
Quick Start 
Guide to Dart 
Programming

Create High-Performance 
Applications for the Web and Mobile
—
Sanjib Sinha



Quick Start Guide to 
Dart Programming
Create High-Performance 
Applications for the Web 

and Mobile

Sanjib Sinha



Sanjib Sinha
Howrah, West Bengal, India

Quick Start Guide to Dart Programming

ISBN-13 (pbk): 978-1-4842-5561-2		  ISBN-13 (electronic): 978-1-4842-5562-9
https://doi.org/10.1007/978-1-4842-5562-9

Copyright © 2020 by Sanjib Sinha 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,  
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available 
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5561-2. 
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5562-9


To Arun Sengupta and Dipali Sengupta,  
my elder brother and sister-in-law, the people closest to my 

heart. Although we are locationally challenged, living in 
different places, we are separated only by space. Wherever 

we live, we will always be together in our minds.



v

Chapter 1: Getting Started with Dart�����������������������������������������������������1

The Core Features of Dart��������������������������������������������������������������������������������������2

Using an IDE for Dart����������������������������������������������������������������������������������������������4

Installing IntelliJ IDEA Community Edition��������������������������������������������������������7

Installing Android Studio����������������������������������������������������������������������������������9

Writing Some Dart Code���������������������������������������������������������������������������������11

Variables, Operators, Conditionals, and Control Flow������������������������������������������14

Variables Store References����������������������������������������������������������������������������14

Built-in Types in Dart��������������������������������������������������������������������������������������17

Suppose You Don’t Like Variables�������������������������������������������������������������������18

Playing with Number and Double�������������������������������������������������������������������19

Understanding Strings������������������������������������������������������������������������������������22

To Be True or to Be False��������������������������������������������������������������������������������26

Introduction to Collections: Arrays Are Lists in Dart���������������������������������������27

Get, Set, Go�����������������������������������������������������������������������������������������������������29

Operators Are Useful���������������������������������������������������������������������������������������33

Relational Operators���������������������������������������������������������������������������������������35

Table of Contents

About the Author����������������������������������������������������������������������������������ix

About the Technical Reviewer��������������������������������������������������������������xi

Acknowledgments������������������������������������������������������������������������������xiii

Introduction�����������������������������������������������������������������������������������������xv



vi

Type Test Operators����������������������������������������������������������������������������������������38

Assignment Operators������������������������������������������������������������������������������������39

Summary�������������������������������������������������������������������������������������������������������������41

Chapter 2: Flow Control and Looping��������������������������������������������������43

if-else�������������������������������������������������������������������������������������������������������������������43

Conditional Expressions���������������������������������������������������������������������������������������49

Looking at Looping�����������������������������������������������������������������������������������������������50

for Loop����������������������������������������������������������������������������������������������������������50

while and do-while�����������������������������������������������������������������������������������������53

Patterns in Looping����������������������������������������������������������������������������������������56

Summary�������������������������������������������������������������������������������������������������������������65

Chapter 3: Functions and Objects��������������������������������������������������������67

Functions�������������������������������������������������������������������������������������������������������������67

Objects�����������������������������������������������������������������������������������������������������������������73

Digging Deep into Object-Oriented Programming������������������������������������������������77

Examining Constructors���������������������������������������������������������������������������������81

How to Implement Classes�����������������������������������������������������������������������������84

Lexical Scope in Functions�����������������������������������������������������������������������������87

A Few Words About Getter and Setter������������������������������������������������������������89

Different Types of Parameters������������������������������������������������������������������������90

More About Constructors��������������������������������������������������������������������������������93

Chapter 4: Inheritance and Mixins in Dart�������������������������������������������97

A First Look at Inheritance�����������������������������������������������������������������������������������98

Multilevel Inheritance����������������������������������������������������������������������������������������104

Mixins: Adding More Features to a Class�����������������������������������������������������������108

Table of ContentsTable of Contents



vii

Chapter 5: Entity Relationships: Abstract Classes, Interfaces,  
and Exception Handling���������������������������������������������������������������������113

Identifying Relationships Between Entities��������������������������������������������������������114

Using Abstract Classes���������������������������������������������������������������������������������������117

Advantages of Interfaces�����������������������������������������������������������������������������������121

Static Variables and Methods����������������������������������������������������������������������������130

Exception Handling��������������������������������������������������������������������������������������������132

Chapter 6: Anonymous Functions������������������������������������������������������141

A First Look at Lambdas������������������������������������������������������������������������������������142

Exploring Higher-Order Functions����������������������������������������������������������������������145

A Closure Is a Special Function��������������������������������������������������������������������������146

Bringing It All Together���������������������������������������������������������������������������������������149

Chapter 7: Data Structures and Collections��������������������������������������153

Lists: An Ordered Collection�������������������������������������������������������������������������������155

Set: An Unordered Collections of Unique Items��������������������������������������������������162

Maps: The Key-Value Pair����������������������������������������������������������������������������������166

Using Collections Together���������������������������������������������������������������������������������171

Queue Is Open-Ended����������������������������������������������������������������������������������������176

Chapter 8: Multithreaded Programming Using Future and  
Callable Classes���������������������������������������������������������������������������������179

Callable Classes�������������������������������������������������������������������������������������������������179

Future, Async, Await, and Asynchronous Programming�������������������������������������182

More on the Future API��������������������������������������������������������������������������������������197

Table of ContentsTable of Contents



viii

Chapter 9: Dart Packages and Libraries��������������������������������������������201

Importing Packages�������������������������������������������������������������������������������������������203

Using Built-in Dart Libraries�������������������������������������������������������������������������������206

Writing a Server Using Dart�������������������������������������������������������������������������������206

Showing Some Simple Text��������������������������������������������������������������������������207

Showing an HTML Page��������������������������������������������������������������������������������211

What’s Next��������������������������������������������������������������������������������������������������������214

Index��������������������������������������������������������������������������������������������������215

Table of ContentsTable of Contents



ix

About the Author

Sanjib Sinha is an author and tech writer. 

Being a certified .NET Windows and web 

developer, he specializes in Python security 

programming and Linux and in many 

programming languages such as C#, PHP, 

Python, Dart, Java, and JavaScript. Sanjib won 

Microsoft’s Community Contributor Award in 

2011, and he has written the following books 

for Apress: Beginning Ethical Hacking with 

Python, Beginning Ethical Hacking with Kali Linux, Beginning Laravel 5.8 

(first and second editions), and Bug Bounty Hunting for Web Security.  



xi

About the Technical Reviewer

Abir Ranjan Atarthy is an Offensive Security 

Certified Professional (OSCP), Certified Ethical 

Hacker (CEH), and Certified Hacking Forensic 

Investigator (CHFI).

He has deep expertise in the domain of 

cybersecurity and different programming 

languages with more than 10 years of hands-on  

experience in the areas of network security, 

vulnerability analysis, penetration testing, 

web security, security analytics, malware 

protection, cryptography, data protection, and digital forensics.

He has coded many scripts in Python, Ruby, etc., and has mentored 

numerous students to create tools/applications in different areas of 

cybersecurity.

Abir has authored several technical articles that have been published 

in IT security journals and is frequently invited to speak at cybersecurity 

conferences and forums. He has been quoted by leading newspapers and 

TV channels on several occasions as a subject-matter expert.

In addition, he has conducted several workshops and  

training/certification programs on cybersecurity, Python, secure coding 

framework, etc., for large corporations, different universities, and 

engineering colleges.

He has an M.Sc. in computer applications and has finished  

short-term programs in object-oriented programming in Java and C++, 

data structure, and aspects of software engineering at the Indian Institute 

of Technology – Kharagpur.

Currently he is with TCG Digital Solutions Pvt. Ltd. 



xiii

Acknowledgments

I wish to record my gratitude to my wife, Kaberi, for her unwavering 

support and encouragement in the preparation of this book.

I am extremely grateful to lead development editor Matthew Moodie 

for his numerous valuable suggestions, as well as editor Nikhil Karkal, 

coordinating editor Divya Modi, and the whole Apress team for their 

consistent support and help.

I am also thankful to the technical reviewer, Abir Atarthi, for his 

valuable observations in a short period of time, and to the Google 

developers who created this beautiful language called Dart, which is 

simple to learn and elegant.

In the preparation of this book, I consulted numerous open source 

documentation and textbooks on a variety of subjects related to Dart, 

especially the Dart documentation and libraries, so I thank the countless 

authors and writers of them.



xv

Introduction

Dart is a great fit for both mobile apps and web apps. Dart is free and open 

source, and the repository is available at https://github.com/dart-lang. 

You can also get a feel of the language at the official web site:  

https://www.dartlang.org/.

In this book, you will come to understand why learning the Dart 

language is important to build mission-critical mobile apps on iOS and 

Android.

Developers around the world use Dart to create high-quality apps 

for iOS and Android and for the Web. It is feature rich so that client-side 

development is also possible. As you progress throughout the book, you 

will see how correct this statement is.

If you want to learn how to build native iOS and Android mobile apps 

and web apps using Dart, then this book serves as a good introduction 

because it is designed to give you a complete picture of how Dart works.

https://github.com/dart-lang
https://www.dartlang.org/


1© Sanjib Sinha 2020 
S. Sinha, Quick Start Guide to Dart Programming,  
https://doi.org/10.1007/978-1-4842-5562-9_1

CHAPTER 1

Getting Started with 
Dart
So, why the Dart language? Well, Dart is a great fit for both mobile apps 

and web apps. Dart is free and open source, and the repository is available 

at https://github.com/dart-lang. You can also get a feel of the language 

at the official web site: https://www.dartlang.org/. The advantage of 

Dart is, since it is a client optimized programming language for apps 

on multiple platforms, you can use it for as many purposes as Desktop, 

Mobile, backend, and web applications. Another advantage is it can be 

transcompiled into JavaScript, if you want.

In this introductory chapter, let’s try to understand why learning the 

Dart language is important for building mission-critical mobile apps 

on iOS and Android. If you already have a working knowledge in Object 

Oriented Language like Java or Python, it will be much easier for you to 

understand the core concepts because using C-style syntax, Dart is a class-

defined, garbage collected language.

Developers around the world use Dart to create high-quality apps 

for iOS and Android and the Web. It is feature rich so that client-side 

development is also possible. As we progress throughout the book, you will 

see how correct this statement is.

If you want to learn how to build native iOS and Android mobile apps 

and web apps using Dart, then this book serves as a good introduction 

because it is designed to give you a complete picture of how Dart works. 

https://github.com/dart-lang
https://www.dartlang.org/


2

Though building a full mobile app is beyond the scope of this book, you 

will build a simple web app in Chapter 9.

�The Core Features of Dart
Figure 1-1 shows the core features of the Dart programming language.

Figure 1-1.  The Dart language overview and how we can use code editors

Chapter 1  Getting Started with Dart



3

For small operations, you can use the online code editor at https://

dartpad.dartlang.org. However, for building packages and creating 

projects, you need a code editor like Android Studio or IntelliJ IDEA 

Community Edition. Visual Studio Code also has Dart language testing 

support. But using Android Studio or IntelliJ IDEA Community Edition 

is recommended. They make it easy to install the required plugins; 

furthermore, if you want to build mobile applications using Dart and 

Flutter, these tools are more useful.

Note T hese code editors are known as integrated development 
environments (IDEs). They have lots of features that make writing 
code easy and efficient. In other words, they are designed to make 
your coding life easier.

First, Dart is extremely productive. If you already know an object-

oriented programming language such as C++, C#, or Java, it will not take 

you more than a few days to learn the Dart language. If you are an absolute 

beginner, then it is good that you are starting to learn Dart as your first 

programming language because it has a clear and concise syntax. It also 

has rich and powerful core libraries and supports thousands of packages. 

As an absolute beginner, you don’t have to worry about the libraries right 

now. You will learn to use them later in the book when the time comes.

Syntax-wise, Dart has similarities with C, C#, Python, Java, and 

JavaScript (Figure 1-2).

Chapter 1  Getting Started with Dart

https://dartpad.dartlang.org
https://dartpad.dartlang.org


4

Dart is fast and furious, and the performance is high across mobile 

devices and the Web. In addition, its portability rate is extremely good. It 

compiles to ARM and x86 code so that Dart mobile apps can run on iOS 

and Android and beyond.

Beginners should note that there is a difference between ARM and 

X86 processors; the ARM processors follow a Reduced Instruction 

Set Computer (RISC) architecture, while x86 processors are Complex 

Instruction Set Architecture (CISC). Because of these features, x86 

processors are considered to be faster than ARM processors.

In addition, for web apps, Dart has a close relationship with Flutter, 

which is implemented by using Dart code.

�Using an IDE for Dart
You can use any good IDE; however, my choice is either IntelliJ IDEA 

Community Edition or Android Studio. Both are free and can be easily 

downloaded on Windows, Linux, and Mac.

Figure 1-2.  Dart language features at a glance

Chapter 1  Getting Started with Dart



5

For the code in this book, you will find IntelliJ IDEA Community 

Edition the easiest to use. It is designed for general development, whereas 

Android Studio is designed for mobile development. This means it’s 

easy to start a simple Dart app in IntelliJ but not in Android Studio. In 

fact, Android Studio does not even have that option. It will allow you to 

create only a Flutter mobile app. If your goal is mobile development, I 

recommend you use IntelliJ to learn Dart from this book and then switch 

to Android Studio for your first Flutter app.

Tip  One work-around to this approach is to create a Dart app in 
IntelliJ IDEA Community Edition and then open it in Android Studio 
(with the Dart plugin installed). Android Studio will run the app no 
problem; it’s creating one in the first place that is difficult. You will 
see I have taken this approach in the book.

There are two options for both IDEs, as Android Studio is basically a 

customized version of IntelliJ.

•	 Installing the IDE to test your code with the Dart SDK 

on your local system.

•	 Installing Flutter and the Dart plugin in any IDE. In this 

case, you don’t need the Dart SDK on your operating 

system.

Installing either IDE in Windows is relatively easy. Download the .exe 

file from the official web site and double-click to launch it. This is the 

recommended way. You can also download the ZIP file and unpack it to 

the program files. You will find the bin folder where you can launch the 

respective .exe files. However, downloading the .exe file from the official 

web site and launching it online is recommended.

Chapter 1  Getting Started with Dart



6

Installing an IDE on a Mac is not a complicated process. You 

need to launch the DMG file and then drag and drop the app into the 

Applications folder. After that, the launching process is easy; the setup 

wizard will guide you through the rest.

I recommend you use Linux as the main operating system; Android as 

a framework will always execute better on top of the Linux kernel, and it’s 

likely you’ll want to use Dart for Android development. Installing the Dart 

SDK in Linux is also easy.

Why do you need the Dart SDK? Well, it has the libraries and 

command-line tools that you need to develop all kinds of Dart 

applications—web, command-line, or server apps. To develop only mobile 

apps, you don’t need the Dart SDK. The Flutter plugins in the IDE will work.

To install Dart on Linux, first open your terminal, and then you can 

issue the following commands:

//code 1.1

sudo apt-get update

sudo apt-get install apt-transport-https

 �sudo sh -c 'curl https://dl-ssl.google.com/linux/linux_

signing_key.pub | apt-key add -'

 �sudo sh -c 'curl https://storage.googleapis.com/download.

dartlang.org/linux/debian/dart_stable.list > /etc/apt/sources.

list.d/dart_stable.list'

After that, install the stable release of the Dart SDK.

//code 1.2

sudo apt-get update

 sudo apt-get install dart

Chapter 1  Getting Started with Dart



7

After that you can check your Dart version.

//code 1.3

$ dart --version

Dart VM version: 2.4.0 (Unknown timestamp) on "linux_x64"

The Dart SDK includes a lib directory for the Dart libraries that you 

will use in the IDE. In addition, the Dart SDK has a bin directory that has 

the command-line tools. It helps run the console inside your IDE, and you 

can also have the terminal output, if you want. For that, you can go to the 

project’s bin folder and run the main.dart file.

�Installing IntelliJ IDEA Community Edition
Installing IntelliJ IDEA Community Edition is easy. You can install it from 

the Ubuntu Software Center. Open the Software Center and type IntelliJ 
Community Edition. It will show up. Click the Install button (Figure 1-3).

Figure 1-3.  Launching IntelliJ

Chapter 1  Getting Started with Dart



8

You can also install IntelliJ IDEA Community Edition through the 

command line on the terminal.

//code 1.4

sudo snap install intellij-idea-community –classic

The applications in the Ubuntu Software Center are snap packages; 

therefore, if you already have snap packages installed in your machine, you 

can install it through the terminal. After the primary installation is done, 

don’t forget to install the Dart plugins, either from the Configure option at 

startup or from File ➤ Settings ➤ Plugins within the IDE (Figure 1-4).

Figure 1-4.  Installing or enabling the Dart plugins

Finally, IntelliJ IDEA Community Edition is ready for action. Figure 1-5 

shows some projects from the book. You can keep your Dart files in the bin 

folder and run the program by pressing Shift+F10 or selecting Run ➤ Run 

from the menu bar. Most of the example code will print to the console at 

the bottom of the IDE.

Chapter 1  Getting Started with Dart



9

�Installing Android Studio
Installing Android Studio on Linux is quite simple and user friendly, though 

not as straightforward as installing IntelliJ IDEA Community Edition.

You don’t have to issue any command-line instructions. Download 

the ZIP file and unpack it to either /usr/local/ or /opt/ for shared users. 

Now, navigate to the /android-studio/bin/ directory and execute the 

studio.sh file with the help of this command:

//code 1.5

./studio.sh

If it asks you to install the required libraries for 64-bit Linux machines, 

install them. If you are a first-time user of Android Studio, you can import 

the previous Android Studio settings or you can skip this by clicking the OK 

button.

Figure 1-5.  IntelliJ IDEA Community Edition and the console

Chapter 1  Getting Started with Dart



10

The Android Studio wizard will guide you to set it up; remember, this 

setup includes downloading Android SDK components that are required 

for development; in the Configure option when you start the IDE, you can 

install the Flutter and Dart plugins (or select File ➤ Settings ➤ Plugins 

when the IDE is open).

Figure 1-6 displays Android Studio.

Figure 1-6.  The Android Studio IDE and the Dart files in the bin 
folder

To get maximum use of Android Studio on a 64-bit Linux machine, 

say Ubuntu, you need to install some 32-bit libraries with the following 

command-line instructions. You can access these libraries through your 

project’s lib folder. The bin folder consists of command-line tools, as I 

have mentioned earlier.

//code 1.6

sudo apt-get install libc6:i386 libncurses5:i386 

libstdc++6:i386 lib32z1 libbz2-1.0:i386

Chapter 1  Getting Started with Dart



11

The command will ask you for the root password. For the 64-bit 

Fedora, the command is different.

//code 1.7

sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

Now, you are ready to work in Android Studio.

�Writing Some Dart Code
Let’s look at our first Dart code. Put the following code into your main.dart 

file in your IDE. main() is the entry point, not only for Dart; if you build 

mobile apps using Flutter, you will find that in Flutter, this is the entry 

point as well.

//code 1.8

main() {

  print("Hello World!");

}

//output

Hello World!

In Android Studio or IntelliJ, you can press Shift+F10 to run the code.

Let’s write some more console-based code to get a feel for Dart. At 

the same time, you will see the most basic syntax and how the commands 

work together.

//code 1.9

main() {

  print("Hello World!");

  //calling a function

  doSomething();

}

Chapter 1  Getting Started with Dart



12

//define a function

doSomething(){

  print("Do something!")

  //calling a function inside another function

      lifeIsShort();

}

//defining another function

lifeIsShort(){

  print("Life is too short to do so many things.");

}

We have started our code with the top-level function main(); it 

is required and special in nature because this is how the application 

executes. So, inside the main() function, we have called a function 

doSomething(), which in turn calls the lifeIsShort() function.

Each function gives a display output with print(); this is a handy way 

to display any output. We have covered many things in our first program. 

Now run the code (Shift+F10).

You’ll see there is a mistake in our code. It is an intended mistake so 

that you understand how debugging takes place in Dart.

Take a look at the output:

//output of code 1.9

bin/main.dart:12:24: Error: Expected ';' after this.

  print("Do something!")

We have forgotten to place a semicolon after displaying the output.

//code 1.10

//define a function

doSomething(){

  print("Do something!");

Chapter 1  Getting Started with Dart



13

  //calling a function inside another function

  lifeIsShort();

}

Let’s correct it and run the program again.

//output of code 1.10

Hello World!

Do something!

Life is too short to do so many things.

Now it is OK. You have learned many things with this first code; most 

important is that we can learn from our mistakes.

You should always be careful about syntax errors. Missing a semicolon 

or a dollar sign before a variable can be a big game-changer.

You have seen how we comment on our code with // characters, as 

shown here:

//calling a function inside another function

lifeIsShort();

Anything on that line is ignored when the program runs. Try to 

contribute as much comments as possible to make clear your viewpoint 

so that when another person reads your code, they will understand it and 

visualize it as you have visualized your code while writing it. The person 

who reads your code in six months may well be you, so be kind to your 

future self.

If you are a complete beginner, you may be at a loss to understand 

these explanations. You may feel puzzled about words such as function, 

comment, output, etc. Therefore, the next few sections are dedicated to 

beginners.

Chapter 1  Getting Started with Dart



14

�Variables, Operators, Conditionals, 
and Control Flow
In this section, we will discuss some initial key concepts of Dart that are 

absolutely necessary for beginners. First, like Python, Dart is an object-

oriented programming language. Everything is an object here.

Consider a whole number like 2. In nature, it is an integer. In Dart, 

all integers are objects. Even functions and null are objects. I know, the 

term object may fill a beginner with bewilderment. We will discuss object-

oriented programming at the right time. Before that, you will learn what 

variables, constants, and functions are.

Note  Briefly, null means that a data value does not exist. Since 
Dart considers every value type as an object, a null class has also 
been created to use that instance where no value is provided.

�Variables Store References
Variables store references to objects. In other words, you may say, a 

variable is a spot in the memory or a container that contains some 

references to some values. As indicated by the name variable, the reference 

can change.

Like other programming languages, Dart has several types, such as 

integers, strings, Booleans, etc. Although Dart is strongly typed language, 

it also allows you to use duck typing, meaning that Dart can use a type as 

long as that type is suitable for that use (“If it walks like a duck and quacks 

like a duck, it is a duck”).

Chapter 1  Getting Started with Dart



15

Data types are types of data that we can represent in a programming 

language, such as an integer is a nonfractional numerical value like 1, 2, 

and so on. Later when needed, we can also manipulate these values in our 

program. For example, in a calculator we do lots of numerical operations 

such as additions, subtractions, etc. The default value of most data types is 

null. So, we need to mention what data type we are going to use.

We use variables to reference those types that are actually stored in 

memory. Consider the following:

int a = 1;

This means we first store the type of integer value 1 in our memory, 

and then we assign that value to the variable a. The equal sign (=) is the 

assignment operator in Dart, so it assigns values to variables. Later, we call 

a to grab 1 for any kind of mathematical operations.

In normal circumstances, in Dart, we mention what type we are going 

to use. If we use integers and strings, we write it like this:

//code 1.11

int myAge = 12;

String myName = "John Smith";

In the previous examples, we have explicitly declared the type that 

should be used. In the next example, we do the same thing, but implicitly.

Therefore, you can also write the same code in this way:

//code 1.12

var myAge = 12;

var myName = "John Smith";

Now, the question is, with a change of reference, does the type also 

change?

Please read on.

Chapter 1  Getting Started with Dart



16

In the previous code snippets, variable myAge stores the value 12 and 

references it as an integer object. The same way, the myName variable 

stores the value John Smith and references it as a String object. The 

type of the myName variable is inferred to be string-specific, but you can 

change it. If you don’t want a specific or restricted type, specify Object or 

dynamic type.

dynamic myName = "John Smith";

If you don’t initialize a variable, the default value is set to be null. Let’s 

consider the following code:

int myNumber;

Although it is an integer, it is not initialized. Therefore, the default 

value is Null. Let’s run the code and take a look at the output.

//code 1.13

main() {

  print("Hello World!");

  int myNumber;

  print(myNumber);

}

The output is as expected:

Hello World!

null

Let’s talk about the built-in types in Dart. So far you have seen some of 

the types, such as number and string. You have not seen the others.

Chapter 1  Getting Started with Dart



17

�Built-in Types in Dart
The Dart language has special support for the following types, and you can 

always follow the strongly typed or duck typed pattern to initialize them:

•	 Numbers

•	 Strings

•	 Booleans

•	 Lists (also known as arrays)

•	 Sets

•	 Maps

•	 Runes (for expressing Unicode characters in a string)

•	 Symbols

You can initialize an object of any of these special types using a literal. 

For example, Hello John Smith is a string literal, and false is a Boolean 

literal.

Consider this code:

//code 1.14

main() {

  String saySomething = "Hello John Smith";

  var isFalse = true;

  if(saySomething == null){

    print("It is ${isFalse}");

  }else print("It is not ${isFalse}");

}

Since the string variable is not null, the output should be as follows:

It is not true

Chapter 1  Getting Started with Dart



18

Note W e use ${} to include the value of an expression in a 
string. In this case, it is the value of a variable converted to a string. 
Including the value of an expression in this way is called string 
interpolation. I’ll cover that later in the chapter.

You will encounter the first four built-in types most often. You will 

learn how to use other built-in types as the situation demands.

�Suppose You Don’t Like Variables
Well, in some cases, you need the value to be constant. There are two 

techniques that you can follow when you don’t intend to change the value 

of a variable.

•	 You can use const instead of var or a String, int, or 

bool type declaration.

