy the new FieldRef into
the pnp:FieldRefs. InitiateApproval is the new column that needs to be added to the
content type. For list instances, replace the pnp:ListInstance for both Products and
Product Data to include the views, or just copy the pnp:Views section.

Like the Inspection Lead column formatting, we are limitated in adding the custom
formatting of the view to the PnP. These are the two things we need to add manually after
the PnP XML is deployed.

See the Chapter 3 folder of GitHub repository for the final ProvisioningWorkplace.
xml at this stage.

105

CHAPTER 3 FORMS AND FORMATTING

Project Development Review

Let’s do a quick review of where we're at in terms of developing a modern workplace for
Cloudhadi. Each chapter is like a sprint for us where we develop a functionality along
with the learning process.

We already provisioned the basic items in the last chapter. In this chapter, we
developed the form for Product Data documents. Users can now upload documents to
the Product Data library and set their properties. The mandatory column validation is in
place now. The Inspection Lead column will not be shown if inspection isn’t required.
The Product Lead and Inspection Lead columns are now restricted to the Product Lead
group. Product executives can’t select a random person for approval.

The default view is also set up with the columns and desired order. The Initiate
Approval button is now available and it can be modified later to invoke the approval
flow. The documents that are past their due date will be highlighted in the view.

In the product list, we set up the view with a custom image card when you hover over
the product status. We Will develop the product list form in the next chapter using Power

Apps.

Summary

In this chapter, we started learning about SharePoint forms and views. You learned about
how a default SharePoint form can be used for validating and saving data to a SharePoint
library. You learned how to use a conditional formula to show and hide a column based
on another. We had a look at the advantages and disadvantages of using an OOB form.
We also went over different options for customizing columns and views using JSON
formatting without having to update the underlying data. You learned about conditional
formatting, the creation of rules, and how to edit the formatting in advanced mode. We
looked at how to set a hover event on a list column and display an image. In addition to
what we have discussed so far, there are recent developments in the JSON formatting
space. You can customize the list and library forms look and feel with the help of JSON
formatting. This brings in a lot of flexibility while developing a list or library form. You
might not need to use PowerApps for most of the scenarios. You can achieve most of the
requirements using JSON configured OOB forms. I could not cover it in this chapter as

106

CHAPTER 3 FORMS AND FORMATTING

the chapter was written well before this new capability got introduced. To learn more
about configuring the form with JSON, refer to Microsoft documentation at https://
docs.microsoft.com/en-us/sharepoint/dev/declarative-customization/list-
form-configuration. Also, I added some of the JSON list form example samples in the
Chapter 3 folder of the GitHub repository

In the next chapter, we'll begin our custom forms development. The chapter will be
all about Power Apps form development. You'll learn about the Power Platform and how
it can be integrated with SharePoint Online to achieve various business needs. In the
process, we'll build a custom Power Apps form for the product list.

107

https://docs.microsoft.com/en-us/sharepoint/dev/declarative-customization/list-form-­configuration
https://docs.microsoft.com/en-us/sharepoint/dev/declarative-customization/list-form-­configuration
https://docs.microsoft.com/en-us/sharepoint/dev/declarative-customization/list-form-­configuration

CHAPTER 4

Power Apps

In the last chapter, we reviewed SharePoint forms and how to validate and format
columns. You learned a few custom solutions for using column formatting and viewed
formatting with the help of JSON. In this chapter, we will look at one of the most modern
solutions for customizing your list or library forms: Power Apps. You don’t have to do
any extensive coding when using this software.

Power Apps is a low-code app solution that can satisfy business requirements in a
quick and efficient manner. You can connect to your business data using Power Apps.
For our purposes, we'll be using SharePoint Online as the data source, but there are
various other data sources that Power Apps can interact with as well.

We'll start learning about Power Apps by becoming familiar with the canvas- and
model-driven apps. We'll then create a stand-alone canvas app for adding, editing, and
deleting products from the Cloudhadi products list. You'll learn how to make the app
responsive to creating forms that automatically adapt to any type of screen, such as that
of a mobile device.

In addition to this, we’ll customize the new and edited forms of our Products list for
Cloudhadi. By the end of this chapter, you'll be familiar with creating a canvas app in
Power Apps, configuring the user interface, and implementing the business logic. You'll
learn about different components, properties, and integrations of Power App forms with
SharePoint Online lists.

Canvas and Model-Driven Apps

Power Apps developers can build either canvas or model-driven applications. Canvas
apps provide you with a blank canvas onto which you can drag and drop components to
design a user interface, which you can apply formatting to complete. You can connect to
a data source like SharePoint. After that, you can apply field and data logic, and preview
and publish the app. Canvas apps can integrate with more than 200 data sources out of

109
© Harinarayanan V P 2021

Harinarayanan V P, Building the Modern Workplace with SharePoint Online,
https://doi.org/10.1007/978-1-4842-6945-9_4

https://doi.org/10.1007/978-1-4842-6945-9_4#DOI

CHAPTER 4 POWER APPS

the box (OOB). By design, canvas apps are not responsive. They come programmed with
a portrait or landscape orientation. We can make these apps responsive by setting up
some properties.

Model-driven apps are based on underlying data, specifically the data stored in
Microsoft Dataverse. Dataverse is a cloud-based storage space. Model-driven apps
follow a data-first approach, and much of the layout is determined for you and largely
designated by the components you add. When developing canvas apps, on the other
hand, you have complete control over the app layout.

Model-driven apps are usually used for platforms like Dynamics 365 to develop end-
to-end business solutions by making use of Dataverse. For development in SharePoint,
we use canvas apps and they are therefore the focus of this book.

Getting Started with Canvas Apps

Let’s get familiar with the Power Apps Studio and start creating an app. First, go to
https://make.powerapps.com/ and follow the steps to sign up for Power Apps. Since
you already got the Microsoft 365 developer trial license, you don’t need to now acquire
a separate license for Power Apps. Just follow the steps for signing up, and a window, like
the one in Figure 4-1, will open.

0 teon Build business apps, fast
B oapps Create apps that connect to your data and work across web and mobile. Leam about Power Apps
4 Crease Start from data
| Data b
= EEl -
4 Chatbots w
SharePoint Excol Online SOL Server Common Other data
o AR Data Service sources
3 solution Mukn your own 1pp

& S e

Canvas app from blank Model-driven app from blank Portal from blank

Figure 4-1. Power Apps designer

110

https://make.powerapps.com/

CHAPTER 4 POWER APPS

Select SharePoint as your data source. As shown in Figure 4-2, you'll be taken to a
page where you can enter the SharePoint site URL and select the connection, which will
consist of your SharePoint credentials. In the next window, select Products and click

Connect on the bottom of the screen.

Connections

o O Refresh <—| httpsy//cloudhadi sharepoint. comysites/Workplace

Open G

Account x , Branch Information
oo

- 5
Connections ©F Sh
. harivp20@doudhadionmicrosoft.c
Flows om
T Granad GRMETGRare
:

Figure 4-2. Connecting to the data source

After clicking Connect, it will take few seconds to load the canvas. You can skip the
dialog box that appears. Once the canvas loads, you will be able to see your product list
items.

In the screenshot in Figure 4-3, you can see all the product items. Observe that there
are three screens available in the tree view on the left-hand side. In BrowseScreenl,
you'll see the list of products. In DetailScreenl, you'll see THE details of the selected
products; if you use EditScreenl, you can see the same details but in Edit mode. Preview
App is selected in in the top right-hand corner of the screen and IS also available by
pressing F5 on your keyboard.

o oY
b 2 K\?/R i

|

BeowseSoreen

Ie Sereens Compenents Products

Breakfast products

WheetEat > e povion i

Food

Breakfast products
BananaApple
Food >

Chocolates
Chocolate CH
Food >

Figure 4-3. Products home screen

111

CHAPTER 4 POWER APPS

The app will load in preview form. You can conduct several operations here. Click
each item to view its details. On the view page, there will be a pencil icon with which
you can edit any of the field values. You'll also be given a delete icon to delete an item
if required. Use the vertical scrollbar to view and edit more fields. Once you're finished
editing, you can use the tick mark on the top to save your changes to SharePoint. If you
go back to the home screen, you can use the + icon to add a new item, enter details, and
save the changes like you did for the Edit Screen.

In addition to this, you can search, sort, and refresh items from the home screen. If
you add more products using the app, you'll have more items to play around with.

Now let’s go back to the designer, save the current app, and see how each
functionality works. After that, we can add some more logic to the form. Note that, by
designer I mean the canvas where you work with the controls.

Let’s save the current form and then make changes to it. Click File, which is located
on the top left side menu. The Settings page for the app will open. Provide a Name, Icon,
Background Color, and Description for the app as highlighted in Figure 4-4.

<
Settings
New
Open B c\r.»:;‘c .t'u: mr'u‘ ican, and description
Products App
o t oo
Connections =F ki N ._ 3 Backa B3 &
s EEEEN - > -
o —
B =l EEEE < <> -~
soe 1] > < m

Save as o a
Des

Share
The app which manages the product list informaticn
Collections

Media

Variables

Close

Figure 4-4. App settings

You can also update the other settings such as Screen Size and Advanced Settings
and then click Save. Once saved, you can use the back arrow to go back to the designer.
You can save your changes to the canvas at any time during development using the
keyboard shortcuts Ctrl+S.

112

CHAPTER 4 POWER APPS

Understanding the Canvas Better

Let’s take a deep look at the screens and their properties before implementing some
business logic. As I mentioned earlier, we have three screens. The main one shows the
list of products; the other two are for the display and editing of forms.

So, where does the data for this form come from? We connected to the product list
while creating the app itself. You can see the Products data connection if you click the
Data icon on the left side of the designer, as shown in Figure 4-5.

v = fr+ wuhite
= |Data x
0 seoeh Products O I+
+ N Inyour app Search items
Products .
@ SharePaint - harivp20@cloudhadi o Breakfast products
WheetEat
% > Entities Food >
" > Connectors
Breakfast products
BananaApple >
Food
Chocolates
Chocolate CH >

Food

Figure 4-5. Data source

Go back to the tree view by clicking the Tree View icon on the top of the screen as
shown in Figure 4-6.

vl fx-; ThisTtes, Title
~ L
X

Products O+

’- ——Searchriterns

'érea Kfast pmduds ; i
WheetEat s
Food

Breakfast products
BananaApple >
& Subrel Food

Figure 4-6. Properties and expressions

113

CHAPTER 4 POWER APPS

From the tree view, click any of the Products; Breakfast Products, for example.

As shown in Figure 4-7, in the Text pane on the right-hand side of the screen, you can
see a number of properties for the selected field, which you can configure according to
your needs.

Tree view *
Fstasrowt

Soreens Components

lo

Breakfast products .
‘WheetEat I
e 9.

Breakfast products
BananaApple
Foad b

Figure 4-7. Icon properties

On the top of the pane, you can see that the Text value is set to the ThisItem.Title
expression. Change it to ThisItem. 'Product Name', as our focus is on Product Name
field. Similarly, if you open the drop-down, you can see number of other properties you
can configure.

Each field value displayed on the screen is set to an expression. If you click Food,
for example, you can see it is set to ThisItem. 'Product Type'.Value, asitisa choice
field. The properties you set for each field will be applicable to all the items. For example,
if you set Red color font for the title, it will be applied to all the cards, meaning all the
items. Each item is displayed as a card on the canvas.

If you click the > sign on the right side of any card, you can view an OnSelect
property in the Advanced section of the Text pane, which is set to the expression Select
(Parent"). This will help you redirect the item to specific item details screen. You can
also set a different icon, tool tip, or any other properties. You can view or modify the
properties in the drop-down at the top as well.

You can customize the other two screens and properties in a similar way. Click
each screen to have a look at the properties and play around with them. In the Edit and
Details Screens, the properties you configure for a field will be applicable only to that
field. This is because these screens represent a single card, whereas the Browse Screen
represents a bunch of cards.

If you notice, in between the Tree View and data icons, there is a + button. You can
insert controls like Label, Button, and Date Picker using that screen. Below the Home
menu at the top, there is a New Screen option, which you can use to create a new screen

114

CHAPTER 4 POWER APPS

and add to the app. There are few other options, too, such as the Theme option, which
you can use to set a different theme.

If you select BrowseGalleryl, you can see and modify the properties of the gallery on
the right, such as replacing the layout with a different one. See Figure 4-8.

= Tree view .
BeoworGaliery]

le Sereens Companenss Products
- [
[[@reak!ast products
WheetEat
Foad b el
Breakfast products
Bananapple List
Food ? —
Chocolates — =
Chocolate CH e ek
Food >
— _-— -
— a— o
— —_— —

Figure 4-8. Browsing, sorting, and filtering the gallery layout

In Figure 4-8, you can also see how the sorting and filter expression is given on the
top:

SortByColumns (Filter([@Products], StartsWith(Title, TextSearchBox1.Text)),
"Title", If(SortDescendingl, Descending, Ascending))

This expression allows you to sort the products in ascending order based on the
Title. The last two sections denote the sorting part in Field, Order. You can sort any
other field in either ascending or descending order. I updated it to sort by the Product
Name. To do that, I just replaced Title with Product Name. By default, the order is
ascending; by clicking the Sort icon, the default order will be reversed to descending.

Filter denotes the search. Whenever you search for a keyword, the screen will
display all the products cards with Title starts with the keyword. For example, if you
search for “Break,” the first two products will be displayed on the screen. If you replace
StartsWith with EndsWith, the products whose Title ending with the keyword will be
displayed.

This section has been focused on giving you an overall idea of screens, property
configurations, and so on. Next, let’s look at some customizations for the Edit and Details
screens with respect to our Cloudhadi requirements.

115

CHAPTER 4 POWER APPS

Multiple Edit Screens

We created the app by connecting to the data source and all the fields got populated by
default. If you go to the edit screen, you'll notice there is a vertical scrollbar. Let’s create
two different screens and split the columns into screens for a better user experience.

So, we have an edit screen and we need to create another one and link them together.
To start, click the ... icon to the right of EditScreen1 and then Duplicate Screen to create a
copy of the screen, as shown in Figure 4-9.

= Tree view X

I . Screens Components >< PI'OdUCtS \/
A search
+ Product Name
B 4
[BrowseScreent ‘WheetEat |
[Detailscreent
= Product Type
"B [EditScreent u yp
i I Move up ‘ Food
DY Dupticate screen
@ Delete Materials Used
b Rename ‘Wheat. Cashew, Almonds |
[Collapse all
) Expand all Inspection Completed Date

|12¢’23f2020

Figure 4-9. Duplicating a screen

A new EditScreenl_1 screen will now be created.

Under EditScreenl, expand EditForm1. Let’s keep Product Name, Product Type,
Materials Used, and Product Status on the screen by selecting all other data cards except
these and clicking Delete. See Figure 4-10. To select multiple data cards, press Ctrl on
your keyboard and click each card.

116

CHAPTER 4 POWER APPS

= Tree view X
I e Screens Components Products
£ search | M At g
n]
P app
Product Type
B8 [BrowseScreen1
O Detailscreent : | Food
=]
< [Editscreen?
" B edtrom : Materials Used
> [E Product Name_DataCard2 |Wheat, Cashew, Almonds |
> [E] Product Type_DataCard2 t
> [E] Materials Used DataCard2 I Inspection Completed Date
> E Inspection Completed Date_Da *** |1 2/23/2020
> [E] Manufactured Date_DataCard2 ==
> E bpiry Date DataCard2 | o | Manufactured Date a
> D ProcuctFeatues Daaca o |1z;1 5/2020
» [E Product Status_DataCard; -
B collapse all -
[blapphames & bpandal Explry Date
$3 Icondccepti ’ —
- |12i1 5/2022
B2 lonCancell
& RectQuickactionBar3 Product Features a
[EditScreent_1 4
Breakfast food
O O
Dradiirt Cratie E

Figure 4-10. Deleting data cards

Now, again under EditForm1_1, repeat the same steps, but this time delete the
Product Name, Product Type, Materials Used, and Product Status cards. Keep the others.
We now have four fields in EditScreen1 and the remaining four in EditScreenl_1.

Let’s give a heading to both forms. Select EditForm1 using the top circle on the line
and drag it little below to give a space for a header text. See Figure 4-11.

117

CHAPTER 4 POWER APPS

freeview . X Products Vv
I@ Screens Components

2 search
R T

= [Editscreent

5 edarorm

7 @ 1
=1 =] Product Name_DataCard2

Product Name

[strvisibles
¢ @ Erorhessage3 WheetEat
=] DataCardValued
[# DataCardeyd Product Type
[Product Type_DataCard2
Food
=] Materials Used_DataCard2

=] Product Status_DataCard?

Materials Used
B blappiame3

92 Konaccept!

Wheat, Cashew, Almonds

92 tconCancell

A ReciuickactionBar3 Product Status

O Editscreent_1

[edtForm1_1 New
E1 inspection Completed Date_DataCafr

EJ mManufactured Date_DataCard2_1

EJ Expiry Date_DataCard2_1
[E] Product Features DataCard2_1
[wblapphames_1

22 konAccept_1

92 konCancel1 1

Figure 4-11. Dragging EditForml

Click the + icon to insert a text label, as shown in Figure 4-12. A label that says Text
will be created. Drag it to fit into the Edit Screen space. Type in “Product Info.” You can

configure the style using the right hand side properties window as you wish. The styling I
applied is selected in the figure.

118

CHAPTER 4 POWER APPS

Product Info ? Frocecs i

Product Name

|WheetEat ‘

et
Rectangle Product Type - o
I Dt ke 3
05 Bution | Food L —rem : =
Dl v

Materials Used

|Wheat, Cashew, Almonds

Product Status

soe
s

Al Builder | Mew iy

Mixed Rieality

Figure 4-12. Inserting and styling a header text

Now go back to the tree view and repeat the same steps for EditScreen1_1. Name the
heading “Quality Info,” and then click File and save. Give some type of version note, such
as “Multiple screens added.” You don’t have to publish now. If you click See All Versions,
you can see all the versions and restore an older one if required.

Note You can always save the changes by pressing the Ctrl+S shortcuts. This
will create a new version. However, | recommend you save the major changes with
a version note. This will help you to identify the right version in case you need to
restore it.

Now we need to link both screens. Click the back arrow to return to the canvas. Let’s
add an arrow icon on EditScreen1 to navigate to EditScreenl_1. Go to EditScreenl, select
EditForm1, and free up the extra space below Product Status using the drag feature. Use
the + icon, scroll down and click to expand Shapes. Then select the Next arrow. The Next
arrow component will be inserted in the screen. Drag it to the bottom of EditForm1. See
Figure 4-13.

119

CHAPTER 4 POWER APPS

l Jr~ Mavigate{EditScreeni_1) ‘ LV

X Products visible o @D
thon 74

Product Info

* Product Name

I |

* Product Type

Border
Fird Berms ~
aliled calar

Materials Used

* Product Status

Tooltip Go to Guality Info
Find iterns ~
s s

Figure 4-13. Setting the navigation and style for the Next arrow

As selected in Figure 4-13, you can set the OnSelect property of the arrow
icon. Select the Next arrow, OnSelect property will be visible on top to edit. Set the value
to Navigate(EditScreen1 1) This ensures that by clicking the icon, you will get to the
next screen. Go to the properties window on the right and set the styles, as selected in
Figure 4-13.

Let’s hide the submit icon (tick) from the top, as we don’t want to submit the form
from the first Edit Screen. We should submit it from the Quality Info screen after filling in
the details for both screens. Select the submit icon and then set the Visible toggle to off.
See Figure 4-14.

Jev false AV

lconAccept!
Properties Advanced

" Check hd

* Products fouten ;

Display made Edit -

Product Info

Visible off (@)

Figure 4-14. Hiding the tick icon from EditForml

We'll take similar steps for the Quality Info screen, which is EditForm1_1. Use the
back arrow and set OnSelect to Navigate(EditScreen1). Set similar styles for this

screemn.

120

CHAPTER 4 POWER APPS

Press F5 to preview the app. Try navigating between the screens to make sure
everything is working as expected. Then, close the preview and save the changes with a
version note. Let’s have a look at validation next.

Validation

We now have two screens for the Edit Form of a product. Let’s include some validations.
On the Product Info screen, except Materials Used, the other three fields should be
mandatory. Also, the validation should occur within Product Info screen when you click
the Next arrow not on submit on the Quality Info screen.

As shown in Figure 4-15, select Product Name_DataCard2 and go to the Advanced
tab. Click Unlock to Change Properties and set the Required property to True.

CARD >

Product Mame_DataCard2

Properties
X Products

Product Info

|* Product Name

“ProductName™

[WheetEal

Product Type product Hame®

[

. true
Materials Used -

[Wheat, cashew, Aimonds | e

Figure 4-15. Making a field mandatory

The * icon will now be visible to the left of Product Name. Repeat the same steps for
the Product Type and Product Status fields.

We can create a new product to test this. But before we do that, we need to ensure
that users cannot go to the next screen unless all mandatory fields are filled in. Click the
arrow and select DisplayMode property from the top and set it to If(EditForm1.Valid,
DisplayMode.Edit, Disabled). See Figure 4-16.

121

CHAPTER 4 POWER APPS

[P —

DisplayMode v o= ﬁr v

If({EditForml.Valid, Edit, Disabled)

= Tree view *

Screens Components
le —

L search

B app
8 [srowsescreent
2 Rectanglel
A 92 searchicont
it =B TextSearchBoxl

B2 Iconewltem]
22 lconSortUpDowni
22 lconRefreshl
[LblappHamel
2 RectQuickActionBar
> BB BrowseGalleryl
> [Detailscreent
[Editscreent
2 Amowl
[Labelt
» [EditFarm?
[LblappName3

92 lconAccept]

Figure 4-16. Screen validation

Product Info

* Product Name

WheetEat

* Product Type

‘ Food

Materials Used

‘Wheat. Cashew, Almonds |

* Product Status

=

This expression If (EditForm1.Valid, DisplayMode.Edit, Disabled) checks if
edit form is valid, enabling the arrow if if it is and disabling it if it isn’t.

Click the Browse Screen from the Tree view, press F5, and try to create a new product

using + button. Unless you enter values for Product Name, Product Type, and Product

Status, the arrow will be disabled. See Figure 4-17.

122

CHAPTER 4 POWER APPS

Product Info

* Product Name

I

Product Type

Find items

Materials Used

* Product Status

Find items

Figure 4-17. Product Info preview for multiple screens

Now go to EditScreenl_1 for Quality Info and make all three date fields mandatory
like we did for Product Info.

We can configure the display mode property of the tick button (submit) in the same
way we did for the arrow in the Product Info screen. But let’s set the visibility here, as
the tick button will not provide a good user experience with the disabled effect. Set the
Visible property to If(EditForm1 1.Valid, true, false). This ensures that the submit
option will be visible only if the form is valid. See Figure 4-18.

123

CHAPTER 4 POWER APPS

= Tree view X

Sereens Compenents

Quality Info - ot

i * Inspection Completed Date - :
o Artioss
* [1272312020 E T s
B
* Manufactured Date add Carcet ™
[1211512020 ! o I
ek Search Far
* Expiry Date
|tznsx2022 ! I @] B
t — sk
Product Features
= =] +
O s . |Breai‘fest food | 8 ;
e :o— oo
= = = .

Figure 4-18. Setting the visibility for submit

If you'd like to set a different icon for submit, you can do so using the Properties
pane, as selected in Figure 4-18.

We need to set up the home screen, navigation, and submit functions before we can
use the form to create or edit data. We can also set up a display form.

Connecting the Screens

Go to BrowseScreen1 using the Tree view. For navigating between the screens,

always use the Tree view. The Tree view is shown in Figure 4-8. There are three fields

set for each data card. Update the properties for all three fields. Set the text property of
the three fields to This. 'ProductName'.Value, This. 'ProductStatus.Value, and

This. 'ProductType'.Value respectively. This will highlight these values on the home
screen for each product. Also drag the data card to reduce its size, keeping some space
on the right side. Drag the view icon from right to left to get space for another icon. Then,
go to DetailScreenl, select the pencil icon, and copy and paste it to the right side of the
view icon in one of the items in BrowseScreenl. Select it and change the color to blue. It
will appear for all datacards now. The form will look like Figure 4-19.

124

CHAPTER 4 POWER APPS

vl = fXV set(varProductsInfo, Defaults{Products));NewForm{EditForml);Set(varMode, Edit);Navigate(EditScreenl)

= Format text = Remove formatting

Products O e+ 9
Search items

BananaApple

Completed > /

Food

Chocolate CH

In production > f

Food

Kiwi puddings

New > /

Food

Orange Puds

Completed > /

Food

Peach Jam

New > /

Food

Figure 4-19. Browse Screen Edit icon and OnSelect for New icon

Select the + icon on the top right as highlighted in Figure 4-19. Put the expression
Set(varProductsInfo, Defaults(Products));NewForm(EditForm1);Set(varMode,
FormMode.Edit);Navigate(EditScreen1) intothe OnSelect property.
Set(varProductsInfo, Defaults(Products)) creates a variable and assigns the default
data source value to it. NewForm(EditForm1) sets the EditForm in New Form mode.
We're also setting the varMode variable to edit, which will be required at a later stage to
differentiate with view mode. Finally, we're setting the navigation to the first Edit Screen,
which is EditScreen1. Now when you click the icon, the app will open EditScreenl.

Repeat these steps for editing and viewing icons. For the edit icon, set
varProductsInfo to ThisIteminstead of to Defaults(Products). This ensures that the
current item is passed to Edit Form. The final expression will be as follows:

Set(varProductsInfo, ThisItem);Set(varMode, FormMode.Edit);
Navigate(EditScreen1)

125

CHAPTER 4 POWER APPS

For the view icon, the only difference is the variable varMode should be set to
FormMode.View. The expression is Set(varProductsInfo, ThisItem);Set(varMode,
FormMode.View) ;Navigate(EditScreen1).

Now, we have all three icons set up to redirect to the right form in the right mode.
Now go to EditScreenl » EditForm1 and set DefaultMode to varMode and set Item value
to varProductsInfo. Setting the item property ensures that the form updates refer to the
same record. The mode helps to use the same form for the view data when view mode is
passed. See Figure 4-20.

: , Edtform?
| Soreens Comporents * Products 5

Product Info

* Product Name

| | varade

* Product Type
I

varbrosuctsIngs
|

Find items DEsiSN

L

| Materials Used

* Praduct Status

Figure 4-20. Setting the Item property and mode

Repeat the same steps for EditScreenl_1 » EditForm1_1. In addition, select the
accept icon (tick mark) and set the OnSelect property as follows:

Patch(Products, varProductsInfo, EditFormi.Updates, EditFormi 1.Updates);
If(
IsEmpty(Errors(Products)), Notify("Products updated",
NotificationType.Success); Navigate(BrowseScreeni),
Notify(First(Errors(Products)).Message, NotificationType.Error)

The patch function will create or modify the product item for you. It accepts the data
source, Products, as a parameter. The second parameter is the varProductsInfo, which
references the items from each screen. In addition, the updates to both the forms are
passed as parameters. If the patch is successful, the app will send a success message, and

if it fails, it will send an error notification.

126

CHAPTER 4 POWER APPS

Also, update the visible property of the tick icon to If(EditForm1_1.Valid &&
varMode = FormMode.Edit, true, false). This ensures that the icon will not be visible
to view forms. Also, the quality info details (EditForm1_1) should be valid for the icon to
be displayed. We have already hidden the icon from EditForm]1.

Figure 4-21 shows how to set OnSelect and visible properties to the tick icon.

S| PatchiProducts, varfroductsinfo, Editformt.Updates, EditFormi_1.Updates); | |

IsEmpty(Errors(Products)), Netify("Products updated”, Success); Mavigate(BrowseScreenl),
Notify(First(Errors(Products)).Message, Error)

¥ Formattest B Remove formatting

isibie

Quality Info 1f{EditForal_1.valid B& varMode = FormMode.fdit, true, false)

* Inspection Completed Date

Figure 4-21. Patch function

Note You can delete DetailScreen1 since we’re not using it. Also, you can add a
delete function for BrowseScreen1. I'll leave it for you to explore.

Save the changes and try to create, edit, and validate the items using the app. But
before trying to create items, make sure that the Title column in the product list in
SharePoint is set to nonmandatory. Otherwise, you won'’t be able to create items, as we
don’t have a title for our form. Once everything looks good, you can publish the form.
Click File, save the changes, and then click Publish and then Publish This Version on the
pop-up, as in Figure 4-22.

127

CHAPTER 4 POWER APPS

&
ts App

Produc

Al changes are saved
m Seeat o

Publish sl
Publishing will make this version available to everyone who has Can use
PRrmMIssions.

i i lishing
H Products App

Description
The app which manages the product list information

Publish this version Edit details

Figure 4-22. Publishing the App

Once the App is published, a Share Products App button will become available. Click
it to share the App with the users you choose. Once you close the Share Products App
window, you'll be able to see the App details. A web link will be available, which you can
use to create or edit products to SharePoint List from Power Apps. See Figure 4-23.

Y s oo m |

§ A peopie a% Uers and Lo-cwners 1o your app. Make sun your data connections have been shared with af wsers

Select or add 2 user 1 set their permissions

Figure 4-23. App details

You might have noticed that the Products App is mobile friendly. But if you're
looking at the App on a desktop browser, it will appear on the center of the page. The
current user interface is suitable for a mobile device. We need to make the App suitable
for desktop and tablet devices as well. We'll see how to do that in the next section.

128

CHAPTER 4 POWER APPS

You can always come back to the App screen by going to Apps on the make.
powerapps.com page.

If you install Power Apps on your mobile or tablet and log in with your Microsoft 365
credentials, you can insert, edit, and delete data from the Products list on your device.
But, as I mentioned earlier, the App will not be responsive by design. We'll take a look at
how to make it responsive in the next section.

Making a Power App Responsive

Let’s start by going to make . powerapps.com and clicking Apps. As shown in Figure 4-24,
select Products App and click the Edit icon on the context menu or on the top toolbar.
This will open the canvas for you.

= = New app |,-," Edit }:;- Play 1= Share '— Exportpackage U AddtoTeams [Monitor |2 Analytics (preview) (52 Settings [i] Delete (D) Detads

far Home
Apps
@ Learn 1
Apps Companent licranies (preview)
+ Create 2 B Name Modified Owner Type
® os B e o
e > I
Cio B rocdTrackanagp
taflows
LIS n Opportunity Management
Export 1o data lake n Cisiiiog i
Connections
E test

Custorn Connectors
§ Solution Health Hub

Gateways
o Flows =

Figure 4-24. Editing the published app
Click File from the top left of the canvas and then click Settings in the left navigation
bar, as shown in Figure 4-25. Select Screen Size + Orientation. Set the Orientation to

Portrait mode, turn off Scale to Fit, and click Apply. This ensures that the app won'’t scale
anymore but will instead fill the screen.

129

CHAPTER 4 POWER APPS

< Settings

B o i Screen size + orientation ®

""" Change the name, icon, and description

Open Screen size + orentation
= Change the aspect ratic and orientation

Account

oy | Advanced set
£ Change the preview & experimental

Connections femitre seqtings

"
Flows ©F
r

Save

Save as

640 x 1136

Share Cf

QOrientation
Collections O Landscape
Al @ Portrait
Variables e

Scale to fit @
Close

&) O

@)°

Figure 4-25. Turning off Scale to Fit

Now, click the back arrow to return to the canvas. To preview the screen, click the
preview button or F5 from BrowseScreenl. You can see that the screen now fits the
desktop view. Click any of the items using the right arrow. You will be redirected to the
Details Screen. In the Details Screen, you can see that the form is floating on the left side
of the screen and there’s a lot of empty space on the right side. See Figure 4-26.

130

CHAPTER 4 POWER APPS

X Products

Product Info

Product Name

BananaApple

Product Type

Food

Materials Used

Banana, Apple, Cashew, Almonds
Product Status

Completed

O,

Figure 4-26. View item desktop appearance

Let’s close the preview and go back to the canvas. Go to EditScreen1 » EditForm1.
Update the Columns to 4. This will set it up so that there are four columns in one row.

See Figure 4-27.

= Treeview x > Products

Product Info - Procten

Prod... Prod... Mate.., Prod...

o S vl
Banan: Food Banani Com... Gotns . -

& Layout Versl
- @D

Figure 4-27. Updating the number of columns in EditForm1

If you're also viewing this on a mobile screen, you'll see four columns in one row,
which will look weird. You can preview the app, minimize the browser, and try to
simulate mobile and tablet views.

To overcome this, we need to make sure that four columns per row only appear in
the desktop view and that there is only one column per row in the mobile view. Similarly,
there should be only two columns per row in the vertical view on a tablet and three for
the horizontal view. The screen size will be 1 for the mobile view; 4 for the desktop view;
and 2 and 3, respectively, for the vertical and horizontal views on a tablet.

131

CHAPTER 4 POWER APPS

By default, the size break points for the width in the app are 1 (small), which ranges
from 0 to 1200; 2 (medium), ranging from 1200 to 1800; and 3 (large), ranging from
1800 to 2400. 2400 and above is considered 4 (extra large). If you click App from Tree
view, you can see the size break points defined in the properties window on the right.
See Figure 4-28.

= Treeview x X Products .
_ sereens Components 408

|e F==

Product Info

acmon

Prod... Prod... Mate... Prod...

Banani Food Banan: Com...

Figure 4-28. Predefined size break points

If we divide the screen width by size, it will be a perfect width for each data card
column. The data cards will become responsive.

You can select all the data cards in the form at the same time by clicking your mouse
and pressing the Ctrl key. If you select the Width property on the top toolbar, you'll
see that the value is 640. Replace it with EditScreen1.Width/ EditScreen1.Size. See
Figure 4-29.

132

CHAPTER 4 POWER APPS

| Width v o= f:\'w EditScreenl. Width/ EditScreenl.Size

= Tree view x
l = Screens Components
O search
T P Product Info
B8 O BeowseScreen1 C’ -
O Detailsereen | Product Name
=] o
[Editscreent 1
B 2 hrour | BananaApple
& Labell ¢ : &
B eatrorm | Product Type
&
[Product Name_DataCard2 ==+ FOOd
> EJ Product Type_DataCard2 ==+ i
Y [2]
= ial ataCa] .
Hols e Butart | Materials Used
» E] Product Status_DatsCard2 *=* ¢
/e | Banana, Apple, Cashew, Almonds
%2 lconAccept] ¢ o o
$2 IconCancelt Product Status
A RectGuikActionBar3 ¢
, [bseresnit | CompletedMore

Figure 4-29. Setting the width of the data cards in EditForml

Doing this will set the width of all columns based on screen size to simulate desktop,
mobile, and tablet screens. The number of columns will also get adjusted based on the
screen size. Repeat the same steps for setting width for EditForm1_1. Set columns to 4
and set thewidth to EditScreen1_1.Width/ EditScreeni_1.Size. Now both of the
screens are responsive for Details Screen. As we use the same screens for Edit and New,
Edit and New Screens are also responsive now.

For EditScreenl_1, for the icon submit tick, update property X to the screen width of
90. This will ensure the icon floats to the left. See Figure 4-30.

133

CHAPTER 4 POWER APPS

= 5
X Pf’DdUCtS o \/ lconAccept1_1
Pripartios Advanced

* Inspection Completed Date

EditScreenl_1.Width-98

| 12/23/2020

Quality Info
* Manufactured Date

@

|12f1?f2020

* Expiry Date

|12!1 5/2022

Product Features

Breakfast food

©

Figure 4-30. Setting the responsiveness for the icon tick

Go ahead and preview the App. The New Edit and Details forms are now responsive
in both screens. Figure 4-31 shows the second Edit Screen in desktop view.

* irpection Completed Duse: * Maractured Dae * Expiry Dute Product Features

12/z020 ' 110172000 I 121152002 . [Bevaktast foocts

Figure 4-31. Responsive forms

Note For reference, you can download the final app package from Chapter 4
folder of the GitHub repository at https://github.com/Apress/building-
modern-workplace-sharepoint-online/tree/13fe6c9973a5f3c10664
b16a53a67atd31a0e1f/Chapter’%204. You can import the package by going to
http://make.powerapps.com, then Apps » Import Canvas App.

134

https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/13fe6c9973a5f3c1066f4b16a53a67afd31a0e1f/Chapter 4
https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/13fe6c9973a5f3c1066f4b16a53a67afd31a0e1f/Chapter 4
https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/13fe6c9973a5f3c1066f4b16a53a67afd31a0e1f/Chapter 4
http://make.powerapps.com

CHAPTER 4 POWER APPS

Power Apps List Forms

We now have the Products App that works across all devices. Next, let’s create a form that
can be used within a SharePoint list as new and edit form. How can we achieve that?

