
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Kathy Walrath and Seth Ladd

Dart: Up and Running

www.it-ebooks.info

http://www.it-ebooks.info/

ISBN: 978-1-449-33089-7

[LSI]

Dart: Up and Running
by Kathy Walrath and Seth Ladd

Copyright © 2013 Kathy Walrath, Seth Ladd. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Christopher Hearse

Proofreader: Christopher Hearse
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

Revision History for the First Edition:

2012-10-24 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449330897 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Dart: Up and Running, the image of a greater roadrunner, and related trade dress are trademarks
of O’Reilly Media, Inc.

This text of this work is available at this book’s GitHub project under the Creative Commons Attribution-
Noncommercial-No Derivative Works 3.0 United States License.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449330897
https://github.com/dart-lang/dart-up-and-running-book
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://www.it-ebooks.info/

Table of Contents

Foreword. ix
Preface. xi

1. Quick Start. 1
Why Google Created Dart 1
A Quick Look at the Dart Language 3
What’s Cool About Dart 3
Up and Running 5

Step 1: Download and Install the Software 5
Step 2: Launch the Editor 5
Step 3: Create and Run an App 6
Step 4: Open and Run a Sample 8
What Next? 9

2. A Tour of the Dart Language. 11
A Basic Dart Program 11
Important Concepts 12

Runtime Modes 13
Variables 13

Default Value 14
Optional Types 14
Final and Const 14

Built-in Types 15
Numbers 15
Strings 16
Booleans 17
Lists 18
Maps 19

Functions 20
Optional Parameters 20

iii

www.it-ebooks.info

http://www.it-ebooks.info/

Functions as First-Class Objects 22
Lexical Closures 22
Return Values 23

Operators 23
Arithmetic Operators 24
Equality and Relational Operators 25
Type Test Operators 26
Assignment Operators 26
Logical Operators 27
Bitwise and Shift Operators 27
Other Operators 28

Control Flow Statements 28
If and Else 28
For Loops 29
While and Do-While 29
Break and Continue 30
Switch and Case 30
Assert 32

Exceptions 32
Throw 32
Catch 33
Finally 33

Classes 34
Instance Variables 35
Constructors 35
Methods 39
Abstract Classes 41
Implicit Interfaces 42
Extending a Class 43
Class Variables and Methods 43

Generics 44
Why Use Generics? 44
Using Collection Literals 45
Using Constructors 46
Generic Collections and the Types they Contain 46

Libraries and Visibility 46
Using Libraries 46
Implementing Libraries 47

Isolates 49
Typedefs 49
Comments 51

Single-Line Comments 51

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Multi-Line Comments 51
Documentation Comments 51

Summary 52

3. A Tour of the Dart Libraries. 53
dart:core - Numbers, Collections, Strings, and More 53

Numbers 53
Strings and Regular Expressions 54
Collections 57
Dates and Times 62
Utility Classes 63
Asynchronous Programming 64
Exceptions 66

dart:math - Math and Random 66
Trigonometry 66
Maximum and Mininum 67
Math Constants 67
Random Numbers 67
More Information 67

dart:html - Browser-Based Apps 68
Manipulating the DOM 68
Using HTTP Resources with HttpRequest 72
Sending and Receiving Real-Time Data with WebSockets 74

dart:isolate - Concurrency with Isolates 76
Isolate Concepts 76
Using Isolates 77
More Information 80

dart:io - I/O for Command-Line Apps 80
Files and Directories 80
HTTP Clients and Servers 83

dart:json - Encoding and Decoding Objects 84
Decoding JSON 85
Encoding JSON 85

dart:uri - Manipulating URIs 86
Encoding and Decoding Fully Qualified URIs 86
Encoding and Decoding URI Components 86
Parsing URIs 87
Building URIs 87

dart:utf - Strings and Unicode 87
Decoding UTF-8 Characters 87
Encoding Strings to UTF-8 Bytes 88
Other Functionality 88

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

dart:crypto - Hash Codes and More 88
Generating Cryptographic Hashes 89
Generating Message Authentication Codes 89
Generating Base64 Strings 89

Summary 90

4. Tools. 91
pub: The Dart Package Manager 91

Creating a Pubspec 92
Installing Packages 92
Importing Libraries from Packages 93
More Information 93

Dart Editor 93
Viewing Samples 93
Managing the Files View 93
Creating Apps 94
Editing Apps 95
Running Apps 99
Debugging Apps 101
Compiling to JavaScript 102
Other Features 102

Dartium: Chromium with the Dart VM 103
Downloading and Installing the Browser 103
Launching the Browser 104
Filing Bugs 104
Linking to Dart Source 104
Detecting Dart Support 105
Launching from the Command Line 105

dart2js: The Dart-to-JavaScript Compiler 105
Basic Usage 106
Options 106

dart: The Standalone VM 106
Basic Usage 106
Enabling Checked Mode 106
Additional Options 107

Summary 107

5. Walkthrough: Dart Chat. 109
How to Run Dart Chat 109
How Dart Chat Works 110
The Client’s HTML Code 111
The Client’s Dart Code 112

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Finding DOM Elements 112
Wrapping DOM Elements 113
Updating DOM Elements 114
Encoding and Decoding Messages 114
Communicating with WebSockets 115

The Server’s Code 116
Serving Static Files 116
Managing WebSocket Connections 117
Logging Messages to a File 118

What Next? 119

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

When we joined Google and entered the fascinating world of web browser development
more than six years ago, the web was a different place. It was clear that a new breed of
web apps was emerging, but the performance of the underlying platform left much to
be desired. Given our background in designing and implementing virtual machines,
building a high performance JavaScript engine seemed like an interesting challenge. It
was. We implemented the V8 JavaScript engine from scratch and shipped it as part of
Google Chrome in 2008, and we are very proud of the positive performance impact our
work seems to have had on the entire browser industry.

Even though recent performance gains in web browsers have shattered most limits on
how large and complex web apps can be, building large, high-performance web apps
remains hard. Without good abstraction mechanisms and clean semantics, developers
often end up with complex and convoluted code. Naturally, this problem gets exacer‐
bated as the codebase grows. We designed the Dart programming language to solve this
exact problem, and we hope that programmers will be more productive as a result.

Over the past year, we have read and written a lot of Dart code, and it is very satisfying
to see how Dart inspires programmers to strive for concise, elegant programs. There is
something very enjoyable about incrementally transforming prototypes into maintain‐
able production software through refactorings and adding type annotations—and it
definitely feels like Dart as a language scales well from small experiments to large projects
with lots of code.

Dart: Up and Running is a practical guide that introduces the Dart programming lan‐
guage and teaches you how to build Dart applications. We hope you will enjoy the book
and Dart.

—Lars Bak and Kasper Lund
Designers of the Dart programming language, October 2012

ix

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

You don’t need to be an expert web developer to build web apps. With Dart, you can be
productive as you build high-performance apps for the modern web.

Our aim for this book is to be a useful introduction to the Dart language, libraries, and
tools. Because this book is short and Dart is young, you might also need to refer to the
Dart website at http://dartlang.org—both for details and for updates. For the latest news,
keep an eye on the Dart page on Google+.

Another important website is this book’s GitHub project. The text for this work is avail‐
able there under the Creative Commons Attribution-Noncommercial-No Derivative
Works 3.0 United States License. Source code files for this book’s samples are also there,
in the code/ subdirectory. Downloading the sample code from GitHub is much easier
than copying it from the book.

If you find an error in the sample code or text, please create an issue.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xi

www.it-ebooks.info

http://dartlang.org
http://google.com/+dartlang
https://github.com/dart-lang/dart-up-and-running-book
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://github.com/dart-lang/dart-up-and-running-book/tree/master/code
https://github.com/dart-lang/dart-up-and-running-book/tree/master/code
https://github.com/dart-lang/dart-up-and-running-book/issues/new
http://www.it-ebooks.info/

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permis‐
sion unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require per‐
mission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Dart:Up and Running by Kathy Walrath
and Seth Ladd (O’Reilly). Copyright 2013 Kathy Walrath and Seth Ladd,
978-1-449-33089-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database

xii | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.it-ebooks.info/

from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Dart_Up_and_Running .

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We’d like to thank the many people who contributed to this book. We hope we haven’t
forgotten anyone, but we probably have.

The following Dart engineers and managers gave us prompt, helpful reviews of the
sections corresponding to their areas of responsibility: Mads Ager, Peter von der Ahé,
Justin Fagnani, Dan Grove, Florian Loitsch, Sam McCall, Vijay Menon, John Messerly,
Anton Muhin, Lasse R.H. Nielsen, Bob Nystrom, Ivan Posva, and Jaime Wren.

We’d especially like to thank the people who reviewed even bigger swaths of the book
or contributed in other, large ways:

Preface | xiii

www.it-ebooks.info

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/Dart_Up_and_Running
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

• JJ Behrens, whose careful look at the first draft of the book helped us catch errors
and inconsistencies, as well as rework Chapter 5 to be more interesting, and less of
a laundry list. He also created a system for testing our samples, so we can be sure
that they work now and continue to work as the language and libraries evolve.

• Shailen Tuli, who helped test our examples, although he doesn’t even work for
Google.

• Mary Campione, whose stream-of-consciousness review of the entire book, per‐
formed while she was first learning the language, helped us find and fix many con‐
fusing spots, as well as some errors.

• Phil Quitslund, who did a big-picture review of the book and gave us guidance and
encouragement.

• Kasper Lund, whose review caught issues that only someone with his expert, com‐
prehensive knowledge of the Dart language and libraries could have found.

• Gilad Bracha, the language spec writer whose reviews of the language chapter (our
longest one) were invaluable for getting language details right. We couldn’t cover
everything, so we look forward to his future work on making all the corners of the
language understandable to all Dart programmers.

Other Googlers helped, as well. Vivian Li, the head of Chrome Developer Relations,
supported our work on this book. Andres Ferrate, the Google Press liaison to O’Reilly,
helped simplify the process of getting the book published. Myisha Harris gave us ex‐
cellent legal advice.

The people at O’Reilly were extremely helpful. Meghan Blanchette, our editor, kept
everything going smoothly, monitoring our progress in the nicest possible way. Chris‐
topher Hearse checked our work and helped us make some last-minute fixes that im‐
proved the final result. We’d also like to thank the good people who manage the author
workflow and make working on an O’Reilly book such a pleasure. We personally worked
with Sarah Schneider and Jessica Hosman.

Finally, we thank Lars Bak and Kasper Lund for writing the foreword, and most of all
for creating Dart.

xiv | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Quick Start

Welcome to Dart, an open-source, batteries-included developer platform for building
structured HTML5 web apps. This chapter tells you why Google created Dart, what’s
cool about Dart, and how to write and run your first Dart app.

Dart provides not only a new language, but libraries, an editor, a virtual machine (VM),
a browser that can run Dart apps natively, and a compiler to JavaScript. Dart aims to be
a more productive way to build the high-performance, modern apps that users demand.

Dart is still changing! This book reflects the Milestone 1 release (Oc‐
tober 2012), which aims to finalize the language but not the libraries.
Wherever possible, this book tells you what we expect to change.

Why Google Created Dart
Google cares a lot about helping to make the web great. We write a lot of web apps, many
of them quite sophisticated—think Gmail, Google Calendar, Google+, and more. We
want web apps to load quickly, run smoothly, and present engaging and fun experiences
to users. We want developers of all backgrounds to be able to build great experiences
for the browser.

As an example of Google’s commitment to the web, consider the Google Chrome brows‐
er. Google created it to spur competition at a time when the web platform seemed to be
stagnating. It worked. As Figure 1-1 shows, browser speed has increased immensely
since Chrome’s introduction in 2008.

The JavaScript engine known as V8 is responsible for much of Chrome’s
speed. Many of the V8 engineers are now working on the Dart project.

1

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-1. Browser speed

The number of new features in browsers has also increased, with APIs such as WebGL,
FileSystem, Web workers, and WebSockets. Browsers now have automatic update ca‐
pabilities, frequently delivering new features and fixes directly to the user. Mobile de‐
vices such as tablets and phones also have modern browsers with many HTML5 features.

Despite these improvements in the web platform, the developer experience hasn’t im‐
proved as much as we’d like. We believe it should be easier to build larger, more complex
web apps. It’s taken far too long for productive tools to emerge, and they still don’t match
the capabilities offered by other developer platforms. You shouldn’t have to be intimately
familiar with web programming to start building great apps for the modern web. And
even though JavaScript engines are getting faster, web apps still start up much too slowly.

We expect Dart to help in two main ways:

• Better performance: As VM engineers, the designers of Dart know how to build a
language for performance. A more structured language is easier to optimize, and a
fresh VM enables improvements such as faster startup.

• Better productivity: Support for libraries and packages helps you work with other
developers and easily reuse code from other projects. Types can make APIs clearer
and easier to use. Tools help you refactor, navigate, and debug code.

2 | Chapter 1: Quick Start

www.it-ebooks.info

http://www.it-ebooks.info/

A Quick Look at the Dart Language
It’s hard to talk about a language without seeing it. Here’s a peek at a small Dart program:

import 'dart:math';

class Point {
 num x, y;
 Point(this.x, this.y);
 num distanceTo(Point other) {
 var dx = x - other.x;
 var dy = y - other.y;
 return sqrt(dx * dx + dy * dy);
 }
}

main() {
 var p = new Point(2, 3);
 var q = new Point(3, 4);
 print('distance from p to q = ${p.distanceTo(q)}');
}

Of course, Dart’s main use case is building modern web apps. Programming the browser
is easy:

import 'dart:html';

main() {
 var button = new ButtonElement();
 button..id = 'confirm'
 ..text = 'Click to Confirm'
 ..classes.add('important')
 ..on.click.add((e) => window.alert('Confirmed!'));
 query('#registration').elements.add(button);
}

You’ll learn about the Dart language and libraries in Chapters 2 and 3 respectively.

What’s Cool About Dart
Dart may look familiar, but don’t let that fool you. Dart has lots of cool features to help
give you a productive and fun experience building the next generation of awesome web
apps.

Dart is easy to learn. A wide range of developers can learn Dart quickly. It’s an object-
oriented language with classes, single inheritance, lexical scope, top-level functions, and
a familiar syntax. Most developers are up and running with Dart in just a few hours.

A Quick Look at the Dart Language | 3

www.it-ebooks.info

http://www.it-ebooks.info/

Dart compiles to JavaScript. Dart has been designed from the start to compile to Java‐
Script, so that Dart apps can run across the entire modern web. Every feature considered
for the language must somehow be translated to performant and logical JavaScript before
it is added. Dart draws a line in the sand and doesn’t support older, legacy browsers.

Dart runs in the client and on the server. The Dart virtual machine (VM) can be integrated
into a web browser, but it can also run standalone on the command line. With built-in
library support for files, directories, sockets, and even web servers, you can use Dart for
full end-to-end apps.

Dart comes with a lightweight editor. You can use Dart Editor to write, launch, and debug
Dart apps. The editor can help you with code completion, detecting potential bugs,
debugging both command-line and web apps, and even refactoring. Dart Editor isn’t
required for writing Dart; it’s just a tool that can help you write better code faster.

Dart supports types, without requiring them. You can omit types when you want to move
very quickly, aren’t sure what structure to take, or simply want to express something you
can’t with the type system. You can add types as your program matures, the structure
becomes more evident, and more developers join the project. Dart’s optional types are
static type annotations that act as documentation, clearly expressing your intent. Using
types means that fewer comments are required to document the code, and tools can give
better warnings and error messages.

Dart scales from small scripts to large, complex apps. Web development is very much an
iterative process. With the reload button acting as your compiler, building the seed of a
web app is often a fun experience of writing a few functions just to experiment. As the
idea grows, you can add more code and structure. Thanks to Dart’s support for top-level
functions, optional types, classes, and libraries, your Dart programs can start small and
grow over time. Tools such as Dart Editor help you refactor and navigate your code as
it evolves.

Dart has a wide array of built-in libraries. The core library supports built-in types and
other fundamental features such as collections, dates, and regular expressions. Web apps
can use the HTML library—think DOM programming, but optimized for Dart.
Command-line apps can use the I/O library to work with files, directories, sockets, and
servers. Other libraries include URI, UTF, Crypto, Math, and Unit test.

Dart supports safe, simple concurrency with isolates. Traditional shared-memory threads
are difficult to debug and can lead to deadlocks. Dart’s isolates, inspired by Erlang,
provide an easier to understand model for running isolated, but concurrent, portions
of your code. Spawning new isolates is cheap and fast, and no state is shared. In web
apps, isolates even compile to Web workers.

4 | Chapter 1: Quick Start

www.it-ebooks.info

http://www.it-ebooks.info/

Dart supports code sharing. Traditional web programming workflows can’t integrate
third-party libraries from arbitrary sources or frameworks. With the Dart package
manager (pub) and language features such as libraries, you can easily discover, install,
and integrate code from across the web and enterprise.

Dart is open source. Dart was born for the web, and it’s available under a BSD-style
license. You can find the project’s issue tracker and source repository at dart.google‐
code.com. Maybe you’ll submit the next patch?

Up and Running
Now that you know something about Dart, get ready to code! These instructions feature
the open-source Dart Editor tool. When you download Dart Editor, you also get the
Dart-to-JavaScript compiler and a version of Chromium (nicknamed Dartium) that
includes the Dart VM.

If you run into trouble installing and using Dart Editor, see Trouble‐
shooting Dart Editor.

Step 1: Download and Install the Software
In this step, you’ll install Dart Editor and, if necessary, a Java runtime environment. (To
avoid having to modify the PATH environment variable, you can install the JRE under
your Dart installation directory, in a subdirectory named jre.)

1. Download the Dart Editor ZIP file for your platform from http://www.dartlang.org/
downloads.html.

2. Unzip the file. The resulting directory, which we’ll call your Dart installation direc‐
tory, contains the DartEditor executable file and several subdirectories, including
a samples directory.

3. If you don’t already have a Java runtime, download and install it. Dart Editor requires
Java version 6 or higher.

Step 2: Launch the Editor
Go to your Dart installation directory, and double-click the DartEditor executable file

.

You should see the Dart Editor application window appear, looking something like
Figure 1-2.

Up and Running | 5

www.it-ebooks.info

http://dart.googlecode.com
http://dart.googlecode.com
http://www.dartlang.org/docs/editor/troubleshoot.html
http://www.dartlang.org/docs/editor/troubleshoot.html
http://www.dartlang.org/downloads.html
http://www.dartlang.org/downloads.html
http://www.it-ebooks.info/

Figure 1-2. Dart Editor and its Welcome page

Step 3: Create and Run an App
It’s easy to create a simple web or command-line app from scratch. This step walks you
through creating and running a command-line app.

1. Click the New Application button (at the upper left of Dart Editor). Alternatively,
choose File > New Application... from the Dart Editor menu. A dialog appears (see
Figure 1-3).

2. Type in a name for your application—for example, HelloWorld. If you don’t like the
default directory, type in a new location or browse to choose the location.

3. Unselect Generate content for a basic web app and Add Pub support if they’re
selected. Then click Finish to create the initial files for the app.

6 | Chapter 1: Quick Start

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-3. Create command-line or web apps with Dart Editor

A default Dart file appears in the Edit view, and its directory appears in the Files
view. Your Dart Editor window should look something like Figure 1-4.

Figure 1-4. Dart Editor displaying a new app’s files

4. Click the Run button to run your new app.
For command-line apps, the output of print() appears at the bottom right, in a
new tab next to the Problems tab.

Up and Running | 7

www.it-ebooks.info

http://www.it-ebooks.info/

Step 4: Open and Run a Sample
The Dart Editor bundle comes with several samples. In this step, you’ll open a sample
web app and run it in Dartium.

1. Click the Welcome tab. Or choose Welcome Page from the Tools menu.
2. In the Welcome tab, click the image labeled Sunflower. The Editor view now dis‐

plays the contents of sunflower.dart, and the Files view lists the files in the Sun‐
flower app’s directory.

3. Click the Run button . Dart Editor launches Dartium, which displays sunflow‐
er.html.

Dartium is a technical preview, and it might have security and sta‐
bility issues. Do not use Dartium as your primary browser!

4. Move the slider to display the sunflower, as shown in Figure 1-5. For details about
the Sunflower example, read the Sunflower Code Walkthrough.

Figure 1-5. The Sunflower sample running in Dartium

8 | Chapter 1: Quick Start

www.it-ebooks.info

http://www.dartlang.org/samples/sunflower/
http://www.it-ebooks.info/

What Next?
Now that you know the basics, you can learn more about Dart Editor and help improve
it.

Become a power user

See the Dart Editor homepage for help on using Dart Editor’s expanding feature set.

Send feedback!

Click the SEND FEEDBACK link (at the upper right of the Dart Editor window) when‐
ever you notice a problem or have an idea for improving Dart Editor. We’ll open a new
issue for you, if appropriate, without disclosing your sensitive or personally identifiable
information.

Up and Running | 9

www.it-ebooks.info

http://www.dartlang.org/editor/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

A Tour of the Dart Language

This chapter shows you how to use each major Dart feature, from variables and operators
to classes and libraries, with the assumption that you already know how to program in
another language.

To play with each feature, create a command-line application project in
Dart Editor, as described in “Up and Running” (page 5).

Consult the Dart Language Specification whenever you want more details about a lan‐
guage feature.

A Basic Dart Program
The following code uses many of Dart’s most basic features.

// Define a function.
printNumber(num aNumber) {
 print('The number is $aNumber.'); // Print to the console.
}

// This is where the app starts executing.
main() {
 var number = 42; // Declare and initialize a variable.
 printNumber(number); // Call a function.
}

Here’s what this program uses that applies to all (or almost all) Dart apps:

11

www.it-ebooks.info

http://www.dartlang.org/docs/spec/
http://www.it-ebooks.info/

// This is a comment.

Use // to indicate that the rest of the line is a comment. Alternatively, use /* ... */.
For details, see “Comments” (page 51).

num

A type. Some of the other built-in types are String, int, and bool.

100

A number literal. Literals are a kind of compile-time constant.

print()

A handy way to display output.

'...' (or "...")
A string literal.

