

Programming Visual Basic .NET

Dave Grundgeiger
Publisher: O'Reilly
First Edition January 2002
ISBN: 0-596-00093-6, 464 pages

Published just in time for the first release of Visual Basic Studio .NET, Programming Visual Basic .NET
is a programmer's complete guide to Visual Basic .NET. Starting with a sample application and a high-
level map, the book jumps right into showing how the parts of .NET fit with Visual Basic .NET. Topics
include the common language runtime Windows Forms, ASP.NET, Web Forms, Web Services, and
ADO.NET.

 2

Preface.. 9

Organization of This Book .. 9
Conventions Used in This Book.. 9
How to Contact Us .. 10
Acknowledgments ... 11

Chapter 1. Introduction ... 13
1.1 What Is the Microsoft .NET Framework?.. 13
1.2 What Is Visual Basic .NET? .. 14
1.3 An Example Visual Basic .NET Program ... 14

Chapter 2. The Visual Basic .NET Language ... 23
2.1 Source Files ... 23
2.2 Identifiers ... 23
2.3 Keywords .. 24
2.4 Literals ... 27
2.5 Types .. 31
2.6 Namespaces .. 40
2.7 Symbolic Constants .. 42
2.8 Variables ... 43
2.9 Scope.. 44
2.10 Access Modifiers .. 44
2.11 Assignment.. 45
2.12 Operators and Expressions ... 46
2.13 Statements .. 52
2.14 Classes .. 60
2.15 Interfaces ... 85
2.16 Structures .. 88
2.17 Enumerations ... 91
2.18 Exceptions.. 93
2.19 Delegates ... 98
2.20 Events.. 101
2.21 Standard Modules ... 104
2.22 Attributes ... 104
2.23 Conditional Compilation ... 108
2.24 Summary.. 109

Chapter 3. The .NET Framework.. 111
3.1 Common Language Infrastructure (CLI) and Common Language
Runtime (CLR) .. 111
3.2 Common Type System (CTS) ... 111
3.3 Portions of the CLI .. 112
3.4 Modules and Assemblies... 113
3.5 Application Domains... 116
3.6 Common Language Specification (CLS) ... 116
3.7 Intermediate Language (IL) and Just-In-Time (JIT) Compilation 117
3.8 Metadata ... 117
3.9 Memory Management and Garbage Collection 118
3.10 A Brief Tour of the .NET Framework Namespaces........................... 122

Programming Visual Basic .NET

 3

3.11 Configuration...125
3.12 Summary ..131

Chapter 4. Windows Forms I: Developing Desktop Applications.............................133
4.1 Creating a Form..133
4.2 Handling Form Events ..143
4.3 Relationships Between Forms ...145
4.4 MDI Applications...147
4.5 Component Attributes ..155
4.6 2-D Graphics Programming with GDI+ ...160
4.7 Printing...174
4.8 Summary...186

Chapter 5. Windows Forms II: Controls, Common Dialog Boxes, and Menus187
5.1 Common Controls and Components ...187
5.2 Control Events...204
5.3 Form and Control Layout ..204
5.4 Common Dialog Boxes...210
5.5 Menus ...215
5.6 Creating a Control ...227
5.7 Summary...236

Chapter 6. ASP.NET and Web Forms: Developing Browser-Based Applications 237
6.1 Creating a Web Form ...238
6.2 Handling Page Events...251
6.3 More About Server Controls ..253
6.4 Adding Validation ...268
6.5 Using Directives to Modify Web Page Compilation283
6.6 ASP.NET Objects: Interacting with the Framework291
6.7 Discovering Browser Capabilities...296
6.8 Maintaining State ...298
6.9 Application-Level Code and global.asax ...304
6.10 Web-Application Security ...307
6.11 Designing Custom Controls ...320
6.12 Summary ..328

Chapter 7. Web Services..329
7.1 Creating a Web Service ...329
7.2 Testing a Web Service with a Browser ..333
7.3 Web-Service Descriptions...335
7.4 Consuming a Web Service..335
7.5 Web-Service Discovery..340
7.6 Limitations of Web Services ..340
7.7 Summary...341

Chapter 8. ADO.NET: Developing Database Applications343
8.1 A Brief History of Universal Data Access ..343
8.2 Managed Providers ..343
8.3 Connecting to a SQL Server Database ..344

SQL Server Authentication...347
8.4 Connecting to an OLE DB Data Source ...348
8.5 Reading Data into a DataSet...349

 4

8.6 Relations Between DataTables in a DataSet .. 360
8.7 The DataSet's XML Capabilities ... 362
8.8 Binding a DataSet to a Windows Forms DataGrid.............................. 364
8.9 Binding a DataSet to a Web Forms DataGrid....................................... 367
8.10 Typed DataSets ... 368
8.11 Reading Data Using a DataReader... 370
8.12 Executing Stored ProceduresThrough a SqlCommand Object 371
8.13 Summary.. 374

Appendix A. Custom Attributes Defined in the System Namespace 375
Appendix B. Exceptions Defined in the System Namespace................................... 381
Appendix D. Resources for Developers .. 391

D.1 .NET Information... 391
D.2 Discussion Lists.. 392

Netiquette ... 392
Appendix E. Math Functions.. 395
Colophon... 398

Programming Visual Basic .NET

 5

Programming Visual Basic .NET

Preface
 Organization of This Book
 Conventions Used in This Book
 How to Contact Us
 Acknowledgments

1. Introduction
 1.1 What Is the Microsoft .NET Framework?
 1.2 What Is Visual Basic .NET?
 1.3 An Example Visual Basic .NET Program