If you go to the product list, you can see Power Apps option in the context menu.
Click it and then Customize Forms, as shown in Figure 4-32.

Workplace

Home Documents Pages Site contents Edit

W

FH Editin grid view 1= Share K3l Exportto Exce| (¥ Power Apps ~ P& Automate

Create an app

Products See all apps
Customize forms |
[Title Product e Materials Used
Chocolates Chocolate CH Food Sugar, Cocoa
Breakfast products WheetEat Food Wheat, Cashew,
Almonds
Breakfast products BananaApple Food Banana, Apple, Cashew,

Almonds

Figure 4-32. Customizing list forms in Power Apps

This will take you to Power Apps. Delete everything in the designer and start fresh.
Click Choose the Fields ... and add the fields to the form. Select all the fields that we
previously used in the app. By clicking Add once, all the fields will be selected. See
Figure 4-33.

135

CHAPTER 4 POWER APPS

= Tree view = Filds
Sereens Components oy ; 5
e ==
+ i Choose a field
B app =
8 -
a

= § o

Figure 4-33. Adding fields to the form

The fields will be populated inside the form. Select each data card that needs to be

mandatory and set Required to true. Figure 4-34 shows the Product Name data card as
an example.

Figure 4-34. Setting the properties of data cards

Let’s publish this form to SharePoint. Go to File and save the changes with a version
note like you did for the app. You'll see a Publish to SharePoint button. Click it and a
pop-up will open telling you that publishing the form will make it visible to everyone
who uses the SharePoint list. Click Publish to SharePoint again and all of your changes
will be published. Go back to the product list and refresh. Then go to New » Item. The
Power Apps form will open instead of the SharePoint OOB form. Select an item and click
Edit to view the edited form in Power Apps. Basically, the SharePoint OOB form has been
replaced with the Power Apps form. See Figure 4-35.

136

CHAPTER 4 POWER APPS

m Workplace
i

Figure 4-35. SharePoint form using Power Apps

You can validate and save the data using this form. We can customize the form with
different logics and user interfaces in Power Apps and publish it to SharePoint. We can
implement multiple screens, tabs, and so on. Let’s split the columns into two sections
like we did for the app, but instead of multiple screens, we’ll use the tabbed form. Next,
let’s get familiar with creating these forms.

Note If you'd prefer to remove the Power Apps form and revert the list forms to
SharePoint, go to List Settings » Form settings. Select Use the Default SharePoint
Form.

Tabbed Forms

We're going to create two tabs: Product Info and Quality Info. While creating the multiple
screen design for the App, we set up two screens and split the column so that it could be
viewed in them. In the tabbed design, we’ll use a single screen and set the visibility of
columns based on tab.

To start, go to Tree View » FormScreenl » SharePointForm1. Drag
SharePointForm1 to the bottom of the screen and add two buttons to the top using the
+icon. Name the buttons “Product Info” and “Quality Info” and drag the them so that
they position properly at the top. Set the style for the Product Info button, as shown in
Figures 4-36 and 4-37.

137

CHAPTER 4 POWER APPS

= Tree view

Figure 4-37. Setting the radius for the Product Info button

Create the width for the Product Info button by setting the top-left and top-right
radius to 15 to make it look like a tab. To create the radius, search for “radius” in the
Advanced Properties section. Repeat the styling for the Quality Info button.

Now we need to show and hide the tabs based on the selection. To do this, you need
to understand the concept of variables. Mainly, there are two ways to set the variables
of a screen in Power Apps: by using Set () or by using UpdateContext({}). If you use
Set, Power Apps will create a global variable that can be used across multiple screens.
UpdateContext is used for local variables, and can’t be used for global ones. In this
scenario, we can make use of UpdateContext since we're using only one screen.

We’ll have two Boolean variables, tab1 and tab2. By selecting the Product Info tab,
we can set tabl=true and tab2=false. By selecting the Quality Info tab, we can do the
reverse. Set the visibility of each field to tab1 or tab2 based on which tab the field needs
to fit in. You don’t need to create these variables explicitly; Power Apps will create them
the first time you set the UpdateContext for the variables.

For clarity, take a look at Figure 4-38 and the explanation that follows.

138

CHAPTER 4 POWER APPS

== g cpgmma . weop o

Figure 4-38. Setting OnSelect and Fill for the tab

As shown in Figure 4-38, set the OnSelect property of the Product Info tab to Upda
teContext({tabi:true});UpdateContext({tab2:false});. This will create two local
Boolean variables tab1 and tab2 for the screen. By selecting the Product Info tab, the
tab1 variable will be set to true and the tab2 variable will be set to false.

Next, configure the Fill property to differentiate the selected tab with a background
color. I setitto If(tab1, Blue, LightBlue), which means the Product Info tab will be a
blue color when tab1 is set to true. This happens when the tab is selected. So, if selected
the tab will be blue, and if not selected it will be light blue.

Repeat these steps for the Qualify Info button by replacing tab1 with tab2 and vice versa.
OnSelect should be UpdateContext({tab1:true});UpdateContext({tab2:false}); and
Fill should be If(tab1, Blue, LightBlue).

Additionally, we need to have the Product Info button get selected by default while
the form loads. To set this, select FormScreen1 and set the OnVisible property to Update
Context({tab1:true});UpdateContext({tab2:false});. See Figure 4-39.

= Treo view

|e Soreens Components

Faod S
B T dationt

Figure 4-39. Setting the Product Info button to get selected by default on load

The next step is to set the visibility for each field. Select each data card from the left
and configure the property visible with respective tab variables. For Product Name,
Product Type, Materials Used and Product Status, set it to tab1 and for the remaining
fields, set it to tab2. Figure 4-40 shows the Product Name field as an example.

139

CHAPTER 4 POWER APPS

Figure 4-40. Setting the visibility for each field based on the tab

Note When you’re setting the visibility, fields may disappear from the canvas. If
you’d like to modify any field properties later on, you can always select the data
card from the left side to do so.

Now you can publish the form to a SharePoint list. But before you do so, check the
Variables section to see that the two variables are there, as shown in Figure 4-41.

Variables

Account

Figure 4-41. Variables in Power Apps

Once the form is published to SharePoint, go to the product list and hit Refresh. Click
New. The customized form will look like the one in Figure 4-42. You can click the tabs to
verify the changes you made in both new and edit mode.

140

CHAPTER 4 POWER APPS

B save X Cancel @ Copylink -+ b0
Product Info
* Product Name
* Product Type
tured ... Expiry Date Product Features Product Status v
Materials Used
* Product Status
v

Figure 4-42. SharePoint List: Customized Power Apps form

Summary

In this chapter, we went over creating a stand-alone canvas app in Power Apps. You
got familiar with the Power Apps designer and learned how to use various icons and
components. You learned how to create multiple screens and link them together.
We reviewed on-form validations and how to set different properties for different
components. We looked at how to publish an app and use it with different devices.

In addition to this, we took a look at how to customize a list form within SharePoint.
You learned about variables and different ways of setting them. You got familiar with how
to create tabbed forms by making use of variables and properties. In the process, we also
satisfied the requirement for the Cloudhadi project by developing a custom form and a
stand-alone app for product data operations. Now, you have experience with creating and
customizing user interface forms using Power Apps with SharePoint as a data source.

In this chapter, I focused on getting you aligned with Power Apps by stressing the
basics. We took a learning-by-doing approach. I'd suggest you explore different ways of
customizing the forms on your own, so that you can become an expert in Power Apps.

In the next chapter, we’ll move on to Power Automate. I'll introduce you to
SharePoint workflows and how Power Automate can bring modern automation
capabilities.

141

CHAPTER 5

Power Automate

In the previous chapters, we looked at creating and customizing SharePoint Online
forms. In this chapter, our focus will be on building business process automation using
workflows. Forms allow users to enter and view data. Workflows are applications that
contain a preprogrammed set of tasks. A simple example of a time when a workflow
would be used with respect to our case study would be if you need to send an email
when a new product is created in the Products list.

Power Automate is a service that allows you to create automated workflows. You can
connect to hundreds of data sources with Power Automate or send automatic reminders
based on a due date. Here, we use SharePoint Online as the primary data source for
Power Automate. Power Automate is a widely used tool for the automation of business
processes. The workflows that we create within Power Automate are called flows.

In this chapter, we’'ll focus on creating flows within Power Automate and
communicating with SharePoint. You'll learn about different triggers and actions. We'll
go over expressions, variable, and approvals and explore solutions, child flows, and how
to connect different flows. We’'ll touch upon how to prepare flows to move from one
environment to another. In the final section, we’ll do a quick review of how Power Apps
and Power Automate communicate with each other. By the end of this chapter, you'll
be familiar with Power Automate and how to use it for various business requirements.
Along with learning the process, we’ll develop a few flows to bring some of the workplace
site requirements into action.

Creating Your First Flow

Let’s start by creating a flow for product document approval. If you recall the requirement
in Chapter 2, when the product executive requests approval using the Initiate Approval
button, the appropriate product lead should receive the request and activate it. Once the
document is approved by the product lead, it will be published for end users.

143
© Harinarayanan V P 2021

Harinarayanan V P, Building the Modern Workplace with SharePoint Online,
https://doi.org/10.1007/978-1-4842-6945-9_5

https://doi.org/10.1007/978-1-4842-6945-9_5#DOI

CHAPTER5 POWER AUTOMATE

Type flow.microsoft.comin your browser and follow the steps that come up. The
license you already have for Microsoft 365 will be adequate for this purpose. There are
premium connectors, some of which we’ll use in this chapter. You can make use of the
trail license for those.

Once the home page is loaded, click Create, then select Instant Cloud Flow, as shown
in Figure 5-1.

_ b i —
— Theee ways to make a flow R
@ vome .

Start from blank
B Actionitem
Myfom
D =
l! 4+ Crene “’F:. &.,. 0+ B, i
E Desitop forw Besiness procest o
G g Busomated dioud fiow snstant choud v Schedaled cloud flow i gaati s i it
AL gl s g i i » e

Figure 5-1. Selecting Instant Cloud Flow

In the screen that pops up, choose For a Selected File, give it a name, and click
Create, as shown in Figure 5-2. We selected this trigger because we need it to be
activated by clicking a button on a particular document. We need to provide the flow ID
on the click of button, which we will see in the upcoming section.

Build an instant cloud flow W
H Product Data Approval =
1
.
= Choose how to trigger this flow *
Manually trigger a flow (D
Flow button for mobile
PowerApps [0}
PowerApps
[1 .
When Power Virtual Agents calls a fl... o
Power Virtual Agents
When a flow step is executed 0]
Triggered manually from any device, easy-to-share instant flows Common Data Service (current environment)
1 te task: don't have t t If.
automate tasks so you don lave [0 repeat yourse For a selected message (D
. Microsoft Teams
Examples:
* Get an automatic mobile alert whenever a VIP client emails For a selected file
you .) E QOneDrive for Business (D
* Save all your email attachments to a folder automatically
For a selected file
© - SharePoint ©
-

Figure 5-2. Choosing a trigger

144

CHAPTERS5 POWER AUTOMATE

When selecting the trigger, make sure the data source is SharePoint, as there is
also similar trigger available for OneDrive. The flow will be created, and you will be
redirected to the designer. You can add actions, conditions, and more on this screen. But
before doing that, configure the trigger by providing values for Site Address and Library
Name, as shown in Figure 5-3.

Click New Step and search for “Get file,” then select Get File Properties. Provide
values for the Site Address and Library Name, as we did in the previous step. Clicking
inside the ID box, as shown in Figure 5-3, will allow you to add dynamic content in a
pop-up. Select ID from the window that pops up. This dynamic ID value results from the
For a Selected File action we took previously.

»ful resources

- For a selected file
- Get file properties @ .-
*Site Address ;

- hitps/fek adhi.sh f rkplace b

Product Data b

LEULL Su

Dynamic content Expression

+ Mew step Save

'ID _

Figure 5-3. Selecting the Dynamic Content

As you can see in Figure 5-3, there is a warning symbol on the Flow Checker in the
upper left-hand corner of the screen. You can click it to see the details. The Flow Checker
instantly checks the flow and provides you with errors and warnings if there are any. As
we haven't selected the ID yet, it is giving us the error that an ID is mandatory. If you
click the error message, it will go away.

Get File Properties action will get you all the properties of the file. Why we use this?In
the next step we need to send an approval task to the Product Lead. We need email of the
Product Lead to send the approval task. The trigger For a Selected File will return only a few
properties for the document, such as ID. To get all the properties of the document such as

145

CHAPTER5 POWER AUTOMATE

Product Lead, we need to query the specified document in the library using the document’s
ID. Get File Properties is the built-in action that brings up all the properties of a given file. If
you click Show Advanced Options, you can limit the columns to a particular view.

We now have all the properties of the document. Let’s configure an approval task
for the product lead. This might consist of notifying the product lead and letting the
approver know the details of the document. They can act on it accordingly. To achieve
this, click New Step, search for “Start and wait,” and select Start and Wait for an Approval.
Then click Create under Create a Connection for Approvals, in case if there is no
connection. See Figure 5-4, after which I will explain the details.

- For a selected file
. Get file properties

.] Start and wait for an approval

* Approval type Approve/Reject - First to respond N ‘
*Title | Action required for the approval of - File name with ... x ‘
* Assigned to . - Product Lead E... X . ‘
Details . Hi - Product Lead ... x

- Modified By Di.. X has requested approval for a
- Document Typ... X document for the product
- Product Name x th},pe- Product Type V... X _please action

onit

Item link - itemUrl x ‘

Item link description Click here to view document |

Show advanced options

Figure 5-4. Configuring an approval action

The Start and Wait for an Approval action will create an approval task and wait for it to be
completed before moving on to next step. For the Approval Type, select Approve/Reject —
First to Respond. This means that if there are multiple approvers, once the first approver acts
on a task; it will be completed. It doesn’t apply in our case since we have only one approver.

146

CHAPTERS5 POWER AUTOMATE

For other boxes, you need to fill in the dynamic content, as you already did with the
previous Get File Properties action. Click inside each text box as well as the pop-up,
search for the appropriate dynamic content, and add it. For Assigned To, select Product
Lead Email. When selecting Product Type in the Details section, choose Product Type
Value from the dynamic content, as it is a Choice field. If you select Product Type, it will
return an object instead of a value. The same goes for Document Type. For the Product
Lead name, select Product Lead DisplayName.

To mention the requester name, I selected Modified By DisplayName. Finally, to
provide a link to the document in the Item Link field, select itemUrl. While selecting
dynamic content fields from the pop-up, make sure that they are under the right action,
which in this case is Get File Properties.

In the next step, we need to figure out the outcome of the previous task and whether
the approver approved or rejected it. To do this, we need to add a condition to check the
result. Click New Step and search for “Condition” and add it. Once added, it will look like
as in Figure 5-5.

- For a selected file

Get file properties

Start and wait for an approval

B E &

Condition

Choose a value Choose a value
Add dvnamic content

Dynamic content Expression

-+ Add v

[M outc

Start and wait for an approval

E Outcome

Figure 5-5. Adding a condition to check the outcome of an approval
147

CHAPTER5 POWER AUTOMATE

Click inside the Choose a value box on the left hand side and select Outcome, as
shown in Figure 5-5. In the right hand side Choose a value box, type Approve. The
condition will check if the outcome is equal to Approve. We can add the desired actions
inside the If Yes and If No sections.

Let’s add an action in the If No section first. We'll send an email to the modified user
if the outcome is rejected. To add the Send Email action inside the If No box, search and
select the Send an Email(V2) action from the Dynamic content.

Next, add Dynamic content in the To, Subject, and Body sections, as shown in
Figure 5-6, like we did for the approval task. When approving or rejecting, the Product
Lead can provide comments. We can capture these comments using the Dynamic
content Response Comments, which is added inside the body of the notification email to
the modified user.

v
Conditicn
E Qutcome x is equal to v Approve
+ Add
If yes Bl 1f no
g Apply to each
T add
alect An CtpUL TTom previous Seps
{ W
Send an email (V2)
- Madified By E.. %
ﬂ.odu(!Daueo(m:en(- File name with — % |5 rejected
Font * 2*B J U #£i= = & <fs

Hi - Madified By DisplayMame x

@ Respanses Comments x

Please make the necessary changes and resubmit for approval

Figure 5-6. Rejection notification

While adding the comments, an Apply to Each loop will automatically get added
and a Send an Email action will be placed inside of it. This is a known issue with Power
Automate. The Approval action returns the responses in a group, even if there is only

148

CHAPTERS5 POWER AUTOMATE

one response. Just leave that like it is for now, as it doesn’t have any impact on the
functionality. We'll get rid of these unnecessary Apply to Each items later in the chapter
when we’re learning expressions.

What we've done so far is to arrange that a notification email will get sent to the Product
Executive if the Product Lead rejects the document. If the Lead approves the document, we
need to publish a document and send a notification to the executive that says the document
has been approved and published. To publish the document, we’ll choose Approve for Set
Content Approval Status of the document. We'll take a look at that next.

Next, as shown in Figure 5-7, go to the If Yes box and add an action. Search for Get
File Metadata Using Path action from the Dynamic content and add it. Provide the Site
Address and File Path. You can add the Dynamic contents Folder Path and File Name
with Extension for the file path. The Get File Metadata step is required to get an ETag
property for the document. The Etag is essential for setting the content approval status.

I yes '-'.'.-_: W no

- Get file metadata using path wes Apply to each
= Site Address * Select rom previcus steps

‘Workplace] - htips:/dloudhadi sharepoint com/sites Workplace1 ks

“File Path

_f. Falder path x . File name with . x 3

5 %
I m {
i [Py Copy to my dlipbosnd Preview)
1 @ Send an email (V2) a Copy Ty CHpDoaG eV
&
£ Renamy

ename
- Set content approval status aee
[Add a comment

Warkplace - hitps://cloudhadi sharepaint com/sites/Workplace ~

tings

S
E Choose an action x

Al Built-in Standard Premium Custom My chipboard
Send an email (V2] 0]
Office 365 Outicak =

Figure 5-7. Setting the content approval status and copying to the clipboard

Now, search for the action Set Content Approval Status from the Dynamic
content and add it. Choose values for Site Address, Library Name, and ID. Select Approve
for the Action and select ETag value from the Dynamic content for the ETag label, which
we created using the previous Get Metadata step. Add your comments as manual text.

149

CHAPTER5 POWER AUTOMATE

Let’s add the notification next. Go to the If No box, and in Send an Email (V2), click ...
and then choose Copy to My Clipboard (Preview) from the drop-down. In the If Yes box,
click + icon below to the Set content approval status action. Click My Clipboard tab and
select Send an Email (V2). The copied action will get added below Set content approval
status.

Note The flow will refresh upon copying the action, and you’ll need to click the
appropriate action headings and expand it again.

Once the action is copied, make changes to its content accordingly and remove
the Response Comments section from the body of the mail. We’ll add the Comments
section later while learning expressions. As mentioned earlier, we don't need the Apply
to each action.

We could improve this process by properly naming the actions and so forth, which
we'll do in the upcoming sections. Click Save at the top of the screen. This is shown
in Figure 5-3 under Create Your First Flow section. You may have a warning from the
Flow Checker regarding the Start and wait for approval action, as this is the first time
you're using the Start and wait for approval action in your flow environment. Ignore the
warning.

The flow is now ready to go. Let’s test it. From the browser bar, copy the ID of
the flow into a notepad. You can find the ID from the URL, where it will be in the last
section right after flows/. For example, the ID for my flow is 716c40c4-3d0b-460a-
bcf5-edb1345fdala. Let’s go ahead and link this flow to the Initiate Approval column of
Product Data library, which is a custom JSON-formatted column.

As shown in Figure 5-8, go to the Product Data library. Go to Initiate Approval
» Column Settings » Format This Column. Update action and actionParams of
CustomRowAction, as shown in Figure 5-8. Save your changes.

150

CHAPTERS5 POWER AUTOMATE

Format Initiate Approval column

Format view Format columns

Initiate Approval Product Type Product Lead

Choose Column

AtoZ Food Lead-1
Initiate Approval
ZtoA
Food Lead-1 Change the display of this column by adding JSON below. Remove the text from the box ta clear the custom formatting. Lea
Filter by
o Food Lead-1 k2] “style™: {
Group by Initiate Approval 22 “background-color®: “inherit®,
Fx] “border™: “none”,
Column settings > | Edit 24 "color”: "white",
— 5 "cursor™: “pointer”
27 “txtContent”: “Initiate Approval”,
Move left 28 “custosfowction”: {
. 29 “action™: “executeFlow”,
Move right 30 “actienParams®: "{\"id\": \"716cd4@cd-3ddb-468a-bcf5-edbl345fdala\"}"
) i T
Hide this column 32 }
3
Fin to filters pane ; 3]

Show/hide columns

Add a calumn

Switch to design mode

Preview Save Cancel
g |

Figure 5-8. Linking the flow to a JSON-formatted column

The actionis executeFlow and the actionParams should be followed by your flow
ID, which you copied into a notepad earlier. The formatis "{\"id\":\"[flowid]\"}".
The final JSON will be as follows. Replace [flowid] with your flow ID.

{

"$schema": "https://developer.microsoft.com/json-schemas/sp/v2/column-
formatting.schema.json",
"elmType": "span",
"style": {

"color": "white",

"background-color": "#3d7b80",

"border": "1px solid",

"border-radius": "8px",

"padding-left": "8px",

"visibility": true
1

151

CHAPTER5 POWER AUTOMATE

"children": [
{
"elmType": "span",
"attributes": {
"iconName": "flow"
}
})

{
"elmType": "button",

"style": {
"background-color": "inherit",
"border": "none",
"color": "white",
"cursor": "pointer"

b

"txtContent": "Initiate Approval”,

"customRowAction": {
"action": "executeFlow",
"actionParams": "{\"id\": \"[flowid]\"}"

}

}
]
}

Save your changes. By clicking Initiate Approval for one of the documents, the flow
will be triggered for the selected file and a sliding panel will open on the right for running
the flow. It will ask you to sign in the first time. Click Continue, then Run Flow, as shown
in Figure 5-9. Note that “Food Lead-1” is the product lead for my selected document.
Note the approver for your document.

152

CHAPTERS5 POWER AUTOMATE

Run flow
Product Data Approval

Owner: Hari Narayanan

Initiate Approval Product Type Product Lead Document Type Review Date Do inspection r.. Inspection Lead

This flow uses SharePoint. Approvals. and Office
365 Quticok.

L9n; and actions

-

Figure 5-9. Running the Product Data Approval flow

The flow will now be started, and you'll get a notification in the library interface. Go
back to Power Automate. My flows » Product Data Approval. On this Flow Details page,
you can see the 28-day run history at the bottom of the screen and click the instance of a
particular flow. In this case, we have only one run instance. You can click that instance as
shown in Figure 5-10.

Q
o |Flows * Produet Data Approval

B scton iems

e
: =

o 2
T ot Procisct Duta Apgrel b [- P
5 e Ereated n Dittce 355 Dutiock)
@ Tompines e i S i
Sharsfgant P
& Connscions — B e @
Feb 1, 1128 AM
=
atant Owers [
B sono -
i
Sl o © e
o oot
Ll ———— Run saly users £
) Fre | 28y run blstery
W P T e s il o
@ e

Stan Duration Swms

|_ Fet 1, 1153 AM {1 min aga)

Figure 5-10. Flow interface and run history
153

CHAPTER5 POWER AUTOMATE

You can see the Connections panel on the right-hand side of the screen. This flow
currently having three connections, Approvals, Office 365 Outlook, and SharePoint.

By clicking the run instance in the run history, it will take you to the flow designer
page, where you can see that the flow is running and waiting for approval.

To check the mailbox of the approver of your document, go to Outlook.com and sign
in with the credentials of the approver user.

Note Users need to have a mailbox license for logging into Outlook and
checking emails. You can manage licenses, reset passwords, and provide
other specifications for a particular user from the Microsoft 365 admin center:
https://admin.microsoft.com/AdminPortal/Home#/users.

In this example, Food Lead-1 is the approver of my document. If I log in with
Food Lead-1’s credentials, I can approve or reject in the Outlook mailbox, as shown in
Figure 5-11.

Action required for the approval of Confectionary materials.docx

[gy) Approvals | Power Automate

Action required for the approval of Confectionary materials dace

Aequested by Hari Narayanan <Fanp

Figure 5-11. Approving and rejecting in Outlook

As you can see, the subject and body of the mail appear according to how you
have configured them in the flow. You can select Approve from the body of the mail. A
comment box will expand that you can fill in. Provide some comments and then click
Submit. The mail content will refresh, and it will show as “Approved.”

154

https://admin.microsoft.com/AdminPortal/Home#/users

CHAPTERS5 POWER AUTOMATE

Now go back to the flow and check the run instance again. As you can see Figure 5-12,
the flow ran successfully.

8 Approval = Ran at 2/2/2021 11:10:22 AM £ Resubmit

L]
For a selected file o

-}
- Get file properties o
©
Ml S1ant and wait for an appecval am
Conditio 3
BFUTS Show raw inputs
Expression result
If yes (1}
o
- Get fle metadata wsing path 0 RE Apply to each 0
o
- Se1 content approval status 15

Figure 5-12. Indication of flow running successfully

The Set Content Approval Status shows that it was successful, and an email
notification was sent. These actions got executed, as the approval outcome was Approve.
If you click and expand each action title, you'll be presented with input and output
details of the respective action.

Go back to the library and check the value of the Approval Status column for the
document you submitted. You can see that the status has been updated to Approved.
Also check your email to see the notification you received.

You successfully configured and ran your flow. The document got submitted for
approval and got approved. The document will be visible to end users now.

Let’s now optimize the flow now and learn some of the expressions in the process.
Go back to the flow and click Edit. We should rename the condition block “Product Lead
Decision” by clicking ... to the right of the Condition and updating.

155

CHAPTER5 POWER AUTOMATE

Expressions

Power Automate provides us with lot of built-in expressions. We can satisfy basic
operations like concatenating a string, replacing a string, and Date Time operations
using expressions. You used Dynamic content in the previous section. Next to Dynamic
content, you might have noticed another tab called Expression. Refer Figure 5-5 from
the section Creating Your First Flow. By clicking it, you can see that there are a lot of
built-in expressions available. You can select an expression and construct it from the text
box with the fx symbol. Don'’t forget to click OK or Update once you've finalized your
expression. Otherwise, your changes won'’t be saved.

Let’s start by removing the Apply to each block which was added during the Creating
Your First Flow section. Refer Figure 5-6. We can achieve this using the First expression.
As the name implies, this expression will take the first value out of a collection. If there
is only a single value inside the collection, it will return that value and we can avoid
looping over a single item collection.

Each piece of dynamic content is built using an expression. Go to the Apply to each
block, select Responses, and copy the expression into a notepad. The expression of this
Dynamic content will look like the following:

@{outputs('Start_and wait for_an_approval')?['body/responses’]}

This expression basically evaluates the outputs of the Start and Wait for an Approval
action. The spaces in the action name need to be replaced by the _ character. The Start
and Wait for Approval action returns a JSON object as the output. You can see this output
by going to a run instance and clicking the action name and expanding and locating the
body section. Following is an example of the body:

{
"responses": [
{

"responder": {
"id": "f2a28af6-0e40-48a9-91e1-a365a5a9cdcd",
"displayName": "Food Lead-1",
"email": "FoodLead-1@cloudhadi.onmicrosoft.com",
"tenantId": "fb7cb6fd-9fob-4c6f-8018-dc7c8634f26d",
"userPrincipalName": "FoodLead-1@cloudhadi.onmicrosoft.com"

b

156

CHAPTERS5 POWER AUTOMATE

"requestDate": "2021-02-02T00:10:31Z",
"responseDate": "2021-02-02T00:19:35Z",
"approverResponse": "Approve",
"comments": "Approved by Food Lead 1"

}
1,

"responseSummary": "Approver: Food Lead-1, FoodlLead-1@cloudhadi.
onmicrosoft.com\r\nResponse: Approve\r\nRequest Date: Tuesday, February 2,
2021 12:10:31 AM\r\nResponse Date: Tuesday, February 2, 2021 12:19:35 AM",
"completionDate": "2021-02-02T00:19:35Z",

"outcome": "Approve",

"name": "4deae52c-562d-48b2-b417-1ac6ab35ebeb”,

"title": "Action required for the approval of Confectionary materials.
docx",

"details": "Hi Food Lead-1,\nHari Narayananhas requested approval for a
Product Materials Informationdocument for the product Dairy Milk

of type Food. Please action on it",

"itemLink": "https://cloudhadi.sharepoint.com/sites/Workplace/_
layouts/15/Doc.aspx?sourcedoc=%7Bd5c322f5-57db-4fc2-a375-df70a90965ed%7D&
action=edit8uid=%7BD5C322F5-57DB-4FC2-A375-DF70A90965ED%7D&ListItemId=15&
ListId=%7B9AEDD865-ECDA-41C9-A1EC-BFDDEFED3AE27%7D&0dsp=1&env=prod",
"itemLinkDescription"”: "Click here to view document”,

"requestDate": "2021-02-02T00:10:30Z"

You can see that the responses were returned as an array object. So, when you query
“body/responses” from the outputs of the actions, it returns you an array of objects. The
responses always return a collection object even if they contain only a single value.

Now, go to Send an Email (V2) action. Copy the Response Comments and put them a
notepad. The expression will look like the following:

@{items('Apply to each')?['comments']}

157

CHAPTER5 POWER AUTOMATE

So, the expression takes out Comments from the Apply to Each. Let’s combine both
expressions as follows. Just add the [' comments'] to the outputs expression.

@{outputs('Start_and wait for an_approval')?['body/responses’]['comments’]}

Will this work? The answer is no, because here we are trying to take the Comments
directly out of the array. We need to first get the response from the responses array
before we take the comments out of it. The correct expression follows. Wrap the outputs
expression with first.

@{first(outputs('Start and wait for an_approval')?['body/responses'])
['comments']}

The first expression takes out the first response from the responses array object.
Adding ['comments'] fetches the value of comments from the response.

We can add this expression to the body of Send an Email (V2). Delete Responses
Comments using the x. Click the same area to open the pop-up for dynamic content,
then click the Expression tab and paste the previous expression there. Remove the
@ character and braces from the start and end of the expression. Click OK to save. See
Figure 5-13.

158

CHAPTERS5 POWER AUTOMATE

H FPPY W Eaun mm 2

an output from previous steps

Responses x ‘

Send an email (V2) @
*To - Modified By E... x ‘
HSubject Product Data document - File name with .. X s rejected ‘
*Body Font v 2vB I U Z2:i= = = = & <>

Hi - Modified By DisplayName x -

The document - File name with extension % for the product

Product Name % 1S rejected by
Product Lead DisplayName x With the comments :
n first(..) x

Please make the necessary changes and resubmit for approval.

Add))
Dynamic content Expression
Show advanced options
_fx first(outputs('Start_and_wait_for_an_a|
i Add an action String functions See more
. concat(text_1, text_27, ...)
ll Cormbines any number of strings together
Collection See more
i Add an action f contains(collection, value)
fx

Returns true if a dictionary contains a key, if an array cont.

f length(collection)
x : :
= Returns the number of elements in an array or string

Logical functions See more
Save

if(expression, valuelfTrue, valuelfFalse)
x
= Returns a specified value based on whether the expressio,

equals(objectl, object2)
Returns true if two values are equal

Figure 5-13. first expression

Once you click OK, the body of the email will be updated. Let’s get rid of the Apply to
each block now. Collapse Send an Email (V2) and drag it below the Apply to each loop.
Click the ... icon next to Apply to each and delete it. So now we have the Send an Email

159

CHAPTER5 POWER AUTOMATE

action only in the If No condition. Put in the same expression for email content and
inside the If Yes block as well. We haven’t provided it before. Save the changes. Click the
back arrow on the top left to go to the Flow Details page.

Let’s see how we can rerun the flow for the same document. Click the flow instance
on the details page. On the flow screen, click Resubmit. Figure 5-12 shows the Resubmit
button on the completed instance page. This option is very helpful while you're
debugging the flow. It enables you to run the same instance multiple times without
having to retrigger the flow from the library. Once you click Resubmit, the same instance
will run again with the new changes. Complete the approvals with a comment and see
the approval mail in your mailbox and verify if the response comments is appearing
correctly. Figure 5-14 shows the email I received from the Product Lead with the
comments.

(2 Fowused Other @ Filter Product Data document Confectionary materials.docx is approved

The document Confectionary materials.docx for the product Dairy Milk is approved by Food Lead-1 with the comments :

The document looks good. Approved!

This week

The document is now published.

Figure 5-14. Approval notification with comments

You've now learned how to use expressions and used your first expression, which is
first.

Let’s look at the next use case of the Cloudhadi requirement and update the flow
accordingly. In the process, you'll learn about a few more areas.

Additional Approval

We have an Inspection Lead column in the Product Data library. We need to send a
document for that person to approve if Do Inspection Required is selected as Yes. (Refer
back to UC-D10 and UC-D11 in Chapter 2).

160

CHAPTERS5 POWER AUTOMATE

Let’s go back to the Product Data Approval flow, as shown in Figure 5-15, and make
the changes to the Inspection Lead Approval section. Go to the Product Lead Decision/If
Yes condition block. Inside the If Yes block, add a condition above Set content approval
status, which you should rename “Check if inspection required.” Refer Figure 5-7 under
Creating Your First Flow to view Set content approval status action.

€~ Product Data Approval

N2

Check if inspection requined
. Dainspe.. » 4 equil 1o W | bue

+ Add -

If yes gl 1fno

Inspection Lead Approval

Approve/Reject - First 1o respand ~

H

Actien required for the inspection lead apgroval of

- File name with . x
*Assigned to - Inspection Lea... x

. Modified By Di.. x p,
- Document Typ.. x g

Bl rotciriome < orope

Product lead approved it with the below comments:

m frst[) %

Please action on this

ninspection lead appeoval for a
o he product
Product Type V... %

- itembi x

Chick hare o view document

Figure 5-15. Additional Approval for a condition

Inside the Check if inspection required condition, select the Dynamic content Do
Inspection Required on the left hand side and put true inside the right hand side box. Copy
the Start and wait for an approval action from above and add it inside the If Yes block. You
can refer Figure 5-5 under Creating Your First Flow section. Rename it to “Inspection Lead
Approval” Modify the contents of the Inspection Lead Approval as in Figure 5-15.

Add a condition to check the value of the Outcome, like we did for the Product Lead
decision. When selecting the Outcome, make sure you select the Dynamic content from
the Inspection Lead Decision. There will be one more Outcome listed in the Dynamic
content, which belongs to the Product Lead approval. Make sure, you select the Outcome
from the Inspection Lead Decision.

161

CHAPTER5 POWER AUTOMATE

Drag the Set content approval status and Send email blocks inside the If Yes block.
Also add the Inspection Lead comments inside the body of the email. The expression for
Inspection Lead comments will be like the following based on the name you provided in
the approval action.

first(outputs('Inspection Lead Approval')?['body/responses’])['comments’]

As shown in Figure 5-16, add an email notification for rejection by the Inspection
Lead inside the If No block.

= Product Data Approval

fl‘;:_~l Inspection Lead Approval

Inspection Lead Decision
n Outcome x 1 wqual 1o || Approve
+ hdd ~
o Hyes
- Set content approval status vee Matify Product Executive on Inspection Lead Rejection @
T T B vooseane. «
Notify Product Executive on Final publish 5 * Subject Product Data docurrsent . File nasme with — % is rajected by Inspection
- Lead
.anmwyz. ® e
*Bady Fant * 2vB ! U /EE & @
* Subject Produt Data docusnent - File: name with .. % is approwved
e i [l Moased by Displaytiome x -
*ody Font * v B I U /SEEE & @b
The document . File name with extension % for the product
Hi . Modified By DisplayMame x Product Name x 5 mejected by
Ingpection Lead DisplayMame » With the comments
The dacunent . File name wish extension x "ot the product
Product Mame s 15 approved by n i) %
Product Lead Displayhame x and
Inspection Lead DisplayName » 'ith the comments
Sl e Piease make the necessary changes and resubmit for approval
Procuet Lead Comments: [st
1 aptians
Inspectian Lead Comnmants: n By
The dacument is naw published
=
She Ehascad SplenE T dd an action

Figure 5-16. Outcome actions and notifications

162

CHAPTERS5 POWER AUTOMATE

Note You can always rename actions to be more meaningful. For example, |
renamed Send an email blocks as shown in Figure 5-16. When renaming any

of the actions, make sure that if those actions are referred to anywhere in the
expressions, the references are also updated. For example, if you want to rename
the Start and wait for an approval action, update the expressions inside Send an
email blocks for the response comments accordingly. The expression for response
comments contains reference to the name of the respective approval action.

