

Write	Web	Apps	with	Dart
Develop	and	Design

Jack	Murphy

WWW.PEACHPIT.COM

http://WWW.PEACHPIT.COM

Write	Web	Apps	with	Dart:	Develop	and	Design
Jack	Murphy

Peachpit	Press
www.peachpit.com

To	report	errors,	please	send	a	note	to	errata@peachpit.com

Peachpit	Press	is	a	division	of	Pearson	Education

Copyright	©	2016	by	John	Murphy

Senior	Editor:	Karyn	Johnson
Development	Editor:	Robyn	G.	Thomas
Production	Editor:	David	Van	Ness
Copyeditor	and	Proofreader:	Scout	Festa
Compositor:	Danielle	Foster
Indexer:	Valerie	Haynes	Perry
Interior	Design:	Mimi	Heft
Cover	Design:	Aren	Straiger

Notice	of	Rights

All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or	transmitted	in	any	form	by
any	means,	electronic,	mechanical,	photocopying,	recording,	or	otherwise,	without	the
prior	written	permission	of	the	publisher.	For	information	on	getting	permission	for
reprints	and	excerpts,	contact	permissions@peachpit.com.

Notice	of	Liability

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis	without	warranty.	While
every	precaution	has	been	taken	in	the	preparation	of	the	book,	neither	the	author	nor
Peachpit	shall	have	any	liability	to	any	person	or	entity	with	respect	to	any	loss	or	damage
caused	or	alleged	to	be	caused	directly	or	indirectly	by	the	instructions	contained	in	this
book	or	by	the	computer	software	and	hardware	products	described	in	it.

Trademarks

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products
are	claimed	as	trademarks.	Where	those	designations	appear	in	this	book,	and	Peachpit
was	aware	of	a	trademark	claim,	the	designations	appear	as	requested	by	the	owner	of	the
trademark.	All	other	product	names	and	services	identified	throughout	this	book	are	used
in	editorial	fashion	only	and	for	the	benefit	of	such	companies	with	no	intention	of
infringement	of	the	trademark.	No	such	use,	or	the	use	of	any	trade	name,	is	intended	to
convey	endorsement	or	other	affiliation	with	this	book.

ISBN-13:	978-0-134-21499-3
ISBN-10:								0-134-21499-4

9	8	7	6	5	4	3	2	1
Printed	and	bound	in	the	United	States	of	America

http://www.peachpit.com
mailto:errata@peachpit.com
mailto:permissions@peachpit.com

To	my	charismatic	and	beautiful	wife,	Katelyn

Acknowledgments

Behind	every	author	is	an	amazing	team	of	individuals	who	provide	everything	from
technical	feedback	to	emotional	encouragement.

Writing	about	a	young	language	and	bleeding-edge	frameworks	definitely	didn’t	make
this	book	easy	for	anyone.	I	want	to	take	a	moment	to	thank	all	the	folks	from	Peachpit
Press:	Robyn	Thomas	for	providing	timely	edits	and	her	always	kind	words,	Scout	Festa
for	skillfully	editing	my	text,	Cliff	Colby	for	putting	this	fantastic	team	together	in	the	first
place,	and	Karyn	Johnson	for	seeing	the	project	over	the	finish	line.	And	a	special	thanks
goes	out	to	Jonathan	Hart	for	being	a	consistent	questioning	voice	when	providing
technical	edits	and	feedback.

On	the	language	side,	I	want	to	thank	the	folks	over	at	Google	for	developing	Dart	in
the	first	place.	It’s	such	a	wonderful	language	to	work	with,	and	the	Dart	community	has
been	such	a	welcoming	ecosystem	to	poke	around	in	and	learn	from.	I	hope	this	book
helps	attract	even	more	Dartisans	who	can	contribute	to	the	vibrant	ecosystem.

Finally,	I	want	to	thank	my	new	wife	for	putting	up	with	me	writing	a	book	and,	at	the
end,	for	dealing	with	me	attempting	to	finish	this	book	the	week	of	our	wedding.

Author	Bio

Jack	Murphy	is	a	seasoned	start-up	technology	product-	and	software-engineering
specialist	with	a	full-stack	development	and	UI/UX	background.	He	focuses	on	front-end
client	architecture	for	complex	interactive	applications.	Jack	has	comprehensive	industry
experience	as	a	UI-IXD/product	designer	along	with	a	deep	full-stack	software
engineering	expertise.

Jack	is	currently	the	vice	president	of	engineering	at	Augmate,	where	his	team	is
attempting	to	facilitate	the	adoption	of	wearable	technology	in	enterprise	environments.
His	role	allows	him	to	work	with	numerous	types	of	emerging	hardware	devices,	including
smart	eyewear,	smart	watches,	and	beacon	technologies.

Previously,	his	work	focused	on	browser	game	development,	including	Idle	Worship,
Diner	Dash,	and	SmartyCard.	He	has	passion	for	design	and	technology,	and	he	uses	both
to	create	rich,	engaging,	and	dynamic	user	experiences	for	tech	products.

Contents

Introduction

Welcome	to	Dart

Part	I	The	Dart	Language	and	Ecosystem
CHAPTER	1	DART	AND	THE	HISTORY	OF	BROWSER	Languages

The	Web	and	Open	Standards

JavaScript	Deficits

Modern	Alternatives

ECMAScript	4

Dash	Memo

Google’s	Market	Strategy

Summary
CHAPTER	2	UP	AND	RUNNING	WITH	DART

Installing	the	Dart	SDK

Dart	Environmental	Variables

IntelliJ	IDEA	Editor

Optional	Homebrew

Summary
CHAPTER	3	INTRODUCTION	TO	THE	DART	LANGUAGE

Creating	Your	First	Dart	Project

Using	Functions	in	Dart

Dart	Objects	and	Maps

Statements	and	Control	Structures

Errors	on	assert()

Collections	and	Iterators

Numbers

Summary
CHAPTER	4	OBJECT	STRUCTURES	IN	DART

Variables

Lexical	Scope

Classes

Class	Constructors

Constants

Class	Inheritance

Polymorphism

Abstract	Methods

Super	Constructors

Interfaces

Mixins

Summary
CHAPTER	5	PACKAGES	AND	LIBRARIES

Your	First	Library

Visibility	and	Privacy

part	and	part	of

Packages	and	pubspec.yaml

Named	Package	Imports

Summary
CHAPTER	6	EVENT	LOOPS	AND	ASYNCHRONOUS	PROGRAMMING

Concurrent	Computing	Paradigm

Futures,	Completers,	and	Streams

Streams

Event	Loop

Async

Summary

Part	II	Full-Stack	App	Development	with	Dart
CHAPTER	7	PLANNING	THE	APPLICATION

Fictitious	Company	Background

Feature	Requests

Data	Entities

Architecture	Choices

Summary
CHAPTER	8	INTRODUCTION	TO	MONGODB

Relational	vs.	NoSQL	Databases

Why	Not	Database	X?

What	Is	MongoDB?

Installing	MongoDB

The	Mongo	Client

Summary
CHAPTER	9	MONGO	DART

Setting	Up	Your	Project

Downloading	and	Installing	Mongo	Dart	Packages

Exposing	Database	Credentials

Seeding	Data	in	Dart

Reading	a	File	from	the	File	System

Converting	to	JSON

Connecting	to	Mongo	from	Dart

Verifying	the	Data

Summary
CHAPTER	10	DATA	MODELING	USING	DARTSON

Why	Dartson

Mongo	Pooling

Dartson	Serialization

Creating	a	MongoModel	with	CRUD

Summary
CHAPTER	11	WEBSERVER	AND	MIDDLEWARE

Shelf

Setting	Up	a	Shelf	Example

Adding	Middleware

Adding	Routing

Serving	Static	Assets

Using	Multiple	Handlers

Summary
CHAPTER	12	API	ROUTING,	REQUESTS,	AND	RESPONSES

Modeling	Your	Ticketing	Domain

Implementing	Controllers

Handling	Routes

Summary
CHAPTER	13	UNIT	TESTING	YOUR	CODE

What	Is	Unit	Testing?

Jasmine	via	Guinness

Setting	Up	Guinness

Composition	of	a	Guinness	Test

Testing	Mongo

Summary
CHAPTER	14	A	WEB	PROJECT	WITH	DART

Planning	for	Front-End	Development

Interacting	with	HTML	and	the	DOM

Querying	the	DOM

Building	the	Landing	Page

Summary
CHAPTER	15	INTRODUCTION	TO	ANGULAR	2	DART

The	History	of	AngularJS	and	Angular	Dart

TypeScript

Developer	Preview	Warning

Angular	2	Overview

Summary

Congratulations!

Index

ONLINE	CHAPTERS
CHAPTER	16	ANGULAR	COMPONENT	IMPLEMENTATION	AND	BUSINESS	LOGIC	(AVAILABLE
ONLINE)

CHAPTER	17	DEPLOYING	TO	PRODUCTION	SERVERS	(AVAILABLE	ONLINE)

See	page	xiii	in	the	Introduction	for	how	to	access	the	online	chapters.

Introduction

Welcome	to	Building	Web	Apps	with	Dart.	In	the	following	chapters,	you	will	learn	all
about	the	Dart	language	and	its	extremely	powerful	ecosystem	of	community	packages.

The	goal	for	this	book	is	to	present	a	series	of	solutions	that	a	modern	full-stack
developer	will	require	to	become	proficient	in,	and	launch	a	production	application	with,
Dart.	Where	possible,	this	book	will	use	code	from	the	Google-backed	Dart	packages	to
help	ensure	the	book	remains	relevant.

For	back-end	development,	I	will	mirror	some	of	the	expected	functionality	found	in
many	server-side	MVC	frameworks.	For	the	front	end,	I	will	go	a	step	further	and	not	only
introduce	Dart’s	built-in	front-end	tools	but	also	introduce	you	to	Angular	2	Dart	for	thick-
client	experiences.

Who	Is	This	Book	For?
This	book	assumes	you	have	a	novice-level	understanding	of	programming	and	web
application	architecture.

You	definitely	don’t	need	a	computer	science	degree,	but	I’m	assuming	that	this	isn’t
your	first	web	project.	If	your	experience	is	strictly	from	a	back-end	or	non-browser-
centric	platform,	I	will	introduce	many	of	the	primary	concepts	needed	to
programmatically	interact	with	the	browser.

In	addition,	this	book	will	introduce	you	to	many	of	the	language	features,	build	tools,
and	best	practices	that	a	developer	needs	to	build	a	modern	web	application.

One	of	the	beautiful	things	about	Dart	is	its	similarity	to	many	other	C-style	languages.
If	you	have	spent	any	time	in	one	of	the	numerous	other	C-style	languages	(Java,
JavaScript,	Python,	and	so	on),	the	concepts	I	discuss	should	be	very	familiar.	Regardless,
I	explain	the	syntax	and	rules	in	depth.

This	book	is	not	a	replacement	for	the	low-level	Dart	API	documentation.

How	to	Use	This	Book
Each	section	will	outline	its	specific	intents	and	provide	step-by-step	guides	to	execute	the
associated	example	code.	The	example	code	is	designed	to	either	illustrate	a	concept	or
push	forward	the	example	project.

The	core	of	this	book	is	broken	into	two	parts:

	Part	I,	“The	Dart	Language	and	Ecosystem,”	is	a	language	overview	and	explains
the	history	of	Dart,	the	core	concepts	of	the	Dart	language,	how	to	use	Dart	inside
the	IntelliJ	Community	Edition	IDE,	and	the	functionality	of	Dart’s	task	runner,	Pub.

Along	the	way,	you’ll	learn	about	the	server-side	Dart	VM,	the	Dart2JS	transpiler,
object-oriented	programming	in	Dart,	and	unique	language	features	to	help	facilitate
asynchronous	programming	with	Dart.

	Part	II,	“Full-Stack	App	Development	with	Dart,”	takes	you	through	a	hands-on

approach	to	building	a	full-stack	application	using	Dart	for	both	client-	and	server-
side	processing.	I	will	cover	application	planning,	the	state	of	database	support,
Mongo	Dart,	unit	testing,	front-end	development	using	only	Dart,	and	finally	front-
end	developing	using	Angular	Dart	2.0.

Formatting

You	will	see	multiple	font	treatments	used	to	disambiguate	different	types	of	content.	At	a
high	level,	text	that	is	printed	in	a	monospaced	font	refers	to	code.	The	following	is	a
high-level	breakdown	of	its	uses:

General	code

Blocks	of	example	code	appear	as	follows:
function	start()	{
		print(“Hello”);
}

Highlighted	code

The	following	style	of	code	is	used	to	draw	attention	to	a	concept	or	to	highlight	where
code	has	changed:

function	start()	{
		print(“Hello	World”);

}

Code	comments

Gray	code	is	used	to	identify	code	comments:
Click	here	to	view	code	image

function	start()	{
		print(“Hello	World”);		//This	is	a	non-executable	comment
}

Code	output

If	a	block	of	code	has	output	in	the	Terminal	window,	it	will	sometimes	be	shown	as	code
comments.	This	will	allow	you	to	copy	a	block	of	code	and	ensure	that	the	output	matches
what’s	written:

function	start()	{
		print(“Output	Item	A”);
		print(“Item	B”);
		print(“Item	C”);
}

//Output	Item	A
//Item	B
//Item	C

Command	line

Commands	that	you	should	run	from	the	Terminal	are	prefixed	with	a	dollar	sign:
$	command-to-run

Mongo	command	line

Commands	that	you	should	run	from	the	Mongo	client	are	preceded	by	an	angle	bracket:
>	mongp-command-to-run

Output

Output	from	any	command,	either	command	line	or	Mongo	client,	are	highlighted	as	gray,
as	in	the	following	example:
Click	here	to	view	code	image

	>	mongp-command-to-run
This	is	output	from	the	mongo	database
It	is	a	monospace	font	and	gray

$	terminal-command-to-run
This	is	output	from	the	terminal
It	is	a	monospace	font	and	gray

Wrapped	lines	of	code

Lines	of	code	that	are	longer	than	the	printed	width	of	the	page	allows	will	wrap	to	the
next	line.	The	wrapped	line	will	be	preceded	by	an	arrow	to	indicate	the	continued	code:
Click	here	to	view	code	image

main()	{
		print(‘Welcome	To	The	City	Airport’);
		gotoField();	//Function	member	of	library	field	–	exposed	on	import
field.dart

		//Class	Hangar	is	member	of	library	field
		Hangar	aHangar	=	new	Hangar();

		//Class	Toolbox	is	member	of	library	field
		Toolbox	portbox	=	new	Toolbox();

}

Online	Content
One	of	the	challenges	of	writing	about	emerging	technology	is	its	propensity	to	change
quickly.	In	April	of	2015,	the	Dart	team	announced	that	the	new	official	front-end
framework	for	Dart	is	Angular	2.0.	Although	this	is	great	news	for	the	Dart	ecosystem,	at
the	time	of	this	writing	the	Angular	2	framework	is	still	in	its	alpha	phase	of	development.

With	that	news,	rather	than	publishing	a	book	covering	stale	technology,	the	decision
was	made	to	provide	a	great	opportunity	for	you	to	dive	head	first	into	the	new	framework
to	ensure	that	you	are	learning	the	material	that	will	serve	you	long	term	as	an	active
Dartisan.

So	the	final	two	chapters	will	be	provided	as	downloadable	PDFs.	This	means	that
every	reader	of	this	book	can	log	on	to	peachpit.com	and	acquire	an	updated	version	of	the
final	two	chapters,	covering	Angular	2.0.	The	updates	to	the	chapters	will	be	available	at
the	following	intervals:

	When	the	book	is	first	published,	covering	the	alpha-level	release

	When	the	beta-level	release	occurs

http://peachpit.com

	When	the	final,	v2.0.0	release	occurs

The	rest	of	the	application	stack	has	already	been	released	and	is	in	a	mature	enough
state	to	put	to	print.	I’ve	used	Dart’s	Pub	versioning	system	to	ensure	that	we	have	long-
term	support	for	the	rest	of	the	code	in	the	book.

The	following	chapters	are	available	from	peachpit.com:

	Chapter	16,	“Angular	Component	Implementation	and	Business	Logic”

	Chapter	17,	“Deploying	to	Production	Servers”

To	access	the	Write	Web	Apps	with	Dart	online	chapters,	download	the	files	to	your
computer	following	these	steps:

1.	Register	your	book	at	www.peachpit.com/register.	If	you	don’t	already	have	a
Peachpit	account,	you	will	be	prompted	to	create	one.	Once	you	have	an	account,
you	will	be	prompted	to	register	using	the	book’s	ISBN	number.

2.	Once	you	are	registered	at	the	Peachpit	website,	click	the	Account	link,	select	the
Registered	Products	tab,	and	click	the	“Access	Bonus	Content”	link.

3.	A	new	page	opens	with	the	download	files	listed.	Copy	the	files	to	any	location	you
prefer	on	your	system.

Code	Examples
As	you	work	through	the	exercises	in	this	book,	you’ll	encounter	all	the	code	that	you
need	to	correctly	run	the	examples	and	compile	the	projects.	However,	sometime	it’s
helpful	to	see	the	completed	output.	I’ve	uploaded	all	the	code	examples	to	an	active
GitHub	repository.	You	can	find	the	code	at	https://github.com/rightisleft/web_apps_dart.

http://peachpit.com
http://www.peachpit.com/register
https://github.com/rightisleft/web_apps_dart

Welcome	to	Dart

Welcome	to	Dart!	Dart	is	a	powerful,	open-source,	expressive	language	for	building
modern	full-stack	applications.	After	reading	through	this	book,	you	will	be	able	to
architect	full-stack	applications	for	both	front-end	and	back-end	development	using	Dart.
You’ll	learn	how	to	manage	your	project	using	the	open-source	IntelliJ	Community
Edition	IDE,	and	you’ll	manage	your	application	packages	and	servers	using	the	built-in
Pub	task	runner.	Finally,	you	will	spend	the	last	part	of	the	book	building	a	demo	Angular
2	Dart	application	and	hosting	it	in	the	cloud.

The	Technologies
The	following	technologies	are	all	part	of	your	journey	into	the	Dart	language.

Dart

Dart	is	a	powerful	new	language	out	of	Google	that	enables	you	to	use	a	single	language
to	target	the	many	facets	of	a	modern	web	application	architecture.	Dart	ships	with	a
comprehensive	SDK	that,	when	paired	with	the	Pub	task	runner	and	Pub	package
manager,	will	empower	you	and	your	team	to	quickly	develop	enterprise-level
applications	for	both	the	web	and	mobile	devices.

IDEA

JetBrains	IDEA	Community	Edition	is	an	open-source	IDE.	It	has	a	powerful	Dart	plugin
that	provides	everything	from	syntax	highlighting	and	test	runners	to	debuggers	and	code
analysis.

Angular

Angular	is	a	development	framework	for	building	mobile	and	desktop	applications.	This
book	focuses	on	Angular	Dart	2.0.	This	super-heroic	web	framework	will	give	you	a	solid
foundation	for	front-end	development	using	Dart.

Pub

Pub	is	versatile	task	runner	that	ships	with	the	Dart	SDK.	Pub	offers	developers	a	standard
way	to	execute	a	wide	range	of	common	tasks,	ranging	from	starting	local	web	servers	and
acquiring	third-party	packages	to	managing	version	history	and	running	a	plethora	of
custom	preprocessors	and	transformers.

MongoDB

The	Dart	community	has	access	to	a	fantastic	project	named	mongo_dart,	which	enables
the	Dart	runtime	to	communicate	directly	with	MongoDB.	MongoDB	is	a	document-store
style	of	a	NoSQL	database	that	supports	a	Dart-centric	approach	to	structuring	project
data.

Part	I:	The	Dart	Language	and	Ecosystem

Chapter	1.	Dart	and	the	History	of	Browser	Languages

Since	the	inception	of	the	web	browser,	browser	manufacturers	have	been	struggling	to
enable	all	types	of	authors—from	the	most	brilliant	computer	science	minds	in	the	world
to	the	most	timid	of	technophobes—to	publish	content	on	the	web.	This	balancing	act
resulted	in	the	most	diverse,	vibrant	communication	and	commerce	platform	in	human
history.

In	1995,	Netscape	Communication	Corporation	released	version	2.0	of	its	first	web
browser,	known	as	Netscape	Navigator.	With	this	release,	it	introduced	JavaScript	to	the
world.

JavaScript	was	Netscape’s	attempt	to	offer	an	interpreted	programming	language	with
an	extremely	low	barrier	to	entry.	In	parallel,	Netscape	Navigator	also	shipped	with	the
capability	to	execute	Java	applets,	enabling	authors	with	a	stronger	technical	background
to	deploy	more	sophisticated	applications	directly	in	the	browser.

This	balancing	act	between	power	and	accessibility	continued	as	the	Internet	matured
into	the	global	marketplace	that	we	know	today.	These	early	choices	would	have	long-
lasting	effects	on	how	software	was	developed	for	the	web.

The	Web	and	Open	Standards
Over	the	two	decades	after	the	release	of	Netscape,	one	of	the	most	powerful	drivers	of
technological	change	to	the	web	was	the	relentless	commitment	to	open	standards.	In
1997,	Netscape	submitted	to	ECMA	International	a	version	of	JavaScript	that	became
ECMA-262	specification	v1.	The	political	ramifications	of	adhering	to	open	standards
enabled	competing	browser	vendors	to	develop	their	own	compatible	virtual	machines
(VMs).

The	ECMA-262	standard	became	the	language	of	choice	for	the	web.	The	upside	to
having	a	single	language	was	that	web	authors	had	a	consistent	platform	on	which	to
develop	their	applications,	and	browser	vendors	had	a	single	standard	on	which	to
optimize	their	efforts	from	both	software	engineering	and	business	strategy	perspectives.

The	downside	to	this	unified	approach	has	been	one-dimensional	political	behavior
among	major	browser	vendors,	and	it	has	resulted	in	an	ever-shrinking	number	of
language	choices	in	browsers.	At	the	same	time,	the	number	of	virtual	machines	that
adhered	to	the	ECMA-262	standard	skyrocketed,	and	competing	technologies,	such	as
Java,	Flash,	and	ActiveX,	despite	sometimes	having	significant	performance	upsides,	were
deemed	incompatible	or	insecure	or	branded	as	obsolete.	The	deprecation	of	these
alternatives	was	often	based	not	solely	on	technical	merit	but	on	battles	over	market
position.

JavaScript	Deficits
The	dichotomy	between	the	need	for	power	and	the	need	for	accessibility	in	a	web
programming	language	is	nuanced,	and	the	importance	of	either	is	often	calculated	based
on	the	needs	and	experience	of	the	author.	With	the	increased	demands	placed	on	modern
web	applications	and	the	removal	of	competing	language	options,	many	are	taking	a
critical	eye	to	the	inherent	flaws	in	JavaScript.

Even	the	most	ardent	JavaScript	enthusiast	advocates	understanding	its	most	common
pitfalls.	At	a	high	level,	some	of	these	critiques	include	weak	typing,	no	true	hash	map,
limited	numerical	types,	prototypical	inheritance,	falsy	values,	unexpected	this
behavior,	odd	equality	operators,	and	misleading	applications	of	new	factory	methods.

Problems	that	are	often	manageable	in	small	amounts	have	a	compounding	effect	at
scale;	JavaScript	is	not	immune	to	this.	Things	that	might	be	trivial	to	solve	on	a	small
web	project	can	grind	an	enterprise	development	process	to	a	crawl.

Modern	Alternatives
With	only	one	language	to	use	on	the	web	platform,	the	development	community	has
created	a	plethora	of	JavaScript	transpilers	that	aim	to	address	many	of	the	shortcomings
of	JavaScript.	Each	of	these	projects	often	starts	with	the	goal	of	addressing	what	the
author	sees	as	the	most	egregious	offenses	in	the	JavaScript	language:

	CoffeeScript	takes	aim	at	JavaScript’s	C-style	syntax.

	TypeScript	is	Microsoft’s	attempt	to	add	optional	static	typing.

	Emscripten	allows	developers	to	port	code	from	C,	C++,	or	any	project	with	LLVM
byte	code	onto	the	web.

	asm.js	is	a	subset	of	the	JavaScript	language	that	is	highly	optimizable	and	geared
for	performance.

The	most	notable	transpiler	at	the	time	of	this	writing	is	Microsoft’s	TypeScript.
TypeScript	is	a	strict	superset	of	JavaScript,	with	its	biggest	emphasis	being	optional	static
typing.	All	these	libraries	have	achieved	moderate	success	because,	while	offering	very
different	high-level	language	options,	the	final	output	is	capable	of	running	across	all
major	browsers	when	transpiled	to	JavaScript.

ECMAScript	4
One	of	the	more	successful	competitors	to	JavaScript	has	always	been	the	Flash	VM	and
its	ActionScript	language.	The	platform	was	a	popular	target	for	rich	Internet	application
developers	because	of	the	feature-rich	language,	excellent	asset	pipeline	tooling,	and
consistent	interface	to	underlying	video	and	audio	hardware	layers.

ActionScript	3	was	Adobe’s	attempt	to	tool	its	family	of	web	products	with	a	next-
generation	language	that	addressed	many	of	the	issues	of	the	ECMA-262	standard.	Adobe
used	ActionScript	3	as	the	foundation	for	its	draft	proposal	of	the	ECMA-262	v4	standard,
along	with	its	open	source	Tamarin	virtual	machine.	In	effect,	the	ECMA-262	v4	draft	was
an	effort	to	correct	the	many	deficiencies	JavaScript	had	suffered	from	and	an	opportunity

for	the	entire	industry	to	put	an	improved	technology	into	the	hands	of	the	public.

At	the	time	of	the	ECMA	TC39	committee	meeting	in	Oslo	in	2008,	Microsoft’s
Internet	Explorer	still	maintained	roughly	80	percent	market	share	among	web	browsers.
The	ECMA	TC39	group	was	composed	of	members	representing	Google,	Mozilla,
Microsoft,	Adobe,	and	other	vendors.	Microsoft	aggressively	argued	against	v4	of	the
standard,	and	instead	advocated	for	the	ECMA-262	v3.1	standard,	which	was	an
incremental	enhancement	and	more	in	line	with	their	current	product	offerings.	After	years
of	the	group	being	split,	and	a	process	“mired	in	a	morass	of	bickering,	infighting,	and
sometimes,	out	and	out	name	calling”	(https://blogs.adobe.com/open/2008/08),	the	group
agreed	to	move	forward	with	the	more	conservative	v3.1.

This	essentially	left	Adobe,	and	the	software	industry	at	large,	holding	a	technology	that
was	politically	dead	in	the	water	despite	having	sound	technological	upsides.	ECMAScript
v4	advocates	had	no	way	to	target	browsers	that	they	did	not	have	direct	control	over,	and
were	faced	with	a	political	and	market	environment	that	was	not	going	to	back	their
efforts.	This	was	an	important	lesson	for	browser	vendors	looking	to	introduce	meaningful
change	into	the	browser	landscape	in	the	future.

Dash	Memo
In	2010,	roughly	two	years	after	the	defeat	of	ECMAScript	4,	an	internal	Google	memo,
commonly	referred	to	as	the	“Dash	memo,”	was	leaked	to	the	web.	In	this	memo,	Google
outlined	a	“2	pronged”	(http://pastebin.com/NUMTTrKj)	approach	to	language	tooling	in
the	browser.

The	first	approach	Google	outlined	was	considered	a	“low	risk/low	reward”
(http://pastebin.com/NUMTTrKj)	approach	that	involved	continued	support	for	the
evolving	ECMAScript	v6	standard.	The	downside	of	this	approach	was	the	continued
sluggish	pace	of	uptake	by	the	remainder	of	the	industry.	In	addition,	even	with	the
eventual	adoption	of	newer	language	features,	this	approach	would	continue	to	inherit	the
core	language	issues	that	are	at	the	heart	of	ECMAScript.

The	second	approach	Google	outlined	was	referred	to	as	a	“high	risk/high	reward”
(http://pastebin.com/NUMTTrKj)	strategy.	This	was	a	radical	departure	from	the
ECMAScript	standard	and	a	rethinking	of	how	a	web	language	should	be	designed.	It	was
to	be	a	new	a	language	that	maintained	the	low	barrier	to	entry	that	JavaScript	enjoyed,
with	the	power,	maintainability,	and	tooling	of	a	modern	high-level	programming
language.	This	language	would	go	on	to	become	Dart.

Google’s	Market	Strategy
Google	learned	a	lot	from	watching	the	defeat	of	ECMAScript	v4.	Google	executed	a
technology	strategy	that	ensured	it	didn’t	need	consensus	from	the	browser	vendors	prior
to	getting	its	language	to	market.	To	do	this,	Google’s	new	Dart	language	runs	on	all
major	browsers	right	out	of	the	gate.	It	accomplishes	this	by	introducing	three	new	pieces
of	technology	alongside	the	Dart	language:	the	Dart2JS	transpiler,	the	Dart	Dev	Compiler,
and	the	open	source	Dart	virtual	machine	(VM).

https://blogs.adobe.com/open/2008/08
http://pastebin.com/NUMTTrKj
http://pastebin.com/NUMTTrKj
http://pastebin.com/NUMTTrKj

Dart2JS
Dart2JS	is	a	transpiler	that	takes	Dart	code	and	outputs	backward-compatible	optimized
JavaScript.	This	works	on	most	modern	browsers,	including	Chrome,	Firefox,	Safari,	and
Internet	Explorer	9+.

The	transpiler	runs	as	a	pre-processor	that	outputs	minified	JavaScript	that	can	be
executed	inside	most	JavaScript	virtual	machines.	The	compilation	step	not	only	translates
Dart	code	into	compact,	highly	performant	JavaScript,	but	also	takes	it	through	a	process
called	tree	shaking.	Tree	shaking	analyzes	your	source	code	and	removes	any	unused
portions.	This	attempts	to	ensure	that	all	the	shipped	code	is	actually	being	used.	Dart2JS
has	been	developed	alongside	the	Dart	VM	and	has	been	considered	production	ready
since	version	1.

Dart	Dev	Compiler
In	addition	to	Dart2JS,	the	Dart	team	is	working	on	a	new	piece	of	technology	named	the
Dart	Dev	Compiler	(DDC).	The	DDC	aims	to	address	some	of	the	complexity	that	has
resulted	from	having	highly	optimized	JavaScript	code	as	the	output	from	Dart2JS;
namely,	readability	of	the	code.

The	DDC	aims	to	output	human-readable	JavaScript.	This	will	enable	developers	to	use
Dart	and	its	powerful	ecosystem	of	development	tools	to	write,	test,	and	maintain	public
native	JavaScript	libraries.	The	DDC	is	also	an	intermediary	debugging	tool	that	will
allow	developers	to	run	Dart	code	as	readable	native	JavaScript	in	all	major	browsers.
This	will	emulate	the	experience	of	how	the	app	will	function	after	Dart2JS	transpiles	the
language	while	maintaining	readability	for	debugging.	The	DDC	is	slated	to	be	released
alongside	Dart	SDK	2.0	in	early	2016;	however,	the	project	is	currently	hosted	publicly
and	available	for	preview	at	https://pub.dartlang.org/packages/dev_compiler.

Dart	Virtual	Machine
The	Dart	VM	is	core	to	Google’s	Dart	initiative	and	exists	to	power	server-side
development	needs.	It	incorporates	many	language	features	found	in	other	server-side
languages	and	pairs	them	with	the	ability	to	share	libraries	between	your	back-end	and
front-end	applications.

Google	assigned	the	development	of	this	VM	to	an	engineer	with	a	long	history	of
building	highly	performant	VMs:	Lars	Bak.	Bak	was	the	core	architectural	contributor	to
many	notable	high	performance	VMs,	including	the	Java	VM	and	Google’s	own	V8
JavaScript	VM.

The	Dart	VM	is	specifically	optimized	for	the	Dart	language.	Google	optimized
performance	for	a	single	language	instead	of	making	a	more	generic	bytecode	compilation
target.	Having	a	language	VM	allows	for	direct	interpretation	and	execution	of	Dart	source
code	by	the	VM	without	the	need	for	a	compilation	step.	Compilation	into	machine	code
is	achieved	using	a	JIT	compiler	that	interprets	the	code	at	run	time.

The	Dart	VM	runs	on	an	event	loop	with	two	queues:	an	event	queue	and	a	microtask
queue.	This	enables	the	Dart	VM	to	implement	non-blocking	asynchronous	operations.

https://pub.dartlang.org/packages/dev_compiler

The	Dart	VM	is	single	threaded,	which	offers	a	straightforward	developer	debugging
environment.	However,	to	take	advantage	of	multi-core	architectures,	Dart	also	supports
isolates,	or	“isolated	memory	heaps.”	Each	isolate	has	its	own	event	loop.	The	Dart	VM
and	its	corresponding	isolate	terminate	when	both	queues	are	empty.

The	Dart	VM	supports	two	different	run-time	modes.	The	first	run-time	mode	is
referred	to	as	checked	mode.	Checked	mode	relies	on	the	language’s	support	for	optional
typing.	This	allows	developers	to	test	their	code	and	to	have	the	language	fail	fast	and	loud
when	the	wrong	object	type	is	encountered.

The	second	of	Dart’s	run-time	modes	is	called	production	mode.	This	mode	is
optimized	for	performance	and	not	for	developer	feedback.	Surprisingly,	while	in
production	mode,	the	Dart	VM	initially	ignores	all	the	author-assigned	object	types.
Instead,	the	Dart	VM	heavily	uses	polymorphic	inline	caching	to	improve	VM
performance.	Dart	sees	much	of	its	performance	gains	over	ECMAScript	VMs	by	adding
support	for	additional	primitives,	which	yields	more	accurate	heuristics	when	executing	its
inline	cache	functionality.	The	VM	also	leverages	rigid	object	structures	that	are	exposed
by	having	native	class	support	in	the	language.	Google’s	documentation	shows	significant
speed	gains	by	the	Dart	VM	when	compared	to	Google’s	own	V8	JavaScript	VM.

Dart	Virtual	Machine	Strategy
For	many	years,	Google	advocated	for	Dart	VM	to	sit	alongside	JavaScript	inside	Chrome
and	other	browsers.	Google	tried	to	work	with	other	manufacturers	to	solicit	interest	in	the
technology.	The	team	even	had	long-running	experimental	support	for	the	VM	in	Dartium,
a	branch	of	its	Chromium	browser.

However,	after	years	of	active	development,	Google	decided	not	to	pursue	an
alternative	VM	in	the	browser.	Instead,	Google	decided	to	follow	the	increasing	trend	of
using	JavaScript	as	a	compilation	target	while	in	the	browser.

As	the	ECMAScript	standard	has	improved,	the	capacity	to	use	JavaScript	as	an
assembly-like	language	for	the	web	has	become	more	and	more	viable.	This	means
developers	can	get	all	the	great	language	tooling	from	Dart	and	maintain	the	cross-browser
compatibility	that	ECMAScript	enjoys	today.

The	Dart	VM,	while	not	being	deployed	in	the	browser,	is	still	under	heavy
development	by	Google	for	mobile	and	server-side	applications.	Developers	can	write	and
deploy	highly	performant	production	applications	by	using	the	Dart	VM	and	its	associated
server-side	libraries.

	Note

If	you’re	interested	in	seeing	Dart	benchmarks	when	compared	to	platforms
like	Nodejs	or	Rails,	take	a	look	at	the	EC2	hardware	tests	at
www.techempower.com/benchmarks/#section=data-r10&hw=ec2&test=json.

http://www.techempower.com/benchmarks/#section=data-r10&hw=ec2&test=json

How	Is	the	Dart	Language	Different?
The	Dart	language	is	Google’s	attempt	to	deliver	a	better	experience	than	ECMAScript.
So	what	does	it	look	like?	The	next	few	chapters	will	dive	deep	into	Dart’s	many	language
features,	but	here	are	a	few	of	the	high-level	features:

	Syntax:	Dart	supports	a	familiar	syntax	that’s	similar	to	Java,	C,	C#,	or	JavaScript,
with	additional	semantics	inspired	by	Smalltalk	to	enable	terse,	concise	code.

	Sane	scope	and	contexts:	Dart	follows	traditional	lexical	scoping	rules	with
hierarchical	scope.	Children	inherit	their	parent’s	scope,	but	parents	cannot	access
their	child’s	scope.	Class	methods	have	a	consistent	reference	to	the	instance	using
the	this	keyword.

	Single	consistent	entry	point:	All	Dart	applications	start	with	a	named	function,
main(),	that	establishes	the	run-time	context	from	the	rest	of	the	application.

	Access	modifiers:	Dart	supports	public	and	private	members,	allowing	authors	to
properly	encapsulate	object	access	as	they	see	fit.

	Optional	static	types:	At	its	core,	Dart	is	a	dynamic	language.	However,	the	Dart
VM	and	the	IDE	provide	optional	static	typing.	Typed	objects	produce	more
readable	code	and	provide	type	checking	during	execution.

	Classical	inheritance	and	more:	Dart	supports	classical	single	inheritance.	In	Dart,
a	class	can	be	used	as	a	class,	an	interface,	or	a	mixin.

Dart	also	supports	abstract	methods,	abstract	classes,	and	interfaces.	You	can	use
these	structural	elements	to	define	shared	interfaces	in	which	individual	classes	can
then	implement	their	own	solutions.	These	are	language	features	that	are	often	used
when	creating	contemporary	object-oriented	(OO)	relationships.

	Mixins:	Mixins	allow	you	to	append	previously	implemented	methods	to	classes
without	using	inheritance.

	Multiple	numeric	types:	Dart	has	built-in	support	for	two	types	of	numerical
objects	with	a	more	generic	parent	class.

	int:	A	signed	integer	with	a	max	range	of	53	bits.

	double:	A	data	type	representing	an	IEEE-754	double-precision	floating-point
number.

	num:	A	generic	superclass	for	class	double	and	class	int.	A	num	can	be	either.

	Built-in	library	support:	Importing	a	library	is	a	way	to	bring	a	cohesive	collection
of	classes	and	methods	into	the	current	scope.	By	default,	the	dart:core	library	is
automatically	imported	into	every	Dart	program.	dart:core	provides	many	of	the
building	blocks	needed	to	implement	the	most	common	programming	tasks.	You	can
also	define	your	own	libraries	and	share	them	with	your	team	or	publicly.

	Built-in	package	support:	A	package	is	a	collection	of	libraries,	classes,	and
methods	that	work	in	unison.	Your	main	application	is	a	package,	but	it	can	consist
of	many	other	packages.	Packages	can	be	easily	acquired	or	shared	using	the	Pub

repository.

	Pub:	While	not	part	of	the	language	specification,	Pub	is	a	tool	that	is	central	to	the
propagation	of	Dart	code.	Pub	is	part	task	runner,	part	package	manager.	Pub	can
download	packages,	manage	server	state,	execute	compilation	tasks,	and	much
more.

A	New	ECMA	Standard
From	the	outset,	Google	has	positioned	Dart	to	be	open.	The	Dart	VM	is	open	source.	The
core	packages	are	open	source.	And	while	the	engineering	team	over	at	Google	was	busy
working	on	the	Dart	VM,	the	ECMA	TC52	committee,	with	representatives	from	Google,
was	busy	defining	a	new	standard.	In	July	of	2014,	ECMA	International	announced	that
ECMA-408	had	officially	been	approved	for	the	Dart	Programming	Language
Specification.	The	specification	was	based	on	the	Dart	VM	1.3	instruction	set.	The
standard	is	now	open	to	anyone	who	wants	to	target	it.

Summary
With	Dart,	you	now	have	a	language	that	works	on	both	client	and	server.	It	is	backward
compatible	with	most	major	browsers.	It	doesn’t	break	any	existing	standards.	It	adheres
to	a	new	open	standard.	It	has	an	open-sourced	VM.

I	firmly	believe	that	Dart	has	huge	potential	to	change	how	the	software	industry
handles	large-scale	applications	development	for	the	web,	and	I	think	you’re	going	to
really	enjoy	working	with	it.

You	should	Know
	Where	JavaScript	came	from

	Why	Dart	was	invented

	Why	designing	a	one-size-fits-all	web	language	is	challenging

	What	a	transpiler	is

	What	a	virtual	machine	is

	Where	and	how	Dart	can	be	run

	What	Dart’s	language	feature	set	includes

Chapter	2.	Up	and	Running	with	Dart

Before	you	dive	into	the	Dart	language,	you	need	to	get	the	Dart	run-time	environments
set	up	on	your	computer.	This	chapter	covers	how	to	execute	Dart	code	both	on	the
command	line	and	in-browser.

You’ll	be	working	with	the	Dart	SDK	and	JetBrains’	IntelliJ	IDEA	Community	Edition.
As	with	most	languages,	there	are	multiple	ways	to	get	Dart	up	and	running	on	your
workstation.	These	approaches	vary	based	on	whether	you	are	running	Windows,	Linux,
or	Mac	OS	X.	The	good	news	is	that	the	tooling	support	for	each	operating	system	is
excellent.

IntelliJ	IDEA	Community	Edition	is	the	open-source	variant	of	JetBrains’	powerful
collection	of	full-featured	IDEs.	The	Dart	team	has	selected	the	software	company
JetBrains	to	provide	the	editor	of	choice	for	the	Dart	community.	Previously,	the	folks
over	at	Google	provided	their	own	editor,	named	Dart	Editor.	Dart	Editor	was	deprecated
in	the	summer	of	2015.

Dart	Editor	was	built	using	the	Eclipse	software	development	kit	(SDK),	which
provided	many	of	the	workspace,	plugin,	and	debugging	capabilities	found	in	other
enterprise-level	software	development	tools.	In	order	to	ensure	the	widest	range	of	choice
for	developers,	Google	decided	to	focus	its	energy	on	making	available	all	the	plugins	that
were	used	in	Dart	Editor	as	standalone	plugins	that	could	be	leveraged	by	any	IDE.	This
approach	now	enables	Dart	support	on	a	wide	range	of	IDEs,	such	as	Sublime,	Eclipse,
eMac,	vim,	IntelliJ,	and	many	more.

The	remainder	of	this	book	uses	the	open-source	IntelliJ	IDEA	Community	Edition
editor.

Installing	the	Dart	SDK
Let’s	walk	through	how	to	acquire	the	Dart	SDK	for	your	specific	operating	system.
Here’s	how	to	grab	the	files	for	your	machine.

	Note

The	steps	in	this	section	include	a	USER_HOME	placeholder	in	italic.	You
should	replace	USER_HOME	with	the	proper	path	of	your	operating	system’s
designated	user	folder.	For	example,	my	system	username	is	jmurphy.	On	OS
X,	the	steps	show	/Users/USER_HOME/projects,	but	I’ll	enter	the	path
as	/Users/jackmurphy/projects/.

1.	Go	to	www.dartlang.org/downloads/archive.

2.	Under	the	Stable	Channel	heading,	ensure	that	the	latest	version	is	selected	in	the
drop-down	menu.	You	will	need	to	use	version	1.12	or	greater.

http://www.dartlang.org/downloads/archive

3.	Select	your	operating	system	from	the	drop-down	menu.

4.	Click	Dart	SDK	for	the	appropriate	32-bit	or	64-bit	architecture	of	your
workstation.	This	will	download	the	compressed	Dart	SDK.

5.	Click	Dartium	for	the	appropriate	32-bit	or	64-bit	architecture	of	your	workstation.
This	will	download	the	compressed	Dartium	Browser.

	Note

At	the	time	of	this	writing,	Windows	and	OS	X	have	only	a	32-bit	version	of
Dartium	available.	Please	use	the	32-bit	version.

6.	Uncompress	the	downloaded	SDK	file	to	expose	a	folder	named	dart-sdk.

7.	Place	dart-sdk	in	one	of	the	following	folders,	based	on	your	operating	system.
When	working	on	your	own	projects,	you	can	place	the	dart-sdk	folder	in	the
location	of	your	choice.

	Windows:	C:\Users\USER_HOME\dart-sdk

	OS	X	and	Linux:	/Users/USER_HOME/dart-sdk

8.	Uncompress	the	downloaded	Dartium	file	to	expose	a	folder	named	something	like
dartium-os-full-stable.

9.	Place	dartium-os-full-stable	in	one	of	the	following	folders,	based	on
your	operating	system.	When	working	on	your	own	projects,	you	can	place	the
dartium-os-full-stable	folder	in	the	location	of	your	choice.

	Windows:	C:\Users\USER_HOME\dartium-os-full-stable

	OS	X	and	Linux:	/Users/USER_HOME/dartium-os-full-stable

What’s	in	the	dart-sdk
The	dart-sdk	contains	several	folders,	files,	applications,	and	more:

	bin	contains	executable	files	for	developing	with	Dart.

	dart	is	the	Google	Dart	VM.

	dart2js	is	the	Dart	JavaScript	transpiler.

	dartanalyzer	is	a	Dart	static	analysis	tool.

	dartdocgen	is	a	generator	to	turn	comments	into	documentation.

	dartfmt	is	a	Dart	code	formatter.

	docgen	is	a	legacy	document	generator.

	pub	is	a	Dart	task	runner	and	package	manager.

	snapshots	are	stored	memory	snapshots	of	byte	data	to	help	Dart	start	up
faster.

	lib	is	a	folder	that	contains	the	primary	libraries	that	make	up	the	Dart	run	time.

	revision	is	a	file	that	contains	the	SDK	version	number.

	version	is	a	file	that	contains	source	control	information.

Dart	Environmental	Variables
The	Dart	SDK	binaries	should	be	part	of	your	system’s	default	environment	path.	If	you
are	not	using	a	package	manager,	you	will	need	to	add	the	file	system	location	of	the
dart-sdk	folder	to	your	existing	environmental	variables.	Each	operating	system
variant	has	a	different	way	to	persist	environment	variables;	the	following	sections	contain
a	few	recommendations.

Windows	8
If	you’re	setting	up	your	development	environment	on	a	Windows	8	operating	system,	use
the	following	instructions:

1.	In	the	search	bar,	search	for	Advanced	System	Settings,	and	click	the	corresponding
icon	to	open	the	System	Properties	dialog.

2.	While	under	the	Advanced	tab,	click	the	Environment	Variables	button.

3.	Under	the	System	Variables	section,	double-click	the	Path	system	variable.

4.	Append	the	following	new	semicolon-delimited	value	to	the	end	of	the	existing
string:

Click	here	to	view	code	image

;C:\Users\USER_HOME\dart-sdk\bin\

5.	Save,	and	restart	Windows	to	make	the	changes	take	effect.

6.	Open	a	new	command-line	session,	and	execute	the	following	code	in	the	terminal:
$	dart	—version

The	following	will	display:
Dart	VM	version:	1.12.xxx

Mac	OS	X	10.10
If	you	are	running	OS	X	10.10,	you	will	need	to	append	the	path	of	your	Dart	binaries	to
the	/etc/paths	file.

1.	Open	your	terminal,	and	execute	the	following	command:
Click	here	to	view	code	image

$	printf	“\n/Users/USER_HOME/dart-sdk/bin”	|	sudo	tee	-a	/etc/paths

2.	Open	a	new	command-line	session,	and	execute	the	following	code	in	the	terminal:
$	dart	—version

The	following	will	display:
Dart	VM	version:	1.12.xxx

Ubuntu	14.10
If	you’re	setting	up	your	development	environment	on	an	Ubuntu	14.10	operating	system,
use	the	following	instructions:

1.	Open	Terminal.

2.	Run	the	following	command:
$	sudo	nano	/etc/environment

	Note

You	need	the	root	password	to	launch	the	nano	editor	for	this	file.

3.	In	the	nano	editor,	append	the	following	new	colon-delimited	value	to	the	end	of	the
existing	path	string:

Click	here	to	view	code	image

:/Users/USER_HOME/dart-sdk/bin

4.	Run	the	following	command:
$	source	/etc/environment

5.	Open	a	new	command-line	session,	and	execute	the	following	code	in	the	terminal:
$	dart	—version

The	following	will	display:
Dart	VM	version:	1.12.xxx

IntelliJ	IDEA	Editor
IntelliJ	IDEA	is	an	extremely	feature-rich	IDE,	including	syntax	highlighting,	interactive
debugging,	pub	integration,	source	control,	built-in	file	management,	and	more.	The	rest
of	this	book	explores	much	of	its	functionality.	Rather	than	diving	right	into	language
specifics,	let’s	take	Dart	out	for	a	test	drive.	The	goal	over	the	next	few	sections	is	to
introduce	you	to	the	Dart	command	line,	Dart	code	interpretation	in	Dartium,	and	Dart2JS
compiled	code.

	Note

The	convention	this	book	uses	is	to	store	packages	in	a	folder	named
projects	in	your	user	home	folder.	The	book	conventions	use	POSIX	file
system	semantics,	so	if	you	are	on	Windows,	please	adjust	accordingly.

Installing	IDEA	for	Dart
At	the	time	of	this	writing,	IntelliJ	Community	Edition	does	not	include	Dart	by	default.	If
you’re	OK	with	proprietary	software,	JetBrains’	WebStorm	IDE	ships	with	Dart	support
built	in.	WebStorm	also	ships	with	excellent	support	for	many	other	web	languages,	such
as	JavaScript,	CSS,	SASS,	YAML,	and	more.

That	being	said,	it	is	very	simple	to	add	support	for	the	Dart	language	to	the	Community
Edition.	Let’s	walk	through	acquiring	the	open-source	version	of	JetBrains’	IntelliJ	IDEA
editor:

1.	In	your	browser,	go	to	www.jetbrains.com/idea/download.

2.	Click	Download	Community	to	download	the	installer.

3.	Run	the	downloaded	installer,	named	ideaIC-##.#.#	(where	##.#.#	is	the
version	number).

4.	Launch	the	IntelliJ	IDEA	CE	application.

5.	Select	any	options	that	you	find	to	your	liking.

Each	operating	system	has	its	own	unique	set	of	customization	options.	For	this
project,	you	do	not	need	to	select	any	additional	options	that	are	not	already	selected
by	default.

Upon	finishing	customization,	you’ll	see	the	IntelliJ	Welcome	screen	(Figure	2.1).

http://www.jetbrains.com/idea/download

FIGURE	2.1	Configuration	options	on	the	IntelliJ	Welcome	screen

6.	In	the	lower-right	corner,	click	the	Configure	menu	and	select	Plugins	from	the
drop-down	menu.

7.	Enter	Dart	in	the	search	field	in	the	upper-left	corner,	then	click	the	Browse
Repositories	button	(Figure	2.2).

FIGURE	2.2	Dart	plugin	panel

A	new	window	will	pop	up	with	a	Dart	plugin	panel	exposed.

8.	Click	the	green	Install	Plugin	button	(Figure	2.3).

FIGURE	2.3	Browsing	the	Dart	repositories

When	the	install	is	complete,	a	dialog	window	will	open	and	ask	you	to	restart
IDEA.

9.	Click	the	Restart	button,	and	wait	for	IDEA	to	reboot.	Dart	language	support	and
tooling	is	now	enabled	via	a	plugin	for	the	IDEA	IDE	on	your	machine.

Running	Dart
One	of	the	compelling	aspects	of	Dart	is	its	ability	to	execute	code	on	multiple	platforms.
You	can	run	your	libraries	as	server	code,	as	client	code,	or	on	mobile.	Let’s	take	a	look	at
a	few	different	ways	to	get	your	code	up	and	running.

Command-line	Applications

Command-line	applications	run	the	Dart	VM	as	a	headless	process	on	a	server.	In	this
case,	the	server	is	your	local	development	workstation.	Let’s	take	a	look	at	how	to	launch
your	application	through	the	IDEA.

1.	Open	IntelliJ	IDEA.

2.	Select	File	>	New	Project,	or	click	Create	New	Project	on	the	Welcome	splash
screen.

3.	On	the	left	panel,	select	Dart.

4.	Enter	the	following	values	in	the	New	Project	dialog	(Figure	2.4):

	Dart	SDK	Path:	/Users/USER_HOME/dart-sdk/libexec

	Dartium	Path:	/Users/USER_HOME/dartium-os-full-stable/Chromium.app

FIGURE	2.4	The	New	Project	dialog	for	a	command-line	application

5.	Select	the	Generate	Sample	Content	checkbox.

6.	Select	the	Console	Application	entry	in	the	list	of	sample	content.

7.	Click	Next,	and	enter	the	following	values:

	Project	Name:	dart_console_temp

	Project	Location:	/Users/USER_HOME/projects/dart_console_temp

IntelliJ	will	generate	a	project	scaffold	that	will	be	visible	in	the	Projects	panel	in	a
folder	named	dart_console_temp.	This	scaffold	will	contain	all	the	files
needed	to	run	a	command-line	Dart	application.	Let’s	go	ahead	and	run	it.

8.	In	the	window	bar,	select	Run	>	Edit	Configurations.

In	the	new	dialog	(Figure	2.5),	you’ll	see	a	panel	on	the	left	side	with	a	plus	icon
above	it.

FIGURE	2.5	Configuring	the	run	and	debug	options

9.	Click	the	plus	icon,	and	select	Dart	Command	Line	App.

10.	Name	the	new	configuration	DartConsole.

11.	Click	the	ellipses	button	to	the	right	of	the	Dart	File	field,	and	find	bin/main.dart	in
the	active	project.

12.	Click	the	ellipses	button	to	the	right	of	the	Working	Directory	field,	and	select	the
folder	dart_console_temp.

13.	Click	OK	to	save,	and	close	your	configuration.

14.	In	the	top	menu	bar,	choose	Run	>	Run	‘DartConsole’.

In	the	console,	you	should	see	the	following	output:
Hello	World:	42!

Let’s	review	what	you	just	did:

First,	any	file	can	be	an	application	entry	point	file	for	a	package.	You	can	name	it
whatever	you	prefer.	Dart	does	require	an	initial	function	named	main()	to	be
implemented	in	the	chosen	file.	In	the	sample	package,	the	scaffolded	template	has
the	application	entry	point	file	named	main.dart	that	contains	a	function	named
main().

Secondly,	IntelliJ	created	a	run	configuration	for	your	command-line	app.	By
defining	main.dart	as	the	Dart	file	value,	you’re	telling	the	IntelliJ	to	have	the
Dart	VM	interpret	and	execute	main.dart.	IntelliJ	can	have	multiple	launchers
for	a	single	package.

You	can	get	the	same	results	executing	code	on	the	command	line	using	the	Dart
VM.

15.	Open	your	terminal,	and	type	the	following:
Click	here	to	view	code	image

$	cd	/Users/USER_HOME/projects/dart_console_temp
$	dart	bin/main.dart

You’ll	see	the	following	output	in	the	terminal:
Hello	world:	42!

You	are	temporarily	finished	with	the	dart_console_temp	application.

16.	Close	the	project	by	choosing	File	>	Close	Project.

Web	Applications	in	Dartium

Let’s	head	back	to	the	IntelliJ	IDEA	and	create	a	client	web	application	with	a	pre-built
interface.

1.	If	needed,	open	IntelliJ	IDEA.

2.	Select	File	>	New	Project,	or	click	the	Create	New	Project	button	on	the	splash
screen.

3.	In	the	new	window,	in	the	left	panel,	select	Dart.

4.	Enter	the	following	values	in	the	New	Project	dialog	(Figure	2.6):

	Dart	SDK	Path:	/Users/USER_HOME/dart-sdk/libexec

	Dartium	Path:	/Users/USER_HOME/dartium-os-full-stable/Chromium.app

FIGURE	2.6	The	New	Project	dialog	for	a	Dart	web	application

5.	Select	the	Generate	Sample	Content	checkbox.

6.	Select	Web	Application	from	the	list	of	sample	content	projects.

7.	Click	Next,	and	enter	the	following	values:

	Project	Name:	dart_web_temp

	Project	Location:	/Users/USER_HOME/projects/dart_web_temp

8.	Click	Finish.

IntelliJ	will	generate	another	project	scaffold	that	will	be	visible	in	the	Project	panel
in	a	folder	titled	dart_web_temp.	This	scaffold	will	contain	all	the	files	needed	to
run	a	sample	web	application	powered	by	Dart.

9.	In	the	Project	panel	(Figure	2.7),	select	the	web	folder.	Right-click	index.html,	and
choose	Open	in	Browser	>	Dartium.

FIGURE	2.7	Running	the	webpage	in	a	browser

You	should	see	an	instance	of	Chromium	launch	and	a	simple	webpage	render.	You
now	have	front-end	and	back-end	code	powered	by	Dart.

10.	Type	Dartisan	into	the	input	field	on	the	launched	webpage.	Ensure	that	you	see
the	input	string	rendered	in	reverse	below	the	input	field:	nasitraD.

Let’s	take	a	look	at	what	happened.

You	may	have	noticed	that	the	index.html	file	you	specified	is	being	hosted	on	a
web	server	at	the	address	http://localhost:63342/.	This	is	IntelliJ’s	built-in	web
server.

Dart	has	a	companion	task	runner	named	Pub.	Pub	is	shipped	with	an	HTTP	server
to	allow	you	to	run	a	Dart	server	instance.	When	you	start	the	IntelliJ	web	server,	it
also	spawns	an	instance	of	the	Pub	HTTP	server	on	a	port	within	the	range	of
40000–59999.

By	default,	the	raw	Pub	server	will	expose	the	optional	child	folders	of	/web,
/test,	and/lib.	This	example	uses	only:
~/projects/dart_web_temp/web/
~/projects/dart_web_temp/lib/

Because	Dartium	is	running	with	the	included	Dart	VM,	main.dart	is	interpreted
directly	in	the	browser	by	the	Dart	VM.	The	browser	uses	an	HTML5-compliant
script	tag	to	pass	main.dart	to	the	Dart	VM.	This	works	in	exactly	the	same	way
as	passing	a	JavaScript	file	to	the	V8	VM.	Let’s	take	a	look	at	the	source	code	in	the
browser.

11.	In	the	Dartium	top	menu,	select	View	>	Developer	>	Developer	Tools.

http://localhost:63342/

12.	In	the	new	panel,	click	Sources.

You	should	see	the	code	from	main.dart	with	content	from	your	lib	folder.	You
can	add	breakpoints	and	step	through	your	Dart	code	the	same	way	you	would	a
JavaScript	file	in	the	developer	tools.

Next,	we’ll	kill	the	running	instance	of	the	Pub	HTTP	server.

13.	Return	to	IntelliJ.

14.	In	the	top	menu	bar,	choose	View	>	Tool	Windows	>	Pub	Serve	(Figure	2.8).

FIGURE	2.8	Accessing	Pub	Serve

15.	Click	the	red	icon	labeled	Stop	Pub	Serve.

Although	it’s	convenient	to	launch	the	server	from	IntelliJ,	you	can	also	launch	the
HTTP	server	from	the	command	line.

16.	Open	your	terminal	and	type	the	following:
Click	here	to	view	code	image

$	cd	/Users/USER_HOME/projects/dart_web_temp/
$	pub	serve

17.	Go	to	http://localhost:8080	in	Chromium	to	load	a	new	instance	of	our	web
application.

While	the	page	is	loading,	you’ll	see	log	statements	from	the	Pub	HTTP	server	in
your	console.	This	will	bypass	the	built-in	IntelliJ	proxy	server	and	use	the	HTTP
server	from	Pub	directly.