$variableName (or ${expression})
String interpolation: including a variable or expression’s string equivalent inside of
a string literal. For more information, see “Strings” (page 16).

main()

The special, required, top-level function where app execution starts.

var

A way to declare a variable without specifying its type.

Our code follows the conventions in the Dart Style Guide. For example,
we use two-space indentation.

Important Concepts
As you learn about the Dart language, keep these facts and concepts in mind:

• Everything you can place in a variable is an object, and every object is an instance
of a class. Even numbers and functions are objects. All objects inherit from the
Object class.

• Specifying static types (such as num in the preceding example) clarifies your intent
and enables static checking by tools, but it’s optional. (You might notice when you’re
debugging your code that objects with no specified type get a special type: dynamic.)

• Dart parses all your code before running it. You can provide tips to Dart—for ex‐
ample, by using types or compile-time constants—to catch errors or help your code
run faster.

12 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.dartlang.org/articles/style-guide/
http://api.dartlang.org/dart_core/Object.html
http://www.it-ebooks.info/

• Dart supports top-level functions (such as main()), as well as functions tied to a
class or object (static and instance methods, respectively).

• Similarly, Dart supports top-level variables, as well as variables tied to a class or
object (static and instance variables). Instance variables are sometimes known as
fields or properties.

• Unlike Java, Dart doesn’t have the keywords public, protected, and private. If an
identifier starts with an underscore (_), it’s private to its library. For details, see
“Libraries and Visibility” (page 46).

• Identifiers can start with a letter or _, followed by any combination of those char‐
acters plus digits.

• Sometimes it matters whether something is an expression or a statement, so we’ll be
precise about those two words.

• Dart tools can report two kinds of errors: warnings and errors. Warnings are just
hints that your code might not work, but they don’t prevent your program from
executing. Errors can be either compile-time or run-time. A compile-time error
prevents the code from executing at all; a run-time error results in an exception
(page 32) being raised while the code executes.

• Dart has two runtime modes: production and checked. Production is faster, but
checked is helpful at development.

Runtime Modes
We recommend that you develop and debug in checked mode, and deploy to production
mode.

Production mode is the default runtime mode of a Dart program, optimized for speed.
Production mode ignores assert statements (page 32) and static types.

Checked mode is a developer-friendly mode that helps you catch some type errors during
runtime. For example, if you assign a non-number to a variable declared as a num, then
checked mode throws an exception.

Variables
Here’s an example of creating a variable and assigning a value to it:

var name = 'Bob';

Variables are references. The variable called name contains a reference to a String object
with a value of “Bob”.

Variables | 13

www.it-ebooks.info

http://www.it-ebooks.info/

Default Value
Uninitialized variables have an initial value of null. Even variables with numeric types
are initially null, because numbers are objects.

int lineCount;
assert(lineCount == null);
// Variables (even if they will be numbers) are initially null.

The assert() call is ignored in production mode. In checked mode,
assert(condition) throws an exception unless condition is true. For
details, see “Assert” (page 32).

Optional Types
You have the option of adding static types to your variable declarations:

String name = 'Bob';

Adding types is a way to clearly express your intent. Tools such as compilers and editors
can use these types to help you, by providing early warnings for bugs and code com‐
pletion.

This chapter follows the style guide recommendation of using var,
rather than type annotations, for local variables.

Final and Const
If you never intend to change a variable, use final or const, either instead of var or in
addition to a type. A final variable can be set only once; a const variable is a compile-
time constant.

A local, top-level, or class variable that’s declared as final is initialized the first time it’s
used.

final name = 'Bob'; // Or: final String name = 'Bob';
// name = 'Alice'; // Uncommenting this results in an error

Lazy initialization of final variables helps apps start up faster.

14 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.dartlang.org/articles/style-guide/#type-annotations
http://www.it-ebooks.info/

Use const for variables that you want to be compile-time constants. Where you declare
the variable, set the value to a compile-time constant such as a literal, a const variable,
or the result of an arithmetic operation on constant numbers.

const bar = 1000000; // Unit of pressure (in dynes/cm2)
const atm = 1.01325 * bar; // Standard atmosphere

Built-in Types
The Dart language has special support for the following types:

• numbers
• strings
• booleans
• lists (also known as arrays)
• maps

You can initialize an object of any of these special types using a literal. For example,
'this is a string' is a string literal, and true is a boolean literal.

Because every variable in Dart refers to an object—an instance of a class—you can
usually use constructors to initialize variables. Some of the built-in types have their own
constructors. For example, you can use the Map() constructor to create a map, using
code such as new Map().

Numbers
Dart numbers come in two flavors:
int

Integers of arbitrary size

double

64-bit (double-precision) floating-point numbers, as specified by the IEEE 754
standard

Both int and double are subtypes of num. The num type includes basic operators such
as +, -, /, and *, as well as bitwise operators such as >>. The num type is also where you’ll
find abs(), ceil(), and floor(), among other methods. If num and its subtypes don’t
have what you’re looking for, the Math class might. (In JavaScript produced from Dart
code, big integers currently behave differently than they do when the same Dart code
runs in the Dart VM.)

Integers are numbers without a decimal point. Here are some examples of defining
integer literals:

Built-in Types | 15

www.it-ebooks.info

http://api.dartlang.org/dart_core/int.html
http://api.dartlang.org/dart_core/double.html
http://api.dartlang.org/dart_core/num.html
http://api.dartlang.org/dart_core/Math.html
http://dartbug.com/1533
http://www.it-ebooks.info/

var x = 1;
var hex = 0xDEADBEEF;
var bigInt = 346534658346524376592384765923749587398457294759347029438709349347;

If a number includes a decimal, it is a double. Here are some examples of defining double
literals:

var y = 1.1;
var exponents = 1.42e5;

Here’s how you turn a string into a number, or vice versa:
// String -> int
var one = int.parse('1');
assert(one == 1);

// String -> double
var onePointOne = double.parse('1.1');
assert(onePointOne == 1.1);

// int -> String
String oneAsString = 1.toString();
assert(oneAsString == '1');

// double -> String
String piAsString = 3.14159.toStringAsFixed(2);
assert(piAsString == '3.14');

The num type specifies the traditional bitwise shift (<<, >>), AND (&), and OR (|)
operators. For example:

assert((3 << 1) == 6); // 0011 << 1 == 0110
assert((3 >> 1) == 1); // 0011 >> 1 == 0001
assert((3 | 4) == 7); // 0011 | 0100 == 0111

Strings
A Dart string is a sequence of UTF-16 code units. You can use either single or double
quotes to create a string:

var s1 = 'Single quotes work well for string literals.';
var s2 = "Double quotes work just as well.";
var s3 = 'It\'s easy to escape the string delimiter.';
var s4 = "It's even easier to just use the other string delimiter.";

You can put the value of an expression inside a string by using ${expression}. If the
expression is an identifier, you can skip the {}. To get the string corresponding to an
object, Dart calls the object’s toString() method.

var s = 'string interpolation';

16 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

assert('Dart has $s, which is very handy.' ==
 'Dart has string interpolation, which is very handy.');
assert('That deserves all caps. ${s.toUpperCase()} is very handy!' ==
 'That deserves all caps. STRING INTERPOLATION is very handy!');

The == operator tests whether two objects are equivalent. Two strings
are equivalent if they have the same characters.

You can concatenate strings using adjacent string literals:
var s = 'String ''concatenation'
 " works even over line breaks.";
assert(s == 'String concatenation works even over line breaks.');

Another way to create a multi-line string: use a triple quote with either single or double
quotation marks.

var s1 = '''
You can create
multi-line strings like this one.
''';

var s2 = """This is also a
multi-line string.""";

You can create a “raw” string by prefixing it with r.
var s = r"In a raw string, even \n isn't special.";

For more information on using strings, see “Strings and Regular Expressions” (page 54).

Booleans
To represent boolean values, Dart has a type named bool. Only two objects have type
bool: the boolean literals, true and false.

When Dart expects a boolean value, only the value true is treated as true. All other
values are treated as false. Unlike in JavaScript, values such as 1, "aString", and some
Object are all treated as false.

For example, consider the following code, which is valid both as JavaScript and as Dart
code:

var name = 'Bob';
if (name) {
 print('You have a name!'); // Prints in JavaScript, not in Dart.
}

Built-in Types | 17

www.it-ebooks.info

http://www.it-ebooks.info/

If you run this code as JavaScript, without compiling to Dart, it prints “You have a
name!” because name is a non-null object. However, in Dart running in production
mode, the above doesn’t print at all because name is converted to false (because name !
= true). In Dart running in checked mode, the above code throws an exception because
the name variable is not a bool.

Here’s another example of code that behaves differently in JavaScript and Dart:
if (1) {
 print('JavaScript prints this line because it thinks 1 is true.');
} else {
 print('Dart in production mode prints this line.');

 // However, in checked mode, if (1) throws an exception
 // because 1 is not boolean.
}

The previous two samples work only in production mode, not checked
mode. In checked mode, an exception is thrown if a non-boolean is used
when a boolean value is expected.

Dart’s treatment of booleans is designed to avoid the strange behaviors that can arise
when many values can be treated as true. What this means for you is that, instead of
using code like if (nonbooleanValue), you should instead explicitly check for values.
For example:

// Check for an empty string.
var fullName = '';
assert(fullName.isEmpty());

// Check for zero.
var hitPoints = 0;
assert(hitPoints <= 0);

// Check for null.
var unicorn;
assert(unicorn == null);

// Check for NaN.
var iMeantToDoThis = 0/0;
assert(iMeantToDoThis.isNaN());

Lists
Perhaps the most common collection in nearly every programming language is the
array, or ordered group of objects. In Dart, arrays are List objects, so we usually just call
them lists.

18 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://api.dartlang.org/dart_core/List.html
http://www.it-ebooks.info/

Dart list literals look like JavaScript array literals. Here’s a simple Dart list:
var list = [1,2,3];

Lists use zero-based indexing, where 0 is the index of the first element and list.length
- 1 is the index of the last element. You can get a list’s length and refer to list elements
just as you would in JavaScript:

var list = [1,2,3];
assert(list.length == 3);
assert(list[1] == 2);

The List type and its supertype, Collection, have many handy methods for manipulating
lists. For more information about lists, see “Generics” (page 44) and “Collections” (page
57).

Maps
In general, a map is an object that associates keys and values. Dart support for maps is
provided by map literals and the Map type.

Here’s a simple Dart map:
var gifts = { // A map literal
// Keys Values
 'first' : 'partridge',
 'second' : 'turtledoves',
 'fifth' : 'golden rings'
};

In map literals, each key must be a string. If you use a Map constructor, any object can
be a key.

var map = new Map(); // use a map constructor.
map[1] = 'partridge'; // key is 1; value is 'partridge'.
map[2] = 'turtledoves'; // key is 2; value is 'turtledoves'.
map[5] = 'golden rings'; // key is 5; value is 'golden rings'.

A map value can be any object, including null.

You add a new key-value pair to an existing map just as you would in JavaScript:
var gifts = { 'first': 'partridge' };
gifts['fourth'] = 'calling birds'; // Add a key-value pair

You retrieve a value from a map the same way you would in JavaScript:
var gifts = { 'first': 'partridge' };
assert(gifts['first'] == 'partridge');

If you look for a key that isn’t in a map, you get a null in return.
var gifts = { 'first': 'partridge' };
assert(gifts['fifth'] == null);

Built-in Types | 19

www.it-ebooks.info

http://api.dartlang.org/dart_core/Collection.html
http://api.dartlang.org/dart_core/Map.html
http://www.it-ebooks.info/

Use .length to get the number of key-value pairs in the map:
var gifts = { 'first': 'partridge' };
gifts['fourth'] = 'calling birds';
assert(gifts.length == 2);

For more information about maps, see “Generics” (page 44) and “Maps” (page 60).

Functions
Here’s an example of implementing a function:

void printNumber(num number) {
 print('The number is $number.');
}

Although the style guide recommends specifying the parameter and return types, you
don’t have to:

printNumber(number) { // Omitting types is OK.
 print('The number is $number.');
}

For functions that contain just one expression, you can use a shorthand syntax:
printNumber(number) => print('The number is $number.');

The => expr; syntax is a shorthand for { return expr;}. In the printNumber() func‐
tion above, the expression is the call to the top-level print() function.

Only an expression—not a statement—can appear between the arrow
(=>) and the semicolon (;). For example, you can’t put an if statement
(page 28) there, but you can use a conditional (?:) expression (page 28).

You can use types with =>, although the convention is not to do so.
printNumber(num number) => print('The number is $number.'); // Types are OK.

Here’s an example of calling a function:
printNumber(123);

A function can have two types of parameters: required and optional. The required pa‐
rameters are listed first, followed by any optional parameters.

Optional Parameters
Optional parameters can be either positional or named, but not both.

Both kinds of optional parameter can have default values. The default values must be
compile-time constants such as literals. If no default value is provided, the value is null.

20 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

If you need to know whether the caller passed in a value for an optional parameter, use
the syntax ?param.

if (?device) { // Returns true if the caller specified the parameter.
 //...The user set the value. Do something with it...
}

Optional named parameters

When calling a function, you can specify named parameters using paramName: value.
For example:

enableFlags(bold: true, hidden: false);

When defining a function, use {param1, param2, …} to specify named parameters.
/// Sets the [bold] and [hidden] flags to the values you specify.
enableFlags({bool bold, bool hidden}) {
 //...
}

Use a colon (:) to specify default values.
/**
 * Sets the [bold] and [hidden] flags to the values you specify,
 * defaulting to false.
 */
enableFlags({bool bold: false, bool hidden: false}) {
 //...
}

enableFlags(bold: true); // bold will be true; hidden will be false.

The preceding two examples use documentation comments (page 51).

Optional positional parameters

Wrapping a set of function parameters in [] marks them as optional positional param‐
eters.

String say(String from, String msg, [String device]) {
 var result = '$from says $msg';
 if (device != null) {
 result = '$result with a $device';
 }
 return result;
}

Here’s an example of calling this function without the optional parameter:
assert(say('Bob', 'Howdy') == 'Bob says Howdy');

Functions | 21

www.it-ebooks.info

http://www.it-ebooks.info/

And here’s an example of calling this function with the third parameter:
assert(say('Bob', 'Howdy', 'smoke signal') ==
 'Bob says Howdy with a smoke signal');

Use = to specify default values.
String say(String from, String msg,
 [String device='carrier pigeon', String mood]) {
 var result = '$from says $msg';
 if (device != null) {
 result = '$result with a $device';
 }
 if (mood != null) {
 result = '$result (in a $mood mood)';
 }
 return result;
}

assert(say('Bob', 'Howdy') == 'Bob says Howdy with a carrier pigeon');

Functions as First-Class Objects
You can pass a function as a parameter to another function. For example:

printElement(element) {
 print(element);
}

var list = [1,2,3];
list.forEach(printElement); // Pass printElement as a parameter.

You can also assign a function to a variable, such as:
var loudify = (msg) => '!!! ${msg.toUpperCase()} !!!';
assert(loudify('hello') == '!!! HELLO !!!');

Lexical Closures
Functions can close over variables defined in surrounding scopes. In the following ex‐
ample, makeAdder() captures the variable n and makes it available to the function that
makeAdder() returns. Wherever the returned function goes, it remembers n.

/// Returns a function that adds [n] to the function's argument.
Function makeAdder(num n) {
 return (num i) => n + i;
}

main() {
 var add2 = makeAdder(2); // Create a function that adds 2.
 var add4 = makeAdder(4); // Create a function that adds 4.

22 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

 assert(add2(3) == 5);
 assert(add4(3) == 7);
}

Return Values
All functions return a value. If no return value is specified, the statement return
null; is implicitly appended to the function body.

Operators
Dart defines the operators shown in Table 2-1. You can override many of these operators,
as described in “Operators” (page 41).

Table 2-1. Operators and their precedence
Description Operator

unary postfix and argument definition test expr++ expr-- () [] . ?identifier

unary prefix -expr !expr ~expr ++expr --expr

multiplicative * / % ~/

additive + -

shift << >>

relational and type test >= > <= < as is is!

equality == !=

bitwise AND &

bitwise XOR ^

bitwise OR |

logical AND &&

logical OR ||

conditional expr1 ? expr2 : expr3

cascade ..

assignment = *= /= ~/= %= += -= <<= >>= &= ^= |=

When you use operators, you create expressions. Here are some examples of operator
expressions:

a++
a + b
a = b
a == b
a? b: c
a is T

Operators | 23

www.it-ebooks.info

http://www.it-ebooks.info/

In Table 2-1, each operator has higher precedence than the operators in the rows below
it. For example, the multiplicative operator % has higher precedence than (and thus
executes before) the equality operator ==, which has higher precedence than the logical
AND operator &&. That precedence means that the following two lines of code execute
the same way:

if ((n % i == 0) && (d % i == 0)) // Parens improve readability.
if (n % i == 0 && d % i == 0) // Harder to read, but equivalent.

For operators that work on two operands, the leftmost operand deter‐
mines which version of the operator is used. For example, if you have a
Vector object and a Point object, aVector + aPoint uses the Vector
version of +.

Arithmetic Operators
Dart supports the usual arithmetic operators.

Table 2-2. Arithmetic operators
Operator Meaning

+ Add

– Subtract

-expr Unary minus, also known as negation (reverse the sign of the expression)

* Multiply

/ Divide

~/ Divide, returning an integer result

% Get the remainder of an integer division (modulo)

Example:
var a = 2;
var b = 3;

assert(a + b == 5);
assert(a - b == -1);
assert(a * b == 6);
assert(a / b > 0.6 && a / b < 0.7);
assert(a ~/ b == 0); // Quotient
assert(a % b == 2); // Remainder

Dart also supports both prefix and postfix increment and decrement operators.

Table 2-3. Increment and decrement operators
Operator Meaning

++var var = var + 1 (expression value is var + 1)

24 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

Operator Meaning

var++ var = var + 1 (expression value is var)

--var var = var – 1 (expression value is var – 1)

var-- var = var – 1 (expression value is var)

Example:
var a, b;

a = 0;
b = ++a; // Increment a before b gets its value.
assert(a == b); // 1 == 1

a = 0;
b = a++; // Increment a AFTER b gets its value.
assert(a != b); // 1 != 0

a = 0;
b = --a; // Decrement a before b gets its value.
assert(a == b); // -1 == -1

a = 0;
b = a--; // Decrement a AFTER b gets its value.
assert(a != b) ; // -1 != 0

Equality and Relational Operators
Table 2-4. Equality and relational operators

Operator Meaning

== Equal; see discussion below

!= Not equal

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

To test whether two objects x and y represent the same thing, use the == operator. Here’s
how the == operator works:

1. If x or y is null, return true if both are null, and false if only one is null.
2. Return the result of the method invocation x.==(y). That’s right, operators such as

== are methods that are invoked on their first operand. You’ll see more about this
in “Operators” (page 41).

Here’s an example of using each of the equality and relational operators:

Operators | 25

www.it-ebooks.info

http://www.it-ebooks.info/

var a = 2;
var b = 3;
var c = a;

assert(a == 2); // 2 and 2 are equal.
assert(a != b); // 2 and 3 aren't equal.
assert(b > a); // 3 is more than 2.
assert(a < b); // 2 is less then 3.
assert(b >= b); // 3 is greater than or equal to 3.
assert(a <= b); // 2 is less than or equal to 3.

Type Test Operators
The as, is, and is! operators are handy for checking types at runtime.

Table 2-5. Type test operators
Operator Meaning

as Typecast

is True if the object has the specified type

is! False if the object has the specified type

The result of obj is T is true if obj implements the interface specified by T. For example,
obj is Object is always true.

Use the as operator to cast an object to a particular type. In general, you should use it
as a shorthand for an is test on an object following by an expression using that object.
For example, consider the following code:

if (person is Person) { // Type check
 person.firstName = 'Bob';
}

You can make the code shorter using the as operator:
(person as Person).firstName = 'Bob';

Assignment Operators
As you’ve already seen, you assign values using the = operator. You can also use com‐
pound assignment operators such as +=, which combine an operation with an assign‐
ment.

Table 2-6. Assignment operators
= *= %= &=

+= /= <<= ^=

–= ~/= >>= |=

Here’s how compound assignment operators work:

26 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

 Compound assignment Equivalent expression

For an operator op: a op= b a = a op b

Example: a += b a = a + b

The following example uses both assignment and compound assignment operators:
var a = 2; // Assign using =
a *= 3; // Assign and multiply: a = a * 3
assert(a == 6);

Logical Operators
You can invert or combine boolean expressions using the logical operators.

Table 2-7. Logical operators
Operator Meaning

!expr inverts the following expression (changes false to true, and vice versa)

|| logical OR

&& logical AND

Here’s an example of using the logical operators.
if (!done && (col == 0 || col == 3)) {
 // ...Do something...
}

Bitwise and Shift Operators
You can manipulate the individual bits of numbers in Dart. Usually, you’d use these
bitwise and shift operators with integers.

Table 2-8. Bitwise and shift operators
Operator Meaning

& AND

| OR

^ XOR

~expr Unary bitwise complement (0s become 1s; 1s become 0s)

<< Shift left

>> Shift right

Here’s an example of using bitwise and shift operators.
final value = 0x22;
final bitmask = 0x0f;

Operators | 27

www.it-ebooks.info

http://www.it-ebooks.info/

assert((value & bitmask) == 0x02); // AND
assert((value & ~bitmask) == 0x20); // AND NOT
assert((value | bitmask) == 0x2f); // OR
assert((value ^ bitmask) == 0x2d); // XOR
assert((value << 4) == 0x220); // Shift left
assert((value >> 4) == 0x02); // Shift right

Other Operators
A few operators remain, most of which you’ve already seen in other examples.

Table 2-9. Other operators
Operator Name Meaning

() Function application Represents a function call

[] List access Refers to the value at the specified index in the list

expr1 ? expr2 : expr3 Conditional If expr1 is true, executes expr2; otherwise, executes expr3

. Member access Refers to a property of an expression; example: foo.bar selects
property bar from expression foo

.. Cascade Allows you to perform multiple operations on the members of a single
object; described in “Classes” (page 34)

?identifier Argument definition
test

Tests whether the caller specified an optional parameter; described in
“Optional Parameters” (page 20)

Control Flow Statements
You can control the flow of your Dart code using any of the following:

• if and else
• for loops
• while and do-while loops
• break and continue
• switch and case
• assert

You can also affect the control flow using try-catch and throw, as explained in “Ex‐
ceptions” (page 32).