Now collapse the Inspection Lead Decision block. We also need to add actions
inside the If No block for Check If Inspection Required. The execution would move to
the If No block if Do Inspection Required isn’t equal to true. We’d need to change the Set
content approval status and notify the Product Executive in that case. We could copy the
Action block from the Inspection Lead Decision/If Yes block, but doing this will result in
duplicate steps. We can do it in a better way using variables.

Variables

Variables come in very handy with Power Automate flows. The Initialize Variable action
is used for initializing a variable and you can use it throughout the flow by selecting it
from the dynamic content. You need to specify a type of variable while initializing it. We
can’t initialize variables inside a condition or any other block. If you want to set a value
for a variable in any of the blocks, you can do that using the Set Variable action.

There are two scenarios where we need to use the Set Content Approval and Product
Executive notifications. The first is when an inspection isn’t required after an approval
by the product lead. The Second one is when there was an approval by the inspection
lead after the one by the product lead. Let’s initialize a Boolean variable and set it to true
in both scenarios. Based on the value of the variable, we can set the approval status and
send a notification.

To do so, collapse everything and add an Initialize Variable action just below the
Start and Wait for Approval action. Name it “CanPublish.” Set the Type as Boolean and
the Value as False. Rename the action “Initialize bool—CanPublish.” Go to the If No
block of the Check Inspection Required condition and add the Set Variable action. Select
CanPublish from the Name drop-down and set the Value as True. Rename the action as
you wish. See Figure 5-17.

163

CHAPTER5 POWER AUTOMATE

4= Product Data Approval

E Product Laad Deciicn
B sveome « 1 ocuu 10 Approve
+ Add
H Gt il matadata using path
|
-, [T =
Add
+ K
m Se1 CanPublish b trae - No inspection required
B e [R—— A
3

Figure 5-17. Setting a variable

Now, expand the Inspection Lead Decision condition and add the same Set Variable
action inside the If Yes block and give it a different name.

Add a condition at the very bottom and check if can Publish is true. Rename the
condition block to “Can Publish.” Drag the two actions, Set content approval status and
Notify Product Executive on Final publish, inside the If Yes block of the condition.

We need to take one more step before testing this. In the body of the email, we have
an Inspection Lead Comments section. If Do Inspection Required isn’t true, we will get
an error message, as there is no Inspection Lead Approval involved.

Create a string variable to hold the Inspection comments. Initialize another
variable at the top. Inside the inspection lead If Yes block, set the Approved By value
to “Inspection Lead DisplayName” with the comment "Expression for the response
comments of inspection lead.” Choose the inspection lead display name from the
Dynamic content. The expression for this is first(outputs('Inspection Lead
Approval')?['body/responses’])['comments’].

Figure 5-18 shows what the set variable looks like.

164

CHAPTERS5 POWER AUTOMATE

I yes

.] Inspection Lead Approval

ﬁ Inspection Lead Decision

E Cuteome x Is equal to ¢ || Approve
+ Add -
If yes % If no
Set CanPublish to true - Inspection lead approved aan Notify Product Executive on Inspection Lead Rejection
|
Set Inspection lead mail body section aan :. s

| strimsLeadBody .|

Appeowved by . Inspection Lea.. X yith comments: n fistl) x

Figure 5-18. Setting a dynamic mail body using the string variable

Make changes to the body of the mail to accommodate this. Set the body to include
only the Production Lead name and comment. Add the string variable below that. So,
if the Inspection Lead is involved, the string value will be appended to the body of the
mail. Otherwise, the mail will contain only the Production Lead details and comments.
See Figure 5-19.

165

CHAPTER5 POWER AUTOMATE

Bl e =

+ Add ~

If yes

- Set content approval status.
N

Bl 1ino

Motify Product Executive on Final publish
*T . Modified ByE. x

Product Data docurment ' File name with

i [l Medified By Displaytiame

The document - Fik

firsti_) x

The document is now published

® s approved

Forit * 2*B I U/SIEE &

w for the product

Product Name x ¥
Product Lead DisplayMame » Wih the comments

ifs

Figure 5-19. Adding variables to body of the mail

Save your changes and resubmit the flow by clicking the latest instance. The
document will get published after the Product Lead approves it. Go back to the Product
Data library and fill in the Inspection Lead value for any of the documents. Initiate the
approval in the same way we did previously. The approval will go through both the leads
this time. After both of them approve it, the document will be published. You can play

around with different rejection scenarios as well.

Note All the flows that we’re developing in this chapter are available as
exported files in the Chapter 5 folder of the GitHub repository. You can access

it using https://github.com/Apress/building-modern-workplace-
sharepoint-online. You can always import them for later use if you want to.
| will cover importing and exporting the flows in the upcoming sections.

166

https://github.com/Apress/building-modern-workplace-sharepoint-online
https://github.com/Apress/building-modern-workplace-sharepoint-online

CHAPTERS5 POWER AUTOMATE

Document Generation

We have a Products List and a Product Data library. We have the use case for Cloudhadi
that we'll look at later in this chapter. As soon as user enters data in the Product list, a
Word document should be generated and placed inside the library with the Document
Type set as “Product Information.” If the user updates the information, we need to
update the respective document. The document generation happens based on a
template. This may seem a little vague initially, but it will become clearer when we do it
using Power Automate.

Once we've finished converting this requirement to a Power Automate solution,

you’ll be familiar with a good number of concepts. Let’s get started.

Preparing a Word Template

Let’s prepare the template first. Based on the template and its product values, we will
be able to generate documents. To start, open a blank Word document. Enable the
Developer tab by going to File » More » Options » Customize Ribbon, then check
the tick box on the right side of the tab. In the document, enter the content as shown in
Figure 5-20. The words within the light blue icons are placeholders for the values taken
from the Products list inputs.

Product Inlnrmalg{ Product Name

Anew product | Product Name | of type || Product Type | | is added to the Products with
status Product Status . Below i the important guality information related 1o the product.

Inspection Completed Date: | Inspection Completed Date
Manufactured Date: | Manufactured Date

Expiry Date: | | Expiry Date

Eroduct Features: | Product Features

Materials Used: Materials Used

Date: || Current Date

Product Lead: | Modified By

Figure 5-20. Preparing the Word template

167

CHAPTER5 POWER AUTOMATE

If you want to create a placeholder for another feature like Product Name, you
should click the Developer tab and select Design Mode. Then place your cursor next to
the Product Information heading. Click the plain text icon in the top menu, as circled in
Figure 5-20. A block will get created. Replace Click or Tap Here to Enter Text with Product
Name as shown in the figure. Repeat these steps for all the placeholders in the content.

Once the changes are done, save the document with name Product Information
Template.doc. Go to your SharePoint site » Site Contents » Documents and create a
folder called “Templates” and upload the document there.

We now have the template ready. The next step is to create a flow that triggers adding
or updating an item in the Product list.

Solutions

We can create an automated cloud flow for this purpose. Instead of creating the flow
directly, let’s create a solution and put the flow inside of that. Solutions allow you to
bundle flows together. They improve your deployment capabilities by allowing you to
export and import a set of flows together. This helps to better organize the flows as well.

In addition to this, I will introduce you to the concept of child flows. A flow can run
another flow from it. To enable this to happen, both flows must be inside a solution.
Keeping all this in mind, let’s create a solution to satisfy the document generation
requirement. Once this is done, we can move our Product Data Approval flow into this
solution as well, so that all the flows are in a single place and easy to deploy.

Goto https://flow.microsoft.comand log in. As selected in Figure 5-21, click
Solutions in the left pane, then click New Solution on the top menu. In the New Solutions
window on the right, enter the details and click Create.

2|

MNew solution

w

Figure 5-21. Creating a solution
168

https://flow.microsoft.com

CHAPTERS5 POWER AUTOMATE

The solution will now be created. Click it. Inside the solution view, click +New to add

a flow and select Cloud Flow, as shown in Figure 5-22.

2 Search for helphil resources

= bblish all cuptomizations

@ Home PO
[1 Action items v e
o My flows
+ Creawe
e Templates Mo companents fourd
& Connectors Scastion Component Attribute Configuration T TRRRe
8 Do w ponent Configuration
B Monitar Solution Companent Relationship Configuration
Relationship Atiribute
=3 A Builder -
Sarvice Pln
& Process advisar
= (preview) ServicePlanApsModuis
|B sosen Apphcationliser

Figure 5-22. Creating a Cloud Flow inside a solution

A new tab will be opened. Select the When an Item Is Created Or Modified trigger, as
shown in Figure 5-23.

€ Untitled

K Search connectors and triggers |

All Built-in Standard Premium Custom My clipboard

oa G a

Flowbutton PowerApps PowerVirtual Microsoft SharePoint OnelDrive for Planner

for mobile Agents Forms Business
E E
Common RSS Gmail Microseft Google Aure Office 365
Data Servic Teams Calendar Devps Outlook
Triggers Actions See more
"Bl Manually trigger a flow 2
& Flow button for mobile ©
PowerApps
PowerApps il

When Power Virtual Agents calls a flow

Power Virtual Agents @
I When a new response is submitted
a5 Microseft Forms o
When an item is created
Sharefoint o
When an item Is created or modified
SharePoint o]

Figure 5-23. Selecting the trigger

169

CHAPTER5 POWER AUTOMATE

The flow will be created and you can add actions. In the next section, let’s see how
we can generate Word content and create a document in the Product Data library based
on the template and products values.

Populating and Creating a Word Document

You should still have the flow designer open from the work we did in the previous
section. As shown in Figure 5-24, select Site Address and List Name, then add a new step
and search for Populate a Microsoft Word template. Choose this action, as selected in the
figure. This is a premium action, so you'll be asked to sign up the first time you select it.
You can sign up for a 90-day free trial of the program.

€ Untitled

* List Name Products ¥

E Choose an action %

|/Q populate & micrasoft word template |

All - Built-in Standard Premium Custom My clipboard

oo) r (/
L =
Microsoft Micros oft WarkPoirt Gethccept Encodian Word Onfine HelloSign
Tes Farms (Business)
Triggers Actions See mare
/7 Merge Word Documents
Encodian °
Populate a Microsoft Word template | PREMIUM o
Word Online (Business) b
Send signature request from termplate (preview) | PREMIUM o
Hellosign I
(/ Convert Word 4
Iﬁ Encodian w
D Send me an email notification
Natifications @
Create a repository using a template (preview) o
GitHub oo

Figure 5-24. Populating a Microsoft Word template

170

CHAPTERS5 POWER AUTOMATE

The action will be added. As shown in Figure 5-25, select your site for the Location.
In the Document Library section, choose “Documents,” where you uploaded the
template. Browse the File section and select the Product Information Template.docx.
All the placeholders we added in the template will be populated. Fill in the appropriate
Dynamic content for each of them. For example, select Expiry Date from Dynamic
content to the right side box against the label Expiry Date.

< Untitled

- When an item is created or modified

Populate a Product Info word template

SharePaint Site - Workplace '
* Document Library Documents v
“File) t Information Template.d !
- Manufactured .. =
Expiry Date - Expiry Date x
- Inspection Co... %
- Manufactured .. x

- Product Name x

Product Name - Product Name x
Product Type - Product Type V.. x

- Product Status .. x

- Product Features x

Materials Used Bl raterats ucea x

Modified By n Modified By Di.. x

Figure 5-25. Populating the placeholders with dynamic content

This step creates Word content using the dynamic values. We need to make use of
this content to create a document inside SharePoint. Add a new step, search, and select
Create Product Info File, as shown in Figure 5-26. Fill in the Site Address section. For the
Folder Path, choose /ProductData. Let’s make the file name “Product Name.” For the File
Content, search for “Microsoft Word document” in the dynamic content pop-up. The
Word content we created in the previous step will come up. Select it.

This will create a file inside the Product Data library. Rename the step “Create
Product Info file”

171

CHAPTER5 POWER AUTOMATE

After creating the document, we need to set its metadata accordingly. To do that, use
the Update File Properties action. Select Site Address and Library Name, and choose
“ItemId” as the ID. For the other properties, select the dynamic content accordingly. Set
the review date as “Expiry Date” and set Product Lead claims as “Modified By Display
Name,” as shown in the figure. Select Cloudhadi Document for the Content Type at the
bottom.

€ When an item is created or modified -> Populate Product Info word t_

- Create Product Info file

* Site Address Warkplace - hitps: h com/sites/ p v

der Path [ProduciData =

* File Name . Product Name % gney
Content u Microsoft Wor... x
Update file properties
*Site Address ‘Workplace - hitps: i.sh com/sites/ pl A
* Library Name Product Data b
. ftemid x

Title
Product Name - Product Name x

- Product Type V... x 4
. Modified By Di... x *
Product Information R
Rew - Expiry Date %
uired | No ~
| J '
Activit
irted o
pacity
hid till
Gow
escription ol kS

Figure 5-26. Creating a file and updating the file properties

Save your changes and click the back arrow. As shown in Figure 5-27, rename the
flow “Product Info Generation,” provide a description, and save. To rename, go to Edit »
Details.

172

CHAPTERS5 POWER AUTOMATE

Vhen an item is created or modified -> Populate Product Info word t.

28-day num history

* (| o

Figure 5-27. Renaming the flow and providing a description

Now go back to the products list and create a new item. The flow will be triggered.
You can check the flow status from the run history, as we did earlier. In a few minutes,
the document will be generated and get created inside Product Data library. The
properties of the document will also be updated.

If you open the document, you can see that the placeholders in the content are now
populated with the data from the products list. Figure 5-28 shows the document that was
generated for the item I created.

File Home Insert Layout Refersnces Review View Help & Editing ~
v Plv & |calibiBedy) ~[11 ~| AY A7 B I U £+ Av A - | ISv iSv I E =+ || Nomal Mo Spacing Heading1 [+ P
Broduct Information StravdernryPuds

A new product StrawbermyPuds of type Food Is added to the Products with status Completed. Below
s the important quality information related to the product.

Inspection Completed Date: 2020-12-09

Manufactured Date: 2020-11-01

Expiry Date: 2022-12-15

Product Features: Breakfast food

Materials Used: Strawberry, Banana, Cashew, Almonds, Pista

Date] 2020-11-01

Product Lead: Hari Narayanan

Figure 5-28. Generated Word document

173

CHAPTER5 POWER AUTOMATE

One mistake you'll notice is that the Date is populated with the manufactured date,
which is supposed to be the current date. Let’s go back to the flow and see how we can
calculate the current date by making sure we have the right time zone. After that, we can
update the Populate a Product Info word template action with the current date value
for the Date placeholder. Along with that, we’ll see how to handle Update document
scenarios, as we have only covered the Create document scenario for document
generation up until now.

Date and Time Expressions

Power Automate date expressions are very useful when automating business processes
with the help of flows. We can get the current date by using a built-in expression. We can
add seconds, minutes, hours, and days to a specific date. Go to expressions in the pop-up.
Scroll to date and time and click See More. In Figure 5-29, you can see that there are a large
number of built-in expressions available for date time operations.

Let’s calculate the current date and update it in Populate Product Info Word
Template. Go back to the Product Info Generation flow we created for the Cloudhadi
Workplace solution and add a new action called “Convert time zone” just below the
trigger condition. In the Base Time box, add an expression utcNow(), as shown in
Figure 5-29. This will get you the Coordinated Universal Time (UTC). Select Source Time
Zone as the UTC and select your time zone as the Destination. Unless you complete this
step, the flow will always give you the UTC. In the format string, there are few formats
available to select. In this case, we need to add a different format. Scroll to the bottom
and select Custom Value. Type in the format as [yyyy-MM-dd] to align with the other
dates we have set up. Save your changes.

174

CHAPTERS5 POWER AUTOMATE

- ‘When an item i created or modified
1

> f
v | [
n]

n getfutursTime(interval, timeUnit, format)

n petPutTime(inerval, timeUsit, formaT)
[—— [T, e e)

B etnired - x [oo Timetimestam, interial i, forma

[T [seconsinmensme, secend, foemnatl)

ot [l woscimco-
|

g ‘addHorsitimestamp, hours, formatTy

B oo e =

Bl rocuctvame =
Bl rrecv e x
B erocvcrsia x

W

|

| T
Figure 5-29. Getting, converting, and formatting Current Date

If you go back to the Flow Details page and try to rerun the same instance from run
history, you will end up getting an error message at the Create Product Info File step.
This is because the file has already been created there. You may need to go to the library
and delete or rename the previous file to test whether the current date is populated. This
is because we added only the Create File step. We need to identify whether the flow was
triggered for Create or Modify. If it was triggered for Create, we need to include a step for
creating the file. If it was triggered for Moditfy, the action needs to be for updating the file.
We'll see how to handle that in the next section.

Creating and Updating the Document

There are few work-arounds for distinguishing between a created trigger and a modified
trigger. The best one for our scenario is to compare the modified time with the created
time. For instance, if the modified time is less than created time plus 30 seconds, the
trigger occurred when an item is created. Otherwise, the flow is triggered when an item
is updated. There is only a rare chance that a user will modify the product within 30
seconds of creating it.

175

CHAPTER5 POWER AUTOMATE

Go back to the flow, add a new condition below Populate a Product Info word
template action, and rename it to “Create or Update.” Inside the condition, check that
Modified is greater than addSeconds (triggerBody()?['Created'],30). In the If Yes
block, we need to add update actions. Add a new action called “Update file.” In the File
Identifier, add /ProductData/ProductName.docx, where Product Name is a Dynamic
content. Put in the same file content as you did for Create File. The Update File action
identifies the document with the path and updates the file content of it. Rename the
action like you did for Create File.

Let’s arrange the Create section now, which is in If No block, as shown in Figure 5-30.
Drag the Create Product Info File icon inside of the If No box.

For the next step, which is Update File Properties, we had configured the ItemId
Dynamic content from the Create File action. But that will no longer work. If update
section is executed, we should have the ItemId from the Update Product Info File and
not from the Create Product Info File. So, we must create a variable and set its value in
both Create and Update scenarios. Create an integer variable one step before the Create
or Update condition. Give it a name; say “itemID.” Add the Set Variable action inside
both the If Yes and If No blocks. In the If No block, which is for Create, set the value to
ItemlId by using the Create Product Info File action.

We need to add an extra action in the If Yes block, as the Update Product Info File
action will not return Itemld. Add a new action next to it called Get File Metadata Using
Path. Provide the Site Address and File Path. In the next step, set the Dynamic content
ItemlId resulted from the Get file metadata using path action to the variable itemID.

Finally, go to Update File Properties and update the ID to the variable ItemlId.

Save the changes. Figure 5-30 shows how the flow will look with the Create or Update
condition.

176

CHAPTERS5 POWER AUTOMATE

& Product Info Generation B save

Create or Update

' Modfied x s greater than n addSeco.. x

+ Add

i yes S 1o

- Update Preduct info file wan - Create Product Info file
Site Adde " e "

& comyites Workplace R \]1

froductsa | Product Hame

B werosonwer. =
—

L ot - BT
- Get file metadata using path
Workplac

Set file item 1D if create

- hittpsffckoncthai tharepoint comyuitesWorkplace L' —

spvoductounar [l Product Hame ocy

Figure 5-30. Flow with the Create or Update condition

Now if you go back to the Products list and update any of the products for which you
previously generated a document, the flow will update the file with the new information
inside the Product Data library. You can play around with this by creating and updating
few items.

In the last few sections, we went over solutions, Word document generation, and
some of the file operations. In the next section, we’ll learn about child flows and how
they can satisfy one of the business requirements.

Child Flows

As you know, we have three product types in Cloudhadi: Food, Electronics, and
Furniture. We created a flow for document generation using a single template for
all three types. However, let’s assume that the requirement is to have three different
templates, and based on the type, we need to generate different document.

Let’s also assume that there is a requirement to run several actions based on the
product type after generating the Word documents and to push it to Product Data
library. If the product type is Food, the flow needs to interact with the service portal to

177

CHAPTER5 POWER AUTOMATE

check all the existing service requests created for the Food type. Based on that, we need
to do a cost estimate for the product. Finally, we need to post a message to a Teams
channel. There is a similar process for the other Product types as well. We will cover all
of these actions in chapters 6 and 8 while we discuss about SharePoint Framework(SPFx)
and Teams. Let’s not worry about them for now. In short, what I want to convey is that
when a product is created or modified in the list, we need to do several operations,
which are similar for different product types.

It’s not advisable to create all these actions in the Product Info Generation flow,
as they could end up growing into hundreds of steps and the flow would become
cumbersome to manage. In addition, there will be similar actions for each product type
and we may want to reuse the actions. So, for better maintenance and management,
we'll use child flows. A child flow can be called from the parent flow and, in turn,
respond back to the parent flow.

We can understand child flows better by creating flows for the previous requirements.
Let’s create three different flows, which we’ll connect to the parent flow to generate
different documents. Once we're through looking at the SPFx and Teams, we’ll update
these flows to include the cost estimation requirement. This will happen in Chapter 8.

To start with, let’s make two additional copies of the Product Information Template,
Food Info Template.docx, and name them “Electronics Info Template.docx” and
“Manufacturing Info Template.docx.” We should also modify the content heading with
the appropriate product type; for example, “Food Product Information for [Product
Name]! Leave the other contents as is. Upload all the three documents to the same
location, which is Site Contents » Documents » Templates.

Now, let’s create a child flow for the Food type. In the child flow, we’ll add some
inputs and then create actions based on the inputs. When we add the action to call a
child flow from a parent flow, we’ll supply the values for these inputs from the parent
flow. So, inputs are basically the parameters that receive values from the parent flow.

Go to Solutions » Cloudhadi Workplace and then create a new cloud flow. Select the
trigger Manually Trigger a Flow and new flow will be created. Open the trigger Manually
trigger a flow as show in Figure 5-31 and then click + Add an Input. Add Product ID as an
input and set the Number and Product Type types as Text. Add the current date as the
date input. These are the inputs expected by the flow. When you call this flow from the
parent flow, you'll need to supply these inputs. You can make each input mandatory or
optional using the ... symbol after it. By default, the inputs are mandatory, and let’s keep
it that way. We're adding the current date to avoid having to convert the time zone for
each of the child flows. We can keep it in the parent flow and pass it to child flows.

178

CHAPTERS5 POWER AUTOMATE

In the next step, let’s add a new Get Products Item action to get the item’s properties
from the Products list based on the Product ID. Remember, the ProductID needs to be

supplied by the parent flow, which will get it in the input field ‘Product ID’ which we
provided. As shown in Figure 5-31, select the ProductID input from Dynamic content
against the Id field of Get Product Item. For the Populate a Microsoft Word Template

action, select Food Info Template.docx against the File field and fill in the placeholders

with the Dynamic content from the previous step. For Current Date, select “currentDate.”

— Button -> Populate Microsoft Word template - Food Type Get Product_..

Figure 5-31. Child flow inputs

B Manually trigger a flow

[Make the field optional

o ProductType | Please enter your input

0 ProductiD [Please enter a number

CurrentDate Please enter or select a date {11
+ Add an input

(€]

+h

- Get Products Item
*Site Addvess

Workplace - https:

* List Name Products

“id ‘ n ProductiD = ‘

o i

. Populate Microsoft Word template - Food Type

SharePgint Site - Workplace

Documents

*File Memplates/Food Info Template.docx

rutactored Date -
Expiry Date B oeiv0ae
vepectencompiees | [T
Date L
Current Date n CurrentDate x
Product Mame . Product Name x

Copy the Create or Update condition block and Update File Properties from the

Product Info Generation flow. You can do this by opening both flows side by side and

clicking the ... icon next to both actions in the Product Info Generation flow and copying

179

CHAPTER5 POWER AUTOMATE

them to the clipboard. If you copy a parent action, such as the Create or Update action,
all the child actions inside of it will also be copied. Then you can go back to the child
flow and just add the actions from the clipboard.

If the connections was not copied, just expand each SharePoint action and click the
SharePoint connection to restore the respective connection. See Figure 5-32. Also copy
the Initialize Variable for ItemID to the child flow from the Product Info flow.

€ Button -> Populate Microsoft Word template - Food Type:Get Product & san

C-eawuupdabe &
| 1 [0 SRR s B woseee -

+ Add ~

W yes Bl 1o

- Update Product Info file e - Create Product Info file

Workplace - hitp/feloudnadi shanspoint com/sites Workplace w \I]

sovoducttuta Y bodvProdut % gocy Set file item ID i create
H o0 =

- . a -
(D)t cormction

- Update file properties &

Figure 5-32. Copying actions and restoring connections

Next let’s update the dynamic content inside each action. Start by updating the
right side of the Create or Update condition to addSeconds (outputs('Get Products
Item')?['body/Created'], 30), as shown in Figure 5-33. The Created must be read
from the outputs of Get Products Item. Update the Modified, Product Name, and
Microsoft Word content with the respective Dynamic content. Make sure you update the
Dynamic contents of Update File Properties as well.

180

CHAPTERS5 POWER AUTOMATE
template - Food Type,Get Product
m Create or Update
. Modified x s greater than v n addSeco.. x
+ Add -
If yes %&g .= Ifno
- Update Product Info file wre - Create Product Info file
*5 Warkplace - hit i ~ Warkplace - hitps: o
maduuam docx s fProductDats o

— e ‘ .
J’ * File Content EEl Microsoft Wor.. 3
- Get file metadata using path aes l

fon 2 o
Site Address Warkplace - hit | P P ~ Set file item ID if create

J/ I Add an action
m Set file item 1D if update

H

! Update file properties
* Site Address Workplace - hitp: ishareps | ~
Product Dats A
. IemiD =
Product Name B Frococt ame x

Figure 5-33. Updating the dynamic contents of copied actions

Then collapse all the actions and add new step at the bottom of the screen, as shown
in Figure 5-34. Select Respond to a PowerApp or Flow. Without this step, the child flow

can’t return the execution to the parent flow. Save your changes. The flow will look like

the one in the figure now.

181

CHAPTER5 POWER AUTOMATE

Manually trigger a flow
W@y Initialize file item ID
Get Products Item
%

Populate Microsoft Word template - Food Type

Create or Update

Update file properties

B EEEB QD

S

:._ Respond to a PowerApp or flow

+ New step Save

Figure 5-34. Child flow initial design

Now go back to the Details page for the flow and rename the flow “Food Product
Operations” and provide a description, as shown in Figure 5-35. Click Edit next to Run
Only Users on the right side of the screen, and under Connections Used update the
connections for Word Online and SharePoint to your email address using the drop-down
menu. Click OK on any pop-ups that appear. Save your changes.

182

CHAPTERS5 POWER AUTOMATE

......

28-day run history

Your fiow hasn't been run et Select Run to see it work

Figure 5-35. Updating run-only permissions

This is an essential step, as child flows can’t run in run-only user mode. The child
flows support only embedded connections. If you leave it set to run-only user, you'll
get an error from the flow checker in the parent flow. This is because in run-only user
mode, the child flow expects the connection to be passed from parent flow, which isn’t
supported.

Our child flow for Food type should be ready to go now. Go back to the Product Info
Generation flow, add a Switch Condition in the Convert Time Zone action, and fill in the
Product Type Value, as shown in Figure 5-36. In the Equals box at the top, enter “Food.”
Then, add a Run a Child Flow action, and select Food Product Operations from the
drop-down menu. Select the values for child flow inputs as shown in Figure 5-36.

183

CHAPTER5 POWER AUTOMATE

€ Product Info Generation

' When an item is created or modified
Convert time zone

[cool Switch
“On [- Product Type V... x

]
Case s £ pefault

<G~

* Child Flow Food Product Operations Nt
- Product Type V. x

-IDx

* CurrentDate Converted time x

Figure 5-36. Calling a child flow from the parent flow

Delete all other actions below Switch. The parent flow will now look compact and
quite easy to manage.

Let’s run a test to see if everything works as expected. The parent flow will call the
child flow and you can see the run history from the child flow details page. The execution
will return to the parent flow and it will get executed successfully.

In a similar way, we can create child flows for Electronics and Manufacturing. You
can create a copy of the flow, but you may not be able to add manually triggered flows
to the solution. We need the flows to be in the same solution. So, a better way to do this
would be to create flows within the solutions. Copy the steps from the existing flow
with the help of clipboard and make the necessary modifications. At this stage, the
only modifications would be done in the populate template step. You need to browse a
different template and fill in the dynamic content. Don’t forget to update the Run Only
Users settings for each flow.

Figure 5-37 shows how to create a copy a flow, just for your understanding. When
you create a copy of a flow from a solution, it will get created outside the solution. As
the trigger is manual, you won'’t be able to add it back to the solution. You must create
manually triggered flows as new flows from the solution. So, we can’t use this feature

184

CHAPTERS5 POWER AUTOMATE

for creating duplicate flows for our solution. However, we can use the copying feature
for supported flows in the solution or for all flows created outside solutions. To copy the
flow, go to the flow details page and click Save As. Update the title for the flow and save.

Create a copy of this flow

eate and add it to your My flows page, You can rename it first if you

Copy of - Food Product Operations

Figure 5-37. Copying a flow

Once you've created the two flows, go back to the parent flow and add two more
cases to Switch. Select each flow from the drop-down and supply the inputs. See
Figure 5-38.

185

CHAPTER5 POWER AUTOMATE

- Wi an item s created or modiied
Comeet i rone
H s
[T
o -Toud] [et o |
et Electiurecs Marnifacturng
| 1 B EERIN o [ErrTee— S 1 [RTe—
e — v . e — v oo [T —"
" Bl st
. [B
Bl e Bl cooened e =

Il
4
H Fopulate Produt Infa word semplate

Figure 5-38. Adding cases to Switch in the parent flow

If you go to the Cloudhadi Workplace solution page, you can see all the flows in one
place. In the next section, we'll learn about exporting and importing solutions and flows.

Exporting and Importing Solutions

Before getting into importing and exporting, let’s add the first flow we created, Product
Data Approval, to the same solution. Go to Solutions » Cloudhadi Workplace » Add
Existing » Cloud Flow. Select Outside Solutions, then Product Data Approval, and click
Add, as shown in Figure 5-39.

1 | ‘ Add existing cloud flows

Figure 5-39. Adding existing cloud flows to the solution
186

CHAPTERS5 POWER AUTOMATE

The flow will be added to the solution in a few seconds. Let’s try to export the
solution now. The Export option is available on the top menu, as shown in Figure 5-40.
Click it. Publish all the changes in the sliding window on the right. Run Check for Issues.
Then click Next.

I:I Before you export

7 Publish all changes

1

Published

Check for issues

0 bssueds) found on 02072021

Figure 5-40. Checking and publishing the solution

You'll get the option to export as either managed or unmanaged. Doing it
unmanaged means that you can still edit the flow after importing it into the next
environment. Doing it managed allows the flow to be distributed and installed to
nondevelopment environments. For our usual scenario of moving the development
to a testing or production environment, we can use the unmanaged option. Select
Unmanaged and click Export. It will take few minutes for the export to be completed.

Now extract the downloaded ZIP file and let’s take a look inside. Inside the workflow
folder, you'll see five JSON files, one for each workflow. Open and format any of these files
using Visual Studio Code or online. You can see connectionReferences and definition under
Properties. All the connections, actions, triggers, and so forth are defined in the JSON. You
can make some changes to the JSON before importing into another environment if you
need to. When you make changes to the workflow files and import them, you may need to
recheck all the connections as we did in Child Flows section Figure 5-32.

Let’s see how we can import a solution. If you're importing to the same environment,
you can change the version number in the solution.xml. You can find this file under the
root folder. After making the changes, compress the files into a ZIP file. To compress,
select the files inside the root folder and compress. For example, select the Workflows
folder and the other three XML files, and then compress. If you right-click and compress
the root folder, the import won’t work. Once the ZIP file is ready, you can go to the flow
environment. To import, go to Solutions and then click import, as shown in Figure 5-41.

187

CHAPTER5 POWER AUTOMATE

Browse the ZIP file and click Next. Click Import at the next step. If there is an existing
solution, it will be updated; otherwise, it will be created. If an existing solution is being
updated, a warning will be displayed.

2 Import a solution

Figure 5-41. Importing a solution

This is how to export and import a solution between environments. Similarly, you
can export and import individual flows outside solutions. You can see the export option
in the flow details page of a flow. The import option will be available upon selecting My
Flows from the left navigation bar. On selecting import, you'll get an option to upload
the flow package. Upload the ZIP file and click Import. Once the import is completed,
you'll be asked to choose the connections. You'll also have the option to choose between
creating a new flow and updating an old one. Once the import and connections are
successful, you can open the flow.

So far, we've covered some of the aspects of Power Automate and satisfied a few
requirements of the Cloudhadi project. We'll get further into this in Chapter 8 when we
integrate Teams with Power Automate. In the remainder of this chapter, let’s learn more
about the Power Automate capabilities. We'll start with handling general errors.

Error Handling

Let me explain the error-handling scenario with an example. Go to your solution and open
the Food Product Operations flow. Expand the Create or Update condition. We added an
Update Product Info File action there inside the If Yes block. This update will happen if
there is an update to any product item that has already been created. This assumes that the

188

CHAPTERS5 POWER AUTOMATE

document named ProductName.docx is already there. But what happens if we change the
product name during an update? For example, if we added a product called “Banana Pud,’
a document named Banana Pud.docx would be created in the Product Data library. But
let’s say, the next day you modified the product details and changed the name to “Banana
Rose Pud.” The Food Product Operations flow would see that as an update and try to
update Banana Rose Pud.docx, which doesn’t exist. So, the update would fail, resulting in
a flow failure. We need to make sure that in case an update action fails, it executes a Create
action for the document instead. We’ll see how to do that next.

As shown in Figure 5-42, click the + symbol following the Update Product Info File
step in the flow, then click Add a Parallel Branch. Copy the Create Product Info File
action from the If No block to the parallel branch. Rename the action “Create Product
Info File if update fails.” Click the ... icon to the right of the action and then click
Configure run after in the drop-down. Using Configure run after, you can define when
the action should take place. You can define it to be take place after the previous action
gets succeeded, failed, skipped, timed out or combination of any of these.

“- Food Product Operations

I _I ot it

Create or Update

- Modified x Is greater than “ addSeco_ x
+ Add -

bl irno

' Update Product Info file aen - Create Product Info file

‘L N [ESN set file item 1D if create
aath e - Create Product Info file if update fails ves ‘ [y Copy to my clipboard (Preview)

\L 7 feame

(= Add a comment

L static result [Preview)

) Settings

H

- Update file properties
a Respond to a PowerApp or flow

Figure 5-42. Adding a parallel branch and configuring run after

189

CHAPTER5 POWER AUTOMATE

In the resulting pop-up, tick off the check box for Has Failed, as done in Figure 5-43.

w

'Create Product Info file if update fails' should run after:

i ful
Update Product Info file D s successiu
_ has failed
Failed
D is skipped

D has timed out

Figure 5-43. Configuring run after

Clicking Done will ensure that the action will execute if Update Product Info File fails.
Ifit is successful, it will continue the execution with the normal operations. We need to
add one more step, which is to set the item ID variable. Copy the step Set file item ID if
create from If No and add it the following step and rename to Set file item ID if update.
The final flow will look like the one in Figure 5-44. Save your changes.

4= Food Product Operations

Create or Update

. Maodified x is greater than n addSeco.. x

+ add

Fyes

- Update Product Info file e I
J Lo [
N
- Get file metadata using path “ee - Create Product Info file if update fails s
Set file item 1D if update e m Set file item ID if create on update failure

>

Figure 5-44. Error handling on action failure

190

CHAPTERS5 POWER AUTOMATE

This is one of the scenarios where Power Automate helps you to handle errors well.
Let’s look at Timeout next.

Timeout

You may have seen a “has timed out” option in the Configure run after pop-up. For
example, there may have been some scenarios where you called a web service with one
of your actions and the service didn’t respond for five minutes. You can configure an
action upon the time-out of this action. Also, you need to specify the time-out as five
minutes in the settings for the action.

