

Dart
Apprentice

First Edition

By Jonathan Sade & Matt Galloway

Dart Apprentice

By Matt Galloway & Jonathan Sande

Copyright ©2020 Razeware LLC

Notice of Rights

All rights reserved. No part of this book or corresponding
materials (such as text, images, or source code) may be
reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability

This book and all corresponding materials (such as source
code) are provided on an “as is” basis, without warranty of
any kind, express of implied, including but not limited to the
warranties of merchantability, fitness for a particular
purpose, and noninfringement. In no event shall the authors
or copyright holders be liable for any claim, damages or
other liability, whether in action of contract, tort or
otherwise, arising from, out of or in connection with the
software or the use of other dealing in the software.

Trademarks

All trademarks and registered trademarks appearing in this
book are the property of their own respective owners.

Dedications

"To the greatest coder of them all."

— Jonathan Sande

About the Authors

Jonathan Sande knows what it’s like to bang his head against
a wall because his app isn’t working. He also understands the
all-too-frequent feeling of still being completely lost even
with twenty-seven browser tabs open. Once he finally does
understand a topic, though, he enjoys writing the
explanations and directions he wishes he had had when he
started. Jonathan doesn’t like wasting time rebuilding the
same app on multiple platforms and in different
programming languages, so that’s why he uses Dart for
mobile apps, Dart for desktop apps, Dart for the web and
Dart on the server. You’d have a hard time convincing him to
ever go back. Online he usually goes by the name Suragch,
which is a Mongolian word meaning "student", a reminder to
never stop learning. In his free time he also also enjoys
studying human languages, reading about microbiology and
discussing deep topics with open-minded people.
About the Editors

John Bennedict (JB) Lorenzo is the tech editor of this book.
He is a mobile expert currently based in Berlin, but was born
in the Philippines, where he began his career in tech. In his
free time he does latin dancing, calisthenics, and traveling.
He enjoys experiencing different cultures via food, language,
stories, and travel.

Chris Belanger is an editor of this book. He is the former
Editor-in-Chief of raywenderlich.com and now Chief
Marketing Officer. In the programming world, Chris has over
25 years of experience with multiple database platforms,
real-time industrial control systems, and enterprise
healthcare information systems. When he kicks back, you
can usually find Chris with guitar in hand, looking for the
nearest beach, or exploring the lakes and rivers in his part of
the world in a canoe.

About the Artist

Vicki Wenderlich is the designer and artist of the cover of
this book. She is Ray’s wife and business partner. She is a
digital artist who creates illustrations, game art and a lot of
other art or design work for the tutorials and books on
raywenderlich.com. When she’s not making art, she loves
hiking, a good glass of wine and attempting to create the
perfect cheese plate.

Book License

By purchasing Dart Apprentice, you have the following
license:

You are allowed to use and/or modify the source code in
Dart Apprentice in as many apps as you want, with no
attribution required.

You are allowed to use and/or modify all art, images and
designs that are included in Dart Apprentice in as many
apps as you want, but must include this attribution line
somewhere inside your app: “Artwork/images/designs:
from Dart Apprentice, available at
www.raywenderlich.com”.

The source code included in Dart Apprentice is for your
personal use only. You are NOT allowed to distribute or
sell the source code in Dart Apprentice without prior
authorization.

This book is for your personal use only. You are NOT
allowed to sell this book without prior authorization, or
distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as
is” basis, without warranty of any kind, express or implied,
including but not limited to the warranties of
merchantability, fitness for a particular purpose and
noninfringement. In no event shall the authors or copyright
holders be liable for any claim, damages or other liability,

whether in an action of contract, tort or otherwise, arising
from, out of or in connection with the software or the use or
other dealings in the software.

All trademarks and registered trademarks appearing in this
guide are the properties of their respective owners.

Before You Begin

This section tells you a few things you need to know before
you get started, such as what you’ll need for hardware and
software, where to find the project files for this book, and
more.

What You Need

To follow along with this book, you’ll need the following:

Dart SDK: A minimum version of 2.12.0 is required.

Visual Studio Code: This book uses Visual Studio Code
for all the examples. But you can use any other IDE if
you prefer.

Dart Extension for VS Code: To enable Dart in Visual
Studio Code, you’ll need to install the corresponding
extension.

Book Source Code & Forums

Where to download the materials for this book

The materials for this book can be cloned or downloaded
from the GitHub book materials repository:

https://github.com/raywenderlich/da-
materials/tree/editions/1.1

Forums

We’ve also set up an official forum for the book at
forums.raywenderlich.com. This is a great place to ask
questions about the book or to submit any errors you may
find.

https://github.com/raywenderlich/da-materials/tree/editions/1.1
https://forums.raywenderlich.com/c/books/dart-apprentice/67

About the Cover

Isn’t the platypus an amazing animal? Think about it. The
platypus is one of only two mammals that lay eggs rather
than bear their offspring. They’re practically blind and deaf,
but are able to locate their prey through electroreception
(like some dolphins!). They’re also one of the few existing
venomous mammals in the world.

When European naturalists first encountered them (they live
in Australia, Tasmania and New Guinea) and examined a
preserved platypus body in 1799, the naturalists thought the
platypus was a hoax made up of several parts of different
animals sewn together.

Come on, even its name, platypus, is cool!

So we couldn't think of a better animal to describe Dart. Dart
is a client-optimized programming language for multi-

platform apps. Just as platypuses are conformable on land or
water, Dart can also adapt to completely different
environments with ease.

And reminiscent of the platypus, Dart also looks like a
combination of other things — in this case, programming
languages. Dart was developed by Google as an object-
oriented C-style syntax language and incorporates many of
the best features of other modern programming languages. It
can compile to either native code or Javascript and is the
language used by Flutter to create native iOS, Android,
Windows, Mac and Linux apps. How cool is that?

Exactly! As cool as a platypus!

Introduction

Dart is a general purpose programming language developed
by Google. You can use it to develop web, server, desktop and
mobile applications for iOS and Android. It’s easy to learn
(especially if you read this book) and also has great tooling
support.

In many ways Dart is a boring language, and that’s a good
thing! It means that Dart is fast and easy to pick up. While
Dart does have some unique characteristics, any knowledge
you bring in from other object oriented or C-style languages
will immediately be applicable. If you come here as a
complete beginner to programming, Dart is a good place to
start. The concepts that you’ll learn in this book will give you
a solid foundation in your coding career.

Don’t let Dart’s mundane syntax fool you. Dart is a modern
and rapidly evolving language, and the things it allows you
to do are both exciting and even historic in nature. Never
before have you been able to create native applications for so
many platforms using a single code base.

There’s a good chance you picked up this book because of the
Flutter UI framework. However, it was no accident that
Flutter chose Dart as its language. The Dart virtual machine
allows lightning fast development-time rebuilds, its
JavaScript complier allows you to build for the web, and its
ahead-of-time compiler creates fast native applications
across mobile and desktop platforms and even for servers
and embedded devices.

It’s no wonder then that developers across the world have
taken notice. The language has been climbing the charts for
both fastest growing: https://octoverse.github.com/#top-
languages and most loved https://bit.ly/2Q2ukO0. The wise
developer takes note of industry trends and joins them.

So welcome to this book!

https://octoverse.github.com/#top-languages
https://bit.ly/2Q2ukO0

Book sample projects

Each chapter comes with supplemental material. In the
chapter folder you’ll find a folder called starter that contains
a starter project with an empty main function. You can either
open this empty project in your editor by going to File ▸
Open in the menu, or just create a new project in the way
you’ll learn in Chapter 1.

In addition to the starter project, chapters will also have a
final folder, a mini_exercise folder and a challenge folder.
You can refer to the final folder if you get lost during the
lesson. It will contain the code from that lesson. Likewise,
the mini_exercise and challenge folders will contain the
answers to the mini-exercises and challenges in every
chapter. You’ll learn the most if you don’t copy-and-paste
this code but actually type it yourself.

Mini-exercises

You’ll often find mini-exercises in middle of a chapter after
learning about some topic. These are optional but generally
easy to complete. Like the challenges, they’ll help you
solidify what you’re learning.

Challenges

Challenges are an important part of Dart Apprentice. At the
end of each chapter, the book will give you one or more tasks
to accomplish that make use of the knowledge you learned in
the chapter. Completing them will not only help you

reenforce that knowledge but will also show that you’ve
mastered it.

How to read this book

Each chapter of this book builds on the ones that precede it,
so you’ll find it easiest to understand if you progress through
the chapters in order.

Dart Apprentice was written with the beginner in mind. If
that’s you, you’ll learn the most by following along and
trying each of the code examples, mini-exercises and
challenges as you come to them. The way to learn to code is
by writing code and experimenting with it. That can’t be
emphasized enough.

More advanced readers may want to skim the content of this
book in order to get up and running quickly. If that’s you, try
the challenges at the end of every chapter. If they’re easy,
move on to the next chapter. If they’re not, go back and read
the relevant parts of the chapter and check the challenge
solutions.

Finally, for all readers, raywenderlich.com is committed to
providing quality, up-to-date learning materials. We’d love
to have your feedback. What parts of the book gave you one
of those aha learning moments? Was some topic confusing?
Did you spot a typo or an error? Let us know at
forums.raywenderlich.com and look for the particular forum
category for this book. We’ll make an effort to take your
comments into account in the next update of the book.

http://forums.raywenderlich.com/

Section I: Dart Apprentice

Begin your journey learning all the basic concepts you need
to master this language. Follow along the easily and
thoroughly explained concepts and you will be building Dart
applications in a breeze.

Chapter 1: Hello, Dart!

This first chapter is designed to help you set up your
development environment so that you can get the most out
of the following chapters.

There are several different tools that Dart developers use
when building apps:

DartPad: This is a simple browser-based tool for writing
and executing Dart code. It’s available at dartpad.dev.

IntelliJ IDEA: IntelliJ is a powerful Integrated
Development Environment, or IDE, that supports Dart
development through a Dart plugin. Although Android
Studio, a popular IDE for Flutter development, is built
on IntelliJ, this book recommends that you use plain
IntelliJ for pure Dart projects. The IntelliJ Dart plugin
makes this an easier task than doing it in Android
Studio.

https://dartpad.dev/

Visual Studio Code: Also known as VS Code, this is a
lightweight IDE with a clean and simple interface. It
fully supports Dart development with its Dart extension.

This book uses Visual Studio Code for all of the examples
contained within, but if you have another IDE you prefer,
then by all means, continue using that one for your Dart
development. If you don’t have a preference, though, you’ll

find using VS Code an enjoyable experience. VS Code also
supports Flutter development through an extension, so you
won’t be limiting yourself for future Flutter development if
you choose to go the VS Code route now.

Installing Visual Studio Code

Visual Studio Code is a cross-platform, open-source IDE
from Microsoft. It runs on Windows, MacOS and Linux, so
unless the only device you’ve got at your disposal is a mobile
phone, then you’re covered!

Note: If you do only have a mobile phone, don’t despair!
You can run the majority of the code examples in this
book on dartpad.dev, which should work fine in any
modern mobile browser.

Download Visual Studio Code at code.visualstudio.com, and
follow the directions provided on the site to install it.

You’ll also need the Dart SDK, which you’ll install in the next
section.

Installing the Dart SDK

The Dart Software Development Kit, or SDK, is a collection
of command line tools that make it possible to develop Dart
applications.

https://dartpad.dev/
https://code.visualstudio.com/
https://dart.dev/get-dart

Go to https://dart.dev/get-dart and follow the directions on
that site to download and install the Dart SDK on your
platform.

Note: Flutter comes with a copy of the Dart SDK, so if
you’ve already installed a recent version of Flutter then
you’re good to go. At the time of this writing the current
stable release of Flutter was 2.0, which includes Dart
2.12.

Verifying the Dart SDK installation

After you’ve installed Dart, run the following command in a
terminal to ensure that it’s working:

dart --version

You should see the current Dart version displayed, which at
the time of this writing was 2.12.2.

Contents of the SDK

Now check out what the Dart SDK offers you by entering the
following command in the terminal:

dart help

You’ll see a list of tools that make up the SDK. Although you
won’t directly interact with most of them in this book, it’s
helpful to know what they do:

https://dart.dev/get-dart

analyze: Your IDE uses this tool to tell you when you’ve
made a mistake in your code. The sooner you know, the
sooner you can fix it!

compile: This tool compiles Dart code into an optimized
native executable program for Windows, Linux or
macOS. This is known as ahead-of-time, or AOT,
compilation. Alongside native executables, web
technologies are another major focus for Dart, so you
can also use the compile tool to convert Dart code to
JavaScript.

create: This is for creating new Dart projects, which
you’ll do yourself in just a minute.

fix: One of Dart’s goals is to continue evolving as a
language without becoming bloated by obsolete, or
deprecated, code. The fix tool is there to help developers
update their old projects to use the shiniest new Dart
syntax.

format: It’s easy for the indentation in your code to get
messed up. This nice little tool will automatically fix it
for you.

migrate: Version 2.12 was a major update to the Dart
language with the addition of sound null safety, which
you’ll learn about in Chapter 7. This tool helps migrate
old projects to use null safety. Since you’re starting
fresh, though, you won’t need to migrate anything.
Lucky you!

pub: Pub is the name of the package manager for Dart,
and pub is the tool that handles the job. A package is a
collection of third-party code that you can use in your
own Dart project. This can save you an incredible
amount of time since you don’t have to write that code
yourself. You can browse the packages available to you
on Pub by visiting pub.dev.

run: This runs your Dart program in the Dart Virtual
Machine, or VM. The Dart VM compiles your code right
before it’s needed. In contrast to AOT, this is known as
just-in-time, or JIT, compilation, which will let you
make small changes to your code and rerun it almost
instantly. This is especially useful for applications like
Flutter where you’ll need to make lots of little changes
as you refine the UI.

test: Dart fully supports unit testing and this tool will
help you get that done.

Dart on the command line

Now that you have the Dart SDK installed, you’re going to
use the Dart VM to run a few lines of code, first in a single
file and then as a full project.

Running a single Dart file

Find or create a convenient folder on your computer where
you can save the Dart projects that you create in this book.
Create a new file in that folder and name it hello.dart.

https://pub.dev/

Writing the code

Next add the following Dart code to that empty file:

void main() {
 print('Hello, Dart!');
}

This creates a Dart function named main. Inside that
function, you call another function, print, which displays
the text Hello, Dart! on the screen.

Running the code

Save the file, and then run the following command in the
same folder as hello.dart:

dart run hello.dart

The run keyword is the run tool from the Dart SDK that you
learned about earlier. It runs the code in hello.dart in the
Dart VM.

You should now see the following output in the console:

Hello, Dart!

Congratulations! You’ve built and run your first Dart
program.

Setting up a full Dart project

It’s nice to be able to run a single file, but as you build bigger
projects, you’ll want to divide your code into manageable
pieces and also include configuration and asset files. To do
that you need to create a full Dart project. Remember that
create tool? The time has come.

Creating the project

Go to the location where you want to create your project
folder, and then run the following command in the terminal:

dart create hello_dart_project

This creates a simple Dart project with some default code.

Running the project

Enter the new folder you just created like so:

cd hello_dart_project

Now run the project with the following command:

dart run bin/hello_dart_project.dart

You’ll see the text Hello world!, which is the output of the
code in the default project that the create tool generated.

The run keyword is actually optional. Run the project again
without it:

dart bin/hello_dart_project.dart

Again, Hello world! is the result.

The structure of a Dart project

Take a look at the structure and contents of the
hello_dart_project folder:

The purposes of the main items in that folder are as follows:

bin: Contains the executable Dart code.

hello_dart_project.dart: Named the same as the project
folder, the create tool generated this file for you to put
your Dart code in.

.gitignore: Formatted to exclude Dart-related files that
you don’t need if you’re going to host your project on
GitHub or another Git repository.

analysis_options.yaml: Holds special rules that will help
you detect issues with your code, a process known as
linting.

CHANGELOG.md: Holds a manually-curated Markdown-
formatted list of the latest updates to your project.
Whenever you release a new version of a Dart project,
you should let other developers know what you’ve
changed.

README.md: Provides a basic (or not-so-basic)
description of what your project does and how to use it.
Other developers will appreciate this greatly.

pubspec.yaml: Contains a list of the third-party Pub
dependencies you want to use in your project. The name
“pubspec” stands for “Pub specifications”. You also set
the version number of your project in this file.

Note: YAML stands for “YAML Ain’t Markup Language”,
one of those recursive acronyms that computer
programmers like to amuse themselves with. YAML is a
clean and readable way to format configuration files,
and you’ll come across this file type often in your Dart
career.

Simple vs. full console app

When you created your project using the create tool above,
it created a simple console app because that’s the default.

However, you can create other types of projects using the --
template option.

For example, if you’d used the following command to create
your project:

dart create --template console-full hello_dart_p
roject

It would have given you the following directories and files:

There are two additional directories: lib and test. In larger
projects, you’ll have many .dart files that you’ll organize
under the lib folder. You’ll also likely want to have tests to
run against your Dart projects, and you can place those in
the test folder.

For your work in this book, creating simple console projects
will be enough. If you wish to create full console projects,

though, it won’t make a difference to your progress through
this book.

Using VS Code for Dart development

You’ve created and run a project from the command line, but
it’s also possible to do the same thing from within VS Code.
This section will walk you through that process.

Installing the Dart extension

Open Visual Studio Code, and on the left hand side you’ll see
a vertical toolbar called Activity Bar. Click the Extensions
icon, which looks like four boxes. Then type dart in the
search area. When the Dart extension appears, click the
Install button to install it.

Now your VS Code installation supports Dart. Next you’ll
learn how to create a Dart project in VS Code.

Creating a new Dart project

The Dart extension in VS Code makes it easy to create a new
Dart project. To see how this works, you’ll recreate the same
simple console project that you previously created from the
command line.

To start, delete the hello_dart_project folder and its contents.

You can create a new project from the Command Palette. To
access the Command Palette, either go to View ▸ Command
Palette... in the menu, or press the shortcut
Command+Shift+P on a Mac or Control+Shift+P on a PC.

Start typing dart to bring up a list of matching commands.
Then choose Dart: New Project.

If you receive a message about Stagehand, then choose
Activate Stagehand.

Next, choose Simple Console Application from the list.

As before, choose a location to save the project folder that
VS Code will create, and name the project hello_dart_project.

Browsing the generated code

Open the file hello_dart_project.dart in the bin directory, and
you’ll see it contains the following code:

void main(List<String> arguments) {
 print('Hello world!');
}

The List<String> arguments portion is only necessary
when creating command-line apps that take arguments. For
example, take a look at the following imaginary terminal
command that prints information about a country:

lookup -n spain

The command-line app name is lookup and the arguments
are -n spain.

Since you won’t be creating command-line apps in this book,
you can remove the arguments portion to simplify things.
Thus, replace the contents of hello_dart_project.dart with
the following code:

void main() {
 print('Hello, Dart project!');
}

Running Dart in VS Code

To run your code, click the word Run that appears directly
over the main function.

You’ll see Hello, Dart project! appear in the debug
console.

Exploring the VS Code UI

This is a good opportunity to explore the various parts of the
Visual Studio Code user interface.

The numbers below correspond to the various areas of the
user interface:

1. Activity Bar: Choose which content to show in the side
bar.

2. Side Bar: The Explorer is displaying the current project
and file.

3. Editor: Write your Dart code here.

4. Panels: Show program output, run terminal commands,
and more.

5. Status Bar: Display information about the current
project.

More ways to run your project

You ran your project earlier by pressing the Run label over
the main function. Here are three more ways that you can
run your project:

1. Choose Run ▸ Start Debugging from the menu.

2. Press F5.

3. Click the triangular run button in the top right corner.

All of these do the same thing. This time use F5 to run the
program, and you’ll see Hello, Dart project! appear in
the debug console again.

Project configuration file

Sometimes when pressing F5 to run your project, VS Code
doesn’t know where to look for the main function, and you’ll
see a message like this:

This is recommending that you create a launch.json file,
which will help VS Code know which file to use to launch
your app.

Since you originally ran your program by pressing the Run
label, you may not have gotten this recommendation from
VS Code. However, it’s still a good idea to create a
launch.json file, so you’ll do that next.

Creating launch.json

Create the launch.json file by clicking the Debug icon in the
Activity Bar and then clicking the link to create a launch.json
file as shown in the image below.

This will create a new launch.json file in the .vscode folder.

Updating the contents

Now replace the contents of launch.json with the following:

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Dart",
 "type": "dart",
 "request": "launch",
 "program": "bin/hello_dart_project.d
art"
 }
]
}

These are what the configuration elements mean:

name: This is your project’s configuration name. You
can call it whatever you like.

type: The type lets VS Code know that this is a Dart
project.

request: A request of launch tells VS Code that you
want to run the project.

program: This is the location where your program will
start its execution. VS Code will look for the main
function here so that it can launch your app.

Running your project again

Save your changes and run the file again by pressing F5. VS
Code should be satisfied now that it knows where to look for
the main function.

Excellent! You’re all set to explore Dart further in the rest of
this book.

Key points

Visual Studio Code is an Integrated Development
Environment that you can use to write Dart code when
you have the Dart extension installed.

The Dart SDK provides the underlying tools needed to
compile and run Dart apps.

Dart code run from the command line or in VS Code
uses the Dart Virtual Machine.

The VS Code window is divided into the Activity Bar,
Side Bar, Editor, Panel, and Status Bar.

Pub is the package manager that Dart uses to add third-
party source code to your projects.

Where to go from here?

If you’re new to Visual Studio Code, there’s a lot more to
learn about it. You can find many instructional resources by
going to the Help menu.

Most of the time, you’ll be writing Dart code using VS Code
on a computer, but if you find yourself waiting in a long line
at the supermarket, you can while away the time by writing
Dart code at dartpad.dev, which will run on your mobile
device. Try out the sample Dart and Flutter projects there.

Now that you have your programming environment all set
up, you’ll go on to start writing real Dart code in the next
chapter. See you there!

https://dartpad.dev/

Chapter 2: Expressions, Variables &
Constants

Now that you’ve set up your Dart development environment,
it’s time to start writing some Dart code!

Follow along with the coding examples in this chapter.
Simply create a project for your own use, and type in the
code as you work through the examples.

Commenting Code

Dart, like most other programming languages, allows you to
document your code through the use of comments. These
allow you to write any text directly along side your code and
are ignored by the compiler.

The depth and complexity of the code you write can obscure
the big-picture details of why you wrote your code a certain
way, or even what problem it is your code is solving. To
prevent this, it’s a good idea to document what you wrote so
that the next human who passes through your code will be
able to make sense of your work. That next human, after all,
may be a future you!

The first way to write a comment in Dart is like so:

// This is a comment. It is not executed.

This is a single line comment.

You can stack up single line comments to allow you to write
multi-line comments as shown below:

// This is also a comment,
// over multiple lines.

You may also create comment blocks by putting your
comment text between /* and */:

/* This is also a comment. Over many...
many...
many lines. */

The start is denoted by /* and the end is denoted by */.
Simple!

Dart also allows you to nest comments, like so:

/* This is a comment.
/* And inside it is
another comment. */
Back to the first. */

In addition to these two ways of writing comments, Dart also
has a third type called documentation comments. Single-line
documentation comments begin with ///, while block
documentation comments are enclosed between /** and */.
Here’s an example of each:

/// I am a documentation comment
/// at your service.

/**
 * Me, too!
 */

Documentation comments are super useful because you can
use them to generate...you guessed it...documentation!
You’ll want to add documentation comments to your code
whenever you have a public API so that the users, and your
future self, will know how your API works. Although this
book won’t go into depth on this, documentation comments
even support Markdown formatting so that you can add
elements like code examples or links to your comments.

Note: To put it simply, an API, or application
programming interface, is code that you share with
other people or programs. You'll learn how to make your
own API in Chapter 9.

The Flutter and Dart documentation is well-known for its
detailed comments. And since the code for Flutter and Dart
is open source, simply browsing through it is an excellent
way to learn how great documentation comments are
written.

In fact, you can try browsing that documentation right now.
Take the Hello Dart program from Chapter 1:

void main() {
 print('Hello, Dart!');
}

In VS Code, Command+Click on a Mac, or Control+Click on a
PC, the print keyword. VS Code will take you to the source
code for that keyword and you’ll see the documentation
comments for print:

Speaking of print, that’s another useful tool when writing
Dart code.

Printing output

print will output whatever you want to the debug console.

For example, consider the following code:

print('Hello, Dart Apprentice reader!');

Run this code and it’ll output a nice message to the debug
console, like so:

Adding print statements into your code is an easy way to
monitor what’s happening at a particular point in your code.
Later, when you’re ready to take your debugging to the next

level, you can check out some of the more detailed logging
packages on pub.dev.

You can print any expression in Dart. To learn what an
expression is, though, keep reading.

Statements and expressions

Two important words that you’ll often hear thrown about in
programming language documentation are statement and
expression. It’s helpful to understand the difference between
the two.

Statements

A statement is a command, something you tell the computer
to do. In Dart, all simple statements end with a semicolon.
You’ve already seen that with the print statement:

print('Hello, Dart Apprentice reader!');

The semicolon on the right finishes the statement.

People coming from languages that don’t require semicolons
may think they’re unnecessary. However, due to Dart’s
special syntax and features, semicolons give the compiler the
context it needs to properly understand the code.

In addition to simple statements, Dart also has complex
statements and code blocks that use curly braces, but there’s
no need to add semicolons after the braces.

https://pub.dev/

One example of a complex statement is the if statement:

if (someCondition) {
 // code block
}

No semicolons are needed on the lines with the opening or
closing curly braces. You’ll learn more about if statements
and other control flow statements in Chapter 4.

Expressions

Unlike a statement, an expression doesn’t do something; it is
something. That is, an expression is a value, or is something
that can be calculated as a value.

Here are a few examples of expressions in Dart:

42
3 + 2
'Hello, Dart Apprentice reader!'
x

The values can be numbers, text, or some other type. They
can even be variables such as x whose value isn’t known
until runtime.

Coming up next, you’ll see many more examples of
expressions.

Arithmetic operations

In this section, you’ll learn about the various arithmetic
operations that Dart has to offer by seeing how they apply to
numbers. In later chapters, you’ll learn about operations for
types beyond simple numbers.

Simple operations

Each operation in Dart uses a symbol known as the operator
to denote the type of operation it performs. Consider the
four arithmetic operations you learned in your early school
days: addition, subtraction, multiplication and division. For
these simple operations, Dart uses the following operators:

Add: +

Subtract: -

Multiply: *

Divide: /

These operators are used like so:

2 + 6
10 - 2
2 * 4
24 / 3

Each of these lines is an expression, because each can be
calculated down to a value. In these cases, all four
expressions have the same value: 8. Notice how the code
looks similar to how you would write the operations out with
pen and paper.

Check the answers yourself in VS Code using a print
statement:

print(2 + 6);

Dart ignores whitespace, so you can remove the spaces
surrounding the operator:

2+6

However, it’s often easier to read expressions when you have
white space on either side. In fact, the dart format tool in the
Dart SDK will format your code according to the standard
whitespace formatting rules. In VS Code, you can apply dart
format with the keyboard shortcut Shift+Option+F on a Mac
or Shift+Alt+F on a PC.

Note: This book won’t always explicitly tell you to
print(X), where X is some Dart expression that you’re
learning about, but you should proactively do this
yourself to check the value.

Decimal numbers

All of the operations above use whole numbers, more
formally known as integers. However, as you know, not every
number is whole.

For example, consider the following:

22 / 7

If you’re used to another language that uses integer division
by default, you might expect the result to be 3. However,
Dart gives you the standard decimal answer:

3.142857142857143

If you actually did want to perform integer division, then you
could use the ~/ operator:

22 ~/ 7

This produces a result of 3.

The ~/ operator is officially called the truncating division
operator when applied to numbers. If you squint, the tilde
kind of looks like an elephant trunk, so that might help you
remember what it does. Or not.

The Euclidean modulo operation

Dart also has more complex operations you can use. All of
them are standard mathematical operations, just not as
common as the others. You’ll take a look at them now.

The first of these is the Euclidean modulo operation. That’s a
complex name for an easy task. In division, the denominator
goes into the numerator a whole number of times, plus a
remainder. This remainder is what the Euclidean modulo

operation calculates. For example, 10 modulo 3 equals 1,
because 3 goes into 10 three times, with a remainder of 1.

In Dart, the Euclidean modulo operator is the % symbol. You
use it like so:

28 % 10

In this case, the result equals 8, because 10 goes into 28
twice with a remainder of 8.

Order of operations

Of course, it’s likely that when you calculate a value, you’ll
want to use multiple operators. Here’s an example of how to
do this in Dart:

((8000 / (5 * 10)) - 32) ~/ (29 % 5)

Note the use of parentheses, which in Dart serve two
purposes: to make it clear to anyone reading the code —
including yourself — what you meant, and to disambiguate
the intended order of operations. For example, consider the
following:

350 / 5 + 2

Does this equal 72 (350 divided by 5, plus 2) or 50 (350
divided by 7)? Those of you who paid attention in school will
be screaming, “72”! And you’d be right.

Dart uses the same reasoning and achieves this through
what’s known as operator precedence. The division operator
(/) has a higher precedence than the addition operator (+), so
in this example, the code executes the division operation
first.

If you wanted Dart to perform the addition first — that is, so
the expression will return 50 instead of 72 — then you could
use parentheses, like so:

350 / (5 + 2)

The precedence rules are the same as you learned in school.
Multiplication and division have equal precedence. Addition
and subtraction are equal in precedence to each other, but
are lower in precedence than multiplication and division.

The ~/ and % operators have the same precedence as
multiplication and division. If you’re ever uncertain about
what precedence an operator has, you can always use
parentheses to be sure the expression evaluates as you want
it to.

Math functions

Dart also has a large range of math functions. You never
know when you’ll need to flex those trigonometry muscles,
especially when you’re a pro at Dart and writing complex
animations!

To use these math functions, add the following import to the
top of your file:

import 'dart:math';

dart:math is one of Dart’s core libraries. Adding the import
statement tells the compiler that you want to use something
from that library.

Now you can write the following:

sin(45 * pi / 180)
// 0.7071067811865475

cos(135 * pi / 180)
// -0.7071067811865475

These convert an angle from degrees to radians, and then
compute the sine and cosine respectively. Notice how both
make use of pi, which is a constant Dart provides you. Nice!

Note: Remember that if you want to see the values of
these mathematical expressions, you need to put them
inside a print statement like this:
print(sin(45 * pi / 180));

Then there’s this:

sqrt(2)
// 1.4142135623730951

This computes the square root of 2.

Not mentioning these would be a shame:

max(5, 10)
// 10

min(-5, -10)
// -10

These compute the maximum and minimum of two numbers
respectively.

If you’re particularly adventurous you can even combine
these functions like so:

max(sqrt(2), pi / 2)
// 1.5707963267948966

Mini-exercise

In the example above you found the sine of 45° by first
converting 45° to radians and then using the Dart sin
function, which works in radians, to calculate the result.
Now print the value of 1 over the square root of 2 in Dart.
Confirm that it equals the sine of 45°.

This is your first mini-exercise. You can find the answers in
the mini_exercise folder in the supplemental materials that
come with this book.

Naming data

At its simplest, computer programming is all about
manipulating data, since everything you see on your screen
can be reduced to numbers. Sometimes you represent and
work with data as various types of numbers, but other times,
the data comes in more complex forms such as text, images
and collections.

In your Dart code, you can give each piece of data a name
you can use to refer to that piece of data later. The name
carries with it an associated type that denotes what sort of
data the name refers to, such as text, numbers, or a date.
You’ll learn about some of the basic types in this chapter,
and you’ll encounter many other types throughout this book.

Variables

Take a look at the following:

int number = 10;

This statement declares a variable called number of type int.
It then sets the value of the variable to the number 10. The
int part of the statement is known as a type annotation,
which tells Dart explicitly what the type is.

Note: Thinking back to operators, here’s another one.
The equals sign, =, is known as the assignment operator
because it assigns a value to a variable. This is different
than the equals sign you are familiar with from math.
That equals sign is more like the == equality operator in
Dart, which you will learn about in Chapter 4.

If you want to change the value of a variable, then you can
just give it a different value of the same type:

int number = 10;
number = 15;

The type int can store integers. The way you store decimal
numbers is like so:

double apple = 3.14159;

This is similar to the int example. This time, though, the
variable is a double, a type that can store decimals with high
precision.

For readers who are familiar with object-oriented
programming, you’ll be interested to learn that 10, 3.14159
and every other value that you can assign to a variable are
objects in Dart. In fact, Dart doesn’t have the primitive
variable types that exist in some languages. Everything is an
object. Although int and double look like primitives, they’re
subclasses of num, which is a subclass of Object.

With numbers as objects, this lets you do some interesting
things:

10.isEven
// true

3.14159.round()
// 3

Note: Don’t worry if you’re not familiar with object-
oriented programming. You’ll learn all about it in
Chapters 6 and 9.

Type safety

Dart is a type-safe language. That means once you tell Dart
what a variable’s type is, you can’t change it later. Here’s an
example:

int myInteger = 10;
myInteger = 3.14159; // No, no, no. That's not a
llowed.

3.14159 is a double, but you already defined myInteger as
an int. No changes allowed!

Dart’s type safety will save you countless hours when coding,
since the compiler will tell you immediately whenever you
try to give a variable the wrong type. This prevents you from
having to chase down bugs after you experience runtime
crashes.

Of course, sometimes it’s useful to be able to assign related
types to the same variable. That’s still possible. For example,
you could solve the problem above, where you want
myNumber to store both an integer and floating-point value,
like so:

num myNumber;
myNumber = 10; // OK
myNumber = 3.14159; // OK
myNumber = 'ten'; // No, no, no.

The num type can be either an int or a double, so the first
two assignments work. However, the string value 'ten' is of
a different type, so the compiler complains.

Now, if you like living dangerously, you can throw safety to
the wind and use the dynamic type. This lets you assign any
data type you like to your variable, and the compiler won’t
warn you about anything.

dynamic myVariable;
myVariable = 10; // OK
myVariable = 3.14159; // OK
myVariable = 'ten'; // OK

But, honestly, don’t do that. Friends don’t let friends use
dynamic. Your life is too valuable for that.

In Chapter 3 you’ll learn more about types.

Type inference

Dart is smart in a lot of ways. You don’t even have to tell it
the type of a variable, and Dart can still figure out what you
mean. The var keyword says to Dart, “Use whatever type is
appropriate.”

var someNumber = 10;

There’s no need to tell Dart that 10 is an integer. Dart infers
the type and makes someNumber an int. Type safety still
applies, though:

var someNumber = 10;
someNumber = 15; // OK
someNumber = 3.14159; // No, no, no.

Trying to set someNumber to a double will result in an error.
Your program won’t even compile. Quick catch; time saved.
Thanks, Dart!

Constants

Dart has two different types of “variables” whose values
never change. They are declared with the const and final
keywords, and the following sections will show the
difference between the two.

const constants

Variables whose value you can change are known as mutable
data. Mutables certainly have their place in programs, but
can also present problems. It’s easy to lose track of all the
places in your code that can change the value of a particular

variable. For that reason, you should use constants rather
than variables whenever possible. These unchangeable
variables are known as immutable data.

To create a constant in Dart, use the const keyword:

const myConstant = 10;

Just as with var, Dart uses type inference to determine that
myConstant is an int.

Once you’ve declared a constant, you can’t change its data.
For example, consider the following example:

const myConstant = 10;
myConstant = 0; // Not allowed.

This code produces an error:

Constant variables can't be assigned a value.

In VS Code, you would see the error represented this way:

If you think “constant variable” sounds a little oxymoronic,
just remember that it’s in good company: virtual reality,
advanced BASIC, readable Perl and internet security.

final constants

Often, you know you’ll want a constant in your program, but
you don’t know what its value is at compile time. You’ll only
know the value after the program starts running. This kind of
constant is known as a runtime constant.

In Dart const is only used for compile-time constants; that
is, for values that can be determined by the compiler before
the program ever starts running.

If you can’t create a const variable because you don’t know
its value at compile time, then you must use the final
keyword to make it a runtime constant. There are many
reasons you might not know a value until after your program
is running. For example, you might need to fetch a value
from the server, or query the device settings, or ask a user to
input their age.

Here is another example of a runtime value:

final hoursSinceMidnight = DateTime.now().hour;

DateTime.now() is a Dart function that tells you the current
date and time when the code is run. Adding hour to that tells
you the number of hours that have passed since the
beginning of the day. Since that code will produce a different
results depending on the time of day, this is most definitely a
runtime value. So to make hoursSinceMidnight a constant,
you must use the final keyword instead of const.

If you try to change the final constant after it’s already been
set:

hoursSinceMidnight = 0;

This will produce the following error:

The final variable 'hoursSinceMidnight' can only
be set once.

You don’t actually need to worry too much about the
difference between const and final constants. As a general
rule, try const first, and if the compiler complains, then
make it final. The benefit of using const is it gives the
compiler the freedom to make internal optimizations to the
code before compiling it.

No matter what kind of variable you have, though, you
should give special consideration to what you call it.

Using meaningful names

Always try to choose meaningful names for your variables
and constants. Good names act as documentation and make
your code easy to read.

A good name specifically describes the role of a variable or
constant. Here are some examples of good names:

personAge

numberOfPeople

gradePointAverage

Often a bad name is simply not descriptive enough. Here are
some examples of bad names:

a

temp

average

The key is to ensure that you’ll understand what the variable
or constant refers to when you read it again later. Don’t
make the mistake of thinking you have an infallible memory!
It’s common in computer programming to look back at your
own code as early as a day or two later and have forgotten
what it does. Make it easier for yourself by giving your
variables and constants intuitive, precise names.