2. The Visual Basic .NET Language
 2.1 Source Files
 2.2 Identifiers
 2.3 Keywords
 2.4 Literals
 2.5 Types
 2.6 Namespaces
 2.7 Symbolic Constants
 2.8 Variables
 2.9 Scope
 2.10 Access Modifiers
 2.11 Assignment
 2.12 Operators and Expressions
 2.13 Statements
 2.14 Classes
 2.15 Interfaces
 2.16 Structures
 2.17 Enumerations
 2.18 Exceptions
 2.19 Delegates
 2.20 Events
 2.21 Standard Modules
 2.22 Attributes
 2.23 Conditional Compilation
 2.24 Summary

3. The .NET Framework
 3.1 Common Language Infrastructure (CLI) and Common Language Runtime (CLR)
 3.2 Common Type System (CTS)
 3.3 Portions of the CLI
 3.4 Modules and Assemblies
 3.5 Application Domains
 3.6 Common Language Specification (CLS)
 3.7 Intermediate Language (IL) and Just-In-Time (JIT) Compilation
 3.8 Metadata
 3.9 Memory Management and Garbage Collection
 3.10 A Brief Tour of the .NET Framework Namespaces
 3.11 Configuration
 3.12 Summary

4. Windows Forms I: Developing Desktop Applications
 4.1 Creating a Form
 4.2 Handling Form Events
 4.3 Relationships Between Forms

 6

 4.4 MDI Applications
 4.5 Component Attributes
 4.6 2-D Graphics Programming with GDI+
 4.7 Printing
 4.8 Summary

5. Windows Forms II: Controls, Common Dialog Boxes, and Menus
 5.1 Common Controls and Components
 5.2 Control Events
 5.3 Form and Control Layout
 5.4 Common Dialog Boxes
 5.5 Menus
 5.6 Creating a Control
 5.7 Summary

6. ASP.NET and Web Forms: Developing Browser-Based Applications
 6.1 Creating a Web Form
 6.2 Handling Page Events
 6.3 More About Server Controls
 6.4 Adding Validation
 6.5 Using Directives to Modify Web Page Compilation
 6.6 ASP.NET Objects: Interacting with the Framework
 6.7 Discovering Browser Capabilities
 6.8 Maintaining State
 6.9 Application-Level Code and global.asax
 6.10 Web-Application Security
 6.11 Designing Custom Controls
 6.12 Summary

7. Web Services
 7.1 Creating a Web Service
 7.2 Testing a Web Service with a Browser
 7.3 Web-Service Descriptions
 7.4 Consuming a Web Service
 7.5 Web-Service Discovery
 7.6 Limitations of Web Services
 7.7 Summary

8. ADO.NET: Developing Database Applications
 8.1 A Brief History of Universal Data Access
 8.2 Managed Providers
 8.3 Connecting to a SQL Server Database
 8.4 Connecting to an OLE DB Data Source
 8.5 Reading Data into a DataSet
 8.6 Relations Between DataTables in a DataSet
 8.7 The DataSet's XML Capabilities
 8.8 Binding a DataSet to a Windows Forms DataGrid
 8.9 Binding a DataSet to a Web Forms DataGrid
 8.10 Typed DataSets
 8.11 Reading Data Using a DataReader
 8.12 Executing Stored ProceduresThrough a SqlCommand Object
 8.13 Summary

A. Custom Attributes Defined in the System Namespace
 AttributeUsage
 CLSCompliant
 ContextStatic

Programming Visual Basic .NET

 7

 Flags
 LoaderOptimization
 MTAThread
 NonSerialized
 Obsolete
 ParamArray
 Serializable
 STAThread
 ThreadStatic

B. Exceptions Defined in the System Namespace

C. Cultures

D. Resources for Developers
 D.1 .NET Information
 D.2 Discussion Lists

E. Math Functions

Colophon

 8

Programming Visual Basic .NET

 9

Preface

The purpose of this book is to provide experienced software developers with the means to quickly
become productive in Microsoft's Visual Basic .NET development environment. The only assumption I
make about you as a programmer is that you're comfortable with the concepts and processes of
software development. This book will not teach you how to program. However, if you're currently a
working Visual Basic, C++, or Java developer, this book will help you transfer your existing skills to this
new environment.

Organization of This Book

This book contains eight chapters and four appendixes.

Chapter 1 starts out with three short hello, world examples that show how to enter and compile a
console app, a GUI app, and a browser app. This gives the reader immediate gratification. The
chapter also provides an overview of the .NET Framework and Visual Basic .NET.

Chapter 2 examines the syntax and use of the Visual Basic .NET language. This will not teach
someone how to program, but it will teach a programmer how to program in Visual Basic .NET.

Chapter 3 explains the various components of the .NET Framework and explains why the .NET
Framework is a Good Thing.

Chapter 4 explains how to use the Windows Forms class library for building GUI applications.

Chapter 5 picks up where Chapter 4 left off by discussing individual controls, showing how to use
the common dialog boxes available in the .NET Framework, and examining menu creation and use.

Chapter 6 explains how to use the Web Forms class library for building browser-based applications.

Chapter 7 talks about building components that provide services over the Internet and how to
consume those services.

Chapter 8 explains the distributed, stateless, disconnected data model encapsulated by ADO.NET.

Appendix A provides a list of the types known as attributes. The concept of attributes is discussed in
Chapter 2.

Appendix B provides a list of system-generated exceptions. The concept of exceptions is discussed
in Chapter 2.

Appendix C provides a list of culture names and IDs for globalization.

Appendix D provides a list of online resources where developers can get help and further information
on Visual Basic .NET.

Appendix E lists the standard math functions that are available to the Visual Basic .NET programmer
via the .NET Framework's Math class.

Conventions Used in This Book

Throughout this book, we've used the following typographic conventions:

 10

Constant width

Constant width in body text indicates a language construct, such as the name of a stored
procedure, a SQL statement, a Visual Basic .NET statement, an enumeration, an intrinsic or
user-defined constant, a structure (i.e., a user-defined type), or an expression (like
dblElapTime = Timer - dblStartTime). Code fragments and code examples appear
exclusively in constant-width text. In syntax statements and prototypes, text set in constant
width indicates such language elements as the function or procedure name and any invariable
elements required by the syntax.

