

Chris Buckett
FOREWORD BY Seth Ladd

6$03/(�&+$37(5

M A N N I N G

Dart in Action

by Chris Buckett

Chapter 1

Copyright 2013 Manning Publications

brief contents

PART 1 INTRODUCING DART ...1

1 ■ Hello Dart 3

2 ■ “Hello World” with Dart tools 24

3 ■ Building and testing your own Dart app 40

PART 2 CORE DART.. 69

4 ■ Functional first-class functions and closures 71

5 ■ Understanding libraries and privacy 94

6 ■ Constructing classes and interfaces 119

7 ■ Extending classes and interfaces 138

8 ■ Collections of richer classes 158

9 ■ Asynchronous programming with callbacks and futures 183

PART 3 CLIENT-SIDE DART APPS...209

10 ■ Building a Dart web app 211

11 ■ Navigating offline data 237

12 ■ Communicating with other systems and languages 258

v

vi BRIEF CONTENTS

PART 4 SERVER-SIDE DART ..281

13 ■ Server interaction with files and HTTP 283

14 ■ Sending, syncing, and storing data 308

15 ■ Concurrency with isolates 331

Part 1

Introducing Dart

Dart is a great language for developing web apps. In chapter 1, you’ll get
an overview of why Dart was created and how Dart solves some of the problems
experienced by many developers coming to web development. You’ll discover
some of the features the language offers and see why single-page web applica­
tions are a good architecture for building apps in Dart.

 In chapter 2, you’ll start to come to grips with the rich tool ecosystem that
comes with Dart. Dart is more than a language—it’s an entire development tool­
set, including an IDE, a custom developer browser for testing and debugging,
and a Dart to JavaScript converter.

 In chapter 3, you’ll build a simple Dart app, learning how to create a browser-
based, single-page web app. Through this example application, you’ll be intro­
duced to the language, including Dart’s classes, functions, and variables. By the
end of the chapter, you’ll have a Dart project with a functioning user interface
and accompanying unit tests, and you’ll be ready to start learning about the core
Dart language in Part 2.

Hello Dart

This chapter covers
■ Basics of the Dart development platform
■ A look at the Dart language
■ Tools for building Dart applications

Dart is an exciting language that raises the possibility of building complex web
applications more quickly and accurately than ever before. In this chapter, you’ll
find out how the Dart language and its tool ecosystem fit together, you’ll discover
some of the key features of the Dart language, and you’ll see how you can you use
Dart to begin building single-page web applications.

1.1 What is Dart?
Dart is an open source, structured programming language for creating complex,
browser-based web applications. You can run applications created in Dart either by
using a browser that directly supports Dart code or by compiling your Dart code to
JavaScript. Dart has a familiar syntax, and it’s class-based, optionally typed, and single-
threaded. It has a concurrency model called isolates that allows parallel execution,
which we discuss in chapter 15. In addition to running Dart code in web browsers and
converting it to JavaScript, you can also run Dart code on the command line, hosted

3

4 CHAPTER 1 Hello Dart

in the Dart virtual machine, allowing both the client and the server parts of your apps
to be coded in the same language.

 The language syntax is very similar to Java, C#, and JavaScript. One of the primary
goals for Dart was that the language seem familiar. This is a tiny Dart script, compris­
ing a single function called main:

main() {

var d = "Dart";

String w = "World";

print("Hello ${d} ${w}");

}

Single entry-point function main()
executes when script is fully loaded

Optional typing
(no type specified)

Type annotation
(String type specified)

Uses string interpolation to output "Hello
Dart World" to browser console or stdout

This script can be embedded in an HTML page’s <script type="application/dart">
tags and run in the Dartium browser (a Dart developer edition of Google’s Chrome
web browser). You can convert it to JavaScript using the dart2js tool to run it in all
modern browsers, or run the script directly from a server-side command line using the
Dart Virtual Machine (Dart VM) executable.

 There’s more to Dart than just the language, though. Figure 1.1 shows the ecosys­
tem of tools, which includes multiple runtime environments, language and editor
tools, and comprehensive libraries—all designed to improve the developer’s workflow
when building complex web applications.

In addition to a great tool ecosystem that helps you build applications, Dart is
designed to seem familiar, whether you’re coming from a server-side, Java and C#
world, or a client-side, JavaScript or ActionScript mindset.

Dart

Tools

Environments

Dart editor

Dartium

dart2js

HTML library

IO library
Server virtual

machine

Browser virtual
machine

pub

dartdoc

Figure 1.1 Dart is more than just the language. The Dart project has an entire ecosystem.

5 What is Dart?

A key tool for Dart developers is Dartium, which lets you write or edit Dart code and
see it running by loading the file and refreshing the browser. When Dartium is com­
bined with the Dart Editor, you get the additional benefit of round-trip debugging.

1.1.1 A familiar syntax to help language adoption

One of the key design decisions was that Dart should be familiar to both JavaScript
and Java/C# developers. This design helps developers who are new to Dart pick up
the language quickly. If you’re familiar with these other languages, you’ll be able to
read and understand the intent of Dart code without much trouble.