If and Else
Dart supports if statements with optional else statements. Also see conditional ex‐
pressions (?:), covered in “Other Operators” (page 28).

28 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

if (isRaining()) {
 you.bringRainCoat();
} else if (isSnowing()) {
 you.wearJacket();
} else {
 car.putTopDown();
}

Remember, unlike JavaScript, Dart treats all values other than true as false. See “Boo‐
leans” (page 17) for more information.

For Loops
You can iterate with the standard for loop.

for (int i = 0; i < candidates.length; i++) {
 candidates[i].interview();
}

Closures inside of Dart’s for loops capture the value of the index, avoiding a common
pitfall found in JavaScript. For example, consider:

var callbacks = [];
for (var i = 0; i < 2; i++) {
 callbacks.add(() => print(i));
}
callbacks.forEach((c) => c());

The output is 0 and then 1, as expected. In contrast, the example would print 2 and then
2 in JavaScript.

If the object that you are iterating over is a Collection, you can use the forEach()
method. Using forEach() is a good option if you don’t need to know the current
iteration counter.

candidates.forEach((candidate) => candidate.interview());

Collections also support the for-in form of iteration, as described in “Iteration” (page
64).

var collection = [0, 1, 2];
for (var x in collection) {
 print(x);
}

While and Do-While
A while loop evaluates the condition before the loop.

while(!isDone()) {
 doSomething();
}

Control Flow Statements | 29

www.it-ebooks.info

http://api.dartlang.org/dart_core/Collection.html#forEach
http://www.it-ebooks.info/

A do-while loop evaluates the condition after the loop.
do {
 printLine();
} while (!atEndOfPage());

Break and Continue
Use break to stop looping.

while (true) {
 if (shutDownRequested()) break;
 processIncomingRequests();
}

Use continue to skip to the next loop iteration.
for (int i = 0; i < candidates.length; i++) {
 var candidate = candidates[i];
 if (candidate.yearsExperience < 5) {
 continue;
 }
 candidate.interview();
}

You might write that example differently if you’re using a Collection.
candidates.filter((c) => c.yearsExperience >= 5)
 .forEach((c) => c.interview());

Switch and Case
Switch statements in Dart compare integer, string, or compile-time constants using ==.
The compared objects must all be instances of the same class (and not of any of its
subtypes), and the class must not override ==.

Each non-empty case clause ends with a break statement, as a rule. Other valid ways
to end a non-empty case clause are a continue, throw, or return statement.

Use a default clause to execute code when no case clause matches.
var command = 'OPEN';
switch (command) {
 case 'CLOSED':
 executeClosed();
 break;
 case 'PENDING':
 executePending();
 break;
 case 'APPROVED':
 executeApproved();
 break;
 case 'DENIED':
 executeDenied();

30 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://api.dartlang.org/dart_core/Collection.html
http://www.it-ebooks.info/

 break;
 case 'OPEN':
 executeOpen();
 break;
 default:
 executeUnknown();
}

The following example omits the break statement in the case clause, thus generating
an error:

var command = 'OPEN';
switch (command) {
 case 'OPEN':
 executeOpen();
 // ERROR: Missing break causes an exception to be thrown!!

 case 'CLOSED':
 executeClosed();
 break;
}

However, Dart does support empty case clauses, allowing a form of fall-through.
var command = 'CLOSED';
switch (command) {
 case 'CLOSED': // Empty case falls through.
 case 'NOW_CLOSED':
 // Runs for both CLOSED and NOW_CLOSED.
 executeNowClosed();
 break;
}

If you really want fall-through, you can use a continue statement and a label.
var command = 'CLOSED';
switch (command) {
 case 'CLOSED':
 executeClosed();
 continue nowClosed; // Continues executing at the nowClosed label.

nowClosed:
 case 'NOW_CLOSED':
 // Runs for both CLOSED and NOW_CLOSED.
 executeNowClosed();
 break;
}

A case clause can have local variables, which are visible only inside the scope of that
clause.

Control Flow Statements | 31

www.it-ebooks.info

http://www.it-ebooks.info/

Assert
Use an assert statement to disrupt normal execution if a boolean condition is false.
You can find examples of assert statements throughout this tour. Here are some more:

assert(text != null); // Make sure the variable has a non-null value.
assert(number < 100); // Make sure the value is less than 100.
assert(urlString.startsWith('https')); // Make sure this is an HTTPS URL.

Assert statements work only in checked mode. They have no effect in
production mode.

Inside the parentheses after assert, you can put any expression that resolves to a boolean
value or to a function. If the expression’s value or function’s return value is true, the
assertion succeeds and execution continues. Otherwise, the assertion fails and an ex‐
ception (an AssertionError) is thrown.

Exceptions
Your Dart code can throw and catch exceptions. Exceptions are errors indicating that
something unexpected happened. If the exception isn’t caught, the isolate that raised
the exception is suspended, and typically the isolate and its program are terminated.

In contrast to Java, all of Dart’s exceptions are unchecked exceptions. Methods do not
declare which exceptions they might throw, and you are not required to catch any ex‐
ceptions.

Dart provides Exception and Error types, as well as numerous predefined subtypes. You
can, of course, define your own exceptions. However, Dart programs can throw any
non-null object—not just Exception and Error objects—as an exception.

Throw
Here’s an example of throwing, or raising, an exception.

throw new ExpectException('Value must be greater than zero');

You can also throw arbitrary objects.
throw 'Out of llamas!';

Because throwing an exception is an expression, you can throw exceptions in => state‐
ments, as well as anywhere else that allows expressions:

String get prettyVersion() => throw const NotImplementedException();

32 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://api.dartlang.org/dart_core/AssertionError.html
http://api.dartlang.org/dart_core/Exception.html
http://api.dartlang.org/docs/continuous/dart_core/Error.html
http://www.it-ebooks.info/

Catch
Catching, or capturing, an exception stops the exception from propagating. Catching
an exception gives you a chance to handle it.

try {
 breedMoreLlamas();
} on OutOfLlamasException {
 buyMoreLlamas();
}

To handle code that can throw more than one type of exception, you can specify multiple
catch clauses. The first catch clause that matches the thrown object’s type handles the
exception. If the catch clause does not specify a type, that clause can handle any type of
thrown object.

try {
 breedMoreLlamas();
} on OutOfLlamasException { // A specific exception
 buyMoreLlamas();
} on Exception catch(e) { // Anything else that is an exception
 print('Unknown exception: $e');
} catch(e) { // No specified type, handles all
 print('Something really unknown: $e');
}

As the preceding code shows, you can use either on or catch or both. Use on when you
need to specify the exception type. Use catch when your exception handler needs the
exception object.

Finally
To ensure that some code runs whether or not an exception is thrown, use a finally
clause. If no catch clause matches the exception, the exception is propagated after the
finally clause runs.

try {
 breedMoreLlamas();
} finally {
 cleanLlamaStalls(); // Always clean up, even if an exception is thrown.
}

The finally clause runs after any matching catch clauses.
try {
 breedMoreLlamas();
} catch(e) {
 print('Error: $e'); // Handle the exception first.
} finally {
 cleanLlamaStalls(); // Then clean up.
}

Exceptions | 33

www.it-ebooks.info

http://www.it-ebooks.info/

Learn more by reading “Exceptions” (page 66).

Classes
Dart is an object-oriented language with classes and single inheritance. Every object is
an instance of a class, and all classes descend from Object.

To create an object, you can use the new keyword with a constructor for a class. Con‐
structor names can be either ClassName or ClassName.identifier.

var jsonData = JSON.parse('{"x":1, "y":2}');

var p1 = new Point(2,2); // Create a Point using Point().
var p2 = new Point.fromJson(jsonData); // Create a Point using Point.fromJson().

Objects have members consisting of functions and data (methods and instance vari‐
ables, respectively). When you call a method, you invoke it on an object: the method has
access to that object’s functions and data.

Use a dot (.) to refer to an instance variable or method.
var p = new Point(2,2);

p.y = 3; // Set the value of the instance variable y.
assert(p.y == 3); // Get the value of y.

num distance = p.distanceTo(new Point(4,4)); // Invoke distanceTo() on p.

Use the cascade operator (..) when you want to perform a series of operations on the
members of a single object.

query('#button')
 ..text = 'Click to Confirm' // Get an object. Use its
 ..classes.add('important') // instance variables
 ..on.click.add((e) => window.alert('Confirmed!')); // and methods.

Some classes provide constant constructors. To create a compile-time constant using a
constant constructor, use const instead of new.

var p = const ImmutablePoint(2,2);

Constructing two identical compile-time constants results in a single, canonical in‐
stance.

var a = const ImmutablePoint(1, 1);
var b = const ImmutablePoint(1, 1);

assert(identical(a,b)); // They are the same instance!

The following sections discuss how to implement classes.

34 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://api.dartlang.org/dart_core/Object.html
http://www.it-ebooks.info/

Instance Variables
Here’s how you declare instance variables:

class Point {
 num x; // Declare an instance variable (x), initially null.
 num y; // Declare y, initially null.
 num z = 0; // Declare z, initially 0.
}

All uninitialized instance variables have the value null.

All instance variables generate an implicit getter method. Non-final, non-const instance
variables also generate an implicit setter method. For details, see “Getters and setters”
(page 39).

class Point {
 num x;
 num y;
}

main() {
 var point = new Point();
 point.x = 4; // Use the setter method for x.
 assert(point.x == 4); // Use the getter method for x.
 assert(point.y == null); // Values default to null.
}

If you initialize an instance variable where it is declared (instead of in a constructor or
method), the value is set when the instance is created, which is before the constructor
and its initializer list execute.

Constructors
Declare a constructor by creating a function with the same name as its class (plus, op‐
tionally, an additional identifier as described in “Named constructors” (page 36)). The
most common form of constructor, the generative constructor, creates a new instance
of a class.

class Point {
 num x;
 num y;

 Point(num x, num y) {
 // There's a better way to do this, stay tuned.
 this.x = x;
 this.y = y;
 }
}

The this keyword refers to the current instance.

Classes | 35

www.it-ebooks.info

http://www.it-ebooks.info/

Use this only when there is a name conflict. Otherwise, Dart style omits
the this.

The pattern of assigning a constructor argument to an instance variable is so common,
Dart has syntactic sugar to make it easy.

class Point {
 num x;
 num y;

 // Syntactic sugar for setting x and y before the constructor body runs.
 Point(this.x, this.y);
}

Default constructors

If you don’t declare a constructor, a default constructor is provided for you. The default
constructor has no arguments and invokes the no-argument constructor in the super‐
class.

Constructors aren’t inherited

Subclasses don’t inherit constructors from their superclass. A subclass that declares no
constructors has only the default (no argument, no name) constructor.

Named constructors

Use a named constructor to implement multiple constructors for a class or to provide
extra clarity.

class Point {
 num x;
 num y;

 Point(this.x, this.y);

 // Named constructor
 Point.fromJson(Map json) {
 x = json['x'];
 y = json['y'];
 }
}

Remember that constructors are not inherited, which means that a superclass’s named
constructor is not inherited by a subclass. If you want a subclass to be created with a
named constructor defined in the superclass, you must implement that constructor in
the subclass.

36 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

Invoking a non-default superclass constructor

By default, a constructor in a subclass calls the superclass’s unnamed, no-argument
constructor. If the superclass doesn’t have such a constructor, then you must manually
call one of the constructors in the superclass. Specify the superclass constructor after a
colon (:), just before the constructor body (if any).

class Person {
 Person.fromJson(Map data) {
 print('in Person');
 }
}

class Employee extends Person {
 // Person does not have a default constructor;
 // you must call super.fromJson(data).
 Employee.fromJson(Map data) : super.fromJson(data) {
 print('in Employee');
 }
}

main() {
 var emp = new Employee.fromJson({});

 // Prints:
 // in Person
 // in Employee
}

Initializer list

Besides invoking a superclass constructor, you can also initialize instance variables be‐
fore the constructor body runs. Separate initializers with commas.

class Point {
 num x;
 num y;

 Point(this.x, this.y);

 // Initializer list sets instance variables before the constructor body runs.
 Point.fromJson(Map json) : x = json['x'], y = json['y'] {
 print('In Point.fromJson(): ($x, $y)');
 }
}

The right-hand side of an initializer does not have access to this.

Classes | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Redirecting constructors

Sometimes a constructor’s only purpose is to redirect to another constructor in the same
class. A redirecting constructor’s body is empty, with the constructor call appearing after
a colon (:).

class Point {
 num x;
 num y;

 Point(this.x, this.y); // The main constructor for this class.
 Point.alongXAxis(num x) : this(x, 0); // Delegates to the main constructor.
}

Constant constructors

If your class produces objects that never change, you can make these objects compile-
time constants. To do this, define a const constructor and make sure that all instance
variables are final or const.

class ImmutablePoint {
 final num x;
 final num y;
 const ImmutablePoint(this.x, this.y);
 static final ImmutablePoint origin = const ImmutablePoint(0, 0);
}

Factory constructors

Use the factory keyword when implementing a constructor that doesn’t always create
a new instance of its class. For example, a factory constructor might return an instance
from a cache, or it might return an instance of a subtype.

The following example demonstrates a factory constructor returning objects from a
cache.

class Logger {
 final String name;
 bool mute = false;

 // _cache is library-private, thanks to the _ in front of its name.
 static final Map<String, Logger> _cache = <String, Logger>{};

 factory Logger(String name) {
 if (_cache.containsKey(name)) {
 return _cache[name];
 } else {
 final logger = new Logger._internal(name);
 _cache[name] = logger;
 return logger;
 }
 }

38 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

 Logger._internal(this.name);

 void log(String msg) {
 if (!mute) {
 print(msg);
 }
 }
}

Factory constructors have no access to this.

To invoke a factory constructor, you use the new keyword:
var logger = new Logger('UI');
logger.log('Button clicked');

Methods
Methods are functions that provide behavior for an object.

Instance methods

Instance methods on objects can access instance variables and this. The distance
To() method in the following sample is an example of an instance method.

class Point {
 num x;
 num y;
 Point(this.x, this.y);

 num distanceTo(Point other) {
 var dx = x - other.x;
 var dy = y - other.y;
 return sqrt(dx * dx + dy * dy);
 }
}

Getters and setters

Getters and setters are special methods that provide read and write access to an object’s
properties. Recall that each instance variable has an implicit getter, plus a setter if ap‐
propriate. You can create additional properties by implementing getters and setters,
using the get and set keywords.

class Rectangle {
 num left;
 num top;
 num width;

Classes | 39

www.it-ebooks.info

http://www.it-ebooks.info/

 num height;

 Rectangle(this.left, this.top, this.width, this.height);

 // Define two calculated properties: right and bottom.
 num get right => left + width;
 set right(num value) => left = value - width;
 num get bottom => top + height;
 set bottom(num value) => top = value - height;
}

main() {
 var rect = new Rectangle(3, 4, 20, 15);
 assert(rect.left == 3);
 rect.right = 12;
 assert(rect.left == -8);
}

With getters and setters, you can start with instance variables, later wrapping them with
methods, all without changing client code.

Operators such as increment (++) work in the expected way, whether
or not a getter is explicitly defined. To avoid any unexpected side effects,
the operator calls the getter exactly once, saving its value in a temporary
variable.

Abstract methods

Instance, getter, and setter methods can be abstract, defining an interface but leaving its
implementation up to other classes. To make a method abstract, use a semicolon (;)
instead of a method body.

abstract class Doer {
 // ...Define instance variables and methods...

 void doSomething(); // Define an abstract method.
}

class EffectiveDoer extends Doer {
 void doSomething() {
 // ...Provide an implementation, so the method is not abstract here...
 }
}

Calling an abstract method results in a run-time error.

Also see “Abstract Classes” (page 41).

40 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

Operators

You can override the operators shown in Table 2-10. For example, if you define a Vector
class, you might define a + method to add two vectors.

Table 2-10. Operators that can be overridden
< + | []

> / ^ []=

<= ~/ & ~

>= * << ==

– % >>

Here’s an example of a class that overrides the + and - operators.
class Vector {
 final int x;
 final int y;
 const Vector(this.x, this.y);

 Vector operator +(Vector v) { // Overrides + (a + b).
 return new Vector(x + v.x, y + v.y);
 }

 Vector operator -(Vector v) { // Overrides - (a - b).
 return new Vector(x - v.x, y - v.y);
 }
}

main() {
 final v = new Vector(2,3);
 final w = new Vector(2,2);

 assert(v.x == 2 && v.y == 3); // v == (2,3)
 assert((v+w).x == 4 && (v+w).y == 5); // v+w == (4,5)
 assert((v-w).x == 0 && (v-w).y == 1); // v-w == (0,1)
}

For an example of overriding ==, see “Implementing map keys” (page 63).

Abstract Classes
Use the abstract modifier to define an abstract class—a class that can’t be instantiated.
Abstract classes are useful for defining interfaces, often with some implementation. If
you want your abstract class to appear to be instantiable, define a factory constructor
(page 38).

Abstract classes often have abstract methods (page 40). Here’s an example of declaring
an abstract class that has an abstract method.

Classes | 41

www.it-ebooks.info

http://www.it-ebooks.info/

// This class is declared abstract and thus can't be instantiated.
abstract class AbstractContainer {
 // ...Define constructors, fields, methods...

 void updateChildren(); // Abstract method.
}

The following class isn’t abstract, and thus can be instantiated even though it defines an
abstract method.

class SpecializedContainer extends AbstractContainer {
 // ...Define more constructors, fields, methods...

 void updateChildren() {
 // ...Implement updateChildren()...
 }
// Abstract method causes a warning but doesn't prevent instantiatation.
 void doSomething();
}

Implicit Interfaces
Every class implicitly defines an interface containing all the instance members of the
class and of any interfaces it implements. If you want to create a class A that supports
class B’s API without inheriting B’s implementation, class A should implement the B
interface.

A class implements one or more interfaces by declaring them in an implements clause
and then providing the APIs required by the interfaces. For example:

// A person. The implicit interface contains greet().
class Person {
 final _name; // In the interface, but visible only in this library,
 Person(this._name); // Not in the interface, since this is a constructor.
 String greet(who) => 'Hello, $who. I am $_name.'; // In the interface.
}

// An implementation of the Person interface.
class Imposter implements Person {
 final _name = ""; // We have to define this, but we don't use it.
 String greet(who) => 'Hi $who. Do you know who I am?';
}

greetBob(Person person) => person.greet('bob');

main() {
 print(greetBob(new Person('kathy')));
 print(greetBob(new Imposter()));
}

Here’s an example of specifying that a class implements multiple interfaces:

42 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

class Point implements Comparable, Location {
 //...
}

Extending a Class
Use extends to create a subclass, and super to refer to the superclass.

class Television {
 void turnOn() {
 _illuminateDisplay();
 _activateIrSensor();
 }
}

class SmartTelevision extends Television {
 void turnOn() {
 super.turnOn();
 _bootNetworkInterface();
 _initializeMemory();
 _upgradeApps();
 }
}

Subclasses can override instance methods, getters, and setters.

Class Variables and Methods
Use the static keyword to implement class-wide variables and methods.

Static variables

Static variables (class variables) are useful for class-wide state and constants.
class Color {
 static const RED = const Color('red'); // A constant static variable.
 final String name; // An instance variable.
 const Color(this.name); // A constant constructor.
}

main() {
 assert(Color.RED.name == 'red');
}

Static variables aren’t initialized until they’re used.

Static methods

Static methods (class methods) do not operate on an instance, and thus do not have
access to this.

class Point {
 num x;

Classes | 43

www.it-ebooks.info

http://www.it-ebooks.info/

 num y;
 Point(this.x, this.y);

 static num distanceBetween(Point a, Point b) {
 var dx = a.x - b.x;
 var dy = a.y - b.y;
 return sqrt(dx * dx + dy * dy);
 }
}

main() {
 var a = new Point(2, 2);
 var b = new Point(4, 4);
 var distance = Point.distanceBetween(a,b);
 assert(distance < 2.9 && distance > 2.8);
}

Consider using top-level functions, instead of static methods, for com‐
mon or widely used utilities and functionality.

You can use static methods as compile-time constants. For example, you can pass a static
method as a parameter to a constant constructor.

Generics
If you look at the API documentation for the basic array type, List, you’ll see that the
type is actually List<E>. The <...> notation marks List as a generic (or parameterized)
type—a type that has formal type parameters. By convention, type variables have single-
letter names, such as E, T, S, K, and V.

Why Use Generics?
Because types are optional in Dart, you never have to use generics. You might want to,
though, for the same reason you might want to use other types in your code: types
(generic or not) let you document and annotate your code, making your intent clearer.

For example, if you intend for a list to contain only strings, you can declare it as
List<String> (read that as “list of string”). That way you, your fellow programmers,
and your tools (such as Dart Editor and the Dart VM in checked mode) can detect that
assigning a non-string to the list is probably a mistake.

var names = new List<String>();
names.addAll(['Seth', 'Kathy', 'Lars']);
//...
names.add(42); // Fails in checked mode (succeeds in production mode).

44 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://api.dartlang.org/dart_core/List.html
http://www.it-ebooks.info/

Another reason for using generics is to reduce code duplication. Generics let you share
a single interface and implementation between many types, while still taking advantage
of checked mode and static analysis early warnings. For example, say you create an
interface for caching an object:

abstract class ObjectCache {
 Object getByKey(String key);
 setByKey(String key, Object value);
}

You discover that you want a string-specific version of this interface, so you create an‐
other interface:

abstract class StringCache {
 String getByKey(String key);
 setByKey(String key, String value);
}

Later, you decide you want a number-specific version of this interface... You get the idea.

Generic types can save you the trouble of creating all these interfaces. Instead, you can
create a single interface that takes a type parameter:

abstract class Cache<T> {
 T getByKey(String key);
 setByKey(String key, T value);
}

In this code, T is the stand-in type. It’s a placeholder that you can think of as a type that
a developer will define later.