Also, note how the names above are written. In Dart, it’s
standard to use lowerCamelCase for variable and constant
names. Follow these rules to properly case your names:

Start with a lowercase letter.

If the name is made up of multiple words, join them
together and start every word after the first one with an
uppercase letter.

Treat abbreviations like words (for example, sourceUrl
and urlDescription).

Mini-exercises

If you haven’t been following along with these exercises in
VS Code, now’s the time to create a new project and try some
exercises to test yourself!

1. Declare a constant of type int called myAge and set it to
your age.

2. Declare a variable of type double called averageAge.
Initially, set the variable to your own age. Then, set it to
the average of your age and your best friend’s age.

3. Create a constant called testNumber and initialize it
with whatever integer you’d like. Next, create another
constant called evenOdd and set it equal to testNumber
modulo 2. Now change testNumber to various numbers.
What do you notice about evenOdd?

Increment and decrement

A common operation that you’ll need is to be able to
increment or decrement a variable. In Dart, this is achieved
like so:

var counter = 0;

counter += 1;
// counter = 1;

counter -= 1;
// counter = 0;

The counter variable begins as 0. The increment sets its
value to 1, and then the decrement sets its value back to 0.

The += and -= operators are similar to the assignment
operator (=), except they also perform an addition or
subtraction. They take the current value of the variable, add
or subtract the given value, and assign the result back to the
variable.

In other words, the code above is shorthand for the
following:

var counter = 0;
counter = counter + 1;
counter = counter - 1;

If you only need to increment or decrement by 1, then you
can use the ++ or -- operators:

var counter = 0;
counter++; // 1
counter--; // 0

The *= and /= operators perform similar operations for
multiplication and division, respectively:

double myValue = 10;

myValue *= 3; // same as myValue = myValue * 3;
// myValue = 30.0;

myValue /= 2; // same as myValue = myValue / 2;
// myValue = 15.0;

Division in Dart produces a result with a type of double, so
myValue could not be an int.

Challenges

Before moving on, here are some challenges to test your
knowledge of variables and constants. It’s best if you try to
solve them yourself, but solutions are available with the
supplementary materials for this book if you get stuck.

Challenge 1: Variables

Declare a constant int called myAge and set it equal to your
age. Also declare an int variable called dogs and set that
equal to the number of dogs you own. Then imagine you
bought a new puppy and increment the dogs variable by one.

Challenge 2: Make it compile

Given the following code:

age = 16;
print(age);
age = 30;
print(age);

Modify the first line so that the code compiles. Did you use
var, int, final or const?

Challenge 3: Compute the answer

Consider the following code:

const x = 46;
const y = 10;

Work out what each answer equals when you add the
following lines of code to the code above:

const answer1 = (x * 100) + y;
const answer2 = (x * 100) + (y * 100);
const answer3 = (x * 100) + (y / 10);

Challenge 4: Average rating

Declare three constants called rating1, rating2 and
rating3 of type double and assign each a value. Calculate
the average of the three and store the result in a constant
named averageRating.

Challenge 5: Quadratic equations

A quadratic equation is something of the form

a⋅x² + b⋅x + c = 0.

The values of x which satisfy this can be solved by using the
equation

x = (-b ± sqrt(b² - 4⋅a⋅c)) / (2⋅a).

Declare three constants named a, b and c of type double.
Then calculate the two values for x using the equation above
(noting that the ± means plus or minus, so one value of x for
each). Store the results in constants called root1 and root2
of type double.

Key points

Code comments are denoted by a line starting with //,
or by multiple lines bookended with /* and */.

Documentation comments are denoted by a line starting
with /// or multiple lines bookended with /** and */.

You can use print to write to the debug console.

The arithmetic operators are:

Addition: +
Subtraction: -
Multiplication: *
Division: /
Truncating division: ~/
Modulo (remainder): %

Dart has many functions including min, max, sqrt, sin
and cos. You’ll learn many more throughout this book.

Constants and variables give names to data.

Once you’ve declared a constant, you can’t change its
data, but you can change a variable’s data at any time.

If a variable’s type can be inferred, you can replace the
type with the var keyword.

The const keyword is used for compile-time constants
while final is used for runtime constants.

Always give variables and constants meaningful names
to save yourself and your colleagues headaches later.

Operators that perform arithmetic, and then assign back
to the variable, are:

Add and assign: +=
Subtract and assign: -=
Multiply and assign: *=
Divide and assign: /=
Increment by 1: ++
Decrement by 1: --

Where to go from here?

In this chapter, you learned about documentation comments
and that you can use markdown formatting within them. If
you aren’t familiar with Markdown, it would be well worth

your time to learn it. Dart supports CommonMark, so
commonmark.org is a good place to start learning.

Speaking of documentation, it’s also worth your while to
develop the habit of reading source code. Read it like you
would a book, whether it’s the Dart and Flutter source code,
or a third-party library. This will often teach you much more
than you can learn from other sources.

In the next chapter, you’ll dive even deeper into Dart’s type
system and the operations that you can perform on them,
especially the String type. See you there!

https://commonmark.org/

Chapter 3: Types & Operations

Life is full of variety, and that variety expresses itself in
different types. What type of toothpaste do you use?
Spearmint? Cinnamon? What’s your blood type? A? B? O+?
What type of ice cream do you like? Vanilla? Strawberry?
Praline pecan fudge swirl? Having names for all of these
different things helps you talk intelligently about them. It
also helps you to recognize when something is out of place.
After all, no one brushes their teeth with praline pecan fudge
swirl. Though it does sound kind of nice.

Programming types are just as useful as real life types. They
help you to categorize all the different kinds of data you use
in your code.

In Chapter 2, you learned how to name data using variables
and also got a brief introduction to Dart data types. In this
chapter, you’ll learn even more about types and what you
can do with them. There will be a particular focus on strings,
which are used to represent text.

Data types in Dart

In Dart, a type is a way to tell the compiler how you plan to
use some data. By this point in this book, you’ve already
seen the following types:

int

double

num

dynamic

String

The last one in that list, String, is the type used for text like
'Hello, Dart!'.

Just as you don’t brush your teeth with ice cream, Dart types
keep you from trying to do silly things like dividing text or
removing whitespace from a number.

Dart has even more built-in types than just the ones listed
above. The basic ones, such as int, double, and num will
serve you adequately in a great variety of programming
scenarios, but when working on projects with specific needs,
it’ll be convenient to create custom types instead. A weather
app, for example, may need a Weather type, while a social
media app may need a User type. You’ll learn how to create
your own types in Chapter 4 and Chapter 6.

As you learned in Chapter 2, the root of all types is the
Object type. This type defines a few core operations, such as
testing for equality and describing the object in text. Every
other type in Dart is a subtype of Object, and as a subtype,
shares Object’s basic functionality.

Type inference

In the previous chapter, you also got a sneak peak at type
inference in Dart, but you’ll take some time to look at it in a
little more depth now.

Annotating variables explicitly

It’s fine to always explicitly add the type annotation when
you declare a variable. This means writing the data type
before the variable name.

int myInteger = 10;
double myDouble = 3.14;

You annotated the first variable with int and the second
with double.

Creating constant variables

Declaring variables the way you did above makes them
mutable. If you want to make them immutable, but still keep
the type annotation, you can add const or final in front.

These forms of declaration are fine with const:

const int myInteger = 10;
const double myDouble = 3.14;

They’re also fine with final:

final int myInteger = 10;
final double myDouble = 3.14;

Note: Mutable data is convenient to work with because
you can change it any time you like. However, many
experienced software engineers have come to appreciate
the benefits of immutable data. When a value is
immutable, that means you can trust that no one will
change that value after you create it. Limiting your data
in this way prevents many hard-to-find bugs from
creeping in, and also makes the program easier to
reason about and to test.

Letting the compiler infer the type

While it’s permissible to include the type annotation as in
the example above, it’s redundant. You’re smart enough to
know that 10 is an int and 3.14 is a double, and it turns out
the Dart compiler can deduce this as well. The compiler
doesn’t need you to explicitly tell it the type every time — it
can figure the type out on its own through a process called
type inference. Not all programming languages have type
inference, but Dart does — and it’s a key component behind
Dart’s power as a language.

You can simply drop the type in most instances. For
example, here are the constants from above without the type
annotations:

const myInteger = 10;
const myDouble = 3.14;

In the absence of type annotation, Dart figures out the
correct type for each constant above.

Checking the inferred type in VS Code

Sometimes, it can be useful to check the inferred type of a
variable or constant. You can do this in VS Code by hovering
your mouse pointer over the variable name. VS Code will
display a popover like this:

VS Code shows you the inferred type. In this example, the
type is int.

It works for other types, too. Hovering your mouse pointer
over myDouble shows that it’s a double:

Type inference isn’t magic; Dart is simply doing what your
own brain does very easily. Programming languages that
don’t use type inference often feel verbose, because you need
to specify the (usually) obvious type each time you declare a
variable or constant.

Note: There are times when you’ll want (or need) to
explicitly include the type, either because Dart doesn’t
have enough information to figure it out, or because you
want your intent to be clear to the reader. However,
you’ll see type inference used for most of the code
examples in this book.

Checking the type at runtime

Your code can’t hover a mouse pointer over a variable to
check the type, but Dart does have a programmatic way of
doing the same thing: the is keyword.

num myNumber = 3.14;
print(myNumber is double);
print(myNumber is int);

Run this to see the following result:

true
false

Recall that both double and int are subtypes of num. That
means myNumber could store either type. In this case, 3.14 is
a double, and not an int, which is what the is keyword
checks for and confirms by returning true and false
respectively. You’ll learn more about the type for true and
false values in Chapter 4.

Another option to see the type at runtime is to use the
runtimeType property that is available to all types.

print(myNumber.runtimeType);

This prints double as expected.

Type conversion

Sometimes, you’ll have data in one type, but need to convert
it to another. The naïve way to attempt this would be like so:

var integer = 100;
var decimal = 12.5;
integer = decimal;

Dart will complain if you try to do that:

A value of type 'double' can't be assigned to a
variable of type 'int'.

Some programming languages aren’t as strict and will
perform conversions like this silently. Experience shows this
kind of silent, implicit conversion is a frequent source of
software bugs and often hurts code performance. Dart
disallows you from assigning a value of one type to another
and avoids these issues.

Remember, computers rely on programmers to tell them
what to do. In Dart, that includes being explicit about type
conversions. If you want the conversion to happen, you have
to say so!

Instead of simply assigning and hoping for implicit
conversion, you need to explicitly say that you want Dart to
convert the type. You can convert this double to an int like
so:

integer = decimal.toInt();

The assignment now tells Dart, unequivocally, that you want
to convert from the original type, double, to the new type,
int.

Note: In this case, assigning the decimal value to the
integer results in a loss of precision: The integer
variable ends up with the value 12 instead of 12.5. This
is why it’s important to be explicit. Dart wants to make
sure you know what you’re doing and that you may end
up losing data by performing the type conversion.

Operators with mixed types

So far, you’ve only seen operators acting independently on
integers or doubles. But what if you have an integer that you
want to multiply with a double?

Take this example:

const hourlyRate = 19.5;
const hoursWorked = 10;
const totalCost = hourlyRate * hoursWorked;

hourlyRate is a double and hoursWorked is an int. What
will the type of totalCost be? It turns out that Dart will
make totalCost a double. This is the safest choice, since
making it an int could cause a loss of precision.

If you actually do want an int as the result, then you need to
perform the conversion explicitly:

const totalCost = (hourlyRate * hoursWorked).toI
nt();

The parentheses tell Dart to do the multiplication first, and
after that, to take the result and convert it to an integer
value. However, the compiler complains about this:

Const variables must be initialized with a const
ant value.

The problem is that toInt is a runtime method. This means
that totalCost can’t be determined at compile time, so
making it const isn’t valid. No problem; there’s an easy fix.
Just change const to final:

final totalCost = (hourlyRate * hoursWorked).toIn
t();

Now totalCost is an int.

Ensuring a certain type

Sometimes you want to define a constant or variable and
ensure it remains a certain type, even though what you’re

assigning to it is of a different type. You saw earlier how you
can convert from one type to another. For example, consider
the following:

const wantADouble = 3;

Here, Dart infers the type of wantADouble as int. But what if
you wanted the constant to store a double instead?

One thing you could do is the following:

final actuallyDouble = 3.toDouble();

This uses type conversion to convert 3 into a double before
assignment, as you saw earlier in this chapter.

Another option would be to not use type inference at all, and
to add the double annotation:

const double actuallyDouble = 3;

The number 3 is an integer, but literal number values that
contain a decimal point cannot be integers, which means you
could have avoided this entire discussion had you started
with:

const wantADouble = 3.0;

Sorry! :]

Casting down

At other times, you may have a variable of some general
supertype, but you need functionality that is only available
in a subtype. If you’re sure that the value of the variable
actually is the subtype you need, then you can use the as
keyword to change the type. This is known as type casting.

Here’s an example:

num someNumber = 3;

You have a number, and you want to check if it’s even. You
know that integers have an isEven property, so you attempt
the following:

print(someNumber.isEven);

However, the compiler gives you an error:

The getter 'isEven' isn't defined for the type 'n
um'.

num is too general of a type to know anything about even or
odd numbers. Only integers can be even or odd; so the issue
is that num could potentially be a double at runtime, since
num includes both double and int. In this case, though,
you’re sure that 3 is an integer, so you can cast someNumber
to int.

final someInt = someNumber as int;
print(someInt.isEven);

The as keyword causes the compiler to recognize someInt as
an int, so your code is now able to use the isEven property
that belongs to the int type. Since 3 isn’t even, Dart prints
false.

You need to be careful with type casting, though. If you cast
to the wrong type, you’ll get a runtime error:

num someNumber = 3;
final someDouble = someNumber as double;

This will crash with the following message:

_CastError (type 'int' is not a subtype of type
'double' in type cast)

The runtime type of someNumber is int, not double. In Dart,
you’re not allowed to cast to a sibling type, such as int to
double. You can only cast down to a subtype.

If you do need to convert an int to a double at runtime, use
the toDouble method that you saw earlier:

final someDouble = someNumber.toDouble();

Mini-exercises

1. Create a constant called age1 and set it equal to 42.
Create another constant called age2 and set it equal to
21. Check that the type for both constants has been
inferred correctly as int by hovering your mouse pointer
over the variable names in VS Code.

2. Create a constant called averageAge and set it equal to
the average of age1 and age2 using the operation (age1
+ age2) / 2. Hover your mouse pointer over
averageAge to check the type. Then check the result of
averageAge. Why is it a double if the components are
all int?

Strings

Numbers are essential in programming, but they aren’t the
only type of data you need to work with in your apps. Text is
also a common data type, representing things such as
people’s names, their addresses, or even the complete text of
a book. All of these are examples of text that an app might
have to handle.

Most computer programming languages store text in a data
type called a string. This chapter introduces you to strings,
first by giving you background on the concept, and then by
showing you how to use them in Dart.

How computers represent strings

Computers think of strings as a collection of individual
characters. Numbers are the language of CPUs, and all code,
in every programming language, can be reduced to raw
numbers. Strings are no different.

That may sound very strange. How can characters be
numbers? At its base, a computer needs to be able to
translate a character into the computer’s own language, and
it does so by assigning each character a different number.

This forms a two-way mapping from character to number
that’s called a character set.

When you press a character key on your keyboard, you are
actually communicating the number of the character to the
computer. Your computer converts that number into a
picture of the character and finally, presents that picture to
you.

Unicode

In isolation, a computer is free to choose whatever character
set mapping it likes. If the computer wants the letter a to
equal the number 10, then so be it. But when computers start
talking to each other, they need to use a common character
set.

If two computers used different character sets, then when
one computer transferred a string to the other, they would
end up thinking the strings contained different characters.

There have been several standards over the years, but the
most modern standard is Unicode. It defines the character
set mapping that almost all computers use today.

Note: You can read more about Unicode at its official
website, unicode.org.

As an example, consider the word cafe. The Unicode
standard tells us that the letters of this word should be
mapped to numbers like so:

https://unicode.org/

The number associated with each character is called a code
point. So in the example above, c uses code point 99, a uses
code point 97, and so on.

Of course, Unicode is not just for the simple Latin characters
used in English, such as c, a, f and e. It also lets you map
characters from languages around the world. The word cafe,
as you’re probably aware, is derived from French, in which
it’s written as café. Unicode maps these characters like so:

And here’s an example using simplified Chinese characters
that mean “I love you”:

You’re familiar with the small pictures called emojis that you
can use when texting your friends. These pictures are, in
fact, just normal characters and are also mapped by Unicode.
For example:

These are only two characters. The code points for them are
very large numbers, but each is still only a single code point.
The computer considers them no different than any other
two characters.

Note: The word “emoji” comes from the Japanese 絵⽂
字, where “e” means picture and “moji” means
character.

The numbers for each of the characters above were written
in decimal notation, but you usually write Unicode code
points in hexadecimal format. Here they are again in hex:

Using base-16 makes the numbers more compact, easier to
find in the Unicode character code charts and generally nicer
to work with while programming.

Working with strings in Dart

Dart, like any good programming language, can work directly
with strings. It does so through the String data type. In this

section, you’ll learn about this data type and how to work
with it.

Strings and characters

You’ve already seen a Dart string back in Chapter 1 where
you printed one:

print('Hello, Dart!');

You can extract that same string as a named variable:

var greeting = 'Hello, Dart!';
print(greeting);

The right-hand side of this expression is known as a string
literal. Due to type inference, Dart knows that greeting is of
type String. Since you used the var keyword, you’re allowed
to reassign the value of greeting as long as the new value is
still a string.

var greeting = 'Hello, Dart!';
greeting = 'Hello, Flutter!';

Even though you changed the value of greeting here, you
didn’t modify the string itself. That’s because strings are
immutable in Dart. It’s not like you replaced Dart in the first
string with Flutter. No, you completely discarded the string
'Hello, Dart!' and replaced it with a whole new string
whose value was 'Hello, Flutter!'.

Getting characters

Note: The code examples below contain emoji
characters that may be difficult to input on your
keyboard. You can find all of them to conveniently copy-
and-paste by opening starter/bin/starter.dart in the
Chapter 3 supplemental materials for this book.
Alternatively, you can use emojipedia.org with the
following search terms: “dart”, “Mongolia flag” and
“man woman girl boy”.

If you’re familiar with other programming languages, you
may be wondering about a Character or char type. Dart
doesn’t have that. Take a look at this example:

const letter = 'a';

So here, even though letter is only one character long, it’s
still of type String.

But strings are a collection of characters, right? What if you
want to know the underlying number value of the character?
No problem. Keep reading.

Dart strings are a collection of UTF-16 code units. UTF-16 is
a way to encode Unicode values by using 16-bit numbers. If
you want to find out what those UTF-16 codes are, you can
do it like so:

https://emojipedia.org/

var salutation = 'Hello!';
print(salutation.codeUnits);

This will print the following list of numbers in decimal
notation:

[72, 101, 108, 108, 111, 33]

H is 72, e is 101, and so on.

These UTF-16 code units have the same value as Unicode
code points for most of the characters you see on a day to
day basis. However, 16 bits only give you 65,536
combinations, and believe it or not, there are more than
65,536 characters in the world! Remember the large numbers
that the emojis had in the last section? You’ll need more
than 16 bits to represent those values.

UTF-16 has a special way of encoding code points higher
than 65,536 by using two code units called surrogate pairs.

const dart = '🎯';
print(dart.codeUnits);
// [55356, 57263]

The code point for 🎯 is 127919, but the surrogate pair for
that in UTF-16 is 55356 and 57263. No one wants to mess
with surrogate pairs. It would be much nicer to just get
Unicode code points directly. And you can! Dart calls them
runes.

const dart = '🎯';
print(dart.runes);
// (127919)

Problem solved, right? If only it were.

Unicode grapheme clusters

Unfortunately, language is messy and so is Unicode. Have a
look at this example:

const flag = '�';
print(flag.runes);
// (127474, 127475)

Why are there two Unicode code points!? Well, it’s because
Unicode doesn’t create a new code point every time there is a
new country flag. It uses a pair of code points called regional
indicator symbols to represent a flag. That’s what you see in
the example for the Mongolian flag above. 127474 is the code
for the regional indicator symbol letter M, and 127475 is the
code for the regional indicator symbol letter N. MN represents
Mongolia.

If you thought that was complicated, look at this one:

const family = '� ';
print(family.runes);
// (128104, 8205, 128105, 8205, 128103, 8205, 12
8102)

That list of Unicode code points is a man, a woman, a girl
and a boy all glued together with a characters called a Zero
Width Joiner or ZWJ.

Now image trying to find the length of that string:

const family = '� ';

family.length; // 11
family.codeUnits.length; // 11
family.runes.length; // 7

Getting the length of the string with family.length is
equivalent to finding the number of UTF-16 code units:
There are surrogate pairs for each of the four people plus the
three ZWJ characters for a total of 11. Finding the runes
gives you the seven Unicode code points that make up the
emoji: man + ZWJ + woman + ZWJ + girl + ZWJ + boy.
However, neither 11 nor 7 is what you’d expect. The family
emoji looks like it’s just one character. You’d think the
length should be one!

When a string with multiple code points looks like a single
character, this is known as a user perceived character. In
technical terms it’s called a Unicode extended grapheme
cluster, or more commonly, just grapheme cluster.

Although the creators of Dart didn’t support grapheme
clusters in the language itself, they did make an add-on
package that handles them.

Adding the characters package

This is a good opportunity to try out your first Pub package.
In the root folder of your project, open pubspec.yaml.

Note: If you don’t see pubspec.yaml, go back to Chapter
1 to see how to create a new project. Alternatively, open
the starter project that comes with the supplemental
materials for Chapter 3 of this book.

Find the line that says dependencies: and add the
characters package and version directly below that. It
should look like this when you’re done:

dependencies:
 characters: ^1.1.0

Indentation is important in .yaml files, so make sure to
indent the package name with two spaces. The ^ carat
character means that any version higher than or equal to
1.1.0 but lower than 2.0.0 is OK to use in your project. This
is known as semantic versioning.

Now press Command+S on a Mac or Control+S on a PC to
save the changes to pubspec.yaml. VS Code will
automatically fetch the package from Pub. Alternatively, you
can press the Get Packages button in the top right. It looks
like a down arrow:

Both of these methods are equivalent to running the
following command in the root folder of your project using
the terminal:

dart pub get

Note: Whenever you download and open a new Dart
project that contains Pub packages, you’ll need to run
dart pub get first. This includes the final and
challenge projects included in the supplemental
materials for this chapter.

Now that you’ve added the characters package to your
project, go back to your Dart code file and add the following
import to the top of the page:

import 'package:characters/characters.dart';

Now you can use the code in the characters package to
handle grapheme clusters. This package adds extra
functionality to the String type.

const family = '� ';
family.characters.length; // 1

Aha! Now that’s what you’d hope to see: just one character
for the family emoji. The characters package extended
String to include a collection of grapheme clusters called
characters.

In your own projects, you can decide whether you want to
work with UTF-16 code units, Unicode code points or
grapheme clusters. However, as a general rule, you should
strongly consider using grapheme clusters any time you’re
receiving text input from the outside world. That includes
fetching data over the network or users typing things into
your app.

Single-quotes vs. double-quotes

Dart allows you to use either single-quotes or double-quotes
for string literals. Both of these are fine:

'I like cats'
"I like cats"

Although Dart doesn’t have a recommended practice, the
Flutter style guide does recommend using single-quotes, so
this book will also follow that practice.

You might want to use double-quotes, though, if your string
includes any apostrophes.

"my cat's food"

Otherwise you would need to use the backslash \ as an
escape character so that Dart knows that the string isn’t
ending early:

'my cat\'s food'

Concatenation

You can do much more than create simple strings.
Sometimes you need to manipulate a string, and one
common way to do so is to combine it with another string.
This is called concatenation...with no relation to the
aforementioned felines.

In Dart, you can concatenate strings simply by using the
addition operator. Just as you can add numbers, you can add
strings:

var message = 'Hello' + ' my name is ';
const name = 'Ray';
message += name;
// 'Hello my name is Ray'

You need to declare message as a variable, rather than a
constant, because you want to modify it. You can add string
literals together, as in the first line, and you can add string
variables or constants together, as in the third line.

If you find yourself doing a lot of concatenation, you should
use a string buffer, which is more efficient.

final message = StringBuffer();
message.write('Hello');
message.write(' my name is ');
message.write('Ray');
message.toString();
// "Hello my name is Ray"

This creates a mutable location in memory where you can
add to the string without having to create a new string for
every change. When you’re all done, you use toString to
convert the string buffer to the String type. This is similar
to what you saw with type conversion earlier with toInt.

Interpolation

You can also build up a string by using interpolation, which
is a special Dart syntax that lets you build a string in a
manner that’s easy for other people reading your code to
understand:

const name = 'Ray';
const introduction = 'Hello my name is $name';
// 'Hello my name is Ray'

This is much more readable than the example in the previous
section. It’s an extension of the string literal syntax, in
which you replace certain parts of the string with other
values. You add a dollar sign ($) in front of the value that you
want to insert.

The syntax works in the same way to build a string from
other data types such as numbers:

const oneThird = 1 / 3;
const sentence = 'One third is $oneThird.';

Here, you use a double for the interpolation. Your sentence
constant will contain the following value:

One third is 0.3333333333333333.

Of course, it would actually take an infinite number of
characters to represent one-third as a decimal, because it’s a
repeating decimal. You can control the number of decimal
places shown on a double by using toStringAsFixed along
with the number of decimal places to show:

final sentence = 'One third is ${oneThird.toStrin
gAsFixed(3)}.';

There are a few items of interest here:

You’re requesting the string to show only three decimal
places.

Since you’re performing an operation on oneThird, you
need to surround the expression with curly braces after
the dollar sign. This lets Dart know that the dot (.) after
oneThird isn’t just a regular period.

The sentence variable needs to be final now instead of
const because toStringAsFixed(3) is calculated at
runtime.

Here’s the result:

One third is 0.333.

Multi-line strings

Dart has a neat way to express strings that contain multiple
lines, which can be rather useful when you need to use very
long strings in your code.

You can support multi-line text like so:

const bigString = '''
You can have a string
that contains multiple
lines
by
doing this.''';
print(bigString);

The three single-quotes (''') signify that this is a multi-line
string. Three double-quotes (""") would have done the same
thing.

The example above will print the following:

You can have a string
that contains multiple
lines
by
doing this.

Notice that all of the newline locations are preserved. If you
just want to use multiple lines in code but don’t want the
output string to contain newline characters, then you can
surround each line with single-quotes:

const oneLine = 'This is only '
 'a single '
 'line '
 'at runtime.';

That’s because Dart ignores whitespace outside of quoted
text. This does the same thing as if you concatenated each of
those lines with the + operator:

const oneLine = 'This is only ' +
 'a single ' +
 'line ' +
 'at runtime.';

Either way, this is what you get:

This is only a single line at runtime.

Like many languages, if you want to insert a newline
character, you can use \n.

const twoLines = 'This is\ntwo lines.';

This gives:

This is
two lines.

However, sometimes you want to ignore any special
characters that a string might contain. To do that, you can
create a raw string by putting r in front of the string literal.

const rawString = r'My name \n is $name.';

And that’s exactly what you get:

My name \n is $name.

Inserting characters from their codes

Similar to the way you can insert a newline character into a
string using the \n escape sequence, you can also add
Unicode characters if you know their codes. Take the
following example:

print('I \u2764 Dart\u0021');

Here, you’ve used \u, followed by a four-digit hexadecimal
code unit value. 2764 is the hex value for the heart emoji,
and 21 is the hex value for an exclamation mark. Since 21 is
only two digits, you pad it with extra zeros as 0021.

This prints:

For code points with values higher than hexadecimal FFFF,
you need to surround the code with curly braces:

print('I love \u{1F3AF}');

This prints:

In this way, you can form any Unicode string from its codes.

Mini-exercises

1. Create a string constant called firstName and initialize it
to your first name. Also create a string constant called
lastName and initialize it to your last name.

2. Create a string constant called fullName by adding the
firstName and lastName constants together, separated
by a space.

3. Using interpolation, create a string constant called
myDetails that uses the fullName constant to create a
string introducing yourself. For example, Ray
Wenderlich’s string would read: Hello, my name is
Ray Wenderlich.

Object and dynamic types

Dart grew out of the desire to solve some problems inherent
in JavaScript. JavaScript is a dynamically-typed language.
Dynamic means that something can change, and for
JavaScript that means the types can change at runtime.

Here is an example in JavaScript:

var myVariable = 42;
myVariable = "hello";

In JavaScript, the first line is a number and the second line a
string. Changing the types on the fly like this is completely
valid in JavaScript. While this may be convenient at times, it
makes it really easy to write buggy code. For example, you
may be erroneously thinking that myVariable is still a
number, so you write the following code:

var answer = myVariable * 3; // runtime error

Oops! That’s an error because myVariable is actually a
string, and the computer doesn’t know what to do with
“hello” times 3. Not only is it an error, you won’t even
discover the error until you run the code.

You can totally prevent mistakes like that in Dart because it’s
an optionally-typed language. That means you can choose to
use Dart as a dynamically typed language or as a statically-
typed language. Static means that something cannot change;
once you tell Dart what type a variable is, you’re not allowed
to change it anymore.

If you try to do the following in Dart:

var myVariable = 42;
myVariable = 'hello'; // compile-time error

The Dart compiler will immediately tell you that it’s an error.
That makes type errors trivial to detect.

As you saw in Chapter 2, the creators of Dart did include a
dynamic type for those who wish write their programs in a
dynamically-typed way.

dynamic myVariable = 42;
myVariable = 'hello'; // OK

In fact, this is the default if you use var and don’t initialize
your variable:

var myVariable; // defaults to dynamic
myVariable = 42; // OK
myVariable = 'hello'; // OK

While dynamic is built into the system, it’s more of a
concession rather than an encouragement to use it. You
should still embrace static typing in your code as it will
prevent you from making silly mistakes.

If you need to explicitly say that any type is allowed, you
should consider using the Object? type.

Object? myVariable = 42;
myVariable = 'hello'; // OK

At runtime, Object? and dynamic behave nearly the same.
However, when you explicitly declare a variable as Object?,
you’re telling everyone that you generalized your variable on
purpose, and that they’ll need to check its type at runtime if
they want to do anything specific with it. Using dynamic, on
the other hand, is more like saying you don’t know what the
type is; you’re telling people they can do what they like with
this variable, but it’s completely on them if their code
crashes.

Note: You may be wondering what that question mark at
the end of Object? is. That means that the type can
include the null value. You’ll learn more about
nullability in Chapter 7.

Challenges

Before moving on, here are some challenges to test your
knowledge of types and operations. It’s best if you try to
solve them yourself, but solutions are available with the
supplementary materials for this book if you get stuck.

As described in the Getting characters section above, you can
find the required emoji characters in the starter project or
from emojipedia.org where you can use the search terms
“Chad flag”, “Romania flag” and “thumbs up dark skin tone”.

Challenge 1: Teacher’s grading

You’re a teacher, and in your class, attendance is worth 20%
of the grade, the homework is worth 30% and the exam is
worth 50%. Your student got 90 points for her attendance, 80
points for her homework and 94 points on her exam.
Calculate her grade as an integer percentage rounded down.

Challenge 2: Same same, but different

This string has two flags that look the same. But they aren’t!
One of them is the flag of Chad and the other is the flag of
Romania.

https://emojipedia.org/

const twoCountries = '��';

Which is which?

Hint: Romania’s regional indicator sequence is RO, and R
is 127479 in decimal. Chad, which is Tishād in Arabic
and Tchad in French, has a regional indicator sequence
of TD. Sequence letter T is 127481 in decimal.

Challenge 3: How many?

Given the following string:

const vote = 'Thumbs up! �';

How many UTF-16 code units are there?

How many Unicode code points are there?

How many Unicode grapheme clusters are there?

Challenge 4: Find the error

What is wrong with the following code?

const name = 'Ray';
name += ' Wenderlich';

Challenge 5: What type?

What’s the type of value?

const value = 10 / 2;

Challenge 6: In summary

What is the value of the constant named summary?

const number = 10;
const multiplier = 5;
final summary = '$number \u00D7 $multiplier = ${n
umber * multiplier}';

Key points

Type conversion allows you to convert values of one
type into another.

When doing operations with basic arithmetic operators
(+, -, *, /) and mixed types, the result will be a double.

Type inference allows you to omit the type when Dart
can figure it out.

Unicode is the standard representation for mapping
characters to numbers.

Dart uses UTF-16 values known as code units to encode
Unicode strings.

A single mapping in Unicode is called a code point,
which is known as a rune in Dart.

User-perceived characters may be composed of one or
more code points and are called grapheme characters.

You can combine strings by using the addition operator.

You can make multi-line strings using three single-
quotes or double quotes.

You can use string interpolation to build a string in-
place.

Dart is an optionally-typed language. While it’s
preferable to choose statically-typed variables, you may
write Dart code in a dynamically-typed way by explicitly
adding the dynamic type annotation in front of
variables.

Chapter 4: Control Flow

When writing a computer program, you need to be able to
tell the computer what to do in different scenarios. For
example, a calculator app would need to perform one action
if the user taps the addition button, and another action if the
user taps the subtraction button.

In computer programming terms, this concept is known as
control flow, because you can control the flow of decisions
the code makes at multiple points. In this chapter, you’ll
learn how to make decisions and repeat tasks in your
programs.

Making comparisons

You’ve already encountered a few different Dart types, such
as int, double and String. Each of those types is a data
structure which is designed to hold a particular type of data.
The int type is for whole numbers while the double type is
for decimal numbers. String, by comparison, is useful for
storing textual information.

A new way of structuring information, though, requires a
new data type. Consider the answers to the following
questions:

Is the door open?

Do pigs fly?

Is that the same shirt you were wearing yesterday?

Is the traffic light red?

Are you older than your grandmother?

Does this make me look fat?

These are all yes-no questions. If you want to store the
answers in a variable, you could use strings like 'yes' and
'no'. You could even use integers where 0 means no and 1
means yes. The problem with that, though, is what happens
when you get 42 or 'celery'? It would be better to avoid any
ambiguity and have a type in which the only possible values
are yes and no.

Boolean values

Dart has a data type just for this. It’s called bool, which is
short for Boolean. A Boolean value can have one of two
states. While in general you could refer to the states as yes
and no, on and off, or 1 and 0, most programming languages,
Dart included, call them true and false.

The word Boolean was named after George Boole, the man
who pioneered an entire field of mathematics around the
concept of true and false. Since computers themselves are
based on electrical circuits which can be in a binary state of
on or off, Boolean math is fundamental to computer science.

When programming in a high level language like Dart, you
don’t need to understand all of the Boolean logic that’s
happening at the circuit level, but there’s still a lot about
Boolean math you can apply to decision making in your own
code.

To start your exploration of Booleans in Dart, create some
Boolean variables like so:

const bool yes = true;
const bool no = false;

Because of Dart’s type inference, you can leave off the type
annotation:

const yes = true;
const no = false;

In the code above, you use the keywords true and false to
set the state of each Boolean constant.

Boolean operators

Booleans are commonly used to compare values. For
example, you may have two values and you want to know if
they’re equal. Either they are equal, which would be true, or
they aren’t equal, which would be false.

Next you’ll see how to make that comparison in Dart.

Testing equality

You can test for equality using the equality operator, which
is denoted by ==, that is, two equals signs.

Write the following line:

const doesOneEqualTwo = (1 == 2);

Dart infers that doesOneEqualTwo is a bool. Clearly, 1 does
not equal 2, and therefore doesOneEqualTwo will be false.
Confirm that result by printing the value:

print(doesOneEqualTwo);

Sometimes you need parentheses to tell Dart what should
happen first. However, the parentheses in that last example
were there only for readability, that is, to show you that the
two objects being compared were 1 and 2. You could have
also written it like so:

const doesOneEqualTwo = 1 == 2;

Note: You may use the equality operator to compare int
to double, since they both belong to the num type.

Testing inequality

You can also find out if two values are not equal using the !=
operator:

const doesOneNotEqualTwo = (1 != 2);

This time, the result of the comparison is true because 1
does not equal 2, so doesOneNotEqualTwo will be true.

The prefix ! operator, also called the not-operator or bang
operator, toggles true to false and false to true. Another
way to write the above is:

const alsoTrue = !(1 == 2);

Because 1 does not equal 2, (1 == 2) is false, and then !
flips it to true.

Testing greater and less than

There are two other operators to help you compare two
values and determine if a value is greater than (>) or less
than (<) another value. You know these from mathematics:

const isOneGreaterThanTwo = (1 > 2);
const isOneLessThanTwo = (1 < 2);

It’s not rocket science to work out that
isOneGreaterThanTwo will equal false and that
isOneLessThanTwo will equal true.

The <= operator lets you test if a value is less than or equal
to another value. It’s a combination of < and ==, and will
therefore return true if the first value is less than, or equal
to, the second value.

print(1 <= 2); // true
print(2 <= 2); // true

Similarly, the >= operator lets you test if a value is greater
than or equal to another value.

print(2 >= 1); // true
print(2 >= 2); // true

Boolean logic

Each of the examples above tests just one condition. When
George Boole invented the Boolean, he had much more
planned for it than these humble beginnings. He invented
Boolean logic, which lets you combine multiple conditions to
form a result.