•	 You can also use final; but remember, the final 

variable can be set only once.

So, there is a difference between these two keywords: const and 

final. We will come back to this topic when we discuss object-oriented 

programming. Note that an instance variable can be final but not const.

Consider this code:

//code 1.15

main() {

  const firstName = "Sanjib";

  final lastName = "Sinha";

  String firstName = "John";

  String lastName = "Sinha";

}

Chapter 1  Getting Started with Dart



19

Look at the output full of errors:

//output

bin/main.dart:8:10: Error: 'firstName' is already declared in 

this scope.

  String firstName = "John";

         ^^^^^^^^^

bin/main.dart:5:9: Context: Previous declaration of 'firstName'.

  const firstName = "Sanjib";

        ^^^^^^^^^

bin/main.dart:9:10: Error: 'lastName' is already declared in 

this scope.

  String lastName = "Sinha";

         ^^^^^^^^

bin/main.dart:6:9: Context: Previous declaration of 'lastName'.

  final lastName = "Sinha";

When you want a variable to be a compile-time constant, use const; 

use final for an instance variable that you will never change.

As a quick review, we will first check the numbers. Then one after 

another, you will learn about string, Booleans, and other types.

Dart numbers are of two types: integers and decimals. You write 

them as int and double. Integers are numbers without decimal points. 

Examples are 1, 2, 22, etc. Doubles do have a decimal point like this: 1.5, 

3.723, etc.

�Playing with Number and Double
Both int and double types are subtypes of num. The num type includes basic 

operators such as +, -, /, and *; and they represent plus, minus, division, 

and multiplication, respectively. You can call them arithmetic operators. 

There is also modulo, that is, remainder, and the sign is %.

Chapter 1  Getting Started with Dart



20

Let’s see some interesting examples:

//code 1.16

main() {

  var one = int.parse('1');

  print(one);

  if(one.isOdd){

    print("It is an odd number.");

  } else print("It is an even number.");

}

We have converted a string into an integer, or number.

//output

1

It is an odd number.

We can also turn a string into a double number. Let’s change the 

previous code a little bit.

//code 1.17

main() {

  var one = int.parse('1');

  var doubleToString = double.parse('23.564');

  print(one);

  print(doubleToString);

  if(one.isOdd && doubleToString.isFinite){

    �print("The first number is an odd number and the second one 

is a double ${doubleToString} and a finite number.");

  �} else print("It is an even number and the second one is not 

a double ${doubleToString} and a non-finite number.");

}

Chapter 1  Getting Started with Dart



21

The output is quite expected. Both statements are true, so the 

relational operation gives this output:

//output

1

23.564

A first number is an odd number and the second one is a double 

23.564 and a finite number.

We can do the reverse too. We are going to turn an integer to string here:

//code 1.18

main() {

  int myNUmber = 542;

  double myDouble = 3.42;

  String numberToString = myNUmber.toString();

  String doubleToString = myDouble.toString();

  �if ((numberToString == '542' && myNUmber.isEven) && 

(doubleToString == '3.42' && myDouble.isFinite)){

    �print("Both have been converted from an even number 

${myNUmber} and a finite double ${myDouble} to string. ");

  �} else print("Number and double have not been converted to 

string.");

}

//output

Both have been converted from the even number 542 and the finite 

double 3.42 to a string.

As we progress, we will find that Dart is an extremely flexible language, 

and the syntax is simple to remember with lots of help from the core 

libraries.

Chapter 1  Getting Started with Dart



22

�Understanding Strings
A Dart string is a sequence of UTF-16 code units. For absolute beginners, 

I’ll briefly describe UTF-8, UTF-16, and UTF-32. They all store Unicode 

but use different bytes. Let’s first try to understand the advantages of using 

UTF-16 code over the other two. Let’s learn about UTF-8.

In places where ASCII characters represent the majority of text, UTF-8 

has an advantage. ASCII is meant for English only because it started in the 

United States. Later it spread all over the world, and other countries were 

eager to get strings to work on their languages. Like ASCII, UTF-8 encodes 

all characters into 8 bits.

Where ASCII is not predominant (in cultures where English is not 

predominant), UTF-16 has an advantage.

Using 2 bytes (16 bits) enables us to encode 65,536 distinct values. If 

you are serious about understanding encodings and character sets, please 

visit this link:

http://kunststube.net/encoding/

UTF-16 remains at just 2 bytes for most characters. However, UTF-

32 tries to cover all possible characters in 4 bytes, which means that 

processors have extra load, making UTF-32 pretty bloated. Simply put, it is 

all about supporting as many languages as possible.

Unicode support makes Dart more powerful, and you can create your 

mobile and web applications in any language. Let’s see one example where 

I have tried some Bengali script.

//code 1.19

main(List<String> arguments) {

  String bengaliString = "বাংলা লেখা";
  String englishString = "This is some English text.";

  �print("Here is some Bengali script - ${bengaliString} and 

some English script ${englishString}");

}

Chapter 1  Getting Started with Dart



23

Here is the output:

//output

Here is some Bengali script - বাংলা লেখা and some English script 
This is some English text.

While handling strings, you should remember a few things. You can 

use both single quotes (“) and double quotes ("").

//code 1.20

main(List<String> arguments) {

  String stringWithSingleQuote = 'I\'m a single quote';

  String stringWithDoubleQuote = "I'm a double quote.";

  �print("Using delimiter in single quote - 

${stringWithSingleQuote} and using delimiter in double 

quote - ${stringWithDoubleQuote}");

}

You can use the delimiter in both cases, but the double quote is more 

helpful in such cases. Look at the output:

//output of code 1.21

Using delimiter in the single quote - I'm a single quote and 

using delimiter in the double quote - I'm a double quote

We have put the value of the expression inside a string by using our 

variable in this way: ${stringWithSingleQuote}. As noted earlier in the 

chapter, this is called string interpolation.

If you simply want to express the value of a variable, you do not have to 

use {}. You can use the variable in this way:

print("$stringWithSingleQuote");

print(stringWithSingleQuote);

Chapter 1  Getting Started with Dart



24

String concatenation and even making it multiline is quite easy in Dart. 

Consider this code:

//code 1.22

main(List<String> arguments) {

  String stringInterpolation = 'string ' + 'concatenation';

  print(stringInterpolation);

  String multiLIneString = """

      This is

      a multi line

      string.

  """;

  print(multiLIneString);

}

You use the + operator for concatenation, meaning you join two strings 

together. Looking at the output here, we have used a triple quote with 

either single or double quotation marks:

//output

string concatenation

      This is

      a multi line

      string.

If you want to store some constant value inside a constant string, the 

value cannot be variables. Consider this code:

//code 1.23

main(List<String> arguments) {

  const aConstantInteger = 12;

  const aConstantBoolean = true;

  const aConstantString = "I am a constant string.";

Chapter 1  Getting Started with Dart



25

  �const aValidConstantString = "this is a constant integer: 

${aConstantInteger}, a constant boolean: ${aConstantBoolean}, 

a constant string: ${aConstantString}";

  �print("This is a valid constant string and the output is: 

$aValidConstantString");

}

We have created a valid constant string by storing a constant value 

inside them. The output is perfectly OK.

//output

This is a valid constant string and the output is: this is a 

constant integer: 12, a constant boolean: true, a constant 

string: I am a constant string.

This will not work if you want to hold variable data inside a constant 

string. We have changed the previous code listing to this:

//code 1.24

main(List<String> arguments) {

  var aConstantInteger = 12;

  var aConstantBoolean = true;

  var aConstantString = "I am a constant string.";

  �const aValidConstantString = "this is a constant integer: 

${aConstantInteger}, a constant boolean: ${aConstantBoolean}, 

a constant string: ${aConstantString}";

  �print("This is a valid constant string and the output is: 

$aValidConstantString");

}

Chapter 1  Getting Started with Dart



26

Here is the output, which is full of errors:

//output

bin/main.dart:9:63: Error: Not a constant expression.

  �const aValidConstantString = "this is a constant integer: 

${aConstantInteger}, a constant boolean: ${aConstantBoolean}, 

a constant string: ${aConstantString}";

                                               ^^^^^^^^^^^^^^^^

bin/main.dart:9:104: Error: Not a constant expression.

  �const aValidConstantString = "this is a constant integer: 

${aConstantInteger}, a constant boolean: ${aConstantBoolean}, 

a constant string: ${aConstantString}";

                                               ^^^^^^^^^^^^^^^^

bin/main.dart:9:144: Error: Not a constant expression.

  �const aValidConstantString = "this is a constant integer: 

${aConstantInteger}, a constant boolean: ${aConstantBoolean}, 

a constant string: ${aConstantString}";

It did not work. As we progress, you will learn more about strings. 

Understanding them is important in the context of making mobile and 

web applications.

In the next section, you will learn about Booleans, which also play a 

vital role in building algorithms.

�To Be True or to Be False
You have already seen that Dart has a type called bool. The Boolean literals 

true and false have the type bool. They are compile-time constants.

This is an extremely important concept in computer science because 

you can use control structures to alter the flow of your program that 

depends on whether a statement is true or false. We will cover this in 

Chapter 2.

Chapter 1  Getting Started with Dart



27

�Introduction to Collections: Arrays Are Lists 
in Dart
An array, or an ordered group of objects, is the most common collection in 

every programming language. In Dart, arrays are List objects. We will call 

them lists in our future discussions.

Dart is designed to compile to JavaScript to run across the modern 

Web; therefore, if you have a working knowledge of JavaScript, you will find 

some similarities in this type of collection.

Here is some sample code to consider so you can understand why this 

concept is important:

//code 1.25

main(List<String> arguments) {

  List fruitCollection = ['Mango', 'Apple', 'Jack fruit'];

  print(fruitCollection[0]);

}

Consider another piece of code:

//code 2.15

main(List<String> arguments) {

  List fruitCollection = ['Mango', 'Apple', 'Jack fruit'];

  var myIntegers = [1, 2, 3];

  print(myIntegers[2]);

  print(fruitCollection[0]);

}

What is the difference between these two code snippets? In code 2.14, 

we have explicitly mentioned that we are going to declare a collection of 

fruits. And we can pick any item from that collection using the key. In an 

array, the key is not mentioned in the definition; it is automatically inferred 

Chapter 1  Getting Started with Dart



28

that the key starts from 0. Therefore, the output of code 2.14 is Mango. In the 

second instance, we do not have any explicit declaration about the type of 

the myIntegers list. We have written this:

var myIntegers = [1, 2, 3];

However, Dart infers that the list has type List<int>. Let’s see the 

output of code 2.15:

//output

3

Mango

If we try to inject noninteger objects to the myInteger list, what happens?

//code 2.17

main(List<String> arguments) {

  List fruitCollection = ['Mango', 'Apple', 'Jack fruit'];

  var myIntegers = [1, 2, 3, 'non-integer object'];

  print(myIntegers[3]);

  print(fruitCollection[0]);

}

This did not raise any error. See the output, shown here:

//output of code 2.17

non-integer object

Mango

However, remember that Dart lists use zero-based indexing like all 

the other collections you may have seen in other programming languages. 

Just think of a list as a key-value pair, where 0 is the index of the first 

value or element. As we progress, we will discuss lists because there are 

other useful methods that we will use when we build our first mobile 

application. Dart lists have many handy methods.

Chapter 1  Getting Started with Dart



29

�Get, Set, Go
In Dart, a Set is an unordered collection of unique items. There are small 

differences in syntax between List and Set.

Let’s look at an example first to know more about the differences.

//code 1.26

main(List<String> arguments) {

  var fruitCollection = {'Mango', 'Apple', 'Jack fruit'};

  print(fruitCollection.lookup('Apple'));

}

//output

Apple

We can search a set using the lookup() method. If we search for 

something else, it returns null.

//code 1.27

main(List<String> arguments) {

  var fruitCollection = {'Mango', 'Apple', 'Jack fruit'};

  print(fruitCollection.lookup('Something Else'));

}

//output

null

When we write the following, it does not create a Set, but a Map:

var myInteger = {};

The syntax for map literals is similar to that for set literals. Why is this? 

Because map literals came first. The literal {} is a default to the Map type. 

We can prove this by using this simple test:

//code 1.28

main(List<String> arguments) {

  var myInteger = {};

Chapter 1  Getting Started with Dart



30

  if(myInteger.isEmpty){

    print("It is a map that has no key, value pair.");

  } else print("It is a set that has no key, value pair.");

}

Look at the output:

//output of code 2.20

This is a map that has no key-value pair. It means the map is empty. 

If it were a set, we would have gotten the output in that direction. We 

will see lots of examples of sets in the future, while we build our mobile 

application. For now, just remember that, in general, a map is an object 

that associates keys with values. The set has also keys, but they are implicit. 

In cases of sets, we call them indexes.

Let’s see one example of the Map type by mapping literals. While writing 

keys and values, it is important to note that each key occurs only once, but 

you can use the same value many times.

//code 1.29

main(List<String> arguments) {

  var myProducts = {

    'first' : 'TV',

    'second' : 'Refrigerator',

    'third' : 'Mobile',

    'fourth' : 'Tablet',

    'fifth' : 'Computer'

  };

  print(myProducts['third']);

}

The output is obvious, as shown here:

'Mobile'

Chapter 1  Getting Started with Dart



31

Dart understands that myProducts has the type Map<String, 

String>(Map<Key, Value>); we could have made the key integers or 

numbers, instead of a string type.

//code 1.30

main(List<String> arguments) {

  var myProducts = {

    1 : 'TV',

    2 : 'Refrigerator',

    3 : 'Mobile',

    4 : 'Tablet',

    5 : 'Computer'

  };

  print(myProducts[3]);

}

The output is the same as before: mobile.

Can we add a Set type collection of values inside a Map? Yes, we can. 

Consider this code:

//code 1.31

main(List<String> arguments) {

  Set mySet = {1, 2, 3};

  var myProducts = {

    1 : 'TV',

    2 : 'Refrigerator',

    3 : mySet.lookup(2),

    4 : 'Tablet',

    5 : 'Computer'

  };

  print(myProducts[3]);

}

Chapter 1  Getting Started with Dart



32

In the previous code, we injected a collection of the Set type, and we 

also looked up the defining value through the Map key. Here, inside the Map 

key-value pair, we have added the set element number 2 in this way: 3 : 

mySet.lookup(2). Later we tell our Android Studio editor to display the 

value of the Map type myProducts.

The output is quite expected: 2.

You can create the same products list by using the Map constructor. For 

beginners, the term constructor might seem difficult. We will discuss this 

term in detail in Chapter 7. Consider this code:

//code 1.32

main(List<String> arguments) {

  var myProducts = Map();

  myProducts['first'] ='TV';

  myProducts['second'] ='Mobile';

  myProducts['third'] ='Refrigerator';

  if(myProducts.containsValue('Mobile')){

    print("Our products list has ${myProducts['second']}");

  }

}

Here is the output:

//output

Our products list has Mobile

Since we have an instance in code 1.32 of the Map class, a seasoned 

programmer might have expected new Map() instead of only Map().

As of Dart 2, the new keyword is optional. You will learn about it in 

detail in Chapter 7.

You will also learn more about collections in Chapter 7, where you will 

learn more about List, Set, and Map.

Chapter 1  Getting Started with Dart



33

�Operators Are Useful
Simply put, programming is about processing variables. This processing 

might be to perform a mathematical calculation or to concatenate two 

strings, for example. For that purpose we need operators. The simplicity of 

Dart is the + operator adds two integer operands (variables) and produces 

a result. At the same time, we may use the + operator to concatenate two 

strings (as shown in code 1.22).

In Dart, when you use operators, you actually create expressions.

Here are some examples of expressions: a++, a + b, a ∗ b, a/b, a~/b, 

a%b, and so on.

There are many types of operators in Dart. Even absolute beginners 

probably have heard of arithmetic operators. Relational operators are 

extremely useful for the control structures.

We will take a look at them one after another.

The usual arithmetic operators are - add (+), subtract (-), multiply 

(∗), divide (/), and modulo or remainder (%); a special operator, divide, 

returning an integer looks like this: ~/.

Let’s see one example:

//code 1.33

main(List<String> arguments) {

  int aNum = 12;

  double aDouble = 2.25;

  var theResult = aNum ~/ aDouble;

  print(theResult);

}

//output

5

Chapter 1  Getting Started with Dart



34

Note this special operator has displayed an integer, not a double. 

However, if we had divided it in a plain fashion, it would look like this:

//code 1.34

main(List<String> arguments) {

  int aNum = 12;

  double aDouble = 2.25;

  var theResult = aNum / aDouble;

  print(theResult);

}

Here is the output:

//output of code 2.26

5.333333333333333

One key feature of Dart is that it supports both prefix and postfix 

increment and decrement operators.

Here, a prefix means ++variable or --variable. These either add 1 or 

subtract 1 from the variable value, respectively. The postfix does the same; 

only the syntax changes, like this: variable++ or variable--.

Let’s see an example:

//code 1.35

main(List<String> arguments) {

  int aNum = 12;

  aNum++;

  ++aNum;

  int anotherNum = aNum + 1;

  print(anotherNum);

}

The output is as expected: 15. Both prefix and postfix work in the case 

of -- also.

Chapter 1  Getting Started with Dart



35

�Relational Operators
Relational operators are also called equality operators because == means 

“equal,” and other relational operators usually check for equality in various 

forms.

Let’s consider some code snippets that will show us many types of 

relational operators in one glance.

//code 1.36

main(List<String> arguments) {

  int firstNum = 40;

  int secondNum = 41;

  if (firstNum != secondNum){

    print("$firstNum is not equal to the $secondNum");

  } else print("$firstNum is equal to the $secondNum");

}

//output

40 is not equal to the 41

In the previous code, the != operator stands for “not equal.” It comes 

out true if the operands are not equal. So, we’re saying “If firstNum does 

not equal secondNum, execute the code between {}. Otherwise, execute the 

code after the else.”

Let’s change this code a little bit:

//code 1.37

main(List<String> arguments) {

  int firstNum = 40;

  int secondNum = 40;

  if (firstNum == secondNum){

    print("$firstNum is equal to the $secondNum");

  } else print("$firstNum is not equal to the $secondNum");

}

Chapter 1  Getting Started with Dart



36

Here we’re saying “If firstNum equals secondNum, execute the code 

between {}. Otherwise, execute the code after the else.” Let’s add some 

more logic to our code, as shown here:

//code 1.38

main(List<String> arguments) {

  int firstNum = 40;

  int secondNum = 40;

  int thirdNum = 74;

  int fourthNum = 56;

  if (firstNum == secondNum || thirdNum == fourthNum){

    �print("If choice between 'true' or 'false', the 'true' gets 

the precedence.");

  �} else print("If choice between 'true' or 'false', the 

'false' gets the precedence.");

}

//output

If choice between 'true' or 'false', the 'true' gets the 

precedence.

This time we’re saying “If firstNum equals secondNum OR if thirdNum 

equals fourthNum, execute the code between {}. Otherwise, execute the 

code after the else.” We use the OR (||) operator to implement this logic. 

So if one side of the OR operator is true, the whole statement is true.

This is not the case for the AND (&&) relational operator. Look at this 

code:

//code 1.39

main(List<String> arguments) {

  int firstNum = 40;

  int secondNum = 40;

  int thirdNum = 74;

  int fourthNum = 56;

Chapter 1  Getting Started with Dart



37

  if (firstNum == secondNum && thirdNum == fourthNum){

    �print("If choice between 'true' or 'false', in this case 

the 'true' gets the precedence.");

  �} else print("If choice between 'true' or 'false', in this 

case the 'false' gets the precedence.");

}

//output

If choice between 'true' or 'false', in this case the 'false' 

gets the precedence.

We have used the && relational operator, and here the expression is 

false because both sides have to be true in the case of the AND operator. 

The ! sign has many roles. Consider this code snippet:

//code 1.40

main(List<String> arguments) {

  int aNUmber = 35;

  if(!(aNUmber != 150) && aNUmber <= 150){

    print("It's true");

  } else print("It's false.");

}

Can you guess what the output would be? The first statement is false 

because we have negated a true statement by using the ! sign.

!(aNUmber != 150)

The second statement is true; the value is less than or equal to 150.

aNUmber <= 150

Since the logical operator is AND (&&) here, the whole expression will 

be false.

!(aNUmber != 150) && aNUmber <= 150

Chapter 1  Getting Started with Dart



38

Had we used the OR (||) logical operator, the output would have come 

out as true.

Just to remind you, the >= operator means greater than or equal to. It 

is > for greater than, or it is < for less than. Take some time to play around 

your logical or relational operators because this is one of the main pillars 

of computer science.

�Type Test Operators
The as, is, and is! operators are handy for checking types at runtime.

Consider this code:

//code 1.41

main(List<String> arguments) {

  int myNumber = 13;

  bool isTrue = true;

  print(myNumber is int);

  print(myNumber is! int);

  print(myNumber is! bool);

  print(myNumber is bool);

}

The first one is true, the second one is false, and so on.

//output

true

false

true

false

Chapter 1  Getting Started with Dart



39

�Assignment Operators
While assigning a value, we use the = operator. What happens when the 

assigned-to variable is null? We use a special type of operator: - ??=.

Consider this code:

//code 1.42

main(List<String> arguments) {

  int firstNum = 10;

  int secondNum;

  if(firstNum == 10) print("The value of ${firstNum} is set.");

  if (secondNum == null) print("It is true.");

  secondNum ??= firstNum;

  print(secondNum);

}

Now look at the output:

//output

The value of 10 is set.

It is true.

10

In code 1.42, we have assigned the value of firstNum to 10, and the 

type is an integer. So, we can say, the value of firstNum is set. At the same 

time, we have not assigned any value to secondNum, so by default, it is 

null. After that, we assign the integer to the variable that held null by this 

special operator: ??=.

Almost the same thing happens in the case of compound assignment 

operators. Now we are going to write the previous code in this way:

//code 1.43

main(List<String> arguments) {

  int firstNum = 10;

Chapter 1  Getting Started with Dart



40

  int secondNum;

  if(firstNum == 10) print("The value of ${firstNum} is set.");

  if (secondNum == null) print("It is true.");

  secondNum ??= firstNum;

  print(secondNum);

  print("After using an assignment operator, the value changes.");

  secondNum += secondNum;

  print(secondNum);

  �print("After using an assignment operator, the value changes 

again.");

  secondNum -= secondNum;

  print(secondNum);

  if (secondNum == null) print("It is true.");

  �else print("it is false, because the 'secondNUm' has the 

value of ${secondNum} now.");

}

Look at this output where it is evident that we have changed the value 

of secondNum consecutively:

//output

The value of 10 is set.

It is true.

10

After using an assignment operator, the value changes.

20

After using an assignment operator, the value changes again.

0

it is false, because the 'secondNUm' has the value of 0 now.

As we progress, you will see more examples of operators.

Chapter 1  Getting Started with Dart



41

�Summary
Numbers, strings, and Booleans—they are all literals in Dart. Consider 

these literals: 1, 2.3, "Some Strings", true, false.

We need to remember a few things, such as the following:

var isValid = true;

•	 var is the data type.

•	 isValid is the variable name (or spot in memory).

•	 true is a literal.

You can mention the data type of a variable as int, double, String, or 

bool. If you don’t, you can simply refer to them as var. In that case, when 

it’s not mentioned, the data type is inferred.

String interpolation is a good practice. Don’t use the + sign to add two 

strings.

Use an expression for operators, such as ${number1 + number2}.

What will be your choice? final or const? It is a difficult choice. You 

need to remember a few things: when you choose final, it is initialized, 

and when it is accessed, the memory is allocated for it. The const is 

implicitly final; this means when it is compiled, it is initialized, and the 

memory is allocated for it.

Chapter 1  Getting Started with Dart



43© Sanjib Sinha 2020 
S. Sinha, Quick Start Guide to Dart Programming,  
https://doi.org/10.1007/978-1-4842-5562-9_2

CHAPTER 2

Flow Control and 
Looping
Controlling the flow of your code is important. Programmers want to 

control the logic of their code for many reasons; one of the main reasons is 

that the user of the software should have many options open to them.

You may not know the conditions beforehand, in which way your 

programming logic should move, though. You can only guess, so as a 

developer, you should open as many avenues for the user as possible. 

There are several techniques you can adopt to control the flow of the code. 

For example, the if-else logic is popular.

�if-else
Let’s look at a simple example of controlling the flow of the code. After that, 

we will delve deep into the logical consequences of this approach. An if 

can be followed by else if the Boolean statement tested by the if block 

comes out as false.

if(it is true){

The program executes

}

Else {

This block will not execute then

}



44

Just the opposite happens when the expression tested by if is false.

if(it is false){

The program will not execute

}

Else {

This block will execute then

}

In programming, this testing mechanism depends on a variety of 

relationships. In the previous chapter, you saw some of them. You will see 

more here.

//code 2.1main(List<String> arguments) {

  bool firstButtonTouch = true;

  bool secondButtonTouch = false;

  bool thirdButtonTouch = true;

  bool fourthButtonTouch = false;

  if(firstButtonTouch) print("The giant starts running.");

  else print("To stop the giant please touch the second button.");

  if(secondButtonTouch) print("The giant stops.");

  else print("You have not touched the second button.");

  print("Touch any button to start the game.");

  if(thirdButtonTouch) print("The giant goes to sleep.");

  else print("You have not touched any button.");

  if(fourthButtonTouch) print("The giant wakes up.");

  else print("You have not touched any button.");

}

Chapter 2  Flow Control and Looping



45

//output of code 21

The giant starts running.

You have not touched the second button.

Touch any button to start the game.

The giant goes to sleep.

