

By

Ed Freitas

Foreword by Daniel Jebaraj

 3

Copyright © 2021 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

ISBN: 978-1-64200-219-5

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, VP of content, Syncfusion, Inc.

Proofreader: Graham High, senior content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

The Story Behind the Succinctly Series of Books ... 6

About the Author ... 8

Acknowledgments ... 9

Introduction ...10

Chapter 1 Setup ...11

Overview ..11

Installation ..11

Setting up an editor ..15

Creating the app ...16

Creating a virtual device ...17

Testing your setup ..22

Chapter 2 Scaffolds ...25

Overview ..25

Our first layout ..25

Colors and themes ...29

Summary ..32

Chapter 3 Containers ...33

Overview ..33

Container sizing ..33

Container placement ..39

Box decorations ..44

Images ...52

Gradients ..61

Summary ..70

 5

Chapter 4 Rows and Columns...71

Overview ..71

Definitions ..71

Alignment ...72

Boxes ...73

Alignment adjustment ...80

Spacing ..82

Summary ..85

Chapter 5 Navigation Widgets...86

Overview ..86

Succinctly books app ..86

PopupMenuButton ..89

Push and pop ...93

Bottom navigation bar...99

Tab bar ... 104

Summary .. 108

Chapter 6 Stack, ListView, and GridView ... 109

Overview .. 109

Stack .. 109

ListView .. 116

GridView... 119

Final thoughts ... 123

 6

The Story Behind the Succinctly Series
 of Books

Daniel Jebaraj, CEO

Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the

Microsoft platform. This puts us in the exciting but challenging position of always

being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about

every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the internet and more and more books are

being published, even on topics that are relatively new, one aspect that continues to inhibit us is

the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for

relevant blog posts and other articles. Just as everyone else who has a job to do and customers

to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that

would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can

be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything

wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The

book you now hold in your hands, and the others available in this series, are a result of the

authors’ tireless work. You will find original content that is guaranteed to get you up and running

in about the time it takes to drink a few cups of coffee.

S

 7

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.

Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader

frameworks than anyone else on the market. Developer education greatly helps us market and

sell against competing vendors who promise to “enable AJAX support with one click,” or “turn

the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at

succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic

of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the

word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 8

About the Author

Ed Freitas is a consultant on software development applied to customer success, mostly related
to financial process automation, accounts payable processing, and data extraction.

He likes technology and enjoys playing soccer, running, traveling, life hacking, learning, and

spending time with his family.

You can reach him at https://edfreitas.me.

https://edfreitas.me/

 9

Acknowledgments

Many thanks to all the people who contributed to this book, including the amazing Syncfusion
team that helped this book become a reality, especially Jacqueline Bieringer, Tres Watkins, and
Graham High.

The manuscript manager and technical editor thoroughly reviewed the book's organization,

code quality, and overall accuracy—Graham High from Syncfusion, and James McCaffrey from

Microsoft Research. Thank you all.

This book is dedicated to Puntico and Chelin—may both your journeys be blessed.

http://www.syncfusion.com/
https://jamesmccaffrey.wordpress.com/
https://www.microsoft.com/en-us/research/people/jammc/

 10

Introduction

With the rapid rise of cross-platform mobile frameworks such as Ionic, React Native, and

Xamarin, Google decided to step into the game and develop their own framework, with support

for both Android and iOS using the same codebase. This is how Flutter came to be.

Flutter is an open-source mobile application development SDK primarily developed and

sponsored by Google, used for developing applications for Android and iOS—as well as being

the primary method of creating applications for Google Fuchsia.

Flutter is written in C, C++,and Dart, and uses the Skia Graphics Engine. It offers a rich set of

fully customizable widgets to build native interfaces that include the beautiful Material Design

library and Cupertino (iOS-flavored) widgets, rich motion APIs, smooth natural scrolling,

platform awareness, and hot reload, which helps to quickly build user interfaces (UIs) without

losing state on emulators, simulators, and any hardware for iOS and Android.

All these features have helped Flutter take off very quickly, and developers are flocking to the

framework. It is also one of the trending GitHub projects, which has helped it gain even more

popularity.

Flutter has several great features, but one of the best is how easy it is to create high-quality UIs

with it. Throughout this book, we will explore the fundamentals of how user interfaces can be

created with Flutter, focusing on the existing widgets and tools that Flutter provides out of the

box.

I’m thrilled to embark on this adventure with you, and hopefully, by the end of it, you’ll have a

solid understanding of how to use existing Flutter tools and widgets to make great-looking

interfaces with the minimum amount of effort. Without further ado, let’s get going.

https://ionicframework.com/
https://facebook.github.io/react-native/
https://visualstudio.microsoft.com/xamarin/
https://www.google.com/
https://flutter.io/
https://www.android.com/
https://developer.apple.com/ios/
https://en.wikipedia.org/wiki/Google_Fuchsia
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://www.dartlang.org/
https://skia.org/
https://material.io/design/
https://github.com/flutter/flutter

 11

Chapter 1 Setup

Overview

We won’t build a Flutter application from start to finish in this book, at least not in the typical sense

of building a complete app. Instead, we will create basic applications, which we will use to explore

various examples of how to work with layouts, place widgets, and create user interfaces.

If you would like to explore how to create a Flutter application from start to finish, the Succinctly

series has you covered with Flutter Succinctly, which is a good resource to get up and running

quickly with Flutter.

Knowing Flutter is not a prerequisite for following along with the concepts that will be covered

throughout this book. This book is more of a complement to the previous book, specifically

focusing on user interface concepts, which weren’t fully covered in Flutter Succinctly.

Installation

Getting Flutter installed is incredibly easy, given that the installation steps are well documented

within the official Flutter documentation site.

I’ll be using Windows 10, so I’ll be describing setup steps and information related to this

operating system, but there are also easy-to-follow setup guidelines for both macOS and Linux.

On Windows, some essential system requirements need to be in place, which include having

PowerShell 5.0 or later and Git for Windows 2.X or later installed.

Flutter relies on a full installation of Android Studio, as it requires access to all Android platform

dependencies. You’ll also need to set up an Android device emulator—this is described step by

step in the official documentation.

With the prerequisites in place for Windows, all we need to do is download the installation

bundle of the Flutter SDK. At the time of writing, it is Flutter’s 1.22.6 stable version for Windows.

Once you’ve downloaded the zip file, extract it to a folder within your hard drive, such as

C:\Flutter. To make your life easier, I suggest that you not extract the Flutter files to

C:\Program Files or C:\Program Files (x86), which require elevated or admin permissions.

Once the files are in the desired folder, locate the file flutter_console.bat. This is how it looks

on my machine.

https://www.syncfusion.com/ebooks/flutter-succinctly
https://www.syncfusion.com/ebooks/flutter-succinctly
https://flutter.dev/docs/get-started/install
https://flutter.io/docs/get-started/install/windows
https://flutter.io/docs/get-started/install/windows
https://flutter.io/docs/get-started/install/macos
https://flutter.io/docs/get-started/install/linux
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-windows-powershell?view=powershell-6
https://git-scm.com/download/win
https://developer.android.com/studio/
https://flutter.io/docs/get-started/install/windows
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_1.22.6-stable.zip

 12

Figure 1-a: The Flutter SDK Files

In principle, you are now ready to run the Flutter console by executing the flutter_console.bat

file. It’s recommended (although not strictly necessary) to add the flutter\bin folder to the Path

environment variable in Windows.

If you are unsure how to add a folder to the Windows Path variable, please refer to this article

that explains how to do it step by step, with screenshots. On my machine, this looks as follows.

https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/

 13

Figure 1-b: Flutter Added to the Path Variable in Windows (Highlighted in Green)

Notice as well that the paths to the Dart and Android SDKs (highlighted in blue in Figure 1-b)

should also be added to the environment variables.

Figure 1-c: The Flutter Console Running

At the prompt, type the following command to check if Flutter is fully operational.

 14

Code Listing 1-a: The “flutter doctor” Command

flutter doctor

When executing this command, if some updates are available; they will be downloaded and
installed accordingly.

Figure 1-d: The Flutter Console Running (Continued – Installing Updates)

After you execute this command, you will get a result with any issues found. In my case,

because I had previously installed Android Studio and Visual Studio Code, I get the following

information.

Figure 1-e: The Flutter Console Running (Continued – Results)

Notice that after running this command, I have two issues. In my case, these are irrelevant

because I’ll be using Visual Studio Code (VS Code) as my Flutter development environment,

https://developer.android.com/studio/
https://code.visualstudio.com/
https://code.visualstudio.com/

 15

instead of Android Studio. It is also highlighted that I don’t have a physical device connected,

which is fine for now.

If you prefer using Android Studio, make sure you have the Flutter and Dart plugins installed. All

the information on how to install both plugins for Android Studio can be found here. When you

run the Android Studio installer, please make sure you follow the official documentation so that

you end up with a successful Android Studio and SDK setup.

Make sure that you resolve all the conflicts highlighted by the flutter doctor command

before proceeding.

Setting up an editor

Once you have completed all the installation steps, it is necessary to set up Flutter to work with

your editor of choice. In my case, I’ll be using Visual Studio Code. If you would like to know how

to use Android Studio as your editor of choice, then feel free to check Flutter Succinctly, which

explains how to do this.

Alternatively, the official Flutter documentation describes how to configure Android Studio

(IntelliJ) to work with Flutter, so feel free to check our those steps.

For Visual Studio Code, the steps are quite simple. First, go to View > Extensions.

Figure 1-f: The Extensions Option

Type Flutter in the search box, select the Flutter option, and then click Install.

https://flutter.dev/docs/get-started/editor
https://developer.android.com/studio/install
https://www.syncfusion.com/ebooks/flutter-succinctly
https://flutter.io/docs/get-started/editor

 16

Figure 1-g: The Flutter Extension

Once the Flutter extension has been installed, you might be asked to reload Visual Studio Code.

Next, run the flutter doctor command to make sure that everything is working as expected.

If all is good, you are ready to create a Flutter project.

Creating the app

Once your editor of choice has been correctly set up following the official documentation

guidelines and my previous suggestions (in my case using Visual Studio Code), it’s time to

create a new Flutter project, which we will use throughout the rest of this book.

Creating a new Flutter project with Visual Studio Code is easy. All you need to do is go to View

> Command Palette > Flutter: New Application Project.

Figure 1-h: The Flutter New Application Project Option

You’ll be asked to select the folder where you would like to save your project files, and then to

provide a name for your Flutter application. I’ll name my application flutter_ui.

Once the project has been created, you’ll see under the project files within the Explorer view of

Visual Studio Code, which in my case looks as follows.

 17

Figure 1-i: The New Flutter Project

The process of creating a new Flutter project with Android Studio is slightly longer than with

Visual Studio Code (more steps are required). If you would like to explore this route, Flutter

Succinctly covers this option in depth.

Before we can run the newly created Flutter project, we need to make sure we have a virtual

device created and ready.

Creating a virtual device

Let’s quickly go over the steps required to create a virtual device, which can only be done with

Android Studio.

https://www.syncfusion.com/ebooks/flutter-succinctly
https://www.syncfusion.com/ebooks/flutter-succinctly
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

 18

Figure 1-j: The Android Studio Welcome Screen

On the welcome screen of Android Studio, go to Configure > AVD Manager, which will display

the following screen.

Figure 1-k: The Android Studio Virtual Device Manager (Your Virtual Devices)

 19

You can see that I have a virtual device created. To create a new one, click Create Virtual

Device, which will display the following screen.

Figure 1-l: The Android Studio Virtual Device Manager (Select Hardware)

At this stage, choose the device that you would like to emulate (such as Pixel 4 XL), and then

click Next. This will display the operating system images available.

 20

Figure 1-m: The Android Studio Virtual Device Manager (System Image)

It’s important to choose an image that plays nicely with your computer’s host operating system.

In essence, it’s not recommended, for emulator performance reasons, to choose an ARM-based

image if your computer’s host operating system is based on an x86 architecture.

If you’ve chosen a different image than the one I have highlighted in Figure 1-m, you might have

to download the image by using the download link next to the Release Name.