AND operator

Ray would like to go cycling in the park with Vicki this
weekend. It’s a little uncertain whether they can go, though.
There’s a chance that it might rain. Also, Vicky says she can’t
go unless she finishes up the art project she’s working on. So
Ray and Vicki will go cycling in the park if it’s sunny and
Vicki finishes her work.

When two conditions need to be true in order for the result
to be true, this is an example of a Boolean AND operation. If
both input Booleans are true, then the result is true.
Otherwise, the result is false. If it rains, Ray won’t go cycling
with Vicki. Or if Vicki doesn’t finish her work, they won’t go
cycling, either.

In Dart, the operator for Boolean AND is written &&, used
like so:

const isSunny = true;
const isFinished = true;
const willGoCycling = isSunny && isFinished;

Print willGoCycling and you’ll see that it’s true. If either
isSunny or isFinished were false, then willGoCycling

would also be false.

OR operator

Vicki would like to draw a platypus, but she needs a model.
She could either travel to Australia or she could find a
photograph on the internet. If only one of two conditions
need to be true in order for the result to be true, this is an
example of a Boolean OR operation. The only instance where
the result would be false is if both input Booleans were false.
If Vicki doesn’t go to Australia and she also doesn’t find a
photograph on the internet, then she won’t draw a platypus.

In Dart, the operator for Boolean OR is written ||, used like
so:

const willTravelToAustralia = true;
const canFindPhoto = false;
const canDrawPlatypus = willTravelToAustralia ||
canFindPhoto;

Print canDrawPlatypus to see that its value is true. If both
values on the right were false, then canDrawPlatypus
would be false. If both were true, then canDrawPlatypus
would still be true.

Operator precedence

As was the case in the Ray and Vicki examples above,
Boolean logic is usually applied to multiple conditions.
When you want to determine if two conditions are true, you
use AND, while if you only care whether one of the two
conditions is true, you use OR.

Here are a few more examples:

const andTrue = 1 < 2 && 4 > 3;
const andFalse = 1 < 2 && 3 > 4;
const orTrue = 1 < 2 || 3 > 4;
const orFalse = 1 == 2 || 3 == 4;

Each of these tests two separate conditions, combining them
with either AND or OR.

It’s also possible to use Boolean logic to combine more than
two comparisons. For example, you can form a complex
comparison like so:

3 > 4 && 1 < 2 || 1 < 4

But now it gets a little confusing. You have three conditions
with two different logical operators. With the comparisons
simplified, you have the following form:

false && true || true

Depending on the order you perform the AND and OR
operations, you get different results. If you evaluate AND
first, the whole expression is true, while if you evaluate OR
first, the whole expression is false.

This is where operator precedence comes in. The following
list shows the order that Dart uses to evaluate expressions
containing comparison and logical operators:

Operators higher in the list are executed before operators
lower in the list. You can see that && has a higher precedence
than ||. So back to case from before:

false && true || true

First Dart will evaluate false && true, which is false. Then
Dart will take that false to evaluate false || true, which
is true. Thus the whole expression evaluates to true.

Overriding precedence with parentheses

If you want to override the default operator precedence, you
can put parentheses around the parts Dart should evaluate
first.

Compare the following two expressions:

3 > 4 && (1 < 2 || 1 < 4) // false
(3 > 4 && 1 < 2) || 1 < 4 // true

The parentheses in the first line force Dart to do the OR
operation before the AND operation, even though that isn’t
the default order. This results in the entire expression

evaluating to false instead of true, as it would have if you
hadn’t used parentheses.

Even when parentheses are not strictly required, as in the
second of the two expressions above, they can still help to
make the code more readable. For this reason, it’s usually a
good idea to use parentheses when you’re performing a
logical operation on more than two conditions.

String equality

Sometimes you’ll want to determine if two strings are equal.
For example, a children’s game of naming an animal in a
photo would need to determine if the player answered
correctly.

In Dart, you can compare strings using the standard equality
operator, ==, in exactly the same way as you compare
numbers. For example:

const guess = 'dog';
const dogEqualsCat = guess == 'cat';

Here, dogEqualsCat is a Boolean, which in this case is false
because the string 'dog' does not equal the string 'cat'.

Mini-exercises

1. Create a constant called myAge and set it to your age.
Then, create a constant named isTeenager that uses
Boolean logic to determine if the age denotes someone
in the age range of 13 to 19.

2. Create another constant named maryAge and set it to 30.
Then, create a constant named bothTeenagers that uses
Boolean logic to determine if both you and Mary are
teenagers.

3. Create a String constant named reader and set it to
your name. Create another String constant named ray
and set it to 'Ray Wenderlich'. Create a Boolean
constant named rayIsReader that uses string equality
to determine if reader and ray are equal.

Now that you understand Boolean logic, you’re going to use
that knowledge to make decisions in your code.

The if statement

The first and most common way of controlling the flow of a
program is through the use of an if statement, which allows
the program to do something only if a certain condition is
true. For example, consider the following:

if (2 > 1) {
 print('Yes, 2 is greater than 1.');
}

This is a simple if statement. The condition, which is always
a Boolean expression, is the part within the parentheses that
follows the if statement. If the condition is true, then the
if statement will execute the code between the braces. If the
condition is false, then the if statement won’t execute the
code between the braces.

Obviously, the condition (2 > 1) is true, so when you run
that you’ll see:

Yes, 2 is greater than 1.

The else clause

You can extend an if statement to provide code to run in the
event that the condition turns out to be false. This is known
as the else clause.

Here’s an example:

const animal = 'Fox';
if (animal == 'Cat' || animal == 'Dog') {
 print('Animal is a house pet.');
} else {
 print('Animal is not a house pet.');
}

If animal equals either 'Cat' or 'Dog', then the statement
will execute the first block of code. If animal does not equal
either 'Cat' or 'Dog', then the statement will run the block
inside the else clause of the if statement.

Run that code and you’ll see the following in the debug
console:

Animal is not a house pet.

Else-if chains

You can go even further with if statements. Sometimes you
want to check one condition, and then check another
condition if the first condition isn’t true. This is where else-
if comes into play, nesting another if statement in the else
clause of a previous if statement.

You can use it like so:

const trafficLight = 'yellow';
var command = '';
if (trafficLight == 'red') {
 command = 'Stop';
} else if (trafficLight == 'yellow') {
 command = 'Slow down';
} else if (trafficLight == 'green') {
 command = 'Go';
} else {
 command = 'INVALID COLOR!';
}
print(command);

In this example, the first if statement will check if
trafficLight is equal to 'red'. Since it’s not, the next if
statement will check if trafficLight is equal to 'yellow'. It
is equal to 'yellow', so no check will be made for the case of
'green'.

Run the code and it will print the following:

Slow down

These nested if statements test multiple conditions, one by
one, until a true condition is found. Only the code associated

with the first true condition encountered will be executed,
regardless of whether there are subsequent else-if
conditions that evaluate to true. In other words, the order of
your conditions matters!

You can add an else clause at the end to handle the case
where none of the conditions are true. This else clause is
optional if you don’t need it. In this example, you do need
the else clause to ensure that command has a value by the
time you print it out.

Variable scope

if statements introduce a new concept called scope. Scope is
the extent to which a variable can be seen throughout your
code. Dart uses curly braces as the boundary markers in
determining a variable’s scope. If you define a variable inside
a pair of curly braces, then you’re not allowed to use that
variable outside of those braces.

To see how this works, replace the main function with the
following code:

const global = 'Hello, world';

void main() {
 const local = 'Hello, main';

 if (2 > 1) {
 const insideIf = 'Hello, anybody?';

 print(global);
 print(local);
 print(insideIf);
 }

 print(global);
 print(local);
 print(insideIf); // Not allowed!
}

Note the following points:

There are three variables: global, local and insideIf.

There are two sets of nested curly braces, one for the
body of main and one for the body of the if statement.

The variable named global is defined outside of the
main function and outside of any curly braces. That
makes it a top-level variable, which means it has a
global scope. That is, it’s visible everywhere in the file.
You can see print(global) references it both in the if
statement body and in the main function body.

The variable named local is defined inside the body of
the main function. This makes it a local variable and it

has local scope. It’s visible inside the main function,
including inside the if statement, but local is not
visible outside of the main function.

The variable named insideIf is defined inside the body
of the if statement. That means insideIf is only
visible within the scope defined by the if statement’s
curly braces.

Since the final print statement is trying to reference
insideIf outside of its scope, Dart gives you the following
error:

Undefined name 'insideIf'.

Delete that final print statement to get rid of the error.

As a general rule, you should make your variables have the
smallest scope that they can get by with. Another way to say
that is, define your variables as close to where you use them
as possible. Doing so makes their purpose more clear, and it
also prevents you from using or changing them in places
where you shouldn’t.

The ternary conditional operator

You’ve worked with operators that have two operands. For
example, in (myAge > 16), the two operands are myAge and
16. But there’s also an operator that takes three operands:
the ternary conditional operator. It’s strangely related to if
statements — you’ll see why this is in just a bit.

Let’s take an example of telling a student whether their exam
score is passing or not. Write an if-else statement to
achieve this:

const score = 83;

String message;
if (score >= 60) {
 message = 'You passed';
} else {
 message = 'You failed';
}

That’s pretty clear, but it’s a lot of code. Wouldn’t it be nice if
you could shrink this to just a couple of lines? Well, you can,
thanks to the ternary conditional operator!

The ternary conditional operator takes a condition and
returns one of two values, depending on whether the
condition is true or false. The syntax is as follows:

(condition) ? valueIfTrue : valueIfFalse;

Use the ternary conditional operator to rewrite your long
code block above, like so:

const score = 83;
const message = (score >= 60) ? 'You passed' :
'You failed';

In this example, the condition to evaluate is score >= 60. If
the condition is true, the result assigned to message will be

'You passed'; if the condition is false, the result will
instead be 'You failed'. Since 83 is greater than 60, the
student receives good news.

The ternary conditional operator makes basic if-else
statements much more compact, which in turn can make
your code more readable.

However, for situations where using this operator makes
your code less readable, then stick with the full if-else
statement. Readability is always more important than fancy
programming tricks that give the same result.

Mini-exercises

1. Create a constant named myAge and initialize it with
your age. Write an if statement to print out “Teenager”
if your age is between 13 and 19, and “Not a teenager” if
your age is not between 13 and 19.

2. Use a ternary conditional operator to replace the else-
if statement that you used above. Set the result to a
variable named answer.

Switch statements

An alternate way to handle control flow, especially for
multiple conditions, is with a switch statement. The switch
statement takes the following form:

switch (variable) {
 case value1:
 // code
 break;
 case value2:
 // code
 break;

 ...

 default:
 // code
}

There are a few different keywords, so here are what they
mean:

switch: Based on the value of the variable in
parentheses, which can be an int, String or compile-
time constant, switch will redirect the program control
to one of the case values that follow.

case: Each case keyword takes a value and compares
that value using == to the variable after the switch
keyword. You add as many case statements as there are
values to check. When there’s a match Dart will run the
code that follows the colon.

break: The break keyword tells Dart to exit the switch
statement because the code in the case block is
finished.

default: If none of the case values match the switch
variable, then the code after default will be executed.

The following sections will provide more detailed examples
of switch statements.

Replacing else-if chains

Using if statements are convenient when you have one or
two conditions, but the syntax can be a little verbose when
you have a lot of conditions. Check out the following
example:

const number = 3;
if (number == 0) {
 print('zero');
} else if (number == 1) {
 print('one');
} else if (number == 2) {
 print('two');
} else if (number == 3) {
 print('three');
} else if (number == 4) {
 print('four');
} else {
 print('something else');
}

Run that code and you’ll see that it gets the job done — it
prints three as expected. The wordiness of the else-if lines
make the code kind of hard to read, though.

Rewrite the code above using a switch statement:

const number = 3;
switch (number) {
 case 0:
 print('zero');
 break;
 case 1:
 print('one');
 break;
 case 2:
 print('two');
 break;
 case 3:
 print('three');
 break;
 case 4:
 print('four');
 break;
 default:
 print('something else');
}

Execute this code and you’ll get the same result of three
again. However, the code looks cleaner than the else-if
chain because you didn’t need to include the explicit
condition check for every case.

Note: In Dart, switch statements don’t support ranges
like number > 5. Only == equality checking is allowed. If
your conditions involve ranges, then you should use if
statements.

Switching on strings

A switch statement also works with strings. Try the
following example:

const weather = 'cloudy';
switch (weather) {
 case 'sunny':
 print('Put on sunscreen.');
 break;
 case 'snowy':
 print('Get your skis.');
 break;
 case 'cloudy':
 case 'rainy':
 print('Bring an umbrella.');
 break;
 default:
 print("I'm not familiar with that weather."
);
}

Run the code above and the following will be printed in the
console:

Bring an umbrella.

In this example, the 'cloudy' case was completely empty,
with no break statement. Therefore, the code “falls through”
to the 'rainy' case. This means that if the value is equal to
either 'cloudy' or 'rainy', then the switch statement will
execute the same case.

Enumerated types

Enumerated types, also known as enums, play especially well
with switch statements. You can use them to define your
own type with a finite number of options.

Consider the previous example with the switch statement
about weather. You’re expecting weather to contain a string
with a recognized weather word. But it’s conceivable that you
might get something like this from one of your users:

const weather = 'I like turtles.';

You’d be like, “What? What are you even talking about?”

That’s what the default case was there for — to catch all the
weird stuff that gets through. Wouldn’t it be nice to make
weird stuff impossible, though? That’s where enums come
in.

Create the enum as follows, placing it outside of the main
function:

enum Weather {
 sunny,
 snowy,
 cloudy,
 rainy,
}

This enum defines four different kinds of weather. Yes, yes,
you can probably think of more kinds than that; feel free to
add them yourself. But please don’t make iLikeTurtles an
option. Separate each of the values with a comma.

Formatting tip: If you like the enum options listed in a
vertical column as they are above, make sure the final
item in the list has a comma after it. On the other hand,
if you like them laid out horizontally, remove the
comma after the last item. Once you’ve done that,
pressing Shift+Option+F on a Mac or Shift+Alt+F on a
PC in VS Code will auto-format it to your preferred
style:
enum Weather { sunny, snowy, cloudy, rainy }
This formatting trick works with many kinds of lists in
Dart.

Naming enums

When creating an enum in Dart, it’s customary to write the
enum name with an initial capital letter, as Weather was
written in the example above. The values of an enum should
use lowerCamelCase unless you have a special reason to do
otherwise.

Switching on enums

Now that you have the enum defined, you can use a switch
statement to handle all the possibilities, like so:

const weatherToday = Weather.cloudy;
switch (weatherToday) {
 case Weather.sunny:
 print('Put on sunscreen.');
 break;
 case Weather.snowy:
 print('Get your skis.');
 break;
 case Weather.cloudy:
 case Weather.rainy:
 print('Bring an umbrella.');
 break;
}

As before, this will print the following message:

Bring an umbrella.

Notice that there was no default case this time since you
handled every single possibility. In fact, Dart will warn you if
you leave one of the enum items out. That’ll save you some
time chasing bugs.

Enum values and indexes

Before leaving the topic of enums, there’s one more thing to
note. If you try to print an enum, you’ll get its value:

print(weatherToday);
// Weather.cloudy

Unlike some languages, a Dart enum isn’t an integer.
However, you can get the index, or ordinal placement, of a

value in the enum like so:

final index = weatherToday.index;

Since cloudy is the third value in the enum, the zero-based
index is 2.

Avoiding the overuse of switch statements

Switch statements, or long else-if chains, can be a
convenient way to handle a long list of conditions. If you’re a
beginning programmer, go ahead and use them; they’re easy
to use and understand.

However, if you’re an intermediate programmer and still find
yourself using switch statements a lot, there’s a good chance
you could replace some of them with more advanced
programming techniques that will make your code easier to
maintain. If you’re interested, do a web search for
refactoring switch statements with polymorphism and read a
few articles about it.

Mini-exercises

1. Make an enum called AudioState and give it values to
represent playing, paused and stopped states.

2. Create a constant called audioState and give it an
AudioState value. Write a switch statement that prints
a message based on the value.

Loops

In the first three chapters of this book, your code ran from
the top of the main function to the bottom, and then it was
finished. With the addition of if statements in this chapter,
you gave your code the opportunity to make decisions.
However, it’s still running from top to bottom, albeit
following different branches.

Rather than just running through a set of instructions once,
it’s often useful to repeat tasks. Think about all the
repetitious things you do every day:

Breathing: Breathe in, breathe out, breathe in, breathe
out...

Walking: Right leg forward, left leg forward, right leg
forward, left leg forward...

Eating: Spoon up, spoon down, chew, chew, chew,
swallow, repeat...

Computer programming is just as full of repetitive actions as
your life is. The way you can accomplish them are by using
loops. Dart, like many programming languages, has while
loops and for loops. You’ll learn how to make them in the
following sections.

While loops

A while loop repeats a block of code as long as a Boolean
condition is true. You create a while loop like so:

while (condition) {
 // loop code
}

The loop checks the condition on every iteration. If the
condition is true, then the loop executes and moves on to
another iteration. If the condition is false, then the loop
stops. Just like if statements, while loops introduce a scope
because of their curly braces.

The simplest while loop takes this form:

while (true) { }

This is a while loop that never ends, because the condition is
always true. Of course, you would never write such a while
loop, because your program would spin forever! This
situation is known as an infinite loop, and while it might not
cause your program to crash, it will very likely cause your
computer to freeze.

Here’s a (somewhat) more useful example of a while loop:

var sum = 1;
while (sum < 10) {
 sum += 4;
 print(sum);
}

Run that to see the result. The loop executes as follows:

Before 1st iteration: sum = 1, loop condition = true

After 1st iteration: sum = 5, loop condition = true

After 2nd iteration: sum = 9, loop condition = true

After 3rd iteration: sum = 13, loop condition = false

After the third iteration, the sum variable is 13, and therefore
the loop condition of sum < 10 becomes false. At this point,
the loop stops.

Do-while loops

A variant of the while loop is called the do-while loop. It
differs from the while loop in that the condition is evaluated
at the end of the loop rather than at the beginning. Thus, the
body of a do-while loop is always executed at least once.

You construct a do-while loop like this:

do {
 // loop code
} while (condition)

Whatever statements appear inside the braces will be
executed. Finally, if the while condition after the closing
brace is true, you jump back up to the beginning and repeat
the loop.

Here’s the example from the last section, but using a do-
while loop:

sum = 1;
do {
 sum += 4;
 print(sum);
} while (sum < 10);

In this example, the outcome is the same as before.

Comparing while and do-while loops

It isn’t always the case that while loops and do-while loops
will give the same result. For example, here’s a while loop
where sum starts at 11:

sum = 11;
while (sum < 10) {
 sum += 4;
}
print(sum);

Since the initial condition is false, the loop never executes.
Run that code and you’ll see that sum remains 11.

On the other hand, check out a similar do-while loop:

sum = 11;
do {
 sum += 4;
} while (sum < 10);
print(sum);

Run this and you’ll find the sum at the end to be 15. This is
because the do-while loop executed the body of the loop

before checking the condition.

Breaking out of a loop

Sometimes you’ll need to break out of a loop early. You can
do this using the break statement, just as you did from
inside the switch statement earlier. This immediately stops
the execution of the loop and continues on to the code that
follows the loop.

For example, consider the following while loop:

sum = 1;
while (true) {
 sum += 4;
 if (sum > 10) {
 break;
 }
}

Here, the loop condition is true, so the loop would normally
iterate forever. However, the break means the while loop
will exit once the sum is greater than 10.

You’ve now seen how to write the same loop in different
ways. This demonstrates that in computer programming
there are often many ways to achieve the same result. You
should choose the method that’s easiest to read and that
conveys your intent in the best way possible. This is an
approach you’ll internalize with enough time and practice.

A random interlude

A common need in programming is to be able to generate
random numbers. And Dart provides this functionality in the
dart:math library, which is pretty handy!

As an example, imagine an application that needs to
simulate rolling a die. You may want to do something in your
code until a six is rolled, and then stop. Now that you know
about while loops, you can do that with the Random feature.

First import the dart:math library at the top of your Dart
file:

import 'dart:math';

Then create the while loop like so:

final random = Random();
while (random.nextInt(6) + 1 != 6) {
 print('Not a six!');
}
print('Finally, you got a six!');

Random is a class to help with random numbers, and nextInt
is a method that generates a random integer between 0 and
one less than the maximum value you give it, in this case, 6.
Since you want a number between 1 and 6, not 0 to 5, you
must add 1 to the random number in the while loop
condition.

Note: You’ll learn more about classes and methods in
Chapter 6.

Run the loop and you’ll get a variable number of outputs:

Not a six!
Not a six!
Finally, you got a six!

In this case it was only two loops before a lucky six was
rolled. You probably had a different number of rolls, though.

For loops

In addition to while loops, Dart has another type of loop
called a for loop. This is probably the most common loop
you’ll see, and you use it to run a block of code a set number
of times. In this section you’ll learn about C-style for loops,
and in the next section, about for-in loops.

Here’s a simple example of a C-style for loop in Dart:

for (var i = 0; i < 5; i++) {
 print(i);
}

If you have some prior programming experience, this C
programming language style for loop probably looks very
familiar to you. If not, though, the first line would be
confusing. Here’s a summary of the three parts between the
parentheses and separated by semicolons:

var i = 0 (initialization): Before the loop starts, you
create a counter variable to keep track of how many
times you’ve looped. You could call the variable
anything, but i is commonly used as an abbreviation for
index. You then initialize it with some value; in this
case, 0.

i < 5 (condition): This is the condition that the for
loop will check before every iteration of the loop. If it’s
true, then it will run the code inside the braces. But if
it’s false, then the loop will end.

i++ (action): The action runs at the end of every
iteration, usually to update the loop index value. It’s
common to increment by 1 using i++ but you could just
as easily use i += 2 to increment by 2 or i-- to
decrement by 1.

Run the code above and you’ll see the following output:

0
1
2
3
4

The counter index i started at 0 and continued until it
equaled 5. At that point the for loop condition i < 5 was no
longer true, so the loop exited before running the print
statement again.

The continue keyword

Sometimes you want to skip an iteration only for a certain
condition. You can do that using the continue keyword.
Have a look at the following example:

for (var i = 0; i < 5; i++) {
 if (i == 2) {
 continue;
 }
 print(i);
}

This example is similar to the last one, but this time, when i
is 2, the continue keyword will tell the for loop to
immediately go on to the next iteration. The rest of the code
in the block won’t run on this iteration.

This is what you’ll see:

0
1
3
4

No 2 here!

For-in loops

There’s another type of for loop that has simpler syntax; it’s
called a for-in loop. It doesn’t have any sort of index or
counter variable associated with it, but it makes iterating
over a collection very convenient.

You haven’t formally learned about collections yet in this
book; you’ll get to them in Chapter 8. Dart collections aren’t
that difficult to learn, though, especially if you’re familiar
with them from other languages. In fact, Chapter 3 already
snuck some in. Remember? Strings are a collection of
characters.

When you get the runes from a string, that gives you a
collection of Unicode code points. You can use that
knowledge now to loop over the code points in a string like
so:

const myString = 'I ❤ Dart';

for (var codePoint in myString.runes) {
 print(String.fromCharCode(codePoint));
}

Here’s what’s happening:

myString.runes is a collection of all the code points in
myString.

The in keyword tells the for-in loop to iterate over the
collection in order, and on each iteration, to assign the
current code point to the codePoint variable. Since
runes is a collection of integers, codePoint is inferred
to be an int.

Inside the braces you use String.fromCharCode to
convert the code point integer back into a string.

In terms of scope, the codePoint variable is only visible
inside the scope of the for-in loop, which means it’s
not available outside of the loop.

Run the code and you’ll see the following output:

I

❤

D
a
r
t

For-each loops

You can sometimes simplify for-in loops even more with
the forEach method that is available to collections.

Even though you haven’t learned about Dart collections in
depth yet, here’s another one for you:

const myNumbers = [1, 2, 3];

This is a comma-separated list of integers surrounded by
square brackets.

Loop through each of the elements in that list by using
forEach like so:

myNumbers.forEach((number) => print(number));

The part inside the forEach parentheses is a function, where
=> is arrow syntax that points to the statement that the
function runs.

It has exactly the same meaning as the following, which uses
{ } braces instead of arrow syntax:

myNumbers.forEach((number) {
 print(number);
});

You might be wondering why number isn’t declared
anywhere. That’s because Dart automatically gives number
the type that’s inside the collection; in this case, int.

Don’t worry if this still looks strange to you. You’ll learn all
about functions in the next chapter. Consider this a sneak
preview.

Run either of the forEach examples above and you’ll see the
same results:

1
2
3

Mini-exercises

1. Create a variable named counter and set it equal to 0.
Create a while loop with the condition counter < 10.
The loop body should print out “counter is X” (where X

is replaced with the value of counter) and then
increment counter by 1.

2. Write a for loop starting at 1 and ending with 10
inclusive. Print the square of each number.

3. Write a for-in loop to iterate over the following
collection of numbers. Print the square root of each
number.

const numbers = [1, 2, 4, 7];

4. Repeat Mini-exercise 3 using a forEach loop.

Challenges

Before moving on, here are some challenges to test your
knowledge of control flow. It’s best if you try to solve them
yourself, but solutions are available in the challenge folder
if you get stuck.

Challenge 1: Find the error

What’s wrong with the following code?

const firstName = 'Bob';
if (firstName == 'Bob') {
 const lastName = 'Smith';
} else if (firstName == 'Ray') {
 const lastName = 'Wenderlich';
}
final fullName = firstName + ' ' + lastName;

Challenge 2: Boolean challenge

In each of the following statements, what is the value of the
Boolean expression?

true && true
false || false
(true && 1 != 2) || (4 > 3 && 100 < 1)
((10 / 2) > 3) && ((10 % 2) == 0)

Challenge 3: Next power of two

Given a number, determine the next power of two above or
equal to that number. Powers of two are the numbers in the
sequence of 2¹, 2², 2³, and so on. You may also recognize the
series as 1, 2, 4, 8, 16, 32, 64...

Challenge 4: Fibonacci

Calculate the nth Fibonacci number. The Fibonacci sequence
starts with 1, then 1 again, and then all subsequent numbers
in the sequence are simply the previous two values in the
sequence added together (1, 1, 2, 3, 5, 8...). You can get a
refresher here:
https://en.wikipedia.org/wiki/Fibonacci_number

Challenge 5: How many times?

In the following for loop, what will be the value of sum, and
how many iterations will happen?

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number

var sum = 0;
for (var i = 0; i <= 5; i++) {
 sum += i;
}

Challenge 6: The final countdown

Print a countdown from 10 to 0.

Challenge 7: Print a sequence

Print the sequence 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1.0.

Key points

You use the Boolean data type bool to represent true
and false.

The comparison operators, all of which return a
Boolean, are:

You can use Boolean logic (&& and ||) to combine
comparison conditions.

You use if statements to make simple decisions based
on a condition.

You use else and else-if within an if statement to
extend the decision making beyond a single condition.

Variables and constants belong to a certain scope,
beyond which you cannot use them. A scope inherits
variables and constants from its parent.

You can use the ternary operator (a ? b : c) in place of
simple if statements.

You can use switch statements to decide which code to
run depending on the value of a variable or constant.

Enumerated types define a new type with a finite list of
distinct values.

while loops perform a certain task repeatedly as long as
a condition is true.

do-while loops always execute the loop at least once.

The break statement lets you break out of a loop.

for loops allow you to perform a loop a set number of
times.

The continue statement ends the current iteration of a
loop and begins the next iteration.

Chapter 5: Functions

Each week, there are tasks that you repeat over and over: eat
breakfast, brush your teeth, write your name, read books
about Dart, and so on. Each of those tasks can be divided up
into smaller tasks. Brushing your teeth, for example,
includes putting toothpaste on the brush, brushing each
tooth and rinsing your mouth out with water.

The same idea exists in computer programming. A function
is one small task, or sometimes a collection of several
smaller, related tasks that you can use in conjunction with
other functions to accomplish a larger task.

In this chapter, you’ll learn how to write functions in Dart,
including both named functions and anonymous functions.

Function basics

You can think of functions like machines; they take
something you provide to them (the input), and produce
something different (the output).

There are many examples of this in daily life. With an apple
juicer, you put in apples and you get out apple juice. The
input is apples; the output is juice. A dishwasher is another
example. The input is dirty dishes, and the output is clean
dishes. Blenders, coffee makers, microwaves and ovens are

all like real-world functions that accept an input and
produce an output.

Don’t repeat yourself

Assume you have a small, useful piece of code that you’ve
repeated in multiple places throughout your program:

// one place
if (fruit == 'banana') {
 peelBanana();
 eatBanana();
}

// another place
if (fruit == 'banana') {
 peelBanana();
 eatBanana();
}

// some other place
if (fruit == 'banana') {
 peelBanana();
 eatBanana();
}

Now, that code works rather well, but repeating that code in
multiple spots presents at least two problems. The first
problem is that you’re duplicating effort by having this code
in multiple places in your program. The second, and more
troubling problem, is that if you need to change the logic in
that bit of code later on, you’ll have to track down all of
those instances of the code and change them in the same
way. That creates a high possibility that you’ll make a

mistake somewhere, or even miss changing one of the
instances because you didn’t see it.

Over time, this problem has led to some sound advice for
writing clean code: don’t repeat yourself, abbreviated as
DRY. This term was originally coined in the book The
Pragmatic Programmer by Andrew Hunt and David Thomas.
Writing DRY code will help you prevent many bugs from
creeping into your programs.

Functions are one of the main solutions to the duplication
problem in the example above. Instead of repeating blocks of
code in multiple places, you can simply package that code
into a function and call that function from wherever you
need to.

Anatomy of a Dart function

In Dart, a function consists of a return type, a name, a
parameter list in parentheses and a body enclosed in braces.

Here is a short summary of the labeled parts of the function:

Return type: This comes first; it tells you immediately
what the type will be of the function output. This
particular function will return a String, but your

functions can return any type you like. If the function
won’t return anything, that is, if it performs some work
but doesn’t produce an output value, you can use void
as return type.

Function name: You can name functions almost
anything you like, but you should follow the
lowerCamelCase naming convention. You’ll learn a few
more naming conventions a little later in this chapter.

Parameters: Parameters are the input to the function;
they go inside the parentheses after the function name.
This example has only one parameter, but if you had
more than one, you would separate them with commas.
For each parameter, you write the type first, followed by
the name. Just as with variable names, you should use
lowerCamelCase for your parameter names.

Return value: This is the function’s output, and it
should match the return type. In the example above, the
function returns a String value by using the return
keyword. If the return type is void, though, then you
don’t return anything.

The return type, function name and parameters are
collectively known as the function signature. The code
between the braces is known as the function body.

This is what the function above looks like in the context of a
program:

void main() {
 const input = 12;
 final output = compliment(input);
 print(output);
}

String compliment(int number) {
 return '$number is a very nice number.';
}

What have we here? Not one function, but two? Yes, main is
also a function, and one you’ve seen many times already. It’s
the function that every Dart program starts with. Since main
doesn’t return a value, the return type of main must be void.
Although main can take parameters, there aren’t any in this
case, so there’s only a pair of empty parentheses that follow
the function name.

Notice that the compliment function is outside of main. Dart
supports top-level functions, which are functions that aren’t
inside a class or another function. Conversely, you may nest
one function inside another. And when a function is inside a
class, it’s called a method, which you’ll learn more about in
Chapter 6.

You call a function by writing its name, and providing the
argument, which is the value you provide inside the
parentheses as the parameter to the function. In this case,
you’re calling the compliment function and passing in an
argument of 12. Run the code now and you’ll see the
following result:

12 is a very nice number.

Indeed, twelve is a nice number. It’s the largest one-syllable
number in English.

Note: It’s easy to get the words parameter and argument
mixed up. A parameter is the name and type that you
define as an input for your function. An argument, on
the other hand, is the actual value that you pass in. A
parameter is abstract, while an argument is concrete.

More about parameters

Parameters are incredibly flexible in Dart, so they deserve
their own section.

Using multiple parameters

In a Dart function, you can use any number of parameters. If
you have more than one parameter for your function, simply
separate them with commas. Here’s a function with two
parameters:

void helloPersonAndPet(String person, String pe
t) {
 print('Hello, $person, and your furry friend,
$pet!');
}

Parameters like the ones above are called positional
parameters, because you have to supply the arguments in

the same order that you defined the parameters when you
wrote the function. If you call the function with the
parameters in the wrong order, you’ll get something
obviously wrong:

helloPersonAndPet('Fluffy', 'Chris');
// Hello, Fluffy, and your furry friend, Chris!

Making parameters optional

The function above was very nice, but it was a little rigid. For
example, try the following:

helloPersonAndPet();

If you don’t have exactly the right number of parameters, the
compiler will complain to you:

2 positional argument(s) expected, but 0 found.

You defined helloPersonAndPet to take two arguments, but
in this case, you didn’t pass in any. It would be nice if the
code could detect this, and just say, “Hello, you two!” if no
names are provided. Thankfully, it’s possible to have
optional parameters in a Dart function!

Imagine you want a function that takes a first name, a last
name and a title, and returns a single string with the various
pieces of the person’s name strung together:

String fullName(String first, String last, String
title) {
 return '$title $first $last';
}

The thing is, not everyone has a title, or wants to use their
title, so your function needs to treat the title as optional. To
indicate that a parameter is optional, you surround the
parameter with square brackets and add a question mark
after the type, like so:

String fullName(String first, String last, [Strin
g? title]) {
 if (title != null) {
 return '$title $first $last';
 } else {
 return '$first $last';
 }
}

Writing [String? title] makes title optional. If you don’t
pass in a value for title, then it will have the value of null,
which means “no value”. The updated code checks for null
to decide how to format the return string.

Here are two examples to test it out:

print(fullName('Ray', 'Wenderlich'));
print(fullName('Albert', 'Einstein', 'Professor'
));

Run that now and you’ll see the following:

Ray Wenderlich
Professor Albert Einstein

The function correctly handles the optional title.

Note: Technically speaking, the question mark in
String? is not written after the type; it’s an integral
part of the type, that is, the nullable String? type. More
on this in Chapter 7.

Providing default values

In the example above, you saw that the default value for an
optional parameter was null. This isn’t always the best
value for a default, though. That’s why Dart also gives you
the power to change the default value of any parameter in
your function by using the assignment operator.

Take a look at this example:

bool withinTolerance(int value, [int min = 0, in
t max = 10]) {
 return min <= value && value <= max;
}

There are three parameters here, two of which are optional:
min and max. If you don’t specify a value for them, then min
will be 0 and max will be 10.

Here are some specific examples to illustrate that:

withinTolerance(5) // true
withinTolerance(15) // false

Since 5 is between 0 and 10, this evaluates to true; but since
15 is greater than the default max of 10, it evaluates to
false.

If you want to specify values other than the defaults, you can
do that as well:

withinTolerance(9, 7, 11) // true

Since 9 is between 7 and 11, the function returns true.

Look at that function call again: withinTolerance(9, 7,
11). Imagine that you’re reading through your code for the
first time in a month. What do those three numbers even
mean? If you’ve got a good memory, you might recall that
one of them is value, but which one? The first one? Or was it
the second one? Or maybe it was the last one.

If that wasn’t bad enough, the following function call also
returns true:

withinTolerance(9, 7) // true

Since the function uses positional parameters, the provided
arguments must follow the order you defined the
parameters. That means value is 9, min is 7 and max has the
default of 10. But who could ever remember that?

Of course you could just Command+click the function name
on a Mac, or Control+click on a PC, to go to the definition
and remind yourself of what the parameters meant. But the
point is that this code is extremely hard to read. If only there
were a better way!

Well, now that you mention it...

Naming parameters

Dart allows you to use named parameters to make the
meaning of the parameters more clear in function calls.

To create a named parameter, you surround it with curly
braces instead of square brackets. Here’s the same function
as above, but using named parameters instead:

bool withinTolerance(int value, {int min = 0, in
t max = 10}) {
 return min <= value && value <= max;
}

Note the following:

min and max are surrounded by braces, which means you
must use the parameter names when you provide their
argument values to the function.

Like square brackets, curly braces make the parameters
inside optional. Since value isn’t inside the braces,
though, it’s still required.

To provide an argument, you use the parameter name,
followed by a colon and then the argument value. Here is
how you call the function now:

withinTolerance(9, min: 7, max: 11) // true

That’s a lot clearer, isn’t it? The names min and max make it
obvious where the tolerance limits are now.

An additional benefit of named parameters is that you don’t
have to use them in the exact order in which they were
defined. These are both equivalent ways to call the function:

withinTolerance(9, min: 7, max: 11) // true
withinTolerance(9, max: 11, min: 7) // true

And since named parameters are optional, that means the
following function calls are also valid:

withinTolerance(5) // true
withinTolerance(15) // false

withinTolerance(5, min: 7) // false
withinTolerance(15, max: 20) // true

In the first two lines, since min is 0 and max is 10 by default,
values of 5 and 15 evaluate to true and false respectively.
In the last two lines, the min and max defaults were changed,
which also changed the outcomes of the evaluations.

Making named parameters required

You might like to make value a named parameter as well.
That way you could call the function like so:

withinTolerance(value: 9, min: 7, max: 11)

However, this brings up a problem. Named parameters are
optional by default, but value can’t be optional. If it were,
someone might try to use your function like this:

withinTolerance()

Should that return true or false? It doesn’t make sense to
return anything if you don’t give the function a value. This is
just a bug waiting to happen.