Let’s take a look at a Timeout scenario with the Product Data Approval flow. Open
the flow from the solution. The requirement is to time out the approval block after seven
days and send an email to the product executive saying the approval request has expired
and the document needs to be submitted for approval again.

Click the ... symbol after the ‘Start and Wait for an Approval’ section and then
Settings. For the Timeout option, specify the Duration as “P7D,” as shown in Figure 5-45.

This ensures that the action will be timed out after seven days. The value we
provided is in the standard date/time format. P denotes the duration of the period and
D denotes the days. If you want to set the time-out for ten minutes, you would need to
specify “PT10M,” where T denotes time and M denotes minutes. If you instead entered
“P10M,” that would indicate ten months.

191

CHAPTER 5

POWER AUTOMATE

- For a selected file o
- Get file properties -

Settings for 'Start and wait for an approval'

Secure Inputs (Preview)
Secure inputs of the operation.
Secure Inputs @ Off

Secure Outputs (Preview)
Secure outputs of the operation and references of output properties.
Secure Outputs @) Off

Timeout
Limit the maximum duration an asynchronous pattern may take. Note: this does not alter the request
timeout of a single recpest

Duration (i) l P7D l

Retry Policy
A retry policy applies to intermittent failures, characterized as HTTP status codes 408, 429, and 5xx, in
addition to any connectivity exceptions. The default is an exponential interval policy set to retry 4 times.

Type Default s

Tracked Properties

Properties

Initialize bool - CanPublish

— <

&—

Product Lead Decision 50

r
L
Initialize string - inspection lead mail body section ..

Figure 5-45. Timeout settings

192

CHAPTERS5 POWER AUTOMATE

When you're finished, click Done to save the changes. Now the approval is set to
time out after seven days, but what will happen after the time-out? We can add a parallel
branch. Here, you can add Send an Email (V2) and set Configure run after to “has timed
out” like you did for “has failed” in the previous section. Then, you can add contents to
the email and rename the action. See Figure 5-46.

B e
- Get file properties

ET'J] Saart and wait for an apgroval

b 4
Initialize bool - CanPublish Motity product executive if not approved for 7 days
\L *» B vosseanyr. x
m Initialize string - inspection bead mail body section S Resuberit - File name with
\L Fant v 2vB i UW/EE & 0ah

Product Lead Decrsion

Figure 5-46. Adding an action after the time-out

Then, save your changes to the flow. So now, if the approver doesn’t act on the
request for seven days, the request will be timed out and the Product Executive will get
an email asking them to submit the document for approval again.

There are many other topics to explore within Power Automate. Why not click each
item in the left navigation pane and go through them? In the next section, we will see
how Power Automate can interact with Power Apps.

Power Talk

We learned about Power Apps in Chapter 4. In this section, I'll introduce you to how to
connect Power Automate with Power Apps. We can see how to do this with a simple example.

193

CHAPTER5 POWER AUTOMATE

In the last chapter, we created a Products App using Power Apps. Now let’s modify
that app to include a button called “Report an Issue.” By clicking the button, the service
desk will be notified. For now, this just needs to be done with an email that goes to
service desk saying, “An issue has been reported with Products App” accompanied by the
email of the person who reported the issue.

We can start the process by going to https://make.powerapps.comand then Apps »
Products App, as shown in Figure 5-47.

31 Power Apps

+ Mewapp ~ ¢ Edit [> Play & Share = Export package i AddtoTeams [H Monitor |2 Ar

) Home
Apps
[Lean
Apps Component libraries (preview)
| = Apps
+ Create B Name Modified
& Data e (] B Products App 1 min ago
o~ Flows & Edit
B A

> Plav

Figure 5-47. Editing a canvas app in Power Apps

In the canvas app, select BrowseGalleryl, click + insert a Button, and then place the
button below BrowseGallery1 at the bottom center. Rename it to Report an issue. See
Figure 5-48.

194

https://make.powerapps.com

= Insert

=~ 2 2 Search

]EE:] Popular
B Text label
B8 B editfom
[+ =l Text input
Ba Vertical gallery
B+ addicon
I Rectangle
= Date picker
JE
* Input
Display
Layout
Media
Shapes
Charts
Al Builder
Mixed Reality

Figure 5-48. Adding a button

CHAPTERS5 POWER AUTOMATE

Products

Search items

0>
@a nanaApple

Completed
Food

Chocolate CH
In production
Food

Kiwi puddings
New
Food

Orange Puds
Completed
Food

Peach Jam
MNew
Food

e

([e |

Now save your changes and let’s go back to https://flow.microsoft.comand create

a flow. As shown in Figure 5-49, select Create, then Instant Cloud Flow, and choose

PowerApps as a trigger. Give it a name and click Create.

195

https://flow.microsoft.com

CHAPTER5 POWER AUTOMATE

Build an instant cloud flow

Flow name
=

Choase how fo trigger this flow *

Manually tigger a fiow
Flow button fo mobile
PowerApps

2| o @

‘When Power Virtual Agents calls a flow
Power Virtual Agents

Triggered mansally fiom any device, easy-to-share instant flaws.

‘When a flow step is run from a busine.
automate tasks 50 you don't have to repeat yourself

Comman Dats Senvce (ourrect emvronment]

Examples: For a selected mossage
* Get an automatic mobie alert whenever a VIP cliem emails Microncft Teams

you
* Save all your email attachments to a folder automatically For a selected file
Orarive for Butiness

S Power B buston clicked -

Figure 5-49. Creating a flow with the Power Apps trigger

Once the flow has been created, add the Send an Email (V2) step. In the To section,
provide your email ID for now. Once the service portal is ready, we can configure it to the
service desk. Fill in the Subject and Body, as done in Figure 5-50. Click inside the body
of the email, and then select Ask in PowerApps from the dynamic content. When you're
linking this flow to Power Apps, it will expect a parameter.

4= tsue Reporter "

H
Mo addizional information is needed for this step. You will be able 1o use the cutputs in
subsequent steps.

[—— |
[Font * 2~BIU/EEE LD

Agp The reporter e

' [rrperp— |
Dynamic contant Exprassicn

Show sdvanced optiont

[P Soarch dynaric coment

PowsrApps

* New step Save
Aak in Powerhpps.

Figure 5-50. Configuring a Power Apps parameter

196

CHAPTERS5 POWER AUTOMATE

By clicking Ask in PowerApps, a parameter will be added to the body. Save the
changes to the flow.

Now go back to the Products app and click the Report an Issue button. Select Power

Automate from the top menu. The Issue Reporter flow will be available for you select.
Click it, and the flow will get linked to the button. See Figure 5-51.

Products

Search items

O

1T

BananaApple
Completed
Food

Chocolate CH
In production
Food

Data

Flows associated with ‘Buttoni

4

Button1

Preperties Advanced

Power Automate

Kiwi puddings
New
Food

Orange Puds
Completed
Food

e

o o 15
20 20]
=
g 5 5
5 5
Coloe A 3
Barder — 2 [:==]
Border 1 a
Fern Open S w

Figure 5-51. Associating the flow with a Power Apps button

Now you have associated the Issue Reporter flow to the button. Select the button
and set the value to the OnSelect property. Give User () .Email as the parameter.

The flow will expect this parameter to be passed. The expression will look like this:
IssueReporter.Run(User().Email). See Figure 5-52.

197

CHAPTER5 POWER AUTOMATE

<
= f IssueReparter. fun(User(). Enail)
J
= Insert x Data
= Products o) liF aF
ution
|_ Popular Search items
B Tet label
B B esttom BananaApple
Completed > / Bt Salicerake
g = Testinput Fosa - tomat
B8 Vertical gallery I3sue Reporter
B 4 asdic 2
S Chocolate CH
3 Rectangle In production > /
B Bate picker Food + | Create a rew flow
3} Butto
Input Kiwi puddings
Dlter New P e
Food
Layout
Media
Orange Puds
Shapes
Completed > /
Charts Food
Al Builder
Mined Reality

Figure 5-52. Supplying a parameter to the associated flow

Save your changes and publish like you did in the previous chapter 4 Connecting
the Screens section Figure 4-22. Preview the app and click the Report an issue button.
The flow will be triggered and you will get an email. Note that for now we have not
configured any alert or disabling effect for the button. So, if you click the button multiple
times, you'll receive multiple emails. If you go to the Issue Reporter flow, you can see run

instance details there as well.

Note The flows developed in this chapter are available as ZIP packages

in the Chapter 5 folder of the GitHub repository: https://github.com/
Apress/building-modern-workplace-sharepoint-online/tree/
main/Chapter’%205. The final Products App is available in the Chapter 4
folder: https://github.com/Apress/building-modern-workplace-
sharepoint-online/tree/main/Chapter%204.

This was a quick preview of how to link Power Apps with Power Automate. We'll do

more work on this flow in the upcoming chapters.

198

https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 5
https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 5
https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 5
https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 4
https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 4

CHAPTERS5 POWER AUTOMATE

Summary

This chapter has been all about using Power Automate with SharePoint. You got a
glimpse of how powerful Power Automate can be when it comes to automating business
processes. With respect to Power Automate as an automation tool, what we covered is
only the tip of the iceberg. There are many other connectors, templates, actions, and
data sources available within the platform. In addition to this, you can build Artificial
Intelligence(AI) models using Power Automate.

You learned about how to use Power Automate with SharePoint Online in this
chapter. You mastered the basics of how to use triggers, actions, parallel branches, and
more. You saw how easily you can interact with SharePoint items with Power Automate.
You learned about expressions and how to construct them. You learned about solutions
and child flows. Now you know how to link flows together. You learned about handling
errors using the Configure Run After feature. You practiced implementing Timeout
actions. Finally, you connected Power Apps with Power Automate. In the process of
learning, you implemented some of the process automation for Cloudhadi workplace,
the project behind our learning.

I'hope you're now in a strong position to explore more and more with Power
Automate. Keep practicing, and when we cover Teams, we’ll come back to Power
Automate again. In the next chapter, we’ll move along and develop custom forms using
SPFx. See you there. We'll start with some hands-on coding with React.

199

CHAPTER 6

SharePoint Framework

In the first three chapters, we looked at the basics of SharePoint Online and then a case
study. Based on the case study, we developed forms and formatted columns and views
using JSON. We learned how to provision sites using Patterns and Practices (PnP).

In Chapters 4 or 5, we went over Power Apps and Power Automate. You found out

how to create forms using Power Apps and how to automate business processes using
Power Automate. In this chapter, we’ll learn a full code-based approach for customizing
SharePoint Online and satisfying complex business requirements.

The SharePoint Framework (SPFx) is a development model that uses the context
of the current user and the browser connection. SPFx is the most modern way of
customizing SharePoint solutions. You can use any JavaScript framework for developing
SPFx solutions.

In this chapter, we’ll continue to take a learning-by-doing approach. We'll develop
a SPFx web part step by step. In the process, you'll learn the concepts of custom
developement using SPFx and find out how to implement business requirements.

We'll use React, a JavaScript library, for our development. You'll become familiar
with the concepts involved in React when we develop a web part, which we’ll use the
Service Portal requirement from Cloudhadi to build. At the end, you'll deploy the app
to a SharePoint App Catalog and host it in the workplace home page. At the end of this
chapter, you'll get an overview on SPFx extensions. Then in the next chapter, I'll give you
an example of one of the extensions.

App Catalog

Before we develop an SPFx web part, we need a place where we can upload and deploy
it. We'll create an App Catalog site for that purpose. It'll be like what we created for the
communication site in Chapter 1.

201
© Harinarayanan V P 2021

Harinarayanan V P, Building the Modern Workplace with SharePoint Online,
https://doi.org/10.1007/978-1-4842-6945-9_6

https://doi.org/10.1007/978-1-4842-6945-9_6#DOI

CHAPTER6 SHAREPOINT FRAMEWORK

To start creating the App Catalog site, go to https://admin.microsoft.comand then
Show All » SharePoint. Click More Features on the left navigation bar, go to the Apps
section, and click Open, as shown in Figure 6-1.

More features

Sea App
bl . a3 et ey g Configurs SharsPusss Ston StBngs, monts
sage. manage app bcenses, and mare
Bes Recortsmassgemnt lnkobuh
Mg et b i s e 501 Maruge rec Rncords Certe . browner-based
s WCF vt e wan
pen Open Ope Open

Figure 6-1. Creating the App Catalog site

On the page that comes up, select App Catalog and click OK to create an App
Catalog site. For the Title, enter “App Catalog,” and provide URL as “AppCatalog.” Add
yourself as the administrator. Click OK and the App Catalog site will be created. If you go
to the Contents screen for the created site, you'll see Apps for SharePoint, as shown in
Figure 6-2. We'll upload and deploy our SPFx web parts here once they're created.

202

https://admin.microsoft.com

CHAPTER6 SHAREPOINT FRAMEWORK

Home

App Catalog

Apps for SharePoint “+ New

Apps for Office
Contents Subsites

App Requests
Recycle bin
Edit 7 Name Type Items Modified
O Form Templates Document library 0 12/12/2020 11:49 PM
O Site Assets Document library 0 12/12/2020 11:50 PM
O Style Library Document library 5 12/12/2020 11:50 PM
a App Requests List 1} 12/12/2020 11:50 PM
® Apps for Office List 1] 12/12/2020 11:50 PM
] Apps for SharePaint List 0 12/12/2020 11:50 PM
Site Pages Page library 2 12/12/2020 11:50 PM
0 Tenant Wide Extensions List [i] 12/12/2020 11:50 PM

Figure 6-2. Apps for SharePoint screen

Development Environment

Before we start developing our first web part, we need to set up our development
environment. Download and install the following open-source software in your
machine:

e Node.js: Node.js is the runtime platform on which the SPFx web
part is going to run. We need to use Node.js v10.x for SharePoint
Online. To get it, go to https://nodejs.org/dist/latest-v10.x
and download the package based on your machine’s operating
system. If you have a 64-bit version of Windows, you can select
node-v10.23.3-x64.msi.

o Visual Studio Code: We also need a code editor; I recommend using
Visual Studio Code. You might already have it installed from the
previous chapters. If not, you can download it here: https://code.
visualstudio.com/.

203

https://nodejs.org/dist/latest-v10.x
https://code.visualstudio.com/
https://code.visualstudio.com/

CHAPTER6 SHAREPOINT FRAMEWORK

e Gulp, Yeoman, and Yeoman SharePoint Generator: Gulp helps us
to build the web part, bundle it, and package it. We can upload
this package to the App Catalog. Yeoman generates files for your
application based on the configuration you requested. The Yeoman
SharePoint Generator does this job specifically for your SharePoint
client-side web part.

Let’s see how to install these things. First, ensure that Node.js v10.x is installed on
your computer. Open the command prompt and run node -v, which should give you
aversion starting with v10. In the next line, navigate to a folder where you'll place the
SPFx web part. For example, I navigated to C: \Projects\SPFx. Now, run the following
command to install Gulp, Yeoman, and SharePoint Generator:

npm install gulp yo @microsoft/generator-sharepoint --global

NPM, or Node Package Manager, is the package manager for JavaScript. It gets
installed automatically when installing Node.js. You can install and use various packages
using NPM during our development. --global will help you to install the tools globally
on your machine. This will take some time to complete.

Service Portal Web Part

Let’s get straight into action by creating the Service Portal web part, which is one of the
key requirements of Cloudhadi modern workplace project. In the process, you'll learn
about TypeScript, and React as well.

Go back to the command prompt and run yo @microsoft/sharepoint. You'll be
prompted with the questions you see in Figure 6-3. Answer them as shown.

204

CHAPTER6 SHAREPOINT FRAMEWORK

C:\Projects\SPFx>yo @microsoft/sharepoint

Let's create a new SharePoint solution.

? What is your solution name? cloudhadi-ServicePortal

? Which baseline packages do you want to target for your component(s)? SharePoint Online only (latest)

? Where do you want to place the files? Create a subfolder with solution name

Found npm version 6.4.1

’ Do you want to allow the tenant admin the choice of being able to deploy the solution to all sites no
Will the components in the solution require permissions to access web APIs that are unique and not

* Which type of client-side component to create? WebPart

Add new Web part to solution _19 idhadi-service-portal
What is your Web part name? cloudhadi-ServicePortal

> What is your Web part description? Service portal web part for cloudhadi modern workplace

? Which framework would you like to use?

No JavaScript framework

React

Knockout

No

W

Figure 6-3. Creating a SPFx web part using React

After entering all the information and selecting the framework, the web part will be
created. It will take a few minutes to complete. Once this is done, change the directory
to the solution path by typing in “cd Cloudhadi-ServicePortal.” Next, enter Code. in the
command prompt. This will open the solution in Visual Studio Code. Alternatively, you
can go to the solution directory and open the solution file in Visual Studio Code.

Let’s try to understand some of the files in the solution before previewing the web
part. All the files in the solution are generated by the Yeoman generator for SharePoint.

SPFx Solution Files

The important files and folders follow.

CloudhadiServicePortalWebPart.ts

CloudhadiServicePortalWebPart.ts is the entry point of the web part. The file name
always ends with WebPart.ts. The .ts denotes that it is a TypeScript file. TypeScript is the
primary language used in SPFx web parts. The web part file is located in src » web parts
» cloudhadiServicePortal.

205

CHAPTER6 SHAREPOINT FRAMEWORK

Open the file in the Visual Studio Code solution, and let’s read through it. You
can see that React and ReactDOM are imported. As we're developing this web part
in React, we need to inherit those. You can also see that BaseClientSideWebPart,
IPropertyPaneConfiguration, and PropertyPaneTextField are imported.
BaseClientSideWebPart provides the basic functioning for the web part. The other two
help to provide the property pane configuration. We'll come back those two in a later
section.

CloudhadiServicePortalWebPart.manifest.json

There are some properties configured in the CloudhadiServicePortallWebPart.
manifest.json file, such as the title, icon, description, and more. This is in the same
path as that for the webpart.ts file.

Components

The Components folder contains the React (.tsx) files. You selected React as the
framework for your web part. When you're creating a React solution, components are the
individual building blocks of it. All the React components go inside this folder. We’ll take
a deeper look at the React files in upcoming sections.

Config

The Config folder contains the configuration files for your web part. Config.
json defines the entry point for your web part. You can see that it is pointing to
CloudhadiServicePortalWebPart.js by default. The .ts file gets compiled into . js,
hence the path points to .js. Package-solution.json contains the packaging information
such as the name of the web part, the ID, and the version. serve. json contains server
configurations. We can run and test the web part in a workbench before deploying to the
App Catalog. We specify the workbench URL in the serve. json.

This is a general overview of some important files to get started. You'll get familiar
with remaining files and code while we’re building the solution. Let’s run this solution in
SharePoint Workbench before we start developing.

206

CHAPTER6 SHAREPOINT FRAMEWORK

Running the Web Part

The SPFx uses Hypertext Transfer Protocol Secure (HTTPS) and it is implemented using
a development self-signed Secure Sockets Layer (SSL) certificate. We must make our
development environment trust the certificate before testing the web part. We can do
this with the help of a gulp command. Go back to the command prompt and run

gulp trust-dev-cert

You'll get a pop-up. Read through it and click Yes. Once you've done that, run gulp
build to build the solution. It will take few seconds. Make sure there are no errors.

Note To clear the console, use the CLS (Clear Screen) command. To stop running
a command, press Ctrl+C and enter “Y” for the confirmation message.

To preview your web part, run gulp serve. This command will do the build as well
before opening the preview. The preview will open in your local workbench. The
SharePoint Workbench is a developer design surface that enables you to quickly preview
and test web parts without deploying them in SharePoint. SharePoint Workbench
includes the client-side page and the client-side canvas in which you can add, delete,
and test your web parts in development. Click + and add the “cloudhadi-ServicePortal”
web part. See Figure 6-4.

+ Discard Woeb part data

Featured

Ay

All Ato Z

Figure 6-4. Adding a web part in your local workbench

207

CHAPTER6 SHAREPOINT FRAMEWORK

Once the web part is added, you can see some of its content. If you go to your
solution, src » components » CloudhadiServicePortal.tsx, you can see that this content
is coming from this React file. So, we start our development from this .tsx file. The
ClouhadiServicePortalWebPart.ts is the entry point of the web part, which will render
this React file upon loading the web part. If we need to some property configuration for
the web part, we will do it in the ClouhadiServicePortalWebPart.ts file.

In the next section, we’ll plan our solution for the Service Portal. After that, we can
make changes to the solution accordingly.

Planning the Solution

As per the Service Portal use cases, we need to have the option to submit a request and
view the existing requests. (See the use cases in the “Service Portal Use Cases” section
of Chapter 2). We'll provide a live chat option for now, and in Chapter 8, we'll integrate
it with Power Virtual Agents. We'll connect the web part to the Service Portal list to store
and update request information.

We need an interface with four buttons: Submit Request, View My Requests, FAQs,
and Live Chat. “Submit Request” should take the user to a form where they can enter the
request information and submit. “View My Requests” should take the user to page where
they can see their previous requests as a list; by clicking each request, they can find out
more details about that request. “FAQs” should take the user to a page where they can
see common queries. The “Live Chat” option we can keep only as a button for now.

Let me get you started with React and explain how we can design this solution in the
library. Once the solution is designed, we can go to the code for the web part and start
coding.

Introduction to React

To put it simply, React is a JavaScript library for building user interfaces (Uls). React uses
pieces of code called components to construct complex Uls. So when we’re designing
the solution for our web part, we can imagine how it can be built using components.

A component is basically a JavaScript file, but we develop it in TypeScript, which
will later get converted into JavaScript. We can divide components into two types: the
parent component and the child component. A child component is a component that
stays inside another component. A parent component is the component that holds the

208

CHAPTER6 SHAREPOINT FRAMEWORK

child component. So, all the components maintain a parent and child relationship. You
can also have a single component web part. Go to your Solution » src » Webparts »
CloudhadiServicePortal.tsx file to understand this better.

Let’s clean up the code in CloudhadiServicePortal.tsx as follows and save by pressing
Ctrl+S:

import * as React from 'react';
import styles from './CloudhadiServicePortal.module.scss';
import { ICloudhadiServicePortalProps } from './
ICloudhadiServicePortalProps';
export default class CloudhadiServicePortal extends React.Component<ICloudh
adiServicePortalProps, {}> {
public render(): React.ReactElement<ICloudhadiServicePortalProps> {
return (
<div className={ styles.title }»
Service Portal
</div>
)5
}
}

CloudhadiServicePortal.tsx is your TypeScript class file for the component
CloudhadiServicePortal. I'll explain later why the file extension is .tsx. import is for
external reference to this file. We are importing React, scss, and Props files. To use the
React features, we need to import React. The scss file sets the style here. You can refer to
CloudhadiServicePortal.module.scss in the same folder and view some default classes
defined there. ICloudhadiServicePortalProps is defining an interface for our class file.
We'll get more into that while creating other properties.

You can see that the class ClouhadiServicePortal extends React.Component. React.
Component is the base class for all components. The first step in creating a component is
to extend it from React.Component. export default is used so that you can import this
class from any other class. When you export the class, you can name it whatever you like,
as the default is specified with export.

You can see the render () and return() methods inside the CloudhadiServicePortal.tsx
file. These two methods help to render the content into the Document Object Model (DOM).
The DOM represents the UI of your web part. This means that if you wrap a <div> element
inside return() using the render () method, you can see the div in your browser.

209

CHAPTER6 SHAREPOINT FRAMEWORK

The div that you're seeing inside the return is not HTML but JSX. JSX is a syntax
extension to JavaScript. It basically creates React elements. So, when you add a
<div>ServicePortal</div>, it creates a React element, div. The className denotes the
style of the element. You can refer to styles in the .scss file using the ClassName ={
styles.nameoftheClass} syntax.

When we implement the solution, I'll explain each of the concepts involved in React.
You'll learn by building. Let’s start designing the solution.

Service Portal Design

In a nutshell, we need three components. The Home component,
CloudhadiservicePortal, is the home of the Service Portal, where we have four buttons:
Create a New Request, View Existing Requests, FAQs, and Live Chat. We will have four
additional components for all these four pages. In addition, from the View Existing
Requests component, the user should be able to click each request and redirect to

that request. Let’s make an additional component for that. So, in total we have six
components. Figure 6-5 is a visual representation of our design.

Cloudhadi
Service Portal

Y y Y

[View my Request] [Create Request] [FAQ] [Live Chat

A 4
[View Individual]

Request

Figure 6-5. Service Portal design

210

CHAPTER6 SHAREPOINT FRAMEWORK

We already have the Home component in our solution. Let’s now create the
remaining five components. But before we di that, let me introduce you to the two base
concepts of React: Props and State.

Props and State

Props are variables passed to a component by its parent component. For example, if we
want to include the ViewRequests component from the Home component to view the
requests in the home page, we can use the following tag:

<ViewRequests />

If we want to specify that only five requests should be displayed, we can include the
following tag:

<ViewRequests reqCount=5 />

This means that the parent component is passing a prop called reqCount to the child
component. We can access this prop from the child component. We'll see that in action
after creating the components.

State is like a local. You can create a variable and set its state inside a component.
You can’t access or modify this state from outside the component. We'll look at various
ways of setting a state.

There are two ways of writing a React component. One uses a function and the other
uses a class. A functional component accepts props and returns a React element output.
A stateful component is a component that can change its own state. Usually, we write a
stateless component as a functional component. We can have stateful components also
act as functional components if we introduce React Hooks. In our application, we’ll have
only functional components. We’ll manage state with the help of the useState hook.

In the next section, we'll start designing the solution by creating the functional

components.

211

CHAPTER6 SHAREPOINT FRAMEWORK

Creating the Request Component

To start creating the Request component, go to your solution » src » Webparts
» CloudhadiServicePortal » components. Then, click New File and name it
CreateRequest.tsx. See Figure 6-6.

File Edit Selection View Go Run Terminal Help
I... EXPLORER =+ {.} servejson % CloudhadiServicePortal.tsx " CreateRequesttsx X
> OPEN EDITORS src > webparts > cdloudhadiServicePortal > components——£#—CreateRequestisx
“ CLOUDHADI-SERVICEPORTAL 1 -
> IR wvscode
v (@ config
{-} configjson

{} copy-assets.json
{-} deploy-azure-storagejson
{.} package-solution.json
{.} servejson
{-} write-manifests.json
> I dist
> g lib
> I node_modules
v @@ src
~ @ webparts \ cloudhadiServ...

v (@ compor
% Cloud New C# Class

& Cloudl___New C# Interface
@ Create New File
B IClouc™ New Folder

Figure 6-6. Creating a component

In this component, we need to create a form for the user to submit the service
request. Once the form logic is ready, we can connect it to the home component and
manage state. We need to have fields like the request title and description in the form.
For that, let’s import NPM packages for fluent UI controls so that we can create a good-
looking form.

Go back to command prompt and if any command is running, stop it using Ctrl+C.
Make sure you're in the Project folder. Run the command npm install @fluentui/
react.

Then, modify the CreateRequest.tsx with the following code. This will set up the Ul
for the Create Request form.

212

CHAPTER6 SHAREPOINT FRAMEWORK

import * as React from 'react’;

import styles from './CloudhadiServicePortal.module.scss';

import { TextField, Dropdown, Stack, IStackTokens, PrimaryButton,
DefaultButton } from '@fluentui/react’;

const stackTokens: IStackTokens = { childrenGap: 30 };
function CreateRequest() {
return (
<div className={styles.cloudhadiServicePortal}>
<div className={styles.container}>
<div className={styles.row}>
<div className={styles.column}>
New Service
Request
<div id="requestForm">
<div className={styles.formGrid}>
<div className={styles.formGridRow}>

<TextField label="Request Title"
required></TextField>
<TextField label="Request Description”
multiline rows={4} required></TextField>
<Dropdown
placeholder="Select an option"
label="Related to"
options={[
{ key: 'Access', text: 'Access'’
}J
{ key: 'Materials', text:
'Materials' },
{ key: '"Equipemnts', text:
"Equipments’ },
{ key: 'General', text:
"General' }
1}
required
/>

213

CHAPTER6 SHAREPOINT FRAMEWORK

<Stack horizontal tokens={stackTokens}
className={styles.buttonStack}>
<PrimaryButton className={styles.
button} text="Submit" />
<DefaultButton text="Cancel" />
</Stack>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
)5
}
export default CreateRequest;

Let’s get deeper into the code. In the CreateRequest.tsx, we created the UI structure
for a new request form. The component was created as a functional component.

In the UI, I used fluent UI controls, including TextField and DropDown to fit the
request title and description. The buttons are wrapped inside a Stack. The Stack helps
us to provide a gap between the two the buttons using the childrenGap property. I
defined a const variable and configured the Gap property. And, in the Stack, I set the
tokens property of the variable. Note that required property is added to the form fields.

Next, let’s update CloudhadiServicePortal.module.scss with the following styles:

@import '~office-ui-fabric-react/dist/sass/References.scss';
.cloudhadiServicePortal {
.formGrid

{

@include ms-Grid;

}

.formGridRow

{

214

CHAPTER6 SHAREPOINT FRAMEWORK

@include ms-Grid-row;
padding-top: 5px;
padding-bottom: 5px;
font-weight:600;
font-size:12px;

}
.labelCol

{
@include ms-Grid-col;
@include ms-1g2;
@include ms-sm6;
@include ms-md4;
color:white;

}
.textCol

{
@include ms-Grid-col;
@include ms-1g10;
@include ms-sm6;
@include ms-md4;
color:white;

}

.container {

max-width: 700px;

margin: Opx auto;

box-shadow: 0 2px 4px 0 rgba(o, 0, 0, 0.2), O 25px 50px O
rgba(o, 0, 0, 0.1);

}

.row {
@include ms-Grid-row;
@include ms-fontColor-white;
background-color: $ms-color-white;
padding: 20px;

}

215

CHAPTER 6 SHAREPOINT FRAMEWORK
.column {

@include ms-Grid-col;
@include ms-1g10;
@include ms-x18;
@include ms-x1Push2;
@include ms-1gPushi;

}

Jtitle {
@include ms-font-x1;
@include ms-fontColor-black;
padding-bottom: 10px;
font-weight:600;
font-size:18px;
height:24px;

}

.subTitle {
@include ms-font-1;
@include ms-fontColor-white;

}

.description {
@include ms-font-1;
@include ms-fontColor-white;

}

.buttonStack {
padding-top:20px;
padding-bottom:20px;

}

.button {

// Our button
text-decoration: none;
height: 32px;

216

CHAPTER6 SHAREPOINT FRAMEWORK

// Primary button

min-width: 80px;

background-color: rgb(3, 120, 124);
padding-top:10px;

border-color: $ms-color-themePrimary;
color: $ms-color-white;

// Basic button

outline: transparent;

position: relative;

font-family: "Segoe UI WestEuropean","Segoe UI",-apple-system,BlinkMac
SystemFont,Roboto, "Helvetica Neue",sans-serif;
-webkit-font-smoothing: antialiased;
font-size: $ms-font-size-m;

font-weight: $ms-font-weight-regular;
border-width: 0;

text-align: center;

cursor: pointer;

display: inline-block;

padding: 0 16px;

.label {
font-weight: $ms-font-weight-semibold;
font-size: $ms-font-size-m;
height: 32px;
line-height: 32px;
margin: 0 4px;
vertical-align: top;
display: inline-block;

Here, I modified some of the classes in the .scss module and added some new classes
to prepare the Ul for the form. The grid classes are helpful in having a responsive form.
Try to correlate between the styles and the .tsx file.

217

CHAPTER6 SHAREPOINT FRAMEWORK

Note To explore fluent Ul controls further, you can go to https://developer.
microsoft.com/en-us/fluentui#f/controls/web/.

In the last line of the code that follows, I'm exporting the component using the export
default CreateRequest. This enables any other component to include this component by
importing the component reference and using the <CreateRequest /> tag.

Let’s add a Create New Request button to our home component and link the Create
Request form. To do so, go to CloudhadiServicePortal.tsx and modify the code as follows:

import * as React from 'react’;

import styles from './CloudhadiServicePortal.module.scss';

import { ICloudhadiServicePortalProps } from './
ICloudhadiServicePortalProps';

import CreateRequest from './CreateRequest’;

export default class CloudhadiServicePortal extends React.Component<ICloudh
adiServicePortalProps, {}> {

public render(): React.ReactElement<ICloudhadiServicePortalProps> {
return (
<CreateRequest />
)s
}
}

What we just did is to include the CreateRequest component in the home
component. Now, let’s go back to the command prompt and run gulp serve. Once the
workbench is loaded, add the CloudhadiServicePortal web part in the same way we did
before. A form will appear like the one in Figure 6-7.

218

https://developer.microsoft.com/en-us/fluentui#/controls/web/
https://developer.microsoft.com/en-us/fluentui#/controls/web/

CHAPTER6 SHAREPOINT FRAMEWORK

part data

New Service Request

o} Request Title *

Request Description *

Related to *

m Clncdl

Figure 6-7. New Service Request form in Workbench

In the next step, we’ll add a Create a New Request button in the home component.
The Create Request form will appear only if that button is clicked. We’ll see how to do
that next with the help of a state variable.

I'll also introduce you to the useState() hook. We can convert the home component

into a function component, which was previously a class component.

Working with Multiple Components

Before we link the Create Request to the home component, let’s create the base template
for three more components so that we can link those as well. Right-click CreateRequests.
tsx and click Copy. Then, right-click the Components folder and click Paste. You can
right-click the appropriate file and rename it or use the F2 key on a keyboard to do so.
Then, go to ViewMyRequests.tsx and replace the contents of the file with the
following code. For now, we're just renaming the component and cleaning up the new

request content.

import * as React from 'react';
import styles from './CloudhadiServicePortal.module.scss';
function ViewMyRequests() {
return (
<div className={styles.cloudhadiServicePortal}>
<div className={styles.container}>
<div className={styles.row}>

219

CHAPTER6 SHAREPOINT FRAMEWORK

<div className={styles.column}>
My Requests
<div id="viewForm">
</div>
</div>
</div>
</div>
</div>
);
}
export default ViewMyRequests;

Like you did before, copy and paste ViewMyRequests two times. Rename the two new
files “FAQs.tsx” and “LiveChat.tsx.” Update the code inside these files by changing the
component name, ID of the div, and titles to “Frequently Asked Questions” and “Chat
with a Virtual Agent,” respectively. The highlighted items in the previous code are those
that require changes.

Now we have templates for the three components ready in addition to the Create
Request form. Go to the home component CloudhadiServicePortal.tsx and replace the
code with that which follows. I will explain each section of code in detail to follow.

Note Before working on the home component, make sure you update the
CompilerOptions in the file tsconfig.json, which can be found in the root directory.
Also update the target to “es6” and the lib to “es5,” “es6,” “dom,” or “dom.iterable.
Add the allowSyntheticDefaultimports true property in the CompilerOptions. This
will allow us to import the specified namespaces from React. Also, while developing
SPFx, always try to use the latest version of tools and libraries. As of June 2021,
1.12.1 is the latest SPFx version available and it supports Node 14.x. Refer the
below Microsoft page for updates on versions. https://docs.microsoft.com/
en-us/sharepoint/dev/spfx/compatibility.

”

import React, { useState } from 'react’;

import styles from './CloudhadiServicePortal.module.scss’;

import {CommandBar, ICommandBarItemProps} from 'office-ui-fabric-react/lib/
CommandBar';

220

https://docs.microsoft.com/en-us/sharepoint/dev/spfx/compatibility
https://docs.microsoft.com/en-us/sharepoint/dev/spfx/compatibility

CHAPTER6 SHAREPOINT FRAMEWORK

import CreateRequest from './CreateRequest’;
import ViewMyRequests from './ViewMyRequests';
import FAQ from './FAQ';

import LiveChat from './LiveChat';

function CloudhadiServicePortal() {
const [selectedForm, setSelectedForm] = useState(<CreateRequest />);
const onMenuClick = (form) => {
setSelectedForm(form);

}
const _items: ICommandBarItemProps[] = [
{
key: 'New',
text: 'New Request’,
iconProps: { iconName: 'Add' },
onClick: () => onMenuClick(<CreateRequest />)
b
{
key: 'View',
text: 'View My Requests’,
iconProps: { iconName: 'GroupedList' },
onClick: () => onMenuClick(<ViewMyRequests />)
b
{
key: 'FAQ',
text: 'FAQ',
iconProps: { iconName: 'Questionnaire’ },
onClick: () => onMenuClick(<FAQ />)
b
{
key: 'Chat’,
text: 'Live Chat',
iconProps: { iconName: 'Chat' },
onClick: () => onMenuClick(<LiveChat />)
}
1;

221

CHAPTER6 SHAREPOINT FRAMEWORK

return (
<div>
<CommandBar
items={ items}
/>
<divy
{selectedForm}
</div>
</div>
)5
}

export default CloudhadiServicePortal;

Asyou can see in the code, the home component is now a functional component. The
statement const [selectedForm, setSelectedForm] = useState(<CreateRequest />)
declares a state variable called selectedForm. The argument for useState() is based on
the initial value of this state variable. This means the variable selectedFormis initiated
with the value <CreateRequest />, which is of type of JSX object. If we want to update the
value of the selectedFormvariable, we can call setSelectedForm with the new value. This
will change the state of the component by adding a new value to the variable.