Using Collection Literals
List and map literals can be parameterized. Parameterized literals are just like the literals
you’ve already seen, except that you add <type> (for lists) or <keyType, valueType>
(for maps) before the opening bracket. You might use parameterized literals when you
want type warnings in checked mode. Here is example of using typed literals:

var names = <String>['Seth', 'Kathy', 'Lars'];
var pages = <String, String>{
 'index.html':'Homepage',
 'robots.txt':'Hints for web robots',
 'humans.txt':'We are people, not machines' };

Map literals always have string keys, so their type is always <String,
SomeType>.

Generics | 45

www.it-ebooks.info

http://www.it-ebooks.info/

Using Constructors
To specify one or more types when using a constructor, put the types in angle brackets
(<...>) just after the class name. For example:

var names = new List<String>();
names.addAll(['Seth', 'Kathy', 'Lars']);
var nameSet = new Set<String>.from(names);

The following code creates a map that has integer keys and values of type View:
var views = new Map<int, View>();

Generic Collections and the Types they Contain
Dart generic types are reified, which means that they carry their type information around
at runtime. For example, you can test the type of a collection, even in production mode:

var names = new List<String>();
names.addAll(['Seth', 'Kathy', 'Lars']);
print(names is List<String>); // true

However, the is expression checks the type of the collection only—not of the objects
inside it. In production mode, a List<String> might have some non-string items in it.
The solution is to either check each item’s type or wrap item-manipulation code in an
exception handler (see “Exceptions” (page 32)).

In contrast, generics in Java use erasure, which means that generic type
parameters are removed at runtime. In Java, you can test whether an
object is a List, but you can’t test whether it’s a List<String>.

For more information about generics, see Optional Types in Dart.

Libraries and Visibility
The import, part, and library directives can help you create a modular and shareable
code base. Libraries not only provide APIs, but are a unit of privacy: identifiers that start
with an underscore (_) are visible only inside the library. Every Dart app is a library,
even if it doesn’t use a library directive.

Libraries can be distributed using packages. See “pub: The Dart Package Manager” (page
91) for information about pub, a package manager included in the SDK.

Using Libraries
Use import to specify how a namespace from one library is used in the scope of another
library.

46 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.dartlang.org/articles/optional-types/
http://www.it-ebooks.info/

1. URI stands for uniform resource identifier. URLs (uniform resource locators) are a common kind of URI.

For example, Dart web apps generally use the dart:html library, which they can import
like this:

import 'dart:html';

The only required argument to import is a URI1 specifying the library. For built-in
libraries, the URI has the special dart: scheme. For other libraries, you can use a file
system path or the package: scheme. The package: scheme specifies libraries provided
by a package manager such as the pub tool. For example:

import 'dart:io';
import 'package:mylib/mylib.dart';
import 'package:utils/utils.dart';

Specifying a library prefix

If you import two libraries that have conflicting identifiers, then you can specify a prefix
for one or both libraries. For example, if library1 and library2 both have an Element
class, then you might have code like this:

import 'package:lib1/lib1.dart';
import 'package:lib2/lib2.dart' as lib2;
//...
var element1 = new Element(); // Uses Element from lib1.
var element2 = new lib2.Element(); // Uses Element from lib2.

Importing only part of a library

If you want to use only part of a library, you can selectively import the library. For
example:

import 'package:lib1/lib1.dart' show foo, bar; // Import only foo and bar.
import 'package:lib2/lib2.dart' hide foo; // Import all names EXCEPT foo.

Implementing Libraries
Use the part directive to specify the files that are part of a library, and library to specify
that a file declares a library.

Using multiple files

Whether or not you specify a library directive, you can use part to specify the files
that implement the current library.

// No library directive; this file defines an anonymous library.
part 'ball.dart'; // Part of this library's implementation is in ball.dart.
part 'util.dart'; // Another part is in util.dart.

import 'dart:html'; // This app uses the HTML library.

Libraries and Visibility | 47

www.it-ebooks.info

http://api.dartlang.org/html.html
http://www.it-ebooks.info/

//...
main() { // Having a main() method makes this an app (and thus a library).
 //...
}

Declaring a library

To explicitly declare a library, use a library statement. For example:
library ballgame; // Declare that this is a library.

part 'ball.dart'; // Part of this library's implementation is in ball.dart.
part 'util.dart'; // Another part is in util.dart.

import 'dart:html'; // This app uses the HTML library.
//...
main() { // We could move this code to another file in this library.
 //...
}

Associating a file with a library

You can use part followed by of (part of) in implementation files to specify that the
file is associated with a library. Using part of is optional, but it helps tools such as Dart
Editor. Here’s an example of using part and part of:

// In ballgame.dart:
library ballgame;

import 'dart:utf';
// ...Other imports go here...

part 'ball.dart';
part 'util.dart';

//...

// In ball.dart:
part of ballgame;

// ...code goes here...

// In util.dart:
part of ballgame;

// ...code goes here...

48 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

Re-exporting libraries

You can combine or repackage libraries by re-exporting part or all of them. For example,
you might have a huge library that you implement as a set of smaller libraries. Or you
might create a library that provides a subset of methods from another library.

// In french.dart:
library french;
hello() => print('Bonjour!');
goodbye() => print('Au Revoir!');

// In togo.dart:
library togo;
import 'french.dart';
export 'french.dart' show hello;

// In another .dart file:
import 'togo.dart';

void main() {
 hello(); //print bonjour
 goodbye(); //FAIL
}

Isolates
Modern web browsers, even on mobile platforms, run on multi-core CPUs. To take
advantage of all those cores, developers traditionally use shared-memory threads run‐
ning concurrently. However, shared-state concurrency is error prone and can lead to
complicated code.

Instead of threads, all Dart code runs inside of isolates. Each isolate has its own memory
heap, ensuring that no isolate’s state is accessible from any other isolate.

Learn more about isolates in “dart:isolate - Concurrency with Isolates” (page 76).

Typedefs
In Dart, functions are objects, just like strings and numbers are objects. A typedef, or
function-type alias, gives a function type a name that you can use when declaring fields
and return types. A typedef retains type information when a function type is assigned
to a variable.

Consider the following code, which does not use a typedef.
class SortedCollection {
 Function compare;

 SortedCollection(int f(Object a, Object b)) {
 compare = f;

Isolates | 49

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}

int sort(Object a, Object b) => ... ; // Initial, broken implementation.

main() {
 SortedCollection collection = new SortedCollection(sort);

 // All we know is that compare is a function, but what type of function?
 assert(collection.compare is Function);
}

Type information is lost when assigning f to compare. The type of f is (Object, Ob
ject) → int (where → means returns), yet the type of compare is Function. If we change
the code to use explicit names and retain type information, both developers and tools
can use that information.

typedef int Compare(Object a, Object b);

class SortedCollection {
 Compare compare;

 SortedCollection(this.compare);
}

int sort(Object a, Object b) => ... ; // Initial, broken implementation.

main() {
 SortedCollection collection = new SortedCollection(sort);
 assert(collection.compare is Function);
 assert(collection.compare is Compare);
}

Currently, typedefs are restricted to function types. We expect this to
change.

Because typedefs are simply aliases, they offer a way to check the type of any function.
For example:

typedef int Compare(int a, int b);

int sort(int a, int b) => a - b;

main() {
 assert(sort is Compare); // True!
}

50 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://www.it-ebooks.info/

Comments
Dart supports single-line comments, multi-line comments, and documentation com‐
ments.

Single-Line Comments
A single-line comment begins with //. Everything between // and the end of line is
ignored by the Dart compiler.

main() {
 // TODO: refactor into an AbstractLlamaGreetingFactory?
 print('Welcome to my Llama farm!');
}

Multi-Line Comments
A multi-line comment begins with /* and ends with */. Everything between /* and */
is ignored by the Dart compiler (unless the comment is a documentation comment; see
the next section). Multi-line comments can nest.

main() {
 /*
 * This is a lot of work. Consider raising chickens.

 Llama larry = new Llama();
 larry.feed();
 larry.exercise();
 larry.clean();
 */
}

Documentation Comments
Documentation comments are multi-line or single-line comments that begin
with /** or ///. Using /// on consecutive lines has the same effect as a multi-line doc
comment.

Inside a documentation comment, the Dart compiler ignores all text unless it is enclosed
in brackets. Using brackets, you can refer to classes, methods, fields, top-level variables,
functions, and parameters. The names in brackets are resolved in the lexical scope of
the documented program element.

Here is an example of documentation comments with references to other classes and
arguments:

/**
 * The llama (Lama glama) is a domesticated South American
 * camelid, widely used as a meat and pack animal by Andean
 * cultures since pre-Hispanic times.

Comments | 51

www.it-ebooks.info

http://www.it-ebooks.info/

 */
class Llama {
 String name;

 /**
 * Feeds your llama [Food].
 *
 * The typical llama eats one bale of hay per week.
 */
 void feed(Food food) {
 //...
 }

 /// Exercises your llama with an [activity] for
 /// [timeLimit] minutes.
 void exercise(Activity activity, int timeLimit) {
 //...
 }
}

In the generated documentation, [Food] becomes a link to the API docs for the Food
class.

To parse Dart code and generate HTML documentation, you can use Dart Editor, which
in turn uses the SDK’s dartdoc package. For an example of generated documentation,
see the Dart API documentation.

Summary
This chapter summarized the commonly used features in the Dart language. For more
information about the language, see the Dart Language Specification and articles such
as Idiomatic Dart.

52 | Chapter 2: A Tour of the Dart Language

www.it-ebooks.info

http://api.dartlang.org
http://www.dartlang.org/docs/spec/
http://www.dartlang.org/articles/
http://www.dartlang.org/articles/idiomatic-dart/
http://www.it-ebooks.info/

CHAPTER 3

A Tour of the Dart Libraries

This chapter shows you how to use the major features in Dart’s libraries. It’s just an
overview, and by no means comprehensive. Whenever you need more details about a
class, consult the Dart API reference. Expect major changes to the Dart libraries before
Dart’s first production release.

dart:core - Numbers, Collections, Strings, and More
The Dart core library provides a small but critical set of built-in functionality. This
library is automatically imported into every Dart program.

Numbers
The dart:core library defines the num, int, and double classes, which have some basic
utilities for working with numbers.

You can convert a string into an integer or double with the parse() methods of int and
double, respectively.

assert(int.parse('42') == 42);
assert(double.parse('0.50') == 0.5);

Use the toString() method (defined by Object) to convert an int or double to a string.
To specify the number of digits to the right of the decimal, use toStringAsFixed()
(defined by num). To specify the number of significant digits in the string, use toStrin
gAsPrecision() (also in num).

// Convert an int to a string.
assert(42.toString() == '42');

// Convert a double to a string.
assert(123.456.toString() == '123.456');

53

www.it-ebooks.info

http://api.dartlang.org/
http://api.dartlang.org/dart_core/Object.html
http://www.it-ebooks.info/

// Specify the number of digits after the decimal.
assert(123.456.toStringAsFixed(2) == '123.46');

// Specify the number of significant figures.
assert(123.456.toStringAsPrecision(2) == '1.2e+2');
assert(double.parse('1.2e+2') == 120.0);

For more information, see the API documentation for int, double, and num. Also see
“dart:math - Math and Random” (page 66).

Strings and Regular Expressions
A string in Dart is an immutable sequence of UTF-16 code units. The language tour has
more information about strings (page 16). You can use regular expressions (RegExp
objects) to search within strings and to replace parts of strings.

The String class defines such methods as split(), contains(), startsWith(),
endsWith(), and more.

Searching inside a string

You can find particular locations within a string, as well as check whether a string begins
with or ends with a particular pattern.

// Check whether a string contains another string.
assert('Never odd or even'.contains('odd'));

// Does a string start with another string?
assert('Never odd or even'.startsWith('Never'));

// Does a string end with another string?
assert('Never odd or even'.endsWith('even'));

// Find the location of a string inside a string.
assert('Never odd or even'.indexOf('odd') == 6);

Extracting data from a string

You can get the individual characters or character codes from a string as Strings or ints,
respectively.

You can also extract a substring or split a string into a list of substrings.
// Grab a substring.
assert('Never odd or even'.substring(6, 9) == 'odd');

// Split a string using a string pattern.
var parts = 'structured web apps'.split(' ');
assert(parts.length == 3);
assert(parts[0] == 'structured');

// Get the character (as a string) by index.

54 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/dart_core/int.html
http://api.dartlang.org/dart_core/double.html
http://api.dartlang.org/dart_core/num.html
http://www.it-ebooks.info/

assert('Never odd or even'[0] == 'N');

// Use splitChars() to get a list of all characters (as Strings);
// good for iterating.
for (var char in 'hello'.splitChars()) {
 print(char);
}

// Get the char code at an index.
assert('Never odd or even'.charCodeAt(0) == 78);

// Get all the char codes as a list of integers.
var charCodes = 'Never odd or even'.charCodes();
assert(charCodes.length == 17);
assert(charCodes[0] == 78);

Converting to uppercase or lowercase

You can easily convert strings to their uppercase and lowercase variants.
// Convert to uppercase.
assert('structured web apps'.toUpperCase() == 'STRUCTURED WEB APPS');

// Convert to lowercase.
assert('STRUCTURED WEB APPS'.toLowerCase() == 'structured web apps');

Trimming and empty strings

Remove all leading and trailing white space with trim(). To check whether a string is
empty (length is zero), use isEmpty().

// Trim a string.
assert(' hello '.trim() == 'hello');

// Check whether a string is empty.
assert(''.isEmpty());

// Strings with only white space are not empty.
assert(!' '.isEmpty());

Replacing part of a string

Strings are immutable objects, which means you can create them but you can’t change
them. If you look closely at the String API docs, you’ll notice that none of the methods
actually changes the state of a String. For example, the method replaceAll() returns a
new String without changing the original String.

var greetingTemplate = 'Hello, NAME!';
var greeting = greetingTemplate.replaceAll(new RegExp('NAME'), 'Bob');

assert(greeting != greetingTemplate); // greetingTemplate didn't change.

dart:core - Numbers, Collections, Strings, and More | 55

www.it-ebooks.info

http://api.dartlang.org/dart_core/String.html
http://www.it-ebooks.info/

Building a string

To programmatically generate a string, you can use StringBuffer. A StringBuffer doesn’t
generate a new String object until toString() is called.

var sb = new StringBuffer();

sb.add('Use a StringBuffer ');
sb.addAll(['for ', 'efficient ', 'string ', 'creation ']);
sb.add('if you are ').add('building lots of strings.');

var fullString = sb.toString();

assert(fullString ==
 'Use a StringBuffer for efficient string creation '
 'if you are building lots of strings.');

sb.clear(); // All gone!
assert(sb.toString() == '');

Regular expressions

The RegExp class provides the same capabilities as JavaScript regular expressions. Use
regular expressions for efficient searching and pattern matching of strings.

// A regular expression for one or more digits
var numbers = const RegExp(r'\d+');

var allCharacters = 'llamas live fifteen to twenty years';
var someDigits = 'llamas live 15 to 20 years';

// Contains() can use a regular expression.
assert(!allCharacters.contains(numbers));
assert(someDigits.contains(numbers));

// Replace every match with another string.
var exedOut = someDigits.replaceAll(numbers, 'XX');
assert(exedOut == 'llamas live XX to XX years');

You can work directly with the RegExp class, too. The Match class provides access to a
regular expression match.

var numbers = const RegExp(r'\d+');
var someDigits = 'llamas live 15 to 20 years';

// Check whether the reg exp has a match in a string.
assert(numbers.hasMatch(someDigits));

// Loop through all matches.
for (var match in numbers.allMatches(someDigits)) {
 print(match.group(0)); // 15, then 20
}

56 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://www.it-ebooks.info/

More information

Refer to the String API docs for a full list of methods. Also see the API docs for String‐
Buffer, Pattern, RegExp, and Match.

Collections
Dart ships with a core collections API, which includes classes for lists, sets, and maps.

Lists

As the language tour shows, you can use literals to create and initialize lists (page 18).
Alternatively, use one of the List constructors. The List class also defines several methods
for adding items to and removing items from lists.

// Use a List constructor.
var vegetables = new List();

// Or simply use a list literal.
var fruits = ['apples', 'oranges'];

// Add to a list.
fruits.add('kiwis');

// Add multiple items to a list.
fruits.addAll(['grapes', 'bananas']);

// Get the list length.
assert(fruits.length == 5);

// Remove a single item.
var appleIndex = fruits.indexOf('apples');
fruits.removeAt(appleIndex);
assert(fruits.length == 4);

// Remove all elements from a list.
fruits.clear();
assert(fruits.length == 0);

Use indexOf() to find the index of an object in a list.
var fruits = ['apples', 'oranges'];

// Access a list item by index.
assert(fruits[0] == 'apples');

// Find an item in a list.
assert(fruits.indexOf('apples') == 0);

dart:core - Numbers, Collections, Strings, and More | 57

www.it-ebooks.info

http://api.dartlang.org/dart_core/String.html
http://api.dartlang.org/dart_core/StringBuffer.html
http://api.dartlang.org/dart_core/StringBuffer.html
http://api.dartlang.org/dart_core/Pattern.html
http://api.dartlang.org/dart_core/RegExp.html
http://api.dartlang.org/dart_core/Match.html
http://www.it-ebooks.info/

Sort a list using the sort() method. You must provide a sorting function that compares
two objects. This sorting function must return < 0 for smaller, 0 for the same, and > 0
for bigger. The following example uses compareTo(), which is defined by Comparable
and implemented by String.

var fruits = ['bananas', 'apples', 'oranges'];

// Sort a list.
fruits.sort((a, b) => a.compareTo(b));
assert(fruits[0] == 'apples');

Lists are parameterized types, so you can specify the type that a list should contain.
// This list should contain only strings.
var fruits = new List<String>();

fruits.add('apples');
var fruit = fruits[0];
assert(fruit is String);

// Generates static analysis warning, num is not a string.
fruits.add(5); // BAD: Throws exception in checked mode.

Refer to the List API docs for a full list of methods.

Sets

A set in Dart is an unordered collection of unique items. Because a set is unordered, you
can’t get a set’s items by index (position).

var ingredients = new Set();
ingredients.addAll(['gold', 'titanium', 'xenon']);
assert(ingredients.length == 3);

// Adding a duplicate item has no effect.
ingredients.add('gold');
assert(ingredients.length == 3);

// Remove an item from a set.
ingredients.remove('gold');
assert(ingredients.length == 2);

Use contains() and containsAll() to check whether one or more objects are in a set.
var ingredients = new Set();
ingredients.addAll(['gold', 'titanium', 'xenon']);

// Check whether an item is in the set.
assert(ingredients.contains('titanium'));

// Check whether all the items are in the set.
assert(ingredients.containsAll(['titanium', 'xenon']));

58 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/dart_core/Comparable.html
http://api.dartlang.org/dart_core/List.html
http://www.it-ebooks.info/

An intersection is a set whose items are in two other sets. A subset has all of its items
included in another, potentially larger, collection.

var ingredients = new Set();
ingredients.addAll(['gold', 'titanium', 'xenon']);

// Create the intersection of two sets.
var nobleGases = new Set.from(['xenon', 'argon']);
var intersection = ingredients.intersection(nobleGases);
assert(intersection.length == 1);
assert(intersection.contains('xenon'));

// Check whether this set is a subset of another collection.
// That is, does another collection contains all the items of this set?
var allElements = ['hydrogen', 'helium', 'lithium', 'beryllium',
 'gold', 'titanium', 'xenon' /* all the rest */];
assert(ingredients.isSubsetOf(allElements));

Refer to the Set API docs for a full list of methods.

Common collection methods

Both List and Set extend the Collection class. As such, they share common functionality
found in all collections. The following examples work with any object that implements
Collection.

Use isEmpty() to check whether a collection has no items.
var teas = ['green', 'black', 'chamomile', 'earl grey'];
assert(!teas.isEmpty());

To apply a function to each item in a collection, you can use forEach(). Or use map()
if you want a new collection that contains the results.

var teas = ['green', 'black', 'chamomile', 'earl grey'];

teas.forEach((tea) => print('I drink $tea'));

var loudTeas = teas.map((tea) => tea.toUpperCase());
assert(loudTeas.some((tea) => tea == 'GREEN'));

Use some() and every() to check whether some or all items in a collection match a
condition.

var teas = ['green', 'black', 'chamomile', 'earl grey'];

// Chamomile is not caffeinated.
isDecaffeinated(String teaName) => teaName == 'chamomile';

// Use filter() to create a new collection with only the items
// that return true from the provided function.
var decaffeinatedTeas = teas.filter((tea) => isDecaffeinated(tea));
// or teas.filter(isDecaffeinated)

dart:core - Numbers, Collections, Strings, and More | 59

www.it-ebooks.info

http://api.dartlang.org/dart_core/Set.html
http://www.it-ebooks.info/

// Use some() to check whether at least one item in the collection
// satisfies a condition.
assert(teas.some(isDecaffeinated));

// Use every() to check whether all the items in a collection
// satisfy a condition.
assert(!teas.every(isDecaffeinated));

Refer to the Collection API docs for a full list of methods.

Maps

A map, commonly known as a dictionary or hash, is an unordered collection of key-
value pairs. Maps associate a key to some value for easy retrieval. Unlike in JavaScript,
Dart objects are not maps.

The Map class does not itself extend Collection. You can, however, get
a collection of a map’s keys or its values.