What you want is to make value required instead of
optional, while still keeping it as a named parameter. You
can achieve this by including value inside the curly braces
and adding the required keyword in front:

bool withinTolerance({
 required int value,
 int min = 0,
 int max = 10,
}) {
 return min <= value && value <= max;
}

Since the function signature was getting a little long, adding
a comma after the last parameter lets the IDE format it
vertically. You still remember how to auto-format in VS

Code, right? That’s Shift+Option+F on a Mac or Shift+Alt+F
on a PC.

With the required keyword in place, VS Code will warn you
if you don’t provide a value for value when you call the
function:

Using named parameters makes your code more readable and
is an important part of writing clean code when you have
multiple inputs to a function. In the next section, you’ll
learn some more best practices for writing good functions.

Writing good functions

People have been writing code for decades. Along the way,
they’ve designed some good practices to improve code
quality and prevent errors. One of those practices is writing
DRY code as you saw earlier. Here are a few more things to
pay attention to as you learn about writing good functions.

Avoiding side effects

When you take medicine to cure a medical problem, but that
medicine makes you fat, that’s known as a side effect. If you
put some bread in a toaster to make toast, but the toaster

burns your house down, that’s also a side effect. Not all side
effects are bad, though. If you take a business trip to Paris,
you also get to see the Eiffel Tower. Magnifique!

When you write a function, you know what the inputs are:
the parameters. You also know what the output is: the return
value. Anything beyond that, that is, anything that affects
the world outside of the function, is a side effect.

Have a look at this function:

void hello() {
 print('Hello!');
}

Printing something to the console is a side effect, because
it’s affecting the world outside of the function. If you wanted
to rewrite your function so that there were no side effects,
you could write it like this:

String hello() {
 return 'Hello!';
}

Now, there’s nothing inside the function body that affects
the outside world. You’ll have to write the string to the

console somewhere outside of the function.

It’s fine, and even necessary, for some functions to have side
effects. But as a general rule, functions without side effects
are easier to deal with and reason about. You can rely on
them to do exactly what you expect because they always
return the same output for any given input. These kinds of
functions are also called pure functions.

Here is another function with side effects to further
illustrate the point:

var myPreciousData = 5782;

String anInnocentLookingFunction(String name) {
 myPreciousData = -1;
 return 'Hello, $name. Heh, heh, heh.';
}

Unless you took the time to study the code inside of
anInnocentLookingFunction, you’d have no idea that
calling this innocent-looking function would also change
your precious data. That’s because the function had an
unknown side effect. This is also a good reminder about the
dangers of using global variables like myPreciousData, as
you never know who might change it.

Make it your ambition to maximize your use of pure
functions, and minimize your use of functions with side
effects.

Doing only one thing

Proponents of “clean code” recommend keeping your
functions small and logically coherent. Small here means
only a handful of lines of code. If a function is too big, or
contains unrelated parts, consider breaking it into smaller
functions.

Write your functions so that each one has only a single job to
do. If you find yourself adding comments to describe
different sections of a complex function, that’s usually a
good clue that you should break your function up into
smaller functions. In clean coding, this is known as the
Single Responsibility Principle. In addition to functions, this
principle also applies to classes and libraries. But that’s a
topic for another chapter.

Choosing good names

You should always give your functions names that describe
exactly what they do. If your code sounds like well-written
prose, it’ll be faster to read and easier to understand.

This naming advice applies to almost every programming
language. However, there are a few additional naming
conventions that Dart programmers like to follow. These are
recommendations, not requirements, but keep them in mind
as you code:

Use noun phrases for pure functions; that is, ones
without side effects. For example, use
averageTemperature instead of
getAverageTemperature and studentNames instead of
extractStudentNames.

Use verb phrases for functions with side effects. For
example, updateDatabase or printHello.

Also use verb phases if you want to emphasize that the
function does a lot of work. For example,
calculateFibonacci or parseJson.

Don’t repeat parameter names in the function name.
For example, use cube(int number) instead of
cubeNumber(int number), or printStudent(String
name) instead of printStudentName(String name).

Optional types

Earlier you saw this function:

String compliment(int number) {
 return '$number is a very nice number.';
}

The return type is String, and the parameter type is int.
Dart is an optionally-typed language, so it’s possible to omit
the types from your function declaration. In that case, the
function would look like this:

compliment(number) {
 return '$number is a very nice number.';
}

Dart can infer that the return type here is String, but it has
to fall back on dynamic for the unknown parameter type. The
following function is the equivalent of what Dart sees:

String compliment(dynamic number) {
 return '$number is a very nice number.';
}

While it’s permissible to omit return and parameter types,
this book recommends that you include them at the very
least for situations where Dart can't infer the type. As you
learned in Chapter 3, there’s a much greater advantage to
writing Dart in a statically-typed way.

Mini-exercises

1. Write a function named youAreWonderful, with a String
parameter called name. It should return a string using
name, and say something like “You’re wonderful, Bob.”

2. Add another int parameter to that function called
numberPeople so that the function returns something
like “You’re wonderful, Bob. 10 people think so.”

3. Make both inputs named parameters. Make name
required and set numberPeople to have a default of 30.

Anonymous functions

All the functions you’ve seen previously in this chapter, such
as main, hello, and withinTolerance are named functions,
which means, well, they have a name.

But not every function needs a name. If you remove the
return type and the function name, then what you have left
is an anonymous function:

The return type will be inferred from the return value of the
function body, String in this case.

So, why all the stealth by being anonymous, you ask? Are
functions concerned about their online privacy, too? Well,
that’s not quite it. Sometimes you only need functions in one
specific spot in your code, for one specific reason, and there’s
no reason to give that function a name. You’ll see some
examples of this soon.

First-class citizens

In Dart, functions are first-class citizens. That means you
can treat them like any other other type, assigning functions
as values to variables and even passing functions around as
parameters or returning them from other functions.

Assigning functions to variables

When assigning a value to a variable, functions behave just
like other types:

int number = 4;
String greeting = 'hello';
bool isHungry = true;
Function multiply = (int a, int b) {
 return a * b;
};

The type of multiply is Function, the same way that number
is int, greeting is String and isHungry is bool. On the
right hand side of each assignment, you have literal values: 4
is an integer literal, 'hello' is a string literal, true is a
Boolean literal, and the anonymous function you see above
is a function literal.

One reason that you need anonymous functions is that you
can’t assign a named function to a variable:

Function myFunction = int multiply(int a, int b)
{
 return a * b;
};

Trying to do that produces the following error:

Function expressions can't be named.

Passing functions to functions

Just as you can write a function to take int or String as a
parameter, you can also have Function as a parameter:

void namedFunction(Function anonymousFunction) {
 // function body
}

Here, namedFunction takes an anonymous function as a
parameter.

Returning functions from functions

Just as you can pass in functions as input parameters, you
can also return them as output:

Function namedFunction() {
 return () {
 print('hello');
 };
}

The return value is an anonymous function of type
Function.

Functions that return functions, or that accept them as
parameters, are called higher order functions.

Using anonymous functions

Now that you know where you can use anonymous functions,
try a hand at doing it yourself. Take the multiply function
again:

final multiply = (int a, int b) {
 return a * b;
};

To call the function that the variable multiply refers to,
simply use the variable name followed by the arguments in
parentheses:

print(multiply(2, 3));

This will print 6 just as if you were calling the named
function multiply.

Returning a function

Have a look at a different example:

Function applyMultiplier(num multiplier) {
 return (num value) {
 return value * multiplier;
 };
}

This one looks a little crazy at first. There are two return
statements! To make sense of a function like this, look at it
this way: applyMultiplier is a named function that returns
an anonymous function. It’s like a machine that makes a
machine. That second return statement belongs to the
anonymous function and won’t get called when
applyMultiplier is called.

Now write the following line:

final triple = applyMultiplier(3);

triple is a constant variable of type Function; that is, the
anonymous function that applyMultiplier returned. You
haven’t run that anonymous function yet. You’re simply
storing it in a variable named triple.

Run it now:

print(triple(6));
print(triple(14.0));

Passing arguments to the variable runs the function. Because
the parameter type was num, it can accept both int and
double inputs. This is the result:

18
42.0

Going back to the machine-that-makes-a-machine analogy,
passing 3 into applyMultiplier was like setting a dial on
the first machine. You set it to “make tripling machines.” So
what you got out was a machine that triples everything you
give it. If you had set the dial on the first machine to 4, then
you would have gotten quadrupling machines, if 2, then
doubling machines.

Anonymous functions in forEach loops

Chapter 4 introduced you to forEach loops, which iterate
over a collection. Although you may not have realized it, that

was an example of using an anonymous function.

So if you have a list of numbers, like so:

const numbers = [1, 2, 3];

You can call forEach on the list and pass in an anonymous
function that triples each number in the list and prints out
that value.

numbers.forEach((number) {
 final tripled = number * 3;
 print(tripled);
});

The parameter type of number is inferred from the list
element types; in this case, int. Run the code and you’ll see
the following result:

3
6
9

Earlier in this chapter you learned how functions are a way
to package reusable code that you can call in multiple places.
The example here shows one of the main benefits of
anonymous functions, which is packaging up logic that you
don’t need in multiple places, so you don’t need to make it a
named function. You simply need to pass the logic around
either as input to, or as output from, another function.

Closures and scope

Anonymous functions in Dart act as what are known as
closures. The term closure means that the code “closes
around” the surrounding scope, and therefore has access to
variables and functions defined within that scope.

A scope in Dart is defined by a pair of curly braces. All the
code within these braces is a scope. You can even have
nested scopes within other scopes. Examples of scopes are
function bodies and the bodies of loops.

The return value of the applyMultiplier function from
before is an example of a closure.

Function applyMultiplier(num multiplier) {
 return (num value) {
 return value * multiplier;
 };
}

The anonymous function it returns closes over the
multiplier value that’s passed in as a parameter to
applyMultiplier.

As another example, if you have a variable counter and then
define an anonymous function below it, that anonymous

function acts like a closure and has access to counter, and so
can change it.

var counter = 0;
final incrementCounter = () {
 counter += 1;
};

The anonymous function that defines incrementCounter
can access counter, even though counter is not a parameter
to the anonymous function, nor is it defined in the function
body.

Call incrementCounter five times and print counter:

incrementCounter();
incrementCounter();
incrementCounter();
incrementCounter();
incrementCounter();
print(counter); // 5

You’ll see that counter now has a value of 5.

You can use a closure as a function return value, and, as in
this example, count the number of times a given function
has been called.

Function countingFunction() {
 var counter = 0;
 final incrementCounter = () {
 counter += 1;
 return counter;
 };
 return incrementCounter;
}

Each function returned by countingFunction will have its
own version of counter. So if you were to generate two
functions with countingFunction, like so:

final counter1 = countingFunction();
final counter2 = countingFunction();

...then each call to those functions will increment its own
counter independently:

print(counter1()); // 1
print(counter2()); // 1
print(counter1()); // 2
print(counter1()); // 3
print(counter2()); // 2

Mini-exercises

1. Change the youAreWonderful function in the first mini-
exercise of this chapter into an anonymous function.
Assign it to a variable called wonderful.

2. Using forEach, print a message telling the people in the
following list that they’re wonderful.

const people = ['Chris', 'Tiffani', 'Pablo'];

Arrow functions

Dart has a special syntax for functions whose body is only
one line. Consider the following named function add that
adds two numbers together:

int add(int a, int b) {
 return a + b;
}

Since the body is only one line, you can convert it to the
following form:

int add(int a, int b) => a + b;

You replaced the function’s braces and body with an arrow
(=>) and left off the return keyword. The return value is
whatever the value of the expression is. Writing a function in
this way is known as arrow syntax or arrow notation.

You can also use arrow syntax with anonymous functions.
You’re simply left with the parameter list, the arrow, and a
single expression:

(parameters) => expression;

In the following examples, you’re going to refactor, or
rewrite, some of the anonymous functions you saw earlier in

the chapter.

Refactoring example 1

The body of the anonymous function you assigned to
multiply has one line:

final multiply = (int a, int b) {
 return a * b;
};

You can convert it to use arrow syntax as follows:

final multiply = (int a, int b) => a * b;

You can call it just as you did before, with the same result:

print(multiply(2, 3)); // 6

Refactoring example 2

You can also use arrow syntax for the anonymous function
returned by applyMultiplier:

Function applyMultiplier(num multiplier) {
 return (num value) {
 return value * multiplier;
 };
}

With arrow syntax, the function becomes:

Function applyMultiplier(num multiplier) {
 return (num value) => value * multiplier;
}

The result of the function is the same as before.

Refactoring example 3

You can’t use arrow syntax on the forEach example, though:

numbers.forEach((number) {
 final tripled = number * 3;
 print(tripled);
});

That’s because there’s more than one line in the function
body. However, if you rewrote it to fit on line, that would
work:

numbers.forEach((number) => print(number * 3));

Mini-exercise

Change the forEach loop in the previous “You’re wonderful”
mini-exercise to use arrow syntax.

Challenges

Before moving on, here are some challenges to test your
knowledge of functions. It’s best if you try to solve them
yourself, but solutions are available in the challenge folder
for this chapter if you get stuck.

Challenge 1: Prime time

Write a function that checks if a number is prime.

Challenge 2: Can you repeat that?

Write a function named repeatTask with the following
definition:

int repeatTask(int times, int input, Function ta
sk)

It repeats a given task on input for times number of times.

Pass an anonymous function to repeatTask to square the
input of 2 four times. Confirm that you get the result 65536,
since 2 squared is 4, 4 squared is 16, 16 squared is 256, and
256 squared is 65536.

Challenge 3: Darts and arrows

Update Challenge 2 to use arrow syntax.

Key points

Functions package related blocks of code into reusable
units.

A function signature includes the return type, name and
parameters. The function body is the code between the
braces.

Parameters can be positional or named, and required or
optional.

Side effects are anything, besides the return value, that
change the world outside of the function body.

To write clean code, use functions that are short and
only do one thing.

Anonymous functions don’t have a function name, and
the return type is inferred.

Dart functions are first-class citizens and thus can be
assigned to variables and passed around as values.

Anonymous functions act as closures, capturing any
variables or functions within its scope.

Arrow syntax is a shorthand way to write one-line
functions.

Where to go from here?

This chapter spoke briefly about the Single Responsibility
Principle and other clean coding principles. Do a search for
SOLID principles to learn even more. It’ll be time well spent.

Some aspects of Dart are hard-and-fast rules. Other aspects,
like how to name variables and functions, are common
practices, and while not required, they do make it easier to
read the code and share it with others. Improve your

understanding of these conventions by reading Effective
Dart in the dart.dev guides.

You’ve heard briefly about methods and classes; you’ll
explore these ideas more in the next chapter.

https://dart.dev/guides/language/effective-dart

Chapter 6: Classes

So far in this book, you’ve used built-in types such as int,
String and bool. You’ve also seen one way to make custom
types using enum. In this chapter, you’ll learn a more flexible
way to create your own types by using classes.

Note: Because there’s quite a bit to learn about classes
and object-oriented programming, or OOP, in Dart,
you’ll come back to the subject again in Chapter 9. In
that chapter, you’ll learn how to create a hierarchy of
classes using inheritance as well as some other
advanced topics. Don’t be afraid of the word
“advanced,” though. You can handle it. It’ll only be
more advanced than this chapter is. If you have
experience with any other OOP languages, you probably
know most of it already anyway.

Dart classes

Classes are like architectural blueprints that tell the system
how to make an object, where an object is the actual data
that’s stored in the computer’s memory. If a class is the
blueprint, then you could say the object is like the house that
the blueprint represents. For example, the String class
describes its data as a collection of UTF-16 code units, but a
String object is something concrete like 'Hello, Dart!'.

All values in Dart are objects that are built from a class. This
includes the values of basic types like int, double and bool.

That’s different from other languages like Java, where basic
types are primitive. For example, if you have x = 10 in Java,
the value of x is 10 itself. However, Dart doesn’t have
primitive types. Even for a simple int, the value is an object
that wraps the integer. You’ll learn more on this concept
later.

Classes are a core component of object-oriented
programming. They’re used to combine data and functions
inside a single structure.

The functions exist to transform the data. Functions inside
of a class are known as methods, while constructors are
special methods you use to create objects from the class.

It’s time to get your hands dirty. Working with classes is far
more instructive than reading about them!

Defining a class

To get started creating your own types, you’ll make a simple
User class that has id and name properties. This is just the
kind of class that you’re highly likely to create in the future
for an app that requires users to log in.

Write the following simple class at the top level of your Dart
file. Your class should be outside of the main function, either
above or below it.

class User {
 int id = 0;
 String name = '';
}

This creates a class named User. It has two properties; id is
an int with a default value of 0, and name is a String with
the default value of an empty string.

Note: Depending on the situation, null may be a better
default than 0 or ''. However, since nullable types and
null safety won’t be fully covered until Chapter 7, this
chapter will simply use reasonable defaults for
properties.

Creating an object from a class

As mentioned above, the value you create from a class is
called an object. Another name for an object is instance, so
creating an object is sometimes called instantiating a class.

Since coding the class in your Dart file as you did above
simply creates the blueprint, a User object doesn’t exist yet.
You can create one by calling the class name as you would
call a function. Add the following line inside the main
function:

final user = User();

This creates an instance of your User class and stores that
instance, or object, in user. Notice the empty parentheses
after User. It looks like you’re calling a function without any
parameters. In fact, you are calling a type of function called
a constructor method. You’ll learn a lot more about them
later in the chapter. Right now, simply understand that using
your class in this way creates an instance of your class.

The optional keyword new

Before version 2.0 of Dart came out, you had to use the new
keyword to create an object from a class. At that time,
creating a new instance of a class would have looked like
this:

final user = new User();

In fact, this still works, but the new keyword is completely
optional now, so it’s better to just leave it off. Why clutter
your code with unnecessary words, right?

You’ll still come across new from time to time in the
documentation or in legacy code, but at least now you won’t
be confused by it. You can delete it if you come across it.

Assigning values to properties

Now that you have an instance of User stored in user, you
can assign new values to this object’s properties by using dot

notation. To access the name property, type user dot name,
and then give it a value:

user.name = 'Ray';

Now, set the ID in a similar way:

user.id = 42;

Your code should look like the following:

void main() {
 final user = User();
 user.name = 'Ray';
 user.id = 42;
}

class User {
 int id = 0;
 String name = '';
}

You’ll notice that you have both a function and a class
together. Dart allows you to put multiple classes, top-level
functions and even top-level variables all together in the
same file. Their order in the file isn’t important. User is
located below main here, but if you put it above main, that’s
fine as well.

You’ve defined a User data type with a class, created an
object from it and assigned values to its parameters. Run the
code now, though, and you won’t see anything special

happen. The next section will show you how to display data
from an object.

Printing an object

You can print any object in Dart. However, if you try to print
user now, you won’t get quite what you hoped for. Add the
following line at the bottom of the main function and run the
code:

print(user);

Here’s what you get:

Instance of 'User'

Hmm, you were likely expecting something about Ray and
the ID. What gives?

All classes in Dart (well, except for Null, but that’s a topic for
Chapter 7) are derived from Object, which has a toString
method. In this case, your object doesn’t tell Dart how to
write its internal data when you call toString on it, so Dart
gives you this generic, default output instead. However, you
can override the Object class’s version of toString by
writing your own implementation of toString, and thus
customize how your own object will print out.

Add the following method to the User class:

@override
String toString() {
 return 'User(id: $id, name: $name)';
}

Words that start with @ are called annotations. Including
them is optional and doesn’t change how the code executes.
However, annotations do give the compiler more information
so that it can help you out at compile time. Here, the
@override annotation is telling both you and the compiler
that toString is a method in Object that you want to
override with your own customized version, so if you
accidentally wrote the toString method signature
incorrectly, the compiler would warn you about it because of
the @override annotation.

Since methods have access to the class properties, you
simply use that data to output a more meaningful message
when someone prints your object. Run the code now, and
you’ll see the following result:

User(id: 42, name: Ray)

That’s far more useful!

Note: Your User class only has a single method right
now, but in classes with many methods, most
programmers put the toString method at or near the
bottom of the class instead of burying it in the middle
somewhere. As you continue to add to User, keep
toString at the bottom. Following conventions like this
makes navigating and reading the code easier.

Adding methods

Now that you’ve learned to override methods, you’re going
to move on and add your own methods to the User class. But
before you do, there’s a little background information that
you should know.

Understanding object serialization

Being able to organize related data into a class is super
useful, especially when you want to pass that data around as
a unit within your app. One disadvantage, though, shows up
when you’re saving the object or sending it over the network.
Files, databases and networks only know how to handle
simple data types, such as numbers and strings. They don’t
know how to handle anything more complex, like your User
data type.

Serialization is the process of converting a complex data
object into a string. Once the object has been serialized, it’s
easy to save that data or transfer it across the network
because everything from your app to the network and
beyond knows how to deal with strings. Later, when you

want to read that data back in, you can do so by way of
deserialization, which is simply the process of converting a
string back into an object of your data type.

You didn’t realize it, but you actually serialized your User
object in the toString method above. The code you wrote
was good enough to get the job done, but you didn’t really
follow any standardized format. You simply wrote it out in a
way that looked nice to the human eye. If you gave that
string to someone else, though, they might have some
difficulty understanding how to deserialize it, that is, convert
it back into a User object.

It turns out that serialization and deserialization are such
common tasks that people have devised a number of
standardized formats for serializing data. One of the most
common is called JSON: JavaScript Object Notation. Despite
the name, it’s used far and wide outside the world of
JavaScript.

JSON isn’t difficult to learn, but this chapter will only show
you enough JSON to serialize your User object into a more
portable format. Check the Where to go from here section at
the end of the chapter to find out where you can learn more
about this format.

Adding a JSON serialization method

You’re going to add another method to your class now that
will convert a User object to JSON format. It’ll be similar to
what you did in toString.

Add the following method to the User class, putting it above
the toString method:

String toJson() {
 return '{"id":$id,"name":"$name"}';
}

Here are a few things to note:

Since this is your own custom method and you’re not
overriding a method that belongs to another class, you
don’t add the @override annotation.

In Dart naming conventions, acronyms are treated as
words. Thus, toJson is a better name than toJSON.

There’s nothing magic about serialization in this case.
You simply used string interpolation to insert the
property values in the correct locations in the JSON
formatted string.

In JSON, objects are surrounded by curly braces,
properties are separated by commas, property names are
separated from property values by colons, and strings
are surrounded by double-quotes. If a string needs to
include a double-quote inside itself, you escape it with a
backslash like so: \"

JSON is very similar to a Dart data type called Map. In
fact, Dart even has built-in functions in the
dart:convert library to serialize and deserialize JSON
maps. And that’s actually what most people use to

serialize objects. However, you haven’t read Chapter 8
about maps yet, so this example is going to be low-tech.
You’ll see a little preview of Map, though, in the
fromJson example later in this chapter.

To test out your new function, add the following line to the
bottom of the main method:

print(user.toJson());

This code calls the custom toJson method on your user
object using dot notation. The dot goes between the object
name and method name just like you saw earlier for
accessing a property name.

Run the code and you’ll see the following:

{"id":42,"name":"Ray"}

It’s very similar to what toString gave you, but this time it’s
in standard JSON format, so a computer on the other side of
the world could easily convert that back into a Dart object.

Cascade notation

When you created your User object above, you set its
parameters like so:

final user = User();
user.name = 'Ray';
user.id = 42;

However, Dart offers a cascade operator (..) that allows you
to chain together multiple assignments on the same object
without having to repeat the object name. The following
code is equivalent:

final user = User()
 ..name = 'Ray'
 ..id = 42;

Note that the semicolon only appears on the last line.

Cascade notation isn’t strictly necessary, but it does makes
your code just a little tidier when you have to assign a long
list of properties or repeatedly call a method that modifies
your object.

Mini-exercises

1. Create a class called Password and give it a string
property called value.

2. Override the toString method of Password so that it
prints value.

3. Add a method to Password called isValid that returns
true only if the length of value is greater than 8.

Constructors

Constructors are methods that create, or construct, instances
of a class. That is to say, constructors build new objects.
Constructors have the same name as the class, and the

implicit return type of the constructor method is also the
same type as the class itself.

Default constructor

As it stands, your User class doesn’t have an explicit
constructor. In cases like this, Dart provides a default
constructor that takes no parameters and just returns an
instance of the class. For example, defining a class like this:

class Address {
 var value = '';
}

Is equivalent to writing it like this:

class Address {
 Address();
 var value = '';
}

Including the default Address() constructor is optional.

Sometimes you don’t want the default constructor, though.
You’d like to initialize the data in an object at the same time
that you create the object. The next section shows how to do
just that.

Custom constructors

If you want to pass parameters to the constructor to modify
how your class builds an object, you can. It’s similar to how
you wrote functions with parameters in Chapter 5.

Like the default constructor above, the constructor name
should be the same as the class name. This type of
constructor is called a generative constructor because it
directly generates an object of the same type.

Long-form constructor

In Dart the convention is to put the constructor before the
property variables. Add the following generative constructor
method at the top of the class body:

User(int id, String name) {
 this.id = id;
 this.name = name;
}

This is known as a long-form constructor. You’ll understand
why it’s considered “long-form” when you see the short-
form constructor later.

This is what the class looks like (without the toJson and
toString methods):

class User {
 User(int id, String name) {
 this.id = id;
 this.name = name;
 }

 int id = 0;
 String name = '';

 // ...
}

this is a new keyword. What does it do?

The keyword this in the constructor body allows you to
disambiguate which variable you’re talking about. It means
this object. So this.name refers the object property called
name, while name (without this) refers to the constructor
parameter. Using the same name for the constructor
parameters as the class properties is called shadowing. So
the constructor above takes the id and name parameters and
uses this to initialize the properties of the object.

Delete everything from inside the main function body. Then
add the following code in its place to create a User object by
passing in some arguments:

final user = User(42, 'Ray');
print(user);

Once the object has been created, you can access its
properties and other methods just as you did before.
However, you can’t use the default constructor User()

anymore, since id and name are required positional
parameters.

Short-form constructor

Dart also has a short-form constructor where you don’t
provide a function body, but you instead list the properties
you want to initialize, prefixed with the this keyword.
Arguments you send to the short form constructor are used
to initialize the corresponding object properties.

Here is the long form constructor that you currently have:

User(int id, String name) {
 this.id = id;
 this.name = name;
}

Now replace that with the following short-form constructor:

User(this.id, this.name);

Dart infers the constructor parameter types of int and
String from the properties themselves that are declared in
the class body.

The class should now look like this:

class User {
 User(this.id, this.name);

 int id = 0;
 String name = '';

 // ...
}

Run the code again. You’ll see the short-form constructor
works just like the longer form you replaced, but it’s just a
little tidier now.

Note: You could remove the default property values of 0
and '' at this point since id and name are guaranteed to
be initialized by the constructor parameters. However,
there’s an intermediate step in the next section where
they’ll still be useful. Keeping the default values a little
longer will allow this chapter to postpone dealing with
null safety until it can be covered more fully in Chapter
7.

Named constructors

Dart also has a second type of generative constructor called a
named constructor, which you create by adding an identifier
on to the class name. It takes the following pattern:

ClassName.identifierName()

From here on, this chapter will refer to a constructor without
the identifier, that is, one which only uses the class name, as
an unnamed constructor.

Why would you want a named constructor instead of the
nice, tidy default one? Well, sometimes you have some
common cases that you want to provide a convenience
constructor for. Or maybe you have some special edge cases
for constructing certain classes that need a slightly different
approach.

Say, for example, that you want to have an anonymous user
with a preset ID and name. You can do that by creating a
named constructor. Add the following named constructor
below the short-form constructor:

User.anonymous() {
 id = 0;
 name = 'anonymous';
}

The identifier, or named part, of the constructor is
.anonymous. Named constructors may have parameters, but
in this case, there are none. And since there aren’t any
parameter names to get confused with, you don’t need to use
this.id or this.name. Rather, you just use the property
variables id and name directly.

Call the named constructor in main like so:

final anonymousUser = User.anonymous();
print(anonymousUser);

Run that and you’ll see the expected output:

User(id: 0, name: anonymous)

Note: Without default values for id and name, Dart
would have complained that these variables weren't
being initialized, even though User.anonymous does in
fact initialize them in the constructor body. You could
solve the problem by using the late keyword, but that's
a topic for Chapter 7 — hence the default values here.

Forwarding constructors

In the named constructor example above, you set the class
properties directly in the constructor body. However, this
doesn’t follow the DRY principle you learned earlier. You’re
repeating yourself by having two different locations where
you can set the properties. It’s not a huge deal, but imagine
that you have five different constructors instead of two. It
would be easy to forget to update all five if you had to make a
change, and if the constructor logic were complicated, it
would be easy to make a mistake.

One way to solve this issue is by calling the main constructor
from the named constructor. This is called forwarding or
redirecting. To do that, you use the keyword this again.

Delete the anonymous named constructor that you created
above and replace it with the following:

User.anonymous() : this(0, 'anonymous');

This time there’s no constructor body, but instead, you
follow the name with a colon and then forward the
properties on to the unnamed constructor. The forwarding
syntax replaces User with this.

Also, now that you’ve moved property initialization from the
constructor body to the parameter list, Dart is finally
convinced that id and name are guaranteed to be initialized.
Replace these two lines:

int id = 0;
String name = '';

with the following:

int id;
String name;

No complaints from Dart.

You call the named constructor exactly like you did before:

final anonymousUser = User.anonymous();

The results are the same as well.

Optional and named parameters

Everything you learned about function parameters in
Chapter 5 also applies to constructor method parameters.
That means you can make parameters optional using square
brackets:

MyClass([this.myProperty]);

Or you can make them optional and named using curly
braces:

MyClass({this.myProperty});

Or named and required using curly braces and the required
keyword:

MyClass({required this.myProperty});

Adding named parameters for User

Earlier when you instantiated a User object, you did this:

final user = User(42, 'Ray');

For someone not familiar with your User class, they might
think 42 is Ray’s age, or his password, or how many pet cats
he has. Using named parameters here would help a lot with
readability.

Refactor the unnamed constructor in User by adding braces
around the parameters. Since that makes the parameters

optional, you could use the required keyword as you saw in
Chapter 5, but this time simply give them default values:

User({this.id = 0, this.name = 'anonymous'});

The compiler will complain at this, because that change also
requires refactoring the anonymous named constructor to use
the parameter names in the redirect.

However, since the parameter defaults are now just what the
anonymous constructor was doing before, you can delete the
anonymous constructor and replace it with the following:

User.anonymous() : this();

Using the named constructor will now forward to the
unnamed constructor with no arguments.

In main, the way to create an anonymous user is still the
same, but now the way to create Ray’s user object is like so:

final user = User(id: 42, name: 'Ray');

That’s a lot more readable. They’re not cats; it’s clearly just
an ID.

In case you’ve gotten lost, here’s what things look like now:

class User {
 // unnamed constructor
 User({this.id = 0, this.name = 'anonymous'});

 // named constructor
 User.anonymous() : this();

 int id;
 String name;

 // ...
}

Initializer lists

You might have discovered a small problem that exists with
your class as it’s now written. Take a look at the following
way that an unscrupulous person could use this class:

final vicki = User(id: 24, name: 'Vicki');
vicki.name = 'Nefarious Hacker';
print(vicki);
// User(id: 24, name: Nefarious Hacker)

If those statements were spread throughout the code base
instead of being in one place as they are here, someone
printing the vicki user object and expecting a real name
would get a surprise. “Nefarious Hacker” is definitely not
what you’d expect. Once you’ve created the User object, you
don’t want anyone to mess with it.

But forget nefarious hackers; you’re the one who’s most
likely to change a property and then forget you did it.

There are a couple of ways to solve this problem. You’ll see
one solution now and a fuller solution later.

Private variables

Dart allows you to make variables private by adding an
underscore (_) in front of their name.

Change the id property to _id and name to _name. Since
these variables are used in several locations throughout your
code, let VS Code help you out. Put your cursor on the
variable name and press F2. Edit the variable name and press
Enter to change all of the references at once.

Oh..., that actually renamed a few more things than you
intended since it also renamed what was in the main
function. But that’s OK. Just delete everything inside the
body of main for now.

There is still one problem left with the unnamed constructor
in User:

User({this._id = 0, this._name = 'anonymous'});

The compiler gives you an error:

Named parameters can’t start with an underscore.

Fix that by deleting the unnamed constructor and replacing
it with the following:

User({int id = 0, String name = 'anonymous'})
 : _id = id,
 _name = name;

Do you see the colon that precedes _id? The comma-
separated list that comes after it is called the initializer list.
One use for this list is exactly what you’ve done here.
Externally, the parameters have one name, while internally,
you’re using private variable names.

The initializer list is always executed before the body of the
constructor, if the body exists. You don’t need a body for this
constructor, but if you wanted to add one, it would look like
this:

User({int id = 0, String name = 'anonymous'})
 : _id = id,
 _name = name {
 print('User name is $_name');
}

The constructor would initialize _id and _name before it ran
the print statement inside the braces.

Note: The member variables of a class are generally
called fields. However, when the fields are public, that
is, when they’re visible to the outside world, you can
also call them properties. The Getters and Setters
sections below will show you how to use public
properties and private fields at the same time.

Why aren’t the private properties private?

It turns out that your nefarious hacker can still access the
“private” fields of User. Add the following two lines to main
to see this in action:

final vicki = User(id: 24, name: 'Vicki');
vicki._name = 'Nefarious Hacker';

What’s that all about? Well, using an underscore before a
variable or method name makes it library private, not class
private. For your purposes in this chapter, a library is simply
a file. Since the main function and the User class are in the
same file, nothing in User is hidden from main. To see
private variables in action, you’ll need to make another file
so that you aren’t using your class in the same file in which
it’s defined.

Create a new file called user.dart in the same folder as the
file you’ve been working with. In VS Code, you can click on
the current file in the Explorer panel and then press the New
File button.

Now move the entire User class over to user.dart.

Back in the previous file with the main function (if you’re
using the starter project, it would be named starter.dart),
add the library import to the top of the class like so:

import 'user.dart';

Now you’ll notice that in the main function you no longer
have access to _name:

vicki._name = 'Nefarious Hacker';

This produces an error:

The setter '_name' isn't defined for the type 'Us
er'.

Great! Now it’s no longer possible to change the properties
after the object has been created. Delete or comment out
that entire line:

// vicki._name = 'Nefarious Hacker';

Before leaving this section on initializer lists, there’s one
more thing to talk about: errors.

Checking for errors

Initializer lists are a great place to check for errors in the
constructor parameters, which you can do by adding assert
statements. Think of asserts like sanity checks that make
sure you aren’t doing anything silly, by checking that a
condition is in fact true.

An assert statement takes a condition, and if the condition
is false, terminates the app. This only happens during
debugging, though. The compiler completely ignores assert
statements in release builds.

Replace the unnamed constructor with the following
updated version:

User({int id = 0, String name = 'anonymous'})
 : assert(id >= 0),
 assert(name.isNotEmpty),
 _id = id,
 _name = name;

Note the two assert statements in the initializer list; it’s
customary to put these asserts at the top of the list. The first
assert checks that id is greater than or equal to zero, and the
second one checks that name actually has a value. Of course
you don’t want a negative ID or an empty name. If either of
those conditions ever occurs, then terminating is your best
bet, as it gives you a loud and clear message that you need to
handle that situation in code before a User is ever created.

Add the following line to the bottom of the main function:

final jb = User(id: -1, name: 'JB Lorenzo');

Run the project and you’ll get an error:

Failed assertion: line 3 pos 16: 'id >= 0': is n
ot true.

Note: If you’re running Dart from the command line
rather than from VS Code, you won’t get assert errors
unless you enable them with the --enable-asserts
flag. Assuming your main function is in a file called
starter.dart, you should run your program in this way:
dart --enable-asserts starter.dart

Since id must be greater than or equal to zero, either
comment out the line or change id to a positive number.

// final jb = User(id: 100, name: 'JB Lorenzo');

Constant constructors

You’ve already learned how to keep people from modifying
the properties of a class by making them private. Another
thing you can do is to make the properties immutable, that
is, unchangeable. By using immutable properties, you don’t
even have to make them private.

Making properties immutable

There are two ways to mark a variable immutable in Dart:
final and const. However, since the compiler won’t know

what the properties are until runtime, your only choice here
is to use final.

In the User class in user.dart, add the final keyword before
both property declarations. Your code should look like this:

final String _name;
final int _id;

Adding final means that _name and _id can only be given a
value once, that is, when the constructor is called. After the
object has been created, those properties will be immutable.
You should keep the String and int type annotations,
because removing them would cause the compiler to fall
back to dynamic.

Making classes immutable

If the objects of a particular class can never change, because
all fields of the class are final, you can add const to the
constructor to ensure that all instances of the class will be
constants at compile-time.

Since both the fields of your User class are now final, this
class is a good candidate for a compile-time constant.

Replace both constructors with the following:

const User({int id = 0, String name = 'anonymou
s'})
 : assert(id >= 0),
 _id = id,
 _name = name;

const User.anonymous() : this();

Note the const keyword in front of both constructors. In the
first constructor, there used to be an assert statement for
name.isNotEmpty, but unfortunately, this is a runtime check
and not allowed for a compile-time constant, so that had to
be removed.