One question that might come to mind is why we use const for this statement. We
use const for declaring a variable that isn’t going to be reassigned with a new value. And
we use let for variables that can be reassigned. You may also wonder why we use const
here as the value indicating that selectedForm will be reassigned. This is where you
need to understand what a state change does. When you change the state of a variable,
the component will be rendered again. That means that the selectedForm variable will
become a new variable in a new scope with a new value. So we can use const while
declaring a state variable with the useState hook.

If you go back to the code, you'll see that we've imported all the components,
CreateRequest, ViewMyRequest, FAQ, and LiveChat. In addition, we imported
CommandBar from the fluent Ul so that we could create a command bar to redirect us
between the components.

const _items initializes an object with four keys, one for each component. Each
object is configured with a key, icon, and name. In the onClick of each key, we’'re invoking
the onMenuClick function with the JSX of the respective component. The onMenuClick
function sets the value of the selectedForm variable to the passed JSX object.

222

CHAPTER6 SHAREPOINT FRAMEWORK

In the return function, we have the command bar and the selectedFormvariable to
render. The command bar items are set to the _items variable. The command bar will have
four items. By clicking New Request, it will pass <CreateRequest /> to the onMenuClick
function. The function will set the state variable selectedForm to the passed JSX. The
component will now render <CreateRequest /> along with the command bar. The
<CreateRequest />JSXwillload the CreateRequest component into the parent component.
Similarly, clicking on any of the other three components will pass the respective JSX into the
state variable and will render the respective component into the parent component.

As the initial value of the state variable is set to <CreateRequest/ >, the Create
Request form will be loaded first.

Now go back to the command prompt and run gulp serve if you're not doing so
already. Figure 6-8 shows how the form will look. Click each item in the command bar
to see how it appears. As we have only title added for the other components, we can only
see that one for now.

+ MewRequest ¥ View My Requests [FAQ [Live Chat

New Service Request

Request Title *

Request Description *

Related to *

Select an option ~

Figure 6-8. Command bar for all the components

Let’s do a quick recap of what we've learned so far. We created a React-based SPFx
web part for our Service Portal. We created multiple components and linked multiple
child components with the parent component. We implemented conditional rendering
of the components with the help of the useState() React hook. In the process, we
learned a few important concepts about React.

In the next section, we’ll connect the Create Request form to SharePoint.

223

CHAPTER6 SHAREPOINT FRAMEWORK

Communicating with SharePoint

We already created the UI for the Create Request form. When a user submits data, we
need to save that into a back-end list in SharePoint. To set this up, go to the Service
Portal library from Site Contents, edit the default view in the Service Portal list, click the
Add Column drop-down, and select Show/hide. Then, select the columns as shown in
Figure 6-9 and click Apply.

-
Ld
COm—
=

Figure 6-9. Configuring the Service Portal list view

We also need to make use of PnPjs (Patterns and Practices client-side libraries)
for connecting to SharePoint. PnPjs is a collection of libraries for consuming
SharePoint, Graph, and Microsoft 365 APIs. First, let’s install PnPjs using npm
install @pnp/sp. Execute this command in the Visual Studio Code terminal. To get
the SharePoint context to our web part, we need to do the setup using the onInit
method within CloudhadiServicePortalWebPart.ts. This will ensure that the context
is set before any other code runs. Go to src » web parts » ClouhadiServicePortal »
ClouhadiServicePortalWebPart.ts. Add an import { sp } from "@pnp/sp";line in the
import section. Then add the following onInit method above the render () method:

public onInit(): Promise<void> {
return super.onInit().then(_ => {

sp.setup({
spfxContext: this.context

};
};
}

224

CHAPTER6 SHAREPOINT FRAMEWORK

Replace your code for CreateRequests.tsx with the following code. After the code, I'll
provide an explanation of it.

import React, { useState, useEffect } from 'react';
import styles from './CloudhadiServicePortal.module.scss';
import { Label, TextField, Dropdown, Stack, IStackTokens, PrimaryButton,
DefaultButton, concatStyleSets } from '@fluentui/react’;
import { MessageBar, MessageBarType } from 'office-ui-fabric-react’;
import { ICreateRequestProps } from './ICreateRequestProps’;
import { ICreateRequestState } from './ICreateRequestState’;
import { sp } from "@pnp/sp";
import "@pnp/sp/webs”;
import "@pnp/sp/lists";
import "@pnp/sp/items";
import { IItemAddResult } from "@pnp/sp/items";
const stackTokens: IStackTokens = { childrenGap: 30 };
let csrNumber = "CSR" + Math.floor(Math.random() * (99999));
function CreateRequest() {
// States variables for form fields
const [reqTitle, setReqTitle] = useState("");
const [regqDesc, setRegqDesc] = useState("");
const [relatedTo, setRelatedTo] = useState("");
const [success, setSuccess] = useState(false);
// Creates a Cloudhadi Service Request upon clicking of the Submit button
const createCSR = async () => {
try {
csrNumber = "CSR" + Math.floor(Math.random() * (99999));
const iar: IItemAddResult = await sp.web.lists.
getByTitle("Service Portal").items.add({
Title: csrNumber,
RequestTitle: reqTitle,
RequestDescription: reqgDesc,
Relatedto: relatedTo,
1;

setSuccess(true);

225

CHAPTER6 SHAREPOINT FRAMEWORK

226

catch (error) {
throw (error);

}
// Set field values on change-Text fields

const handleChange = (event, setFieldValue) => {
setFieldValue(event.target.value);
console.log(event.target.value);

}
// Set field values on change-Dropdown fields

const handleDropDownChange = (selOption, setFieldValue) => {
setFieldValue(selOption.text);
console.log(selOption.text)
}
// Render form
return (
<div className={styles.cloudhadiServicePortal}>
<div className={styles.container}>
<div className={styles.row}>
<div className={styles.column}>
New Service
Request
<div id="requestForm">
<div className={styles.formGrid}>
<div className={styles.formGridRow}>
<TextField label="Request
Title" onChange={(event) =>
handleChange(event, setReqTitle)}
required></TextField>
<TextField label="Request
Description” onChange={(event) =>
handleChange(event, setRegDesc)}
multiline rows={4} required></
TextField>
<Dropdown

/>

CHAPTER6 SHAREPOINT FRAMEWORK

placeholder="Select an option"
label="Related to"
options={[
{ key: 'Access', text:
"Access' },
{ key: 'Materials', text:
'Materials' },
{ key: 'Equipments', text:
"Equipments’ },
{ key: 'General', text:
'General' }
1}
onChanged={(selOption) => {
handleDropDownChange(selOption,
setRelatedTo); }}
required

<Stack horizontal tokens={stackTokens}
className={styles.buttonStack}>

<PrimaryButton className={styles.
button} text="Submit" onClick={()
=> createCSR()} />

<DefaultButton text="Cancel" />

</Stack>
{success === true &&

}

</div>
</div>
</div>
</div>

<MessageBar messageBarType=
{MessageBarType.success}
isMultiline={false} >Successfully
created Service Request. Reference
no:{csrNumber }</MessageBar>

227

CHAPTER6 SHAREPOINT FRAMEWORK

</div>
</div>
</div>
);
}
export default CreateRequest;

Let’s take a deep look at this code. We can import PnP modules and ItemAddResult,
as you can see from the code. These are required for us to communicate with SharePoint.
In addition, we can import MessageBar and MessageBarType for the purpose of
displaying a success message.

I declared three pairs of state variables with the useState hook. Each pair is for each
of the three fields in our form. One pair of variables declared to set success with the
initial value as false.

Let’s look at the return method next. You can see that I added the onChange property
for both of the text fields. onChange calls the handleChange method with event and
setReqTitle as parameters. The handleChange method just described is expecting
the event and the set variable. For example, for the request title field, we pass
setReqTitle as the parameter. The handleChange method will use that and set the value to
reqTitle. event.target.value will give you the text box value. For the drop-down field, it
is slightly different. We used the OnChanged method for capturing drop-down change. Also,
we are passing the option as a parameter to get the selected option text.

So, what we’re exactly doing here is to set the value for the corresponding state
variable whenever there is a change in an input field. The state variables will always have
the latest value of the input fields. When we're clicking the Submit button, we just need
to pass these state variables. We have a message bar that will display only if the success
of the variable equals true.

By clicking the Submit button, we're calling the CreateCSR () method. This is an
async function, which is making use of the await expression. This helps to run the code
asynchronously, ensuring that no two lines of code are running at the same time.

In the CreateCSR() method, we're accessing the Service Portal list with the help of
PnP. In the add call, all the field values are passed. The field values are represented in the
Internal Name: Value format. We can get the value of form fields from the corresponding
state variable. For the Title, I'm setting a random number. This can act like a ticket
number. If the item is created successfully, the variable’s success will be set to true and
the message bar will display.

228

CHAPTER6 SHAREPOINT FRAMEWORK

Now go back to the command prompt, make sure you're in the Web Part folder, and
run gulp serve. The local workbench will be loaded, but this time we need to access the
SharePoint Workbench, as we're interacting with the list. Go to {yoursiteURL}/
_layouts/15/workbench.aspx and enter data, and you'll get a success message saying,
“Successfully created Service Request...., as shown in Figure 6-10.

» &+
™

-+ New Request | = View My Requests

+
¥

FAQ | [Live Chat

€
s

= &

Iy New Service Request
0}

Request Title *

r
| Access for Documents

Request Description *

Please provide access to food quality document

Related to *

l Materials R

@ Successfully created Service Request. Reference no:CSR57247

i -

Figure 6-10. Creating a request in SharePoint Workbench

If you go to the Service Portal list, you'll see that an item has been created and all the
details have been entered. See Figure 6-11.

W Workplace

Home Documents Pages Site contents Edit

BH Editin grid view 1= Share Gl ExporttoExcel <% PowerApps ~ #I Automate -+

Service Portal

Title Request Title Request Descri... Request Status Request Assign... Related to T + Add column

“Csrastsl hecess tor documents

Figure 6-11. Service Portal list item

229

CHAPTER6 SHAREPOINT FRAMEWORK

Try creating multiple items and also create items from different user logins. Next,
let’s go to ViewMyRequests.tsx and see how we can display a list of requests specific to
the user.

Reading Multiple Items

On the View Requests page, we need to pull all the requests specific to the user from the
Service Portal list. First, let’s create a state interface by making a IViewRequestsState.ts
file and updating the code as follows:

export interface IViewRequestsState {
ID:number;
Title: any;
RequestTitle:string;
RequestStatus:string;

Then, we’ll update the ViewRequests.tsx with the following code. I'll explain the
details after the code.

import React, { useState, useEffect } from 'react';

import { sp } from "@pnp/sp";

import "@pnp/sp/webs";

import "@pnp/sp/lists”;

import "@pnp/sp/items”;

import "@pnp/sp/site-users/web";

import { IViewRequestsState } from './IViewRequestsState';

import { DetailsList, DetailsListlLayoutMode, IColumn } from 'office-ui-

fabric-react/lib/DetailsList’;

import { Link } from '@fluentui/react’;

// Column headers

const columns = [
{ key: 'Title', name: 'Request No.', fieldName: 'Title', minWidth: 70,
maxWidth: 200, isResizable: true },
{ key: 'RequestTitle', name: 'Request Title', fieldName:
'RequestTitle', minWidth: 160, maxWidth: 200, isResizable: true },

230

CHAPTER6 SHAREPOINT FRAMEWORK

{ key: 'RequestStatus', name: 'Status', fieldName: 'RequestStatus’,
minWidth: 70, maxWidth: 200, isResizable: true }];
1;
// Render list of requests
function ViewMyRequests() {
// On component mount
useEffect(() => {
loadMyRequests();

b ID

// State variables for request items
const [myItems, setMyItems] = useState([]);
// Load Service requests
const loadMyRequests = async () => {
let currentUser = await sp.web.currentUser();
await sp.web.lists.getByTitle("Service Portal").items
.filter("Author/EMail eq '${currentUser.Email}'")
.select('ID', 'Title', 'RequestTitle', 'RequestStatus')
.get().then((items) => {
let result: IViewRequestsState[] = [];
items.forEach(element => {
result.push({
ID: element.Id, Title: <Link href="#">{element.
Title}</Link>, RequestTitle: element.RequestTitle,
RequestStatus: element.RequestStatus

};
};

return result;
}).then(resultdata => setMyItems(resultdata));
};
// On click of item
const _onItemInvoked = (item: any): void => {
// Call child component with ID
console.log(Call with '${item.ID}' to see individual request™)

};

231

CHAPTER6 SHAREPOINT FRAMEWORK

return (
<div className={styles.cloudhadiServicePortal}>
<div className={styles.container}>
<div className={styles.row}>
<div className={styles.column}>
My Service
Requests
<DetailslList
items={myItems}
columns={columns}
layoutMode={DetailsListLayoutMode.
justified}
onItemInvoked={ onItemInvoked}
/>
</div>
</div>
</div>
</div>);

}
export default ViewMyRequests;

On the View Requests page, the first step we’ll take is to load the requests specific to a
user. You can refer to the loadMyRequests declaration here. The import "@pnp/sp/site-
users/web" statement will import the modules that we need in order to retrieve the user
who is currently logged in. Our next step is to make a PnPjs call to the Service Portal list.
Using the filter keyword, the items are filtered with that of current user. We specify the
columns using the select keyword. Then, we’ll define an array object result that inherits
the IViewRequestsState interface. We defined the interface earlier, and we’re importing
itin this component. Each of the values is stored in this array. For the Title, we’ll add it
as a Link so that we can view it as such while clicking each item. The Link is imported
from the @fluentui/react library. We defined Title as the any type earlier in the
interface specifications in the IViewRequestsState.ts file. Finally, let’s set this array object
to amyItems state variable by calling setMyItems(resultdata).

We need to call loadMyRequests upon loading the component. We'll make use of
the useEffect hook for this purpose. Functions passed to useEffect are executed on
every component rendering unless you pass a second argument to them. To make sure

232

CHAPTER6 SHAREPOINT FRAMEWORK

that loadMyRequests will be called only while the component initially loads, we need to
pass an empty array variable. What we’ve done so far is to load the service requests of the
current user into an object array when the component renders for the first time.

The next step is to display all these items in a list. We can make use of the Detaillist
control from the Fabric UL. We imported the DetailsList and DetailsListLayoutMode
modules. In the control, we passed items, columns, layoutMode, and onItemInvoked
parameters. The columns are defined above with key, name, styles, and more. We have
three columns: Title, RequestTitle, and RequestStatus. Title is named Request
No. myItems ispassed to the items parameter. We set the value for myItems earlier. We
also stored ID in myItems, butit won’t be displayed here as we aren’t specifying it in
columns. But we'll need it later on when we invoke the individual request.

We're calling the onItemInvoked function a method. In this method, we’re currently
passing on the ID and writing to the console. In the next section, we'll link to the
individual request.

Let’s save the code and run gulp serve. If you Refresh SharePoint Workbench, you
should now be able to see all the requests you created in the View Existing Requests tab.
If you double-click Request No., you can see that the ID of the clicked item is logged
into the console, as shown in Figure 6-12. Press the F12 key and click Console. Then, go
ahead and double-click any request and the message “Call with ‘ID’ to see individual
request” will come up in the console. Try logging in with other user accounts to see the
various request details. The figure shows the requests I created.

+
. -+ New Request | £= View My Requests FAQ ‘ [Live Chat
* T L !
T My Service Requests

@ @ Request No. Request Title Status
CSR57247 Access for Documents New
CSR1552 Procurement of MacBook MNew
CSR93162 Food processing machine re New
CSR79959 Enquiry regarding new offic... New
CSR41093 Strawberry farm cleaning Mew

+
+

Figure 6-12. The set of data read and displayed in the SharePoint list
233

CHAPTER6 SHAREPOINT FRAMEWORK

In the next section, we'll set up the redirection to individual request details with the
help of another pair of state variables and conditional rendering.

Component Interaction

In this section, you'll learn how props can be passed from parent component to the child
component and vice versa. We have the View Requests component. Upon clicking the
Request No., we need to be redirected to the Service Request Details page. We can make
use the CreateRequest.tsx page to render the request details.

First, we need to update the [ViewRequestsState.ts file to include a few more details
such as a description of the request. This will help in using the same interface in the
CreateRequest.tsx file.

Update the IViewRequestsState.ts file as follows:

export interface IViewRequestsState {
ID:number;
Title: any;
RequestTitle:string;
RequestStatus:string;
RequestDesc?:string;
RequestAssignedTo?:string;
RelatedTo?:string;

Here, we marked a few more fields as optional by using ?. Now, we can use the same
interface for both the ViewRequests.tsx and CreateRequest.tsx files while retrieving items
from the SharePoint list and storing it in state variables. We're already using this state in
the ViewRequests.tsx file.

We need to add a property interface for the CreateRequests.tsx file in order to
establish communication with the ViewRequests.tsx file. Let’s create a new file called
“IViewRequestsProps.ts” and update it as follows:

export interface ICreateRequestProps {
ID? :number;
resetView?:any;

}

234

CHAPTER6 SHAREPOINT FRAMEWORK

The next step is to replace the onItemInvoked method to redirect to the
CreateRequest page. For that, we need to pass the props between the components. We
should update ViewMyRequests.tsx with the following code. I'll provide an explanation
at the end.

import React, { useState, useEffect } from 'react’;
import { sp } from "@pnp/sp";
import "@pnp/sp/webs”;
import "@pnp/sp/lists";
import "@pnp/sp/items”;
import "@pnp/sp/site-users/web";
import { IViewRequestsState } from './IViewRequestsState';
import { DetailsList, DetailsListlLayoutMode } from 'office-ui-fabric-react/
lib/Detailslist’;
import { Link } from '@fluentui/react’;
import CreateRequest from './CreateRequest’;
// Column headers
const columns = [
{ key: 'Title', name: 'Request No.', fieldName: 'Title', minWidth: 100,
maxWidth: 200, isResizable: true },
{ key: 'RequestTitle', name: 'Request Title', fieldName:
'RequestTitle', minWidth: 100, maxWidth: 200, isResizable: true },
{ key: 'RequestStatus', name: 'Request Status', fieldName:
'RequestStatus’, minWidth: 100, maxwWidth: 200, isResizable: true }
1;
// Render list of requests
function ViewMyRequests() {
// On component mount
useEffect(() => {
loadMyRequests();
oD
// Reset to view requests
const resetViewRequest = () => {
setDoViewRequest(false);

};

235

CHAPTER6 SHAREPOINT FRAMEWORK

// State variables for request items
const [myItems, setMyItems] = useState([]);
// State variables for viewing an individual request
const [doViewRequest, setDoViewRequest] = useState(false);
const [requestID, setRequestID] = useState(0);
// Load Service requests
const loadMyRequests = async () => {
let currentUser = await sp.web.currentUser();
await sp.web.lists.getByTitle("Service Portal").items
.filter("Author/EMail eq '${currentUser.Email}'")
.select('ID', 'Title', 'RequestTitle', 'RequestStatus')
.get().then((items) => {
let result: IViewRequestsState[] = [];
items.forEach(element => {
result.push({
ID: element.Id, Title: <Link href="#">{element.
Title}</Link>, RequestTitle: element.RequestTitle,
RequestStatus: element.RequestStatus

};
};

return result;
}).then(resultdata => setMyItems(resultdata));

};

// On click of item

const _onItemInvoked = (item: any): void => {
// Call child component with ID
setRequestID(item.ID);
setDoViewRequest(true);

};

// Load all requests
if (!doViewRequest) {
return (
<Detailslist
items={myItems}

236

CHAPTER6 SHAREPOINT FRAMEWORK

columns={columns}
layoutMode={DetailsListLayoutMode.justified}
onItemInvoked={ onItemInvoked}
/>
)5
}
// Call to load individual request
else {
return (
<CreateRequest ID={requestID} resetView={resetViewRequest} />

)5

}
export default ViewMyRequests;

In the ViewMyRequests.tsx file, let’s create two new pairs of state variables. The
first pair, doViewRequest and setDoViewRequest, identifies whether we need to view
the individual request details or to view all our requests. In the initial render, we have
doViewRequest set as false. This means that all our requests will be displayed, as we saw
earlier. The second pair of variables is for holding a request ID while clicking the request
number of an item. In the _onItemInvoked method, we're setting this request ID and
doViewRequest as true.

Whenever you click an item, the doViewRequest becomes true. I added an If Else
condition before the return call. If doViewRequest is false, we'll load all of our requests.
Ifitisn’t, the individual request will be loaded by calling the CreateRequest component.
While calling the CreateRequest component, I'm passing the requestID through the ID
property. The CreateRequest component can receive this property.

There is another property, resetView, with which I'm passing a function call. The
function resetView is setting the doViewRequest to false. So, in the CreateRequest
component, I can make use of this property and invoke this function. We'll see how it
works in the CreateRequest component.

What we’ve done so far is to introduce two pairs of state variables. View All My
Requests will be loaded as before unless Request No. is clicked, doing which sets the
variable values. Once the variable values are set, the same component will load the
individual request details by calling the CreateRequest component. The CreateRequest
component expects some parameters to load the details, which are supplied via props.

237

CHAPTER6 SHAREPOINT FRAMEWORK

Next, let’s see how the CreateRequest component handles the display. To start,
replace the code with the following. I'll explain the changes afterward.

// Import section

import React, { useState, useEffect } from 'react’;

import styles from './CloudhadiServicePortal.module.scss’;

import { TextField, Dropdown, Stack, IStackTokens, PrimaryButton,
DefaultButton, concatStyleSets } from '@fluentui/react’;

import { MessageBar, MessageBarType } from 'office-ui-fabric-react’;
import { ICreateRequestProps } from './ICreateRequestProps’;
import { sp } from "@pnp/sp";

import "@pnp/sp/webs";

import "@pnp/sp/lists”;

import "@pnp/sp/items”;

import { IItemAddResult } from "@pnp/sp/items";

import { IViewRequestsState } from './IViewRequestsState';

const stackTokens: IStackTokens = { childrenGap: 30 };

let csrNumber = "CSR" + Math.floor(Math.random() * (99999));

function CreateRequest(props: ICreateRequestProps) {
// Initiate form element and Title
let formTitle = "New Service Request";
let formStructure = <div className=""></div>;

// Create New Service Request

if (!props.ID) {
// State variables for form fields
const [reqTitle, setReqTitle] = useState("");
const [reqDesc, setRegDesc] = useState("");
const [relatedTo, setRelatedTo] = useState("");
const [success, setSuccess] = useState(false);

// Create a Cloudhadi Service Request upon clicking the Submit button
const createCSR = async () => {

try {
csrNumber = "CSR" + Math.floor(Math.random() * (99999));

238

CHAPTER6 SHAREPOINT FRAMEWORK

const iar: IItemAddResult = await sp.web.lists.
getByTitle("Service Portal").items.add({

Title: csrNumber,

RequestTitle: reqTitle,

RequestDescription: regDesc,

Relatedto: relatedTo,

};

setSuccess(true);
}
catch (error) {
throw (error);

}
// Set field values on change-Text fields

const handleChange = (event, setFieldValue) => {
setFieldValue(event.target.value);

}

// Set field values on change-Dropdown fields

const handleDropDownChange = (selOption, setFieldValue) => {
setFieldValue(selOption.text);

}

formStructure = <div className={styles.formGridRow}>

<TextField label="Request Title" onChange={(event) =>
handleChange(event, setReqTitle)} required></TextField>
<TextField label="Request Description" onChange={(event) =>
handleChange(event, setReqDesc)} multiline rows={4} required>
</TextField>
<Dropdown
placeholder="Select an option"
label="Related to"
options={[
{ key: 'Access', text: 'Access' },
{ key: 'Materials', text: 'Materials’ },

239

CHAPTER6 SHAREPOINT FRAMEWORK

{ key: 'Equipments', text: 'Equipments' },
{ key: 'General', text: 'General' }

1}
onChanged={(selOption) => { handleDropDownChange(selOption,

setRelatedTo); }}

required
/>
<Stack horizontal tokens={stackTokens} className={styles.
buttonStack}>
<PrimaryButton className={styles.button} text="Submit"
onClick={() => createCSR()} />
</Stack>
{success === true &&
<MessageBar messageBarType={MessageBarType.success}
isMultiline={false} >Successfully created Service Request.
Reference no:{csrNumber}</MessageBar>
}
</div>;
}
// Display service request
else {

// On component mount
useEffect(() => {
loadRequest(props.ID);

b o[D

// State variable for Item

const [currentItem, setCurrentItem] = useState<IViewRequestsState>({
ID: o, Title: "", RequestTitle: "", RelatedTo: "",
RequestStatus: "", RequestAssignedTo: ""

};

// Load current item
const loadRequest = async (reqID) => {
await sp.web.lists.getByTitle("Service Portal").items
.getById(reqID)

240

CHAPTER6 SHAREPOINT FRAMEWORK

.select('ID', 'Title', 'RequestTitle’,
'RequestDescription', 'Relatedto', 'RequestStatus’,
'RequestAssignedTo/EMail")
.expand('RequestAssignedTo")
.get().then((item: any) => {
let result: IViewRequestsState = {
ID: item.Id, Title: item.Title, RequestTitle: item.
RequestTitle, RequestDesc: item.RequestDescription,
RelatedTo: item.Relatedto,
RequestStatus: item.RequestStatus,
RequestAssignedTo: (typeof item.RequestAssignedTo
== "undefined") ? item.RequestAssignedTo.EMail :
" }
return result;
}).then(resultdata => setCurrentItem(resultdata));

};
formTitle = “Service Request ${currentItem.Title}"
formStructure = <div className={styles.formGridRow}>

<TextField label="Request Title" disabled value={currentItem.
RequestTitle} ></TextField>
<TextField label="Request Description" disabled value=
{currentItem.RequestDesc} multiline rows={4} ></TextField>
<TextField label="Related to" disabled value={currentItem.
RelatedTo} »></TextField>
<TextField label="Request Assigned To" disabled
value={currentItem.RequestAssignedTo} ></TextField>
<TextField label="Request Status" disabled value={currentItem.
RequestStatus} ></TextField>
<Stack horizontal tokens={stackTokens} className={styles.
buttonStack}>
<PrimaryButton className={styles.button} text="Back to My
Requests” onClick={props.resetView} />
</Stack>

</div>

241

CHAPTER6 SHAREPOINT FRAMEWORK

// Render form
return (
<div className={styles.cloudhadiServicePortal}>
<div className={styles.container}>
<div className={styles.row}>
<div className={styles.column}>
{formTitle}
<div id="requestForm">
<div className={styles.formGrid}>
{formStructure}
</div>
</div>
</div>
</div>
</div>
</div>
)5
}

export default CreateRequest;

The first change you need to make is to import IViewRequestsState and
ICreateRequestProps into the CreateRequest.tsx file. Then, pass the props as a
variable into the function called CreateRequest with props as the alias: (props:
ICreateRequestProps). Now we'll be able to access the property values using props
inside the component.

We're splitting the component into two sections using an If Else condition. If props. ID
isn’t defined, that means we need to display the New Service Request form. If props.ID
has a value, that means it was called from ViewRequests.tsx with an ID.

Initiate the formTitle and formStructure variables outside of If Else condition.
Move all the previous declarations for CreateRequest inside the if(!props.ID)
condition. Take out the div form and assign it to the formStructure variable. Remove
the Cancel button, as we don’t need it.

242

CHAPTER6 SHAREPOINT FRAMEWORK

In the If Else condition, I added the logic for Display Service Request. Define
useEffect and call the 1loadRequest method inside that. This is same as we did for the
View Requests component, except that this time we're querying a single item instead
of multiple items. We're using ID to query the Service Portal list to retrieve all the field
values. I defined a pair of state variables. The currentItem variable is an object variable
that stores the property values of the item. The result is stored in this variable.

The formTitle is set to the title of the current item. All the other fields are defined as
disabled text fields that will display different item values. The values are retrieved from
the currentItem object.

Finally, there is a Back to My Requests button. Clicking the button invokes
props.resetView. This will call the parent component function resetViewRequest.
While calling the Create Request Component form, we passed this function as a prop.
Upon calling the resetViewRequest function, the state variable doViewRequest will
set to false and all my requests will be loaded back. This is how we establish the
communication from child to parent.

To summarize, in the Create Request component, what we did is a conditional
rendering based on the props value. If a prop value for ID is passed, the component will
render an existing request. The request details are queried based on the passed ID. If it
isn’t passed, the component will render a form to submit a new service request as we
have previously seen. So, the same component behaves as a new or display form using
conditional rendering. To go back to the called component, we will again make use of a
prop.

Run gulp serve. If you click a request in View My Requests, you'll see an individual
request detail loaded in disabled mode, as shown in Figure 6-13. By clicking the Back to
My Requests button, you can go back and view all of your requests.

243

CHAPTER6 SHAREPOINT FRAMEWORK

+
) 2 : : :
a -+ MNew Request | £= View My Requests Assigned to Me FAQ ‘ [Live Chat
* (-:-» |
D] Service Request CSR93162
[E IE Request Tit
Rec ptior
/4
ted to
Request Assigned To
Request Status
Back to My Requests
" +

Figure 6-13. Component communication using props

We now have the options to create a service request, view all the service requests of
a specific user, and view the details of an individual request. What we're missing is being
able to assign the service request to a user, a view for service requests assigned to the
user, and an option to change the request status.

Personalized Components

Whenever a new service request is created, I'm assigning it to a specific user:
serviceuser@cloudhadi.onmicrosoft.com. I configured a Power Automate flow and
linked to the Service Portal for this purpose. The flow is shared in the Github repository.
Refer to the AssignServiceRequest folder inside Chapter 6 folder in the GitHub repository
(https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/
main/Chapter%206/AssignServiceRequest). The flow name is Assign Service Request.
IfIlog in as this service user, I should be able to see request assigned to me. You can use
any account for this purpose. Later on, we'll see how to add this user to site and list.

244

https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 6/AssignServiceRequest
https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 6/AssignServiceRequest

CHAPTER6 SHAREPOINT FRAMEWORK

But before we get to that, let’s copy the ViewMyRequests.tsx component, paste it
under Components, and rename it “AssignedRequests.tsx.” Replace the code with the
following. After we’'re done doing that, we’ll get into the details.

import React, { useState, useEffect } from 'react’;
import { sp } from "@pnp/sp";
import "@pnp/sp/webs";
import "@pnp/sp/lists”;
import "@pnp/sp/items”;
import "@pnp/sp/site-users/web";
import { IViewRequestsState } from './IViewRequestsState';
import styles from './CloudhadiServicePortal.module.scss';
import { DetailsList, DetailsListlLayoutMode } from 'office-ui-fabric-react/
lib/DetailslList';
import { Link, VerticalDivider } from '@fluentui/react’;
import CreateRequest from './CreateRequest’;
// Column headers
const columns = [
{ key: 'Title', name: 'Request No.', fieldName: 'Title', minWidth: 70,
maxWidth: 200, isResizable: true },
{ key: 'RequestTitle', name: 'Request Title', fieldName:
'RequestTitle’, minWidth: 160, maxWidth: 200, isResizable: true },
{ key: 'RequestStatus', name: 'Status', fieldName: 'RequestStatus’,
minWidth: 70, maxWidth: 200, isResizable: true }];
// Render list of requests
function AssignedRequests() {
// On component mount
useEffect(() => {
loadMyRequests();
b oID
// Reset to view requests
const resetViewRequest = () => {
setDoViewRequest(false);
15
// State variables for request items
const [myItems, setMyItems] = useState([]);

245

CHAPTER6 SHAREPOINT FRAMEWORK

// State variables for viewing individual requests
const [doViewRequest, setDoViewRequest] = useState(false);
const [requestID, setRequestID] = useState(0);
// Load Service requests
const loadMyRequests = async () => {
let currentUser = await sp.web.currentUser();
await sp.web.lists.getByTitle("Service Portal").items
.filter(" RequestAssignedTo/EMail eq '${currentUser.Email}'")
.select('ID', 'Title', 'RequestTitle', 'RequestStatus')
.get().then((items) => {
let result: IViewRequestsState[] = [];
items.forEach(element => {
result.push({
ID: element.Id, Title: <Link href="#">{element.
Title}</Link>, RequestTitle: element.RequestTitle,
RequestStatus: element.RequestStatus
1);
;s

return result;
}).then(resultdata => setMyItems(resultdata));

};

// On click of item

const _onItemInvoked = (item: any): void => {
// Call child component with ID
setRequestID(item.ID);
setDoViewRequest(true);

};

// Load all requests
if (!doViewRequest) {
return (
<div className={styles.cloudhadiServicePortal}>
<div className={styles.container}>
<div className={styles.row}>
<div className={styles.column}>

246

CHAPTER6 SHAREPOINT FRAMEWORK

Requests
Assigned to me
<Detailslist
items={myItems}
columns={columns}
layoutMode={DetailsListLayoutMode.
justified}
onItemInvoked={ onItemInvoked}
/>
</div>
</div>
</div>
</div>
)5
}
// Call to load individual request
else {
return (
<CreateRequest ID={requestID} resetView={resetViewRequest} />

)5

}
export default AssignedRequests;

This code is very similar to that of ViewRequests.tsx. The only difference is that to
change the name of the function, you need to change the name in the export and update
Author/Email to RequestAssignedTo/Email. This will ensure that all requests assigned
to the current user are displayed. The changes are highlighted in the code.

We now have the AssignedRequests component ready. We need to link it to our
home component command bar by adding one more tab. We also need to make sure
that only the service account user can view that. But we need to do a few more things
before editing the home component.

Go to your workplace site » site contents » permissions. Then, as shown in
Figure 6-14, choose the Service Executives group, click New, then click Service User, and
hit Share. I added serviceuser@cloudhadi.onmicrosoft.com as the service user here. This
user will be added to the group.

247

CHAPTER6 SHAREPOINT FRAMEWORK

EDIT LINKS

People and Groups » Service Executives o

e o A Settings =

Qe Name Ahaut e e

o e Share "Workplace .

1

Invite peaple =
i rvice yser x

Shared with

HIDE OPTIONS

) Send an email invitation

Figure 6-14. Adding a service user to the Service Executives group

You might have noticed that this group only has Read permission for the site. But we
need to provide Full Control permissions to the group. Once the user is added, go to the
Service Portal list and then List Settings using the Settings button on the top right. Then,
click Permissions for this List. On the permissions page, click Stop Inheriting Permissions,
and when you get a pop-up, click OK. Select Service Executives and click Edit User
Permissions on the ribbon. Check off Full Control Permission and click OK. Now, the
service account executives have Full Control permission on the list, even though they have
only Read access to the site. See Figure 6-15.

[Q,
nique Gt : Check
e jaond Permsions P ng Permissions

Homa /1 This list has unique permissions

ocuments
Mame Permission Levels
Claudhadi Users SharePgint Group Read
Electronics Executives SharePoint Group Read
Electronics Leads SharePoint Group Fead
Food Executives SharePoint Group Read
Food Leads SharePoint Group Read
Furniture Executives SharePoint Group Read
Fur eads SharePoint Group Read
ervice Executives SharePoint Group Full Control, Read
Site Administrators SharePoint Group Full Control

Figure 6-15. Setting unique permissions in the Service Portal list
248

CHAPTER6 SHAREPOINT FRAMEWORK

Let’s now go back to the code and modify the home component,
CloudhadiServicePortal.tsx, with the following code. This will add a new menu item in
the command bar if the logged-in user belongs to the Service Executives group.