18.	With	the	console	selected,	press	Control-C	to	kill	the	server	instance.

http://localhost:8080

Web	Applications	in	Contemporary	Browsers

Being	able	to	execute	Dart	code	through	the	Dart	VM	directly	in	a	Chrome	variant	is
powerful.	It’s	a	great	tool	for	writing	and	debugging	your	code,	but	you	probably	want	to
ship	your	product	on	popular	browsers.	Let’s	take	a	look	at	running	your	Dart	code	in	a
browser	that	has	mass	adoption.	Let’s	test	in	Chrome,	but	this	will	also	work	in	Safari,
Firefox,	or	Internet	Explorer.

You	can	use	the	same	dart_web_temp	package	that	you	made	in	the	last	section.	But
let’s	launch	it	in	Chrome.

1.	In	IDEA,	in	the	Project	panel,	select	the	web	folder.	Right	click	index.html,	and
choose	Open	in	Browser	>	Chrome.

The	application	will	launch	an	instance	of	your	system’s	Chrome	browser.	The
browser	URL	will	be	something	like
http://localhost:63342/dart_web_temp/web/index.html.	Again,	this	is	the	IntelliJ
server	proxying	the	Pub	HTTP	server.

If	you	type	Dartisan	in	the	input	box,	it	will	be	reversed	just	as	in	the	previous
section.	How	does	this	work	if	your	Chrome	browser	doesn’t	have	a	Dart	VM?

2.	Open	Firefox,	and	go	to	the	generated	address	from	the	Chrome	URL	bar	in	step	1.

3.	In	the	Text	Input	field,	type	Dartisan.

4.	Verify	that	the	reversed	word	functionality	works	as	it	did	in	Chrome.

5.	Close	Firefox.

When	you	make	a	request	to	launch	your	application	in	Chrome,	IntelliJ	starts	a	new
instance	of	the	HTTP	server	via	Pub.	The	Pub	HTTP	server	has	the	capacity	to	execute	a
conditional	series	of	transformers	to	prepare	your	assets.

The	web	project	scaffold	ships	with	a	small	JavaScript	library,	named	dart.js,	that	is
loaded	into	index.html.	If	the	caller	is	not	a	Dart-compatible	browser,	the	library
makes	a	request	to	the	HTTP	server,	which	will	transpile	the	Dart	code	on	demand	and
respond	with	a	JavaScript	file	that	gets	loaded	into	the	page.

Transformers	are	libraries	that	can	preprocess	assets	prior	to	serving	the	HTTP
response.	One	of	those	transformers	is	the	Dart2JS	transpiler.	Dart2JS	is	bundled	as	a
transformer	that	is	executed	by	the	web	server	when	the	client	requests	a	JavaScript	file
that	also	maps	to	an	application	entry	point	of	a	Dart	library.

On	request,	the	Dart2JS	transformer	serves	up	a	concatenated,	transpiled	JavaScript	file
with	the	name	of	the	original	entry	point.	In	this	case	it’s	named	main.dart.js.	This
JavaScript	file	can	be	executed	in	most	modern	browsers.

Line	Numbers
Showing	or	hiding	line	numbers	is	a	matter	of	personal	preference.	I	prefer	to	have	them
on	and	will	be	making	reference	to	them	throughout	the	book.	Showing	them	is	a	simple
process.

http://localhost:63342/dart_web_temp/web/index.html

1.	In	the	top	menu	of	the	IntelliJ	editor,	click	IntelliJ	IDEA.

2.	Click	Preferences.

3.	Choose	Editor	>	General	>	Appearance.

4.	Under	the	Appearance	section,	click	Show	Line	Numbers.

5.	Click	OK	to	save.

You	should	now	see	line	numbers	on	all	open	documents.

Dart	Command	Line	Debugger
One	of	the	more	useful	features	of	a	full-featured	IDE	is	the	debugger.	IntelliJ	has	an
extremely	powerful	debugger	built	in.	Let’s	take	it	for	a	test	drive.

1.	If	your	web	project	is	open,	choose	File	>	Close	Project.

2.	At	the	Welcome	screen,	select	dart_console_temp	to	open	the	previous
project.

3.	In	the	Project	panel,	toggle	open	the	folder	dart_console_temp,	and	toggle
open	the	folder	lib.

4.	Double-click	the	dart_console_temp.dart	file	to	open	it	in	the	editor.

5.	Change	the	function	calculate()	to	the	following:
Click	here	to	view	code	image

int	calculate()	{

		var	firstResult	=	6	*	7;

		var	secondResult	=	firstResult	*	2;

		return	firstResult;

}

6.	Open	the	~/dart_console_temp/bin/main.dart	file.

7.	Place	your	cursor	on	the	line	beginning	with	Hello	World	(line	7).

8.	Press	Command-F8	to	place	a	breakpoint.	This	is	indicated	by	a	red	dot	to	the	left	of
the	line.

9.	In	the	menu	bar,	choose	Run	>	Debug.	In	the	dialog	window,	choose	main.dart.

IntelliJ	will	stop	execution	with	the	breakpoint	line	highlighted.	Dart	VM	has	paused
execution	on	the	selected	line.	In	the	various	IntelliJ	panels,	you	can	explore	the
current	run-time	state	of	the	objects	in	your	application.

10.	Press	F7	to	step	into	the	function.

This	will	move	the	execution	context	into	the	calculate()	function	from	the
highlighted	line	and	pause	the	VM	for	further	inspection.

11.	Press	F8	to	step	over	a	function.

This	will	execute	the	highlighted	line	and	pause	on	the	next	line	for	further
inspection.

12.	Press	Command-Option-R	to	unpause	the	VM	and	return	control	to	the	VM.

Let’s	terminate	the	debug	session	and	clear	any	stray	breakpoints.

13.	While	in	the	IntelliJ	editor,	press	Command-F2	to	terminate	the	debugger.

14.	In	the	top	menu,	choose	Run	>	View	Breakpoints.

15.	Click	the	minus	icon	to	remove	all	the	Dart	line	breakpoints	(Figure	2.9).

FIGURE	2.9	Removing	breakpoints

Dart	in	WebStorm	and	Others
Although	IntelliJ	IDEA	Community	Edition	is	an	extremely	powerful	and	free	IDE,	other
solutions	are	available	that	might	better	fit	your	workflow.	These	include—but	are	not
limited	to—WebStorm,	Sublime,	Vim,	Emacs,	and	Eclipse.	Depending	on	the	level	of
integration	each	IDE	provides,	you	might	need	to	download	the	Dart	SDK	and	Dartium
separately.

Google’s	documentation	suggests	using	WebStorm	as	the	proprietary	editor	of	choice
when	developing	Dart	applications.	At	the	time	of	this	writing,	the	biggest	advantage	that
WebStorm	offers	over	its	open-source	counterpart,	IDEA	Community	Edition,	is	support
for	live	browser	debugging	of	Dart	code.	This	enables	you	to	use	the	same	debugger	we
used	for	command-line	applications,	but	in	a	Dartium	browser	session.	If	you	choose	to
stick	with	the	open-source	setup,	you	can	get	similar	debugging	functionality	from
Dartium’s	built-in	developer	tools.

Optional	Homebrew
Homebrew	is	a	popular	package	manager	for	Mac	OS	X.	The	Google	Dart	team	has	added
an	official	Homebrew	tap	that	enables	OS	X	users	with	Homebrew	installed	to	download
and	maintain	the	most	recent	stable	standalone	versions	of	the	Dart	SDK	and	Dartium.
You	can	learn	more	about	homebrew	at	http://brew.sh.

Once	Homebrew	is	installed,	you	can	use	some	simple	command-line	code	to	maintain
your	versions:

$	brew	tap	dart-lang/dart
$	brew	install	dart	dartium
$	brew	linkapps	dart	dartium

Part	of	the	benefit	of	using	Homebrew’s	managed	instance	is	that	your	binaries	are
automatically	exposed	to	your	local	environment	path.

Summary
Congratulations—you’ve	run	through	the	basics	of	executing	a	Dart	application.	In	this
chapter	you	looked	at	how	to	set	up	basic	projects	using	JetBrains’	IntelliJ	Community
Edition	IDE.	By	doing	so,	you	executed	examples	of	Dart	running	on	the	server	and	Dart
running	in	the	browser.	You	even	learned	the	basics	of	how	to	debug	Dart	in	both	contexts.

Now	that	you	know	the	basics	about	running	Dart	code,	the	next	few	chapters	introduce
you	to	many	of	the	structural	elements	of	the	Dart	language.

You	should	know
	How	to	acquire	the	Dart	SDK

	How	to	acquire	the	Dartium	browser

	How	to	set	your	environment	variables

	How	to	acquire	and	install	a	free	open-source	IDE	from	IntelliJ

	How	to	add	support	for	Dart	to	IntelliJ

	How	to	execute	a	command-line	application

	How	to	execute	a	browser	application	in	Dartium

	How	to	execute	a	browser	application	in	other	browsers

	How	to	debug	a	Dart	console	application

	How	to	debug	a	Dart	web	application

http://brew.sh

Chapter	3.	Introduction	to	the	Dart	Language

This	chapter	includes	a	series	of	concise	code	examples	to	illustrate	many	language
features	found	in	Dart.	You	will	structure	a	project	for	execution	as	a	command-line
application.	This	will	allow	you	to	focus	solely	on	the	language	features.	You’ll	dive	into
how	Dart	interacts	with	the	browser	later	in	the	book.

Creating	Your	First	Dart	Project
Your	first	application	is	going	to	be	for	a	fictional	airline	named	Just-In-Time	Airlines.
You’re	going	to	manually	build	out	the	directory	structure	to	familiarize	yourself	with	the
file	structure	of	a	Dart	project.	You’ll	do	an	in-depth	review	of	library	and	directory
conventions	in	Chapter	5.

	Note

IDEA	comes	with	a	bunch	of	great	tools	for	scaffolding	large	projects,	but
sometimes	you	just	want	a	bare-bones	application.	IDEA	actually	makes	this
quite	difficult,	so	we’re	going	to	bypass	IDEA	by	manually	creating	an	empty
directory	and	then	opening	it	from	inside	IDEA.

1.	Navigate	to	your	~/projects	folder	on	your	operating	system.

2.	Create	a	new	folder	named	airline.

3.	Open	the	JetBrains	IntelliJ	IDEA	editor.

4.	Click	Open	on	the	Welcome	screen,	or	select	it	from	the	File	menu.

5.	In	the	dialog	window,	navigate	to	your	~/projects	folder.

6.	Highlight	the	airline	folder,	and	click	Choose	to	select	it.

This	will	import	your	airline	project	folder	into	IDEA.	Next	you’ll	create	some
folders	inside	your	airline	project	folder.

7.	On	the	left	side	of	the	editor	in	the	IDE’s	Project	panel,	Control-click	the	airline
folder,	and	select	New	>	Directory.	Name	the	new	directory	bin.

8.	Create	another	new	directory	inside	your	airline	folder,	and	name	it	lib.

9.	Navigate	into	the	airline	folder	on	the	left	side	of	the	editor.	This	time	create	a
new	file	inside	your	bin	folder,	and	name	it	airport.dart.

The	resulting	directory	structure	should	look	like	Figure	3.1.

FIGURE	3.1	Parts	of	a	directory	structure

10.	Type	the	following	code	in	the	empty	airport.dart	file:
Click	here	to	view	code	image

void	main()	{

		print(‘Welcome	To	Just-In-Time	Airlines	Terminal	Application’);

}

11.	Create	a	command-line	launcher	for	airport.dart	using	the	same	approach	you
learned	in	Chapter	2	in	the	section	“Command-line	Applications.”

12.	Run	the	application	from	inside	IDEA.	When	you	run	your	launcher,	you	should	see
the	following	in	your	output	window:

Click	here	to	view	code	image
Observatory	listening	on	http://127.0.0.1:52852
Welcome	To	Just-In-Time	Airlines	Terminal	Application

Using	Functions	in	Dart
Functions	in	Dart	are	objects	with	statements	that	include	a	set	of	instructions	interpreted
by	the	VM.	Functions	are	the	building	blocks	that	compose	the	core	set	of	logic	for	your
application.	In	fact,	although	it’s	not	advised,	your	entire	application	could	be	a	single
function.

Application	Entry	Point	and	main()
The	entry-point	file	provides	the	initial	run-time	context	for	the	remainder	of	the
application.	All	further	system	activity	operates	with	the	entry-point	file	as	the	root
location.	All	Dart	applications	invoke	a	named	function	of	main()	to	begin	a	program’s
execution	loop.	A	Dart	entry-point	file	can	be	any	file	that	implements	main().

In	step	10	of	the	last	section,	you	defined	an	application	entry	point	by	declaring
function	main()	in	your	airport.dart	file.	Let’s	run	it	from	the	command	line:

1.	Open	your	operating	system	terminal	application.

2.	Navigate	to	the	airline	folder	at	~/projects/airline.

3.	Execute	the	following	code	from	that	folder:
$	dart	bin/airport.dart

You	should	see	the	following	output:
Click	here	to	view	code	image

Welcome	To	Just-In-Time	Airlines	Terminal	Application

What	you’ve	done	so	far:

	In	airport.dart,	you	declared	a	function	named	main()	and	set	an	optional
return	type	of	void.

	In	airport.dart,	you	called	a	function	named	print()	and	passed	a	string
literal	as	an	argument.

	From	the	command	line,	you	instantiated	Dart	VM	and	passed	it	a	root	entry	point
of	airport.dart.

	By	providing	a	path	to	the	root	entry-point	file,	you	instructed	Dart	VM	to	execute
the	main()	function.

Functions	and	Optional	Return	Types
The	Dart	VM	does	not	expect	an	object	to	be	returned	by	the	entry	point.	Therefore,	the
main()	function	defined	in	airport.dart	has	a	return	type	of	void.	This	is	an
optionally	typed	function.	The	void	type	tells	the	Dart	interpreter	not	to	allow	the	return
of	an	object	to	the	function	caller.	The	void	type	could	be	omitted,	and	the	program
would	continue	to	function	as	expected.

1.	Modify	the	airport.dart	file	to	match	Example	3.1,	which	includes	a	few
examples	of	different	return	type	declarations.

EXAMPLE	3.1
Click	here	to	view	code	image

main()	{
		print(getWelcomeMessage());
}

String	getWelcomeMessage()	{
		return	‘Welcome	To	‘	+	getAirlineName()	+	‘	Terminal	Application’;
}

	getAirlineName()	{
		return	“Just-In-Time”;
}

If	you	execute	airport.dart	again,	you’ll	see	the	same	output	string	printed.

However,	after	this	modification,	you’ve	removed	the	string	literal	and	spread	it	out
over	a	few	different	function	calls,	starting	with	getWelcomeMessage().

In	Dart,	“function”	is	not	a	keyword	like	it	is	in	other	C-style	languages.	Functions
look	like	other	fields	but	with	parentheses	to	accept	arguments	and	curly	braces	to
delineate	an	execution	block.

In	Example	3.1,	you	defined	two	new	functions.	Inside	the	application’s	main()
function,	you	are	executing	a	getWelcomeMessage()	function	and	passing	its
returned	value	as	an	argument	to	print().

The	getWelcomeMessage()	function	has	an	assigned	return	type	of	String.
This	indicates	that	the	function	must	return	an	object,	and	that	object	must	be	of	type
String;	otherwise,	the	Dart	analyzer	will	report	an	error.

Later	in	the	program,	the	getAirlineName()	function	appears	to	be	untyped,
because	it	does	not	have	a	class	identifier	as	a	prefix.	All	functions	that	omit	the	type
are	automatically	assigned	a	type	of	dynamic.

The	following	function	declaration	is	the	same	as	Example	3.1	except	that	Example
3.2	makes	explicit	the	return	type	of	dynamic.

EXAMPLE	3.2
dynamic	getAirlineName()	{
		return	“Just-In-Time”;
}

2.	Change	both	of	the	functions’	return	values	to	an	int	literal	of	1	(Example	3.3).

EXAMPLE	3.3
String	getWelcomeMessage()	{
		return	1;
}

	getAirlineName()	{
		return	1;
}

Let’s	take	a	look	at	some	feedback	from	the	IDEA	editor.	Make	sure	the	Dart
Analysis	window	is	open.

3.	In	the	top	menu	bar,	choose	View	>	Tool	Windows	>	Dart	Analysis.

If	one	is	not	already	open,	this	will	open	a	new	panel	at	the	bottom	of	the	IDE.
You’ll	notice	that	after	making	the	changes	from	Example	3.3,	there’s	a	warning	in
the	window	for	the	function	declaration	of	getWelcomeMessage	reading:	The
return	type	'int'	is	not	a	'String',	as	defined	by	the
method	'getWelcomeMessage'.

Farther	down,	notice	that	the	untyped	dynamic	function	has	no	warnings.	A
dynamic	function	accepts	any	object	as	a	return	type;	this	is	dangerous	because	the
calling	code	expects	the	function	to	return	a	string	and	cannot	handle	an	integer.

Executing	the	code	in	Example	3.3	results	in	_TypeError	at	run	time.	But	you

should	expect	that,	because	the	Dart	Analysis	plugin	was	giving	you	immediate
feedback	about	type	mismatches.

Let’s	restore	your	code	to	Example	3.1	before	moving	on.	IDEA	keeps	a	linear
history	of	the	edits	applied	to	your	file.

4.	Press	Command-Z	to	walk	backward	through	the	history	of	your	edits.

First-class	Functions
Dart	supports	first-class	functions.	That	means	you	can	use	functions	in	the	same	way
you’d	use	any	other	object:	You	can	pass	a	function	reference	as	an	argument	to	a	different
function,	return	a	function	reference	as	a	value	from	inside	a	function,	or	assign	a	function
reference	to	a	variable.

Function	Reference	and	Function	Values
You	can	store	a	reference	to	a	function	in	a	local	variable	in	the	same	way	you	store	any
object	reference.	In	the	following	code,	you’re	going	to	initialize	a	local	variable	named
aNameGetter	of	type	Function	and	assign	it	a	reference.	By	omitting	the
parentheses,	you	are	assigning	the	function	reference	getAirlineName	and	not	the
function’s	returned	value.

In	Example	3.4,	when	you	execute	the	return	statement,	aNameGetter()
executes	the	reference	to	getAirlineName	whose	function	block	returns	the	string
value.

EXAMPLE	3.4
Click	here	to	view	code	image

String	getWelcomeMessage()	{
		Function	aNameGetter;	//the	declared	local	variable
		aNameGetter	=	getAirlineName;	//the	variable	assignment
		return	‘Welcome	To	‘	+	aNameGetter()	+	‘	Terminal	Application’;
}

String	getAirlineName()	{
		return	“Just-In-Time”;
}

In	Example	3.5,	you	want	to	acquire	a	string	value	and	assign	it	to	a	variable	named
name,	which	will	execute	the	getAirlineName()	function	and	assign	its	return	value
upon	variable	instantiation.	The	string	variable	named	name	is	then	concatenated	in	the
return	statement.

EXAMPLE	3.5
Click	here	to	view	code	image

String	getWelcomeMessage()	{
		String	name	=	getAirlineName();
		return	‘Welcome	To	‘	+	name	+	‘	Terminal	Application’;
}

String	getAirlineName()	{
		return	“Just-In-Time”;

}

Function	Parameters
The	named	identifiers	inside	a	function	declaration’s	parentheses	are	known	as
parameters,	and	are	collectively	referred	to	as	a	method	signature	(Figure	3.2).	When	a
function	is	executed,	a	calling	function	can	pass	in	instance	references.	The	instances	that
are	passed	into	a	function	on	execution	are	known	as	arguments.

FIGURE	3.2	Parts	of	a	function

Dart	supports	function	parameters	in	a	couple	of	variations.	Let’s	refactor	the
application	to	accept	the	airline	name	as	an	argument.

Standard	Comma-delimited	Pairs

The	first	variation	we’ll	look	at	is	a	delimited	pair	of	types	and	parameter	names.	In	this
approach,	all	values	are	supplied	by	the	calling	expression	with	objects	matching	the
ordered	positions	defined	in	the	function	declaration	(Example	3.6).

EXAMPLE	3.6
Click	here	to	view	code	image

String	getWelcomeMessage(String	aName,	int	aYear)	{
		return	‘Welcome	To	‘	+	aName	+	‘	Terminal	Application.	Copyright	$aYear‘;
}

void	main()	{
		String	_name	=	“Just-In-Time”;
		int	_copyrightYear	=	2015;
		print(getWelcomeMessage(_name,	_copyrightYear));
}

Positional	Optional	Parameters	and	Default	Values

Sometimes	you	don’t	want	the	calling	expression	to	supply	all	the	possible	arguments.
Dart	supports	optional	arguments	with	default	values.

An	optional	argument	must	occur	after	all	required	arguments.	You	can	have	single	or

multiple	optional	arguments,	but	they	must	all	be	wrapped	with	square	brackets	[]	as
shown	by	the	code	highlight	in	Example	3.7.
EXAMPLE	3.7
Click	here	to	view	code	image

String	getWelcomeMessage(String	aName,	[int	aYear=2015,			String
aMonth=‘January’])	{
	return	‘Welcome	To	‘	+	aName	+	‘	Terminal	Application.	Copyright	$aMonth
$aYear’;
}

void	main()	{
		String	_name	=	“Just-In-Time”;
		int	_copyrightYear	=	1985;
		String	_copyrightMonth	=	“June”;
		print(getWelcomeMessage(_name));
		print(getWelcomeMessage(_name,	_copyrightYear));
		print(getWelcomeMessage(_name,	_copyrightYear,	_copyrightMonth));
}

//Output
//Welcome	To	Just-In-Time	Terminal	Application.	Copyright	June	2015
//Welcome	To	Just-In-Time	Terminal	Application.	Copyright	June	1985
//Welcome	To	Just-In-Time	Terminal	Application.	Copyright	February	1985

Named	Parameters	and	Default	Values

Named	parameters	are	ideal	to	use	when	you	have	a	large	set	of	arguments.	Named
parameters	are	not	order	dependent.	Instead,	they	require	a	key	to	match	against.

If	you	have	a	set	of	10	possible	arguments,	you	can	pass	in	only	the	last	item	by
specifying	the	argument’s	name	and	ignoring	the	rest.	The	unspecified	arguments	will	be
assigned	null.

A	named	argument	must	occur	after	all	required	arguments.	You	can	have	single	or
multiple	named	arguments,	but	they	must	all	be	wrapped	with	brackets	{}	as	in	Example
3.8.

EXAMPLE	3.8
Click	here	to	view	code	image

String	getWelcomeMessage({String	name,	int	year:2015,	String	month:‘June’})	{
		if(name	==	null)	{
				name	=	“—”;
		}
		return	‘Welcome	To	‘	+	name	+	‘	Terminal	Application.	Copyright	$month
$year’;
}

void	main()	{
		String	_name	=	“Just-In-Time”;
		int	_copyrightYear	=	1985;
		String	_copyrightMonth	=	“February”;
		print(getWelcomeMessage());
		print(getWelcomeMessage(month:	_copyrightMonth));
		print(getWelcomeMessage(month:	_copyrightMonth,	name:	_name));
		print(getWelcomeMessage(year:	_copyrightYear,	month:	_copyrightMonth));
}

//Output
//Welcome	To	—	Terminal	Application.	Copyright	June	2015
//Welcome	To	—Terminal	Application.	Copyright	February	2015
//Welcome	To	Just-In-Time	Terminal	Application.	Copyright	February	2015
//Welcome	To	—	Terminal	Application.	Copyright	February	1985

Not	Both

You	can	use	either	named	optional	parameters	or	positional	optional	parameters,	but	you
cannot	use	both	in	the	same	method	signature.

Primitives
At	the	time	of	this	writing,	Dart	has	six	primitive	objects:	null,	num,	bool,	double,
String,	and	enum.	Primitives	in	Dart	are	the	most	basic	elements	of	a	language.	They
are	what	more	complex	objects	are	built	of.	They	tend	to	hold	one	unit	of	data.

Primitives	Passed	as	Values
When	passing	primitives	as	arguments	to	a	function,	the	expression	is	interpreted	as	a
value.	This	affects	integers,	Booleans,	and	numbers.	In	contrast,	an	object’s
expression	is	interpreted	as	a	reference,	and	the	result	is	a	reference	being	passed	into	the
function.

This	means	that	when	you	modify	an	argument	that	is	of	a	primitive	type	inside	the
function’s	scope,	it	affects	only	the	variable	inside	the	function’s	scope.

Conversely,	when	you	modify	an	object	reference	inside	a	function’s	scope,	the
referenced	object	is	acted	upon	and	the	results	are	persisted	inside	the	function,	in	the
caller’s	scope,	and	in	any	other	place	that	has	a	reference	to	the	object.	Take	a	look	at
Example	3.9.

EXAMPLE	3.9
Click	here	to	view	code	image

main()	{
		String	pilot	=	“Jack	Murphy”;
		Map	company	=	{	‘airline’:	“Just-In-Time”};
		passByValues(pilot,	company);
		print(‘—	Check	3’);
		print(‘pilot:	‘	+	pilot);	//change	lost
		print(‘map	object:	‘	+		company.toString());		//change	persisted
}

void	passByValues(String	name,	Map	vo)	{
		print(‘—	Check	1’);
		print(‘name:	‘	+	name);
		print(‘value	object:	‘	+		vo.toString());
		name	=	“Amelia	Earhart”;	//modify	a	primitive
		vo[‘airline’]	=	“TWA”;	//modify	an	object
		print(‘—	Check	2’);
		print(‘name:	‘	+	name);
		print(‘value	object:	‘	+		vo.toString());
}

//Output:

//—	Check	1
//name:	Jack	Murphy
//value	object:	{airline:	Just-In-Time}
//—	Check	2
//name:	Amelia	Earhart
//value	object:	{airline:	TWA}
//—	Check	3
//pilot:	Jack	Murphy
//map	object:	{airline:	TWA}

The	code	passes	in	a	primitive	string	named	pilot,	and	a	map	named	company	in
function	passByValues().	Map	is	a	composite	object	made	up	of	multiple	objects.
Because	Map	is	not	a	primitive,	its	expression	evaluates	to	an	object	reference.	Inside	the
function,	you	modify	both	argument	instances.	Since	you’ve	marked	the	return	type	as
void,	there	is	no	returned	object.

Back	in	the	calling	function	at	Check	3,	you	see	that	only	one	of	the	two	changes
persisted.	The	change	on	the	map	persisted	because	the	expression	company	is
interpreted	as	a	reference	when	passed	into	the	function	as	vo.	The	reference	maintains
the	relationship	to	the	company	variable	in	the	caller’s	scope.

The	primitive	string	value	did	not	persist	in	the	caller	because	the	string	expression	for
pilot	is	interpreted	as	a	value,	and	therefore	loses	any	relationship	to	the	caller.	The
string	identifier	named	name	inside	the	passByValues()	function	becomes	a	unique
instance	scoped	only	to	that	function.

Dart	Objects	and	Maps
All	of	Dart’s	classes	are	descendants	of	the	class	Object.	The	Object	class	has	a	very
sparse	interface	consisting	of	only	a	handful	of	methods	implementing	base-level
functionality,	including	toString(),	noSuchMethod(),	hashCode,	and
runtimeType.

The	workhorse	of	the	Dart	language	is	the	map	object.	A	map	is	a	key-value	pair	object
implementation	that	is	a	direct	descendent	of	class	Object.	Maps	can	be	created	inline
using	map	literals	with	curly	bracket	notation,	or	by	using	the	new	constructor	on	the	Map
class.
Click	here	to	view	code	image

Map	company	=	{	‘airline’:	‘Just-In-Time’,	‘city’:	‘San	Francisco’};

Or
Click	here	to	view	code	image

Map	company	=	new	Map();
company[‘airline’]	=	‘Just-In-Time’;
company[‘city’]	=	‘San	Francisco’;

Accessing	Properties	of	a	Map
To	access	a	property	on	a	map	instance,	an	argument	must	be	supplied	using	square
bracket	notation,	such	as	object['key'],	as	in	Example	3.10.	A	key	can	be	a	string
literal,	or	an	object	reference.	If	you’re	coming	from	JavaScript,	be	aware	that	you	cannot
use	a	dot	operator	to	access	the	property’s	value.

EXAMPLE	3.10
Click	here	to	view	code	image

main()	{
Map	company	=	new	Map();
company[‘airline’]	=	‘Just-In-Time’;
company[‘city’]	=	‘San	Francisco’;

print(company[‘city’]);	//prints	San	Francisco
print(company[‘airline’]);	//prints	Just-In-Time
print(company[‘non-existent’]);	//prints	null
}

Determining	Object	Equality
Dart	has	two	approaches	to	determine	if	two	references	are	the	same:	the	==	operator	and
the	top-level	function	identical.	The	==	operator	has	a	default	implementation	in
class	Object	that	implements	the	identical()	function.	An	Object	subclass	can
override	its	==	operator	for	cases	such	as	collection	value	matching.	In	the	default
implementation,	the	identical()	function	returns	a	Boolean	of	true	if	the
references	match.

The	num	class	has	its	own	implementation	of	the	==	operator	to	support	comparisons
between	doubles	and	integers.	The	default	num	equality	functionality	converts	a	double
to	an	int	and	then	compares	the	values.	If	the	double	that	is	being	compared	to	an	int
is	a	fractional	value,	it	returns	a	false	value	because	ints	do	not	have	the	precision	to
be	a	match.	Example	3.11	shows	examples	of	equality	statements	and	how	they	evaluate.

EXAMPLE	3.11
Click	here	to	view	code	image

main()	{

		Map	company	=	{	‘airline’:	“Just-In-Time”,	‘city’:	‘San	Francisco’};
		Map	duplicate	=	{	‘airline’:	“Just-In-Time”,	‘city’:	‘San	Francisco’};
		Map	expression	=	company;	//shared	reference

		String	answer;

		answer	=	identical(company,	company).toString();
		print(“is	company	identical	to	company:	”	+	answer);	//true

		answer	=	identical(company,	expression).toString();
		print(“is	company	identical	to	expression:	”	+	answer);	//true

		answer	=	identical(company,	duplicate).toString();
		print(“is	company	identical	to	duplicate:	”	+	answer);	//false

		answer	=	(company	==	duplicate).toString();

		print(“is	company	==	to	duplicate:	”	+	answer);	//false

		answer	=	(company	==	expression).toString();
		print(“is	company	==	to	expression:	”	+	answer);	//true

		answer	=	(5.0	==	5).toString();
		print(“is	double	5.0	==	int	5:	”	+	answer);	//true

		answer	=	(5.5	==	5).toString();
		print(“is	double	5.5	==	int	5:	”	+	answer);	//false

		answer	=	(5	==	5).toString();
		print(“is	int	5	==	int	5:	”	+	answer);	//true

		answer	=	identical(5.0,	5.0).toString();
		print(“is	double	5.0	identical	to	double	5.0:	”	+	answer);	//true

		answer	=	identical(5.0,	5).toString();
		print(“is	double	5.0	identical	to	int	5:	”	+	answer);	//false

		answer	=	identical(5.5,	5).toString();
		print(“is	double	5.5	identical	to	int	5:	”	+	answer);	//false

		answer	=	identical(5,	5).toString();
		print(“is	int	5	identical	to	int	5:	”	+	answer);	//true
}

Statements	and	Control	Structures
Dart	uses	the	traditional	parentheses	and	curly	braces	for	flow	control.	Dart’s	control
structures	should	look	familiar	to	anyone	with	a	background	using	a	C-style	language.

Conditionals	with	if-then-else
Dart	is	very	strict	about	what	qualifies	as	an	acceptable	valid	condition.	Dart	allows	only	a
Boolean	object	of	value	true	to	execute	an	if	statement.	Empty	strings	are	not	a
match,	an	empty	but	instantiated	object	is	not	a	match,	and	no	number	qualifies	as	a
match.	Only	a	Boolean	of	value	true	will	be	allowed	to	execute	a	positive	if
statement.
Click	here	to	view	code	image

if(true)	{
		print(“This	is	true”);
}	else	if(””)	{
		print(“This	is	will	never	get	called”);
}	else	{
		print(“This	would	execute	of	true	was	false”);
}

Iteration	Using	for	Loops
Dart	has	a	traditional	for	loop	that	accepts	three	arguments:	an	initialization	expression,	a
termination	expression,	and	an	increment	expression.	The	following	example	will	print	an
index	range	starting	from	0	and	terminate	after	a	printing	an	index	value	of	9.
Click	here	to	view	code	image

for(var	index	=	0;	index	<	10;	index++)

{
		print(“iteration	index	of:	$index”);
}

Dart	also	supports	a	for-in	loop	that	is	ideal	for	iterating	over	a	typed	collection.	The
following	example	iterates	over	a	typed	list	of	strings.	You	can	optionally	use	the	dynamic
type	var	if	your	list	contains	multiple	types	of	values.
Click	here	to	view	code	image

List<String>	words	=	[‘eeny’,	‘meeni’,	‘mini’,	mo’];
for(String	item	in	words)	{
		print(item);
}

The	next	example	iterates	over	all	the	keys	in	a	Map	object	and	prints	out	the
corresponding	key-value	pair.
Click	here	to	view	code	image

Map	company	=	{‘airline’:	“Just-In-Time”,	‘city’:	‘San	Francisco’};
for(String	key	in	company.keys){
		print(‘key:	‘	+	key);
		print(‘value:	‘	+	company[key]);
}

While	Loops
A	while	loop	executes	a	statement	as	long	as	the	condition	is	a	Boolean	value	of
true.	Again,	Dart	is	very	strict	about	what	constitutes	true.	The	following	condition
uses	a	traditional	loop	to	execute	only	once.

bool	aToggle	=	true;
while(aToggle)
{
		aToggle	=	false
}

If	the	aToggle	value	was	false,	the	statement	will	execute	0	times.	If	you	want	to
ensure	that	your	statement	always	executes	at	least	once,	you	can	use	a	do-while	loop.
Click	here	to	view	code	image

do	{
		print(“I	execute	a	minimum	of	once	time”)
}
while(false);

Controlling	Loops
Dart	supports	break	and	continue	when	executing	inside	of	iterators,	such	as	for-
loops,	while-loops,	or	switch-cases.

Using	the	continue	keyword	causes	the	current	iteration	to	finish	and	move	to	the
next	iteration.

Using	the	break	keyword	terminates	the	loop	execution	regardless	of	the	value	of	the
Boolean	value	in	the	conditional	check	(Example	3.12).

EXAMPLE	3.12

Click	here	to	view	code	image
main()	{
		num	index	=	0;
		while(true)	{
				print(index);
				if(index	==	10)
				{
						//set	the	value	and	then	skip	to	the	next	iteration
						index	=	20;
						continue;
				}	else	if(index	==	20)	{
						//This	executes	on	the	next	iteration.
						//You	cant	change	the	literal	bool	of	true	in	the	while	condition,
						//but	this	loop	terminates	because	of	break.
						break;
				}
				index++;
		}
}

switch	and	case
Dart	has	support	for	switch	and	case	statements,	which	are	used	for	controlling	flow
based	on	a	single	matching	expression	against	multiple	possible	values.	Dart	is	strict	about
each	case	keyword	being	paired	with	a	closing	break	keyword.	The	exception	to	this
rule	is	for	grouping	multiple	cases	into	one	executable	statement.	Switch	statements	also
work	well	with	Dart’s	support	for	enums	(Example	3.13).

EXAMPLE	3.13
Click	here	to	view	code	image

enum	Airports	{SFO,	LAX,	DAL,	HOU}

main()	{
		Airports	city	=	Airports.SFO;

		switch(city)	{

		case	Airports.SFO:

				print(‘we	found	SFO’);	//this	prints
				break;
		case	Airports.LAX:
				print(‘we	could	find	LAX’);
				break;
		case	Airports.DAL:
		case	Airports.HOU:
				print(‘we	could	find	a	group	of	airports	in	texas’);
				break;
		default:
				print(“We	didn’t	find	any	airports”);
		}

}

Errors	on	assert()
Dart	has	a	built-in	assert	method	when	running	in	checked	mode.	Dart	bypasses	all
assert	methods	when	your	code	is	pushed	to	production.	This	is	great	for	run-time
checks	while	developing,	or	for	writing	unit	tests.

Dart’s	assert()	method	is	used	for	checking	an	argument	that	is	passed	in	as	a
Boolean	value.	If	it’s	true,	the	program	execution	continues	uninterrupted.	If	it’s
anything	other	than	a	Boolean	true,	an	AssertionError	will	be	thrown	and	the
program	execution	will	terminate.
Click	here	to	view	code	image

int	anInteger	=	1;
assert(1	==	1);	//This	assertion	passes
assert(anInteger);	//This	assertion	fails	and	program	execution	halts

Collections	and	Iterators
Understanding	and	efficiently	working	with	collections	and	iterators	is	an	integral	part	of
an	engineer’s	job,	and	it’s	important	that	the	chosen	language	supports	that	role	with
concise,	performant	options	for	the	many	use	cases	for	dealing	with	large	collections	of
data.	Luckily,	Dart	has	great	language	support	for	working	with	collections.	Let’s	take	a
look	at	what’s	available.

Instead	of	an	array	class	of	objects,	Dart	collections	share	a	superclass	named
Iterable.	Iterable	is	an	interface	that	allows	an	iterator	to	serve	up	an	object	from	a
collection	one	at	a	time.	There	are	many	classes	that	implement	Iterable,	but	the	most
commonly	used	are	List,	Queue,	and	Set.

List
A	list	in	Dart	is,	by	default,	an	expandable	collection	of	objects	that	you	can	modify	via	a
zero-based	index	location.	It	can	be	instantiated	with	the	List	literal	syntax	of	square
brackets,	or	with	the	new	List()	constructor.	The	constructor	takes	an	optional
parameter	of	type	int	if	the	author	would	like	to	create	a	fixed-length	list.
Click	here	to	view	code	image

List	words	=	new	List(5);	//empty	fixed	length	list	of	type	generic
List	mixed	=	[‘Fuel’,	1,	‘Wheel’,	2];	//list	literal

The	default	state	of	a	list	is	to	accept	elements	of	type	generic,	otherwise	known	as
untyped.	This	means	you	can	add	an	int,	num,	double,	or	String	object	to	the
same	list.	However,	if	you	want	a	list	to	accept	only	a	certain	type,	you	can	specify	that	at
the	time	of	declaration	using	the	diamond	syntax	<Class>,	as	seen	in	the	following:
Click	here	to	view	code	image

List<String>	snacks	=	new	List<String>();		//empty	growable	list	of	type
String
snacks.add(“Nuts”);
snacks.add(“Soda”);
snacks.add(“Coffee”);
snacks.add(“Crackers”);

snacks.add(1);	//throws	_TypeError:	‘int’	is	not	a	subtype	of	type	‘String’

The	List	class	has	a	large	number	of	built-in	helper	methods	that	are	extremely	useful.
I	could	fill	a	couple	of	chapters	just	looking	at	the	List	API.	I	highly	suggest	checking
out	the	docs	for	more	information.

Queue
A	queue	in	Dart	is,	by	default,	an	expandable	collection	of	objects	(Example	3.14)	that	is
optimized	to	be	modified	or	accessed	from	either	the	beginning	or	end	of	the	collection.
Unlike	List,	Queue	has	no	index	access.

	Note

Chapter	5	covers	the	import	keyword.

EXAMPLE	3.14
Click	here	to	view	code	image

import	‘dart:collection’;
main()	{
		Queue	gates	=	new	Queue();
		gates.addFirst(‘C’);
		gates.addFirst(‘B’);
		gates.addFirst(‘A’);
		var	rItem	=	gates.removeFirst();
		gates.addLast(‘D’);
		gates.addLast(‘E’);
		gates.addLast(‘E’);
		gates.addLast(‘E’);
		gates.addLast(‘F’);
		gates.removeLast();
		print(gates);
		print(‘rItem:	‘	+	rItem);
}

//Output:
//{B,	C,	D,	E,	E,	E}
//rItem:	A

Set
A	set	in	Dart	is,	by	default,	an	expandable	collection	of	objects	that	ensures	uniqueness	of
the	objects	in	its	collection	of	elements.	Starting	with	an	empty	set	and	then	attempting	to
add	the	same	element	multiple	times	will	still	result	in	a	set	with	a	length	of	1.	A	set	does
not	ensure	order	the	way	a	collection	or	queue	does.
Click	here	to	view	code	image

Set	years	=	new	Set();
years.add(1997);
years.add(1997);
years.add(1997);
print(“Set	Length:	”	+	years.length.toString());

//Output:
//Set	Length:	1

Numbers
Dart	ships	with	two	numeric	data	types.	Both	types	are	decendents	of	type	num.	Dart
handles	numeric	values	differently	than	some	other	C-style	languages.	num,	and	its
descendants,	int	and	double,	share	a	superclass	of	type	Object.

To	ensure	performant	behavior,	Dart	uses	a	process	called	unboxing,	which	allows
numeric	values	to	sit	inside	the	CPU	register	instead	of	adding	to	the	memory	stack.	This
allows	numeric	operations	to	result	in	a	new	object	without	incurring	high	performance
costs.

int
Dart	has	an	arbitrarily	sized	integer.	When	converted	to	JavaScript,	int	has	a	cap	of	53
bits.	When	running	server	side	through	the	Dart	VM,	an	int	is	made	up	of	three	internal
representations	that	scale	on	demand	to	support	the	required	level	of	precision.	These	are
smi,	mint,	and	bigint.	The	final	size	limitation	of	int’s	type	bigint	is	the	system
RAM.
Click	here	to	view	code	image

int	anIndex	=	1;	//this	is	ok
anIndex	=	1.19	//Error	type	‘double’	is	not	a	subtype	of	type	‘int’

double
Doubles	are	floating	point	values	that	adhere	to	the	IEEE	754	standard.
Click	here	to	view	code	image

double	pi	=	3.141592653589793;	//accurate	to	15	slots
print(pi);
double	imprecise	=	3.14159265358979323846;
print(imprecise);	//truncated	to	15	slots-	loses	precision	from	original
value

Typed	Numeric	List
When	storing	collections,	Dart	has	a	large	library	of	typed	collection	classes.	These	are
located	in	the	dart:typed_data	package.

You	can	select	from	classes	such	as	Int8List,	Int32List,	Int64List,
Float32List,	and	so	on.	Typed	lists	can	be	run	more	efficiently	because	the	Dart	VM
has	enough	information,	based	on	the	selected	type	and	list	length,	to	make	more	compact
collections	in	memory	(Example	3.15).

EXAMPLE	3.15
Click	here	to	view	code	image

import	‘dart:typed_data’;
main()	{
//defines	list	length	to	allocate	correct	amount	of	memory
Float64List	dollars	=	new	Float64List(4);

		dollars[0]	=	1.0;
		dollars[1]	=	2.0;
		dollars[2]	=	1;	//Error	‘int’	is	not	a	subtype	of	type	‘double’	of	‘value’
}

This	code	accesses	the	locations	by	index	since	you	cannot	add	elements	to	a	fixed-
length	list.

	Note

Since	JavaScript	doesn’t	support	typed_data,	and	all	numbers	are	represented
as	doubles,	some	of	the	performance	gains	in	Dart	VM	might	degrade	when
running	in	a	JavaScript	VM.

Enums
Enums	help	with	legibility	while	working	with	multiple	fixed	values.	An	enum	is	an
object	that	allows	you	to	associate	multiple	fixed	constant	named	values	with	a	data	type.

The	named	value	is	automatically	assigned	a	corresponding	index	value	based	on	the
order	in	which	it	was	defined.	If	used,	an	enum	must	be	instantiated	at	the	class	level
(Example	3.16).

EXAMPLE	3.16
Click	here	to	view	code	image

enum	Airports	{SFO,	LAX,	DAL}

main()	{
		print(Airports.LAX);	//Airports.LAX
		print(Airports.LAX.index);	//1	is	the	index	value	of	LAX
		print(Airports.SFO);	//Airports.SFO
		print(Airports.SFO.index);	//0	is	the	index	value	OF	SFO
		print(Airports.values);	//[Airports.SFO,	Airports.LAX,	Airports.DAL]
}

Exceptions
Exceptions	are	Error	events	that	are	added	to	the	call	stack	and	that,	if	allowed	to	bubble
to	the	top,	terminate	program	execution.	When	added	to	the	stack,	the	current	stack	trace
is	appended	to	the	object	to	assist	with	debugging.	Exceptions	can	be	handled	using	the
try-catch	syntax,	or	emitted	using	the	top-level	throw	method.

The	code	in	Example	3.17	executes	a	try-catch	statement	and	intentionally	throws
an	error:

EXAMPLE	3.17
Click	here	to	view	code	image

main()	{
		try	{
				print(“Try	and	take	off	backwards…	“);
				throw	new	Error();

		}	catch(exception,	stackTrace)	{
				print(“Exception	is:	”	+	exception.toString());
				print(stackTrace);
		}
		print(“End	of	Function”);
}

//Output:
//Try	and	take	off	backwards…
//Exception	is:	Instance	of	‘Error’
//#0						main
(file:///Users/jmurphy/projects/dart_console_temp/bin/main.dart:16:5)
//#1						_startIsolate.<anonymous	closure>	(dart:isolate-
patch/isolate_patch.dart:255)
//#2						_RawReceivePortImpl._handleMessage	(dart:isolate-
patch/isolate_patch.dart:142)
//End	of	Function

As	you	can	see,	you	get	a	helpful	stack	trace	with	the	function	and	the	file	location	that
the	exception	originated	in.	You	also	get	an	instance	of	the	Error	class	that	was	thrown.

Although	an	exception	was	raised,	it	was	handled	by	the	try-catch	statement,	so
program	execution	continued	outside	the	try-catch	block.	It’s	best	to	use	try-catch
blocks	sparingly,	because	they	can	disguise	severe	problems	with	your	application.

The	implementation	in	Example	3.17	will	catch	all	errors	within	the	default	scope	of	the
try-catch	statement.	You	can	make	a	catch	type	specific	by	using	the	on	Type
declaration	(Example	3.18).	This	will	ignore	all	other	error	types.

EXAMPLE	3.18
Click	here	to	view	code	image

main()	{
		try	{
				print(“Do	Thing…	Uh	Oh…”);
				throw	new	CastError();
		}	on	CastError	catch(exception,	stackTrace)	{
				print(“CastError	caught…”);
		}	catch(exception,	stackTrace)	{
				print(“All	other	errors	caught…”);
		}
}

//Output:
//Do	Thing…	Uh	Oh…
//CastError	caught…

Summary
This	chapter	looked	at	many	of	the	core	classes	and	concepts	that	make	up	the	foundation
of	the	Dart	language.	By	mastering	these,	you’ll	have	a	solid	capacity	to	begin	solving
problems	in	Dart.

The	next	few	chapters	allow	you	to	use	the	skills	learned	here	to	build	reusable	classes
and,	eventually,	libraries	that	can	be	published	publicly	for	widespread	use.

You	should	know
	How	to	define	and	execute	an	application	entry	point

	How	to	define	and	write	a	function

	How	to	define	and	write	a	return	type

	How	to	request	parameters	and	pass	arguments

	The	ramifications	of	using	a	value	instead	of	an	object	as	an	argument	passed	into	a
function

	How	to	instantiate	and	access	properties	of	numeric	types,	maps,	enums,	and	lists

	How	to	control	the	flow	of	execution	through	conditional	blocks	and	over
collections

	How	to	raise	an	error	when	needed

Chapter	4.	Object	Structures	in	Dart

One	of	the	most	attractive	Dart	enhancements	is	the	ability	to	craft	proper	object
taxonomies	using	object-oriented	principles,	such	as	inheritance	and	traditional	design
patterns.	Dart	offers	many	language	features	to	help	encapsulate	code	while	making	it	easy
to	reuse	behaviors,	classes,	and	libraries.	This	chapter	introduces	you	to	the	language
features,	and	Chapter	5	looks	at	how	to	leverage	these	features	by	focusing	on	how	Dart
structures	objects	and	their	corresponding	object	scopes.

Variables
A	variable	is	a	named	identifier	accessible	from	within	the	current	scope.	Variables,
depending	on	the	object	type,	can	store	a	reference	to	either	a	value	or	an	object	instance.
Dart	supports	first-class	functions,	so	variables	can	also	store	references	to	functions.

A	variable	statement	in	Dart	consists	of	a	type	annotation,	a	unique	named	identifier,
and	an	optional	assignment.	Dart	supports	the	keyword	var,	which	is	shorthand	to
register	the	variable	instance	with	an	assigned	type	of	dynamic.

In	the	following	approach,	you’re	going	to	initialize	a	variable	named	company	of	type
dynamic	within	the	scope	of	the	main()	function.
Click	here	to	view	code	image

main()	{
		var	company	=	{‘publisher’:	“Peachpit”};
}

The	code	runs,	but	by	using	var,	any	developer	could	come	along	and	assign	a	string
or	a	number	to	the	variable.	If	you	use	Dart’s	support	for	type	annotations,	you	can	ensure
that	any	reference	that	is	assigned	to	company	is	of	type	Map.
Click	here	to	view	code	image

main()	{
		Map	company	=	{	‘publisher’:	“Peachpit”};
}

You	cannot	completely	omit	the	type	declaration	or	Dart	will	assume	it’s	an	assignment
to	a	previously	declared	variable,	attempt	to	look	up	the	name	from	within	the	current
scope,	and	fail	to	find	it.
Click	here	to	view	code	image

main()	{
		company	=	{	‘publisher’:	“Peachpit”};	//throws	method	not	found:	‘company=’
}

	Note

Unlike	similar	languages,	Dart	does	not	support	variable	hoisting.	Variable
hoisting	is	the	process	of	allowing	variables	that	are	declared	later	in	the
execution	context	of	the	same	scope	to	resolve	prior	to	actual	declaration.	In
Dart,	you	must	declare	a	variable	prior	to	attempting	to	access	it.

Lexical	Scope
Scope	delineates	the	reach	of	an	inferred	namespace	where	you	can	directly	access	named
identifiers.	Scope,	in	Dart,	is	delineated	by	each	new	set	of	curly	braces.	Each	set	of	curly
braces	acquires	its	own	new	scope	while	inheriting	from	the	scope	in	which	it	was
declared.

Dart	is	a	lexically	scoped	language.	With	lexical	scoping,	descendant	scopes	will	access
the	most	recently	declared	variable	of	the	same	name.	The	innermost	scope	is	searched
first,	followed	by	a	search	outward	through	other	enclosing	scopes.

{
		//search	outermost	last
		String	name	=	“Jack	Murphy”
		{
				//search	innermost	first
				print(name)
		}
}

Let’s	define	a	nested	function	inside	main().	Inside	the	inner()	function,	declare
two	variables	named	level	and	example.	These	variables	will	be	available	only	inside
the	wrapping	scope	(Example	4.1).

EXAMPLE	4.1
Click	here	to	view	code	image

main()	{
		void	inner	()
		{

								int	level	=	1;	//not	visible	in	main()
								String	example	=	“scope”;	//not	visible	in	main()
								print(‘example:	$example,	level:	$level’);
		}

		inner();	//calls	the	function	which	prints	-	example:	scope,	level:	1
}

Let’s	try	to	access	the	variables	of	example	and	level	outside	the	inner()
function.

EXAMPLE	4.2
Click	here	to	view	code	image

main()	{
		void	inner()
		{

				int	level	=	1;
				String	example	=	“scope”;
				print(‘example:	$example,	level:	$level’);
		}
		inner();
		print(‘level:	$level	and	example:	$example’);	//results	in	an	Error
}

In	the	Dart	Analyzer,	you’ll	see	that	the	print()	line	in	Example	4.2	results	in	an
error:	undefined	name	'level'.	Let’s	take	a	look	at	how	a	scope	inherits	from	the
scope	in	which	it’s	declared	and	how	it	searches	for	named	identifiers	from	inside	out.

EXAMPLE	4.3
Click	here	to	view	code	image

main()	{	//a	new	scope
		String	language	=	“Dart”;

		void	outer()		{
				//curly	bracket	opens	a	child	scope	with	inherited	variables

				String	level	=	‘one’;
				String	example	=	“scope”;

				void	inner()	{	//another	child	scope	with	inherited	variables
						//the	next	‘level’	variable	has	priority	over	previous
						//named	variable	in	the	outer	scope	with	the	same	named	identifier
						Map	level	=	{‘count’:	“Two”};
						//prints	example:	scope,	level:two
						print(‘example:	$example,	level:	$level’);
						//inherited	from	the	outermost	scope:	main
						print(‘What	Language:	$language’);
				}	//end	inner	scope

				inner();

				//prints	example:	scope,	level:one
				print(‘example:	$example,	level:	$level’);
		}	//end	outer	scope
		outer();
}	//end	main	scope

In	Example	4.3,	inner()	inherits	scope	from	outer(),	which	inherits	scope	from
main().	This	gives	inner()	access	to	the	outermost	scope	where	the	variable
language	is	accessible.	Conversely,	main()	has	no	idea	of	the	existence	of	function
inner().

To	further	illustrate	lexical	scope,	let’s	take	a	look	at	the	hashcode	property	of	each
variable	from	within	its	respective	scope.

A	hashcode	is	a	value	generated	by	converting	each	property	of	an	object	to	a	numeric
value	and	then	joining	those	values	together	to	create	a	single	numeric	representation	of
the	entire	object.	Hashcodes	are	not	guaranteed	to	be	the	same	between	runs	or	on
different	machines.	Objects	of	differing	values	or	differing	types	cannot	share	the	same
hashcode.	Hashcodes	give	us	a	uniform	approach	to	compare	variables,	as	shown	in
Example	4.4.

EXAMPLE	4.4

Click	here	to	view	code	image
main()	{
		String	language	=	“Dart”;
		void	outer()		{
				String	level	=	‘one’;
				String	example	=	“scope”;

				void	inner()	{
						//declare	a	new	variable	named	level	in	memory	on	the	‘inner’	scope
						//even	though	the	named	identifier	is	the	same	as	the	variable	in
outer()
						Map	level	=	{‘count’:	“Two”};

						print(‘–—’);
						print(‘inner::outer.hashcode	‘	+	outer.hashCode.toString());
						print(‘inner::inner.hashcode	‘	+	outer.hashCode.toString());
						print(‘inner::language.hashcode	‘	+	language.hashCode.toString());
						print(‘inner::example.hashcode	‘	+	example.hashCode.toString());
						print(‘inner::level.hashcode	‘	+	level.hashCode.toString());
				}
				//has	access	to	only	outer	scope	variables
				print(‘–—’);
				print(‘outer::outer.hashcode	‘	+	outer.hashCode.toString());
				print(‘outer::inner.hashcode	‘	+	outer.hashCode.toString());
				print(‘outer::language.hashcode	‘	+	language.hashCode.toString());
				print(‘outer::example.hashcode	‘	+	example.hashCode.toString());
				print(‘outer::level.hashcode	‘	+	level.hashCode.toString());
				inner();
		}
		print(‘–—’);
		print(‘main::language.hashcode	‘	+	language.hashCode.toString());
		print(‘main::outer.hashcode	‘	+	outer.hashCode.toString());
		print(‘main::inner.hashcode	N/A’);

		outer();
}

//Output:
//main::language.hashcode	482586172
//main::outer.hashcode	380883474
//main::inner.hashcode	N/A
//–—
//outer::outer.hashcode	380883474
//outer::inner.hashcode	380883474
//outer::language.hashcode	482586172
//outer::example.hashcode	857747343
//outer::level.hashcode	1058535322

//–—
//inner::outer.hashcode	380883474
//inner::inner.hashcode	380883474
//inner::language.hashcode	482586172
//inner::example.hashcode	857747343
//inner::level.hashcode	802594681

Table	4.1	is	a	matrix	of	hashcodes	for	each	object	from	within	its	respective	scopes.

The	empty	cells	in	Table	4.1	illustrate	that	objects	that	are	declared	only	inside	a	child
scope,	such	as	outer(),	are	not	accessible	from	parent	scopes,	such	as	main().

As	you	can	see	in	Table	4.1,	inner()	inherits	scope	from	outer()	but	also	declares
its	own	named	identifier	of	the	variable	level.

The	second	declaration	of	level	as	a	Map	does	not	modify	the	variable	in	scope
outer(),	but	instead	creates	a	new	variable	with	its	own	object	reference	that’s	only
accessible	within	the	scope	for	inner().	After	the	new	level	variable	is	initialized
within	scope	inner(),	the	hashcode	for	the	variable	level	inside	the	scope	of
inner()	reports	as	802594681	instead	of	1058535322.

Table	4.1	Example	Object	Hashcode	Matrix

Classes
Classes	expose	functionality	on	how	to	construct	a	new	instance	of	a	requested	object
type,	functionality	to	expose	methods	and	data,	and	functionality	that	encapsulates
variables	to	track	object	state	within	its	scope.

Every	object	in	Dart	is	an	instance	of	a	class.	You’ve	been	using	Dart’s	built-in	classes
throughout	this	book.	Some	built-in	classes	that	you’ve	worked	with	so	far	are	Map,
String,	and	List.

Custom	Classes
Dart	supports	single	inheritance,	meaning	that	if	no	superclass	is	defined,	the	superclass
will	default	to	class	Object.	Classes	allow	you	to	construct	your	own	objects	in	a
declarative	fashion.	Let’s	create	your	first	class:

EXAMPLE	4.5
Click	here	to	view	code	image

class	Airplane
{
		String	color	=	“Silver”;
		String	wing	=	“Triangle”;
		int	seatCount	=	2;
		double	fuel	=	100.50;
}

main()	{
		Airplane	yourPlane	=	new	Airplane();
		Airplane	myPlane	=	new	Airplane();

		print(myPlane.wing);	//prints	”	Triangle	“
		print(myPlane.seatCount);	//prints	“2”

		yourPlane.seatCount	=	1;

		print(yourPlane.seatCount);	//prints	“1”
}

Example	4.5	accomplished	two	things.	First	it	defined	a	class	named	Airplane
with	some	public	fields.	Next,	in	the	main()	function,	it	instantiated	two	new	object
instances	of	class	type	Airplane	named	yourPlane	and	myPlane.

Upon	instantiation,	the	field	values	of	color,	fuel,	seatCount,	and	wing	for	both
yourPlane	and	myPlane	have	matching	field	values.	This	is	because	their	field	values
are	assigned	default	values,	and	both	are	created	from	the	class	Airplane.

The	Airplane	class	exposes	seatCount	as	a	public	integer,	so	you	are	able	to
modify	the	seatCount	value	by	using	dot	notation	to	access
yourPlane.seatCount.	All	public	class	fields	can	be	accessed	using	the	dot	syntax.

Why	did	you	modify	the	seatCount?	Well,	to	make	the	plane	lighter	of	course!	Let’s
add	a	method	that	will	return	the	weight	of	the	plane	(Example	4.6).