Now you can declare your User objects as compile-time
constants like so:

const user = User(id: 42, name: 'Ray');
const anonymousUser = User.anonymous();

Benefits of using const

In addition to being immutable, another benefit of const
variables is that they’re canonical instances, which means
that no matter how many instances you create, as long as the
properties used to create them are the same, Dart will only
see a single instance. You could instantiate
User.anonymous() a thousand times across your app
without incurring the performance hit of having a thousand
different objects.

Note: Flutter uses this pattern frequently with its const
widget classes in the user interface of your app. Since
Flutter knows that the const widgets are immutable, it
doesn’t have to waste time recalculating and drawing
the layout when it finds these widgets.

Make it your goal to use const objects and constructors as
much as possible. It’s a performance win!

Factory constructors

All of the constructors that you’ve seen up until now have
been generative constructors. Dart also provides another
type of constructor called a factory constructor.

A factory constructor provides more flexibility in how you
create your objects. A generative constructor can only create
a new instance of the class itself. However, factory
constructors can return existing instances of the class, or
even subclasses of it. (You’ll learn about subclasses in
Chapter 9.) This is useful when you want to hide the
implementation details of a class from the code that uses it.

The factory constructor is basically a special method that
starts with the factory keyword and returns an object of the
class type. For example, you could add the following factory
constructor to your User class:

factory User.ray() {
 return User(id: 42, name: 'Ray');
}

The factory method uses the generative constructor to create
and return a new instance of User. You could also
accomplish the same thing with a named constructor,
though.

A more common example you’ll see is using a factory
constructor to make a fromJson method:

factory User.fromJson(Map<String, Object> json)
 {
 final userId = json['id'] as int;
 final userName = json['name'] as String;
 return User(id: userId, name: userName);
}

You would create a User object from the constructor like so:

final map = {'id': 10, 'name': 'Manda'};
final manda = User.fromJson(map);

As mentioned earlier, you’ll learn how the Map collection
works in Chapter 8. The thing to pay attention to now is that
the factory constructor body allows you to perform some
work before returning the new object, without exposing the
inner wiring of that instantiation process to whoever is using
the class. For example, you could create a User.fromJson
constructor with a named constructor like so:

User.fromJson(Map<String, Object> json)
 : id = json['id'] as int,
 name = json['name'] as String;

However, besides adding some simple asserts to the
initializer list, there isn't much else you can do to with id
and name. With a factory constructor, though, you could do
all kinds of validation, error checking and even modification
of the arguments before creating the object. This is actually
highly desireable in the case here because if 'id' or
'String' didn't exist in the map, then your app would crash
because you aren't handling null.

Note: Using a factory constructor over a named
constructor can also help to prevent breaking changes
for subclasses of your class. That topic is a little beyond
the scope of this chapter, but you can read
https://stackoverflow.com/a/66117859 for a longer
explanation.

You’ll see a few more uses of the factory constructor in the
section below on static members.

Constructor summary

Since there are so many ways that constructors can vary,
here’s a brief comparison.

Constructors can be:

Forwarding or non-forwarding

Named or unnamed

Generative or factory

Constant or not constant

Take the following example:

const User(this.id, this.name);

This is a non-forwarding, unnamed, generative, const
constructor.

Mini-exercises

Given the following class:

class Password {
 String value = '';
}

1. Make value a final variable, but not private.

2. Add a const constructor as the only way to initialize a
Password object.

Dart objects

Objects act as references to the instances of the class in
memory. That means if you assign one object to another, the
other object simply holds a reference to the same object in
memory — not a new instance.

So if you have a class like this:

class MyClass {
 var myProperty = 1;
}

And you instantiate it like so:

final myObject = MyClass();
final anotherObject = myObject;

Then myObject and anotherObject both reference the same
place in memory. Changing myProperty in either object will
affect the other, since they both reference the same instance:

print(myObject.myProperty); // 1
anotherObject.myProperty = 2;
print(myObject.myProperty); // 2

As you can see, changing the value of the property on
anotherObject also changed it in myObject, as they are
really just two names for the same object.

Note: If you want to make an actual copy of the class —
not just a copy of its reference in memory but a whole
new object with a deep copy of all the data it contains —
then you’ll need to implement that mechanism yourself
by creating a method in your class that builds up a
whole new object.

If that still doesn’t make sense, you can look forward to
sitting down by the fire and listening to the story of The

House on Wenderlich Way in Chapter 8, which will make this
all clear, or at least help you see it from a different
perspective.

For now, though, there are a few more improvements you
can make to the User class.

Getters

Right now the User class fields are private:

class User {
 // ...
 final int _id;
 final String _name;
 // ...
}

That means there’s no way to access the user ID and name
outside of the class, which makes your object kind of useless.
You can solve this problem by adding a getter, which is a
special method that uses the get keyword before a property
name and returns a value. This gives you, as the class author,
some control over how people access and modify properties,
instead of giving people raw and unfettered access.

In the User class, near the _id and _name properties, add the
following lines:

int get id => _id;
String get name => _name;

The get keyword provides a public-facing property name; in
this case, id and name. When you call the getter using its
name, the get method returns a value. The two getter
methods here are simply returning the _id and _name field
values.

Now that the properties are exposed, you can use them like
so:

const ray = User(id: 42, name: 'Ray');
print(ray.id); // 42
print(ray.name); // Ray

Calculated properties

You can even create getters that aren’t backed by a dedicated
field value, but instead are calculated when called. Here’s an
example:

bool get isBigId => _id > 1000;

There’s no internal variable named isBigId or _isBigId.
Rather, the return value of isBigId is calculated when
necessary.

All of the getters above use arrow syntax, but you could also
use brace syntax with a return statement if you wanted to
use more than a single line of code to calculate the return
value.

Setters

If you need mutable data in a class, there’s a special set
method to go along with get.

Rather than modifying any of the existing fields of User to
have a setter, here’s a simple new class called Email:

class Email {
 var _address = '';

 String get value => _address;
 set value(String address) => _address = addres
s;
}

The last line in the body is the setter, which starts with the
set keyword. The name value is the same name that’s used
by the getter above it. The set method takes a parameter,
which you can use to set some value. In this case, you’re
setting the email address.

You can now assign and retrieve the value of _address like
this:

final email = Email();
email.value = 'ray@example.com';
final emailString = email.value;

The second line sets the internal _address field, and the
third line gets it.

You can see how this could give you some extra control over
what’s assigned to your properties; for instance, you could

sanitize input, check for properly formatted email addresses,
and more.

Refactoring

You don’t always need to use getters and setters explicitly. In
fact, if all you’re doing is shadowing some internal field
variable, then you’re better off just using a public variable.

Refactoring the Email class

Refactoring the Email class from above to use a public
variable would look like this:

class Email {
 var value = '';
}

Dart implicitly generates the needed getters and setters for
you. That’s quite a bit more readable and it still works
exactly the same:

final email = Email();
email.value = 'ray@example.com';
final emailString = email.value;

That’s the beauty of how Dart handles class properties. You
can change the internal implementation, without the
external world being any the wiser.

If you only want a getter but not a setter, then just make the
property final, which will also require adding a constructor
to initialize the property:

class Email {
 Email(this.value);
 final value;
}

Since you added a constructor, that does affect the outside
world when instantiating the object, but it’s nothing
different than what you’ve seen previously:

final email = Email('ray@example.com');
final emailString = email.value;

Retrieving value is still the same as before.

Refactoring User

You can use these same principles to refactor the User class.
Replace the entire class with the following code:

class User {
 const User({this.id = 0, this.name = 'anonymou
s'})
 : assert(id >= 0);

 const User.anonymous() : this();

 final String name;
 final int id;

 String toJson() {
 return '{"id":$id,"name":"$name"}';
 }

 @override
 String toString() {
 return 'User(id: $id, name: $name)';
 }
}

Here’s what changed:

Since the getters were only shadowing internal private
fields, it was cleaner to remove the fields and just use a
final property. If you ever need to use hidden fields
again later, you can do so without affecting how the
class is used from the outside.

Since you removed the private fields, setting them in the
initializer list is no longer necessary.

Because the properties are now public variables, you can
use this.id and this.name to initialize them in the
short-form constructor style.

“Why all the runaround?” you ask. “I could have done all this
in the beginning.”

True, true. But then you wouldn’t have learned so much! :]

Static members

There is just one more thing to cover for your well-rounded
foundation in Dart classes. That’s the static keyword.

If you put static in front of a member variable or method,
that causes the variable or method to belong to the class
rather than the instance:

class SomeClass {
 static int myProperty = 0;
 static void myMethod() {
 print('Hello, Dart!');
 }
}

And you access them like so:

final value = SomeClass.myProperty;
SomeClass.myMethod();

In this case, you didn’t have to instantiate an object to
access myProperty or to call myMethod. Instead, you were
able to use the class name directly to get the value and call
the method.

The following sections will cover a few common use cases for
static members.

Static variables

Static variables are often used for constants and in the
singleton pattern.

Note: Variables are given different names according to where
they belong or where they’re located. Since static variables
belong to the class, they’re called class variables. Non-static
member variables are called instance variables because they
only have a value after an object is instantiated. Variables
within a method are called local variables, and top-level
variables outside of a class are called global variables.

Constants

You can define class constants by combining static and
const. For example:

static const myConstant = '42';

Doing so in the User class would improve readability for the
default user ID and name. Add the following two lines to the
class body below the properties:

static const _anonymousId = 0;
static const _anonymousName = 'anonymous';

Replace the unnamed constructor with the following:

const User({
 this.id = _anonymousId,
 this.name = _anonymousName,
}) : assert(id >= 0);

While anonymous was already pretty readable, _anonymousId
is much more meaningful than 0.

Singleton pattern

A second use of static variables is to create a singleton class.
Singletons are a common design pattern where there is only
ever one instance of an object. While some people debate
their benefits, they do make certain tasks more convenient.

It’s easy to create a singleton in Dart. You wouldn’t want
User to be a singleton, since you’ll likely have lots of distinct
users, requiring lots of distinct instances of User. However,
you might want to create a singleton class as a database
helper so that you can ensure that you don’t open multiple
connections to the database.

Here is what a basic singleton class would look like:

class MySingleton {
 MySingleton._();
 static final MySingleton instance = MySingleto
n._();
}

The MySingleton._() part is a private named constructor.
Some people like to call it _internal to emphasize that it
can’t be called from the outside. The underscore makes it

impossible to instantiate the class normally. However, the
static property, which is only initialized once, provides a
reference to the instantiated object.

Note: Static fields and top-level variables, that is, global
variables outside of a class, are lazily initialized. That
means Dart doesn’t actually calculate and assign their
values until you use them the first time.

You would access the singleton like so:

final mySingleton = MySingleton.instance;

Since factory constructors don’t need to return new
instances of an object, you can also implement the singleton
pattern with a factory constructor:

class MySingleton {
 MySingleton._();
 static final MySingleton _instance = MySingleto
n._();
 factory MySingleton() => _instance;
}

The advantage here is that you can hide the fact that it’s a
singleton from whoever uses it:

final mySingleton = MySingleton();

From the outside, this looks exactly like a normal object.
This gives you the freedom to change it back into a
generative constructor later without affecting the code in
other parts of your project.

The last two sections have been about static variables. Next,
you’ll take a look at static methods.

Static methods

There are a few interesting things you can do with static
methods.

Utility methods

One use for a static method is to create a utility or helper
method that’s associated with the class, but not associated
with any particular instance.

In other languages, some developers like to group related
static utility methods in classes to keep them organized.
However, in Dart it’s usually better to just put these utility
methods in their own file as top-level functions. You can
then import that file as a library wherever you need the
utility methods contained within.

Creating new objects

You can also use static methods to create new instances of a
class based on some input passed in. For example, you could
use a static method to achieve precisely the same result as
you did earlier with the fromJson factory constructor. Here’s
the static method version:

static User fromJson(Map<String, Object> json) {
 final userId = json['id'] as int;
 final userName = json['name'] as String;
 return User(id: userId, name: userName);
}

From the outside as well, you use it as you did with the
factory version:

final map = {'id': 10, 'name': 'Manda'};
final manda = User.fromJson(map);

All this goes to show that there are often multiple ways of
accomplishing the same thing.

Comparing static methods with factory constructors

Factory constructors in many ways are just like static
methods, but there are a few differences:

A factory constructor can only return an instance of the
class type or subtype, while a static method can return
anything. For example, a static method can be
asynchronous and return a Future, which you’ll learn
about in Chapter 10, but a factory constructor can’t do
this.

A factory constructor can be unnamed so that, from the
caller’s perspective, it looks exactly like calling a
generative constructor. The singleton example above is
an example of this. A static method, on the other hand,
must have a name.

A factory constructor can be const if it’s a forwarding
constructor, but a static method can’t.

Challenges

Before moving on, here are some challenges to test your
knowledge of classes and the components that make them
up. It’s best if you try to solve them yourself, but solutions
are available if you get stuck. These are located with the
supplementary materials for this book.

Challenge 1: Bert and Ernie

Create a Student class with final firstName and lastName
String properties and a variable grade as an int property.
Add a constructor to the class that initializes all the
properties. Add a method to the class that nicely formats a
Student for printing. Use the class to create students bert
and ernie with grades of 95 and 85, respectively.

Challenge 2: Spheres

Create a Sphere class with a const constructor that takes a
positive length radius as a named parameter. Add getters
for the the volume and surface area but none for the radius.
Don’t use the dart:math package but store your own version
of pi as a static constant. Use your class to find the volume
and surface area of a sphere with a radius of 12.

Key points

Classes package data and functions inside a single
structure.

Variables in a class are called fields, and public fields or
getter methods are called properties.

Functions in a class are called methods.

You can customize how an object is printed by
overriding the toString method.

You create an object from a class by calling a constructor
method.

Generative constructors can be unnamed or named.

Unnamed generative constructors have the same name
as the class, while named generative constructors have
an additional identifier after the class name.

You can forward from one constructor to another by
using the keyword this.

Initializer lists allow you to check constructor
parameters with assert and initialize field variables.

Adding const to a constructor allows you to create
immutable, canonical instances of the class.

Factory constructors allow you to hide the
implementation details of how you provide the class
instance.

Classes have getters and setters which you can
customize without affecting how the object is used.

Adding the static keyword to a property or method
makes it belong to the class rather than the instance.

Where to go from here?

This chapter touched briefly on JSON as a standard way to
serialize objects. You’ll certainly be using JSON in the future,
so you can visit json.org to learn more about this format and
why it’s gained so much traction as a standard.

This chapter also alluded briefly to concepts such as
singletons and factories. These concepts are known
collectively as design patterns. Although you don’t need to
know design patterns to code in Dart, understanding them
will make you a better programmer. The most famous book
on this topic is Design Patterns by “The Gang of Four”, but
there are many other excellent works. A simple search for
software design patterns online will provide you with a
wealth of information.

https://www.json.org/

Chapter 7: Nullability

You know that game where you try to find the item that
doesn’t belong in a list? Here’s one for you:

horse, camel, pig, cow, sheep, goat

Which one doesn’t belong?

It’s the third one, of course! The other animals are raised by
nomadic peoples, but a pig is a farmer’s animal — it doesn’t
do so well trekking across the steppe. About now you’re
probably muttering to yourself why your answer was just as
good — like, a sheep is the only animal with wool, or
something similar. If you got an answer that works, good job.
Here’s another one:

196, 144, 169, 182, 121

Did you get it? The answer is one hundred and eighty-two.
All the other numbers are squares of integers.

One more:

3, null, 1, 7, 4, 5

And the answer is . . . null! All of the other items in the list
are integers, but null isn’t an integer.

What? Was that too easy?

Null overview

As out of place as null looks in that list of integers, many
computer languages actually include it. In the past Dart did,
too, but as of version 2.12, Dart decided to take null out of
the list and only put it back if you allow Dart to do so. This
feature is called sound null safety, but to find out what was
so dangerous about null in the first place, you’ll have to
keep reading.

What null means

Null means “no value” or “absence of a value”. It’s quite
useful to have such a concept. Imagine not having null at all.
Say you ask a user for their postal code so that you can save
it as an integer in your program:

int postalCode = 12345;

Everything will go fine until you get a user who doesn’t have
a postal code. Your program requires some value, though, so
what do you give it? Maybe 0 or -1?

int postalCode = -1;

Choosing a number like -1, though, is somewhat arbitrary.
You have to define it yourself to mean “no value” and then
tell other people that’s what it means.

// Hey everybody, -1 means that the user
// doesn't have a postal code. Don't forget!
int postalCode = -1;

On the other hand, if you can have a dedicated value called
null, which everyone already understands to mean “no
value”, then you don’t need to add comments explaining
what it means.

int postalCode = null;

It’s obvious here that there’s no postal code. In versions of
Dart prior to 2.12 that line of code worked just fine. However,
now it’s no longer allowed. You get the following error:

A value of type 'Null' can't be assigned to a va
riable of type 'int'.

What’s wrong? Null is a useful concept to have! Why not
allow it, Dart?

The problem with null

As useful as null is for indicating the absence of a value,
developers do have a problem with it. The problem is that
they tend to forget that it exists. And when developers forget
about null, they don’t handle it in their code. Those nulls
are like little ticking time bombs ready to explode the code.

To see that in action, how about taking a trip back in time.
Open pubspec.yaml and set the minimum Dart SDK version
to 2.10:

environment:
 sdk: '>=2.10.0 <3.0.0'

Save the file and run dart pub get if needed.

Dart 2.10 was the version before sound null safety was
introduced in Dart. This will allow you to see first hand what
a rogue null can do.

Now open starter.dart or whatever file you have your main
function in, and replace the contents of the file with the
following code:

void main() {
 print(isPositive(3)); // true
 print(isPositive(-1)); // false
}

bool isPositive(int anInteger) {
 return !anInteger.isNegative;
}

Run that code and you’ll get a result of true and false as
expected. The isPositive method works fine as long as you
give it integers. But what if you give it null?

Add the following line to the bottom of the main function:

print(isPositive(null));

Run that and your program will crash with the following
error:

NoSuchMethodError: The getter 'isNegative' was c
alled on null.

You learned above that null means “no value”, which is true,
semantically. However, the Dart keyword null actually is a
value in the sense that it’s an object. That is, the object null
is the sole instance of the Null class. Because the Null class
doesn’t have a method called isNegative, you get a
NoSuchMethodError when you try to call null.isNegative.

Now go back to pubspec.yaml and change the minimum Dart
SDK version to 2.12, the first version that supported sound
null safety:

environment:
 sdk: '>=2.12.0 <3.0.0'

Save the file and again run dart pub get if needed.

Now all of a sudden you have an error where you tried to call
your function with null:

With the advent of Dart’s sound null safety, you can’t assign
a null value to an int even if you wanted to. Eliminating the
possibility of being surprised by null prevents a whole host
of errors.

Delete that line with the null error. Problem solved.

But wait? Isn’t null useful? What about a missing postal
code?

Yes, null is useful and Dart has a solution.

Note: As you saw above, Dart only applies sound null
safety checks to your project if you set the minimum
version to 2.12. While this isn’t required, the benefits
for preventing null errors make it highly recommended.

Nullable vs. non-nullable types

Starting with version 2.12, Dart separated its types into
nullable and non-nullable. Nullable types end with a
question mark (?) while non-nullable types do not.

Non-nullable types

Dart types are non-nullable by default. That means they’re
guaranteed to never contain the value null, which is the
essence of the meaning of sound in the phrase “sound null
safety”. These types are easy to recognize because, unlike
nullable types, they don’t have a question mark at the end.

Here are some example values that non-nullable types could
contain:

int: 3, 1, 7, 4, 5

double: 3.14159265, 0.001, 100.5

bool: true, false

String: 'a', 'hello', 'Would you like fries with
that?'

User: ray, vicki, anonymous

These are all acceptable ways to set the values:

int myInt = 1;
double myDouble = 3.14159265;
bool myBool = true;
String myString = 'Hello, Dart!';
User myUser = User(id: 42, name: 'Ray');

As you saw earlier, trying to set a non-nullable type to null
is a compile-time error:

int postalCode = null; // error

Since only types that end in a question mark can potentially
have a null value, every time you see a type without a
question mark, you can be absolutely positive that it won’t
ever be null.

Note: Well, a type without a question mark could be
null if you use the late keyword, but technically this is
opting out of sound null safety. It’s also completely
under your control. You’ll learn about the late keyword
at the end of this chapter.

Nullable types

A nullable type can contain the null value in addition to its
own data type. You can easily tell the type is nullable
because it ends with a question mark (?), which is like
saying, “Maybe you’ve got the data you want or maybe
you’ve got null. That’s the question.” Here are some
example values that nullable types could contain:

int?: 3, null, 1, 7, 4, 5

double?: 3.14159265, 0.001, 100.5, null

bool?: true, false, null

String?: 'a', 'hello', 'Would you like fries with
that?', null

User?: ray, vicki, anonymous, null

That means you can set any of them to null:

int? myInt = null;
double? myDouble = null;
bool? myBool = null;
String? myString = null;
User? myUser = null;

The question mark at the end of String? isn’t an operator
acting on the String type. Rather, String? is a whole new
type separate from String. String? means that the variable
can either contain a String or it can be null.

Every non-nullable type in Dart has a corresponding nullable
type: int and int?, bool and bool?, User and User?, Object
and Object?. By choosing the type, you get to choose when
you want to allow null values and when you don’t.

Note: The non-nullable type is a subtype of its nullable
form. For example, String is a subtype of String? since
String? can be a String.

For any nullable variable in Dart, if you don’t initialize it
with a value, it’ll be given the default value of null.

Create three variables of different nullable types:

int? age;
double? height;
String? message;

Then print them:

print(age);
print(height);
print(message);

You’ll see null for each value.

Mini-exercises

1. Create a String? variable called profession, but don’t
give it a value. Then you’ll have profession null. :]

2. Give profession a value of “basketball player”.

3. Write the following line and then hover your cursor over
the variable name. What type does Dart infer iLove to
be?

const iLove = 'Dart';

Handling nullable types

The big problem with the old nullable types in the past was
how easy it was to forget to add code to handle null values.
That’s no longer true. Dart now makes it impossible to forget
because you really can’t do much at all with a nullable value
until you’ve dealt with the possibility of null.

Try out this example:

String? name;
print(name.length);

Dart doesn’t let you run that code, so there isn’t even an
opportunity to get a runtime NoSuchMethodError like before.
Instead, Dart gives you a compile-time error:

The property 'length' can't be unconditionally a
ccessed because the receiver can be 'null'.

Compile-time errors are your friends because they’re easy to
fix. In the next few sections you’ll see how to use the many
tools Dart has to deal with null values.

Type promotion

The Dart analyzer, which is the tool that tells you what the
compile-time errors and warning are, is smart enough to tell
in a wide range of situations if a nullable variable is
guaranteed to contain a non-null value or not.

Take the last example, but this time assign name a string
literal on the line after declaring it:

String? name;
name = 'Ray';
print(name.length);

Even though the type is still nullable, Dart can see that name
can’t possibly be null because you assigned it a non-null
value right before you used it. There’s no need for you to
explicitly “unwrap” name to get at its String value. Dart does
this for you automatically. This is known as type promotion.
Dart promotes the nullable and largely unusable String?
type to a non-nullable String with no extra work from you!
Your code stays clean and beautiful. Take some time right
now to send the Dart team a thank you letter.

Flow analysis

Type promotion works for more than just the trivial example
above. Dart uses sophisticated flow analysis to check every
possible route the code could take. As long as none of the
routes come up with the possibility of null, it’s promotion
time!

Take the following slightly less trivial example:

bool isPositive(int? anInteger) {
 if (anInteger == null) {
 return false;
 }
 return !anInteger.isNegative;
}

In this case, you can see that by the time you get to the
anInteger.isNegative line, anInteger can’t possibly be
null because you’ve already checked for that. Dart’s flow
analysis could also see that, so Dart promoted anInteger to
its non-nullable form, that is, to int instead of int?.

Even if you had a much longer and nested if-else chain,
Dart’s flow analysis would still be able to determine whether
to promote a nullable type or not.

Null-aware operators

In addition to flow analysis, Dart also gives you a whole set
of tools called null-aware operators that can help you handle
potentially null values. Here they are in brief:

If-null operator (??)

Null-aware assignment operator (??=)

Null-aware access operator (?.)

Null-aware method invocation operator (?.)

Null assertion operator (!)

Null-aware cascade operator (?..)

Null-aware index operator (?[])

Null-aware spread operator (...?)

The following sections describe in more detail how these
operators work.

If-null operator (??)

One very convenient way to handle null values is to use the
double question mark (??), also known as the if-null
operator. This operator says, “If the value on the left isn’t
null, then use it; otherwise, go with the value on the right.”

Take a look at the following example:

String? message;
final text = message ?? 'Error';

Here are a couple points to note:

Since message is null, ?? will set text equal to the
right-hand value: 'Error'.

Using ?? ensures that text can never be null, thus Dart
infers the variable type of text to be String and not
String?.

Print text to confirm that Dart assigned it the 'Error'
string rather than null.

Using the ?? operator in this example is equivalent to the
following:

String text;
if (message == null) {
 text = 'Error';
} else {
 text = message;
}

That’s six lines of code instead of one when you use the ??
operator. You know which one to choose.

Null-aware assignment operator (??=)

In the example above, you had two variables: message and
text. However, another common situation is when you have
a single variable that you want to update if its value is null.

For example, say you have an optional font size setting in
your app:

double? fontSize;

When it’s time to apply the font size to the text, your first
choice is to go with the user selected size. If they haven’t
chosen one, then you’ll fall back on a default size of 20.0.
One way to achieve that is by using the if-null operator like
so:

fontSize = fontSize ?? 20.0;

However, there’s an even more compact way to do it. In the
same way that the following two forms are equivalent,

x = x + 1;
x += 1;

there’s also a null-aware assignment operator (??=) to
simplify if-null statements that have a single variable:

fontSize ??= 20.0;

If fontSize is null then it will be assigned 20.0, but
otherwise it retains its value. The ??= operator combines the
null check with the assignment.

Both ?? and ??= are useful for initializing variables when you
want to guarantee a non-null value.

Null-aware access operator (?.)

Earlier with anInteger.isNegative, you saw that trying to
access the isNegative property when anInteger was null
caused a NoSuchMethodError. There’s also an operator for
null safety when accessing object members. The null-aware
access operator returns null if the left-hand side is null.
Otherwise, it returns the property on the right-hand side.

Look at the following example:

int? age;
print(age?.isNegative);

Since age is null, the ?. operator prevents that code from
crashing. Instead, it just returns null for the whole
expression inside the print statement. Run that and you’ll
see the following:

null

Internally, a property is just a getter method on an object, so
the ?. operator works the same way to call methods as it
does to access properties.

Therefore, another name for ?. is the null-aware method
invocation operator. As you can see, invoking the
toDouble() method works the same way as accessing the
isNegative property:

print(age?.toDouble());

Run that and it’ll again print “null” without an error.

The ?. operator is useful if you want to only perform an
action when the value is non-null. This allows you to
gracefully proceed without crashing the app.

Null assertion operator (!)

Sometimes Dart isn’t sure whether a nullable variable is
null or not, but you know it’s not. Dart is smart and all, but
machines don’t rule the world yet.

So if you’re absolutely sure that a variable isn’t null, you can
turn it into a non-nullable type by using the null assertion

operator (!), or sometimes more generally referred to as the
bang operator.

String nonNullableString = myNullableString!;

Note the ! at the end of myNullableString.

Note: In Chapter 4, you learned about the not-operator,
which is also an exclamation mark. To differentiate the
not-operator from the null assertion operator, you can
also refer to the not-operator as the prefix ! operator
because it goes before an expression. By the same
reasoning, you can refer to the null assertion operator
as the postfix ! operator since it goes after an
expression.

Here’s an example to see the assertion operator at work. In
your project, add the following function that returns a
nullable Boolean:

bool? isBeautiful(String? item) {
 if (item == 'flower') {
 return true;
 } else if (item == 'garbage') {
 return false;
 }
 return null;
}

Now in main, write this line:

bool flowerIsBeautiful = isBeautiful('flower');

You’ll see this error:

A value of type 'bool?' can't be assigned to a v
ariable of type bool

The isBeautiful function returned a nullable type of bool?,
but you’re trying to assign it to flowerIsBeautiful, which
has a non-nullable type of bool. The types are different, so
you can’t do that. However, you know that 'flower' is
beautiful, that is, the function won’t return null. So you can
use the null assertion operator to tell Dart that.

Add the postfix ! operator to the end of the function call:

bool flowerIsBeautiful = isBeautiful('flower')!;

Now there are no more errors.

Alternatively, since bool is a subtype of bool?, you could
also cast bool? down using the as keyword that you learned
about in Chapter 3.

bool flowerIsBeautiful = isBeautiful('flower') as
bool;

This is equivalent to using the assertion operator. The
advantage of ! is that it’s shorter.

Beware, though. Using the assertion operator (or casting
down to a non-nullable type) will crash your app with a
runtime error if the value actually does turn out to be null,
so don’t use the assertion operator unless you can guarantee
that the variable isn’t null.

It’s not really safe to trust the isBeautiful function. Who
knows but that one day you’ll hire someone who hates
flowers and changes the internal workings of the function.
That scenario isn’t as far-fetched as you might think.
Imagine that instead of working with a local function, you’re
returning data from a web server using a REST API. Someone
on the server end changes a value and then your app breaks.

Here’s an alternative to the assertion operator that won’t
ever crash the app:

bool flowerIsBeautiful = isBeautiful('flower') ??
true;

You’re leaving the decision up to the function, but giving it a
default value by using the ?? operator if the function doesn’t
know what it should be.

Think of the ! assertion operator as a dangerous option and
one to be used sparingly. By using the assertion operator,
you’re telling Dart that you want to opt-out of null safety,
that you can handle it yourself. This is something akin to
using dynamic to tell Dart that you want to opt-out of type
safety.

Note: You’ll see a common and valid use of the null
assertion operator in the section below titled No
promotion for non-local variables.

Null-aware cascade operator (?..)

In Chapter 6 you learned about the cascade operator (..),
which allows you to call multiple methods or set multiple
properties on the same object.

Give a class like this:

class User {
 String? name;
 int? id;
}

If you know the object isn’t nullable, you can use the cascade
operator like so:

User user = User()
 ..name = 'Ray'
 ..id = 42;

However, if your object is nullable, like in the following
example:

User? user;

Then you can use the null-aware cascade operator (?..):

user
 ?..name = 'Ray'
 ..id = 42;

You only need to use ?.. for the first item in the chain. If
user is null, then the chain will be short-circuited, that is,
terminated, without calling the other items in the cascade
chain.

This is similar for the null-aware access operator (?.) as well.
Look at this example:

String? lengthString = user?.name?.length.toStri
ng();

Since user might be null, it needs the ?. operator to access
name. Since name also might be null, it needs the ?. operator
to access length. However, as long as name isn’t null,
length will never be null, so you only use the . dot operator
to call toString. If either user or name is null, then the
entire chain is immediately short-circuited and
lengthString is assigned null.

Null-aware index operator (?[])

The null-aware index operator (?[]) is used for accessing the
elements of a list when the list itself might be null. You’ve
used lists already a couple of times in this book, but since
you won’t cover them in depth until Chapter 8, this section
will just give a simple explanation of how the ?[] operator is
used.

This is an example of a nullable list:

List<int>? myList = [1, 2, 3];

What you have here is a list of integers. The list itself can be
set to null, indicated by the question mark at the end of
List<int>?. However, the members of the list can’t be null,
indicated by the lack of a question mark after int. That is,
the type is List<int>? instead of List<int?>?.

In the example above, myList isn’t null because you
assigned it the value [1, 2, 3]. Now set myList to null:

myList = null;

Try to get the value of one of the items in the list:

int? myItem = myList?[2];

Print myItem and you’ll see null.

If you had tried to retrieve a value from a null list in the days
before null safety, you would have crashed your app.
However, the ?[] operator gracefully passes a null value on
to myItem.

In Chapter 8 you’ll learn more about collections, including
the null-aware spread operator (...?), which is used to
expand one non-null collection inside another.

Initializing non-nullable fields

When you create an object from a class, Dart requires you to
initialize any non-nullable member variables before you use
them.

Say you have a User class like this:

class User {
 String name;
}

Since name is String and not String?, you must initialize it
somehow. If you recall what you learned in Chapter 6, there
are a few different ways to do that.

Using initializers

One way to initialize a property is to use an initializer value:

class User {
 String name = 'anonymous';
}

In this example, the value is 'anonymous', so Dart knows
that name will always get a non-null value when an object is
created from this class.

Using initializing formals

Another way to initialize a property is to use an initializing
formal, that is, by using this in front of the field name:

class User {
 User(this.name);
 String name;
}

Having this.name as a required parameter ensures that name
will have a non-null value.

Using an initializer list

You can also use an initializer list to set a field variable:

class User {
 User(String name)
 : _name = name;
 String _name;
}

The private _name field is guaranteed to get a value when the
constructor is called.

Using default parameter values

Optional parameters default to null if you don’t set them, so
for non-nullable types, that means you must provide a
default value.

You can set a default value for ordered parameters like so:

class User {
 User([this.name = 'anonymous']);
 String name;
}

Or like this for named parameters:

class User {
 User({this.name = 'anonymous'});
 String name;
}

Now even when creating an object without any parameters,
name will still at least have a default value.

Required named parameters

As you learned in Chapter 5, if you want to make a named
parameter required, use the required keyword.

class User {
 User({required this.name});
 String name;
}

Since name is required, there’s no need to provide a default
value.

Nullable instance variables

All of the methods above guaranteed that the class field will
be initialized, and not only initialized, but initialized with a
non-null value. Since the field is non-nullable, it’s not even
possible to make the following mistake:

final user = User(name: null);

Dart won’t let you do that. You’ll get the following compile-
time error:

The argument type 'Null' can't be assigned to th
e parameter type 'String'

Of course, if you want the property to be nullable, then you
can use a nullable type, and then there’s no need to initialize
the value.

class User {
 User({this.name});
 String? name;
}

String? makes name nullable. Now it’s your responsibility to
handle any null values it may contain.

No promotion for non-local variables

One topic that people often get confused about is the lack of
type promotion for nullable instance variables.

As you recall from earlier, Dart promotes nullable variables
in a method to their non-nullable counterpart if Dart’s flow
analysis can guarantee the variable will never be null:

bool isLong(String? text) {
 if (text == null) {
 return false;
 }
 return text.length > 100;
}

In this example, the local variable text is guaranteed to be
non-null if the line with text.length is ever reached, so
Dart promotes text from String? to String.

However, take a look at this modified example:

class TextWidget {
 String? text;

 bool isLong() {
 if (text == null) {
 return false;
 }
 return text.length > 100; // error
 }
}

The line with text.length now gives an error:

The property 'length' can't be unconditionally a
ccessed because the receiver can be 'null'.

Why is that? You just checked for null after all.

The reason is that the Dart compiler can’t guarantee that
other methods or subclasses won’t change the value of a
non-local variable before it’s used.

Since Dart has gone the path of sound null safety, this
guarantee is essential before type promotion can happen.

You do have options, however. One is to use the ! operator:

bool isLong() {
 if (text == null) {
 return false;
 }
 return text!.length > 100;
}

Even if the compiler don’t know that text isn’t null, you
know it’s not, so you apply that knowledge with text!.

Another option is to shadow the non-local variable with a
local one:

class TextWidget {
 String? text;

 bool isLong() {
 final text = this.text; // shadowing
 if (text == null) {
 return false;
 }
 return text.length > 100;
 }
}

The local variable text shadows the instance variable
this.text and the compiler is happy.

Note: The topic of type promotion for non-local
variables is in active discussion at the time of writing
this chapter. It may be that when you read this Dart will
have an updated solution.

The late keyword

Sometimes you want to use a non-nullable type, but you
can’t initialize it in any of the ways you learned above.

Here’s an example:

class User {
 User(this.name);

 final String name;
 final int _secretNumber = _calculateSecret();

 int _calculateSecret() {
 return name.length + 42;
 }
}

You have this non-nullable field named _secretNumber. You
want to initialize it based on the return value from a
complex algorithm in the _calculateSecret instance
method. You have a problem, though, because Dart doesn’t
let you access instance methods during initialization.

The instance member '_calculateSecret' can't be
accessed in an initializer.

To solve this problem, you can use the late keyword. Add
late to the start of the line initializing _secretNumber:

late final int _secretNumber = _calculateSecret
();

Dart accepts it now, and there are no more errors.

Using late means that Dart doesn’t initialize the variable
right away. It only initializes it when you access it the first
time. This is also known as lazy initialization. It’s like
procrastination for variables.

It’s also common to use late to initialize a field variable in
the constructor body. Here’s an alternate version of the
example above:

class User {
 User(this.name) {
 _secretNumber = _calculateSecret();
 }
 late final int _secretNumber;
 // ...
}

Initializing a final variable in the constructor body wouldn’t
have been allowed if it weren’t marked as late.

Dangers of being late

The example above was for initializing a final variable, but
you can also use late with non-final variables. You have to
be careful with this, though. Take a look at the following
example:

class User {
 late String name;
}

Dart doesn’t complain at you, because using late means
that you’re promising Dart that you’ll initialize the field
before it’s ever used. This moves checking from compile-
time to runtime.

Now add the following code to main and run it:

final user = User();
print(user.name);

You broke your word and never initialized name before you
used it. Dart is disappointed with you, and complains
accordingly:

LateInitializationError: Field 'name' has not be
en initialized.

For this reason, it’s somewhat dangerous to use late when
you’re not initializing it either in the constructor body or in
the same line that you declare it.