Once the image has been selected (and downloaded, if applicable), click Next to continue with

the last step.

From the list, choose any of the most recent API Level versions, and then click Next. This will

show a screen to verify the configuration, before creating the image.

https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/X86

 21

Figure 1-n: The Android Studio Virtual Device Manager (Verify Configuration)

You can use the default configuration settings. To finalize the creation of the virtual device, click

Finish.

Awesome—you now have created a virtual device. You can create more than one if you wish,

as it might help you test your application with multiple devices. The virtual device I have created

looks as follows.

 22

Figure 1-o: Virtual Device – Android Emulator

Testing your setup

With our virtual device in place, it’s now time to run the application we have created and see

what it does. This is the default demo app that comes out of the box with Flutter.

To do that, all we need to do in Visual Studio Code is go to Run > Run Without Debugging.

Figure 1-p: Running the App Without Debugging – Visual Studio Code

If you are using Android Studio, select the Open Android Emulator option from the Android

SDK built for x86 dropdown menu (which is next to the Run button). You’ll be able to execute

the application when you click Run, once the Android emulator is opened.

 23

Figure 1-q: The Emulator Dropdown and Run Button – Android Studio

Since I’ll be using Visual Studio Code, I’ll be focusing entirely on VS Code instead of testing the

app with Android Studio.

After clicking the Run Without Debugging option in VS Code, the following options are

presented. In our case, we need to select Dart & Flutter.

Figure 1-r: Select Environment Options – Visual Studio Code

You will be asked to choose the virtual device to use.

Figure 1-s: Select Device Option – Visual Studio Code

Within that list, the virtual device that was recently created should be shown. If the device is

shown on the list, simply click on it to start the emulator.

In my case, my virtual device is a Pixel XL API 27 emulator, so I’ll click the Start Pixel XL API

27 mobile emulator option. Doing so will open the emulator with the application running, which

we can see as follows.

 24

Figure 1-t: Default Flutter App Running

Summary

Throughout this chapter, we’ve had a look at how to get our Flutter development environment

ready. Now that our environment is set up, we are now ready to start exploring how to work with

layouts and Flutter UI widgets. This is what we’ll do in the next chapter.

 25

Chapter 2 Scaffolds

Overview

Flutter is full of great features, and one of the most important features, in my opinion, is how easy

it is to build high-quality user interfaces with it.

The goal of this book is to give you the fundamental knowledge to create engaging user interfaces

using layouts, containers, rows and columns, and common widgets.

Scaffolds, as they are known in Flutter, or layouts are at the core of building user interfaces with

Flutter, and this is what this chapter is all about.

Our first layout

Building user interfaces is one of those things you can only learn by experimenting, so let’s dive

right into the action by modifying the default application and building a layout.

The layout that we’ll build will be a MaterialApp class, which includes a Scaffold widget with an

AppBar, along with a body property that includes a FloatingActionButton.

So, with your editor of choice open (I’ll be using VS Code), go to the main.dart file, delete the

existing (default) code, and replace it with the following code.

Code Listing 2-a: Updated main.dart

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Center(

 child: Text(

 'Our first Flutter layout',

 style: TextStyle(fontSize: 24),

),

https://api.flutter.dev/flutter/material/MaterialApp-class.html
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/material/AppBar-class.html
https://api.flutter.dev/flutter/material/FloatingActionButton-class.html

 26

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

);

 }

}

Once the code has been replaced, save the main.dart file.

If you don’t have the emulator running, go to Run > Run Without Debugging, and follow the
steps to start the emulator and run the app.

If you already have the emulator running, Flutter’s hot reload mechanism will automatically

update the application’s user interface, which should look as follows.

Figure 2-a: Our First Flutter Layout

 27

Before we dive into the details, let’s have a look at the following diagram, which describes the

relationship between the UI elements and the code.

Figure 2-b: UI-to-Code Relationship

As you can see in Figure 2-b, there are three essential parts to this layout, which is the

Scaffold widget (highlighted in yellow).

The first is the AppBar widget (highlighted in green), the body property (highlighted in purple),

and the FloatingActionButton widget (highlighted in blue).

Let’s review in detail what we have done. The first thing we did was import the Material Design

Flutter library with this instruction: 'package:flutter/material.dart'.

Next, within the app’s main function, which serves as the application’s entry point, we created

an instance of the MyApp class, which we then passed as a parameter to the runApp method.

This method is responsible for executing the Flutter application.

The MyApp class is a stateless widget that does not require a mutable state and is often used as

a starting point for building a user interface.

This is why the MyApp class inherits (referred to as extends in the Dart programming language)

from the StatelessWidget class.

https://material.io/develop/flutter
https://material.io/develop/flutter
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://dart.dev/guides/language/language-tour#extending-a-class

 28

The build method from the MyApp class overrides the build method inherited from the

StatelessWidget class, which is why the @override decorator is used.

The build method from the MyApp class returns an object that renders the user interface. This

object is a MaterialApp instance that is used for wrapping several widgets that are required

when building Material Design applications.

For the MaterialApp widget, there are two properties that we are using. One is the

debugShowCheckedModeBanner property, and the other is home.

The debugShowCheckedModeBanner property, as its name implies, is used to display a debug

banner at the top of the application’s screen when set to true. In this case, its value is set to

false, so the debug banner is not shown.

The home property contains the complete layout that we’ve created: a Scaffold widget, which

contains the app’s header (appBar), the body, and the floating blue button

(floatingActionButton) properties.

The appBar property includes only one child property, the title, which is assigned the value

that is passed to the Text widget.

A Center widget is assigned to the body property of the Scaffold widget. As its name implies,

the Center widget is used to align content to the center of the screen.

The Center widget contains a child property to which a Text widget is assigned. This Text

widget contains some text which is passed as a string, as well as the style property.

The floatingActionButton property has a FloatingActionButton widget assigned to it.

This FloatingActionButton widget contains a child property and an onPressed event, which

is triggered when the user taps the floating button.

The child property of the FloatingActionButton widget is assigned to an Icon widget. The

Icon widget displays the type of icon seen within the floating button, which looks like one of

those drawings of a snowflake you see on fridges or air conditioners (Icons.ac_unit).

When the onPressed event is triggered, a message is printed out to the console, which can be

seen in the Debug Console area in VS Code.

Figure 2-c: The Debug Console Output – VS Code

https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/material/MaterialApp-class.html
https://material.io/design
https://api.flutter.dev/flutter/material/MaterialApp/debugShowCheckedModeBanner.html#:~:text=bool%20debugShowCheckedModeBanner,the%20constructor%20argument%20to%20false.

 29

We’ve created our first layout with Flutter. Now, let’s have a look at how we can take this further

and use colors and themes.

Colors and themes

When you were building the previous layout, you may have noticed that by default, Flutter

provided us with a “blue and white” application look and feel (theme), which looks quite good.

This theme is based on the Material Design specifications.

However, we can easily customize the appearance of the application while staying within the
Material Design specifications. Let’s see how we can do that.

The first thing we can do is change the app’s brightness settings. This is very simple to do by

making a few changes to the main.dart code, which are highlighted in the following listing.

Code Listing 2-b: Updated main.dart (Brightness Changes)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Center(

 child: Text(

 'Our first Flutter layout',

 style: TextStyle(fontSize: 24),

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 brightness: Brightness.dark,

https://material.io/design

 30

),

);

 }

}

After you have saved those file changes, Flutter should be able to update the application’s UI
automatically through the hot reload feature. On my machine, it looks as follows.

Figure 2-d: The Updated Flutter Layout (Dark Brightness)

Let’s see what we have done. With a few lines of code, we were able to change the app’s

colors. We were able to achieve this by adding a theme property to the MaterialApp widget.

This theme property takes a Theme widget, which contains a brightness property that has

been set to Brightness.dark.

Although this looks very cool, we might not want to use only one color for most of the app’s

layout. We can customize the colors of the app’s layout, as well as the text font on the app’s

header. In order to do so, we’ll make the following changes to the main.dart code.

Code Listing 2-c: Updated main.dart (Color and Text Font Changes)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

 31

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Center(

 child: Text(

 'Our first Flutter layout',

 style: TextStyle(fontSize: 24),

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After you save the changes to main.dart, Flutter should be able to update the application’s UI
automatically. On my machine, it looks as follows.

 32

Figure 2-e: The Updated Flutter Layout (Color and Text Font Changes)

Let’s have a look at what we have done. To the ThemeData widget, we’ve added the

primaryColor, accentColor, and textTheme properties.

To know what colors are available to use with Material Design, we can refer to the Material

Design Colors website.

The primaryColor property has been set to Colors.indigo, which is why the app’s header is

no longer black. The accentColor property has been set to Colors.amber, and the body text

has been changed to italic.

To change the body text, a TextTheme widget instance is assigned to the textTheme property.

This widget contains a bodyText2 property of type TextStyle that is used to specify the

properties of the body text, such as the fontSize and fontStyle—in this case, set to

FontStyle.italic.

Summary

Scaffolds, or layouts, are the basic foundations required to build user interfaces with Flutter.
Even though the code so far has not been very complex, we’ve explored the fundamental
widgets and properties that are most commonly used to build layouts with Flutter.

With this knowledge, we are ready to explore containers, which are Flutter widgets that allow us
to create more complex user interfaces, by embedding widgets within widgets. This is what we’ll
dive into next.

https://www.materialpalette.com/colors
https://www.materialpalette.com/colors

 33

Chapter 3 Containers

Overview

The most flexible widget in Flutter is the Container class, which allows for painting, sizing, and

positioning other widgets within a Flutter application.

The way the Container widget works is that it wraps the child widget with padding, and then

applies constraints to the padded extent by using the width and height as constraints if either is

different than null. The container is then surrounded by an additional space described from the

margin.

Containers are used to contain other widgets, with the possibility of applying styling properties to

the container itself and its children.

Container sizing

Let’s carry on from where we left our code in the previous chapter. We’ll start by removing all
the code assigned to the body property of the Scaffold widget and replacing it with a

Container widget. The changes are highlighted in bold in the listing that follows.

Code Listing 3-a: Updated main.dart (Adding a Container)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 color: Colors.lightBlue,

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

https://api.flutter.dev/flutter/widgets/Container-class.html

 34

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After the changes are saved to main.dart, Flutter should be able to update the application’s UI
automatically. On my machine, it looks as follows.

Figure 3-a: The Updated App UI (Adding a Container)

Although to the naked eye it seems the only modification we’ve made is to change the color of
the body property, what we have really done is added a Container widget, which will provide

 35

our application with a lot of flexibility for adding and positioning other widgets within the body of
the app.

Before this change, we were limited to only using text within the body of the app. This is a subtle
but significant improvement to the app. For now, within the Container widget, we’ve set the

value of its color property to Colors.lightBlue.

Something you’ve probably noticed is that even if the Container widget is empty (for now),

setting the color property fills in the entire space of the Scaffold body.

But what happens when we insert a child widget into the Container widget? Let’s do precisely

that by making the following adjustment to our code (highlighted in bold).

Code Listing 3-b: Updated main.dart (Adding a Child to the Container)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 color: Colors.lightBlue,

 child: ButtonBar()

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 36

 brightness: Brightness.dark,

),

);

 }

}

What we have done is added a ButtonBar widget as a child of the Container widget. If we

save the changes to main.dart, we should see the following.

Figure 3-b: The Updated App UI (Adding a Child to the Container)

Notice that after making this change, the Container widget is as big as the ButtonBar widget.

This means that the size of the Container widget is dynamic, and may vary depending on the

content of its child property and the widgets that come under it.

So, when using containers, they will size themselves to their child, unless the width or height

properties of the Container widget are set. This is why when we added the ButtonBar to the

Container widget, it became the same size as the ButtonBar.

On the other hand, containers without children will follow these two rules:

• If the parent widget provides unbounded constraints, the Container widget without

children will always try to be as small as possible.

• If the parent widget provides bounded constraints, the Container widget without

children will always try to be as big as possible.

 37

Therefore, we can interpret that four parameters govern how much space a Container widget

may take. These parameters are known as box constraints, and can be seen in the following

diagram.