You have not touched any button.

Now you can make this small code snippet more complicated, as 

shown here:

//code 2.2

main(List<String> arguments) {

  bool firstButtonTouch = true;

  var firstButtonUntouch;

  bool secondButtonTouch = false;

  bool thirdButtonTouch = true;

  bool fourthButtonTouch = false;

  firstButtonUntouch ??= firstButtonTouch;

  firstButtonUntouch = false;

  �if (firstButtonUntouch == false || firstButtonTouch == true) 

print("The giant is sleeping.");

  �else print("You need to wake up the giant. Touch the first 

button.");

  �if(firstButtonTouch == true && firstButtonUntouch == false) 

print("The giant starts running.");

  print("To stop the giant please touch the second button.");

  �if((secondButtonTouch == true && thirdButtonTouch == true)  

|| fourthButtonTouch == false) print("The giant stops.");

  else print("You have not touched the second button.");

  print("Touch any button to start the game.");

Chapter 2  Flow Control and Looping



46

  if(thirdButtonTouch) print("The giant goes to sleep.");

  else print("You have not touched any button.");

  if(fourthButtonTouch) print("The giant wakes up.");

  else print("You have not touched any button.");

}

Your output will vary, as shown here:

//output of code 2.2

The giant is sleeping.

The giant starts running.

To stop the giant please touch the second button.

The giant stops.

Touch any button to start the game.

The giant goes to sleep.

You have not touched any button.

For if-else logic, always remember the following golden rules. These 

are for the AND condition:

	 1.	 When both conditions are true, the result is true.

statementOne = TRUE;

statementTwo = TRUE;

if(statementOne and statementTwo){

  the statement will execute, as it stands for TRUE

}

	 2.	 When both conditions are false, the result is false.

statementOne = FALSE;

statementTwo = FALSE;

if(statementOne and statementTwo){

  the statement will not execute, as it stands for FALSE

}

Chapter 2  Flow Control and Looping



47

	 3.	 When one condition is true and the other condition 

is false, the result is false.

statementOne = TRUE;

statementTwo = FALSE;

if(statementOne and statementTwo){

  the statement will not execute, as it stands for FALSE

}

Now here are the rules for the OR condition:

	 1.	 When one condition is true or one condition is false, 

the result is true.

statementOne = TRUE;

statementTwo = FALSE;

if(statementOne or statementTwo){

  the statement will execute, as it stands for TRUE

}

	 2.	 When both conditions are false, the result is false.

statementOne = FALSE;

statementTwo = FALSE;

if(statementOne or statementTwo){

  �the statement will not execute, as it stands for 

FALSE

}

You should now have an idea of how you can use if-else logic when you 

need it. It can become complex when you start adding relational operators.

Finally, before leaving this section, I will show you another code 

snippet where the existing set of rules or principles has been changed. 

Rearranging the order of the AND and OR logic will give you an idea of 

how the output can change.

Chapter 2  Flow Control and Looping



48

//code 2.3

main(List<String> arguments) {

  bool firstButtonTouch = true;

  var firstButtonUntouch;

  bool secondButtonTouch = false;

  bool thirdButtonTouch = true;

  bool fourthButtonTouch = false;

  firstButtonUntouch ??= firstButtonTouch;

  firstButtonUntouch = false;

  �if (firstButtonUntouch == false || firstButtonTouch == true) 

print("The giant is sleeping.");

  �else if (thirdButtonTouch) print("You need to wake up the 

giant. Touch the first button.");

  �else if(firstButtonTouch == true && firstButtonUntouch == 

false) print("The giant starts running.");

  �else if (secondButtonTouch) print("To stop the giant please 

touch the second button.");

  �else if((secondButtonTouch == true && thirdButtonTouch 

== true) || fourthButtonTouch == false) print("The giant 

stops.");

  �else if (thirdButtonTouch) print("You have not touched the 

second button.");

  �else if (secondButtonTouch) print("Touch any button to start 

the game.");

  else if(thirdButtonTouch) print("The giant goes to sleep.");

  �else if (firstButtonUntouch) print("You have not touched any 

button.");

  if(fourthButtonTouch) print("The giant wakes up.");

  else print("You have not touched any button.");

}

Chapter 2  Flow Control and Looping



49

Here is the output of the previous code:

The giant is sleeping.

You have not touched any button.

You can change the pattern and see what happens.

Let’s consider the first line of code, shown here:

  �if (firstButtonUntouch == false || firstButtonTouch == true) 

print("The giant is sleeping.");

firstButtonUntouch was initially NULL. After that we used the special 

??= operator and assigned its value to firstButtonTouch, which was 

initially true. Therefore, firstButtonUntouch is now true. Now the set 

of axioms between false or true? It comes out true. And we have the 

output.

�Conditional Expressions
Dart has two conditional expressions that can replace the if-else clause 

when testing small expressions. Consider this code:

//condition? exp1 : exp2;

int num1 = 20;

int num2 = 30;

int smallerNumber = num1 < num2? num1 : num2;

// it is expected that num1 will always be smaller

Here we compare num1 to num2. If num1 is smaller (num1 < num2 is 

true), we assign num1 to the variable. If num1 < num2 is false, we assign 

num2. The general form is as follows, where expression1 is returned if 

condition is true and expression2 is returned if condition is false:

condition? expression1 : expression2

Chapter 2  Flow Control and Looping



50

The other form deals with nulls.

int smallNumber = num1 ?? num2";

If num1 is not null, we assign it to smallNumber. If it is null, we assign 

num2 to smallNumber.

�Looking at Looping
In computer programming, when we need to repeat a given section of code 

a certain number of times until a particular condition is met, we use a loop. 

This is a control structure that is repeated until a certain condition is met.

�for Loop
The general syntax of the for loop looks like this:

for(var x = 0; x <= 10; x++){

  //iteration from 0 to 10 happens in between

}

In the previous code, the value of x starts at 0. Then we test if the loop 

is going to execute (x <= 10;). If that expression returns true, the loop 

executes, and we carry out the last instruction in the for clause (x++), 

adding 1 to x. The for loop then tests to see whether it should run again; 

if it does, then x++ runs again too. This continues until x <= 10 returns 

false.

The for loop is necessary for iterating any collections of data. Here is a 

typical example of the for loop:

//code 2.4

main(List<String> arguments) {

  var proverb = StringBuffer('As Dark as a Dungeon.');

Chapter 2  Flow Control and Looping



51

  for(var x = 0; x <= 10; x++){

    proverb.write("!");

    print(proverb);

  }

}

In the previous code, we used two built-in functions.

They are StringBuffer() and write(). We get these from Dart 

libraries.

The output is as follows:

//output of code 2.4

As Dark as a Dungeon.!

As Dark as a Dungeon.!!

As Dark as a Dungeon.!!!

As Dark as a Dungeon.!!!!

As Dark as a Dungeon.!!!!!

As Dark as a Dungeon.!!!!!!

As Dark as a Dungeon.!!!!!!!

As Dark as a Dungeon.!!!!!!!!

As Dark as a Dungeon.!!!!!!!!!

As Dark as a Dungeon.!!!!!!!!!!

As Dark as a Dungeon.!!!!!!!!!!!

In our future discussions, we will use the for loop quite extensively, 

so currently, let’s stop here. You should understand the concept of why 

the exclamatory sign has increased from 0 to 10. It stops when the certain 

condition (here x=10) is met.

I am now going to cover an interesting feature of iterating collections, 

namely, using Set and Map. When the object you are going to iterate is 

Iterable, you can use the forEach() method. We are about to present two 

sets of collections; one is Set, and the other is Map.

Chapter 2  Flow Control and Looping



52

//code 2.5

main(List<String> arguments) {

  Set mySet = {1, 2, 3};

  var myProducts = {

    1 : 'TV',

    2 : 'Refrigerator',

    3 : mySet.lookup(2),

    4 : 'Tablet',

    5 : 'Computer'

  };

  �var userCollection = {"name": "John Smith", 'Email':  

'john@sanjib.site'};

  myProducts.forEach((x, y) => print("${x} : ${y}"));

  userCollection.forEach((k,v) => print('${k}: ${v}'));

}

As you see in the previous code, there are two sets, myProducts 

and userCollection. In both sets, a key=>value pair is declared. In 

the first case, 1 is key, and TV is the value. Now, Dart has a built-in 

forEach(key:value) method that can be used to give the output. In the 

first instance, x is the key, and y represents the value. After that, we use 

string interpolation to give the output.

Here is the output:

//output of code 2.5

1 : TV

2 : Refrigerator

3 : 2

4 : Tablet

5 : Computer

name: John Smith

Email: john@sanjib.site

Chapter 2  Flow Control and Looping



53

When you do not know the current iteration counter, the forEach() 

method is a good option. In usual cases, Iterable classes, such as List 

and Set, also support the for() loop form of iteration.

Consider this code:

//code 2.6

main(List<String> arguments) {

  var myCollection = [1, 2, 3, 4];

  for(var x in myCollection){

    print("${x}");

  }

}

Here is the output:

//output of code 2.6

1

2

3

4

�while and do-while
On a given Boolean condition, the while loop controls the flow and 

repeatedly executes the value. It loops through a block of code, as long as 

the specified condition is true.

Consider this simple example to understand the structure:

while (condition) {

  // code block to be executed

}

Chapter 2  Flow Control and Looping



54

Here’s a simple example that prints out from 0 to 10:

int x = 0;

while (x <= 10) {

  print("The output: ${x}");

  x++;

}

I hope you can see the similarity between the for and while loops. The 

syntactical structure is just different.

Be careful about handling the while loop. Since a while loop evaluates 

the condition before the loop, you must know how to stop the loop at the 

right time before it enters into infinity.

//code 2.7

main(List<String> arguments) {

  var num = 5;

  var factorial = 1;

  �print("The value of the variable 'num' is decreasing this 

way:");

  while(num >=1) {

    factorial = factorial * num;

    num--;

    print("'=>' ${num}");

  }

  print("The factorial  is ${factorial}");

}

In the previous code, before the loop begins, the while loop evaluates 

the condition. Since the value of the variable num is 5 and it is greater than 

or equal to 1, the condition is true. So, the loop begins. As the loop begins, 

we have also kept reducing the value of the variable num; otherwise, it 

would have entered into an infinite loop.

Chapter 2  Flow Control and Looping



55

The value of the variable reduces this way:

//output of code 2.8

The value of the variable 'num' is decreasing this way:

'=>' 4

'=>' 3

'=>' 2

'=>' 1

'=>' 0

The factorial is 120

In the case of a do-while loop, it evaluates the condition after the loop.

//code 2.9

main(List<String> arguments) {

  var num = 5;

  var factorial = 1;

  do {

    factorial = factorial ∗ num;
    num--;

    �print("The value of the variable 'num' is decreasing to : 

${num}");

    print("The factorial  is ${factorial}");

  }

  while(num >=1);

}

We have slightly changed the code snippet so that it will show the 

reducing value of the variable, and at the same time it will show you how 

the value of the factorial increases.

//output of code 2.10

The value of the variable 'num' is decreasing to : 4

The factorial  is 5

Chapter 2  Flow Control and Looping



56

The value of the variable 'num' is decreasing to : 3

The factorial  is 20

The value of the variable 'num' is decreasing to : 2

The factorial  is 60

The value of the variable 'num' is decreasing to : 1

The factorial  is 120

The value of the variable 'num' is decreasing to : 0

The factorial  is 120

Once you understand the pattern of loops, you can easily choose 

between for, while, and do-while. Let’s look at that now.

�Patterns in Looping
I have met many students who feel confused about the while loop. I cover 

the looping structure in this section so that you can understand it.

People often do not know that a for loop can also turn into an infinite 

loop if it is not handled properly.

Actually, some concepts of loops are the same for every loop, be it for, 

while, or do-while. There are three things to remember.

•	 Counter variable

•	 Condition checking

•	 According to the condition, increment or decrement

Let’s consider the code snippet:

void forLoopFunction(){

  for(var i = 0; i <= 5; i ++){

    print(i);

  }

}

Chapter 2  Flow Control and Looping



57

void whileLoopFunction (){

  var i = 0;

  while(i <= 5){

    print(i);

    i++;

  }

}

// in doWhileLoop the execution part comes before the specified 

condition. The concept is same.

void doWhileLoopFunction (){

  var i = 0;

  do{

    print(i);

    i++;

  } while(i <= 5);

}

main(){

  //print(smallerNumber);

  //print(smallNumber);

  forLoopFunction();

  print("");

  whileLoopFunction();

  print("");

  doWhileLoopFunction();

}

Here is the output:

0

1

2

3

Chapter 2  Flow Control and Looping



58

4

5

0

1

2

3

4

5

0

1

2

3

4

5

Let’s consider the for loop first.

for(var i = 0; i <= 5; i ++){

  print(i);

}

We have started with the counter variable, here i = 0. Then we have 

checked the condition, as shown here:

i <= 5

After the second step, we have incremented the value: i++.

The steps are quite logical. We could not have decremented the value. It 

would have taken us to an infinite loop because after starting at 0, the value 

of i would decrease, and the specified condition would remain true forever. 

If we had decremented the value of i, by writing i--, the condition checking 

would have never stopped until our computer’s memory permitted. A hang 

or freeze occurs when the program ceases to respond to code.

Chapter 2  Flow Control and Looping



59

Now we have done the same thing in the while loop. The steps are just 

a little bit different.

var i = 0;

while(i <= 5){

  print(i);

  i++;

}

In the previous code, the counter variable comes before the while loop 

starts. The while loop starts with the condition checking, as shown here:

i <= 5

We saw the same thing in the second step of the for loop. After that, 

according to the condition, we incremented the value of i inside the while 

loop. Once the value of i equals 6, it immediately stops responding to the 

inputs. It gives output from 0 to 5.

Now let’s look at the do-while loop code. We start with the counter 

variable, and then we increment or decrement the value.

var i = 0;

do{

  print(i);

  i++;

} while(i <= 5);

In the last stage, we check the condition inside the while loop.

You may ask which loop is better. Actually, it depends on the context. 

In some situations, the for loop is enough. In fact, in most cases, we can 

manage with the for loop. If we want to know how many times a given 

number can be divided by 2 before it is less than or equal to 1, the while 

loop is better to use.

Chapter 2  Flow Control and Looping



60

�for Loop Labels

In some situations, we use nested for loops. Inside a for loop, we can run 

another for loop; and in many cases, this is essential. In Dart, there is a 

concept called a label that allows us to handle the outer loop and the inner 

loop separately. With the help of continue and break, we can jump to labels. 

Let’s look at the code first; after that, I will explain what is happening:

void labelsLoop (){

  outerloop: for(var x = 1; x <= 3; x++){

    �print("One cycle of outerloop with $x starts and the whole 

innerloop runs.");

    innerloop: for(var y = 1; y <= 3; y++){

      if(x == 1 && y == 1){

        �print("Since outerloop $x and innerloop $y both are 1, 

it gives no output.");

        break innerloop;

      }

      print(y);

    }

    print("One cycle of outerloop ends with $x");

  }

}

main(List<String> arguments){

  labelsLoop();

}

If you look at the output shown here, you can understand how it works:

One cycle of the outer loop with 1 starts and the whole inner 

loop runs.

Since outer loop 1 and inner loop 1 both are 1, it gives no 

output.

Chapter 2  Flow Control and Looping



61

One cycle of the outer loop ends with 1

One cycle of the outer loop with 2 starts and the whole inner 

loop runs.

1

2

3

One cycle of the outer loop ends with 2

One cycle of the outer loop with 3 starts and the whole inner 

loop runs.

1

2

3

One cycle of the outer loop ends with 3

We can also use break in normal cases, without a label.

Consider this code:

void main() {

  for (var j = 0; j < 5; j++) {

         if (j > 3 ) break ;

    print(j);

  }

}

Here is the output:

0

1

2

3

As you see in the previous code, where we have used labels, the 

counter variable, condition checking, and increment parts are the same 

in both the outer loop and the inner loop. So when the outer loop starts 

Chapter 2  Flow Control and Looping



62

with 1, the inner loop inside the outer loop also starts with 1, and it should 

have completed the whole cycle. But we have injected an if statement and 

told the program that when the value of the outer loop and the inner loop 

both are 1, break the inner loop. We have used the labels outerloop and 

innerloop to demarcate the loops. Using the if statement, that particular 

cycle of innerloop could not complete the whole cycle. However, after 

that, it goes on as usual.

A label is a distinctive concept of Dart.

�Continue with the for Loop

You have just seen how we have explicitly broken the inner loop and 

stopped one cycle of the inner loop. So, break is an important concept 

while using the for loop. At the same time, the continue keyword also 

plays a key role in the for loop.

Let’s consider this code snippet:

void loopContinue(){

  for(var num = 1; num <= 5; num++){

    if(num % 2 == 0 ){

      print("These are all even numbers. $num");

      continue;

    } print("These are all odd numbers. $num");

  }

}

main(List<String> arguments){

  loopContinue();

}

Take a look at the output, and you will understand how the keyword 

continue works. It takes us out of the current loop to the start of the 

next one.

Chapter 2  Flow Control and Looping



63

These are all odd numbers. 1

These are all even numbers. 2

These are all odd numbers. 3

These are all even numbers. 4

These are all odd numbers. 5

break and continue are two important concepts not only in Dart but in 

every programming language.

�Decision-Making with switch and case

In some cases, decision-making can be easier when you use switch 

instead of if-else logic. switch statements in Dart compare integers, 

strings, or compile-time constants using the double equal sign (==) behind 

the scenes; it maintains the rule, though, that the compared objects must 

be instances of the same class and not of any of its subtypes. (Don’t worry, 

this will become clear when we get to classes later in the book.)

Consider this simple example first:

void main() {

   var marks = "A";

   switch(marks) {

      case "A": {  print("Very Good"); }

      break;

      case "B": {  print("Good"); }

      break;

      case "C": {  print("Fair"); }

      break;

      case "D": {  print("Poor"); }

      break;

Chapter 2  Flow Control and Looping



64

      default: { print("Fail"); }

      break;

   }

}

The output is Very Good. Here the object marks is of the same class as 

in the case statements (String).

Let’s look at another example:

//code 2.11

main(List<String> arguments) {

  �//that could be the input value that would take inputs from 

users

  var startingTime = 5;

  switch (startingTime) {

    case 5:

      print("Printer Ready");

      break;

    case 6:

      print("Start printing");

      break;

    case 7:

      print("Stop for a second");

      break;

    case 8:

      print("Loading a tray and roll the paper.");

      break;

    case 9:

      print("Printer Ready, start printing.");

      break;

Chapter 2  Flow Control and Looping



65

    default:

      print("Default ${startingTime}");

  }

}

The significance of break is that if the condition is met, the switch 

statement ends, and the program continues.

When someone starts the printer, it gives us output like this because 

startingTime is 5:

//output of code 2.11

Printer Ready

We have used a default clause to execute the code when no case 

clause matches.

�Summary
Controlling the flow of code is essential for many reasons. This is the 

foundation of any algorithms that instruct computers to behave in a 

certain way. Building a mobile or web application needs many such 

instructions. Because these algorithms can be complex, they require an 

understanding of a few other key concepts such as functions and object-

oriented programming.

In the next chapter, we will talk about functions first. After that, you will 

learn object-oriented programming thoroughly, and we will then return to 

the topic of features to discuss other key features of them.

Chapter 2  Flow Control and Looping



67© Sanjib Sinha 2020 
S. Sinha, Quick Start Guide to Dart Programming,  
https://doi.org/10.1007/978-1-4842-5562-9_3

CHAPTER 3

Functions and  
Objects
When we say functions are objects in Dart, it may seem confusing if you’re 

a beginner. Basically, because Dart is an object-oriented language, even 

functions are objects and have a type called Function.

This means many things. First, you can assign a function to a variable, 

and you can even pass a function as an argument to other functions. You 

can also call an instance of a Dart class as if it were a function.

In this chapter, first you will now learn how a Dart function works. 

Then you will learn about objects. To understand objects, you need to have 

an understanding of object-oriented programming, which we’ll also talk 

about in this chapter.

�Functions
Let’s see how functions work. This section is a basic introduction, and I will 

cover this topic more in-depth later when discussing methods in object-

oriented programming.



68

Before writing a function, you need to remember these major points:

•	 It is a good practice to define the type of a function. So, 

type annotation is recommended.

•	 Although Dart recommends type annotation, a 

function still works without any type declaration. In 

other words, you can omit the type and write it straight. 

Dart uses type interference. Here’s an example:

Map<String, dynamic> arguments = {'John': 'Smith', 

'Chicago': 42};

Alternatively, you can use var and let Dart infer the 

type:

var arguments = {'John': 'Smith', 'Chicago': 42};  

// Map<String, Object>

•	 However, the most important thing to remember in Dart 

is that whatever value you want to return from a function, 

you need to change the type of that function accordingly. 

If you want an integer value to return, for example, you 

should change the type of the function to integer.

•	 Simply put, for void, nothing is returned from a 

function. So, whenever you use the keyword void 

before the function, you need to use print(object) to 

see what’s happening inside that function.

The following are two simple functions with type annotations, and we 

have called them inside the main() function:

//code 3.1

main(List<String> arguments) {

  isTrue();

  isFalse();

}

Chapter 3  Functions and Objects 



69

void isTrue(){

  print("It's true.");

}

void isFalse(){

  print("It's false.");

}

//output of code 3.1

It's true.

It's false.

Let’s omit the type and see how the same code works.

//code 3.2

main(List<String> arguments) {

  isTrue();

  isFalse();

}

isTrue(){

  print("It's true.");

}

isFalse(){

  print("It's false.");

}

This gives us the same result because according to the type of the 

value, it is automatically inferred. Here Dart knows they, here the types,  

are void because we are not using any return statements.

So, type annotations do not matter in such cases, but for API building 

(we will cover this part at the end of this book), type annotation is 

necessary.

Chapter 3  Functions and Objects 



70

Note I f you change this code by adding the type bool before the 
function name, it still works without giving any error. Dart just uses 
what you’ve written because there is no reason to display an error 
(we’re not trying to return something that is not a bool). It’s loose 
like that.

You can call another function inside a function, as shown here:

//code 3.3

main(List<String> arguments) {

  myName();

}

myName(){

  print("My name is John");

  myAge(12);

}

myAge(int age){

  print("My age is ${age}");

}

Later inside the function myName(), we have passed the age parameter 

or argument and get this output:

//output of code 3.3

My name is John

My age is 12

So, that was a short introduction to functions; it is evident that a 

function plays the same role that the verb plays in human languages. It is 

the action part of programming. You will understand it better when we 

discuss methods in object-oriented programming later in this chapter.

Chapter 3  Functions and Objects 



71

Before leaving this section, let look at another piece of code where 

we actually return a value, so the return type is important. We also use a 

different function syntax called fat arrow.

void withoutReturningValue(){

  print("We cannot return any value from this function.");

}

int anIntegerReturnTypeFunction(){

  int num = 10;

  return num;

}

//using Fat Arrow

String stringReturnTypeFunction(String name, String address) => 

"This is $name and this is $address and we have used the Fat 

Arrow method.";

main(){

  withoutReturningValue();

  var returningInteger = anIntegerReturnTypeFunction();

  print("We are returning an integer: $returningInteger");

  print(stringReturnTypeFunction("John", "Jericho Town"));

}

First we use int as the return type of anIntegerReturnTypeFunction() 

and use the return keyword to specify the int that we’re returning. This 

value is then assigned to a variable in main().

Using the fat arrow method, we can return a value from a function 

in one line. This time we say it returns a String type. We will see more 

instances of fat arrow syntax later in the chapter.

Chapter 3  Functions and Objects 



72

The final type of function we should look at is the recursive function, 

shown here:

int getRecurse(int num)

{

    if (num > 1)

      return num * getRecurse(num - 1);

    else return 1;

}

main()

{

  print(getRecurse(5));

}

You can see that in main() we call getRecurse() with an int 

parameter of 5. Inside getRecurse(), we have an if clause to control the 

number of times we recurse. If the parameter is greater than 1, the code 

multiplies the parameter by the results of another call to getRecurse, with 

1 subtracted from the parameter. This recursive call is repeated until the 

parameter equals 1. At that stage, the chain of recursion is wound up, and 

the final result is returned.

You can add some print statements to see the recursion in action.

int getRecurse(int num)

{

  if (num > 1) {

    print("In getRecurse and num is $num");

    return num * getRecurse(num - 1);

  }  else return 1;

}

Chapter 3  Functions and Objects 



73

main()

{

  print(getRecurse(5));

}

The output is as follows:

In getRecurse and num is 5

In getRecurse and num is 4

In getRecurse and num is 3

In getRecurse and num is 2

120

You can see how 5 × 4 × 3 × 2 is 120, the final line of output.

�Objects
As you know, Dart is an object-oriented language, which means it has 

classes and objects.

Let’s start with a simple class and an object. So far you have seen 

variables and functions. Let’s think about something that will hold 

variables and functions. We call it a class.

Suppose we have a Car class that has three properties: name, model 

number, and whether it is turned on. It has also two methods (outside the 

object-oriented paradigm we call them functions) called turnOn(bool) and 

isTurnedOn(). Consider these the “action” parts of the class Car. When we 

pass the bool value true to turnOn(), the car starts, and when we pass the 

bool value false, the car stops.

Now imagine a manufacturer wants to build many cars that have 

separate names and model numbers but each one has one method called 

turnOn(bool). In this scenario, each car is an object or instance of the Car 

class.