EXAMPLE	4.6
Click	here	to	view	code	image

class	Airplane
{
		String	primaryColor	=	“Silver”;
		String	wing	=	“Triangle”;
		int	seatCount	=	2;
		double	fuelCapacity	=	100.50;

		double	getWeight()	{
				return	1000	+	seatCount	+	fuelCapacity;
		}
}

main()	{
		Airplane	yourPlane	=	new	Airplane();
		Airplane	myPlane	=	new	Airplane();
		yourPlane.seatCount	=	1;
		print(‘yourplane	weight:’+	yourPlane.getWeight().toString());
		print(‘myplane	weight:	‘+	myPlane.getWeight().toString());
}
//Output:
//yourplane	weight:	1101.5
//myplane	weight:	1102.5

Inferred	Namespace
Namespaces	are	not	a	language	feature	in	Dart,	but	the	concept	exists.	A	namespace	is	an
area	in	your	program	where	a	named	identifier	can	be	called	with	only	the	unique	name,
and	no	prefix,	to	access	an	object.	Conceptually,	in	Dart,	a	namespace	is	the	sum	of	all	the
inherited	scopes.

The	“Lexical	Scope”	section	talked	about	how	curly	brackets	delineate	scope
hierarchies.	The	combined	output	of	these	inherited	scopes	creates	the	active	namespace.

If	you	look	at	the	class	statement,	you’ll	notice	that	all	the	Airplane	fields	are
wrapped	inside	a	new	class	scope	named	Airplane.

class	Airplane
{
				//declaration
				//declaration
				//declaration
				//declaration
}

When	you	instantiate	a	new	class,	you	create	a	new	instance	of	the	superclass
Object,	and	declare	additional	class	fields	by	wrapping	them	in	the	class’s	top-level
scope.	The	new	fields	are	directly	accessible	by	their	named	identifiers	within	the
namespace	of	the	class	instance.

The	caller	in	Example	4.6,	main(),	instantiates	a	new	class	instance	and	assigns	it	to
local	variable	yourPlane.	The	variable’s	named	identifier	has	access	to	all	the	fields	in
the	namespace	of	class	Airplane.	The	main()	function	calls	the	print()	function
with	an	argument	that	calls	yourPlane.getWeight().	When	getWeight()
executes,	its	function	block	is	operating	within	the	namespace	delineated	by	class
Airplane.
Click	here	to	view	code	image

class	Airplane
{
				…
				…
		double	getWeight()	{
		//	inherits	Airplane	class	scope	and	appends
		//	its	new	local	function	scope
		}
}

In	Chapter	5,	you	will	see	how	to	use	libraries	to	control	namespaces	using	the
keywords	show,	hide,	as,	part,	and	part	of.

Class	Constructors
Constructors	allow	you	to	define	a	method	signature	with	the	required	arguments	to
instantiate	a	new	object	of	a	specific	type.

Dart	has	support	for	“zero	argument	constructors.”	You	may	have	noticed	that	Example
4.5	didn’t	define	a	constructor	method,	or	a	superclass.	Let’s	modify	the	Airplane	class
(as	shown	in	Example	4.7)	to	be	a	bit	more	customizable	upon	instantiation:

EXAMPLE	4.7
Click	here	to	view	code	image

class	Airplane
{
		static	const	double	bodyWeight	=	1000.00;
		static	const	double	fuelCapacity	=	100.50;

		String	color;
		String	wing;
		int	seatCount;

		Airplane(int	seatCount,	String	color,	String	wing)	{

				this.seatCount	=	seatCount;

				this.color		=	color;
				this.wing	=	wing;
		}

		double	getWeight()	{
				return	bodyWeight	+	seatCount	+	fuelCapacity;
		}
}

main()	{	//new	scope
		Airplane	yourPlane	=	new	Airplane(1,	“White”,	“Fixed”);
		Airplane	myPlane	=	new	Airplane(2,	“Gold”,	“Triangle”);
		print(‘yourplane	weight:’+	yourPlane.getWeight().toString());
		print(‘myplane	weight:	‘+	myPlane.getWeight().toString());
}

//Output:
//yourplane	weight:	1101.5
//myplane	weight:	1102.5

Generative	Constructor
Example	4.7	appended	a	named	Airplane	constructor	function	that	accepts	three
arguments	using	standard	comma-delimited	parameters.	The	Airplane()	constructor
function	matches	the	name	of	the	Airplane	class.	This	is	referred	to	as	a	generative
constructor.	The	hardcoded	values	for	color,	wing,	or	seatCount	are	gone.	Instead
of	hardcoded	values,	the	constructor	requires	that	the	class	fields	be	assigned	by	the
arguments	that	are	passed	in	upon	instantiation.

Automatic	Class	Member	Variable	Initialization
If	you’ll	notice,	it’s	not	very	DRY	(Don’t	Repeat	Yourself)	to	have	objects	passed	into	the
constructor	and	then	immediately	assign	them	to	class	fields.	If	you’re	going	to
automatically	assign	an	argument	value	to	a	class	field,	Dart	encourages	you	to	use	the
keyword	this	inside	the	method	signature.	You	can	refactor	the	constructor	as	shown	in
Example	4.8.

EXAMPLE	4.8
Click	here	to	view	code	image

class	Airplane
{
		static	const	double	bodyWeight	=	1000.00;
		static	const	double	fuelCapacity	=	100.50;

		String	color;
		String	wing;
		int	seatCount;

		Airplane(int	this.seatCount,	String	this.color,	String	this.wing)	{
				//	You	can	leave	off	the	{	}	altogether
				//	This	whole	block	becomes	optional
}

		double	getWeight()	{
				return	bodyWeight	+	seatCount	+	fuelCapacity;
		}

}

main()	{	//new	scope
		Airplane	yourPlane	=	new	Airplane(1,	“White”,	“Fixed”);
		Airplane	myPlane	=	new	Airplane(2,	“Gold”,	“Triangle”);
		print(‘yourplane	weight:’+	yourPlane.getWeight().toString());
		print(‘myplane	weight:	‘+	myPlane.getWeight().toString());
}

//Output:
//yourplane	weight:	1101.5
//myplane	weight:	1102.5

Named	Constructors
Named	constructors	replace	the	practice	of	default	overriding	and	offer	multiple	ways	to
initialize	the	same	class	of	object.

Example	4.8	created	an	Airplane	object	that	is	initialized	with	three	optional	fields.
Let’s	say	you	have	a	different,	recurring	use	case	that	always	has	the	same	wing	type	and
color,	but	requires	a	changing	seat	value.	You	have	older	dependencies	that	require	the
previous	implementation,	so	let’s	add	a	named	constructor	for	the	specific	type	of
Airplane	as	follows:

EXAMPLE	4.9
Click	here	to	view	code	image

class	Airplane
{
		static	const	double	bodyWeight	=	1000.00;
		static	const	double	fuelCapacity	=	100.50;

		String	color;
		String	wing;
		int	seatCount;

		Airplane(int	this.seatCount,	String	this.color,	String	this.wing);

		Airplane.sparrow(int	this.seatCount){
				wing	=	“Swept”;
				color	=	“Gold”;
		}

		Airplane.robin(String	this.color){
				seatCount	=	1;
				wing	=	“Swept”;
		}

		double	getWeight()	{
				return	bodyWeight	+	seatCount	+	fuelCapacity;
		}
}

main()	{	//new	scope
		Airplane	yourPlane	=	new	Airplane(1,	“White”,	“Fixed”);
		Airplane	myPlane	=	new	Airplane(2,	“Gold”,	“Triangle”);

		Airplane	brothersPlane	=	new	Airplane.sparrow(10);
		Airplane	sistersPlane	=	new	Airplane.robin(‘red’);

		print(‘yourplane	weight:’+	yourPlane.getWeight().toString());
		print(‘myplane	weight:	‘+	myPlane.getWeight().toString());

		print(‘brothersPlane	weight:	‘+	brothersPlane.getWeight().toString());
		print(‘sistersPlane	color:	‘+	sistersPlane.color);
}

//Output:
//yourplane	weight:1101.5
//myplane	weight:	1102.5
//brothersPlane	weight:	1110.5
//sistersPlane	color:	Red

Example	4.9	adds	a	named	constructor	of	Airplane.sparrow	to	the	class.	It’s
using	automatic	initialization	to	assign	the	this.seatCount	parameter.	The
constructor’s	function	block	has	hardcoded	assignments	for	the	class’s	fields.

main()	then	instantiates	a	local	variable	named	brothersPlane	by	leveraging	the
named	constructor	sparrow	and	the	new	keyword.	All	Airplane	instances	returned
by	Airplane.sparrow	will	have	swept	wings	and	a	color	of	gold.	The	only	argument
accepted	by	the	named	constructor	sparrow	is	a	numeric	value	to	increase	the	seat
count.

A	similar	pattern	is	repeated	for	the	named	constructor	robin	and	the	variable	instance
sistersPlane.	But	in	the	case	of	robin,	the	constructor	handles	building	single-seat
airplanes	of	varying	colors.

Factory	Constructors
To	understand	a	factory	constructor,	it’s	important	to	understand	that	when	a	generative
constructor	is	invoked,	a	new	object	instance	is	created	in	memory.	For	performance
reasons,	this	can	be	a	bad	approach	to	acquiring	objects.	A	common	pattern	to	enforce
object	reuse	is	the	pooling	pattern.

In	a	pooling	implementation,	instead	of	creating	a	new	object	in	memory	on	every
request,	the	pattern	requires	a	small	group	of	objects	to	be	created	at	run	time.	When	a
new	pool	member	object	is	needed,	it’s	retrieved	from	the	pool.	Then,	instead	of
destroying	each	instance,	the	unused	object	is	returned	to	the	pool	for	later	reuse.

Factory	constructor	functions	allow	you	to	bypass	the	default	object	instantiation
process	and	return	an	object	instance	in	some	other	way.	You	could	return	an	object	from
memory	or	use	a	different	approach	to	initialization.	Factories	are	intentionally	flexible.

Factories	offload	object	creation	into	the	factory	function’s	statement	while	allowing	the
signature	of	the	instantiator	to	use	the	familiar	new	NameOfClass()	syntax.	Let’s
compare	using	a	generative	constructor	against	a	factory	constructor	for	class	Pool():
Click	here	to	view	code	image

class	Pool
{
			Pool()	{
			//do	nothing	for	the	generative	constructor
			//results	in	a	new	object	instance
		}

}

main()	{
		Pool	aPool	=	new	Pool();
		print(‘aPool:	‘	+	aPool.toString());	//aPool:	Instance	of	‘Pool’
}

Prefixing	the	existing	constructor	declaration	with	the	keyword	of	factory	will	show
the	power	of	the	factory	pattern.	With	a	factory	constructor	in	place,	you	bypass
object	creation.	Let’s	take	a	look:
Click	here	to	view	code	image

class	Pool
{
			factory	Pool()	{
				//do	nothing	in	the	factory	constructor	–	you’d	usually	return	something
		}
}

Note	that	the	calling	implementation	does	not	change,	but	instead	of	an	instance,	you
get	null:
Click	here	to	view	code	image

main()	{
		Pool	aPool	=	new	Pool();
		print(‘aPool:	‘	+	aPool.toString());	//aPool:	null
}

Let’s	rig	up	a	fake	Pool	implementation.	For	the	sake	of	brevity,	this	pool	will	always
return	a	new	Pool	instance:
Click	here	to	view	code	image

class	Pool
{
		factory	Pool()	{
				//a	pool	usually	checks	for	previously	constructed	objects	in	cache
				//if	we	had	a	cached	item,	we’d	return	it,	but	instead,	for	brevity,
				//we’ll	build	a	new	one	using	a	named	constructor
				return	new	Pool.NamedPoolConstructor();
		}

		Pool.NamedPoolConstructor();
}

This	will	result	in	an	instance	of	Pool	in	main().	It	uses	the	named	constructor
functionality	from	earlier	to	return	a	new	instance.

Regardless	of	what	the	constructor	statement	actually	looks	like,	factory	constructors
and	generative	constructors	provide	a	consistent	interface	for	acquiring	an	object	using	the
new	NameOfClass()	syntax.

Static	Variables
A	static	variable	is	an	object	that	exists	on	the	class	definition	and	not	on	the	object
instance.	If	your	current	scope	has	a	class	in	the	namespace,	you	can	access	the	static
variable	on	the	class.	The	value	of	the	static	variable	can	be	modified	(Example	4.10).

EXAMPLE	4.10

Click	here	to	view	code	image
class	Tool
{
		static	List	collection	=	[‘wrench’,	‘saw’,	‘hammer’];
}

main()	{
		Tool.collection.add(‘socket’);

		Tool.collection.forEach((String	item){
				print(‘Collection	Has	A:	$item’);
		});
}

//	Output:
//	Collection	Has	A:	wrench
//	Collection	Has	A:	saw
//	Collection	Has	A:	hammer
//	Collection	Has	A:	socket

Rather	than	instantiate	an	instance	of	Tool,	you	simply	access	the	static	variable
associated	with	the	class	Tool.

Final	Variables
A	final	variable	can	receive	only	a	single	run-time	assignment.	Its	assignment	must	occur
upon	declaration	if	being	assigned	at	run	time.	Once	a	value	is	assigned,	it	cannot	be
changed.	If	it’s	a	primitive	value,	the	primitive	value	is,	in	practice,	immutable.	If	it’s	an
object	like	a	List,	the	variable’s	reference	cannot	be	changed,	but	the	referenced	object’s
fields	are	mutable.	Final	variables	can	also	be	declared	as	static	like	any	other	variable.

EXAMPLE	4.11
Click	here	to	view	code	image

class	Runway
{
		final	String	item	=	“Asphalt”;
		final	List	materials	=	[“Asphalt”,	“Gravel”,	“Cement”];
}

main()	{
		Runway	rw	=	new	Runway();

		//primitives
		print(rw.item);	//prints	Asphalt
		rw.item	=	“Concrete”;	//Error	‘item’	cannot	be	used	as	a	setter,	its	final

		//object
		rw.materials.add(‘Sand’);	//adds	‘Sand’	to	the	List	and	modifies	its	value
		rw.materials	=	[‘Steel’];	//Error	‘Runway’	has	no	instance	setter…
}

In	Example	4.11,	you	can	access	the	value	of	String	item,	but	you	cannot	change
the	reference	of	String	item	to	a	different	string,	because	that	would	be	a	second
assignment.

You	can	add()	another	object	to	List	materials,	or	use	any	of	its	instance
methods,	as	long	as	you	do	not	assign	a	new	reference	to	the	final	variable.	The

assignment	of	a	List	literal	to	the	final	variable	encounters	the	same	restriction	as	in
the	string	example:	no	secondary	assignments	allowed.

Constants
The	Dart	language	supports	the	const	keyword,	which	results	in	values	or	identifiers	that
are	derived	and	assigned	at	compile	time.	The	values	are	then	immutable.	A	const
differs	from	a	final	in	that	finals	are	assigned	at	run	time.

Constant	Objects
Dart	supports	the	keyword	const	for	object	instantiation.	If	an	object	is	declared	as	being
instantiated	via	the	const	keyword,	it’s	assigned	a	value	at	compile	time.

A	constant	is	an	instance	that	is	initialized	with	one	of	the	following:

	A	value	of	a	primitive	type

	A	literal	value	derived	by	using	only	basic	or	bitwise	operators

	A	constant	constructor

A	const	does	not	have	access	to	any	run-time	values	or	helper	functions	to	derive	its
value.

Constant	Identifiers
Dart	supports	the	keyword	const	for	identifiers.	A	const	identifier	is	a	marked
identifier	that	is	assigned	a	constant	object	at	compile	time.	It	differs	from	a	variable	in
that	it	is	a	named	identifier,	but	its	assigned	value	also	cannot	be	changed.

EXAMPLE	4.12
Click	here	to	view	code	image

main()	{
		const	double	radar_latitude	=		40.7834390;		//primitive	double
		const	double	radar_longitude	=	-73.9773670;		//primitive	double
		const	List	radar_modes	=	const	[‘slow’,	‘medium’,	‘fast’];		//const	object

		print(radar_latitude);
		print(radar_longitude);
		print(radar_modes);

		radar_longitude	+=	100000;		//Error	–	can’t	modify
		radar_modes.add(‘Crazy	Fast’);	//Error	-	cannot	add	to	an	immutable	list
}

Example	4.12	instantiates	a	List	literal	value	at	compile	time	by	using	the	const
keyword	in	conjunction	with	the	literal	syntax.	This	is	required	for	declaring	any	non-
primitive	object	as	a	constant.	The	const	List	reference	is	then	assigned	to	a	const
identifier	of	radar_modes.

Unlike	final	variables,	properties	of	objects	that	are	marked	as	a	const	are
immutable.	You	get	an	error	when	trying	to	use	the	add()	method	on	the	List	constant
because	its	values	cannot	be	changed.

Constant	Constructors
Using	a	const	constructor	allows	a	class	of	objects	that	cannot	be	defined	using	a	literal
syntax	to	be	assigned	to	a	constant	identifier.

When	using	the	const	keyword	for	initialization,	no	matter	how	many	times	you
instantiate	an	object	with	the	same	values,	only	one	instance	exists	in	memory.	A	constant
class	shares	all	the	same	instantiation	restrictions	as	a	constant	object.

Class	fields	that	are	assigned	using	a	const	constructor	must	be	marked	as	final.
This	allows	new	instances	of	the	class	to	be	instantiated	by	the	const	keyword	or	the
new	keyword.

EXAMPLE	4.13
Click	here	to	view	code	image

class	Location	{

		final	int	x;

		final	int	y;

		const	Location(this.x,	this.y);

}

main()	{
		const	Location	gate	=	const	Location(400,	200);
		const	Location	tower	=	const	Location(500,	200);
		const	Location	tube	=	const	Location(400,	200);

		//false	–	different	values	results	on	a	new	object
		print(gate	==	tower);

		//true	–	same	class	&	values	results	in	the	same	reference
		print(gate	==	tube);

		Location	runway	=	new	Location(400,	200);
		Location	tarmac	=	new	Location(500,	200);
		Location	field	=	new	Location(400,	200);
		print(runway	==	tarmac);	//false	–	new	keyword	results	on	a	new	object
		print(runway	==	field);	//false	–	new	keyword	results	on	a	new	object
}

In	Example	4.13,	you	see	that	anything	instantiated	with	the	new	keyword	is	going	to
create	a	new	instance	in	memory,	and	despite	matching	values,	these	objects	will	be
unique.	You	also	see	that	objects	that	are	created	with	the	const	keyword	and	that	have
the	same	values	evaluate	as	equal	objects.	This	is	because	they	share	the	same	constant
object	in	memory.

Class	Inheritance
Inheritance	is	a	paradigm	in	programming	languages	that	allows	objects	to	share	traits
similarly	to	how	a	human	child	inherits	a	trait	from	a	parent.	If	a	father	has	green	eyes,	his
son	might	inherit	that	trait.	If	a	daughter	has	blonde	hair,	one	of	her	parents	or
grandparents	contributed	the	gene,	allowing	her	to	inherit	the	blonde	hair.

In	a	classical	programming	language,	inheritance	allows	a	family	of	objects	to	share
behavior	and	properties	between	related	classes	of	objects.

So	far	you’ve	learned	about	the	structure	of	a	single	class.	Being	a	classical	language,
Dart	supports	single	inheritance	on	a	class-by-class	basis.	Single	inheritance	means	that	a
class	can	directly	inherit	from	only	one	class	at	a	time.

You’ve	already	been	using	implicit	inheritance.	If	no	extended	class	is	defined,	all
classes	in	Dart	automatically	extend	the	class	Object.	Dart	implements	inheritance	when
the	extends	keyword	is	placed	after	the	class	name	declaration	followed	by	a	named
identifier	of	the	class	which	is	to	be	inherited	from.

Over	the	next	few	sections,	you’re	going	to	define	the	taxonomy	of	a	fleet	of	flying
vehicles.	You’ll	start	with	the	most	generic	and	work	your	way	to	the	most	specific.

Let’s	create	a	base	class	of	type	Vehicle	(Example	4.14).

EXAMPLE	4.14
Click	here	to	view	code	image

class	Vehicle	extends	Object	{
		void	turnOn(){
				print(‘—Turns	On—’);
		}

		void	turnOff(){
						print(‘—Turns	Off—’);
				}
}

So	far	this	looks	like	the	classes	you’ve	already	been	working	with.	You’ll	notice	that
you’ve	declared	two	methods,	turnOn()	and	turnoff().	These	actions	are	a	common
trait	of	almost	any	vehicle,	so	they	go	into	the	base	class.	You	will	notice	that	the
constructor	method	is	left	off.	Dart	will	implicitly	provide	a	constructor	with	no
parameters.	Let’s	evolve	the	Vehicle	class	by	using	inheritance	and	by	defining	a	new
class	(Example	4.15).

EXAMPLE	4.15
Click	here	to	view	code	image

class	Aircraft	extends	Vehicle	{
		String	name	=	“Aircraft”;
		String	fuelType;
		String	propulsion;
		int	maxspeed;

		void	goForward()	{
				print(‘—$name	moves	forward—’);
		}
}

By	using	the	keyword	extends,	you’re	declaring	that	a	class	of	Aircraft	should
acquire	all	the	fields	and	default	behavior	provided	in	class	Vehicle.	You	then	define
properties	that	would	be	common	traits	of	all	Aircraft.	Let’s	take	a	look	at	an
implementation	in	Example	4.16.

EXAMPLE	4.16
Click	here	to	view	code	image

	main()	{
		Aircraft	craft	=	new	Aircraft();	//uses	the	implicit	class	constructor
		craft.turnOn();	//inherits	from	Vehicle
		craft.goForward();	//defined	only	in	Aircraft
		craft.turnOff();	//inherits	from	Vehicle
}

//Output:
//—Turns	On—
//—Aircraft	moves	forward—
//—Turns	Off—

Next,	let’s	assume	that	when	speaking,	a	person	wouldn’t	say,	“I’m	going	to	go	for	a
ride	in	my	aircraft.”	A	listener	might	infer	some	of	the	behaviors	associated	with	that
statement,	but	it’s	still	vague.	An	aircraft	can	be	many	things.	Instead,	they	would	refer	to
something	more	concrete,	such	as	a	blimp	or	a	plane.	You	don’t	have	enough	details	in	the
Aircraft	class	in	Example	4.16,	so	you’re	going	to	declare	Aircraft	as	an
abstract	class	and	build	out	a	more	concrete	implementation	with	a	few	different	types
of	aircraft.

Abstract	Classes
An	abstract	class	in	Dart	is	a	class	used	to	share	behavior	among	descendent	classes.
Abstract	classes	cannot	be	directly	instantiated.	You’re	going	to	prefix	the	existing	class
declaration	using	the	abstract	keyword.
Click	here	to	view	code	image

abstract	class	Aircraft	extends	Vehicle	{
		…
		…
}

In	the	implementation	from	Example	4.16,	on	the	line	with	new	Aircraft(),	there
is	now	an	error:	'Abstract	classes	cannot	be	created	with	a	'new'
expression'.	To	fix	this,	let’s	create	some	concrete	implementations	of	Aircraft:

EXAMPLE	4.17
Click	here	to	view	code	image

class	Blimp	extends	Aircraft
{
		Blimp(int	maxspeed)	//explicit	class	constructor
		{
				this.maxspeed	=	maxspeed;	//assigns	values	to	superclass	fields
				this.name	=	“Blimp”;	//assigns	values	to	superclass	fields
		}
}

main()	{
		Aircraft	craft	=	new	Blimp(73);
		craft.turnOn();
		craft.goForward();
		craft.turnOff();
}

//Ouput:
//—Turns	On—
//—Blimp	moves	forward—

//—Turns	Off—

Example	4.17	creates	a	concrete	class	Blimp.	Class	Blimp	inherits	from	Aircraft,
which	inherits	from	the	Vehicle	class.	Blimp	has	an	explicit	class	constructor	that	has
a	parameter	of	maxspeed.	The	class	Blimp	has	a	namespace	that	now	includes	the
inherited	fields	from	each	of	the	parent	classes.

Polymorphism
Although	Example	4.17	instantiates	an	instance	of	class	Blimp,	you	assign	the	object	to	a
variable	of	type	Aircraft.	Dart	supports	polymorphism.	Polymorphism	allows	a	family
of	objects	to	adhere	to	a	single	interface	while	allowing	different	implementations.	Let’s
add	another	concrete	class	named	Plane	(Figure	4.1).

EXAMPLE	4.18
class	Plane	extends	Aircraft
{
		Plane()
		{
				this.maxspeed	=	537;
				this.name	=	“Plane”;
		}

		void	showSmoke()
		{
				print(‘—Show	Smoke—’);
		}
}

main()	{
		Aircraft	craft;
		craft	=	new	Blimp(73);
		craft.turnOn();
		craft.goForward();
		craft.turnOff();

		craft	=	new	Plane();
		craft.turnOn();
		craft.goForward();
		craft.turnOff();
}

//Output:
//—Turns	On—
//—Blimp	moves	forward—
//—Turns	Off—

//—Turns	On—
//—Plane	moves	forward—
//—Turns	Off—

FIGURE	4.1	Inheritance	chain	and	class	interfaces

Example	4.18	defines	a	new	concrete	implementation	named	Plane,	which,	just	like
Blimp,	also	extends	the	class	Aircraft.	The	main()	function	declares	a	local
variable	of	type	Aircraft.

Using	polymorphism,	you	can	instantiate	Blimp	and	Plane	and	assign	them	to	the
variable	of	type	Aircraft.	Since	both	are	descendants	of	Aircraft,	you	can	act
upon	their	shared	properties.	Each	object	instance	retains	its	own	distinctive	class
properties	and	instance	values,	and	their	output	is	unique	to	each	object’s	respective	class
instance.

Plane	implements	a	custom	method	of	showSmoke(),	which	is	not	part	of	the
parent	class	Aircraft.	This	means	that	although	you	have	an	instance	of	Plane,	the
variable	of	type	Aircraft	does	not	know	about	Plane’s	implementation.	If	you	want
to	access	showSmoke()	through	a	variable,	you	will	have	to	assign	the	Plane	instance
to	a	variable	of	type	Plane.
Click	here	to	view	code	image

main()	{
…
//craft.showSmoke();	//The	method	‘showSmoke’	is	not	defined	for	the	class
Plane	aPlane	=	new	Plane();
aPlane.showSmoke();	//prints	—Show	Smoke	—
}

Abstract	Methods
An	abstract	method	establishes	an	interface	but	cannot	contain	execution	details.	Any
subclasses	must	have	their	own	implementation	for	a	declared	abstract	method.

To	declare	a	method	as	abstract,	do	not	use	the	curly	braces	in	your	abstract	class
(Example	4.19).	The	containing	class	must	also	be	marked	as	abstract.

EXAMPLE	4.19
Click	here	to	view	code	image

abstract	class	Being	extends	Object
{
		Being()
		{
				print(‘—	Init	Being—’);
		}

		//this	is	an	example	of	an	abstract	method	-	no	execution	statement
		void	exist();
}

class	Human	extends	Being
{
		void	exist(){
				print(‘I	am	I’);	//this	is	the	implementation	in	the	subclass
		}

}

main()
{
		Being	woman	=	new	Human();

		//woman	is	a	variable	with	an	abstract	class	type	with	a	concrete	instance
		woman.exist();
}

When	you	implement	a	concrete	class	that	descends	from	a	superclass	with	an	abstract
method,	if	the	required	method	is	not	yet	defined	the	interpreter	will	alert	you	that
'Missing	concrete	implementation	of	exist'.	This	alerts	all	subclasses
that	there	is	an	expectation	that	they	implement	the	abstract	method.

Super	Constructors
Part	of	inheritance	is	defining	the	hierarchy	of	object	instantiation.	The	super()	method
on	a	class	constructor	allows	a	subclass	to	pass	arguments	and	execute	the	constructor	of
its	superclass.	The	super()	method	is	accessed	using	a	semicolon	delimiter	off	the
constructor	method,	like	this:

Constructor():super()

Super	constructors	give	the	subclass	the	flexibility	to	custom-tailor	constructor
parameters	and	initialize	its	own	class	fields.	The	parameters	are	passed	from	the	outside
in,	with	the	top-most	class	in	the	hierarchy	being	instantiated	first.

Implicit	super
If	no	parameters	are	defined	in	a	superclass	constructor,	you	can	bypass	the	call	to
:super()	in	your	subclass.	The	superclass	constructor	in	Example	4.20	will	be	called
implicitly.

EXAMPLE	4.20

Click	here	to	view	code	image
abstract	class	Vertebrate	extends	Object
{
		Vertebrate()
		{
				print(‘Vertebrate	is:	Spined’);
		}
}

class	Cat	extends	Vertebrate
{
		Cat	()	//an	implicit	call	to	:super()	occurs	prior	to	executing	constructor
		{
				print(“Cat	Is:	Alive”);
		}
}

main()
{
		Cat	pet	=	new	Cat	();
}

//Output:
//Vertebrate	is:	Spined
//Cat	Is:	Alive

Upon	Cat	instantiation,	the	superclass	constructor	for	Vertebrate	is	implicitly
executed.	Upon	the	completion	of	the	Vertebrate	constructor,	control	is	passed	back
to	the	descendant	class	Cat	constructor.

Explicit	super()
If	your	constructors	define	parameters,	you	must	make	a	call	to	:super()	via	the
subclass	constructor	and	provide	the	requested	arguments	(Figure	4.2).

EXAMPLE	4.21
Click	here	to	view	code	image

abstract	class	Vertebrate	extends	Object
{
	Vertebrate(String	action)
		{
				print(‘Vertebrate	is:	$action’);	//first	statement	executed
		}
}

abstract	class	Bird	extends	Vertebrate
{
		Bird(String	action):super(‘Spined’)
		{
				print(‘Bird	is:	$action’);
		}
}

class	Finch	extends	Bird
{
		String	color;
		Finch(this.color):super(‘Winged’)
		{
				print(‘Finch	is:	$color’);

		}
}

main()
{
				Bird	animal	=	new	Finch(“Yellow”);
}

//Output:
//Vertebrate	is:	Spined
//Bird	is:	Winged
//Finch	is:	Yellow

FIGURE	4.2	Inheritance	chain	and	execution	order

In	Example	4.21,	you	see	the	instantiation	of	a	Finch	object	with	an	argument	of
Yellow.	The	argument	Yellow	will	eventually	be	assigned	to	the	field	color	inside	of
class	Finch.

Assignment	of	field	color	will	occur	after	the	classes	higher	in	the	inheritance	chain
have	finished	instantiation.	The	statement	:super('Winged')	is	interpreted	prior	to
the	instantiation	of	class	Finch.	The	statement	:super('Spined')	is	interpreted
prior	to	the	instantiation	of	class	Bird.

Once	you	reach	the	top-most	class	in	the	hierarchy,	the	Vertebrate	constructor
statement	is	executed.	Upon	the	completion	of	the	Vertebrate	constructor,	control	is
passed	back	to	the	descendant	class	constructors	in	a	“last	in,	first	out”	order.

	Note

Instantiation	of	Object	occurs	first.	Object	uses	an	implicit
unparameterized	constructor,	so	no	call	to	Object():super()	is	needed.

Interfaces
An	interface	enforces	that	a	class	implements	a	set	list	of	public	fields	and	methods.

Each	class,	by	default,	defines	its	own	interface	composed	of	public	fields	and	methods.
Dart	has	the	ability	to	implement	several	interfaces.	The	keyword	implements	allows	a
class	to	adhere	to	multiple	interfaces	and	increase	an	object’s	polymorphic	range.

The	keyword	implement	is	followed	by	an	existing	named	class	whose	public	fields
then	become	implementation	requirements	for	the	current	class.	Let’s	reuse	the	code	from
Example	4.21	and	have	the	Finch	class	implement	the	abstract	class	Being	as	an
interface.

	Note

It’s	important	to	remember	that	Dart	supports	only	single	inheritance,	and
inheritance	shares	behavior	between	classes.	Interfaces	do	not	share	behavior.

You	decide	that	you	want	your	feathered	friends	to	have	the	same	rights	as	their	human
counterparts.	You’re	going	to	use	the	Being	class	from	Example	4.19	as	an	interface	for
class	Finch.	The	Being	class	has	an	object	surface	area	with	one	abstract	method,
named	exist().	The	Finch	class	is	already	inheriting	from	class	Bird.

To	make	Finch	a	Being,	you’re	going	to	implement	the	Being	interface	in
Example	4.22.

EXAMPLE	4.22
Click	here	to	view	code	image

abstract	class	Being

{
		Being()
		{
				print(‘—	Init	Being—’);
		}

		void	exist();
}

abstract	class	Vertebrate	extends	Object
{
	Vertebrate(String	action)
		{
				print(‘Vertebrate	is:	$action’);
		}
}

abstract	class	Bird	extends	Vertebrate
{
		Bird(String	action):super(‘Spined’)
		{
				print(‘Bird	is:	$action’);
		}
}

class	Finch	extends	Bird	implements	Being

{
		String	color;
		Finch(this.color):super(‘Winged’)
		{
				print(‘Finch	is	:	‘	+	this.color.toString());
		}

		void	exist()

		{

				print(‘—I	am	a	$color	Finch—’);
		}

}

main()	{
		Being	aBeing	=	new	Finch(“yellow”);
		aBeing.exist();		//prints	—I	am	a	Yellow	Finch—

		Bird	aBird	=	new	Finch(“Yellow”);
		aBeing	=	aBird	as	Being;
		aBeing.exist();	//prints	—I	am	a	Yellow	Finch—

		print(aBird	is	Bird);	//prints	true
		print(aBird	is	Finch);	//prints	true
		print(aBird	is	Vertebrate);	//prints	true
		print(aBird	is	Being);	//prints	true
}

An	interface	does	not	share	behavior	and	defines	only	available	fields	and	methods.	If
you	do	not	implement	the	fields	required	from	the	interface,	you	will	receive	an	error.

Let’s	see	what	happens	if	the	class	Being	changes	to	a	concrete	implementation
(Example	4.23),	while	leaving	it	as	the	interface	for	class	Finch.

EXAMPLE	4.23
Click	here	to	view	code	image

class	Being	extends	Object
{
		Being()
		{
				print(‘—	Init	Being—’);
		}

		void	exist()	{

				print(‘—I	am	Being	and	I	exist—’);
		}

}

main()	{
		Being	aBeing	=	new	Finch(“yellow”);
		aBeing.exist();	//still	prints	—I	am	a	Yellow	Finch—
}

Even	if	you	change	class	Being	to	a	concrete	class,	with	a	concrete	implementation	of
exists(),	the	change	will	have	no	effect	on	the	classes	that	implement	its	interface.
Again,	interfaces	do	not	share	behavior;	they	only	enforce	available	fields.

Mixins
Dart	supports	mixins	using	the	with	keyword.	Mixins	allow	you	to	share	behavior
between	unrelated	classes.	A	class	that	is	“mixed	in”	must	be	constructed	with	the
following	rules:

	The	class	that	is	being	mixed	into	another	class	must	be	a	direct	descendent	of

Object.	It	must	not	extend	another	class.

	It	does	not	define	any	constructor	parameters	and	never	makes	an	explicit	call	to
super().

By	avoiding	inheritance	and	class	constructor	requirements,	mixins	become	candidates
to	append	additional	behavior	to	any	class	of	object.

Let’s	create	a	Bacteria	class	that	uses	a	generic	mixin	named	Printify.	The
Printify	mixin	(Example	4.24)	will	append	the	print	convention	that	you’ve	been
using	to	allow	objects	to	talk	in	their	own	voice.	These	print	statements	included	a
prefix	and	suffix	String.

EXAMPLE	4.24
Click	here	to	view	code	image

class	Printify
{
		String	sides	=	‘—’;
		void	say(String	output)	{
				print(‘$sides	$output	$sides’);
		}
}

class	Bacteria	extends	Object	with	Printify
{
		Bacteria()
		{
				say(“…..”);
		}
}

main()	{
		Bacteria	life	=	new	Bacteria();		//prints	—	…..	—
}

In	the	terrifying	circumstance	where	Bacteria	becomes	self	aware,	you	decide	to
make	Bacteria	a	descendant	of	the	concrete	class	of	Being	(Example	4.25).	You	can
do	this	because	the	Printify	functionality	is	mixed	in	and	is	in	no	way	a	member	of	the
inheritance	chain.

EXAMPLE	4.25
Click	here	to	view	code	image

class	Bacteria	extends	Being	with	Printify
{
		Bacteria()
		{
				say(“I	am	Bacteria”);
		}
}

main()	{
		Bacteria	life	=	new	Bacteria();
		life.exist();
}

//Output:

//—	Init	Being—
//—	I	am	Bacteria	—
//—	I	am	Being	and	I	exist—

Summary
In	this	chapter,	you’ve	gone	from	working	with	single	variable	instances	to	working	with
complex	object	hierarchies.	You’ve	looked	at	various	approaches	to	sharing	behaviors,
encapsulating	data,	and	controlling	value	states.

The	next	chapter	looks	at	how	to	share	the	classes	using	packages	and	libraries.

You	should	Now	Know
	The	difference	between	a	local	variable	and	a	class	field

	About	function	scope	and	class	scope

	How	class	namespace	works,	and	how	it	interacts	with	lexical	scope

	How	to	define	a	class	using	generative	constructors	and	parameter	initialization

	How	to	define	a	class	using	factory	constructors

	What	the	factory	keyword	implies	about	object	instantiation

	How	to	define	static	functionality

	The	impact	of	variable	assignments	using	the	keywords	final	and	const

	How	to	define	class	taxonomies	using	classical	inheritance

	The	implications	of	using	the	abstract	keyword	on	classes	and	methods

	What	polymorphism	is	and	how	to	leverage	it

	How	to	share	behavior	using	inheritance,	mixins,	and	interfaces

Chapter	5.	Packages	and	Libraries

Libraries	are	powerful	tools	for	creating	and	distributing	components	in	Dart.	Libraries
give	you	an	additional	level	of	abstraction	to	reuse	your	classes	and	methods,	while
keeping	your	namespace	clean	and	your	designs	modular.	Libraries	are	also	the	foundation
for	Dart’s	package	system,	Pub.	It	is	Dart’s	central	repository	for	shared	packages.	This
chapter	looks	at	the	constructs	around	libraries,	their	directory	structures,	and	how	to
convert	them	to	packages	and	publish	them.	Libraries	help	you	adhere	to	the	“separation
of	concern”	principle,	which	advises	breaking	your	code	into	distinct	units,	where	each
unit	is	an	expert	on	only	one	subject.

Since	the	first	launch	of	your	application,	you’ve	been	using	libraries	in	Dart.	When
you	define	your	application	entry	point	file,	you	are	loading	an	implicit	library	into	the
Dart	VM.

Your	First	Library
In	this	chapter,	you	will	build	out	two	libraries	and	explore	the	access	modifiers	that	Dart
gives	you	to	properly	encapsulate	your	code.	One	library	will	be	the	primary	application,
named	airport,	and	it	will	request	functionality	from	a	library	named	field.

To	start,	you’ll	set	up	this	chapter’s	project	to	mirror	the	structure	in	Figure	5.1.

1.	Navigate	to	your	~/projects	folder	on	your	operating	system.

2.	Create	a	folder	named	city.

3.	Open	the	JetBrains	IDEA	Editor.

4.	Select	Open	from	the	splash	screen,	or	select	Open	from	under	the	File	menu.

5.	In	the	dialog,	navigate	to	your	~/projects	folder.

6.	Highlight	the	city	folder,	and	click	Choose	to	select	it.

This	imports	your	city	project	folder	into	IDEA.	Next,	you’ll	create	some	folders
inside	your	city	project	folder.

7.	On	the	left	side	of	the	editor	in	the	IDE’s	Project	panel,	Control-click	the	city
folder,	and	choose	New	>	Directory.	Name	the	new	directory	bin.

8.	Create	another	new	directory	inside	your	airline	folder,	and	name	it	lib.

9.	Navigate	into	the	city	folder	on	the	left	side	of	the	editor.	Then,	inside	your	bin
folder,	create	a	file	named	airport.dart.

10.	Navigate	into	the	city	folder	on	the	left	side	of	the	editor.	Then,	inside	your	lib
folder,	create	a	file,	and	name	it	field.dart.

The	resulting	directory	structure	should	look	like	Figure	5.1.

FIGURE	5.1	Directory	view

11.	Add	the	code	from	Example	5.1	to	the	airport.dart	file.

The	example	includes	the	declaration	of	a	library,	with	a	named	identifier	of
airport.	The	code	is	a	basic	application	entry	point	like	you	have	used	throughout
the	book.

EXAMPLE	5.1
Click	here	to	view	code	image

library	airport;

main()	{
		print(‘Welcome	To	The	City	Airport’);
}

12.	Run	airport.dart.

There	is	no	discernible	effect	at	run	time,	but	you’ve	just	declared	a	library	named
airport.	Let’s	create	a	second	library	and	make	it	accessible	to	your	airport
library.

13.	Open	the	field.dart	file	from	the	lib	folder	inside	your	city	projects	folder.

14.	Add	the	code	in	Example	5.2.

EXAMPLE	5.2
Click	here	to	view	code	image

library	field;

void	gotoField(){
		print(‘—goto	air	field—’);
}
class	Hangar{

		Hangar(){
				print(‘—init	hangar—’);
		}
		void	openDoor(){
				print(‘—open	hangar	door—’);
		}
}
class	Toolbox{
		Toolbox(){
				print(‘—init	Toolbox—’);
		}
		void	openLid(){
				print(‘—open	Toolbox	Lid—’);
		}
}

Library
Example	5.2	uses	the	keyword	library	with	a	named	identifier	of	field	to	define	a
new	library.	Within	the	field	library’s	scope,	you	have	two	classes	and	a	method.	You
can	now	share	this	with	your	airport	library	as	seen	in	Example	5.3.

EXAMPLE	5.3
Click	here	to	view	code	image

library	airport;
import	‘../lib/field.dart’;

main()	{
		print(‘Welcome	To	The	City	Airport’);
		gotoField();	//Function	member	of	library	field	–	exposed	on	import
field.dart
		Hangar	aHangar	=	new	Hangar();	//Class	Hangar	is	member	of	library	field
		Toolbox	portbox	=	new	Toolbox();	//Class	Toolbox	is	member	of	library	field
}

//Output:
//Welcome	To	The	City	Airport
//—goto	air	field—
//—init	hangar—
//—init	Toolbox—

Import
Example	5.3	introduces	the	concept	of	an	import	keyword.	An	import	uses	a	relative
path	to	load	the	targeted	file’s	members	into	the	current	library’s	scope.	You	now	have
class	Hangar,	class	Toolbox,	and	function	gotoField()	exposed	to	the	current
namespace	(Figure	5.2).	To	follow	the	metaphor,	an	airport	is	a	busy	place	with	many
elements;	it	includes	a	field,	but	a	field	is	such	a	complex	area	of	an	airport	that	it	warrants
its	own	domain	expert.

FIGURE	5.2	Imported	library

Dart	allows	you	to	assign	an	imported	library	to	its	own	named	identifier.	This	allows
you	to	avoid	namespace	collisions,	or	to	simply	keep	track	of	what	library	a	caller	is
accessing	(Example	5.4).

EXAMPLE	5.4
Click	here	to	view	code	image

library	airport;
import	‘../lib/field.dart’	as	theField;

main()	{
		print(‘Welcome	To	The	City	Airport’);
		//Function	member	of	library	field	–	exposed	on	import	field.dart
		theField.gotoField();

		//Class	Hangar	is	member	of	library	field
		theField.Hangar	aHangar	=	new	theField.Hangar();

		//Class	Toolbox	is	member	of	library	field
		theField.Toolbox	portbox	=	new	theField.Toolbox();
}

Hide	and	Show
The	keywords	hide	and	show	act	as	modifiers	to	the	import	statement.	They	allow
you	to	pick	and	choose	a	subset	of	functionality	from	an	imported	file,	and	expose	only
the	named	items	to	the	current	namespace.	Using	this	approach,	the	calling	library	can
control	the	exposure	of	methods,	classes,	and	variables	from	the	targeted	file.

Modify	your	main()	function	to	match	the	code	in	Example	5.5:

EXAMPLE	5.5
Click	here	to	view	code	image

library	airport;
import	‘../lib/field.dart’	show	gotoField	show	Hangar;

main()	{
		print(‘Welcome	To	The	City	Airport’);
		gotoField();

		Hangar	aHangar	=	new	Hangar();
		Toolbox	portbox	=	new	Toolbox();	//Error:	Undefied	class	‘Toolbox’
}

In	Example	5.5,	you	are	using	the	show	keyword	to	expose	only	function	gotoField
and	class	Hangar.	The	other	members	from	field.dart	are	ignored,	including	class
Toolbox.	This	results	in	an	error	when	instantiating	class	Toolbox.	You	can	achieve
similar	results	using	the	keyword	hide	in	Example	5.6.

EXAMPLE	5.6
Click	here	to	view	code	image

library	airport;
import	‘../lib/field.dart’	hide	Toolbox;

main()	{
		print(‘Welcome	To	The	City	Airport’);
		gotoField();

		Hangar	aHangar	=	new	Hangar();
		Toolbox	portbox	=	new	Toolbox();	//Error:	Undefined	class	‘Toolbox’
}

In	Example	5.6,	you	are	using	the	hide	keyword	to	explicitly	remove	class	Toolbox.
The	other	members	from	field.dart	are	still	exposed.

Visibility	and	Privacy
Dart	has	privacy	on	a	library	level	to	help	assist	with	object	encapsulation.	This	means
you	can	designate	library	members	as	private,	and	they	will	not	be	exposed	to	the	external
libraries	that	implement	them.

To	mark	a	member	as	private,	simply	prefix	the	named	identifier	with	an	underscore.
This	stands	in	contrast	to	many	other	C-style	languages,	which	enable	privacy	on	a	class
level	and	use	specific	keywords,	such	as	private	or	public,	to	designate	the	exposure
of	their	members.

1.	Using	Example	5.7,	add	some	fence	functionality	to	the	field.dart	library.

EXAMPLE	5.7	field.dart
Click	here	to	view	code	image

library	field;

String	_fenceKey=	“A1B2C3”;

void	openFence(key)	{
		if(key	==	_fenceKey)	{
				print(‘—fence	swings	open—’);
		}
}

void	gotoField()	{
		print(‘—goto	hangar—’);
		openFence(_fenceKey);
}

class	Hangar{
		Hangar(){
				print(‘—init	hangar—’);
		}

		void	openDoor(){
				print(‘—open	hangar	door—’);
		}
}

class	Toolbox{
		Toolbox(){
				print(‘—init	Toolbox—’);
		}

		void	openLid(){
				print(‘—open	Toolbox	Lid—’);
		}
}

Example	5.7	declared	a	string	variable	named	_fenceKey.	By	prefixing	the	name
with	an	underscore,	you	are	initializing	it	as	a	private	member	of	the	field	library.
Because	scope	is	on	a	library	level,	all	members	in	the	field	library	have
_fenceKey	accessible	in	their	namespace.

2.	Modify	the	airport.dart	to	run	the	new	fence	functionality	(Example	5.8).

EXAMPLE	5.8	airport.dart
Click	here	to	view	code	image

library	airport;
import	‘../lib/field.dart’;

main()	{
		print(‘Welcome	To	The	City	Airport’);
		gotoField();

		Hangar	aHangar	=	new	Hangar();
		Toolbox	portbox	=	new	Toolbox();
}

//Output:
//Welcome	To	The	City	Airport
//—goto	hangar—
//—fence	swings	open—
//—init	hangar—
//—init	Toolbox—

3.	Run	the	app.	The	fence	successfully	swings	open.

4.	Try	to	access	that	same	key,	but	from	the	airport	library	as	shown	in	Example
5.9.

EXAMPLE	5.9
Click	here	to	view	code	image

library	airport;

import	‘../lib/field.dart’;

main()	{
		print(‘Welcome	To	The	City	Airport’);
		gotoField();

		Hangar	aHangar	=	new	Hangar();
		Toolbox	portbox	=	new	Toolbox();

		openFence(_fenceKey);	//undefined	name	_fenceKey
}

In	Example	5.9,	you	see	that	the	function	openFence()	from	the	library	field
is	exposed	to	the	airport	library.	However,	when	you	try	to	access	the	variable
_fenceKey	from	field,	you	get	an	undefined	error.	This	is	expected.	As
illustrated	by	Figure	5.3,	the	member	openFence	is	public,	and	the	member
_fenceKey	is	private	and	thus	not	available	to	the	external	library	airport.

FIGURE	5.3	Imported	library	with	private	fields

5.	Delete	the	broken	line	containing	openFence()	to	fix	this	problem.

Privacy	rules	are	all-inclusive;	you	are	either	a	member	of	the	library	and	have
access	to	private	members,	or	you	are	not	part	of	the	library	and	do	not	know	the
members	exist.

6.	Modify	the	functionality	of	class	Toolbox	and	function	gotoField,	from
Example	5.9,	to	match	Example	5.10.

EXAMPLE	5.10
Click	here	to	view	code	image

library	field;
…

class	Toolbox{

		Toolbox()	{
				print(‘—init	Toolbox—’);
				openLid();
				_closeLid();	//constructor	can	access	private	method	from	same	library
		}

		void	_closeLid()
		{
				print(‘—close	Toolbox	Lid	—’);
		}

		void	openLid()
		{
				print(‘—open	Toolbox	Lid—’);
		}
}

void	gotoField()
{
		print(‘—goto	air	field—’);
		Toolbox	hangarbox	=	new	Toolbox();

		hangarbox.openLid();
		hangarbox._closeLid();

}

Example	5.10	added	a	private	method	of	_closeLid()	to	the	class	Toolbox.
The	private	method	can	be	called	by	the	Toolbox()	constructor	since	the
constructor	is	part	of	the	same	library.

A	Toolbox	instance	is	instantiated	to	a	local	variable	inside	of	function
gotoField().	The	variable	instance	hangarbox	is	also	able	to	execute	its
_closeLid()	method	since	the	instance	hangarbox	is	scoped	inside	of	library
field.

7.	Modify	the	airport	library	to	match	Example	5.11.

This	code	tries	to	instantiate	an	instance	of	the	same	Toolbox	class	to	an	instance
inside	library	airport.	The	variables	method	_closeLid()	will	not	be
accessible.

EXAMPLE	5.11
Click	here	to	view	code	image

library	airport;
import	‘../lib/field.dart’;

main()	{
		print(‘Welcome	To	The	City	Airport’);
		gotoField();

		Hangar	aHangar	=	new	Hangar();
		Toolbox	portbox	=	new	Toolbox();
		portbox.openLid();
		portbox._closeLid();	//Error:	_closeLid()	is	not	defined	on	class	Toolbox
}

As	you	can	see	in	Example	5.11,	when	you	use	an	import	statement	to	load	a	file
into	the	caller’s	namespace,	you	do	not	get	access	to	the	private	members	from	the
imported	library.	Libraries	are	designed	to	allow	the	author	to	limit	the	surface	area
of	their	exposed	interface.	This	makes	distributed	libraries	clear	for	other	developers
to	understand.

8.	Delete	the	line	that’s	causing	the	error.

part	and	part	of
The	part	keyword	is	similar	to	import	in	that	part	loads	the	named	file	into	its
caller’s	namespace.	However,	part	expects	the	loaded	file	to	have	a	declaration	of	part
of	with	a	value	that	matches	the	named	library	identifier	of	the	caller.	This	creates	a
bidirectional	pairing	between	both	part	and	part	of.

Dart’s	part	and	part	of	keywords	are	closely	linked	to	library-level	privacy.	In

Dart,	part	and	part	of	establish	a	relationship	between	a	named	library	and	partial
library	files.	When	loaded,	the	part	of	keyword	exposes	the	loaded	files’	public	and
private	members	to	the	named	library.	This	allows	shared	private	fields	from	a	library	to
span	across	multiple	files,	while	hiding	private	members	from	external	libraries.

1.	Inside	the	lib	folder,	create	a	partial	file	named	cargo.dart	(Figure	5.4).

EXAMPLE	5.12	cargo.dart
Click	here	to	view	code	image

part	of	field;

void	gotoBaggageWindow()
{
		print(‘—goto	the	baggage	building	window—’);
}
void	_grabBags()
{
		print(‘—A	bag	from	cargo	is	passed	back—’);
}
class	Baggage{
				Baggage()	{
						print(‘—Im	the	bag	man	-	i	have	a	passcode	of:	$_passcode’);
				}
				void	tryGrabBag(key)
				{
						if(key	==	_passcode)
						{
								_grabBags();
						}	else	{
								print(‘—Bag	man	says:	you	are	not	authorized’);
						}
				}
}

FIGURE	5.4	Directory	view

In	Example	5.12,	notice	that	you	are	declaring	the	second	part	of	the	bidirectional
pairing	with	the	part	of	keyword	for	a	library	named	field.	That	means	that
this	partial	expects	to	be	loaded	into	the	library	field,	and	that	field	will
have	access	to	all	the	fields	from	cargo.dart.

Also	notice	that	you	created	a	private	function	named	_grabBags()	and	a	class	of
Baggage.	Class	Baggage	is	using	string	interpolation	on	a	variable	named
_passcode	that	is	not	declared	in	this	partial.

2.	Load	this	partial	(Example	5.13)	into	the	field	library	in	field.dart	by
appending	the	following:

EXAMPLE	5.13	field.dart
Click	here	to	view	code	image

library	field;
part	“cargo.dart”;

String	_fenceKey	=	“A1B2C3”;
String	_passcode	=	“007”;

void	gotoField()
{
		print(‘—goto	air	field—’);
		_grabBags();	//example	of	access	to	cargo.darts	private	members
}
…

In	Example	5.13,	notice	that	you	loaded	the	partial	library	file	cargo.dart	into

library	field	by	using	keyword	part	and	not	keyword	import.

By	using	part,	you	not	only	load	the	file,	but	also	complete	the	bidirectional
pairing.	With	the	pairing	complete,	field.dart	and	cargo.dart	are	joined
together	to	create	a	single	library	named	field.

By	loading	the	members	from	cargo.dart	into	library	field,	you’ve
exposed	the	private	method	_grabBags()	to	the	rest	of	library	field.

Let’s	continue	the	metaphor.	Back	in	library	airport,	thanks	to	library	access
modifiers,	patrons	who	are	wandering	around	do	not	have	access	such	that	they	can
just	grab	bags	off	the	field—that	would	be	insecure.	Instead,	you	need	to	instantiate
someone	who	has	access	privileges.

3.	Update	airport.dart	to	match	Example	5.14.

EXAMPLE	5.14	airport.dart
Click	here	to	view	code	image

library	airport;
import	‘../lib/field.dart’;

main()	{
		print(‘Welcome	To	The	City	Airport’);
		gotoField();	//member	of	field.dart	-	exposed	by	import	library	field
		gotoBaggageWindow();	//member	of	cargo.dart	-	exposed	by	import	library
field
		//	_grabBags();	//a	private	member	of	library	field,	not	available	to
airport
		//member	of	cargo.dart	-	exposed	via	library		field
		var	bagman	=	new	Baggage();
		//Baggage	accesses	_passcode	defined	in		field.dart
		bagman.tryGrabBag(‘dunno’);
		//Baggage	accesses	_grabBags()	defined	in		cargo.dart
		bagman.tryGrabBag(‘007’);

}

//Welcome	To	The	City	Airport
//—goto	air	field—
//—A	bag	from	cargo	is	passed	back—
//—goto	the	baggage	building	window—
//—Im	the	bag	man	-	i	have	a	passcode	of:	007
//—Bag	man	says:	you	are	not	authorized
//—A	bag	from	cargo	is	passed	back—

In	Example	5.14,	you’re	back	to	using	the	import	keyword	to	load	library
field	into	the	namespace	of	library	airport.	Because	this	is	a	library
importing	another	library,	you	do	not	execute	a	bidirectional	handshake	that	would	be
required	to	access	the	private	members	of	library	field.	However,	when	you
instantiate	an	instance	of	a	class	member	of	library	field,	such	as	class	Baggage,
that	instance	has	access	rights	to	all	of	library	field’s	private	members.	When	a
bagman	grabs	a	bag,	he	needs	to	supply	the	proper	key.	His	first	attempt	fails	because	he
doesn’t	know	the	key.	The	second	attempt	passes	because	the	provided	string	argument
matches	the	value	of	the	private	password	inside	the	field	library.

	Note

Access	modifiers	prevent	access	only	to	objects	for	your	code.	It’s	not	a	form
of	computer	security	to	ward	off	hackers.

Packages	and	pubspec.yaml
Packages	in	Dart	are	libraries	that	you	share	locally	or	publicly	via	the	Pub	repositories.
Pub	is	a	shared	repository	of	third-party	packages	that	can	be	downloaded	and	installed	at
https://pub.dartlang.org.	To	enable	Pub	support,	a	project	needs	to	contain	a
pubspec.yaml	file	in	the	root	directory	of	the	project.

pubspec.yaml	is	a	file	used	by	the	Pub	task	runner	to	both	create	an	inventory	of
packages	and	to	assign	meta	information	about	the	project.	Once	populated,	Pub	will	parse
the	pubspec.yaml	file	and	fetch	the	requested	remote	packages.

YAML	expects	each	object	to	use	a	two-space	delimiter	to	separate	each	of	its	parent’s
properties.	To	append	a	property	to	an	object,	include	a	colon	at	the	end	of	the	parent
object’s	name,	create	a	new	line,	and	increase	the	indentation	by	two	spaces.

Let’s	create	the	pubspec.yaml	on	the	folder	airline:

1.	Right-click	the	city	folder.

2.	Choose	New	File.

3.	Name	the	file	pubspec.yaml,	and	open	it	in	IDEA	(Figure	5.5).

FIGURE	5.5	pubspec.yaml	open	in	IDEA

4.	In	the	open	file,	add	the	top-level	meta	information	for	the	package.	These	are	string
values	with	no	child	attributes.

	name:	city_airport

	version:	0.0.1

	description:	An	airport,	with	a	field,	a	hangar,	and
cargo	handling

https://pub.dartlang.org

	author:	Jack	Murphy	jack@rightisleft.com

	homepage:	https://github.com/rightisleft/web_apps_dart

5.	Define	an	environment	object.
environment:
		sdk:	‘>=1.0.0	<2.0.0’

This	will	allow	you	to	define	the	constraints	for	acceptable	versions	of	the	Dart
SDK.

6.	Define	a	dependencies	object.
dependencies:
		browser:	‘0.10.0’

This	will	allow	you	to	provide	a	list	of	versioned	external	packages	to	include	when
building	the	app	for	development,	and	also	for	when	building	for	distribution.	Here
you	add	the	browser	library	containing	dart2js.

7.	Define	a	dev_dependencies	object.
dev_dependencies:
		test:	‘0.12.3’

This	is	similar	to	the	dependencies,	but	includes	packages	only	needed	for
development.	We’ll	include	Dart’s	Unit	Testing	package	so	you	can	test	locally,	but
we’ll	keep	the	footprint	small	in	production	by	excluding	it.