Like with the null assertion operator (!), using late
sacrifices the assurances of sound null safety and puts the
responsibility of handling null into your hands. If you mess
up, that’s on you.

Benefits of being lazy

Who knew that it pays to be lazy sometimes? Dart knows
this, though, and uses it to great advantage.

There are times when it might take some heavy calculations
to initialize a variable. If you never end up using the
variable, then all that initialization work was a waste. Since
lazy initialization is never done until you actually use the
variable, though, this kind of work will never be wasted.

Top-level and static variables have always been lazy in Dart.
As you learned above, the late keyword makes other
variables lazy, too. That means even if your variable is
nullable, you can still use late to get the benefit of making it
lazy.

Here’s what that would look like:

class SomeClass {
 late String? value = doHeavyCalculation();
 String? doHeavyCalculation() {
 // do heavy calculation
 }
}

The method doHeavyCalculation is only run after you
access value the first time. And if you never access it, you
never do the work.

Well, that wraps up this chapter. Sound null safety has made
Dart an even stronger language than it already was. Aren’t
you glad you chose to learn Dart?

Challenges

Before moving on, here are some challenges to test your
knowledge of nullability. It’s best if you try to solve them
yourself, but solutions are available with the supplementary
materials for this book if you get stuck.

Challenge 1: Random nothings

Write a function that randomly returns 42 or null. Assign
the return value of the function to a variable named result
that will never be null. Give result a default of 0 if the
function returns null.

Challenge 2: Naming customs

People around the world have different customs for giving
names to children. It would be difficult to create a data class
to accurately represent them all, but try it like this:

Create a class called Name with givenName and surname
properties.

Some people write their surname last and some write it
first. Add a Boolean property called surnameIsFirst to
keep track of this.

Not everyone in the world has a surname.

Add a toString method that prints the full name.

Key points

Null means “no value.”

A common cause of errors for programming languages
in general comes from not properly handling null.

Dart 2.12 introduced sound null safety to the language.

Sound null safety distinguishes nullable and non-
nullable types.

A non-nullable type is guaranteed to never be null.

Null aware operators help developers to gracefully
handle null.

?? if-null operator
??= null-aware assignment operator
?. null-aware access operator
?. null-aware method invocation operator
! null assertion operator
?.. null-aware cascade operator
?[] null-aware index operator
...? null-aware spread operator

The late keyword allows you to delay initializing a field
in a class.

Using late also makes initialization lazy, so a variable’s
value won’t be calculated until you access the variable
for the first time.

Where to go from here?

Dart is an evolving and ever improving language. Since
development and discussions about new features all happen

out in the open, you can watch and even participate. Go to
dart.dev/community to learn more.

https://dart.dev/community

Chapter 8: Collections

In almost every application you make, you’ll be dealing with
collections of data. Data can be organized in multiple ways,
each with a different purpose. Dart provides multiple
solutions to fit your collection’s needs, and in this chapter
you’ll learn about three of the main ones: lists, sets and
maps.

Lists

Whenever you have a very large collection of objects of a
single type that have an ordering associated with them,
you’ll likely want to use a list as the data structure for
ordering the objects. Lists in Dart are similar to arrays in
other languages.

The image below represents a list with six elements. Lists are
zero-based, so the first element is at index 0. The value of
the first element is cake, the value of the second element is
pie, and so on until the last element at index 5, which is
cookie.

The order of a list matters. Pie is after cake, but before
donut. If you loop through the list multiple times, you can be
sure the elements will stay in the same location and order.

Basic list operations

You’ll start by learning how to create lists and modify
elements.

Creating a list

You can create a list by specifying the initial elements of the
list within square brackets. This is called a list literal.

var desserts = ['cookies', 'cupcakes', 'donuts',
'pie'];

Since all of the elements in this list are strings, Dart infers
this to be a list of String types.

You can reassign desserts (but why would one ever want to
reassign desserts?) with an empty list like so:

desserts = [];

Dart still knows that desserts is a list of strings. However, if
you were to initialize a new empty list like this:

var snacks = [];

Dart wouldn’t have enough information to know what kind
of objects the list should hold. In this case, Dart simply
infers it to be a list of dynamic. This causes you to lose type
safety, which you don’t want. If you’re starting with an
empty list, you should specify the type like so:

List<String> snacks = [];

There are a couple of details to note here:

List is the data type, or class name, as you learned in
Chapter 6.

The angle brackets < > here are the notation for generic
types in Dart. A generic list means you can have a list of
anything; you just put the type you want inside the
angle brackets. In this case, you have a list of strings,
but you could replace String with any other type. For
example, List<int> would make a list of integers,
List<bool> would make a list of Booleans, and
List<Grievance> would make a list of grievances — but
you’d have to define that type yourself since Dart
doesn’t come with any by default.

A slightly nicer syntax for creating an empty list is to use var
or final and move the generic type to the right:

var snacks = <String>[];

Dart still has all the information it needs to know this is an
empty list of type String.

Printing lists

As you can do with any collection, you can print the contents
of a list by using the print statement. Since desserts is
currently empty, give it a list with elements again so that you
have something interesting to show when you print it out.

desserts = ['cookies', 'cupcakes', 'donuts', 'pi
e'];
print(desserts);

Run that and you’ll see the following:

[cookies, cupcakes, donuts, pie]

Accessing elements

To access the elements of a list, you reference its index via
subscript notation, where the index number goes within
square brackets after the list name.

final secondElement = desserts[1];
print(secondElement);

Don’t forget that lists are zero-based, so index 1 fetches the
second element. Run that code and you’ll see cupcakes as
expected.

If you know the value but don’t know the index, you can use
the indexOf method to look it up:

final index = desserts.indexOf('pie');
final value = desserts[index];

Since 'pie' is the fourth item in the zero-based list, index is
3 and value is pie.

Assigning values to list elements

Just as you access elements, you also assign values to specific
elements using subscript notation:

desserts[1] = 'cake';

This changes the value at index 1 from cupcakes to cake.

Adding elements to a list

Lists are growable by default in Dart, so you can use the add
method to add an element.

desserts.add('brownies');
print(desserts);

Run that and you’ll see:

[cookies, cake, donuts, pie, brownies]

Now desserts has five elements and the last one is
brownies.

Removing elements from a list

You can remove elements using the remove method. So if
you’d gotten a little hungry and eaten the cake, you’d write:

desserts.remove('cake');
print(desserts);

This leaves a list with four elements:

[cookies, donuts, pie, brownies]

No worries, there’s still plenty for a midnight snack tonight!

Mutable and immutable lists

In the examples above, you were able to reassign list literals
to desserts like so:

var desserts = ['cookies', 'cupcakes', 'donuts',
'pie'];
desserts = [];
desserts = ['cookies', 'cupcakes', 'donuts', 'pi
e'];

The reason you could do that is because you defined
desserts using the var keyword. This has nothing to do with
the list itself being immutable or not. It only means that you
can swap out different lists in desserts.

Now try the following using final:

final desserts = ['cookies', 'cupcakes', 'donuts'
, 'pie'];
desserts = []; // not allowed
desserts = ['cake', 'ice cream']; // not allowed
desserts = someOtherList; // not allowed

Unlike var, using final means that you’re not allowed to use
the assignment operator to give desserts a new list.

However, look at this:

final desserts = ['cookies', 'cupcakes', 'donuts'
, 'pie'];
desserts.remove('cookies'); // OK
desserts.remove('cupcakes'); // OK
desserts.add('ice cream'); // OK

Obviously, the final keyword isn’t keeping you from
changing the contents of the list elements. What’s
happening?

Perhaps a little story will help.

The House on Wenderlich Way

You live in a house at 321 Lonely Lane. All you have at home
are a few brownies, which you absentmindedly munch on as
you scour the internet in hopes of finding work. Finally, you
get a job as a senior Flutter developer, so you buy a new
house at 122 Wenderlich Way. Best of all, your neighbor Ray
brings over some cookies, cupcakes, donuts and pie as a
house warming gift! The brownies are still at your old place,
but in your excitement about the move you’ve forgotten all
about them.

Using var is like giving you permission to move houses. The
first house had brownies. The second house had cookies,
cupcakes, donuts and pie. Different houses, different
desserts.

Using final, on the other hand, is like saying, “Here’s your
house, but this is the last place you can ever live.” However,
just because you live at a fixed location doesn’t mean that

you can’t change what’s inside the house. You might live
permanently at 122 Wenderlich Way, but it’s fine to eat all
the cookies and cupcakes in the house and then go to the
store and bring home some ice cream. Well, it’s fine in that
it’s permissible, but maybe you should pace yourself a little
on the sweets.

So too with a final list. Even though the memory address is
constant, the values at that address are mutable. Mutable
data is nice and all, but when you open your cupboard
expecting to find donuts but instead discover the neighbor
kids traded them for slugs, it’s not so pleasant. It’s the same
with lists — sometimes you just don’t want to be surprised.

So how do you get an immutable list? Have you already
guessed the answer? Good job if you have!

Creating deeply immutable lists

The solution to creating an immutable list is to mark the
variable name with the const keyword. This forces the list to
be deeply immutable.

That is, every element of the list must also be a compile-time
constant.

const desserts = ['cookies', 'cupcakes', 'donut
s', 'pie'];
desserts.add('brownie'); // not allowed
desserts.remove('pie'); // not allowed
desserts[0] = 'fudge'; // not allowed

Since const precedes desserts in the example above, you’re
not allowed to add to, remove from, or update the list.

If you aren’t able to use const for the variable itself, you can
still make the value deeply immutable by adding the optional
const keyword before the value.

final desserts = const ['cookies', 'cupcakes', 'd
onuts', 'pie'];

Finally, if you want an immutable list but you won’t know
the element values until runtime, then you can create one
with the List.unmodifiable named constructor:

final modifiableList = [DateTime.now(), DateTime.n
ow()];
final unmodifiableList = List.unmodifiable(modifiabl
eList);

DateTime.now() returns the date and time when it’s called.
You’re obviously not going to know that until runtime, so
this prevents the list from taking const. Passing that list into
List.unmodifiable, however, makes the new list immutable.

Note: Unfortunately, inadvertently trying to modify an
unmodifiable list will cause a runtime error — not a
compile-time error. So while mutable data can be
unsafe, so too can unmodifiable lists. A good practice is
to write tests to ensure your code works as intended.

That’s enough about mutability for now. Next you’ll see
some properties you can access on lists.

List properties

Collections such as List have a number of properties. To
demonstrate them, use the following list of drinks.

const drinks = ['water', 'milk', 'juice', 'soda'
];

Accessing first and last elements

You can access the first and last element in a list:

drinks.first // water
drinks.last // soda

Checking if a list contains any elements

You can also check whether a list is empty or not empty.

drinks.isEmpty // false
drinks.isNotEmpty // true

This is equivalent to the following:

drinks.length == 0 // false
drinks.length > 0 // true

However, it’s more readable to use isEmpty and isNotEmpty.

Looping over the elements of a list

For this section you can return to your list of desserts:

const desserts = ['cookies', 'cupcakes', 'donut
s', 'pie'];

In Chapter 4, you saw how to iterate over lists, so this is a
review of the for-in loop.

for (var dessert in desserts) {
 print(dessert);
}

Each time through the loop, dessert is assigned an element
from desserts.

You also saw how to use forEach with an anonymous
function.

desserts.forEach((dessert) => print(dessert));

And since the input of print is the same as the output of the
forEach function, Dart allows you to rephrase that like so:

desserts.forEach(print);

This is known as a tear-off because you tear off the
unnecessary syntax.

Run any of the loops above and you’ll get the same result.

cookies
cupcakes
donuts
pie

Code as UI

The Flutter framework chose Dart because of its unique
characteristics. However, Flutter has also influenced the
development of Dart. One area you can see this is with the
addition of the spread operator, collection if and collection
for.

They make it easier for Flutter developers to compose user
interface layouts completely in code, without the need for a
separate markup language.

Flutter UI code is composed of classes called widgets. Three
common Flutter widgets are rows, columns and stacks, which
all store their children as List collections. Being able to
manipulate lists using the spread operator, collection if and
collection for makes it easier to build the UI with code.

The examples below use strings, but in a Flutter app you
would see the same things with lists of Text, Icon,
ElevatedButton and other Widget elements.

Spread operator

Suppose you have two lists to start with.

const pastries = ['cookies', 'croissants'];
const candy = ['Junior Mints', 'Twizzlers', 'M&M
s'];

You can use the spread operator (...) to expand those lists
into another list.

const desserts = ['donuts', ...pastries, ...cand
y];
print(desserts);

By using the ... operator, the second element of desserts is
not pastries, but instead, the elements of pastries are
themselves the elements of desserts. The same goes for
candy. Run that code and you’ll see the following:

[donuts, cookies, croissants, Junior Mints, Twiz
zlers, M&Ms]

There’s also a null spread operator (...?), which will omit a
list if the list itself is null.

List<String>? coffees;
final hotDrinks = ['milk tea', ...?coffees];

Here coffees has not been initialized and therefore is null.
By using the ...? operator, you avoid an error that would
come by trying to add a null list. The list hotDrinks will only
include milk tea.

Collection if

When creating a list, you can use a collection if to
determine whether an element is included based on some
condition.

So if you had a peanut allergy, you’d want to avoid adding
certain candy with peanut butter to a list of candy.

const peanutAllergy = true;

const candy = [
 'Junior Mints',
 'Twizzlers',
 if (!peanutAllergy) 'Reeses',
];
print(candy);

Run that and you’ll see that the false condition for the
collection if prevented Reeses from being included in the
list:

[Junior Mints, Twizzlers]

It’s also interesting to note that collection if doesn’t
prevent a list from being a compile-time constant, as
demonstrated by the presence of the const keyword.

Collection for

There’s also a collection for. So if you have a list, you can
use a collection for to iterate over the list and generate
another list.

const deserts = ['gobi', 'sahara', 'arctic'];
var bigDeserts = [
 'ARABIAN',
 for (var desert in deserts) desert.toUpperCase
(),
];
print(bigDeserts);

Here you’ve created a new list where the final three elements
are the uppercase version of the elements from the input
list. The syntax is very much like a for-in loop but without
the braces.

Run the code to see:

[ARABIAN, GOBI, SAHARA, ARCTIC]

Before moving on to learn about the Set collection type, test
your knowledge so far with some mini-exercises.

Mini-exercises

1. Create an empty list of type String. Name it months.
Use the add method to add the names of the twelve
months.

2. Make an immutable list with the same elements as in
Mini-exercise 1.

3. Use collection for to create a new list with the month
names in all uppercase.

Sets

Sets are used to create a collection of unique elements. Sets
in Dart are similar to their mathematical counterparts.
Duplicates are not allowed in a set, in contrast to lists, which
do allow duplicates.

You can also think of sets as a bag of elements with no
particular ordering, unlike lists, which do maintain a specific
order. Because order doesn’t matter in a set, sets can be
faster than lists, especially when dealing with large datasets.

Creating a set

You can create an empty set in Dart using the Set type
annotation like so:

final Set<int> someSet = {};

The generic syntax with int in angle brackets tells Dart that
only integers are allowed in the set. The following form is
shorter but identical in result:

final someSet = <int>{};

The curly braces are the same symbols used for sets in
mathematics, so that should help you remember them. Be

sure to distinguish curly braces in this context from their use
for defining scopes, though.

You can also use type inference with a set literal to let Dart
determine the types of elements in the set.

final anotherSet = {1, 2, 3, 1};
print(anotherSet);

Since the set literal contains only integers, Dart is able to
infer the type as Set<int>.

Additionally, you probably noticed that there are two 1s
there. But because anotherSet is a set, it ends up with only
one 1. Run that code to verify the contents of anotherSet
has only one 1.

{1, 2, 3}

Operations on a set

In this section you’ll see some general collection operations
that also apply to sets.

Checking the contents

To see if a set contains an item, you use the contains
method, which returns a bool.

Add the following two lines and run the code again:

print(anotherSet.contains(1)); // true
print(anotherSet.contains(99)); // false

Since anotherSet does contains 1, the method returns true,
while checking for 99 returns false.

Adding single elements

Like growable lists, you can add and remove elements in a
set. To add an element, use the add method.

final someSet = <int>{};
someSet.add(42);
someSet.add(2112);
someSet.add(42);
print(someSet);

Run that to see the following set:

{42, 2112}

You added 42 twice, but only one 42 shows up as expected.

Removing elements

You can also remove elements using the remove method.

someSet.remove(2112);

Print someSet to reveal only a single element is left:

{42}

Adding multiple elements

You can use addAll to add elements from a list into a set.

someSet.addAll([1, 2, 3, 4]);

Print someSet again to show the new contents:

{42, 1, 2, 3, 4}

Intersections and Unions

You’ll often have multiple sets of data and you’ll want to
know how they fit together.

You’ve probably seen your share of Venn diagrams; if not in
school, then at least as memes on the internet. They’re
useful for showing the common elements between two sets.

As you can see, 1 and 4 are in both sets.

Intersections

Like Venn diagrams and mathematical sets, you can find the
intersection of two sets in Dart; that is, the common
elements that occur in both sets.

Given the following two sets:

final setA = {8, 2, 3, 1, 4};
final setB = {1, 6, 5, 4};

You can find the intersection like so:

final intersection = setA.intersection(setB);

Since both sets share the numbers 1 and 4, that’s the answer
you’re expecting. Print intersection to see:

{1, 4}

No disappointments there.

Unions

Finding all the unique values by combining both sets gives
you the union, and that’s just as easy to find in Dart as the

intersection.

final union = setA.union(setB);

Print union to see the results:

{8, 2, 3, 1, 4, 6, 5}

This union represents all the elements from both sets.
Remember — sets have no requirement to be in order.

Other operations

Almost everything that you learned earlier about lists also
applies to sets. Specifically, you can perform any of the
following operations with sets:

collection if

collection for

for-in loops

forEach loops

spread operators

Next you’ll learn about another important collection type:
maps.

Maps

Maps in Dart are the data structure used to hold key-value
pairs. They’re similar to HashMaps and Dictionaries in other
languages.

If you’re not familiar with maps, though, you can think of
them like a collection of variables that contain data. The key
is the variable name and the value is the data that the
variable holds. The way to find a particular value is to give
the map the name of the key that is mapped to that value.

In the image below, the cake is mapped to 500 calories, and
the donut is mapped to 150 calories. cake and donut are
keys, while 500 and 150 are values.

The key and value in each pair are separated by colons, and
consecutive key-value pairs are separated by commas.

Creating an empty map

Like List and Set, Map is a generic type, but Map takes two
type parameters: one for the key and one for the value. You
can create an empty map variable using Map and specifying
the type for both the key and value:

final Map<String, int> emptyMap = {};

In this example, String is the type for the key, and int is the
type for the value.

A slightly shorter way to do the same thing is move the
generic types to the right-hand side:

final emptyMap = <String, int>{};

Notice that maps also use curly braces just as sets do. What
do you think you’d get if you wrote this?

final emptySomething = {};

Is emptySomething a set, or is it a map?

Well, it turns out that map literals came before set literals in
Dart’s history, so Dart infers the empty braces to be a Map of
<dynamic, dynamic>; that is, the types of the key and value
are both dynamic. If you want a set, and not a map, then you
need to be explicit:

final mySet = <String>{};

Like lists, maps have a length, which tells you the number of
key-value pairs stored in the map.

final emptyMap = <String, int>{};
print(emptyMap.length);

Since it’s an empty map, when you print that, you’ll get 0 for
the length.

Initializing a Map with values

You can create a non-empty map variable using braces,
where Dart infers the key and value types. Dart knows it’s a
map because each element is a pair separated by a colon.

final inventory = {
 'cakes': 20,
 'pies': 14,
 'donuts': 37,
 'cookies': 141,
};

In this case, inventory is a map of String to int, from
bakery item to quantity in stock.

The key doesn’t have to be a string. For example, here’s a
map of int to String, from a digit to its English spelling:

final digitToWord = {
 1: 'one',
 2: 'two',
 3: 'three',
 4: 'four',
};

Print both of those:

print(inventory);
print(digitToWord);

You’ll see the output in horizontal format rather than the
vertical format you had above:

{cakes: 20, pies: 14, donuts: 37, cookies: 141}
{1: one, 2: two, 3: three, 4: four}

Unique keys

The keys of a map should be unique. A map like the
following wouldn’t work:

final treasureMap = {
 'garbage': 'in the dumpster',
 'glasses': 'on your head',
 'gold': 'in the cave',
 'gold': 'under your mattress',
};

There are two keys named gold. How are you going to know
where to look? You’re probably thinking, “Hey, it’s gold. I’ll
just look both places.” If you really wanted to set it up like
that, then you could map String to List:

final treasureMap = {
 'garbage': ['in the dumpster'],
 'glasses': ['on your head'],
 'gold': ['in the cave', 'under your mattress'
],
};

Now every key contains a list of items, but the keys
themselves are unique.

Values don’t have that same restriction of being unique. This
is fine:

final myHouse = {
 'bedroom': 'messy',
 'kitchen': 'messy',
 'living room': 'messy',
 'code': 'clean',
};

Operations on a map

Interacting with a map to access, add, remove and update
elements is very similar to what you’ve already seen.

Accessing elements from a map

You access individual elements from a map by using a
subscript notation similar to lists, except for maps you use
the key rather than an index.

final numberOfCakes = inventory['cakes'];

If you recall from above, the key cakes is mapped to the
integer 20, so print numberOfCakes to see 20.

A map will return null if the key doesn’t exist. Because of
this, accessing an element from a map always gives a
nullable value. In the example above, Dart infers
numberOfCakes to be of type int?. If you want to use
numberOfCakes, then you need to treat it as you would any
other nullable value.

In this case you can use the null-aware access operator to
check if the number of cakes is even:

print(numberOfCakes?.isEven);

There were 20 so that’s true.

Adding elements to a map

You can add new elements to a map simply by assigning to
elements that are not yet in the map.

inventory['brownies'] = 3;

Print inventory to see brownies and its value at the end of
the map:

{cakes: 20, pies: 14, donuts: 37, cookies: 141,
brownies: 3}

Updating an element

Remember that the keys of a map are unique, so if you assign
a value to a key that already exists, you’ll overwrite the
existing value.

inventory['cakes'] = 1;

Print inventory to confirm that cakes was 20 but now is 1:

{cakes: 1, pies: 14, donuts: 37, cookies: 141, b
rownies: 3}

Removing elements from a map

You can use remove to remove elements from a map by key.

inventory.remove('cookies');

COOKIE! Om nom nom nom nom.

{cakes: 1, pies: 14, donuts: 37, brownies: 3}

No more cookies.

Map properties

Maps have properties just as lists do. For example, the
following properties indicate (using different metrics)
whether or not the map is empty:

inventory.isEmpty // false
inventory.isNotEmpty // true
inventory.length // 4

You can also access the keys and values separately using the
keys and values properties.

print(inventory.keys);
print(inventory.values);

When you print that out, you’ll see the following:

(cakes, pies, donuts, brownies)
(1, 14, 37, 3)

Checking for key or value existence

To check whether a key is in a map, you can use the
containsKey method:

print(inventory.containsKey('pies'));
// true

You can do the same for values using containsValue.

print(inventory.containsValue(42));
// false

Looping over elements of a map

Unlike lists, you can’t iterate over a map using a for-in
loop.

for (var item in inventory) {
 print(inventory[item]);
}

This will produce the following error:

The type 'Map<String, int>' used in the 'for' lo
op must implement Iterable.

Iterable is a type that knows how to move sequentially, or
iterate, over its elements. List and Set both implement
Iterable, but Map does not.

Note: In Chapter 9 you’ll learn what “implement”
means.

There is a solution, though, for looping over a Map. The keys
and values properties of a map are iterables, so you can loop
over them. Here’s an example of iterating over the keys:

for (var item in inventory.keys) {
 print(inventory[item]);
}

You can also use forEach to iterate over the elements of a
map, which gives you both the keys and the values.

inventory.forEach((key, value) => print('$key ->
$value'));

And this for loop does the same thing:

for (final entry in inventory.entries) {
 print('${entry.key} -> ${entry.value}');
}

Running either loop gives the following result:

cakes -> 1
pies -> 14
donuts -> 37
brownies -> 3

Before going on, test your knowledge of maps with the
following mini-exercises.

Mini-exercises

1. Create a map with the following keys: name, profession,
country and city. For the values, add your own
information.

2. You suddenly decide to move to Toronto, Canada.
Programmatically update the values for country and
city.

3. Iterate over the map and print all the values.

Higher order methods

There are a number of collection operations common to
many programming languages, including transforming,
filtering and consolidating the elements of the collection.
These operations are known as higher order methods,
because they take functions as parameters. This is a great
opportunity to apply what you learned in Chapter 5 about
anonymous functions.

In this section, you’ll learn about the higher order methods
named map, where, reduce, fold and sort. There are many
more methods than this small sampling, though. Don’t
worry — you’ll discover them in time.

Mapping over a collection

Mapping over a collection allows you to perform an action on
each element of the collection as if you were running it
through a loop. To do this, collections have a map method
that takes an anonymous function as a parameter, and
returns another collection based on what the function does
to the elements.

Note: The map method in this section is different than
the Map data type that you studied earlier in this
chapter. List, Set and Map all have a map method.

Write the following code:

const numbers = [1, 2, 3, 4];
final squares = numbers.map((number) => number *
 number);

The map method is very similar to forEach in that it loops
through every element of the list. It takes each element and
passes it in as an argument to the anonymous function. In
the example above, since numbers is a list of int values,
number is inferred to be of type int. The first time through
the loop, number is 1, the second time through, number is 2,
and so on through 4.

Inside the anonymous function body, you’re allowed to do
whatever you want. In the case above, you square each input
value. Next is where map and forEach differ. Instead of just
performing some action, map takes each resulting value and
inserts it as an element in a new collection, in this case one
named squares.

Print squares to see the result:

(1, 4, 9, 16)

The numbers make sense. Those are all squares of the input
list. Look at the parentheses, though. Set and Map use curly
braces and List uses square brackets. Hover your cursor over
squares to see the type.

It’s actually an Iterable of int, rather than a List of int.
That’s why when you print squares it has parentheses rather
than square brackets. If you really want a List instead of an
Iterable, you can call the toList method on the result.

print(squares.toList());

Run that and now you’ll have square brackets:

[1, 4, 9, 16]

It’s a common mistake to forget that map produces an
Iterable rather than a List, but now you know what to do.
There’s a similar method called toSet if you need a set
instead of a list.

Filtering a collection

You can filter an iterable collection like List and Set down
to another shorter collection by using the where method.

Add the following line below the code you already have:

final evens = squares.where((square) => square.is
Even);

Like map, the where method takes an anonymous function.
The function’s input is also each element of the list, but
unlike map, the value the function returns must be a Boolean.
If the function returns true for a particular element, then
that element is added to the resulting collection, but if
false, then the element is excluded. Using isEven makes
the condition true for even numbers, so you’ve filtered down
squares to just the even values.

Print evens and you’ll get:

(4, 16)

These are indeed even squares. As you can see by the
parentheses, where also returns an Iterable.

You can use where with List and Set but not with Map, that
is, unless you access the keys or values properties of Map.

Consolidating a collection

Some higher order methods take all the elements of an
iterable collection and consolidate them into a single value
using the function you provide. You’ll learn two ways to do
this.

Using reduce

One way to combine all of the elements of a list into a single
value is to use the reduce method. You can combine the
elements in any way you like, but the example below shows
how to find their sum.

Given the following list of amounts, find the total value by
passing in an anonymous function that adds each element to
the sum of the previous ones:

const amounts = [199, 299, 299, 199, 499];
final total = amounts.reduce((sum, element) => su
m + element);

The first function parameter always contains the result of
the previous function call, while the second parameter
contains the current element in the collection. In this
example, on each iteration sum stores the current total while
element is the current integer in the list.

Print total to see the final result of 1495.

Using fold

If you try to call reduce on an empty list, you’ll get an error.
For that reason, using fold may be more reliable when a
collection has a possibility of containing zero elements. The
fold method works like reduce, but it takes an extra
parameter that provides the function with a starting value.

Here is the same result as above, but this time using fold:

const amounts = [199, 299, 299, 199, 499];
final total = amounts.fold(
 0,
 (int sum, element) => sum + element,
);

Notice that there are two arguments that you gave the fold
method. The first argument 0 is the starting value. The
second argument takes that 0, feeds it to sum, and keeps
adding to it based on the value of each element in the list.

Sorting a list

While where, reduce and fold all work equally well on lists
or sets, you can only call sort on a list. That’s because sets
are by definition unordered, so it wouldn’t make sense to
sort them.

Calling sort on a list sorts the elements based on their data
type.

final desserts = ['cookies', 'pie', 'donuts', 'br
ownies'];
desserts.sort();

Print desserts and you’ll see the following:

[brownies, cookies, donuts, pie]

Since desserts holds strings, calling sort on the list
arranges them in alphabetical order. The sorting is done in
place, which means sort mutates the input list itself. This
also means if you tried to sort a const list, you’d get an error.

Reversing a list

You can use reversed to produce a list in reverse order.

var dessertsReversed = desserts.reversed;

This produces the following result:

(pie, donuts, cookies, brownies)

Mind you, using reversed doesn’t re-sort the list in reverse
order. It just returns an Iterable that starts at the last
element of the list and works forward. This will become clear
if you look at an unsorted list:

final desserts = ['cookies', 'pie', 'donuts', 'br
ownies'];
final dessertsReversed = desserts.reversed;
print(desserts);
print(dessertsReversed);

Run that to see the results:

[cookies, pie, donuts, brownies]
(brownies, donuts, pie, cookies)

Neither collection is sorted, but the second one is in reverse
order of the first.

This also brings up a couple of important points about
naming conventions in Dart:

You should use a commanding verb for a method that
produces a side effect. The sort() method mutates
itself, which is a side effect. Also notice the parentheses
on the sort() method; they clearly say that this is a
method, not a property, and as such, may be doing some
potentially expensive work.

In comparison, reversed is a getter property, which you
recognize because it doesn’t have any parentheses. This
indicates that the work is lighter, usually because
getters only return a value. Additionally, reversed is an
adjective, not a commanding verb. That’s because there
are no side effects as it doesn’t mutate the collection.

You won’t always see these conventions followed, but they’re
general guidelines that are helpful to consider in your own
naming.

Note: One interesting characteristic of iterables is that
they’re lazy. That means they don’t do any work until
you ask them to. Since reversed returns an iterable, it
doesn’t actually reverse the elements of the collection
until you try to access those elements, such as by
printing the collection or converting it to a list using the
toList method. Understanding this can help you put off
work that doesn’t need to be done yet.

Performing a custom sort

For the sort method, you can pass in a function as an
argument to perform custom sorting. Say you want to sort
strings by length and not alphabetically; you could give sort
an anonymous function like so:

desserts.sort((d1, d2) => d1.length.compareTo(d
2.length));

The names d1 and d2 aren’t going to win any good naming
prizes, but they fit on the page of a book better than
dessertOne and dessertTwo do. The compareTo method
returns -1 if the first length is shorter, 1 if it’s longer, and 0 if
both lengths are the same. This is all sort needs to do the
custom sort.

So now desserts is sorted by the size of each string element.

[pie, donuts, cookies, brownies]

Combining higher order methods

You can chain together the higher order methods that you
learned above. For example, if you wanted to take only the
desserts that have a name length greater than 5 and then
convert those names to uppercase, you would do it like so:

const desserts = ['cake', 'pie', 'donuts', 'brow
nies'];
final bigTallDesserts = desserts
 .where((dessert) => dessert.length > 5)
 .map((dessert) => dessert.toUpperCase());

Wrapping that expression onto multiple lines makes it easier
to read. First you filtered the list with where and then
mapped the resulting iterable to get the final result.

Printing bigTallDesserts reveals:

(DONUTS, BROWNIES)

Mini-exercises

Given the following exam scores:

final scores = [89, 77, 46, 93, 82, 67, 32, 88];

1. Use sort to find the highest and lowest grades.

2. Use where to find all the B grades, that is, all the scores
between 80 and 90.

When to use lists, sets or maps

Congratulations on making it through another chapter!
You’ve made a ton of progress. This chapter will leave you
with some advice about when to use which type of
collection. Each type has its strengths.

Choose lists if order matters. Try to insert at the end of
lists wherever possible to keep things running smoothly.
And be aware that searching can be slow with big
collections.

Choose sets if you are only concerned with whether
something is in the collection or not. This is faster than
searching a list.

Choose maps if you frequently need to search for a value
by a key. Searching by key is also fast.

Challenges

Before moving on, here are some challenges to test your
knowledge of collections. It’s best if you try to solve them
yourself, but solutions are available with the supplementary
materials for this book if you get stuck.

Challenge 1: A unique request

Write a function that takes a paragraph of text and returns a
collection of unique String characters that the text
contains.

Challenge 2: Counting on you

Repeat Challenge 1, but this time have the function return a
collection that contains the frequency, or count, of every
unique character.

Challenge 3: Mapping users

Create a class called User with properties for id and name.
Make a List with three users, specifying any appropriate
names and IDs you like. Then write a function that converts
your user list to a list of maps whose keys are id and name.

Key points

Lists store an ordered collection of elements.

Sets store an unordered collection of unique elements.

Maps store a collection of key-value pairs.

The elements of a collection are mutable by default.

The spread operator (...) allows you to expand one
collection inside another collection.

Collection if and for can be used to dynamically create
the content of a list or set.

You can iterate over any collection, but for a map you
need to iterate over the keys or values if you use a for-
in loop.

Higher order methods take a function as a parameter
and act on the elements of a collection.

The map method, not to be confused with the Map type,
performs an operation on each element of a collection
and returns the results as an Iterable.

The where method filters an iterable collection based on
a condition.

The reduce and fold methods consolidate a collection
down to a single value.

The sort method sorts a list in place according to its
data type.

Where to go from here?

As jam-packed as this chapter was, it still didn’t include all
there is to know about collections! For example, another
collection type that Dart has is Queue, which is a first-in,
first-out data structure. This chapter also didn’t go into great
detail about iterables. To explore more about collections and
their methods in Dart, you can browse the contents of the
dart:collection library.

Chapter 9: Advanced Classes

Chapter 6 covered a lot of the foundational elements of
classes, but now it’s time to extend that knowledge. Object-
oriented programming has captured developers’
imaginations for decades. Just as the name class is inspired
by biological notation, the true beauty of object-oriented
programming is how you’re able to elegantly build
connective tissue between your classes. In this chapter you’ll
learn to use tools such as inheritance, interfaces, mixins and
extension methods to move beyond simple coding and enter
a world of software design.

Extending classes

In many situations, you’ll need to create a hierarchy of
classes that share some base functionality. You can create
your own hierarchies by extending classes. This is also called
inheritance, because the classes form a tree in which child
classes inherit from parent classes. The parent and child
classes are also called super classes and subclasses
respectively. The Object class is the top superclass for all
non-nullable types in Dart. All other classes (except Null)
are subclasses of Object.

Note: Although there is no named top type in Dart,
since all non-nullable Dart types derive from the Object
type and Object itself is a subtype of the nullable
Object? type, Object? can be considered in practice to
be the root of the type system.

Creating your first subclass

To see how inheritance works, you’ll create your own
hierarchy of classes. In a little while, you’ll make a Student
class which needs grades, so first make a Grade enum:

enum Grade { A, B, C, D, F }

Creating similar classes

Next create two classes named Person and Student.

Here’s Person:

class Person {
 Person(this.givenName, this.surname);

 String givenName;
 String surname;
 String get fullName => '$givenName $surname';

 @override
 String toString() => fullName;
}

And this is Student:

class Student {
 Student(this.givenName, this.surname);

 String givenName;
 String surname;
 var grades = <Grade>[];
 String get fullName => '$givenName $surname';

 @override
 String toString() => fullName;
}

Naturally, the Person and Student classes are very similar,
since students are in fact persons. The only difference at the
moment is that a Student will have a list of grades.

Subclassing to remove code duplication

You can remove the duplication between Student and
Person by making Student extend Person. You do so by

adding extends Person after the class name, and removing
everything but the Student constructor and the grades list.

Replace the Student class with the following code:

class Student extends Person {
 Student(String givenName, String surname)
 : super(givenName, surname);

 var grades = <Grade>[];
}

There are a few points to pay attention to:

The constructor parameter names don’t refer to this
anymore. Whenever you see the keyword this, you
should remember that this refers to the current object,
which in this case would be an instance of the Student
class. Since Student no longer contains the field names
givenName and surname, using this.givenName or
this.surname would have nothing to reference.

In contrast to this, the super keyword is used to refer
one level up the hierarchy. Similar to the forwarding
constructor that you learned about in Chapter 6, using
super(givenName, surname) passes the constructor
parameters on to another constructor. However, since
you’re using super instead of this, you’re forwarding
the parameters to the parent class’s constructor, that is,
to the constructor of Person.

Calling super last in an initializer list

As a quick side note, if you use an initializer list, the call to
super always goes last, that is, after assert statements and
initializers. You can see the order in the following example:

class SomeChild extends SomeParent {

 SomeChild(double height)
 : assert(height != 0), // assert
 _height = height, // initializer
 super(); // super

 final double _height;
}

In this example, calling super() is actually unnecessary,
because Dart always calls the default constructor for the
super class if there are no arguments to pass. The reason
that you or Dart always need to make the super call is to
ensure that all of the field values have finished initializing.