Chapter 3  Functions and Objects 



74

Consider the following code:

//code 3.4

main(List<String> arguments) {

  var newCar = new Car();

  newCar.carName = "Red Angel";

  newCar.carModel = 256;

  newCar.turnOn(false);

  if(newCar.isTurnedOn()){

    �print("${newCar.carName} starts. It has model number 

${newCar.carModel}");

  �} else print("${newCar.carName} stops. It has model number 

${newCar.carModel}");

}

class Car {

  int carModel = 123;

  String carName = "Blue Angel";

  bool isOn = true;

  bool turnOn(bool turnOn){

    isOn = turnOn;

  }

  bool isTurnedOn() {

    return isOn;

  }

}

It gives us this output:

//output of code 3.4

Red Angel stops. It has model number 256

Chapter 3  Functions and Objects 



75

Look at the Car class. It has three properties or attributes: carName, 

carModel, and isOn. We treat them as variables, but since they are inside 

a class, we will call them properties, members, or attributes. These values 

can be changed when we create an instance. In fact, we have done this 

inside the main() function. The default values were 123, Blue Angel, and 

true. But we have some output where the name changes to Red Angel, 

the model has been changed to 256, and the car stops. We have created an 

instance or object of the Car class by simply writing this line:

var newCar = new Car();

Next , we have defined the name and the model number as follows:

newCar.carName = "Red Angel";

newCar.carModel = 256;

The next step is vital, because we check that the method isTurnedOn() 

returns true.

if(newCar.isTurnedOn()){

  �print("${newCar.carName} starts. It has model number 

${newCar.carModel}");

} else print("${newCar.carName} stops. It has model number 

${newCar.carModel}");

Now according to our logic, if this is true, the car should start. But in 

the output, we have seen that it stops.

Why does this happen?

It happens because in our Car class, we have already set that value as 

false.

Let’s change it to true, as shown here:

//code 3.5

main(List<String> arguments) {

  var newCar = new Car();

Chapter 3  Functions and Objects 



76

  newCar.carName = "Red Angel";

  newCar.carModel = 256;

  newCar.turnOn(true);

  if(newCar.isTurnedOn()){

    �print("${newCar.carName} starts. It has model number 

${newCar.carModel}");

  �} else print("${newCar.carName} stops. It has model number 

${newCar.carModel}");

}

class Car {

  int carModel = 123;

  String carName = "Blue Angel";

  bool isOn = true;

  bool turnOn(bool turnOn){

    isOn = turnOn;

  }

  bool isTurnedOn() {

    return isOn;

  }

}

Take a look at the output again:

//output of code 3.5

Red Angel starts. It has model number 256

From this example, we can conclude one thing: a class is a blueprint of an 

object. An object or an instance of a class is extremely powerful; it is not like 

simple variables, holding one reference to a spot in the memory where we 

can store only a value. Through an app object we can run a large complicated 

application; moreover, we can make a complex layer of logic behind an object.

Chapter 3  Functions and Objects 



77

�Digging Deep into Object-Oriented 
Programming
In the previous code, you saw these lines of code where we have used (.) 

notation to get the value of Car class members:

if(newCar.isTurnedOn()){

  �print("${newCar.carName} starts. It has model number 

${newCar.carModel}");

} else print("${newCar.carName} stops. It has model number 

${newCar.carModel}");

We actually used the class members.

When we use a (.) notation, we usually refer to object properties 

or methods. A class may have properties and methods. After all, it is a 

blueprint of how an object will behave. How an object will behave in the 

future depends on the class that has already been written.

Whether a car object will start or stop depends on that blueprint.

So, we can say that objects have members consisting of functions and 

data; when you call a method, you actually invoke it on an object.

Let’s see some more examples to get acquainted with the idea of 

classes and objects. To start, let’s assume a father bear is eating six fish. To 

create the object of father bear, we need to have a bear class first where we 

have one member property for “number of fish” and one member method 

for “eating that number of fish.” Ideally, both the property and the method 

should be annotated with the type int.

//code 3.6

class Bear {

  int eatFish(int numberOfFish){

    return numberOfFish;

  }

}

Chapter 3  Functions and Objects 



78

main(List<String> arguments){

  var fatherBear = new Bear();

  �print("Father bear eats ${fatherBear.eatFish(6)} number of 

fish.");

}

That’s a very simple program. We get this output:

//output of code 3.6

Father bear eats 6 number of fish.

Can we take this code to the next level? As father bear eats fish and 

sleeps for some hours, he gains weight. Consider this code:

//code 3.7

class Bear {

  int numberOfFish;

  int hourOfSleep;

  int weightGain;

  int eatFish(int numberOfFish){

    return numberOfFish;

  }

  int sleepAfterEatingFish(int hourOfSleep){

    return hourOfSleep;

  }

  int weightGaining(int numberOfFish, int hourOfSleep){

    weightGain = numberOfFish * hourOfSleep;

    return weightGain;

  }

}

Chapter 3  Functions and Objects 



79

main(List<String> arguments){

  var fatherBear = new Bear();

  fatherBear.numberOfFish = 6;

  fatherBear.hourOfSleep = 10;

  �print("Father bear eats ${fatherBear.eatFish(fatherBear.

numberOfFish)} number of fish. And he sleeps for ${fatherBear.

sleepAfterEatingFish(fatherBear.hourOfSleep)} hours.");

  �print("Father bear has gained ${fatherBear.

weightGaining(fatherBear.numberOfFish, fatherBear.

hourOfSleep)} pounds of weight.");

}

In the previous code, we have added a few things, such as hourOfSleep 

and weightGain; further, we have added two related methods: 

sleepAfterEatingFish() and weightGaining(). As you see, we have 

passed two related parameters through those methods.

Father bear sleeps after eating the fish and gains weight. The value of 

the weight he gains comes from the multiplication of hourOfSleep and 

numberOfFish.

So, we get this output while running this small program:

//output of code 3.7

Father bear eats 6 number of fish. And he sleeps for 10 hours.

Father bear has gained 60 pounds of weight.

Dart is an extremely flexible language. You can write the same code in 

fewer lines that used in other languages. You do not have to use the typical 

curly braces, and you can even omit the return keyword to return the 

value automatically. You can also omit the new word to create an instance. 

We are going to write the same code in this way now:

//code 3.8

class Bear {

  int numberOfFish;

Chapter 3  Functions and Objects 



80

  int hourOfSleep;

  int weightGain;

  //changing the styles of the methods completely

  int eatFish(int numberOfFish) => numberOfFish;

  int sleepAfterEatingFish(int hourOfSleep) => hourOfSleep;

  �int weightGaining(int numberOfFish, int hourOfSleep) => 

weightGain = numberOfFish * hourOfSleep;

}

main(List<String> arguments){

  var fatherBear = Bear(); //omitted the 'new' word

  fatherBear.numberOfFish = 7;

  fatherBear.hourOfSleep = 20;

    �print("Father bear eats ${fatherBear.eatFish(fatherBear.

numberOfFish)} fishes. And he sleeps for ${fatherBear.

sleepAfterEatingFish(fatherBear.hourOfSleep)} hours.");

  �print("Father bear has gained ${fatherBear.

weightGaining(fatherBear.numberOfFish, fatherBear.

hourOfSleep)} pounds of weight.");

}

We have slightly changed the value of hours and the number of fish. 

The output also changes, as shown here:

//output of code 3.8

Father bear eats 7 fishes. And he sleeps for 20 hours.

Father bear has gained 140 pounds of weight.

To make our life easier, in object-oriented programming there is a 

concept called a constructor. Whenever you create an instance or object 

with or without the new keyword, inside the class a method is automatically 

called. This method is called the constructor method. In the next section, 

we will explore the concept of constructors.

Chapter 3  Functions and Objects 



81

�Examining Constructors
The foremost task of constructors is to create objects. Whenever we try to 

create an object and write this line:

var fatherBear = Bear();

we are actually trying to arrange a spot in the memory for that object. 

The real work begins when we connect that spot with class properties and 

methods.

Using a constructor, we can do that job more efficiently because 

constructors come first when we instantiate. Not only that, Dart allows us 

to create more than one constructor, which is a great advantage.

Let’s write our Bear class in a new way by using a constructor:

//code 3.9

class Bear {

  int numberOfFish;

  int hourOfSleep;

  int weightGain;

  Bear(this.numberOfFish, this.hourOfSleep  );//  Constructor

  int eatFish(int numberOfFish) => numberOfFish;

  int sleepAfterEatingFish(int hourOfSleep) => hourOfSleep;

  �int weightGaining(int numberOfFish, int hourOfSleep) => 

weightGain = numberOfFish * hourOfSleep;

}

main(List<String> arguments){

  var fatherBear = Bear(6, 10);

    �print("Father bear eats ${fatherBear.eatFish(fatherBear.

numberOfFish)} fishes. And he sleeps for ${fatherBear.

sleepAfterEatingFish(fatherBear.hourOfSleep)} hours.");

Chapter 3  Functions and Objects 



82

  �print("Father bear has gained ${fatherBear.weightGaining 

(fatherBear.numberOfFish, fatherBear.hourOfSleep)} pounds of 

weight.");

}

Creating a constructor is extremely easy. Look at this line:

Bear(this.numberOfFish, this.hourOfSleep);

The same class name works as a method, and we have passed two 

arguments through that method. Once we get those values, we calculate 

the third variable for the weight gain. In a later section of this chapter of 

the book we will talk more about constructors.

Now it gets easier to pass the two values while creating the object. We 

have used the this keyword. The this keyword represents an implicit 

object pointing to the current class object.

We could have done the same thing by creating a constructor in this 

way, which is more traditional:

//code 3.10

class Bear {

  int numberOfFish;

  int hourOfSleep;

  int weightGain;

  Bear(int numOfFish, int hourOfSleep ){// constructor

    this  .numberOfFish = numOfFish  ;//�using this keyword to 

point out the current 

class object

    this  .hourOfSleep = hourOfSleep;

  }

  //Bear(this.numberOfFish, this.hourOfSleep);

Chapter 3  Functions and Objects 



83

  int eatFish(int numberOfFish) => numberOfFish;

  int sleepAfterEatingFish(int hourOfSleep) => hourOfSleep;

  �int weightGaining(int numberOfFish, int hourOfSleep) => 

weightGain = numberOfFish * hourOfSleep;

}

main(List<String> arguments){

  var fatherBear = Bear(6, 10);

  �print("Father bear eats ${fatherBear.eatFish(fatherBear.

numberOfFish)} fishes. And he sleeps for ${fatherBear.

sleepAfterEatingFish(fatherBear.hourOfSleep)} hours.");

  �print("Father bear has gained ${fatherBear.

weightGaining(fatherBear.numberOfFish, fatherBear.

hourOfSleep)} pounds of weight.");

}

In both cases, the output is the same as before:

//output of code 3.10

Father bear eats 6 fishes. And he sleeps for 10 hours.

Father bear has gained 60 pounds of weight.

In the previous code, you can even get the object’s type very easily. We 

can change the type of value quite easily. Watch the main() function again:

//code 3.11

main(List<String> arguments){

  var fatherBear = Bear(6, 10);

  �fatherBear.weightGain = fatherBear.numberOfFish * fatherBear.

hourOfSleep;

  �print("Father bear eats ${fatherBear.eatFish(fatherBear.

numberOfFish)} fishes. And he sleeps for ${fatherBear.

sleepAfterEatingFish(fatherBear.hourOfSleep)} hours.");

Chapter 3  Functions and Objects 



84

  �print("Father bear has gained ${fatherBear.

weightGaining(fatherBear.weightGain)} pounds of weight.");

  �print("The type of the object : ${fatherBear.weightGain.

runtimeType}");

  String weightGained = fatherBear.weightGain.toString();

  �print("The type of the same object has changed to : 

${weightGained.runtimeType}");

}

Here is the output:

//code 3.12

main(List<String> arguments){

  var fatherBear = Bear(6, 10);

  �print("Father bear eats ${fatherBear.eatFish(fatherBear.

numberOfFish)} fishes. And he sleeps for ${fatherBear.

sleepAfterEatingFish(fatherBear.hourOfSleep)} hours.");

  �print("Father bear has gained ${fatherBear.

weightGaining(fatherBear.numberOfFish, fatherBear.

hourOfSleep)} pounds of weight.");

  �print("The type of the object : ${fatherBear.weightGain.

runtimeType}");

  String weightGained = fatherBear.weightGain.toString();

  �print("The type of the same object has changed to : 

${weightGained.runtimeType}");

}

�How to Implement Classes
Now you have an idea of how classes and objects work together. A class is 

a blueprint that has some instance variables and methods. A class might 

have many tasks, but it is a good practice and one of the major paradigms 

Chapter 3  Functions and Objects 



85

of object-oriented programming that a single class should have a single 

task. When many classes work together, they should not be tightly coupled. 

They should be loosely coupled.

Loosely coupled means when you use many objects from different 

classes, they should not be glued together. They should not affect other 

objects when they are affected.

This is a principle that is known as the SOLID design principle. Briefly, 

it means that one object should not interfere with another object. Consider 

a Car class, where the Wheel class should not be glued to the Steering 

class. That is why when we get a flat tire, we can still steer the car to a 

safe place. When building software applications, you should always try to 

decouple all classes.

In Dart, we might implement the same principle while creating classes.

Let’s create a single class with a single task. We are going to create a 

class that will check whether a URL is secure or not.

//code 3.13

class CheckHTTPS {

  String urlCheck;

  CheckHTTPS(this.urlCheck);

  bool checkURL(String urlCheck){

    if(this.urlCheck.contains("https")){

      return true;

    } else return false;

  }

}

main(List<String> arguments){

  var newURL = CheckHTTPS('http://sanjib.site');

  if(!newURL.checkURL(newURL.urlCheck)) {

    print("The URL ${newURL.urlCheck} is not secured");

  }

}

Chapter 3  Functions and Objects 



86

We get this output after checking the URL:

//output of code 3.13

The URL http://sanjib.site is not secured

So, we have some basic steps to follow. Whenever we want to create a 

class, we should have a clear vision about what this class will do. What will 

be its task?

First, we need some variables. Next, we need one or more methods 

where we can play with these variables.

//code 3.14

class MyClass {

  String myVariable; //�property or instance variable, initially 

null

  MyClass(this.myVariable); //constructor

  String myMethod(){ //method declaration

    �return "This is my method and this is ${myVariable}";  

//returning value

  }

}

main(List<String> arguments){

  var myObject = MyClass("My String"); //�creating new instance 

of class MyClass

  print("${myObject.myMethod()}"); //printing the value

}

Look at the code: we have declared an instance variable first. It is of the 

String type. Since we have not initialized the variable, it is initially null. 

In the next step, we have constructed an object by declaring a constructor 

where we have passed the instance variable. Our method’s type is also 

String. In the method, we have returned a String object.

Chapter 3  Functions and Objects 



87

In the main() function, we have created an object and declared the 

type as MyClass; and at the same time, we have passed a string value to the 

constructor. Finally, we have called the class method and displayed the 

output.

In the next section, we will write some methods and try to understand 

how they work. Methods are essential parts of any class because they are 

the action part.

�Lexical Scope in Functions
This concept is extremely important as far as Dart functions are concerned.

Note  Later, when we dig deep into object-oriented programming, 
we will see how the concepts of access plays a vital role in Dart.

Let’s return to functions. First look at the following code and read the 

comments:

//code 3.15

var outsideVariable = "I am an outsider.";

main(List<String> arguments){

  //we can access the outside variable

  print(outsideVariable);

  // we cannot access the insider variable, it gives us error

  //print(insiderVariable);

  // it is an insider function

  String insiderFunction(){

    // I can access the outside variable, no problem

    print("This is from the insider function.");

    print(outsideVariable);

Chapter 3  Functions and Objects 



88

    String insiderVariable = "I am an insider";

    print(insiderVariable); // it's okay to access this insider

  }

  insiderFunction();

}

First, we have declared a variable outside our main() function. It is 

called outsideVariable. We can access that variable inside the main() 

function as an object. Remember, everything in Dart is an object.

Second, we have declared an insider function called 

insiderFunction(). Now inside that insider function, we can safely call 

the outsider variable. In addition, if we create another insider variable, we 

can also call it.

So, we get this output:

//output of code 3.15

I am an outsider.

This is from the insider function.

I am an outsider.

I am an insider

As such, there is no problem regarding the output. However, it will not 

be the same experience if we try to call the insider variable from outside 

the scope of our insider function.

//code 3.16

var outsideVariable = "I am an outsider.";

main(List<String> arguments){

  //we can access the outside variable

  print(outsideVariable);

  // we cannot access the insider variable, it gives us error

  print(insiderVariable);

  // it is an insider function

Chapter 3  Functions and Objects 



89

  String insiderFunction(){

    // I can access the outisde variable, no problem

    print("This is from the insider function.");

    print(outsideVariable);

    String insiderVariable = "I am an insider";

    print(insiderVariable); // it's okay to access this insider

  }

  insiderFunction();

}

Now, look at the output:

//output of code 3.16

bin/main.dart:11:9: Error: Getter not found: 'insiderVariable'.

  print(insiderVariable);

        ^^^^^^^^^^^^^^^

We should understand this “inside and outside” case.

This is called lexical scope. You can call an outside variable inside the 

main() function. However, if you define an object inside a function, you 

cannot call it from outside of that function.

�A Few Words About Getter and Setter
Let’s again return to the topic of object-oriented programming to learn 

about a key concept called the getter and setter. We can explicitly set a 

value and get it in this way, using the . notation:

//code 3.17

class myClass {

    String name;

    String get getName => name;

    set setName(String aValue) => name = aValue;

}

Chapter 3  Functions and Objects 



90

main(List<String> arguments){

  var myObject = myClass();

  myObject.setName = "Sanjib";

  print(myObject.getName);

}

This gives us the output Sanjib. But how does this happen? In myClass, 

we have defined the setName() method to accept a parameter called 

aValue. Later we have called that method through the instance (myObject.

setName) of the class myClass. The interesting thing is that the method 

setName(String aValue) defined inside myClass now works as an attribute.

You may ask why we should use getter and setter when every class has 

been associated with a default getter and setter?

Actually, we are overriding the default value by explicitly defining the 

getter and setter.

�Different Types of Parameters
Whether in a class method or in a function, sometimes you need to pass 

values. You can call them arguments or parameters, whichever you like.

Dart is flexible; it gives ample opportunity to developers to manipulate 

the parameters. You can use default parameters; in such cases, you need 

to give a value for the defaults. This is compulsory. But there are three 

other options available in Dart. You can use positional parameters, named 

parameters, and optional parameters.

The following code uses default and positional parameters:

//code 3.18

//default parameters

String defaultParameters(String name, String address, {int  

age = 10}){

  return "$name and $address and age $age";

}

Chapter 3  Functions and Objects 



91

//optional parameters

String optionalParameters(String name, String address,  

[int age] ){

  return "$name and $address and $age";

}

main(){

  print(defaultParameters("John", "Jericho"));

  print(optionalParameters("John", "Form Chikago"));

  // overriding the default age

  print(defaultParameters("JOhn", "Jericho", age : 20));

}

Inside the main() function, in our default parameter function, we have 

passed only two values: name and address. We did not pass the age. We 

did not have to, because it already was defined in our function: {int age  

= 10}. Remember to use the curly braces to define the default parameter.

Can we override the default parameter? Yes, we can. Look at this part 

inside the main() function:

// overriding the default age

print(defaultParameters("JOhn", "Jericho", age : 20));

We have overridden the default age and made it from 10 to 20.

Next, in the optional parameter function, we have made the age 

optional by keeping the value inside the square brackets.

//optional parameters

String optionalParameters(String name, String address, [int 

age] ){

  return "$name and $address and $age";

}

Chapter 3  Functions and Objects 



92

Since the parameter age is optional, we can either pass it or ignore it. 

However, ignoring the optional parameter will set it to null. So, the output 

of the previous code will look like this:

//output of code 3.19

John and Jericho and age 10

John and Form Chikago and null

JOhn and Jericho and age 20

In the case of a named parameter, we can swap the values because it,  

using the named parameter is very flexible. Here sequence does not 

matter. Let’s consider this code:

//code 3.20

//named parameter

int findTheVolume(int length, {int height, int breadth}){

  return length * height * breadth;

}

void main(){

  //sequence does not matter

  var  result1 = findTheVolume(10, height: 20, breadth: 30);

  var  result2 = findTheVolume(10, breadth: 30, height: 10);

  print(result1);

  print(result2);

}

In the previous code, we have placed height and breadth inside curly 

braces. So, they are named parameters that we can interchange while 

passing the values. Interchanging the value will not affect our code.

That is the advantage of named parameters.

Chapter 3  Functions and Objects 



93

�More About Constructors
In any class, there are many types of constructors that can be used in 

any application. As usual, we have a default constructor. We can pass 

parameters through it. We also have named parameters. Let’s look at the 

following code snippet and try to understand how they work:

//code 3.21

class Bear {

  //reference variable

  int collarID;

  //default and parameterized constructor

  Bear(this.collarID);

  //first named constructor

  Bear.firstNamedConstructor(this.collarID);

  //second named constructor

  Bear.secondNamedConstructor(this.collarID);

  void trackingBear() {

    String color; �// �local varia   print("Tracking the bear 

with collar ID ${collarID}");

  }

}

main(List<String> arguments){

  // bear1 is reference variable

  // Bear() is object// It should be class no object I suppose

  var bear1 = Bear(1);

  bear1.trackingBear();

  var bear2 = Bear.firstNamedConstructor(2);

  bear2.trackingBear();

  var bear3 = Bear.secondNamedConstructor(3);

  bear3.trackingBear();

}

Chapter 3  Functions and Objects 



94

In the previous code, by Dart convention, when we write a class, we 

might have many things in place. First, we have a reference variable here: 

int collarID;. The variable called collarID contains a reference to an 

int object with a value of a Bear object.

Inside the main() function, when we create an instance, we will again 

have a reference variable.

// bear1 is reference variable

// Bear() is object

var bear1 = Bear(1);

We have passed the class-level reference variable collarID through 

the default constructor.

So, while defining a class and afterward creating an instance, we have 

two types of reference variable: the first is class-level reference variable, 

and the second one is an object-level or instance-level reference variable. If 

this does not make any sense, don’t worry. We’ll cover it in Chapter 7.

In the constructor part, we have one default and parameterized 

constructor, shown here:

//default and parameterized constructor

Bear(this.collarID);

Besides, we have two named constructors.

//first named constructor

Bear.firstNamedConstructor(this.collarID);

//second named constructor

Bear.secondNamedConstructor(this.collarID);

Chapter 3  Functions and Objects 



95

Through the named constructors, we have created three bear 

instances; moreover, each instance has the same functionality. Finally, 

when you run the code, you cannot distinguish between the behavior 

of the code that uses the default constructor and the code that uses the 

named constructors.

Tracking the bear with collar ID 1

Tracking the bear with collar ID 2

Tracking the bear with collar ID 3

In the next chapter, we will look at another important concept: 

inheritance.

Chapter 3  Functions and Objects 



97© Sanjib Sinha 2020 
S. Sinha, Quick Start Guide to Dart Programming,  
https://doi.org/10.1007/978-1-4842-5562-9_4

CHAPTER 4

Inheritance and 
Mixins in Dart
One of the key features of object-oriented programming is that you can 

extend your classes. You extend a class to create another class, and the 

extended class is known as a subclass. The subclass inherits reference 

variables and class methods from the parent class, which is known as a 

superclass.

The properties of the parent class are inherited by the child class; 

because the properties from the parent class are extended to the child 

class, the parent class is also called the base class. For the same reason, the 

child class is known as the derived class, since it is inheriting the properties 

of the base class. This capability, known as inheritance, works in two ways.

First, you can create new classes from an existing class. That is called 

single inheritance. Dart does not support multiple inheritance (inheriting 

from more than one class). However, it supports multilevel inheritance. 

Therefore, we can conclude that Dart supports two types of inheritance.

•	 Single inheritance

•	 Multilevel inheritance



98

�A First Look at Inheritance
Consider this simple example where we have extended an Animal class to a 

Cat class. This is an example of single inheritance.

//code 4.1

class Animal {

  String name = "Animal";

  Animal(){

    print("I am Animal class constructor.");

  }

  Animal.namedConstructor(){

    print("This is parent animal named constructor.");

  }

  void showName(){

    print(this.name);

  }

  void eat(){

    �print("Animals eat everything depending on what type it 

is.");

  }

}

class Cat extends Animal {

  //overriding parent constructor

  //although constructors are not inherited

  Cat() : super(){

    �print("I am child cat class overriding super Animal 

class.");

  }

Chapter 4  Inheritance and Mixins in Dart



99

  Cat.namedCatConstructor() : super.namedConstructor(){

    �print("The child cat named constructor overrides the parent 

animal named constructor.");

  }

  @override // method overriding

  void showName(){

    print(this.name);

  }

  @override

  void eat(){

    super.eat();

    print("Cat doesn't eat vegetables..");

  }

}

main(List<String> arguments){

  var cat = Cat();

  cat.name = "Meaow";

  cat.showName();

  cat.eat();

  var anotherCat = Cat.namedCatConstructor();

}

Let’s first look at the output; after that, we will discuss the features of 

subclasses and superclasses.

//output of code 4.1

I am Animal class constructor.

I am child cat class overriding super Animal class.

Hi from cat.

Chapter 4  Inheritance and Mixins in Dart



100

Animals eat everything depending on what type it is.

Cat doesn't eat vegetables..

This is parent animal named constructor. The child cat named 

constructor overrides the parent animal named constructor.