The	completed	pubspec.yaml	file	should	look	like	Example	5.15.

EXAMPLE	5.15
Click	here	to	view	code	image

name:	city_airport
version:	0.0.1
description:	An	airport,	with	a	field,	a	hangar,	and	cargo	handling
author:	Jack	Murphy	jack@rightisleft.com
homepage:	https://github.com/rightisleft/web_apps_dart
environment:
		sdk:	‘>=1.0.0	<2.0.0’
dependencies:
		browser:	‘0.10.0’
dev_dependencies:
		test:	‘0.12.3’

As	seen	in	Figure	5.5,	in	the	upper-right	corner	of	IDEA	is	a	series	of	links
describing	a	few	available	Pub	actions.	These	are	links	to	the	command-line	Pub
tool.

8.	Click	Get	Dependencies	to	start	Pub,	which	will	download	the	newly	defined
package	declarations.

You	now	have	a	folder	named	packages	in	your	root	directory.	It	contains	the
libraries	browser	and	test	and	all	their	dependencies.	Pub	recursively	manages	each
package	dependency,	meaning	that	Pub	imports	not	only	the	browser	but	all	the	browser’s
dependencies	and	its	dependencies’	dependencies.

mailto:jack@rightisleft.com
https://github.com/rightisleft/web_apps_dart

Named	Package	Imports
One	of	the	byproducts	of	declaring	pubspec.yaml	is	enabling	a	new	approach	to
importing	files.	By	providing	meta	information	about	your	package,	you	told	Pub	about	a
new	package:	city_airport.	Pub	creates	a	symlink	in	the	packages	folder	to	expose
the	files	in	your	lib	folder	(Figure	5.6).	This	makes	city_airport	available	locally
in	the	same	way	you’d	access	a	package	like	test.

FIGURE	5.6	Available	packages

In	previous	sections,	you	used	relative	paths	to	import	other	libraries.	Let’s	go	back	to
the	airport.dart	class	and	modify	the	previous	imports.

The	previous	import	approach	was:
import	‘../lib/field.dart’;

Modify	airport.dart	to	match	Example	5.16:

EXAMPLE	5.16
Click	here	to	view	code	image

library	airport;

import	‘package:city_airport/field.dart’;

main()	{
		print(‘Welcome	To	The	City	Airport’);
		gotoField();	//Function	member	of	library	field	–	exposed	on	import
field.dart

		//Class	Hangar	is	member	of	library	field
		Hangar	aHangar	=	new	Hangar();

		//Class	Toolbox	is	member	of	library	field
		Toolbox	portbox	=	new	Toolbox();

}

In	Example	5.16,	the	path	prefix	of	package:city_airport/	is	a	reference	to
your	project’s	/lib	folder.	By	adhering	to	the	Dart	project	folder	conventions,	instead	of
a	relative	path,	the	Dart	interpreter	allows	the	lib	folder	to	be	referenced	by	a	name	value
assigned	in	pubspec.yaml.	In	this	case,	it’s	city_airport.

Using	package	names	allows	for	easy	iterative	development	and	upgrade	management	if
you	decide	to	publish	your	library.	By	providing	a	standard	folder	convention	for	your
local	projects,	you	can	construct	meaningful	folder	hierarchies	without	having	to	worry

about	them	conflicting	with	other	packages.

Along	with	lib,	you	have	been	using	a	folder	named	bin.	Dart’s	folder	convention
enforces	that	files	in	bin	are	generally	implementations	of	libraries	or	other	binaries
needed	to	run	the	application.	Files	in	bin	are	included	in	the	list	of	files	served	by	the
Pub	HTTP	Server	for	use	by	the	current	application.	However,	files	in	bin	are	not
exposed	via	the	package	mechanism	either	locally	or	when	distributed	via	the	Pub
repositories.

In	Example	5.16,	you	see	that	a	package	import	request	is	also	made	for	test,	which
refers	to	the	downloaded	package	library	that	is	now	in	your	packages	folder.	The	unit
testing	library	test	is	now	exposed	as	Test	to	library	airport.

Summary
This	chapter	looked	at	the	power	of	libraries	and	packages.	Packages	are	one	of	the	more
important	concepts	to	grasp,	because	they	allow	you	to	leverage	the	third-party	software
that	makes	the	Dart	platform	so	powerful.

You	should	Now	Know
	How	to	define	a	library

	How	to	import	a	library

	How	to	assign	a	library	to	a	custom	named	identifier

	How	to	expose	specific	fields	from	a	library	using	show	and	hide

	How	to	use	access	modifiers	in	a	library

	How	to	break	apart	a	library	into	multiple	parts

	How	to	use	pubspecy.yaml	and	pub	to	acquire	packages

Chapter	6.	Event	Loops	and	Asynchronous	Programming

Asynchronous	programming	is	at	the	core	of	modern	web	application	development	for
both	front-end	and	back-end	developers.	Dart	has	a	great	set	of	tools	that	allow	you	to
interact	with	remote	services	and	to	write	non-blocking	code.	This	chapter	looks	at	the
Dart	event	loop	and	how	to	write	asynchronous	requests.

Concurrent	Computing	Paradigm
Dart	is	single	threaded.	This	means	that,	by	default,	only	a	single	CPU	process	is
associated	with	the	Dart	VM.	Having	only	one	process	means	that	your	Dart	code	will
execute	in	a	linear	fashion	and	won’t	be	disrupted.	This	produces	a	challenge	for
developers	who	are	trying	to	load	data	from	other	sources.

Let’s	imagine	that	you	have	a	timer	that	is	displaying	a	countdown	until	New	Year’s
Eve.	At	exactly	midnight,	a	video	of	fireworks	will	play.	The	associated	video	file	is
roughly	100	MB	and	becomes	available	only	30	seconds	before	midnight.	You	want	to
load	the	video	into	memory	so	it’s	available	to	play	right	as	the	countdown	hits	midnight.

If	your	code	were	always	forced	to	load	in	a	linear	fashion,	an	action	such	as	loading	a
100	MB	video	file	from	the	file	system	would	result	in	the	Dart	VM	pausing	all	other
execution	while	the	file	was	being	read	from	the	file	system	and	loaded	into	memory.	This
is	referred	to	as	a	synchronous	request,	and	would	result	in	your	countdown	pausing	while
the	video	file	was	loading.	By	modern	development	standards,	this	is	an	unacceptable	user
experience.

To	manage	these	types	of	tasks,	the	Dart	run	time	executes	on	what’s	known	as	a
concurrent	computing	paradigm.	Concurrent	computing	breaks	apart	a	single	process	into
several	queues,	with	each	queue	having	its	own	responsibility.	Together,	these	queues	are
referred	to	as	the	event	loop.

Lots	of	time	is	spent	writing	code	that	is	appended	to	Dart’s	event	queue,	which	is	one
of	many	types	of	queues	in	Dart’s	concurrency	model.	The	Dart	VM	has	other
responsibilities	outside	the	event	queue	that	are	hidden	from	developers,	such	as	memory
management,	garbage	collection,	operating	system	interactions,	and	other	low-level	VM
tasks.

If	you	structure	your	code	using	non-blocking	functions,	the	Dart	VM	happily	lets	the
rest	of	your	application	continue	executing	inside	the	event	queue	while	the	VM	is	off
doing	the	heavy	lifting	of	interacting	with	the	operating	system.	These	non-blocking
functions	are	known	as	asynchronous	requests.	Asynchronous	requests	inside	the	event
loop	are	usually	implemented	using	futures,	completers,	and	streams.

Futures,	Completers,	and	Streams
To	understand	the	execution	order	of	a	synchronous	request	versus	an	asynchronous
request,	let’s	start	with	a	synchronous	file	system	call.

Synchronous	Requests
Dart’s	naming	conventions	for	synchronous	requests	have	a	named	suffix	of	*Sync()	for
method	names.	The	suffix	indicates	that	the	method	will	block	all	other	code	execution
until	the	result	of	the	request	is	in	memory	(Example	6.1).

EXAMPLE	6.1
Click	here	to	view	code	image

import	‘dart:io’;
main()	{
		File	pub	=	new	File(‘pubspec.yaml’);
		print	(pub.readAsStringSync());
		print(‘—	Logger	—’);
}

//Output:
//name:	city_airport
//version:	0.0.1
//description:	An	airport,	with	a	field,	a	hangar,	and	cargo	handling
//author:	Jack	Murphy	jack@rightisleft.com
//homepage:	https://github.com/rightisleft/web_apps_dart
//environment:
//		sdk:	‘>=1.0.0	<2.0.0’
//dependencies:
//		browser:	‘0.10.0’
//dev_dependencies:
//		test:	‘0.12.3’
//—	Logger	—

A	benefit	of	using	a	blocking	request	is	that	the	requested	data	is	treated	as	if	it	were
already	stored	in	memory.	No	additional	asynchronous	load	handling	control	structures	are
needed,	because	the	execution	context	does	not	move	ahead	until	the	function
readAsStringSync()	is	completed.

In	the	output,	you	should	see	the	contents	of	pubspec.yaml	written	out	before	the
print()	statement.

Futures
A	future	is	a	paradigm	in	asynchronous	development	that	allows	an	object	to	delay	the
execution	of	a	callback	function	until	a	specified	task	has	completed.	By	deferring
execution,	the	run	time	is	allowed	to	continue	running	the	rest	of	the	application	code	until
the	future’s	completion	criteria	are	met.	Upon	completion,	the	previously	defined	callback
function	executes.	This	is	ideal	for	making	asynchronous	requests	for	external	data.	Let’s
take	a	look	at	the	future	method	File.readAsString().

EXAMPLE	6.2
Click	here	to	view	code	image

import	‘dart:io’;
main()	{
		File	aFile	=	new	File(‘pubspec.yaml’);
		aFile.readAsString().then(aCallback);
		print(‘—Logger—’);
}

void	aCallback(String	text){
		print(text);
}

//Output
//—	Logger	—
//name:	jit_airlines
//version:	0.0.1
//author:	Jack	Murphy
//description:	Building	Modern	Web	Application	with	Dart
//environment:
//		sdk:	‘>=1.0.0	<2.0.0’
//dependencies:
//		http_server:	any

A	future	exposes	a	method	named	then(),	which	accepts	a	function	reference	as	an
argument.	While	the	Dart	VM	is	loading	the	text	file	into	memory,	the	execution	of	the
rest	of	the	application	continues.	Once	the	whole	external	file	finishes	loading,	the
reference	executes	with	the	loaded	data	now	available	as	a	supplied	argument.

In	Example	6.2,	in	the	Output	you	can	see	that	even	though	readAsString()
executes	prior	to	the	Logger	statement,	Logger	is	printed	before	the	contents	of
pubspec.yaml.	This	occurs	because	execution	of	the	function	aCallback()	is
deferred	until	task	completion;	in	this	case,	task	completion	occurs	after	pubspec.yaml
is	finished	loading	into	memory.

Futures	and	Completers
You	can	implement	your	own	asynchronous	functions	by	using	instances	of	class	Future
and	class	Completer.	You	saw	in	Example	6.2	that	a	future	creates	a	contract	to	ensure
a	callback	function	executes	after	a	task	is	completed.	Let’s	wrap	an	expensive	processing
task	inside	a	future	and	defer	its	execution.

EXAMPLE	6.3
Click	here	to	view	code	image

import	‘dart:async’;
main()	{
		expensiveCalc().then(aCallback);

		print(‘—	Logger	—’);
}

void	aCallback(int	index)
{
		print(index);
}

Future	expensiveCalc()	{
		Completer	c	=	new	Completer();

		num	index	=	0;
		void	expensive()	{
				while(index	<	1234567890)
				{
						index++;
				}
				c.complete(index);
		}

		expensive();
		return	c.future;
}

//Output:
//—Logger—
//1234567890

Example	6.3	introduces	the	class	Completer,	which	is	an	explicit	way	to	control	the
flow	inside	a	future.	The	Completer	instance	has	two	attributes	of	interest	for	this
example:	.complete()	and	.future.

	Completer.future:	The	future	property	allows	you	to	adhere	to	your
contract	with	the	function	declaration	by	returning	a	new	instance	of	object	type
Future.

	Completer.complete():	The	contract	with	Future	is	finished	when	the
complete()	function	is	called	when	the	task	is	done.	If	the	callback	function
defines	a	method	parameter,	the	argument	must	be	supplied	to	the	complete()
method.	In	Example	6.3,	the	aCallback()	function	expects	an	integer,	so	it	is
passed	through	the	complete()	method	as	an	argument.

Just	as	in	the	Example	6.2,	the	future	is	declared	and	execution	of	the	callback	is
deferred.	The	logger	statement	executes	while	the	expensive()	function	executes,
which	is	when	its	turn	arrives	in	the	event	queue.

Streams
A	stream	is	an	asynchronous	implementation	of	an	iterator	of	an	unknown	length.	Unlike
futures,	streams	have	no	defined	completion	state.	Example	6.2	loaded	the	file
pubspec.yaml.	The	action	of	loading	data	has	a	finite	life	cycle;	the	Dart	File	class’s
method	readAsString()	knows	when	the	end	of	the	file	occurs	and	invokes
complete().	In	contrast,	a	stream	continues	to	operate	until	you	explicitly	remove	the
listener.

Streams	can	be	useful	for	listening	for	multiple	events	in	a	non-blocking	fashion.	Some
scenarios	in	which	non-blocking	events	are	used	include	waiting	for	a	mouse	click,	an
event	from	a	socket	connection,	or	reading	the	list	of	contents	from	a	directory.	Let’s	take
a	look	at	the	directory	example.

EXAMPLE	6.4
Click	here	to	view	code	image

import	‘dart:io’;
main()	{
				Directory	dir	=	new	Directory(‘.’);
				dir.list().listen(onData);
}

int	index	=	1;
void	onData(FileSystemEntity	data)	{
		print(“$index:	—	$data	—”);
		index++;

}

//Output:
//1:	—	Directory:	‘./.pub’	—
//2:	—	Directory:	‘./bin’	—
//3:	—	Directory:	‘./lib’	—
//4:	—	Directory:	‘./packages’	—
//5:	—	File:	‘./pubspec.lock’	—
//6:	—	File:	‘./pubspec.yaml’	–

In	Example	6.4,	you	can	see	that	class	Directory	exposes	a	method	list()	that	is
of	type	Stream.	By	invoking	Stream’s	method	listen(),	you	are	able	to	register	a
handler	that	is	invoked	for	each	event	of	a	file	found	in	your	current	working	directory.
The	real	power	of	streams	comes	into	play	when	you	are	filtering	the	contents	of	the
iterable	list.

EXAMPLE	6.5
Click	here	to	view	code	image

import	‘dart:io’;
main()	{
		Directory	dir	=	new	Directory(‘.’);
		dir.list().where(test).listen(onData);
}

int	index	=	1;
void	onData(FileSystemEntity	data)	{
		print(“$index:	—	$data	—”);
		index++;
}

bool	test(FileSystemEntity	data){

		return	data	is	Directory;

}

//Output:
//1:	—	Directory:	‘./.pub’	—
//2:	—	Directory:	‘./bin’	—
//3:	—	Directory:	‘./lib’	—
//4:	—	Directory:	‘./packages’	–

Example	6.5	adds	a	filter	to	your	stream.	The	where()	method	is	called	on	every
element	in	the	stream,	and	only	the	statements	that	return	true	are	passed	into	the
listen()	handler.	Example	6.5	filters	out	all	the	objects	of	type	File.	The	Stream
class	has	lots	of	very	powerful	methods	to	help	you	filter	your	data	for	processing.

Event	Loop
The	Dart	event	loop	is	part	of	the	Dart	concurrency	model.	It	defines	the	execution	order
of	tasks	throughout	your	code	base.	The	first	event	in	every	application	is	from	your
main()	root	entry	point.

The	event	loop	consists	of	two	queue	types:	the	event	queue	and	the	microtask	queue.
Each	queue	is	a	“first	in,	first	out”	(FIFO)	queue.	When	you	instantiate	an	asynchronous
task,	Dart	adds	the	deferred	execution	request	to	the	back	of	the	event	queue.	That	means
the	newest	event	in	the	queue	will	be	executed	last.

When	the	event	loop	starts,	it	first	executes	the	events	in	the	microtask	queue.	The
microtask	queue	is	a	kind	of	fast	track	for	the	event	loop	that	allows	tasks	to	be	executed
with	priority	over	normal	events	in	the	event	queue.	This	acts	as	a	channel	for
asynchronous	tasks	to	be	completed	prior	to	pulling	the	next	event	from	the	event	queue.
If	a	microtask	queue	didn’t	exist,	any	events	that	were	instantiated	inside	an	event	would
have	to	wait	for	the	rest	of	the	entire	event	queue	to	complete	prior	to	execution.

Let’s	schedule	a	microtask:

EXAMPLE	6.6
Click	here	to	view	code	image

import	‘dart:async’;
main()	{
		scheduleMicrotask(()	=>	print(‘Task	A’));
}

Example	6.6	exposes	the	method	scheduleMicrotask()	from	the	dart:async
library	and	passes	it	a	function	expression.	When	several	events	and	microtasks	are
scheduled,	the	order	of	execution	becomes	clearer.

EXAMPLE	6.7
Click	here	to	view	code	image

import	‘dart:async’;
main()	{
		new	Future(()	=>	print(‘Future	1’));
		print(‘print	I’);
		new	Future(()	=>	print(‘Future	2’));
		new	Future(()	=>	print(‘Future	3’));
		scheduleMicrotask(()	=>	print(‘Task	A’));
		new	Future(()	=>	print(‘Future	4’));
		scheduleMicrotask(()	=>	print(‘Task	B’));
		print(‘print	II’);
		scheduleMicrotask(()	=>	print(‘Task	C’));
		new	Future(()	=>	print(‘Future	5’));
}

//Output:
//print	I
//print	II
//Task	A
//Task	B
//Task	C
//Future	1
//Future	2
//Future	3
//Future	4
//Future	5

Example	6.7	uses	a	variety	of	methods	that	all	eventually	invoke	print().	Although
the	order	in	which	the	methods	are	declared	looks	like	a	rat’s	nest	of	code,	the	output	is
uniform	and	follows	the	order	of	operations	you	defined	for	the	event	loop:

1.	Statements	inside	the	main()	function	block	are	executed	before	any
asynchronous	tasks.

2.	When	the	call	to	main()	finishes,	the	event	loop	starts	at	the	top	of	both	of	its

queues.	It	first	pulls	off	and	executes	tasks	from	the	microtask	queue,	in	the	order	in
which	they	were	added.

3.	When	the	microtask	queue	is	emptied,	the	event	queue	begins	processing	its
contents,	which	is	a	list	of	futures,	also	in	the	order	in	which	they	were	added.

Async
In	the	“Futures	and	Completers”	section,	you	saw	how	to	write	your	own	asynchronous
functions.	Using	the	Completer	class,	you	explicitly	define	a	Future	wrapper	and	tie
it	to	a	Completer	object.	Although	explicit,	it’s	rather	verbose.	Dart	has	a	reserved
async	keyword	that	implicitly	implements	a	future	and	completer	pairing.

The	async	keyword	modifies	a	function	to	return	a	future,	and	modifies	the
functionality	of	the	return	keyword	to	behave	as	if	calling	Completer.complete.

Let’s	refactor	the	expensiveCalc()	function	from	Example	6.3.

EXAMPLE	6.8
Click	here	to	view	code	image

import	‘dart:async’;
main(){
		expensiveCalc().then((index)	=>	print(index));
		scheduleMicrotask(()	=>	print(‘MicroTask’));
}

expensiveCalc()	async	{
		int	index	=	0;
		int	expensive()	{
				while(index	<	123456789)
				{
						index++;
				}
				return	index;		//returns	123456789
		}

		return	expensive();	//returns	behaves	like	Completer.complete
}

//Output:
//MicroTask
//123456789

In	Example	6.8,	in	your	main()	function,	you’re	executing	two	statements:

	expensiveCalc()—The	first	statement	invokes	the	async	method.	If	you	look
at	the	expensiveCalc()	implementation,	you’ll	notice	that	the	keyword	async
is	located	between	the	method	signature	and	the	function	block’s	opening	curly
braces.

A	return	type	is	intentionally	omitted	to	illustrate	that	async	converts	the	declared
field	into	a	future.	Nowhere	in	the	code	do	you	see	a	reference	to	class	Future	or
class	Completer.

	scheduleMicrotask()—The	second	statement	creates	a	microtask	event.

According	to	the	event	loop	rules,	a	microtask	always	executes	prior	to	a	future
located	on	the	event	queue.	This	illustrates	that	the	expensiveCalc()	function
is	indeed	a	future,	because	the	future	gets	executed	after	the	microtask.

As	you	can	see	in	the	output,	the	microtask	executes	first,	followed	by	the	asynchronous
future.	You’ve	removed	a	ton	of	boilerplate	code	from	the	function	declaration	while
maintaining	the	asynchronous	nature	of	the	code.

Await
Dart	has	the	keyword	await,	which	allows	you	to	take	an	asynchronous	request	and
simulate	blocking	synchronously	until	the	future	has	completed.

This	is	a	bit	of	syntactic	sugar	and	does	not	modify	the	control	flow	of	the	Dart	run
time.	To	use	the	await	keyword,	the	function	containing	the	await	statement	must	be
designated	as	async.	This	results	in	the	containing	function	being	pulled	out	of	the
current	execution	context	and	placed	into	the	event	queue.

Once	in	the	event	queue,	the	containing	async	block	statement	executes.	This
emulates	writing	synchronous	functionality	and	bypasses	the	need	to	work	with
asynchronous	style	code	(futures).

Let’s	modify	the	example	to	use	the	await	keyword	with	a	traditional	Future	and
Completer	implementation.

EXAMPLE	6.9
Click	here	to	view	code	image

import	‘dart:async’;
main(){
		print(‘1’);
		newEvent();

		print(‘3’);
}

	newEvent()	async	{
		print(‘—new	event—’);
		print(‘—2—’);
		print	(await	expensiveCalcFull());
}

		Future	expensiveCalcFull()	{
			Completer	c	=	new	Completer();
			num	index	=	0;
			void	expensive()	{
					while(index	<	1234567890)
					{
							index++;
					}
					c.complete(index);
			}

			expensive();
			return	c.future;
		}

//Output:

//1
//3
//—new	event—
//—2—
//1234567890

As	you	can	see	in	the	output	of	Example	6.9,	because	of	the	ordering	rules	of	the	event
loop,	both	of	the	print	statements	in	the	main()	function	execute	before	any	of	the
asynchronous	code	inside	the	newEvent()	function	executes.

	newEvent()—This	function	has	a	modifier	keyword	of	async	that	turns	the
function	into	a	future,	causing	it	to	be	placed	onto	the	event	queue	for	deferred
execution.

	await	expensiveCalcFull()—This	function	usually	exposes	a	method	that
adheres	to	the	class	interface	for	Future,	and	a	callback	function	is	usually
required	prior	to	access	to	the	calculated	value.

Because	you’re	modifying	the	execution	using	the	await	keyword,	the	Dart	VM
simulates	a	synchronous	operation	and	waits	for	the	Completer.complete
function	to	be	called	prior	to	interpreting	the	value	of	the	expression.	The	function’s
return	value	reads	as	being	immediately	accessible	to	the	caller	print().

Summary
This	chapter	looked	at	the	different	ways	to	write	and	handle	synchronous	and
asynchronous	code.	The	following	chapters	use	these	techniques	frequently.	It	is	important
to	have	a	clear	understanding	of	Dart’s	asynchronous	capabilities	and	of	the	impact	on
execution	order.	These	approaches	will	come	in	handy	when	running	a	web	server,
requesting	RESTful	data,	or	simply	wiring	up	user	interfaces	and	click	handlers.

You	should	Now	Know
	The	impact	of	synchronous	code

	The	impact	of	asynchronous	code

	The	order	of	operations	in	which	Dart	executes	both	synchronous	and	asynchronous
code

	The	difference	between	the	event	queue	and	the	microtask	queue

	How	to	declare	a	non-blocking	function	that	returns	a	value	when	it	becomes
available

	How	to	use	futures	and	completers

	How	to	use,	and	the	impact	of,	the	await	and	async	keywords

Part	II:	Full-Stack	App	Development	with
Dart

Chapter	7.	Planning	the	Application

In	this	chapter,	you	will	expand	Just-In-Time	Airlines	ticket	application	to	allow
consumers	to	purchase	seats	on	the	fictional	airline.

Fictitious	Company	Background
Just-In-Time	Airlines	is	a	new	regional	carrier	specializing	in	discounted	one-way	flights
throughout	the	state	of	California.	The	key	to	its	success	is	an	aircraft	design	that	uses	an
alternative	engine	technology.

The	engine’s	power	source	is	said	to	have	nearly	zero	operating	costs	for	small	planes,
but	because	of	high	temperatures,	the	planes	have	an	extremely	limited	range	and	an
extremely	long	recharge	cycle.	Even	with	those	limitations,	the	potential	cost	savings	in
the	market	will	allow	the	company	to	scale	up	rapidly	once	it	can	prove	that	its	plane
design,	although	terrifying	to	fly,	is	safe	for	consumer	use.

Flights	operate	on	a	two-directional	route	between	cities,	making	one	round	trip	per	day.
This	is	a	small	startup,	so	destinations	are	limited.	The	service	area	includes	only	five
major	metro	areas	inside	California:	San	Diego,	Los	Angeles,	Oakland,	San	Francisco,
and	Sacramento.	Due	to	the	aircraft’s	small	size,	the	capacity	is	seven	passenger	seats	per
flight.

The	pricing	model	uses	a	fixed	window	for	rate	hikes.	Any	booking	date	more	than	15
days	out	is	referred	to	as	a	“steal.”	Booking	dates	between	14	and	5	days	out	are	referred
to	as	“standard.”And	anything	within	5	days	is	labeled	as	“desperate.”	The	rate	varies
accordingly.

Feature	Requests
You	have	been	approached	to	develop	the	prototype	for	the	ticketing	system	and	have
been	delivered	the	wireframes	shown	in	Figure	7.1	as	a	starting	point.

FIGURE	7.1	Home	page

You	notice	that	the	home	page	appears	to	be	a	static	landing	page	with	the	following
components:

	Top	navigation:	This	component	shows	users	their	position	in	the	site	hierarchy.	As
with	many	sites,	this	top	navigation	component	will	persist	across	all	pages	on	the
site.

	Deep	linking:	This	functionality	allows	linking	directly	to	the	order	page	for
specific	flights	from	static	links.

	Static	content:	Items	on	the	home	page	are	often	owned	by	marketing	departments
and	are	not	coupled	to	the	core	functionality	of	the	app.	You’ve	been	asked	to
include	some	static	content:	flights	represented	as	graphics	with	deep	links	into	our
full	ticketing	application.

	Call	to	action:	In	Figure	7.1,	the	call	to	action	is	the	All	Flights	button,	which	when
clicked	takes	you	to	the	Flights	tab.	This	is	where	the	core	functionality	of	the	ticket
purchasing	system	will	exist.

In	Figure	7.2,	you’ll	notice	that	there	are	two	primary	components	that	will	compose
the	Flights	page:

	Itinerary	picker:	This	component	allows	users	to	select	their	departure	and	arrival
information	using	drop-down	menus.	The	menus	are	populated	with	data	that
coincides	with	route	information	for	Just-In-Time	Airlines.	Upon	entering	all	the
passenger	details,	clicking	the	large	circular	arrow	button	should	render	the	available
flight	information	in	the	flight	display.

	Flight	display:	This	component	retrieves	a	list	of	available	flights	for	a	specific	date
and	flight	route	filtered	by	input	parameters.

FIGURE	7.2	Flights

Figure	7.3	shows	the	two	primary	components	that	will	compose	the	order	form	page:

	Flight	box:	This	component	is	based	on	the	URL	parameters	and	displays	the
selected	flight	that	the	user	is	going	to	purchase.

	Order	form:	This	component	allows	form	handling	to	complete	the	purchase
transaction	of	the	selected	ticket.

FIGURE	7.3	Order	form

The	requested	features	are	a	loose	specification.	As	the	features	are	built	out,	you’ll	be
asked	to	handle	some	of	the	interaction	design	edge	cases.	They	will	be	called	out	on	a
feature-by-feature	basis.

Data	Entities
Before	you	begin	coding,	you	need	the	data	that	will	power	the	Just-In-Time	Airlines
ticket	application.	The	airline	provided	you	with	the	initial	outline	of	its	database	in	a
spreadsheet.	The	workbook	is	separated	into	multiple	sheets	to	represent	each	type	of	data
entity.	This	allows	you	to	take	a	look	at	the	structure	of	the	data	prior	to	exporting	it	to	a
JSON	format	for	your	own	needs.

	Note

For	now,	just	focus	on	the	application	design	aspects	of	the	project.	We’ve
used	a	plugin	for	Google	Sheets	to	export	it	as	JSON.	The	next	chapter	will
look	at	the	data	and	source	code	for	this	project.

Routes
A	routes	entity	(Figure	7.4)	contains	service	information	about	the	flight:

	ROUTE:	Airport	code	of	arrival	and	airport	code	of	the	destination	using	an
underscore	delimiter.

	DURATION:	The	amount	of	time	between	takeoff	and	landing

	PRICE_1:	The	lowest	fair	offered,	referred	to	as	a	“steal”

	PRICE_2:	The	standard	fare	offered

	PRICE_3:	The	last-minute	booking	price,	referred	to	as	“desperate”

	SEATS:	The	number	of	tickets	that	can	be	sold	for	the	flight	regardless	of	price

FIGURE	7.4	Routes	entity

Times
A	times	entity	(Figure	7.5)	contains	data	for	when	a	route	is	executed:

	FLIGHT:	The	unique	identifier	for	a	flight;	renews	each	day

	DEPARTURE:	The	code	for	the	airport	a	flight	leaves	from

	ARRIVAL:	The	code	for	the	airport	a	flight	lands	at

	TAKEOFF:	The	time	at	which	a	flight	is	scheduled	to	depart;	uses	Pacific	Standard
Time	and	is	displayed	in	military	time	(24-hour	notation)

FIGURE	7.5	Times	entity

Cities
A	cities	entity	(Figure	7.6)	contains	data	for	the	operating	area	of	all	flights:

	CITY:	The	full	name	of	the	city	the	airport	services

	AIRPORT_CODE:	Three-letter	code	for	the	city’s	airport

	GATE:	Which	gate	Just-In-Time	Airlines	flies	out	of

FIGURE	7.6	Cities	entity

Purchases
A	purchases	entity	(Figure	7.7)	contains	data	for	the	passenger,	the	booked	flight,	and
associated	billing	information.	It’s	the	data	representation	of	the	order	form	from	the
layout	in	Figure	7.3.	It’s	important	to	note	that	the	purchases	entity	will	be	user	generated.
That	means	you	will	not	have	any	seed	data	related	to	purchases:

	FLIGHTID:	The	unique	ID	of	the	flight	purchased

	FLIGHTLEVEL:	The	pricing	tier	for	the	ticket

	CCN:	The	credit	card	number	used	in	the	transaction	(demo	purposes	only)

	CCV:	The	security	number	on	the	backside	of	the	user’s	card

	CCTYPE:	The	brand	of	the	credit	card	used,	such	as	Visa,	MasterCard,	and	so	on

	CCEXPIRATION:	The	date	on	which	the	credit	card	expires

	PFIRSTNAME:	The	passenger’s	first	name

	PMIDDLENAME:	The	passenger’s	middle	name

	PLASTNAME:	The	passenger’s	last	name

	PEMAIL:	The	passenger’s	email	address

	BFIRSTNAME:	The	first	name	on	the	credit	card

	BMIDDLENAME:	The	middle	name	on	the	credit	card

	BLASTNAME:	The	last	name	on	the	credit	card

	BADDRESS:	The	mailing	address	associated	with	the	credit	card

	BCITY:	The	city	address	associated	with	the	credit	card

	BSTATE:	The	state	associated	with	the	credit	card

	BZIP:	The	zip	code	associated	with	the	credit	card

	BCOUNTRY:	The	country	in	which	the	credit	card	was	issued

FIGURE	7.7	Purchases	entity

Transactions
A	transactions	entity	(Figure	7.8)	contains	data	for	the	passenger	and	for	the	amount
spent:

	USER:	The	email	address	to	identify	the	user

	AMOUNT:	The	total	cost	the	passenger	pays	for	the	flight

FIGURE	7.8	Transactions	entity

Architecture	Choices
Now	that	you	have	an	understanding	of	what	the	application	needs	to	do	and	what	the
business	constraints	are,	let’s	make	some	decisions	about	what	architecture	to	use.	The
following	is	a	list	of	libraries	that	will	be	used	in	the	following	chapters:

	Database:	You’ll	use	the	Mongo	database	to	persist	the	data.	Dart	has	a	great
community	library	named	mongo_dart,	which	you’ll	use	to	interact	with
MongoDB	on	the	server	side.

Click	here	to	view	code	image
https://pub.dartlang.org/packages/mongo_dart

	API	server:	You’ll	use	Shelf	to	power	your	RESTful	API.	Shelf	is	a	middleware
library	that	allows	you	to	compose	multiple	components	together	to	create	a	lean	and
powerful	server	application.	You’ll	use	the	Shelf	IO	and	Shelf	Router	components	as
starting	points	for	your	server	application.

https://pub.dartlang.org/packages/shelf

https://pub.dartlang.org/packages/shelf_route

https://pub.dartlang.org/packages/shelf
https://pub.dartlang.org/packages/shelf_route

	Web	server:	You’ll	use	Pub	to	build	your	Dart	assets	and	deploy	them	using	Shelf
and	Shelf	Static.

Click	here	to	view	code	image
https://pub.dartlang.org/packages/shelf_static

	Client	framework:	You’ll	use	Angular	2	Dart	for	web	components	and	client-side
routing.	You’ll	use	the	Dart:Html	libraries	for	generating	static	assets	for	the
marketing	department.

https://pub.dartlang.org/packages/angular2

	Style	sheets:	You’ll	build	your	project	using	Dart	Sass	as	a	CSS	preprocessor	to
write	clean,	concise	CSS.

https://pub.dartlang.org/packages/sass

	Data	transfer	objects:	Dart	is	running	on	both	the	client	and	server,	which	means
you	can	share	native	data	structures.	You’ll	use	Dartson	to	serialize	and	deserialize
between	native	Dart	objects.	JSON	will	be	used	as	the	data	structure	of	choice	while
in	transport	over	the	wire.

Click	here	to	view	code	image
https://pub.dartlang.org/packages/dartson

	Note

The	libraries	listed	have	been	carefully	selected	because	they	are	mature
community	projects.	Some	of	the	projects	listed	are	actively	developed	by
Google	engineers	but	are	not	official	Google	projects.

	Note

This	book’s	goal	is	to	give	you	a	solid	foundation	for	writing	full-stack	Dart
applications.	Many	developers	prefer	to	work	with	some	sort	of	MVC-based
framework.	MVC	(model–view–controller)	is	an	architectural	pattern	that
helps	many	developers	implement	their	applications	in	accordance	with	the
“separation	of	concerns”	principle.

Some	great	server-side	Dart	community	MVC	frameworks	are	available,
but	they	more	often	than	not	need	complete	buy-in	from	the	entire
application.	This	results	in	quite	a	bit	of	domain-specific	knowledge.	Instead
of	using	the	frameworks,	you’ll	be	introduced	to	the	individual	components
that	many	of	those	frameworks	leverage.

https://pub.dartlang.org/packages/angular2
https://pub.dartlang.org/packages/sass

Summary
This	chapter	provided	an	overview	of	the	project	you	will	be	building	throughout	the	rest
of	the	book.	The	project	requirements	intentionally	do	not	require	a	robust	modern
language,	but	you’ll	see	that	even	for	simple	web	applications,	Dart	is	an	excellent
candidate.

You	Should	Now	Know
	What	the	application	you	are	going	to	build	does

	What	the	application	will	roughly	look	like

	What	the	data	for	the	application	will	look	like

	What	the	architecture	of	the	application	will	consist	of

Chapter	8.	Introduction	to	MongoDB

The	application	you	are	about	to	build	needs	a	way	to	store	and	serve	data.	Before	you
dive	into	writing	your	Dart	application,	let’s	review	some	high-level	concepts	about
working	with	databases.	In	this	chapter,	you’ll	learn	about	the	document-oriented	database
MongoDB,	and	how	to	interact	with	it.

Relational	vs.	NoSQL	Databases
When	picking	a	database	for	a	new	project,	you	have	two	primary	types	of	technology
choices:

	Relational	databases,	represented	by	offerings	such	as	Oracle,	MySQL,	and
Postgres.

	Non-relational	databases,	sometimes	referred	to	as	NoSQL	solutions,	are
represented	by	offerings	such	as	MongoDB,	Cassandra,	Redis,	and	many	others.

Although	feature	sets	can	vary	greatly	between	implementations,	the	primary	difference
between	relational	and	non-relational	databases	is	in	the	way	they	enforce	rules	around
how	users	structure	their	data.

Relational	databases	attempt	to	model	relationships	across	an	application	domain	by
isolating	the	different	facets	of	the	domain	into	unique	groupings	known	as	tables.	Tables
must	be	defined	prior	to	any	data	being	written	to	the	database.

A	table	is	a	collection	of	properties,	which	are	represented	by	columns,	and	entities,
which	are	represented	by	rows:

	Row:	A	row	is	an	instance	of	an	entity	that	contains	multiple	values;	each	value
corresponds	to	one	of	the	table’s	columns.

	Column:	A	column	describes	a	specific	property	of	the	entity.

	Table:	A	table	ensures	that	all	the	entities	inside	of	it	have	the	same	properties,	thus
ensuring	that	the	entities	are	uniform	and	of	the	same	type.

The	collection	of	tables	inside	a	database,	and	the	associated	properties	that	define	each
table,	are	together	referred	to	as	a	database	schema.

Non-relational	databases	take	a	different	approach	to	how	they	structure	data.	Although
relational	databases	require	you	to	define	a	schema	up	front,	non-relational	databases	do
not.	Instead,	each	unit	of	data	has	a	structure	that	is	defined	by	the	client	at	the	time	when
the	data	is	being	inserted.	This	can	lead	to	a	more	fluid	approach	to	database	design
because	entities	in	the	same	collection	can	store	different	types	of	data.

NoSQL	and	relational	databases	each	have	pros	and	cons,	and	each	have	capabilities	to
ensure	speed,	scale,	and	consistency.	The	data	from	Chapter	7	is	actually	modeled	in	a
way	that	would	work	nicely	with	a	traditional	relational	database.	Despite	this,	we’re
going	to	go	with	a	NoSQL	database	named	MongoDB	to	define	our	data	structures	in
Dart.	Thanks	to	the	flexibility	of	a	non-relational	approach,	it’s	up	to	the	client	how	to
structure	the	data.	Using	MongoDB	allows	you	to	focus	most	of	your	energy	on	coding	in

Dart.	The	data	structures	will	be	defined	in	Dart	instead	of	fussing	with	the	ins	and	outs	of
managing	relational-database	schemas.

Why	Not	Database	X?
The	Dart	community	has	provided	support	for	many	different	kinds	of	relational	and	non-
relational	databases.	For	most	projects,	you	have	to	make	an	architectural	choice	and	live
with	it.	We’re	going	to	rely	heavily	on	MongoDB	throughout	the	rest	of	the	book.	Doing
so	gives	us	a	single	unified	approach	that	allows	us	to	focus	on	solving	development
challenges	as	if	they	existed	in	the	real	world.	However,	you	can	easily	modify	many	of
the	concepts	and	best	practices	you’ll	see	in	the	following	chapters	to	work	with	a
different	database.

For	further	reading,	here	are	a	few	resources:

	https://pub.dartlang.org/packages/postgresql

	https://pub.dartlang.org/packages/sqljocky

	https://pub.dartlang.org/packages/dartabase

	https://pub.dartlang.org/packages/redis

	https://pub.dartlang.org/packages/memcache

	https://pub.dartlang.org/packages/neo4j_dart

What	Is	MongoDB?
Released	in	2009,	MongoDB	is	an	open-source	NoSQL	database.	MongoDB	Inc.,	the
creator	of	MongoDB,	continues	to	act	as	its	public	steward	and	makes	numerous
contributions	to	the	public	code	base.	Since	MongoDB	is	open	source,	Mongo	Inc.	profits
solely	from	support	service	contracts	rather	than	traditional	commercial	licensing	fees.
MongoDB	has	experienced	massive	public	adoption,	with	high-profile	clients	such	as
ADP,	the	New	York	Times,	Craigslist,	and	many	more.	You	can	find	MongoDB	support	via
many	of	the	top	hosting	providers,	such	as	Amazon	Web	Services,	Heroku,	Azure,	and
Google	Cloud.

Mongo	is	a	document-store	style	NoSQL	database.	Document-store	means	that	within
Mongo,	each	unique	entity	is	a	self-structuring	document.	At	a	low	level,	documents	are	a
JSON	derivative	known	as	BSON,	or	Binary	JSON.	BSON	allows	JSON	to	provide	a
structure	for	the	data,	while	later	allowing	conversion	to	a	highly	performant,	compact
data	structure	to	store	in	memory	and	on	disk.

JSON	offers	a	concise,	flexible	format	to	structure	and	nest	complex	objects.	JSON’s
self-defining	structure	is	the	foundation	for	MongoDB’s	query	language,	which	allows
MongoDB	to	sort,	filter,	and	otherwise	traverse	the	collections	of	documents	in	the
database.

https://pub.dartlang.org/packages/postgresql
https://pub.dartlang.org/packages/sqljocky
https://pub.dartlang.org/packages/dartabase
https://pub.dartlang.org/packages/redis
https://pub.dartlang.org/packages/memcache
https://pub.dartlang.org/packages/neo4j_dart

Installing	MongoDB
Let’s	walk	through	how	to	acquire	MongoDB	for	your	specific	operating	system.	In	the
following	examples,	we’ll	be	working	with	version	3.0.4,	which,	at	the	time	of	this
writing,	is	the	most	recent	release.	Here’s	how	to	grab	the	files	for	your	machine.

Mac	OS	X
For	OS	X,	you’ll	be	installing	the	binaries	for	your	machine	using	the	Terminal.

1.	Open	Terminal,	and	execute	the	following	command	lines	to	download	the
compressed	files:

Click	here	to	view	code	image
$	cd	~
$	curl	-O	https://fastdl.mongodb.org/osx/mongodb-osx-x86_64-3.0.4.tgz

2.	Uncompress	the	downloaded	files.
Click	here	to	view	code	image

$	tar	-zxvf	mongodb-osx-x86_64-3.0.4.tgz

3.	Create	a	folder	where	MongoDB	will	store	the	data	for	the	database.
$	mkdir	-p	/data/db

4.	Apply	the	proper	user	execution	permissions	to	the	data	directory.
Click	here	to	view	code	image

$	sudo	chown	-R	$USER	/data/db/

5.	Add	the	extracted	folders	to	your	execution	path.
Click	here	to	view	code	image

$	printf	“\n/Users/USER_HOME/mongodb-osx-x86_64-3.0.4/bin”	|	sudo	tee	-a
/etc/paths

6.	Launch	the	Mongo	daemon	as	a	background	task.
$	mongod	&

The	Mongo	daemon	is	the	database	process,	and	it	listens	for	a	connection	on	port
27017.	By	adding	the	extracted	bin	folder	to	your	execution	path,	you’ve	made	available
a	database	client	named	mongo,	and	a	database	daemon	named	mongod.	When	you
launch	MongoDB,	you	should	see	the	Mongo	database	daemon	output	some	start-up	logs
and	then	background	itself.	The	Mongo	database	is	now	capable	of	accepting	a	connection
from	a	Mongo	client.

Windows
For	Windows,	the	application	files	are	available	as	a	Microsoft	installer	(MSI).

1.	Open	your	web	browser	and	navigate	to	https://www.mongodb.org/downloads.

2.	Click	the	Windows	tab.

3.	Select	your	version	of	Windows	from	the	drop-down	list.

4.	Click	Download	MSI.

https://www.mongodb.org/downloads

5.	Open	the	downloaded	MSI.	You	are	greeted	by	a	splash	page.	Click	Next.

6.	Select	the	Accept	the	License	Agreement	check	box.	Click	Next.

7.	Click	Complete	to	install	all	the	Mongo	binaries	to	C:\Program
Files\MongoDB\Server\3.0\bin.

8.	Click	Install,	and	wait	for	the	wizard	to	complete.

9.	Click	Finish	to	exit	the	installer.

The	binaries	are	now	installed.

10.	Open	Command	Prompt	or	Power	Shell.

11.	Create	a	folder	to	use	for	the	database	data	by	issuing	the	following	command:
md	\data\db

Next,	you’ll	be	adding	the	bin	folder	to	your	environment	path.

12.	In	the	Windows	search	bar,	locate	Advanced	System	Settings.

13.	Click	the	Environment	Variables	button.

14.	Append	the	following	new	semicolon-delimited	value	to	the	end	of	the	existing
string:

Click	here	to	view	code	image
;%PROGRAMFILES%\MongoDB\Server\3.0\bin\

15.	Restart	Windows.

16.	Open	a	new	command-line	session,	and	execute	the	following	code	in	the	command
prompt:
mongod	–-version

The	following	line	displays:
db	version	v3.0.4

17.	Execute	the	following	line	to	start	the	Mongo	daemon:
mongod

18.	Leave	the	Command	Prompt	dialog.

The	Mongo	daemon	is	the	database	process,	and	it	listens	for	a	connection	on	port
27017.	By	adding	the	extracted	bin	folder	to	your	execution	path,	you’ve	made	available
a	database	client	named	mongo	and	a	database	daemon	named	mongod.	When	you
launch	Mongo,	you	should	see	the	Mongo	database	daemon	output	some	startup	logs	and
then	background	itself.	The	Mongo	database	is	now	capable	of	accepting	a	connection
from	a	Mongo	client.	This	approach	requires	you	to	keep	the	command	prompt	open;
otherwise,	the	mongod	process	will	exit.

The	Mongo	Client
You	should	now	have	all	the	Mongo	binaries	available	via	your	system’s	environment
path.	Next,	you	will	create	a	sample	database	and	execute	some	basic	CRUD	(create,	read,
update,	delete)	interactions.

1.	Start	the	Mongo	command-line	client.

2.	Open	a	terminal,	and	execute	the	following	command:
$	mongo
>

You	are	now	dropped	into	the	Mongo	command-line	interface,	indicated	by	the	>
symbol.

Interacting	with	a	Mongo	Database
In	Mongo,	a	database	is	the	parent	container	for	a	series	of	collections.	Each	database	gets
a	unique	file	on	the	file	system,	where	all	subsequent	collection	data	is	stored.	To	see	the
available	database,	execute	the	following:

>show	dbs;
local																0.078GB

This	command	shows	a	list	of	all	the	available	databases	in	your	/data/db	folder.	By
default,	mongo	instantiates	with	a	single	database	instance:	local.	Let’s	create	your	first
custom	database	and	then	re-inspect	the	output	of	the	previous	command.	To	create	a	new
database,	issue	the	use	command	with	a	named	value:

>	use	SampleDatabase;
switched	to	db	SampleDatabase
>	show	dbs;
local																0.078GB

Creating

As	you	can	see	from	the	response	from	the	previous	code,	you’ve	switched	into
SampleDatabase,	but	your	new	database	doesn’t	exist	yet.	You	need	to	store	some
data	in	it	before	it	gets	written	to	disk.	Let’s	store	your	first	document	inside	your	first
collection.

1.	Run	the	following	code:
Click	here	to	view	code	image

>	db.FoodCollection.insert({fruit:	“Apple”})
WriteResult({	“nInserted”	:	1	})

Let’s	take	a	look	at	what	happened:

	From	within	the	MongoDB	client,	the	reference	to	the	current	database	in	use	is
db.	In	this	case,	db	refers	to	the	SampleDatabase	that	you	created	in	the
previous	step.	The	db	object	is	a	container	for	your	collections.

	You	used	dot	notation	off	of	the	db	object	to	access	a	yet	to	be	created	collection
named	FoodCollection.	Once	the	collection	is	defined,	the	collection	object

exposes	an	API	that	allows	you	to	interact	with	collection	documents	and	the
collection	itself.
	You	invoked	the	insert()	function.	The	insert()	function	accepts	a	JSON
object	as	an	argument,	which	will	be	stored	as	our	first	document.	The	response
from	the	database	is	a	confirmation	object	verifying	that	1	object	was	inserted.

2.	Insert	a	second	document	into	the	FoodCollection:
Click	here	to	view	code	image

>	db.FoodCollection.insert({vegetable:	“Lettuce”})
WriteResult({	“nInserted”	:	1	})

In	the	second	entry,	notice	that	you	introduce	a	new	type	of	data.	This	new	type	of
data	has	a	field	name	of	vegetable.	This	document	can	sit	in	the	same	collection
as	the	previous	document,	which	contains	a	document	containing	fruit.	You	can
do	this	because	of	the	schema-less	nature	of	a	non-relational	database.	Your
collection	is	a	list	of	JSON	documents	in	which	each	supports	its	own	data	structure.

3.	Insert	a	third	document	into	the	FoodCollection	that	will	contain	both	fields:
Click	here	to	view	code	image

>	db.FoodCollection.insert({vegetable:	“Lettuce”,	fruit:	“Apple”})
WriteResult({	“nInserted”	:	1	})

Reading

Let’s	take	a	look	at	what	you	stored.

1.	Query	the	previously	stored	documents	from	your	FoodCollection:
Click	here	to	view	code	image

	>	db.FoodCollection.find()
{	“_id”	:	ObjectId(“55951b6a39d3802d052f3038”),	“vegetable”	:	“Lettuce”,
“fruit”	:	“Apple”	}
{	“_id”	:	ObjectId(“55951b7439d3802d052f3039”),	“fruit”	:	“Apple”	}
{	“_id”	:	ObjectId(“55951b7a39d3802d052f303a”),	“vegetable”	:	“Lettuce”	}

By	invoking	find()	on	the	named	collection	and	passing	no	arguments,	you	are
asking	the	collection	to	return	any	document	that	the	collection	might	contain.

As	you	can	see,	the	collection	returns	the	three	documents	you	created,	each	with
their	defined	document	fields.	Notice	that	MongoDB	has	automatically	inserted	an
additional	field,	named	_id.	The	_id	is	a	unique	hash	generated	for	any	document
inserted	into	a	database.	It	can	be	overwritten	if	needed.

2.	Retrieve	a	list	of	objects	by	passing	in	a	query	object:
Click	here	to	view	code	image

>	db.FoodCollection.find({fruit	:	“Apple”})
{	“_id”	:	ObjectId(“55951b6a39d3802d052f3038”),	“vegetable”	:	“Lettuce”,
“fruit”	:	“Apple”	}
{	“_id”	:	ObjectId(“55951b7439d3802d052f3039”),	“fruit”	:	“Apple”	}

By	calling	find()	on	the	named	collection	and	passing	in	a	document	with	a	key–
value	pair,	you	are	asking	the	collection	to	return	any	document	that	contains	the

matching	pair.	The	response	includes	the	document	with	a	single	field	and	the
document	with	both	the	vegetable	field	and	the	fruit	field.

3.	Expand	your	query	object	to	match	multiple	properties:
Click	here	to	view	code	image

>	db.FoodCollection.find({“vegetable”	:	“Lettuce”,	“fruit”	:	“Apple”})
{	“_id”	:	ObjectId(“55951b6a39d3802d052f3038”),	“vegetable”	:	“Lettuce”,
“fruit”	:	“Apple”	}

4.	Using	the	_id	from	the	previous	response	(your	local	value	will	differ),	query	a
collection	by	using	the	generated	_id:

Click	here	to	view	code	image
>	db.FoodCollection.find({_id:	ObjectId(“55951b6a39d3802d052f3038”)})
{	“_id”	:	ObjectId(“55951b6a39d3802d052f3038”),	“vegetable”	:	“Lettuce”,
“fruit”	:	“Apple”	}

Collections	allow	you	to	create	logical	grouping	between	different	types	of	data.
Let’s	introduce	some	unrelated	data	about	sports.

5.	Run	the	following	to	add	some	sports	data:
Click	here	to	view	code	image

>	db.BaseballStats.insert([{rbi:	12,	name:	“Doe”},	{rbi:	6,	name:
“Yates”}])
BulkWriteResult({	“nInserted”	:	2	…	})

In	this	example,	you’re	doing	a	couple	of	things	worth	noting:

	You	are	still	using	the	same	SampleDatabase,	but	you	are	again	creating	a
new	collection	of	data,	this	time	named	BaseballStats.	Because	baseball
statistics	have	no	direct	relationship	to	your	previous	collection	of
FoodCollection,	it’s	a	good	candidate	for	a	new	collection.

	You	are	again	invoking	the	insert()	function	on	the	new	collection.	This	time,
you	are	passing	in	an	array	of	documents.	Note	the	wrapping	square	brackets	[]
and	comma-separated	values.	This	creates	the	new	collection	containing	two
documents.

Updating

You	can	change	the	content	of	your	document	by	using	the	update()	function.	The
update()	function	accepts	two	arguments.	The	first	argument	is	the	query	object,	like
you’ve	been	using.	The	second	argument	is	a	$set	object	with	a	nested-value	object.

The	parent	object	containing	the	$set	field	tells	Mongo	that	you	want	to	update	a
specific	field	and	not	just	replace	the	object	with	a	new	document.	Let’s	take	a	look	at
using	update()	with	and	without	the	$set	field.
Click	here	to	view	code	image

>	db.BaseballStats.find()
{	“_id”	:	ObjectId(“55952708d236b3558ff9f7b8”),	“rbi”	:	12,	“name”	:	“Doe”	}
{	“_id”	:	ObjectId(“55952708d236b3558ff9f7b9”),	“rbi”	:	6,	“name”	:	“Yates”	}
>	db.BaseballStats.update({rbi:	6},	{$set:	{rbi:	7}	})
WriteResult(…)

>	db.BaseballStats.find()
{	“_id”	:	ObjectId(“55952708d236b3558ff9f7b8”),	“rbi”	:	12,	“name”	:	“Doe”}
{	“_id”	:	ObjectId(“55952708d236b3558ff9f7b9”),	“rbi”	:	7,	“name”	:	“Yates”}

By	leveraging	$set,	you’ve	changed	the	value	of	rbi	from	6	to	7	without	impacting
the	rest	of	the	document.	Let’s	issue	an	update()	without	using	$set:
Click	here	to	view	code	image

>	db.BaseballStats.update({rbi:	7},	{rbi:	8})
WriteResult(…)
>	db.BaseballStats.find()
{	“_id”	:	ObjectId(“55952708d236b3558ff9f7b8”),	“rbi”	:	12,	“name”	:	“Doe”}
{	“_id”	:	ObjectId(“55952708d236b3558ff9f7b9”),	“rbi”	:	8	}

As	you	can	see,	after	the	second	update,	the	field–value	pair	of	"name"	:	"Yates”
no	longer	exists.	Omitting	the	$set	object	caused	the	supplied	document	to	completely
replace	the	matched	document.

Deleting

You	can	drop	an	entire	collection	and	all	its	documents	by	invoking	the	drop()	method
on	the	collection	reference.

>	db.BaseballStats.drop()
True
>	db.BaseballStats.find()
>

You	can	delete	a	document	from	a	collection	by	invoking	the	remove()	function.	The
remove()	function	takes	two	arguments:	a	query	object	and	object	containing	a
justOne	Boolean	field.

Omitting	the	justOne	object	tells	Mongo	to	remove	all	documents	that	match	the
query	object.	If	justOne	is	provided,	the	first	matching	element	is	removed.	Let’s	create
some	data	and	then	remove	it	using	both	approaches.
Click	here	to	view	code	image

>	db.BaseballStats.insert([{hits:	10,	name:	“Doe”},{hits:	11,	name:	“Doe”},
{hits:	12,	name:	“Doe”},{hits:	13,	name:	“Doe”}])
BulkWriteResult({	“nInserted”	:	4})
>	db.BaseballStats.find()
{	“_id”	:	ObjectId(“55953000d236b3558ff9f7c4”),	“hits”	:	10,	“name”	:	“Doe”	}
{	“_id”	:	ObjectId(“55953000d236b3558ff9f7c5”),	“hits”	:	11,	“name”	:	“Doe”	}
{	“_id”	:	ObjectId(“55953000d236b3558ff9f7c6”),	“hits”	:	12,	“name”	:	“Doe”	}
{	“_id”	:	ObjectId(“55953000d236b3558ff9f7c7”),	“hits”	:	13,	“name”	:	“Doe”	}

>	db.BaseballStats.remove({name:	“Doe”},	{justOne:	true})
WriteResult({	“nRemoved”	:	1	})
>	db.BaseballStats.find({name:	“Doe”})
{	“_id”	:	ObjectId(“55953000d236b3558ff9f7c5”),	“hits”	:	11,	“name”	:	“Doe”	}
{	“_id”	:	ObjectId(“55953000d236b3558ff9f7c6”),	“hits”	:	12,	“name”	:	“Doe”	}
{	“_id”	:	ObjectId(“55953000d236b3558ff9f7c7”),	“hits”	:	13,	“name”	:	“Doe”	}
>	db.BaseballStats.remove({name:	“Doe”})
WriteResult({	“nRemoved”	:	3	})
>	db.BaseballStats.find({name:	“Doe”})
>

In	this	example	you’re	doing	a	couple	of	things	worth	noting:

	You	insert()	a	list	of	documents	with	varying	values	for	field	hits,	all	of	which
have	a	value	of	"Doe"	for	the	name.	You	follow	that	with	a	find()	command	to
ensure	that	the	data	was	written	properly.

	You	execute	the	function	remove(),	filtering	for	the	name	"Doe".	To	ensure	that
only	the	first	item	found	is	removed,	you	supply	a	config	option	Boolean	of
justOne.

	You	then	execute	the	find()	command	and	notice	that	the	document	where	the
hits	field	is	equal	to	10	has	been	removed.

	You	execute	the	function	remove(),	filtering	for	the	name	"Doe".	This	time	you
omit	the	justOne	config	option.	You	then	execute	the	find()	command	and
notice	that	all	documents	with	a	name	field	matching	"Doe"	have	been	removed
from	the	collection.

Embedding	Documents
One	of	the	powerful	features	of	MongoDB	is	the	ability	to	embed	documents.	Collections
are	a	great	way	to	create	logical	groupings,	but	those	separations	mean	you	can’t	execute	a
single	query	to	get	data	from	both	collections;	you	have	to	issue	two	separate	queries.	For
a	lot	of	applications,	that	is	perfectly	acceptable.	However,	in	cases	where	performance	is
a	top	priority,	Mongo	offers	the	capacity	to	embed	documents	inside	documents.