You can declare a map using a terse literal syntax, or you can use a traditional constructor.
// Map literals use strings as keys.
var hawaiianBeaches = {
 'oahu' : ['waikiki', 'kailua', 'waimanalo'],
 'big island' : ['wailea bay', 'pololu beach'],
 'kauai' : ['hanalei', 'poipu']
};

// Maps can be built from a constructor.
var searchTerms = new Map();

// Maps are parameterized types; you can specify what types
// the key and value should be.
var nobleGases = new Map<int, String>();

You add, get, and set map items using the bracket syntax. Use remove() to remove a key
and its value from a map.

var nobleGases = new Map<int, String>();

// Maps from constructors can use any object as a key.
// Integers and strings are common key types.
nobleGases[54] = 'xenon';

// Retrieve a value with a key.
assert(nobleGases[54] == 'xenon');

// Check whether a map contains a key.
assert(nobleGases.containsKey(54));

60 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/dart_core/Collection.html
http://www.it-ebooks.info/

// Remove a key and its value.
nobleGases.remove(54);
assert(!nobleGases.containsKey(54));

You can retrieve all the values or all the keys from a map.
var hawaiianBeaches = {
 'oahu' : ['waikiki', 'kailua', 'waimanalo'],
 'big island' : ['wailea bay', 'pololu beach'],
 'kauai' : ['hanalei', 'poipu']
};

// Get all the keys as an unordered collection (a list).
var keys = hawaiianBeaches.getKeys();

assert(keys.length == 3);
assert(new Set.from(keys).contains('oahu'));

// Get all the values as an unordered collection (a list of lists).
var values = hawaiianBeaches.getValues();
assert(values.length == 3);
assert(values.some((v) => v.indexOf('waikiki') != -1));

You can also iterate through the key-value pairs.
// NOTE: Do not depend on iteration order.
hawaiianBeaches.forEach((k,v) {
 print('I want to visit $k and swim at $v');
 // I want to visit oahu and swim at [waikiki, kailua, waimanalo], etc.
});

To check whether a map contains a key, use containsKey(). Because map values can
be null, you cannot rely on simply getting the value for the key and checking for null to
determine the existence of a key.

var hawaiianBeaches = {
 'oahu' : ['waikiki', 'kailua', 'waimanalo'],
 'big island' : ['wailea bay', 'pololu beach'],
 'kauai' : ['hanalei', 'poipu']
};

assert(hawaiianBeaches.containsKey('oahu'));
assert(!hawaiianBeaches.containsKey('florida'));

Use the putIfAbsent() method when you want to assign a value to a key if and only if
the key does not already exist in a map. You must provide a function that returns the
value.

var teamAssignments = {};
teamAssignments.putIfAbsent('Catcher', () => pickToughestKid());
assert(teamAssignments['Catcher'] != null);

Refer to the Map API docs for a full list of methods.

dart:core - Numbers, Collections, Strings, and More | 61

www.it-ebooks.info

http://api.dartlang.org/dart_core/Map.html
http://www.it-ebooks.info/

Dates and Times
A Date object is a point in time. The time zone is either UTC or the local time zone.

You can create Date objects using several constructors.
// Get the current date and time.
var now = new Date.now();

// Create a new Date with the local time zone.
var y2k = new Date(2000, 1, 1, 0, 0, 0, 0);

// You can also use named parameters.
y2k = new Date(2000, month: 1, day: 1, hour: 0, minute: 0, second: 0,
 millisecond: 0);

// Specify all the parts of a date as a UTC time.
y2k = new Date(2000, 1, 1, 0, 0, 0, 0, isUtc: true);

// Specify a UTC date and time in milliseconds since the Unix epoch.
y2k = new Date.fromMillisecondsSinceEpoch(946684800000, isUtc: true);

// Parse an ISO 8601 date.
y2k = new Date.fromString('2000-01-01T00:00:00Z');

The millisecondsSinceEpoch property of a date returns the number of milliseconds
since the epoch.

var y2k = new Date.fromString('2000-01-01T00:00:00Z');
assert(y2k.millisecondsSinceEpoch == 946684800000);

Use the Duration class to calculate the difference between two dates and to shift a date’s
time forward or backwards.

var y2k = new Date.fromString('2000-01-01T00:00:00Z');

// Add one year.
var y2001 = y2k.add(const Duration(days: 366));
assert(y2001.year == 2001);

// Subtract 30 days.
var december2000 = y2001.subtract(const Duration(days: 30));
assert(december2000.year == 2000);
assert(december2000.month == 12);

// Calculate the difference between two dates.
// Returns a Duration object.
var duration = y2001.difference(y2k);
assert(duration.inDays == 366); // y2k was a leap year.

Refer to the API docs for Date and Duration for a full list of methods.

62 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/dart_core/Date.html
http://api.dartlang.org/dart_core/Duration.html
http://www.it-ebooks.info/

Utility Classes
The core library contains various utility classes, useful for sorting, mapping values, and
iterating.

Comparing objects

Implement the Comparable interface to indicate that an object can be compared to
another object, usually for sorting. The compareTo() method returns < 0 for smaller, 0
for the same, and > 0 for bigger.

class Line implements Comparable {
 final length;
 const Line(this.length);
 int compareTo(Line other) => length - other.length;
}

main() {
 var short = const Line(1);
 var long = const Line(100);
 assert(short.compareTo(long) < 0);
}

Implementing map keys

Each object in Dart automatically provides an integer hash code, and thus can be used
as a key in a map. However, you can override the hashCode() method to generate a
custom hash code. If you do, be sure to override the == operator, as well. Objects that
are equal (via ==) must have identical hash codes. A hash code doesn’t have to be unique,
but it should be well distributed.

class Person {
 String firstName, lastName;

 Person(this.firstName, this.lastName);

 // Override hashCode using strategy from Effective Java, Chapter 11.
 int hashCode() {
 int result = 17;
 result = 37 * result + firstName.hashCode();
 result = 37 * result + lastName.hashCode();
 return result;
 }

 // Always implement operator== if you override hashCode.
 bool operator==(other) {
 if (identical(other, this)) return true;
 return (other.firstName == firstName && other.lastName == lastName);
 }
}

dart:core - Numbers, Collections, Strings, and More | 63

www.it-ebooks.info

http://api.dartlang.org/dart_core/Comparable.html
http://www.it-ebooks.info/

main() {
 var p1 = new Person('bob', 'smith');
 var p2 = new Person('bob', 'smith');
 assert(p1.hashCode() == p2.hashCode());
}

Iteration

The Iterable and Iterator classes support for-in loops. Implement Iterable to signal that
an object can provide an Iterator, and thus be used by for-in loops. Implement Iterator
to define the actual iteration ability.

class Process {
 // Represents a process...
}

class ProcessIterator implements Iterator<Process> {
 Process next() {
 // Return the next process if possible; but if not:
 throw new NoMoreElementsException();
 }
 bool hasNext() {
 // True if calling next() would return a process
 return false;
 }
}

// A mythical class that lets you iterate through all processes.
class Processes implements Iterable<Process> {
 Iterator<Process> iterator() {
 return new ProcessIterator();
 }
}

main() {
 // Objects that implement Iterable can be used with for-in.
 for (var process in new Processes()) {
 // Do something with the process.
 }
}

Asynchronous Programming
Asynchronous programming often uses callback functions, but Dart provides an alter‐
native: Future objects. A Future is like a promise for a result to be provided sometime
in the future.

You have the option of using a Completer to produce a Future and, later, to supply a
value to the Future.

Future<bool> longExpensiveSearch() {
 var completer = new Completer();

64 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/dart_core/Iterable.html
http://api.dartlang.org/dart_core/Iterator.html
http://api.dartlang.org/dart_core/Future.html
http://api.dartlang.org/dart_core/Completer.html
http://www.it-ebooks.info/

 // Perform exhaustive search.
 // ...
 // Sometime later,
 // found it!!
 completer.complete(true);
 return completer.future;
}

main() {
 var result = longExpensiveSearch(); // Returns immediately.

 // result.then() returns immediately.
 result.then((success) {
 // The following code executes when the operation is complete.
 print('The item was found: $success');
 });
}

Chaining multiple asynchronous methods

The Future class specifies a chain() method, which is a useful way to specify that mul‐
tiple asynchronous methods run in a certain order.

Future result = costlyQuery();
result.handleException((exception) => print('DOH!'));

result.chain((value) => expensiveWork())
 .chain((value) => lengthyComputation())
 .then((value) => print('done!'));

In the above example, the methods run in the following order:

1. costlyQuery()

2. expensiveWork()

3. lengthyComputation()

Waiting for multiple futures

Sometimes your algorithm needs to initiate many asynchronous methods and wait for
each one to complete before continuing. Use the Futures class to manage multiple Fu‐
tures and wait for them all to complete.

Future deleteDone = deleteLotsOfFiles();
Future copyDone = copyLotsOfFiles();
Future checksumDone = checksumLotsOfOtherFiles();

Futures.wait([deleteDone, copyDone, checksumDone]).then((List values) {
 print('Done with all the long steps');
});

dart:core - Numbers, Collections, Strings, and More | 65

www.it-ebooks.info

http://api.dartlang.org/dart_core/Futures.html
http://www.it-ebooks.info/

More information

For examples of using Future, see “dart:io - I/O for Command-Line Apps” (page 80).

Exceptions
The Dart core library defines many common exceptions and errors. Exceptions are
considered conditions that you can plan ahead for and catch. Errors are conditions that
you don’t expect or plan for.

Some of the most common exceptions and errors include:
NoSuchMethodError

Thrown when a receiving object does not implement a method.

NullPointerException
Thrown when the program tries to call a method or access a field of a null object.

ArgumentError
Can be thrown by a method that encounters an unexpected argument.

Throwing an application-specific exception is a common way to indicate that an error
has occurred. You can define a custom exception by implementing the Exception in‐
terface.

class FooException implements Exception {
 final String msg;
 const FooException([this.msg]);
 String toString() => msg == null ? 'FooException' : msg;
}

For more information, see “Exceptions” (page 32) and the Exception API docs.

dart:math - Math and Random
The Math library provides common functionality such as sine and cosine, maximum
and minimum, and constants such as pi and e. Most of the functionality in the Math
library is implemented as top-level functions.

To use the Math library in your app, import dart:math. The following examples use the
prefix math to make clear which top-level functions and constants are from the Math
library.

import 'dart:math' as math;

Trigonometry
The Math library provides basic trigonometric functions.

66 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/dart_core/NoSuchMethodError.html
http://api.dartlang.org/dart_core/NullPointerException.html
http://api.dartlang.org/dart_core/ArgumentError.html
http://api.dartlang.org/dart_core/Exception.html
http://www.it-ebooks.info/

These methods use radians, not degrees!

// Cosine
assert(math.cos(math.PI) == -1.0);

// Sine
var degrees = 30;
var radians = degrees * (math.PI / 180);
// radians is now 0.52359.
var sinOf30degrees = math.sin(radians);

// Truncate the decimal places to 2.
assert(double.parse(sinOf30degrees.toStringAsPrecision(2)) == 0.5);

Maximum and Mininum
The Math library provides optimized max() and min() methods.

assert(math.max(1, 1000) == 1000);
assert(math.min(1, -1000) == -1000);

Math Constants
Find your favorite constants—pi, e, and more—in the Math library.

// See the Math library for additional constants.
print(math.E); // 2.718281828459045
print(math.PI); // 3.141592653589793
print(math.SQRT2); // 1.4142135623730951

Random Numbers
Generate random numbers with the Random class. You can optionally provide a seed
to the Random constructor.

var random = new math.Random();
random.nextDouble(); // Between 0.0 and 1.0: [0, 1)
random.nextInt(10); // Between 0 and 9.

You can even generate random booleans.
var random = new math.Random();
random.nextBool(); // true or false

More Information
Refer to the Math API docs for a full list of methods. Also see the API docs for num,
int, and double.

dart:math - Math and Random | 67

www.it-ebooks.info

http://api.dartlang.org/dart_math/Random.html
http://api.dartlang.org/dart_math/index.html
http://api.dartlang.org/dart_core/num.html
http://api.dartlang.org/dart_core/int.html
http://api.dartlang.org/dart_core/double.html
http://www.it-ebooks.info/

dart:html - Browser-Based Apps
Use the dart:html library to program the browser, manipulate objects and elements in
the DOM, and access HTML5 APIs. DOM stands for Document Object Model, which
describes the hierarchy of an HTML page.

Other common uses of dart:html are manipulating styles (CSS), getting data using
HTTP requests, and exchanging data using WebSockets (page 74). HTML5 (and
dart:html) has many additional APIs that this section doesn’t cover. Only web apps can
use dart:html, not command-line apps.

To use the HTML library in your web app, import dart:html.
import 'dart:html';

Manipulating the DOM
To use the DOM, you need to know about windows, documents, elements, and nodes.

A Window object represents the actual window of the web browser. Each Window has
a document property (a Document object), which points to the document currently
loaded. The Window object also has accessors to various APIs such as IndexedDB (for
storing data), requestAnimationFrame() (for animations), and more. In tabbed brows‐
ers, each tab has its own Window object.

With the Document object, you can create and manipulate Elements within the docu‐
ment. Note that the document itself is an element and can be manipulated.

The DOM models a tree of Nodes. These nodes are often elements, but they can also be
attributes, text, comments, and other DOM types. Except for the root node, which has
no parent, each node in the DOM has one parent and might have many children.

Finding elements

To manipulate an element, you first need an object that represents it. You can get this
object using a query.

Find one or more elements using the top-level functions query() and queryAll(). You
can query by ID, class, tag, name, or any combination of these. The CSS Selector Spec‐
ification guide defines the formats of the selectors such as using a # prefix to specify IDs
and a period (.) for classes.

The query() function returns the first element that matches the selector, while
queryAll() returns a collection of elements that match the selector.

Element elem1 = query('#an-id'); // Find an element by id (an-id).
Element elem2 = query('.a-class'); // Find an element by class (a-class).
List<Element> elems1 = queryAll('div'); // Find all elements by tag (<div>).
List<Element> elems2 = queryAll('input[type="text"]'); // Find all text inputs.

68 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/dart_html.html
http://api.dartlang.org/html/Window.html
http://api.dartlang.org/html/Document.html
http://api.dartlang.org/html/Element.html
http://api.dartlang.org/html/Node.html
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/
http://www.it-ebooks.info/

// Find all elements with the CSS class 'class' inside of a <p>
// that is inside an element with the ID 'id'.
List<Element> elems3 = queryAll('#id p .class');

Manipulating elements

You can use properties to change the state of an element. Node and its subtype Element
define the properties that all elements have. For example, all elements have classes,
hidden, id, innerHTML, style, text, and title properties. Subclasses of Element define
additional properties, such as the href property of AnchorElement.

Consider this example of specifying an anchor element in HTML:
linktext

This <a> tag specifies an element with an href attribute and a text node (accessible via
a text property) that contains the string “linktext”. To change the URL that the link goes
to, you can use AnchorElement’s href property:

query('#example').href = 'http://dartlang.org';

Often you need to set properties on multiple elements. For example, the following code
sets the hidden property of all elements that have a class of “mac”, “win”, or “linux”.
Setting the hidden property to true has the same effect as adding display:none to the
CSS.

<!-- Some HTML -->
<p>
 Download for Linux
 Download for Mac
 Download for Windows
</p>

// Some Dart.

final osList = ['mac', 'win', 'linux'];

main() {
 var userOs = determineUserOs();

 for (var os in osList) { // For each possible OS...
 bool shouldShow = (os == userOs); // Does this OS match the user's OS?
 for (var elem in queryAll('.$os')) { // Find all elements for this OS.
 elem.hidden = !shouldShow; // Show or hide each element.
 }
 }
}

dart:html - Browser-Based Apps | 69

www.it-ebooks.info

http://api.dartlang.org/html/AnchorElement.html
http://www.it-ebooks.info/

When the right property isn’t available or convenient, you can use Element’s at
tributes property. This property has the type AttributeMap, which implements a map
(page 60) with keys that are strings (attribute names) and values that it automatically
converts to strings. For a list of attribute names and their meanings, see the MDN At‐
tributes page. Here’s an example of setting an attribute’s value.

elem.attributes['someAttribute'] = 'someValue';

Creating elements

You can add to existing HTML pages by creating new elements and attaching them to
the DOM. Here’s an example of creating a paragraph (<p>) element:

var elem = new ParagraphElement();
elem.text = 'Creating is easy!';

You can also create an element by parsing HTML text. Any child elements are also parsed
and created.

var elem = new Element.html('<p>Creating is easy!</p>');

Note that elem is a ParagraphElement in the above example.

Attach the newly created element to the document by assigning a parent to the element.
You can add an element to any existing element’s children. In the following example,
body is an element, and its child elements are accessible (as a List<Element>) from the
elements property.

var elem = new ParagraphElement();
elem.text = "Don't forget to feed the llamas!";
document.body.elements.add(elem);

Adding, replacing, and removing nodes

Recall that elements are just a kind of node. You can find all the children of a node using
the nodes property of Node, which returns a List<Node>. Once you have this list, you
can use the usual List methods and operators to manipulate the children of the node.

To add a node as the last child of its parent, use the List add() method.
// Find the parent by ID, and add elem as its last child.
query('#inputs').nodes.add(elem);

To replace a node, use the Node replaceWith() method.
// Find a node by ID, and replace it in the DOM.
query('#status').replaceWith(elem);

To remove a node, use the Node remove() method.
// Find a node by ID, and remove it from the DOM.
query('#example').remove();

70 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/html/AttributeMap.html
https://developer.mozilla.org/en/HTML/Attributes
https://developer.mozilla.org/en/HTML/Attributes
http://www.it-ebooks.info/

Manipulating CSS styles

CSS, or cascading style sheets, is used to define the presentation styles of DOM elements.
You can change the appearance of an element by attaching ID and class attributes to it.

Each element has a classes field, which is a list. Add and remove CSS classes simply
by adding and removing strings from this collection. For example, the following sample
adds the warning class to an element.

var element = query('#message');
element.classes.add('warning');

It’s often very efficient to find an element by ID. You can dynamically set an element ID
with the id property.

var message = new DivElement();
message.id = 'message';
message.text = 'Please subscribe to the Dart mailing list.';

You can reduce the redundant text in this example by using method cascades:
var message = new DivElement()
 ..id = 'message'
 ..text = 'Please subscribe to the Dart mailing list.';

While using IDs and classes to associate an element with a set of styles is best practice,
sometimes you want to attach a specific style directly to the element.

message.style
 ..fontWeight = 'bold'
 ..fontSize = '3em';

Handling events

To respond to external events such as clicks, changes of focus, and selections, add an
event listener. You can add an event listener to any element on the page. Event dispatch
and propagation is a complicated subject; research the details if you’re new to web pro‐
gramming.

Add an event handler using element.on.event.add(function), where event is the
event name and function is the event handler.

For example, here’s how you can handle clicks on a button.
// Find a button by ID and add an event handler.
query('#submitInfo').on.click.add((e) {
 // When the button is clicked, it runs this code.
 submitData();
});

Events can propagate up and down through the DOM tree. To discover which element
originally fired the event, use e.target.

dart:html - Browser-Based Apps | 71

www.it-ebooks.info

http://www.w3.org/TR/DOM-Level-3-Events/#dom-event- architecture
http://www.it-ebooks.info/

document.body.on.click.add((e) {
 var clickedElem = e.target;
 print('You clicked the ${clickedElem.id} element.');
});

To see all the events for which you can register an event listener, consult the API docs
for ElementEvents and its subclasses. Some common events include:

• change
• blur
• keyDown
• keyUp
• mouseDown
• mouseUp

Using HTTP Resources with HttpRequest
Formerly known as XMLHttpRequest, the HttpRequest class gives you access to HTTP
resources from within your browser-based app. Traditionally, AJAX-style apps make
heavy use of HttpRequest. Use HttpRequest to dynamically load JSON data or any other
resource from a web server. You can also dynamically send data to a web server.

The following examples assume all resources are served from the same web server that
hosts the script itself. Due to security restrictions in the browser, the HttpRequest class
can’t easily use resources that are hosted on an origin that is different from the origin
of the app. If you need to access resources that live on a different web server, you need
to either use a technique called JSONP or enable CORS headers on the remote resources.

Getting data from the server

The HttpRequest.get() constructor is an easy way to get data from a web server.
import 'dart:html';
import 'dart:json';

onSuccess(HttpRequest request) {
 Map response = JSON.parse(request.responseText);
 String name = response['name'];
 String license = response['license'];
 print('The $name project uses the $license license.');
}

main() {
 // Request the data at 'data.json', a file in the same location as this page.
 var httpRequest = new HttpRequest.get('data.json', onSuccess);
}

72 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/html/ElementEvents.html
http://api.dartlang.org/dart_html/HttpRequest.html
http://www.it-ebooks.info/

The onSuccess() function runs when the data at the specified URI is successfully re‐
trieved. In this case, we are dynamically loading a JSON file, whose contents are delivered
in request.responseText. Information about the JSON API is in “dart:json - Encoding
and Decoding Objects” (page 84).

The HttpRequest.get() constructor is great for simple cases, but you can also use the
full API to handle more interesting cases. For example, you can capture errors and set
arbitrary headers.

The general flow for using the full API of HttpRequest is as follows:

1. Create the HttpRequest object.
2. Open the URL with either GET or POST.
3. Attach event handlers.
4. Send the request.

A full example of handling errors follows:
import 'dart:html';
import 'dart:json';

loadEnd(HttpRequest request) {
 if (request.status != 200) {
 print('Uh oh, there was an error of ${request.status}');
 return;
 }

 Map response = JSON.parse(request.responseText);
 String name = response['name'];
 String license = response['license'];
 print('The $name project uses the $license license.');
}

main() {
 var dataUrl = 'data.json';
 var httpRequest = new HttpRequest();
 httpRequest.open('GET', dataUrl);
 httpRequest.on.loadEnd.add((e) => loadEnd(httpRequest));
 httpRequest.send();
}

Sending data to the server

HttpRequest can also send data to the server, using the HTTP method POST. For ex‐
ample, you might want to dynamically submit data to a form handler. Sending JSON
data to a RESTful web service is another common example.

dart:html - Browser-Based Apps | 73

www.it-ebooks.info

http://www.it-ebooks.info/

Submitting data to a form handler requires you to provide name-value pairs as URI-
encoded strings. (Information about the URI API is in “dart:uri - Manipulating URIs”
(page 86).) You must also set the Content-type header to application/x-www-form-
urlencode if you wish to send data to a form handler.

import 'dart:html';
import 'dart:json';
import 'dart:uri';

String encodeMap(Map data) {
 return Strings.join(data.getKeys().map((k) {
 return '${encodeUriComponent(k)}=${encodeUriComponent(data[k])}';
 }), '&');
}

loadEnd(HttpRequest request) {
 if (request.status != 200) {
 print('Uh oh, there was an error of ${request.status}');
 return;
 } else {
 print('Data has been posted');
 }
}

main() {
 var dataUrl = '/registrations/create';
 var data = {'dart': 'fun', 'editor': 'productive'};
 var encodedData = encodeMap(data);

 var httpRequest = new HttpRequest();
 httpRequest.open('POST', dataUrl);
 httpRequest.setRequestHeader('Content-type',
 'application/x-www-form-urlencoded');
 httpRequest.on.loadEnd.add((e) => loadEnd(httpRequest));
 httpRequest.send(encodedData);
}

Sending and Receiving Real-Time Data with WebSockets
A WebSocket allows your web app to exchange data with a server interactively—no
polling necessary. A server creates the WebSocket and listens for requests on a URL that
starts with ws://—for example, ws://127.0.0.1:1337/ws. The data transmitted over a
WebSocket can be a string, a blob, or an ArrayBuffer. Often, the data is a JSON-formatted
string.