The code is quite simple to follow; the superclass or base class Animal 

has two constructors: the default and a named constructor. Subclasses 

don’t inherit constructors from their superclass. The subclass or 

derived class Cat overrides both constructors. You have to specify which 

constructor you are overriding in the subclass’s constructor definition. If 

you do not, then your named subclass constructor will override the default 

constructor of the parent class.

Cat.namedCatConstructor() : super.namedConstructor(){

  �print("The child cat named constructor overrides the parent 

animal named constructor.");

}

Now, let’s change the code a little bit and follow the output. You will 

understand the concept of single inheritance better in the second example.

//code 4.2

class Animal {

  String name = "Animal";

  Animal(){

    print("I am Animal class constructor.");

  }

  Animal.namedConstructor(){

    print("This is parent animal named constructor.");

  }

  void showName(){

    print(this.name);

    print("Hi from ${this.name}");

  }

Chapter 4  Inheritance and Mixins in Dart



101

  void eat(){

    �print("Animals eat everything depending on what type it 

is.");

  }

}

class Cat extends Animal {

  //overriding parent constructor

  //although constructors are not inherited

  Cat() : super(){

    print("I am child cat class overriding super Animal class.");

  }

  Cat.namedCatConstructor() : super.namedConstructor(){

    �print("The child cat named constructor overrides the parent 

animal named constructor.");

  }

  @override

  void showName(){

    print("Hi from cat.");

    print(this.name);

  }

  @override

  void eat(){

    super.eat();

    print("Cat doesn't eat vegetables..");

  }

}

class Cow extends Animal {

  //overriding parent constructor

  //although constructors are not inherited

Chapter 4  Inheritance and Mixins in Dart



102

  Cow() : super(){

    �print("I am child cow class overriding super Animal 

class.");

  }

  Cow.namedCatConstructor() : super.namedConstructor(){

    �print("The child cow named constructor overrides the parent 

animal named constructor.");

  }

  @override

  void showName(){

    print("Hi from cow.");

    print(this.name);

  }

  @override

  void eat(){

    super.eat();

    print("Cow does eat grass..");

  }

}

main(List<String> arguments){

  var cow = Cow();

  cow.name = "Daisy";

  cow.showName();

  var cat = Cat();

  cat.name = "Meaow";

  cat.showName();

  cat.eat();

  var anotherCat = Cat.namedCatConstructor();

}

Chapter 4  Inheritance and Mixins in Dart



103

We have added more lines in the parent class, created a new Cow class, 

and added some lines to both child classes; at the same time, we have 

added a few lines in our main() function to get the output.

Here is the new output:

//output of code 4.2

/home/ss/flutter/bin/cache/dart-sdk/bin/dart --enable-vm-

service:33101 /home/ss/IdeaProjects/bin/main.dart

Observatory listening on http://127.0.0.1:33101/

I am Animal class constructor.

I am child cow class overriding super Animal class.

Hi from cow.

Daisy

I am Animal class constructor.

I am child cat class overriding super Animal class.

Hi from cat.

Meaow

Animals eat everything depending on what type it is.

Cat doesn't eat vegetables..

This is parent animal named constructor.

The child cat named constructor overrides the parent animal 

named constructor.

Process finished with exit code 0

You can see that more than one class can be based on a superclass.

Chapter 4  Inheritance and Mixins in Dart



104

�Multilevel Inheritance
Let’s consider the code first, and after looking at the output, we will discuss 

how multilevel inheritance works.

//code 4.3

class Animal {

  String name = "Animal";

  Animal(){

    print("I am Animal class constructor.");

  }

  Animal.namedConstructor(){

    print("This is parent animal named constructor.");

  }

  void showName(){

    print(this.name);

    print("Hi from ${this.name}");

  }

  void eat(){

    �print("Animals eat everything depending on what type it 

is.");

  }

}

class Dog extends Animal {

  //overriding parent constructor

  //although constructors are not inherited

  Dog() : super(){

    �print("I am child class dog overriding super Animal 

class.");

  }

Chapter 4  Inheritance and Mixins in Dart



105

  Dog.namedDogConstructor() : super.namedConstructor(){

    �print("The child dog named constructor overrides the parent 

animal named constructor.");

  }

  Dog.anotherNamedConstructor(){

    print("This is parent Dog named constructor.");

  }

  @override

  void showName(){

    print("Hi from parent dog.");

    print(this.name);

  }

  @override

  void eat(){

    super.eat();

    print("Dog doesn't eat vegetables..");

  }

}

class PuppyDog extends Dog {

  //overriding parent constructor

  //although constructors are not inherited

  PuppyDog() : super(){

    �print("I am child class puppy dog overriding my immediate 

parent Dog class.");

  }

  PuppyDog.namedDogConstructor() : super.anotherNamedConstructor(){

    �print("The child puppy dog named constructor overrides the 

parent Dog another named constructor.");

  }

Chapter 4  Inheritance and Mixins in Dart



106

  @override

  void showName(){

    print("Hi from puppy dog.");

    print(this.name);

  }

  @override

  void eat(){

    super.eat();

    print("Puppy Dog eats milk only ...");

  }

}

main(List<String> arguments){

  var animal = Animal();

  animal.name = "Cow";

  animal.showName();

  var dog = Dog();

  dog.name = "Lucky";

  dog.showName();

  dog.eat();

  var anotherDog = Dog.namedDogConstructor();

  var puppy = PuppyDog();

  puppy.name = "I am offspring of Lucky";

  puppy.showName();

  puppy.eat();

  var anotherPuppy = PuppyDog.namedDogConstructor();

}

Here is the output:

//output of code 4.3

/home/ss/flutter/bin/cache/dart-sdk/bin/dart --enable-vm-

service:40767 /home/ss/IdeaProjects/bin/main.dart

Observatory listening on http://127.0.0.1:40767/

Chapter 4  Inheritance and Mixins in Dart



107

I am Animal class constructor.

Cow

Hi from Cow

I am Animal class constructor.

I am child class dog overriding super Animal class.

Hi from parent dog.

Lucky

Animals eat everything depending on what type it is.

Dog doesn't eat vegetables..

This is parent animal named constructor.

The child dog named constructor overrides the parent animal 

named constructor.

I am Animal class constructor.

I am child class dog overriding super Animal class.

I am child class puppy dog overriding my immediate parent Dog class.

Hi from puppy dog.

I am offspring of Lucky

Animals eat everything depending on what type it is.

Dog doesn't eat vegetables..

Puppy Dog eats milk only ...

I am Animal class constructor.

This is parent Dog named constructor.

The child puppy dog named constructor overrides the parent Dog 

another named constructor.

Process finished with exit code 0

In the previous code, the parent class is Animal. The Dog class inherits 

all its properties. After that, the Dog class has its offspring, a PuppyDog class. 

Now, the PuppyDog class inherits from the Dog class. Here, we have actually 

two child or base classes: Dog and PuppyDog. However, this is different from 

single inheritance because with multilevel inheritance, one child class is 

inherited from another child class.

Chapter 4  Inheritance and Mixins in Dart



108

In this example, the child class PuppyDog inherits from another child 

class, Dog. You can compare this tree of family lineage to a human’s. I have 

a father, yet my father has a father, who is my grandfather, and on it goes.

�Mixins: Adding More Features to a Class
Dart has a lot to offer when classes need to be reused; there is an important 

concept called a mixin. It is a way of reusing any class’s code in multiple 

class hierarchies.

We can rewrite the previous code using mixins. All we need to do is 

use the keyword with. Suppose we have a class Dog that has a method 

canRun(). A Cat object can also run, can’t it? Let’s try the same code in a 

slightly different way.

//code 4.4

class Animal {

  String name = "Animal";

  Animal(){

    print("I am Animal class constructor.");

  }

  Animal.namedConstructor(){

    print("This is parent animal named constructor.");

  }

  void showName(){

    print(this.name);

  }

  void eat(){

    �print("Animals eat everything depending on what type it 

is.");

  }

}

Chapter 4  Inheritance and Mixins in Dart



109

class Dog {

  void canRun(){

    print("I can run.");

  }

}

class Cat extends Animal with Dog {//reusing another class

  //overriding parent constructor

  //although constructors are not inherited

  Cat() : super(){

    print("I am child cat class overriding super Animal class.");

  }

  Cat.namedCatConstructor() : super.namedConstructor(){

    �print("The child cat named constructor overrides the parent 

animal named constructor.");

  }

  @override

  void showName(){

    print("Hi from cat.");

  }

  @override

  void eat(){

    super.eat();

    print("Cat doesn't eat vegetables..");

  }

}

main(List<String> arguments){

  var cat = Cat();

  cat.name = "Meaow";

  cat.showName();

  cat.eat();

Chapter 4  Inheritance and Mixins in Dart



110

  var anotherCat = Cat.namedCatConstructor();

  anotherCat.canRun();

}

The subclass Cat has been extended, and at the same it has used 

mixins by reusing the Dog class’s code. Look at this line:

class Cat extends Animal with Dog {...}

In the main() function, the Cat object uses the Dog class’s method in 

this way:

anotherCat.canRun();

The output has not been changed except the last line, as shown here:

//output of code 4.4

I am Animal class constructor.

I am child cat class overriding super Animal class.

Hi from cat.

Animals eat everything depending on what type it is.

Cat doesn't eat vegetables..

This is parent animal named constructor.

The child cat named constructor overrides the parent animal 

named constructor.

I can run.

Remember, for mixins, you need to use the with keyword followed by 

one or more mixin names.

Note S upport for mixins was introduced in Dart 2.1. Before that, in 
such cases, an abstract class was used. In the next chapter, you will 
learn about abstract classes and methods.

Chapter 4  Inheritance and Mixins in Dart



111

Mixins are a kind of limited multiple inheritance; in the previous 

code, we extend from one class (Animal) and then use a mixin to bring in 

features from another (Dog).

You should notice one characteristic here; at every stage, we use only 

classes. We can inherit from a class, and we can also use a class as a mixin 

using the with keyword.

In the next chapter, we’ll add another feature: interfaces. These build 

a contract between two classes so we don’t have to hard-code a class’s 

functionality into another class. As long as a class conforms to the contract, 

we can change it without affecting the calling class.

Chapter 4  Inheritance and Mixins in Dart



113© Sanjib Sinha 2020 
S. Sinha, Quick Start Guide to Dart Programming,  
https://doi.org/10.1007/978-1-4842-5562-9_5

CHAPTER 5

Entity Relationships: 
Abstract Classes, 
Interfaces, and 
Exception Handling
In the previous chapter, you learned that entities do not exist in isolation. 

You saw some examples of inheritance. You will see more in a minute, 

although in different forms.

There are a few more types of relationships between classes. A 

relationship between each class is always defined beforehand so that 

we don’t have to use same code again and again. Like C#, PHP, Python, 

and Java, in Dart, the classes in a program can be related to each other. 

Identifying and establishing the relationships between them is an 

important aspect of object-oriented programming (OOP).

Therefore, the main objective of this chapter is to learn how we 

can identify relationships between classes, how we can define abstract 

classes and methods, and how we can use interfaces. We’ll also look at 

exception handling because it’s affected by entity relationships, and we use 

inheritance and interfaces as part of efficient error handling.



114

�Identifying Relationships Between Entities
In general, our challenge is to create an application that is as close as 

possible to the real world. To do that, in a software application, we relate 

classes and objects to each other in such a manner that they remain 

loosely coupled. They act and react with other classes and objects. This 

dynamism makes them as close as possible to the real world.

In OOP, objects perform actions in response to messages from other 

objects, defining the receiving object’s behavior.

There are similarities and differences among the entities, objects, and 

classes as a whole. Let’s take a look at the following observations:

•	 A bus is a kind of an automobile.

•	 A car is a kind of an automobile.

•	 An engine is a part of an automobile.

•	 A wheel is a part of an automobile.

•	 A driver drives a car.

The preceding entities represent different objects and classes; still, they 

are related to each other. Furthermore, they should be loosely coupled; if 

one gets affected, that does not have any effect on the other (for example, 

if the design of a steering wheel on a car changes, the relationship with 

the driver does not). Now, based on the preceding observations, we can 

summarize our entity relationships in the following manner:

•	 Inheritance relationship

•	 Composition relationship

•	 Utilization relationship

•	 Instantiation relationship

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



115

In the previous chapter, you saw examples of inheritance. We can 

say that an automobile is a superclass of a car and bus. On the other 

hand, car and bus are subclasses. They derive features defined in the 

base class or superclass automobile. They have a relationship where one 

object is a type of another object, yet the reverse is not true. Every car is 

an automobile, but every automobile is not a car. Recall that Dart allows 

single inheritance and multilevel inheritance. Multiple inheritance in 

Dart is not allowed, although you can compensate that with the help of 

mixins, as we saw in Chapter 4.

Let’s consider another set of relationships.

•	 A human is a kind of mammal.

•	 A cat is a kind of mammal.

•	 A tiger is a kind of cat.

•	 A lion is a kind of cat.

Now we can depict this relationship in Figure 5-1.

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



116

In Figure 5-1, there is a set of classes: mammals, dogs, cats, humans, 

lions, tigers, leopards, and their offspring classes. The superclass mammals 

have the following set of characteristics:

•	 They are warm-blooded.

•	 They are vertebrates.

•	 They all have external ears.

•	 They all have internal brains covered by skulls.

Figure 5-1.  A simple relationship between mammal entities

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



117

We can say that dog, cat, and humans have similarities; they have 

similar characteristics because they have inherited these attributes from 

the superclass mammals. However, subclass cat is a superclass of lions, 

tigers, and leopards; therefore, they will have similarities that they don’t 

share with dogs and humans.

One key feature of object-oriented programming in Dart is it allows us to 

create an object that includes another object as its part. This mechanism of 

creating an object is called composition relationship. Keeping Figure 5-1 in 

mind, we can conclude that humans and tigers do not have a composition 

relationship, whereas cats and tigers have a composition relationship. It is 

called composition because one class has some traits in other classes that are 

directly related to the previous class. Cat, Tiger, Lion, etc., are examples.

A utilization relationship is different. Consider Figure 5-1. A human 

can use a dog to hunt, for example. Dart allows a class to make use of 

another class.

An instantiation relationship is nothing but a relation between a class 

and its object or instance. John is an object of a human class. When we 

create a John object, we use the mammal class as an abstract superclass.

In the next section, you will see how we can use abstract classes.

�Using Abstract Classes
An abstract class is used to provide a partial class implementation, leaving 

the unimplemented piece to a subclass. Abstract methods can exist only in 

abstract classes. In abstract methods, we just leave a semicolon (;) at the 

end of the method name. We don’t define the method body.

An abstract class is also where we can define an interface but leave its 

implementation up to other classes. As I said at the end of Chapter 4, an 

interface is a contract between two classes. Any class, abstract or concrete, 

in Dart can be an interface. It’s just much more common to use an abstract 

class and leave the specifics up to the child class.

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



118

These are two key points to remember when you write an abstract 

class:

•	 You cannot create an instance of an abstract class.

•	 You cannot declare an abstract method outside an 

abstract class.

//code 5.1

//we cannot instantiate any abstract class

abstract class volume{

  //we can declare instance variable

  int age;

  void increase();

  void decrease();

  // a normal function

  void anyNormalFunction(int age){

    print("This is a normal function to know the $age.");

  }

}

class soundSystem extends volume{

  void increase(){

    print("Sound is up.");

  }

  void decrease(){

    print("Sound is down.");

  }

  //it is optional to override the normal function

  void anyNormalFunction(int age){

    �print("This is a normal function to know how old the sound 

system is: $age.");

  }

}

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



119

main(List<String> arguments){

  var newSystem = soundSystem();

  newSystem.increase();

  newSystem.decrease();

  newSystem.anyNormalFunction(10);

}

Here is the output of the previous code:

Sound is up.

Sound is down.

This is a normal function to know how old the sound system is: 10.

We have used the abstract modifier to define an abstract class that 

cannot be instantiated.

So, we can say that the abstract class and methods summarize the 

main ideas, and we can extend that idea.

There are a few more things to remember about an abstract class in 

Dart.

•	 In an abstract class, we can also use normal properties 

and methods.

•	 It is optional to override the method.

•	 We can also define instance variables in the abstract 

class.

Consider the following code to understand how abstract classes in 

Dart are different from other object-oriented programming languages:

//code 5.2

abstract class Mammal {

  void run();

  void walk();

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



120

  void sound(){

    print("Mammals make sound");

  }

}

class Human implements Mammal {

  void run(){

    print("I am running.");

  }

  void walk(){

    print("I am walking");

  }

  void sound(){

    print("Humans make sound");

  }

}

main(List<String> arguments){

  var John = Human();

  print("John says: ");

  John.run();

  print("John says: ");

  John.walk();

  print("John makes no sound.");

  John.sound();

}

Here is the output where we can clearly see how we overrode the 

abstract method:

//output of code 5.2

/home/ss/flutter/bin/cache/dart-sdk/bin/dart --enable-vm-

service:35727 /home/ss/IdeaProjects/bin/main.dart

Observatory listening on http://127.0.0.1:35727/

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



121

John says:

I am running.

John says:

I am walking

John makes sound.

Humans make sound

Process finished with exit code 0

�Advantages of Interfaces
In some cases, we need to use reference variables and methods of many 

classes at the same time. Mixins can help. But there is another good feature 

in Dart: we can also use an interface.

An interface defines the syntactical contract that all the derived classes 

should follow. You will see in a minute how that works.

Let’s see the code first, and then we will discuss it in detail. Remember that 

an interface in Dart is written as a class, but we don’t extend; we implement it.

//code 5.3

// interface in Dart is a class, but we don't extend,

// we implement it

class Vehicle {

  void steerTheVehicle() {

    print("The vehicle is moving.");

  }

}

class Engine {

  //in the interface

  final _name; // �final means single assignment and it must 

have an initializer as I use here

  //not in the interface, since it is a constructor

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



122

  Engine(this._name);

  String lessOilConsumption(){

    return "It consumes less oil.";

  }

}

class Car implements Vehicle, Engine{

  var _name;

  void steerTheVehicle() {

    print("The car is moving.");

  }

  String lessOilConsumption(){

    print("This model of car consumes less oil.");

  }

  �void ridingExperience() => print("This car gives good ride, 

because it is an ${this._name}");

}

main(List<String> arguments){

  var car = Car();

  car._name = "Opel";

  print("Car name: ${car._name}");

  car.steerTheVehicle();

  car.lessOilConsumption();

  car.ridingExperience();

}

Here is the output of the previous code:

Car name: Opel

The car is moving.

This model of car consumes less oil.

This car gives good ride, because it is an Opel

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



123

When a class implements an interface, it implicitly defines all the 

instance members of the implemented interface. A class implements one 

or more interfaces at a time by declaring the implements keyword.

Considering the previous code, we see that class Car supports class 

Vehicle and class Engine’s API, and for that requirement, the class Car 

implements class Vehicle and class Engine’s interfaces. You can see the 

Car object can call methods specified in Vehicle and Engine, as well as its 

own methods.

An interface is used when we need a standard structure of methods; it 

is not necessary that you should implement the interface members within 

any interface. Consider this code:

//code 5.4

class OrderDetails {

  void UpdateCustomers(){

  }

  void TakeOrder(){

  }

}

class ItemDetails implements OrderDetails{

  void UpdateCustomers(){

    //implementing interface members

    print("Updating customers.");

  }

  void TakeOrder(){

    //implementing interface members

    print("Taking orders from customers.");

  }

}

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



124

main(List<String> arguments){

  var book = ItemDetails();

  book.TakeOrder();

  book.UpdateCustomers();

}

Now, look at the output, shown here:

//output of code 5.4

/home/ss/flutter/bin/cache/dart-sdk/bin/dart --enable-vm-

service:40359 /home/ss/IdeaProjects/bin/main.dart

Observatory listening on http://127.0.0.1:40359/

Taking orders from customers.

Updating customers.

Process finished with exit code 0

What happens if we don’t follow this standard structure? When we 

implement an interface, we should implement interface members.

The next code snippet and the output will explain this:

//code 5.5

class OrderDetails {

  void UpdateCustomers(){

  }

  void TakeOrder(){

  }

}

class ItemDetails implements OrderDetails{

  void UpdateCustomers(){

    //implementing interface members

    print("Updating customers.");

  }

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



125

  /*

  void TakeOrder(){

    //implementing interface members

    print("Taking orders from customers.");

  }

  */

}

main(List<String> arguments){

  var book = ItemDetails();

  //book.TakeOrder();

  book.UpdateCustomers();

}

We didn’t implement the interface member TakeOrder(). We have 

commented out that part of the preceding code.

In this case, the exceptions raised in Android Studio and the errors 

given as output tell us what we should have done. Look at the output:

//output of code 5.5

/home/ss/flutter/bin/cache/dart-sdk/bin/dart --enable-vm-

service:34271 /home/ss/IdeaProjects/bin/main.dart

Observatory listening on http://127.0.0.1:34271/

bin/main.dart:40:7: Error: The non-abstract class 'ItemDetails' 

is missing implementations for these members:

 - OrderDetails.TakeOrder

Try to either

 - provide an implementation,

 - inherit an implementation from a superclass or mixin,

 - mark the class as abstract, or

 - provide a 'noSuchMethod' implementation.

class ItemDetails implements OrderDetails{

      ^^^^^^^^^^^

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



126

bin/main.dart:36:8: Context: 'OrderDetails.TakeOrder' is 

defined here.

  void TakeOrder(){

       ^^^^^^^^^

Process finished with exit code 254

From the previous output, it is clear that Dart clearly notices that we 

have not implemented a method when we should have. If there is an 

implementation in an abstract class, we can use it when we extend that class.

Consider this code:

//code 5.6

class OrderDetails {

  //int age;

  /*

  void anyNormalFunction(int age){

    print("This is a normal function to know the $age.");

  }

  */

  void UpdateCustomers(){

  }

  void TakeOrder(){

  }

}

abstract class CustomerDetails {

  void Customers(){

    print("A list of customers.");

  }

}

class ItemDetails extends CustomerDetails implements 

OrderDetails {

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



127

  void anyNormalFunction(int age){

    print("This is a normal function to know the age: $age.");

  }

  void UpdateCustomers(){

    //implementing interface members

    print("Updating customers.");

  }

  void TakeOrder(){

  }

}

main(List<String> arguments){

  var book = ItemDetails();

  //book.TakeOrder();

  book.UpdateCustomers();

  book.anyNormalFunction(12);

  book.Customers();

}

In the preceding code, we extended the abstract class, and at the same 

time, we implemented the interface. The output is here:

//output of code 5.6

/home/ss/flutter/bin/cache/dart-sdk/bin/dart --enable-vm-

service:39205 /home/ss/IdeaProjects/bin/main.dart

Observatory listening on http://127.0.0.1:39205/

Updating customers.

This is a normal function to know the age: 12.

A list of customers.

Process finished with exit code 0

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



128

You can see that the abstract class’s Customers() method is called 

when we don’t implement it ourselves.

There is another major difference between an abstract class and an 

interface. An abstract class can use normal properties and methods. 

However, it will give errors if we don’t implement any part of an interface, 

in other words, if we leave the interface to keep its own implementation of 

a property or method. Look at this code and its output:

//code 5.7

class OrderDetails {

  int age;

  void anyNormalFunction(int age){

    print("This is a normal function to know the $age.");

  }

  void UpdateCustomers(){

  }

  void TakeOrder(){

  }

}

abstract class CustomerDetails {

  void Customers(){

  }

}

class ItemDetails extends CustomerDetails implements 

OrderDetails {

//trying to implement interface normal functions

  void anyNormalFunction(int age){

    print("This is a normal function to know the age: $age.");

  }

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



129

  void UpdateCustomers(){

    //implementing interface members

    print("Updating customers.");

  }

  void TakeOrder(){

  }

  void Customers(){

  }

}

main(List<String> arguments){

  var book = ItemDetails();

  //book.TakeOrder();

  book.UpdateCustomers();

  book.anyNormalFunction(12);

}

Here is the error report:

//output of code 5.7

/home/ss/flutter/bin/cache/dart-sdk/bin/dart --enable-vm-

service:38747 /home/ss/IdeaProjects/bin/main.dart

Observatory listening on http://127.0.0.1:38747/

bin/main.dart:50:7: Error: The non-abstract class 'ItemDetails' 

is missing implementations for these members:

 - OrderDetails.age

Try to either

 - provide an implementation,

 - inherit an implementation from a superclass or mixin,

 - mark the class as abstract, or

 - provide a 'noSuchMethod' implementation.

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



130

class ItemDetails extends CustomerDetails implements 

OrderDetails {

      ^^^^^^^^^^^

bin/main.dart:34:7: Context: 'OrderDetails.age' is defined here.

  int age;

      ^^^

Process finished with exit code 254

Therefore, here are a few things to remember about interfaces in Dart:

•	 The biggest advantage of interfaces is that we can 

implement multiple interfaces. Since multiple 

inheritance is not allowed in Dart, we can design our 

application in a way so that we can mimic inheriting 

multiple classes using interfaces. However, we cannot 

use any normal properties and behaviors in interfaces.

•	 Although we cannot inherit multiple classes through 

inheritance, we can overcome that limitation by 

combining abstract classes, interfaces, and mixins.

�Static Variables and Methods
To implement class-wide variables and methods, we use the static 

keyword. Static variables are also called class variables. Let’s first see 

a code snippet, and after that, we will discuss the advantages and 

disadvantages of static variables and methods.

//code 5.8

// static variables and methods consume less memory

// they are lazily initialized

class Circle{

  static const pi = 3.14;

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



131

  static void drawACircle(){

    //from static method you cannot call a normal function

    print(pi);

  }

  void aNonStaticFunction(){

    //from a normal function or method you can call a static meethod

    Circle.drawACircle();

    print("This is normal function.");

  }

}

main(List<String> arguments){

  var circle = Circle();

  circle.aNonStaticFunction();

  Circle.drawACircle();

}

Here is the output:

3.14

This is normal function.