 Java and C# developers are generally comfortable with type systems, classes, inheri­
tance, and other such concepts. JavaScript developers, on the other hand, range from
UI designers who copy and paste code to add interactivity to a web page (and have never
used a type) to seasoned JavaScript programmers who understand closures and proto­
typical inheritance. To help with this developer diversity, Dart has an optional typing fea­
ture, which allows developers to specify absolutely no types (by using the var keyword,
as in JavaScript), or use type annotations everywhere (such as String, int, Object), or
use any mixture of the two approaches.

 By using type information in your code, you provide documentation about your
intent, which can be beneficial to automated tools and fellow developers alike. A typi­
cal workflow when building a Dart application is to build up the type information pro­
gressively as the code takes shape. Adding or removing type information doesn’t affect
how code runs, but it does let the virtual machine validate your code more effectively.
This allows Dart’s type system to bridge the gap between JavaScript’s dynamic type sys­
tem and Java’s and C#’s static type system.

 Table 1.1 provides some comparisons among Dart, Java, and JavaScript.

Table 1.1 High-level feature comparison among Dart, Java, and JavaScript

Feature Dart Java JavaScript

Type system

First-class citizen
functions

Closures

Classes

Interfaces

Concurrency

Optional, dynamic

Yes

Yes

Yes, single inheritance

Yes, multiple interfaces

Yes, with isolates

Strong, static

Can simulate with anonymous
functions

Yes, with anonymous classes

Yes, single inheritance

Yes, multiple interfaces

Yes, with threads

Weak, dynamic

Yes

Yes

Prototypical

No

Yes, with HTML5 web
workers

Dart is a general-purpose language, and like JavaScript or Java you can use it to build
many different types of application. Dart really shines, though, when you’re building
complex web applications.

6 CHAPTER 1 Hello Dart

1.1.2 Single-page application architecture

The single-page applications Google Mail, Google Instant Search, and Google Maps
are typical of the type of web application that Dart was designed to build. The source
code for the entire application (or at least all the use cases for a major portion of the
application) is loaded by a single web page. This source code, running in the browser,
is responsible for building a UI and requesting data from the server to populate that
UI, as shown in figure 1.2.

 Single-page applications use a fast client-side virtual machine to move processing
from the server to the client. This allows your server to serve more requests, because
the processing involved in building the layout is moved onto the client. By using
Dart’s HTML libraries to incorporate modern HTML5 browser-storage and -caching
technologies, applications can also cache data in the browser to improve application
performance further or even allow users to work offline.

 Each Dart script has a single entry-point function called main() that is the first
function executed by the Dart VM. Thus you can rely on all code that defines an appli­
cation when the main function is called; you can’t define and execute a function
within running code as you can with JavaScript—there is no eval() or other monkey-
patching of executing code. This single feature helps you write Dart applications that
fit the single-page application architecture, because you can be sure your code will
execute as a single, known unit of code. The Dart VM uses this feature to improve
application start-up time, using heap snapshots to load apps much more quickly than
the equivalent JavaScript application.

Browser Server

6. Server loads data
from the database

2. Server sends static
HTML and Dart files

8. Browser loads
data into the
view and repeats

4. Browser builds the
view by running

 dart code

Bootstrap phase

Server is still responsible

3. Server returns static files

5. Dart app requests data

7. Server returns data

1. Browser requests web page

Browser does more work by
building the data and view for valid data

Figure 1.2 A single-page application runs in the browser, only requesting data from the server.

7 A look at the Dart language

Remember
■	 Dart is a language for web development and has a familiar syntax.
■	 Dart’s tool ecosystem provides greater productivity than equivalent dynamic

languages.
■	 Dart’s optional type system bridges the gap between JavaScript’s dynamic typ­

ing and Java’s static typing.
■	 Type annotations can greatly aid the development process among teams of

developers by allowing tools to validate source code.
■	 Dart is ideal for developing single-page web applications.

Now that you’ve been introduced to Dart as a development platform, it’s time to get
hands-on with some of the key features of the Dart language.

1.2 A look at the Dart language
Dart is a fully featured, modern language. It has its roots in Smalltalk and is influ­
enced by many other languages including Java, C#, and JavaScript. This section pro­
vides a grounding in some of the core concepts and highlights several complex pieces
of the language that the book covers in detail.

Dart is an evolving language
At the time of writing, the Dart language is at a transition point between the experi­
mental “technical preview” phase and a release that Google calls Milestone 1. Mile­
stone 1 isn’t version 1 but a line in the sand to allow features such as extended
libraries surrounding the core language to be developed and enhanced. The Dart plat­
form is intended to be a fully featured “batteries included” development environment,
containing everything you need to build complex web applications. And Google, along
with members of the Dart community, is now focused on building these libraries.

Milestone 1 also provides a neat baseline to enable you to start building applications,
knowing that the breaking changes to the language syntax will be infrequent. Changes
to the surrounding libraries, however, are likely, and the Dart Editor contains a helpful
Clean-up tool that you can use to apply language and core library changes to your code.