Constant width italic

Constant width italic in body text indicates parameter names. In syntax statements or
prototypes, constant width italic indicates replaceable parameters. In addition, constant width
italic is used in body text to denote variables.

Italic

Italicized words in the text indicate intrinsic or user-defined function and procedure names.
Many system elements, such as paths and filenames, are also italicized. URLs and email
addresses are italicized. Finally, italics are used for new terms where they are defined.

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, where we list errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/progvbdotnet

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

Programming Visual Basic .NET

 11

Acknowledgments

Thank you to the folks at Microsoft who were willing to answer my incessant questions, even in the
midst of having to meet their own delivery deadlines. This list of top-notch people includes Brad
Abrams, Alan Carter, Kit George, Scott Guthrie, Jim Hogg, Rob Howard, and Susan Warren. Several
of these people also read major portions of the manuscript and offered constructive comments.

Thank you to my coworkers at Tara Software, Inc., for letting me use them as sounding boards and for
assisting with technical issues. This includes Dan Boardman, Kevin Caswick, Varon Fugman, Anson
Goldade, Karl Hauth, Garrett Peterson, Dan Phelps, Scott Rassbach, and Adam Steinert.

Thank you to Tara Software, Inc., and particularly to its principals, Roger Mills, Lynne Pilsner, and
Larry Kleopping, for supporting this project (emotionally and financially).

Thank you to O'Reilly & Associates, Inc. for letting me write the book that I felt needed to be written.
Thanks in particular to my editor, Ron Petrusha, who always knows what to mess with and what to
leave alone. Thanks also to Budi Kurniawan for graciously granting me permission to use material that
he had written on Windows controls.

And finally, thank you to my friend and wife, Annemarie Newman. Annemarie, you've supported all my
endeavors—from shareware with lots of downloads and zero payments to books that take longer to
write than they should. Thank you. I think you should start filling out that graduate school application,
angel. It's your turn.

 12

Programming Visual Basic .NET

 13

Chapter 1. Introduction

With its release for the .NET platform, the Visual Basic language has undergone dramatic changes.
For example:

• The language itself is now fully object-oriented.
• Applications and components written in Visual Basic .NET have full access to the .NET

Framework, an extensive class library that provides system and application services.
• All applications developed using Visual Basic .NET run within a managed runtime environment,

the .NET common language runtime.

In this introduction, I briefly discuss these changes and other changes before showing you three very
simple, but complete, Visual Basic .NET applications.

1.1 What Is the Microsoft .NET Framework?

The .NET Framework encompasses the following:

• A new way to expose operating system and other APIs. For years, the set of Windows
functionality that was available to developers and the way that functionality was invoked were
dependent on the language environment being used. For example, the Windows operating
system provides the ability to create windows (obviously). Yet, the way this feature was
invoked from a C++ program was dramatically different from the way it was invoked from a
Visual Basic program. With .NET, the way that operating system services are invoked is
uniform across all languages (including code embedded in ASP.NET pages).

This portion of .NET is commonly referred to as the .NET Framework class library.

• A new infrastructure for managing application execution. To provide a number of sophisticated
new operating-system services—including code-level security, cross-language class
inheritance, cross-language type compatibility, and hardware and operating-system
independence, among others—Microsoft developed a new runtime environment known as the
Common Language Runtime (CLR). The CLR includes the Common Type System (CTS) for
cross-language type compatibility and the Common Language Specification (CLS) for
ensuring that third-party libraries can be used from all .NET-enabled languages.

To support hardware and operating-system independence, Microsoft developed the Microsoft
Intermediate Language (MSIL, or just IL). IL is a CPU-independent machine language-style
instruction set into which .NET Framework programs are compiled. IL programs are compiled
to the actual machine language on the target platform prior to execution (known as just-in-time,
or JIT, compiling). IL is never interpreted.

• A new web server paradigm. To support high-capacity web sites, Microsoft has replaced its
Active Server Pages (ASP) technology with ASP.NET. While developers who are used to
classic ASP will find ASP.NET familiar on the surface, the underlying engine is different, and
far more features are supported. One difference, already mentioned in this chapter, is that
ASP.NET web page code is now compiled rather than interpreted, greatly increasing
execution speed.

• A new focus on distributed-application architecture.Visual Studio .NET provides top-notch
tools for creating and consuming web services -- vendor-independent software services that
can be invoked over the Internet.

The .NET Framework is designed top to bottom with the Internet in mind. For example,
ADO.NET, the next step in the evolution of Microsoft's vision of "universal data access,"
assumes that applications will work with disconnected data by default. In addition, the

 14

ADO.NET classes provide sophisticated XML capabilities, further increasing their usefulness
in a distributed environment.

An understanding of the .NET Framework is essential to developing professional Visual Basic .NET
applications. The .NET Framework is explained in detail in Chapter 3.

1.2 What Is Visual Basic .NET?

Visual Basic .NET is the next generation of Visual Basic, but it is also a significant departure from
previous generations. Experienced Visual Basic 6 developers will feel comfortable with Visual
Basic .NET code and will recognize most of its constructs. However, Microsoft has made some
changes to make Visual Basic .NET a better language and an equal player in the .NET world. These
include such additions as a Class keyword for defining classes and an Inherits keyword for object
inheritance, among others. Visual Basic 6 code can't be compiled by the Visual Basic .NET compiler
without significant modification. The good news is that Microsoft has provided a migration tool to
handle the task (mostly, anyway). Code migration is explained in Appendix A. The Visual Basic .NET
language itself is detailed in Chapter 2.