// Import section
import React, { useState, useEffect } from 'react’;
import styles from './CloudhadiServicePortal.module.scss’;
import { CommandBar, ICommandBarItemProps } from 'office-ui-fabric-react/
lib/CommandBar’;
import CreateRequest from './CreateRequest’;
import ViewMyRequests from './ViewMyRequests';
import FAQ from './FAQ';
import LiveChat from './LiveChat';
import AssignedRequests from './AssignedRequests’;
import { sp } from "@pnp/sp";
import "@pnp/sp/site-users/web";
function CloudhadiServicePortal() {
// Declare state variable and function for setting form
const [selectedForm, setSelectedForm] = useState(<CreateRequest />);
// Declare state variable and function for group check
const [serviceExecutive, setServiceExecutive] = useState(false);
// Set form upon click of the command bar menu
const onMenuClick = (form) => {
setSelectedForm(form);
}
// Command bar items
let items: ICommandBarItemProps[] = [
{
key: 'New',
text: 'New Request’,
iconProps: { iconName: 'Add' },
onClick: () => onMenuClick(<CreateRequest />)
}s
{
key: 'View',
text: 'View My Requests',

249

CHAPTER6 SHAREPOINT FRAMEWORK

iconProps: { iconName: 'GroupedList' },
onClick: () => onMenuClick(<ViewMyRequests />)

1

{
key: 'FAQ',
text: 'FAQ',
iconProps: { iconName: 'Questionnaire’ },
onClick: () => onMenuClick(<FAQ />)

b
{
key: 'Chat',
text: 'Live Chat',

iconProps: { iconName: 'Chat"' },
onClick: () => onMenuClick(<LiveChat />)

}
15

// On component mount
useEffect(() => {
// Set as service executive if the logged-in user belongs to the group

checkServiceExecutive();
b I[Ds
// Check if current user belongs to the Service Executives group and set
the user as Service Executive if belongs to the group
const checkServiceExecutive = async () => {
let groups: any = await sp.web.currentUser.groups();
await groups.forEach(group => {
if (group.LoginName == 'Service Executives') {
setServiceExecutive(true);
return;

}
}
)5
}

// Add 'Assigned to Me' tab if the user is a service executive

250

CHAPTER6 SHAREPOINT FRAMEWORK

if (servicekxecutive) {
_items.splice(2, 0, {
key: 'Assigned’,
text: 'Assigned to Me',
iconProps: { iconName: 'ClipboardList' },
onClick: () => onMenuClick(<AssignedRequests />)

};
}

return (
<divy
<CommandBar
items={ items}
/>
<div>
{selectedForm}
</div>
</div>

)5

In the previous code, we first need to import the AssignedRequests component and
the useEffect and pnp sp modules and then create a pair of state variables for setting
true or false based on the logged-in user. In the useEffect, I'm calling a method that
loops through the logged-in user groups. If the Service Executives group is found,
it sets the serviceExecutive variable to true and return. If the group isn’t found, the
variable remains as false, which is its initial value.

Next, add an if condition just above the return section. If the serviceExecutive
variable is true, insert the Assigned to Me menu item to the command bar in position 3;
that is, index 2.

Then, run gulp serve-deprecated and open Workbench from the service user
account. Now, as shown in Figure 6-16, you can see the Assigned to Me tab next to
View My Requests. Make sure you assign some of the requests to the service user
manually if you haven'’t set up the flow to assign them automatically. If you check from
a non-service executive user workbench, you won'’t see the tab. Please note that the
gulp serve task has been deprecated and renamed to serve-deprecated. To address
this, the gulpfile.js in new SPFx v1.12.1 projects has been updated to add an alias serve

251

CHAPTER6 SHAREPOINT FRAMEWORK

for the renamed serve-deprecated task. If you are using SPFx v1.12.1, you can use gulp
serve command. Else use gulp serve-deprecated.

l’
. + New Request | E= View My Requests | [E] Assigned to Me [FAQ | [Live Chat
4 P g L :
5
IR Requests Assigned to me
@ Request No. Request Title Status
CSR57247 Access for Documents Mew
CSR1552 Procurement of MacBook MNew
CSR93162 Food processing machine re... New
CSR79959 Enquiry regarding new offic. MNew
CSR41093 Strawberry farm cleaning New
.l..
l’

Figure 6-16. Conditional command bar menu

You can click any of the assigned requests to view their details. The service executive
needs to update the request status here. So, we need to make some changes to the Create
Request and Assigned Requests components to accommodate this.

Handling Updates

We need to distinguish the call from the View Requests and Assigned Requests
components. Start by adding a new optional property, isAssigned?:boolean;, to the
ICreateRequestProps.ts file. Then, modify AssignedRequests.tsx by adding the new
prop. Replace <CreateRequest ID={requestID} resetView={resetViewRequest}/>
with <CreateRequest ID={requestID} resetView={resetViewRequest}
isAssigned={true}/> in the call to load individual request.

Next, replace the contents inside the CreateRequests.tsx with the following code:

// Import Section

import React, { useState, useEffect } from 'react’;

import styles from './CloudhadiServicePortal.module.scss’;

import { TextField, Dropdown, Stack, IStackTokens, PrimaryButton } from
'@fluentui/react’;

252

CHAPTER6 SHAREPOINT FRAMEWORK

import { MessageBar, MessageBarType } from 'office-ui-fabric-react’;
import { ICreateRequestProps } from './ICreateRequestProps’;

import { sp } from "@pnp/sp";

import "@pnp/sp/webs";

import "@pnp/sp/lists”;

import "@pnp/sp/items”;

import { IItemAddResult } from "@pnp/sp/items";

import { IViewRequestsState } from './IViewRequestsState';

const stackTokens: IStackTokens = { childrenGap: 30 };

let csrNumber = "CSR" + Math.floor(Math.random() * (99999));

function CreateRequest(props: ICreateRequestProps) {

// Initiate form element and Title
let formTitle = "New Service Request";
></div>;

let formStructure = <div className=

// State variable for request status and success
const [reqStatus, setReqStatus] = useState("New");
const [success, setSuccess] = useState(false);

// Set field values on change of the respective Dropdown fields
const handleDropDownChange = (selOption, setFieldValue) => {
setFieldValue(selOption.text);
}
// Create New service request
if (!props.ID) {
// State variables for form fields
const [reqTitle, setReqTitle] = useState("");
const [regDesc, setRegDesc] = useState("");
const [relatedTo, setRelatedTo] = useState("");

// Create a Cloudhadi Service Request upon click of the Submit button

const createCSR = async () => {
try {

csrNumber = "CSR" + Math.floor(Math.random() * (99999));

const iar: IItemAddResult = await sp.web.lists.
getByTitle("Service Portal"™).items.add({

CHAPTER6 SHAREPOINT FRAMEWORK

254

Title: csrNumber,
RequestTitle: reqTitle,
RequestDescription: regDesc,
Relatedto: relatedTo,

};

setSuccess(true);
}
catch (error) {
throw (error);

}

// Set field values ontext fields on change of respective Text fields
const handleChange = (event, setFieldValue) => {
setFieldValue(event.target.value);

}

formStructure = <div className={styles.formGridRow}>

<TextField label="Request Title" onChange={(event) =>
handleChange(event, setReqTitle)} required></TextField>
<TextField label="Request Description” onChange={(event) =>
handleChange(event, setReqDesc)} multiline rows={4} required>
</TextField>
<Dropdown
placeholder="Select an option"
label="Related to"
options={[
{ key: 'Access', text: 'Access' },
{ key: 'Materials', text: 'Materials' },
{ key: 'Equipments', text: 'Equipments' },
{ key: 'General', text: 'General' }

1}
onChanged={(selOption) => { handleDropDownChange(selOption,

setRelatedTo); }}
required
/>

CHAPTER6 SHAREPOINT FRAMEWORK

<Stack horizontal tokens={stackTokens} className={styles.
buttonStack}>
<PrimaryButton className={styles.button} text="Submit"
onClick={() => createCSR()} />
</Stack>
{success === true &&
<MessageBar messageBarType={MessageBarType.success}
isMultiline={false} >Successfully created Service Request.
Reference no:{csrNumber}</MessageBar>
}
</div>;
}
// Display service request
else {
// On component mount
useEffect(() => {
loadRequest(props.ID);
b o[
// State variable for Item
const [currentItem, setCurrentItem] = useState<IViewRequestsState>({
ID: 0, Title: "", RequestTitle: "", RelatedTo: "",
"", RequestAssignedTo:

RequestStatus:
1);
// Load current item
const loadRequest = async (reqID) => {
await sp.web.lists.getByTitle("Service Portal").items
.getById(reqID)
.select('ID', 'Title', 'RequestTitle’,
'RequestDescription’, 'Relatedto’, 'RequestStatus',
'RequestAssignedTo/EMail")
.expand('RequestAssignedTo")
.get().then((item: any) => {
let result: IViewRequestsState = {

255

CHAPTER6 SHAREPOINT FRAMEWORK

ID: item.Id, Title: item.Title, RequestTitle: item.
RequestTitle, RequestDesc: item.RequestDescription,
RelatedTo: item.Relatedto,

RequestStatus: item.RequestStatus,
RequestAssignedTo: (typeof item.RequestAssignedTo
I== "undefined") ? item.RequestAssignedTo.EMail :

}

return result;
}).then(resultdata => setCurrentItem(resultdata));
}s
formTitle = ~Service Request ${currentItem.Title} ;
if (!props.isAssigned) {
formStructure = <div className={styles.formGridRow}>

<TextField label="Request Title" disabled
value={currentItem.RequestTitle} ></TextField>
<TextField label="Request Description” disabled
value={currentItem.RequestDesc} multiline rows={4} >
</TextField>
<TextField label="Related to" disabled value={currentItem.
RelatedTo} ></TextField>
<TextField label="Request Assigned To" disabled
value={currentItem.RequestAssignedTo} ></TextField>
<TextField label="Request Status" disabled
value={currentItem.RequestStatus} ></TextField>
<Stack horizontal tokens={stackTokens} className={styles.
buttonStack}>
<PrimaryButton className={styles.button} text="Back to
My Requests" onClick={props.resetView} />

</Stack>

</div>

}
else {
// Update status of current item
const updateRequestStatus = async () => {

try {

256

CHAPTER6 SHAREPOINT FRAMEWORK

await sp.web.lists.getByTitle("Service Portal").items
.getById(currentItem.ID)

.update({
RequestStatus: reqStatus
1);
currentItem.RequestStatus = reqStatus;
setSuccess(true);

}

catch (error) {
throw (error);

};
formStructure = <div className={styles.formGridRow}>
<TextField label="Request Title" disabled
value={currentItem.RequestTitle} ></TextField>
<TextField label="Request Description" disabled
value={currentItem.RequestDesc} multiline rows={4} >
</TextField>
<TextField label="Related to" disabled value={currentItem.
RelatedTo} ></TextField>
<TextField label="Request Assigned To" disabled
value={currentItem.RequestAssignedTo} ></TextField>
<Dropdown
defaultSelectedKey={currentItem.RequestStatus}
placeholder="Select an option"
label="Request Status"
options={[
{ key: 'New', text: 'New' },
{ key: 'In Progress', text: 'In Progress' },
{ key: 'Completed', text: 'Completed' },
{ key: 'Rejected', text: 'Rejected' }
1}
onChanged={(selOption) => { handleDropDownChange
(selOption, setReqStatus); }}
required
/>

257

CHAPTER6 SHAREPOINT FRAMEWORK

<Stack horizontal tokens={stackTokens} className={styles.
buttonStack}>
{currentItem.RequestStatus != "Completed"
88 <PrimaryButton className={styles.button}
text="Update" onClick={() => updateRequestStatus()}/>}
<PrimaryButton className={styles.button} text="Back to
Assigned Requests" onClick={props.resetView} />
</Stack>
{success === true &&
<MessageBar messageBarType={MessageBarType.success}
isMultiline={false} >Successfully updated Service
Request :{currentItem.Title}</MessageBar>

}
</div>
}
}
// Render form
return (
<div className={styles.cloudhadiServicePortal}>
<div className={styles.container}>
<div className={styles.row}>
<div className={styles.column}>
{formTitle}
<div id="requestForm">
<div className={styles.formGrid}>
{formStructure}
</div>
</div>
</div>
</div>
</div>
</div>
)5

}

export default CreateRequest;

258

CHAPTER6 SHAREPOINT FRAMEWORK

The first step is to move the handleDropDownChange method and success message
state variable to the top, above the if(!props.ID) condition. This will make it available
for the else condition as well. This will also create a new pair of variables for request
status. In the else condition (Display service request), add another If Else block that
checks the value of props.isAssigned. Move the form structure declaration for View
Requests inside that block. If isAssigned isn’t passed or isn’t true, the form structure is
assigned with the previous View Requests form.

In the else block, add a PnP method for updating the RequestStatus. For the form
structure, add a drop-down for the RequestStatus. Keep the other fields as disabled.
For the dropdown, set defaultSelectedKey as currentItem.RequestStatus. In the
onChanged method, pass setReqStatus to update the state variable. By clicking the
Update button, the updateRequestStatus method will be called and the status will be
updated. The success message will be displayed, and the dropdown will get updated
with the status value. When the status value is completed, the Update button won’t be
displayed, as there are no further updates expected. The Back to Assigned Requests
button will take you back to the assigned requests, like it did for View Requests.

Try clicking Assigned Requests and update the status. Figure 6-17 shows one of my
assigned requests from the service user account. While changing the status, keep in
mind that sometimes you might need to click twice on the value in the Fabric UI drop-

down.

259

CHAPTER6 SHAREPOINT FRAMEWORK

o+
A

~+ New Request | £ View My Requests Assigned to Me I FAQ l [Live Chat

B F %
= 3

Service Request CSR93162

Request Status *

‘ In Progress s

Back to Assigned Requests

+

Figure 6-17. Actioning a request

The new status will be reflected in the Assigned Requests component. You
could add a logic to avoid displaying the Completed requests, by modifying the filter
condition in the AssignedRequests.tsx file to filter(RequestAssignedTo/EMail eq
"${currentUser.Email}" and RequestStatus ne 'Completed'")

I hope you now feel familiar with the React concepts PnPjs and SPFx. Next, let’s
package this web part and deploy it to SharePoint.

App Deployment

Go to the command prompt, stop running gulp serve-deprecated. Run gulp

bundle --ship. This will build and minify your source code. Once completed, run gulp
package-solution --ship. The web part will be packaged. Go to your project folder »
solution, and locate CloudhadiWebPart.sppkg.

260

CHAPTER6 SHAREPOINT FRAMEWORK

Go to the App Catalog site we created in the “App Catalog” section at the beginning
of the chapter, then go to Apps for SharePoint and upload the .sppkg file. Click Deploy on
the pop-up. See Figure 6-18.

Home

Apps for SharePoint o

Upload completed (1 added) Refresh

@ New 2 upload iy) Shar b »
E el etk Find o f Do vou tr -loudhadi-service-portal-client-side-sol n? X
All Apps Featured Apps Unavailable Apps +=+ Find a file 0 you trust cloudhadi-service-portal-client-side-solution
v [Titie Name 5 ! i
2 The client-side sclution you are about to deploy
contains full trust client side code. The components
#Product ID : {6BI53897-A1F3-4067-9347-601258E66A97) (1) in the solution can, and usually do, run in full trust,
- | l g icti I E
) cloudhadi-service-portal-client- loudhadi-service- { fl?:r:D resgurce usage restrictions are placed on .’9‘"
side-solution ortal & it
This client side solution will get content from the cloudhadi-service-portal-client-side-solution

following domains:

SharePgint Online

1 Deploy Cancel

Figure 6-18. Deploying the SPFx web part

Now go back to the Workplace site. Go to Settings icon on the top right side, click
Add an App. Select cloudhadi-service-portal-client-side-solution from the list of Apps to
choose from. Wait a few minutes for the App to be added and then refresh the page.

Once the app is added, go to the home page and edit. Add a new two-column
section. Click +, search for cloudhadi-ServicePortal and add it to the first section. The
Service Portal will now be added to the home page. (We will rearrange this later.) Publish
the page. Figure 6-19 shows the home page with the Service Portal.

261

CHAPTER6 SHAREPOINT FRAMEWORK

W Workplace
Home Documents Pages Site contents Edit

+ New *~ 5% Page details

B mal]

[Live Chat

-+ Mew Request ‘ E= View My Requests | [5] Assigned to Me

New Service Request

Request Title *

Request Description *

Related to *

| Select an option

Figure 6-19. SPFx web part in the SharePoint page

Overview of SPFx Extensions

In this chapter, you've learned about SPFx web parts. SPFx extensions help you to
extend the SharePoint user experience. For example, we can add a new context menu
to the Product Data library using the SPFx command set extension. We can also create
a customized view for a column inside a library using Field Customizer extensions.
If you want to modify the header or footer section of a page, you can make use of the
Application Customizer extension. Creating an extension is like creating a web part: You
need to select Extension and the type of extension while creating it from the command
prompt.

In Chapter 8, we'll create an extension when dealing with Teams.

Note All the items this chapter—including the web part code, package, and
assignment flow—are available in the Chapter 6 folder of the GitHub repository:
https://github.com/Apress/building-modern-workplace-
sharepoint-online/tree/main/Chapter%206. In addition to this, latest
development news and respective URLs in the SPFx space also shared there.

262

https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 6
https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 6

CHAPTER6 SHAREPOINT FRAMEWORK

Summary

The aim of this chapter has been to get you started with SPFx and ensure that you're
using the latest recommended concepts during development. You learned about
creating an App Catalog and an SPFx web part, as well as packaging and deploying the
app to the catalog.

We reviewed the basic concepts of React. We discussed about hooks and how to
create a solution where only hooks are used to manage the state. We took a look at
components and how to have an interaction between the components using props.
We touched upon conditional rendering and using PnP operations with SharePoint. In
the process, we created a Cloudhadi service portal where users can submit and view
requests, and service executives can act on the requests. In the next chapter, we’ll learn
about the modern search capabilities available in SharePoint Online.

263

CHAPTER 7

Modern Search

The topic we'll look at in this chapter is slightly different than the ones in the previous
chapters. Search is a term that we're all familiar with in our day-to-day lives. In our
Cloudhadi portal, we may have thousands of documents and pieces of production
information flowing in. How can we find the information we need quickly and easily?
SharePoint Search can help us do that.

SharePoint offers both a classic and modern search experience. The modern search,
named Microsoft Search, brings together results from different data sources, including
SharePoint, OneDrive, and Exchange Server. The focus of this chapter will be limited to
SharePoint Search.

On the top of every page of our workplace site, there is a Search Box. If you search for
something from the home page using the Search Box, it will pull out all of its results from
the workplace site. The results are displayed in a default page named search.aspx.

Using the SharePoint Framework (SPFx) model of modern development, Patterns
and Practices (PnP) Modern Search web parts were introduced in 2017. With PnP Search
web parts, you can configure and customize your search in SharePoint Online sites.

PnP v4 is the latest-available version that makes use of Microsoft Graph application
programming interfaces (APIs).

My goal in this chapter is to take you through out-of-the-box (OOB) search
configurations and introduce you to PnP Modern Search customizations. By the end of
this chapter, you'll be familiar with Modern Search concepts and customizations. Let’s
get going!

Out-of-the-Box Searches

Let’s start with the search box that comes OOB. Go to your workplace site home page
and type in “food,” as shown in Figure 7-1.

265
© Harinarayanan V P 2021

Harinarayanan V P, Building the Modern Workplace with SharePoint Online,
https://doi.org/10.1007/978-1-4842-6945-9_7

https://doi.org/10.1007/978-1-4842-6945-9_7#DOI

CHAPTER 7 MODERN SEARCH

SharePoint £ toed 3 !

Files

W Workplace

Home Documents Pages Site contents Edit

Food Info Template

4+ Mew 3 Page details

= = |

Figure 7-1. SharePoint search box

When you type in something, the search box will show you the results. If you
immediately find what you're looking for, you can directly click the result. If you want to
view more results, click the right arrow or Show More Results to go to the search page.
See Figure 7-2 for search page.

Organization > Workplace

= Food Info Template
Workplace 3 ... » Templates
Yo e

Food quality check info
— Workplace > ProductData

You modified on December 30, 2020

Food Lead-1

= CSR93162
Workplace
service
Food

Figure 7-2. Default search page

In the default search page, all the results that match the food keyword will come
up, with a filter option at the top. If you click the filter drop-down, you can filter based
on the last modified date. For some of the results, you can see a preview of the file.
There are also four tabs above the results that specify different types of search results.
You can exit the search results using Exit Search, which will take you back to the home

page.

266

CHAPTER 7 MODERN SEARCH

Go to the Service Portal list, Products list, or Product Data library. Now, if you search
in the top Search Box, you'll be given the results from the respective list of libraries that
you just chose. The watermark on the Search Box indicates which scope the search is
going to execute in.

Asyou can see, the OOB search box is quite limited in terms of having an enhanced
search experience. The PnP Modern Search solution helps to build enhanced search-
based solutions in SharePoint Modern Experience. We'll get more into that next.

Search Objective

As per the Cloudhadi requirements, our objective is to search for all Product Data
documents. In addition to this, we should be able to filter these documents using
Product Type, Document Type, and Modified.

PnP Modern Search

The PnP Modern Search is an open-source solution. To get it, we need to go to the
GitHub repository of Modern Search and download the SPFx package. Once it is
downloaded, we can integrate it into our workplace site and work with the different
features of the web parts involved.

Let’s start by downloading “pnp-modern-search-parts-v4.sppkg” at https://
github.com/microsoft-search/pnp-modern-search/releases/download/4.0.0/
pnp-modern-search-parts-v4.sppkg. After that, we'll go to the App Catalog site,
upload the .sppkg file under Apps for SharePoint, and deploy. Click Make This Solution
Available to All Sites in the Organization while deploying it, as shown in Figure 7-3.

267

https://github.com/microsoft-search/pnp-modern-search/releases/download/4.0.0/pnp-modern-search-parts-v4.sppkg
https://github.com/microsoft-search/pnp-modern-search/releases/download/4.0.0/pnp-modern-search-parts-v4.sppkg
https://github.com/microsoft-search/pnp-modern-search/releases/download/4.0.0/pnp-modern-search-parts-v4.sppkg

CHAPTER 7 MODERN SEARCH

- Apps nanage - ST & ITACK LOpIES VOIS 13gs aNa Nowes |
Upload completed (1 added) Refresh ‘ x
Do you trust PnP Modern Search - Search Web Parts - v4?
@Nw 2 upload = Sm 1)) Share More v
1 G I | The client-side solution you are about to deploy
All Apps ~ Featured Apps Unavailable A Find a fi
PP . il e B iLbos contains full trust client side code. The components
= i in the solution can, and uswally do, run in full trust,
v O 7ite Name and no resource usage restrictions are placed on
them,
APsoduct 1D DDED-4E9E-BEF6-F62AAET16B8B) (1)
This client side solution will get content from the PnP Modern Search - Search Web Parts - vd
0 PnP Modern Search - Search prip-modem-search- 4 following domains:
Web Parts - v4 pdrts-vd B
SharePoint Online
4 Product 1D : {E3E1258C-TB56-432E-818A-6AABCDA3DDFF) (1) Make this solution available to all sites in the
act-hide-dev-client-side- act-hide-dev organization
solution

Compaonents in this package require access to
additional endpoints, Please contact your Tenant
Administrator to ensure access to such end points is
enabled. These are the permissions that need to be
reviewed: Microsoft Graph, User.Read; Microsoft
Graph, Files.Read.All; Microsoft Graph, People Read;
Micrasoft Graph, Contacts.Read; Microsoft Graph,
User.ReadBasic.All

Deploy Cancel

Figure 7-3. Deploying PnP Modern Search package file in to the App Catalog

Next, we'll download the extensibility package from https://github.com/
microsoft-search/pnp-modern-search/releases/download/4.0.0/
pnp-modern-search-extensibility.sppkg, and deploy it to the App Catalog using the
same steps we took for uploading the previous .sppkg.

Let’s now add a custom search page for the workplace site by going back to the
workplace site, clicking Settings, and then selecting Add a Page, as shown in Figure 7-4.

8
Settings X

SharePoint
Add a page
Add an app
Site contents
Site information

Figure 7-4. Adding a page in Settings

268

https://github.com/microsoft-search/pnp-modern-search/releases/download/4.0.0/pnp-modern-search-extensibility.sppkg
https://github.com/microsoft-search/pnp-modern-search/releases/download/4.0.0/pnp-modern-search-extensibility.sppkg
https://github.com/microsoft-search/pnp-modern-search/releases/download/4.0.0/pnp-modern-search-extensibility.sppkg

CHAPTER 7 MODERN SEARCH

Then, select the Blank template and click Create Page, as done in Figure 7-5.

Pages Blank

Templates Start from scratch. Add columns, text, images, links, video and more

Built-in

Blank
@ Hari tarayanan

Figure 7-5. Choosing a template and creating a page

Once the page is created, you'll be redirected to a screen where you can edit the
page. Type in “ModernSearch” and add the One-Third Left Column section to the page,
as selected in Figure 7-6.

269

CHAPTER 7 MODERN SEARCH

Workplace

Home Documents Pages Site contents Edit

W

Saveasdraft ~ %) Undo ~ €3 Page details

ModernSearch

@ Hari Narayanan

Section layout

] 0 0on Add your text here.

- 9D

+
b2t

m One column Two columns Three columns
+ | One-third left [One-third right Full-width
column column section
LAl Comments @D on

Vertical section

The comments section will be displayed after the pags

Figure 7-6. Setting the layout

Once the section is added, add the PnP—Search Results web part on the right side of
the screen, as shown in Figure 7-7.

270

CHAPTER 7 MODERN SEARCH

ModernSearch

@ Hari Narayanan
: ;) =
07 —

[1s] Featured

8)
Highlighted
Sort A-Z

Figure 7-7. Adding the PnP—Search Results web part

Repeat the same steps for the section on the left side of the screen, but this time
choose the PnP-Search-Filters web part. As soon as both web parts are added, we can
configure them. Click the Configure button for the Search Results web part. Figure 7-8
shows the initial configuration of the Search Results web part.

% Noticllowing &2 Share

" our page has been saved [N EEITAICEEY

Layout slots s

Ecit layout shots for this data source

Customize

SharePoint Search
Query text

2 - Use the Available connections Web Part

Web part title configuration tab to specifiy either o static

o value or @ volue from a dynamic component
on the page like o searchbox

D 3 results

&

o- - o=
Workplyce Wodplice Weskplace Rasult b
Strawberry Puds Confectionary materials Food guality check info ‘ Documents | ‘
O T & T (& Frovirsiry® ORI e Y
1
&5
Sort oeder
Edit sort order
Befinement filter

Path: hitps:/fcloudhadi sharepaint comys
s/ Warkpilace/ProductData®™

A

Figure 7-8. PnP—Search results: query and result source

271

CHAPTER 7 MODERN SEARCH

Now, select SharePoint Search and update the query text to “{searchTerms}*” This
will display the results across all the local SharePoint sites. Our aim is to restrict the
search results to all Product Data documents. Select Result Source ID for Documents.
This will set the scope to all documents in the site. We need to further refine our search
by setting the refinement filters to Path: "[yourSiteURL] /ProductData*. Now, you'll be
able to see all the approved Product Data documents in your search results. Note that to
appear in the search, the documents must be approved, as we have the content approval
set in the library. If you want to have more documents to play around with in the search,
you can upload more documents into the Product Data library and get them approved.

If you click Next from the bottom of the web part properties panel, you can change
the layout, show results count, and more. Change the web part title to “Product Data
Documents” from Webpart title.

Next, click Configure for the Filter web part and select the data from the Search
Results web part. Also set the operator to AND. This will ensure that all the filter
conditions match while we’re applying the filters. See Figure 7-9.

PnP - Search Filters

ModernSearch

Product Data Documents O o

Figure 7-9. Connecting the Filter web part to the search results

272

CHAPTER 7 MODERN SEARCH

Ifyou click Edit, you can see options for adding fields to the filter in the pop-up. Our
objective is to filter using Product Type, Document Type, and Modified date. Before
setting up the filter, we need to learn about managed properties. Let’s save and publish
the page for now. We'll get back to adding filters after going through the search schema
in the next section.

Search Schema

The search function works based on the search index. When users try to find information
by interacting with the search pages, the returned results are determined by the contents
of a search index. The content is collected in and retrieved from the search index using

a search schema. In this way, the schema controls the search. The schema contains
crawled properties, crawled property categories, the crawled to managed property
mapping, and the managed property settings. Managed property settings define what
you can search for and how.

We must crawl content to build up the search index. In SharePoint Online, crawling
happens automatically on a defined crawl schedule. When the Product Data library gets
crawled, the contents and the metadata of the documents are represented as crawled
properties. Let’s find out the crawled properties for the Product Type, Document Type,
and Modified by going to our workplace site, then Site Settings » Site Collection
Administration » Search schema, as shown in Figure 7-10.

273

CHAPTER 7 MODERN SEARCH

Home

Documents

Pages

Recent
Service Portal
Policy
Branch Information

Site contents

4 EDIT LINKS

Figure 7-10. Navigating to Search Schema

EDIT LINKS

Site Settings

Users and Permissions
People and groups
Site permissions

Site collection administrators

Site app permissions

Web Designer Galleries
Site columns
Site content types

Site Administration
Regional settings
Language settings
Export Translations
Import Translations
User alerts

RSS

Workflow settings

Term store management

Search

Result Sources
Result Types
Query Rules
Schema

Search Settings

Search and offline availability

Configuration Import
Configuration Export

Lock and Feel

Title, description, and logo
Quick launch

Change the look

Site Actions

Manage site features

Enable search configuration export
Delete this site

Site Collection Administration
Recycle bin

Search Result Sources

Search Result Types

Search Query Rules

Search Schema

Search Settlngs

Search Configuration Impaort
Search Configuration Export
Site collection features

Site hierarchy

Site collection audit settings
Portal site connection
Storage Metrics

Site collection app permissions
Content type publishing
HTML Field Security

Search Reports-Alert*

Site collection health checks
Site collection upgrade

On the page that comes up, click Crawled Properties and search for “producttype,” as

shown in Figure 7-11.

274

CHAPTER 7 MODERN SEARCH

_ Site Collection Administration - Crawled Properties

Home

Managed Properties|| Crawled Properties | fategories

Documents

Fages Use this page to view or modify crawled properties, or to view crawled properties in a particular category. Changes to properties will take effect after tt

Recent

Service Portal

Policy

Branch Information

Site contents

EDIT LINKS

A Recycle Bin
) &l site Content

| ows_ProductType

ows_q_CHCS_ProductType ProductTypeOWSCHCS

Figure 7-11. Crawled Properties page

In the Property Name section, you can see two properties, one of which is ows_
ProductType. The metadata product type will be represented by this crawled property.
Similarly, for the Document Type and Modified date, you can search and find ows_
Modified and ows_DocumentType.

So, the crawled properties do contain the content and metadata of items. But to
include these contents and metadata in the search index, you must map the crawled
properties to the managed properties. Only managed properties are written to the search
index.

Let’s quickly recap what we just covered: To search your content and metadata, it
must be crawled. The crawling creates/updates the crawled properties, which represent
the metadata and content of the crawled items. But the search index looks for managed
properties. So, we must map the crawled properties to the managed properties. Finally,
the search index returns the search results on a search query.

Managed properties are defined by many settings. These settings define how the
contents are shown in results and how users can search for them. For example, if you
want users to filter results by Product Type, the Managed Property product type must
be refinable. For our requirements, we need to have three refinable properties: Product
Type, Document Type, and Modified date.

275

CHAPTER 7 MODERN SEARCH

We can create a new managed property or we can make use of the existing managed
properties that have already been created OOB. If you go to search schema and search
for “refinable,” you can see the large number of managed properties available. Let’s map
three of these properties to the crawled properties for Product Type, Document Type,
and Modified date. Start by searching for “refinablestring,” as shown on Figure 7-12.

_ Site Collection Administration - Managed Properties

ties | |Crawled Properties | Categorie

4
3
i
'y
[E(% 5K

Figure 7-12. Refinable managed properties

Then click RefinableString01. Note that you can’t edit most of the properties. You
can see the type of the property is Text and Refinable is Yes—Active. Scroll down to the
bottom of the page and click Add a Mapping, next to Mappings to Crawled Properties.
Then, search for “producttype,” select ows_ProductType, and click OK, as shown in
Figure 7-13.

276

CHAPTER 7 MODERN SEARCH

Figure 7-13. Mapping to crawled properties

Now the crawled property for Product Type is mapped to RefinableString01. Repeat
the same steps for RefinableString02 and RefinableDate01 for Document Type and
Modified date, respectively. Choose the crawled properties accordingly.

Once you complete these changes, you need to reindex the product data list. Doing
this will ensure that the mapping to the search index gets updated during the next
scheduled crawl. Go to the product data list » list settings » advanced settings. See
Figure 7-14.

277

CHAPTER 7 MODERN SEARCH

Custom Send To Destination
; i Destination name: (For example, Team Library)

URL:

Falders
Make "New Folder" command available?

@ves O No
Sk Reindex Document Library %
Allow items from this document i
search results? Initiating reindexing may cause massive load on the search system. Please make sure that you don't
®Yes (O MNo initiate this without having done changes that requires all items to be reindexed.

Reindex Document Library Cancel

Index Non-Default Views
) : Allow non-default views from this list to appear in search
results?

OYes @No

Reindex Document Library

Reindex Docurmnent Library

Figure 7-14. Reindexing the document library

As shown in Figure 7-14, click Reindex Document Library and click the same on the
pop-up. Don'’t forget to scroll down and hit OK at the bottom of the screen when you're
finished. It will take no longer than 15 minutes for the search index to get updated.

Filters

We have already connected the Filter web part to the Search Results web part from the
Filter web part properties. To make the filters work, we also need to update the managed
metadata properties in the web parts. In addition, we need to connect the Search Results
web part to the Filter web part from the Search Result web part properties. This means
that two-way connections need to be established.

Once you're done with the reindexing, wait 15 minutes and then go back to the
search page and edit the page. Then, take the following steps to achieve the filter
functionality:

1. Edit the Search Results web part properties and add the three
managed properties to Selected Properties. Click the Selected
Properties drop-down; scroll down; and check off the boxes for

278

CHAPTER 7 MODERN SEARCH

RefinableDate01, RefinableString01, and RefinableString02, as
shown in Figure 7-15. This ensures that Product Type, Document

Type, and Modified will be available in the results.

i Product Data Documents

] 3 results

o=
Workplace

Strawberry Puds

47y Hari Narayanan
“V February 7, 2021

m=
Workplace

Confectionary materials

4 Hari Marayanan
P December 30, 2020

1

' Your pai

|| ProductNameOWSTEXT
[] ProductStatusOWSCHES
B FroductTypeowscHes
[progio

[__ PromatedState

[] PromotedstateOWSHMER

- [B RefinableDate0?
& Refinablestringo
u RefinableString02

m=
Worknlace

Food quality check it

£y Hori

[__ RelatedGroupid

[] RelatedioowscHes

[RenterowsTExT

[reptyCount

[requestassigneaToawsuser
ﬁ RequestDescriptionOWSMTXT
[] requestStatusOwsCHES

[] RequestTitleQWSTEXT

P December 30, 2020

Save for later

-

[[] Responsi OWSTEXT
[] reviewbateowspate

h SecondaryFileExtension

[__ Securityld

[] serverfedirectedEmbeduURL
[serverRedirectedPreviewURL
L ServerRedirectedURL

[senvcegmailomwsTexT

[__ SiteDescription

[siteip

I: SiteLogo

[] sitepath

[SiteTemplate

[__ SiteTemplateld

& sitetitle

PnP - Search Results %
Query template -

(searchTerms}*

Result source ID

I Documents e |

Salected properties

|| AuthorC dcieat ~ |
L

Sort order
I Edit sort order
Refinement filters

Pathhitps:/iclowdhadi sharepoint, comy'si
tes/Workplace/ProductData*”

[

Language of search request

| Use interface language
Enable query rules
@) off

Include OneDrive for Business results
@) off

Enable audience targeting

@) off

Enable localization
-

1of4

Figure 7-15. Adding the three managed properties to Selected Properties

2. Close the drop-down and click Next in the properties window. On
the page that follows, select Details List for the layout instead of

Cards. The layout will be updated as shown in Figure 7-16. Scroll

down and click the Manage columns button on the right side of

the screen. This will allow you to define which columns appear in

the results.

279

CHAPTER 7 MODERN SEARCH

<" | Product Data Dacuments

a 3 results

Bl o i . b

& Siraabe Food Produ 2021
Food Pradu 2021
Elactronics Produ. 2021,
TS
s [Save for later

¥ Notiollowing ' Share

~ Your page has been saved [N EEREENII

Figure 7-16. Changing the layout of the Search Results web part

280

3. Onthe Manage columns pop-up, add the columns shown in
Figure 7-17. Set the minimum and maximum width as per the

figure. The width is set according to probable width of these
properties. Also check all the boxes in the Sortable and Resizable

columns. This will ensure that you can resize the columns by
dragging and dropping from the results.