To use a WebSocket in your web app, first create a WebSocket object, passing the Web‐
Socket URL as an argument.

var webSocket = new WebSocket('ws://127.0.0.1:1337/ws');

74 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/html/ArrayBuffer.html
http://api.dartlang.org/html/WebSocket.html
http://www.it-ebooks.info/

Sending data

To send string data on the WebSocket, use the send() method.
sendMessage(String data) {
 if (webSocket.readyState == WebSocket.OPEN) {
 webSocket.send(data);
 } else {
 throw 'WebSocket not connected, message $data not sent';
 }
}

Receiving data

To receive data on the WebSocket, register a listener for message events.
webSocket.on.message.add((e) {
 receivedMessage((e as MessageEvent).data);
});

The message event handler receives a MessageEvent object. This object’s data field has
the data from the server. Here’s an example of decoding a JSON string sent on a Web‐
Socket, where the JSON string has two fields, “from” and “content”.

// Called from the message listener like this: receivedMessage(e.data)
receivedMessage(String data) {
 Map message = JSON.parse(data);
 if (message['from'] != null) {
 print('Message from ${message['from']}: ${message['content']}');
 }
}

Handling WebSocket events

WebSocketEvents defines the WebSocket events your app can handle: open, close, error,
and (as shown above) message. Here’s an example of a method that creates a WebSocket
object and handles message, open, close, and error events.

connectToWebSocket([int retrySeconds = 2]) {
 bool reconnectScheduled = false;
 webSocket = new WebSocket(url);

 scheduleReconnect() {
 print('web socket closed, retrying in $retrySeconds seconds');
 if (!reconnectScheduled) {
 window.setTimeout(() => connectToWebSocket(retrySeconds*2),
 1000*retrySeconds);
 }
 reconnectScheduled = true;
 }

 webSocket.on.open.add((e) {
 print('Connected');
 });

dart:html - Browser-Based Apps | 75

www.it-ebooks.info

http://api.dartlang.org/html/MessageEvent.html
http://api.dartlang.org/html/WebSocketEvents.html
http://www.it-ebooks.info/

 webSocket.on.close.add((e) => scheduleReconnect());
 webSocket.on.error.add((e) => scheduleReconnect());

 webSocket.on.message.add((MessageEvent e) {
 _receivedEncodedMessage(e.data);
 });
}

For an example of using WebSockets, see Chapter 5.

dart:isolate - Concurrency with Isolates
Dart has no shared-memory threads. Instead, all Dart code runs in isolates, which
communicate via message passing. Messages are copied before they are received, en‐
suring that no two isolates can manipulate the same object instance. Because state is
managed by individual isolates, no locks or mutexes are needed, greatly simplifying
concurrent programming.

Isolate Concepts
To use isolates, you should understand the following concepts:

• No two isolates ever share the same thread at the same time. Within an isolate,
callbacks execute one at a time, making the code more predictable.

• All values in memory, including globals, are available only to their isolate. No isolate
can see or manipulate values owned by another isolate.

• The only way isolates can communicate with each other is by passing messages.
• Isolates send messages using SendPorts, and receive them using ReceivePorts.
• The content of a message can be any of the following:

— A primitive value (null, num, bool, double, String)
— An instance of SendPort
— A list or map whose elements are any of the above, including other lists and maps
— In special circumstances (page 78), an object of any type

• Each isolate has a ReceivePort, which is available as the port variable. Because all
Dart code runs inside an isolate, even main() has access to a port object.

• When a web application is compiled to JavaScript, its isolates can be implemented
as Web workers. When running in Dartium, isolates run in the VM.

76 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://www.it-ebooks.info/

1. The dart2js compiler and the Dart VM do not yet support static methods as isolate entry points. For details,
see http://dartbug.com/3011.

• In the standalone VM, the main() function runs in the first isolate (also known as
the root isolate). When the root isolate terminates, it terminates the whole VM,
regardless of whether other isolates are still running. For more information, see
“Keeping the root isolate alive” (page 79).

Using Isolates
To use an isolate, you import the dart:isolate library, spawn a new isolate, and then
send and receive messages.

Spawning isolates

Any top-level function or static method1 is a valid entry point for an isolate. The entry
point should not expect arguments and should return void. It is illegal to use a function
closure as an entry point to an isolate. Pass the entry point to spawnFunction().

import 'dart:isolate';

runInIsolate() {
 print('hello from an isolate!');
}

main() {
 spawnFunction(runInIsolate);

 // Note: incomplete.
 // Use a ReceivePort (details below) to keep the root isolate alive
 // long enough for runInIsolate() to perform its work.
}

We plan to support spawning an isolate from code at a URI.

Sending messages

Send a message to an isolate via a SendPort. The spawnFunction() method returns a
handle to the newly created isolate’s SendPort.

To simply send a message, use send().
import 'dart:isolate';

echo() {
 // Receive messages here. (See the next section.)
}

main() {

dart:isolate - Concurrency with Isolates | 77

www.it-ebooks.info

http://dartbug.com/3011
http://www.it-ebooks.info/

2. Support for sending an arbitrary object to an isolate is not yet available when compiling to JavaScript.

 var sendPort = spawnFunction(echo);
 sendPort.send('Hello from main');

 // Note: incomplete.
 // Use a ReceivePort (details below) to keep the root isolate alive
 // long enough for echo() to perform its work.
}

Sending any type of object

In special circumstances (such as when using spawnFunction() inside the Dart VM),
it is possible to send any type of object to an isolate.2 The object message is copied when
sent.

Receiving messages

Use a ReceivePort to receive messages sent to an isolate. Obtain a handle to the default
ReceivePort from the top-level port property. You can also create new instances of
ReceivePort, if you want to route messages to different ports and callbacks.

Handle an incoming message with a callback function passed to the receive() method.
import 'dart:isolate';

echo() {
 port.receive((msg, reply) {
 print('I received: $msg');
 });
}

main() {
 var sendPort = spawnFunction(echo);
 sendPort.send('Hello from main');

 // Note: incomplete.
 // Use a ReceivePort (details below) to keep the root isolate alive
 // long enough for echo() to perform its work.
}

Receiving replies

Use the call() method on SendPort as a simple way to send a message and receive a
reply. The call() method returns a Future for the reply.

import 'dart:isolate';

echo() {
 port.receive((msg, reply) {
 reply.send('I received: $msg');

78 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://www.it-ebooks.info/

 });
}

main() {
 var sendPort = spawnFunction(echo);
 sendPort.call('Hello from main').then((reply) {
 print(reply); // I received: Hello from main
 });
}

Under the covers, the call() method creates and manages a SendPort and a Receive‐
Port, which are necessary for a call-and-response message exchange.

Keeping the root isolate alive

In the VM, an isolate continues to run as long as it has an open ReceivePort inside the
isolate. If the main() function only starts other isolates, doing no work itself, you must
keep the root isolate alive to keep the program alive.

To keep a root isolate alive, open a ReceivePort in the root isolate. When all the child
isolates have finished their work, you can send a message to the root isolate to close its
ReceivePort, thus stopping the program.

You can coordinate isolates with message passing, sending a message to inform the root
isolate when a child isolate finishes. Here is an example:

import 'dart:isolate';

childIsolate() {
 port.receive((msg, replyTo) {
 print('doing some work');
 if (replyTo != null) replyTo.send('shutdown');
 });
}

main() {
 var sender = spawnFunction(childIsolate);
 var receiver = new ReceivePort();
 receiver.receive((msg, _) {
 if (msg == 'shutdown') {
 print('shutting down');
 receiver.close();
 }
 });
 sender.send('do work please', receiver.toSendPort());
}

In the above example, the child isolate runs to completion because the root isolate keeps
a ReceivePort open. The root isolate creates a ReceivePort to wait for a shutdown mes‐
sage. The term shutdown is arbitrary; the ReceivePort simply needs to wait for some
signal.

dart:isolate - Concurrency with Isolates | 79

www.it-ebooks.info

http://www.it-ebooks.info/

Once the root isolate receives a shutdown message, it closes the ReceivePort. With the
ReceivePort closed and nothing else to do, the root isolate terminates, causing the app
to exit.

More Information
See the API docs for the dart:isolate library, as well as for SendPort and ReceivePort.

dart:io - I/O for Command-Line Apps
The dart:io library provides APIs to deal with files, directories, processes, sockets, and
HTTP connections. Only command-line apps can use dart:io—not web apps.

In general, the dart:io library implements and promotes an asynchronous API. Syn‐
chronous methods can easily block the event loop, making it difficult to scale server
applications. Therefore, most operations return results via callbacks or Future objects,
a pattern common with modern server platforms such as Node.js.

The few synchronous methods in the dart:io library are clearly marked with a Sync suffix
on the method name. We don’t cover them here.

Only command-line apps can import and use dart:io.

Files and Directories
The I/O library enables command-line apps to read and write files and browse direc‐
tories. You have two choices for reading the contents of a file: all at once, or streaming.
Reading a file all at once requires enough memory to store all the contents of the file. If
the file is very large or you want to process it while reading it, you should use an Input‐
Stream, as described in “Streaming file contents” (page 81).

Reading a file as text

When reading a text file, you can read the entire file contents with readAsText(). When
the individual lines are important, you can use readAsLines(). In both cases, a Future
object is returned that provides the contents of the file as one or more strings.

import 'dart:io';

main() {
 var config = new File('config.txt');

 // Put the whole file in a single string.
 config.readAsText(Encoding.UTF_8).then((String contents) {

80 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/dart_isolate.html
http://api.dartlang.org/dart_isolate/SendPort.html
http://api.dartlang.org/dart_isolate/ReceivePort.html
http://api.dartlang.org/io.html
http://www.it-ebooks.info/

 print('The entire file is ${contents.length} characters long');
 });

 // Put each line of the file into its own string.
 config.readAsLines(Encoding.UTF_8).then((List<String> lines) {
 print('The entire file is ${lines.length} lines long');
 });
}

Reading a file as binary

The following code reads an entire file as bytes into a list of ints. The call to
readAsBytes() returns a Future, which provides the result when it’s available.

import 'dart:io';

main() {
 var config = new File('config.txt');

 config.readAsBytes().then((List<int> contents) {
 print('The entire file is ${contents.length} bytes long');
 });
}

Handling errors

Errors are thrown as exceptions if you do not register an explicit handler. If you want to
capture an error, you can register a handleException handler with the Future object.

import 'dart:io';

main() {
 var config = new File('config.txt');
 Future readFile = config.readAsText();
 readFile.handleException((e) {
 print(e);
 // ...Other error handling goes here...
 return true; // We've handled the exception; no need to propagate it.
 });
 readFile.then((text) => print(text));
}

Streaming file contents

Use an InputStream to read a file, a little at a time. The onData callback runs when data
is ready to be read. When the InputStream is finished reading the file, the onClosed
callback executes.

import 'dart:io';

main() {
 var config = new File('config.txt');
 var inputStream = config.openInputStream();

dart:io - I/O for Command-Line Apps | 81

www.it-ebooks.info

http://www.it-ebooks.info/

 inputStream.onError = (e) => print(e);
 inputStream.onClosed = () => print('file is now closed');
 inputStream.onData = () {
 List<int> bytes = inputStream.read();
 print('Read ${bytes.length} bytes from stream');
 };
}

To decode an input stream from bytes into characters, wrap the InputStream with a
StringInputStream. You can read the strings either as data becomes available or a line
at a time.

Writing file contents

Use an OutputStream to write data to a file. Open a file for writing with openOutput
Stream() and declare a mode. Use FileMode.WRITE to completely overwrite existing
data in the file, and FileMode.APPEND to add to the end.

import 'dart:io';

main() {
 var logFile = new File('log.txt');
 var out = logFile.openOutputStream(FileMode.WRITE);
 out.writeString('FILE ACCESSED ${new Date.now()}');
 out.close();
}

To write binary data, use write(List<int> buffer).

Listing files in a directory

Finding all files and subdirectories for a directory is an asynchronous operation. The
list() method returns a DirectoryLister, on which you can register callback handlers
to be notified when a file is encountered (using onFile) or when a directory is encoun‐
tered (using onDir).

import 'dart:io';

main() {
 var dir = new Directory('/tmp');

 DirectoryLister lister = dir.list(recursive:true); // Returns immediately.
 lister.onError = (e) => print(e);
 lister.onFile = (String name) => print('Found file $name');
 lister.onDir = (String name) => print('Found dir $name');
}

Other common functionality

The File and Directory classes contain other functionality, including but not limited to:

82 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/io/StringInputStream.html
http://www.it-ebooks.info/

• Creating a file or directory: create() in File and Directory
• Deleting a file or directory: delete() in File and Directory
• Getting the length of a file: length() in File
• Getting random access to a file: open() in File

Refer to the API docs for File, Directory, and DirectoryLister for a full list of methods.
Also see InputStream, StringInputStream, and OutputStream.

Besides the APIs discussed in this section, the dart:io library also provides APIs for
processes, sockets, and web sockets.

For more examples of using dart:io, see Chapter 5.

HTTP Clients and Servers
The dart:io library provides classes that command-line apps can use for accessing HTTP
resources, as well as running HTTP servers.

HTTP server

The HttpServer class provides the low-level functionality for building web servers. You
can match request handlers, set headers, stream data, and more.

Because Dart is single threaded and has an event loop, the API design of HttpServer
favors callbacks for handling events.

The following sample web server can return only simple text information. This server
listens on port 8888 and address 127.0.0.1 (localhost), responding to requests for the
path /languages/dart. All other requests are handled by the default request handler,
which returns a response code of 404 (not found).

import 'dart:io';

main() {
 dartHandler(HttpRequest request, HttpResponse response) {
 print('New request');
 response.outputStream.writeString('Dart is optionally typed');
 response.outputStream.close();
 };

 var httpServer = new HttpServer();
 httpServer.addRequestHandler(
 (req) => req.path == '/languages/dart',
 dartHandler);

 httpServer.listen('127.0.0.1', 8888);
}

dart:io - I/O for Command-Line Apps | 83

www.it-ebooks.info

http://api.dartlang.org/io/File.html
http://api.dartlang.org/io/Directory.html
http://api.dartlang.org/io/DirectoryLister.html
http://api.dartlang.org/io/InputStream.html
http://api.dartlang.org/io/StringInputStream.html
http://api.dartlang.org/io/OutputStream.html
http://api.dartlang.org/io/Process.html
http://api.dartlang.org/io/Socket.html
http://api.dartlang.org/io/WebSocket.html
http://api.dartlang.org/dart_io/HttpServer.html
http://www.it-ebooks.info/

You can see a more comprehensive HTTP server in “The Server’s Code” (page 116).

HTTP client

The HttpClient class helps you connect to HTTP resources from your Dart command-
line or server-side application. You can set headers, use HTTP methods, and read and
write data. The HttpClient class does not work in browser-based apps. When program‐
ming in the browser, use the HttpRequest class (page 72).

The HttpClient API, like the HttpServer API, is callback oriented. The general flow of
events is as follows:

1. Create a new HttpClient.
2. Get the URL.
3. Register the onResponse() callback on the HttpClientConnection.
4. Register the onData() callback on the input stream.
5. Register the onClosed() callback on the HttpClientConnection.
6. Read data when available.
7. Shut down the HttpClient when you no longer want to create connections using it.

import 'dart:io';
import 'dart:uri';

main() {
 var httpClient = new HttpClient();
 var conn = httpClient.getUrl(new Uri('http://127.0.0.1:8888/languages/dart'));
 conn.onResponse = (HttpClientResponse resp) {
 var input = resp.inputStream;
 input.onData = () {
 var data = input.read();
 var text = new String.fromCharCodes(data);
 print(text);
 };
 input.onClosed = () => httpClient.shutdown();
 };
}

dart:json - Encoding and Decoding Objects
JSON is a simple text format for representing structured objects and collections. The
JSON library decodes JSON-formatted strings into Dart objects, and encodes objects
into JSON-formatted strings.

The Dart JSON library works in both web apps and command-line apps. To use the
JSON library, import dart:json.

84 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/dart_io/HttpClient.html
http://www.json.org/
http://api.dartlang.org/json.html
http://www.it-ebooks.info/

Decoding JSON
Decode a JSON-encoded string into a Dart object with JSON.parse().

import 'dart:json';

main() {
 // NOTE: Be sure to use double quotes ("), not single quotes ('),
 // inside the JSON string. This string is JSON, not Dart.
 var jsonString = '''
 [
 {"score": 40},
 {"score": 80}
]
 ''';

 var scores = JSON.parse(jsonString);
 assert(scores is List);

 var firstScore = scores[0];
 assert(firstScore is Map);
 assert(firstScore['score'] == 40);
}

Encoding JSON
Encode a supported Dart object into a JSON-formatted string with JSON.stringify().

Only objects of type int, double, String, bool, null, List, or Map can be encoded into
JSON. List and Map objects are encoded recursively.

If any object that isn’t an int, double, String, bool, null, List, or Map is passed to string
ify(), the object’s toJson() method is called. If toJson() returns an encodable value,
that value is encoded in the object’s place.

import 'dart:json';

main() {
 var scores = [
 {'score': 40},
 {'score': 80},
 {'score': 100, 'overtime': true, 'special_guest': null}
];

 var jsonText = JSON.stringify(scores);
 assert(jsonText == '[{"score":40},{"score":80},'
 '{"score":100,"overtime":true,'
 '"special_guest":null}]');
}

dart:json - Encoding and Decoding Objects | 85

www.it-ebooks.info

http://www.it-ebooks.info/

dart:uri - Manipulating URIs
The URI library provides functions to encode and decode strings for use in URIs (which
you might know as URLs). These functions handle characters that are special for URIs,
such as & and =.

Another part of the URI library is the Uri class, which parses and exposes the compo‐
nents of a URI—domain, port, scheme, and so on.

The URI library works in both web apps and command-line apps. To use it, import
dart:uri.

Encoding and Decoding Fully Qualified URIs
To encode and decode characters except those with special meaning in a URI (such
as /, :, &, #), use the top-level encodeUri() and decodeUri() functions. These functions
are good for encoding or decoding a fully qualified URI, leaving intact special URI
characters.

import 'dart:uri';

main() {
 var uri = 'http://example.org/api?foo=some message';
 var encoded = encodeUri(uri);
 assert(encoded == 'http://example.org/api?foo=some%20message');

 var decoded = decodeUri(encoded);
 assert(uri == decoded);
}

Notice how only the space between some and message was encoded.

Encoding and Decoding URI Components
To encode and decode all of a string’s characters that have special meaning in a URI,
including (but not limited to) /, &, and :, use the top-level encodeUriComponent() and
decodeUriComponent() functions.

import 'dart:uri';

main() {
 var uri = 'http://example.org/api?foo=some message';
 var encoded = encodeUriComponent(uri);
 assert(encoded == 'http%3A%2F%2Fexample.org%2Fapi%3Ffoo%3Dsome%20message');

 var decoded = decodeUriComponent(encoded);
 assert(uri == decoded);
}

Notice how every special character is encoded. For example, / is encoded to %2F.

86 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/uri.html
http://www.it-ebooks.info/

Parsing URIs
You can parse a URI into its parts with the Uri() constructor.

import 'dart:uri';

main() {
 var uri = new Uri('http://example.org:8080/foo/bar#frag');

 assert(uri.scheme == 'http');
 assert(uri.domain == 'example.org');
 assert(uri.path == '/foo/bar');
 assert(uri.fragment == 'frag');
 assert(uri.origin == 'http://example.org:8080');
}

See the Uri API docs for more URI components that you can get.

Building URIs
You can build up a URI from individual parts using the Uri.fromComponents() con‐
structor.

import 'dart:uri';

main() {
 var uri = new Uri.fromComponents(scheme: 'http', domain: 'example.org',
 path: '/foo/bar', fragment: 'frag');
 assert(uri.toString() == 'http://example.org/foo/bar#frag');
}

dart:utf - Strings and Unicode
The UTF library helps bridge the gap between strings and UTF-8/UTF-16/UTF-32 en‐
codings.

The UTF library works in both web apps and command-line apps. To use the UTF
library, import dart:utf.

Decoding UTF-8 Characters
Use decodeUtf8() to decode UTF8-encoded bytes to a Dart string.

import 'dart:utf';

main() {
 var string = decodeUtf8([0xc3, 0x8e, 0xc3, 0xb1, 0xc5, 0xa3, 0xc3, 0xa9,
 0x72, 0xc3, 0xb1, 0xc3, 0xa5, 0xc5, 0xa3, 0xc3,
 0xae, 0xc3, 0xb6, 0xc3, 0xb1, 0xc3, 0xa5, 0xc4,

dart:utf - Strings and Unicode | 87

www.it-ebooks.info

http://api.dartlang.org/uri/Uri.html
http://www.it-ebooks.info/

 0xbc, 0xc3, 0xae, 0xc5, 0xbe, 0xc3, 0xa5, 0xc5,
 0xa3, 0xc3, 0xae, 0xe1, 0xbb, 0x9d, 0xc3, 0xb1]);
 print(string); // 'Îñţérñåţîöñåļîžåţîờñ'
}

Encoding Strings to UTF-8 Bytes
Use encodeUtf8() to encode a Dart string as a list of UTF8-encoded bytes.

import 'dart:utf';

main() {
 List<int> expected = [0xc3, 0x8e, 0xc3, 0xb1, 0xc5, 0xa3, 0xc3, 0xa9, 0x72,
 0xc3, 0xb1, 0xc3, 0xa5, 0xc5, 0xa3, 0xc3, 0xae, 0xc3,
 0xb6, 0xc3, 0xb1, 0xc3, 0xa5, 0xc4, 0xbc, 0xc3, 0xae,
 0xc5, 0xbe, 0xc3, 0xa5, 0xc5, 0xa3, 0xc3, 0xae, 0xe1,
 0xbb, 0x9d, 0xc3, 0xb1];

 List<int> encoded = encodeUtf8('Îñţérñåţîöñåļîžåţîờñ');

 assert(() {
 if (encoded.length != expected.length) return false;
 for (int i = 0; i < encoded.length; i++) {
 if (encoded[i] != expected[i]) return false;
 }
 return true;
 });
}

Other Functionality
The UTF library can decode and encode UTF-16 and UTF-32 bytes. The library can
also convert directly to and from Unicode code points and UTF8-encoded bytes. For
details, see the API docs for the UTF library.

dart:crypto - Hash Codes and More
The Dart crypto library contains functions useful for cryptographic applications, such
as creating cryptographic hashes and generating hash-based message authentication
codes.