Embedding	allows	you	to	nest	objects	inside	objects.	This	is	a	familiar	practice	to
anyone	who’s	worked	with	JSON	data	structures.

Let’s	update	the	collection	to	use	some	embedded	documents	to	track	game	states	for
each	player.	First,	let’s	drop	the	collection	so	you	can	clean	up	the	data.	Dropping	a
collection	removes	all	the	documents	from	a	collection.

1.	Run	the	drop()	and	find()	functions:
>	db.BaseballStats.drop()
true
>	db.BaseballStats.find()
>

Let’s	take	a	look	at	the	JSON	structure	of	the	documents	you	are	going	to	insert.
[
		{
				“name”:	“Doe”,
				“games”:	[
						{
								“date”:	“06-22-2015”,
								“at_bats”:	3,
								“hits”:	1
						},
						{
								“date”:	“06-23-2015”,
								“at_bats”:	3,
								“hits”:	1
						},
						{
								“date”:	“06-23-2015”,

								“at_bats”:	3,
								“hits”:	1
						}
]
		},
		{
				“name”:	“Yates”,
				“games”:	[
						{
								“date”:	“06-22-2015”,
								“at_bats”:	4,
								“hits”:	2
						},
						{
								“date”:	“06-23-2015”,
								“at_bats”:	2,
								“hits”:	0
						},
						{
								“date”:	“06-23-2015”,
								“at_bats”:	4,
								“hits”:	4
						}
]
		}
]

Next,	you	will	insert	the	above	JSON	code	into	your	collection.	Luckily,	the	Mongo
client	supports	multiline	entries.

2.	Construct	the	opening	line	of	the	query,	and	press	Return/Enter.
>	db.BaseballStats.insert(
…

You	can	manually	begin	entering	the	JSON	code,	or	you	can	paste	it	directly	into	the
command	prompt.

3.	Enter	each	new	line	as	needed	by	pressing	the	Return/Enter	key.

MongoDB	understands	that	you	are	creating	a	document.	It	will	wait	for	the	JSON
structure	to	be	closed	before	executing.

4.	When	you’re	finished	placing	the	JSON	structure	into	the	MongoDB	client,	append
an	additional	closing	parenthesis,	and	press	Return/Enter.
…)

If	you	entered	the	JSON	code	correctly,	Mongo	created	two	new	documents	for	you.
Each	document	contains	a	field	named	games	that	will	be	an	array	of	nested
documents.

5.	Run	a	find()	command	to	take	a	look	at	how	Mongo	has	stored	your	data:
Click	here	to	view	code	image

>	db.BaseballStats.find()
{	“_id”	:	ObjectId(“55953c05a9e58e4c4304eadb”),	“name”	:	“Doe”,	“games”	:
[{	“date”	:	“06-22-2015”,	“at_bats”	:	3,	“hits”	:	1	},	{	“date”	:	“06-23-
2015”,	“at_bats”	:	3,	“hits”	:	1	},	{	“date”	:	“06-23-2015”,	“at_bats”	:
3,	“hits”	:	1	}]	}
{	“_id”	:	ObjectId(“55953c05a9e58e4c4304eadc”),	“name”	:	“Yates”,	“games”

:	[{	“date”	:	“06-22-2015”,	“at_bats”	:	4,	“hits”	:	2	},	{	“date”	:	“06-
23-2015”,	“at_bats”	:	2,	“hits”	:	0	},	{	“date”	:	“06-23-2015”,	“at_bats”
:	4,	“hits”	:	4	}]	}

6.	Query	a	top-level	object	using	the	established	query	convention:
Click	here	to	view	code	image

>	db.BaseballStats.find({name:	“Doe”})
{	“_id”	:	ObjectId(“55953c05a9e58e4c4304eadb”),	“name”	:	“Doe”,	“games”	:
[{	“date”	:	“06-22-2015”,	“at_bats”	:	3,	“hits”	:	1	},	{	“date”	:	“06-23-
2015”,	“at_bats”	:	3,	“hits”	:	1	},	{	“date”	:	“06-23-2015”,	“at_bats”	:
3,	“hits”	:	1	}]	}

7.	Ask	the	question	“which	players	had	a	game	with	four	hits?”	by	constructing	the
following	query.	It	will	return	the	entire	root	object.

Click	here	to	view	code	image
>	db.BaseballStats.find({“games.hits”:	4})
{	“_id”	:	ObjectId(“55953c05a9e58e4c4304eadc”),	“name”	:	“Yates”,	“games”
:	[{	“date”	:	“06-22-2015”,	“at_bats”	:	4,	“hits”	:	2	},	{	“date”	:	“06-
23-2015”,	“at_bats”	:	2,	“hits”	:	0	},	{	“date”	:	“06-23-2015”,	“at_bats”
:	4,	“hits”	:	4	}]	}

Summary
Congratulations,	you’ve	run	through	the	basics	of	interacting	with	MongoDB.	This	is	not
intended	to	be	a	complete	overview	of	how	to	use	MongoDB.	This	chapter	was	designed
to	get	you	up	and	running	quickly	with	a	powerful,	scalable	database	and	to	teach	you	the
basic	functionality	that	you	will	need	to	build	your	Just-In-Time	Airlines	ticketing	system.

You	should	now	know
	What	a	relational	database	is

	What	a	non-relational	database	is

	What	the	high-level	differences	are	between	a	relational	and	non-relational	database

	How	to	acquire	and	install	MongoDB	for	your	operating	system

	What	the	MongoDB	daemon	is

	What	the	MongoDB	client	is

	How	to	create,	read,	update,	and	delete	documents	from	a	collection

	What	a	collection	is

	What	a	document	is

	How	to	query	and	retrieve	a	document	based	on	a	matched	subdocument

	How	to	embed	a	document	in	a	document

Chapter	9.	Mongo	Dart

In	the	previous	chapter,	you	learned	the	basics	of	working	with	MongoDB.	By	using
MongoDB,	you	are	leveraging	a	powerful	database	that	facilitates	a	client-centric
approach	to	structuring	data.	It’s	now	time	to	use	Dart	to	populate	the	seed	data	that	will
power	the	Just-In-Time	Airlines	ticketing	application.

Setting	Up	Your	Project
In	this	chapter,	you’ll	learn	how	to	use	the	MongoDB	Dart	client.	You’ll	query	and	write
data	to	your	MongoDB	using	the	community	package	mongo_dart.	Next,	you	will
download	the	seed	data	corresponding	to	the	data	structures	outlined	in	Chapter	7.	Finally,
you’ll	write	that	data	to	MongoDB.

Let’s	start	by	setting	up	the	project	for	you	new	ticketing	application.	You’ll	be	using
the	tickets	project	folder	for	the	remainder	of	the	book.

1.	Navigate	to	the	~/projects/	folder	on	your	operating	system.

2.	Create	a	new	folder,	named	tickets.

3.	Open	the	IDEA	Editor.

4.	Select	Open	either	from	the	splash	screen	or	from	under	the	File	menu.

5.	In	the	dialog,	navigate	to	the	~/projects/	folder.

6.	Highlight	the	tickets	folder,	and	click	Choose	to	select	it.

This	will	import	your	tickets	project	folder	into	IDEA.	Next,	you’ll	create	some
folders	inside	your	tickets	project	folder.

7.	On	the	left	side	of	the	editor	in	the	IDE’s	Project	panel,	Control-click	the	tickets
folder,	and	choose	New	>	Directory.	Name	the	new	directory	bin.

8.	Create	another	directory	inside	your	tickets	folder,	and	name	it	lib.

9.	On	the	left	side	of	the	editor	in	the	IDE’s	Project	panel,	Control-click	the	tickets
folder,	and	choose	New	>	File.	Name	the	new	file	pubspec.yaml.

This	should	look	familiar	if	you’ve	followed	along	since	Part	1.	Let’s	add	a	new
folder	that	will	be	used	only	by	your	package.

10.	Navigate	into	the	tickets	folder	on	the	left	side	of	the	editor.	This	time	create	a
directory	inside	your	lib	folder,	and	name	it	db.

11.	Control-click	the	db	folder,	and	choose	New	>	File.	Name	the	new	file
db_config.dart.

12.	Control-click	the	db	folder,	and	choose	New	>	File.	Name	the	new	file
seeder.dart.

I	used	a	plugin	named	Export	JSON	to	convert	the	Google	Sheets	from	Chapter	7

into	a	JSON	file	for	consumption	by	Dart.

13.	Use	your	preferred	method	of	choice	to	download	the	file	at
http://bit.ly/dart_seed_json.

14.	Name	the	downloaded	file	seed.json,	and	place	it	in	your	/lib/db/	folder.

The	resulting	directory	structure	should	look	like	Figure	9.1.

FIGURE	9.1	Directory	structure

http://bit.ly/dart_seed_json

Downloading	and	Installing	Mongo	Dart	Packages
Next,	you	will	download	the	required	database	dependencies.	You’ll	be	introducing	more
dependencies	as	your	application	grows,	but	for	now	you’re	just	focusing	on	working	with
MongoDB.	You’ll	be	using	the	community	package	named	mongo_dart.	The
mongo_dart	package	is	a	server-side	library	that	provides	Dart	with	a	back-end	client	to
connect	to	a	MongoDB	database	server.	Although	not	supported	directly	by	Google,	it	has
a	long	project	history,	and	is	used	by	many	popular	Dart	frameworks.	More	information
about	mongo_dart	is	available	at
https://pub.dartlang.org/packages/mongo_dart.

To	install	mongo_dart,	you’ll	be	using	Pub	to	download	and	manage	the
dependencies.	Let’s	go	ahead	and	set	up	the	pubspec.yaml	file.

1.	Open	pubspec.yaml,	and	enter	the	following:
Click	here	to	view	code	image

name:	tickets
version:	0.0.1
description:	A	ticket	commerce	application
author:	<your_username>	<your_email>
homepage:	<your_url>
environment:
		sdk:	‘>=1.0.0	<2.0.0’
dependencies:
		json_object:	“1.0.19”
		mongo_dart:	“0.1.46”

The	concept	of	a	pubspec.yaml	file	should	be	familiar	to	you	from	Chapter	5.	In
short,	you’re	defining	the	package	name	of	your	application	as	tickets	and
assigning	some	meta	information	about	you,	the	project	author.	You	are	then	telling
the	project	that	it	must	use	a	Dart	SDK	version	greater	than	or	equal	to	version	1.0.0
but	less	than	version	2.0.0.	Finally,	you	are	requiring	two	dependencies	to	be
exposed	to	the	parent	application:	json_object	and	mongo_dart.	You’ll	be
using	the	functionality	from	json_object	to	convert	JSON	string	values	into	a
Dart	JSON	object	that	can	then	be	inserted	into	MongoDB.

2.	Once	your	pubspec.yaml	file	is	generated,	click	the	Get	Dependencies	link	in
the	upper-right	corner	of	IDEA.	This	executes	the	pub	get	command	for	your
project	and	downloads	the	needed	dependencies.	You	should	see	something	similar
to	the	following	output:

Click	here	to	view	code	image
Working	dir:	/Users/jmurphy/projects/tickets
/Users/jmurphy/dart-sdk/bin/pub	get
Resolving	dependencies…
Got	dependencies!
…
Process	finished	with	exit	code	0

https://pub.dartlang.org/packages/mongo_dart

Version	Numbers

Although	many	folks	love	to	run	the	latest	and	greatest,	I	highly	suggest	using	the
version	numbers	that	are	listed	throughout	the	book.	The	Pub	repositories	store	all
the	various	versions	for	years	to	come,	so	they’ll	remain	available	long	after	this
book	has	been	published.	By	requesting	a	package	in	pubspec.yaml	with	a
specific	version	number,	Pub	will	install	that	exact	requested	version	from	its
repositories.	The	benefit	of	using	the	exact	version	listed	in	the	book	is	that	I	can
guarantee	they’ll	work	together	as	described.	Once	you’ve	finished	the	book,	feel
free	to	try	to	update	the	versions	to	their	latest	distributions.

Exposing	Database	Credentials
You	need	to	ensure	that	you	are	using	the	same	credentials	to	access	your	database	across
your	entire	application.	Let’s	go	ahead	and	create	a	simple	class	that	exposes	the
credentials	in	a	consistent	manner.	(Note	that	the	package	containing	class	Resource
will	change	with	Dart	1.14.0.)	Open	your	lib/db/db_config.dart	file:
Click	here	to	view	code	image

class	DbConfigValues	{
		String	dbName	=	‘Tickets’;
		String	dbURI	=	‘mongodb://127.0.0.1/’;
		Resource	dbSeed	=	const	Resource(‘package:tickets/db/seed.json’);
		int	dbSize	=	10;

		String	get	testDbName	=>	dbName	+	“-test”;
		String	get	testDbURI	=>	dbURI;
		Resource	get	testDbSeed	=>	dbSeed;
		int	get	testDbSize	=>	dbSize;
}

This	will	serve	you	over	the	next	couple	of	chapters	to	ensure	that	you	are	always
providing	the	same	credentials	to	your	MongoDB.	This	class	also	exposes	getters	to	return
credentials	that	will	allow	you	to	spin	up	a	test	database	once	you	start	writing	unit	tests.

Seeding	Data	in	Dart
Now	that	your	project	has	the	required	dependencies	installed,	you’re	ready	to	start
writing	the	seeder.	Seeder	is	a	utility	that	helps	install	the	needed	data	for	the	primary
application.	Let’s	take	a	look	at	the	conversion	process	from	a	Google	Sheet	to	JSON	to	a
MongoDB	collection.

Collections
Each	sheet	in	the	workbook	is	represented	as	a	top-level	property	in	the	JSON	file.

{
		“Routes”:	[…],
		“Times”:	[…],
		“Cities”	[…],
		“Bookings”:	[…],
		“Transactions”:	[…]
}

Each	of	these	top-level	properties	will	represent	a	collection	in	MongoDB.

Documents
Each	row	from	the	Google	Sheet	is	represented	as	a	property	in	the	downloaded	JSON	file
and	will	eventually	become	a	document	in	MongoDB.	Each	document	will	exist	as	part	of
a	collection	in	which	the	document	fields	and	values	are	assigned	by	items	with
corresponding	column	labels	and	values	from	the	Google	Sheet.	Look	at	the	example	in
Figure	9.2.

FIGURE	9.2	Sheet	representation

The	sheet	from	Figure	9.2	has	the	JSON	representation	in	the	seed.json	file
(Example	9.1):

EXAMPLE	9.1
Click	here	to	view	code	image

{
		“Cities”:	[
						{
										“city”:	“Los	Angeles”,
										“airportcode”:	“LAX”,
										“gate”:	“C32”
						},

						{
										“city”:	“San	Diego”,
										“airportcode”:	“SAN”,
										“gate”:	“B21”
						},
						{
										“city”:	“San	Francisco”,
										“airportcode”:	“SFO”,
										“gate”:	“A12”
						},
						{
										“city”:	“Oakland”,
										“airportcode”:	“OAK”,
										“gate”:	“B5”
						},
						{
										“city”:	“Sacramento”,
										“airportcode”:	“SMF”,
										“gate”:	“A33”
						}
]
	}

The	sheet	name	corresponds	to	the	collection	name,	which	is	represented	by	the	top-
level	JSON	property	of	Cities.	The	columns	from	the	Cities	sheet—city,
airportcode,	and	gate—are	represented	as	the	properties	on	each	of	the	child	JSON
objects.

Finally,	rows	from	the	sheet	are	represented	as	an	array	of	objects	whose	properties
have	been	assigned	the	values	from	their	respective	row.

Reading	a	File	from	the	File	System
Now	you’re	going	to	build	a	stand-alone	command-line	application	that	reads	in	the
seed.json	file.	You’ll	be	leveraging	two	of	Dart’s	built-in	packages:	dart:io	and
dart:async.

	dart:io	is	a	built-in	Dart	library	that	allows	you	to	interact	with	files,	directories,
processes,	HTTP	servers,	and	numerous	other	system-level	features.	dart:io	is
restricted	purely	to	command-line	applications	and	cannot	be	leveraged	by	browser
implementations.

	dart:async	is	a	built-in	Dart	library	that	allows	you	to	leverage	many	of	the
asynchronous	features	found	in	Dart.	For	a	review	on	asynchronous	programming,
please	refer	to	Chapter	6.

Because	this	is	a	stand-alone	command-line	application,	you’ll	be	implementing	the
main()	interface	in	seeder.dart.	This	will	enable	seeder.dart	to	act	as	an
application	entry	point.

1.	Open	the	seeder.dart	file	and	enter	the	code	from	Example	9.2:

EXAMPLE	9.2
Click	here	to	view	code	image

import	‘dart:io’;

import	‘dart:async’;
import	‘db_config.dart’;

main()	{
		DbConfigValues	config	=	new	DbConfigValues();
		var	importer	=	new	Seeder(config.dbName,	config.dbURI,	config.dbSeed);
		importer.readFile();
}

class	Seeder	{
		final	String	_dbURI;
		final	String	_dbName;
		final	Resource	_dbSeedFile;

		Seeder(String	this._dbName,	String	this._dbURI,	Resource	this._dbSeedFile);

		Future	readFile()	{
				return	_dbSeedFile.readAsString().then((String	item)	=>	print(item));
		}
}

2.	Run	the	seeder.dart	file.

You	should	see	the	contents	of	the	seed.json	file	printed	to	the	output	window.
Let’s	take	a	look	at	what	you	just	did.

	By	implementing	the	function	main(),	you’ve	given	Dart	a	root	execution
context	for	the	utility	application.

	Inside	main()	you	instantiated	an	instance	of	class	Seeder.	Seeder’s
parameterized	constructor	accepts	a	Resource	argument	that	corresponds	to	the
asset	location	of	the	JSON	file	using	package	syntax.	These	values	are	exposed
from	your	class	DBConfigValues.

	Resource	is	a	class	exposed	by	dart:core.	It	allows	the	asynchronous
loading	of	assets	at	runtime,	its	constructor	uses	the	same	package	locator	syntax
found	throughout	the	rest	of	your	library,	and	helps	developers	avoid	using
relative	paths.

	You	declared	a	class	named	Seeder.	Seeder	has	one	function,	named
readFile(),	that	returns	an	instance	of	the	future.

	You	then	executed	the	asynchronous	function	named	readAsString()	to
make	a	request	to	the	file	system	to	retrieve	the	contents	of	the	seed.json	file.
The	function	readAsString()	returns	a	future	with	a	value	containing	the	raw
JSON	string.

	Using	the	futures	pattern,	you	passed	in	a	function	expression	to	the	then()
completer	method.	This	method	waits	until	the	future	completes	(the	asset	finishes
loading),	then	executes	the	function	expression.	The	function	expression	prints	the
returned	string	value	to	the	console.

Converting	to	JSON
In	Example	9.2,	you	were	able	to	access	the	string	value	of	the	seed.json	file.	Right
now	the	value	is	a	single	string.	In	order	to	get	access	to	each	of	the	elements,	you	need	to
convert	the	string	value	into	a	JSON	object.	To	handle	this	conversion,	you’ll	be
leveraging	the	package	json_object.

The	JsonObject	class	is	a	wrapper	for	dart:convert	encode	and	decode
functionality.	It	will	deserialize	a	JSON	string	into	a	Dart	Map	object	and	then	expose	the
map	properties	using	dot	notation.

Because	you	don’t	have	a	concrete	Dart	class	that	maps	to	the	data	structure	of	the
seed.json	file,	JsonObject	leverages	the	NoSuchMethod	functionality	to
implement	dot	notation	field	access.	In	short,	when	calling	a	field	using	dot	notation,
JsonObject	will	trap	the	NoSuchMethod	error	and	use	its	contents	to	discern	a	key
that	can	then	be	used	to	access	the	instance	from	the	internal	map	representation	of	the
data	structure.	The	end	result	is	an	instance	that	mimics	“dynamic	programming”
practices,	in	which	properties	are	not	necessarily	defined	or	expected	at	author	time.

Although	this	is	good	for	quick	conversions,	we’ll	be	looking	at	a	more	Dart-idiomatic
approach	later	in	the	book:	Dartson.

In	Example	9.3,	you’ll	be	using	future	chaining	to	ensure	the	order	of	operations	on	the
conversion.

1.	Update	the	seeder.dart	file	to	the	following:

EXAMPLE	9.3
Click	here	to	view	code	image

import	‘dart:io’;
import	‘dart:async’;
import	‘package:json_object/json_object.dart’;

import	‘db_config.dart’;

main()	{
		DbConfigValues	config	=	new	DbConfigValues();
		var	importer	=	new	Seeder(config.dbName,	config.dbURI,	config.dbSeed);
		importer.readFile();
}

class	Seeder	{
		final	String	_dbURI;
		final	String	_dbName;
		final	Resource	_dbSeedFile;

		Seeder(String	this._dbName,	String	this._dbURI,	Resource	this._dbSeedFile);

		Future	readFile()	{
					return	_dbSeedFile.readAsString()
				.then((String	item)	=>	new	JsonObject.fromJsonString(item))
				.then(printJson);
		}

JsonObject	printJson(JsonObject	json)	{

				json.keys.forEach((String	collectionKey)	{
						print(‘Collections	Name:	‘	+	collectionKey);

						var	collection	=	json[collectionKey];
						print(‘Collection:	‘	+	collection.toString());
						collection.forEach((document)	{
								print(‘Document:	‘	+	document.toString());
						});
				});
				return	json;
		}

}

Let’s	review	what	you	did	in	Example	9.3:

	You	used	a	function	expression	to	deserialize	the	string	item	from	a	single	large
string	entity	into	a	JSON	object.	The	function	expression	then	returns	the	new
JsonObject	instance	to	the	future.

	You	introduced	a	new	function,	named	printJson(),	that	will	be	used	to	chain
together	multiple	asynchronous	futures.	It	expects	the	argument	passed	to	it	to	be
of	type	JsonObject.	By	having	previously	converted	the	parameter	to	a	JSON
object,	you	were	able	to	treat	the	instance	as	a	map.

The	Map	object	exposed	a	property	named	keys,	which	exposed	each	of	the	keys
in	a	map	via	an	iterator.	The	top-level	keys	in	the	JSON	object	correspond	to	the
top-level	objects	names	from	the	previous	section.	You	then	iterated	over	the	keys
and	printed	the	collection	name,	followed	by	the	respective	document	keyed	on
the	respective	collection	name.

	Because	each	collection	is	a	list	of	documents,	you	individually	grabbed	each	list,
and	you	iterated	over	the	members	of	the	list	using	the	forEach()	method.	As	a
result,	you	printed	each	row	from	the	sheet.	Each	row	will	eventually	represent	a
document	in	MongoDB	and	contain	each	of	its	unique	properties	and	values.

	Because	this	is	just	printing	out	the	data	structure,	you	returned	the	unmodified
JsonObject	instance	to	the	future.	This	allows	the	next	element	in	the	chain	to
accept	the	instance	as	a	parameter.

2.	Run	seeder.dart	again.

In	the	output	window,	you	should	see	the	JSON	object	broken	into	the	representation
that	you’re	going	to	put	into	the	database.

Click	here	to	view	code	image
Observatory	listening	on	http://127.0.0.1:63193
Collections	Name:	Routes
Collection:	{“route”:“SAN_LAX”,“duration”:45,“price1”:29…	…	…	…
Document:	{“route”:“SAN_SFO”,“duration”:140,“price1”:49,“price2”:79,
“price3”:99,“seats”:7}
Document:	{“route”:“SAN_OAK”,“duration”:150,“price1”:49,“price2”:79,
“price3”:99,“seats”:7}
//…

Connecting	to	Mongo	from	Dart
Next	you’ll	write	some	actual	data	to	MongoDB.	Your	project	now	has	the	required
dependencies	installed,	and	you’ve	decoded	your	seed.json	file,	so	you’re	ready	to
connect	Dart	to	MongoDB.

1.	Ensure	that	you’ve	completed	Chapter	8	and	that	the	mongod	process	is	still
running.

2.	Modify	your	seeder.dart	file	to	match	Example	9.4:

EXAMPLE	9.4
Click	here	to	view	code	image

import	‘dart:io’;
import	‘dart:async’;
import	‘package:json_object/json_object.dart’;
import	‘db_config.dart’;
import	‘package:mongo_dart/mongo_dart.dart’;

main()	{
		DbConfigValues	config	=	new	DbConfigValues();
		var	importer	=	new	Seeder(config.dbName,	config.dbURI,	config.dbSeed);
		importer.readFile();
}

class	Seeder	{
		final	String	_dbURI;

		final	String	_dbName;

		final	Resource	_dbSeedFile;

		Seeder(String	this._dbName,	String	this._dbURI,	Resource	this._dbSeedFile);

		Future	readFile()	{
				return	_dbSeedFile.readAsString()
				.then((String	item)	=>	new	JsonObject.fromJsonString(item))
				.then(printJson)
				.then(insertJsonToMongo)
				.then(closeDatabase);
		}

		JsonObject	printJson(JsonObject	json)	{
				json.keys.forEach((String	collectionKey)	{
						print(‘Collections	Name:	‘	+	collectionKey);
						var	collection	=	json[collectionKey];
						print(‘Collection:	‘	+	collection.toString());
						collection.forEach((document)	{
								print(‘Document:	‘	+	document.toString());
						});
				});
				return	json;
		}

		Future<Db>	insertJsonToMongo(JsonObject	json)	async
		{
				Db	database	=	new	Db(_dbURI	+	_dbName);
				await	database.open();
				await	Future.forEach(json.keys,	(String	collectionName)	async	{
						//grabs	the	collection	instance
						DbCollection	collection	=	new	DbCollection(database,	collectionName);

						//takes	a	list	of	maps	and	writes	to	a	collection
						return	collection.insertAll(json[collectionName]);
				});
				return	database;
		}

		Future	closeDatabase(Db	database)	{
				return	database.close();
		}
}

Let’s	review	what	you	did	in	Example	9.4:

	The	constructor	method	signature	for	class	Seeder	is	modified	to	require	a
string	value	of	_dbName	and	_dbURI.

	_dbName	tells	mongo_dart	which	database	within	MongoDB	to	use.	If	it	does
not	exist,	it	will	be	created.	You’ll	be	using	a	database	with	the	name	of
Tickets	to	store	all	the	data.

	_dbURI	tells	mongo_dart	that	the	Mongo	daemon	is	listening	at	IP	127.0.0.1,
which	is	your	local	machine.	If	your	database	is	on	a	different	computer,	you
could	modify	the	URI	(uniform	resource	identifier)	to	point	to	a	different	location.
Many	other	parameters	can	be	supplied	when	initializing	a	connection	to
MongoDB.	Please	refer	to	the	documentation	for	more	information.

	Inside	the	insertJsonToMongo()	function,	you	instantiated	an	instance	of
Db	from	the	mongo_dart	library.	This	instance	is	the	primary	interface	for	your
interactions	with	the	mongo_dart	client.

	Upon	instantiation,	you	haven’t	actually	connected	to	the	database	yet.	You	need
to	initialize	a	new	session	by	calling	the	open()	method	on	the	instanceof	class
Db.

Many	interactions	with	MongoDB	are	asynchronous	because	they	require	a	round
trip	from	the	Dart	client	to	the	server	and	back.	The	mongo_dart	library
supports	this	by	making	heavy	use	of	futures.	The	function	open()	is	the	first
example	of	this.	You	used	the	await	keyword	from	Dart	to	mimic	a	synchronous
request.	Once	the	open()	future	returns,	the	Db	can	accept	commands	and	the
execution	context	will	continue.

	You	again	accessed	the	json.keys	object	property,	which	is	a	collection	of	the
JSON	property	names,	in	order	to	traverse	the	JSON	data	structure.	You	have
multiple	asynchronous	requests	that	are	going	to	be	made,	so	you	wrapped	the
iterator	in	a	future	and	again	used	the	await	keyword.

	You	used	the	keys	collection	to	acquire	the	list	of	map	items	representing	each
collection.	By	instantiating	a	new	instance	using	new	DbCollection(),	you
are	telling	MongoDB	that	you	want	a	new	collection	that	corresponds	to	the
named	value	from	the	JSON	data	structure.	The	variable	collection	stores	a
reference	to	the	new	DbCollection	instance.	As	you	saw	in	Chapter	8	with	the

MongoDB	client,	a	collection	doesn’t	exist	until	it	contains	data.

	The	mongo_dart	library	expects	all	documents	to	be	of	type	Map.	It	can
support	single	insertion,	or	it	will	accept	a	List<Map>	for	multiple	items.	The
seed	file	has	already	been	converted	to	a	list	of	maps	via	JsonObject.	Using
collection.insertAll(),	you	can	save	all	the	entities	for	each	collection
in	one	call.

In	order	to	execute	a	single	save	action,	you	first	acquire	the	whole	collection	by
providing	the	collectionName	key	to	the	instance	of	JsonObject.	That
will	return	a	List<Map>	instance	of	the	collection	that	you	then	provide	as
argument	to	the	aforementioned	insertAll()	method.

	The	last	method	in	the	chain	is	closeDatabase().	This	function	accepts	an
instance	of	Db.	Every	call	to	open()	must	have	a	corresponding	call	to
close().	If	you	don’t	call	close(),	Dart	will	leave	the	MongoDB	connection
process	running	and	cause	a	memory	leak.	We’ll	take	a	look	at	database	pooling
in	future	chapters.

3.	Run	seeder.dart	again.

In	the	output	window,	you	should	see	the	JsonObject	output	again,	but	the	last
line	should	read	as	follows:

Click	here	to	view	code	image
Process	finished	with	exit	code	0

Verifying	the	Data
Now	that	your	seed	file	has	been	inserted	into	MongoDB,	let’s	make	sure	the	data
persisted	correctly.

1.	Open	the	terminal	and	use	the	command-line	Mongo	client	to	query	some	of	the
new	data.
$	mongo
MongoDB	shell	version:	3.0.3
connecting	to:	test
>	use	Tickets
switched	to	db	Tickets

2.	Now	that	you’re	in	the	Tickets	database,	let’s	see	what	collections	are	available:
>	show	collections;
Bookings
Cities
Routes
Times
Transactions
system.indexes

3.	Check	one	of	the	collections	to	make	sure	it	has	the	documents	and	the
corresponding	document	values:

Click	here	to	view	code	image
>	db.Cities.find()

{	“_id”	:	ObjectId(“559e9f1c48f62fcc6e14fe1e”),	“city”	:	“Los	Angeles”,
“airportcode”	:	“LAX”,	“gate”	:	“C32”	}
{	“_id”	:	ObjectId(“559e9f1c48f62fcc6e14fe1f”),	“city”	:	“San	Diego”,
“airportcode”	:	“SAN”,	“gate”	:	“B21”	}
{	“_id”	:	ObjectId(“559e9f1c48f62fcc6e14fe20”),	“city”	:	“San	Francisco”,
“airportcode”	:	“SFO”,	“gate”	:	“A12”	}
{	“_id”	:	ObjectId(“559e9f1c48f62fcc6e14fe21”),	“city”	:	“Oakland”,
“airportcode”	:	“OAK”,	“gate”	:	“B5”	}
{	“_id”	:	ObjectId(“559e9f1c48f62fcc6e14fe22”),	“city”	:	“Sacramento”,
“airportcode”	:	“SMF”,	“gate”	:	“A33”	}

Summary
Congratulations,	you	have	now	seeded	your	MongoDB	with	the	data	needed	to	power
your	ticketing	application.	We’ll	be	working	a	lot	more	with	the	mongo_dart	library,
but	you	should	now	have	a	basic	understanding	of	how	to	interact	with	MongoDB	from
dart.

You	Should	Now	Know
	That	your	tickets	project	is	set	up	for	the	remainder	of	the	book

	That	your	pubspec.yaml	is	configured	to	pull	down	third-party	packages

	That	your	seed	data	is	accessible	through	a	MongoDB

	How	to	connect	Dart	to	MongoDB

	What	a	MongoDB	Connection	URI	is

	How	to	read	a	file	from	the	file	system	asynchronously

	How	to	deserialize	a	string	into	JSON

	How	JsonObject	enables	dot	notation,	and	its	associated	downsides

	How	to	work	with	an	asynchronous	DbCollection	instance

	How	to	work	with	an	asynchronous	Db	instance

	How	to	open	a	MongoDB	session

	How	to	close	a	MongoDB	session

	How	to	write	a	document	from	Dart	to	MongoDB

Chapter	10.	Data	Modeling	Using	Dartson

In	this	chapter,	you	will	set	up	a	MongoModel	class	that	will	expose	basic	CRUD
(Create,	Read,	Update,	and	Delete)	operations	to	your	Mongo	database.	MongoModel
will	be	your	primary	interface	to	the	mongo_dart	library.	It’s	here	that	you’ll	implement
database	connection	pooling	and	other	MongoDB	helper	functionality.	Later	in	this
chapter,	you’ll	be	learning	how	to	define	an	interface	for	each	MongoDB	document	using
a	Dart	class	paired	with	Dartson	for	serialization.	You	will	then	share	your	data	structures
between	your	client	code	and	server	code.	By	the	end	of	this	chapter,	you	will	have	a	solid
understanding	of	how	to	handle	data	storage	for	your	application.

Why	Dartson
Although	a	RESTful	system	enforces	a	standard	method	of	interaction	with	a	web	server,
it	does	not	dictate	which	type	of	content	your	messages	must	be	sent	in.	This	has	resulted
in	multiple	media	types	being	used	for	API	design,	including	HTML,	XML,	JSON,
Binary,	and	many	others.	As	you	may	have	guessed	from	previous	chapters,	you	will	be
using	JSON	to	send	data	between	the	client	and	server.	You’ll	go	one	step	further	and
leverage	Dart’s	capacity	to	run	on	both	server	and	client	by	sharing	your	data	structure
between	both	tiers.

JSON	stands	for	JavaScript	Object	Notation	and	is	one	of	the	most	popular	interchange
formats	on	the	web.	It	is	based	on	the	popular	ECMAScript	3	syntax	and	allows	for	easily
readable	object	creation.	It	supports	name–value	pairs	of	strings,	arrays,	and	objects—all
of	which	combine	to	become	the	foundation	for	flexible	hierarchical	data	structures.

The	downside	to	working	with	JSON	is	that,	like	its	JavaScript	counterpart,	it	lacks
strong	typing.	This	represents	a	challenge	to	languages,	like	Dart,	that	provide	rich,
strongly	typed	data	structures.	To	help	you	work	effectively	with	JSON,	we	will	introduce
you	to	a	serialization	mechanism	named	Dartson.

Dartson	is	a	community	library	that	enables	the	serialization	of	JSON	data	to	native
Dart	class	instances	and	vice	versa.	This	means	that	classes	leveraging	Dartson	will	retain
full	type	integrity	and	IDE	tooling.	This	stands	in	stark	contrast	to	the	approach	used	in
Chapter	9,	which,	by	using	JsonObject,	allowed	Dart	to	serialize	JSON	data	into	a
glorified	dynamic	object.

To	successfully	implement	serialization,	Dartson	uses	two	different	approaches,	the	first
of	which	is	reflection	and	the	second	of	which	is	a	transformer	at	build	time.	Dart	ships
with	a	core	library	dedicated	to	handling	reflection:	dart:mirrors.

Mirrors	is	a	powerful	library	that	enables	the	developer	to	observe	and	modify	objects
at	run	time.	Mirrors	are	ideal	for	serialization	tasks	and	work	extremely	well	when	run	in
the	Dart	VM.	At	a	high	level,	reflection	works	by	taking	apart	an	object	and	traversing	its
structure	node	by	node.	In	static	languages,	this	works	extremely	effectively.	This	is
definitely	the	case	when	running	in	the	Dart	VM.

Dart	hits	a	stumbling	block	when	working	with	reflection	and	the	transformer	dart2js.	If
you	recall,	the	dart2js	process	takes	native	Dart	code,	inspects	its	structure,	and	outputs

optimized	JavaScript	code.	To	ensure	the	output	code	is	compact,	dart2js	takes	only	what
parts	of	the	Dart	code	base	it	needs	to	execute	efficiently.	Using	a	process	known	as	tree
shaking,	dart2js	is	able	to	discard	any	unused	or	dead	code.	When	reflection	is	used,	there
is	simply	too	much	surface	area	for	dart2js	to	efficiently	transpile,	and	the	output	becomes
untenable.

The	challenge	with	reflection	is	that	dart2js	can’t	distinguish	between	a	reflection	utility
that	inspects	all	the	methods	on	a	class	and	an	object	that,	for	example,	might	call	only	one
of	100	methods	from	that	same	class.	Reflection	would	cause	the	99	unused	methods	to	be
marked	as	active.

In	the	previous	case,	using	reflection	in	conjunction	with	dart2js	would	result	in	a
massive	exported	JavaScript	file.	To	bypass	this	limitation,	Dartson	ships	with	both	a
reflection-based	implementation	for	back-end	applications	and	a	Dartson	build-time
transformer	for	applications	that	select	JavaScript	as	a	compilation	target.

This	approach	makes	Dartson	the	ideal	solution	for	implementation	serialization	on
entities	that	exist	on	both	client	and	server.

Mongo	Pooling
In	Chapter	9,	you	constructed	a	class	named	Seeder	that	leveraged	the	mongo_dart
library,	and	you	filled	your	database	with	the	initial	data	needed	for	your	ticketing
application.	You	established	a	connection	to	MongoDB	using	the	open()	method,	and
when	you	were	finished	seeding	data,	you	terminated	the	connection	using	the	close()
method.	That	approach	works	great	for	simple	scripts,	but	it	can	become	a	performance
bottleneck	even	for	small	applications.

To	avoid	the	performance	overhead	of	constantly	opening	and	closing	a	connection	to
the	database,	we	will	implement	a	pattern	known	as	connection	pooling.	Connection
pooling	allows	an	application	to	reallocate	an	open	database	connection	to	a	new
consumer	if	the	previous	consumer	is	finished	with	it.

A	connection	pool	is,	in	short,	a	managed	list	of	opened	connections.	When	an
application	starts,	it	opens	a	specified	number	of	open	database	connections	and	makes
them	available	to	anyone	who	requests	an	instance.	All	a	connection	pool	asks	is	that
when	the	consumer	is	finished	with	the	connection,	the	connection	is	returned	to	the	pool.

To	use	this	technique	and	play	by	the	rules,	you	will	install	a	library	named
connection_pool.	The	Connection	Pool	library	provides	much	of	the	logic	for
maintaining	the	pool	of	databases	via	a	concise	interface.

1.	From	the	IDEA	project	panel,	open	pubspec.yaml,	and	add	the	following	line	of
code	under	the	dependencies	section:
connection_pool:	“0.1.0+2”

2.	Click	Get	Dependencies	to	download	connection_pool	to	your	packages
folder.	You	should	see	the	following	output:
Got	dependencies!

3.	From	the	IDEA	project	panel,	Control-click	the	bin	folder,	select	New	>	File,	and

name	the	file	mongo_pool.dart.

Next,	you’ll	need	to	implement	the	abstract	connection	pool	in	a	concrete	class	to
enable	a	single	instance	of	your	pooling	implementation	to	be	managed.

4.	Enter	the	code	in	Example	10.1	into	the	mongo_pool.dart	file:

EXAMPLE	10.1
Click	here	to	view	code	image

import	‘package:connection_pool/connection_pool.dart’;
import	‘package:mongo_dart/mongo_dart.dart’;
import	‘dart:async’;

class	MongoDbPool	extends	ConnectionPool<Db>	{

		String	uri;

		MongoDbPool(String	this.uri,	int	poolSize)	:	super(poolSize);

		//overrides	method	in	ConnectionPool
		void	closeConnection(Db	conn)	{
				conn.close();
		}

		//overrides	method	in	ConnectionPool
		Future<Db>	openNewConnection()	{
				var	conn	=	new	Db(uri);
				return	conn.open().then((_)	=>	conn);
		}
}

Let’s	take	a	look	at	what	you	just	did:

	You	imported	the	required	libraries.	Having	added	connection_pool	to	the
pubspec.yaml	file,	connection_pool	is	now	available	for	consumption	by
your	libraries.	You	have	also	exposed	the	mongo_dart	library	and	the	built-in
Dart	async	library	to	your	new	class.

	You	declared	a	class	named	MongoDbPool	that	extends	ConnectionPool.
ConnectionPool	itself	is	an	abstract	class	that	accepts	a	generic	type	using	the
notation	ConnectionPool<T>.	By	also	providing	a	database	class	type	upon
extension,	you	can	set	the	declared	class	as	the	database	of	choice.	In	your	case,	you
expect	the	mongo_dart	class	of	Db.

	You	implemented	class	MongoDbPool.	The	class	has	a	constructor	method	that
accepts	the	URI	of	the	MongoDB	location.	It	also	accepts	a	parameter	of
poolSize,	which	is	the	number	of	database	connections	that	will	be	established	on
instantiation.

	You	implemented	the	interface	requirements	of	the	async	methods
openNewConnection()	and	closeConnection().	These	need	to	be
implemented	by	the	subclass;	otherwise,	the	abstract	ConnectionPool	class	is
incomplete.

The	ConnectionPool	superclass	leaves	database	connection	instantiation	up	to	the

subclass.	This	gives	the	developer	control	over	how	database	connections	are	opened	and
closed.
What	you	have	now	is	a	concrete	implementation	of	the	abstract	class

ConnectionPool	and	all	the	logic	required	to	manage	multiple	instances	of	database
connections.	This	ensures	that	if	you	have	multiple	requests	to	your	back	end	occurring	at
the	same	time,	you	should	have	enough	connections	available	to	handle	the	load.
Throughout	the	rest	of	the	chapter,	you’ll	be	using	this	pooling	instance	in	your
MongoModel	implementation.

Dartson	Serialization
You’re	going	to	install	a	library	named	dartson	that	contains	the	code	for	both	client
and	server	execution.	You’ll	then	be	constructing	a	shared	library	named
ticket_schemas	in	which	you’ll	define	classes	of	data	transfer	objects	(DTOs)	for	all
the	data	structures	in	your	MongoDB.	DTOs	encapsulate	logical	groupings	of	values
related	to	a	topic	of	interest.	They	can	be	passed	around	or	across	a	network.

1.	From	the	IDEA	project	panel,	open	pubspec.yaml,	and	add	the	following	line	of
code	under	the	dependencies	section:
dartson:	“0.2.4”

2.	At	the	end	of	your	pubspec.yaml	file,	add	a	new	top-level	element	named
transformers	by	adding	the	following:
transformers:
-	dartson

3.	Click	Get	Dependencies	to	download	dartson	to	your	packages	folder.	You
should	see	the	following	output:
Got	dependencies!

By	adding	Dartson	to	your	pubspec.yaml	file,	you	have	made	Dartson	available
to	your	project	and	configured	the	transformer	to	run	at	build	time.	Your
pubspec.yaml	file	should	now	resemble	Example	10.2:

EXAMPLE	10.2
Click	here	to	view	code	image

name:	‘tickets’
version:	0.0.1
description:	A	ticket	commerce	application
author:	Jack	Murphy	jack@rightisleft.com
homepage:	https://www.rightisleft.com
environment:
		sdk:	‘>=1.0.0	<2.0.0’
dependencies:
		json_object:	“1.0.19”
		mongo_dart:	“0.1.46”
		connection_pool:	“0.1.0+2”
		dartson:	“0.2.4”

transformers:

-	dartson

Next,	you	are	going	to	set	up	a	shared	folder	that	will	contain	classes	intended	to	be
used	by	both	the	client	and	the	server.	This	will	isolate	your	shared	code	and	ensure
it	can	run	correctly	in	both	environments.

4.	From	the	IDEA	project	panel,	Control-click	the	lib	folder,	select	New	>	Directory,
and	name	the	directory	shared.

5.	Control-click	the	lib/shared	folder,	select	New	>	File,	and	name	the	file
schemas.dart.

This	will	be	the	parent	library	that	will	contain	all	your	shared	DTOs.	You’ll	extend
this	later	in	the	book	to	wrap	your	DTO	classes	in	a	list	for	additional	functionality.

6.	Control-click	the	lib/shared	folder,	select	New	>	Directory,	and	name	the
directory	dtos.

7.	Control-click	the	dtos	folder,	select	New	>	File,	and	name	the	file
base_dto.dart.

The	BaseDTO	class	will	be	the	abstract	parent	of	all	your	DTOs.

8.	Control-click	the	dtos	folder,	select	New	>	File,	and	name	the	file
city_dto.dart.

This	will	be	your	first	concrete	implementation	of	a	DTO.

9.	Open	the	base_dto.dart	file.

As	stated	earlier,	the	BaseDTO	class	will	be	the	abstract	parent	of	all	your	DTOs.	In
this	case,	you’ll	be	modeling	your	DTOs	to	match	the	data	coming	from	MongoDB.

10.	Implement	your	abstract	class	with	the	following:
part	of	ticket_schemas;
class	BaseDTO
{
		String	id;
		String	collection_key;
}

	Note

By	default,	the	Dartson	transformer	knows	only	about	Dart’s	native	types.
This	book	uses	the	unique	String	provided	by	ObjectId.	To	learn	about
custom	Dartson	transformers	for	use	with	third-party	packages,	check	out
https://github.com/eredo/dartson.

Let’s	take	a	look	at	what	you	just	did:

	You	declared	that	this	class	is	part	of	the	library	named	ticket_schemas.	This
indicates	that	the	library	is	intended	to	be	used	in	a	parent	library.

	You	declared	a	class	with	a	name	of	BaseDTO.	This	is	the	superclass	that	all	your

https://github.com/eredo/dartson

concrete	implementations	will	inherit	from.

	You	declared	that	all	instances	of	a	BaseDTO	class	will	have	a	minimum	of	two
properties	available.	The	first	property	id	is	a	placeholder	for	each	unique
MongoDB	ID.	All	objects	coming	from	the	database	should	have	at	least	an	id.
The	second	property	is	the	collection_key.	You	are	modeling	MongoDB
documents,	and	all	documents	belong	to	a	collection;	this	key	is	intended	to	pair	a
DTO	with	a	collection	in	your	MongoDB	database.	This	is	an	important	concept
to	understand	when	you’re	implementing	CRUD	actions	later.

11.	Implement	your	top-level	library	by	opening	the	file	schemas.dart	and	entering
the	following	code:

Click	here	to	view	code	image
library	ticket_schemas;

import	‘package:dartson/dartson.dart’;

//Injectables
part	‘dtos/base_dto.dart’;
part	‘dtos/city_dto.dart’;

Let’s	take	a	look	at	what	you	just	did:

	You	declared	a	new	library	named	ticket_schemas.	This	allows	you	to
include	a	bi-directional	pairing	using	the	keywords	part	and	part	of.

	You	imported	the	package	dartson.	Since	this	is	a	top-level	library,	Dartson	and
any	other	exposed	libraries	will	be	included	in	the	inherited	scope	of	the	partials.
You	have	now	exposed	Dartson	to	your	DTOs.

	You	paired	two	partial	libraries	using	the	keyword	part.	This	loads	the	libraries
into	the	ticket_schemas	namespace.

Let’s	create	your	first	concrete	implementation	of	a	BaseDTO.

12.	Open	the	city_dto.dart	file,	and	enter	the	following	code:
Click	here	to	view	code	image

part	of	ticket_schemas;

@Entity()

class	CityDTO	extends	BaseDTO		{
		String	collection_key	=	“Cities”;

		String	city;
		String	airportcode;
		String	gate;
}

Let’s	take	a	look	at	what	you	just	did:

	You	declared	that	this	partial	is	part	of	the	library	named	ticket_schemas.
Even	though	you	extended	a	class	that	is	part	of	the	same	parent	library,	class
extensions	modify	only	the	class	object,	and	not	the	relationship	between	the
partial	file	and	its	parent	library.

	The	Dartson	library	exposes	a	metadata	annotation	named	@Entity.	@Entity
will	add	the	following	class	declaration	to	Dartson’s	list	of	classes	that	will	be
eligible	for	JSON	serialization	functionality.	In	this	case,	@Entity	registers	the
CityDTO	class	with	Dartson.

	You	modeled	the	data	that	you	expect	to	come	back	from	the	Mongo	document.
The	defined	class	fields	map	to	the	document	fields	you	generated	in	the	previous
chapters.	The	only	assignment	you	made	is	for	the	collection_key	field,
which	is	assigned	a	string	value	of	its	associated	collection	in	MongoDB.

You’ll	continue	the	pattern	of	hard	coding	the	DTO’s	collection_key	so	you
can	make	a	pairing	between	the	class	of	DTO	and	the	collection.	This	allows	you	to
use	a	DTO	class	to	query	data	from	MongoDB	without	also	needing	to	know	which
collection	to	target.	With	this	pattern,	you	can	create	a	Dart	DTO	first	and	then
create	your	own	collection	in	MongoDB.	We’ll	look	at	this	in	more	depth	later	in	the
chapter.

You	need	to	repeat	this	pattern	for	each	collection	that	was	built	in	the	previous
chapter.

13.	Create	purchase_dto.dart	inside	the	lib/shared/dtos	folder,	and	enter
the	Example	10.3	code:

EXAMPLE	10.3
Click	here	to	view	code	image

part	of	ticket_schemas;

@Entity()
class	PurchaseDTO	extends	BaseDTO
{
		String	collection_key	=	“Purchases”;

		//should	be	nums
		int	flightID;
		int	flightLevel;

		String	ccn;
		String	ccv;
		String	bZip;

		String	ccType;
		String	ccExpiration;

		String	pFirstName;
		String	pMiddleName;
		String	pLastName;
		String	pEmail;

		String	bFirstName;
		String	bMiddleName;
		String	bLastName;
		String	bAddress;
		String	bCity;
		String	bState;
		String	bCountry;
		String	transactionId;

}

14.	Create	route_dto.dart	inside	the	lib/shared/dtos	folder,	and	enter	the
Example	10.4	code:

EXAMPLE	10.4
Click	here	to	view	code	image

part	of	ticket_schemas;

@Entity()
class	RouteDTO	extends	BaseDTO	{
		String	collection_key	=	“Routes”;

		String	route;
		num	duration;
		num	price1;
		num	price2;
		num	price3;
		int	seats;

		String	getDepartureCity()	{
				return	route.split(‘_’)[0];
		}

		String	getArrivalCity()	{
				return	route.split(‘_’)[1];
		}
}

15.	Create	time_dto.dart	inside	the	lib/shared/dtos	folder,	and	enter	the
Example	10.5	code:

EXAMPLE	10.5
Click	here	to	view	code	image

part	of	ticket_schemas;

@Entity()
class	TimeDTO	extends	BaseDTO	{
		String	collection_key	=	“Times”;

		int	flight;
		String	departure;
		String	arrival;
		int	takeoff;
		RouteDTO	route;
}

16.	Create	transaction_dto.dart	inside	the	lib/shared/dtos	folder,	and
enter	the	Example	10.6	code:

EXAMPLE	10.6
Click	here	to	view	code	image

part	of	ticket_schemas;

@Entity()
class	TransactionDTO	extends	BaseDTO	{
		String	collection_key	=	“Transactions”;
		int	paid;

		String	user;
}

Now	you	need	to	add	all	these	DTOs	to	your	schemas	library.

17.	Open	lib/shared/schemas.dart,	and	ensure	it	matches	the	Example	10.7
code:

EXAMPLE	10.7
Click	here	to	view	code	image

library	ticket_schemas;

import	‘package:dartson/dartson.dart’;

//Injectables
part	‘dtos/base_dto.dart’;
part	‘dtos/purchase_dto.dart’;
part	‘dtos/city_dto.dart’;
part	‘dtos/route_dto.dart’;
part	‘dtos/time_dto.dart’;
part	‘dtos/transaction_dto.dart’;

You	should	now	have	a	ticket_schemas	library	that	is	an	accurate	representation	of
the	seeded	data	in	MongoDB.	Each	DTO	class	is	marked	as	a	unique	@Entity	by
Dartson	and	is	eligible	for	JSON	serialization	and	deserialization.	Each	DTO	is	a	native
Dart	class,	can	be	passed	as	a	type,	has	full	type	checking,	and	is	supported	100	percent	by
the	Dart	analyzer	and	IDEA	IDE	tooling.	It	is	available	to	both	the	web	client	and	the
server.

Creating	a	MongoModel	with	CRUD
Now	that	you	have	Dart	classes	that	represent	your	data	and	an	approach	to	easily	serialize
JSON	to	those	classes,	you	are	going	to	build	a	class	that	implements	basic	CRUD	actions
on	the	MongoDB	instance	while	using	your	DTO	classes	to	serialize	and	deserialize	the
data.	You’ll	be	implementing	the	basic	Create,	Read,	Update,	and	Delete	methods	along
with	some	helper	functionality	to	handle	conversion	between	different	data	structures.

Let’s	create	the	initial	file.

1.	From	the	IDEA	project	panel,	Control-click	the	bin	folder,	select	New	>	File,	and
name	the	file	mongo_model.dart.

2.	Set	up	mongo_model.dart	to	contain	the	Example	10.8	structure:

EXAMPLE	10.8
Click	here	to	view	code	image

library	ticket_models;

import	‘dart:async’;
import	‘dart:mirrors’;
import	‘package:mongo_dart/mongo_dart.dart’;

import	‘mongo_pool.dart’;
import	‘package:tickets/shared/schemas.dart’;
import	‘package:connection_pool/connection_pool.dart’;

class	MongoModel	{

}

Let’s	take	a	look	at	what	you	just	did:

	You	defined	a	new	library	named	ticket_models.

	In	the	imports,	you	included	two	Dart	core	libraries	and	the	mongo_dart	library
that	you	installed	into	your	packages	folder	via	Pub.

	You	imported	two	of	your	own	libraries.	You	imported	the	mongo_pool.dart
file,	exposing	the	MongoDbPool	class	that	you	declared	earlier,	and	you	imported
the	schemas.dart	file,	exposing	the	members	of	the	library
ticket_schemas.	Importing	the	ticket_schemas	library	gives	your	new
class	access	to	all	your	DTO	classes.

	You	declared	a	new	class	of	MongoModel	that	doesn’t	have	any	functionality	yet.

Interface	Methods
Before	diving	into	the	CRUD	actions,	let’s	take	a	look	at	a	few	of	the	challenges	that	you
will	encounter	while	bringing	all	these	components	together.	The	following	code	will
implement	some	additional	methods	used	to	translate	objects	into	the	proper	state	for	their
corresponding	consumers.

Challenge:	The	mongo_dart	library	is	unaware	of	your	DTO	structures.	In	order	to
enforce	a	consistent	interface	across	the	library,	mongo_dart	uses	a	class	of	type	Map	as
the	preferred	data	structure.	You’ll	need	to	convert	these	Map	objects	to	DTOs	and	vice
versa.

Solution:	You	will	introduce	two	functions	that	use	reflection	to	convert	from	a	DTO
class	to	a	Map	class.	Mirrors	and	reflection	are	OK	to	use	when	running	the	DartVM
server	side.

Append	the	maptoDto	and	dtoToMap	functions	to	your	MongoModel	class:
Click	here	to	view	code	image

dynamic	mapToDto(cleanObject,	Map	document)	{
		var	reflection	=	reflect(cleanObject);
		document[‘id’]	=	document[‘_id’].toString();
		document.remove(‘_id’);
		document.forEach((k,	v)	{
				reflection.setField(new	Symbol(k),	v);
		});
		return	cleanObject;
}

Map	dtoToMap(Object	object)	{
		var	reflection	=	reflect(object);
		Map	target	=	new	Map();
		var	type	=	reflection.type;
		while	(type	!=	null)	{
				type.declarations.values.forEach((item)	{
						if	(item	is	VariableMirror)	{
								VariableMirror	value	=	item;

								if	(!value.isFinal)	{
										target[MirrorSystem.getName(value.simpleName)]	=
reflection.getField(value.simpleName).reflectee;
								}
						}
				});
				type	=	type.superclass;
				//get	properties	from	superclass	too!
		}

		return	target;
}

Challenge:	MongoDB	represents	its	unique	ID	with	a	field	name	of	_id.	Using	an
underscore	as	a	prefix	in	Dart	enforces	library-level	privacy.	You’ve	told	your	DTOs	to
expect	an	attribute	of	id	to	ensure	that	the	value	is	public.

Solution:	You	will	wrap	the	dtoToMap	function	in	a	mongo-specific	function	that	will
convert	id	to	_id.

Append	the	dtoToMongoMap	function	to	your	MongoModel	class:
Click	here	to	view	code	image

Map	dtoToMongoMap(object)	{
		Map	item	=	dtoToMap(object);
		//	mongo	uses	an	underscore	prefix	which	would	act	as	a	private	field	in
dart
		//	convert	only	on	write	to	mongo
		item[‘_id’]	=	item[‘id’];
		item.remove(‘id’);
		return	item;
}

Challenge:	You	will	use	the	BaseDTO	class	as	the	base	type	for	all	your	method
signatures,	but	there	will	be	cases	where	you	need	to	instantiate	fresh	instances	of	the
concrete	DTO	from	only	a	type	and	return	it	to	the	caller.

Solution:	You	can	instantiate	an	object	from	a	type	by	using	a	combination	of	mirrors
and	an	object’s	type.

Append	the	getInstance	function	to	your	MongoModel	class:
Click	here	to	view	code	image

dynamic	getInstance(Type	t)	{
		MirrorSystem	mirrors	=	currentMirrorSystem();
		LibraryMirror	lm	=	mirrors.libraries.values.firstWhere(
						(LibraryMirror	lm)	=>	lm.qualifiedName	==	new
Symbol(‘ticket_schemas’));
		ClassMirror	cm	=	lm.declarations[new	Symbol(t.toString())];
		InstanceMirror	im	=	cm.newInstance(new	Symbol(”),	[]);
		return	im.reflectee;
}

Your	MongoModel	class	now	has	all	the	tools	required	to	expose	a	CRUD	interface
using	MongoDart	and	your	DTO	implementation.

Connect	to	Mongo
You	will	use	your	MongoDbPool	class	to	manage	the	connection	to	the	Mongo	database.
Go	ahead	and	create	the	instance	of	MongoDbPool	that	you’ll	be	using	throughout	the
rest	of	this	chapter	by	modifying	the	MongoModel	class	to	include	the	following:
Click	here	to	view	code	image

MongoDbPool	_dbPool;

MongoModel(String	_databaseName,	String	_databaseUrl,	int	_databasePoolSize)
{
		_dbPool	=	new	MongoDbPool(_databaseUrl	+	_databaseName,	_databasePoolSize);
}

The	previous	code	should	look	somewhat	familiar;	you’re	simply	passing	in	your
MongoDB	credentials.	Instead	of	instantiating	Mongo	directly,	you’re	using
MongoDbPool	to	handle	the	number	of	connections	available.	You’ll	be	retrieving	and
returning	connections	to	the	pool	for	each	action.