PnP - Search Results

AU YOS

®
& =] =l
Detsis List || Conds Slder
== {} (7
List Debug Custom
People

Comman

Hide this web past if there's nothing to
show

@on
Show results count

@ o

Use Microsoft Graph Toolkit

® o

Layout options

Manage columns.

T Reset fuelcis 10 defac values

Compact made
@) on

Show file kcon

@ o

Field ta use for file extension

| FiteType

< Back 2af4

Nest

CHAPTER 7 MODERN SEARCH

e coliemns for the details st layout. You can use either property values in the list directly without any transformation or use an Handlebars expression in the vakue field. HTML is supported for all fields as well

P
i1
-
3

Title * | <a hrefemiisior i « H n 200

[m Cancel
Figure 7-17. Managing columns

Check off Use Handlebars expression for the Modified property.
We also need to format Modified, as it is a date field. We'll use

the handlebar expression for that. Handlebars is a templating
language, which we use for formatting the columns in Search

web parts. A pencil icon will appear when you check off the

Use Handlebars check box. Click it and update the handlebars
expression to "{{getDate RefinableDate0o1 "MMM DD, YYYY"}},"
then click Save. See Figure 7-18. Save the Managed columns when
you're finished.

Edit Handlebars expression |
[soe |

| T

Figure 7-18. Edit Handlebars Expression

The Results web part for Product Type, Document Type, and
Modified date will be ready now. The modified date will be in the
[MMM, DD, YYYY] format. Next, we need to make the connection
to the Filters web part.

281

CHAPTER 7 MODERN SEARCH

4. Click Next in the properties window. Switch the toggle in the
Connect to a Filters Web Part to On. Select the Filters web part
from the Use Filters from this component drop-down, as shown in

Figure 7-19.
. PnP - Search Results >
¥ Notfollowing £ Share
Available connections)
Use input query text @
m @ off
Connect to a filters Web Part
@ o

Use filters from this

Filter - 605d30ac-9070-4fbb-92f9-2fcc2.. |

Connect to a verticals Web Part

I @) off
7 Product Data Documents =/

[In} 3 results
| . .
O Tive Produst Type 1 Document Type T Madified
B Swawberry Puds Food Product Information Mar 05, 2021
B4 Confectionary materials Food Product Materials Inform,, Feb 02, 2021
B Food quatity check infg Electranics Product Information Mar 05, 2021
1
i
[] save for later
< Back Mext >
ane

Figure 7-19. Turning on Connect to a Filters Web Part

We’re now done configuring the Search Results web part. In the
next step, we'll edit the Filter web part.

5. You can edit the Filter web part by using the pencil icon and
clicking Edit in customize filters, as you did earlier. See Figure 7-9
under section PnP Modern Search. On the Edit Filters pop-up,
add the Product Type, Document Type, and Modified columns,
as shown in Figure 7-20. Choose the filter fields in each column.
Choose the Check Box template for Product Type and Document

282

CHAPTER 7 MODERN SEARCH

Type, and check off Show Count. For the Modified, choose the
Date Range template. Check off Expand by Default for all the
columns. Leave the Sort settings as is. You can try different
configurations for all these settings if you'd like. Once you're done,
click Save.

Edit filters

Configure search filters by adding or remaving rows. You can select fiekds from the data source results (if already selected) or use static values for filters

[1~] | Product Type _' RefinableString01 | | check box = = O | By name - | l Ascending | X
2 v | Document Type || Refinablesting02 | [Ccrekbon ~ |* =] = O [By name] Ascending]

[2+] [sodifes | | mefnablepsteot | [owerenge | = X
|""--si":\\- name i Select field J | Template il (| IE)] By name | J\xel:lr:

o

Figure 7-20. Edit Filters screen

This completes all the required settings. Close the properties
window now and publish the page. The search page will now look
like in the one in Figure 7-21.

Before you're done, try filtering with Product Type, Document
Type, and different date ranges. Add as many contents as possible
from the Product Data library. All documents must be approved.

w Workplace
Home Documents Pages Stecontents Ecit

+ New v [Sendbyemad o) Promote {5 Page detais
S ——
Filter Product Data Documents
Product Type ~ 3 results
| esectronics (1
0O e Froduct Type 1 Document Type T Modified
|food @
= [Food Product Information Mar 05, 2021
Dacument Type -~
Y ol Food Progduct Materials Infarmati Feb 02, 2021
[#roduct information @)
® Fopd qualty check infig Electronics. Product Infoemation Mar 05, 2081

[I Product Matesials information (11
Modified -~
From 201}

To

Figure 7-21. Modern Search results and filter

283

CHAPTER 7 MODERN SEARCH

At this point, you've successfully configured a search page and satisfied all the
requirements for the Cloudhadi workplace search. Users can now search for product
data documents, filter based on Product Type or Document Type, and sort the results.

We have Search Verticals and Search Box web parts as well in the Modern Search
package. Search verticals allow you to browse data from multiple data sources. You can
configure the verticals accordingly.

In the next section, we’ll take a look at how we can send queries from the home page
of the workplace site to the search results page.

Search Box

The search box is similar to the one we used for the OOB search box. You can enter free
text queries that will be sent to the Search Results web parts. You can specify a page URL
in the search box configuration, and the queries will be sent to that page as a query string
parameter or URL fragments.

To add a Search Box, go to the workplace site home page and edit the page. Add a
new section above the service portal. Search for PnP-Search Box and add it, as shown in
Figure 7-22.

284

CHAPTER 7 MODERN SEARCH

+
+
(]
T 2 searc %
in) Featured
L o
Highlighted
content
Sort A-Z
51y ©
P - Search | PriP - Search PrP - Search
i Box Filters Results -
i - - iR
i -+ Mew Request ‘ B= View My Requests ‘ B Fag ‘ [Live Cha [

New Service Request

Request Title *

Verticals

Request Description *

Related to *

| Select an option

Figure 7-22. Adding the PnP—Search Box web part

Once the web part is added, configure it as shown in Figure 7-23. Switch on the

toggle for Send the Query to a New Page, and provide modernsearch.aspx URL. Select

Query String Parameter as the method and give a name to the parameter. Add

placeholder text in the Search Box.

PnP - Search Box x
W Woaorkplace % Matfolowing 12 Share
Home Dacuments Pages. Site coments. (-5} Search box settings
B Sweasdraft T Undo £ Discard changes () Page detsils o Vo g s b siint m

| seareh prouct tata documents
Send the query o a new

Z [_v_ e ey page

4 & e URL

b + P

o | hitpsfcloudhadisharepaint.comysites Wor
@
. o} Opsteiing bhanior

3 Live Chat

t New Request | 5 View My Requests |) FaQ

Mew Service Request
Pecraest Tithe
i |

Request Description *

Figure 7-23. Configuring the search box

| openina new b
Method

I Cuery string parameter
Parametes name:

5.

285

CHAPTER 7 MODERN SEARCH

This will ensure that whenever a user enters a keyword and searches for it, they

will be redirected to the search results page with the keyword passed as a query

string parameter. For example, if you searched for “food,” you would be redirected to
{SiteURL}/ModernSearch.aspx?q=Food.

Next, we need to make sure that the Search Results web part can receive this query

string. To do that, let’s go to modernsearch.aspx and edit the page. Edit the Search

Results web part. As shown in Figure 7-24, in the properties pane, set Use Input Query

Text to On and configure.

Product Data Documents

0 3 results for ‘electronics’

L

Tithe

Strawbery Puds

Confectionary materials

Eood quality check info

Electronics

Document Type 1

Product Information

Product Materials Inform.

Product Information

¥ Mot following

= Share

PnP - Search Results

Available connections

Use input query text
+ Your page has been saved [EEIEREINNIA & o

Modified

Mar 05, 2021

Feb 02, 2021

Mar 05, 2021

Figure 7-24. Using Input Query Text

() static value

Connect to source

Page environment

Page environment's properties

Cuery string
Query string
Query parameters

queryParameterss properties

q

W a de "
[use a default value

Connect to a filters Web Part
@ o

Use filters from this component

Filter - 605d30ac-9070-4fbb-92f9-2ice2... ~

Connect to a verticals Web Part
®) of

Set Input Query Text as Dynamic Value. Under Connect to Source, choose “Page

Environment.” Select Query Parameters for the Query String, and choose g for the

parameter’s properties, which is the passed parameter from the home page search box.

This can all be in done in Section 3 of properties pane under Available Connections.

286

CHAPTER 7 MODERN SEARCH

The final step is to update the Query Template in the properties pane to filter based
on the query string. Update the value to and(Path:"[yourSiteURL]/ProductData*",
RefinableString01:{QueryString.q}).

The results will now be updated based on the search. If you search for “food” from
the search box on the home page, you'll be taken to the results page for food. The results
will look like those shown in Figure 7-25. I modified the Title web part and adjusted its
headings, as well as the Search Results web part, to make it all look a little better.

W Workplace

Home Documents Pages Site contents Edit

£ New =) Send by email <3 Promote & Page detalls

< ProductData >

Filter

Product Type ~
[(reca @
Document Type ~

Food Product Information Mar 05, 2021
[T Product information 1)

Foed Praduct Materials Informati. Feb 02, 2021
[Product Materists informatisn 1

Modified ~

From

Figure 7-25. Search results for the “food” keyword

Note To test out and debug search queries with the SharePoint Search Query
Tool, there is a brilliant open-source tool made available by the PnP team that |
suggest you explore. It will be a great help in building search solutions. You can
find more information and download the tool at the GitHub repository:
https://github.com/pnp/PnP-Tools/tree/master/Solutions/
SharePoint.Search.QueryTool.

287

https://github.com/pnp/PnP-Tools/tree/master/Solutions/SharePoint.Search.QueryTool
https://github.com/pnp/PnP-Tools/tree/master/Solutions/SharePoint.Search.QueryTool

CHAPTER 7 MODERN SEARCH

Summary

The chapter has been about learning the fundamentals of modern searches using the
PnP Modern Search web parts. We reviewed configuring Search Results and Filter web
parts, as well as how to configure Search Box web parts. You learned about the search
schema and how to configure managed properties.

SharePoint Search is quite powerful in terms of its features. You can explore more in
this area by configuring the search with different result sources, queries, and so forth.

In the next chapter, we’ll move on to Microsoft Teams development. We'll look at
Power Virtual Agents and how to configure a chat bot. You'll learn about Microsoft
Graph, as well.

288

CHAPTER 8

Teams and Power Virtual
Agents

In this chapter, we’ll be looking at Microsoft Teams. Teams is a collaboration platform
with tremendous capabilities, including online meetings, document sharing,
collaboration, live chat, and many more. Teams is very popular nowadays. Especially
during the COVID-19 pandemic, Teams has played an essential role in making the
virtual communication between real teams easier. In addition to the communication
capabilities it offers, Teams is brilliant tool for collaboration. It is fully integrated with
Microsoft 365 (M365) and has file storage, chat, and many more features.

The key focus of this chapter will be to introduce you to Teams, Power Virtual Agents
(PVAs), and Microsoft Graph. To start the process of linking SharePoint Online with all of
the above platforms, we’ll link a SharePoint app to Teams using App Studio. Then, we’ll
move on to creating a chat bot in Teams using PVAs.

After that, we'll go over Microsoft Graph and how to add a team using PowerShell
and Graph. The focus of this section will be on building a SharePoint Framework (SPFx)
extension that sits in SharePoint and talks to Teams via Graph.

By the end of this chapter, you'll be familiar with the concept of Teams, PVAs, Microsoft
Graph. You'll have learned how to link all these with SharePoint. In addition, you'll have
created an SPFx Application Customizer extension. You'll have received a quick pass to
PowerShell. We'll satisfy some of the requirements from our case study in the process.

What Are Team Apps?

As per Microsoft documentation, Teams apps are a combination of capabilities and entry
points. People, for instance, have the capability of chatting with their app’s bot in the
entry point of a channel. We can build Tabs, Bots, Messaging extensions, and Webhooks
with Teams.

289
© Harinarayanan V P 2021

Harinarayanan V P, Building the Modern Workplace with SharePoint Online,
https://doi.org/10.1007/978-1-4842-6945-9_8

https://doi.org/10.1007/978-1-4842-6945-9_8#DOI

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Linking Workplace to Teams

Let’s start by linking Workplace to Teams. This will give you an introduction to Teams
apps and how to link a SharePoint site to Teams.

First, open Teams from your web browser using https://teams.microsoft.comand
use the same SharePoint credentials. Alternatively, you can install and log into the Teams
app. As shown in Figure 8-1, click the ... icon on the left navigation bar and then select
App Studio. If you can’t find the App Studio, you can access it by using the Find an App
search box.

Activity Ap pS
(

Chat Search all apps Q
[+]s]-]
0J
Teams %
- Find an app Q
Calendar
Recent
B App Studio | Approvals Help Jira Cloud
Files
OneNote Polly Power Products
Virtual... App
L Wil
- o
Shifts Stream Tasks by team chatter
Planner an...
More apps >

Figure 8-1. App Studio

290

https://teams.microsoft.com

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

The manifest details section will now be opened. Enter the App Details, as shown in

Figures 8-2 and 8-3. For the Privacy Statement and Terms of Use, I just entered the home

page URLs. You can leave other settings as is.

e s an app

B Workplace

By Cloudhadi

Capabilities

Complete these steps

Complete these steps in order 10 distrzite your
app.

O oDetails

2 Capabilities
] Tabs
B Bots
& Connectors

B Messaging extensions

3 Finish
M Languages
@ Domains and permissions
4 App Manifest (preview)

“ Test and distribute

[Delete Workplace

App details

Provide some basic infio about your app to get things going. Learn more about Teams Apps and the Manifest Schema

App names

A short name (30 characters or less) is required. Feel free 1o akso incdude a longer version if your preferred name exceeds 30 characters.

ghen Bl

‘ Workplace Clowhadi Workplace

Identification
Your App 1D should be a GUID, Use Semantic Versioning for your version number,
“App ID

1687cB0e-a2a4-491f-b509-chalcabcSeT

“Paciage Name “Version
| com.teams. workplace 1.00
Descriptions

Inclisde both shart and full descriptions of your app. The short description must be under B0 characters and not repeated in the full description.

*Short description (80 characters or less)
Workplace for Cloudhadi
*Full description (4000 characters o less)

Workplace for Cloudhadi

Developer information
Enter your developer or company name and website, Male sure the website is a valid hitps URL

“Divlapes/Company Mams “Website

| Cloudhadi

hitps//cloudhadi sharepoint.comysites/Warkplace

Figure 8-2. App Details page (1)

Home > Edaan app

m Workplace
By Cloudnadi

Capailities

Complete these steps

Complete these steps in onder to distribube your

app.
© oewis

App details
2 Capabilities

1 Tabs
Bats

5 ®

Connectors

=

Messaging extersions

App details
Provide some bask info about your app to get things gaing. Learm more about Teams Apps and the Manifest Schema

b B g g 1 5 SR i i i S 4 S g e

*Developer/Company Hame “Wetnite

Cloudhads sharepoint.

Partner information
Optionally provide the Micrasoft Partner Netwaork 1D of the partner arganization building the app. Leam more

MBN D

OO0

App URLs

Provide the links to your peivacy statement and terms of use.

“Privacy statement “Terms of use

Branding

Figure 8-3. App Details page (2)

291

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Under Capabilities, select Tabs and add a Personal Tab. In the pop-up, enter the
details as shown in Figure 8-4. You can enter a random number for Entity ID and enter
your Workplace site URL for Website URL. For Content URL, add [YourSiteURL]/ _
layouts/15/teamslogon.aspx?SPFx=true8dest="[YourHomePageRelativeURL],
replacing [YourSiteURL] with your Workplace site URL and [YourHomePageRelativeURL]
with a relative link to the home page.

Personal tab b4

Personal tabs require a name, unigue ID, and content page URL

Workplace

httpsy/fcloudhadi sharepoint.com,_layouts/15 AspiSPFx=
Website URL

https://cloudhadisharepoint.com/sites/Workplace

Figure 8-4. Filling in the Personal Tab

Now, as shown in Figure 8-5, go to Finish in the left navigation pane, then click
Domains and Permissions, and add your domain if it isn’t already there. For AAD App
ID, enter a random GUID (globally unique identifier). You can generate a GUID online or
use the Visual Studio Code extension that we installed in Chapter 2.

292

Home > Edit anapp

8 Workplace
By Cloudhadi

Capabilities

Complete these steps

Complete these steps in order to distribute your

app.
1 Details

B App details
2 Capabilities

] Tabs

£ Bots

&0 Connectors

[Messaging extensions

© Finish

) Languages

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Valid domains

List the domains your app needs to navigate to. Use wildcards to include multiple subdomains (for example, *.exar

Adding domains you don’t own can expose your app's users to phishing attacks,

Enter a valid domain

X WWwW.Contoso.com Add

Additional valid demains

cloudhadi.sharepoint.com

Device permissions

Optionally specify the devices your app may request permission to use.

AAD App ID
Optionally specify your AAD App Id to configure your app for Single Sign On or Resource Specific Consent

6ff84400-7bbd-4e57-9a0b-6cb55d53002d

| @ Domains and permissions.

ok

Resource Specific Consent
Optionally specify the permissions you support for resource specific consent

Figure 8-5. Adding a domain and AAD App ID

Now, click and download the app under Test and Distribute section, as shown in

Figure 8-6. The app will be downloaded as a ZIP file.

293

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Test and Distribute

@ Workplace Choose what you'd like to do with your app. Learn more
By Cloudhadi
Install
Capabilities
Install your app in Teams for testing.

Install

Complete these steps
Download

Complete these steps in order to distribute your

app. Download and save your app package for distribution and submission.

1 Details Download

App details

Publish
2 Capabilities Publish your app to your tenant's app catalog or the Teams app store.
™ Tabs
B Bots

45 Connectors

[Messaging extensions

© Finish
] Languages
@ Domains and permissions

<> App Manifest (preview)

A~ Test and distribute

Figure 8-6. Downloading the app

Once the app is downloaded, click the ... icon in the left toolbar and then click More
Apps. See Figure 8-7.

294

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Ac{%.y Teams = . General Posts Files Wiki +
@ Hidden teams + New T Upload e Sync £
Chat
11
fI’i General
Teams
_ Find an app Q [Namew
Calendar
Recent ~
0 u ﬂ
D App Studio Approvals Help Jira Cloud
Files
OneMote Polly Power Products
Virtual... App
B £
Shifts Stream Tasks by team chatter
Planner an...
Maore apps >

Figure 8-7. Navigating to More Apps

295

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

On the resulting page, click Upload a Custom App. See Figure 8-8.

e

Education . Workstreams.ai ServiceDesk Plus €
N Warkstreams ai GmbH Zoha Corporation Private

Human resources

o Workstreams.ai is designed to unite individuals View the request module of Servi
Productl\r:ty & teams to focus on their priorities, Cloud inside Microsoft Teams. Tec
i collaborate & get things done. Create tasks,.., requesters can now perform varic
Project management
Sales and support
Social and fun
All apps
Submit to app catalo
PP 9 Forms Pl Channel calendar
Upload a custom app Microsoft Carporation = Microsoft Corporation
= . Easily create surveys, quizzes and polls. Access all events in the channel fi
T Upload for cloudhadi place. All members—except gues
events to the calendar and view €

F Power Bl Communities
B Microsaft Carparation Microsoft Corporation

Apps Pin Power Bl reports to your channel to start a Add a fully-interactive Yammer e»

conversation about your data, With reports Microsoft Teams. Yammer commi
@ and chats in the same place, everyone stays .., connect the organization, enablin
Help

Figure 8-8. Uploading a custom app

Now click Upload for Cloudhadi and browse for the downloaded ZIP file. Your
organisation name will be displayed for you instead Cloudhadi. The app will be
uploaded. You can see the app Workplace under Apps. See Figure 8-9.

Apps Built for cloudhadi

Search all apps Q Built by your org
Apps created and approved by cloudhadi's technology team.
All
Personal apps Planet Messaging Workplace
E’! Contoso @ Cloudhadi
Bots
Tabs TODO: add full description here Workplace for Cloudhadi
Connectors
Messaging
Built for cloudhadi »

Built by your colleagues

Figure 8-9. Uploaded app

In the pop-up, click Add, as shown in Figure 8-10.

296

Workplace
cloudhadi

About
More from cloudhadi

Permissions

By using Workplace, you agree to the
privacy policy and terms of use.

CHAPTER 8

Workplace for Cloudhadi
Workplace for Cloudhadi

Personal app
Keep track of important content and info

Created by: Cloudhadi
Version 1.0.0

More from cloudhadi

Planet Mes...

Permissions

This app will have permission to:

TEAMS AND POWER VIRTUAL AGENTS

* Receive messages and data that | provide to it.
* Access my profile information such as my name, email address, company name,

and preferred language.

Figure 8-10. Adding Workplace app

The app will now be pinned to your left navigation bar. By clicking on it, the app will
be loaded with the SharePoint home page in it. As shown in Figure 8-11, you can now

search for product data documents or submit a new service request within Teams itself.

297

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

e Microsoft Teams Q Search

\E%__ B Workplace Workplace About
Chat
EEI% O Search Product data documents
Teams
Calendar
- New Request | £= View My Requests ‘ B rAQ | [3 Live Chat
Calls.
New Service Request
Request Title *

Request Description *

: ‘&5 ‘;—TD

Related to *

Select an option |

Figure 8-11. Workplace in Microsoft Teams

If you log in with your service account, you can’t see that Workplace app is pinned
to the left navigation bar, as the pinning happened only within the user context. So,
what if you want to pin Workplace for all users? To do that, we need to make changes
in the administration of Teams. Let’s do that so that we can have hands-on Teams
administration.

To access the administration for Teams, go to https://admin.teams.microsoft.
com/. Choose Teams Apps, then click Setup Policies, and Global (Org-Wide Default), as
shown in Figure 8-12.

298

https://admin.teams.microsoft.com/
https://admin.teams.microsoft.com/

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Microsoft Teams admin center

App setup policies

App setup pelicies control how apps are made available to a user with the Teams app. You can use the Global (Org-wide
default) policy and customize it or you can create custom policies and assign them to a set of users, Learn more

+ Add
hif Name T Description Custom palicy
FirstLineWorker This is a default app setup .. No
| Global (Org-wide default) Mo

Setup policies

Figure 8-12. Configuring Global policies for Teams apps

Turn on Upload Custom Apps, so that users can upload apps. Under Pinned Apps,
click Add Apps. Then, in Add Pinned Apps, search for Workplace and add it. See
Figure 8-13.

Add pinned apps
Search based on this app permission policy (7

None

Search for apps you want 1o add of 1o see a list
of apps go 1o Manage apps.

E | = :

Figure 8-13. Adding a pinned app - Workplace app

The app will now be added to the Pinned Apps section. All users will be able to see
Workplace in their Teams and browse the site.
In the next section, we’ll build a bot using Power Virtual Agents and add it to Teams.

299

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Power Virtual Agents

Power Virtual Agents is a tool for creating powerful chat bots. These bots can answer
questions based on your configurations. We can make use of PVAs as a stand-alone web
app or a discrete app within Teams. In this chapter, we’ll make use of PVAs from Teams.

Creating a Chat Bot

Let’s create a chat bot for the service portal by using PVAs within Teams. We can do that
by taking the following ten steps:

1. Locate PVA: To start with, go to Teams, click the ... icon in the left
navigation bar, then search for “Power Virtual Agents,” as shown in
Figure 8-14.

Teams

- General Posts

Hidden teams + New v T Uplc

General

‘ power virtual @) Namew

Power Virtual Agents
Quickly and easily create chatbots for Teams

Built by Power Virtual Agents. Create your own a...

Figure 8-14. Navigating to Power Virtual Agents

300

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

2. Select a team: On the Power Virtual Agents screen, click Start Now.
Select a team from the What Team Is Your Bot Joining? drop-
down. Once you select the team, click Continue. See Figure 8-15.
You can either choose the default team or you can go to Teams
in the left navigation bar and create a new team from the Join or

Create Team link at the bottom.

. Power Virtual Agents

Create a chatbot for Teams

What team is your bot joining? *

cloudhadi

Figure 8-15. Selecting a team for the chat bot

3. Create the bot: Give the bot a name and click Create, as shown in
Figure 8-16.

301

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

. Power Virtual Agents Home Chatbots About

Create a new bot

Name®
| I Service Bat | |

Language* (3
| English (US) ¥ |

Figure 8-16. Creating a chat bot

Once your bot is created, you'll be given the options to author or
automate topics, to edit and test the bot, and to publish the bot, as
shown in Figure 8-17.

. Power Virtual Agents Home Chashon Abou

choudnads / Service Bot

Test bot > Service Bot

% b K B A2 N

Track between topics (8)) Resmt :

CEE—

Awthor or automate topics Edit and test your bot Make your bot available to others
Biegin by authering your cw sapics. o use Al 15 Custarmize togics 10 it your business. Test the bot 1o You tentrol who can find and chat with it - & few
automate your mast freguently] i pepibe, yOUr BRAM. Of yOuT AT SHQanization,

e

Figure 8-17. Bot interface

302

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

4. Create a topic: In order to define responses, we need to create a
topic. Let’s use two phases, “Service Request” and “Create Service
Request,” as triggers for the topic. If a user types in either phrase,
the bot should start asking questions about creating a service
request.

To do this, first click Go to Topics. This will take you to the Service
Bot page where you can create a topic, test a bot, publish, and
more. See Figure 8-18.

. Power Virtual Agents Home Chatbots About

i /[Service Bot [‘ﬁ Suggest topics [Open in Bot Framework (Preview)

Test bot X Topics ©
@ Track between topics (@)) Reset
= Chat 2] Existing (12} Suggested (0)
B
Type Mame Trigger phrases Status
ke
= Lesson 1 - A simple topic m On
i,
= Lesson 2 - A simple topic with a condition and v... m On
£
= Lesson 3 - A topic with a condition, variables an, @ o
= Lessan 4 - & topic with a condition, variables an ()

Figure 8-18. Topics screen

Then, click New Topic, and provide a name for the topic. As
mentioned earlier, add two triggers, as shown in Figure 8-19.

Power Virtual Agents fore Cusion Abou
Service Reguest Q | @ reane L]

Test bot *
ek btveen tapics (8 Reset SR

e e r—

Service Regue: a :

, Madtied by
Friendly name Savvice regumt
Stats

Figure 8-19. Adding triggers for the topic

303

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

5. Configure authoring canvas: If a user types any of these three
phases, the bot will be triggered. We can configure the bot’s
response in the authoring canvas. Click Save Topic, then click Go
to Authoring Canvas. See Figure 8-20.

Trigger Phrases (3] i Variable

Name *

[]

3 Choose information to identify b
Message : . o)
To help the bot pick out specific information from your Type
@ | i thanks for contacting Service chat user's response, choose an option or entity. Text
bat.
O Search
Source
—~ £= Multiple choice options
Question "
Prebuilt, String B cot
@ Ask a question
| Flease provide a title for your request? [User's entire response
No entity extraction; saved as is
Identify Y Usage ©
& Users entire response > "\ Age (®) Topic (i
Save response a4 | Prebuilt, Age of a person, place, or thing, extracted as a
| by O Bot (any
[| rumbar
B Boolean
Condition : Condlion Prebuilt, Positive or negative responses, extracted as a
) Boolean
1) varTite ftest] All ather condiicns Used by (0]
has value v City
4 Add condition Prebuilt, City names, extracted as a string
Color
& : < Prahuilt Primans ralare and hise an the ealar snactoim

Question

@ Askaquestion

Can you please provide details on this
requess?

Identify
B Users entine response. »

Save response as

{x) VarDescription [sest) &

Cendition H Condition
[ia: VarDescription ftext) %] 211 other conditions
l has value -]

+ Add condition

Figure 8-20. Configuration questions

304

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

When you go to the authoring canvas shown in Figure 8-20, you
can see that the triggers in Trigger Phrases highlighted. The
Message box have already been created. Add a message in the
Message box such as, “Hi, Thanks for contacting Service chat bot”
Then, under Question, click + to add a node (which is not visible
in the Figure, but you will find it below by moving the cursor), and
in the Ask a Question box, type in, “Can you please provide details
for this request?” In the Identify section, select User’s Entire
Response. For Save Response As, click the pencil icon and enter
“varTitle” as the variable name.

What we’ve done so far is to ask the user a question if they type
in any of the three defined triggers. The user’s response will get
saved as the varTitle variable. Next, we’ll add a Condition that
checks whether the user has provided a value. If they haven't, the
bot won't proceed to the next step.

Let’s configure the bot to ask the user for description details, as
shown in Figure 8-20. Add the steps Question and Condition
like we did for “varTitle”.

Configuring multiple options for the user: Once the user enters the
description, the bot should then ask, “Your request is related to?”
and provide the user with the Access, Materials, Equipments, and
General options. After the user responds, the bot should create a
service request. See Figure 8-21.

305

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

@ @ Topic details "\‘ Topic checker 2 £ Test bot | B save I

{x} VarDescription (text) X |

has value v |

-+ Add condition

Question

. Ask a question

Your request is related to? | |
| S —
Identify

[B Multiple choice options > I

Options for user
s
Materials |

Equiprmen
General
=+ Mew option

Save response as

{x} VarRelatedTo (text) &

|-_ — e Authenticate

£ Search

o Manage > Security > Authentication ta configure

Condition — Create a flew
ches Power Automate

{x} VarRelatedTo (text) X

has value o

+ Add condition

No actions found

o
[Ask a question

| & Call an action >|

[0 Show a message

Figure 8-21. Configuring multiple options and calling for an action

To set this up, choose Multiple Choice Options under Identify, as
shown in Figure 8-21. To add options, click +New Option. Add all
four options and configure the variable for saving the response.
Add a Condition to check whether the variable has value. Select
Call an Action and Create Flow. Save your changes using the Save
button in the top left-hand corner. Ignore any errors for now.

7. Create and configure a flow: Power Automate will now open within
Teams. Select Power Virtual Agents Flow Template to create the

flow, as shown in Figure 8-22.

306

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

- Power Virtual Agents Home Chatbots About

. Power Automate
an aan ag

Power Virtual Agents Flow Template Send a message to a Teams channel Send an adaptive card to a Teams channel

By Microsoft By Microsaft By Microsaft

Figure 8-22. Creating a Power Automate flow in the Power Virtual Agents
template

The flow designer will open. On the Power Virtual Agents

screen, add the following three inputs: “title,” “description,” and
“relatedTo,” as shown in the first panel of Figure 8-23. On the
Initialize Service Number screen, initialize a serviceNumber
variable and add “CSR” plus the expression “rand(10000, 99999)”
for the value. This will create a random number for the title.

307

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

|E Power Virtual Agents ®

e l ta varTitie ‘

o [seseription varDescription |

e [relatedTo || varneiatesTo |

+ Add an input

T
-+
W
Initialize service number
*Name I serviceNumber |
*Type I String bt |

Value | CSR rand{..) x | J
J

W
- Create item
Esheiddress I Workplace - hitps://cioudhadi int.com/sites . v
*List Name [Service Portal P

*Title B servicenumoer x
Request Title B title x
Request Description B description x

Request Status Value | New T
g‘:;?‘ Assigned To [serviceuser@cioudhadionmicrosoft.com)
Related to Vaiue ’i relatedTo x X
Content type Id | =

Show advanced options

\)

Return value(s) to Power Virtual Agents

e l serviceNumber | [—. senviceNumber x

+ Add an output

Figure 8-23. Configuring the Service Request creation flow

308

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Then, enter the details for the Create Item screen, as shown in

the third panel of Figure 8-23. Assign serviceNumber for the Title.
Use the variables shown in the figure for Request Title, Request
Description, and Related to Value. Set the Request Status Value to
New, and provide your service user email ID for Request Assigned
To Claims. On the Return Value(s) to Power Virtual Agents screen,
add serviceNumber as the output variable, so that the service
number will be returned. The flow will return this output to PVA
once the execution is successful.

Call the flow: Save the flow and click the back arrow to go back

to the authoring canvas. The flow will be available to select

by clicking on Call an action. Refer Figure 8-24 for the Call an
action link. You can click the flow details on renaming the flow. I
renamed it “Bot Service Request Creation.” Click the icon against
Bot Service Request Creation to add the action to the canvas. See
Figure 8-24.

309

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

l B Multiple choice options >

Options for user

Access

Materials

B =2 = G

|
|
|

General

+ New option
Save response as

{x} VarRelatedTo (text)

Condition : Condition

All Atlhme cmmAdibimme

{x} VarRelatedTo (text) X

‘ £ Search

has value e

~+ Add condition Authenticate

Go to Manage > Security > Authentication to configure

N Create a flow
&
Launches Power Automate

5 Askaquestion Bot Service Request Creation
Call an action > ‘

1 Show a message

2> Go to another topic >

B End with survey

Figure 8-24. Adding a flow action to the canvas

9. Pass inputs to the flow: Once the flow action is added, provide
variable values for the Power Automate Inputs by clicking each
input and selecting the appropriate variable from the drop-down
menu, as shown in Figure 8-25. Assign outputs to give value to
serviceNumber.

310

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

@ @ Topic details | ¥ Topic checker 2] | & Test botI B save |

has value

- Add condition

Action

Power Automate inputs (3)

{x} title (text) gets value from

{x} varTitle (text) =

{x} description (text) gets value from

{x} varDescription (text) X

{x} relatedTo (text) gets value from

{x} varRelatedTo (text] X

e Reguest Creation

L

Power Automate outputs (1) gives value to

{x} serviceMumber (text)

Mess: B I ==] {x}~ |:
o f':\--' SErvice request is S

Reference - (X} serviceNumber
Thank you for using Service Bot!

Have a mice day.

Figure 8-25. Calling the Bot Service Request flow with inputs and receive
output

Next, add a message with the service number by clicking the Insert
Variable drop-down, then clicking Topic Checker in the toolbar to
check for any errors. If you get a response error, reselect Identify
for the title and description questions.

Save the topic using the Save button in the upper right-hand corner.

10. Test the bot: Now it’s time to test our bot! Open and close Test
Bot by using the Test Bot button at the top. Test Bot button is
highlighted in Figure 8-25. Figure 8-26 shows the test I ran.

311

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

- Back Service Request
JESSton —
Test bot X Power Automate inputs (3)
Track between topics @ O Reset : {x} title (text] gets value from
Chat Fo {x} varTitle (text) =
A {x} description (text) gets value from
Hi, Thanks for contacting Service chat bot. {x} VarDescription (text) X

{x} relatedTo (text) gets value from
Please provide a title for your request?
{x} VarRelatedTo (text) x

A minute agn

Access for Apple Puree quality documents ; :
D/n Bot Service Request Creation
Rk View flow details
@ Can you please provide details on this
request? Power Automate outputs (1) gives value to
Iust now {x} serviceNumber (text)
Please provide access 1o Apple puree 9
documents as | need ta make required

changes for quality audit

. % Your service request is created:
Your request is related to? Reference - (%} serviceNumber

Just new Thank you for using Service Bot!

Have a nice day.
Access 9

Your service request is created: Reference

- C5R39839
Thank you for using Service Bot!
Have a nice day.

®@ o o P

lust now

Type your message B {x}

Figure 8-26. Testing the bot

As you can see in the figure, the bot is responding to my chat and asking questions.
The bot also created a service request and provided me with a reference number. If I go
to service portal list, I can see that my request has been created there.

312

w

Home

Workplace

Site contents Edit

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

+ New ~ E Edit in grid view 1= Share ﬂ Export to Excel @ Power Apps $#% Automate v

Service Portal

Title Request Title Request Descri... Request Status Request Assign... Related to
CSR57247 Access for Documents Please pravid ssto Completed service user Materials
food quality document
CSR1552 Procurement of Please provide a New service user Equipments
MacBook macbook for operations
team
CSRI3162 Food processing Please provide a food Completed service user Equipments
machine request processing machine for
o3 jam maker team
CSR79959 Enquiry regarding new Provide details on new New service user General
office site office site for Strawberry
processing team
CSRO305 Material access for please provide material Mew Access
SETVICe users access for service users
CSRA1093 Strawberry farm Please arrange services New service user Genera
cleaning for farm cleaning
“CSR39839 Access for Apple Puree Mew service user Access

quality documents

Figure 8-27. Verifying my request in the service portal list

So, within a minute, the bot created a service request for me. Now it’s time to publish

and share the bot.