3.14

As you see, static variables are useful for class-wide state and 

constants. So, in the main() method, we can add this line at the end:

main(List<String> arguments){

  var circle = Circle();

  circle.aNonStaticFunction();

  Circle.drawACircle();

  print(Circle.pi);

}

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



132

We get the value of constant pi again. Here, Circle.pi is the class 

variable, and the class method is Circle.drawACircle(). The biggest 

advantage of using static variables and methods is it consumes less 

memory. An instance variable, once instantiated, consumes memory 

whether it is being used or not. The static variables and methods are not 

initialized until they are used in the program. It consumes memory when 

they are used. By the way, it is also important to note that constants make 

maintenance easier and make programs easier to read.

Here are a few things to remember:

•	 From a normal function, you can call a static method.

•	 From a static method, you cannot call a normal 

function.

•	 In a static method, you cannot use the this keyword. 

This is because the static methods do not operate on an 

instance and thus do not have access to this.

So, in the end, we can conclude that using static variables and methods 

depends on the context and situations.

�Exception Handling
During the execution of any program, some errors can occur that will 

disrupt the flow of the program automatically. These errors are called 

exceptions. In the exception handling cases, the class Exception is the 

superclass of all exceptions to prevent the application from terminating 

abruptly. This is why I’m covering exception handling in Chapter 7.

Figure 5-2 illustrates this concept where a computing process has two 

possible outputs. One could be the processed data we wanted, and another 

could be an error. We should enable ourselves to catch this error before it 

gives an ugly exception on the user’s interface.

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



133

Suppose you want to divide a number by zero. It is an impossible task 

and will disrupt the flow, resulting in some errors. However, you cannot 

control a user’s behavior, so you need to take every precaution to handle 

errors gracefully.

Dart programmers have thought about it, and they have included many  

built-in exception classes. One of them is IntegerDivisionByZeroException;  

it is thrown when a number is divided by zero. Likewise, when a  

scheduled timeout happens while waiting for an asynchronous result, 

the timeout exception occurs. If deferred libraries fail to load, there is 

DeferredLoadException that happens.

Suppose a string cannot be parsed because it does not have the proper 

format. In that case, FormatException occurs. Any input- and output-

related exceptions are captured through the IOException class.

Figure 5-2.  Any uncompleted process could lead us to two possible 
outputs

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



134

Let’s see some code snippets so that we can understand easily how we 

can catch the exceptions.

//code 5.9

main(List<String> arguments){

  try{

    int result = 10 ~/ 0;

    print("The result is $result");

  } on IntegerDivisionByZeroException{

    print("We cannot divide by zero");

  }

  try{

    int result = 10 ~/ 0;

    print("The result is $result");

  } catch(e){

    print(e);

  }

  try{

    int result = 10 ~/ 0;

    print("The result is $result");

  } catch(e){

    print("The exception is : $e");

  } finally{

    print("This is finally and it always is executed.");

  }

}

We have caught these errors before they give some ugly output to the user.

//the output of code 5.9

We cannot divide by zero

IntegerDivisionByZeroException

The exception is : IntegerDivisionByZeroException

This is finally and it always is executed.

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



135

As you can see in the output, there are several methods through which 

we can catch the exceptions. If we know the type of exception, we can use 

try/on, as we have used in the following previous code:

try{

  int result = 10 ~/ 0;

  print("The result is $result");

} on IntegerDivisionByZeroException{

  print("We cannot divide by zero");

}

In this case, we did know what type of exception can be generated. 

So, we have used try/on. But what happens when we do not know the 

exception?

In most cases, presumably a beginner will not know all the exception 

classes that are predefined in Dart libraries. However, it is important to 

know a few, which I have mentioned previously. Besides, the main reason 

to wrap our code inside the try/catch block is this: we may have errors in 

our code. Our code may contain problems. As a programmer, we should 

not take any risks.

The syntax of handling exception is the following:

try{

  int result = 10 ~/ 0;

  print("The result is $result");

} catch(e){

  print(e);

}

The catch block is used when the handler needs the exception object.

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



136

The try block can be followed by the finally block after the catch 

block. We used the same thing in the following previous code:

try{

  int result = 10 ~/ 0;

  print("The result is $result");

} catch(e){

  print("The exception is : $e");

} finally{

  print("This is finally and it always is executed.");

}

The finally block will be executed at the end, whatever the outcome:

The exception is : IntegerDivisionByZeroException

This is finally and it always is executed.

If an exception occurs in the try block, the control goes to the catch 

block; and at the end, the finally block gives the output.

We can now wrap this section up with Figure 5-3 that depicts how 

many types of exception handling are used in Dart with the help of 

Exception classes.

In Figure 5-3, you will find the term stack trace. When a program is 

run, memory is allocated in two places, the stack and the heap. If there is a 

problem in our code, before allocating the memory, some events fire, and 

this can be traced in the stack. Simply put, a stack trace is the list of method 

calls that the application was in the middle of when an exception was 

thrown. We will look for the topmost method and know where the errors 

happen. In Dart, you will have to read the stack trace report; I am sure you 

will learn many things about how a program is run.

In addition, we can create our custom exception handling class that 

will catch the error. Why do we need that? You can add more flexibility 

to your code by building custom exception handling to give more useful 

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



137

names to exceptions, for example. However, I won’t suggest as a beginner 

you should get your hands dirty with building custom exception classes 

immediately.

Figure 5-3.  Five types of exception handling in Dart

We can also finally finish the task completely with a single codebase 

where we get through all the clauses of exception handling.

//code 5.10

class InputException implements Exception {

  String customException() {

    return "The input of negative number is not valid.";

  }

}

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



138

void main() {

  // ON Clause is used when the exception is known

  try {

    var res = 4 ~/ 0;

    print("The result: $res");

  } on IntegerDivisionByZeroException {

    print("You cannot divide by zero, the value is undefined");

  }

  // CATCH Clause is used when exception is unknown

  try {

    var res = 3 ~/ 0;

    print("The result is $res");

  } catch (e) {

    print("The exception thrown is $e");

  }

  // STACK TRACE is used to know the steps of the events

  // �these events took place before the actual Exception was 

thrown

  try {

    int res = 10 ~/ 0;

    print("The result is $res");

  } catch (e, s) {

    print("The exception: $e");

    print("Stack trace is \n $s");

  }

  // FINALLY Clause is always Executed

  // whether exception is thrown or not

  try {

    int res = 9 ~/ 0;

    print("The result: $res");

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



139

  } catch (e) {

    print("The exception: $e");

  } finally {

    print("The finally clause is always executed.");

  }

  // we can make our Custom Exception by creating a class

  try {

    inputValue(-14);

  } catch (e) {

    print(e.customException());

  } finally {

    print("The finally clause is always executed");

  }

}

void inputValue(int inputNumber) {

  if (inputNumber < 0) {

    var inputException = InputException();

    throw inputException;

  }

}

Note the use of the throw keyword in the inputValue() function. This 

throws the specified exception and passes control back to the calling code. 

The try/catch block can then handle this thrown exception. Now we can 

take a look at the output to see the stack trace:

//output of code 5.10

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:42201 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:42201/eUtY0DGP6ro=/

CHAPTER 5 ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND
                                                EXCEPTION HANDLING



140

You cannot divide by zero, the value is undefined

The exception thrown is IntegerDivisionByZeroException

The exception: IntegerDivisionByZeroException

Stack trace is

#0      int.~/ (dart:core-patch/integers.dart:18:7)

#1      �main (file:///home/ss/IdeaProjects/my_app/main.

dart:24:18)

#2      �_startIsolate.<anonymous closure> (dart:isolate-patch/

isolate_patch.dart:301:19)

#3      �_RawReceivePortImpl._handleMessage (dart:isolate-patch/

isolate_patch.dart:172:12)

The exception: IntegerDivisionByZeroException

The finally clause is always executed.

The input of negative number is not valid.

The finally clause is always executed

Process finished with exit code 0

Now, it entirely depends on the developer how they handle the 

exception. All we should remember is that the user will not like it if an 

exception is raised by the code. Therefore, it is mandatory to go through 

the test before going live, and it is always better to use an exception 

handling mechanism where needed.

CHAPTER 5 �ENTITY RELATIONSHIPS: ABSTRACTCLASSES, INTERFACES, AND  
EXCEPTION HANDLING



141© Sanjib Sinha 2020 
S. Sinha, Quick Start Guide to Dart Programming,  
https://doi.org/10.1007/978-1-4842-5562-9_6

CHAPTER 6

Anonymous Functions
In Dart, most of the functions we have seen so far are named functions, 

which are similar to functions in languages like C# and Java. Still, the 

function syntax of Dart has more similarities with JavaScript than in many 

strongly typed languages like C# or Java.

Because in Dart everything is object, a function is also an object; this 

means we can store it in a variable and use it anywhere in our application. 

The advantage of Dart is we that can pass a function like any other type, 

such as string, integer, etc. These features are greatly enhanced when the 

functions have no names at all. These nameless functions act the same as 

named functions; they can have any number of parameters, including zero 

parameters. The type annotations are optional.

These functions are called anonymous functions. Like named 

functions, we can assign any anonymous function to a function object 

variable. We can also pass it to another function.

Lambdas, higher-order functions, and lexical closures all are 

anonymous functions, and they have some similarities. In their 

namelessness and anonymity, these features of Dart are very interesting. 

Let’s start with lambdas. Then we will discuss higher-order functions and 

closures. In reality, you will find that lambdas actually implement higher-

order functions.



142

�A First Look at Lambdas
Figure 6-1 shows how we can use lambdas, one type of anonymous function.

Figure 6-1.  An anonymous function is assigned to a variable

In Figure 6-1, the longhand version of the anonymous function needs 

a terminating semicolon; this is because we assign the value to a variable 

named addingTwoItems. In addition, the longhand version, we can use the 

fat arrow notation, as covered in Chapter 5. Figure 6-2 shows the two types 

of anonymous functions and how we can use them in our application. We 

will also see the code in a minute.

Chapter 6  Anonymous Functions



143

In Figure 6-2, we mentioned the type of parameters. In case we didn’t 

mention it, Dart dynamically allocates them.

Let’s look at the code of Figure 6-1 and see the output also to 

understand this concept.

//code 6.1

class Cart{

  Function addingTwoItems = (int item1, int item2){

    var sum = item1 + item2;

    return sum;

  };

}

Figure 6-2.  Two types of declaring anonymous functions

Chapter 6  Anonymous Functions



144

main(List<String> arguments){

  var cart = Cart();

  print("Your total price is:");

  print(cart.addingTwoItems(120, 458));

}

Here is the output of this code:

//output of code 6.1

Your total price is:

578

The code used in Figure 6-2 is shown next. We used two methods to 

declare anonymous functions: longhand and shorthand.

//code 6.2

class Cart{

  Function ourReturnPolicy = (String messageToCustomer) {

    return messageToCustomer;

};

  �var returnUpdateCustomer = (String updateCustomer) => 

updateCustomer;

}

main(List<String> arguments){

  var cart = Cart();

  print(cart.ourReturnPolicy("Please read our return policy"));

  �print(cart.returnUpdateCustomer("Your item has been 

shipped."));

}

Chapter 6  Anonymous Functions



145

The output is quite straightforward. We passed one parameter with 

each function and get this string output:

//output of code 6.2

Please read our return policy

Your item has been shipped.

Here we summarize the key features of anonymous functions:

•	 We can declare any anonymous function without a 

function name.

•	 We can assign it to a variable.

•	 The anonymous function can be passed into another 

function, as we’ll see later.

•	 In the longhand version, we need to use a semicolon to 

terminate the statement because we assign it to a variable.

•	 The only disadvantage of an anonymous function is we 

cannot use it recursively as it has no name.

�Exploring Higher-Order Functions
The specialty of higher-order functions is that they can accept a function as 

a parameter. That is why they are called higher-order functions. They not 

only can accept a function as a parameter; they can also return it.

Let’s look at the following simple code snippet to get accustomed to 

the idea:

//code 6.3

//returning a function

Function DividingByFour(){

  Function LetUsDivide = (int x) => x ~/ 4;

  return LetUsDivide;

}

Chapter 6  Anonymous Functions



146

main(List<String> arguments){

  var result = DividingByFour();

  print(result(56));

}

The output is 14.

So, we return the LetUsDivide() function quite easily through a 

higher-order function called Function DividingByFour().

Let’s see some more examples to understand how anonymous 

functions work. Look at this line in the previous code:

Function LetUsDivide = (int x) => x ~/ 4;

The function LetUsDivide() is assigned to an anonymous function 

called (int x). Then we used fat arrow notation to return a value.

The main advantage is that we can store functions in a variable or 

reference them by the name of the variable. Having a variable containing a 

function object gives us freedom to pass it around the application like any 

other variable. Furthermore, we can return a function object stored in a 

variable, or we can pass it into another function where we can call it as any 

declared function.

In the next section, we will see how the concept of closures changes 

according to the situation.

�A Closure Is a Special Function
We can define closure in two ways.

•	 We can say that a closure is the only function that has 

access to the parent scope, even after the scope is closed.

•	 The term closure is derived from the term close-over. 

Since it wraps any nonlocal variable that was valid at the 

time of declaration, it actually closes over that variable.

Chapter 6  Anonymous Functions



147

When one function is returned by another function, we can say that 

closures are formed; the same thing happens in higher-order functions.

The next example will explain this concept. To understand this 

definition, let’s look at the following short code snippet where an 

anonymous function closure is overriding the parent scope:

//code 6.4

//a closure can modify the parent scope

String message = "Any Parent String";

Function overridingParentScope = (){

  String message = "Overriding the parent scope";

  print(message);

};

main(List<String> arguments){

  print(message);

  overridingParentScope();

}

The output is as follows:

Any Parent String

Overriding the parent scope

In the second definition, we can say that a closure is a function object 

that has access to the variables in its lexical scope, even when the function 

is used outside of its original scope.

//code 6.5

//declaring an anonymous function without any parameter

Function show = (){

  Function gettingImage(){

    String path = "This is a new path to image.";

Chapter 6  Anonymous Functions



148

    print(path);

  }

  return gettingImage;

};

main(List<String> arguments){

  String path = "This is an old path.";

  var showing = show();

  showing();

}

Here is the output:

This is a new path to image.

This code actually returns a function object called gettingImage that 

has accessed the variable in its lexical scope. Dart is a lexically scoped 

language that means the innermost scope is searched first.

So, at the end of this section, we can summarize a few points about 

closures.

•	 In several other languages, including Python and PHP, 

you are not allowed to modify the parent variable.

•	 However, within a closure, you can mutate or modify 

the values of variables present in the parent scope.

Figure 6-3 shows a little more detail about closures (specifically their 

underlying types when they are created).

Chapter 6  Anonymous Functions



149

�Bringing It All Together
Now we will conclude our journey of studying the nameless or anonymous 

functions in a single codebase, and we will also look at the output. In the 

following code snippet, we have tried to give you a feel of all the types of 

anonymous functions. Read the comments in the code to see what types of 

anonymous functions we are using here.

Figure 6-3.  In the output, Dart recognizes this anonymous function 
as a closure

Chapter 6  Anonymous Functions



150

//code 6.6

//Lambda is an anonymous function

class AboutLambdas{

  //first way of expressing Lambda or anonymous function

  Function addingNumbers = (int a, int b){

    var sum = a + b;

    return sum;

  };

  Function multiplyWithEight = (int num){

    return num * 8;

  };

  //second way of expressing Lambda by Fat Arrow

  Function showName = (String name) => name;

  //higher order functions pass function as parameter

  int higherOrderFunction(Function myFunction){

    int a = 10;

    int b = 20;

    print(myFunction(a, b));

  }

  //returning a function

  Function returningAFunction(){

    Function showAge = (int age) => age;

    return showAge;

  }

  //a closure can modify the parent scope

  String anyString = "Any Parent String";

  Function overridingParentScope = (){

    String message = "Overriding the parent scope";

    print(message);

  };

Chapter 6  Anonymous Functions



151

  Function show = (){

    // the anonymous function will return this originally

    Function gettingImage(){ // �anonymous function returns a 

function

      String path = "This is a new path to image.";

      print(path);

    }

    return gettingImage;

  };

}

main(List<String> arguments){

  var add = AboutLambdas();

  var addition = add.addingNumbers(5, 10);

  print(addition);

  var mul = AboutLambdas();

  var result = mul.multiplyWithEight(4);

  print(result);

  var name = AboutLambdas();

  var myName = name.showName("Sanjib");

  print(myName);

  var higher = AboutLambdas();

  var higherOrder = higher.higherOrderFunction(add.addingNumbers);

  higherOrder;

  var showAge = AboutLambdas();

  var showingAge = showAge.returningAFunction();

  print(showingAge(25));

  var sayMessage = AboutLambdas();

  sayMessage.overridingParentScope();

  var image = AboutLambdas();

  String path = "This is an old path.";

Chapter 6  Anonymous Functions



152

  var imagePath = image.show();

  imagePath();

}

The output shows how the nameless functions work.

//output of code 8.6

15

32

Sanjib

30

25

Overriding the parent scope

This is a new path to image.

Chapter 6  Anonymous Functions



153© Sanjib Sinha 2020 
S. Sinha, Quick Start Guide to Dart Programming,  
https://doi.org/10.1007/978-1-4842-5562-9_7

CHAPTER 7

Data Structures and 
Collections
Understanding the concepts of data structures and collections, as a whole, 

plays a crucial role in your future Dart programming. You will learn in a 

minute that there are four types of data structures in Dart.

•	 List

•	 Set

•	 Map

•	 Queue

In my opinion, Lists and Maps will cover almost everything, so you 

hardly need the other two types in your programming life, except on a few 

occasions. However, my suggestion is to not ignore learning about Set and 

Queue; on a few occasions, they have incalculable worth. We will discuss 

them in this chapter in detail.

Figure 7-1 shows what type of collections we are going to use.



154

You will learn about these data structures in this chapter. We will 

cover all the concepts of Dart collections in detail. Moving/processing 

collections of data in a type-safe manner is always our priority in software 

development. To do that, first we need to have a basic understanding of 

how to organize a large chunk of data for later retrieval.

In a nutshell, data structures help you to organize information for 

storage and later retrieval.

Using the built-in collection classes in Dart is a big advantage to us. 

List and Map both fall into this category. They allow us to manipulate lists 

of data, and they allow us to access the collections of data in a type-safe 

manner; furthermore, we can benefit from the additional validations done 

by the type checker provided by Dart. Not only that, the built-in utilities 

provided by Dart help us to access elements directly in Lists and Maps; you 

will also learn how to build Maps and Lists from preexisting values.

So, let’s start with Lists.

Figure 7-1.  All types of collections in Dart

Chapter 7  Data Structures and Collections



155

�Lists: An Ordered Collection
A list is a simple ordered group of objects. Creating a List seems easy 

because the Dart core libraries have the necessary support and a List 

class. There are two types of Lists.

•	 Fixed-length list

•	 Growable list

In a fixed-length list, the length of the list cannot change at runtime; 

however, in the second type, a growable list, the length can change at runtime.

Figure 7-2 describes how these Lists works.

Figure 7-2.  Two types of Lists are available in Dart

Chapter 7  Data Structures and Collections



156

In the next examples, we will look at the two types of List separately. 

We will also see how they work. First simply create a List, as shown here:

void main() {

   var lst = new List();

   lst.add(3);

   lst.add(4);

   print(lst);

}

//output

[3, 4]

Now here’s our first example:

//code 7.1

int listFunction(){

  List<int> nameOfTest = List(3);

  nameOfTest[0] = 1;

  nameOfTest[1] = 2;

  nameOfTest[2] = 3;

  //there are three methods to capture the list

  //1. method

  for(int element in nameOfTest){

    print(element);

  }

  print("-----------");

  //2. method

  nameOfTest.forEach((v) => print('${v}'));

  print("-----------");

Chapter 7  Data Structures and Collections



157

  //3. method

  for(int i = 0; i < nameOfTest.length; i++){

    print(nameOfTest[i]);

  }

}

main(List<String> arguments){

  listFunction();

}

As you can see, this is an ordered list of three numbers. We are getting 

the output by using three methods, each of which is straightforward.

//output of code 7.1

1

2

3

-----------

1

2

3

-----------

1

2

3

The next example is of a growable list, shown here:

//code 7.2

Function growableList(){

  //1. method

  List<String> names = List();

  names.add("Mana");

  names.add("Babu");

Chapter 7  Data Structures and Collections



158

  names.add("Gopal");

  names.add("Pota");

  //there are two methods to capture the list

  print("-----------");

  //1. method

  names.forEach((v) => print('${v}'));

  print("-----------");

  //2. method

  for(int i = 0; i < names.length; i++){

    print(names[i]);

  }

}

main(List<String> arguments){

  growableList();

}

This is also straightforward; we have not passed any number through 

List(), which lets us add any number of elements to it. Here we have 

added a few names. And we can capture the List elements through two 

methods, instead of three.

The output is quite expected, as shown here:

//output of code 7.2

-----------

Mana

Babu

Gopal

Pota

Chapter 7  Data Structures and Collections



159

-----------

Mana

Babu

Gopal

Pota

So, it is evident from the output and the code that growable lists are 

dynamic in nature. We can dynamically add any number of elements, and 

we can also remove elements it by a simple method: names.remove("any 

name"). We can also use the key; note that this ordered list starts from 0. 

So, we can remove the first name just by passing this key value: names.

removeAt(0). We use the removeAt(key) method for that operation. We 

can also clear the Lists just by typing names.clear().

Consider another code listing, where we have used many default 

methods of the List class.

//code 7.3

main(){

  var number1 = 1;

  var number2 = 1;

  while(number2 < 50){

    print(number2);

    number2 += number1;

    number1 = number2 - number1;

  }

  print("Separator line: =============");

  var fibonacciNumbers = [1, 2, 3, 5, 8, 13, 21, 34];

  print(fibonacciNumbers.take(3).toList());

  print("Separator line: =============");

  print(fibonacciNumbers.skip(5).toList());

  print("Separator line: =============");

  print(fibonacciNumbers.skip(2).contains(5));

  print("Separator line: =============");

Chapter 7  Data Structures and Collections



160

  print(fibonacciNumbers.take(3).skip(2).take(1).toList());

  print("Separator line: =============");

  var clonedFibonacciNumbers = List.from(fibonacciNumbers);

  print("Cloned list: $clonedFibonacciNumbers");

}

First, let’s check the output. 

//output of code 7.3

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:33845 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:33845/6uljPm-VaFM=/

1

2

3

5

8

13

21

34

Separator line: =============

[1, 2, 3]

Separator line: =============

[13, 21, 34]

Separator line: =============

true

Separator line: =============

[3]

Separator line: =============

Cloned list: [1, 2, 3, 5, 8, 13, 21, 34]

Process finished with exit code 0

Chapter 7  Data Structures and Collections



161

The separator line used in between the output helps show how the 

other default methods of the List class work.

We have used several default methods such as toList(), contains(), 

skip(), etc.

We can take any number of elements from the List class. We can 

eliminate the first two numbers and print other values.

There are also other List methods that are extremely flexible to add 

some special keywords to a List. Consider this small example first:

//code 7.4

main(){

  var names = ["John", "Robert", "Smith", "Peter"];

  names.forEach((name) => print(name));

}

It will give us some nice output of names.

//output of code 7.4

John

Robert

Smith

Peter

Can we add some extra functionality into this List of names so that they 

might have something in common? Suppose every name we have listed is 

absconding. We need to prepend each name with Absconding. The map() 

function gives us an opportunity to produce a new List by transforming 

each element at one go. Now the preceding code changes to this:

//code 7.5

main(){

  var names = ["John", "Robert", "Smith", "Peter"];

  names.forEach((name) => print(name));

Chapter 7  Data Structures and Collections



162

  �var mappedNames = names.map((name) => "Absconding $name").

toList();

  print(mappedNames);

}

The output changes to this:

//output of code 7.5

John

Robert

Smith

Peter

[Absconding John, Absconding Robert, Absconding Smith, 

Absconding Peter]

We have successfully mapped each element and transformed it, 

putting the results in a new list.

For further reading about the List class, you can go to the Dart 

language repositories on Lists:

https://api.dartlang.org/dev/2.0.0-dev.65.0/dart-core/List-

class.html

�Set: An Unordered Collections of Unique 
Items
The heading says everything. A Set represents a collection of objects in 

which each object can occur only once. In the Dart core library, there is a 

Set class with this functionality.

Since Set is an unordered collection of unique items, you cannot 

get elements by index. There is a concept called a HashSet that actually 

implements the unordered Set, and it is based on a hashtable-based Set 

implementation. We will look into those features in a minute.

Chapter 7  Data Structures and Collections



163

We can create sets in two ways.