Over the last several months I have spent almost all of my time playing with .NET and writing Visual
Basic .NET programs. As a user of Visual Basic since Version 4, I can tell you that I am pleased with
this new technology and with the changes that have been made to Visual Basic. In my opinion,
Microsoft has done it right.

1.3 An Example Visual Basic .NET Program

The first program to write is the same for all languages: Print the words hello, world

—Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language

It has become a tradition for programming books to begin with a hello, world example. The idea is that
entering and running a program—any program—may be the biggest hurdle faced by experienced
programmers approaching a new platform or language. Without overcoming this hurdle, nothing else
can follow. This chapter contains three such examples: one that creates a console application, one
that creates a GUI application, and one that creates a browser-based application. Each example
stands alone and can be run as is. The console and GUI applications can both be compiled from the
command line (yes, Visual Basic .NET has a command-line compiler!). The browser-based application
requires a computer running Internet Information Server (IIS).

1.3.1 hello, world

This is the world's favorite programming example, translated to Visual Basic .NET:

Imports System

Public Module Hello
 Public Sub Main()
 Console.WriteLine("hello, world")
 End Sub
End Module

This version of hello, world is a console application -- it displays its output in a Windows command-
prompt window. To compile this program, enter it using any text editor, such as Windows's Notepad,
save it in a file whose name ends with .vb, such as Hello.vb, and compile it from the Windows
command line with this command:

vbc Hello.vb

Programming Visual Basic .NET

 15

The command vbc invokes the Visual Basic .NET command-line compiler, which ships with the .NET
Framework SDK, and instructs it to compile the file named in the command-line argument. Compiling
Hello.vb generates the file Hello.exe. After compiling, type Hello at the command line to run your
program. Figure 1-1 shows the results of compiling and running this program.

Figure 1-1. Compiling and running hello, world

If you're accustomed to programming in Visual Basic 6, you can see even from this little program that
Visual Basic has changed dramatically. Here's a breakdown of what's happening in this code.

The first line:

Imports System

indicates that the program may use one or more types defined in the System namespace. (Types are
grouped into namespaces to help avoid name collisions and to group related types together.)
Specifically, the hello, world program uses the Console class, which is defined in the System
namespace. The Imports statement is merely a convenience. It is not needed if the developer is
willing to qualify type names with their namespace names. For example, the hello, world program
could have been written this way:

Public Module Hello
 Public Sub Main()
 System.Console.WriteLine("hello, world")
 End Sub
End Module

However, it is customary to use the Imports statement to reduce keystrokes and visual clutter.

An important namespace for Visual Basic developers is Microsoft.VisualBasic. The types in this
namespace expose members that form Visual Basic's intrinsic functions and subroutines. For example,
the Visual Basic Trim function is a member of the Microsoft.VisualBasic.Strings class, while the
MsgBox function is a member of the Microsoft.VisualBasic.Interaction class. In addition, Visual Basic's
intrinsic constants come from enumerations within this namespace. Much of the functionality available
in this namespace, however, is also duplicated within the .NET Framework's Base Class Library.
Developers who are not familiar with Visual Basic 6 will likely choose to ignore this namespace,
favoring the functionality provided by the .NET Framework. The .NET Framework is introduced later in
this chapter and is explained in detail in Chapter 3.

Next, consider this line:

Public Module Hello

This line begins the declaration of a standard module named Hello. The standard-module declaration
ends with this line:

End Module

 16

In Visual Basic 6, various program objects were defined by placing source code in files having various
filename extensions. For example, code that defined classes was placed in .cls files, code that defined
standard modules was placed in .bas files, and so on. In Visual Basic .NET, all source files have .vb
filename extensions, and program objects are defined with explicit syntax. For example, classes are
defined with the Class...End Class construct, and standard modules are defined with the
Module...End Module construct. Any particular .vb file can contain as many of these declarations
as desired.

The purpose of standard modules in Visual Basic 6 was to hold code that was outside of any class
definition. For example, global constants, global variables, and procedure libraries were often placed
in standard modules. Standard modules in Visual Basic .NET serve a similar purpose and can be used
in much the same way. However, in Visual Basic .NET they define datatypes that cannot be
instantiated and whose members are all static. This will be discussed in more detail in Chapter 2.

The next line in the example begins the definition of a subroutine named Main:

Public Sub Main()

It ends with:

End Sub

This syntax is similar to Visual Basic 6. The Sub statement begins the definition of a subroutine -- a
method that has no return value.

The Main subroutine is the entry point for the application. When the Visual Basic .NET compiler is
invoked, it looks for a subroutine named Main in one of the classes or standard modules exposed by
the application. If Main is declared in a class rather than in a standard module, the subroutine must be
declared with the Shared modifier. This modifier indicates that the class does not need to be
instantiated for the subroutine to be invoked. In either case, the Main subroutine must be Public. An
example of enclosing the Main subroutine in a class rather than in a standard module is given at the
end of this section.

If no Main subroutine is found, or if more than one is found, a compiler error is generated. The
command-line compiler has a switch (/main:location) that allows you to specify which class or
standard module contains the Main subroutine that is to be used, in the case that there is more than
one.

Lastly, there's the line that does the work:

Console.WriteLine("hello, world")

This code invokes the Console class's WriteLine method, which outputs the argument to the console.
The WriteLine method is defined as a shared (also known as a static) method. Shared methods don't
require an object instance in order to be invoked; nonshared methods do. Shared methods are
invoked by qualifying them with their class name (in this case, Console).

Here is a program that uses a class instead of a standard module to house its Main subroutine. Note
that Main is declared with the Shared modifier. It is compiled and run in the same way as the
standard module example, and it produces the same output. There is no technical reason to choose
one implementation over the other.