Create
Now,	you	need	to	add	create	functionality	to	the	MongoModel	class.	Append	the
Example	10.9	code	to	the	MongoModel	class:

EXAMPLE	10.9
Click	here	to	view	code	image

Future<BaseDTO>	createByItem(BaseDTO	item)	{
				assert(item.id	==	null);
				item.id	=	new	ObjectId().toString();
				return	_dbPool.getConnection().then((ManagedConnection	mc)	{
								Db	db	=	mc.conn;
								DbCollection	collection	=	db.collection(item.collection_key);
								Map	aMap	=	dtoToMongoMap(item);
								return	collection.insert(aMap).then((status)	{
												_dbPool.releaseConnection(mc);
												return	(status[‘ok’]	==	1)	?	item	:	null;
								});
				});
}

Let’s	take	a	look	at	what	you	did:

	You	declared	a	new	asynchronous	function	that	returns	a	future	of	type	BaseDTO.
This	ensures	that	no	matter	how	long	the	database	query	takes,	your	code	will	wait
until	the	value	is	ready.

	You	checked	whether	the	inbound	DTO	had	an	existing	ID,	and	if	so	you	called
assert()	and	forced	an	error.	IDs	are	assigned	only	upon	creation,	so	any	DTO
that	already	has	an	ID	would	mean	that	it	has	already	been	created.

	You	asserted	that	the	DTO	has	no	ID,	and	then	assigned	the	value	from
ObjectID()	to	the	DTO.	ObjectID()	is	a	class	exposed	by	the	MongoDart
library	and	will	make	a	Mongo-compliant	unique	identifier.

	Using	the	instance	of	MongoDbPool,	you	executed	an	asynchronous	call	to

getConnection()	to	acquire	an	open	connection	to	the	MongoDB	database.	The
value	that	is	returned	is	of	type	ManagedConnection,	and	the	instance	has	a
field	named	conn.	The	field	conn	is	an	abstract	instance	of	Db	from	Mongo	Dart
and	is	assigned	to	a	typed	variable	of	Db.

	Note

The	assignment	of	the	typed	variable	of	Db	was	done	back	when	you	were
extending	ConnectionPool<T>	during	the	declaration	for	class
MongoDbPool.

	You	created	a	MongoDB-compliant	map.	Mongo	requires	that	the	object	written	to
the	database	be	a	map.	You	also	want	to	match	the	mongo	_id	field	naming
convention.	To	do	so,	you	created	a	Map	variable	and	assigned	it	the	response	value
from	the	helper	method	dtoToMongoMap().

	You	used	the	standard	MongoDart	interface	to	query	a	collection.	You	created	a
variable	reference	to	the	MongoDart	collection.	You	were	able	to	tell	MongoDB
which	collection	to	select	by	using	the	BaseDTO	collection_key	field.	You
then	used	the	insert()	method	to	write	your	new	MongoDB-compliant	map	to
the	database.

	After	the	insert()	future	returned	a	status	value,	you	returned	your	database
connection	to	the	pool	with	releaseConnection().	Once	returned,	you	moved
on	to	validating	the	status.	The	status	object	is	a	Map	returned	after	the	database
executes	the	query.	It	contains	a	field	named	status	that	tells	you	if	the	query	was
a	success.	If	it	was,	you	always	pass	back	the	persisted	DTO	to	the	caller—
otherwise,	you	return	null.

This	method	is	a	great	example	for	all	the	remaining	actions	in	this	chapter.	Note	that
you	were	able	to	get	all	the	information	you	needed	from	the	BaseDTO	class	instance	and
ignored	any	of	its	concrete	implementation	details.

Delete
You	need	to	implement	a	delete	pattern	similar	to	the	create	action.	Append	the	Example
10.10	code	to	your	MongoModel	class:

EXAMPLE	10.10
Click	here	to	view	code	image

Future<Map>	deleteByItem(BaseDTO	item)	async	{
		assert(item.id	!=	null);
		return	_dbPool.getConnection().then((ManagedConnection	mc)	{
				Db	database	=	mc.conn;
				DbCollection	collection	=	database.collection(item.collection_key);
				Map	aMap	=	dtoToMongoMap(item);
				return	collection.remove(aMap).then((status)	{

						_dbPool.releaseConnection(mc);
						return	status;
				});
		});
}

This	implementation	should	look	similar	to	the	code	in	the	“Create”	section.

Let’s	take	a	look	at	what	is	different:

	As	with	the	create	code,	you	checked	to	see	if	there	was	an	ID.	However,	when
deleting,	you	want	to	ensure	that	it	does	exist	because	it	needs	to	have	been	a
previously	created	object.	If	it	doesn’t	exist,	you	run	assert().

	The	function	that	is	invoked	by	the	collection	object	is	now	the	remove()
function.

	The	result	will	always	be	a	status	object	because	this	is	a	destructive	action.

Update
You	need	to	implement	an	update	pattern	similar	to	the	create	and	delete	actions.	Append
the	Example	10.11	code	to	your	MongoModel	class:

EXAMPLE	10.11
Click	here	to	view	code	image

Future<Map>	updateItem(BaseDTO	item)	async	{
		assert(item.id	!=	null);
		return	_dbPool.getConnection().then((ManagedConnection	mc)	async	{
				Db	database	=	mc.conn;
				DbCollection	collection	=	new	DbCollection(database,
item.collection_key);
				Map	selector	=	{‘_id’:	item.id};
				Map	newItem	=	dtoToMongoMap(item);
				return	collection.update(selector,	newItem).then((status)	{
						_dbPool.releaseConnection(mc);
						return	status;
				});
		});
}

The	implementation	should	look	fairly	similar	to	the	code	in	the	“Create”	and	“Delete”
sections.

Let’s	take	a	look	at	what	is	different:

	You	defined	a	selector	object,	which	is	used	to	query	the	specific	document	from	the
database	that	matches	the	DTO	ID.

	You	invoked	the	update()	function	on	the	collection	object.	The	method	accepts
two	arguments:	a	query	object	to	find	the	document	in	the	database,	and	a	document.
Note	that	this	approach	expects	the	entire	document	to	be	overwritten.

Read
You	need	to	implement	a	couple	of	methods	to	allow	you	to	read	by	different	criteria.
You’re	going	to	assume	that	a	read	action	can	result	in	a	collection	of	documents	being
returned.

1.	Append	the	Example	10.12	code	to	the	MongoModel	class:

EXAMPLE	10.12
Click	here	to	view	code	image

Future<List>	_getCollection(String	collectionName,	[Map	query	=	null])	{
		return	_dbPool.getConnection().then((ManagedConnection	mc)	async	{
				DbCollection	collection	=	new	DbCollection(mc.conn,	collectionName);
				return	collection.find(query).toList().then((List<Map>	maps){
						_dbPool.releaseConnection(mc);
						return	maps;
				});
		});
}

Let’s	take	a	look	at	what	you	did:

	You	created	a	generic	getter	for	any	given	collection.	You	also	accepted	a	second
optional	parameter	with	a	Mongo	query	object.

	You	followed	the	convention	established	for	managing	database	connections.

	You	invoked	the	find()	method	on	the	collection	object.	You	used	the	await
keyword	to	mimic	a	synchronous	call.	When	the	query	returned,	you	invoked	the
method	toList()	to	get	a	list	of	map	items	for	conversion	to	DTOs.

2.	Append	the	Example	10.13	code	to	the	MongoModel	class:

EXAMPLE	10.13
Click	here	to	view	code	image

Future<List>	_getCollectionWhere(String	collectionName,	fieldName,	values)	{
		return	_dbPool.getConnection().then((ManagedConnection	mc)	async	{
				Db	database	=	mc.conn;
				DbCollection	collection	=	new	DbCollection(database,	collectionName);
				SelectorBuilder	builder	=	where.oneFrom(fieldName,	values);
				return	collection.find(builder).toList().then((map)	{
						_dbPool.releaseConnection(mc);
						return	map;
				});
		});
}

Let’s	take	a	look	at	what	you	did:

	You	created	a	generic	getter	for	a	collection	of	documents	that	leverage	the
where	operator	to	filter	the	response.

	You	followed	the	convention	established	for	managing	database	connections.

	You	created	a	variable	of	type	SelectorBuilder	from	the	Mongo	Dart	library
to	construct	a	query	object	capable	of	executing	your	filter.

Now	that	you	have	your	helper	functions	in	place,	let’s	implement	the	various	read
actions.

3.	Append	the	Example	10.14	code	to	the	MongoModel	class:

EXAMPLE	10.14
Click	here	to	view	code	image

//refresh	an	item	from	the	database	instance
Future<BaseDTO>	readItemByItem(BaseDTO	matcher)	async	{
		assert(matcher.id	!=	null);
		Map	query	=	{‘_id’:	matcher.id};
		BaseDTO	bDto;
		return	_getCollection(matcher.collection_key,	query).then((items)	{
				bDto	=	mapToDto(getInstance(matcher.runtimeType),	items.first);
				return	bDto;
		});
}

//acquires	a	collection	of	documents	based	off	a	type,	and	field	values
Future<List>	readCollectionByTypeWhere(t,	fieldName,	values)	async	{
		List	list	=	new	List();
		BaseDTO	freshInstance	=	getInstance(t);
		return	_getCollectionWhere(freshInstance.collection_key,	fieldName,
		values).then((items)	{
				items.forEach((item)	{
						list.add(mapToDto(getInstance(t),	item));
				});
				return	list;
		});
}

//acquires	a	collection	of	documents	based	off	a	type	and	an	optional	query
Future<List>	readCollectionByType(t,	[Map	query	=	null])	async	{
		List	list	=	new	List();
		BaseDTO	freshInstance	=	getInstance(t);
		return	_getCollection(freshInstance.collection_key,	query).then((items)	{
				items.forEach((item)	{
						list.add(mapToDto(getInstance(t),	item));
				});
				return	list;
		});
}

These	read	actions	are	all	variations	on	patterns	we’ve	covered	in	this	chapter.	You
should	now	be	able	to	read	items	from	the	database	based	on	the	current	item,	a	collection
of	items	of	the	same	type,	or	a	collection	of	items	of	the	same	type	with	matching	field
values.

Drop
Although	not	part	of	the	generic	CRUD	description,	you’re	also	going	to	add	support	for
dropping	a	database.	This	will	be	useful	in	later	chapters	for	tearing	down	databases	that
are	used	only	for	testing.	Append	the	Example	10.15	code	to	the	MongoModel	class:

EXAMPLE	10.15
Click	here	to	view	code	image

Future<Map>	dropDatabase()	async	{

			var	connection	=	await	_dbPool.getConnection();
				var	database	=	connection.conn;
				Map	status	=	await	database.drop();
				return	status;
}

Summary
Congratulations,	you	have	created	the	data	structures	and	the	low-level	model	that	will
power	your	ticketing	application.	MongoModel	is	the	low-level	interface	that	you	can
build	your	business	logic	on	top	of.	In	the	next	chapter,	we’ll	implement	some	unit	tests	to
ensure	your	lasting	confidence	in	your	MongoModel	class.

You	Should	Now	Know
	How	connection	pooling	works

	How	to	implement	the	connection_pool	library

	The	challenges	of	Dart	and	JSON	and	their	type	systems

	How	Dartson	enables	serialization	on	both	client	and	server

	The	impact	of	reflection	on	dart2JS-compiled	code

	How	to	include	multiple	DTOs	in	a	single	library

	How	to	establish	a	connection	to	your	MongoDB	database	through
ConnectionPool

	Some	caveats	of	working	with	ObjectIDs	in	Dart

	The	type	of	objects	the	MongoDB	Dart	library	expects

	How	to	write	a	function	to	expose	document	creation	for	MongoDB

	How	to	write	a	function	to	expose	document	retrieval	for	MongoDB

	How	to	write	a	function	to	expose	document	updates	for	MongoDB

	How	to	write	a	function	to	expose	document	deletion	for	MongoDB

Chapter	11.	Webserver	and	Middleware

In	this	chapter,	you	will	go	through	the	basics	of	setting	up	a	web	server	and	exposing	a
JSON	API.	Dart	ships	with	a	built-in	library	named	HTTPServer	for	serving	content	over
the	Hyper	Text	Transfer	Protocol	(HTTP).	The	HttpServer	class	acts	as	the	foundation	for
implementing	futures-based	request	and	response	handlers.

The	HttpServer	class	is	extremely	extensible	and	is	used	as	the	foundation	for	many
higher-level	server	libraries.	One	of	those	libraries	is	named	Shelf	and	is	a	Google-
supported	project	for	composing	web	servers	and	other	middleware.	In	Chapter	12,	you’ll
be	taking	a	look	at	how	to	use	Shelf	to	build	out	a	RESTful	API	for	your	ticketing
application.

Shelf
Shelf	provides	a	consistent	pattern	for	implementing	off-the-shelf	components	for
extending	a	web	server.	Some	of	the	available	components	include	Shelf	Routing,	Shelf
IO,	Shelf	Proxy,	Shelf	Rest,	Shelf	Auth,	and	many	others.	In	this	chapter,	you’ll	primarily
be	working	with	Shelf	IO	and	Shelf	Routing.

Shelf	enforces	a	convention	that	allows	developers	to	declare	the	correct	logic	for	an
inbound	request	and	serve	up	the	appropriate	response.	Shelf	is	composed	of	a	series	of
handlers	and	middleware	that	let	a	developer	control	the	common	execution	flow,	routing,
and	object	modifications	that	result	from	an	inbound	HTTP	request.

Setting	Up	a	Shelf	Example
You’re	going	to	install	the	libraries	shelf,	shelf_route,	and	shelf_static.	The
shelf	library	provides	the	functionality	for	composing	multiple	middleware	pieces
together.	Next,	you’ll	create	the	basic	structure	to	support	what	will	eventually	become
your	production	web	server	code.

1.	From	the	IDEA	project	panel,	open	pubspec.yaml,	and	add	the	following	lines
of	code	to	your	dependencies:
shelf:	“>=0.6.2	<0.7.0”
shelf_static:	“0.2.2”
shelf_route:	“0.13.0”

2.	Click	Get	Dependencies	to	download	the	libraries	to	your	packages	folder.
Got	dependencies!

3.	In	the	IDEA	project	panel,	Control-click	the	bin	folder,	select	New	>	File,	and
name	the	file	webserver.dart.

In	the	following	sections,	you’ll	use	the	webserver.dart	file	to	launch	a
standalone	web	server	using	Shelf.

4.	Add	the	Example	11.1	code	to	your	webserver.dart	file:

EXAMPLE	11.1

Click	here	to	view	code	image
import	‘package:shelf/shelf.dart’;
import	‘package:shelf/shelf_io.dart’	as	io;

void	main()	{
		Middleware	mw	=	logRequests();
		Pipeline	pl	=	new	Pipeline();
		pl	=	pl.addMiddleware(mw);
		Handler	handler	=	pl.addHandler(echo);

		io.serve(handler,	‘0.0.0.0’,	8080).then((server)	{
				print(‘Serving	at	http://${server.address.host}:${server.port}’);
		});
}

Response	echo(Request	request)	{
		return	new	Response.ok(‘Request	for	“${request.url}”’);
}

Let’s	take	a	look	at	what	you	just	did	inside	your	main()	function:

	Middleware:	You	acquired	an	instance	of	a	piece	of	logging	middleware
exposed	by	the	shelf	library	via	the	logRequest()	method.	Generally
speaking,	middleware	is	a	self-contained	unit	of	logic	that	acts	upon	a	Request
to	compose	a	Response.

This	particular	middleware	component	implements	a	standard	approach	to
outputting	log	data	for	every	request	processed	by	the	Shelf	web	server.	Other
examples	of	middleware	could	be	caching,	authentications,	header	modifications,
and	so	on.

	Pipeline:	You	instantiated	an	instance	of	class	Pipeline.	Pipeline	is	a
helper	class	exposed	by	the	shelf	library.	Its	primary	function	is	to	act	as	a
queue	manager	for	your	middleware	processing	chain.	This	means	that	each
middleware	component	added	will	place	its	corresponding	logic	next	in	the
execution	queue.	Each	piece	of	middleware	will	include	its	own	Request	parser
and	Response	handler.

	addMiddleware():	You	provided	your	logging	middleware	to	the	Pipeline
instance	as	an	argument	to	the	addMiddleware()	function.	The	response
returns	a	new	Pipeline	object	with	the	logging	functionality	now	included.	If
you	had	added	additional	middleware	logic	that	you	wanted	for	your	server,	you
would	continue	to	append	it	using	this	method.

	Handler:	A	handler	is	a	function	that	is	executed	in	order	to	process	an	HTTP
request.

In	the	case	of	middleware,	handlers	wrap	other	handlers	to	allow	the	chain	to
continue	executing	in	sequential	order.	In	the	case	of	a	pipeline,	the	exposed
handler	is	the	final	method	executed.	In	this	example,	you	simply	provide
function	echo	that	returns	a	Response	object	containing	a	string	of	the
requested	URL.

	Request	and	Response:	Included	in	the	shelf	library	are	two	classes:	one

for	Request	and	one	for	Response.	These	classes	will	instantiate	objects	that
conform	to	the	HTTP	object	specifications.
	io.serve():	This	method	is	a	wrapper	for	the	Dart	HttpServer	instance.	Its
method	signature	requires	a	handler,	server	address,	and	server	port.	At	this	point,
your	handler	is	composed	of	one	piece	of	logging	middleware	and	one	handler
that	returns	a	Response	object.	For	this	example,	you’ll	just	assign	the	running
server	to	0.0.0.0,	exposing	localhost	on	a	port	of	8080.

5.	Now	that	your	basic	web	server	is	written,	you	will	launch	it	and	test	it.	In	the	IDEA
editor	window,	click	Run	and	select	“Debug	webserver.dart.”

6.	Launch	a	web	browser	of	your	choice,	and	navigate	to	http://localhost:8080.

In	the	browser	you	should	see	“Request	For	“”“.

In	the	output	window	you	should	see:
Click	here	to	view	code	image

Serving	at	http://localhost:8080
2015-08-10	20:26:19.540		0:00:00.002162		GET		[200]		/

7.	Navigate	your	browser	to	http://localhost:8080/dartlang.

In	the	browser	you	should	see	“Request	For	‘dartlang’”.

In	the	output	window	you	should	see:
Click	here	to	view	code	image

Serving	at	http://localhost:8080
2015-08-10	20:26:19.540		0:00:00.002162		GET		[200]		/dartlang

8.	Kill	the	active	server	process.

Adding	Middleware
Let’s	modify	the	previous	example	to	include	an	additional	piece	of	custom	middleware.
We	want	to	future-proof	the	API	to	enable	CORS	(cross-origin	resource	sharing)	headers.
CORS	headers	configure	access	rights	between	multiple	domains.	While	in	the	browser,
CORS	enables	sites	under	domain	alpha.com	to	securely	load	assets	from	domain
beta.com,	while	still	preventing	delta.com	from	loading	the	same	assets.

When	a	browser	loads	an	external	API	for	the	first	time,	many	browsers	send	out	what
is	referred	to	as	a	preflight	test.	This	test	probes	the	web	server	to	see	if	there	is	an
associated	CORS	policy	object	that	defines	the	access	rights.

We	want	the	middleware	to	intercept	any	preflight	tests	and	return	the	expected	CORS
object	in	the	HTTP	response	header.

1.	Add	the	Example	11.2	code	after	your	main()	function:

EXAMPLE	11.2
Click	here	to	view	code	image

Map	CORSHeader	=	{‘content-type’:	‘text/json’,
		‘Access-Control-Allow-Origin’:	‘*’,
		‘Access-Control-Allow-Headers’:	“Origin,	X-Requested-With,			Content-Type,

Accept”,
		‘Access-Control-Allow-Methods’:	“POST,	GET,	PUT,	DELETE,	OPTIONS”};

Middleware	corsMiddleWare	=	createMiddleware(requestHandler:	reqHandler,
responseHandler:	respHandler);

Response	reqHandler(Request	request){
		if(request.method	==	“OPTIONS”)
		{
				return	new	Response.ok(null,	headers:	CORSHeader);
		}
		return	null;	//	nothing	to	see	here…	move	along
}

Response	respHandler(Response	response)	{
		return	response.change(headers:	CORSHeader);
}

Let’s	take	a	look	at	what	you	just	did:

	createMiddleware:	The	shelf	library	exposes	a	method	named
createMiddleware()	that	is	a	pseudo-factory	that	creates	a	middleware
instance.	The	method	accepts	two	named	parameters	as	arguments,	one	for	the
Request	parsing	and	one	for	the	Response	handling.	You	passed	in	two
custom	functions	that	contain	the	business	logic	for	your	CORS	policy.

	CORSHeader:	You	created	a	Map	CORSHeader	using	the	Map	literal	syntax
and	a	series	of	key–value	string	pairs.	At	a	high	level,	you	set	the	expectation	that
you	will	be	returning	JSON,	you	will	accept	the	default	HTTP	methods	with	the
addition	of	OPTIONS,	and	you	will	allow	a	request	that	originates	from	any
domain.

	Note

Diving	into	a	full	breakdown	of	a	CORS	object	is	outside	the	scope	of	this
book.	For	more	information,	please	see	https://developer.mozilla.org/en-
US/docs/Web/HTTP/Access_control_CORS.

	reqHandler:	The	Request	handler	is	the	focal	point	for	this	piece	of
middleware.	All	inbound	requests	inspect	the	HTTP	method.	If	the	OPTIONS
method	is	detected,	you	handle	it	as	a	preflight	request	and	send	back	an
immediate	Response	with	the	CORS	object	appended	to	the	headers.	Sending
back	null	in	any	Request	Middleware	handler	will	allow	the	next	handler
in	the	chain	to	inspect	the	request.

	resHandler:	The	Response	handler	is	called	on	the	other	end	of	the	chain.
Once	the	last	Request	handler	is	called,	all	other	response	handlers	in	the	chain
are	executed	in	a	FILO	order.	In	the	case	of	the	CORS	response	handler,	you	want
to	ensure	that	all	HTTP	responses	have	the	proper	CORS	object	in	the	HTTP
header.	You	leveraged	the	response.change()	method	to	append	your

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

existing	CORS	objects	on	the	message	header.

Now	that	you	have	the	logic	to	create	the	Middleware	instance,	in	the	next	step
you’ll	modify	your	pipeline	to	include	the	CORS	logic.

2.	Modify	the	code	in	your	main()	function	to	reflect	the	code	in	Example	11.3:

EXAMPLE	11.3
Click	here	to	view	code	image

void	main()	{
		Middleware	mw	=	logRequests();
		Pipeline	pl	=	new	Pipeline();
		pl	=	pl.addMiddleware(corsMiddleWare).addMiddleware(mw);
		Handler	handler	=	pl.addHandler(echo);

		io.serve(handler,	‘0.0.0.0’,	8080).then((server)	{
				print(‘Serving	at	http://${server.address.host}:${server.port}’);
		});
}

Now	let’s	run	the	server	and	inspect	the	HTTP	responses	that	are	generated.

3.	In	the	IDEA	top	bar,	click	Run	and	then	select	“Debug	webserver.dart.”

Next,	you’re	going	to	mimic	an	OPTIONS	call	using	a	command-line	tool	named
CURL.

4.	Open	your	system	terminal,	and	execute	the	following	CURL	command:
Click	here	to	view	code	image

$	curl	-i	-X	OPTIONS	http://localhost:8080/

5.	Inspect	the	response	from	the	previous	command	to	ensure	the	CORS	object	is	in
the	header.

Click	here	to	view	code	image
HTTP/1.1	200	OK
access-control-allow-headers:	Origin,	X-Requested-With,	Content-Type,
Accept
access-control-allow-origin:	*
access-control-allow-methods:	POST,	GET,	PUT,	DELETE,	OPTIONS
x-frame-options:	SAMEORIGIN
content-type:	text/json
server:	dart:io	with	Shelf

6.	Kill	the	active	server	process.

Adding	Routing
Routing	is	the	logic	that	interprets	what	code	should	handle	and	support	business	logic	for
an	inbound	HTTP	request	base	on	its	URI.	In	an	MVC	framework,	routes	usually	point	to
a	controller	that	will	instantiate	dependencies	and	wire	up	data.	You’ll	be	hooking	up	the
routes	to	controllers	in	the	next	chapter,	but	for	now	let’s	just	take	a	look	at	how	to
implement	different	types	of	routes	and	declare	some	simple	handlers.

To	discern	the	intent	of	a	request,	frameworks	leverage	the	HTTP	method	attributes
found	on	an	inbound	request	object.	HTTP	specifies	method	attribute	values.	The	values

of	interest	to	most	routing	logic	are	POST,	GET,	PUT,	and	DELETE.	In	our	case,	these
methods	will	pair	with	the	following	actions	from	the	CRUD	actions:

	POST	maps	to	Create.

	GET	maps	to	Read.

	PUT	maps	to	Update.

	DELETE	maps	to	Delete.

In	the	previous	example,	you	had	a	single	global	handler	for	any	request	that	hit	the
server.	That	doesn’t	scale	when	implementing	business	logic.	Let’s	declare	some	new
route	handlers	routed	by	their	HTTP	methods	and	URI	structure.	To	do	so	you’ll	be
creating	a	router	object.

Change	your	webserver.dart	to	reflect	the	changes	in	Example	11.4:

EXAMPLE	11.4
Click	here	to	view	code	image

import	‘package:shelf/shelf.dart’;
import	‘package:shelf/shelf_io.dart’	as	io;
import	‘package:shelf_route/shelf_route.dart’;

void	main()	{

		Router	primaryRouter	=	router();

		Router	api	=	primaryRouter.child(‘/api’);

		api.post(‘/user’,	(Request	request)	async	{

				return	new	Response.ok(‘Success!’	+	await	request.readAsString());
		});

		api.get(‘/user/{name}/{id}’,	(Request	request)	{

				var	id	=	getPathParameter(request,	‘id’);
				var	name	=	getPathParameter(request,	‘name’);
				return	new	Response.ok(‘Success!	Found:	‘	+	id	+	‘	‘	+	name);
		});

		Middleware	mw	=	logRequests();
		Pipeline	pl	=	new	Pipeline();
		pl	=	pl.addMiddleware(corsMiddleWare).addMiddleware(mw);
		Handler	apiHandler	=	pl.addHandler(primaryRouter.handler);

		io.serve(apiHandler,	‘0.0.0.0’,	8080).then((server)	{
				print(‘Serving	at	http://${server.address.host}:${server.port}’);
		});
}

Let’s	take	a	look	at	what	you	just	did	inside	the	main()	function:

	Router:	You	instantiated	a	router	object.	This	will	contain	the	primary	route
branching	logic	for	inbound	HTTP	requests.

	child:	To	write	terse	code	and	avoid	typos,	Router	supports	the	concept	of
nested	routes.	By	invoking	the	child()	method,	any	route	appended	to	the
returned	router	will	be	prefixed	with	the	string	URI	segment	'/api'.

	post:	You	declared	your	first	route	by	invoking	the	post()	method	on	the	api
object.	You	pass	the	URI	segment	of	'user'	and	then	register	the	request	handler.
The	handler	itself	is	an	asynchronous	function	that	returns	a	response	object.

By	invoking	ok()	on	the	response	object,	you	set	it	to	a	status	code	of	200	with	a
body	of	the	provided	string	argument.

	get:	You	declared	your	second	route	in	a	similar	fashion	to	the	first.	The	first
difference	being	that	this	route	resolves	to	HTTP	requests	that	provide	a	GET
method.

The	Shelf	library	itself	exposes	a	method	of	getPathParameter(),	which	can
retrieve	the	parameters	that	are	defined	in	the	route	and	which	are	then	sent	on	the
raw	request	object.	In	this	case	you’re	retrieving	the	{name}	and	{id}	parameters.
You	can	mix	and	match	these	approaches	to	handle	a	majority	of	the	use	cases	a
RESTful	API	will	require.

	Handler:	You	ended	by	adding	the	Router	handler	to	the	pipeline,	bypassing	it
as	an	argument	to	the	addHandler()	method	of	Pipeline.	By	making	the
router	the	final	handler,	you	are	ensuring	that	all	middleware	Request	actions
occur	prior	to	the	business	logic,	and	that	all	middleware	Response	actions	occur
after	our	business	logic.	This	is	a	key	distinction	between	middleware	and	a	router.
Middleware	occurs	on	all	HTTP	occurrences,	whereas	a	router	handler	gets	activated
only	if	there	is	a	matching	URI	pattern.

Serving	Static	Assets
So	far	we’ve	looked	at	how	to	write	a	web	response	for	managing	a	data	API.	Now	you
need	to	configure	your	web	server	to	work	with	static	assets.	This	use	case	will	be	useful
when	you	deploy	your	application	to	an	externally	hosted	provider.	For	now,	you	can	test
serving	assets	after	they’ve	been	compiled	using	Pub	build	and	dart2js.

Shelf	has	a	prebuilt	handler	named	shelf_static	that	is	a	public	library	and
facilitates	reading	files	from	the	file	system	and	returning	the	file	to	the	caller.	You’ll	also
be	leveraging	some	of	the	built-in	Dart	libraries	to	get	the	current	directory	information
and	platform	details.

1.	Add	the	following	imports	to	your	webserver.dart	file:
Click	here	to	view	code	image

import	‘dart:io’;
import	‘dart:async’;
import	‘package:path/path.dart’;
import	‘package:shelf_static/shelf_static.dart’;

In	the	following	code,	the	library	shelf_static	will	expose	a	method	named
createStaticHandler().	When	completed,	the	handler	will	match	the	URI
fragments	to	find	files	on	the	file	system.	To	configure	the	handler,	the	method	needs
the	path	to	the	directory	in	which	your	assets	are	stored	and	a	default	file.

According	to	the	Dart	directory	structure	guide,	all	your	published	assets	should	be

exported	to	a	folder	named	build/web.	That	location	is	the	destination	folder	for
the	Pub	build	process.	Even	with	that,	the	web	server	still	needs	the	full	directory
path	on	your	file	system.	The	Dart	VM	exposes	the	data	about	the	current	running
location	and	surfaces	it	via	the	platform	library.

2.	Append	the	Example	11.5	to	the	top	of	your	main()	function:

EXAMPLE	11.5
Click	here	to	view	code	image

void	main()	{
		var	path	=	Platform.script.toFilePath();
		var	currentDirectory	=	dirname(path);
		var	fullPath	=	join(currentDirectory,	‘..’,	‘build/web’);
		Handler	fHandler	=	createStaticHandler(fullPath,	defaultDocument:
‘index.html’);
		…
		…
}

Let’s	take	a	look	at	what	you	just	did:

	path:	You	used	the	Platform	class	exposed	by	the	dart:io	library	to	expose
the	full	path	of	the	currently	executing	Dart	script.	This	works	locally	or	when	you
deploy	to	production.

	currentDirectory:	You	used	a	dirname()	method	exposed	by	the	path
library	to	strip	the	provided	path	down	to	its	directory	by	removing	the	script	name.

	fullPath:	You	used	the	join()	method	exposed	by	the	path	library	to
assemble	each	argument	into	a	string	value	with	the	correct	corresponding	slashes
and	trailing	slashes.

	fHandler:	You	assigned	an	instance	of	a	handler	from	the	pseudo-factory
createStaticHandler()	method.	This	is	just	like	any	other	Shelf	Handler
class	object	and	could	be	immediately	placed	onto	the	pipeline.

You	now	have	a	handler	that	can	read	your	local	file	system	and	return	HTML,	CSS,
images,	and	many	other	types	of	assets.	Next	we’ll	take	a	look	at	how	to	fork	the	handling
of	both	data	and	assets.

Using	Multiple	Handlers
If	you	remember	the	discussion	on	the	pipeline	object,	I	talked	about	a	pipeline	being	a
chain	of	request	and	response	handlers,	all	of	which	end	with	a	final	pipeline	handler.	You
are	now	faced	with	a	dilemma	where	you	have	constructed	an	API	handler	and	a	handler
that	specializes	in	serving	static	assets.	You’re	going	to	bring	these	together	using	a	class
named	Cascade.

A	cascade	is	a	way	to	group	multiple	pipelines	together	by	declaring	them
hierarchically.	You	can	add	a	pipeline	to	the	cascade	queue	by	passing	the	pipeline’s
handler	object	as	an	argument	to	Cascade’s	add()	method.

A	cascade	will	be	executed	as	a	FIFO	queue.	Any	response	that	results	in	a	status	code

of	200	will	terminate	the	cascade	and	return	the	response	to	the	caller.	All	remaining
handlers	will	be	skipped.	All	of	this	culminates	in	the	cascade	object	exposing	a	single
handler	instance	that	can	be	passed	into	our	server.
Go	ahead	and	modify	your	main()	function	to	implement	a	cascade:

Click	here	to	view	code	image

Cascade	cc	=	new	Cascade().add(apiHandler).add(fHandler);

io.serve(cc.handler,	‘0.0.0.0’,	8080).then((server)	{
		print(‘Serving	at	http://${server.address.host}:${server.port}’);
});

Setting	Up	and	Building	Your	Web	Folder
To	serve	up	web	assets,	you	will	need	a	web	folder	and	associated	HTML	files.	For	the
purposes	of	this	task,	you	will	keep	the	structure	simple.	You’ll	be	looking	at	how	to
structure	your	web	assets	in	detail	in	later	chapters.

1.	In	the	IDEA	project	panel,	Control-click	the	tickets	folder,	select	New	>
Directory,	and	name	the	directory	web.

2.	Control-click	the	web	folder,	select	New	>	File,	and	name	the	file	index.html.

3.	Add	the	Example	11.6	HTML	to	the	index.html	file:

EXAMPLE	11.6
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang=“en”>
<head>
				<meta	charset=“utf-8”>
				<title>Ticket	Application</title>
</head>
<body>
				<p>Dart	Ticket	Application<p>
</body>
</html>

4.	Open	Terminal	and	execute	the	following	command	inside	the	root	directory	of	your
tickets	project:

Click	here	to	view	code	image
$	pub	build
Loading	source	assets…
Loading	dartson	transformers…
Building	tickets…
Built	2	files	to	“build”.

Let’s	take	a	look	at	what	you	just	did:

	The	Pub	package	layout	convention	describes	the	dependencies	that	the	Pub	tool
expects	a	project	to	have.	You	are	adhering	to	their	web	asset	folder	naming
convention	to	leverage	pub	build.

	You	generated	a	bare-bones	HTML	index	file	that	can	be	used	to	serve	up	when	a
request	is	made	that	does	not	match	the	Data	API	URI	conventions.

	You	executed	the	pub	build	command	in	the	Terminal.	This	tells	Pub	that	you
want	to	generate	a	build	that	can	be	used	for	production.	If	you	had	Dart	code	in	the
web	folder,	it	would	be	transpiled	out	to	JavaScript.	In	this	case,	you’re	just	copying
over	your	index.html	file	into	the	build/web	folder	so	that	your	static	asset
server	will	have	a	file	to	read.

Calling	Static	Assets	and	Querying	the	API
You	now	have	all	the	components	you	need	in	place	to	run	an	API	and	asset	server	from
the	same	Dart	server	instance.	Let’s	go	ahead	and	ensure	it	works	as	expected.	Since	we
have	yet	to	implement	any	visual	aspects	of	the	page,	we	can	use	the	command-line	tool
curl	to	ensure	that	we	get	proper	HTTP	responses	from	the	web	server.

1.	From	the	command	line,	change	into	your	project	directory,	run
webserver.dart,	and	then	execute	the	following	commands:

Click	here	to	view	code	image
$	dart	bin/webserver.dart	&
$	curl	-H	“Content-Type:	application/json”	-X	POST	-d	‘{“username”:“xyz”,
“password”:“xyz”}’	http://localhost:8080/api/user
Success!{“username”:“xyz”,“password”:“xyz”}%
$	curl	http://localhost:8080/api/user/carl/13
Success!	Found:	13	carl%
$	curl	http://localhost:8080/index.html
<!DOCTYPE	html>
<html	lang=“en”>
<head>
				<meta	charset=“utf-8”>
				<title>Ticket	Application</title>
</head>
<body>
<p>Dart	Ticket	Application<p>
</body>
</html>

2.	Kill	your	Dart	web	server	using	the	following	command:
Click	here	to	view	code	image

$	pkill	-f	dart
[1]		+	4286	terminated		dart	bin/webserver.dart

Summary
Congratulations,	you’ve	run	through	the	basics	of	setting	up	a	deployable	web	server.
Throughout	the	rest	of	this	book,	you’ll	be	building	on	this	example,	so	make	sure	that	it’s
working	well	and	that	you	understand	the	core	concepts.	One	thing	to	be	aware	of	is	that
you	have	this	configured	to	serve	up	only	assets	from	the	build	folder,	so	making	changes
to	the	HTML	or	assets	will	not	be	reflected	until	you	run	pub	build	again.	Because	of
that,	and	because	we	like	testing	our	code	using	the	DartVM	inside	Chromium,	you’ll
continue	to	use	the	built-in	Pub	Serve	functionality	when	testing	locally.	However,	when
you	get	to	the	chapters	about	deploying	to	production,	your	server	code	will	be	ready	to
go.

You	Should	Now	Know
	What	the	Shelf	framework	solves	compared	to	the	HttpServer	library

	What	a	handler	is

	What	the	theory	of	middleware	is,	and	what	Shelf’s	Middleware	class	is

	What	a	route	is

	What	a	cascade	is

	What	a	request	is

	What	a	response	is

	What	a	CORS	policy	is

	How	to	acquire	URL	parameters	from	a	route

Chapter	12.	API	Routing,	Requests,	and	Responses

In	the	previous	chapter,	you	explored	the	basic	principles	needed	to	manage	and	maintain
a	robust	HTTP	server	using	Shelf.	In	this	chapter,	you’ll	be	leveraging	your	Shelf
implementation	to	expose	a	RESTful	API	that	your	ticket	application	can	use.

Before	you	get	to	serving	up	responses,	you	need	to	implement	the	business	logic	that
powers	your	ticket	application.	You’ll	be	implementing	a	simplified	model–view–
controller	(MVC)	pattern	for	which	you’ll	write	some	generic	helper	functionality	to
facilitate	communication	between	your	routing	logic,	your	model,	and	your	controllers.

Modeling	Your	Ticketing	Domain
Back	in	Chapter	10,	you	built	a	class	named	MongoModel	that	implemented	basic
CRUD	functionality	for	your	database.	It	used	a	series	of	DTO	objects	to	act	as	a	schema
enforcer	for	the	data	structures	inside	your	MongoDB	database.	You	will	now	leverage
that	functionality	to	allow	a	new	class,	named	TicketingModel,	to	interact	with	the
database,	encapsulate	your	business	logic,	and	return	responses	containing	your
application	data.

From	the	IDEA	project	panel,	Control-click	the	bin	folder,	select	New	>	File,	and
name	the	file	ticketing_model.dart.	Then	enter	the	Example	12.1	code	in	your
new	file:

EXAMPLE	12.1
Click	here	to	view	code	image

import	‘dart:async’;
import	‘mongo_model.dart’;
import	‘package:tickets/shared/schemas.dart’;
import	‘package:tickets/db/db_config.dart’;
import	‘package:dartson/dartson.dart’;

class	TicketingModel	{
		MongoModel	_mongo;

		TicketingModel()	{
				DbConfigValues	config	=	new	DbConfigValues();
				_mongo	=	new	MongoModel(config.dbName,	config.dbURI,	config.dbSize);
		}
}

This	pattern	should	look	familiar.	Let’s	take	a	look	at	what	you	just	did:

	import:	You	imported	your	library	dependencies.	The	imports	here	should	all	be
familiar	to	you	from	earlier	chapters.	At	a	high	level,	they	provide	database	and
DTO	functionality.

	TicketingModel:	You	implemented	a	new	class	named	TicketingModel.
This	is	the	class	you’ll	use	to	encapsulate	your	business	logic.

	MongoModel:	You	instantiated	an	instance	of	MongoModel	to	enable	database
interactions.	You’ll	retrieve	your	DTOs	from	this	instance	throughout	the	rest	of	this

chapter.

Using	a	Consistent	Method	Signature
Now	that	your	class	is	ready,	take	a	moment	to	think	about	the	requirements	for	what	a
consistent	method	signature	would	look	like.	Your	logic	is	likely	to	have	two	consistent
features:	It	needs	to	support	asynchronous	calls,	and	it	will	likely	take	in	a	multitude	of
parameters	formats.

The	REST	specifications	allow	for	URL	parameters,	query	parameters,	and	JSON	in	the
post	body.	With	that	in	mind,	you	need	to	standardize	on	each	method	accepting	a	map	as
an	argument	and	a	future	as	a	response	type.	The	rest	of	the	methods	in	your	class	will
resemble	the	following	pattern:
Click	here	to	view	code	image

Future	methodName(Map	params)	{
		return	_mongo.action(DTO);
}

By	following	this	format,	you’ll	be	able	to	write	generic	parsing	functionality
throughout	the	chapter.

Getting	Collections	of	Data
Look	over	your	wireframes	from	Chapter	7	to	determine	how	best	to	begin	getting	the
data.	Start	by	exposing	two	end	points,	the	first	of	which	should	return	the	full	list	of
destination	cities	and	the	second	of	which	should	return	all	available	flight	times.	This
functionality	is	supported	natively	from	your	MongoModel	class	and	results	in	no
additional	parsing	logic.

Add	the	methods	in	Example	12.2	to	your	TicketingModel	class:

EXAMPLE	12.2
Click	here	to	view	code	image

Future	getAllCities(Map	params)	{
		return	_mongo.readCollectionByType(CityDTO);
}

Future	getAllTimes(Map	params)	{
		return	_mongo.readCollectionByType(TimeDTO);
}

Creating	Multiple	Asynchronous	Writes
Review	the	order	form	from	Chapter	7,	shown	here	in	Figure	12.1.	It	not	only	has	a	call	to
record	a	ticket	order,	but	it	also	has	a	step	where	you	would	have	to	make	a	call	to	a	third-
party	credit	card	processor.	Implementing	a	payment	gateway	is	outside	the	scope	of	this
book,	but	you	will	at	least	mimic	recording	a	transaction	to	the	database.

FIGURE	12.1	Order	form

Another	concern	is	code	re-use.	Forms	are	historically	regression	prone	because	they
can	contain	a	very	long	list	of	object	attributes	that	you	need	to	keep	in	sync	between	the
client	and	server.	Luckily,	you	used	a	DTO	approach	to	share	code	between	the	client	and
server.	You	will	use	the	PurchaseDTO	class	to	shuttle	data	between	both	tiers.

Add	the	method	in	Example	12.3	to	your	TicketingModel	class:

EXAMPLE	12.3
Click	here	to	view	code	image

Future	createPurchase(Map	params)	async	{
		var	dson	=	new	Dartson.JSON();
		PurchaseDTO	purchaseDTO	=	dson.map(params,	new	PurchaseDTO());

		TransactionDTO	tDTO	=	new	TransactionDTO();
		tDTO.paid	=	1000;		//we’re	faking	a	successful	creditcard	payment
		tDTO.user	=	purchaseDTO.pEmail;

		await	_mongo.createByItem(tDTO);	//nested	async	call

		purchaseDTO.transactionId	=	tDTO.id;
		return	_mongo.createByItem(purchaseDTO);
}

Let’s	take	a	look	at	what	you	just	did:

	Map:	You	followed	the	convention	outlined	earlier,	and	you	expect	a	map	as	a
parameter.

	Dartson:	You	instantiated	an	instance	of	Dartson	using	the	JSON	factory
constructor.	This	sets	the	encoding	type	for	all	further	actions	to	default	to	JSON.
The	dson.map()	function	takes	two	arguments:	The	first	is	your	map	post	object,
and	the	second	is	a	new	instance	of	the	purchaseDTO	variable.	The	dson.map()
function	will	use	reflection	to	assign	the	values	from	the	map	post	object	to	the
corresponding	attributes	on	the	PurchaseDTO	instance.

	PurchaseDTO:	You	assigned	the	purchaseDTO	to	the	response	instance	from
dson.map().	It	now	contains	all	the	posted	values	as	a	native	Dart	class,	and	it
can	also	be	persisted	to	your	Mongo	database.

	TransactionDTO:	You	created	a	new	instance	of	a	TransactionDTO	named
tDTO.	This	will	be	used	to	track	the	amount	paid	by	a	user,	so	you	acquire	their
email	address	from	the	PurchaseDTO.	This	fakes	the	recording	of	a	credit	card
transaction.

	createItemByItem:	You	leveraged	the	functionality	of	MongoModel	to	first
write	out	TransactionDTO	to	the	database.	By	using	the	await	keyword,	you
mimicked	synchronous	behavior.	Finally,	you	used	the	returned	instance	of	the
TransactionDTO	to	acquire	a	MongoDB	ObjectID	and	assigned	it	as	the
transaction	value	of	the	PurchaseDTO.

This	will	allow	you	to	look	up	transaction	records	in	a	user’s	purchase	history.	You
then	wrote	the	contents	of	the	PurchaseDTO	instance	to	the	database	while
maintaining	the	same	instance	for	further	use.

The	createPurchase()	method	has	a	lot	of	overlapping	concepts	in	it.	It’s	exciting
to	see	so	many	of	your	components	working	together	to	create	concise	and	powerful	code.

Nesting	DTOs
To	render	the	flight	display	from	Chapter	7,	shown	here	in	Figure	9.2,	you	will	create	a
nested	DTO.	This	means	a	DTO	with	another	DTO	as	a	field.	Your	response	includes	a	list
of	TimeDTOs,	where	each	TimeDTO	contains	a	corresponding	RouteDTO.	This	requires
two	calls	to	the	MongoDB	database.

In	the	previous	code	for	createPurchase(),	the	object	posted	to	the	API
corresponded	to	a	DTO	you	created	back	in	Chapter	7.	Let’s	take	a	look	at	an	example
where	you	use	parameters	from	a	post	object	to	return	a	valid	DTO	from	MongoDB.

1.	Append	the	Example	12.4	code	to	your	TicketModel	class:

EXAMPLE	12.4

Click	here	to	view	code	image
Future	getTimesByCity(Map	params)	async	{
		Map	queryTime	=	{‘arrival’:	params[‘cityArrival’],
																	‘departure’:	params[‘cityDepart’]};

		List<TimeDTO>	time_dtos;
		time_dtos	=	await	_mongo.readCollectionByType(TimeDTO,	queryTime);

		Map	queryRoutes	=	{‘route’:params[‘cityDepart’]+	“_”	+params[‘cityArrival’]
};
		return	_mongo.readCollectionByType(RouteDTO,	queryRoutes)	.then((List
rdtos)	{
				time_dtos.forEach((TimeDTO	dto)	=>	dto.route	=	rdtos.first);
				return	time_dtos;
		});
}

Let’s	take	a	look	at	what	you	just	did:

	Map:	You	followed	the	convention	outlined	earlier,	and	you	expect	a	map	to	be
supplied	as	a	parameter.

	queryTime	and	queryRoutes:	You	created	query	objects	that	you	can	pass	to
MongoModel.	In	this	case,	you	used	the	key–value	pairs	that	are	part	of	the	map
post	parameter.

	TimeDTO:	You	used	the	query	object	in	conjunction	with	the
readCollectionByType()	function.	This	returns	a	list	of	the	associated
TimeDTOs.

	RouteDTO:	The	route	data	has	a	unique	ID	composed	of	both	cities	involved.
You	concatenated	the	two	city	strings	and	created	a	new	query	to	acquire	the
corresponding	route	information.	You	then	assigned	the	first	RouteDTO	response
as	the	value	for	the	route	field	on	TimeDTO.

Notice	in	Figure	12.2	that	you	have	similar	requirements	to	show	flight	recap
information.	Depending	on	the	context	in	which	the	page	is	instantiated,	you	might
have	only	the	flight	number	available.	You	need	to	show	time	and	route	information.
You	need	to	expose	an	API	to	retrieve	TimeDTOs	from	only	a	flight	number.

FIGURE	12.2	Flights

2.	Append	the	Example	12.5	code	to	your	TicketModel	class:

EXAMPLE	12.5
Click	here	to	view	code	image

Future	getTimesByFlightNumber(Map	params)	async	{
		List<TimeDTO>	time_dtos;
		time_dtos	=	await	_mongo.readCollectionByType(TimeDTO,	{‘flight’:
int.parse(params[‘flight’])});
		var	query	=	{‘route’:	time_dtos.first.departure	+	“_”	+
time_dtos.first.arrival};
		return	_mongo.readCollectionByType(RouteDTO,	query).then((List	rdtos)	{
				time_dtos.forEach((TimeDTO	dto)	=>	dto.route	=	rdtos.first);
				return	time_dtos;
		});
}

The	logic	here	should	look	very	similar	to	the	getTimesByCity()	method.	The
only	difference	is	that	your	TimeDTOs	are	queried	using	a	flight	ID	integer.	With	that,
you	have	wrapped	up	the	foundations	for	the	API	queries	that	you	will	be	using	for	the
rest	of	the	book.

Implementing	Controllers
Let’s	prepare	your	project	to	contain	controller	code:

1.	From	the	IDEA	project	panel,	open	pubspec.yaml,	and	add	the	following	line	to
your	dependencies:
shelf_path:	“0.1.5”

2.	Click	Get	Dependencies	to	download	the	libraries	to	your	packages	folder.
Got	dependencies!

3.	From	the	IDEA	project	panel,	Control-click	the	bin	folder,	select	New	>	File,	and
name	the	file	ticketing_controller.dart.

Your	project	should	now	be	ready	to	add	controller	code.

4.	Append	the	Example	12.6	code	to	your	ticketing_controller.dart	file:

EXAMPLE	12.6
Click	here	to	view	code	image

library	ticket_controller;

import	‘package:shelf/shelf.dart’;
import	‘package:shelf_path/shelf_path.dart’	as	path;
import	‘ticketing_model.dart’;
import	‘dart:async’;
import	‘dart:convert’;
import	‘package:dartson/dartson.dart’;

TicketingModel	model	=	new	TicketingModel();
Dartson	converter	=	new	Dartson.JSON();

In	a	classic	MVC	pattern,	the	controller’s	job	is	to	act	as	the	glue	between	the	view	and
the	model.	Ideally,	controllers	are	kept	extremely	thin	and	allow	views	to	be	decoupled
from	their	model	implementations.

You	will	implement	a	generic	controller	that	will	handle	serving	data	to	your	Shelf
requests.	In	the	“Modeling	Your	Ticket	Domain”	section	of	this	chapter,	you	implemented
a	consistent	method	signature	across	all	your	functions.	That	signature	simply	expects	a
map	object	that	contains	all	the	posted	fields.

Although	this	approach	simplifies	what	is	expected,	it	means	you	have	to	boil	down	all
your	possible	HTTP	payload	structures	to	a	unified	format.	You’re	going	to	add	parsing
support	for	two	of	the	most	common	formats:	post	parameters	and	path	parameters.	The
goal	is	to	map	all	the	key–value	pairs	onto	a	single	payload	map	object.

Path	Parameters
Path	parameters	are	derived	from	the	structure	of	a	URI.	A	URI	can	contain	multiple	types
of	path	parameters,	including	segmented	parameters	and	query	parameters.
Click	here	to	view	code	image

GET	/user/123456/comments?stars=5

In	this	example,	/123456/	represents	a	segmented	parameter,	whereas	?stars=5
represents	a	query	parameter.	Shelf	path	supports	a	generic	way	to	acquire	both	of	these.
Let’s	add	the	Example	12.7	code	to	the	ticketing_controller.dart	file:

EXAMPLE	12.7
Click	here	to	view	code	image

Map	getPathParams(Request	request,	Map	payload)	{
		Map	params	=	path.getPathParameters(request);
		params.forEach((key,	val)	{
				payload[key]	=	val;
		});
		return	payload;
}

Let’s	take	a	look	at	what	you	just	did:

	getPathParameters:	You	assigned	shelf_path	library	to	a	named	identifier
of	path.	You	leveraged	its	top-level	function	to	parse	your	Shelf	request	object.
The	response	is	a	generic	map	with	field–value	pairs	reflecting	your	named
parameters.	The	request	object	will	contain	the	actual	variable	names	for	your
segmented	parameters,	as	defined	by	Shelf	routes.	We’ll	look	at	Shelf	routes	shortly.

	forEach:	You	iterated	over	the	parsed	objects	attributes	and	assigned	the
corresponding	pairs	to	your	payload	object.	This	payload	will	be	the	map	that	is	then
supplied	as	an	argument	to	your	TicketingModel	methods,	with	all	the
parameters	accessible	as	map	fields.

Post	Parameters
Post	parameters	are	specifically	sent	using	the	HTTP	method	of	POST.	The	REST
specification	says	to	expect	the	actual	payload	object	in	the	HTTP	request	body,	and	the
format	will	be	specified	by	the	content-type	attribute.	In	this	case,	you	expect	the	content
type	to	be	JSON.	Let’s	take	a	look	at	how	to	parse	a	Shelf	request.	Add	the	Example	12.8
code	to	your	controller:

EXAMPLE	12.8
Click	here	to	view	code	image

Future<Map>	getPostParams(Request	request)	{
		return	request.readAsString().then((String	body)	{
				return	body.isNotEmpty	?	JSON.decode(body)	:	{};
		});
}

Let’s	take	a	look	at	what	you	just	did:

	readAsString:	You	used	one	of	the	many	parsing	methods	available	on	the
request	object.	Because	you	are	expecting	a	JSON	string,	you	called	the
readAsString()	future.	This	returns	the	request	message	body	value	as	a	string.

	isNotEmpty:	Because	you	are	creating	a	generic	handler	that	will	check	both	path
parameters	and	post	body	objects,	you	want	to	ensure	you	always	pass	at	least	an
empty	object	forward.	If	no	object	exists,	you	simple	pass	an	empty	map	literal.

Response	Objects
So	far	we’ve	been	looking	at	the	client-to-server	flow.	Let’s	take	a	look	at	what	the	return
trip	looks	like.	For	every	inbound	request,	the	Shelf	library	expects	a	response.	In	your
setup,	you	need	two	functions	to	properly	format	the	outbound	response:
_dartsonListToJson()	and	makeResponse().	Let’s	take	a	look	at	the	Dartson
method	first.

1.	Append	the	Example	12.9	code	to	your	controller:

EXAMPLE	12.9
Click	here	to	view	code	image

String	_dartsonListToJson(payload)	{
		var	encodable	=	converter.serialize	(payload);

		return	JSON.encode(encodable);
}

Let’s	take	a	look	at	what	you	just	did:

	converter.serialize:	The	serialize()	method	is	part	of	the	Dartson
library.	It	takes	a	Dartson-registered	entity	and	converts	it	into	a	serializable	map.

	JSON.encode:	Once	the	Dartson	entity	is	converted	to	a	serializable	map,
common	libraries	such	as	JSON	can	act	upon	it.	This	allows	you	to	prepare	the
modified	object	to	be	sent	across	the	wire	as	a	JSON-encoded	string.

2.	Append	the	Example	12.10	code	to	your	library:

EXAMPLE	12.10
Click	here	to	view	code	image

Future<Response>	makeResponse(String	json)	async	{
		var	response	=	new	Response.ok(json);
		return	response;
}

Let’s	take	a	look	at	what	you	just	did:

	Response.ok:	You	created	a	new	Response	instance.	The	Response	class
exposes	a	series	of	factory	constructors,	including	ok(),	forbidden(),
found(),	internalServerError(),	and	other	HTTP	response	statuses.
By	invoking	the	ok()	method,	you	set	the	HTTP	response	code	to	200	and
supplied	a	JSON	string	as	an	argument	from	the	previous	method.

	Response:	You	used	Dart’s	built-in	async	method	to	convert	the	returned
value	to	a	future	and	return	the	new	Response	with	your	payload.

Generic	JSON	Handler
Now	that	you	have	your	request	and	response	parsing	parameters	in	place,	let’s	see	what
this	is	going	to	look	like	when	you	put	it	together.

1.	Append	the	Example	12.11	code	to	your	controller:

EXAMPLE	12.11
Click	here	to	view	code	image

Future	<Response>	handleCities(Request	request)	{
		return	_genericJsonHandler(model.getAllCities,	request);
}

You	declared	a	handler	specific	to	your	model.getAllCities	call	from	earlier
in	the	chapter.	You	passed	it	as	a	function	reference	along	with	the	inbound	request.

2.	Append	the	Example	12.12	code	to	your	library:

EXAMPLE	12.12
Click	here	to	view	code	image

Future	<Response>	_genericJsonHandler(Function	getter,	Request	request)	{
		return	getPostParams(request)
		.then((params)	=>	getPathParams(request	,	params))

		.then((payload)	=>	getter(payload))
		.then((list)	=>	_dartsonListToJson(list))
		.then(makeResponse);
}

This	code	uses	future	chaining	to	ensure	the	proper	order	of	operations.	Let’s	take	a
look	at	what	you	just	did:

	getter:	You	allowed	an	abstract	getter	function	to	be	passed	in.	In	this
example,	it	will	evaluate	to	the	model.getAllCities	reference	from	earlier.
It	will	represent	the	function	that	invoked	on	the	model	to	return	the	DTOs	from
Mongo.

	Request:	You	parsed	your	request	using	two	helper	methods:
getPostParams()	and	getPathParams().

	payload:	After	going	through	both	Path	and	Post	parsing	functions,	you
passed	your	normalized	map	payload	to	your	getter	function.	This	results	in	a
call	to	your	TicketingModel	instance	and	will	yield	a	valid	result	from	the
database.

	dartsonListToJson:	Once	you	had	a	valid	response	object,	you	converted	it
from	the	Dartson	structure	back	to	JSON.

	makeResponse:	Once	you	had	your	Dartson	object	converted	back	to	a	string,
you	instantiated	a	response	object	and	sent	it	back	to	the	caller.

Wire	Up	the	Remaining	APIs
Now	that	you	have	your	generic	handler	in	place,	you	can	quickly	wire	up	different
handlers	to	different	models.	Append	the	Example	12.13	code	to	your	controller:

EXAMPLE	12.13
Click	here	to	view	code	image

Future	<Response>	handleTimesCity(Request	request)	{
		return	_genericJsonHandler(model.getTimesByCity,	request);
}

Future	<Response>	handleFlightNumber(Request	request)	{
		return	_genericJsonHandler(model.getTimesByFlightNumber,	request);
}

Future	<Response>	handleTimes(Request	request)	{
		return	_genericJsonHandler(model.getAllTimes,	request);
}

Future	<Response>	handlePurchase(Request	request)	{
		return	_genericJsonHandler(model.createPurchase,	request);
}

This	pattern	is	the	union	of	the	model	work	you	did	earlier	in	the	chapter,	but	it	now
leverages	the	new	generic	approach	to	request	and	response	handling.	You	just	exposed
unique	handlers	for	each	API	route	that	you’re	about	to	wire	up.