Using the classes

OK, back to the primary example. Create Person and
Student objects like so:

final jon = Person('Jon', 'Snow');
final jane = Student('Jane', 'Snow');
print(jon.fullName);
print(jane.fullName);

Run that and observe that both have full names:

Jon Snow
Jane Snow

The fullName for Student is coming from the Person class.

If you have a grade, you can only add that grade to the
Student and not to the Person, because only the Student
has grades. Add the following two lines to main:

final historyGrade = Grade.B;
jane.grades.add(historyGrade);

The student jane now has one grade in the grades list.

Overriding parent methods

Suppose you want the student’s full name to print out
differently than the default way it’s printed in Person. You
can do so by overriding the fullName getter. Add the
following two lines to the bottom of the Student class:

@override
String get fullName => '$surname, $givenName';

You’ve seen the @override annotation before in this book
with the toString method. While using @override is
technically optional in Dart, it does help in that the compiler
will give you an error if you think you’re overriding
something that doesn’t actually exist in the parent class.

Run the code now and you’ll see the student’s full name
printed differently than the parent’s.

Jon Snow
Snow, Jane

Calling super from an overridden method

As another aside, sometimes you override methods of the
parent class because you want to add functionality, rather
than replace it, as you did above. In that case, you usually
make a call to super either at the beginning or end of the
overridden method.

Have a look at the following example:

class SomeParent {
 void doSomeWork() {
 print('parent working');
 }
}

class SomeChild extends SomeParent {
 @override
 void doSomeWork() {
 super.doSomeWork();
 print('child doing some other work');
 }
}

Since doSomeWork in the child class makes a call to
super.doSomeWork, both the parent and the child methods
run. So if you were to call the child method like so:

final child = SomeChild();
child.doSomeWork();

You would see the following result:

parent working
child doing some other work

The parent method’s work was done first, since you had the
super call at the beginning of the overridden method in the
child. If you wanted to do the child method’s work first,
though, you would put the super call at the end of the
method, like so:

@override
void doSomeWork() {
 print('child doing some other work');
 super.doSomeWork();
}

Multi-level hierarchy

Back to the primary example again. Add more than one level
to your class hierarchy by defining a class that extends from
Student.

class SchoolBandMember extends Student {
 SchoolBandMember(String givenName, String surn
ame)
 : super(givenName, surname);
 static const minimumPracticeTime = 2;
}

SchoolBandMember is a Student that has a
minimumPracticeTime. The SchoolBandMember constructor
calls the Student constructor with the super keyword. The

Student constructor will, in turn, call the Person
constructor.

Sibling classes

Create a sibling class to SchoolBandMember named
StudentAthlete that also derives from Student.

class StudentAthlete extends Student {
 StudentAthlete(String givenName, String surnam
e)
 : super(givenName, surname);
 bool get isEligible =>
 grades.every((grade) => grade != Grade.F);
}

In order to remain eligible for athletics, a student athlete has
an isEligible getter that makes sure the athlete has not
failed any classes. The higher order method every on the
grades list only returns true if every element of the list
passes the given condition, which, in this case, means that
none of the grades are F.

So now you can create band members and athletes.

final jessie = SchoolBandMember('Jessie', 'Jones'
);
final marty = StudentAthlete('Marty', 'McFly');

Visualizing the hierarchy

Here’s what your class hierarchy looks like now:

You see that SchoolBandMember and StudentAthlete are
both students, and all students are also persons.

Type inference in a mixed list

Since Jane, Jessie and Marty are all students, you can put
them into a list.

final students = [jane, jessie, marty];

Recall that jane is a Student, jessie is a SchoolBandMember
and marty is a StudentAthlete. Since they are all different
types, what type is the list?

Hover your cursor over students to find out.

You can see that Dart has inferred the type of the list to be
List<Student>. Dart used the most specific common
ancestor as the type for the list. It couldn’t use

SchoolBandMember or StudentAthlete, since that doesn’t
hold true for all elements of the list.

Checking an object’s type at runtime

You can use the is and is! keywords to check whether a
given object is or is not within the direct hierarchy of a class.
Write the following code:

print(jessie is Object);
print(jessie is Person);
print(jessie is Student);
print(jessie is SchoolBandMember);
print(jessie is! StudentAthlete);

Knowing that jessie is a SchoolBandMember, first guess
what Dart will show, and then run the code to see if you were
right.

Ready? All five will print true, since jessie is
SchoolBandMember, which is a subclass of Student, which is
a subclass of Person, which is a subclass of Object. The only
type that jessie is not, is StudentAthlete — which you
confirmed by using the is! keyword.

Note: The exclamation mark at the end of is! has
nothing to do with the null assignment operator from
null safety. It just means not.

Having an object be able to take multiple forms is known as
polymorphism. This is a key part of object-oriented

programming. You’ll learn to make polymorphic classes in
an even more sophisticated way with abstract classes in just
a bit.

First, though, a word of caution.

Prefer composition over inheritance

Now that you know about inheritance, you may feel ready to
conquer the world. You can model anything as a hierarchy.
Experience, though, will teach you that deep hierarchies are
not always the best choice.

You may have already noticed this fact in the code above. For
example, when you’re overriding a method, do you need to
call super? And if you do, should you call super at the
beginning of the method, or at the end? Often the only way
to know is to check the source code of the parent class.
Jumping back and forth between levels of the hierarchy can
make coding difficult.

Another problem with hierarchies is that they’re tightly
bound together. Changes to a parent class can break a child
class. For example, say that you wanted to “fix” the Person
class by removing givenName and replacing it with firstName
and middleName.

Doing this would also require you to update, or refactor, all
of the code that uses the subclasses as well. Even if you
didn’t remove givenName, but simply added middleName,
users of classes like StudentBandMember would be affected
without realizing it.

Tight coupling isn’t the only problem. What if Jessie, who is
a school band member, also decides to become an athlete?
Do you make another class called
SchoolBandMemberAndStudentAthlete? What if she joins
the student union, too? Obviously, things could get out of
hand quickly.

This has led many people to say, prefer composition over
inheritance. The phrase means that, when appropriate, you
should add behavior to a class rather than share behavior
with an ancestor. It’s more of a focus on what an object has,
rather than what an object is. For example, you could flatten
the hierarchy for Student by giving the student a list of
roles, like so:

class Student {
 List<Role>? roles;
}

When you create a student, you could pass in the roles as a
constructor parameter. This would also let you add and
remove roles later. Of course, since Dart doesn’t come with
the Role type, you’d have to define it yourself. You’d need to
make Role abstract enough so that a role could be a band
member, an athlete or a student union member. You’ll learn
about making abstract classes like this in the next section of
the chapter.

All this talk of composition isn’t to say that inheritance is
always bad. It might make sense to still have Student extend
Person. Inheritance can be good when a subclass needs all of
the behavior of its parent. However, when you only need

some of that behavior, you should consider passing in the
behavior as a parameter, or perhaps even using a mixin,
which you’ll learn about later in this chapter.

Note: The whole Flutter framework is organized around
the idea of composition. You build your UI as a tree of
widgets, where each widget does one simple thing and
has zero or more child widgets that also do one simple
thing. This type of architecture generally makes it easier
to understand the purpose of a class.

Mini-exercises

1. Create a class named Fruit with a String field named
color and a method named describeColor, which uses
color to print a message.

2. Create a subclass of Fruit named Melon and then create
two Melon subclasses named Watermelon and
Cantaloupe.

3. Override describeColor in the Watermelon class to vary
the output.

Abstract classes

The classes and subclasses you created in the last section
were concrete classes. It’s not that they’re made of cement;
it just means that you can make actual objects out of them.

That’s in contrast to abstract classes, from which you can’t
make objects.

“What’s the use of a class you can’t make an object out of?”
asks the pragmatist. “What are the use of ideas?” answers
the philosopher. You deal with abstract concepts all the time,
and you don’t think about them at all.

Have you ever seen an animal? “Uh, are you seriously asking
me that?” you answer. The question isn’t “have you ever
seen a chicken or a platypus or a mouse.” Have you ever seen
a generic animal, devoid of all features that are relevant to
only one kind of animal — just the essence of “animal”
itself? What would that even look like? It can’t have four legs
because ducks are animals and they have two legs. It can’t
have hair because rattlesnakes are animals and they don’t
have hair. Worms are animals, too, right? So there go the
eyes and bones.

No one has seen an “animal” in the abstract sense, but
everybody has seen concrete instances of things that fit the
abstract animal category. Humans are good at generalizing
and categorizing the observations they make, and honestly,
these abstract ideas are very useful. They allow you to make
short statements like “I saw a lot of animals at the zoo”
instead of “I saw a lion, an elephant, a lemur, a shark, ...”

The same thing applies in object oriented programming.
After making lots of concrete classes, you begin to notice
patterns and more generalized characteristics of the classes
you’re writing. So when you come to the point of just
wanting to describe the general characteristics and behavior

of a class without specifying the exact way that class is
implemented, you’re ready to write abstract classes. Don’t be
put off by the word “abstract”. It’s no more difficult than the
idea of an animal.

Creating your own abstract classes

Have a go at working this out in Dart now. Without venturing
too far into the fringes of how taxonomists make their
decisions, create the following Animal class:

abstract class Animal {
 bool isAlive = true;
 void eat();
 void move();

 @override
 String toString() {
 return "I'm a $runtimeType";
 }
}

Here are a few important points about that code:

The way you define an abstract class in Dart is to put the
abstract keyword before class.

In addition to the class itself being abstract, Animal also
has two abstract methods: eat and move. You know
they’re abstract because they don’t have curly braces;
they just end with a semicolon.

These abstract methods describe behavior that a
subclass must implement but don’t tell how to
implement. That’s up to the subclass. Leaving
implementation details up to the subclass is a good
thing because there are such a variety of ways to eat and
move throughout the animal kingdom, so it would be
almost impossible for Animal to specify anything
meaningful here.

Note that just because a class is abstract doesn’t mean
that it can’t have concrete methods or data. You can see
that Animal has a concrete isAlive field, with a default
value of true. Animal also has a concrete
implementation of the toString method, which belongs
to the Object superclass. The runtimeType property
also comes from Object and gives the object type at
runtime.

Can’t instantiate abstract classes

As mentioned, you can’t create an instance of an abstract
class. See for yourself by writing the following line:

final animal = Animal();

You’ll see the following error:

Abstract classes can’t be instantiated.
Try creating an instance of a concrete subtype.

Isn’t that good advice! That’s what you’re going to do next.

Concrete subclass

Create a concrete Platypus now. Stop thinking about
cement. Just add the following empty class to your IDE below
your Animal class:

class Platypus extends Animal {}

Immediately you’ll notice the wavy red line:

That’s not because you spelled platypus wrong. It really does
have a y. Rather, the error is because when you extend an
abstract class, you must provide an implementation of any
abstract methods, which in this case are eat and move.

Adding the missing methods

You could write the methods yourself, but VS Code gives you
a shortcut. Put your cursor on Platypus and press Command+.
on a Mac or Control+. on a PC. You’ll see the following pop-
up:

To quickly add the missing methods, choose Create 2
missing override(s).

This will give you the following code:

class Platypus extends Animal {
 @override
 void eat() {
 // TODO: implement eat
 }

 @override
 void move() {
 // TODO: implement move
 }
}

Starting a comment with TODO: is a common way to mark
parts of your code where you need to do more work. Later,
you can search your entire project in VS Code for the
remaining TODOs by pressing Command+Shift+F on a Mac
or Control+Shift+F on a PC and writing “TODO” in the
search box. You’re going to complete these TODOs right
now, though.

Filling in the TODOs

Since this is a concrete class, it needs to provide the actual
implementation of the eat and move methods. In the eat
method body, add the following line:

print('Munch munch');

A platypus may not have teeth, but it should still be able to
munch.

In the move method add:

print('Glide glide');

As was true with subclassing normal classes, abstract class
subclasses can also have their own unique methods. Add the
following method to Platypus:

void layEggs() {
 print('Plop plop');
}

Readers who are well-acquainted with how platypuses (Or is
it platypi?) eat, swim and give birth can make additional
word suggestions for the next edition of this book.

Testing the results

Test your code out now in main:

final platypus = Platypus();
print(platypus.isAlive);
platypus.eat();
platypus.move();
platypus.layEggs();
print(platypus);

Run the code to see the following:

true
Munch munch
Glide glide
Plop plop
I'm a Platypus

Look at what this tells you:

A concrete class has access to concrete data, like
isAlive, from its abstract parent class.

Dart recognized that the runtime type was Platypus,
even though runtimeType comes from Object, and was
accessed in the toString method of Animal.

Treating concrete classes as abstract

There is one more interesting thing to do before moving on.
In the line where you declared platypus, hover your cursor
over the variable name:

Dart infers platypus to be of type Platypus. That’s normal,
but here’s the interesting part. Replace that line with the
following one, adding the Animal type annotation:

Animal platypus = Platypus();

Hover your cursor over platypus again:

Now Dart sees platypus as merely an Animal with no more
special ability to lay eggs. Comment out the line calling the
layEggs method:

// platypus.layEggs();

Run the code again paying special attention to the
print(platypus) results:

I'm a Platypus

So at compile time, Dart treats platypus like an Animal even
though at runtime Dart knows it’s a Platypus. This is useful
when you don’t care about about the concrete
implementation of an abstract class, but you only care that
it’s an Animal with Animal characteristics.

Now, you’re probably thinking, “Making animal classes is
very cute and all, but how does this help me save data on the
awesome new social media app I’m making?” That’s where
interfaces come in.

Interfaces

Interfaces are similar to abstract classes in that they let you
define the behavior you expect for all classes that implement
the interface. They’re a means of hiding the implementation

details of the concrete classes from the rest of your code.
Why is that important? To answer that question it’s helpful
to understand a little about architecture. Not the Taj Mahal
kind of architecture, software architecture.

Software architecture

When you’re building an app, your goal should be to keep
core business logic separate from infrastructure like the UI,
database, network and third-party packages. Why? The core
business logic doesn’t change frequently, while the
infrastructure often does. Mixing unstable code with stable
would cause the stable code to become unstable.

Note: Business logic, which is sometimes called
business rules or domain logic, refers to the essence of
what your app does. The business logic of a calculator
app would be the mathematical calculations
themselves. Those calculations don’t depend on what
your UI looks like or how you store the answers.

The following image shows an idealized app with the stable
business logic in the middle and the more volatile
infrastructure parts surrounding it:

The UI shouldn’t communicate directly with the web. You
also shouldn’t scatter direct calls to the database across your
app. Everything goes through the central business logic. In
addition to that, the business logic shouldn’t know any
implementation details about the infrastructure.

This gives you a plug-in style architecture, where you can
swap one database framework for another and the rest of the
app won’t even know anything changed. You could replace
your mobile UI with a desktop UI, and the rest of the app
wouldn’t care. This is useful for building scalable,
maintainable and testable apps.

Communication rules

Here’s where interfaces come in. An interface is a description
of how communication will be managed between two parties.
A phone number is a type of interface. If you want to call
your friend, you have to dial your friend’s phone number.
Dialing a different number won’t work. Another word for
interface is protocol, as in Internet Protocol or Hypertext

Transfer Protocol. Those protocols are the rules for how
communication happens among the users of the protocol.

When you create an interface in Dart, you define the rules for
how one part of your codebase will communicate with
another part. As long as both parts follow the interface rules,
each part can change independently of the other. This makes
your app much more manageable. In team settings,
interfaces also allow different people to work on different
parts of the codebase without worrying that they’re going to
mess up someone else’s code.

Separating business logic from infrastructure

In the image below, you can see the interface is between the
business logic and the code for accessing the database.

The business logic doesn’t know anything about the
database. It’s just talking to the interface. That means you
could even swap out the database for a completely different
form of storage like cloud storage or file storage. The
business logic doesn’t care.

There’s a famous adage related to this that goes, code
against interfaces, not implementations. You define an
interface, and then you code your app to use that interface
only. While you must implement the interface with concrete

classes, the rest of your app shouldn’t know anything about
those concrete classes, only the interface.

Creating an interface

There’s no interface keyword in Dart. Instead, you can use
any class as an interface. Since only the field and method
names are important, most interfaces are made from
abstract classes that contain no logic.

Say you want to make a weather app, and your business logic
needs to get the current temperature in some city. Since
those are the requirements, your Dart interface class would
look like this:

abstract class DataRepository {
 double? fetchTemperature(String city);
}

Note that repository is a common term to call an interface
that hides the details of how data is stored and retrieved.
Also, the reason the result of fetchTemperature is nullable
is that someone might ask for the temperature in a city that
doesn't exist.

Implementing the interface

The Dart class above was just a normal abstract class, like
the one you made earlier. However, when creating a concrete
class to implement the interface, you must use the
implements keyword instead of the extends keyword.

Add the following concrete class:

class FakeWebServer implements DataRepository {
 @override
 double? fetchTemperature(String city) {
 return 42.0;
 }
}

Here are a couple of points to note:

Besides the benefits mentioned previously, another
great advantage of using an interface is that you can
create mock implementations to temporarily replace
real implementations. In the FakeWebServer class, you
are simply returning a random number instead of going
to all the work of contacting a real server. This allows
you to have a “working” app until you can get around to
writing the code to contact the web server. This is also
useful when you’re testing your code and you don’t want
to wait for a real connection to the server.

Speaking of waiting for a web server, a real interface
would return a type of Future<double?> instead of
returning double? directly. However, you haven’t read
Chapter 10 about asynchronous programming yet, so
this example omits the Future part.

Using the interface

How do you use the interface on the business logic side?
Remember that you can’t instantiate an abstract class, so
this won’t work:

final repository = DataRepository();

You could potentially use the FakeWebServer
implementation directly like so:

final DataRepository repository = FakeWebServer
();
final temperature = repository.fetchTemperature(
'Berlin');

But this defeats the whole point of trying to keep the
implementation details separate from the business logic.
When you get around to swapping out the FakeWebServer
with another class, you’ll have to go back and make updates
at every place in your business logic that mentions it.

Adding a factory constructor

Do you remember factory constructors from Chapter 6? If
you do, you’ll recall that factory constructors can return
subclasses. Add the following line to your interface class:

factory DataRepository() => FakeWebServer();

Your interface should look like this now:

abstract class DataRepository {
 factory DataRepository() => FakeWebServer();
 double? fetchTemperature(String city);
}

Since FakeWebServer is a subclass of DataRepository, the
factory constructor is allowed to return it. The neat trick is
that by using an unnamed constructor for the factory, you
can make it look like it’s possible to instantiate the class
now.

Write the following in main:

final repository = DataRepository();
final temperature = repository.fetchTemperature(
'Manila');

Ah, now your code on this side has no idea that that
repository is actually FakeWebServer. When it comes time to
swap in the real implementation, you only need to update
the subclass returned by the factory constructor in the
DataRepository interface.

Note: In the code above, you used a factory to return the
concrete implementation of the interface. There are
other options, though. Do a search for service locators,
of which the get_it package is a good example, and
dependency injection to learn more about this topic.

Interfaces and the Dart SDK

If you browse the Dart source code, which you can do by
Command or Control-clicking Dart class names like int or
List or String, you’ll see that Dart makes heavy use of
interfaces to define its API. That allows the Dart team to
change the implementation details without affecting

developers. The only time developers are affected is when
the interface changes.

This concept is key to the flexibility that Dart has as a
language. The Dart VM implements the interface one way
and gives you the ability to hot-reload your Flutter apps. The
dart compile js tool implements the interface using
JavaScript and gives you the ability to run your code on the
web. The dart compile exe tool implements the interface
on Windows or Linux or Mac to let you run your code on
those platforms.

The implementation details are different for every platform,
but you don’t have to worry about that, because your code
will only talk to the interface, not to the platform. Are you
starting to see how powerful interfaces can be?

Extending vs implementing

There are a couple of differences between extends and
implements. Dart only allows you to extend a single
superclass. This is known as single inheritance, in contrast
with other languages that allow multiple inheritance.

So the following is not allowed in Dart:

class MySubclass extends OneClass, AnotherClass
{} // Not OK

However, you can implement more than one interface:

class MyClass implements OneClass, AnotherClass
{} // OK

You can also combine extends and implements:

class MySubclass extends OneClass implements Ano
therClass {}

But what’s the difference between just extending or
implementing? That is, how are these two lines different?

class SomeClass extends AnotherClass {}
class SomeClass implements AnotherClass {}

When you extend AnotherClass, SomeClass has access to
any logic or variables in AnotherClass. However, if
SomeClass implements AnotherClass, SomeClass must
provide its own version of all methods and variables in
AnotherClass.

Example of extending

Assume AnotherClass looks like the following:

class AnotherClass {
 int myField = 42;
 void myMethod() => print(myField);
}

You can extend it like this with no issue:

class SomeClass extends AnotherClass {}

Check that SomeClass objects have access to AnotherClass
data and methods:

final someClass = SomeClass();
print(someClass.myField); // 42
someClass.myMethod(); // 42

Run that and you’ll see 42 printed twice.

Example of implementing

Using implements in the same way doesn’t work:

class SomeClass implements AnotherClass {} // No
t OK

The implements keyword tells Dart that you only want the
field types and method signatures. You’ll provide the
concrete implementation details for everything yourself.
How you implement it is up to you, as demonstrated in the
following example:

class SomeClass implements AnotherClass {
 @override
 int myField = 0;

 @override
 void myMethod() => print('Hello');
}

Test that code again as before:

final someClass = SomeClass();
print(someClass.myField); // 0
someClass.myMethod(); // Hello

This time you see your custom implementation results in 0
and Hello.

Mini-exercises

1. Create an interface called Bottle and add a method to it
called open.

2. Create a concrete class called SodaBottle that
implements Bottle and prints “Fizz fizz” when open is
called.

3. Add a factory constructor to Bottle that returns a
SodaBottle instance.

4. Instantiate SodaBottle by using the Bottle factory
constructor and call open on the object.

Mixins

Mixins are an interesting feature of Dart that you might not
be familiar with, even if you know other programming
languages. They’re a way to reuse methods or variables
among otherwise unrelated classes.

Note: For you Swift developers, Dart mixins work like
protocol extensions.

Before showing you what mixins look like, first you’ll take a
look at why you need them.

Problems with extending and implementing

Think back to the Animal examples again. Say you’ve got a
bunch of birds, so you’re carefully planning an abstract class
to represent them. Here’s what you come up with:

abstract class Bird {
 void fly();
 void layEggs();
}

“It’s looking good!” you think. “I’m getting the hang of this.”
So you try it out on Robin:

class Robin extends Bird {
 @override
 void fly() {
 print('Swoosh swoosh');
 }

 @override
 void layEggs() {
 print('Plop plop');
 }
}

“Perfect!” You smile contentedly at your handiwork.

Then you hear a sound behind you.

“Munch, munch. Glide, glide. Plop, plop. I’m a platypus.”

Oh. Right. The platypus.

Your layEggs code for Robin is exactly the same as it is for
Platypus. That means you’re duplicating code, which
violates the DRY principle. If there are any future changes to
layEggs, you’ll have to remember to change both instances.
Consider your options:

1. Platypus can’t extend Bird or Robin, because platypi
can’t fly.

2. Birds probably shouldn’t extend Platypus, because who
knows when you’re going to add the
stingWithVenomSpur method?

3. You could create an EggLayer class and have Bird and
Platypus both extend that. But then what about flying?
Make a Flyer class, too? Dart only allows you to extend
one class, so that won’t work.

4. You could have birds implement EggLayer and Flyer
while Platypus implements only EggLayer. But then
you’re back to code duplication, since implementing
requires you to supply the implementation code for
every class.

The solution? Mixins!

Mixing in code

To make a mixin, you take whatever concrete code you want
to share with different classes, and package it in its own
special mixin class.

Write the following two mixins:

mixin EggLayer {
 void layEggs() {
 print('Plop plop');
 }
}

mixin Flyer {
 void fly() {
 print('Swoosh swoosh');
 }
}

The mixin keyword indicates that these classes can only be
used as mixins. You can use any class as a mixin, though, so
if you wanted to use EggLayer as a normal class, then just
replace the mixin keyword with class or abstract class. In
fact, the mixin keyword is a fairly new addition to Dart, so
you may still see legacy code that just uses regular classes as
mixins even though those classes aren’t needed as
standalone classes.

Now refactor Robin as follows, using the with keyword to
identify the mixins:

class Robin extends Bird with EggLayer, Flyer {}

There are two mixins, so you separate them with a comma.
Since those two mixins contain all the code that Bird needs,
the class body is now empty.

Refactor Platypus as well:

class Platypus extends Animal with EggLayer {
 @override
 void eat() {
 print('Munch munch');
 }

 @override
 void move() {
 print('Glide glide');
 }
}

The layEggs logic has moved to the mixin. Now both Robin
and Platypus share the code that the EggLayer mixin
contains. Just to make sure it works, run the following code:

final platypus = Platypus();
final robin = Robin();
platypus.layEggs();
robin.layEggs();

Four plops, and all is well.

Mini-exercises

1. Create a class called Calculator with a method called
sum that prints the sum of any two integers you give it.

2. Extract the logic in sum to a mixin called Adder.

3. Use the mixin in Calculator.

Extension methods

Up to this point in the chapter, you’ve been writing your own
classes and methods. Often, though, you use other people’s
classes when you’re programming. Those classes may be part
of a core Dart library, or they may be from packages that you
got off Pub. In either case, you don’t have the ability to
modify them at will.

However, Dart has a feature called extension methods that
allow you to add functionality to existing classes. Even
though they’re called extension methods, you can also add
other members like getters, setters or even operators.

Extension syntax

To make an extension, you use the following syntax:

extension on SomeClass {
 // your custom code
}

This should be located at the top-level in a file; that is, not
inside another class or function. Replace SomeClass with
whatever class you want to add extra functionality to.

You may give the extension itself a name if you like. In that
case the syntax is as follows:

extension YourExtensionName on ClassName {
 // your custom code
}

You can use whatever name you like in place of
YourExtensionName. The name is only used to show or hide
the extension when importing it in another library.

Have a look at a few of the following examples to see how
extension methods work.

String extension example

Did you ever make secret codes when you were a kid, like
a=1, b=2, c=3, and so on? For this example, you’re going to
make an extension that will convert a string into a secret
coded message. Then you’ll add another extension method
to decode it.

In this secret code, each letter will be bumped up to the next
one. So a will be b, b will be c, and so on. To accomplish that
you’ll increase the Unicode value of each code point in the
input string by 1. If the original message were “abc”, the
encoded message should be “bcd”.

Solving in the normal way

First, solve the problem as you would with a normal
function.

String encode(String input) {
 final output = StringBuffer();
 for (final codePoint in input.runes) {
 output.writeCharCode(codePoint + 1);
 }
 return output.toString();
}

This function uses a StringBuffer for efficient string
manipulation. A normal String is immutable, but a
StringBuffer is mutable. That means your function doesn’t
have to create a new string every time you append a
character. You loop through each Unicode code point and
increment it by 1 before writing it to output. Finally, you
convert the StringBuffer back to a regular String and
return it.

Test it out:

final original = 'abc';
final secret = encode(original);
print(secret);

The result is bcd. It works!

Converting to an extension

The next step is to convert the encode function above to an
extension so that you can use it like so:

final secret = 'abc'.encoded;

Since this extension won’t mutate the original string itself,
remember the naming convention of using an adjective
rather than a commanding verb. That’s the reason for
choosing encoded, rather than encode, for the extension
name.

Add the following code somewhere outside the main method:

extension on String {
 String get encoded {
 final output = StringBuffer();
 for (final codePoint in runes) {
 output.writeCharCode(codePoint + 1);
 }
 return output.toString();
 }
}

Look at what’s changed here:

The keywords extension on are what make this an
extension. You can add whatever you want inside the
body. It’s as if String were your own class now.

Rather than making a normal method, you can use a
getter method. This makes it so that you can call the
extension using encoded, without the parentheses,
rather than encoded().

Since you’re inside String already, there’s no need to
pass input as an argument. If you need a reference to
the string object, you can use the this keyword. Thus,
instead of input.runes, you could write this.runes.

However, this is unnecessary and you can directly
access runes. Remember that runes is a member of
String and you’re inside String.

Check that the extension works:

final secret = 'abc'.encoded;
print(secret);

You should see bcd as the output. Nice! It still works.

Adding a decode extension

Add the decoded method inside the body of the String
extension as well:

String get decoded {
 final output = StringBuffer();
 for (final codePoint in runes) {
 output.writeCharCode(codePoint - 1);
 }
 return output.toString();
}

If you compare this to the encoded method, though, there’s a
lot of code duplication. Whenever you see code duplication,
you should think about how to make it DRY.

Refactoring to remove code duplication

Refactor your String extension by replacing the entire
extension with the following:

extension on String {
 String get encoded {
 return _code(1);
 }
 String get decoded {
 return _code(-1);
 }
 String _code(int step) {
 final output = StringBuffer();
 for (final codePoint in runes) {
 output.writeCharCode(codePoint + step);
 }
 return output.toString();
 }
}

Now the private _code method factors out all of the common
parts of encoded and decoded. That’s better.

Testing the results

To make sure that everything works, test both methods like
so:

final original = 'I like extensions!';
final secret = original.encoded;
final revealed = secret.decoded;
print(secret);
print(revealed);

This will display the following encoded and decoded
messages:

J!mjlf!fyufotjpot"
I like extensions!

Great! Now you can amuse your friends by giving them
encoded messages. They’re actually a lot of fun to solve.

int extension example

Here’s an example for an extension on int.

extension on int {
 int get cubed {
 return this * this * this;
 }
}

Notice the use of this to get a reference to the int object,
which will be 5 in the example below.

You use the extension like so:

print(5.cubed);

The answer is 125.

Enum extension example

Dart enums, which you learned about in Chapter 4, are
pretty basic in themselves. However, with the power of
extensions, you can do much more with them.

First define an enum like so:

enum ProgrammingLanguage { dart, swift, javaScri
pt }

Normally you wouldn’t be able to perform any internal logic
on those enum values, but you can by adding the following
extension on ProgrammingLanguage:

extension on ProgrammingLanguage {
 bool get isStronglyTyped {
 switch (this) {
 case ProgrammingLanguage.dart:
 case ProgrammingLanguage.swift:
 return true;
 case ProgrammingLanguage.javaScript:
 return false;
 default:
 throw Exception('Unknown Programming Lan
guage $this');
 }
 }
}

Now you can check at runtime whether a particular language
is strongly typed or not:

final language = ProgrammingLanguage.dart;
print(language.isStronglyTyped);

Run that and you’ll see true printed to the console.

As you can see, you can do a lot with extensions. Although
they can be very powerful, extensions by definition add non-
standard behavior, and this can make it harder for other

developers to understand your code. Use extensions when
they make sense, but try not to overuse them.

Challenges

Before moving on, here are some challenges to test your
knowledge of advanced classes. It’s best if you try to solve
them yourself, but solutions are available with the
supplementary materials for this book if you get stuck.

Challenge 1: Heavy monotremes

Dart has a class named Comparable, which is used by the the
sort method of List to sort its elements. Add a weight field
to the Platypus class you made in this lesson. Then make
Platypus implement Comparable so that when you have a
list of Platypus objects, calling sort on the list will sort
them by weight.

Challenge 2: Fake notes

Design an interface to sit between the business logic of your
note-taking app and a SQL database. After that, implement a
fake database class that will return mock data.

Challenge 3: Time to code

Dart has a Duration class for expressing lengths of time.
Make an extension on int so that you can express a duration
like so:

final timeRemaining = 3.minutes;

Key points

A subclass has access to the data and methods of its
parent class.

You can create a subclass of another class by using the
extends keyword.

A subclass can override its parent’s methods or
properties to provide custom behavior.

Dart only allows single inheritance on its classes.

Abstract classes define class members and may or may
not contain concrete logic.

Abstract classes can’t be instantiated.

One rule of clean architecture is to separate business
logic from infrastructure logic like the UI, storage, third-
party packages and the network.

Interfaces define a protocol for code communication.

Use the implements keyword to create an interface.

Mixins allow you to share code between classes.

Extension methods allow you to give additional
functionality to classes that are not your own.

Where to go from here?

To see how to use interfaces in the context of building a real
app, check out the raywenderlich.com article State
Management with Provider:
https://www.raywenderlich.com/6373413-state-
management-with-provider.

Once you learn how to use a hammer, everything will look
like a nail. Now that you know about abstract classes and
interfaces, you might be tempted to use them all the time.
Don’t over-engineer your apps, though. Start simple, and
add abstraction as you need it.

Throughout this book, you’ve gotten a few ideas for writing
clean code. However, the principles of building clean
architecture take clean coding to a whole new level. You
won’t master the skill all at once, but reading books and
articles and watching videos on the subject will help you
grow as a software engineer.

Oh, one more thing.

Uif!tfdsfu!up!mfbsojoh!Ebsu!xfmm!jt!up!dg"ewtkqw
u"cpf"lwuv"vt{"vjkpiu0"Vlqfh#|rx*uh#uhdglqj#wkl
v/#wkdw#reylrxvo|#ghvfulehv#|rx1#Kssh$nsf%

https://www.raywenderlich.com/6373413-state-management-with-provider

Chapter 10: Asynchronous
Programming

You’ve come a long way in your study of the Dart
programming language. This chapter is an important one, as
it fills in the remaining gaps needed to complete your
apprenticeship. In it, you’ll not only learn how to deal with
code that takes a long time to complete, but along the way,
you’ll also see how to handle errors, connect to a remote
server and read data from a file.

Your computer does a lot of work, and it does the work so
fast that you don’t usually realize how much it’s actually
doing. Every now and then, though, especially on an older
computer or phone, you may notice an app slow down or
even freeze. This may express itself as jank during an
animation: that annoying stutter that happens when the
device is doing so much work that some animation frames
get dropped.

Tasks that take a long time generally fall into two categories:
I/O tasks, and computationally intensive tasks. I/O, or input-
output, includes things like reading and writing files,
accessing a database, or downloading content from the
internet. These all happen outside the CPU, so the CPU has
to wait for them to complete. Computationally intensive
tasks, on the other hand, happen inside the CPU. These tasks
may include things like decrypting data, performing a
mathematical calculation, or parsing JSON.

As a developer, you have to think about how your app, and in
particular your UI, will respond when it meets these time-
consuming tasks. Can you imagine if a user clicked a
download button in your app, and the app simply froze until
the 20 MB download was complete? You’d be collecting one-
star reviews in a hurry.

Thankfully, Dart has a powerful solution baked into the very
core of the language that allows you to gracefully handle
delays without blocking the responsiveness of your app.

Concurrency in Dart

A thread is a sequence of commands that a computer
executes. Some programming languages support
multithreading, which is running multiple threads at the
same time, while others do not. Dart, in particular, is a
single-threaded language.

“What? Was it designed back in 1990 or something?”

No, Dart was actually created in 2011, well into the age of
multicore CPUs.

“What a waste of all those other processing cores!”

Ah, but no. This choice to be single-threaded was made very
deliberately and has some great advantages as you’ll soon
see.

Parallelism vs. concurrency

To understand Dart’s model for handling long-running tasks,
and also to see why the creators of Dart decided to make
Dart single-threaded, it’s helpful to understand the
difference between parallelism and concurrency. In common
English, these words mean approximately the same thing,
but in computer science, there’s a distinction.

Parallelism is when multiple tasks run at the same time on
multiple processors or CPU cores. Concurrency, on the other
hand, is when multiple tasks take turns running on a single
CPU core. When a restaurant has a single person alternately
taking orders and clearing tables, that’s concurrency. But a
restaurant that has one person taking orders and a different
person clearing tables, that’s parallelism.

“It seems like parallelism is better.”

It can be — when there’s a lot of work to do and that work is
easy to split into independent tasks. However, there are
some disadvantages with parallelism, too.

A problem with parallelism

Little Susie has four pieces of chocolate left in the box next
to her bed. She used to have ten, but she’s already eaten six
of them. She’s saved the best ones for last, because after
school today, three of her friends are coming home with her.
She can’t wait to share her chocolates with them. Imagine
her horror, though, when she gets home and finds only two
pieces of chocolate left in the box! After a lengthy
investigation, it turns out that Susie’s brother had discovered
her stash and helped himself to two of the chocolates. From

that day on, Susie always locked her box whenever she left
home.

The same thing can happen in parallel threads that have
access to the same memory. One thread saves a value in
memory and expects the value to be the same when the
thread checks the value later. However, if a second thread
modifies the value, the first thread gets confused. It can be a
major headache to track down those kinds of bugs because
they come from a source completely separated from the code
that reports the error. A language that supports
multithreading needs to set up a system of locks so that
values won’t be changed at the wrong time. The cognitive
load of designing, implementing, and debugging a system
with multiple threads can be heavy, to say the least.

So the problem isn’t so much with parallelism itself, but
rather with multiple threads having access to the same state
in memory.

Dart isolates

Dart’s single thread runs in what it calls an isolate. Each
isolate has its own allocated memory area, which ensures
that no isolate can access any other isolate’s state. That
means that there’s no need for a complicated locking system.
It also means that sensitive data is much more secure. Such a
system greatly reduces the cognitive load on a programmer.

But isn’t concurrency slow?

If you’re running all of a program’s tasks on a single thread,
it seems like it would be really slow. However, it turns out

that that’s not usually the case. In the following image, you
can see tasks running on two threads in the top portion, and
the same tasks running on a single thread in the bottom
portion.

The concurrent version does take a little longer, but it isn’t
much longer. The reason is that the parallel threads were
idle for much of the time. A single thread is usually more
than enough to accomplish what needs to be done.