Imports System

Public Class Hello
 Public Shared Sub Main()
 Console.WriteLine("hello, world")

Programming Visual Basic .NET

 17

 End Sub
End Class

1.3.2 Hello, Windows

Here's the GUI version of hello, world:

Imports System
Imports System.Drawing
Imports System.Windows.Forms

Public Class HelloWindows

 Inherits Form

 Private lblHelloWindows As Label

 Public Shared Sub Main()
 Application.Run(New HelloWindows())
 End Sub

 Public Sub New()

 lblHelloWindows = New Label()
 With lblHelloWindows
 .Location = New Point(37, 31)
 .Size = New Size(392, 64)
 .Font = New Font("Arial", 36)
 .Text = "Hello, Windows!"
 .TabIndex = 0
 .TextAlign = ContentAlignment.TopCenter
 End With

 Me.Text = "Programming Visual Basic .NET"
 AutoScaleBaseSize = New Size(5, 13)
 FormBorderStyle = FormBorderStyle.FixedSingle
 ClientSize = New Size(466, 127)

 Controls.Add(lblHelloWindows)

 End Sub

End Class

This is similar to the hello, world console application, but with extra stuff required since this is a GUI
application. Two additional Imports statements are needed for drawing the application's window:

Imports System.Drawing
Imports System.Windows.Forms

The HelloWindows class has something that Visual Basic programs have never seen before, the
Inherits statement:

Inherits Form

The Visual Basic .NET language has class inheritance. The HelloWindows class inherits from the
Form class, which is defined in the System.Windows.Forms namespace. Class inheritance and the
Inherits statement are discussed in Chapter 2.

 18

The next line declares a label control that will be used for displaying the text Hello, Windows:

Private lblHelloWindows As Label

The Label class is defined in the System.Windows.Forms namespace.

As is the case with console applications, GUI applications must have a shared subroutine called Main:

Public Shared Sub Main()
 Application.Run(New HelloWindows())
End Sub

This Main method creates an instance of the HelloWindows class and passes it to the Run method of
the Application class (defined in the System.Windows.Forms namespace). The Run method takes
care of the housekeeping of setting up a Windows message loop and hooking the HelloWindows form
into it.

Next is another special method:

Public Sub New()

Like Main, New has special meaning to the Visual Basic .NET compiler. Subroutines named New are
compiled into constructors. A constructor is a method that has no return value (but can have
arguments) and is automatically called whenever a new object of the given type is instantiated.
Constructors are explained further in Chapter 2.

The constructor in the HelloWindows class instantiates a Label object, sets some of its properties, sets
some properties of the form, and then adds the Label object to the form's Controls collection. The
interesting thing to note is how different this is from how Visual Basic 6 represented form design. In
Visual Basic 6, form layout was represented by data in .frm files. This data was not code, but rather a
listing of the properties and values of the various elements on the form. In Visual Basic .NET, this
approach is gone. Instead, Visual Basic .NET statements must explicitly instantiate visual objects and
set their properties. When forms are designed in Visual Studio .NET using its drag-and-drop designer,
Visual Studio .NET creates this code on your behalf.

The command line to compile the Hello, Windows program is:

vbc HelloWindows.vb
/reference:System.dll,System.Drawing.dll,System.Windows.Forms.dll
/target:winexe

(Note that there is no break in this line.)

The command line for compiling the Hello, Windows program has more stuff in it than the one for the
console-based hello, world program. In addition to specifying the name of the .vb file, this command
line uses the /references switch to specify three .dlls that contain the implementations of library
classes used in the program (Form, Label, Point, etc.). The hello, world console application didn't
require references when being compiled because all it used was the Console class, defined in the
System namespace. The Visual Basic .NET command-line compiler includes two references implicitly:
mscorlib.dll (which contains the System namespace) and Microsoft.VisualBasic.dll (which contains
helper classes used for implementing some of the features of Visual Basic .NET).

Besides the /references switch, the command line for compiling the Hello, Windows program
includes the /target switch. The /target switch controls what kind of executable code file is
produced. The possible values of the /target switch are:

exe

Programming Visual Basic .NET

 19

Creates a console application. The generated file has an extension of .exe. This is the default.

winexe

Creates a GUI application. The generated file has an extension of .exe.

library

Creates a class library. The generated file has an extension of .dll.

The output of Hello, Windows is shown in Figure 1-2.

Figure 1-2. Hello, Windows!

GUI applications are explained in detail in Chapter 4 and Chapter 5.

1.3.3 Hello, Browser

Here is a browser-based version of the hello, world application. Because the simplest version of such
an application could be accomplished with only HTML, I've added a little spice. This web page
includes three buttons that allow the end user to change the color of the text.

<script language="VB" runat="server">

 Sub Page_Load(Sender As Object, E As EventArgs)
 lblMsg.Text = "Hello, Browser!"
 End Sub

 Sub btnBlack_Click(Sender As Object, E As EventArgs)
 lblMsg.ForeColor = System.Drawing.Color.Black
 End Sub

 Sub btnGreen_Click(Sender As Object, E As EventArgs)
 lblMsg.ForeColor = System.Drawing.Color.Green
 End Sub

 Sub btnBlue_Click(Sender As Object, E As EventArgs)
 lblMsg.ForeColor = System.Drawing.Color.Blue
 End Sub

</script>

<html>

 <head>
 <title>Programming Visual Basic .NET</title>
 </head>

 <body>

 20

 <form action="HelloBrowser.aspx" method="post" runat="server">
 <h1><asp:label id="lblMsg" runat="server"/></h1>
 <p>
 <asp:button type="submit" id="btnBlack" text="Black"
 OnClick="btnBlack_Click" runat="server"/>
 <asp:button id="btnBlue" text="Blue"
 OnClick="btnBlue_Click" runat="server"/>
 <asp:button id="btnGreen" text="Green"
 OnClick="btnGreen_Click" runat="server"/>
 </p>
 </form>
 </body>

</html>

To run this program, enter it using a text editor and save it in a file named HelloBrowser.aspx.
Because the application is a web page that is meant to be delivered by a web server, it must be saved
onto a machine that is running IIS and has the .NET Framework installed. Set up a virtual folder in IIS
to point to the folder containing HelloBrowser.aspx. Finally, point a web browser to HelloBrowser.aspx.
The output of the Hello, Browser application is shown in Figure 1-3.