Figure 3-c: Parent and Container Spatial Relationship (Box Constraints)

The area in the lighter blue color represents the Container widget, and the area in the darker

blue color indicates the parent widget.

To see how the width and height properties affect the sizing of a Container widget, let’s

make some changes to our code. These are highlighted in bold.

Code Listing 3-c: Updated main.dart (Container Width and Height)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 38

 body: Container(

 width: 300,

 height: 300,

 color: Colors.lightBlue,

 child: ButtonBar()),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

Save the changes to main.dart, and the app’s UI should be updated on the emulator. On my
machine, it looks as follows.

 39

Figure 3-d: A Container Widget with Specific Width and Height

By specifying fixed values for the width and height properties, we were able to overcome the

out-of-the-box constraints that govern Container widget sizing in Flutter.

Container placement

Now that we know how to size a Container widget, let’s explore how we can place it in any part

of the screen. But before we do that, we need to get some basic placement concepts clear.

When placing any Container widget, two fundamental definitions must be understood: the

margin and padding properties.

The margin property is the space outside the border of a Container widget, whereas the

padding property is the space between the border of the Container widget and its content. To

understand this better, let’s look at the following diagram.

 40

Figure 3-e: Container Margin and Padding

For defining the values of the margin and padding properties of a Container widget, we can

use the EdgeInsets class, which is used for setting an offset from each of the four sides of a

box.

The EdgeInsets class contains three constructor methods, which take double values as

parameters that can be used to set offsets:

• EdgeInsets.all: Creates an offset on all four sides of the box.

• EdgeInsets.only: Allows you to choose on which sides to create an offset.

• EdgeInsets.symmetric: Allows you to create symmetrical horizontal and vertical offsets.

To understand this better, let’s make some adjustments to our code to add some margin and

padding properties to the Container widget, and change the ButtonBar to a Text widget. The

changes are highlighted in bold in the following code.

Code Listing 3-d: Updated main.dart (Container Margin and Padding)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://www.tutorialspoint.com/dart_programming/dart_programming_data_types.htm

 41

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 margin: EdgeInsets.all(100),

 padding: EdgeInsets.all(50),

 width: 300,

 height: 300,

 color: Colors.lightBlue,

 child: Text('Container'),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After the changes are saved to main.dart, the app’s UI should be updated on the emulator. On
my machine, it looks as follows.

 42

Figure 3-f: A Container Widget with Margin and Padding

By using the EdgeInsets.all(100) instruction to set the margin property of the Container

widget, we are indicating that the Container widget will be placed 100 pixels away, in all offsets

in terms of visual edges.

By using the EdgeInsets.all(50) instruction to set the padding property of the Container

widget, we are indicating that the content of the Container widget (in this case the Text widget

assigned to its child property) will be placed 50 pixels away, in all offsets.

However, you might be asking yourself, why then is the Text widget within the Container

widget not centered, if padding of 50 pixels was applied in all four offsets (left, top, right, and

bottom)?

The reason is that there is a fixed value assigned to the width and height properties. If we

want to see the Text aligned within the Container widget, based on the padding assigned, we

need to remove the width and height. Let’s do that now.

Code Listing 3-e: Updated main.dart (Container Margin and Padding, Width and Height Removed)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 43

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 margin: EdgeInsets.all(100),

 padding: EdgeInsets.all(50),

 color: Colors.lightBlue,

 child: Text('Container'),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After we remove the width and height properties and save the changes to main.dart, the

app’s UI should be updated on the emulator. On my machine, it looks as follows.

 44

Figure 3-g: A Container Widget with Margin and Padding (Width and Height Removed)

After removing the width and height properties from the Container widget, we can see that

the padding value is visible on all four offsets, which results in the Text widget being centered

within the content of the Container widget.

After doing this small exercise, there’s one key takeaway to keep in mind: sometimes to get a

widget’s desired look and feel, you’ll have to be patient and experiment a bit, even though you

might know Flutter very well.

Box decorations

A Container widget, which has a square or rectangular shape, might not always be best suited

for the look and feel of our app’s UI. This is when the BoxDecoration class comes in handy.

Let’s give this a try. I’ve made some changes to the existing code, which are highlighted in bold

in the following listing.

Code Listing 3-f: Updated main.dart (Container with a BoxDecoration)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

https://api.flutter.dev/flutter/painting/BoxDecoration-class.html

 45

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 margin: EdgeInsets.all(100),

 padding: EdgeInsets.all(50),

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 shape: BoxShape.rectangle,

),

 child: Text('Container'),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After these changes are saved to main.dart, the app’s UI should be updated on the emulator.
On my machine, it looks as follows.

 46

Figure 3-h: A Container Widget with a BoxDecoration (Rectangle)

You might be wondering, what’s the point of changing the code to use a BoxDecoration

widget, if we end up with the same look and feel we previously had?

Before answering this question, let’s look at the code changes. To the Container widget, we

added a decoration property, to which we assigned a BoxDecoration widget.

The color property was moved within the BoxDecoration widget, and a shape property with a

value of BoxShape.rectangle was added.

The reason why no apparent UI changes are visible is that the value of the shape property was

set to BoxShape.rectangle.

If we want to see some visible changes, let’s set the value of the shape property to

BoxShape.circle. This change is highlighted in bold in the following code.

Code Listing 3-g: Updated main.dart (Container with a Box Decoration Using a Circle)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 47

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 margin: EdgeInsets.all(100),

 padding: EdgeInsets.all(50),

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 shape: BoxShape.circle,

),

 child: Text('Container'),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After these changes are saved to main.dart, the app’s UI should be updated on the emulator.
On my machine, it looks as follows.

 48

Figure 3-i: A Container Widget with a BoxDecoration (Circle)

Alright, that’s certainly different than what we had before. But, in this context, a circle is also not

very useful or aligned with the look and feel we want to give our app.

Maybe adding rounded corners would be more practical from a UI perspective. We can do this

by adding a borderRadius property to the BoxDecoraton widget. The changes to the code are

highlighted in bold in the following listing.

Code Listing 3-h: Updated main.dart (Container with a BoxDecoration Using borderRadius)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 margin: EdgeInsets.all(100),

 49

 padding: EdgeInsets.all(50),

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 shape: BoxShape.rectangle,

 borderRadius: BorderRadius.only(

 topRight: Radius.elliptical(50, 50),

 bottomLeft: Radius.elliptical(25, 25),

),

),

 child: Text('Container'),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After these changes are saved to main.dart, the app’s UI should be updated on the emulator.
On my machine, it looks as follows.

 50

Figure 3-j: A Container Widget with a BoxDecoration (Using borderRadius)

Wow—that looks so much better than using a circle! I’m sure you agree. Let’s analyze these

changes.

First, we changed the shape of the BoxDecoration widget back to BoxShape.rectangle.

Second, we have added a borderRadius property to the BoxDecoration widget.

The borderRadius property takes a BorderRadius widget that gets instantiated using the only

constructor method.

This creates a border radius with only the given non-zero values (the topRight and

bottomLeft corners, in this case). The other corners will be right angles.

Both the topRight and bottomLeft corners are assigned the values returned from invoking the

Radius.elliptical constructor method, which can create an elliptical radius with the given radii.

The topRight and bottomLeft corners look different because the values passed to the

Radius.elliptical method is not the same for both.

You can further experiment with this example, and instead of changing the values for the

topRight and bottomLeft corners, you could change the topLeft and bottomRight values,

or do any other combination.

Feel free to use the Radius.circular constructor method as well. The following listing contains an

example, where the changes are highlighted in bold.

https://api.flutter.dev/flutter/painting/BorderRadius-class.html
https://api.flutter.dev/flutter/dart-ui/Radius/Radius.elliptical.html
https://api.flutter.dev/flutter/dart-ui/Radius/Radius.circular.html

 51

Code Listing 3-i: Updated main.dart (Container with a BoxDecoration Using borderRadius – Another
Example)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 margin: EdgeInsets.all(100),

 padding: EdgeInsets.all(50),

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 shape: BoxShape.rectangle,

 borderRadius: BorderRadius.only(

 topRight: Radius.elliptical(50, 50),

 topLeft: Radius.circular(20),

 bottomRight: Radius.elliptical(25, 25),

),

),

 child: Text('Container'),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

 52

),

);

 }

}

After you have made these changes and saved main.dart, the app’s UI should be updated on
the emulator. On my machine, it looks as follows.

Figure 3-k: A Container Widget with a BoxDecoration (Using borderRadius – Another Example)

As you have seen, there are quite a lot of possibilities to create useful Container widget

shapes when working with the BoxDecoration class. As long as you have a vivid imagination,

there are a ton of interesting combinations you can create.

Images

There are occasions when just having a nice looking Container widget might not be enough for

your app’s requirements, and you will have to add an image.

We all know how the old saying goes: a picture is worth a thousand words. Images are a great

way to add value to your application and provide a user-friendly experience.

Before we can add an image, we need to do a few things. First, we need to find a suitable

image. Pixabay is a stock photo and picture website that contains free-to-use images.

https://pixabay.com/

 53

I found the following image on the Pixabay website that I’m going to download and use for this

example.

Figure 3-l: Pixabay Stock Image

Once the image has been downloaded, I’m going to switch over to VS Code and create a new

folder called images by (1) clicking on the new folder icon under the Flutter project directory,

and (2) placing the downloaded image within that folder, as you can see in Figure 3-m.

Figure 3-m: Adding an Image Asset to the Flutter Project (VS Code)

Now that we’ve created the images folder and placed the image within it, we need to update our

project’s pubspec.yaml file, add an assets section, and add the path to the image.

Here is my updated pubspec.yaml file with the changes highlighted in bold.

https://pixabay.com/illustrations/idea-icon-light-business-design-1873540/

 54

Code Listing 3-j: Updated pubspec.yaml (Including the Downloaded Image Path)
name: flutter_ui

description: A new Flutter project.

publish_to: 'none'

version: 1.0.0+1

environment:

 sdk: ">=2.7.0 <3.0.0"

dependencies:

 flutter:

 sdk: flutter

 cupertino_icons: ^1.0.0

dev_dependencies:

 flutter_test:

 sdk: flutter

flutter:

 uses-material-design: true

 assets:

 - images/idea-1873540_640.png

As you can see, the assets section has been added, along with the file path to the image, within
the images folder where it has been placed.

With that ready, let’s make some code changes to the main.dart file to use the image within the

Container widget. The changes are highlighted in bold.

Code Listing 3-k: Updated main.dart (Container with a DecorationImage)
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 55

 margin: EdgeInsets.all(100),

 padding: EdgeInsets.all(50),

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 shape: BoxShape.rectangle,

 borderRadius: BorderRadius.only(

 topRight: Radius.elliptical(50, 50),

 topLeft: Radius.circular(20),

 bottomRight: Radius.elliptical(25, 25),

),

 image: DecorationImage(

 image: AssetImage("images/idea-1873540_640.png"),

 fit: BoxFit.cover,

),

),

 child: Text('Container'),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After you’ve made these changes and saved main.dart, the app’s UI should be updated on the
emulator. On my machine, it looks as follows.

 56

Figure 3-n: A Container Widget with a DecorationImage

To achieve this, we added an image property to the BoxDecoration widget. This image

property takes a DecorationImage widget.

The image property of the DecorationImage widget indicates the file path where the image can

be found. This path is passed as a parameter to the constructor of the AssetImage class, which

is used for fetching images that are specified as Flutter project assets.

The fit property is used to indicate how much space the image will cover within the

BoxDecoration widget. In this case, we are indicating that the image will cover the space

available, which is why the BoxFit.cover value is assigned to it.

Cool—now we know how to add an image. But what happened to the Text widget? As you can

see from the preceding code, the Text widget is still being used, and it’s assigned to the child

property of the Container widget. So, why isn’t it visible?

The reason that the Text widget is barely visible is that the color of the text is white, so it fades

almost entirely into the background image.

Instead of changing the color of the text, let’s add opacity to the image. The changes to the code

are highlighted in bold in the following listing.