Flutter needs to update the UI 60 times a second, where each
update timeslice is called a frame. That leaves about 16
milliseconds to redraw the UI on each frame. It doesn’t take
that long, normally, so that gives you additional time to
perform other work while the thread is idle. As long as that
work doesn’t block Flutter from updating the UI on the next
frame, the user won’t notice any problems. The trick is to
schedule tasks during the thread’s downtimes.

Synchronous vs. asynchronous code

The word synchronous is composed of syn, meaning
“together”, and chron, meaning “time”, thus together in
time. Synchronous code is where each instruction is

executed in order, one line of code immediately following
the previous one.

This is in contrast to asynchronous code, which means not
together in time. That is, with asynchronous code, certain
tasks are rescheduled to be run in the future when the thread
isn’t busy.

All of the code that you’ve written so far in the book has
been synchronous. For example:

print('first');
print('second');
print('third');

Run that and it prints:

first
second
third

Since the code is executed synchronously, it’ll never print in
a different order like third first second.

For many tasks, order matters. Multiplying before adding is
different than adding before multiplying. You have to open
the bottle before you can take a drink. For other tasks,
though, the order doesn’t matter. It doesn’t matter if you
brush your teeth first or wash your face first. It doesn’t
matter if you put a sock on the right foot first or the left foot
first.

As in life, so it is with Dart. While some code needs to be
executed in order, other tasks can be temporarily postponed.
The postponable tasks are where the Dart event loop comes
in.

The event loop

You’ve learned that Dart is based around concurrency on a
single thread, but how does Dart manage to schedule tasks
asynchronously? Dart uses what it calls an event loop to
execute tasks that had previously been postponed.

The event loop has two queues: a microtask queue and an
event queue. The microtask queue is mostly used internally
by Dart. The event queue is for events like a user entering a
keystroke or touching the screen, or data coming from a
database, file, or remote server. Have a look at the following
image:

Synchronous tasks in the main isolate thread are always
run immediately. You can’t interrupt them.

If Dart finds any long-running tasks that agree to be
postponed, Dart puts them in the event queue.

When Dart is finished running the synchronous tasks,
the event loop checks the microtask queue. If the
microtask queue has any tasks, the event loop puts them
on the main thread to execute next. The event loop
keeps checking the microtask queue until it’s empty.

If the synchronous tasks and microtask queue are both
empty, then the event loop sends the next waiting task
in the event queue to run in the main thread. Once it
gets there, the code is executed synchronously. Just like
any other synchronous code, nothing can interrupt it
after it starts.

If any new microtasks enter the microtask queue, the
event loop always handles them before the next event in
the event queue.

This process continues until all of the queues are empty.

Running code in parallel

When people say Dart is single-threaded, they mean that
Dart only runs on a single thread in the isolate. However,
that doesn’t mean you can’t have tasks running on another
thread. One example of this is when the underlying platform
performs some work at the request of Dart. For example,
when you ask to read a file on the system, that work isn’t
happening on the Dart thread. The system is doing the work
inside its own process. Once the system finishes its work, it
passes the result back to Dart, and Dart schedules some code

to handle the result in the event queue. A lot of the I/O work
from the dart:io library happens in this way.

Another way to perform work on other threads is to create a
new Dart isolate. The new isolate has its own memory and
its own thread working in parallel with the main isolate. The
two isolates are only able to communicate through
messages, though. They have no access to each other’s
memory state. The idea is similar to messaging a friend.
Sending Ray a text message doesn’t give you access to the
internal memory of his mobile device. He simply checks his
messages and replies to you when he feels like it.

You won’t often need to create a new isolate. However, if you
have a task that’s taking too long on your main isolate
thread, which you’ll notice as unresponsiveness or jank in
the UI, then this work is likely a good candidate for handing
it off to another isolate. The final section of this chapter will
tell you how to do that.

Futures

You now know, at a high level, how Dart handles
asynchronous code with its event loop. Now it’s time to learn
how to work with asynchronous code at a practical level.

The Future type

Dart has a type called Future, which is basically a promise to
give you the value you really want later. Here’s the signature
of a method that returns a future:

Future<int> countTheAtoms();

Future itself is generic; it can provide any type. In this case,
though, the future is promising to give you an integer. In
your code, if you called countTheAtoms, Dart would quickly
return an object of type Future<int>. In effect, this is
saying, “Hey, I’ll get back to you with that int sometime
later. Carry on!”, in which case you’d proceed to run
whatever synchronous code is next.

Behind the scenes, Dart has passed your request on to,
presumably, an atom counting machine, which runs
independently of your main Dart isolate. At this point, there
is nothing on the event queue, and your main thread is free
to do other things. Dart knows about the uncompleted
future, though. When the atom counting machine finishes
its work, it tells Dart and Dart puts the result, along with any
code you gave it to handle the result, on the event queue.
Dart says, “Sorry that took so long. Who knew that there
were 9.2 quintillion atoms in that little grain of sand! I’ll put
your handling code at the end of the event queue. Give the
event loop a few milliseconds and then it’ll be your turn.”

Note: Since the largest an int can be on a 64 bit system
is 9,223,372,036,854,775,807, or 2^63 − 1, it would be
better to use BigInt as the return type of
countTheAtoms. Although slower, BigInt can handle
arbitrarily large numbers. When int values are too big
at compile time, there’s a compile-time error. However,
at runtime, they overflow. That is,
9223372036854775807 + 1 == -9223372036854775808.

States for a future

Before a future completes, there isn’t really anything you
can do with it, but after it completes it will have two possible
results: the value you were asking for, or an error. This all
works out to three different states for a future:

Uncompleted

Completed with a value

Completed with an error

Example of a future

One easy way to see a future in action is with the
Future.delayed constructor.

final myFuture = Future<int>.delayed(
 Duration(seconds: 1),
 () => 42,
);

Here’s what’s happening:

myFuture is of type Future<int>.

The first argument is a Duration. After a delay of 1
second, Dart will add the anonymous function in the
second argument to the event queue.

When the event loop gets to () => 42 it will run that
function in the main isolate, which results in the
function returning the integer 42.

In the future above, the value you really want is the 42, but
how do you get it? Your variable myFuture isn’t 42; it’s a
future that’s a promise to return an int or an error. You can
see that if you try to print myFuture:

print(myFuture);

The result is:

Instance of 'Future<int>'

There are two ways to get at the value after a future
completes. One is with callbacks and the other is using the
async-await syntax.

Getting the result with callbacks

A callback is an anonymous function that will run after some
event has completed. In the case of a future, there are three
callback opportunities: then, catchError and whenComplete.

Replace the body of the main function with the following
code:

print('Before the future');

final myFuture = Future<int>.delayed(
 Duration(seconds: 1),
 () => 42,
)
 .then(
 (value) => print('Value: $value'),
)
 .catchError(
 (error) => print('Error: $error'),
)
 .whenComplete(
 () => print('Future is complete'),
);

print('After the future');

You recall that a future will either give you a value or an
error. If it completes with a value, you can get the value by
adding a callback to the then method. The anonymous
function provides the value as an argument so that you have
access to it. On the other hand, if the future completes with
an error, you can handle it in catchError. Either way,
though, whether the future completes with a value or an
error, you have the opportunity to run any final code in
whenComplete.

Run the code above to see these results:

Before the future
After the future
Value: 42
Future is complete.

Were you surprised that “After the future” was printed before
the future results? That print statement is synchronous, so
it ran immediately. Even if the future didn’t have a one-
second delay, it would still have to go to the event queue and
wait for all the synchronous code to finish.

Getting the result with async-await

Callbacks are pretty easy to understand, but they can be hard
to read, especially if you nest them in multiple layers. A
more readable way to write the code above is using the async
and await syntax. This syntax makes futures look much
more like synchronous code.

Replace the entire main function with the following:

Future<void> main() async {
 print('Before the future');

 final value = await Future<int>.delayed(
 Duration(seconds: 1),
 () => 42,
);
 print('Value: $value');

 print('After the future');
}

There are a few changes this time:

If a function uses the await keyword, then it must
return a Future and add the async keyword before the
function body. Using async clearly tells Dart that this is
an asynchronous function, and that the results will go to
the event queue. Since main doesn’t return a value, you
use Future<void>.

In front of the future, you added the await keyword.
Once Dart sees await, the rest of the function won’t run
until the future completes. If the future completes with
a value, there are no callbacks. You have direct access to
that value. Thus, the type of the value variable above is
not Future, but int.

Run the code above to see the following results:

Before the future
Value: 42
After the future

This time, “After the future” gets printed last. That’s because
everything after the await keyword is sent to the event
queue.

What if the future returns an error, though?

For that, you need to learn about an error handling feature of
Dart called a try-catch block.

Handling errors with try-catch blocks

The syntax of a try-catch block looks like this:

try {

} catch (error) {

} finally {

}

If you’re attempting an operation that might result in an
error, you’ll place it in the try block. If there is an error, Dart
will give you a chance to handle it in the catch block. And
whether there is an error or not, you can run some last code
in the finally block.

Note: Dart has both an Exception type and an Error
type. The words exception and error are often used
interchangeably, but an Exception is something that
you should expect and handle in the catch block.
However, an Error is the result of a programming
mistake. You should let the error crash your app as a
sign that you need to fix whatever caused the error.

Try-catch blocks with async-await

Here’s what the future looks like inside the try-catch block:

print('Before the future');

try {
 final value = await Future<int>.delayed(
 Duration(seconds: 1),
 () => 42,
);
 print('Value: $value');
} catch (error) {
 print(error);
} finally {
 print('Future is complete');
}

print('After the future');

The catch and finally blocks correspond to the catchError
and whenComplete callbacks that you saw earlier. If the
future completes with an error, then the try block will
immediately be aborted and the catch block will be called.
But no matter whether the future completes with a value or
an error, the finally block will always be called.

Run the code above to see the following result:

Before the future
Value: 42
Future is complete
After the future

The future finished with a value, so the catch block was not
called.

Catching an error

In order to see what happens when there’s an error, add the
following line to the try block on the line immediately
before print('Value: $value'):

throw Exception('There was an error');

The throw keyword is how you return an instance of
Exception or Error.

Run the code again:

Before the future
Exception: There was an error
Future is complete
After the future

This time you can see that the try block never got a chance
to print the value, but the catch block picked up the error
message from the exception.

Asynchronous network requests

In the examples above, you used Future.delayed to
simulate a task that takes a long time. Using
Future.delayed is useful during app development for this
same reason: You can implement an interface with a mock
network request class to see how your UI will react while the
app is waiting for a response.

As useful as Future.delayed is, though, eventually you’ll
need to implement the real network request class. The
following example will show how to make an HTTP request
to access a REST API. This example will make use of many of
the concepts you’ve learned previously in this book.

Note: HTTP, or hypertext transfer protocol, is a standard
way of communicating with a remote server. REST, or
representational state transfer, is an architectural style
that includes commands like GET, POST, PUT, and
DELETE. The API, or application programing interface, is
similar in idea to the interfaces you made in Chapter 9.
A remote server defines a specific API using REST
commands which allow clients to access and modify
resources on the server.

Creating a data class

The web API you’re going to use will return some data about
a todo list item. The data will be in JSON format, so in order
to convert that into a more usable Dart object, you’ll create a
special class to hold the data.

Add the following code below the main function:

class Todo {
 Todo({
 required this.userId,
 required this.id,
 required this.title,
 required this.completed,
 });

 factory Todo.fromJson(Map<String, Object?> jso
nMap) {
 return Todo(
 userId: jsonMap['userId'] as int,
 id: jsonMap['id'] as int,
 title: jsonMap['title'] as String,
 completed: jsonMap['completed'] as bool,
);
 }

 final int userId;
 final int id;
 final String title;
 final bool completed;

 @override
 String toString() {
 return 'userId: $userId\n'
 'id: $id\n'
 'title: $title\n'
 'completed: $completed';
 }
}

This is all content that you learned in Chapter 6. You’ll use
the fromJson factory constructor in a minute.

Adding the necessary imports

The http package from the Dart team lets you make a GET
request to a real server. Make sure your project has a
pubspec.yaml file, and then add the following dependency:

dependencies:
 http: ^0.13.1

Save the file, and if necessary, run dart pub get in the
terminal to pull the http package from Pub.

Then at the top of the file with your main function, add the
following imports:

import 'dart:convert';
import 'dart:io';
import 'package:http/http.dart' as http;

Here’s what each import is for:

The dart:convert library will give you jsonDecode, a
function for converting a raw JSON string to a Dart map.

The dart:io library has HttpException and
SocketException, which you’ll use shortly.

The final import is the http library that you just added
to pubspec.yaml. Note the as http at the end. This
isn’t necessary, but the as keyword lets you prefix any
functions from the library with the name http. You
don’t need to call it http — any arbitrary name is fine.

Feel free to change the name to pinkElephants if you so
desire. Providing a custom name can be useful for
avoiding naming conflicts with other libraries or
functions.

Making a GET request

Now that you have the necessary imports, replace your main
function with the following code:

Future<void> main() async {
 final url = 'https://jsonplaceholder.typicode.c
om/todos/1';
 final parsedUrl = Uri.parse(url);
 final response = await http.get(parsedUrl);
 final statusCode = response.statusCode;
 if (statusCode == 200) {
 final rawJsonString = response.body;
 final jsonMap = jsonDecode(rawJsonString);
 final todo = Todo.fromJson(jsonMap);
 print(todo);
 } else {
 throw HttpException('$statusCode');
 }
}

There are a few new things here, so have a look at each of
them:

The URL address is for a server that provides an API that
returns sample JSON for developers. It’s very similar to
the type of API you would make as a backend for a client
app. Uri.parse converts the raw URL string to a format
that http.get will recognize.

You use http.get to make a GET request to the URL.
Change http to pinkElephants if that’s what you called
it earlier. GET requests are the same kinds of requests
that browsers make whenever you type a URL in the
address bar.

Since it takes time to contact a server that may exist in
another continent, http.get returns a future. Dart
passes off the work of contacting the remote server to
the underlying platform, so you won’t need to worry
about it blocking your app while you wait. Since you are
using the await keyword, the rest of the main method
will be added to the event queue when the future
completes. If the future completes with a value, the
value will be an object of type Response, which includes
information from the server.

HTTP defines various three-digit status codes. A status
code of 200 means OK — the request was successful and
the server did what you asked of it. The common status
code of 404, on the other hand, means the server
couldn’t find what you were asking for. If that happens
you’ll throw an HttpException.

The response body from this URL address includes a
string in JSON format. You use jsonDecode from the
dart:convert library to convert the raw JSON string
into a Dart map.

Once you have a Dart map, you can pass it into the
fromJson factory constructor of your Todo class that you
wrote earlier.

Make sure you have an internet connection, then run the
code above. You’ll see a printout from your Todo object’s
toString method:

userId: 1
id: 1
title: delectus aut autem
completed: false

The values of each field come from the remote server.

Handling errors

There are a few things that could go wrong with the code
above, so you’ll need to be ready to handle any errors that
come up. First, surround all the code inside the body of the
main function with a try block:

try {
 final url = 'https://jsonplaceholder.typicode.c
om/todos/1';
 // ...
}

Then below the try block, add the following catch blocks:

on SocketException catch (error) {
 print(error);
} on HttpException catch (error) {
 print(error);
} on FormatException catch (error) {
 print(error);
}

These catch blocks handle specific types of errors. You use
the on keyword to specify the name of the exception. Here’s
what each one means:

SocketException: You’ll get this exception if there’s no
internet connection. The http.get method is the one to
throw the exception.

HttpException: You’re throwing this exception yourself
if the status code is not 200 OK.

FormatException: jsonDecode throws this exception if
the JSON string from the server isn’t in proper JSON
format. It would be unwise to blindly trust whatever the
server gives you.

Note: It’s good to be specific in your error catching.
That way if a different kind of error comes up that you
weren’t expecting, your app will fail with a crash. That
might sound bad, but it means you can fix the error
right away instead of silently ignoring it as a generic
catch block would do.

Testing a socket exception

Turn off your internet and run the code again. You should
see the following output:

SocketException: Failed host lookup: 'jsonplaceh
older.typicode.com'

In an actual app, instead of just printing a message to the
console, you’d probably want to remind the user to turn on
their internet.

Turn your internet back on and proceed to the next test.

Testing an HTTP exception

Change the URL to the following:

final url = 'https://jsonplaceholder.typicode.co
m/todos/pink-elephants';

Unless https://jsonplaceholder.typicode.com has recently
added the /pink-elephants URL endpoint, you should get a
404 when you run the code again:

HttpException: 404

In a real app, you’d inform the user that whatever they were
looking for isn’t available.

Restore the URL as it was before:

final url = 'https://jsonplaceholder.typicode.co
m/todos/1';

Testing a JSON format exception

Replace the following line:

final rawJsonString = response.body;

https://jsonplaceholder.typicode.com/

with this:

final rawJsonString = 'abc';

Since abc isn’t properly formatted JSON, you’ll see the
following error when you run the code again:

FormatException: Unexpected character (at charac
ter 1)
abc
^

Nice work! You now know how to get the value from a future
and handle any errors.

After you finish the following mini-exercises, you’ll learn
about streams, a concept closely related to futures.

Mini-exercises

1. Use the Future.delayed constructor to provide a string
after two seconds that says “I am from the future.”

2. Create a String variable named message that awaits the
future to complete with a value.

3. Surround the code above with a try-catch block.

Streams

A future represents a single value that will arrive in the
future. A stream, on the other hand, represents multiple

values that will arrive in the future. Think of a stream like a
list of futures. You can imagine a stream meandering
through the woods as the autumn leaves fall onto the surface
of the water. Each time a leaf floats by, it’s like the value that
a Dart stream provides.

Streaming music online as opposed to downloading the song
before playing it is another good comparison. When you
stream music, you get lots of little chunks of data, but when
you download the whole file, you only get a single value,
which is the entire file — a little like what a future returns. In
fact, the http.get command you used in the last section was
actually implemented as a stream internally. However, Dart
just waited until the stream finished and then returned all of
the data at once in the form of a completed future.

Streams, which are of type Stream, are used extensively in
Dart and Dart-based frameworks. Here are some examples:

Reading a large file stored locally where new data from
the file comes in chunks.

Downloading a file from a remote server.

Listening for requests coming into a server.

Representing user events such as button clicks.

Relaying changes in app state to the UI.

While it’s possible to build your own streams from scratch,
most of the time you don’t need to do that. You only need to

be able to use the streams that Dart or a Dart package
provides for you, which is what this section will teach you.

Subscribing to a stream

The dart:io library contains a File class which allows you
to read data from a file. First, you’ll read data the easy way
using the readAsString method, which returns the contents
of the file as a future. Then you’ll do it again by reading the
data as a stream of bytes.

Adding an assets file

You need a text file to work with, so you’ll add that to your
project now.

Create a new folder named assets in the root of your project.
In that folder, create a file named text.txt. Add some text to
the file. Although any text will work, Lorem Ipsum is a good
standby:

Lorem ipsum dolor sit amet, consectetur adipisci
ng elit, sed do eiusmod tempor incididunt ut lab
ore et dolore magna aliqua. Ut enim ad minim ven
iam, quis nostrud exercitation ullamco laboris n
isi ut aliquip ex ea commodo consequat. Duis aut
e irure dolor in reprehenderit in voluptate veli
t esse cillum dolore eu fugiat nulla pariatur. E
xcepteur sint occaecat cupidatat non proident, s
unt in culpa qui officia deserunt mollit anim id
est laborum.

Then save the file.

Note: Lorem Ipsum is often used as filler text by graphic
designers and app developers when the meaning of the
text doesn’t matter. The Latin words were taken from
the writings of the Roman statesman and philosopher
Cicero but modified so as to become essentially
meaningless.

Reading as a string

Now that you’ve created the text file, replace your Dart code
with the following:

import 'dart:io';

Future<void> main() async {
 final file = File('assets/text.txt');
 final contents = await file.readAsString();
 print(contents);
}

Here’s what’s new:

File takes the relative path to your text file as the
argument.

readAsString returns Future<String>, but by using
await you’ll receive the string itself when it’s ready.

File also has a readAsStringSync method, which would run
synchronously and avoid awaiting a future. However, doing
so would block your app if the reading takes a while. Many of

the methods on File have synchronous versions, but in
order to prevent blocking your app, you should generally
prefer the asynchronous versions.

Run the code above, and you’ll see the contents of text.txt
printed to the console.

Increasing the file size

If the file is large, you can read it as a stream. This allows you
to start processing the data more quickly, since you don’t
have to wait to finish reading the entire file as you did in the
last example.

When you read a file as a stream, it reads the file in chunks.
The size of the chunks depends on how Dart is implemented
on the system you’re using, but it’s probably 65,536 bytes per
chunk as it was on the local machines used when writing this
chapter. The text.txt file with Lorem Ipsum that you
created earlier is only 445 bytes, so that means trying to
stream that file would be no different than simply reading
the whole thing as you did before.

In order to get a text file large enough to stream in chunks,
create a new file in the assets folder called text_long.txt.
Copy the Lorem Ipsum text and paste it in text_long.txt as
new lines so that there are 1000 Lorem Ipsum copies. You
can of course select-all and recopy from time to time, unless
you find it therapeutic to paste things a thousand times.
Save the file and you’ll be ready to proceed.

Alternatively, you can find text_long.txt in the assets folder
of the final project that comes with this chapter.

Reading from a stream

Replace the contents in the body of the main function with
the following code:

final file = File('assets/text_long.txt');
final stream = file.openRead();
stream.listen(
 (data) {
 print(data.length);
 },
);

Here are a few points to note:

Instead of calling readAsString on file, this time you’re
calling openRead, which returns an object of type
Stream<List<int>>. That’s a lot of angle brackets, but
Stream<List<int>> simply means that it’s a stream that
periodically produces a list, and that list is a list of
integers. The integers are the byte values, and the list is
the chunk of data that’s being passed in.

To subscribe for notifications whenever there’s new data
coming in the stream, you call the listen method and
pass it an anonymous function that takes a single
parameter. The data parameter here is of type
List<int>, so now you have access to the chunk of data
coming in from the file.

Since each integer in the list is one byte, calling
data.length will tell you the number of bytes in the
chunk.

Note: By default, only a single object can listen to a
stream. This is known as a single subscription stream. If
you want more than one object to be notified of stream
events, you need to create a broadcast stream, which
you could do like so:
final broadcastStream =
stream.asBroadcastStream();

Run the code in main and you should see something similar
to the following:

65536
65536
65536
65536
65536
65536
52783

The data, at least on the computer used while writing this
chapter, was all in 65,536-byte chunks until the final one,
which was smaller since it didn’t quite fill up the 65,536-byte
buffer size. Your final chunk may be a different size than the
one shown here, depending on how therapeutic your copy-
and-paste session was.

Using an asynchronous for loop

Just as you can use callbacks or async-await to get the value
of a future, there are also two ways to get the values of a

stream. In the example above, you used the listen callback.
Here is the same example using an asynchronous for loop:

Future<void> main() async {
 final file = File('assets/text_long.txt');
 final stream = file.openRead();
 await for (var data in stream) {
 print(data.length);
 }
}

The await for keywords cause the loop to pause until the
next data event comes in. Run this and you’ll see the same
results as before.

Error handling

Like futures, stream events can also produce an error rather
than a value. You can handle errors using a callback or try-
catch blocks.

Using a callback

One way to handle errors is to use the onError callback like
so:

final file = File('assets/text_long.txt');
final stream = file.openRead();
stream.listen(
 (data) {
 print(data.length);
 },
 onError: (error) {
 print(error);
 },
 onDone: () {
 print('All finished');
 },
);

Here are a couple of points to note:

When an error occurs, it won’t cancel the stream, and
you’ll continue to receive more data events. If you
actually did want to cancel the stream after an error,
then listen also has a cancelOnError parameter which
you can set to true.

When a stream finishes sending all of its data, it’ll fire a
done event. This gives you a chance to respond with an
onDone callback.

Using try-catch

The other way to handle errors on a stream is with a try-
catch block in combination with async-await. Here is what
that looks like:

try {
 final file = File('assets/text_long.txt');
 final stream = file.openRead();
 await for (var data in stream) {
 print(data.length);
 }
} on Exception catch (error) {
 print(error);
} finally {
 print('All finished');
}

In this example, you’re catching all exceptions. A more
robust solution would check for specific errors like
FileSystemException, which would be thrown if the file
didn’t exist.

Run either the callback version, or the try-catch version,
and you’ll see the same chunk sizes as before, with the
additional text “All finished” printed at the end.

Change the filename to something nonexistent, like
pink_elephants.txt, and run the code again. Confirm that
you have a FileSystemException.

FileSystemException: Cannot open file, path = 'as
sets/pink_elephants.txt' (OS Error: No such file
or directory, errno = 2)
All finished

Even with the exception, the finally block, or onDone
callback if that’s what you used, still printed “All finished”.

Cancelling a stream

As mentioned above, you may use the cancelOnError
parameter to tell the stream that you want to stop listening
in the event of an error. However, even if there isn’t an error,
you should always cancel your subscription to a stream if you
no longer need it. This allows Dart to clean up the memory
the stream was using. Failing to do so can cause a memory
leak.

Replace your Dart code with the following version:

import 'dart:async';
import 'dart:io';

Future<void> main() async {
 final file = File('assets/text_long.txt');
 final stream = file.openRead();
 StreamSubscription<List<int>>? subscription;
 subscription = stream.listen(
 (data) {
 print(data.length);
 subscription?.cancel();
 },
 cancelOnError: true,
 onDone: () {
 print('All finished');
 },
);
}

Calling listen returns a StreamSubscription, which is part
of the dart:async library. Keeping a reference to that in the
subscription variable allows you to cancel the subscription

whenever you want. In this case, you cancel it after the first
data event.

Run the code and you’ll only see 65536 printed once. The
onDone callback was never called because the stream never
completed.

Transforming a stream

Being able to transform a stream as the data is coming in is
very powerful. In the examples above, you never did
anything with the data except print the length of the list of
bytes. Those bytes represent text, though, so you’re going to
transform the data from numbers to text.

For this demonstration, there’s no need to use a large text
file so you’ll switch back to the 445-byte version of Lorem
Ipsum in text.txt.

Viewing the bytes

Replace the contents of main with the following code:

final file = File('assets/text.txt');
final stream = file.openRead();
stream.listen(
 (data) {
 print(data);
 },
);

Run that and you’ll see a long list of bytes in decimal form:

[76, 111, 114, 101, ...]

Although different computers encode text files using
different encodings, the abbreviated list above is from a
computer that uses UTF-8 encoding. You may recall that
UTF-16 uses 16-bit, or 2-byte, code units to encode Unicode
text. UTF-8 uses one to four 8-bit units to encode Unicode
text. Since for values of 127 and below, UTF-8 and Unicode
code points are the same, English text only takes one byte
per letter. This makes file sizes smaller than UTF-16
encoding, which is beneficial when saving to disk or sending
over a network.

If you look up 76 in Unicode you’ll see that it’s the capital
letter L, 111 is o, and on it goes with Lorem ipsum dolor
sit....

Decoding the bytes

Next, you’ll take the UTF-8 bytes and convert them to a
string.

Make sure you have the following imports and main method:

import 'dart:convert';
import 'dart:io';

Future<void> main() async {
 final file = File('assets/text.txt');
 final stream = file.openRead();
 await for (var data in stream.transform(utf8.d
ecoder)) {
 print(data);
 }
}

The difference here is that you added the transform method
to the stream. This method takes the input from the original
stream, transforms it with a StreamTransformer, and
outputs a new stream, which you can listen to or loop over as
before. In this case, the stream transformer was the
dart:convert library’s utf8.decoder, which takes a list of
bytes and converts them to a string.

Run the code and you’ll see the Lorem Ipsum passage
printed in plain text.

Mini-exercises

The following code produces a stream that outputs an
integer every second and then stops after the tenth time.

Stream<int>.periodic(
 Duration(seconds: 1),
 (value) => value,
).take(10);

1. Set the stream above to a variable named myStream.

2. Use await for to print the value of the integer on each
data event coming from the stream.

Isolates

Most of the time it’s fine to run your own code
synchronously, and for long-running I/O tasks, you can use
Dart libraries that return futures or streams. However you
may sometimes discover that your code is too
computationally expensive and degrades the performance of
your app.

App stopping synchronous code

Have a look at this example:

String playHideAndSeekTheLongVersion() {
 var counting = 0;
 for (var i = 1; i <= 10000000000; i++) {
 counting = i;
 }
 return '$counting! Ready or not, here I come!'
;
}

Counting to ten billion takes a while — even for a computer!
If you run that function in a Flutter app, your app’s UI would
freeze until the function finishes.

Try running that function from main like so:

print("OK, I'm counting...");
print(playHideAndSeekTheLongVersion());

You’ll notice a significant wait until the counting finishes.

App stopping asynchronous code

Since you’ve read this far in the chapter, you should be aware
that making the function asynchronous doesn’t fix the
problem:

Future<String> playHideAndSeekTheLongVersion() a
sync {
 var counting = 0;
 await Future(() {
 for (var i = 1; i <= 10000000000; i++) {
 counting = i;
 }
 });
 return '$counting! Ready or not, here I come!'
;
}

Run that using await:

print("OK, I'm counting...");
print(await playHideAndSeekTheLongVersion());

Adding the computationally intensive loop as an anonymous
function in a Future constructor does indeed make it a
future. However, think about what’s going on here. Dart
simply puts that anonymous function at the end of the event
queue. True, all the events before it will get to go first, but

once the 10-billion-counter-loop gets to the end of the
queue, it’ll start running synchronously and block the app
until it finishes. Using a future only delays the eventual
block.

Spawning an isolate

When you’re used to using futures from the Dart I/O
libraries, it’s easy to get lulled into thinking that futures
always run in the background, but that’s not the case. If you
want to run some computationally intensive code on another
thread, then you’ll need to create a new isolate to do that.

The term for creating an isolate in Dart is called spawning.
Since isolates don’t share any memory with each other, they
can only communicate by sending messages. When you
spawn a new isolate, you give it a message communication
object called a send port. The new isolate uses the send port
to send messages back to a receive port, which is listening on
the main isolate.

In this example, the communication is only one way,
although it’s also possible to set up two-way communication
between isolates.

Using a send port to return results

Add the new version of playHideAndSeekTheLongVersion as
a top level method in your file:

import 'dart:isolate';

void playHideAndSeekTheLongVersion(SendPort send
Port) {
 var counting = 0;
 for (var i = 1; i <= 1000000000; i++) {
 counting = i;
 }
 sendPort.send('$counting! Ready or not, here I
come!');
}

Note that now it’s a void function that takes a SendPort
object as a parameter. SendPort is like one of those
emergency mobile phones for kids where the phone can only
call home. Home in this case is the main isolate. Instead of
returning a string from the function like you were doing
before, this time you’re sending it as a message over the send
port. Back in the main isolate, there will be a receive port
listening for the message.

Spawning the isolate and listening for messages

Replace the main method with the following code:

Future<void> main() async {
 // 1
 final receivePort = ReceivePort();

 // 2
 final isolate = await Isolate.spawn(
 playHideAndSeekTheLongVersion,
 // 3
 receivePort.sendPort,
);

 // 4
 receivePort.listen((message) {
 print(message);
 // 5
 receivePort.close();
 isolate.kill();
 });
}

Here’s what you did:

1. You created a receive port to listen for messages from
the new isolate.

2. Next, you spawned a new isolate and gave it two
arguments. The first argument is the function that you
want the isolate to execute. That function must be a
top-level or static function. It must also take a single
parameter. The second argument of spawn will be passed
as the argument to playHideAndSeekTheLongVersion.

3. The receivePort has a sendPort that belongs to it. This
is the part where Mommy gives little Timmy the phone

and says to call home if anything happens. The second
parameter of spawn isn’t actually required to be a
SendPort object, but how is Timmy going to call home
without a phone? If you want to pass additional
parameters to the function, you can make the second
parameter of spawn be a list or a map in which one of
the elements is a SendPort and the other elements are
additional arguments.

4. Finally, receivePort.listen gets a callback whenever
sendPort sends a message. This is where Mommy
carries her phone with her wherever she goes, always
waiting for a call from Timmy.

5. In this example, the isolate is no longer needed after the
work is done, so you can close the receive port and kill
the isolate to free up the memory. This is where the
Mommy-Timmy analogy fails. Mommy goes and saves
Timmy before anything bad happens.

Note: The Flutter framework has a highly simplified way
to start a new isolate, perform some work, and then
return the result using a function called compute.
Rather than passing the function a send port, you just
pass it any values that are needed. In this case, you
could just pass it the number to count to:
await compute(playHideAndSeekTheLongVersion,
10000000000);

That’s enough to get you started on working with isolates. As
a word of advice, though, don’t feel like you need to
preoptimize everything you think might be a
computationally intensive task. Write your code as if it will
all run on the main isolate. Only after you encounter
performance problems will you need to start thinking about
moving some code to a separate isolate.

Challenges

Before moving on, here are some challenges to test your
knowledge of asynchronous programming. It’s best if you try
to solve them yourself, but if you get stuck, solutions are
available in the challenge folder of this chapter.

Challenge 1: Whose turn is it?

This is a fun one and will test how well you understand how
Dart handles asynchronous tasks. In what order will Dart
print the text with the following print statements? Why?

void main() {
 print('1 synchronous');
 Future(() => print('2 event queue')).then(
 (value) => print('3 synchronous'),
);
 Future.microtask(() => print('4 microtask queu
e'));
 Future.microtask(() => print('5 microtask queu
e'));
 Future.delayed(
 Duration(seconds: 1),
 () => print('6 event queue'),
);
 Future(() => print('7 event queue')).then(
 (value) => Future(() => print('8 event queu
e')),
);
 Future(() => print('9 event queue')).then(
 (value) => Future.microtask(
 () => print('10 microtask queue'),
),
);
 print('11 synchronous');
}

Try to answer before checking. If you’re right, give yourself a
well-deserved pat on the back!

Challenge 2: Care to make a comment?

The following link returns a JSON list of comments:

https://jsonplaceholder.typicode.com/comments

Create a Comment data class and convert the raw JSON to a
Dart list of type List<Comment>.

Challenge 3: Data stream

The following code allows you to stream content from the
given URL:

final url = Uri.parse('https://raywenderlich.com'
);
final client = http.Client();
final request = http.Request('GET', url);
final response = await client.send(request);
final stream = response.stream;

Your challenge is to transform the stream from bytes to
strings and see how many bytes each data chunk is. Add
error handling, and when the stream is finished, close the
client.

Challenge 4: Fibonacci from afar

In Challenge 4 of Chapter 4, you wrote some code to
calculate the nth Fibonacci number. Repeat that challenge,
but run the code in a separate isolate. Pass the value of n to
the new isolate as an argument, and send the result back to
the main isolate.

Key points

Dart is single-threaded and handles asynchronous
programming through concurrency, rather than through
parallelism.

Concurrency refers to rescheduling tasks to run later on
the same thread, while parallelism refers to running
tasks at the same time on different threads.

The way Dart implements the scheduling of
asynchronous tasks is by using an event loop, which has
an event queue and a microtask queue.

Synchronous code always runs first and cannot be
interrupted. This is followed by anything in the
microtask queue, and when these are completed, by any
tasks in the event queue.

You may run Dart code on another thread only by
spawning a new isolate.

Dart isolates do not share any memory state and may
only communicate through messages.

Using a future, which is of type Future, tells Dart that
the requested task may be rescheduled on the event
loop.

When a future completes, it will contain either the
requested value or an error.

A method that returns a future doesn’t necessarily run
on a different process or thread. That depends entirely
on the implementation.

A stream, which is of type Stream, is a series of futures.

Using a stream enables you to handle data events as
they happen rather than waiting for them all to finish.

You can handle errors on futures and streams with
callbacks or try-catch blocks.

Where to go from here?

This chapter taught you how to use futures and streams, but
a good next step would be learning how to create them
yourself. There’s also a lot more that you can do through
stream manipulation.

If you enjoyed making HTTP requests to access resources
from a remote server, you should consider server-side
development with Dart as well. Being able to use a single
language for both the frontend and the backend is nothing
short of amazing. No cognitive switching is required,
because everything you learned in this book applies to
writing Dart code on the server.

Conclusion

Congratulations! You’ve reached the end of Dart Apprentice.
We hope you’ve enjoyed reading this book and that the skills
you’ve acquired will help you in all your future Dart projects.

You’re now fully prepared for success with Dart development
in Flutter mobile, Flutter desktop, servers, websites or even
command-line apps. There is, of course, much more to learn,
but most of that learning will just be diving deeper into
topics that you’ve already studied.

Thank you for deciding to learn Dart and thank you even
more to do so by reading this book.

If you have any questions or comments, please stop by our
forums at forums.raywenderlich.com and look for the
particular forum category for this book.

Thank you again for purchasing this book. Your continued
support is what makes the books, tutorials, videos and other
things we do at raywenderlich.com possible. We truly
appreciate it!

– The Dart Apprentice team

http://forums.raywenderlich.com/

	Dart Apprentice
	Book License
	Before You Begin
	What You Need
	Book Source Code & Forums
	About the Cover
	Introduction
	Section I: Dart Apprentice
	Chapter 1: Hello, Dart!
	Chapter 2: Expressions, Variables & Constants
	Chapter 3: Types & Operations
	Chapter 4: Control Flow
	Chapter 5: Functions
	Chapter 6: Classes
	Chapter 7: Nullability
	Chapter 8: Collections
	Chapter 9: Advanced Classes
	Chapter 10: Asynchronous Programming
	Conclusion