Handling	Routes
In	Chapter	11	you	looked	at	the	power	of	the	Shelf	route.	At	this	point	you	just	need	to
wire	up	some	new	end	points	to	your	new	handlers.	Open	your	webserver.dart	file,
and	modify	the	main()	function	to	match	Example	12.14:

EXAMPLE	12.14
Click	here	to	view	code	image

import	‘ticketing_controller.dart’	as	controller;
void	main()	{

		var	path	=	Platform.script.toFilePath();
		var	currentDirectory	=	dirname(path);
		var	fullPath		=	join(currentDirectory,	‘..’,	‘build/web’);
		Handler	fHandler		=	createStaticHandler(fullPath	,	defaultDocument:
‘index.html’);

		Router	primaryRouter	=	router();
		Router	api	=	primaryRouter.child(‘/tickets’);
		api.add(‘/flight/{flight}’,	[‘GET’],	controller.handleFlightNumber);
		api.add(‘/cities’,	[‘GET’],	controller.handleCities);
		api.add(‘/times’,	[‘POST’],	controller.handleTimesCity);
		api.add(‘/purchase’,	[‘POST’],	controller.handlePurchase);
		Middleware	mw	=	logRequests();
		Pipeline	pl	=	new	Pipeline();
		pl	=	pl.addMiddleware(corsMiddleWare).addMiddleware(mw);
		Handler	apiHandler		=	pl.addHandler(primaryRouter.handler);

		Cascade	cc	=	new	Cascade().add(apiHandler).add(fHandler);

		io.serve(cc.handler,	‘0.0.0.0’,		8080)
						.then((HttpServer	server)	=>	print(‘http	serving	on:	‘
						+	server.port.toString()));
}

In	this	code,	you’ve	wired	up	your	API	to	expose	end	points	that	correspond	to	the
model	functionality	from	the	beginning	of	the	chapter.	Each	route	will	result	in	the
generation	of	a	request	object	that	will	be	sent	into	its	matching	controller.	Your
TicketingModel	and	controller	will	parse	the	request,	fetch	the	data	from	Mongo,	and
generate	a	response	containing	your	DTOs.

Testing	Routes
A	great	way	to	ensure	that	your	routes	are	working	as	expected	is	to	test	them	using	curl.
Let’s	take	a	look	at	a	couple	of	examples.

Restart	your	server,	and	try	some	of	the	following	commands:
Click	here	to	view	code	image

$	curl	http://localhost:8080/tickets/flight/1016
[{“collection_key”:“Times”,“flight”:1016,“departure”:“SFO”,“arrival”:
“SAN”,“takeoff”:1000,“route”:{“collection_key”:“Routes”,“route”:
“SFO_SAN”,“duration”:145,“price1”:49,“price2”:79,“price3”:99,“seats”:7}}]%

$	curl	http://localhost:8080/tickets/cities
[{“collection_key”:“Cities”,“city”:“Los	Angeles”,“airportcode”:“LAX”,“gate”:
“C32”},{“collection_key”:“Cities”,“city”:“San	Diego”,“airportcode”:

“SAN”,“gate”:“B21”},{“collection_key”:“Cities”,“city”:“San	Francisco”,
“airportcode”:“SFO”,“gate”:“A12”},{“collection_key”:“Cities”,“city”:
“Oakland”,“airportcode”:“OAK”,“gate”:“B5”},{“collection_key”:“Cities”,
“city”:“Sacramento”,“airportcode”:“SMF”,“gate”:“A33”}]%

$	curl	-H	“Content-Type:	application/json”	-X	POST	-d	‘{“cityDepart”:“SFO”,
“cityArrival”:“SAN”,“dateDepart”:“2015-12-31”,“dateArrival”:“2015-12-31”}’
http://localhost:8080/tickets/times/
[{“collection_key”:“Times”,“flight”:1016,“departure”:“SFO”,“arrival”:“SAN”,
“takeoff”:1000,“route”:{“collection_key”:“Routes”,“route”:“SFO_SAN”,
“duration”:145,“price1”:49,“price2”:79,“price3”:99,“seats”:7}},
{“collection_key”:“Times”,“flight”:1021,“departure”:“SFO”,“arrival”:
“SAN”,“takeoff”:1230,“route”:{“collection_key”:“Routes”,“route”:“SFO_SAN”,
“duration”:145,“price1”:49,“price2”:79,“price3”:99,“seats”:7}}]%

Summary
Congratulations,	you’ve	just	finished	building	your	first	fully	functional	Dart	API.	You’ve
finally	assembled	enough	of	the	necessary	pieces	to	do	some	hefty	back-end	development
using	Dart.

This	API	will	power	all	the	front-end	Dart	development	you’ll	be	doing	in	the	next	few
chapters,	so	it’s	important	that	your	code	be	working.	To	ensure	we	have	a	quality	API,
you	will	be	taking	a	look	at	how	to	test	your	code	in	Chapter	13.

You	Should	Now	Know
	How	to	instantiate	an	instance	of	MongoModel

	How	to	acquire	data	from	MongoModel

	How	to	parse	query	parameters

	How	to	parse	segmented	parameters

	What	the	high-level	role	of	a	model	is

	What	the	high-level	role	of	a	controller	is

	How	to	declare	a	route	handler

	How	to	create	a	response	object

Chapter	13.	Unit	Testing	Your	Code

In	Chapter	10,	you	built	out	the	basic	functionality	for	interacting	with	your	Mongo
database.	You	implemented	a	basic	CRUD	interface	and	wrote	a	handful	of	helper
functions.	Your	MongoModel	class	now	has	multiple	ways	to	modify	the	database	based
on	which	type	of	data	transfer	object	you	are	working	with.

To	maintain	confidence	that	the	code	in	your	MongoModel	class	is	working	correctly,
you	need	to	write	unit	tests	to	ensure	that	when	changes	are	made,	no	regressions	are
introduced.

What	Is	Unit	Testing?
Unit	testing	is	a	best	practice	for	creating	maintainable	software.	In	short,	it’s	a	set	of
functions	that	represent	different	scenarios	to	test	the	results	of	other	code.

Unit	testing	frameworks	provide	helper	functions	for	writing	tests	and	reporting	results.
Often,	unit	testing	frameworks	are	designed	to	run	externally	from	your	primary
application,	and	they	can	often	be	run	as	part	of	your	build	process.

Because	you	write	and	run	unit	tests	outside	your	primary	application,	the	tests	verify
the	expected	results	of	the	code	and,	by	going	through	the	process	of	using	the	tested	code
in	a	separate	context,	you	are	encouraged	to	write	concise,	loosely	coupled	code.	Code
bases	that	display	these	features	often	end	up	being	more	maintainable.

Many	different	philosophies	are	associated	with	unit	testing.	Two	of	the	more	popular
philosophies	are	test-driven	development	and	behavior-driven	development.	Many	of	these
philosophies	are	quite	expansive	and	end	up	dictating	your	entire	approach	to	software
engineering.

In	the	context	of	this	book,	unit	testing	is	about	testing	code	in	small,	self-contained
chunks.	You	will	learn	the	basics	of	writing	unit	tests	and	be	able	to	apply	your	own
philosophy	as	you	see	fit.	Although	it’s	definitely	not	recommended,	your	philosophy	can
even	include	not	writing	unit	tests;	they	are	completely	optional.

Jasmine	via	Guinness
You	have	many	options	when	choosing	a	unit	testing	framework.	One	of	the	more	popular
choices	is	the	Jasmine	test	framework.	Jasmine	was	originally	developed	for	use	in	the
JavaScript	language	by	developers	at	Pivotal	Labs.	It	was	designed	to	meet	the	needs	of
developers	attempting	to	implement	behavior-driven	development	best	practices	on	the
web.	The	result	was	an	easy-to-use	testing	framework	that,	when	executed,	resulted	in
human-readable	sentences	that	describe	the	function	being	tested.	Since	its	arrival	in	late
2010,	it	has	been	ported	to	numerous	languages	and	many	different	development
frameworks.	Dart’s	port	of	Jasmine	is	titled	Guinness	and	is	primarily	a	community-
supported	project.	Although	Guinness	is	not	officially	backed	by	Google,	its	primary
author	is	a	member	of	the	Google	Angular	team,	and	the	library	pairs	nicely	with	Angular
Dart.

Setting	Up	Guinness
You’re	going	to	install	a	library	named	guinness.	The	Guinness	library	provides	the
functionality	for	maintaining	a	suite	of	unit	tests.

1.	From	the	IDEA	project	panel,	open	pubspec.yaml,	and	add	the	following	line	of
code	in	the	dependencies:
guinness:	“0.1.17”
unittest:	“0.11.6+1”

2.	Click	Get	Dependencies	to	download	guinness	to	your	packages	folder.
Got	dependencies!

3.	From	the	IDEA	project	panel,	Control-click	the	tickets	folder,	select	New	>
Directory,	and	name	the	directory	test.

4.	Control-click	the	test	directory,	select	New	>	File,	and	name	the	file
database_test.dart.

In	the	following	sections,	you’ll	use	the	database_test.dart	file	to	execute	your
test	scripts	from	IDEA.

Composition	of	a	Guinness	Test
One	of	the	more	helpful	aspects	of	testing	frameworks	is	their	ability	to	facilitate	the
writing	of	tests	whose	output	results	in	concise	sentence	structures	explaining	what
occurred.	This	creates	a	self-documenting	trail	that	enables	developers	to	quickly	acquire
context	as	to	what	the	test	was	originally	expecting	and	why	the	test	failed.

The	common	nomenclature	for	test	is	spec,	and	multiple	specs	together	are	referred	to
as	a	suite.

1.	Implement	the	Example	13.1	test	using	the	exposed	functions	from	Guinness	to
help	write	the	test:

EXAMPLE	13.1
Click	here	to	view	code	image

import	‘package:guinness/guinness.dart’;

main()	{

		Map	student	=	{‘name’:	null,	‘canRead’:	null};

		describe(“8th	Grade	Student”,	()	{

				beforeEach(()	=>	print(‘At	Start’));
				beforeEach(()	{
						student[‘name’]	=	“Tommy”;
						student[‘canRead’]	=	true;
				});

				afterEach(()	=>	print(‘At	Finish’));
				afterEach(()	{
						student[‘name’]	=	null;
						student[‘canRead’]	=	false;

				});

				it(“Should	Have	A	Name”,	(){
						print(‘—run	name	test’);
						expect(student[‘name’]).toBeNotNull();
				});

				it(“Can	Read”,	(){
						print(‘—run	reading	test’);
						expect(student[‘canRead’]).toBe(true);
						expect(student[‘canRead’]).toBeNotNull();
				});
		});

}
//unittest-suite-wait-for-done
//At	Start
//—run	name	test
//At	Finish
//
//At	Start
//—run	reading	test
//At	Finish
//
//PASS:	An	8th	Grade	Student	Should	Have	A	Name
//PASS:	An	8th	Grade	Student	Can	Read
//All	2	tests	passed.
//unittest-suite-success

Let’s	take	a	look	at	what	you	just	did:

	You	created	a	variable	named	student.	The	data	assigned	to	it	contains	two
fields,	both	with	a	value	of	null.	As	is,	neither	of	these	values	would	pass	the
tests	you	execute	later.

	You	invoked	the	function	describe().	This	function	has	two	parameters:	The
first	is	a	string	value	that	specifies	the	object	that	is	being	tested—in	this	case,
“An	8th	Grade	Student”;	the	second	parameter	is	a	function	argument	that
executes	the	tests.

	You	invoke	two	helper	functions:	beforeEach()	and	afterEach().	Neither
of	these	is	a	test	itself.	Both	functions	accept	a	single	function	reference	that	will
be	invoked	either	immediately	before	a	test	or	immediately	following	each	test.
These	functions	give	you	an	opportunity	to	set	up	or	tear	down	any	dependencies
that	your	test	might	have.	In	the	example,	you	are	calling	each	function	twice.

Your	first	invocation	in	each	pair	is	a	function	argument	that	prints	out	the
execution	order.	This	outputs	either	“At	Start”	or	“At	Finish”	in	relationship	to	the
execution	of	the	actual	test.

Your	second	invocation	modifies	the	values	of	the	testable	object	student.	The
beforeEach()	instance	sets	the	student	to	a	state	that	will	pass	the	test,
whereas	afterEach()	sets	its	back	to	an	invalid	state.	This	cycle	repeats	for
each	unique	test.

	You	wrote	two	tests	using	the	it()	function.	Like	its	relative	describe(),

this	function	accepts	both	a	string	value	and	a	function.	However,	the	string	value
here	specifies	the	results	the	expect	expression	should	produce,	and	the
function	invokes	the	logic	that	produces	the	results.	In	this	case,	you	require	that
the	object	being	tested	“Have	A	Name”	and	“Can	Read.”

	Inside	the	function	argument,	you	invoked	the	expect()	function,	which
accepts	a	value	and	returns	an	Expect	object.	The	Expect	object	has	numerous
variations	of	the	toBe()	helper	function.	Most	of	these	functions	accept	a	value,
but	all	the	functions	test	an	assumption	made	upon	the	value	that	was	first	passed
into	the	expect()	function.

The	Expect	objects	represent	the	state	used	to	discern	the	success	or	failure	of	a
test	suite.

If	the	results	of	the	expression	passed	into	the	expect()	function	match	the
assumption	of	the	trailing	toBe()	function,	the	test	is	considered	to	have	passed.
If	the	assumption	is	wrong,	the	test	is	considered	to	have	failed.

2.	Run	the	code.

You	can	see	the	order	of	operations	clearly	in	the	console	output	from	within
beforeEach(),	afterEach(),	and	it().	You’ll	also	notice	that	the	test
passes	and	that	the	structure	of	the	output	sentence	is	a	clear	statement	describing
the	object	being	tested	and	the	assumptions	made	upon	its	values.

Here’s	an	example	of	the	output:
Click	here	to	view	code	image

//PASS:	An	8th	Grade	Student	Should	Have	A	Name
//PASS:	An	8th	Grade	Student	Can	Read

Testing	Mongo
The	goal	for	the	remainder	of	this	chapter	is	to	implement	a	series	of	asynchronous	tests
that	validate	the	expectations	you	set	for	the	MongoModel	class.	You’ll	be	instantiating
an	instance	of	the	MongoModel	class	that	connects	to	a	test	database	inside	MongoDB.	It
will	seed	the	test	database	with	the	initial	values,	run	some	tests	against	the	data,	and,
upon	completion,	drop	the	test	database.

Seeder	Spec
You	will	now	instantiate	the	dependencies	needed	to	test	your	MongoModel	code.

1.	Replace	the	code	in	your	database_test.dart	file	with	Example	13.2:

EXAMPLE	13.2
Click	here	to	view	code	image

import	‘package:guinness/guinness.dart’;	//test	framework
import	‘package:tickets/shared/schemas.dart’;	//test	dtos
import	‘package:tickets/db/seeder.dart’;	//json	file
import	‘package:tickets/db/db_config.dart’;	//database	values
import	‘../bin/mongo_model.dart’;

main()	{

		DbConfigValues	config	=	new	DbConfigValues();
		MongoModel	model	=	new	MongoModel(config.testDbName,	config.testDbURI,
config.testDbSize);

		//A	Test	DTO
		RouteDTO	routeDTO	=	new	RouteDTO();
		routeDTO.duration	=	120;
		routeDTO.price1	=	90.00;
		routeDTO.price2	=	91.00;
		routeDTO.price3	=	95.00;
		routeDTO.seats	=	7;
}

Let’s	take	a	look	at	what	you	just	did:

	You	declared	a	series	of	imports.	You	need	access	to	your	DTOs,	your	JSON	file,
database	configuration	values,	and,	of	course,	the	MongoModel	class	itself.

	You	initialized	your	database	values	and	your	MongoModel	class.	The	config
variable	exposes	a	set	of	getter	properties	that	modify	your	previously	configured
database	credentials	to	point	to	a	new	test	database	named	TicketsTest.

	You	instantiated	a	new	instance	of	a	RouteDTO.	This	is	the	object	that	will	be
used	when	testing	the	CRUD	actions	of	your	MongoModel	implementation.

Now	that	your	dependencies	are	ready	for	action,	you	can	set	up	your	first	spec.

2.	Append	the	code	in	Example	13.3	to	the	end	of	the	main()	method	inside	the
database_test.dart	file:

EXAMPLE	13.3
Click	here	to	view	code	image

describe(“The	Ticket	MongoModel”,	()	{
		it(‘Should	populate	the	Test	Database’,	()	async	{
				Seeder	seeder	=	new	Seeder(config.testDbName,
																														config.testDbURI,	config.testDbSeed);
				await	seeder.readFile();
				List	collection	=	await	model.readCollectionByType(RouteDTO);
				expect(collection.length).toBeGreaterThan(10);
		});
});

Let’s	take	a	look	at	what	you	just	did:

	You	invoked	the	method	describe().	The	string	value	here	describes	the
object	that	is	being	tested.	Any	additional	expectations	that	are	required	to	test	the
described	object	in	this	particular	context	should	be	included	inside	the	function
argument.

	You	wrote	your	first	spec	using	the	it()	method.	The	string	value	here	specifies
the	results	the	expect	expression	should	produce.	The	function	then	sets	up	the
correct	context	to	evaluate	the	hypothesis.

Your	expectation	is	that	the	route	collection	will	contain	more	than	10	items.	We
know	that	it	contains	18	by	having	looked	at	the	data	back	in	Chapter	7.

The	test	function	is	declared	using	the	keyword	async	because	the	call	itself
depends	on	a	Future.	The	Seeder	instance	is	instantiated,	and	the	readFile()
method	is	given	time	to	execute	via	the	await	keyword.	Upon	completion,	the
execution	context	proceeds.

You	then	leveraged	the	await	keyword	again	to	assign	a	value	from	the
asynchronous	method	model.readCollectionByType().

You	now	have	your	collection	to	test	out	your	expectation.

	You	invoked	the	expect()	method,	which	accepts	a	value	and	returns	an
Expect	object.	In	this	case,	the	expectation	is	that	the	collection.length
will	be	greater	than	10.	This	gives	you	some	flexibility	down	the	road	if	your
seeder	data	changes.

3.	Run	database_test.dart.	You	should	see	the	following	output:
Click	here	to	view	code	image

unittest-suite-wait-for-done
PASS:	The	Ticket	MongoModel	Should	populate	the	Test	Database
All	1	tests	passed.
unittest-suite-success

In	review,	you’ve	described	the	object	that	is	being	tested	and	declared	the	results	the
expression	should	produce.	You’ll	continue	this	pattern	for	the	rest	of	your	test	suite.

Specs	and	Futures
You	are	now	going	to	write	a	test	to	validate	the	functionality	of	the	createByItem()
method	on	your	MongoModel.	You’ll	use	the	instance	of	RouteDTO	that	you	created
outside	of	the	describe	statement,	and	you’ll	ensure	it	can	be	persisted	inside	of
MongoDB.	Append	the	code	in	Example	13.4	to	the	bottom	of	your	describe()
function	argument:

EXAMPLE	13.4
Click	here	to	view	code	image

it(“should	create	a	route	DTO	and	write	to	the	db”,	()	{
		var	originalID	=	routeDTO.id;
		return		model.createByItem(routeDTO).then((var	dto)	{
				expect(originalID).toBeNull();
				expect(routeDTO.id).toBeNotNull();
				expect(dto.id).toEqual(routeDTO.id);
		});
});

Let’s	take	a	look	at	what	you	just	did:

	You	constructed	your	test.	You	wrote	the	original	id	value	to	a	local	variable	prior
to	making	the	create	request.	You	invoked	the	then()	method	from	the	futures
interface	and	acquired	an	instance	of	the	DTO	from	MongoModel	after	it	was
written	to	the	database.	You	then	declared	your	expectations.

	You	wrote	your	second	spec	using	the	it()	method.	The	string	value	here	specifies

the	result	that	the	expect	expression	should	produce.

	The	it()	method	has	built-in	support	for	Dart	futures	and	completers.	This	allows
you	to	construct	asynchronous	tests	without	any	additional	framework	support.	In
Example	13.4,	your	result	for	the	it()	method	is	a	returned	Future	from	the
model	instance.

	Inside	your	test	context,	the	method	createByItem()	always	expects	the	id
value	of	the	DTO	to	be	null	because	it	has	never	been	persisted	to	the	database.
Upon	writing	the	object	to	the	database,	the	MongoModel	returns	the	same	instance
to	the	caller,	but	with	updated	values.	You	wrote	some	expectations	that	reflect	this
scenario,	and	you	checked	that	the	originalID	is	null,	that	the	returned	instance’s
id	is	not	null,	and	that	both	active	route	variables	now	have	matching	ids.

Specs	and	Async
You	are	now	going	to	write	a	test	to	validate	the	functionality	of	the	updateItem()
method	on	your	MongoModel.	Guinness	can	also	support	Dart’s	built-in	support	for
async	because	the	test	function	argument	is	a	standard	Dart	function.

You	can	use	the	async	keyword	to	modify	the	function	to	behave	like	an	implicit
future.	First	let’s	take	a	look	at	a	standard	futures-based	implementation.

1.	Append	the	Example	13.5	code	to	the	bottom	of	your	describe()	function:

EXAMPLE	13.5
Click	here	to	view	code	image

var	action	=	“update	previous	db	item,	retrieve	it	to	make	sure	its	updated”;
it(action,	()	{

routeDTO.price1=10000.10;
return	model.updateItem(routeDTO).then((status)	{
				return	model.readItemByItem(routeDTO).then((dto){
						expect(status[‘ok’]).toEqual(1.0);
						expect(dto.price1).toEqual(routeDTO.price1);
				});
		});
});

Let’s	take	a	look	at	what	you	just	did:

	You	wrote	your	third	spec	using	the	it()	method.

	You	modified	the	price	value	on	your	DTO	to	10000.10.

	You	immediately	returned	a	future.	The	future	will	take	the	Dart	instance	of	the
DTO	and	update	its	values	in	the	MongoDB	database.	The	updateItem()
method	returns	only	a	status	object.

	You	returned	a	second	future	to	enable	future	chaining.	This	future	uses	the
readItemByItem()	that	refreshes	an	object	instance	from	the	database.

	You	outlined	your	expectation	that	the	status	object	has	an	'ok'	value,	and	that
the	returned	object	has	output	a	price	value	that	matches	your	local	modification.

If	you	run	the	code,	it	will	pass,	but	it’s	verbose	and	subjectively	difficult	to	read.
Let’s	use	a	more	idiomatic	Dart	approach	and	enable	async	support.

2.	Replace	the	code	from	the	previous	step	in	your	database_test.dart	file	with
the	code	in	Example	13.6:

EXAMPLE	13.6
Click	here	to	view	code	image

var	action	=	“update	previous	db	item,	retrieve	it	to	make	sure	its	updated”;
		it(action,	()	async	{

				routeDTO.price1=10000.10;
				var	status	=	await	model.updateItem(routeDTO);
				var	dto	=	await	model.readItemByItem(routeDTO);
				expect(status[‘ok’]).toEqual(1.0);
				expect(dto.price1).toEqual(routeDTO.price1);
		});

Let’s	take	a	look	at	what	you	just	did:

	You	refactored	your	third	spec	by	using	the	async	keyword	to	modify	the
function	argument.

	You	modified	the	call	to	model.updateItem()	to	use	the	await	keyword.
This	mimics	synchronous	behavior	while	allowing	asynchronous	execution.	The
response	value	is	assigned	to	a	local	variable.

	You	modified	the	call	to	model.readItemByItem()	to	also	use	the	await
keyword.	The	response	value	is	assigned	to	a	local	variable.

	You	outlined	your	expectations	to	use	the	local	variables	as	if	this	were	a
synchronous	call.

The	modified	code	is	quite	terse	and	is	subjectively	easier	to	read.

3.	Run	database_test.dart.	You	should	see	the	following	output:
Click	here	to	view	code	image

unittest-suite-wait-for-done
PASS:	The	Ticket	MongoModel	Should	populate	the	Test	Database
PASS:	The	Ticket	MongoModel	should	create	a	record	DTO	and	write	to	the	db
PASS:	The	Ticket	MongoModel	update	previous	db	item,	retrieve	it	to	make
sure	its	updated

All	3	tests	passed.
unittest-suite-success

Read	Spec
You	will	now	write	a	test	to	validate	the	read	functionality	of	the	MongoModel	by	testing
the	readItemByItem()	and	readCollectionByType()	methods.	One	retrieves
a	specific	instance,	and	the	other	returns	an	entire	collection.

1.	Append	the	Example	13.7	code	to	the	bottom	of	your	describe()	function
argument:

EXAMPLE	13.7

Click	here	to	view	code	image
it(“should	retrieve	a	list	of	items	by	the	DTO”,	()	{
		return		model.readCollectionByType(RouteDTO).then((List<BaseDTO>	aList)
{
				expect(aList.first).toBeAnInstanceOf(RouteDTO);
				expect(aList.length).toBeGreaterThan(10);
		});
});

it(“will	retrieve	the	item	created	in	the	first	step”,	()	{
		return		model.readItemByItem(routeDTO).then((BaseDTO	dto){
						expect(dto.id).toEqual(routeDTO.id);
				});
	});

These	tests	are	actually	very	similar	to	some	of	the	tests	you’ve	already	used.	They
are	broken	out	into	explicit	standalone	specs.	This	will	ensure	that	if	you	start	seeing
test	failures,	you	have	small	logical	segments	tested	that	allow	you	to	quickly	assess
where	the	problem	occurs.

2.	Run	database_test.dart.	You	should	see	the	following	output:
Click	here	to	view	code	image

unittest-suite-wait-for-done
PASS:	The	Ticket	MongoModel	Should	populate	the	Test	Database
PASS:	The	Ticket	MongoModel	should	create	a	record	DTO	and	write	to	the	db
PASS:	The	Ticket	MongoModel	update	previous	db	item,	retrieve	it	to	make
sure	its	updated
PASS:	The	Ticket	MongoModel	will	retrieve	the	item	created	in	the	first
step
PASS:	The	Ticket	MongoModel	should	retrieve	a	list	of	items	by	the	DTO

All	5	tests	passed.
unittest-suite-success

Delete	Spec
You	will	now	write	a	test	to	validate	the	delete	functionality	of	the	MongoModel	by
testing	the	deleteByItem()	method.	Append	the	Example	13.8	code	to	the	bottom	of
your	describe()	function	expression:

EXAMPLE	13.8
Click	here	to	view	code	image

it(“should	delete	the	route	DTO	from	the	DB”,	()	{
		return	model.deleteByItem(routeDTO).then((status)	{
				expect(status[‘ok’]).toEqual(1.0);
		});
});

Because	this	is	a	destructive	action,	the	deleteByItem()	method	returns	a	status
object.	You	simply	check	that	status	to	ensure	that	the	object	was	deleted.

Drop	Database	Spec
You	will	now	write	a	test	to	validate	the	ability	to	drop	a	database	using	MongoModel	by
testing	the	dropDatabase()	method.	This	is	important	since	the	first	spec	you	wrote
created	a	new	database	named	TicketsTest.	You	want	to	make	sure	that	you	clean	up
after	your	tests.

1.	Append	the	Example	13.9	code	to	the	bottom	of	your	describe()	function
argument:

EXAMPLE	13.9
Click	here	to	view	code	image

it(“should	drop	the	test	database”,	()	async	{
		Map	status	=	await	model.dropDatabase();
		expect(status[‘ok’]).toEqual(1.0);
});

Because	this	is	a	destructive	action,	the	dropDatabase()	method	returns	a	status
object.	You	simply	check	that	status	to	ensure	that	the	database	was	dropped.

2.	Run	database_test.dart.	You	should	see	the	following	output:
Click	here	to	view	code	image

unittest-suite-wait-for-done
PASS:	The	Ticket	MongoModel	Should	populate	the	Test	Database
PASS:	The	Ticket	MongoModel	should	create	a	record	DTO	and	write	to	the	db
PASS:	The	Ticket	MongoModel	update	previous	db	item,	retrieve	it	to	make
sure	its	updated
PASS:	The	Ticket	MongoModel	will	retrieve	the	item	created	in	the	first
step
PASS:	The	Ticket	MongoModel	should	retrieve	a	list	of	items	by	the	DTO
PASS:	The	Ticket	MongoModel	should	delete	the	route	DTO	from	the	DB
PASS:	The	Ticket	MongoModel	should	drop	the	test	database

All	7	tests	passed.
unittest-suite-success

Additional	Tests
You	just	wrote	a	suite	of	functional	test	interacting	with	your	MongoModel.	At	GitHub,
there’s	an	extension	of	these	tests	that	implements	additional	test	coverage	for	the
TicketingModel	class	you	created.	If	you’re	interested	in	running	them,	you	can	take
a	look	at	them	at:

https://github.com/rightisleft/web_apps_dart/blob/master/test/ticket_model_test.dart.

Summary
Congratulations,	you	have	taken	the	first	steps	to	ensure	your	code	continues	to	function	in
an	explicit,	expected	manner	as	you	evolve	your	code	base.	We’ve	only	scratched	the
surface	of	unit	testing,	and	I	highly	suggest	taking	the	time	to	develop	a	strong	routine
around	testing	your	code.	Now	that	you	have	confidence	that	your	API	layer	is	returning
quality	results,	you’re	ready	to	switch	gears	and	dive	into	front-end	development	using
Dart.

https://github.com/rightisleft/web_apps_dart/blob/master/test/ticket_model_test.dart

You	Should	Now	Know
	What	a	unit	test	is

	What	a	spec	is

	What	a	suite	is

	What	Guinness	is,	and	how	it	relates	to	Jasmine

	The	relationship	between	describe()	and	it()

	The	execution	order	of	beforeEach()	and	afterEach()

	The	purpose	of	the	class	Expect

	How	to	write	futures-based	specs

	How	to	write	specs	leveraging	async

Chapter	14.	A	Web	Project	with	Dart

In	Chapter	12,	you	set	up	the	API	that	will	power	the	Just-In-Time	Airlines	ticketing
application.	With	that,	you	will	spend	the	next	few	chapters	familiarizing	yourself	with
Dart	as	a	language	for	web	development.	You’ll	be	setting	up	a	landing	page	using	the
core	dart:html	library,	and	then	building	out	the	rest	of	the	application	using	Angular	2
Dart.	Let’s	take	a	look	at	getting	your	landing	page	up	and	running.

Planning	for	Front-End	Development
When	we	received	the	mockups	from	the	client	Just-In-Time	Airlines	back	in	Chapter	7,
you	saw	that	the	landing	page	would	be	isolated	from	the	rest	of	the	application.	The	goal
is	to	make	a	flexible	landing	page	that	is	isolated	from	the	core	ticketing	application.	This
will	give	the	marketing	department	the	flexibility	to	experiment	with	different	landing
pages	and	offers	without	affecting	the	core	ticketing	platform.	It	also	allows	you	to	take	a
look	at	the	core	dart:html	library	that	is	shipped	with	the	Dart	SDK.

Over	the	next	few	sections,	you’ll	implement	a	list	of	discounted	flights.	Each	deal	will
have	the	date	of	travel,	a	discount	price,	and	deep	link	into	the	ticketing	application.

Development	Tools
I’ve	talked	about	a	few	ways	to	run	Dart	in	the	browser:	using	Chrome	as	a	browser,	using
Dartium	as	a	browser,	running	a	server	using	Pub	Serve,	running	a	server	using	Shelf,	and
others.

The	following	list	clarifies	how	you	will	develop	your	application	from	this	point
through	Chapter	16:

	You’ll	use	the	Dartium	browser	to	test	and	debug	code	using	its	built-in	Dart	VM.

	You’ll	access	Dartium’s	built-in	debugger	tool.

	You’ll	serve	your	content	using	the	IDEA	proxy	server	for	Pub.

	You’ll	run	the	Shelf	router	from	the	previous	chapter	to	expose	your	data.

	Note

In	Chapter	17,	you	will	prepare	your	app	for	public	consumption	by
deploying	your	application	to	Heroku.	At	that	point,	you’ll	use	the	task	Pub
build	to	compile	a	JavaScript	version	of	the	app	and	run	it	locally	in	a
standard	browser.	Once	it’s	built,	you’ll	be	able	to	serve	it	using	the	Shelf
static	server	that	was	built	in	Chapter	12.

Development	Libraries
You’ll	be	starting	with	a	front-end	development	stack	and	installing	and	configuring	the
support	for	the	following	libraries:

	browser	will	include	the	client	dependencies	to	execute	the	dart2js	transformer.

	bootjack	is	a	Dart	port	of	the	popular	Bootstrap	UI	framework.	It	adds	support
for	the	popular	Bootstrap	grid	system	and	CSS	components.	For	interactivity	it	uses
Dart	instead	of	JavaScript.

	sass	adds	a	build	step	for	the	popular	CSS	preprocessor.	It	supports	both	the	sass
and	scss	syntax.	The	Dart	sass	library	includes	a	transformer	that	operates	the
same	way	as	the	dart2js	transformer.	When	a	request	for	a	file	named	main.css	is
encountered,	the	Pub	server	will	transform	and	return	the	processed	output	from
main.scss.	In	addition	to	this	server	features,	all	sass/scss	files	will	be
transformed	and	saved	during	Pub	build	process.	(See	the	sidebar	“Installing	and
Configuring	sass”	for	more	information.)

Installing	and	Configuring	SASS

By	default,	the	sass	transformer	will	look	for	a	system-level	executable	binary
named	sass	on	a	Mac	or	Unix	system,	or	for	sass.bat	on	a	Windows	system.
In	order	to	ensure	that	your	transformer	runs	both	locally	and	in	production,	point
your	sass	transformer	directly	to	an	executable	of	sassc.	The	sassc	library
limits	the	number	of	dependencies	you’ll	need	when	building	your	production
application.	To	install	sassc,	you	can	use	the	following	steps:

Mac:	Use	brew	to	install	sassc	with	the	following	command:
$	brew	install	sassc

Manual	Windows	builds:	Please	visit
https://github.com/sass/sassc/blob/master/docs/building/windows-instructions.md
for	instructions	on	building	for	Windows.

Ubuntu	and	manual	Mac	builds:	Please	visit
https://github.com/sass/sassc/blob/master/docs/building/unix-instructions.md	for
instructions	on	building	for	Ubuntu.

The	following	steps	acquire	and	configure	the	rest	of	your	Dart	libraries:

1.	From	the	IDEA	project	panel,	open	pubspec.yaml	and	modify	it	to	match	the
code	in	Example	14.1:

EXAMPLE	14.1
Click	here	to	view	code	image

name:	‘tickets’
version:	0.0.1
description:	A	ticket	commerce	application
author:	Jack	Murphy	jack@rightisleft.com
homepage:	https://www.rightisleft.com

https://github.com/sass/sassc/blob/master/docs/building/windows-instructions.md
https://github.com/sass/sassc/blob/master/docs/building/unix-instructions.md

environment:
		sdk:	‘>=1.0.0	<2.0.0’
dependencies:
#Server	Dependencies
		json_object:	“1.0.19”
		mongo_dart:	“0.1.46”
		connection_pool:	“0.1.0+2”
		dartson:	“0.2.4”
		guinness:	“0.1.17”
		shelf:	‘>=0.6.2	<0.7.0’	shelf_static:	“0.2.2”
		shelf_route:	0.13.0
#Client	Dependencies

		bootjack:	“0.6.5”

		browser:	“>=0.10.0+2	<0.11.0”

		sass:	“0.4.2”

transformers:
-	dartson
-	sass:

		executable:	sassc

2.	Click	Get	Dependencies	to	download	the	libraries	to	your	packages	folder.
Got	dependencies!

3.	Control-click	the	web	folder,	select	New	>	File,	and	name	the	file	main.dart.

4.	Control-click	the	web	folder,	select	New	>	File,	and	name	the	file	deals.json.

5.	Control-click	the	web	folder,	select	New	>	Directory,	and	name	the	directory
styles.

6.	Control-click	the	styles	folder,	select	New	>	File,	and	name	the	file
main.scss.

Interacting	with	HTML	and	the	DOM
You	will	build	a	basic	input	field	to	test	interactions	with	the	DOM	using	Dart.	To	support
that,	you	need	an	<input>	field	in	your	HTML.	You’re	going	to	modify	the
index.html	file	from	Chapter	12.

1.	Modify	web/index.html	to	match	the	code	in	Example	14.2:

EXAMPLE	14.2
Click	here	to	view	code	image

<!DOCTYPE	html>
<html>
<head>
		<meta	name=“viewport”	content=“width=device-width,	initial-scale=1.0”>
		<title>JIT	Ticket	Application</title>
		<link	rel=“stylesheet”	href=“packages/bootjack/css/bootstrap.min.css”>
		<link	rel=“stylesheet”
href=“https://bootswatch.com/flatly/bootstrap.min.css”>
		<link	rel=“stylesheet”	href=“styles/main.css”>
</head>
<body>
<div	class=“container”>
		<div	class=“col-xs-12”>
				<h1>Ticket	Application</h1>
				Hello	World!

				<hr/>
				<input	type=“text”	class=“form-control”	placeholder=“Blank”	/>
		</div>
</div>

<script	type=“application/dart”	src=“main.dart”></script>
<script	src=“packages/browser/dart.js”></script>
</body>
</html>

Each	of	the	HTML	elements	and	scripts	in	Example	14.2	should	look	familiar.	If	you
need	a	refresher	on	how	Dart	works	in	the	browser,	please	refer	to	Chapter	2.	The
only	variation	from	any	of	the	previously	discussed	concepts	is	the	inclusion	of	CSS
files.	Here’s	how	you	did	that:

	bootstrap.min.css:	You	included	the	CSS	required	for	the	Bootjack	library.

	bootstrap.min.css:	This	is	optional.	You	extended	the	default	Bootstrap
configuration	with	a	custom	Bootstrap	theme	named	flatly.	This	file	is
externally	hosted.	You	have	the	option	to	load	it	off	their	servers	upon	page	load,
or	you	can	download	it	locally	if	you	want	to	run	it	offline.	In	this	example,	you
will	leave	it	on	their	servers.

	main.css:	This	is	the	processed	output	of	the	main.scss	file.	This	file	is
generated	on	the	fly	by	the	sass	transformer	library	installed	earlier	in	this
chapter.

The	topic	of	CSS	and	SASS	will	not	be	covered	in	this	book.	Where	required,
styling	code	will	be	included	to	complete	the	project.

At	a	high	level,	you	want	an	application	that	is	1170	pixels	wide	and	centered.
You’ll	default	to	using	the	bootstrap	col-xs-*	grid	prefix.	Using	the	extra	small
selector	will	ensure	that	the	page	is	a	consistent	width	across	all	browser	windows
sizes.	You	can	dive	into	Bootstrap’s	responsive	layout	options	if	you	are	interested,
but	this	book	does	not	cover	them.

You	need	to	add	some	code	to	enforce	these	requirements.

2.	Apply	the	code	in	Example	14.3	to	your	web/styles/main.scss	file:

EXAMPLE	14.3
Click	here	to	view	code	image

@import	url(https://fonts.googleapis.com/css?family=Roboto);

html,	body	{
		width:	100%;
		height:	100%;
		margin:	0;
		padding:	0;
		font-family:	‘Roboto’,	sans-serif;
}
.container	{
		width:	1170px;
}

Next,	you	need	to	construct	the	base	application	entry	point	for	your	web

application.

3.	Inside	your	web/main.dart	file,	enter	the	code	in	Example	14.4:

EXAMPLE	14.4
Click	here	to	view	code	image

import	‘dart:html’;

main()	{
		print(‘This	is	main.dart	from	test’);
		AnchorElement	btn	=	querySelector(‘#hw’);
		btn.onClick.listen(handleClick);
}

handleClick(Event	e)	{
		InputElement	input	=	querySelector(‘input’);
		input.value	+=	(e.target	as	AnchorElement).text;
}

Let’s	take	a	look	at	some	test	output	from	piecing	together	the	.dart,	.scss,	and
.html	files:

4.	From	the	IDEA	project	panel,	open	the	web	folder.

5.	Control-click	index.html,	select	Open	in	Browser,	and	then	select	Dartium.

6.	Ensure	that	Dartium	opens	to	the	Ticket	Application	page.	Dartium	should	load	an
address	similar	to
http://localhost:63342/tickets/web/index.html.

7.	Click	the	Hello	World	button	multiple	times	to	populate	the	input	field	with	our
value.

Let’s	do	a	quick	overview	of	the	core	concepts	by	taking	a	quick	look	at	what	you
just	did.	Later	in	the	chapter,	you’ll	do	a	deep	dive	into	all	the	components	used
here.

	querySelector	traverses	the	DOM	and	uses	the	DOM	string	selector	syntax
to	find	elements.	In	this	case,	you’re	looking	for	an	element	with	an	ID	of	value
'hw'.

	AnchorElement	is	an	element	exposed	by	the	dart:html	library.	The
dart:html	library	provides	element	classes	that	corresponded	to	the	available
tag	formats	from	the	HTML	specification.	In	the	case	of	AnchorElement
btn,	we	expect	the	querySelector()	to	return	an	element	of	type	Anchor
based	off	the	matching	ID.

	onClick.listen	listens	for	the	click	events.	The	dart:html	library	works
with	native	Dart	streams	for	event	handling.	The	onClick	stream	implements
the	Dart	stream	interface.	This	allows	you	to	append	event	handler	functions	using
the	listen	method.	The	handler	can	then	respond	to	click	events.

	handleClick	is	a	function	with	a	method	signature	parameter	named	e	of	type
Event.	This	function	executes	on	each	stream	event.	The	event	will	include	a

reference	to	the	target	element—in	this	case,	an	AnchorElement	whose	text
value	you	append	to	the	end	of	your	InputElement	field.

Your	screen	should	now	resemble	Figure	14.1.

FIGURE	14.1	An	input	field	populated	with	event	target	data

Querying	the	DOM
Now	that	you	have	a	basic	understanding	of	how	the	components	work	together,	let’s	take
a	look	at	some	of	the	core	concepts	of	working	with	the	HTML	and	the	DOM.

DOM
The	Document	Object	Model	(DOM)	is	the	live	representation	of	your	page.	The	DOM
exposes	the	interface	that	allows	you	to	update	the	content	of	your	page.	At	its	core,	the
DOM	is	a	tree	structure	of	objects,	with	the	top-most	element	being	the	document	object.
Each	object	is	a	node	that	can	have	exactly	one	or	no	parent	and	many	children.

HTML
HTML	is	a	markup	language	used	to	define	a	tree	structure	that	is	initially	parsed	into	the
DOM.	The	structure	of	each	tag	in	the	markup	language	defines	the	state	of	the	visual
representation	of	the	page	itself.	Each	tag	pair	is	considered	an	element	in	the	structure
and	derives	its	functionality	from	its	semantic	value.

Tags	and	Attributes
Each	element	consists	of	a	pair	of	opening	and	closings	tags	represented	by	a	pair	of	angle
brackets	that	delineate	the	start	and	end	of	an	element.	Any	characters	between	the	angle
brackets	are	considered	to	be	the	content	of	the	tag.	If	the	content	is	in	the	form	of	a
name–value	pair,	it	is	referred	to	as	an	attribute.
Click	here	to	view	code	image

<tag	attribute=“value”>	//opening	tag	with	an	attribute
		<child/>	//self	closing	tag	named	child
</tag>	//closing	tag

The	second	tag	contains	a	leading	forward	slash;	this	slash	declares	the	previous	tag
pair	to	be	closed.	Any	tags	between	the	opening	tag	and	the	closing	tag	are	considered	to
be	children.

Some	elements	cannot	contain	children	and	are	closed	using	a	self-closing	tag.	Self-
closing	tags	are	indicated	with	a	slash	prefixing	the	closing	angle	bracket.

Selectors
The	HTML5	specification	has	finally	provided	a	standard	cross-browser	approach	for
querying	elements	from	the	DOM.	This	query	syntax	enables	us	to	retrieve	elements	based
on	IDs,	classes,	elements,	or	custom	attribute	names.	All	queries	use	a	string	value	that
queries	elements	based	on	the	hierarchy	in	which	the	selectors	are	located	on	the	tree.

Because	the	query	syntax	is	traversing	only	the	DOM,	you	can	use	the	built-in	Chrome
tools	to	test	your	syntax.	You’ll	use	the	default	selector	$()	that	ships	in	the	Chrome
console.

1.	From	the	IDEA	project	panel,	open	the	web	folder.

2.	Open	index.html.

3.	Insert	the	following	code	under	your	<input>	element:
Click	here	to	view	code	image

<!—	Example	—>

		Seat	F14
		Seat	F15

4.	Control-click	index.html,	select	Open	in	Browser,	and	then	select	Dartium.

5.	In	the	Dartium	top	menu,	choose	View	>	Developer	>	Developer	Tools.

6.	Select	the	Console	tab.

Let’s	take	a	look	at	how	selectors	allow	you	to	traverse	the	DOM	and	acquire	the
desired	instances	of	elements.

Elements

An	element	is	defined	by	the	text	immediately	following	the	opening	angle	bracket,	such
as	.	Each	tag	is	required	to	have	at	least	one	attribute.	The	name	attribute	is	not
always	a	named	valued	pair.

The	query	syntax	for	both	elements	of	a	type	from	the	example	in	step	3	is:
Click	here	to	view	code	image

$(“span”)	//returns	three	spans

The	query	syntax	for	only	elements	that	are	children	of	type	span	from	the	above
example	is:
Click	here	to	view	code	image

$(“span	span”)	//returns	only	the	first	nested	span

IDs

An	ID	is	an	attribute	designated	by	a	named	value	pair	of	id="value"	syntax	inside	an
enclosing	tag.	A	tag	can	have	only	a	single	ID	at	a	time.	All	IDs	are	intended	to	be	unique
instances	on	the	DOM	and	should	not	be	duplicated.

The	query	syntax	to	return	the	matching	ID	from	the	example	is:
Click	here	to	view	code	image

$(“#rowA”)	//returns	only	the	span	with	Seat	F14

Classes

A	class	is	an	attribute	designated	by	named	value	pair	of	class="nameA"	syntax	inside
an	enclosing	tag.	A	tag	can	have	multiple	classes,	and	a	class	can	exist	on	multiple
elements	on	the	DOM.	Its	query	symbol	is	the	named	value	prefixed	by	a	dot.

The	query	syntax	for	an	element	of	class	economy	from	the	example	is:
Click	here	to	view	code	image

$(“.economy”)		//returns	three	spans

The	query	syntax	for	an	element	of	class	economy	within	an	element	of	the	class
economy	is:
Click	here	to	view	code	image

$(“.economy	.economy”)	//returns	a	nested	span	with	Seat	Information

The	query	syntax	for	any	element	that	is	both	of	class	economy	and	class	reclined	is:
Click	here	to	view	code	image

$(“.economy.reclined”)	//returns	the	span	with	seat	F14

Custom	attributes

Custom	attributes	exist	within	many	front-end	frameworks	and	allow	you	to	apply
functionality	to	a	specific	element	or	group	of	elements	by	using	a	unique	named	attribute.

Where	ticket	is	the	custom	named	attribute,	the	query	syntax	for	an	element

containing	an	attribute	named	ticket	is:
Click	here	to	view	code	image

$(“[ticket]”)	//returns	the	first	match	with	Seat	F14

The	query	syntax	for	an	element	containing	an	attribute	name	of	ticket	with	an
assigned	value	of	paid	is:
Click	here	to	view	code	image

$(“[ticket=‘unpaid’]”)	//returns	the	div	with	Seat	F15

This	is	only	a	cursory	overview	of	how	selectors	work.	These	selectors	are	used	not
only	by	Dart’s	querySelector,	but	also	by	the	DOM,	CSS,	jQuery,	and	many	other
front-end	technologies.	It’s	important	that	you	master	them,	but	this	starting	point	should
suffice	for	the	remainder	of	the	book.

Building	the	Landing	Page
Now	that	you	have	a	decent	understanding	of	how	to	work	with	HTML	and	the	DOM,
let’s	take	a	look	at	building	the	functionality	for	the	landing	page.

Create	the	Box	Template
The	landing	page	will	display	three	boxes	advertising	discounted	travel	deals.	Each	box
will	contain	the	following	pieces	of	data:

	Departure	city

	Arrival	city

	Arrival	date

	City	description

	Ticket	price

You	need	to	update	your	template	to	match	the	specifications	to	display	the	three	boxes
and	the	fields.

1.	Inside	the	web/index.html	file,	replace	the	<body>	tag	with	code	in	Example
14.5:

EXAMPLE	14.5
Click	here	to	view	code	image

<body>
<div	class=“container”>
		<h1>Great	Deals</h1>
		<div	id=“deals”	class=“row”>
				<!—	Target	—>
		</div>
</div>

<template>

		<!—	This	is	a	deal	box	—>
		<div	class=“col-xs-4”>
				<div	class=“deal-box	well	clearfix”>
						

						<h3>City</h3>
						<h4>Date</h4>
						<p>Descriptions</p>
						<h5>Price</h5>
				</div>
		</div>
</template>

<script	type=“application/dart”	src=“main.dart”></script>
<script	src=“packages/browser/dart.js”></script>
</body>

You	now	have	two	key	concepts	in	your	index	page;	let’s	take	a	look:

	deals:	You	created	a	div	with	a	unique	ID.	This	will	be	the	insertion	point	at
which	you’ll	append	all	additional	element	nodes	to	the	tree.

	template:	The	HTML5	specification	introduced	a	new	type	of	element	named
template.	This	element	is	designed	for	client-side	frameworks	to	clone	and	re-use.
When	the	browser	loads	HTML	from	index.html,	the	browser	won’t	parse	the
content	inside	the	template	or	fetch	any	of	its	dependencies.

The	content	inside	the	template	is	rendered	and	acted	upon	only	when	a	client-
side	script	appends	the	template	element	to	the	DOM;	at	load	time,	all	its	internal
content	is	inert.

You’ll	be	grabbing	the	template	element	once.	For	each	deal	that	marketing	is
running,	you’ll	then	create	a	clone	and	dynamically	populate	its	properties.	Let’s	go
ahead	and	start	coding.

2.	Open	the	web/main.dart	file,	and	modify	it	to	match	the	code	in	Example	14.6:

EXAMPLE	14.6
Click	here	to	view	code	image

import	‘dart:html’;
import	‘dart:async’;
import	‘package:json_object/json_object.dart’;

DocumentFragment	_frag;
Element	_view;

void	main()	{
		//Select	target	where	all	deals	will	be	added
		_view	=	querySelector(‘#deals’);

		//Parse	Box	Template	And	Store	Locally
		_frag	=	(querySelector(‘template’)	as	TemplateElement).content;
}

Let’s	take	a	look	at	what	you	just	did:

	Element:	You	created	a	variable	named	_view	with	a	class	type	of	Element.
You	used	the	querySelector()	to	assign	the	result	of	the	response	of
'#deals'.	This	is	the	same	deals	div	mentioned	earlier.	It	will	be	the	container
element	for	all	our	deal	boxes.

	DocumentFragment:	You	created	a	variable	named	_frag	of	type

DocumentFragment.	DocumentFragment	is	a	unique	kind	of	element
reserved	for	template	elements.	These	elements	have	no	parent	node	yet	and	are
not	part	of	the	DOM.

Now	that	you	have	your	template	loaded	into	memory,	let’s	create	a	class	that	will
handle	assigning	the	elements	to	typed	field	names.

3.	Add	the	code	from	Example	14.7	to	the	bottom	of	the	web/main.dart	file:

EXAMPLE	14.7
Click	here	to	view	code	image

class	Deal	{
		HeadingElement	city;
		ParagraphElement	description;
		HeadingElement	date;
		HeadingElement	price;
		ImageElement	image;
		AnchorElement	button;
		DivElement	element;

		Deal()	{
				element	=	new	Element.div();
				element.nodes.add(_frag.clone(true));

				city	=	element.querySelector(‘h3’);
				date	=	element.querySelector(‘h4’);
				price	=	element.querySelector(‘h5’);
				image	=	element.querySelector(‘img’);
				button	=	element.querySelector(‘a’);
				description	=	element.querySelector(‘p’);
		}
}

Let’s	take	a	look	at	what	you	just	did:

	Deal	is	a	class	that	has	field	members	mirroring	the	data	structure	that	was
outlined	earlier	in	the	chapter.	It	leverages	querySelector()	to	assign	the
correct	elements	to	the	field	members.	In	this	example,	the	hierarchy	is	pretty
straightforward,	but	if	the	template’s	structure	were	more	complex,	it	would	serve
as	a	great	way	to	encapsulate	the	view	logic.

	element	is	the	actual	element	that	gets	added	to	the	DOM.	You	instantiated	a
new	DivElement,	cloned	the	_frag	template	from	memory,	and	added	the
cloned	nodes	to	the	element.	The	element	has	not	been	added	to	the	DOM	yet
because	it	exists	only	in	memory.

Programmatically	Instantiate	Elements
You	may	have	noticed	that	you	don’t	have	an	anchor	element	included	in	the	template.
Using	Dart,	you	can	dynamically	create	any	element	and	insert	it	as	a	child.

Go	ahead	and	append	the	code	from	Example	14.8	to	the	end	of	your	Deal()
constructor	method:

EXAMPLE	14.8

Click	here	to	view	code	image
//dynamically	add	an	Anchor	Element
button	=	new	Element.a();
button.setAttribute(‘class’,	‘btn	btn-info’);
button.text	=	“Buy”;
element.querySelector(‘.deal-box’).children.add(button);

You	now	have	a	class	that	when	instantiated	will	create	a	new	instance	that	can	be
appended	to	the	DOM.

Render	the	Deals	Data
You’re	going	to	pull	your	deals	data	from	an	external	JSON	file.	Again,	the	goal	of	this
feature	is	to	allow	the	marketing	content	to	exist	outside	the	primary	application.	To
support	this,	you’re	simply	going	to	use	the	HttpRequest	class	from	the	dart:html
library	to	load	your	JSON	file.

1.	Enter	the	code	from	Example	14.9	into	the	web/deals.json	file:

EXAMPLE	14.9
Click	here	to	view	code	image

{
		“deals”:	[
				{
						“city_departure”	:	“SAN”,
						“city_arrival”	:	“SFO”,
						“price”:	“$99.00”,
						“description”:	“King	Of	Sour	Dough!”,
						“date”:	“10/29/2015”,
						“image”:	“http://bit.ly/wiki_sfo”,
						“url”:	“/#/picker/SAN/SFO/2015-10-29/”
				},
				{
						“city_departure”	:	“SFO”,
						“city_arrival”	:	“LAX”,
						“price”:	“$79.00”,
						“description”:	“Surf	&	Sand!”,
						“date”:	“10/30/2015”,
						“image”:	“http://bit.ly/wiki_lax”,
						“url”:	“/#/picker/SFO/LAX/2015-10-30/”
				},
				{
						“city_departure”	:	“SAN”,
						“city_arrival”	:	“SAC”,
						“price”:	“$109.00”,
						“description”:	“Visit	The	State	Capital!”,
						“date”:	“10/31/2015”,
						“image”:	“http://bit.ly/wiki_sac”,
						“url”:	“/#/picker/SAN/SMF/2015-10-31/”
				}
]
}

Now	you	need	to	add	the	code	to	parse	the	JSON	data	and	populate	the	new
elements.

2.	Add	the	code	from	Example	14.10	to	your	web/main.dart	file:

EXAMPLE	14.10
Click	here	to	view	code	image

Future	render()	async	{
		String	result	=	await	HttpRequest.getString(‘deals.json’);
		JsonObject	response	=	new	JsonObject.fromJsonString(result);
		List	dealVOs	=	response.deals;

		dealVOs.forEach((dealVO)	{
				Deal	aDeal	=	new	Deal();
				aDeal.city.text	=	‘${dealVO.city_departure}	to	${dealVO.city_arrival}’;
				aDeal.date.text	=	dealVO.date;
				aDeal.price.text	=	dealVO.price;
				aDeal.description.text	=	dealVO.description;
				aDeal.image.src	=	dealVO.image;
				aDeal.button.href	=	dealVO.url;
				_view.children.add(aDeal.element);
		});
}

Let’s	take	a	look	at	what	you	just	did:

	result:	You	invoked	an	asynchronous	HttpRequest	using	the	await
keyword	to	mimic	synchronous	behavior.	HttpRequest	is	part	of	the
dart:html	library	and	allows	the	client	to	load	external	files	or	data.	The
get()	method	makes	a	call	to	the	local	deals.json	file	to	acquire	the	string
result.

	dealVOs:	You	do	not	have	Dartson	in	place	on	the	marketing	page,	so	you’re
using	the	JsonObject	class	to	expose	the	json	properties	using	dot	syntax.
You	accessed	the	array	of	deals	and	iterated	over	them.

	Warning

When	working	with	JsonObject,	you	don’t	have	strong	typing,	so	a	single
typo	will	cause	an	error	on	the	page.

	aDeal:	You	instantiated	an	instance	of	the	Deal	class	from	earlier	in	the	chapter.
The	Deal	class	will	handle	all	the	cloning	and	mapping	of	the	template	fragment.
It	will	finally	expose	a	new	instance	on	field	adeal.element.

	_view:	This	is	the	container	for	all	your	deals.	Once	you	instantiated	a	new
element	and	mapped	all	the	properties	to	the	element,	you	added	your	new
element	to	its	list	of	existing	children.

Render	the	View
So	far,	you	have	kept	your	markup	pretty	lean	and	are	offloading	a	lot	of	the	styling	to
your	SCSS	file.	Let’s	continue	to	keep	it	neat.

1.	Append	the	following	to	the	end	of	the	web/styles/main.scss	file:
Click	here	to	view	code	image

.deal-box	{
		h3	{	margin-top:	0;	}
		img	{	display:	block;	width:	100px;	height:	66px;	float:	right;	}
		.btn	{	margin-top:	-45px;	float:	right;	}
}

2.	Append	render()	to	the	end	of	your	main()	function.	If	you	reload	your	index
page	inside	Dartium,	you	should	see	a	page	similar	to	Figure	14.2	in	your	browser.

FIGURE	14.2	The	flight	deals	page	rendered	with	graphics

This	is	the	first	step	in	building	out	your	ticketing	application.	If	you	click	the	Buy
buttons,	you’ll	notice	that	they	take	you	to	a	404	page.	You	have	yet	to	build	the	rest	of	the
application.	These	should	function	once	the	project	is	complete.

Summary
Congratulations,	you’ve	just	finished	building	your	first	HTML	page	in	Dart.	You	should
now	have	a	solid	understanding	of	how	Dart	interacts	with	the	DOM	and	of	how	the
browser	parses	HTML	to	the	DOM.	The	standalone	dart:html	library	is	extremely
powerful	and	is	the	foundation	for	many	other	high-level	client-side	frameworks.	You’ll
see	many	of	the	concepts	used	here	in	the	remaining	chapters	as	we	review	Angular	2
Dart.

You	Should	Now	Know
	How	to	listen	to	stream	events	from	a	clicked	element

	How	to	get	properties	off	of	a	clicked	element

	How	to	apply	a	Bootstrap	theme

	How	to	configure	an	SCSS	transformer

	How	to	retrieve	an	element	using	querySelector()

	How	to	assign	an	element	to	a	subclass	of	its	element	type

	What	the	DOM	is	and	how	it	relates	to	HTML

	What	a	tag	is

	What	an	attribute	is

	Common	selectors	for	classes,	IDs,	elements,	and	attributes

	How	to	use	the	dart:html	version	of	HttpRequest

	Why	you	should	use	a	template	element

	Why	a	template	element	doesn’t	show	at	first

	How	to	dynamically	create	an	HTML	element

Chapter	15.	Introduction	to	Angular	2	Dart

Now	that	you	have	a	good	understanding	of	how	Dart,	HTML,	and	the	DOM	all	work
together,	you	can	start	to	dive	into	Angular	2	and	learn	about	the	architecture	that	will
eventually	back	the	client	portion	of	your	Just-In-Time	Airlines	ticketing	application.