Set <type> set name = {};

var setname = <Type> {};

//code 7.6

void setFunction(){

  //set is an unordered collections of unique items

  //cannot get elements by INDEX since the items are unordered

  //1. method of creating Set

  Set<String> countries = Set.from(['India', 'England', 'US']);

  Set<int> numbers = Set.from([1, 45, 58]);

  Set<int> moreNumbers = Set();

  moreNumbers.add(178);

  moreNumbers.add(568);

  moreNumbers.add(569);

  //1. method

  for(int element in numbers){

    print(element);

  }

  print("-----------");

  //2. method

  countries.forEach((v) => print('${v}'));

  print("-----------");

  for(int element in moreNumbers){

    if(moreNumbers.lookup(element) == 178){

      print(element);

      break;

    }

  }

Chapter 7  Data Structures and Collections



164

  //set

  var fruitCollection = {'Mango', 'Apple', 'Jack fruit'};

  print(fruitCollection.lookup('Something Else'));

  //it gives null

  //lists

  List fruitCollections = ['Mango', 'Apple', 'Jack fruit'];

  var myIntegers = [1, 2, 3, 'non-integer object'];

  print(myIntegers[3]);

  print(fruitCollections[0]);

}

main(List<String> arguments){

  setFunction();

}

Let’s look at the output first; then we will be able to understand what 

happens.

//output of code 7.6

1

45

58

-----------

India

England

US

-----------

178

null

non-integer object

Mango

Chapter 7  Data Structures and Collections



165

We have created a Set of countries, numbers, and morenumbers; finally, 

we created a List at the end to distinguish between the characters of Lists 

and Sets.

These three methods have created Sets:

Set<String> countries = Set.from(['India', 'England', 'US']);

Set<int> numbers = Set.from([1, 45, 58]);

Set<int> moreNumbers = Set();

We get the output of the first one we have using this method:

countries.forEach((v) => print('${v}'));

The second List has been retrieved by this method:

for(int element in numbers){

  print(element);

}

We have captured the values of the third Set using this method:

for(int element in moreNumbers){

   if(moreNumbers.lookup(element) == 178){

     print(moreNumbers);

     break;

   }

 }

We used the lookup() method with each element of the List as the 

argument. When we match 178, we print the whole list.

To manipulate a Set, there are lots of methods available in the Dart 

core libraries. You can use moreNumbers.contains(value), moreNumbers.

remove(value), moreNumbers.isEmpty(), etc.

Chapter 7  Data Structures and Collections



166

In the following code snippet, the return value of lookup() is null, 

since there is no such value present in the Set:

//set

  var fruitCollection = {'Mango', 'Apple', 'Jack fruit'};

  print(fruitCollection.lookup('Something Else'));

We need to remember one thing. When the Set type is an integer, it is 

easier to use a for loop to loop over the elements. Otherwise, it is wise to 

use foreach as we have used in the previous code.

countries.forEach((v) => print('${v}'));

In the next section, we will see how Map in Dart works.

�Maps: The Key-Value Pair
An unordered collection of key-value pairs is known as a Map in Dart. 

The main advantage of a Map is that the key-value pair can be of any type. 

The flexibility of extending and shrinking these unordered collections is 

another great advantage when managing a big chunk of data.

Figure 7-3 summarizes how Maps in Dart work.

Chapter 7  Data Structures and Collections



167

To begin with, let’s start with a few key features of Map that we should 

remember while we work with Map.

•	 Each key in a Map should be unique.

•	 The value can be repeated.

•	 The Map can commonly be called a hash or a 

dictionary.

•	 The size of a Map is not fixed; it can either increase 

or decrease as per the number of elements. In other 

words, Maps can grow or shrink at runtime.

•	 A HashMap is an implementation of a Map, and it is 

based on a hashtable.

Figure 7-3.  Key-value pair of unordered collections in Dart

Chapter 7  Data Structures and Collections



168

Let’s look at the following code snippet to understand how a Map 

works in Dart:

//code 7.7

void mapFunction(){

  //unordered collection of key=>value pair

  Map<String, String> countries = Map();

  countries['India'] = "Asia";

  countries["Germany"] = "Europe";

  countries["France"] = "Europe";

  countries["Brazil"] = "South America";

  //1. method we can obtain key or value

  for(var key in countries.keys){

    print("Country's name: $key");

  }

  print("-----------");

  for(String value in countries.values){

    print("Continent's name: $value");

  }

  //2. method

  �countries.forEach((key, value) => print("Country: $key and 

Continent: $value"));

  //we can update any map very easily

  if(countries.containsKey("Germany")){

    countries.update("Germany", (value) => "European Union");

    print("Updated country Germany.");

    �countries.forEach((key, value) => print("Country: $key and 

Continent: $value"));

  }

Chapter 7  Data Structures and Collections



169

  //we can remove any country

  countries.remove("Brazil");

  �countries.forEach((key, value) => print("Country: $key and 

Continent: $value"));

  print("Barzil has been removed successfully.");

  print("-----------");

  //3. method of creating a map

  Map<String, int> telephoneNumbersOfCustomers = {

    "John" : 1234,

    "Mac" : 7534,

    "Molly" : 8934,

    "Plywod" : 1275,

    "Hagudu" : 2534

  };

  �telephoneNumbersOfCustomers.forEach((key, value) => 

print("Customer: $key and Contact Number: $value"));

}

main(List<String> arguments){

  mapFunction();

}

Here is the output of the previous code:

Country's name: India

Country's name: Germany

Country's name: France

Country's name: Brazil

-----------

Continent's name: Asia

Continent's name: Europe

Continent's name: Europe

Chapter 7  Data Structures and Collections



170

Continent's name: South America

Country: India and Continent: Asia

Country: Germany and Continent: Europe

Country: France and Continent: Europe

Country: Brazil and Continent: South America

Updated country Germany.

Country: India and Continent: Asia

Country: Germany and Continent: European Union

Country: France and Continent: Europe

Country: Brazil and Continent: South America

Country: India and Continent: Asia

Country: Germany and Continent: European Union

Country: France and Continent: Europe

Barzil has been removed successfully.

-----------

Customer: John and Contact NUmber: 1234

Customer: Mac and Contact NUmber: 7534

Customer: Molly and Contact NUmber: 8934

Customer: Plywod and Contact NUmber: 1275

Customer: Hagudu and Contact NUmber: 2534

There are three methods that we can use to retrieve the values of a Map.

//1. method we can obtain key or value

for(var key in countries.keys){

 print("Country's name: $key");

}

print("-----------");

//2. Method

for(String value in countries.values){

 print("Continent's name: $value");

}

Chapter 7  Data Structures and Collections



171

//3. method

countries.forEach((key, value) => print("Country: $key and 

Continent: $value"));

In addition, there are several methods to add, update, or remove the 

elements in a Map.

�Using Collections Together
We can combine Lists and Maps and test the validations. There is a lot of 

flexibility involved in Dart when we want to confirm that each element 

passes a particular test. Suppose we want to check that every user’s age is 

over 18.

//code 7.8

main(){

  var name;

  var age;

  List<Map<String, dynamic>> users = [

    { name: "Peter", age: 18 },

    { name: "Mira", age: 20 },

    { name: "Jason", age: 22 },

  ];

  var is18AndOver = users.every((user) => user[age] >= 18);

  print(is18AndOver);

}

Chapter 7  Data Structures and Collections



172

The output will be true. All users in our combined Lists and Maps 

are either 18 or older. We can also check whether every user’s name 

starts with A or not. We use the same every() method in a different way. 

The following code snippet is interesting because here we have used an 

anonymous function:

//code 7.9

main(){

  var name;

  var age;

  List<Map<String, dynamic>> users = [

    { name: "Peter", age: 18 },

    { name: "Mira", age: 20 },

    { name: "Jason", age: 22 },

  ];

  var isEighteenAndOver = users.every((user) => user[age] >= 18);

  print(isEighteenAndOver);

  �var hasNamesWithLetterA = users.every((user) => user.

toString().startsWith("A"));

  print(hasNamesWithLetterA);

}

Let’s look at the output in the editor’s console this time:

//output of code 7.9

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:45239 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:45239/o1AwiUzW7MQ=/

true

false

Process finished with exit code 0

Chapter 7  Data Structures and Collections



173

The first test passes; however, the second test fails because every user’s 

name does not start with the letter A.

Let’s make this code more interesting with more options for testing. 

This time we have added more names to this list, mapping their age 

records to find how many users are older than 21.

//code 7.10

main(){

  var name;

  var age;

  List<Map<String, dynamic>> users = [

    { name: "Peter", age: 18 },

    { name: "Mira", age: 20 },

    { name: "Jason", age: 22 },

    { name: "Morgan", age: 32 },

    { name: "Mary", age: 50 },

    { name: "Will", age: 86 },

    { name: "Bruce", age: 96 },

  ];

  var isEighteenAndOver = users.every((user) => user[age] >= 18);

  print(isEighteenAndOver);

  �var hasNamesWithLetterA = users.every((user) => user.

toString().startsWith("A"));

  print(hasNamesWithLetterA);

  var overTwentyOne = users.where((user) => user[age] > 21);

  print(overTwentyOne.length);

}

Chapter 7  Data Structures and Collections



174

Look at the output this time:

//output of code 7.10

true

false

5

There are five users altogether who have their ages older than 21. 

Next, we can make this test complete with the method singleWhere() to 

confirm that there are no users whose age is younger than 18.

//code 7.11

main(){

  var name;

  var age;

  List<Map<String, dynamic>> users = [

    { name: "Peter", age: 18 },

    { name: "Mira", age: 20 },

    { name: "Jason", age: 22 },

    { name: "Morgan", age: 32 },

    { name: "Mary", age: 50 },

    { name: "Will", age: 86 },

    { name: "Bruce", age: 96 },

  ];

  var isEighteenAndOver = users.every((user) => user[age] >= 18);

  print(isEighteenAndOver);

  �var hasNamesWithLetterA = users.every((user) => user.

toString().startsWith("A"));

  print(hasNamesWithLetterA);

  var overTwentyOne = users.where((user) => user[age] > 21);

  print(overTwentyOne.length);

Chapter 7  Data Structures and Collections



175

  �var underEighteen = users.singleWhere((user) => user[age]  

< 18, orElse: () => null);

  print(underEighteen);

}

Let’s first see the output in our console, as shown here:

//output of code 7.11

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:36063 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:36063/vr1OkScPAEw=/

true

false

5

null

Process finished with exit code 0

The last line of output tells us that there is no user who has an age 

younger than 18. We want you to look at the last bit of code here:

var underEighteen = users.singleWhere((user) => user[age] < 18, 

orElse: () => null);

  print(underEighteen);

In the orElse conditional, we have used the anonymous function () 

=> null; this anonymous function returns null only when the condition is 

true.

Lastly, we will see another collection feature in Dart, which is called a 

Queue.

Chapter 7  Data Structures and Collections



176

�Queue Is Open-Ended
The queue is useful when you try to build a collection that can be added 

from one end and can be deleted from another end. The values are 

removed or read using an index based on the order of their insertion.

Consider this code:

//code 7.12

import 'dart:collection';  // �we are about to import some extra 

methods from collection library

main(List<String> arguments){

  Queue myQueue = new Queue();

  print("Default implementation ${myQueue.runtimeType}");

  myQueue.add("Sanjib");

  myQueue.add(54);

  myQueue.add("Howrah");

  myQueue.add("sanjib12sinha@gmail.com");

  for(var allTheValues in myQueue){

    print(allTheValues);

  }

  print("----------");

  �print("We are removing the first element ${myQueue.

elementAt(0)}.");

  myQueue.removeFirst();

  for(var allTheValues in myQueue){

    print(allTheValues);

  }

  print("----------");

  �print("We are removing the last element ${myQueue.

elementAt(2  )}.");

  myQueue.removeLast();

Chapter 7  Data Structures and Collections



177

  for(var allTheValues in myQueue){

    print(allTheValues);

  }

}

The output gives us the full lists of what we have added in the Queue. 

After that, we have removed the first and last elements.

//output of code 7.12

Default implementation ListQueue<dynamic>

Sanjib

54

Howrah

sanjib12sinha@gmail.com

----------

We are removing the first element Sanjib.

54

Howrah

sanjib12sinha@gmail.com

----------

We are removing the last element sanjib12sinha@gmail.com.

54

Howrah

In most cases, as I said at the beginning of the chapter, we can handle 

this with Lists and Maps. So, Queue is an option that you may need 

sometimes, but not very often.

Chapter 7  Data Structures and Collections



179© Sanjib Sinha 2020 
S. Sinha, Quick Start Guide to Dart Programming,  
https://doi.org/10.1007/978-1-4842-5562-9_8

CHAPTER 8

Multithreaded 
Programming Using 
Future and Callable 
Classes
As you know, everything is an object in Dart. A class is an object. A 

function is also an object. Because of this object-oriented approach, 

objects should contain some methods to allow them to behave like 

functions. In this chapter, you will see how we can make them behave like 

functions. We will allow an instance of any class to behave like a function. 

Now Dart allows objects with call methods to be called and, at the same 

time, to be assigned to variables of a function type. In this chapter, we 

will look into one of the most important aspects of Dart programming, 

multithreaded programming using future and callable classes.

�Callable Classes
Internally, Dart implicitly changes the call() method (like, someVariable.

call()) to a closure. When an object is assigned with a call method to a 

function type, it adopts the features of an anonymous function.



180

Calling a class like a function is an interesting feature in Dart. All we 

need to do is just implement the call() method. Consider Figure 8-1, 

before we test some example code.

Figure 8-1.  Instance of a class implementing the call method

Let’s test some code and see the output.

//code 8.1

class CallableClassWithoutArgument {

  String output = "Callable class";

  void call() {

    print(output);

  }

}

Chapter 8  Multithreaded Programming Using Future and Callable Classes



181

class CallableClassWithArgument {

  call(String name) => "$name";

}

main(){

  var withoutArgument = CallableClassWithoutArgument();

  var withArgument = CallableClassWithArgument();

  withoutArgument(); // �it is equivalent to withoutArgument.

call()

  print(withArgument("John Smith")); //OK.

  // withArgument(); //it'll give error

  print(withArgument.call("Calling John Smith"));

}

Here is the output of the preceding code:

//output of code 8.1

Callable class

John Smith

Calling John Smith

We can also use a callable class so that it can take an optional 

parameter. In the following code, the [name] parameter is optional in a 

callable class called Person:

//code 8.2

//when dart class is callable like a function, use call() function

class Person{

  String name;

  String call(String message, [name]){

    �return "This message: '$message', has been passed to the 

person $name.";

  }

}

Chapter 8  Multithreaded Programming Using Future and Callable Classes



182

main(List<String> arguments){

  var John = Person();

  John.name = "John Smith";

  String name = John.name;

  String msgAndName = John("Hi John how are you?", name);

  print(msgAndName);

}

Here is the output:

This message: 'Hi John how are you?', has been passed to the 

person John Smith.

Here, John is the variable, and Person() is the class. The class Person is 

called like a function because we have implemented the call() function, 

through which we have passed two parameters: String message and the 

optional parameter name. Finally, we have passed both and captured the 

value through msgAndName.

�Future, Async, Await, and Asynchronous 
Programming
Because Dart is a single-threaded language, it is wrong to assume that we 

cannot use multithreaded, asynchronous programming in Dart. Before 

delving deep into asynchronous programming and how Dart manages to do 

it, you need to understand the basic mechanism of any Android application.

Whenever we switch on any Android device, the default process 

starts. It runs on the main UI thread. This main UI thread handles all core 

activities, such as button clicking, all types of touchscreen activities, etc. 

Still, these are not the only things we can expect from an Android device. 

We should be able to do some heavy operations such as checking mails, 

downloading files, watching movies, playing games, etc.

Chapter 8  Multithreaded Programming Using Future and Callable Classes



183

To do these heavy operations, Android allows parallel processing, 

which is multithreaded programming. It opens an application thread, and 

all the heavy operations are managed there.

When the heavy operations are going on in the background, we need 

our UI to be responsive; and for that reason, Android allows parallel 

processing.

This is the normal procedure of how asynchronous programming 

occurs.

Since Dart is a single-threaded programming language, it manages this 

asynchronous programming by using a feature called Future. In Dart SDK 

version 1.9, the Dart language has added asynchrony support. Now it is easier 

to write and read asynchronous Dart code. We will see that in a minute.

Let’s first try to understand the whole concept, as shown in Figure 8-2.

Figure 8-2.  How Dart manages asynchronous programming

Chapter 8  Multithreaded Programming Using Future and Callable Classes



184

Before the features async and await were brought into Dart SDK 

version 1.9, Dart depended mainly on Future and then. We will look at 

some sample code to see how Dart Future manages the application thread 

parallel to the main UI thread. Consider the following code where we need 

to import the async libraries; we import predefined classes from the Dart 

libraries to add special features in our program:

//code 8.3

import 'dart:async';

// our all operations will use the main UI thread

//�since dart and flutter are single threaded we need to use 

Future, Async amd Await APIs

void main(){

  �// �the main UI thread starts after that the heavy operations 

will take place

  print("The main UI thread is starting on here.");

  �print("Now it will take 10 seconds to display news 

headlines.");

  displayNews();

  print("The main UI thread ends.");

  // this program remains incomplete, we don't get the result

  �// �it is because the main UI thread is overlapping before 10 

seconds

  �// �therefore we need await and async APIs to block main UI 

thread for 10 seconds

}

// this is where our heavy operations are taking place

Future<String> checkingNewsApp() {

  // since we are returning a string value

  // by delaying the main UI thread for 10 seconds

Chapter 8  Multithreaded Programming Using Future and Callable Classes



185

  �Future<String> delayingTenSeconds =  Future.

delayed(Duration(seconds: 10), (){

    �return "The latest headlines are displayed here after  

10 seconds.";

  });

  // after 10 seconds the news headlines will be displayed

  return delayingTenSeconds;

}

void displayNews() {

  // here we will primarily display the news headline

  Future<String> displayingNewsHeadlines = checkingNewsApp();

  �// �inside then we need an anonymous function like lambda or 

anonymous function

  displayingNewsHeadlines.then((displayString){

    // it will give the future object

    �print("Displaying news headlines here: 

$displayingNewsHeadlines");

  });

}

In the output, we have gotten the value as a Future object.

//output of code 8.3

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:42565 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:42565/vR6Xhf8qofo=/

The main UI thread is starting on here.

Now it will take 10 seconds to display news headlines.

The main UI thread ends.

Displaying news headlines here: Instance of 'Future<String>'

Process finished with exit code 0

Chapter 8  Multithreaded Programming Using Future and Callable Classes



186

If you read the comments in the program, you will understand how we 

got the Future object. However, our objective was different; we wanted to 

display news headlines instead of a Future object. A mistake was made in 

this line:

 // it will give the future object

    �print("Displaying news headlines here: 

$displayingNewsHeadlines");

  });

In the Future method, we passed an anonymous function where we 

have used a parameter. We need to check that line again. Let’s write the 

code in this manner (changes appear in bold):

//code 8.4

import 'dart:async';

// our all operations will use the main UI thread

//�since dart and flutter are single threaded we need to use 

Future, Async amd Await APIs

void main(){

  �// �the main UI thread starts after that the heavy operations 

will take place

  print("The main UI thread is starting on here.");

  print("Now it will take 10 seconds to display news headlines.");

  displayNews();

  print("The main UI thread ends.");

  // this program remains incomplete, we don't get the result

  �// �it is because the main UI thread is overlapping before  

10 seconds

  �// �therefore we need the Future API to block main UI thread 

for 10 seconds

}

Chapter 8  Multithreaded Programming Using Future and Callable Classes



187

// this is where our heavy operations are taking place

Future<String> checkingNewsApp() {

  // since we are returning a string value

  // by delaying the main UI thread for 10 seconds

  �Future<String> delayingTenSeconds =  Future.

delayed(Duration(seconds: 10), (){

    �return "The latest headlines are displayed here after  

10 seconds.";

  });

  // after 10 seconds the news headlines will be displayed

  return delayingTenSeconds;

}

void displayNews() {

  // here we will primarily display the news headline

  Future<String> displayingNewsHeadlines = checkingNewsApp();

  �// �inside then we need an anonymous function like lambda or 

anonymous function

  displayingNewsHeadlines.then((displayString){

    print("Displaying news headlines here: $displayString");

  });

}

Now the output has been changed. Here is the news headlines we had 

initially wanted:

//output of code 8.4

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:42565 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:42565/vR6Xhf8qofo=/

Chapter 8  Multithreaded Programming Using Future and Callable Classes



188

The main UI thread is starting on here.

Now it will take 10 seconds to display news headlines.

The main UI thread ends.

Displaying news headlines here: The latest headlines are 

displayed here after 10 seconds.

Process finished with exit code 0

Now with the advent of the modern Dart versions, we have async and 

await. They help us write clean asynchronous code. Yet, you need to know 

how to use these features properly. They help us write asynchronous code 

that looks like synchronous code, while still using the Future API. In Dart 2,  

instead of suspending, it uses the await and async functions to execute 

synchronously. 

Consider the following code where we have not used these features 

properly. Notice the long exception.

//code 8.5

import 'dart:async';

void main(){

  Future checkVersion() async {

    var version = await checkVersion();

    // Do something with version

    try {

      return version;

    } catch (e) {

      // React to inability to look up the version

      return e;

    }

  }

  print(checkVersion());

}

Chapter 8  Multithreaded Programming Using Future and Callable Classes



189

In the preceding code, we tried to print the version of the Dart SDK. 

We got this output:

//output of code 8.5

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:34325 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:34325/pJXWzoNT9F0=/

Instance of 'Future<dynamic>'

Unhandled exception:

Stack Overflow

#0      �_FutureListener.stateThenOnerror (dart:async/future_

impl.dart:66:20)

#1      �Future._thenNoZoneRegistration (dart:async/future_impl.

dart:256:22)

#2      _awaitHelper (dart:async-patch/async_patch.dart:110:17)

#3      �main.checkVersion (file:///home/ss/IdeaProjects/my_app/

main.dart:5:19)

#4      �_AsyncAwaitCompleter.start (dart:async-patch/async_

patch.dart:49:6)

#5      �main.checkVersion (file:///home/ss/IdeaProjects/my_app/

main.dart:4:22)

#6      �main.checkVersion (file:///home/ss/IdeaProjects/my_app/

main.dart:5:37)

#7      �_AsyncAwaitCompleter.start (dart:async-patch/async_

patch.dart:49:6)

#8      �main.checkVersion (file:///home/ss/IdeaProjects/my_app/

main.dart:4:22)

#9      �main.checkVersion (file:///home/ss/IdeaProjects/my_app/

main.dart:5:37)

#10     �_AsyncAwaitCompleter.start (dart:async-patch/async_

patch.dart:49:6)

Chapter 8  Multithreaded Programming Using Future and Callable Classes



190

#11     �main.checkVersion (file:///home/ss/IdeaProjects/my_app/

main.dart:4:22)

#12     �main.checkVersion (file:///home/ss/IdeaProjects/my_app/

main.dart:5:37)

#13     �_AsyncAwaitCompleter.start (dart:async-patch/async_

patch.dart:49:6)

#14     �main.checkVersion (file:///home/ss/IdeaProjects/my_app/

main.dart:4:22)

#15     �main.checkVersion (file:///home/ss/IdeaProjects/my_app/

main.dart:5:37)

#16     �_AsyncAwaitCompleter.start (dart:async-patch/async_

patch.dart:49:6)

....

#11119  �_AsyncAwaitCompleter.start (dart:async-patch/async_

patch.dart:49:6)

#11120  �main.checkVersion (file:///home/ss/IdeaProjects/my_app/

main.dart:4:22)

#11121  �main (file:///home/ss/IdeaProjects/my_app/main.

dart:15:21)

#11122  �_startIsolate.<anonymous closure> (dart:isolate-patch/

isolate_patch.dart:301:19)

#11123  �_RawReceivePortImpl._handleMessage (dart:isolate-patch/

isolate_patch.dart:172:12)

Process finished with exit code 255

I have cut the output short for brevity. It was a long exception raised 

because of our mistake. If we had used the print statement, our problem 

would not have been solved. Then what will be the right form of writing 

async and await?

Chapter 8  Multithreaded Programming Using Future and Callable Classes



191

Consider the same code here:

//code 8.6

import 'dart:async';

void main(){

  print("The main UI thread is starting on here.");

  �print("Now it will take 3 seconds to display the version of 

Dart.");

  checkVersion();

  print("The main UI thread ends.");

}

Future<String> checkingVersion() {

  // since we are returning a string value

  // by delaying the main UI thread for 3 seconds

  �Future<String> delayingTenSeconds =  Future.

delayed(Duration(seconds: 3), (){

    return "The version 2.1 is displayed here after 3 seconds.";

  });

  // after 3 seconds the version will be displayed

  return delayingTenSeconds;

}

void checkVersion() async {

  String version = await checkingVersion();

  // Do something with version

  try {

    print("Displaying version here: $version");

  } catch (e) {

    // React to inability to look up the version

    return e;

  }

}

Chapter 8  Multithreaded Programming Using Future and Callable Classes



192

In the preceding code, these lines are important:

Future<String> checkingVersion() {

  // since we are returning a string value

  // by delaying the main UI thread for 3 seconds

  �Future<String> delayingTenSeconds =  Future.

delayed(Duration(seconds: 3), (){

....

void checkVersion() async {

  String version = await checkingVersion();

What kind of Future method are we using? String. Therefore, the 

async and await methods should follow that. Now our output is cleaner 

than before, as shown here:

//output of code 8.6

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:41595 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:41595/hMelJx-vdlw=/

The main UI thread is starting on here.

Now it will take 10 seconds to display news headlines.

The main UI thread ends.

Displaying version here: The version 2.1 is displayed here 

after 3 seconds.

Process finished with exit code 0

Now we can use more async and await to understand how they 

actually work with Future. We can head back to the news application. This 

time, we will use async and await instead of Future then.

Consider the following code where we have not used async and await. 

The main UI thread has finished, and after ten seconds we get the Future 

object!