Code Listing 3-l: Updated main.dart (Container with a DecorationImage with Opacity)
import 'package:flutter/material.dart';

 57

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 margin: EdgeInsets.all(100),

 padding: EdgeInsets.all(50),

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 shape: BoxShape.rectangle,

 borderRadius: BorderRadius.only(

 topRight: Radius.elliptical(50, 50),

 topLeft: Radius.circular(20),

 bottomRight: Radius.elliptical(25, 25),

),

 image: DecorationImage(

 colorFilter: ColorFilter.mode(

 Colors.black.withOpacity(0.6), BlendMode.dstATop),

 image: AssetImage("images/idea-1873540_640.png"),

 fit: BoxFit.cover,

),

),

 child: Text('Container'),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

 58

),

 brightness: Brightness.dark,

),

);

 }

}

After you’ve made these changes and saved main.dart, the app’s UI should be updated on the
emulator. On my machine, it looks as follows.

Figure 3-o: A Container Widget with a DecorationImage (with Opacity)

Awesome—we can see that text is visible again. Let’s have a look at the code changes to

understand how this works.

What we have done is added a colorFilter property to the DecorationImage widget. To this

property, we have assigned the value returned by the ColorFilter.mode constructor method. This

method creates a color filter that applies the blend mode given as the second parameter—in this

case, BlendMode.dstATop.

We are creating a new blended color that originates from black, on top of the image, with the

alpha channel replaced with the given opacity, which is what the instruction

Colors.black.withOpacity(0.6) does.

We can also do some other interesting things with the image, like repeating it. Let’s have a look.

The changes are highlighted in bold in the following listing.

https://api.flutter.dev/flutter/dart-ui/ColorFilter/ColorFilter.mode.html
https://api.flutter.dev/flutter/dart-ui/BlendMode-class.html
https://api.flutter.dev/flutter/dart-ui/Color/withOpacity.html

 59

Code Listing 3-m: Updated main.dart (Container with Image Repetition)
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 width: 450,

 height: 450,

 margin: EdgeInsets.all(100),

 padding: EdgeInsets.all(50),

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 shape: BoxShape.rectangle,

 borderRadius: BorderRadius.only(

 topRight: Radius.elliptical(50, 50),

 topLeft: Radius.circular(20),

 bottomRight: Radius.elliptical(25, 25),

),

 image: DecorationImage(

 colorFilter: ColorFilter.mode(

 Colors.black.withOpacity(0.6), BlendMode.dstATop),

 image: AssetImage("images/idea-1873540_640.png"),

 repeat: ImageRepeat.repeatY,

),

),

 child: Text('Container'),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 60

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After you’ve made these changes and saved main.dart, the app’s UI should be updated on the
emulator. On my machine, it looks as follows.

Figure 3-p: A Container Widget with a DecorationImage (with Image Repetition)

The first thing to notice (which might not be that obvious) is that the fit property was removed

from the DecorationImage widget. This was done so that the image doesn’t take all the

widget’s area.

Next, to the Container widget, we added fixed values for the width and height properties.

This was done so that the Container widget is big enough to be able to repeat the image.

 61

Finally, we added a repeat property to the DecorationImage widget, setting its value to

ImageRepeat.repeatY, which indicates that the image will be repeated vertically.

Gradients

Now that we’ve seen how to use the BoxDecoration widget and also how to work with images,

we can also use Flutter’s Gradient class.

We can easily achieve this by adding a gradient property to the BoxDecoration widget. Let’s

have a look. The code changes are highlighted in the following listing.

Code Listing 3-n: Updated main.dart (Container with a LinearGradient)
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 gradient: LinearGradient(

 begin: Alignment.topRight,

 end: Alignment.bottomLeft,

 colors: [Colors.blue, Colors.orange]),

 shape: BoxShape.rectangle,

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

https://api.flutter.dev/flutter/painting/ImageRepeat-class.html
https://api.flutter.dev/flutter/dart-ui/Gradient-class.html

 62

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After we’ve made these changes and saved main.dart, the app’s UI should be updated on the
emulator. On my machine, it looks as follows.

Figure 3-q: A Container Widget with a LinearGradient

Now, look at that—the UI looks awesome! You might have noticed that besides the changes

highlighted in bold, the margin, padding, and child properties of the Container widget were

removed. This was done so that the Container widget could take the available space.

Furthermore, the borderRadius property was removed from the BoxDecoration widget, and a

gradient property was added.

 63

With regards to the gradient property, this is assigned to a LinearGradient widget, starting with

the blue color on the topRight corner, and ending with the orange color on the bottomLeft

corner. To understand this better, let’s look at the following diagram.

Figure 3-r: LinearGradient Orientation Example

By using the LinearGradient widget, we can combine colors from a beginning to an endpoint,

resulting in a beautiful display of gradients using the colors specified within the colors property.

Experimenting with gradients is a bit like being a painter. You have a canvas, multiple colors, and

combinations to experiment with, where you are only limited by your imagination (and the colors

available).

Let’s experiment a bit more with gradients, and make some changes to the code. These changes

are highlighted in bold in the following code.

Code Listing 3-o: Updated main.dart (Container with a LinearGradient – Mirror TileMode)
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

https://api.flutter.dev/flutter/painting/LinearGradient-class.html

 64

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 gradient: LinearGradient(

 begin: Alignment(0, -1),

 end: Alignment(0, -0.4),

 tileMode: TileMode.mirror,

 colors: [Colors.blue, Colors.orange]),

 shape: BoxShape.rectangle,

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

Before we save the changes and see them on the emulator, let’s try to understand how
alignment coordinates work in Flutter by looking at the following diagram.

 65

Figure 3-s: Alignment Coordinates in Flutter

By using the alignment coordinates between the values of -1 and 1, you can align widgets in the

available space, both horizontally and vertically.

So, in this latest example, what we have done is set the value of the begin property (which

uses the blue color) to start with the coordinates X=0, Y=-1. This will make the blue color

appear first within the available space.

We’ve also set the value of the end property (which uses the orange color) to start with the

coordinates X=0, Y=-0.4. This will make the orange color appear after the blue color within the

available space, but while taking a bit less space.

After making these changes and saving main.dart, we should see the app’s UI updated on the

emulator. On my machine, it looks as follows.

 66

Figure 3-t: A Container Widget with a LinearGradient – Mirror TileMode

I’m sure you agree with me that this effect looks quite cool. This is one of the many reasons why

Flutter, in my opinion, is such a great platform for creating amazing UIs.

However, if the orange color in principle should be taking a bit less space than the blue color,

how is it possible that to the naked eye, it would seem that the orange color is more prevalent

than the blue color?

The reason that the orange color seems more prevalent is that we are using a

TileMode.mirror effect. This means that the original color reflects itself (including its gradient

variations), resulting in two areas with blue, and two areas with orange.

Therefore, given the dimensions of the emulator screen, and the order in which the colors are

positioned, the orange color and its gradient variations are slightly favored, rather than the blue

color and its variations. Thus, the orange seems a bit more prevalent.

Let’s experiment a little bit more, by using a RadialGradient class instead of the

LinearGradient we are currently using.

What I would like to achieve is to have a background effect that originates from the center of the

Container widget, using concentric circles that begin with blue, then use deepPurple (as the

background), and end with lightBlue.

In other words, something that looks similar to two images I’ve found on this science photo

library website.

https://api.flutter.dev/flutter/painting/RadialGradient-class.html
https://www.sciencephoto.com/keyword/concentric-circles
https://www.sciencephoto.com/keyword/concentric-circles

 67

Figure 3-u: The Desired RadialGradient Effect

Creating something similar to this in Flutter is easier than you might think. Let’s see how—the
changes are highlighted in bold in the following code.

Code Listing 3-p: Updated main.dart (Container with a RadialGradient)
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 decoration: BoxDecoration(

 68

 color: Colors.lightBlue,

 gradient: RadialGradient(

 radius: 0.15,

 center: Alignment(0, 0),

 tileMode: TileMode.mirror,

 colors: [Colors.blue, Colors.deepPurple,

 Colors.lightBlue]),

 shape: BoxShape.rectangle,

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After making these changes and saving main.dart, we should see the app’s UI updated on the
emulator. On my machine, it looks as follows.

 69

Figure 3-v: A Container Widget with a RadialGradient (Concentric Circles)

That looks fairly similar to the concentric circles from the science photo library website, which is

awesome!

By looking at the code changes, we can see that a RadialGradient widget was used instead

of a LinearGradient widget.

The two key properties that make the effect possible are the radius property, which indicates

how big the circles are, and the center property, which specifies where the innermost circle

(the first drawn) and subsequent ones will be placed on the screen.

The higher the value of the radius property, the larger the circles, which means that fewer of

them would fit on the screen. The lower the value of radius property, the smaller the circles,

which means that more of them would fit on the screen.

By setting the value of the center property to Alignment(0, 0), we are indicating that the

most inner circle will be drawn on the alignment coordinates with a value of X=0, Y=0, which

corresponds to the center of the Container widget.

Finally, instead of using two colors, we used three colors, which are rendered in the same order

as they are described within the colors property of the RadialGradient widget.

By implementing these small changes, we were able to come up with an interesting effect.

https://www.sciencephoto.com/keyword/concentric-circles

 70

Summary

Throughout this chapter, we’ve explored in depth how to create and work with the Container

widget. This is one of the most useful widgets that Flutter has to offer, and it is a fundamental

component when it comes to building Flutter UIs.

Although quite a lot can be achieved when working with Container and related child widgets,

we are still missing a couple of key features required for building a UI with Flutter, such as rows

and columns.

When rows and columns are used in combination with Scaffold and Container widgets, we

suddenly find ourselves with unlimited possibilities of what layouts we can build with Flutter.

This is what the next chapter is all about.

 71

Chapter 4 Rows and Columns

Overview

To be able to create and structure a complex UI with Flutter, which involves using multiple

widgets, it might be necessary to use Row and Column classes. They are very easy to use and

have some unique properties that give them flexibility and power when designing layouts. In this

chapter, we will explore how to work with them, which will give us the ability to better understand

how to build more complex layouts and UIs.

Definitions

Before we dive into specific Flutter details regarding rows and columns, let’s make sure we have

a clear understanding of what rows and columns are. So, let’s have a look at the following

diagram.

Figure 4-a: App Layout with Rows and Columns

In the preceding diagram, we have our app’s layout, which consists of various rows and two

columns. One of the rows is highlighted in purple, and the left column is highlighted in green.

Both the rows and columns contain cells, which look like rectangles. Each cell could perfectly

contain a Flutter widget. Therefore, a Row widget is a list of child widgets placed horizontally,

while a Column widget is a list of child widgets that are vertically stacked.

Rows and columns have the same properties, which makes it easy to learn how to use them.

This means that whatever property you use in a Row widget, you can also use it in a Column

widget.

https://api.flutter.dev/flutter/widgets/Row-class.html
https://api.flutter.dev/flutter/widgets/Column-class.html

 72

Alignment

Before we can start using rows and columns in our Flutter code, we need to understand how the

alignment of rows and columns differ one from the other.

Say we have a row (the blue box in Figure 4-b), and we draw a white cross inside of it. The line

that goes from top to bottom is known as the cross axis of the row. The line that goes from left

to right is known as the main axis of the row. This can be seen in the following diagram.

Figure 4-b: Row – Cross and Main Axis

Say we have a column, and we draw that same white cross inside of it. The line that goes from

top to bottom is known as the main axis of the column.

Figure 4-c: Column – Main and Cross Axis

In essence, in any screen, there are always two axes: the vertical axis and the horizontal axis.

The vertical axis is called the cross axis for a Row widget, and the main axis for a Column

 73

widget. The horizontal axis is called the main axis for a Row widget and the cross axis for a

Column widget.

This means that the cross axis and the main axis change based on the widget that you are

using. Understanding alignment is essential when working with widgets that are placed within

rows and columns.

Boxes

To put these concepts into practice, let’s take a step back and use the following code as a

starting point.

Code Listing 4-a: Updated main.dart (Container with a LinearGradient)
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 gradient: LinearGradient(

 begin: Alignment.topRight,

 end: Alignment.bottomLeft,

 colors: [Colors.blue, Colors.orange]),

 shape: BoxShape.rectangle,

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 74

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After making these changes and saving main.dart, we should see the app’s UI updated on the
emulator. On my machine, it looks as follows.