Figure 1-3. Hello, Browser!

Be sure to reference the file through the web server machine
name or localhost (if the web server is on your local machine), so
that the web server is invoked. For example, if the file is in a
virtual directory called Test on your local machine, point your
browser to http://localhost/Test/HelloBrowser.aspx. If you point
your browser directly to the file using a filesystem path, the web
server will not be invoked.

Going into detail on the Hello, Browser code would be too much for an introduction. However, I'd like
to draw your attention to the <asp:label> and <asp:button> tags. These tags represent server-
side controls. A server-side control is a class that is instantiated on the web server and generates
appropriate output to represent itself on the browser. These classes have rich, consistent sets of
properties and methods and can be referenced in code like controls on forms are referenced in GUI
applications.

ASP.NET has many other nifty features, some of which are:

• Web pages are compiled, resulting in far better performance over classic ASP.
• Code can be pulled out of web pages entirely and placed in .vb files (called code-behind files)

that are referenced by the web pages. This separation of web page layout from code results in
pages that are easier to develop and maintain.

Programming Visual Basic .NET

 21

• ASP.NET automatically detects the capabilities of the end user's browser and adjusts its
output accordingly.

Browser-based applications are discussed in detail in Chapter 6.

 22

Programming Visual Basic .NET

 23

Chapter 2. The Visual Basic .NET Language

This chapter discusses the syntax of the Visual Basic .NET language, including basic concepts such
as variables, operators, statements, classes, etc. Some material that you'd expect to find in this
chapter will seem to be missing. For example, mathematical functions, file I/O, and form declarations
are all very much a part of developing Visual Basic .NET applications, yet they are not introduced in
this chapter because they are not intrinsic to the Visual Basic .NET language. They are provided by
the .NET Framework and will be discussed in subsequent chapters. Additionally, Visual Basic .NET
functions that exist merely for backward compatibility with Visual Basic 6 are not documented in this
chapter.

2.1 Source Files

Visual Basic .NET source code is saved in files with a .vb extension. The exception to this rule is when
Visual Basic .NET code is embedded in ASP.NET web page files. Such files have an .aspx extension.

Source files are plain-text files that can be created and edited with any text editor, including our old
friend, Notepad. Source code can be broken into as many or as few files as desired. When you use
Visual Studio .NET, source files are listed in the Solution Explorer window, and all source is included
from these files when the solution is built. When you are compiling from the command line, all source
files must appear as command-line arguments to the compile command. The location of declarations
within source files is unimportant. As long as all referenced declarations appear somewhere in a
source file being compiled, they will be found.

Unlike previous versions of Visual Basic, no special file extensions are used to indicate various
language constructs (e.g., .cls for classes, .frm for forms, etc.). Syntax has been added to the
language to differentiate various constructs. In addition, the pseudolanguage for specifying the
graphical layout of forms has been removed. Form layout is specified by setting properties of form
objects explicitly within code. Either this code can be written manually, or the WYSIWYG form
designer in Visual Studio .NET can write it.

2.2 Identifiers

Identifiers are names given to namespaces (discussed later in this chapter), types (enumerations,
structures, classes, standard modules, interfaces, and delegates), type members (methods,
constructors, events, constants, fields, and properties), and variables. Identifiers must begin with either
an alphabetic or underscore character (_), may be of any length, and after the first character must
consist of only alphanumeric and underscore characters. Namespace declarations may be declared
either with identifiers or qualified identifiers. Qualified identifiers consist of two or more identifiers
connected with the dot character (.). Only namespace declarations may use qualified identifiers.

Consider this code fragment:

Imports System

Namespace ORelly.ProgVBNet

 Public Class Hello
 Public Shared Sub SayHello()
 Console.WriteLine("hello, world")
 End Sub
 End Class

End Namespace

This code fragment declares three identifiers: OReilly.ProgVBNet (a namespace name), Hello (a class
name), and SayHello (a method name). In addition to these, the code fragment uses three identifiers

 24

declared elsewhere: System (a namespace name), Console (a class name), and WriteLine (a method
name).

Although Visual Basic .NET is not case sensitive, the case of identifiers is preserved when
applications are compiled. When using Visual Basic .NET components from case-sensitive languages,
the caller must use the appropriate case.

Ordinarily, identifiers may not match Visual Basic .NET keywords. If it is necessary to declare or use
an identifier that matches a keyword, the identifier must be enclosed in square brackets ([]). Consider
this code fragment:

Public Class [Public]
 Public Shared Sub SayHello()
 Console.WriteLine("hello, world")
 End Sub
End Class

Public Class SomeOtherClass
 Public Shared Sub SomeOtherMethod()
 [Public].SayHello()
 End Sub
End Class

This code declares a class named Public and then declares a class and method that use the Public
class. Public is a keyword in Visual Basic .NET. Escaping it with square brackets lets it be used as
an identifier, in this case the name of a class. As a matter of style, using keywords as identifiers should
be avoided, unless there is a compelling need. This facility allows Visual Basic .NET applications to
use external components that declare identifiers matching Visual Basic .NET keywords.

2.3 Keywords

Keywords are words with special meaning in a programming language. In Visual Basic .NET,
keywords are reserved; that is, they cannot be used as tokens for such purposes as naming variables
and subroutines. The keywords in Visual Basic .NET are shown in Table 2-1.