The crypto library works in both web apps and command-line apps. To use the crypto
library, import dart:crypto.

88 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://api.dartlang.org/utf.html
http://api.dartlang.org/crypto.html
http://www.it-ebooks.info/

Generating Cryptographic Hashes
With the crypto library, you can use SHA256, SHA1, or MD5 objects to generate hashes
(also known as digests or message digests). We recommend using SHA256, but we have
included SHA1 and MD5 for compatibility with older systems. All these types inherit
from Hash, which defines the Dart interface for cryptographic hash functions.

import 'dart:crypto';

main() {
 var sha256 = new SHA256();
 var digest = sha256.update('message'.charCodes()).digest();
 var hexString = CryptoUtils.bytesToHex(digest);
 assert(hexString ==
 'ab530a13e45914982b79f9b7e3fba994cfd1f3fb22f71cea1afbf02b460c6d1d');
}

If the message content changes, the digest value also changes (with a very high proba‐
bility).

Generating Message Authentication Codes
Use a hash-based message authentication code (HMAC) to combine a cryptographic
hash function with a secret key.

import 'dart:crypto';
main() {
 var hmac = new HMAC(new SHA256(), 'secretkey'.charCodes());
 var hmacDigest = hmac.update('message'.charCodes()).digest();
 var hmacHex = CryptoUtils.bytesToHex(hmacDigest);
 assert(hmacHex ==
 '5c3e2f56de9411068f675ef32ffa12735210b9cbfee2ba521367a3955334a343');
}

If either the message contents or key changes, the digest value also changes (with a very
high probability).

Generating Base64 Strings
You can represent binary data as a character string by using the Base64 encoding scheme.
Use the CryptoUtils.bytesToBase64() utility method to convert a list of bytes into a
Base64-encoded string.

import 'dart:crypto';
import 'dart:io';

main() {
 var file = new File('icon.ico');
 var bytes = file.readAsBytesSync();
 var base64 = CryptoUtils.bytesToBase64(bytes);

dart:crypto - Hash Codes and More | 89

www.it-ebooks.info

http://api.dartlang.org/crypto/SHA256.html
http://api.dartlang.org/crypto/SHA1.html
http://api.dartlang.org/crypto/MD5.html
http://api.dartlang.org/crypto/Hash.html
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/Base64
http://www.it-ebooks.info/

 assert(base64 ==
 'iVBORw0KGgoAAAANSUhEUgAAAAUAAAAFCAYAAACNbyblAAAAHElEQVQI12P4//8/w38G'
 'IAXDIBKE0DHxgljNBAAO9TXL0Y4OHwAAAABJRU5ErkJggg==');
}

Summary
This chapter introduced you to the most commonly used functionality in Dart’s built-
in libraries. You can use the pub tool, discussed in the next chapter, to install additional
Dart libraries.

90 | Chapter 3: A Tour of the Dart Libraries

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Tools

Dart provides several tools to help you write and deploy your web and command-line
apps.
pub: The Dart package manager

Download and install packages of libraries.

Dart Editor (page 93)
Edit, run, and debug web and command-line apps.

Dartium: Chromium with the Dart VM (page 103)
Run Dart web apps. This is a special build of Chromium (the project behind Google
Chrome).

dart2js: The Dart-to-JavaScript compiler (page 105)
Convert your web app to JavaScript, so it can run in non-Dartium browsers.

dart: The standalone Dart VM (page 106)
Run your command-line apps—server-side scripts, programs, servers, and any
other apps that don’t run in a browser.

All of these tools are in the Dart Editor bundle, since the editor uses Dartium and the
other tools. You can also download Dartium separately, and you can download an SDK
that includes dart2js, dart, and pub. See the Downloads page for links and details.

pub: The Dart Package Manager
You can use use the pub tool ($DART_SDK/bin/pub) to manage Dart packages. A Dart
package is simply a directory containing any number of Dart libraries and a list of the
library dependencies. A package can also contain resources for its libraries, such as
documentation, tests, and images. If your app uses one or more packages, then your app
itself must be a package.

91

www.it-ebooks.info

http://www.dartlang.org/downloads.html
http://www.it-ebooks.info/

A package can live anywhere. Some packages are distributed in the Dart SDK, under
the pkg directory. Others are on GitHub. We plan to publish packages
at pub.dartlang.org, and we hope you will, too.

To use a library that’s in a Dart package, you need to do the following:

1. Create a pubspec (a file that lists package dependencies).
2. Use pub to install the package.
3. Import the library.

Creating a Pubspec
To use a package, your application must define a pubspec that lists dependencies and
their download locations. The pubspec is a file named pubspec.yaml, and it must be in
the top directory of your application.

Here is an example of a pubspec that specifies the locations of two packages. First, it
points to the js package that’s hosted on pub.dartlang.org, and then it points to the intl
package in the Dart SDK.

name: my_app
dependencies:
 js:
 hosted: js
 intl:
 sdk: intl

For details, see the pubspec documentation and the documentation for the packages
you’re interested in using.

Installing Packages
Once you have a pubspec, you can run pub install from the top directory of your
application.

cd my/app
$DART_SDK/bin/pub install

This command determines which packages your app depends on, and puts them in a
central cache. For git dependencies, pub clones the git repository. For hosted depen‐
dencies, pub downloads the package from pub.dartlang.org. Transitive dependencies
are included, too. For example, if the js package is dependent on the unittest package,
the pub tool grabs both the js package and the unittest package.

Finally, pub creates a packages directory (under your app’s top directory) that has links
to the packages that your app depends on.

92 | Chapter 4: Tools

www.it-ebooks.info

http://pub.dartlang.org
http://pub.dartlang.org/doc/pubspec.html
http://www.it-ebooks.info/

Importing Libraries from Packages
To import libraries found in packages, use the package: prefix.

import 'package:js/js.dart' as js;
import 'package:intl/intl.dart';

The Dart runtime takes everything after package: and looks it up within the pack
ages directory for your app.

More Information
Run $DART_SDK/bin/pub --help for a list of commands. For more information about
pub, see the pub documentation.

Dart Editor
We already introduced Dart Editor in “Up and Running” (page 5). Here are some more
tips on using Dart Editor, with information such as specifying a browser (page 100) and
compiling to JavaScript (page 102). If you run into a problem, see Troubleshooting Dart
Editor. Dart Editor is updated frequently, so it probably looks different from what you
see here. For the latest information, see the Dart Editor documentation.

Viewing Samples
The Welcome page of Dart Editor (Figure 1-2) displays a few samples. To open a sample
and look at its source code, click the sample’s image.

If you don’t see the Welcome page, you probably closed it. Get it back with Tools >
Welcome Page.

Managing the Files View
The Files view shows the files that implement the libraries included in Dart, as well as
all the apps that you create or open.

Adding apps

Here’s how to open an app, which makes it appear in your Files view:

1. Go to the File menu, and choose Open Folder.... Or use the keyboard shortcut
(Ctrl+O or, on Mac, Cmd+O).

2. Select the directory that contains the app’s files, and click Open.

The directory and all its files appear in the Files view.

Dart Editor | 93

www.it-ebooks.info

http://pub.dartlang.org/doc
http://www.dartlang.org/docs/editor/troubleshoot.html
http://www.dartlang.org/docs/editor/troubleshoot.html
http://www.dartlang.org/editor
http://www.it-ebooks.info/

Removing apps

You can remove an app from the Files view, either with or without deleting its files.

Right-click (or Ctrl+click) the directory and choose Delete. If you want to delete the
app’s files permanently, then in the dialog that comes up, choose Delete projects on disk.

Creating Apps
It’s easy to create a simple web or command-line app from scratch:

1. Click the New Application button (at the upper left of Dart Editor). Alternatively,
choose File > New Application... from the Dart Editor menu. A dialog appears.

2. Type in a name for your application—for example, HelloWeb. If you don’t like the
default directory, type in a new location or browse to choose the location.

3. If you’re creating a web app, select Generate content for a basic web app. If you
want to use the pub package manager, select Add pub support. Then click Finish
to create a directory with initial files for the app.
A default Dart file appears in the Edit view, and its directory appears in the Files
view. Your Dart Editor window should look something like Figure 4-1.

Figure 4-1. A new app, pre-filled with basic, runnable code

94 | Chapter 4: Tools

www.it-ebooks.info

http://www.it-ebooks.info/

Editing Apps
Dart Editor provides the basic editing functionality you’d expect, plus features such as
Dart code completion, API browsing, support for refactoring, and the ability to search
multiple files.

Using autocomplete

Autocomplete suggestions look something like Figure 4-2. They appear when you either:

• Type a class or variable name, and then type a period.
For example, type document. or Date. and pause a moment. Once the suggestions
appear, continue typing to pare down the list.

• Type Ctrl+Space.
For example, type Dat, then Ctrl+Space to see a list of classes that start with “Dat”.

When the suggestions come up, you can click, type, or use the arrow keys to select the
one you want. Press Enter or Return to choose a suggestion, or Esc to dismiss the panel.

Figure 4-2. Autocomplete suggestions

Browsing APIs

With Dart Editor you can easily find where APIs are declared. You can also outline the
contents of a Dart file.

Dart Editor | 95

www.it-ebooks.info

http://www.it-ebooks.info/

Finding where an API is declared. Use this feature to go to the declaration of an API item
—variable, method, type, library, and so on—either within the same .dart file or in
another file.

1. In the Edit view of a Dart file, hold down the Control key (Command key on Mac)
and move the mouse over the source code. As Figure 4-3 shows, any API item under
your cursor is underlined.

Figure 4-3. Control or Command while hovering over API items

2. Continuing to press Control or Command, hover over an underlined string, and
click.
The editor displays the file that declares the item. For example, if you Command-
click cos, the file that declares the cos() function appears.

Outlining a file’s contents. Either press Alt+O (Option+O on Mac) or right-click and
choose Quick Outline.

A panel comes up displaying the classes, methods, and fields declared in the current
Dart file. For example, the outline for the Sunflower sample’s sunflower.dart file looks
something like Figure 4-4.

96 | Chapter 4: Tools

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-4. The Outline panel for the Sunflower sample

You can reduce the size of the list by typing one or more characters. For example, if you
type c, only the center variables appear.

If you choose an item from the list—for example, centerX— the editor scrolls to its
declaration.

Alternatively, add a more permanent outline view by choosing Tools > Outline.

Finding where an API is used. Use the Callers view to find where an API item—such as a
function—is used. To bring up the view, click the item’s name, right-click, and choose
Find Callers (or type Ctrl+Alt+H).

To see how a caller itself is called, click its arrow in the Callers view. For example,
Figure 4-5 shows that two functions call the updateTime() method.

Dart Editor | 97

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-5. The Callers view

Once the Callers view is visible, you can click the Show Callee Hierarchy button to
make the view show callees—the functions called by the function you’re inspecting.

Refactoring

To change the name of an item throughout your code, put the cursor within (or double-
click) the item’s name in the Edit view, and choose Edit > Rename... or right-click and
choose Rename....

You can rename almost anything—local variables, function parameters, fields, methods,
types, top-level functions, library prefixes, top-level compilation units, and more. An
example of renaming a top-level compilation unit is changing the name of a file that’s
sourced by a library.

Searching

The search field at the upper right of the Dart Editor window is an easy way to go directly
to:

• Types
• Files
• Text inside of files

The scope of a text search is every file in your Files view. Results for text searches come
up in a Search view. Within that view, double-click a file to see it in the Edit view. All
occurrences of the search string in the Edit view are highlighted.

98 | Chapter 4: Tools

www.it-ebooks.info

http://www.it-ebooks.info/

Running Apps
To run any Dart app, click Dart Editor’s Run button while any file in that app is
selected. If you’re working on a web app, Dart Editor brings up a browser window that
displays the app’s HTML page, with the app’s code running inside it.

When you run a web application using Dart Editor, by default the app uses the copy of
Dartium that’s included in the Dart Editor download, with the Dart code executing
directly in the browser. If your launch configuration specifies a browser, then Dart Editor
uses dart2js (page 105) to compile the Dart code to JavaScript that executes in the browser.

Specifying launch configurations

Use Run > Manage Launches to specify as many launch configurations as you like.

For web apps, you can specify the following:

• HTML file or URL to open
• browser (JavaScript only)
• arguments to pass to the browser; for example, --allow-file-access-from-files
• debugging enabled (Dartium only)
• checked mode (Dartium only)
• whether to show the browser’s stdout and stderr output (Dartium only; useful for

diagnosing Dartium crashes)

For example, a web app might have a launch configuration for Dartium and several
more configurations corresponding to additional browsers you want to test.

You can specify the following for command-line apps:

• .dart file to execute
• arguments to pass to the app
• checked mode
• heap size

Running in production mode

By default, apps run in checked mode. To run in production mode instead, disable
checked mode in your app’s launch configuration:

1. Run your app at least once, so that it has a launch configuration.
2. Choose Run > Manage Launches, or click the little arrow to the right of the Run

button .

Dart Editor | 99

www.it-ebooks.info

http://www.it-ebooks.info/

3. In the Manage Launches dialog, find a launch configuration for your app. Click it
if it isn’t already selected.

4. Unselect Run in checked mode (see Figure 4-6).

Figure 4-6. To run in production mode, unselect checked mode

5. Click Apply to save your change, or Run to save it and run your app.

For details about checked mode and production mode, see “Runtime Modes” (page 13).

Specifying a browser

To specify the browser in which the your app runs:

1. Choose Run > Manage Launches, or click the little arrow to the right of the Run
button . The Manage Launches dialog appears (see Figure 4-7). On the left side
of the dialog is a list of all launch configurations that you’ve created or that were
automatically created for you. On the right is information about the currently se‐
lected launch configuration.

Figure 4-7. The Manage Launches dialog

100 | Chapter 4: Tools

www.it-ebooks.info

http://www.it-ebooks.info/

2. In the Manage Launches dialog, click the Create new launch button , and choose
New web launch: JavaScript.

Figure 4-8. Creating a new web launch

3. Enter configuration information:

• Give the configuration a name that identifies the app, the browser, and anything
else important. Example: HelloWeb.html in Firefox

• Specify the HTML file or URL to open. Example: /HelloWeb/HelloWeb.html
• Unless you want to use the default system browser, unselect Use default system

browser and specify the location of the browser you want to use. Example: /
Applications/Firefox.app

4. Click Apply to save your changes, or Run to save your changes and launch the app.

Now that you’ve set up the launch, you can choose it any time from the Run button .
Your app will be automatically compiled to JavaScript each time you run it.

Debugging Apps
You can debug both command-line and web apps with Dart Editor. Debugging must be
enabled in your launch configuration (which it is, by default).

Some tips for debugging:

• Set breakpoints by double-clicking in the left margin of the Edit view.
• Use the Debugger view to view your app’s state and control its execution. By default,

the Debugger view is to the right of the Edit view.
• To see the values of variables, mouse over the variable or look in the Debugging

view’s Call Stack.
• Because everything in Dart is an object and operators are really methods, you’ll

probably use Step Return (F7) more than you’d expect to climb out of Dart libraries.

Dart Editor | 101

www.it-ebooks.info

http://www.it-ebooks.info/

• To debug web apps, you use Dart Editor with Dartium (Figure 4-9). While you’re
debugging, Dart Editor takes the place of the Dartium console. For example, Dart
Editor displays the output of print() statements.

Figure 4-9. Using Dart Editor to debug the Sunflower sample app

Compiling to JavaScript
You might not need to do anything to compile your code to JavaScript. When you run
an app using a launch configuration that specifies a browser (page 100), Dart Editor
automatically compiles the app to JavaScript before executing it in the browser.

However, you can also compile Dart code to JavaScript without running the app. Just
choose Tools > Generate JavaScript. Another option is using dart2js from the command
line (see “dart2js: The Dart-to-JavaScript Compiler” (page 105)).

Other Features
Dart Editor has many additional features, including doc generation, customization, and
keyboard alternatives.

Generating documentation with dartdoc

Use the Tools > Generate Dartdoc command to generate HTML documentation from
Dart code. For information on supplying text for the documentation, see “Documen‐
tation Comments” (page 51).

102 | Chapter 4: Tools

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing Dart Editor

You can customize the editor’s font, margins, key bindings, and more using the Prefer‐
ences dialog. To bring up the dialog, choose Tools > Preferences (on Mac: Dart Editor
> Preferences).

You can also customize which views you see in Dart Editor, as well as their size and
position. To add views, use the Tools menu. To remove a view, click its X. To move a
view, drag its tab to a different position, either within or outside of the Dart Editor
window. To resize a view, drag its edges.

Keyboard alternatives

To get a list of all keyboard alternatives, choose Help > Key Assist (Figure 4-10).

Figure 4-10. Help > Key Assist

Dartium: Chromium with the Dart VM
This section tells you how to get and use Dartium, a Chromium-based browser that
includes the Dart VM. This browser can execute Dart web apps directly, so you don’t
have to compile your code to JavaScript until you’re ready to test on other browsers.

This browser is a technical preview, and it might have security and sta‐
bility issues. Do not use Dartium as your primary browser!

Downloading and Installing the Browser
If you have an up-to-date version of Dart Editor, you already have Dartium.

Dartium: Chromium with the Dart VM | 103

www.it-ebooks.info

http://www.it-ebooks.info/

If you don’t have Dart Editor or want a different version of Dartium, you can get it
separately from the Downloads page. The Dartium binary does expires after a while.
When that happens, you’ll need to download a new copy if you want to continue using
Dartium.

You don’t usually need to do anything special to install Dartium: just unarchive the ZIP
file. If you want Dart Editor to launch a particular copy of Dartium, then put that copy
inside the dart-sdk directory of your Dart installation directory (see “Step 1: Download
and Install the Software” (page 5)), replacing the original copy of Chromium.

Launching the Browser
To launch Dartium, navigate to its directory in your finder, and double-click the Chro‐
mium executable file. Or use Dart Editor as described in “Running Apps” (page 99) or
the command line as described in “Launching from the Command Line” (page 105).

If you already use Chromium: If another version of Chromium is open,
then you could have a profile conflict. To avoid this, you can open Dar‐
tium or Chromium from the command line with the --user-data-dir
flag.

Filing Bugs
If you find a bug in Dartium, create an issue in the Dart project and use the Dartium
bug template.

Linking to Dart Source
Use a script tag with a type application/dart to link to your Dart source file. Example:

<!DOCTYPE html>
<html>
 <body>
 <script type="application/dart" src="app.dart"></script>

 <!-- bootstraps the Dart VM and handles non-Dart browsers -->
 <script type="text/javascript"
 src="http://dart.googlecode.com/svn/trunk/dart/client/dart.js">
 </script>
 </body>
</html>

Dart Editor automatically adds both the application/dart script tag
and the bootstrap JavaScript tag into the project’s main HTML file.

104 | Chapter 4: Tools

www.it-ebooks.info

http://www.dartlang.org/downloads.html
http://www.chromium.org/user-experience/user-data-directory
http://www.chromium.org/user-experience/user-data-directory
http://code.google.com/p/dart/issues/entry?template=Defect%20report%20for%20Dartium
http://code.google.com/p/dart/issues/entry?template=Defect%20report%20for%20Dartium
http://www.it-ebooks.info/

Detecting Dart Support
The above example uses a bootstrap script that takes care of turning on the Dart VM,
as well as compatibility with non-Dart browsers. Instead of using the dart.js script,
you can manually include the necessary JavaScript code.

To start the Dart VM, use the JavaScript function navigator.webkitStartDart(). For
example:

// In JavaScript code:
if (!navigator.webkitStartDart) {
 // No native Dart support.
 window.addEventListener("DOMContentLoaded", function (e) {
 // ...Fall back to compiled JS...
 }
 }, false);
} else {
 navigator.webkitStartDart();
}

Launching from the Command Line
Because Dartium is based on Chromium, all Chromium flags should work. In some
cases, you might want to specify Dart-specific flags so that you can tweak the embedded
Dart VM’s behavior. For example, while developing your web app, you might want the
VM to perform as many checks as possible. To achieve that, you can enable checked
mode (the VM’s --enable-type-checks flag) and assertion checks (--enable-asserts flag).

On Linux, you can specify flags by starting Dartium as follows:
DART_FLAGS='--enable-type-checks --enable-asserts' path/chrome

On Mac:
DART_FLAGS='--enable-type-checks --enable-asserts' \
 path/Chromium.app/Contents/MacOS/Chromium

Or (also on Mac):
DART_FLAGS='--enable-type-checks --enable-asserts' \
 open path/Chromium.app

You can see the command-line flags and executable path of your current
Chromium-based browser by going to chrome://version.

dart2js: The Dart-to-JavaScript Compiler
You can use the dart2js tool to compile Dart code to JavaScript. Dart Editor (page 102)
uses dart2js behind the scenes whenever Dart Editor compiles to JavaScript.

dart2js: The Dart-to-JavaScript Compiler | 105

www.it-ebooks.info

http://www.chromium.org/developers/how-tos/run-chromium-with-flags
http://www.it-ebooks.info/

Basic Usage
Here’s an example of compiling a Dart file to JavaScript:

$DART_SDK/bin/dart2js test.dart

This command produces a .js file that contains the JavaScript equivalent of your Dart
code.