Figure 4-d: A Container Widget with a LinearGradient

We’ve seen this before, so no surprises here. However, what we want to do next is create a

Column widget (which later we can swap for a Row widget) that we can add as a child property

to the existing Container widget.

This child property of the existing Container widget will be made up of a list of boxes (each of

which will be a Container widget).

 75

Before we make any changes to the code, let’s look at the following diagram to understand what

we want to achieve.

Figure 4-e: A Container Widget with a Column of Boxes (Each Box is a Container)

To achieve this, we need to add a Column widget to the Container widget’s child property.

The Column widget contains a children property, to which we will assign a List of Container

widgets that we will create with a separate method called boxes. The code changes are

highlighted in bold in the following listing.

Code Listing 4-b: Updated main.dart (Container with a Column of Containers – Dynamically Created)
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 List<Widget> boxes(int n, double w, double h) {

 List<Widget> bxs = List<Widget>();

 List fill = [Colors.blue, Colors.green, Colors.purple, Colors.pink];

 for (int i = 0; i <= n - 1; i++) {

 Container bx = Container(

 child: Text(i.toString()),

 color: fill[i],

 width: w,

 height: h,

);

 bxs.add(bx);

 }

 return bxs;

 76

 }

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 gradient: LinearGradient(

 begin: Alignment.topRight,

 end: Alignment.bottomLeft,

 colors: [Colors.blue, Colors.orange]),

 shape: BoxShape.rectangle,

),

 child: Column(

 children: boxes(4, 40, 40),

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

 77

After making these changes and saving main.dart, we should see the app’s UI updated on the
emulator. On my machine, it looks as follows.

Figure 4-f: A Container with a Column of Containers – Dynamically Created

By looking at the code changes, we can see that the boxes are dynamically created by a

method called boxes, which returns a list of widgets (List<Widget>). Each widget (box) within

that list is a Container.

This list is assigned to the children property of the Column widget, which is assigned to the

child property of the main Container widget.

The boxes method starts by initializing the bxs variable as an empty list of widgets

(List<Widget>). This will contain each of the Container widgets (boxes) that will be

dynamically created.

Then a list of colors called fill is defined. Each box (Container) will have its color—one color

for each box.

We loop n times, and for each iteration, a Container is created, with a defined width (w) and

height (h), along with its color (fill[i]).

Each Container created is added to the bxs list for every iteration, and when the loop has been

completed, the bxs list is returned, which is assigned to the children property of the Column

widget.

What happens when we change the Column widget to a Row widget? Let’s have a look.

 78

Code Listing 4-c: Updated main.dart (Container with a Row of Containers – Dynamically Created)
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 List<Widget> boxes(int n, double w, double h) {

 List<Widget> bxs = List<Widget>();

 List fill = [Colors.blue, Colors.green, Colors.purple, Colors.pink];

 for (int i = 0; i <= n - 1; i++) {

 Container bx = Container(

 child: Text(i.toString()),

 color: fill[i],

 width: w,

 height: h,

);

 bxs.add(bx);

 }

 return bxs;

 }

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 gradient: LinearGradient(

 begin: Alignment.topRight,

 end: Alignment.bottomLeft,

 colors: [Colors.blue, Colors.orange]),

 shape: BoxShape.rectangle,

),

 child: Row(

 children: boxes(4, 40, 40),

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 79

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After making these changes and saving main.dart, we should see the app’s UI updated on the
emulator. On my machine, it looks as follows.

Figure 4-g: A Container with a Row of Containers – Dynamically Created

 80

From having a column of boxes, we now have a row of boxes instead. It’s the same logic; the

boxes method hasn’t changed. The only difference is that within the main Container widget, a

Row widget is assigned to the child property, rather than a Column widget.

Alignment adjustment

To position the Column or Row widget we have created, let’s use the axes properties. The

changes to the code are highlighted in bold in the following listing.

Code Listing 4-d: Updated main.dart (Row of Containers with Axes – Dynamically Created)
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 List<Widget> boxes(int n, double w, double h) {

 List<Widget> bxs = List<Widget>();

 List fill = [Colors.blue, Colors.green, Colors.purple, Colors.pink];

 for (int i = 0; i <= n - 1; i++) {

 Container bx = Container(

 color: fill[i],

 width: w,

 height: h,

);

 bxs.add(bx);

 }

 return bxs;

 }

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 child: Row(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: boxes(4, 40, 40),

),

 81

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 gradient: LinearGradient(

 begin: Alignment.topRight,

 end: Alignment.bottomLeft,

 colors: [Colors.blue, Colors.orange]),

 shape: BoxShape.rectangle,

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After making these changes and saving main.dart, we should see the app’s UI updated on the
emulator.

Before you continue reading to have a look at the result, let me give you a heads up. What you

will see is counterintuitive to what you expect to see.

The reason for this is that we are using a Row widget. With that said, you may now have a look.

 82

Figure 4-h: Row of Containers with Axes – Dynamically Created

This looks like one of those old TV color bar screens. The really interesting thing about this

effect is that we visually ended up with four columns rather than four boxes in a row, even

though we are using a Row widget. Why is that?

Although visually, these look like four columns, they are indeed four child Container widgets,

one after the other, contained within a Row widget.

The reason they appear as four columns has to do with the crossAxisAlignment property of

the Row widget being set to CrossAxisAlignment.stretch. In this way, the boxes have been

stretched to the height of the parent Container.

The key takeaway from this example is that when working with Row and Column widgets, there

are multiple ways to arrange your widgets on the screen, and sometimes by using a single

property, you can end up with a completely different result.

Spacing

Before we wrap up this chapter, there’s one more thing I’d like to show you, and that is how to

add spacing between the child widgets contained within a Row or Column widget.

The following code contains some changes to add spacing between the boxes, highlighted in

bold. Let’s have a look.

 83

Code Listing 4-e: Updated main.dart (Column of Containers with Axes and Spacing – Dynamically
Created)

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 List<Widget> boxes(int n, double w, double h) {

 List<Widget> bxs = List<Widget>();

 List fill = [Colors.blue, Colors.green, Colors.purple, Colors.pink];

 for (int i = 0; i <= n - 1; i++) {

 Container bx = Container(

 color: fill[i],

 width: w,

 height: h,

);

 bxs.add(bx);

 }

 return bxs;

 }

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter UI Succinctly'),

),

 body: Container(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: boxes(4, 40, 40),

),

 decoration: BoxDecoration(

 color: Colors.lightBlue,

 gradient: LinearGradient(

 begin: Alignment.topRight,

 end: Alignment.bottomLeft,

 colors: [Colors.blue, Colors.orange]),

 shape: BoxShape.rectangle,

),

),

 84

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.ac_unit),

 onPressed: () {

 print('Oh, it is cold outside...');

 },

),

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After making these changes and saving main.dart, we should see the app’s UI updated on the
emulator. Let’s have a look.

Figure 4-i: Column of Containers with Axes and Spacing – Dynamically Created

 85

From the code changes, two things stand out. The first is that we are no longer using a Row

widget, but instead a Column widget.

The second is that the value of the mainAxisAlignment property is now set to

MainAxisAlignment.spaceEvenly, which spaces the columns evenly along the parent

Container.

Although visually these four boxes within a column look like rows, they are four child Container

widgets inside a Column widget, each box taking the width of the parent Container widget.

This is achieved because the crossAxisAlignment property of the Column widget is set to

CrossAxisAlignment.stretch, which makes the boxes within the column appear as rows.

Summary

Before we started this chapter, we were only able to work with one child widget per Container

widget. By adding Row and Column widgets, we have seen how we can add more than one

child widget per Container.

Rows and columns are a great and useful way to enrich a Flutter application’s UI, but they are

not the only way. Later, we will look at exploring how to use other Flutter widgets, which will allow

us to compose more complex UIs.

But before we do that, in the next chapter we will look at navigation widgets, which most Flutter

applications rely on.

 86

Chapter 5 Navigation Widgets

Overview

Being able to move around through an app’s UI is key for a good user experience and a functional

application.

Flutter provides several navigation widgets that can be used to achieve that. This is what this

chapter is all about: exploring the navigation possibilities that exist within Flutter.

Succinctly books app

Before we begin exploring the various navigation widgets we have available within Flutter, we are

going to refactor the code we’ve written and add some extra features.

The idea is to showcase the various navigation widgets available in Flutter by creating a Flutter

app that can navigate between a reduced list of Succinctly books. The changes are highlighted

in bold in the following code listing.

Code Listing 5-a: Updated main.dart
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class StaticBooks {

 static const String cdn = "https://cdn.syncfusion.com/";

 static const String path =

 "content/images/downloads/ebook/ebook-cover/";

 static const List<String> covers = [

 "visual-studio-for-mac-succinctly-v1.png",

 "angular-testing-succinctly.png",

 "azure-devops-succinctly.png",

 "asp-net-core-3-1-succinctly.png",

 "angulardart_succinctly.png"

];

 static const List<String> titles = [

 "Visual Studio for Mac Succinctly",

 "Angular Testing Succinctly",

 "Azure DevOps Succinctly",

https://www.syncfusion.com/ebooks

 87

 "ASP.NET Core 3.1 Succinctly",

 "AngularDart Succinctly"

];

}

class Succinctly extends StatelessWidget {

 final String book;

 final String title;

 Succinctly({

 @required this.book,

 @required this.title,

 });

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text(title),

),

 body: Container(

 decoration: BoxDecoration(

 image: DecorationImage(

 image: NetworkImage(StaticBooks.cdn +

 StaticBooks.path + book),

 fit: BoxFit.scaleDown,

),

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.book_online),

 onPressed: () {

 print('Awesome book!');

 },

),

);

 }

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 88

 home: Succinctly(

 book: StaticBooks.covers[0],

 title: StaticBooks.titles[0],

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After making these changes and saving main.dart, we should see the app’s UI updated on the
emulator. On my machine, it looks as follows.

Figure 5-a: Succinctly Books App

 89

That looks cool! With a few code changes, we now have a basic app to view the covers of

some Succinctly books. Let’s go over the code changes.

The first thing we did was create the StaticBooks class, which contains the hardcoded covers

and of some titles of Succinctly books, the base URL (cdn) of the content delivery network

(CDN), and the location (path) where the cover images are located.

Next, we created the Succinctly class, which essentially contains the Scaffold code that was

previously directly assigned to the home property of the MaterialApp widget.

This means we’ve taken that code and refactored it into a new class that inherits from

StatelessWidget. In essence, the Succinctly class returns a Scaffold widget.

The Succinctly class has two properties: book, which refers to the book’s cover image, and

title, which refers to the book’s name.

The Succinctly class has a constructor method with two required parameters: book and

title, which initialize their respective properties.

Finally, the Succinctly class has a build method that overrides the one inherited from the

StatelessWidget class, which is responsible for creating the Scaffold widget.

With regards to the appBar property, the only difference is that we now set the value of the

title property dynamically.

Regarding the floatingActionButton property, the icon was changed to book_online, and

the text that is printed to the console was also changed to a message more aligned with the

topic of this app: books.

The most important changes are related to the body property, which is assigned a Container

widget. The Container widget contains a BoxDecoration widget, assigned to the decoration

property, that has a DecorationImage widget which uses the NetworkImage widget to fetch an

image from the web.

The image that is fetched from the web using the NetworkImage widget is the result of the

concatenation of the (StaticBooks.cdn + StaticBooks.path + book) expression.

PopupMenuButton

Perhaps the easiest way to add navigation features and control to a Flutter application is by

using a PopupMenuButton widget. The PopupMenuButton widget shows a menu when pressed.

Let’s add a PopupMenuButton widget to the app’s toolbar as a way to navigate to the different

Succinctly books. The changes are highlighted in bold.