Table 2-1. Visual Basic .NET keywords
Keyword Description

AddHandler Visual Basic .NET Statement
AddressOf Visual Basic .NET Statement
Alias Used in the Declare statement
And Boolean operator
AndAlso Boolean operator
Ansi Used in the Declare statement
Append Used as a symbolic constant in the FileOpen function
As Used in variable declaration (Dim, Friend, etc.)
Assembly Assembly-level attribute specifier
Auto Used in the Declare statement
Binary Used in the Option Compare statement
Boolean Used in variable declaration (intrinsic data type)
ByRef Used in argument lists
Byte Used in variable declaration (intrinsic data type)
ByVal Used in argument lists

Programming Visual Basic .NET

 25

Call Visual Basic .NET statement
Case Used in the Select Case construct
Catch Visual Basic .NET statement
CBool Data-conversion function
CByte Data-conversion function
CChar Data-conversion function
CDate Data-conversion function
CDec Data-conversion function
CDbl Data-conversion function
Char Used in variable declaration (intrinsic data type)
CInt Data-conversion function
Class Visual Basic .NET statement
CLng Data-conversion function
CObj Data-conversion function
Compare Used in the Option Compare statement
CShort Data-conversion function
CSng Data-conversion function
CStr Data-conversion function
CType Data-conversion function
Date Used in variable declaration (intrinsic data type)
Decimal Used in variable declaration (intrinsic data type)
Declare Visual Basic .NET statement
Default Used in the Property statement
Delegate Visual Basic .NET statement
Dim Variable declaration statement
Do Visual Basic .NET statement
Double Used in variable declaration (intrinsic data type)
Each Used in the For Each...Next construct
Else Used in the If...Else...ElseIf...End If construct
ElseIf Used in the If...Else...ElseIf...End If construct
End Used to terminate a variety of statements
EndIf Used in the If...Else...ElseIf...End If construct
Enum Visual Basic .NET statement
Erase Visual Basic .NET statement
Error Used in the Error and On Error compatibility statements
Event Visual Basic .NET statement
Explicit Used in the Option Explicit statement
False Boolean literal
For Used in the For...Next and For Each...Next constructs
Finally Visual Basic .NET statement
For Visual Basic .NET statement
Friend Statement and access modifier
Function Visual Basic .NET statement
Get Used in the Property construct
GetType Visual Basic .NET operator
GoTo Visual Basic .NET statement, used with the On Error statement
Handles Defines an event handler in a procedure declaration

 26

If Visual Basic .NET statement
Implements Visual Basic .NET statement
Imports Visual Basic .NET statement
In Used in the For Each...Next construct
Inherits Visual Basic .NET statement
Input Used in the FileOpen function
Integer Used in variable declaration (intrinsic data type)
Interface Visual Basic .NET statement
Is Object comparison operator
Let Reserved but unused in Visual Basic .NET
Lib Used in the Declare statement
Like Visual Basic .NET operator
Lock Function name
Long Used in variable declaration (intrinsic data type)
Loop Used in a Do loop
Me Statement referring to the current object instance
Mid String-manipulation statement and function
Mod Visual Basic .NET operator
Module Visual Basic .NET statement
MustInherit Used in the Class construct
MustOverride Used in the Sub and Function statements
MyBase Statement referring to an object's base class
MyClass Statement referring to the current object instance
Namespace Visual Basic .NET statement
New Object-creation keyword, constructor name
Next Used in the For...Next and For Each...Next constructs
Not Visual Basic .NET operator
Nothing Used to clear an object reference
NotInheritable Used in the Class construct
NotOverridable Used in the Sub, Property, and Function statements
Object Used in variable declaration (intrinsic data type)
Off Used in Option statements
On Used in Option statements
Option Used in Option statements
Optional Used in the Declare, Function, Property, and Sub statements
Or Boolean operator
OrElse Boolean operator
Output Used in the FileOpen function
Overloads Used in the Sub and Function statements
Overridable Used in the Sub and Function statements
Overrides Used in the Sub, Property, and Function statements
ParamArray Used in the Declare, Function, Property, and Sub statements
Preserve Used with the ReDim statement
Private Statement and access modifier
Property Visual Basic .NET statement
Protected Statement and access modifier
Public Statement and access modifier

Programming Visual Basic .NET

 27

RaiseEvent Visual Basic .NET statement
Random Used in the FileOpen function
Read Used in the FileOpen function
ReadOnly Used in the Property statement
ReDim Visual Basic .NET statement
Rem Visual Basic .NET statement
RemoveHandler Visual Basic .NET statement
Resume Used in the On Error and Resume statements
Return Visual Basic .NET statement
Seek File-access statement and function
Select Used in the Select Case construct
Set Used in the Property statement
Shadows Visual Basic .NET statement
Shared Used in the Sub and Function statements
Short Used in variable declaration (intrinsic data type)
Single Used in variable declaration (intrinsic data type)
Static Variable declaration statement
Step Used in the For...Next construct
Stop Visual Basic .NET statement
String Used in variable declaration (intrinsic data type)
Structure Visual Basic .NET statement
Sub Visual Basic .NET statement
SyncLock Visual Basic .NET statement
Text Used in the Option Compare statement
Then Used in the If...Then...Else...EndIf construct
Throw Visual Basic .NET statement
To Used in the For...Next and Select Case constructs
True Boolean literal
Try Visual Basic .NET statement
TypeOf Used in variations of the If...Then...EndIf construct
Unicode Used in the Declare statement
Until Used in the For...Next construct
Variant Reserved but unused in Visual Basic .NET
When Used with the Try...Catch...Finally construct
While Used with the Do...Loop and While...End While constructs
With Visual Basic .NET statement
WithEvents Used in variable declaration (Dim, Public, etc.)
WriteOnly Used in the Property statement
XOr Visual Basic .NET operator

2.4 Literals

Literals are representations of values within the text of a program. For example, in the following line of
code, 10 is a literal, but x and y are not:

x = y * 10

 28

Literals have data types just as variables do. The 10 in this code fragment is interpreted by the
compiler as type Integer because it is an integer that falls within the range of the Integer type.