Options
Common command-line options for dart2js include:
-o<file>

Generate the output into <file>.

-c

Insert runtime type checks, and enable assertions (checked mode).

-h

Display help (add -v for information about all options).

dart: The Standalone VM
You can use the dart tool (bin/dart) to run Dart command-line apps such as server-
side scripts, programs, and servers. During development, you also have the option to
run command-line apps using Dart Editor (page 99).

Basic Usage
Here’s an example of running a Dart file on the command line:

$DART_SDK/bin/dart test.dart

Enabling Checked Mode
Dart programs run in one of two modes: checked or production. By default, the Dart
VM runs in production mode. We recommend that you enable checked mode for de‐
velopment and testing.

In checked mode, assignments are dynamically checked, and certain violations of the
type system raise exceptions at run time. In production mode, static type annotations
have no effect.

Assert statements are also enabled in checked mode. An assert statement (page 32)
checks a boolean condition, raising an exception if the condition is false. Assertions do
not run in production mode.

You can run the VM in checked mode with a command-line flag:

106 | Chapter 4: Tools

www.it-ebooks.info

http://www.it-ebooks.info/

$DART_SDK/bin/dart --checked test.dart

Additional Options
Print all the command-line options with --print-flags:

$DART_SDK/bin/dart --print-flags

Summary
This chapter covered the most commonly used Dart tools. All of them are available in
the Dart Editor download, but you can also download Dartium or the SDK separately.

Summary | 107

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Walkthrough: Dart Chat

This chapter points out some of the useful and fun features of Dart that we used to build
Dart Chat, a client-server app. If you’d like step-by-step instructions on building Dart
Chat, you might be interested in our code lab.

Figure 5-1 shows the chat client executing in a Dartium window. Each copy of the chat
client can send messages to the chat server, which forwards those messages to the other
chat clients.

How to Run Dart Chat
The easiest way to run the Dart Chat client and server apps is to open them in Dart
Editor.

1. Download the Dart Chat source code from GitHub.
2. In Dart Editor, use File > Open Folder..., to open the finished directory of the Dart

Chat source code.
3. Select chat-server.dart, and then click the Run button . A view named chat-

server appears in Dart Editor, displaying debugging output for the server.
4. Select client/chat-client.dart, and then click the Run button . Dartium

launches, if necessary, and displays a Dart Chat tab.
5. To create another copy of the chat client, go to the Dart Chat tab in Dartium. Right-

click the tab, and choose Duplicate.

109

www.it-ebooks.info

https://www.dartlang.org/slides/2012/06/io12/Bullseye-Your-first-Dart-app-Codelab-GoogleIO2012.pdf
https://github.com/dart-lang/io-2012-dart-code-lab
http://www.it-ebooks.info/

Figure 5-1. Multiple chat clients can use the chat server to talk

How Dart Chat Works
The chat server and client are simple. The chat server is an HTTP server that provides
a WebSocket. The chat client uses that WebSocket for a bi-directional communication
channel with the server. The client sends chat messages to the sever over the WebSocket,
and the server relays those messages to all other connected clients.

As Figure 5-2 shows, the server starts things off by listening for requests to ws://
127.0.0.1:1337/ws. Chat clients then connect to that URL.

Figure 5-2. Chat clients connect to a web socket created by the chat server

110 | Chapter 5: Walkthrough: Dart Chat

www.it-ebooks.info

http://www.it-ebooks.info/

The real communication between client and server happens when the user enters a
message. As Figure 5-3 shows, the chat client sends a JSON-encoded version of the
message to the server. The server then forwards the message to every client except the
one that sent it.

Figure 5-3. A chat client uses the server to send a message to other chat clients

The chat server implements an HTTP server to listen for WebSocket requests. The
HTTP server can also serve static files from the client directory—for example, http://
127.0.0.1:1337/chat-log.txt shows the file that’s at client/chat-log.txt.

The client code is split between HTML (page structure), CSS (page look), and JavaScript
(logic and behavior). That’s typical of web clients.

The twist is that this client’s JavaScript code is produced from Dart code, thanks to the
dart2js compiler. Any modern browser can run this JavaScript code. Dartium (and any
other browsers that support Dart) can run either the JavaScript code or the original Dart
code.

The Client’s HTML Code
The main elements in the client UI are two text fields (with the IDs “chat-username”
and “chat-message”) and a status area (ID: “chat-display”).

The Client’s HTML Code | 111

www.it-ebooks.info

http://www.it-ebooks.info/

<!-- In client/index.html: -->
<textarea id="chat-display" rows="10" disabled></textarea>
...
<input id="chat-username" name="chat-username" type="text">
...
<input id="chat-message" name="chat-message" type="text" disabled
 value="enter message...">

Near the bottom of client/index.html, a couple of <script> tags tell the browser to execute
the client’s Dart or JavaScript code:

<script type="application/dart" src="chat-client.dart"></script>
<script src="dart.js"></script>

The first line works in browsers that have an embedded Dart VM and so can execute
Dart code; currently, only Dartium qualifies. The second line is important for every
other browser. It executes dart.js, which is a standard script that converts all Dart
<script> tags to use foo.dart.js instead of foo.dart, with the assumption that foo.dart.js
is a JavaScript version of foo.dart. For non-Dartium browsers, dart.js changes the first
<script> tag to the following:

<!-- Inserted by dart.js for non-Dartium browsers -->
<script src="chat-client.dart.js"></script>

The script contents run when the browser has loaded the HTML and constructed its
DOM (document object model).

You can get dart.js from the Dart project. See “dart2js: The Dart-to-JavaScript Compil‐
er” (page 105) for more information about compiling Dart code into its JavaScript
equivalent.

The Client’s Dart Code
Dart code (client/chat-client.dart) provides the client’s logic, using the DOM to interact
with UI elements. For example, the client’s Dart code uses the DOM to find the text area
where the client displays messages.

Finding DOM Elements
The client app uses dart:html’s top-level query() method to get the client’s UI elements
from the DOM.

// In client/chat-client.dart:
import 'dart:html';
//...
TextAreaElement chatElem = query('#chat-display');
InputElement usernameElem = query('#chat-username');
InputElement messageElem = query('#chat-message');

112 | Chapter 5: Walkthrough: Dart Chat

www.it-ebooks.info

http://dart.googlecode.com/svn/trunk/dart/client/dart.js
http://www.it-ebooks.info/

The query() method uses a selector string that identifies an element in the DOM. See
“Finding elements” (page 68) for more about selectors.

Wrapping DOM Elements
Rather than always dealing with DOM APIs, the chat client wraps the elements in Dart
objects:

chatWindow = new ChatWindow(chatElem);
usernameInput = new UsernameInput(usernameElem);
messageInput = new MessageInput(messageElem);

ChatWindow, UsernameInput, and MessageInput are custom classes that extend an‐
other custom class called View. These Views effectively separate the DOM manipulation
from the application logic.

Because Dart has real classes and inheritance, it’s simple to express the relationship that
ChatWindow is-a View. Here’s the complete code for UsernameInput:

class UsernameInput extends View<InputElement> {
 UsernameInput(InputElement elem) : super(elem);

 bind() { // Called by the View constructor.
 elem.on.change.add((e) => _onUsernameChange());
 }

 _onUsernameChange() {
 if (!elem.value.isEmpty()) {
 messageInput.enable();
 } else {
 messageInput.disable();
 }
 }

 String get username => elem.value;
}

To get the string that’s in the chat-username field, the client app uses the username getter
of a UsernameInput object. For example:

chatWindow.displayMessage(message, usernameInput.username);

Notice how the code uses generics (View<InputElement>) to specify what kind of ele‐
ment the View class can encapsulate. In the preceding example, the UsernameInput
wraps an InputElement. Expressing this gives tools information that they can use to
identify bugs or improve code completion.

Wrapping elements is a technique you can use as you develop a simple app that might
evolve into a larger app. As the app grows, you might change it to use a real model-view-
controller (MVC) architecture.

The Client’s Dart Code | 113

www.it-ebooks.info

http://api.dartlang.org/dart_html/InputElement.html
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://www.it-ebooks.info/

We expect the Dart project to provide an MVC-type framework for
clients.

Updating DOM Elements
The bind() method sets up the event handlers, which bind events from the DOM to
logic in the Dart objects. For example, in UsernameInput, the _onUsernameChange()
method is called any time the text in the input element changes.

To display messages in the chat window, the ChatWindow class adds the message to the
text node of the text area.

class ChatWindow extends View<TextAreaElement> {
 ChatWindow(TextAreaElement elem) : super(elem);

 displayMessage(String msg, String from) {
 _display('$from: $msg\n');
 }

 displayNotice(String notice) {
 _display('[system]: $notice\n');
 }

 _display(String str) {
 elem.addText(str);
 }
}

In both examples, the View objects expose an application-specific API—for example,
displayMessage() or _onUsernameChange()—and encapsulate the manipulation of
DOM elements.

Encoding and Decoding Messages
The dart:json library encodes and decodes JSON-formatted messages. JSON is an easy
way to provide string message data to WebSockets. Using JSON also gives a bit of struc‐
ture to the messages and leaves the door open to creating more detailed messages in the
future.

The stringify() method converts a Dart object to a JSON encoded string, and the
parse() method converts a JSON string back into a Dart object. Here’s the JSON-related
code from the chat client:

import 'dart:json';

var encoded = JSON.stringify({'f': from, 'm': message});
Map message = JSON.parse(encodedMessage);

114 | Chapter 5: Walkthrough: Dart Chat

www.it-ebooks.info

http://www.it-ebooks.info/

See “dart:json - Encoding and Decoding Objects” (page 84) for more information.

Communicating with WebSockets
The custom class ChatConnection takes care of the chat client’s WebSocket communi‐
cation. First it connects to the WebSocket by calling the WebSocket constructor with
the argument 'ws://127.0.0.1:1337/ws'. Then ChatConnection adds event handlers
for open, close, error, and message events, using the WebSocketEvents object it gets from
webSocket.on. For example, here’s the code that responds to message events:

webSocket.on.message.add((MessageEvent e) {
 print('received message ${e.data}');
 _receivedEncodedMessage(e.data);
});

The _receivedEncodedMessage() method just parses the JSON data and displays it in
the status area.

_receivedEncodedMessage(String encodedMessage) {
 Map message = JSON.parse(encodedMessage);
 if (message['f'] != null) {
 chatWindow.displayMessage(message['m'], message['f']);
 }
}

To send a message on the WebSocket connection, _sendEncodedMessage() ensures the
WebSocket connection is ready and then sends the JSON encoded message.

// In the ChatConnection class:
send(String from, String message) {
 var encoded = JSON.stringify({'f': from, 'm': message});
 _sendEncodedMessage(encoded);
}

_sendEncodedMessage(String encodedMessage) {
 if (webSocket != null && webSocket.readyState == WebSocket.OPEN) {
 webSocket.send(encodedMessage);
 } else {
 print('WebSocket not connected, message $encodedMessage not sent');
 }
}

In the event of a connection problem, the client code attempts to reconnect to the Web‐
Socket server. The following code takes advantage of Dart’s nested functions, nesting
the scheduleReconnect() function inside of _init(). Dart’s lexical scoping ensures
that scheduleReconnect() can see variables from _init().

_init([int retrySeconds = 2]) {
 bool encounteredError = false;
 chatWindow.displayNotice('Connecting to Web socket');
 webSocket = new WebSocket(url);

The Client’s Dart Code | 115

www.it-ebooks.info

http://www.it-ebooks.info/

 scheduleReconnect() {
 chatWindow.displayNotice('socket closed, retrying in $retrySeconds seconds');
 if (!encounteredError) {
 window.setTimeout(() => _init(retrySeconds*2), 1000*retrySeconds);
 }
 encounteredError = true;
 }
 //...
 webSocket.on.close.add((e) => scheduleReconnect());
 webSocket.on.error.add((e) => scheduleReconnect());

The reconnect logic uses setTimeout() to schedule a retry using an exponential backoff
algorithm.

The Server’s Code
The chat-server.dart file contains most of the code used in the chat server. It is respon‐
sible for serving static files and managing WebSocket connections. The chat server also
logs the chat messages to a file.

Serving Static Files
The chat server uses dart:io’s HttpServer to implement a web server. The default request
handler is configured to serve static files from a specific directory on the file system.

runServer(String basePath, int port) {
 HttpServer server = new HttpServer();
 server.defaultRequestHandler = new StaticFileHandler(basePath).onRequest;
 //...
 server.onError = (error) => print(error);
 server.listen('127.0.0.1', 1337);
 print('listening for connections on $port');
}

main() {
 var script = new File(new Options().script);
 var directory = script.directorySync();
 runServer('${directory.path}/client', 1337);
}

The StaticFileHandler first gets the file contents using File and InputStream, and then
sends the contents using OutputStream.

Because I/O can cause delays, due to variable network or disk bandwidth conditions,
the chat server uses asynchronous I/O to handle HTTP requests while still being re‐
sponsive to other requests. Each I/O request returns a Future, allowing the server to
continue executing without waiting for the I/O to complete.

116 | Chapter 5: Walkthrough: Dart Chat

www.it-ebooks.info

http://www.it-ebooks.info/

For example, in the following snippet the exists() method returns a Future. When the
Future completes (with a value of true if the file exists, or false if it doesn’t), the function
specified to then() executes.

// Respond to HTTP requests for static files.
onRequest(HttpRequest request, HttpResponse response) {
 //...
 file.exists().then((found) {
 if (found) {
 // ...Respond with the file’s contents...
 } else {
 // ...Send a 404 response...
 }
 });

See “Asynchronous Programming” (page 64) for more information about using Future,
and “Files and Directories” (page 80) for details on file and directory I/O.

Managing WebSocket Connections
In addition to serving static files, the chat server manages WebSocket connections,
routing chat messages between clients. The dart:io WebSocketHandler class accepts
HTTP connections, converts them into WebSocket connections, and then passes them
to ChatHandler.

runServer(String basePath, int port) {
 //...
 WebSocketHandler wsHandler = new WebSocketHandler();
 wsHandler.onOpen = new ChatHandler(basePath).onOpen;
}

ChatHandler is a custom class that takes care of all WebSocket communication for the
chat server. Here is its implementation.

class ChatHandler {
 Set<WebSocketConnection> connections;
 //...
 onOpen(WebSocketConnection conn) {
 connections.add(conn);

 conn.onClosed = (int status, String reason) {
 connections.remove(conn);
 };

 conn.onMessage = (message) {
 connections.forEach((connection) {
 if (conn != connection) {
 //...
 connection.send(message));
 }
 });
 };

The Server’s Code | 117

www.it-ebooks.info

http://www.it-ebooks.info/

 conn.onError = (e) {
 connections.remove(conn);
 };
 }
}

When a client connects, the server adds the client’s WebSocket connection to a collec‐
tion. When the client disconnects (either through an error or on purpose), the server
removes that client’s connection from the collection. When a new message arrives, the
server sends the message to all connected clients except the original source.

Logging Messages to a File
The chat server logs data to a file, client/chat-log.txt, using a custom library implemented
in file-logger.dart. This library uses an isolate to handle file I/O without tying up the
root isolate. Here’s the code that creates and starts this isolate:

SendPort _loggingPort = spawnFunction(startLogging);

The value returned by dart:isolate’s spawnFunction() is a SendPort object. Because
isolates share no data, messages sent to ports are the only way for the root isolate to
communicate with the spawned isolate.

The argument to spawnFunction() points to the startLogging() function, which im‐
plements the logging isolate. The logic for the logging isolate is simple: the first message
specifies the log file location, and subsequent messages provide data to write to the log
file.

startLogging() {
 print('started logger');
 File logFile;
 OutputStream out;
 port.receive((msg, replyTo) {
 if (logFile == null) {
 print('Opening file $msg');
 logFile = new File(msg);
 out = logFile.openOutputStream(FileMode.APPEND);
 } else {
 time('write to file', () {
 out.writeString('${new Date.now()} : $msg\n');
 });
 }
 });
}

In the preceding code, the port property used by startLogging() refers to a ReceivePort
provided by dart:isolate. The port is how this isolate gets data from the root isolate. If
this isolate needed to send messages back to the root isolate, it could use the replyTo
argument (a SendPort) to do so.

118 | Chapter 5: Walkthrough: Dart Chat

www.it-ebooks.info

http://www.it-ebooks.info/

Recall that in the root isolate, the _loggingPort variable holds a SendPort that the root
isolate uses to send messages to the logging isolate. Every time the chat server calls the
log() method, the root isolate sends the log data:

void log(String message) {
 _loggingPort.send(message);
}

See “dart:isolate - Concurrency with Isolates” (page 76) for more information about
using isolates.

What Next?
You’ve seen how the Dart Chat sample uses both server-side and client-side Dart code
to implement a web app. Here are some other samples you might want to look at:

• Solar, which simulates the solar system with animations in a canvas, using
requestAnimationFrame().

• Spirodraw, a fun, interactive tool to build colorful works of art.

Finally, please visit our website and join the discussion. We look forward to hearing from
you!

• Dart website
• Dart discussion group
• Dart questions on Stack Overflow

What Next? | 119

www.it-ebooks.info

https://code.google.com/p/dart/source/browse/#svn%2Ftrunk%2Fdart%2Fsamples%2Fsolar
https://code.google.com/p/dart/source/browse/#svn%2Ftrunk%2Fdart%2Fsamples%2Fspirodraw
http://www.dartlang.org
http://www.dartlang.org/mailing-list
http://stackoverflow.com/tags/dart
http://www.it-ebooks.info/

About the Authors
Kathy is a technical writer who’s worked on docs for Chrome and other developer APIs
at Google since 2006. Before that, she worked at Sun, NeXT, and HP. Back when the
Web was young, she wrote the first doc to help developers write Java applets. She also
co-created The Java Tutorial and maintained it for a very long time.

Seth is a Developer Advocate with the Chrome team. He is a conference organizer
(Aloha on Rails, New Game) and author (Expert Spring MVC [Apress]), helped publish
Angry Birds for the Web, and is a big fan of HTML5 and the modern Web.

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Quick Start
	Why Google Created Dart
	A Quick Look at the Dart Language
	What’s Cool About Dart
	Up and Running
	Step 1: Download and Install the Software
	Step 2: Launch the Editor
	Step 3: Create and Run an App
	Step 4: Open and Run a Sample
	What Next?

	Chapter 2. A Tour of the Dart Language
	A Basic Dart Program
	Important Concepts
	Runtime Modes

	Variables
	Default Value
	Optional Types
	Final and Const

	Built-in Types
	Numbers
	Strings
	Booleans
	Lists
	Maps

	Functions
	Optional Parameters
	Functions as First-Class Objects
	Lexical Closures
	Return Values

	Operators
	Arithmetic Operators
	Equality and Relational Operators
	Type Test Operators
	Assignment Operators
	Logical Operators
	Bitwise and Shift Operators
	Other Operators

	Control Flow Statements
	If and Else
	For Loops
	While and Do-While
	Break and Continue
	Switch and Case
	Assert

	Exceptions
	Throw
	Catch
	Finally

	Classes
	Instance Variables
	Constructors
	Methods
	Abstract Classes
	Implicit Interfaces
	Extending a Class
	Class Variables and Methods

	Generics
	Why Use Generics?
	Using Collection Literals
	Using Constructors
	Generic Collections and the Types they Contain

	Libraries and Visibility
	Using Libraries
	Implementing Libraries

	Isolates
	Typedefs
	Comments
	Single-Line Comments
	Multi-Line Comments
	Documentation Comments

	Summary

	Chapter 3. A Tour of the Dart Libraries
	dart:core - Numbers, Collections, Strings, and More
	Numbers
	Strings and Regular Expressions
	Collections
	Dates and Times
	Utility Classes
	Asynchronous Programming
	Exceptions

	dart:math - Math and Random
	Trigonometry
	Maximum and Mininum
	Math Constants
	Random Numbers
	More Information

	dart:html - Browser-Based Apps
	Manipulating the DOM
	Using HTTP Resources with HttpRequest
	Sending and Receiving Real-Time Data with WebSockets

	dart:isolate - Concurrency with Isolates
	Isolate Concepts
	Using Isolates
	More Information

	dart:io - I/O for Command-Line Apps
	Files and Directories
	HTTP Clients and Servers

	dart:json - Encoding and Decoding Objects
	Decoding JSON
	Encoding JSON

	dart:uri - Manipulating URIs
	Encoding and Decoding Fully Qualified URIs
	Encoding and Decoding URI Components
	Parsing URIs
	Building URIs

	dart:utf - Strings and Unicode
	Decoding UTF-8 Characters
	Encoding Strings to UTF-8 Bytes
	Other Functionality

	dart:crypto - Hash Codes and More
	Generating Cryptographic Hashes
	Generating Message Authentication Codes
	Generating Base64 Strings

	Summary

	Chapter 4. Tools
	pub: The Dart Package Manager
	Creating a Pubspec
	Installing Packages
	Importing Libraries from Packages
	More Information

	Dart Editor
	Viewing Samples
	Managing the Files View
	Creating Apps
	Editing Apps
	Running Apps
	Debugging Apps
	Compiling to JavaScript
	Other Features

	Dartium: Chromium with the Dart VM
	Downloading and Installing the Browser
	Launching the Browser
	Filing Bugs
	Linking to Dart Source
	Detecting Dart Support
	Launching from the Command Line

	dart2js: The Dart-to-JavaScript Compiler
	Basic Usage
	Options

	dart: The Standalone VM
	Basic Usage
	Enabling Checked Mode
	Additional Options

	Summary

	Chapter 5. Walkthrough: Dart Chat
	How to Run Dart Chat
	How Dart Chat Works
	The Client’s HTML Code
	The Client’s Dart Code
	Finding DOM Elements
	Wrapping DOM Elements
	Updating DOM Elements
	Encoding and Decoding Messages
	Communicating with WebSockets

	The Server’s Code
	Serving Static Files
	Managing WebSocket Connections
	Logging Messages to a File

	What Next?

	About the Authors