Code Listing 5-b: Updated main.dart – Using a PopupMenuButton
import 'package:flutter/material.dart';

https://api.flutter.dev/flutter/painting/NetworkImage-class.html

 90

void main() => runApp(MyApp());

class StaticBooks {

 static const String cdn = "https://cdn.syncfusion.com/";

 static const String path =

 "content/images/downloads/ebook/ebook-cover/";

 static const List<String> covers = [

 "visual-studio-for-mac-succinctly-v1.png",

 "angular-testing-succinctly.png",

 "azure-devops-succinctly.png",

 "asp-net-core-3-1-succinctly.png",

 "angulardart_succinctly.png"

];

 static const List<String> titles = [

 "Visual Studio for Mac Succinctly",

 "Angular Testing Succinctly",

 "Azure DevOps Succinctly",

 "ASP.NET Core 3.1 Succinctly",

 "AngularDart Succinctly"

];

}

class Succinctly extends StatelessWidget {

 final String book;

 final String title;

 Succinctly({

 @required this.book,

 @required this.title,

 });

 PopupMenuItem<String> bookItem(item) {

 return PopupMenuItem<String>(

 child: Text(item),

 value: item,

);

 }

 List listBooks() {

 return StaticBooks.titles.map((String item) {

 return bookItem(item);

 }).toList();

 91

 }

 List<Widget> popupMenuButton() {

 return <Widget>[

 PopupMenuButton(

 icon: Icon(Icons.book),

 itemBuilder: (BuildContext context) {

 return listBooks();

 },

),

];

 }

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text(title),

 actions: popupMenuButton(),

),

 body: Container(

 decoration: BoxDecoration(

 image: DecorationImage(

 image: NetworkImage(StaticBooks.cdn +

 StaticBooks.path + book),

 fit: BoxFit.scaleDown,

),

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.book_online),

 onPressed: () {

 print('Awesome book!');

 },

),

);

 }

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 92

 home: Succinctly(

 book: StaticBooks.covers[0],

 title: StaticBooks.titles[0],

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After making these changes and saving main.dart, we should see the app’s UI updated on the
emulator. On my machine, it looks as follows.

Figure 5-b: Succinctly Books App with a PopupMenuButton (Closed)

 93

Notice that on the top-right corner of the app’s toolbar, there is an icon that we can click on.

Let’s do that.

Figure 5-c: Succinctly Books App with a PopupMenuButton (Open)

When clicking the icon, we can see the list of books. The goal is that if you click on any of the

book titles, you will be shown its respective cover image, which is something we have yet to

implement.

But before we do that, let’s have a look at the changes we made. The first thing to notice is that

we added the actions property to the AppBar widget, which gets assigned the result returned

by the popupMenuButton method (List<Widget>).

The popupMenuButton method creates an instance of PopupMenuButton class, to which its

itemBuilder property is assigned a List returned by the listBooks method, which is

essentially a list of PopupMenuItem<String> items.

The way the listBooks method works is that it creates a list of each of the book titles by

invoking the map method from the StaticBooks.titles array, and for each title, the bookItem

method is invoked.

All the bookItem method does is create a PopupMenuItem<String> instance, which represents

a book title on the menu.

Now that we know how this works, we can focus on adding the remaining functionality: that when

a menu option is clicked, the correct corresponding cover image is shown, and the book title is

updated.

Push and pop

In Flutter, app navigation is based on the Stack class, which contains all the roots that an

application has since it began executing. When the app needs to change the page being

displayed, the Navigator class is used.

The Navigator class has two methods that interact with the Stack: the push and pop methods.

The push method inserts a new page at the top of the Stack, whereas the pop method removes

the page from the top of the Stack so that the previous page on the Stack becomes visible

again.

https://api.flutter.dev/flutter/widgets/Stack-class.html
https://api.flutter.dev/flutter/widgets/Navigator-class.html

 94

When using the push method, we need to specify the page we want to load, and to achieve

that, we need to use the MaterialPageRoute class. To the MaterialPageRoute class, we

specify the name of the page we want to pass to the push method.

Both the push and pop methods require the current context. So, with the theory covered, let’s

make the changes necessary to the code. The changes are highlighted in bold in the following
listing.

Code Listing 5-c: Updated main.dart – Using a PopupMenuButton with Navigation
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class StaticBooks {

 static const String cdn = "https://cdn.syncfusion.com/";

 static const String path =

 "content/images/downloads/ebook/ebook-cover/";

 static const List<String> covers = [

 "visual-studio-for-mac-succinctly-v1.png",

 "angular-testing-succinctly.png",

 "azure-devops-succinctly.png",

 "asp-net-core-3-1-succinctly.png",

 "angulardart_succinctly.png"

];

 static const List<String> titles = [

 "Visual Studio for Mac Succinctly",

 "Angular Testing Succinctly",

 "Azure DevOps Succinctly",

 "ASP.NET Core 3.1 Succinctly",

 "AngularDart Succinctly"

];

}

class Succinctly extends StatelessWidget {

 final String book;

 final String title;

 Succinctly({

 @required this.book,

 @required this.title,

 });

https://api.flutter.dev/flutter/material/MaterialPageRoute-class.html

 95

 PopupMenuItem<String> bookItem(item) {

 return PopupMenuItem<String>(

 child: Text(item),

 value: item,

);

 }

 List listBooks() {

 return StaticBooks.titles.map((String item) {

 return bookItem(item);

 }).toList();

 }

 List<Widget> popupMenuButton(BuildContext context) {

 return <Widget>[

 PopupMenuButton(

 icon: Icon(Icons.book),

 itemBuilder: (context) {

 return listBooks();

 },

 onSelected: (value) => showBook(context, value),

),

];

 }

 void showBook(BuildContext context, String mItem) {

 String title;

 String cover;

 if (mItem == StaticBooks.titles[0]) {

 cover = StaticBooks.covers[0];

 title = StaticBooks.titles[0];

 } else if (mItem == StaticBooks.titles[1]) {

 cover = StaticBooks.covers[1];

 title = StaticBooks.titles[1];

 } else if (mItem == StaticBooks.titles[2]) {

 cover = StaticBooks.covers[2];

 title = StaticBooks.titles[2];

 } else if (mItem == StaticBooks.titles[3]) {

 cover = StaticBooks.covers[3];

 title = StaticBooks.titles[3];

 } else if (mItem == StaticBooks.titles[4]) {

 cover = StaticBooks.covers[4];

 title = StaticBooks.titles[4];

 96

 }

 Navigator.push(

 context,

 MaterialPageRoute(

 builder: (context) => Succinctly(

 book: cover,

 title: title,

)));

 }

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text(title),

 actions: popupMenuButton(context),

),

 body: Container(

 decoration: BoxDecoration(

 image: DecorationImage(

 image: NetworkImage(StaticBooks.cdn +

 StaticBooks.path + book),

 fit: BoxFit.scaleDown,

),

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.book_online),

 onPressed: () {

 print('Awesome book!');

 },

),

);

 }

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Succinctly(

 book: StaticBooks.covers[0],

 97

 title: StaticBooks.titles[0],

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After making these changes and saving main.dart, we should see the app’s UI updated on the
emulator. On my machine, it looks as follows.

Figure 5-d: Succinctly Books App with a PopupMenuButton with Navigation (Closed)

If we click any of the menu options, we should be able to navigate to the respective book. I’ll test

it out by clicking the second menu option, Angular Testing Succinctly.

 98

Figure 5-e: Succinctly Books App with Navigation Working

We can see that on the app’s title, there’s an icon to go back to the previous page. Awesome—

we’ve managed to implement navigation successfully.

To make this happen, the first thing we had to do was pass the context parameter to the

popupMenuButton method, which is something we hadn’t done before. The reason for doing

this is that the context is required when invoking the Navigator class; therefore, the context

is passed to the showBook method through the onSelected event.

The onSelected event was added to the PopupMenuButton widget. When the onSelected

event gets triggered, the showBook method is executed, which is responsible for displaying the

book selected through the menu.

The logic behind the showBook method is very simple. The parameter mItem indicates the name

of the book selected using the menu. The value of the mItem parameter is compared against

the values defined within the StaticBooks.titles list, and depending on the match, the cover

and title values are assigned.

Finally, the Navigator.push method is invoked, to which the context, cover, and title are

passed as parameters, resulting in a new page being added to the Stack, with the

corresponding information from the book selected through the menu.

 99

Bottom navigation bar

The BottomNavigationBar is a Flutter widget that is shown at the bottom of the app’s screen,

regularly used with a Scaffold, and it should be used for a small number of items, usually

between three and five.

The BottomNavigationBar widget provides a quick and easy solution to include navigation in

your apps. Let’s get straight into the details and see how we can implement our book app

navigation with a BottomNavigationBar widget. The changes are highlighted in bold in the

following code.

Code Listing 5-d: Updated main.dart – Using a BottomNavigationBar
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class StaticBooks {

 static const String cdn = "https://cdn.syncfusion.com/";

 static const String path =

 "content/images/downloads/ebook/ebook-cover/";

 static const List<String> covers = [

 "visual-studio-for-mac-succinctly-v1.png",

 "angular-testing-succinctly.png",

 "azure-devops-succinctly.png",

 "asp-net-core-3-1-succinctly.png",

 "angulardart_succinctly.png"

];

 static const List<String> titles = [

 "Visual Studio for Mac Succinctly",

 "Angular Testing Succinctly",

 "Azure DevOps Succinctly",

 "ASP.NET Core 3.1 Succinctly",

 "AngularDart Succinctly"

];

}

class Succinctly extends StatelessWidget {

 final String book;

 final String title;

 Succinctly({

 @required this.book,

https://api.flutter.dev/flutter/material/BottomNavigationBar-class.html
https://api.flutter.dev/flutter/material/Scaffold-class.html

 100

 @required this.title,

 });

 void showBook(BuildContext context, String mItem) {

 String title;

 String cover;

 if (mItem == StaticBooks.titles[0]) {

 cover = StaticBooks.covers[0];

 title = StaticBooks.titles[0];

 } else if (mItem == StaticBooks.titles[1]) {

 cover = StaticBooks.covers[1];

 title = StaticBooks.titles[1];

 } else if (mItem == StaticBooks.titles[2]) {

 cover = StaticBooks.covers[2];

 title = StaticBooks.titles[2];

 } else if (mItem == StaticBooks.titles[3]) {

 cover = StaticBooks.covers[3];

 title = StaticBooks.titles[3];

 } else if (mItem == StaticBooks.titles[4]) {

 cover = StaticBooks.covers[4];

 title = StaticBooks.titles[4];

 }

 print(cover);

 Navigator.push(

 context,

 MaterialPageRoute(

 builder: (context) => Succinctly(

 book: cover,

 title: title,

)));

 }

 static int _index = 0;

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text(title),

),

 bottomNavigationBar: BottomNavigationBar(

 selectedItemColor: Colors.orange,

 101

 currentIndex: _index,

 onTap: (value) {

 String _title = StaticBooks.titles[value];

 _index = value;

 showBook(context, _title);

 },

 items: [

 BottomNavigationBarItem(

 label: 'Visual Studio Mac',

 icon: Icon(Icons.book),

),

 BottomNavigationBarItem(

 label: 'Ang. Testing',

 icon: Icon(Icons.book_online),

),

 BottomNavigationBarItem(

 label: 'Azure DevOps',

 icon: Icon(Icons.book_online_outlined),

),

 BottomNavigationBarItem(

 label: 'ASP.NET Core',

 icon: Icon(Icons.book_online_rounded),

),

 BottomNavigationBarItem(

 label: 'AngularDart',

 icon: Icon(Icons.book_online_sharp),

),

],

),

 body: Container(

 decoration: BoxDecoration(

 image: DecorationImage(

 image: NetworkImage(StaticBooks.cdn +

 StaticBooks.path + book),

 fit: BoxFit.scaleDown,

),

),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.book_online),

 onPressed: () {

 print('Awesome book!');

 },

),

 102

);

 }

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Succinctly(

 book: StaticBooks.covers[0],

 title: StaticBooks.titles[0],

),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After we have made these changes and saved main.dart, the app’s UI should be updated on
the emulator.

I’ll click on the fifth icon of the BottomNavigationBar from left to right, which corresponds to

the AngularDart Succinctly book. On my machine, it looks as follows.