Publishing and Sharing the Bot

To publish the bot, click the back arrow in the top left corner. When you're on the bot

page, click Publish on the top right corner. Click Publish, then confirm by clicking

Publish again on the pop-up. See Figure 8-28.

313

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

- Power Virtual Agents Home Chatbots About

Publish latest content?

Figure 8-28. Publishing a bot

It will take a few seconds for the bot to publish. You should then share the bot with
the organization so that everyone can access it. To so this, click Share the Bot, as shown
in Figure 8-29. In the sliding window, click Submit for Admin Approval. The program will
then wait for the approval.

OO { Semnce Bot & Submit for admin approval o
= (D our bot s uberitied aed waiting for appeoval froen your Tearms adiein
& Publish
N Make your latest content available to end users. Leam mose Microsoft Teams bots + submission status
=
= Service Bat
® T, Publish Version 1.0.0

(& Waiting for approval
=5
Mext steps Get yous bot ready
Iz Adrmins can feature your bat prominently s an app in the Buitt by your org section of
2 @ Open the bot Micragoft Teams, pre-install for users in your org. and more.
Start chatting with your bot in Microsét Tearm Bedore submitting, make sure to:
* Ensure your bot is ready for release and in compliance with company standards, rules, and
polices.
(C{Q ?_ha_m_ _'he ‘_m,t_ L TR * Coordinate with your teammates. Once the bat is submitted, it can't be resubmitted by
- e others until an admin apperaves or rejects it.
Tips Remave the bot, if applicable, from the Built by your colleagues section in Teams. Submitting it

for admin approval could result in your bot showing up in two places.
* Publish your bat at least once before opening or sharing it
* To get the latest content while chatting in Teams, tell your bot to “Start over.

| & Submit for admin approval ||

Figure 8-29. Sharing the bot and submitting for admin approval

314

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

To approve the app, you need to go to the Teams admin center at https://admin.
teams.microsoft.com/ and select Manage Apps under Teams Apps in the left navigation
pane, as shown in Figure 8-30. You can see that one app is pending approval. If you look
at Service Bot in the next section, you can see the app is submitted and the current status
is Blocked.

Manage apps |

When you are managing yowr org you g what apps are available 10 users In your
INization’s AR St0Me. You Can then use apR PErMIsn and app setup policies 10 configure what apps wil be available for

Figure 8-30. Managing apps in the Teams admin center

Ifyou click on Service Bot row, it will take you to the Details page for the app. Choose
Publish on the Publishing Status drop-down. The app will then be published and the
status will change from Blocked to Allowed. See Figure 8-31. The Figure shows the page
after published.

315

https://admin.teams.microsoft.com/
https://admin.teams.microsoft.com/

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Dashboard

Teams

Devices

Locations

Users

Meetings

Messaging policies
Teams apps
Manage apps
Permission policies
Setup policies
Customize store
Voice
Policy packages
Analytics & reports
Org-wide settings

External access

Manage apps \ Service Bot

Service Bot

Powered by Power Virtual Agents

T Update il Delete

o ™
Publishing status (i)

m Permissions

Certification ()

W

Scope

Personal

Short description

Settings

Bot for creating service requests for users

App D

flad98c3-229d-4ef1-8dad-850385a14983

Figure 8-31. Approving the app

1.0.0
By using this app, your users

agree to the Privacy policy
and Terms of use.

Now go back to the Publish page and click Refresh in the Submit for Admin Approval

window. You can see that the Service Bot has been published by your organization, as

shown in Figure 8-32. Click Open Bot.

316

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

fhadi / Service B " .
e < Submit for admin approval
Publish Microsoft Teams bots + submission status
Service Bot
Version 1.0.0

~ Published by your organization

i Openbot | [y Copylink

Mext steps
Get your bot ready
Admins can feature your bot prominently as an app
@ Open the bot Microsoft Teams, pre-install for users in your org, ar
bl bick i Before submitting, make sure to:
= Ensure your bot is ready for release and in comp
policies.
Share the bot
thers t i - 1t Tiear * Coordinate with your teammates. Once the bot i

others until an admin approves or rejects it

Figure 8-32. Opening the published bot

A pop-up will open up giving you the option to add the Service Bot. You can also see
all the details we provided earlier about the app. Clicking Add will add the app to your
Teams. See Figure 8-33.

Service Bot X
cloudhadi

Bot for creating service requests for users

Help employees create service requests in quick time by providing the details

About
Bots
More from cloudhadi Chat with the app to ask questions and find info
Permissions Created by: Powered by Power Virtual Agents
Version 1.0.0

More from cloudhadi

524

Workplace Planet Mes...

Permissions

This app will have permission to:
* Receive messages and data that | provide to it.
* Send me messages and notifications.
* Access my profile information such as my name, email address, company name,

By using Service Bot, you agree to and preferred language.

the privacy policy and terms of use.

Figure 8-33. Adding the app to your Teams

317

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Now if you go to Teams, you can see Service Bot in the top left corner of navigation
pane. You can click Chat to create a service request for the bot. See Figure 8-34 for an
example.

Service Bot cChat About

Service Bot 317 PM
] Hil I'm a virtual agent. | can help with account questions, orders, store information, and more.
If you'd like to speak to a human agent, let me know at any time,

So. what can | help you with today?

318 PM
Service request

Service Bot 318 PM
© Hi, Thanks for contacting Service chat bot,
Please provide a title for your request?

3018 PM
Materials procurement for Microwave

Service Bot 318 PM
@ Can you please provide details on this request?

318 PM
MNeed shipment of materials for microwave builds

Service Bot 319 FM
® Your request is related to?

Access Materials Equipments General

319 PM
Materials o)

Service Bot 319 PM

@ Your service request is created: Reference - CSR81131
Thank you for using Service Bot!
Have a nice day.
Type your guestions here @
O E B L & MH - B

Figure 8-34. Service Bot in operation

Note Each user needs to add the Service Bot app to their Teams to make use of
Service Bot. You can add the app by clicking the ... icon in the left navigation bar.
If you want to pin the app for all the users in your organization, you need to set up
global policies in the Teams admin center and add Service Bot to pinned apps. We
did this for the Workplace app earlier. See Figures 8-12 and 8-13.

318

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Now you've successfully created your first bot. The bot can interact with Teams,
SharePoint, and Power Automate. If you want, you can explore more about the Topics
and you can create more intelligent chat bots. In the next section, we’ll get introduced to
Microsoft Graph and how we can use it to create Teams.

Creating Teams with Microsoft Graph

Using Microsoft Graph allows you to access huge amount of data in Microsoft 365. It
provides you with a single end point: https://graph.microsoft.com. You can interact
with SharePoint or Teams data using Graph. For example, if you want to get your
calendar events, you can use the GET request at https://graph.microsoft.com/v1.0/
me/events.

In the next section, we’ll see how to create a team, add a team member, and post a
message to Teams using Graph.

Let’s now create a team for service executives with the help of Microsoft Graph and
PowerShell. This will give you an idea of how to communicate with Teams using the
application programming interfaces (APIs) provided by Graph.

I'm making use of the existing M365 group team1 here and adding a team to that.
You can see all M365 groups in your tenant by going to https://admin.microsoft.com
and selecting Groups » Active Groups. Pick any of the groups and save a copy of the
name. See Figure 8-35.

heuatbudi

Active groups team1

Ui Refresh ;¥ Eds name and description () idit emall addresses & Delete group.

Figure 8-35. Microsoft 365 group

319

https://graph.microsoft.com
https://graph.microsoft.com/v1.0/me/events
https://graph.microsoft.com/v1.0/me/events
https://admin.microsoft.com

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Notice that there is no Team Status for the group, whereas our default group
Cloudhadi has a Team Status.
Now open a blank document in Notepad, copy the following code into it, and save it

as “serviceTeamCreation.ps1.”

Connect to Microsoft 365

Connect-PnPOnline -Scopes "Group.ReadWrite.All"
Get access token for Graph

$accessToken = Get-PnPGraphAccessToken

Pass access token to headers

$headers = @f

"Content-Type" = "application/json"

Authorization = "Bearer $accessToken"

}

Get list of M365 groups

$groupResponse = Invoke-RestMethod -Uri "https://graph.microsoft.com/v1.0/
groups" -Method Get -Headers $headers -UseBasicParsing
#ifilter Target group

$targetGroup = $groupResponse.value | Where-Object -FilterScript
{$_.DisplayName -EQ 'team1'}

#get group id

$groupIld = $targetGroup.id

Create team for service executives

$serviceTeaml = @

memberSettings = @{

allowCreateUpdateChannels = $true

}

messagingSettings = @f

allowUserEditMessages = $true

allowUserDeleteMessages = $true

}

funSettings = @{

allowGiphy = $true

giphyContentRating = "strict"

320

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

allowStickersAndMemes= $true
allowCustomMemes= $true

}
}

$serviceTeamBodyl = ConvertTo-Json -InputObject $serviceTeami

$newTeam = Invoke-RestMethod -Uri "https://graph.microsoft.com/v1.0/
groups/$groupld/team” -Method PUT -Headers $headers -Body $serviceTeam
Body1 -UseBasicParsing

Write-Host $newTeam

Let me explain the code. In the first line, we make a connection to M365. In the
second line, we get an access token for Graph. Next, we declare a headers variable
by passing the access token. Then, we query all M365 groups and filter the results by
teaml. From the filtered result, we get the groupId and store it into a variable.

After that, we define a team with settings like the member, messaging, and so forth.
Then, we convert the team definition into the JSON format. Finally, we invoke another
Graph API call by passing the team request body and groupId.

Then, we open the PowerShell script in Windows PowerShell Integrated Scripted
Environment and execute. It will ask you to log in to M365 with the credentials. Once you
complete the execution, the team details will be printed in the console.

Now, if you go back to Teams, you'll see that a new team, team1, has been created
there, as shown in Figure 8-36. You can right-click team1, edit it, rename it “Service
Executives Team,” and provide a description.

321

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

A;E'%ty Teams . General Posts

@ Your teams

Chat

B o
(111

Teams @ Hide
- cloudhadi

Calondar General £33 Manage team
Qa Sobchanne! %@ Add channel
sl & Add member
I3 [¢ Leave the team
Fill -
- /7 Edit team

& Get link to team

) Manage tags

@ Delete the team

Figure 8-36. New team created

If you want to add a service executive to the team, right-click the team and click Add
Member. In the pop-up, type in the service executive’s name, select the name, and click
Add. Then, close the pop-up. See Figure 8-37. You can also add more service executives
to the team if you'd like.

322

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Add members to Service Executives Team

Start typing a name, distribution list, or security group to add to your team. You can
also add people outside your organization as guests by typing their email addresses.

&) ronvkee X

Figure 8-37. Adding a team member

This has been a small example to get you introduced to using Microsoft Graph and
PowerShell with Teams. In the next section, we'll create an SPFx extension that creates
an interaction between SharePoint and Teams with the help of Graph.

Posting a Message to Teams

During our Chapter 6, we didn’t create an SPFx extension, so In this section, we're going
to create a simple SPFx Application Customizer extension. This extension will sit on the
footer of our Workplace site and interact with Teams with the help of Microsoft Graph.
It will enable users to post a message to the General channel of the Service Executives
Team.

To start, create an SPFx project like you did earlier. Give “service-extension” as the
solution and extension name. Fill in the information and enter each line as shown in
Figure 8-38.

323

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

C:\Projects\SPFx
A yo @microsoft/sharepoint

Let's create a new SharePoint solution.

? What is your solution name?

> Where do you want to place the files)

Found npm version 6.4.1

? Do you want to allow the tenant admin the choice of being able to deploy thi !
2 Will the components in the solution require perm1551on5 to access web APIs i
> Which type of client-side component to create?

> Which type of client-side extension to create? &
Add new Application Customizer to solution

2 What is your Application Customizer name?

2 What is your Application Customizer description?

Figure 8-38. Creating an SPFx Application Customizer

Note The complete code for the SPFx extension is available in the Chapter 8
section of the GitHub repository: https://github.com/Apress/building-
modern-workplace-sharepoint-online/tree/main/Chapter’%208.

Once the project is created, open the solution in Visual Studio Code. Go to Src »
extensions » serviceExtensions and update ServiceExtensionApplicationCustomizer.ts
as follows. I'll provide an explanation after the code.

import { override } from '@microsoft/decorators’;
import { Log } from '@microsoft/sp-core-library';
import {
BaseApplicationCustomizer,
PlaceholderContent,
PlaceholderName
} from '@microsoft/sp-application-base’;
import * as strings from 'ServiceExtensionApplicationCustomizerStrings';

324

https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 8
https://github.com/Apress/building-modern-workplace-sharepoint-online/tree/main/Chapter 8

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

import * as React from "react";
import * as ReactDOM from "react-dom";
import TeamsFooter, { ITeamsFooterProps } from "./TeamsFooter";

const LOG_SOURCE: string = 'ServiceExtensionApplicationCustomizer’;
Vioio

* If your command set uses the ClientSideComponentProperties JSON input,
* it will be deserialized into the BaseExtension.properties object.
* You can define an interface to describe it.
*/
export interface IServiceExtensionApplicationCustomizerProperties {
// This is an example; replace with your own property
Bottom: string;
}
/** A Custom Action that can be run during execution of a Client Side
Application */
export default class ServiceExtensionApplicationCustomizer
extends BaseApplicationCustomizer<IServiceExtensionApplicationCustomizer
Properties> {
private bottomPlaceHolder: PlaceholderContent | undefined;
@override
public onInit(): Promise<void> {
Log.info(LOG_SOURCE, “Initialized ${strings.Title}");

// Added to handle possible changes in the existence of placeholders
this.context.placeholderProvider.changedEvent.add(this, this.
renderPlaceHolders);

// Call render method for generating the HTML elements
this. renderPlaceHolders();

return Promise.resolve();

}

private renderPlaceHolders(): void {

// Handling the bottom placeholder

325

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

if (!this. bottomPlaceHolder) {
this. bottomPlaceHolder =
this.context.placeholderProvider.tryCreateContent(
PlaceholderName.Bottom,
{ onDispose: this. onDispose });

// The extension shouldn’t assume that the expected placeholder is
available

if (!this. bottomPlaceHolder) {
console.error('The expected placeholder was not found.');
return;

}

const elem: React.ReactElement<ITeamsFooterProps> = React.
createElement(
TeamsFooter,
{
context:this.context
}
);
ReactDOM.render(elem, this. bottomPlaceHolder.domElement);
}
}
private _onDispose(): void {
console.log('[ReactHeaderFooterApplicationCustomizer. onDispose]
Disposed custom top and bottom placeholders.');

}
}

In this set of code, we’re accessing the placeholders on the page. We're
importing all the necessary modules and updating the OnInit method by calling the
renderPlaceHolders method. Inside renderPlaceHolders, we're creating a placeholder
at the bottom using this.context.placeholderProvider.tryCreateContent. If you
provide PlaceholderName. Top instead of PlaceholderName.Bottom, it will add the
extension on the top.

Next, we will create a react element, TeamsFooter, by passing the context to it. The
interface for the element is ITeamsFooterProps. Finally, we'll render the element in the

326

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

bottom placeholder. So, we have the placeholder and will render the element on the
placeholder set with this code.

Let’s now create a react component, TeamFooter.tsx. To do so, right-click Extensions\
Service Extensions Folder, then select New File, and name it “TeamFooter.tsx.” Let’s
define it as a functional component. Copy and paste the following code, after which I'll
get into more detail about it.

import * as React from "react";
import { CommandBar } from 'office-ui-fabric-react/1ib/CommandBar’;
import { MSGraphClient } from '@microsoft/sp-http';
export interface ITeamsFooterProps {
context: any;
}
function TeamsFooter(props: ITeamsFooterProps) {
// Post message to Teams
const postMessage = () => {
const chatMessage = {
body: {
content: 'Hey Team, an urgent issue notified!
Please look out in the service portal'

};
props.context.msGraphClientFactory.getClient().
then((client: MSGraphClient): void => {
client.api('/teams/ed943053-550e-48d5-b679-
a2e8af9820a4/channels/19:1740ec0332124802b31a31538e
7801d4@thread.tacv2/messages")
.post(chatMessage)
.then(success => {
alert("Message posted")
}, error => {
alert("failed")
D;
1;

327

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

// Data for CommandBar
const getItems = () => {

return [
{
key: 'Teams',
name: 'Notify Urgent Issue to Service Executives
Channel',
iconProps: {
iconName: 'TeamsLogo'
}J
onClick: () => postMessage()
}
1;
}
// Command bar
return (
<div className={"ms-bgColor-themeDark ms-fontColor-white"} >
<CommandBar
items={getItems()}
/>
</div>
)5

}

export default TeamsFooter

The previous code in the react component posts a message to the General channel
of the Service Executives Team. We're importing React, MsGraphClient, and the Fluent
user interface command bar. In the command bar, we have an item named Notify
Urgent Issue to Service Executives channel thathas the TeamsLogo icon.

When a user clicks on Notify Urgent Issue, it invokes the Graph API and posts a static
message. We're making a post call with Graph here. To access the channel, we need to
pass the teamld and Channelld to the end point in the /teams/[teamid]/channels/
[channelid]/messages format.

To find out the teamlId, go to Teams, click the ... icon after Service Executives Team,
and click Get Link to the Team. In the pop-up, copy the group ID GUID. See Figure 8-39.

328

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

| Gt & ink to the team |

::.‘.':c-z-.-ef:st-cﬂs.’gr:un’d% i

Figure 8-39. Getting the teamld

To get the Channelld, click the ... icon after the General channel below the team.
Click Get Link to Channel. Copy the GUID from channel/ until the next slash. See
Figure 8-40.

Get a link to the channel

Figure 8-40. Getting the Channelld

329

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Replace the characters 19%3a with : and %40 with @. For example, I
replaced 19%3a1740ec0332f24802b31a31538e7801d4%40thread.tacv2 with
19:1740ec0332f24802b31a31538e7801d4@thread.tacv2 for the correct Channelld.

So, now you have the teamld and Channelld. Go ahead and put them in the respective
places in the graph end point which is /teams/[teamid]/channels/[channelid]/.

Before packaging and deploying the extension to the App Catalog, we need to specify
the permission requests in package-solution.json. Once we deploy this to the App
Catalog, we need to go to the admin center and approve the requests.

Go to Config » package-solution.json and put the following section of code into the
solution object:

"webApiPermissionRequests™: [

{
"resource": "Microsoft Graph",
"scope": "User.Read.All"
}’
{
"resource": "Microsoft Graph",
"scope": "User.ReadWrite.All"
1
{
"resource": "Microsoft Graph",
"scope": "User.ReadBasic.All"
b
{
"resource": "Microsoft Graph",
"scope": "Group.ReadWrite.All"
b
{
"resource": "Microsoft Graph",
"scope": "Directory.Read.All"
}’
{
"resource": "Microsoft Graph",
"scope": "ChannelMessage.Send"
I

330

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

{

"resource": "Microsoft Graph",
"scope": "Mail.ReadWrite"

}
]

Now go back to the project folder in the command prompt and execute gulp build.
Once you've done that successfully, execute gulp bundle -ship and gulp package-
solution -ship in that order. The solution will be packaged as the service-extension.
sppkg file in the SharePoint » solution folder.

Note You can test the extension in Workbench like you did for the web part. But
since we have Graph API calls in this extension, it won’t work until the package-
solution-json is deployed and the requests are approved in the Admin Center. After
the initial deployment, you can always use Workbench for testing.

Now go to the App Catalog site » Apps for SharePoint and upload the .sppkg file
and deploy. Go back to the Workplace site » Settings button » Add an App, and select
service-extension-client-side-solution. The extension will be installed and you can see
the Notify Urgent Issue to Service Executives Channel command bar under the footer.
But before you test that, you need to go to the admin center and approve the API access.
We'll take a look at that next.

Note The previously outlined steps for installing and deploying an SPFx
extension are exactly like the one for installing and deploying an SPFx web part.
In case you’re unsure, you can refer back to the steps in Chapter 6 Developement
Environment section.

Go to https://admin.microsoft.comand click SharePoint at the bottom to go
to SharePoint admin page. Once there, click Advanced » API access. Under Pending
Requests, select each request one by one to approve it. Each of the requests will then go

under Approved Requests, as shown in Figure 8-41.

331

https://admin.microsoft.com

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Home

o =

Sites

it

Policies
& Settings
B8 Content services

& Migration

] APl access

More features
&b OneDrive admin center

& Customize navigation

= Showall

API access

d APls from

Manage access 1o Azure AD

[Em—

t Framework comp

and scripts. Leam about managing permission requests

Microsaf Graph

Microsaft Graph

Microsoft Graph

Microsaft Graph

Microsoft Graph

Microsaft Graph

Microzaft Graph

Microsoft Graph

User ReadBasic All

Contacts Read

User Read A

Uer ReadWirite A2

Group ReadWrite Al

Directory Fad All

ChannelMessage Send

Mail Readiirite

APl name Package Permission Last requested
» Pending requests (0}
~ Approved requests (11}
~ ___Organizati ide (11}
O Microsaft Graph Filex Read All
Microsaht Graph Pecple Read
Microsaf Graph User Read

Figure 8-41. Granting Graph API access for the package

Now, go to the home page of the Workplace site, where you can see the Notify Urgent
Issue to Service Executives Channel message in the footer of the screen, as shown in
Figure 8-42. Click the command and you'll get an alert saying, “Message posted” in a few
seconds.

332

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

W Workplace
Home Documents Pages Site contents Edit

4+ New i Page details

P Search Product data documents

—+ Mew Request l E= View My Requests ‘ B raQ ‘ [Live Chat

New Service Request

Request Title *

Request Description *

Related to *

| Select an option v

Wb Motify Urgent Issue to Service Executives Channel

Figure 8-42. SPFx Application Customizer to communicate with Teams

Next, go to Teams, Service Executives Team, then the General channel. You can see
the message there! See Figure 8-43.

333

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Teams = ' General Posts Files Wiki
Your teams
- Service Executives Team l Welcome to the te:
General Here are some things to get
B oo = p—
d y
SRR i
General $ =
.2‘}’ h 4
Bot channel - ,Ir ,,:
_—
y r _."’
| T
s L
- hi—
% ..\‘..
Add more pecple Create more channels
HN Hari Narayanan 7:28 PM
= | Hey Team, an urgent issue notified! Please look out in the service portal

&« Reply

Figure 8-43. Message posted to Teams

Now you have successfully created an SPFx Application Customizer extension and
used Graph to communicate with Teams. If a user wants to send an urgent message after
raising a request to get an immediate attention, they can make use of this extension.

You can make the message more dynamic by adding a text box, capturing its value by
using state, and passing it on to the command. Also, you can make use of React toast
notifications instead of alert.

Note You can explore more about Microsoft Graph end points in Graph Explorer:
https://developer.microsoft.com/en-us/graph/graph-explorer.
Here, you’ll get the whole set of end points Graph provides and an interface to test
out queries.

Summary

In this chapter, you learned about Teams, Power Virtual Agents, and Microsoft Graph.
We also discussed PowerShell and the SPFx Application Customizer extension on the
path.

We started with an overview on Teams. You learned how to make use of App Studio
to connect the SharePoint site to Teams. After that, you learned about Power virtual

334

https://developer.microsoft.com/en-us/graph/graph-explorer

CHAPTER 8 TEAMS AND POWER VIRTUAL AGENTS

Agents and how to create a chat bot and connect to Teams. We then went over Microsoft
Graph and how to interact with Teams using Graph. You learned about how to create an
SPFx extension and how to talk to Teams with the help of Graph. We satisfied some of the
service portal business requirements in the process.

Throughout this book, our focus has mainly been on learning about SharePoint Online
and different ways to develop using it. We learned about different customization and
configuration options. We reviewed forms, workflows, and search. We learned about React,
Power Platform, and Teams and how to make use of them for SharePoint development. We
based our developments on a case study. Our approach to problem-solving focused more
on the most modern and simple techniques. I hope you enjoyed the journey and please
feel free to reach out to me if you have any questions. Thank you!

335

Index

A
Application programming
interface (API), 3

B

Base templates, 72, 73

Business cases
Cloudhadi, 41
documents, 42-44
navigation, 47
page, 45
product list, 44
searches, 48
service desk, 45, 46
stakeholder, 42

C

Canvas/model-driven applications
app settings, 112
ascending/descending order, 115
components, 109
data source, 111, 113
designer, 110
gallery layout, 115
home screen, 111
icon properties, 114
out of the box (OOB), 109

© Harinarayanan V P 2021

preview form, 112
properties and expressions, 113
text pane, 114

Chat bot creation

bot creation, 301, 302
configuration questions, 304
flow action, 310

inputs and receive output, 311
interface, 302

message box, 305

navigation bar, 300

power automate flow, 307
service request, 305, 306
service request flow, 307, 308
steps, 300

team selection, 301

testing process, 311, 312
topics screen, 303

triggers, 303

verification, 313

D, E

Data operations/custom list

editing process, 23, 24
entering data, 24

grid view, 25

item form, 23

item operations, 25

337

Harinarayanan V P, Building the Modern Workplace with SharePoint Online,

https://doi.org/10.1007/978-1-4842-6945-9

https://doi.org/10.1007/978-1-4842-6945-9#DOI

INDEX

Document generation
cloud flow creation, 169

creation/updating process, 175-177
date/time expressions, 174, 175
requirements, 167
solutions, 168-170
trigger, 169
word document, 170-174
description, 173
dynamic content, 171
file properties, 172
generation, 173
template, 170
word template, 167, 168

Document libraries, 26-28

Formatting (view/column)

card image/hover event, 101-104

column formatting image, 104

conditional formatting, 98-101

documents library, 102

JSON (see JavaScript Object
Notation (JSON))

product list columns, 101

views, 89-91

Form requirements

Cloudhadi, 78

document properties form
conditional formula, 81
document sets, 78
editing process, 82, 83
moving/hiding columns, 80
properties window, 78, 79

Pros/Cons, 84, 85

restriction, 85
group directly, 89

338

G

person field column, 88
ProvisioningWorkplace.xml, 85-88

Graph services

H

adding member, 323

GET request, 319

Microsoft 365 group, 319
serviceTeamCreation.ps1, 320
team creation, 322

High-level design

approaches, 48
gathering and design requirement, 56
identification, 49

integration scenarios, 56

item identification, 51

lists and libraries, 53

power apps forms, 55

power automate workflows, 55
security level, 50

site columns/content types, 51-53
site pages, 54

SPFx components, 54

Hypertext Transfer Protocol Secure

(HTTPS), 207

Item creation

approaches, 56
development tools
SharePoint online management
shell, 58
Visual Studio code editor, 57, 58
PnP XML provisioning schema, 57

provisioning schema section, 58
content types, 66-70
lists/libraries, 70-72
security groups, 58-62
site fields, 62-66

provisioning template command, 56

J, K L

JavaScript Object Notation (JSON)
advanced mode, 95
column settings, 93, 94
conditional styling, 98
list/library view, 91
preview code, 96
ProvisioningWorkplaceCHO03.xml, 92
source code, 95, 96
various rules creation, 97

M, N
Model-driven apps, 110
Modern search web
filters
configuration screen, 283
functionality, 278
handlebars expression, 281
layout, 280
managing columns, 281
properties window, 282
search page, 283
selected/managed properties, 279
OOB (see Out-of-the-box (OOB))
overview, 265
search box, 284
configuration, 285
input query text, 286
keyword, 287
web page, 285

INDEX

Out-of-the-box (OOB)

default search page, 266
home page, 265
objective, 267
PnP modern search, 267-273
search function
crawled properties page, 275
document library, 278
mappings properties, 276, 277
navigation, 274
refinable managed
properties, 276
schema definition, 273

P,Q

Patterns and Practices client-side

libraries (PnP)
app catalog, 268
features, 267
filter web page, 272
layout page, 270
page settings, 268
query and result source, 271
results web page, 270, 271
template, 269

Patterns and Practices client-side

libraries (PnPjs), 9

Power apps

Cloudhadi, 109

editing process
deleting data cards, 116, 117
dragging process, 118
duplicate screen, 116
inserting/styling, 119
navigation and style, 120
quality info screen, 120

339

INDEX

Power apps (cont.)
low-code app, 109
responsive forms

context menu, 135
data cards, 133
desktop view, 134
list forms, 135-137
orientation/portrait
mode, 129, 130
predefined size break points, 132
preview mode, 131
published app, 129
responsiveness icon, 134
view item desktop appearance, 131

screen connection

app details, 128

browse screen edit/OnSelect
icon, 125

expression, 125

home screen, 124

item property and mode, 126

patch function, 126, 127

publishing app, 128

tabbed forms

customized form, 141
OnSelect() method, 139
product info/quality info, 137
radius button, 138

tab load default option, 139
text/width button, 138
UpdateContext() method, 138
variables, 140

visibility, 140

validations

340

field mandatory, 121

product Info preview, 122, 123
screen properties, 122
visibilities, 124

Power automation
approval flow, 161-164
checking and publishing solution, 187
child flow
copying actions/restoring
connections, 180
copying flow, 185
dynamic contents, 180, 181
initial design, 181, 182
inputs, 179
parent flow, 184
product type, 178
requirements, 177
run-only permissions, 183
switch cases, 186
document generation (see Document
generation)
error handling, 190-193
expressions
approval notification, 160
collection object, 157
dynamic content, 156, 158, 159
JSON obiject code, 156
operations, 156
responses array object, 158
flow creation
approval action, 146
approving/rejecting outlook, 154
condition, 147
connections panel, 154
content approval, 149
content approval status, 149
dynamic content, 145
file metadata, 149
flow interface/history, 153
indication, 155
instant cloud flow, 144
JSON-formatted column, 151

product data approval flow, 153
product document approval, 143
rejection notification, 148
source code, 151
trigger option, 144
importing and exporting
solution, 186-188
meaning, 143
power talk
associating flow, 197
button adding, 195
editing canvas app, 194
parameter, 196, 198
service desk, 194
trigger creation, 196
timeout scenario, 191-193
variables, 163-166
Power Virtual Agents (PVAs), 300
chat bot (see Chat bot creation)
publish/sharing bot
adding app, 317
admin approval, 314
approving app, 316
bot page, 313, 314
managing apps, 315
opening app, 316, 317
service operation, 318
Project development review, 106

R

Representational State Transfer (REST), 9

S

Service portal design
CloudhadiServicePortal.tsx, 249
communication, 224-230

INDEX

component, 210, 211
component communication, 244-254
conditional command bar

menu, 252
CreateCSR() method, 228
data read/displayed list, 233
handling updates, 252-260
interaction, 234-244
list item, 229
personalized components, 245-253
request component, 212-219
service user, 248
unique permissions, 248
view requests page, 230-234
Workbench, 219
working component, 219-223

SharePoint Framework (SPFx)

app catalog site, 202-204

app deployment, 261-263

concepts, 201

development environment, 203, 204

extensions, 262

props/state, 211

React, 208-210

service portal design (see Service
portal design)

service portal web part, 204-208

SharePoint online

collaborative platform, 1
column site management
columns interface, 15
contents interface, 14
creation, 16
default view, 20, 21
editing process, 18, 22
filter, 17
list settings, 19, 20
navigation, 14, 19

341

SharePoint online (cont.)

site settings interface, 15
table differentiates, 22

customization/configuration, 8
development tools/frameworks

column site management, 14-23
contents interface, 13
customization, 11-13

interface, 14

lists, 10, 11

PowerShell, 10

sites, 8,9

Site preparation, 73-75
Structured query language (SQL), 11

T, U
Team apps
capabilities, 289
collaboration, 289
global policies, 299
linking workplace
adding app, 297
app details page, 291
app studio, 290

features, 2, 3
license/Admin Center, 2-4
pages/web parts

custom app, 296
domain/AAD app ID, 293

building block, 36

context menu, 36

editing process, 39

layout section, 37
republish page, 39

title area configuration, 37
web part, 38

permissions control access

inheritance, 30
levels, 28, 29

navigation, 295
personal tab, 292
resulting page, 296
test/distribute app, 294
uploaded app, 296
web browser, 290

pinned app section, 299

workplace, 298

Teams
Microsoft Graph (see Graph services)
posting message

security group, 28
security groups, 29, 30
requirements, 40
sites
active sites, 7
admin interface, 5
blank site home page, 8
communication, 5, 7
templates, 5
user management, 4
version control (see Version control)
workplace solution, 1

342

application customizer, 324
Channelld, 329

graph API access, 332

ID creation, 329

message posting process, 334
requirements, 335

solution object, 330

source code, 324, 326

SPFx application customizer, 333
SPFx extension, 323
TeamFooter.tsx, 327, 328

INDEX

V, W, X, Y, y4 Views

customization, 91
library default view, 90
list/library, 89

product data library, 89
properties, 89

Version control
approve/reject window, 34, 35
document checking, 33
history, 32, 33
navigation, 31
versioning settings page, 32

343

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with SharePoint Online
	Not Just a “Point” to “Share”
	Quick Catch-up on SharePoint Yesterday and Today
	Licensing and Admin Center
	Users
	Site
	Site Templates
	Configure and Customize
	Development Tools and Frameworks
	SharePoint Lists
	Adding a Custom List
	Adding and Managing Site Columns

	Data Operations in a Custom List
	Document Library
	Permissions in SharePoint
	Permission Levels
	Security Groups
	Permissions Inheritance

	Version Control
	Pages and Web Parts
	Overview of Customization Needs
	Summary

	Chapter 2: Case Study
	Business Use Cases
	Document Use Cases
	Product List Use Cases
	Page Use Cases
	Service Portal Use Cases
	Navigation Use Cases
	Search Use Cases

	High-Level Design
	Identifying the Roles
	Designing the Security Level
	Identifying and Designing Items
	Site Columns and Content Types
	Lists and Libraries
	Site Pages
	Custom Web Parts and Extensions (SPFx)
	Custom Form (Power Apps Form)
	Workflows (Power Automate)
	Integration Scenarios for Teams and PVAs

	A Quick Recap
	Creation of Items
	PnP XML Provisioning Schema
	Development Tools
	Visual Studio Code
	SharePoint Online Management Shell

	Creating the Provisioning Schema
	Security Groups
	Site Fields
	Content Types
	Lists and Libraries

	Final Base Template
	Preparing the Site
	Summary

	Chapter 3: Forms and Formatting
	Form Requirements
	Document Properties Form
	Pros and Cons of OOB Forms

	Restricting the Selection of People
	Views
	Column Formatting with JSON
	Conditional View Formatting
	Custom Image Cards on Hover Event

	Integrating the PnP Schema Files
	Project Development Review
	Summary

	Chapter 4: Power Apps
	Canvas and Model-Driven Apps
	Getting Started with Canvas Apps
	Understanding the Canvas Better
	Multiple Edit Screens
	Validation
	Connecting the Screens
	Making a Power App Responsive
	Power Apps List Forms
	Tabbed Forms
	Summary

	Chapter 5: Power Automate
	Creating Your First Flow
	Expressions
	Additional Approval
	Variables
	Document Generation
	Preparing a Word Template
	Solutions
	Populating and Creating a Word Document
	Date and Time Expressions
	Creating and Updating the Document

	Child Flows
	Exporting and Importing Solutions
	Error Handling
	Timeout
	Power Talk
	Summary

	Chapter 6: SharePoint Framework
	App Catalog
	Development Environment
	Service Portal Web Part
	SPFx Solution Files
	CloudhadiServicePortalWebPart.ts
	CloudhadiServicePortalWebPart.manifest.json
	Components
	Config

	Running the Web Part
	Planning the Solution

	Introduction to React
	Service Portal Design
	Props and State
	Creating the Request Component
	Working with Multiple Components
	Communicating with SharePoint
	Reading Multiple Items
	Component Interaction
	Personalized Components
	Handling Updates

	App Deployment
	Overview of SPFx Extensions
	Summary

	Chapter 7: Modern Search
	Out-of-the-Box Searches
	Search Objective
	PnP Modern Search
	Search Schema

	Filters
	Search Box
	Summary

	Chapter 8: Teams and Power Virtual Agents
	What Are Team Apps?
	Linking Workplace to Teams

	Power Virtual Agents
	Creating a Chat Bot
	Publishing and Sharing the Bot

	Creating Teams with Microsoft Graph
	Posting a Message to Teams
	Summary

	Index