1.2.1 String interpolation

Strings are used in many places throughout web applications. Dart provides a number
of ways for you to convert expressions into strings, either via the toString() function
that’s built into the base Object class or by using string interpolation.

 String interpolation uses the $ character or ${ } expression within single or dou­
ble quotes. When you want to convert an expression to a string, you use the variable
name with the $ prefix, such as $name. If you want to use an expression that needs to
be evaluated, such as a calculation or method call, include the curly braces:

"The answer is ${5 + 10}"

8 CHAPTER 1 Hello Dart

You can create multiline strings by using three double quotes; and you can write string
literals (which ignore the $ evaluation) by prefixing the string with an r character,
such as r'literal string'. There is no + concatenator to join two strings together.
You must use string interpolation such as $forename $surname or, if they’re known
string values, place them next to each other. For example,

var title = "Dart " "in " "Action";

produces a single string variable containing "Dart in Action".
 The following listing shows the things you can do with strings using Dart’s built-in

print function, which outputs to standard output, server-side, or the browser debug
console when run in a browser.

Listing 1.1 String interpolation in Dart

void main() {

 var h = "Hello";
final w = "World";
print('$h $w');

$ evaluates
simple variables

r prefix outputs literal string
print(r'$h $w'); without interpolation

var helloWorld = "Hello " "World";
 Adjacent string constants
print(helloWorld);
 are concatenated

print("${helloWorld.toUpperCase()}");
 Evaluated expressions need
print("The answer is ${5 + 10}");
 to be within braces ${ }

var multiline = """
 Multiline strings ignore first
<div id='greeting'>
 line break following """

"Hello World"

</div>""";
 Multiline strings can contain

both single and double quotesprint(multiline);

var o = new Object();

String interpolation automaticallyprint(o.toString());

calls toString() functionprint("$o");

}

The output from this listing is

Hello World

$h $w

Hello World

HELLO WORLD

The answer is 15

<div id='greeting'>

"Hello World"

</div>

Instance of 'Object'

Instance of 'Object'

You’ll use string interpolation and the print function a lot when experimenting with
Dart, logging variables to help with debugging, and inserting values into HTML snippets.

9 A look at the Dart language

1.2.2 Optional types in action

One of the key differences between JavaScript and Dart is that Dart has the concept of
types baked into the language. Fortunately, by using Dart’s option typing, you can get
the benefit of strong typing through type annotations where you use them.

Optional type annotations are used in variable declarations, for function parame­
ter definitions and return types, and in class definitions. The following snippet shows
four ways of declaring the string variable message. The first two have no type annota­
tions, and the second two provide the String type annotation, indicating to develop­
ers and tools that you intend a string value to be used in the variable:

var messageA;
 No type annotations
var messageB = "Hello Dart";
 provided

String messageC;
 Type annotations
String messageD = "Hello Dart";
 provided

In the previous snippet, two of the variable declarations initialize the value of message
at the time it’s declared. If the value won’t change after declaration, then you should
use the final keyword, as shown here:

Uses final with no
type annotation

final messageE = "Hello Dart";

final String messageF = "Hello Dart";

Uses final with
type annotation

We’ll cover the final keyword in more detail later in the book.
 As an example of how you can benefit from using optional typing, consider the fol­

lowing block of code, which has a trueIfNull() function that takes two parameters
and returns true if both are null (and false if not). This code has no type annota­
tions at present, but we’ll explain how you can use type annotations to show intent:

trueIfNull(a, b) {

Function takes return a == null && b == null;

two values}

main() {

final nums = trueIfNull(1,2);

final strings = trueIfNull("Hello ", null);

print("$nums");

print("$strings");
 Outputs variables

nums and strings
to console

}

Stores “false” in dynamic
variable nums

Stores “true” in dynamic
variable strings

No type annotations are provided in the snippet, which means that when reading this
code, you have no idea about the developer’s intent. The trueIfNull(a,b) function
could mean that trueIfNull(a,b) should take two int types and return a bool
(true/false value), but the developer could have intended something else—for
example, to return the string "true" instead of a bool. Dart’s optional typing allows
the developer to provide documentation in the form of type information about the
parameters and return types:

10 CHAPTER 1 Hello Dart

bool trueIfNull(int a, int b) {
 Adds return type and
return a == null && b == null;
 parameter types

}

main() {

final bool nums = trueIfNull(1,2);
 Adds type information
final bool strings = trueIfNull("Hello ", null);
 about variable declarations
print("$nums");

print("$strings");

}

NOTE The previous example contains a bool type. In Dart, unlike in
JavaScript, there is a single false value: that of the keyword false itself. Zero
and null don’t evaluate to false.

Adding this type information doesn’t change the running of the Dart application, but
it provides useful documentation that tools and the VM can use to validate the code
and find type errors. Dart can be said to be documentary typed because the code will run
the same without the types. Any type information provided can help the tools during
static analysis (in the Editor or from the command line as part of a continuous build
system) and at runtime. Future developers who may maintain your code will also
thank you.