 103

Figure 5-f: Succinctly Books App – BottomNavigationBar

So, one of the changes made (which is probably not noticeable) was that the action property

from the AppBar widget was removed, along with all the logic responsible for creating the menu.

The bottomNavigationBar property was added to the build method, which gets assigned a

BottomNavigationBar widget, and a static variable called _index was added to the

Succinctly class. The static _index variable is used to keep track of which book is selected

using the BottomNavigationBar widget.

With regards to the BottomNavigationBar widget, we are using several properties. The

selectedItemColor property indicates the color that is shown when an item is selected—in

this case, Colors.orange, as can be seen in Figure 5-f.

Then we have the currentIndex property, which gets assigned the value of the static

_index variable. This property is used internally to keep track of which book is selected.

We have the onTap event, which gets triggered when a book is selected, by tapping on any of

the items of the BottomNavigationBar widget.

When the onTap event is executed, the title of the book selected is retrieved by the

StaticBooks.titles[value] instruction, and this value is assigned to the _title variable.

The value of the _title variable is passed to the showBook method, which then displays the

cover of the selected book.

 104

The items that are shown within the BottomNavigationBar widget are specified within the

items property, which is an array of BottomNavigationBarItem widgets.

Each BottomNavigationBarItem is a button within the BottomNavigationBar widget, and

two properties for each are used: an icon and a label.

As you might have noticed, the BottomNavigationBar widget is best suited when you have a

fixed number of tabs (items) that you want to display, which we do in this example. When you

have a dynamic number of items to display, using the BottomNavigationBar widget might not

be the best option.

Tab bar

Another way to add navigation to a Flutter application is to use the TabBar class, which is made

up of three main parts.

The first part is the TabController, the second is the TabBar itself (which contains the tabs), and

the third part is the TabBarView with its children.

A TabBar displays a horizontal row of tabs, and when you click on one of the tabs, the

TabBarView class displays different widgets with an animation.

Let’s go ahead and implement the app’s navigation using a TabBar widget. The changes to the

code are highlighted in bold in the following listing.

Code Listing 5-e: Updated main.dart – Using a TabBar
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class StaticBooks {

 static const String cdn = "https://cdn.syncfusion.com/";

 static const String path =

 "content/images/downloads/ebook/ebook-cover/";

 static const List<String> covers = [

 "visual-studio-for-mac-succinctly-v1.png",

 "angular-testing-succinctly.png",

 "azure-devops-succinctly.png",

 "asp-net-core-3-1-succinctly.png",

 "angulardart_succinctly.png"

];

 static const List<String> titles = [

 "Visual Studio for Mac Succinctly",

https://api.flutter.dev/flutter/material/TabBar-class.html
https://api.flutter.dev/flutter/material/TabController-class.html
https://api.flutter.dev/flutter/material/TabBarView-class.html

 105

 "Angular Testing Succinctly",

 "Azure DevOps Succinctly",

 "ASP.NET Core 3.1 Succinctly",

 "AngularDart Succinctly"

];

}

class Succinctly extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return DefaultTabController(

 length: 5,

 child: Scaffold(

 appBar: AppBar(

 title: Text('Succinctly Books'),

 bottom: TabBar(

 tabs: <Widget>[

 Tab(icon: Icon(Icons.book), text: 'VSM'),

 Tab(icon: Icon(Icons.book_online), text: 'AT'),

 Tab(icon: Icon(Icons.book_online_outlined), text: 'AZ'),

 Tab(icon: Icon(Icons.book_online_rounded), text: 'ASP'),

 Tab(icon: Icon(Icons.book_online_sharp), text: 'AD'),

],

),

),

 body: TabBarView(

 children: <Widget>[

 Container(

 decoration: BoxDecoration(

 image: DecorationImage(

 image: NetworkImage(StaticBooks.cdn +

 StaticBooks.path +

 StaticBooks.covers[0]),

 fit: BoxFit.scaleDown,

),

),

),

 Container(

 decoration: BoxDecoration(

 image: DecorationImage(

 image: NetworkImage(StaticBooks.cdn +

 StaticBooks.path +

 StaticBooks.covers[1]),

 fit: BoxFit.scaleDown,

 106

),

),

),

 Container(

 decoration: BoxDecoration(

 image: DecorationImage(

 image: NetworkImage(StaticBooks.cdn +

 StaticBooks.path +

 StaticBooks.covers[2]),

 fit: BoxFit.scaleDown,

),

),

),

 Container(

 decoration: BoxDecoration(

 image: DecorationImage(

 image: NetworkImage(StaticBooks.cdn +

 StaticBooks.path +

 StaticBooks.covers[3]),

 fit: BoxFit.scaleDown,

),

),

),

 Container(

 decoration: BoxDecoration(

 image: DecorationImage(

 image: NetworkImage(StaticBooks.cdn +

 StaticBooks.path +

 StaticBooks.covers[4]),

 fit: BoxFit.scaleDown,

),

),

),

],

),

),

);

 }

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 107

 debugShowCheckedModeBanner: false,

 home: Succinctly(),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After we’ve made these changes and saved main.dart, the app’s UI should be updated on the
emulator.

I’ll click the fifth icon of the TabBar from left to right, which corresponds to the Azure DevOps

Succinctly book. On my machine, it looks as follows.

Figure 5-g: Succinctly Books App – TabBar

 108

The first thing to notice is the Succinctly class was simplified; only the build method remains.

Everything else was removed, and the class no longer takes any parameters.

The build method of the Succinctly class was completely changed. The most noticeable

change is that this method now returns a DefaultTabController instead of a Scaffold

widget as before.

The DefaultTabController widget contains length and child properties. The length

indicates the number of tabs that the widget will contain, and the child property is assigned to

a Scaffold widget.

The Scaffold widget has an AppBar that includes a TabBar widget, which contains an array of

Tab widgets. Each Tab widget contains an icon and a text property, each corresponding to a

tab item from the TabBar widget.

The body property of the Scaffold widget is assigned to a TabBarView widget, which contains

a children property that includes an array of Container widgets.

Each Container widget corresponds to a Succinctly book. Within every Container widget,

there is a BoxDecoration widget, which contains a DecorationImage widget.

Each DecorationImage contains a NetworkImage widget that retrieves the corresponding book

image from the web.

As you might have noticed, the TabBar widget is also best suited when you have a fixed number

of tabs (items) that you want to display, and mostly when the content is static (it doesn’t vary),

which is the case for this example.

So, when you have a dynamic number of items to display, using the TabBar widget might not be

the best option.

Summary

Throughout this chapter, we’ve explored how to add various types of navigation mechanisms to

a Flutter application.

Although we touched base on most of the common Flutter app navigation methods, I’d like to

leave you with a challenge: how could you implement navigation using the Flutter Drawer class?

If you do have the time to try this out, I’d love to hear from you about your results. In the next

and final chapter, we will cover the Stack, ListView, and GridView widgets to wrap things up.

https://api.flutter.dev/flutter/material/Drawer-class.html
https://api.flutter.dev/flutter/widgets/Stack-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/GridView-class.html

 109

Chapter 6 Stack, ListView, and GridView

Overview

We’ve covered quite a bit of ground so far, and have now reached the final chapter of this book,

which is going to be short but to the point, given what we know so far about creating UIs with

Flutter.

User interfaces are one of those topics where there are so many things to talk about that we

would need a full library of books to cover it, and even then, we might still miss out on some

topics since this is an ever-evolving field.

Take, for example, animations. There are so many different ways to create animations in Flutter

that delving into this topic would require a least one book covering the fundamentals. This is

something I’ll keep in mind for the future.

Nevertheless, most Flutter applications rely on the Stack, ListView, and GridView widgets, and

that’s exactly what we’re going to explore now. Let’s get started.

Stack

Before can dive into the details of how the ListView and GridView widgets work, we need to

understand what the Stack class is.

According to the official Flutter documentation, a Stack is a widget that can position its children

relative to the edges of its box. A key aspect to know about a Stack widget is that its size is

determined by the size of its largest child component.

What we want to do next is create a screen that uses a Stack, as this will help us to fully

understand how ListView and GridView widgets work.

Figure 6-a: The Stack Screen to Build

https://api.flutter.dev/flutter/widgets/Stack-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/GridView-class.html

 110

What we want to build is a screen that has the book’s cover image in the background, then an

area on top of the image with a description—a Card, and at the bottom of the screen, a

RaisedButton. The following code does that, and the changes are highlighted in bold.

Codee Listing 6-a: Updated main.dart – Using a Stack
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class StaticBooks {

 static const String cdn = "https://cdn.syncfusion.com/";

 static const String path =

 "content/images/downloads/ebook/ebook-cover/";

 static const List<String> covers = [

 "visual-studio-for-mac-succinctly-v1.png",

];

}

class Succinctly extends StatelessWidget {

 List<Widget> stackScreen(double sizeX, double sizeY) {

 List<Widget> layout = List<Widget>();

 Container cover = Container(

 decoration: BoxDecoration(

 image: DecorationImage(

 image: NetworkImage(

 StaticBooks.cdn +

 StaticBooks.path + StaticBooks.covers[0]),

 fit: BoxFit.scaleDown,

),

),

);

 layout.add(cover);

 final card = Positioned(

 top: sizeY / 1.45,

 left: sizeX / 4.2,

 child: Card(

 elevation: 15,

 color: Colors.blue,

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(5),

https://api.flutter.dev/flutter/material/Card-class.html
https://api.flutter.dev/flutter/material/RaisedButton-class.html

 111

),

 child: Column(

 children: [

 Padding(

 padding: EdgeInsets.all(10),

 child: Text('Succinctly Series'),

),

],

),

),

);

 layout.add(card);

 Positioned button = Positioned(

 width: sizeX - sizeY / 10,

 bottom: sizeY / 40,

 left: sizeX / 12,

 child: RaisedButton(// Or use ElevatedButton

 color: Colors.lightBlue,

 elevation: 8,

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(10)

),

 child: Text('Browse collection'),

 onPressed: () {

 // Do something later...

 },

),

);

 layout.add(button);

 return layout;

 }

 @override

 Widget build(BuildContext context) {

 final sizeX = MediaQuery.of(context).size.width;

 final sizeY = MediaQuery.of(context).size.height;

 return Container(

 child: Stack(

 children: stackScreen(sizeX, sizeY),

)

 112

);

 }

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Succinctly(),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 textTheme: TextTheme(

 bodyText2: TextStyle(

 fontSize: 26, fontStyle: FontStyle.italic),

),

 brightness: Brightness.dark,

),

);

 }

}

After we’ve made these changes and saved main.dart, the app’s UI should be updated on the
emulator. On my machine, this looks as follows.

 113

Figure 6-b: Succinctly Books App – Stack

To better understand the code changes, let’s have a look at the following diagram, which serves

as a visual point of reference between the part of the code contained within the stackScreen

method and the UI.

 114

Figure 6-c: Code to UI Relationship (Succinctly Books App – Stack)

As you can see in Figure 6-c, the two main parts of the stackScreen method have to do with

the Card widget (highlighted in green), and the RaisedButton (highlighted in yellow). So, with

this visual reference in mind, let’s explore the code changes, which are quite a few.

The first thing you might have noticed is that the titles list was removed from the

StaticBooks class, and the covers list was reduced to one item—this is because we are only

showing one book cover.

Next, within the Succinctly class, we created a stackScreen method that is responsible for

creating a layout that renders an image (cover), a Card, and a RaisedButton.

This layout is returned by the stackScreen method, and it is assigned to the children

property of a Stack widget, which is assigned to the child property of a Container widget.

In essence, we have built a layout wrapped around a Stack widget, wrapped in a Container.

That Container widget, returned by the stackScreen method, is then returned by the build

method and assigned to the home property of the MaterialApp widget.

Before exploring the stackScreen method in detail, let’s have a look at the other changes made

to the build method.

We can see that within the build method, we get the width (sizeX) and height (sizeY) of the

screen by retrieving these values from the context object using the MediaQuery class.