Chapter 8  Multithreaded Programming Using Future and Callable Classes



193

//code 8.7

import 'dart:async';

// our all operations will use the main UI thread

//�since dart and flutter are single threaded we need to use 

Future, Async amd Await APIs

//�however, we have not used it here and got the future object 

instead of headlines

void main(){

  �// �the main UI thread starts after that the heavy operations 

will take place

  print("The main UI thread is starting on here.");

  print("Now it will take 10 seconds to display news headlines.");

  displayNews();

  print("The main UI thread ends.");

  // this program remains incomplete, we don't get the result

  �// �it is because the main UI thread is overlapping before  

10 seconds

  �// �therefore we need await and async APIs to block main UI 

thread for 10 seconds

}

// this is where our heavy operations are taking place

Future<String> checkingNewsApp(){

  // since we are returning a string value

  // by delaying the main UI thread for 10 seconds

  �Future<String> delayingTenSeconds =  Future.

delayed(Duration(seconds: 10), (){

    �return "The latest headlines are displayed here after  

10 seconds.";

  });

Chapter 8  Multithreaded Programming Using Future and Callable Classes



194

  // after 10 seconds the news headlines will be displayed

  return delayingTenSeconds;

}

void displayNews(){

  // here we will primarily display the news headline

  Future<String> displayingNewsHeadlines = checkingNewsApp();

  �print("Displaying news headlines here: 

$displayingNewsHeadlines");

}

Our objective was to display the news headlines. Instead, we have 

gotten the Future object.

//output of code 8.7

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:35735 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:35735/q812ySn2w1s=/

The main UI thread is starting on here.

Now it will take 10 seconds to display news headlines.

Displaying news headlines here: Instance of 'Future<String>'

The main UI thread ends.

Process finished with exit code 0

Now, we are going to use the async and await features properly to get 

the news headlines we wanted on the screen.

//code 8.8

import 'dart:async';

// our all operations will use the main UI thread

//�since dart and flutter are single threaded we need to use 

Future, Async amd Await APIs

Chapter 8  Multithreaded Programming Using Future and Callable Classes



195

void main(){

  �// �the main UI thread starts after that the heavy operations 

will take place

  print("The main UI thread is starting on here.");

  �print("Now it will take 10 seconds to display news 

headlines.");

  displayNews();

  print("The main UI thread ends.");

  // this program remains incomplete, we don't get the result

  �// �it is because the main UI thread is overlapping before  

10 seconds

  �// �therefore we need await and async APIs to block main UI 

thread for 10 seconds

}

// this is where our heavy operations are taking place

Future<String> checkingNewsApp() {

  // since we are returning a string value

  // by delaying the main UI thread for 10 seconds

  �Future<String> delayingTenSeconds =  Future.

delayed(Duration(seconds: 10), (){

    �return "The latest headlines are displayed here after  

10 seconds.";

  });

  // after 10 seconds the news headlines will be displayed

  return delayingTenSeconds;

}

Chapter 8  Multithreaded Programming Using Future and Callable Classes



196

void displayNews() async {

  // here we will primarily display the news headline

  String displayingNewsHeadlines = await checkingNewsApp();

  �print("Displaying news headlines here: 

$displayingNewsHeadlines");

}

This time we find the output has changed, and after the main UI thread 

has finished, it has displayed the news headlines after ten seconds.

//output of code 8.8

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:33305 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:33305/FpBV0pOM2qc=/

The main UI thread is starting on here.

Now it will take 10 seconds to display news headlines.

The main UI thread ends.

Displaying news headlines here: The latest headlines are 

displayed here after 10 seconds.

Process finished with exit code 0

In the next chapter, you will learn about Dart libraries and packages; 

furthermore, you need to know that Dart libraries have a lot of functions 

that return Future objects. These functions are all asynchronous. They 

handle time-consuming heavy operations (such as I/O). To do that, 

these functions use the async and await keywords; this lets us write the 

asynchronous code that looks like synchronous code.

Therefore, to handle Future properly and get the complete Future 

output, we need to use async and await; in addition, we can use the Future 

API’s old methods like then(), catchError(), and whenComplete().

Chapter 8  Multithreaded Programming Using Future and Callable Classes



197

�More on the Future API
Let’s look at some more examples to understand how the Future API 

works. Consider the following code, where we use the Future delayed() 

method, and then using the then() method, we pass a lambda function to 

print the value.

//code 8.9

import 'dart:async';

void main(){

  Future<int>.delayed(

      Duration(seconds: 6),

      () { return 200; },

  ).then((value) { print(value); });

  print('Waiting for a value for 6 seconds...');

}

We have delayed the whole process for six seconds; then we return the 

value.

//output of code 8.9

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:35393 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:35393/ushFPI8yST4=/

Waiting for a value for 6 seconds...

200

Process finished with exit code 0

Chapter 8  Multithreaded Programming Using Future and Callable Classes



198

As you see, according to the output of the value we are about to print, 

we need to mention what type of Future object we are going to use. In the 

preceding code, this line is important:

Future<int>.delayed()//

We need to declare the type of Future object. Here it is an integer 

because we are returning an integer.

In the next code snippet, instead of returning a concrete value, we are 

going to throw an exception:

//code 8.10

import 'dart:async';

void main(){

  Future<int>.delayed(

      Duration(seconds: 6),

      () => throw 'We are throwing some error here.',

  ).then((value) {

    print(value);

  });

  print('Waiting for a value');

}

Quite naturally, we get an error in the output.

//output of code 8.10

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:43091 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:43091/8Zr4UnbBJMA=/

Waiting for a value_

Unhandled exception:

We are throwing some error here.

Chapter 8  Multithreaded Programming Using Future and Callable Classes



199

#0      �main.<anonymous closure> (file:///home/ss/IdeaProjects/

my_app/main.dart:6:13)

#1      �new Future.delayed.<anonymous closure> (dart:async/

future.dart:316:39)

#2      �Timer._createTimer.<anonymous closure> (dart:async-

patch/timer_patch.dart:21:15)

#3      �_Timer._runTimers (dart:isolate-patch/timer_impl.

dart:382:19)

#4      �_Timer._handleMessage (dart:isolate-patch/timer_impl.

dart:416:5)

#5      �_RawReceivePortImpl._handleMessage (dart:isolate-patch/

isolate_patch.dart:172:12)

Process finished with exit code 255

Finally, we would like to see how some old Future methods, such as 

catchError() and whenComplete(), work, as shown in the following code:

//code 8.11

import 'dart:async';

void main(){

  Future<int>.delayed(

      Duration(seconds: 6),

      () { return 100; },

  ).then((value) {

    print(value);

  }).catchError(

      (err) {

        print('Caught $err');

      },

Chapter 8  Multithreaded Programming Using Future and Callable Classes



200

    test: (err) => err.runtimeType == String,

  ).whenComplete(() { print("Process completed."); });

  print('The main UI thread is waiting');

}

As you can see, the main UI thread waits for six seconds and then 

produces the output.

//output of code 8.11

/home/ss/Downloads/flutter/bin/cache/dart-sdk/bin/dart 

--enable-asserts --enable-vm-service:36707 /home/ss/

IdeaProjects/my_app/main.dart

Observatory listening on http://127.0.0.1:36707/AIbh2kXqMxM=/

The main UI thread is waiting

100

Process completed.

Process finished with exit code 0

Basically, the Future delays a thread for a few seconds, as mentioned 

earlier; then it produces either completed data or an error!

Chapter 8  Multithreaded Programming Using Future and Callable Classes



201© Sanjib Sinha 2020 
S. Sinha, Quick Start Guide to Dart Programming,  
https://doi.org/10.1007/978-1-4842-5562-9_9

CHAPTER 9

Dart Packages and 
Libraries
Dart programming relies heavily on libraries, which contain critical sets 

of built-in functionality. Several common libraries are provided for you; in 

addition, you can do modular programming with the help of libraries. We 

have already seen many examples, such as predefined collection methods, 

many mathematical functions, etc.

Several common libraries serve many purposes for building Dart 

applications. So far, you have seen many built-in functions that we have 

used in our many user-defined functions. For example, the dart:core 

libraries provide assistance for numbers, string-specific operations, 

and collections. With the help of dart:math, we can do many types of 

mathematical operations quite easily.

We can also build our own libraries. In fact, as you progress, you will 

feel the necessity to create your own libraries. In addition, you can get 

additional libraries by importing them from packages.

Through packages, we can share software such as libraries and tools.

Basically, we can get help from both types of libraries (built-in and 

custom). Figure 9-1 shows you how we can use libraries and packages in 

Dart.



202

You should also know why we need libraries. To create a modular and 

shareable code base, the codebase needs to be well organized. In fact, this 

is an essential part of object-oriented programming. Libraries not only 

provide support for modular, object-oriented programming, but they also 

give you a kind of privacy in your own code.

Identifiers, starting with the underscore (_), are visible only in your 

libraries. A prepending underscore means this function is private to the 

library. That means you cannot use that function in other libraries. This 

is a typical Dart feature. Dart handles visibility with this prepending 

underscore.

Libraries also help you avoid name conflicts, which is an essential part 

of coding. Let’s look at an example to clarify these points.

Figure 9-1.  Usages of Dart libraries and packages

Chapter 9  Dart Packages and Libraries



203

�Importing Packages
First, let’s create a RelationalOperators.dart file inside the lib folder.

//code 9.1

//lib/ RelationalOperators.dart

class TrueOrFalse{

  int firstNum = 40;

  int secondNum = 40;

  int thirdNum = 74;

  int fourthNum = 56;

  void BetweenTrueOrFalse(){

    if (firstNum == secondNum || thirdNum == fourthNum){

      �print("If choice between 'true' or 'false', in this case 

the 'TRUE' gets the precedence. $firstNum is equal to 

$secondNum");

    } else print("Nothing happens.");

  }

  void BetweenTrueAndFalse(){

    if (firstNum == secondNum && thirdNum == fourthNum){

      print("It will go to else clause");

      �} else print("If choice between 'true' and 'false', in 

this case the 'FALSE' gets the precedence. $thirdNum is 

not equal to $fourthNum");

  }

}

Next, create a file called PowProject.dart inside the lib folder.

//code 9.2

//lib/PowProject.dart

class PowProject{

  void MultiplyByAGivenNumber(int fixedNumber, int givenNumber){

Chapter 9  Dart Packages and Libraries



204

    int result = fixedNumber * givenNumber;

    print(result);

  }

  void pow(int x, int y){

    int addition = x + y;

    print(addition);

  }

}

Now take a look at the main() function body, shown here:

//code 9.3

import 'dart:math' as math;

import 'package:IdeaProjects/PowProject.dart';

import 'package:IdeaProjects/RelationalOperators.dart' as 

relation;

main(List<String> arguments){

  �print("Printing 2 to the power 5 using Dart's built-in 

'dart:math' library.");

  var int = math.pow(2, 5);

  print(int);

  �print("Now we are going to use another 'pow()' function from 

our own library.");

  var anotherPowObject = PowProject();

  anotherPowObject.MultiplyByAGivenNumber(4, 3);

  anotherPowObject.pow(2, 12);

  �print("Now we are going to use another library to test the 

relational operators.");

  var trueOrFalse = relation.TrueOrFalse();

  trueOrFalse.BetweenTrueOrFalse();

  trueOrFalse.BetweenTrueAndFalse();

}

Chapter 9  Dart Packages and Libraries



205

In the lib (or libraries) folder, we have created two classes. One of 

them has a function called pow(). But the built-in dart:math library has a 

function with the same name: pow(). We cannot use both of these same-

name functions in the same code. It would give us errors. So, to avoid the 

name conflict, we have to create our own library and define it inside the 

class. Quite naturally, for the book’s sake, our created pow() function is 

doing something different than calculating the power of a number.

Look at the top of the main() function, shown here:

import 'dart:math' as math;

import 'package:IdeaProjects/PowProject.dart';

import 'package:IdeaProjects/RelationalOperators.dart' as 

Relation;

We have used the keyword import to specify how our libraries, besides 

the core libraries, can be used. Our project directory is IdeaProjects, and 

PowProject.dart is inside the lib directory. The path after the project 

directory comes from inside the lib directory. After import, we need to 

pass an argument, which is nothing but a uniform resource identifier (URI) 

specifying the libraries. For any built-in libraries, the URI has the special 

dart:... scheme. For other libraries, you can use the file system path or 

the package:... scheme.

When we directly use the libraries, we use a normal line like this:

import 'package:IdeaProjects/PowProject.dart';

In that case, we can directly create the class object that belongs to that 

particular library, as follows:

var anotherPowObject = PowProject();

However, there is another good method; we can call any library by 

using a name, like this:

import 'package:IdeaProjects/RelationalOperators.dart' as 

relation;

Chapter 9  Dart Packages and Libraries



206

The advantage to this is that now we can create any class object 

belonging to that library using the new name, as follows:

var trueOrFalse = relation.TrueOrFalse();

These prefixes are used to avoid name conflicts and to simplify long 

package names. You can write same-name classes in libraries, and you can 

use them by giving them a name.

�Using Built-in Dart Libraries
A few good built-in libraries come with Dart; you do not need to write 

them again. Here are some of them:

•	 dart:core: This gives us many core functionalities. It is 

automatically imported into every Dart program.

•	 dart:math: You have seen how we have used the core 

mathematical library in our program. We can do many 

types of mathematical operations using this library, 

such as generate random numbers.

•	 dart:convert: Converting between different data 

representations is made easy through this library; this 

conversion includes JSON and UTF-8.

�Writing a Server Using Dart
By using the default Dart libraries, we can easily build a local server, 

request an HTML page, and get the response. In the first half of this 

section, we will see how to include an HTML file in our program and get a 

response in the client browser. For the server-client relationship, which is 

the foundation of any kind of web application, our Dart program will play 

the role of the server, and the client will be the browser that we will use.

Chapter 9  Dart Packages and Libraries



207

�Showing Some Simple Text
Let’s write some simple Dart back-end server code that will output a string 

response.

//code 9.4

import 'dart:io';

import 'dart:async';

Future main() async {

  var myServer = await HttpServer.bind(

    '127.0.0.1',

    8080,

  );

  �print("The server is alive on the above mentioned port and 

it's listening "

      "on ${myServer.port}/");

  myServer.listen((HttpRequest myRequest){

    myRequest.response

      ..write("Bonjour mademoiselle, comment appelez vous?")

      ..close();

  });

}

The main() function starts with Future and async, and later we use 

await. We discussed these concepts in the previous chapter. Then, we use 

the HttpServer.bind() method to create an HttpServer object. In the 

bind() method, we pass two parameters: the host (127.0.0.1) and the port 

(8080). Here, we use a simple print statement to give some simple output 

to show we are listening to the previously mentioned port.

Chapter 9  Dart Packages and Libraries



208

Now, according to the server-client relationship structure, our new 

server object should listen for a new HttpRequest object (here myRequest). 

And, after receiving a request, the server object should respond. The 

response object calls a write() method that gives us some simple output 

like this:

"Bonjour mademoiselle, comment appelez vous?"

This is a French sentence that means, “Good day, Miss, what are you 

called?”

Now, after running this program, we should type 

http://127.0.0.1:8080 in any browser. It will give this output. We can 

run this program using two methods. You can just run it on Android Studio 

or IntelliJ Community, and in the console you will get the message that the 

server is listening. After that, we can open the browser to see the output. 

In another method, we can use our terminal. Open the project folder’s bin 

directory and type the following:

//code 9.5

dart main.dart

This will also run the program (Figure 9-2).

Chapter 9  Dart Packages and Libraries



209

Here is a caveat. You should not run two programs listening to the 

same port in parallel to each other. If the port is already in use, the 

connection will automatically be refused. You can use any port number 

from 1024 and higher.

If you run the same program on Android Studio, you will get the “server 

listening” message in the console (Figure 9-3).

Figure 9-2.  Dart back-end server-client program

Chapter 9  Dart Packages and Libraries



210

To stop the program in the terminal, you can press Control+C, and in 

any IDE console, you click the red button on the left side. You will see it in 

the top-right corner also.

Once the program is stopped, it gives us output like this:

//code 9.6

/home/ss/flutter/bin/cache/dart-sdk/bin/dart --enable-vm-

service:40505 /home/ss/IdeaProjects/bin/main.dart

Observatory listening on http://127.0.0.1:40505/

The server is alive on the above mentioned port and it's 

listening on 8080/

Process finished with exit code 137 (interrupted by signal 9: 

SIGKILL)

Up to now, we were able to give a simple response as output through 

our back-end server-client program. Furthermore, we can make our back-

end server display an HTML page.

Figure 9-3.  Running the same program through Android Studio

Chapter 9  Dart Packages and Libraries



211

�Showing an HTML Page
The process is not very complicated. All we need is an HTML file first. Let’s 

create a simple HTML5 file called index.html in our root directory.

//code 9.7

<!doctype html>

<html lang="en">

<head>

    <meta charset="utf-8">

    <title>A Dart WEB Example on Local Server</title>

    <meta name="description" content="The HTML5 Herald">

    <meta name="author" content="SitePoint">

</head>

<body>

<h1>A Dart WEB Example on Local Server</h1>

<a href="https://sanjibsinha.fun" about="It's my unofficial 

site" onclick="Click Me!">

    Here is my unofficial site!

</a>

</body>

</html>

Let’s see the file in Android Studio first (Figure 9-4).

Chapter 9  Dart Packages and Libraries



212

Now we can call this index.html file to get its contents in the browser. 

As you saw earlier, the Dart libraries have all the tools to build any kind of 

web application. Here we need to use our response object to return the 

contents of our HTML file, setting its Content-Type header to HTML:

//code 9.8

import 'dart:io';

import 'dart:async';

final File myFile = File("index.html");

Future main() async {

  var myServer = await HttpServer.bind(

    '127.0.0.1',

    8080,

  );

Figure 9-4.  The index.html file in the Android Studio root directory

Chapter 9  Dart Packages and Libraries



213

  �print("The server is alive on the above mentioned port and 

it's listening "

      "on ${myServer.port}/");

  // we are going to use the await from dart async library

  await for (HttpRequest myRequest in myServer) {

    if(await myFile.exists()){

      print("We're going to serve ${myFile.path}");

      myRequest.response.headers.contentType = ContentType.html;

      await myFile.openRead().pipe(myRequest.response);

    }

  }

}

After reading the file, we have used the pipe() method to put the contents 

of the file into the response, which will give us the response (Figure 9-5).

Figure 9-5.  The response of an HTML file using the Dart back-end 
server technique

Chapter 9  Dart Packages and Libraries



214

Now, we can even check the source to see that the HTML file was used 

for this purpose (Figure 9-6).

Figure 9-6.  The view source of the HTML file displayed in the browser

You have seen how we can use Dart libraries for many types of 

complicated application development. We can also easily build our own 

packages using these libraries to reuse this code in other applications.

�What’s Next
There’s no doubt that Dart will be even more popular in the future. Not 

only is it popular in the iOS and Android worlds, but it is being used in web 

applications. This book served as a short introduction to Dart. Good luck 

in the future.

Chapter 9  Dart Packages and Libraries



215© Sanjib Sinha 2020 
S. Sinha, Quick Start Guide to Dart Programming,  
https://doi.org/10.1007/978-1-4842-5562-9

Index

A, B
Abstract classes

definition, 117
key points, 118
object-oriented programming 

languages, 119–121
source code, 118

Anonymous function
closure, 146–149
definition, 141
higher-order functions, 145
lambdas

key features of, 145
longhand version, 142, 143
parameters, 143
shorthand code, 144
type of, 142
variable, 142

types of, 149–152
Asynchronous programming, 182

C
Callable classes, 179

call() method, 179, 180
Person() method, 181
source code, 180, 181

Closure, 146–149

Collections
data structures (see Data 

structures and collections)
lists (ordered group), 155

default methods, 159, 160
map() function, 161, 162
source code, 156, 157
types of, 155

maps, 166–171
queue, 176–177
set (unordered collections), 

162–166
unique items, 162
validations (lists and maps), 

171–175
Constructors, 81–84

default and a named 
constructor, 100–102

D
Dart language, 1

arrays, 27, 28
assignment operators, 39, 40
built-in types, 17–19
code editors, 2
features, 2, 4
get, set, go, 29–33

https://doi.org/10.1007/978-1-4842-5562-9


216

IDE, 4
importing packages, 203–206
List objects, 27
lookup() method, 29
number and double types, 19–21
operators, 33–35
overview, 2
relational/equality  

operators, 35–39
string interpolation, 18
strings, 22–27
boolean literals (true and  

false), 26
type test operators, 38, 39
value of variables, 18, 19
variables store references, 14–16

Data structures and collections
concepts of, 153
type of, 153, 154

E
Entity relationships

characteristics, 116
composition relationship, 117
derive features, 115
differences, 114
instantiation relationship, 117
mammal entities, 116
utilization relationship, 117

Exception handling
built-in classes, 133, 134
catch block, 135

errors, 132, 134
finally block, 136
inputValue() function, 139
single codebase, 137–139
stack trace, 136
syntax of, 135
types of, 137

F, G
Flow control and looping, 43

AND condition, 46
conditional expressions, 49
continue keyword, 62, 63
if-else, 43–49
for labels, 60–63
for loop, 50–53
looping code, 56–59
OR condition, 47
switch and case keywords, 63–65
while and do-while, 53–56

Function DividingByFour(), 146
Functions

fat arrow, 71
lexical scope, 87–89
main() function, 68–70
parameter, 91–93
points, 67
recursive function, 72, 73

Future classes
API, 197–200
async and await, 184–186, 194
asynchronous programming, 183
Future delayed() method, 197

Dart language (cont.)

INDEX



217

long exception, 188–190
method, 192
object, 186–188
print statement, 190
then() method, 197
UI thread, 192, 196

H
Higher-order functions, 145

I, J
Inheritance

default and a named 
constructor, 100–102

main() function, 103
multilevel inheritance (see 

Multilevel inheritance)
single inheritance

Animal class, 98, 99
subclasses and  

superclasses, 99
subclass, 97
superclass, 97

insiderFunction(), 88
Integrated development 

environment (IDE), 4
Android Studio, 9–11
commands, 6
IntelliJ IDEA community edition

button installation, 7–9
console, 9
Dart plugins, 8

source code, 11–13
version of, 5

Integrated development 
environments (IDEs), 3

Interfaces
abstract class, 126, 127
advantage of, 130
Customers() method, 128–130
definition, 121
output results, 125
source code, 121, 122
standard structure, 123, 124

isTurnedOn() method, 73, 75

K
Key-value pairs, 166–171

L
Lambdas, 142
LetUsDivide() function, 146
Libraries and  

packages, 201
built-in, 206
import packages, 203–206
server, 206

Android Studio, 210
back-end server-client 

program, 209
back-end server  

technique, 213
HTML page, 211–214
index.html file, 212

Index



218

simple text, 207–210
view source data, 214

use of, 201, 202

M, N
Mixins, 108–111
Multilevel inheritance, 97, 104–108

O, P, Q, R
Object-Oriented Programming 

(OOP)
constructors, 81–84, 93–95
digging deep, 77
getter and setter, 89

hourOfSleep and 
numberOfFish, 79

implement classes, 84–87
lexical scope, 87–89
loosely coupled, 85
parameters, 90–92
properties and  

methods, 77
source code, 78

Objects, 73–76

S, T, U, V, W, X, Y, Z
Single inheritance, 97
Static variables and  

methods, 130–132
String interpolation, 18, 23

Libraries and packages (cont.)

INDEX


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Dart
	The Core Features of Dart
	Using an IDE for Dart
	Installing IntelliJ IDEA Community Edition
	Installing Android Studio
	Writing Some Dart Code

	Variables, Operators, Conditionals, and Control Flow
	Variables Store References
	Built-in Types in Dart
	Suppose You Don’t Like Variables
	Playing with Number and Double
	Understanding Strings
	To Be True or to Be False
	Introduction to Collections: Arrays Are Lists in Dart
	Get, Set, Go
	Operators Are Useful
	Relational Operators
	Type Test Operators
	Assignment Operators

	Summary

	Chapter 2: Flow Control and Looping
	if-else
	Conditional Expressions
	Looking at Looping
	for Loop
	while and do-while
	Patterns in Looping
	for Loop Labels
	Continue with the for Loop
	Decision-Making with switch and case


	Summary

	Chapter 3: Functions and Objects
	Functions
	Objects
	Digging Deep into Object-Oriented Programming
	Examining Constructors
	How to Implement Classes
	Lexical Scope in Functions
	A Few Words About Getter and Setter
	Different Types of Parameters
	More About Constructors


	Chapter 4: Inheritance and Mixins in Dart
	A First Look at Inheritance
	Multilevel Inheritance
	Mixins: Adding More Features to a Class

	Chapter 5: Entity Relationships: Abstract Classes, Interfaces, and Exception Handling
	Identifying Relationships Between Entities
	Using Abstract Classes
	Advantages of Interfaces
	Static Variables and Methods
	Exception Handling

	Chapter 6: Anonymous Functions
	A First Look at Lambdas
	Exploring Higher-Order Functions
	A Closure Is a Special Function
	Bringing It All Together

	Chapter 7: Data Structures and Collections
	Lists: An Ordered Collection
	Set: An Unordered Collections of Unique Items
	Maps: The Key-Value Pair
	Using Collections Together
	Queue Is Open-Ended

	Chapter 8: Multithreaded Programming Using Future and Callable Classes
	Callable Classes
	Future, Async, Await, and Asynchronous Programming
	More on the Future API

	Chapter 9: Dart Packages and Libraries
	Importing Packages
	Using Built-in Dart Libraries
	Writing a Server Using Dart
	Showing Some Simple Text
	Showing an HTML Page

	What’s Next

	Index