TIP Use specific types (for example, String, List, and int) where doing
so adds documentary value, such as for function parameters, return types,
and public class members; but use var or final without type annotations
where it doesn’t, such as inside function bodies. The Dart style guide avail­
able at www.dartlang.org recommends this approach. You should get used
to seeing a mix of code like this, because it’s the way Dart was intended to
be written.

Optional typing is core to many of Dart’s mechanisms and appears throughout the
book, where the syntax is different enough from Java and JavaScript to warrant expla­
nation. Functions are covered specifically in chapter 4.

1.2.3 Traditional class-based structure

Dart uses classes and interfaces in a traditional and unsurprising object-oriented way.
It supports single inheritance and multiple interfaces. If you aren’t familiar with class-
based OO programming, it would probably be useful to read about the subject at one
of the many resources on the web. At this point, it’s enough to point out that Dart’s
OO model is similar to Java/C# and not similar to JavaScript. We’ll look at classes and
their features in greater depth in chapters 6 and 7.

 All Dart classes inherit by default from the Object class. They can have public and
private members, and a useful getter and setter syntax lets you use fields interchange­
ably with properties without affecting users of the class. The next listing shows a quick
example of a class.

www.dartlang.org

11 A look at the Dart language

Listing 1.2 A simple class in Dart

class Greeter {
 class keyword defines new class
var greeting;
 Public property
var _name;
 Private property

denoted by _sayHello() {
 Public method
return "$greeting ${this.name}";
 Uses String

}
 interpolation

get name => _name;
 Getter and setter with
set name(value) => _name = value;
 shorthand syntax

}

new keyword creates

main() {
 new instance of Greeter
var greeter = new Greeter();

greeter.greeting = "Hello ";
 Assigns values to fields and
greeter.name = "World";
 setters with same syntax
print(greeter.sayHello());

}

This simple class contains a lot of functionality. Private members are indicated by pre­
fixing the name with the _ (underscore) character. This convention is part of the Dart
language, with the benefit that you can instantly tell when you’re accessing a method
or property in private scope when you’re reading code.

 The getter and setter syntax is also useful because you can use the fields of a class
the same way you use getters and setters. Thus a class designer can expose the prop­
erty (such as greeting, in listing 1.2) and later change it to use a getter and setter
(such as in name in the example) without needing to change the calling code.

 The this keyword, which causes a lot of misunderstanding in the JavaScript world,
is also used in a traditional OO fashion. It refers to the specific instance of the class
itself and not the owner of the class (as in JavaScript) at any given point in time.

Classes are optional
Unlike in Java and C#, classes are optional in Dart. You can write functions that exist
in top-level scope without being part of a class. In other words, you don’t need to de­
clare a class in order to declare a function. If you find that you’re writing classes that
contain utility methods, you probably don’t need a class. Instead, you can use Dart’s
top-level functions.

1.2.4 Implied interface definitions

Dart has interfaces just like Java and C#, but in Dart, you use the class structure to
define an interface. This works on the basis that all classes define an implicit interface
on their public members. Listing 1.3 defines a class called Welcomer and a top-level
sayHello() function that expects a Welcomer instance. In addition to using the
extends keyword to implement inheritance of the sort found in Java and C#, you can

12 CHAPTER 1 Hello Dart

also use the interface defined on each class by using the implements keyword. The
Greeter class implements the public methods of Welcomer, which allows it to be used
in place of a Welcomer instance. This lets you concentrate on programming against a
class’s interface rather than the specific implementation.

Listing 1.3 Every class has an implicit interface

class Welcomer {

Welcome class can be printGreeting() => print("Hello ${name}");

created and inherited

var name;
 from ...
}

class Greeter implements Welcomer {
 ... but also has an
implied interface that printGreeting () => print("Greetings ${name}");

Greeter implements.var name;

}

void sayHello(Welcomer welcomer) {
 Expects Welcomer
welcomer.printGreeting();
 argument

}

main() {

 var welcomer = new Welcomer();

welcomer.name = "Tom";

 sayHello(welcomer);

Because Greeter
implements a Welcomer var greeter = new Greeter();

interface, it can be used greeter.name = "Tom";

in place of Welcomer. sayHello(greeter);

}

This ability to implement a class that doesn’t have an explicit interface is a powerful
feature of Dart. It makes mocking classes or providing your own custom implementa­
tion of a class relatively straightforward; you don’t need to inherit explicitly from a
shared base class.

1.2.5 Factory constructors to provide default implementations

In addition to having a constructor syntax similar to Java and C#, Dart has the concept
of factory constructors. This lets the class designer define a base class to use as an inter­
face, and supply a factory constructor that provides a default concrete instance. This is
especially useful when you intend a single implementation of an interface to be used
under most circumstances.

 Listing 1.4 shows an IGreetable class that has a factory constructor to return an
instance of a Greeter class. The Greeter class implements the interface defined on
IGreetable and lets users of the interface use the default Greeter implementation
without knowing they’re getting an implementation of Greeter. Thus the class
designer can change the specific implementation without users of the IGreetable
interface being aware of the change.