Both the sizeX and sizeY values are then passed to the stackScreen method and used to

position the Card and the RaisedButton.

https://api.flutter.dev/flutter/widgets/MediaQuery-class.html

 115

Within the stackScreen method, the first thing we did was declare the layout variable as a list

of widgets (List<Widget>). This is because the Stack widget will contain the image (cover),

the Card, and the RaisedButton widgets.

Next, we created a Container instance, which is assigned to the cover variable, using the

same code we used before when creating the book cover.

The first object that gets added to the layout used by the Stack widget is the cover (image),

which happens when the following instruction executes: layout.add(cover).

After that, the Card widget is created, and wrapped around a Positioned widget. This is because

we want to be able to place the card on a specific location of the screen.

To do that, the sizeX and sizeY parameters are used to calculate the values of the top and

left properties of the Positioned widget.

The Card widget is assigned to the child property of the Positioned widget, and the

elevation, color, and shape properties of the Card are defined.

The child property of the Card widget contains a Column, and within its children property a

Padding widget that contains a Text widget, with some padding defined. This is a great

example of how a Flutter widget can be composed of many other smaller widgets.

Finally, the card object is added to the layout, and this is achieved when the following

instruction executes: layout.add(card).

The last piece of this puzzle is the button, which is visible at the bottom of the layout. Just like

with the Card widget, the RaisedButton widget is wrapped around a Positioned widget, so it

can be easily placed in a specific part of the screen.

The width, bottom, and left properties of the Positioned widget are calculated using the

sizeX and sizeY parameters.

The RaisedButton widget is assigned to the child property of the Positioned widget. For this

button, the color, elevation, and shape properties are defined.

The text shown in the button is a Text widget assigned to the child property of the

RaisedButton widget.

There’s also an onPressed event that can be used in the future, which is triggered when the

button is pressed, as the name of the event implies.

Finally, the button is added to the layout when the following instruction executes:

layout.add(button).

There we go—that’s how this example using a Stack widget was composed.

https://api.flutter.dev/flutter/widgets/Positioned-class.html

 116

ListView

One of the most common features you’ll find in mobile apps is lists of items, such as products,
documents, contacts, or email addresses.

Let’s create a list of documents that have an expiration date, such as passports and driver

licenses, and this is where we will use the ListView widget. Let’s dive right into the code—the

changes are highlighted in bold in the following listing.

Code Listing 6-b: Updated main.dart – Using a ListView
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class Doc {

 String name;

 String description;

 DateTime expires;

 Doc(this.name, this.description, this.expires);

}

class Succinctly extends StatelessWidget {

 List<Doc> createDocs() {

 List<Doc> docs = List<Doc>();

 docs.add(Doc('Driver License', 'Florida driver license',

 DateTime.now().add(new Duration(days: 1825))));

 docs.add(Doc('Passport Ed', 'Ed\'s passport',

 DateTime.now().add(new Duration(days: 825))));

 docs.add(Doc('Passport John', 'John\'s passport',

 DateTime.now().add(new Duration(days: 2801))));

 docs.add(Doc('ID card', 'John\'s national ID card',

 DateTime.now().add(new Duration(days: 801))));

 return docs;

 }

 List<ListTile> showList() {

 List<ListTile> items = List<ListTile>();

 List<Doc> docs = createDocs();

https://api.flutter.dev/flutter/widgets/ListView-class.html

 117

 docs.forEach((doc) {

 items.add(ListTile(

 title: Text(doc.name),

 subtitle: Text(doc.description),

 leading: CircleAvatar(

 child: Icon(Icons.book),

 backgroundColor: Colors.lightBlueAccent,

),

 trailing: Icon(Icons.keyboard_arrow_down),

 onTap: () => true,

));

 });

 return items;

 }

 @override

 Widget build(BuildContext context) {

 final sizeX = MediaQuery.of(context).size.width;

 final sizeY = MediaQuery.of(context).size.height;

 return Scaffold(

 appBar: AppBar(

 title: Text('Documents'),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.book_online),

 onPressed: () {

 print('New doc!');

 },

),

 body: Container(

 width: sizeX,

 height: sizeY,

 child: ListView(

 children: showList(),

),

)

);

 }

}

class MyApp extends StatelessWidget {

 @override

 118

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Succinctly(),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 brightness: Brightness.dark,

),

);

 }

}

After we’ve made these changes and saved main.dart, the app’s UI should be updated on the
emulator. On my machine, this looks as follows.

Figure 6-d: Docs App – ListView

Let’s review the code changes. The first thing to notice is that the Succinctly class has been

revamped. The build method returns a Scaffold widget that includes the usual AppBar and

FloatingActionButton widgets that we’ve used before.

 119

The Scaffold widget contains a Container that includes a ListView that is assigned to its

child property. The children property of the ListView widget contains an array of ListTile

widgets, which is what the showList method returns.

The showList method starts by invoking the createDocs method, which returns a list of Doc

objects (List<Doc>).

For each Doc object returned by the createDocs method, a ListTile item is created and

added to the items list (List<ListTile>).

Each ListTile item contains a title, subtitle, leading, and trailing property, as well as

an onTap event. To understand this better, let’s look at the following diagram.

Figure 6-e: ListTile Item – Docs App

From the preceding diagram, we can see that the leading property is assigned to a

CircleAvatar widget, which contains an Icon widget and has its backgroundColor property

set to Colors.lightBlueAccent. This is highlighted in yellow.

We can also see that the trailing property is assigned to an Icon widget, which is the down

arrow we can see highlighted in blue.

The createDocs method starts by initializing the docs variable (List<Doc>), and a Doc object is

created for every item seen in the ListView widget. Four items are added to the docs list and

returned by the method.

The Doc class contains a name, description, and expires property. These are the details

displayed by each ListTile.

That’s how easy it is to create a ListView widget in Flutter.

GridView

Now that we know how to create a ListView, let’s cover the final topic of this book, which is

how to create a Flutter GridView.

 120

A GridView, which looks like a set of tiles, is a great way to display images, and can be used as

an image gallery. Image galleries are widely used in e-commerce, photo, social media, real

estate, and car rental apps, just to name a few.

A great use of a GridView widget would be to display some of the Succinctly books we saw

before. So, let’s implement that—the changes are highlighted in bold in the following code.

Code Listing 6-c: Updated main.dart – Using a GridView
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class StaticBooks {

 static const String cdn = "https://cdn.syncfusion.com/";

 static const String path =

 "content/images/downloads/ebook/ebook-cover/";

 static const List<String> covers = [

 "visual-studio-for-mac-succinctly-v1.png",

 "angular-testing-succinctly.png",

 "azure-devops-succinctly.png",

 "asp-net-core-3-1-succinctly.png",

 "angulardart_succinctly.png"

];

}

class Succinctly extends StatelessWidget {

 List<Widget> createGrid() {

 List<Widget> imgs = List<Widget>();

 Widget cImage;

 for (int i = 0; i <= StaticBooks.covers.length - 1; i++) {

 cImage = Container(

 child: Image.network(

 StaticBooks.cdn +

 StaticBooks.path + StaticBooks.covers[i])

);

 imgs.add(cImage);

 }

 return imgs;

 }

 @override

 121

 Widget build(BuildContext context) {

 final sizeX = MediaQuery.of(context).size.width;

 final sizeY = MediaQuery.of(context).size.height;

 return Scaffold(

 appBar: AppBar(

 title: Text('Succinctly Books'),

),

 body: Container(

 width: sizeX,

 height: sizeY,

 child: GridView.count(

 children: createGrid(),

 padding: EdgeInsets.all(10),

 crossAxisSpacing: 4.5,

 mainAxisSpacing: 5.5,

 crossAxisCount: 2,

 scrollDirection: Axis.vertical,

)));

 }

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Succinctly(),

 theme: ThemeData(

 primaryColor: Colors.indigo,

 accentColor: Colors.amber,

 brightness: Brightness.dark,

),

);

 }

}

Before having a look at the updated UI, let’s dive into the code changes. The first thing to notice
is that we’ve brought back the StaticBooks class, but only with the covers array, and without

the titles.

Within the Succinctly class, we have a createGrid method that loops through the covers

array, and for each, a Container widget is created.

Within the Container widget, the Image.network method is used to fetch each of the cover

images of the books, which is assigned to the child property.

 122

Each image is added to a list of images (imgs), which is returned by the createGrid method.

The build method returns a Scaffold widget that contains the usual AppBar widget and the

body, which is what renders the grid.

Before we continue exploring the code changes, let’s look at the app’s UI, which should be

updated on the emulator after we save the main.dart file. On my machine, this looks as follows.

Figure 6-f: Books App – GridView

So there’s the app using a GridView widget—it looks great! The body property of the Scaffold

widget is assigned to a Container, which wraps a GridView widget.

The GridView widget contains several properties, all of which are important to display the grid

correctly, such as the crossAxisSpacing, mainAxisSpacing, crossAxisCount, and scrollDirection

properties.

The crossAxisSpacing and mainAxisSpacing properties define the spacing between the

images on the GridView widget, whereas the crossAxisCount property indicates the number

of images per row. The scrollDirection property indicates that the images are placed

vertically.

Finally, the children property is assigned the result returned by the createGrid method,

which retrieves the book cover images.

https://api.flutter.dev/flutter/rendering/SliverGridDelegateWithFixedCrossAxisCount/crossAxisSpacing.html
https://api.flutter.dev/flutter/rendering/SliverGridDelegateWithFixedCrossAxisCount/mainAxisSpacing.html
https://api.flutter.dev/flutter/rendering/SliverGridDelegateWithFixedCrossAxisCount/crossAxisCount.html

 123

Final thoughts

I find that creating user interfaces is a rewarding experience, even though most of the work I do

is on the back end. I know that everyone might not agree with me, and that’s fine. For some

developers, UIs are not their thing.

For me, there’s something magical about creating a UI and seeing it come to life, catching the

eye—a pixel here, a pixel there—and seeing them turn into a shape, widget, or form.

Flutter is a fabulous framework for building rich UIs; it’s designed from the ground up with that

purpose in mind.

Throughout this book, my goal was to present Flutter’s UI capabilities by describing its core

features and key widgets so anyone reading could gain enough knowledge to build a UI without

getting too deep into the realm of what designers do.

For those who are designers, Flutter is an excellent choice to bring a design to life with relatively

few lines of code.

GitHub’s Dart repositories are packed with amazing open-source Flutter projects, many focusing

on UI design. I invite you to explore them further.

Other than that, another interesting aspect of UIs which we didn’t cover in this book is

animations. A full book on that topic probably wouldn’t cover everything that can be done with

them.

So, going forward, if the UI is something that ignites a spark within you, rest assured that we’ve

just scratched the surface of what is possible with Flutter.

I’d personally love to write a book on creating advanced UIs and animations, and perhaps it is

something I will bring up in due time with Syncfusion—which, in my opinion, would also add

value to their Flutter widgets offering and the customers using them.

I hope this book has given you some solid grounding on how to start creating UIs with Flutter,

and that it has inspired you to continue your journey to keep learning about this wonderful

framework.

Once again, thank you for taking the time to read a Succinctly book. I hope you continue to be

inspired by what you can achieve with Flutter. Until next time, take care, and all the best.

https://github.com/trending/dart?since=daily
https://www.syncfusion.com/
https://www.syncfusion.com/flutter-widgets

	Table of Contents
	The Story Behind the Succinctly Series of Books
	taying on the cutting edge
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Acknowledgments
	Introduction
	Chapter 1 Setup
	Overview
	Installation
	Setting up an editor
	Creating the app
	Creating a virtual device
	Testing your setup

	Chapter 2 Scaffolds
	Overview
	Our first layout
	Colors and themes
	Summary

	Chapter 3 Containers
	Overview
	Container sizing
	Container placement
	Box decorations
	Images
	Gradients
	Summary

	Chapter 4 Rows and Columns
	Overview
	Definitions
	Alignment
	Boxes
	Alignment adjustment
	Spacing
	Summary

	Chapter 5 Navigation Widgets
	Overview
	Succinctly books app
	PopupMenuButton
	Push and pop
	Bottom navigation bar
	Tab bar
	Summary

	Chapter 6 Stack, ListView, and GridView
	Overview
	Stack
	ListView
	GridView
	Final thoughts