Angular	2	is	the	second	edition	of	the	popular	Angular	framework	from	Google.	It	was
developed	to	give	client	developers	a	consistent	approach	to	building	single	page
applications	(SPAs)	in	the	browser.	Traditional	web	applications	have	centered	on	the
request	and	response	model	to	navigate	between	different	pages.	Single	page	applications
forgo	the	full-page	reload	and	instead	use	JavaScript	to	make	asynchronous	requests	for
data	and	then	modify	selected	portions	of	the	DOM	to	reflect	the	requested	change.	This
allows	web	application	developers	to	provide	an	experience	on	par	with	that	of	a	desktop
or	native	mobile	application.

The	History	of	AngularJS	and	Angular	Dart
The	initial	goals	of	the	Angular	project	were	focused	on	the	taming	of	forms	and	on	form
validation	in	the	browser.	As	the	project	grew,	the	Angular	framework	introduced	many
concepts	that	web	developers	found	useful	for	structuring	their	entire	application	code.
The	key	features	of	the	Angular	framework	are	its	implementation	of	two-way	data
binding,	dependency	injection,	module	pattern,	encapsulation	strategies,	and	directives	for
DOM	modifications.	This	all-encompassing	approach	to	browser	application	engineering
proved	to	be	popular	with	programmers	accustomed	to	the	fragmented	JavaScript
landscape	with	its	competing	loading	patterns,	numerous	DOM-traversal	mechanisms,	and
overall	inconsistency	between	development	approaches.

The	Angular	1	project	was	developed	using	JavaScript	paired	with	a	later	introduction
of	Angular	Dart.	The	Angular	Dart	project	attempted	to	mirror	the	core	aspects	of	the
JavaScript	implementation	and	did	so	while	also	introducing	many	alternative	solutions	to
the	same	domain	problems.

Right	around	the	time	that	Angular	Dart	was	hitting	version	1.0,	the	folks	inside	Google
started	to	look	at	the	long-term	roadmap	for	the	Angular	project.	Although	developers	had
flocked	to	the	V1	Angular	projects	for	both	languages,	it	was	becoming	apparent	that	there
were	core	architectural	challenges	inside	the	V1	approach	of	the	JavaScript
implementation.	In	comparison,	the	Angular	Dart	project	had	been	built	with	many	of	the
learnings	from	its	JavaScript	predecessor.	When	Google	announced	its	intentions	for
version	2.0	of	its	popular	framework,	it	also	announced	that	the	migration	strategy	would
be	a	rewrite	of	both	libraries.

Buried	behind	the	headlines	of	breaking	changes	across	the	JavaScript	ecosystem	was
the	subtle	realization	that	many	of	the	approaches	in	the	Angular	Dart	project	were	going
to	be	ported	to	the	JavaScript	library	and	formalized	in	version	2.0	of	the	Angular
framework.	Although	both	projects	will	see	a	rewrite,	Angular	2	will	look	very	similar	to
any	developer	who	had	the	opportunity	to	work	with	Angular	Dart	V1.

TypeScript
Due	to	the	size	and	aspirations	of	the	project,	the	Angular	team	wanted	to	work	with	an
optionally	typed	language	to	ensure	the	best	available	tooling.	To	the	surprise	of	many,
Google	chose	to	use	Microsoft’s	TypeScript	as	the	core	development	language.	Google
announced	that	TypeScript	would	allow	it	to	transpile	its	code	out	to	both	JavaScript	and
Dart.	This	caught	many	folks	off	guard,	with	some	developers	concerned	that	they	would
be	required	to	work	with	TypeScript	as	the	base	language,	and	others	shocked	that	Google
didn’t	use	Dart.

The	reality	of	the	situation	is	rather	nuanced	and	takes	an	understanding	of	the	end
requirements	of	the	library.	Although	I’m	sure	Google	would	have	loved	to	champion	the
usage	of	Dart	on	such	a	high-visibility	project,	the	reality	is	that	application	development
and	library	development	are	two	very	different	things.

Dart	excels	at	providing	a	unified	development	environment	for	building	complex	web
applications.	A	key	part	of	that	strategy	is	the	output	of	tree-shaken	optimized	JavaScript
code.	Although	that	output	style	is	great	for	building	performant	web	applications,	it’s
horrible	for	distributing	a	library	that	is	intended	to	be	used	in	a	different	language	and,
more	importantly,	that	is	intended	to	be	read	by	developers.

TypeScript	is	an	optionally	typed	superset	of	JavaScript.	It’s	intended	to	compile	out	to
human-readable	code	and	is	closely	tied	to	the	ECMAScript	Next	roadmap.	With
TypeScript,	Google	is	able	to	write	the	library	once.	It	can	then	run	the	code	through	a
TypeScript	transpiler	that	targets	Dart	and	JavaScript	with	an	output	of	human-readable
code.	The	result	of	this	choice	is	a	V2	strategy	for	all	three	languages.	Developers	can
choose	what	works	best	for	them.	We’ll	be	using	the	Angular2	Dart	library	in	this	book.

	Note

One	interesting	point	of	discussion	is	the	active	development	of	the	Dart	Dev
Compiler	(DDC)	that	is	slated	for	release	in	2016.	I	talked	about	the	DDC
back	in	Chapter	1.	The	DDC	will	be	Dart’s	attempt	at	producing	human-
readable	JavaScript.	This	allows	library	maintainers	to	write,	test,	and	debug
with	all	the	great	tooling	for	Dart	and	then	deliver	readable	libraries	in
JavaScript.

Developer	Preview	Warning
At	the	time	of	this	writing,	Angular	2	is	in	what’s	referred	to	as	a	developer	preview	state
of	development.	This	means	that	APIs	are	in	flux,	and	some	concepts	might	change.	After
researching	the	ecosystem,	I’m	confident	that	the	core	theories	covered	in	this	book	will
be	useful	when	Angular	2	enters	Beta	and	finally	V2.	That	being	said,	the	great	thing
about	using	Dart	and	Pub	is	that	you	can	lock	your	environment	into	a	point	and	time
using	strict	library	versioning.

I’ve	been	working	extensively	on	ensuring	that	the	components	featured	in	the

following	sections	are	ready	to	be	introduced	and	are	relatively	bug	free.	I’ll	be	posting
updates	on	Github	for	future	major	milestones.

Angular	2	Overview
In	the	following	sections,	I’ll	be	taking	a	look	at	the	various	concepts	that	make	up	the
Angular	2	framework.	You	will	set	up	an	isolated	project	to	test	some	of	the	foundation
concepts	inside	of	Angular.	You’ll	build	a	simple	application	that	tracks	the	number	of
mouse	clicks	on	different	elements.

Let’s	start	by	setting	up	the	temporary	project	for	your	new	Angular	2	Clicker
application.

1.	Navigate	to	the	~/projects/	folder	on	your	operating	system.

2.	Create	a	new	folder	named	clicker.

3.	Open	the	IDEA	Editor.

4.	Select	Open	from	either	the	splash	screen	or	the	File	menu.

5.	In	the	dialog,	navigate	to	your	~/projects/	folder.

6.	Highlight	the	clicker	folder,	and	click	Choose	to	select	it.

This	imports	your	clicker	project	folder	into	IDEA.	Next,	you’ll	create	some
folders	inside	your	clicker	project	folder.

7.	On	the	left	side	of	the	editor	in	the	IDE’s	Project	panel,	Control-click	the	clicker
folder,	and	choose	New	>	File.	Name	the	new	file	pubspec.yaml.

8.	On	the	left	side	of	the	editor	in	the	IDE’s	Project	panel,	Control-click	the	clicker
folder,	and	choose	New	>	Directory.	Name	the	new	directory	web.

9.	Control-click	the	web	folder,	and	choose	New	>	File.	Name	the	new	file
index.html.

10.	Control-click	the	web	folder,	and	choose	New	>	File.	Name	the	new	file
main.dart.

11.	Control-click	the	web	folder,	and	choose	New	>	File.	Name	the	new	file
components.dart.

12.	With	pubspec.yaml	still	open,	enter	the	following:
Click	here	to	view	code	image

name:	‘clicker’
version:	0.0.1
description:	Track	all	the	clickz!
author:	Jack	Murphy	jack@rightisleft.com
homepage:	https://www.rightisleft.com
environment:
		sdk:	‘>=1.0.0	<2.0.0’
dependencies:
#Client	Dependencies
		bootjack:	“0.6.5”
		browser:	“>=0.10.0+2	<0.11.0”

		sass:	“0.4.2”
		angular2:	“2.0.0-alpha.45”
transformers:
-	sass
-	angular2:
				entry_points:
								-	web/main.dart
-	$dart2js:
				minify:	true
				commandLineOptions:
				-	—dump-info
				-	—show-package-warnings
				-	—trust-type-annotations
				-	—trust-primitives

13.	From	the	Pub	action	bar	at	the	top	of	the	screen,	click	Get	Dependencies:
Resolving	dependencies…
Got	dependencies!

Components
An	Angular	application	is	made	up	of	a	parent	component	and	a	tree	of	its	child
components.	Each	component	is	intended	to	encapsulate	a	logical	grouping	of
functionality	that	contains	a	component	class,	a	view	decorator,	and	a	component
decorator.

Components	enable	developers	to	define	new	HTML	elements	and	their	numerous
properties,	ranging	from	DOM	structures	and	events	to	data	assignment,	data	retrieval,	and
business	logic.	Let’s	implement	two	example	components	and	add	them	to	a	page.	I’ll
review	what	they	are	made	of	after	they	are	in	place.

1.	Modify	components.dart	to	match	the	code	in	Example	15.1:

EXAMPLE	15.1
Click	here	to	view	code	image

import	‘package:angular2/angular2.dart’;

@Component(
				selector:	‘parent’
)
@View(
				directives:	const[AChild],
				template:
				”’
				<h2>Parent	Count	{{	count	}}</h2>
				<a-child	[name]=“‘Player	A’”	(yell)=“heard()”></a-child>
				<a-child	[name]=“‘Player	B’”	(yell)=“heard()”></a-child>
				”’
)
class	Parent	{
		int	count	=	0;

		void	heard()	{
				print(‘—heard—’);
				count++;
		}
}

@Component(
				selector:	‘a-child’,
				inputs:	const	[‘name’],
				outputs:	const[‘yell’]
)
@View(
				directives:	const[NgIf],
				template:
				”’
				<div	class=‘row	col-xs-6’>
				<h1>Name:	{{	name	}}</h1>
				<h3>Clicked:	{{	count	}}</h3>
				Talk	To	Self
				Talk	To	Parent
					Talk	To	Self
&	Parent
				</div>
				”’
)
class	AChild	{
		int	count	=	0;
		String	name;
		EventEmitter	yell	=	new	EventEmitter();

		AChild();

		void	talkSelf()	{
				print(‘Self	Contained’);
				count++;
		}

		void	talkParent()	{
				print(‘parent’);
				yell.add(“MOM!!!!!”);
		}
}

2.	Modify	index.html	to	match	the	code	in	Example	15.2:

EXAMPLE	15.2
Click	here	to	view	code	image

<!DOCTYPE	html>
<html>
<head>
		<meta	name=“viewport”	content=“width=device-width,	initial-scale=1.0”>
		<title>Clicker	Application</title>
		<link	rel=“stylesheet”	href=“packages/bootjack/css/bootstrap.min.css”>
</head>
<body>

<div	class=“container”>
		<parent></parent>
</div>

<script	type=“application/dart”	src=“main.dart”></script>
<script	src=“packages/browser/dart.js”></script>
</body>
</html>

3.	Modify	main.dart	to	match	the	code	in	Example	15.3:

EXAMPLE	15.3
Click	here	to	view	code	image

import	‘package:angular2/angular2.dart’;
import	‘package:angular2/bootstrap.dart’;
import	‘package:angular2/router.dart’;
import	‘components.dart’;

void	main()	{
		var	appComponent	=	Parent;
		var	inejectableBindings	=	[ROUTER_BINDINGS,
bind(APP_BASE_HREF).toValue(‘/’),
		bind(LocationStrategy).toClass(HashLocationStrategy)];

		bootstrap(appComponent,	inejectableBindings);
}

4.	Run	your	application	by	right-clicking	index.html	and	selecting	Open	In
Browser	>	Dartium.

Upon	launch,	you	should	see	a	screen	similar	to	Figure	15.1	in	your	browser:

	If	you	click	the	Talk	To	Self	button	for	Player	A	or	Player	B,	you’ll	see	the	child’s
clicked	count	increase.

	If	you	click	the	Talk	To	Parent	button	for	Player	A	or	Player	B,	you’ll	see	the
parent	count	increase.

	If	you	click	the	Talk	To	Self	&	Parent	button	for	Player	A	or	Player	B,	you’ll	see
the	corresponding	child’s	clicked	count	and	the	parent	count	increase.

FIGURE	15.1	The	default	browser	state	for	the	Clicker	application

You’ve	instantiated	three	components:	one	Parent	component	and	two	instances	of
the	AChild	component.	I’ll	break	down	the	parts	of	this	very	basic	Angular	application
over	the	next	few	sections.	Afterwards,	you’ll	get	back	to	building	your	Just-In-Time
Airlines	ticketing	application.

Component	decorators

Components	are	structures	that	enable	developers	to	create	custom	HTML	elements	and	to
instantiate	an	extendable	class	instance	that	controls	the	element’s	business	logic.

A	component	decorator	is	where	you	define	the	new	tag,	declare	the	required	interface
for	the	tag,	and	bind	attributes	on	the	tag	to	component	classes’	instance	variables.

Metadata	Annotations

The	Dart	language	has	built-in	support	for	metadata	annotations.	Metadata
annotations	allow	a	user	to	assign	values	to	the	compile-time	constants	of	a
program’s	structure	(library	fields,	class	fields,	and	so	on).	Angular	makes	heavy
use	of	these	to	ensure	that	corresponding	application	configuration	code	is	available
immediately	at	run	time.	This	helps	the	framework	avoid	race	conditions	between
when	a	user	provides	the	configuration	information	and	when	Angular	tries	to
modify	the	asset.	Metadata	annotations	must	point	to	compile-time	constants
variables	or	compile-time	constants	constructors.

Click	here	to	view	code	image
https://www.dartlang.org/docs/dart-up-and-running/ch02.html#metadata

Component	decorators	use	Dart’s	annotation	syntax	to	allow	you	to	declare	the	fields	on
a	ComponentMetadata	class.	Let’s	take	a	look	at	some	of	those	fields:

	Selector:	Declares	the	named	string	value	of	the	new	tag.	When	an	element	with	the
assigned	name	is	found	on	the	DOM,	Angular	will	instantiate	the	component.
@Component(
		selector:	‘a-child’,
		…
)

	Inputs:	A	list	of	field	names	that	are	expected	as	both	an	attribute	on	a	tag	and	a
field	on	the	component	object.
@Component(
		…
		inputs:	const	[‘name’],
		…
)

We’ll	look	at	these	in	depth	in	the	section	“Data	Binding.”	For	now,	let’s	take	a	look	at
how	an	input	value	is	implemented	across	the	various	consumers:

	Field	Instance:	When	a	value	is	included	in	the	inputs	list,	a	variable	of	the	same
name	must	also	be	declared	on	the	component	class.	The	following	is	an	example
from	the	AChild	class:

Click	here	to	view	code	image
//input	value	‘name;’
//is	also	field	instance	on	class	AChild
class	AChild	{
		String	name;
		…
}

	Getter:	Fields	will	be	retrieved	inside	the	template	using	the	double	curly	brace
notation.	The	template	will	reflect	the	value	of	the	field	instance	from	the
component	class.	The	following	is	an	example	from	the	AChild	view	template:

Click	here	to	view	code	image
//will	show	value	from	corresponding	Field	Instance	of	‘name’
<h1>Name:	{{	name	}}</h1>

	Setters:	Properties	bind	the	named	attribute	assignment	on	the	component	selector
tag	to	the	field	instance	using	square	bracket	notation.	The	following	is	an	example
of	setting	a	value	on	the	AChild	tag	from	the	view	template	on	the	component
Parent:

Click	here	to	view	code	image
//will	assign	an	expression	value	to	a	field	declared	as	‘name’
//‘Player	B’	value	is	assigned	to	the	component	class	instance	‘name’
				<a-child	[name]=“‘Player	B’”	…	“></a-child>

	Outputs:	A	list	of	field	name	values	that	expose	an	available	event	name	on	the
element	and	associate	the	name	with	a	matching	EventEmitter	field	instance	on
the	component	class	object.
@Component(
		…
		outputs:	const[‘yell’]
)

Let’s	take	a	look	at	how	an	output	value	is	then	implemented	across	various	consumers:

	Field	Instance:	A	value	that’s	included	in	the	outputs	list	must	also	be	declared	on
the	component	class	using	standard	Dart	variable	declaration	and	instantiation
syntax.	The	field	instance	will	be	an	instance	of	EventEmitter.	The
EventEmitter	is	a	wrapper	for	the	Dart	Stream	class	and	behaves	similarly.	The
following	is	an	example	from	the	AChild	component:

Click	here	to	view	code	image
//	variable	name	matches	the	List	value
class	AChild	{
		…
		EventEmitter	yell	=	new	EventEmitter();
		…
}

	Event	Trigger:	When	you	want	to	trigger	an	output	event	to	be	heard	by	a	parent
component,	you	call	the	add()	method	on	the	EventEmitter	instance.	The
following	is	an	example	from	the	AChild	component	where	you	explicitly	trigger	a
custom	event	from	within	the	component:

void	talkParent()	{
				..
				yell.add(‘MOM!!!!!’);
		}

	Event	Listener:	When	you	want	to	listen	to	a	custom	output	event	from	a	child
component,	you	use	parentheses	around	the	output	field	name	and	provide	an
expression	to	be	evaluated	on	any	occurrence.	The	following	is	an	example	of

listening	for	a	yell	output	event	from	the	AChild	component	inside	the	Parent
template.

Click	here	to	view	code	image
//	yell	is	a	named	variable	instance	on	the	Component	class
//	heard()	exists	in	the	parent	component	scope
//	heard()	will	be	invoked	on	any	event	from	yell
<a-child	…	(yell)=“heard()”></a-child>

View	decorators

In	a	second	usage	of	annotations,	Angular	expects	a	view	annotation	to	help	decorate	the
view	aspects	of	the	component.	The	View	decorator	is	responsible	for	defining	aspects	of
the	component	that	include	the	HTML,	CSS,	and	DOM	traversal	and	modifications.

	template	and	templateUrl:	The	ViewMetadata	class	accepts	either	a
string	containing	raw	HTML	or	a	string	containing	a	URL	pointing	to	an	HTML
template.	The	following	is	an	example	of	an	inline	string	template	using	Dart’s
multiline	string	syntax:

Click	here	to	view	code	image
@View(
		…
		template:
				”’
				<div	class=‘row	col-xs-6’>
				<h1>Name:	{{	name	}}</h1>
				<h3>Clicked:	{{	count	}}</h3>
				Talk	To	Self
				Talk	To	Parent
				
						Talk	To	Self	&	Parent
				
				</div>
				”’
		…
)

	styles	and	styleUrl:	The	ViewMetadata	class	accepts	either	a	string
containing	raw	CSS	or	a	string	containing	a	URL	pointing	to	a	CSS	file.

Click	here	to	view	code	image
@View(
		…
		styleUrl:	“package:clicker/path/to/style/file.css”
		…
)

	encapsulation:	This	is	an	object	that	accepts	the	assignment	of	an	enum	of	the
same	name.	The	available	options	trigger	either	the	enabling	or	the	disabling	of	the
Shadow	DOM.	If	enabled,	the	component	will	be	rendered	in	its	own	encapsulated
Shadow	DOM	element,	with	its	own	scoped	CSS	and	element	tree.	The	following
example	tells	Angular	not	to	use	the	Shadow	DOM	for	a	View	template:

Click	here	to	view	code	image
@View(
		…

		encapsulation:	ViewEncapsulation.None,
		…
)

	directives:	The	ViewMetadata	class	accepts	a	list	of	directive	names	that	get
exposed	to	the	template’s	scope.	A	directive	is	a	class	that	exposes	logic	that
modifies	the	DOM	and	modifies	the	variable	scope	within	the	selected	element	tree.
To	enable	a	directive	to	be	used	in	a	specific	view,	the	directive	itself	must	be
injected	in	the	view.	The	following	code	exposes	the	directives	NgIf	and
NgSwitch	to	the	template	defined	within	the	same	view:

Click	here	to	view	code	image
@View(
		//exposes	2	directives	to	the	template
		directives:	const	[NgIf,	NgSwitch],
		…
)

	Note

NgIf	and	NgSwitch	are	covered	later	in	the	chapter.

Component	class

The	Component	class	is	where	you	implement	the	business	logic	for	the	component.	If
both	the	view	decorator	and	the	component	decorator	are	in	place,	the	component	will	be	a
Dart	class	of	the	naming	of	your	choice.	Once	declared,	it	must	fulfill	the	contract
requirements	from	its	decorators.

Templates	from	the	view	decorator	will	operate	in	the	same	scope	as	your	Component
class	instance,	exposing	both	its	variables	and	its	methods	from	the	instance.

Inputs	defined	on	the	component	decorator	are	required	fields	on	the	component	class.
The	following	is	a	Component	class	example	from	the	AChild	component:
Click	here	to	view	code	image

…
class	AChild	{
		int	count	=	0;
		String	name;
		EventEmitter	yell	=	new	EventEmitter();

		Achild();

		void	talkSelf()	{
				print(‘Self	Contained’);
				count++;
		}

		void	talkParent()	{
				print(‘parent’);
				yell.add(‘Bubble	Up!’);
		}
}

Data	Binding
Data	binding	is	the	mechanism	in	which	we	keep	data	in	sync	amongst	various
components.	Historically,	binding	data	in	the	DOM	has	required	developers	to	set	up
programmatic	listeners	to	handle	change	events.

Input	and	output	bindings	expose	a	format	allowing	to	you	explicitly	control	the
relationship	between	three	structures:

	A	tag’s	element	attributes

	A	component	decorator’s	list	of	inputs	and	outputs

	A	component	class’s	field	instances

Input	binding	and	fields

When	you	see	the	square	bracket	syntax	on	an	element	in	Angular	2,	it	should	inform	you
that	you	are	assigning	a	value.	This	syntax	enables	a	one-way	flow	of	data	from	the	parent
to	the	child.

	The	component	class’s	field	instances	are	always	exposed	to	the	associated	template.
class	Example	{
				String	time;
}

	The	Component	inputs	value	binds	a	tag’s	matching	attribute	to	a	component
class’s	field	instance.
@Component(
		inputs:	const[‘time’]
)

	An	element	attribute	allows	a	template	to	set	the	value	of	a	field	via	an	input	binding
using	square	bracket	syntax.

Click	here	to	view	code	image
<example	[time]=‘240’></example>

Output	Binding	and	Event	Emitters

When	you	see	the	round	bracket	syntax	on	an	element	in	Angular	2,	it	should	inform	you
that	you	are	listening	for	an	output	event.

When	you	want	data	to	come	out	of	a	component,	you	will	use	output	events:

	The	Component	outputs	value	binds	a	tag’s	matching	attribute	to	a	component
class’s	field	instances.
@Component(
		outputs:	const[‘sound’]
)

	The	component	class’s	field	instances	are	now	exposed	on	the	element.
Click	here	to	view	code	image

class	Example	{
				EventEmitter	sound	=	new	EventEmitter();

}

	The	element	attribute	allows	a	template	to	listen	for	an	event	to	be	emitted	via
output	event	binding	using	round	bracket	syntax.	It	accepts	an	expression	that	is
executed	on	each	event	occurrence.

Click	here	to	view	code	image
<example	(sound)=‘handleSound()’></example>

Two-way	Data	Binding

When	you	see	both	square	and	round	bracket	syntax	on	an	element	in	Angular	2,	it	should
inform	you	that	you	are	implementing	two-way	data	binding.	For	the	most	part,	this	is
frowned	upon	in	Angular	2,	but	it	is	exposed	in	a	few	cases,	such	as	form	inputs	with
NgModel.	NgModel	is	primarily	used	to	bind	forms	to	model	data.
Click	here	to	view	code	image

//where	item	is	a	Dart	class	with	a	field	of	String	name
<input	[(ng-model)]=“item.name”></input>

Dependency	Injection
Within	an	application,	it’s	sometimes	useful	to	share	a	single	instance	of	a	class	across
multiple	consumers.	Dependency	injection	(DI)	is	a	design	pattern	that	helps	alleviate	the
need	to	instantiate	the	same	object	across	multiple	classes.	DI	offloads	the	object	creation
and	then	makes	the	instance	available	through	various	service	location	implementations.

Angular	exposes	the	service	locator	functionality	in	two	primary	locations,	through	an
actual	injector	instance	or	through	the	Component	class’s	constructor	method	signature.

The	Injector	class	instance	is	instantiated	and	bound	by	default	at	application
startup.

Let’s	use	the	method	signature	approach	to	acquire	the	actual	instance	of	the	injector
and	then	retrieve	another	default	service,	named	Router.
Click	here	to	view	code	image

class	ExampleComponent	{

		Router	router;
		Injector	injector;
		…

		ExampleComponent(Injector	this.injector)	{
				router	=	injector.get(Router);
		}
		…
}

As	you	can	see	in	the	example,	you	never	need	to	pass	an	argument	to	the
ExampleComponent	constructor	in	order	to	acquire	the	injector	instance.	The	DI
system	goes	out	and	locates	the	instance	based	off	the	Type	and	then	provides	it	for	you.
Once	you	have	an	instance	of	the	actual	Injector,	you	use	the	same	Injector
service	that	is	abstracted	to	acquire	the	singleton	instance	of	Router.

You	can	make	your	own	classes	available	for	DI	by	leveraging	the
bind(T).toClass(Class)	function	to	acquire	a	BindingBuilder	instance
method	as	an	argument	for	bootstrap()	on	application	start.

	Note

All	classes	that	are	available	for	DI	should	be	annotated	with
@Injectable()	to	enable	the	Dart	transformer	to	preprocess	the	code	to
ensure	proper	size	and	performance.

Directives
A	directive	is	a	component	with	no	programmatically	defined	view.	Instead,	their	view	is
defined	by	the	element	onto	which	the	directive	is	applied.	The	applied	element	and	its
corresponding	sub-tree	become	the	template	instance.	This	makes	directives	ideal	for
declaring	reusable	chunks	of	DOM	logic.	Angular	2	ships	with	multiple	directives	that	are
used	to	conditionally	modify	the	DOM	from	within	other	views.

To	declare	a	directive,	you	use	Dart’s	annotation	syntax	to	annotate	the
DirectiveMetadata	class.	Let’s	take	a	look	at	an	included	directive	to	see	how	the
Angular	team	writes	a	directive:
Click	here	to	view	code	image

@Directive(
		selector:	“[ng-if]”,

		inputs:	const	[“ngIf”]

)
class	NgIf	{
		ViewContainerRef	_viewContainer;
		TemplateRef	_templateRef;
		bool	_prevCondition	=	null;
		NgIf(this._viewContainer,	this._templateRef);

		set	ngIf(newCondition)	{

				if	(newCondition	&&
						(isBlank(this._prevCondition)	||	!this._prevCondition))	{
						this._prevCondition	=	true;
						this._viewContainer.createEmbeddedView(this._templateRef);
				}	else	if	(!newCondition	&&
						(isBlank(this._prevCondition)	||	this._prevCondition))	{
						this._prevCondition	=	false;
						this._viewContainer.clear();
				}
		}
}

The	structure	of	an	@Directive	annotation	should	look	very	familiar	to	you.	It	shares
the	same	properties	as	an	@Component	annotation	but	without	an	@View.

In	the	previous	example,	the	properties	ngIf	value	is	bound	to	a	corresponding
setter	that	is	implemented	using	Dart’s	setter	syntax	on	the	component	class.	This	allows
the	selector	to	be	both	a	selector	and	a	property	that	can	accept	an	expression	as	an

argument.

NGIF

The	NgIf	directive	allows	you	to	apply	conditional	logic	and	remove	elements	from	the
DOM.	If	the	expression	that	is	passed	in	evaluates	to	true,	a	clone	of	the	element	will	be
inserted	into	the	previous	location.
Click	here	to	view	code	image

<!—This	will	not	show	—>
<div	*ng-if=“1	+	1	==	2”>Your	math	is	good!</div>
<!—This	will	not	show	—>
<div	*ng-if=“1	+	1	==	5”>Your	math	is	bad…</div>

Directives	prefixed	with	a	*,	such	as	*ng-if	and	*ng-for,	are	template	directives
that	modify	the	DOM	and	expose	scope	to	the	sub-tree.	The	*	symbol	is	an	abstraction	of
the	template	syntax.	The	*	prefix	allows	IDEs	and	analyzers	to	easily	identify	Angular
components	but	also	maintains	the	terse	syntax	for	writing	directives.

As	you	remember	from	Chapter	14,	template	elements	must	be	added	programmatically
to	the	DOM.	The	following	three	examples	are	exactly	the	same:
Click	here	to	view	code	image

<div	*ng-if=“1	+	1	==	2”>Your	math	is	good!</div>
<div	template=“ng-if	1	+	1	==	2”>Your	math	is	good!</div>
<template	[ng-if]=“1	+	1	==	2”><div>Your	math	is	good!</</div></template>

NgFor

The	NgFor	directive	allows	you	to	instantiate	a	clone	of	the	associated	element	for	each
item	in	a	collection	of	data.	The	current	item	from	the	collection	is	assigned	to	a	scope
variable	with	a	prefixed	hash	symbol.	This	will	expose	the	variable	with	the	scope	of	the
instantiated	element’s	sub-tree.
Click	here	to	view	code	image

<!—	items	=	[‘alpha’,	‘beta’,	‘charlie’,	‘delta’,	‘foxtrot’]	—>
<li	*ng-for=”#item	of	items;	#i	=	index”>{{	item	+	”	”	+	index.toString()	}}

<!—	results	in	—>
alpha	1
beta	2
charlie	3
delta	4
foxtrot	5

NgClass

The	NgClass	directive	allows	you	to	apply	classes	to	a	selected	element.	The	behavior
changes	depending	on	which	type	of	value	the	expression	evaluates	to:

	String	instances	will	result	in	a	traditional	CSS	selector	being	applied	to	the	element.
Click	here	to	view	code	image

<div	class=“robot”	[ng-class]=“flying”>
					Beep	Beep	Boop

	</div>

	List	instances	will	result	in	each	string	value	in	the	list	being	applied	as	a	traditional
CSS	selector	using	a	FIFO	hierarchy.

Click	here	to	view	code	image
<!—-	List	states	=	[“hovering”,	“flying”,	“warping”]	—>
<div	class=“robot”	[ng-class]=“states”>
					Beep	Beep	Boop
	</div>

	Map	instances	will	be	interpreted	as	a	key–value	pair	where	the	key	is	applied	if	the
value	expression	result	is	a	Boolean	of	true.

Click	here	to	view	code	image
<!—-	Boolean	hasFuel	=	true	—>
<!—-	You	would	only	want	the	falling	class	applied	if	the	robot	had	no
fuel	—>
<div	class=“robot”	[ng-class]=”{falling:	hasFuel	==	false}”>
					Beep	Beep	Boop
	</div>

NgSwitch

The	NgClass	directive	allows	you	to	implement	multiple	templates	and	swap	between
them	when	a	specified	value	is	matched.	The	NgSwitch	directive	is	actually	a
combination	of	three	separate	directives:

	ng-switch:	This	directive	is	applied	to	the	outermost	element.	Its	sole	purpose	is
to	evaluate	the	expression	that	provides	the	value	informing	the	selected	state.

Click	here	to	view	code	image
<!—-	List	states	=	[“hovering”,	“flying”,	“warping”]	—>
<div	class=“robot”	[ng-switch]=“states.first”>
					<!—	—>
	</div>

	ng-switch-when:	This	directive	can	be	used	only	when	applied	to	a	child
element	of	ng-switch.	The	ng-switch-when	directive	accepts	a	single	value.
When	the	supplied	value	matches	that	argument	supplied	to	the	parent	ng-switch
directive,	the	element	becomes	visible.	If	it	does	not	match,	the	element	remains
hidden.

Click	here	to	view	code	image
<!—-	List	states	=	[“hovering”,	“flying”,	“warping”]	—>
<div	class=“robot”	[ng-switch]=“states[1]”>
					<hover-suite	[ng-switch-when]=“hovering”></hover-suite	>
					<flying-suite	[ng-switch-when]=“flying”></flying-suite	>
					<warping-suite	[ng-switch-when]=“warping”></warping-suite	>
	</div>

	ng-switch-default:	This	directive	can	be	used	only	when	applied	to	a	child
element	of	ng-switch.	The	ng-switch-default	directive	accepts	no
arguments.	An	element	with	this	directive	is	displayed	only	if	none	of	the	ng-
switch-when	directives	provide	a	matching	value	to	the	parent	expression.

Click	here	to	view	code	image

<!—-	List	states	=	[“flying”,	“warping”]	—>
<div	class=“robot”	[ng-switch]=“states.first”>
					<hover-suite	ng-switch-default></hover-suite	>
					<flying-suite	[ng-switch-when]=“flying”></flying-suite	>
					<warping-suite	[ng-switch-when]=“warping”></warping-suite	>
	</div>

NgStyle

The	NgStyle	directive	allows	you	to	set	an	element’s	style	programmatically.	NgStyle
uses	a	map	that	is	interpreted	as	a	key–value	pair	where	the	key	is	a	style	selector	string
and	the	value	is	an	expression	that	provides	the	corresponding	styling.
Click	here	to	view	code	image

<!—-	String	locations	=	[“left”,	“center”,	“right”]	—>
<div	class=“robot”	[ng-style]=”{	“text-align”:	direction[2]	}”>
					<!-—	I	will	render	to	the	right	—>
					Beep	Beep	Boop
	</div>

Summary
Congratulations,	you	have	taken	the	first	steps	to	mastering	Angular	2	Dart.	You’ve
successfully	built	a	simple	application	with	multiple	components,	passed	data	in	and	out
of	components,	and	looked	at	a	number	of	the	subsystems	that	power	the	Angular
framework.	In	the	next	chapter,	you’ll	use	Angular	2	to	finish	the	client	portion	of	the
Just-In-Time	Airlines	ticketing	application.

You	Should	Now	Know
	Why	Angular	Dart	is	used

	Where	Angular	Dart	is	in	its	development	cycle

	The	relationship	between	Angular	Dart,	Angular	JS,	and	TypeScript

	The	structure	of	an	Angular	application

	What	a	component	decorator	is

	What	a	view	decorator	is

	How	a	component	class	is	used

	The	difference	between	a	component	and	directive

	How	directives	use	the	HTML	template	element

	How	to	use	Angular	Dart’s	built-in	directives

Congratulations!
You’ve	successfully	worked	through	the	printed	material	of	this	book,	but	that	doesn’t
mean	you’re	finished.	As	you	saw	in	Chapter	15,	you’ve	just	begun	to	scratch	the	surface
of	working	with	Angular	2.	You	still	need	to	build	out	the	client	for	your	Just-In-Time
Ticketing	application,	and	then	integrate	it	with	the	back	end.	In	order	to	provide	the	most
up-to-date	material,	I’ve	posted	Chapters	16	and	17	online.	Refer	to	the	“Online	Content”
section	in	the	“Introduction”	for	more	information	on	accessing	these	online	chapters.

Good	luck	on	the	rest	of	your	journey	with	Dart	and	Angular	2.

Index

A
abstract	classes,	75.	See	also	classes

abstract	methods,	78.	See	also	methods

access	modifiers,	9,	101

ActionScript	3,	5

airport.dart	file.	See	also	Just-In-Time	Airlines	project;	ticketing	application

creating,	32

executing,	34

getAirlineName()	function,	35

getWelcomeMessage()	function,	34

modifying,	34

modifying	imports,	104–105

alpha.com	domain,	using	with	CORS,	188

Angular	2	Dart,	132.	See	also	Clicker	application

Component	class,	258–259

component	decorators,	255–257

components,	251–255

data	binding,	259–260

dependency	injection,	261

developer	preview,	249

directives,	262–265

metadata	annotations,	255

view	decorators,	257–258

Angular	project,	248

assert	method,	errors	related	to,	47

async	keyword,	115–118,	223–224

asynchronous	programming

futures	and	completers,	110–112

streams,	112–113

asynchronous	writes,	creating,	202–203

attributes	and	tags,	236

await	keyword,	116–118,	203

B
Bacteria	class,	creating,	85

bin	folder,	15,	105

Blimp	class,	creating,	75

bootjack	library,	230

box	template,	creating	for	landing	page,	238–241

break	keyword,	using	with	loops,	45

breakpoints,	removing,	27

brew	commands,	28

browser	library,	230

C
Cascade	class,	194–196

catch	type,	making	specific,	52

class	constructors

factory	constructors,	67–69

final	variables,	70

generative	constructors,	64

member	variable	initialization,	65

named	constructors,	66–67

static	variables,	69

zero	argument	constructors,	63–64

class	inheritance,	73–75.	See	also	inheritance

classes.	See	also	abstract	classes

customizing,	61–62

inferred	namespaces,	62–63

instantiating,	63

and	Object	class,	41

Clicker	application.	See	also	Angular	2	Dart;	components	in	Angular	2	Dart

creating,	250–251

default	browser,	254

collections

getting,	201

and	iterators,	47–49

storing,	50

comma-delimited	pairs,	and	functions,	37

command-line	applications

launching,	19–22

run	and	debug	options,	21

command-line	debugger,	26–27

completers	and	futures,	111–112

Component	class	in	Angular	2	Dart,	258–259

component	decorators	in	Angular	2	Dart

event	listeners,	257

event	triggers,	257

events,	256

field	instances,	256

getters	and	setters,	256

properties,	255–256

selector,	255

components	in	Angular	2	Dart.	See	also	Clicker	application

Component	class,	258–259

view	decorators,	257–258

components.dart,	modifying,	251–253

concurrent	computing	paradigm,	108

conditionals	with	if-then-else,	43

connection	pooling	in	Mongo,	167–168

const	keyword

for	identifiers,	71–72

for	objects,	71

constant	constructors,	72–73

constructors.	See	also	super	constructors

factory	constructors,	67–69

final	variables,	70

generative	constructors,	64

member	variable	initialization,	65

named	constructors,	66–67

static	variables,	69

zero	argument	constructors,	63–64

continue	keyword,	using	with	loops,	45

control	structures,	43–46

controllers

handlers	for	models,	210

JSON	handler,	209–210

parsing	methods,	208

path	parameters,	207

post	parameters,	207–208

preparing	for	use	of,	206

response	objects,	208–209

CORS	(cross-origin	resource	sharing),	alpha.com	domain,	188

createItemByItem,	using	in	ticketing	domain,	203

createPurchase()	method,	using	in	ticketing	domain,	203–204

CRUD	(Create,	Read,	Update,	and	Delete),	165.	See	also	mongo_model.dart

CSS	preprocessor,	using	Sass	as,	132

D
Dart

advantages,	249

running,	19–26

in	WebStorm	editor,	28

Dart	language

access	modifiers,	9

entry	point,	9

inheritance,	9

library	support,	10

mixins,	10

numeric	types,	10

package	support,	10

Pub	tool,	10

scope	and	contexts,	9

static	types,	9

syntax,	9

Dart	Sass,	132

Dart	SDK,	installing,	14–15

Dart	VM	(virtual	machine),	8–9

dart_web_temp	package,	launching	in	Chrome,	25

Dart2JS	transpiler,	7

Dartium,	web	applications	in,	22–25

Dartson	community	library,	166.	See	also	libraries

DTOs	(data	transfer	objects),	169–174

implementing	serialization,	166

Mirrors	library,	166

using	with	objects,	132

Dartson	instance,	using	in	ticketing	domain,	203

dartson	library,	installing,	169–174

Dartson	serialization,	169–174

“Dash	memo,”	6

data	binding	in	Angular	2	Dart

assigning	values,	259

dependency	injection,	261

directives,	262–265

event	binding,	260

event	emitters,	260

listening	for	events,	260

properties	and	events,	259

property	binding	and	fields,	259–260

round	bracket	syntax,	260

square	bracket	syntax,	259

two-way,	260

data	collection,	201

data	modeling.	See	Dartson	community	library

database	scheme,	136

databases,	132.	See	also	Mongo	databases

choosing,	136–137

properties,	136

relational	and	non-relational,	136

rows	and	columns,	136

tables,	136

DDC	(Dart	Dev	Compiler),	7,	249

debugger.	See	command-line	debugger

default	values	and	parameters,	and	functions,	38–39

delta.com	domain,	188

development,	test-	vs.	behavior-driven,	216

directives	in	Angular	2	Dart

declaring,	262

NgClass,	263–264

NgFor,	263

Ngif,	263

NgStyle,	265

NgSwitch,	264–265

directory	structure	for	projects,	32

document-store	databases,	137

DOM	(Document	Object	Model)

and	HTML	interaction,	235–238

querying,	235–238

selectors,	236–238

tags	and	attributes,	236

double	numeric	type,	10,	50

DRY	(Don’t	Repeat	Yourself),	65

dson.map(),	using	in	ticketing	domain,	203

DTOs	(data	transfer	objects)

nesting,	204–205

using	with	Dartson,	169–174

E
ECMA-262	standard,	4–6

entry	point,	9,	33–34

enums,	support	for,	46,	51

environmental	variables,	15–17

Error	events,	51–52

events

listening	to,	112–113

loops,	114–115

exceptions,	51–52

expensiveCalc()	function,	111,	115–116

explicit	super(),	80

extends	keyword,	74

F
factory	constructors,	67–69

field	library,	90,	96–97,	100

FIFO	queues,	using	with	event	loops,	114

File.readAsString()	future	method,	110

final	variables,	70.	See	also	variables;	static	variables

first-class	functions,	functions,	36

for	loops,	iteration	with,	44

front-end	development

libraries,	230–232

tools,	230

functions.	See	also	methods

comma-delimited	pairs,	37

default	values	and	parameters,	38–39

entry-point	file,	33–34

first-class,	36

main()	function,	33–34

named	parameters,	38

nesting,	57

parameters,	37–39

positional	optional	parameters,	38

primitives	passed	as	values,	39–41

references	and	values,	36–37

return	types,	34–35

futures

and	completers,	111–112

returning,	115–118

role	in	asynchronous	programming,	110

and	specs	for	MongoModel	class,	222

G
generative	constructors,	64

getAirlineName()	function,	35

getWelcomeMessage()	function,	34

Google

“Dash	memo,”	6

market	strategy,	7–10

Guinness	unit	testing,	216–219

H
handlers,	using,	194–196

hashcodes,	58–60

hide	and	show	keywords,	using	with	libraries,	93–94

Homebrew	package	manager,	28.	See	also	packages

HTML	(HyperText	Markup	Language),	and	DOM,	232–236

HTTP	method	attributes,	using	with	Shelf	library,	191

HTTP	responses,	getting	from	web	servers,	196

HTTPServer	library,	185,	187

I
identical()	function,	42

if-then-else,	43

implements	keyword,	using	with	interfaces,	82

implicit	inheritance,	73

implicit	super(),	79

import	keyword

vs.	part	keyword,	98,	101

using	with	libraries,	92–93

using	with	queues,	48

index.html	file,	211,	232–235,	253–254

inheritance,	9,	61.	See	also	class	inheritance

inner	function,	57–60

installing

Dart	SDK,	14–15

guinness	library,	217

IntelliJ	IDEA	editor,	17–19

mongo_dart	packages,	151–152

MongoDB,	138–139

instantiating

classes,	63

objects,	71

int	numeric	type,	10,	50

IntelliJ	IDEA	editor

installing,	17–19

line	numbers,	26

running	Dart,	19–26

interfaces,	82–84

iteration	with	for	loops,	44

iterators	and	collections,	47–49

J
Jasmine	test	framework,	216

JavaScript,	flaws	in,	4–5.	See	also	TypeScript

JSON	(JavaScript	Object	Notation)

converting	to,	157–159

data	structure,	132,	137

downside,	166

printJson()	function,	158–159

JSON	handler,	using	with	controllers,	209–210

JsonObject	class,	157

Just-In-Time	Airlines	project,	124.	See	also	airport.dart	file;	projects;	ticketing
application

API	server,	132

architecture,	132–133

call	to	action,	124–125

cities	entity,	129

client	framework,	132

data	entities,	126–131

data	transfer	objects,	132

deep	linking,	124–125

feature	requests,	124–126

flight	box,	126

flight	display,	125

home	page,	125

itinerary	picker,	125

Mongo	database,	132

order	form,	126

purchases	entity,	130–131

routes	entity,	127

static	content,	124–125

style	sheets,	132

times	entity,	128

top	navigation,	124–125

transactions	entity,	131

web	server,	132

L
landing	page

box	template,	238–241

instantiating	elements,	241

rendering	deals	data,	242–243

rendering	view,	244

lexical	scope,	56–60

lib	folder

in	bin,	15

and	bin,	105

cargo.dart	file,	99

libraries,	10,	90.	See	also	Dartson	community	library

bootjack,	230

browser,	230

Connection	Pool,	167–168

directory	view	and	setup,	90–91

hide	and	show	keywords,	93–94

import	keyword,	92–93

Mirrors,	166

packages	as,	102

part	keyword,	98–101

sass,	230–231

visibility	and	privacy,	94–98

library	keyword,	91–92

List	literal,	47–48

loops,	controlling,	45

M
Mac	OS	X

environmental	variables,	16

installing	MongoDB	on,	138

main()	function,	33–34

map	objects,	41

Map	parameter,	using	in	ticketing	domain,	203

metadata	annotations	in	Angular	2	Dart,	255

methods,	declaring	as	abstract,	78.	See	also	abstract	methods;	functions

microtask,	scheduling,	114

middleware,	adding	to	Shelf	library,	188–190

Mirrors	library,	166

mixins,	10,	84–86

Mongo	databases,	132,	144–146.	See	also	databases

creating,	140–141

deleting	collections	and	documents,	143–144

drop()	method,	143–144

embedding	documents,	144–146

find()	command,	143–144

insert()	function,	143–144

reading,	141–142

remove()	function,	143–144

show	dbs	command,	140

updating,	142–143

mongo_dart	packages,	downloading	and	installing,	151–152

mongo_model.dart.	See	also	CRUD	(Create,	Read,	Update,	and	Delete)

connecting	to	Mongo,	177

create()	functions,	178–179

delete	pattern,	179

dropDatabase()	method,	183

interface	methods,	175–177

read	actions,	180–182

update	pattern,	180

mongod	daemon,	139

MongoDB,	155–157

collections,	153

connection	pooling,	167–168

documents,	154–155

exposing	database	credentials,	153

features,	137

installing,	138–139

JSON	representation,	154–155

project	setup,	150–151

reading	files	from	file	systems,	155–157

seeding	data,	153–155

verifying	data,	162–163

writing	data	to,	159–162

MongoModel	class,	200

delete	functionality,	226

GitHub	extension,	227

read	functionality,	225

seeder	spec,	220–222

specs	and	async	keyword,	223–224

specs	and	futures,	222

testing,	220–227

MVC	(model–view–controller)	pattern,	206

N
named	constructors,	66–67

named	parameters,	and	functions,	38

namespaces

inferring,	62–63

reach	of,	56–60

nesting

DTOs	(data	transfer	objects),	204–205

functions,	57

NgClass	directive	in	Angular	2	Dart,	263–264

NgFor	directive	in	Angular	2	Dart,	263

Ngif	directive	in	Angular	2	Dart,	263

NgStyle	directive	in	Angular	2	Dart,	265

NgSwitch	directive	in	Angular	2	Dart,	264–265

non-relational	databases,	136

NoSQL	databases,	136

numeric	types,	10,	49–52

O
Object	class,	41

object	equality,	determining,	42–43

objects.	See	also	polymorphism

collections	of,	47–48

and	custom	classes,	61–62

instantiating,	71

outer	function,	57–60

P
packages.	See	also	Homebrew	package	manager

as	libraries,	102

support	for,	10

packages	folder,	103

parameters,	and	functions,	37–39

parsing	methods,	using	with	controllers,	208

part	keyword,	using	with	libraries,	98–101

pipeline	object,	187,	194

polymorphism,	76–77.	See	also	objects

pooling	in	Mongo,	167–168

positional	optional	parameters,	and	functions,	38

primitives	passed	as	values,	39–41

private	keyword,	using	with	libraries,	94–98

projects,	directory	structure,	32.	See	also	Just-In-Time	Airlines	project

Pub	Serve,	accessing,	24

Pub	tool,	10,	132

public	keyword,	using	with	libraries,	94–98

pubspec.yaml	file

adding	Dartson	to,	169

importing	files,	104–105

requesting	with	version	numbers,	152

using	with	packages,	102–103

using	with	Shelf	library,	186–188

Q
queues,	48–49

R
references	and	values	for	functions,	36–37

reflection	and	transformer	dart2js,	166

relational	databases,	136

RESTful	API,	using	with	Shelf	library,	132

revision	file	in	bin,	15

routes

handling,	211

testing,	212

routing,	adding	to	Shelf	library,	191–192

running	Dart,	19–26

S
Sass,	using	as	CSS	preprocessor,	132

sass	library,	230–231

scheduleMicrotask()	method,	114–115

scope,	9,	56–60

SDK	(software	development	kit),	installing,	14–15

Seeder	utility,	153–155

seeder.dart	file

running,	156–157,	159

updating,	157–158

seed.json	file,	154–157

selectors

$(),	236–237

classes,	237

custom	attributes,	238

elements,	237

IDs,	237

serialization	in	Dartson,	169–174

Set()	function,	49

Shelf	example,	setting	up,	186–188

Shelf	library

adding	middleware,	188–190

adding	routing,	191–192

Cascade	class,	194–196

CORS	headers,	188

HTTP	method	attributes,	191

multiple	handlers,	194–196

pipeline	object,	187,	194

requests	and	responses,	186

serving	static	assets,	193–194

using	with	RESTful	API,	132

Shelf	main()	function

addMiddleware()	function,	187

Handler	function,	187

IoServe	method,	187

Middleware,	187

Pipeline	class,	187

requests	and	responses,	187

single	inheritance,	support	for,	61

SPAs	(single	page	applications),	247

specs	and	suites,	using	with	Guinness,	217–219

statements,	43–46

static	assets,	serving	with	Shelf	library,	193–194

static	types,	9

static	variables,	69.	See	also	final	variables;	variables

streams,	role	in	asynchronous	programming,	112–113

super	constructors,	79–81.	See	also	constructors

switch-cases,	45–46

synchronous	requests,	execution	order,	109

syntax,	9

T
tags	and	attributes,	236

test-	vs.	behavior-driven	development,	216

testing	MongoModel	class,	220–227

ticketing	application,	setting	up,	150–151.	See	also	airport.dart	file;	Just-In-Time
Airlines	project

ticketing	domain

asynchronous	writes,	202–203

controller	code,	206–210

data	collection,	201

flights,	204

method	signature,	201

nesting	DTOs,	204–205

order	form,	202

routes,	211–212

TicketingModel	class,	200

TransactionDTO,	using	in	ticketing	domain,	203

transformer	dart2js	and	reflection,	166

try-catch	statements,	51–52

typed	numeric	lists,	50

TypeScript,	248–249.	See	also	JavaScript

U
Ubuntu	14.10	environmental	variables,	16–17

unit	testing

explained,	216

Jasmine	via	Guinness,	216

MongoModel	class,	220–227

V
values

for	functions,	36–37

primitives	passed	as,	39–41

variables,	56.	See	also	final	variables;	static	variables

Vehicle	base	class,	creating,	73–74

version	file	in	bin,	15

view	decorators	in	Angular	2	Dart

directives,	258

encapsulation	object,	258

styles	and	styleUrl,	258

template	and	templateUrl,	257

templates,	258

VM	(virtual	machine),	8–9

W
web	applications

in	contemporary	browsers,	25–26

in	Dartium,	22–25

web	folder,	setting	up,	195

web	servers,	getting	HTTP	responses	from,	196

web/index.html	file,	211,	232–235,	253–254

webpage,	running	in	browser,	23

webserver.dart	file

adding	routing,	191

calling	static	assets,	196

debugging,	188,	190

handling	routes,	211–212

imports	for	static	assets,	193

naming,	186

querying	API,	196

WebStorm	editor,	28

while	loops,	44–45

Windows

environmental	variables,	16

installing	MongoDB	on,	139

with	keyword,	using	with	mixins,	84–86

Y
YAML,	using	with	packages,	102–103

Z
zero	argument	constructors,	63–64

Code	Snippets

	Title Page
	Copyright Page
	Dedication Page
	Acknowledgments
	Author Bio
	Contents
	Introduction
	Who Is This Book For?
	How to Use This Book
	Online Content
	Code Examples
	Welcome to Dart
	The Technologies

	Part I: The Dart Language and Ecosystem
	Chapter 1. Dart and the History of Browser Languages
	The Web and Open Standards
	JavaScript Deficits
	Modern Alternatives
	ECMAScript 4
	Dash Memo
	Google’s Market Strategy
	Dart2JS
	Dart Dev Compiler
	Dart Virtual Machine
	Dart Virtual Machine Strategy
	How Is the Dart Language Different?
	A New ECMA Standard

	Summary
	You should Know:

	Chapter 2. Up and Running with Dart
	Installing the Dart SDK
	What’s in the dart-sdk

	Dart Environmental Variables
	Windows 8
	Mac OS X 10.10
	Ubuntu 14.10

	IntelliJ IDEA Editor
	Installing IDEA for Dart
	Running Dart
	Line Numbers
	Dart Command Line Debugger
	Dart in WebStorm and Others

	Optional Homebrew
	Summary
	You should know:

	Chapter 3. Introduction to the Dart Language
	Creating Your First Dart Project
	Using Functions in Dart
	Application Entry Point and main()
	Functions and Optional Return Types
	First-class Functions
	Function Reference and Function Values
	Function Parameters
	Primitives
	Primitives Passed as Values

	Dart Objects and Maps
	Accessing Properties of a Map
	Determining Object Equality

	Statements and Control Structures
	Conditionals with if-then-else
	Iteration Using for Loops
	While Loops
	Controlling Loops
	switch and case

	Errors on assert()
	Collections and Iterators
	List
	Queue
	Set

	Numbers
	int
	double
	Typed Numeric List
	Enums
	Exceptions

	Summary
	You should know:

	Chapter 4. Object Structures in Dart
	Variables
	Lexical Scope
	Classes
	Custom Classes
	Inferred Namespace

	Class Constructors
	Generative Constructor
	Automatic Class Member Variable Initialization
	Named Constructors
	Factory Constructors
	Static Variables
	Final Variables

	Constants
	Constant Objects
	Constant Identifiers
	Constant Constructors

	Class Inheritance
	Abstract Classes

	Polymorphism
	Abstract Methods
	Super Constructors
	Implicit super
	Explicit super()

	Interfaces
	Mixins
	Summary
	You should Now Know:

	Chapter 5. Packages and Libraries
	Your First Library
	Library
	Import
	Hide and Show

	Visibility and Privacy
	part and part of
	Packages and pubspec.yaml
	Named Package Imports
	Summary
	You should Now Know:

	Chapter 6. Event Loops and Asynchronous Programming
	Concurrent Computing Paradigm
	Futures, Completers, and Streams
	Synchronous Requests
	Futures
	Futures and Completers

	Streams
	Event Loop
	Async
	Await

	Summary
	You should Now Know:

	Part II: Full-Stack App Development with Dart
	Chapter 7. Planning the Application
	Fictitious Company Background
	Feature Requests
	Data Entities
	Routes
	Times
	Cities
	Purchases
	Transactions

	Architecture Choices
	Summary
	You Should Now Know:

	Chapter 8. Introduction to MongoDB
	Relational vs. NoSQL Databases
	Why Not Database X?
	What Is MongoDB?
	Installing MongoDB
	Mac OS X
	Windows

	The Mongo Client
	Interacting with a Mongo Database
	Embedding Documents

	Summary
	You should now know:

	Chapter 9. Mongo Dart
	Setting Up Your Project
	Downloading and Installing Mongo Dart Packages
	Exposing Database Credentials
	Seeding Data in Dart
	Collections
	Documents

	Reading a File from the File System
	Converting to JSON
	Connecting to Mongo from Dart
	Verifying the Data
	Summary
	You Should Now Know:

	Chapter 10. Data Modeling Using Dartson
	Why Dartson
	Mongo Pooling
	Dartson Serialization
	Creating a MongoModel with CRUD
	Interface Methods
	Connect to Mongo
	Create
	Delete
	Update
	Read
	Drop

	Summary
	You Should Now Know:

	Chapter 11. Webserver and Middleware
	Shelf
	Setting Up a Shelf Example
	Adding Middleware
	Adding Routing
	Serving Static Assets
	Using Multiple Handlers
	Setting Up and Building Your Web Folder
	Calling Static Assets and Querying the API

	Summary
	You Should Now Know:

	Chapter 12. API Routing, Requests, and Responses
	Modeling Your Ticketing Domain
	Using a Consistent Method Signature
	Getting Collections of Data
	Creating Multiple Asynchronous Writes
	Nesting DTOs

	Implementing Controllers
	Path Parameters
	Post Parameters
	Response Objects
	Generic JSON Handler
	Wire Up the Remaining APIs

	Handling Routes
	Testing Routes

	Summary
	You Should Now Know:

	Chapter 13. Unit Testing Your Code
	What Is Unit Testing?
	Jasmine via Guinness
	Setting Up Guinness
	Composition of a Guinness Test
	Testing Mongo
	Seeder Spec
	Specs and Futures
	Specs and Async
	Read Spec
	Delete Spec
	Drop Database Spec
	Additional Tests

	Summary
	You Should Now Know:

	Chapter 14. A Web Project with Dart
	Planning for Front-End Development
	Development Tools
	Development Libraries

	Interacting with HTML and the DOM
	Querying the DOM
	DOM
	HTML
	Tags and Attributes
	Selectors

	Building the Landing Page
	Create the Box Template
	Programmatically Instantiate Elements
	Render the Deals Data
	Render the View

	Summary
	You Should Now Know:

	Chapter 15. Introduction to Angular 2 Dart
	The History of AngularJS and Angular Dart
	TypeScript
	Developer Preview Warning
	Angular 2 Overview
	Components
	Data Binding
	Dependency Injection
	Directives

	Summary
	You Should Now Know:

	Congratulations!

	Index
	Code Snippets