13 A look at the Dart language

Listing 1.4 Factory constructors for default implementations

abstract class IGreetable {
 Defines interface
String sayHello(String name);

factory IGreetable() {
 Factory constructor
return new Greeter();
 returns instance of

Greeter}

}

class Greeter implements IGreetable {

Provides method
that must be
implemented

sayHello(name) {
 Greeter implements
return "Hello $name";
 IGreetable interface

}

}
 Creates instance of

IGreetable, which returns
void main() {
 Greeter implementation

IGreetable myGreetable = new IGreetable();

var message = myGreetable.sayHello("Dart");
 Uses Greeter
print(message);
 implementation

}

Because of this ability, it’s important to note that a number of the core classes are
interfaces—for example, String and int. These have specific implementation classes
that are provided using factory constructors. I cover classes, interfaces, and their inter­
action with the optional type system at length in part 2 of the book.

1.2.6 Libraries and scope

Dart has the ability to break source code files into logical structures. It’s possible to
write an entire Dart application in a single .dart file, but doing so doesn’t make for
great code navigation or organization. To address this issue, Dart has libraries baked
into the language. A library in Dart is a collection of source code files that could have
been a single file but have been split up to aid human interaction with the code.

 I mentioned earlier that classes are optional in Dart. This is so because functions
can live in the top-level scope of a library. In Dart, a library is one or more .dart files
that you group together in a logical fashion; each file can contain zero or more classes
and zero or more top-level functions. A Dart library can also import other Dart librar­
ies that its own code uses.

 A library is defined using the library keyword, imports other libraries using
import, and refers to other source files using part, as shown in the following listing.

Listing 1.5 Libraries and source files

library "my_library";
 Declares that
file is a library import "../lib/my_other_library.dart";

Imports another library part "greeter.dart";
 Includes other source files
from a different folderpart "leaver.dart"; (containing Greeter class)

greetFunc() {
 Defines function in top-
level library scope

14 CHAPTER 1 Hello Dart

 var g = new Greeter(); Uses class from
sayHello(g); Calls function in

greeter.dart file

} top-level scope of
my_other_library

From the listing, you can see that it’s possible to define a method in the top-level
scope of a library—that is, without it being part of a class. Therefore, you need to
define classes only when you need to instantiate an object, not when you just need to
collect a group of related functions.

 Libraries can pull a group of source files into the same scope. A library can be made
up of any number of source files (including zero), and all the source files put together
are equivalent to having a single library file containing all the separate files’ code. As
such, each source file can reference code that’s in another source file, as long as both
source files are part of the same library. Each source file can also reference code that’s
exposed by importing other libraries, as in the example my_other_library.dart in
figure 1.3.

my_library

Source file(s)

class Greeter {
...

}

void sayHello(g) { ... }

class Leaver {
...

}

import "my_other_library.dart";

class Person {
...

}

String greetFunc() { ... }

Library file

But source code can also be distributed
between many optional source files,

which form part of a library.

Any code in my_library can
refer to my_other_library,

A library file can itself
contain source code.

if it is imported.

my_other_library

Library file and other
source files

Figure 1.3 my_library.dart is made from greeter.dart and leavers.dart and uses another library
called my_other_library.dart (which in turn is constituted from various source files).

15 A look at the Dart language

To avoid naming conflicts, such as when a library that you’re writing and a library that
you’re importing both contain a class called Greeter, you can apply a library prefix
such as

import "../lib/my_other_library.dart" as other;

and then refer to classes in that library using the form

other.otherLibFunction("blah");

Thus it’s possible to ensure that you name your classes and methods sensibly without
having to worry about polluting a global namespace.

 A library can form the entry point of your application, but if it does, it must have
a main() function. You can have multiple libraries, each with its own main() func­
tion, but it’s the main function in the library referred to in the <script> tag that’s
executed.

 Any functions or classes in your library are made available to any importers of your
library; that is, they’re public. To stop importers of your libraries from using specific
functions or classes, mark them as private.

CLASS AND LIBRARY PRIVACY

Although libraries and classes can be useful to modularize your application, good
practice dictates that you keep the workings of your class or library private. Fortu­
nately, Dart provides a simple method for making things private: prefix the name of a
method, function, class, or property with an underscore (_). Doing so makes the item
library private, or private within the scope of a library.

PRIVATE, BUT ONLY WITHIN A LIBRARY

In our ongoing example, if something is marked as private with the underscore, it
means that if class Greeter and class Leaver are in the same library, they can access
each other’s private elements (similar to package private in Java). It also means that
a property or function _greeterPrivate() is accessible from any other class in the
same library. But when Greeter is imported via another library, it isn’t visible to that
other library, as shown in figure 1.4.

 Private elements can include top-level (library) functions, classes, class fields, prop­
erties and methods (known as members), and class constructors. From within a
library, privacy is ignored, such that any part file can access private elements in
another part file if the library brings those source files into the same library. Users
of the library can’t access any private elements of that library (or private elements of
classes within that library).

16 CHAPTER 1 Hello Dart

The private _greeterPrivate
property is accessible from

anywhere in the same library...

my_library

Library file Source file(s)

class Greeter {
import "my_other_library.dart"; var _greeterPrivate;

}
class Person {

void sayHello() {
Greeter g = new Greeter(); Source file(s)

multiple source files. Other libraries, however,
cannot access private

members of another library.

g._greeterPrivate = "Hi";
}

}

class Leaver {
void leave() {

Greeter g = new Greeter();
g._greeterPrivate = "Bye";

}
}

...even when split accross

my_other_library

Library file and other
source files

Figure 1.4 Private elements such as fields, methods, library functions, and classes are private within
a library. Privacy is indicated by an _ prefix. Users of the library can’t access private elements.

1.2.7 Functions as first-class objects

You can pass around functions in Dart as objects, in a manner similar to in JavaScript:
you can pass a function as a parameter, store a function in a variable, and have anony­
mous (unnamed) functions to use as callbacks. The next listing gives an example of
this feature in action.

Listing 1.6 Functions as first-class objects

String sayHello(name) => "Hello $name";
 Declares function using
B function shorthandAssigns functionmain() { C

into variablevar myFunc = sayHello;

print(myFunc("World"));
 Calls function
stored in variablevar mySumFunc = (a,b) {

return a+b;
 Defines anonymous
};
 function

17 A look at the Dart language

 var c = mySumFunc(1,2);
 Calls anonymous
print(c);
 function

}

B is a single-line function that uses => shorthand to return a value. The following two
functions are identical:

String sayHello(name) {

 return "Hello $name";

}

String sayHello(name) => "Hello $name";

With a function defined, you can get a reference to it and store it in a variable C. You
can pass this around like any other value. Anonymous functions such as the one
stored in the variable mySumFunc are often used in event-handler callbacks. It isn’t
uncommon to see a block of code like

myButton.on.click.add((event) {

 // do something

});

(with the anonymous function indicated in boldface).

1.2.8 Concurrency with isolates

Dart is a single-threaded language. Although this design may be at odds with current
hardware technology, with more and more processors being available to applications,
it means that Dart has a simple model to code against.

 In Dart, the isolate (rather than the thread or process) is the unit of work. It has its
own memory allocation (sharing memory between isolates isn’t allowed), which helps
with the provision of an isolated security model. Each isolate can pass messages to
another isolate. When an isolate receives a message, which might be some data to pro­
cess, an event handler can process that message in a way similar to how it would pro­
cess an event from a user clicking a button. Within an isolate, when you pass a
message, the receiving isolate gets a copy of the message sent from the sending isolate.
Changes to the received data aren’t reflected on the sending side; you need to send
another message back.

 In a web page, each separate script (containing a main() function) runs in its own
isolate. You might have scripts for different parts of your application, such as one for a
news feed, one for offline syncing, and so on. Dart code can spawn a new isolate from
running code in a way similar to how Java or C# code can start a new thread. Where
isolates differ from threads is that an isolate has its own memory. There’s no way to
share a variable between isolates—the only way to communicate between isolates is via
message passing.

 Isolates are also used for loading external code dynamically. You can provide code
outside of your application’s core code that can be loaded into its own memory-
protected space and that will run independently of your app, communicating via mes­
sage passing. This behavior is ideal for creating a plug-in architecture.

18 CHAPTER 1 Hello Dart

 The Dart VM implementation may use multiple cores to run the isolates, if
required. And when isolate code is converted to JavaScript, they become HTML5 web
workers.

Remember
■ Dart has optional (or documentary) typing.
■ Libraries help you break up source files and organize code.
■ Privacy is built into the language.
■ Functions are first-class and can exist without classes.
■ Dart understands concurrency using message-passing isolates.

Now that you’ve seen a high-level view of what Dart looks like, let’s look at how you
can use it to program the web.

1.3 Web programming with Dart
One of Dart’s aims is to improve the life of developers. And because Dart is ultimately
a programming language for the web, a significant amount of effort has gone into
turning the browser DOM-manipulation API into something that’s a joy to use. In
JavaScript, accessing the browser DOM was a chore until jQuery was created, which
made it feel natural to work with the browser. Similarly, the dart:html library was writ­
ten to ease the writing of browser code in Dart.

1.3.1 dart:html: a cleaner DOM library for the browser

At the time of writing, no UI widget library is available for Dart. Although the Dart team
has publicly stated that they expect Dart to be a “batteries included” language, the early
public release of Dart means that they need to spend some time getting the language
working perfectly before the focus moves to higher-level abstractions. But they have
built what could be considered the equivalent of jQuery core, in the form of dart:html.

 If you’ve used a framework like jQuery, then you’ll be familiar with using CSS selectors
to access DOM elements such as DIVs with id="myDiv" or all the <p> elements. The
dart:html library makes this work easy. Rather than including a number of different calls
to get elements, such as getElementsById() and getElementsByName(), as you would
with native DOM APIs, dart:html has only two methods for selecting elements: query(),
which returns a single element, and queryAll(), which returns a list of elements. And
because the dart:html library uses Dart lists, you can use all the standard list functions
such as contains() and isEmpty(), and array syntax such as element.children[0]. The
following listing shows some interaction with the DOM via the dart:html library.

Listing 1.7 Interacting with the browser

import 'dart:html';
 Imports dart:html
Creates new
button element

library void main() {

 var button = new Element.tag("button");

19 Web programming with Dart

 button.text = "Click me";

button.on.click.add((event) {
 Adds anonymous function

List buttonList = queryAll("button");
 (in bold italic) as event
window.alert("There is ${buttonList.length} button");
 handler to on.click event

});

document.body.children.add(button);
 Adds button to
HTML body}

The listing uses a named constructor to create a button. The button is given an event
handler (using an anonymous function) and added to the document body. Running
this example produces the output shown in figure 1.5.

Clicking the button triggers the event
handler function, which was added with
button.on.click.add (...)

Figure 1.5 The output
from clicking the button in
listing 1.7

By interacting with the browser in this fashion, you can create complex UIs entirely in
Dart code and CSS. We’ll explore this in chapter 4.

TIP When you’re writing browser code, remember that the print function
used in print("Hello World") sends output to the browser console, not to
the page. You can access the browser console in Chrome under the Wrench >
Tools > JavaScript Console menu option.

1.3.2 Dart and HTML5

Just as you can interact with browser ele­
ments directly, the dart:html library

also exposes HTML5 elements such as

the canvas, WebGL, device motion

events, and geolocation information.

The output shown in figure 1.6 is pro­
duced by the code in listing 1.8, which

uses the HTML5 Canvas API.

 The Dart code that draws this output
the HTML5 CanvasElement.to the canvas adds an HTML5 <canvas>

tag to the browser DOM and then uses it Figure 1.6 Drawing on the browser canvas
to get a 2D drawing context. The Dart
code then writes text and shapes onto the drawing context.

The text and circle are drawn
directly onto the canvas using

20 CHAPTER 1 Hello Dart

Listing 1.8 Drawing on the browser canvas

import 'dart:html';
import 'dart:math';

void main() {
 CanvasElement canvas = new Element.tag("canvas");

Creates new
CanvasElement

canvas.height = 300; Adds canvas to
canvas.width = 300; document body
document.body.children.add(canvas); Gets drawing
var ctx = canvas.getContext("2d"); context from canvas

ctx.fillText("hello canvas", 10, 10); Writes text

ctx.beginPath();
ctx.arc(50, 50, 20, 0, PI * 2, true); Draws filled
ctx.closePath(); circle
ctx.fill();

}

By creating a CanvasElement and adding it to the page, you get an area that you can
draw directly onto using the standard drawing methods such as drawImage, fillText,
and lineTo. We’ll look at this in more detail in chapter 10.

 With the dart:html library, you have ready access to all the standard browser ele­
ments that you’d expect to code against. And because the DOM library, which forms
part of the dart:html library is generated from the WebKit IDL (Interface Definition
Language), you can be sure of getting access to the up-to-date browser functionality
available in Dart.

Remember
■ dart:html provides a Dart view of the browser DOM.
■ HTML5 support is a core part of the Dart language.

Now that you have some knowledge of Dart running in the browser, it’s time to look at
the tools available to help you write Dart.

1.4 The Dart tool ecosystem
The Dart tools are considered a feature of the Dart platform and as such are undergo­
ing development as rapid as that of the language. As developers, we tend to experi­
ence any particular language through the available tools (or lack thereof), and
Google is putting a lot of effort into this area. The place to start is editing code.

1.4.1 The Dart Editor

Although you can use any text editor to write Dart code, you’ll get the best experience
when you use the Dart Editor. The Dart Editor is built using the Eclipse Rich Client
Platform (RCP), a framework for building customized code editors. In the Dart Editor,

21 The Dart tool ecosystem

Debugger
and watches

Files and libraries,

apps, and source

code outline views

Errors and
warnings

Figure 1.7 The Dart Editor, showing a simple browser application and the code-completion
window

you get the usual features such as code completion, navigation, and code outlining,
along with static analysis such as warnings and errors. The static-analysis tool is also
available as a standalone command-line tool that you can use in your continuous-build
system to provide early indication of errors in the code. Figure 1.7 shows a typical view
of some of the features in the Dart Editor.

 Using the Dart Editor, you can write code; and if that code is associated with an
HTML page, you can convert the code into JavaScript and open it in a browser of your
choice by using the dart2js tool. In the Dartium browser, which is Chrome with the
Dart VM embedded, you can skip the conversion to JavaScript and execute the code
directly in the browser. Dartium also communicates back to the Dart Editor to allow
round-trip, step-by-step debugging.

 If your code isn’t associated with an HTML page, the editor will run the code as
though it were executed from the command line, outputting to the stdout console.

1.4.2 Dart virtual machine

The Dart VM is the core of the Dart language. One use is as an executable on the com­
mand-line VM (which allows you to run Dart code on the console), such as to start up
an HTTP server or run a simple script (equivalent to a batch file or shell script), or any
other console-based use of Dart. Another use is to embed it in another application,
such as Dartium.

1.4.3 Dartium

Dartium is a customized build of Chromium (the open source version of Google
Chrome) with the Dart VM embedded in it. It recognizes the script type application/

Code suggest and
autocomplete

22 CHAPTER 1 Hello Dart

dart and executes Dart code natively in the browser without requiring conversion to
JavaScript. It includes the developer tools that are familiar to many web developers
who build websites and web applications with Chrome. Coupled with the Dart Editor,
it provides step-and-continue debugging: you can add breakpoints to the editor and
then refresh your app in the Dartium browser; the Editor’s debugger will stop on the
correct breakpoint, allowing you to inspect variables and step through instructions.

 The Dartium browser makes developing Dart as simple as developing JavaScript.
A simple browser refresh is the only step you need to run your Dart code.

1.4.4 dart2js: the Dart-to-JavaScript converter

You use the dart2js tool to compile Dart into JavaScript, from within the Dart Editor or
standalone on the command line. The dart2js tool compiles all the various libraries
and source code files that make up a Dart application into a single JavaScript file. The
code it outputs is fairly readable, although when you use Dartium to develop natively
in Dart, you’ll seldom need to read it.

dart2js also produces JavaScript source maps, which allow you to hook back from
the output JavaScript to the original Dart code. This recent innovation is also used
successfully in other languages that convert to JavaScript, such as CoffeeScript and
Google Web Toolkit (GWT).

NOTE dart2js is the third Dart-to-JavaScript converter. The first was dartc,
and the second was a tool called frog. You may see these names in various
older documents and blog posts; they’re all tools to convert Dart to
JavaScript.

1.4.5 Pub for package management

Package management is a key feature of any language, with Maven for Java, NuGet for
.NET, and npm for node.js being common examples. Dart has its own package man­
ager called pub. Pub lets library developers define package metadata in a pubspec file
and publish their libraries in code repositories such as GitHub.

 When you use a library, you can use the pub tool to download all the various
libraries that your app requires, including versioned dependencies. We’ll discuss this
more and show an example of using pub in chapter 5 when we look at Dart’s library
structure.

Remember
■ The Dart tool ecosystem forms a core part of the Dart project.
■ The Dart Editor provides rich tooling for developers.
■ Dartium makes developing in Dart as simple as a browser refresh.
■ Dart is designed to be converted to JavaScript.

Summary 23

1.5 Summary
At first glance, Dart might be seem like just another language. But when you take into
account the entire Dart ecosystem, Dart represents an exciting prospect in the world
of web development. With applications becoming more complex and requiring larger
development teams, Dart and its associated tools and environments promise to pro­
vide some structure in the previously overly flexible world of JavaScript.

 Single-page applications hosted in a browser (such as Google Plus) become more
achievable with a language like Dart, because maintaining a large client-side code
base becomes less fragile. Dart—with its ability to either run natively or be converted
to JavaScript—coupled with HTML5 is an ideal solution for building web applications
that don’t need external plug-ins to provide features.

 In the following chapters, you’ll play with the Dart ecosystem, explore the core lan­
guage, and use Dart to develop single-page web applications that target modern
HTML5-capable web browsers. By the end of the book, you’ll be developing Dart appli­
cations that run offline in the client, are served from a Dart file server, and connect to
a Dart server to persist data in a database.

WEB DEVELOPMENT

Dart IN ACTION
Chris Buckett

D
art is a web programming language developed by Google.
It has modern OO features, just like Java or C#, while keep­
ing JavaScript’s dynamic and functional characteristics.

Dart applications are “transpiled” to JavaScript, and they run
natively in Dart-enabled browsers. With production-quality
libraries and tools, Dart operates on both the client and the
server for a consistent development process.

Dart in Action introduces the Dart language and teaches you to
use it in browser-based, desktop, and mobile applications. Not
just a language tutorial, this book gets quickly into the nitty­
gritty of using Dart. Most questions that pop up while you’re
reading are answered on the spot! OO newbies will appreciate
the gentle pace in the early chapters. Later chapters take a
test-first approach and encourage you to try Dart hands-on.

What’s Inside
● Dart from the ground up
● Numerous code samples and diagrams
● Creating single-page web apps
● Transitioning from Java, C#, or JavaScript
● Running Dart in the browser and on the server

To benefit from this book you’ll need experience with HTML
and JavaScript—a Java or C# background is helpful but not
required.

Chris Buckett builds enterprise-scale web applications. He runs
Dartwatch.com and is an active contributor to the dartlang list.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/DartinAction

SEE INSERT

“Includes numerous exam­
ples of core language features

as well as more advanced

HTML5 features.”
 —From the Foreword by

Seth Ladd, Developer

Advocate, Google

“A compelling and capti­
vating book about learning

and working with Dart as an

alternative to JavaScript.”
 —Glen Stokol

 Oracle Corporation

“Puts the future of web apps

 in the palm your hand.”
 —Rokesh Jankie, QAFE, Inc.

“The perfect guide for

 a beautiful language.

—Willhelm Lehman ”

 Websense, Inc.

M A N N I N G $44.99 / Can $47.99 [INCLUDING eBOOK]

http:Dartwatch.com