2.4.1 Numeric Literals

Any integer literal that is within the range of the Integer type (-2147483648 through 2147483647) is
interpreted as type Integer, even if the value is small enough to be interpreted as type Byte or Short.
Integer literals that are outside the Integer range but are within the range of the Long type (-
9223372036854775808 through 9223372036854775807) are interpreted as type Long. Integer literals
outside the Long range cause a compile-time error.

Numeric literals can also be of one of the floating point types—Single, Double, and Decimal. For
example, in this line of code, 3.14 is a literal of type Double:

z = y * 3.14

In the absence of an explicit indication of type (discussed shortly), Visual Basic .NET interprets floating
point literals as type Double. If the literal is outside the range of the Double type (-
1.7976931348623157E308 through 1.7976931348623157E308), a compile-time error occurs.

Visual Basic .NET allows programmers to explicitly specify the types of literals. Table 2-2 (shown
later in this chapter) lists Visual Basic .NET's intrinsic data types, along with the method for explicitly
defining a literal of each type. Note that for some intrinsic types, there is no way to write a literal.

2.4.2 String Literals

Literals of type String consist of characters enclosed within quotation-mark characters. For example, in
the following line of code, "hello, world" is a literal of type String:

Console.WriteLine("hello, world")

String literals are not permitted to span multiple source lines. In other words, this is not permitted:

' Wrong
Console.WriteLine("hello,
 world")

To write a string literal containing quotation-mark characters, type the character twice for each time it
should appear. For example:

Console.WriteLine("So then Dave said, ""hello, world"".")

This line produces the following output:

So then Dave said, "hello, world".

2.4.3 Character Literals

Visual Basic .NET's Char type represents a single character. This is not the same as a one-character
string; Strings and Chars are distinct types. Literals of type Char consist of a single character enclosed
within quotation-mark characters, followed by the character c. For example, in the following code,
"A"c is a literal of type Char:

Dim MyChar As Char
MyChar = "A"c

Programming Visual Basic .NET

 29

To emphasize that this literal is of a different data type than a single-character string, note that this
code causes a compile-time error if Option Strict is On:

' Wrong
Dim MyChar As Char
MyChar = "A"

The error is:

Option Strict On disallows implicit conversions from 'String' to 'Char'.

2.4.4 Date Literals

Literals of type Date are formed by enclosing a date/time string within number-sign characters. For
example:

Dim MyDate As Date
MyDate = #11/15/2001 3:00:00 PM#

Date literals in Visual Basic .NET code must be in the format m/d/yyyy, regardless of the regional
settings of the computer on which the code is written.

2.4.5 Boolean Literals

The keywords True and False are the only Boolean literals. They represent the true and false
Boolean states, respectively (of course!). For example:

Dim MyBoolean As Boolean
MyBoolean = True

2.4.6 Nothing

There is one literal that has no type: the keyword Nothing. Nothing is a special symbol that
represents an uninitialized value of any type. It can be assigned to any variable and passed in any
parameter. When used in place of a reference type, it represents a reference that does not reference
any object. When used in place of a value type, it represents an empty value of that type. For numeric
types, this is 0 or 0.0. For the String type, this is the empty string (""). For the Boolean type, this is
False. For the Char type, this is the Unicode character that has a numeric code of 0. For
programmer-defined value types, Nothing represents an instance of the type that has been created
but has not been assigned a value.

2.4.7 Summary of Literal Formats

Table 2-2 shows all of Visual Basic .NET's intrinsic types, as well as the format for writing literals of
those types in programs.

Table 2-2. Forming literals
Data
type Literal Example

Boolean True, False
Dim bFlag As Boolean
= False

Char C Dim chVal As Char =
"X"C

 30

Date # # Dim datMillen As
Date = #01/01/2001#

Decimal D Dim decValue As
Decimal = 6.14D

Double Any floating point number, or R

Dim dblValue As
Double = 6.142

Dim dblValue As
Double = 6.142R

Integer
An integral value in the range of type Integer (-2,147,483,648 to
2,147,483,647), or I

Dim iValue As
Integer = 362

Dim iValue As
Integer = 362I

Dim iValue As
Integer = &H16AI
(hexadecimal)

Dim iValue As
Integer = &O552I
(octal)

Long
An integral value outside the range of type Integer (-
9,223,372,036,854,775,808 to -2,147,483,649, or
2,147,483,648 to 9,223,372,036,854,775,807), or L

Dim lValue As Long =
362L

Dim lValue As Long =
&H16AL (hexadecimal)

Dim lValue As Long =
&O552L (octal)

Short S

Dim shValue As Short
= 362S

Dim shValue As Short
= &H16AS (hexadecimal)

Dim shValue As Short
= &O552S (octal)

Single F Dim sngValue As
Single = 6.142F

String " "
Dim strValue As
String = "This is a
string"

Note the following facts about forming literals in Visual Basic .NET:

• There is no way to represent a literal of type Byte. However, this doesn't mean that literals
cannot be used in situations where type Byte is expected. For example, the following code is
fine:

Dim MyByte As Byte = 100

• Even though the Visual Basic .NET compiler considers 100 to be of type Integer in this
example, it recognizes that the number is small enough to fit into a variable of type Byte.

• Types not shown in Table 2-2 can't be expressed as literals.

Programming Visual Basic .NET

 31

2.5 Types

Types in Visual Basic .NET are divided into two categories: value types and reference types. Value
types minimize memory overhead and maximize speed of access, but they lack some features of a
fully object-oriented design (such as inheritance). Reference types give full access to object-oriented
features, but they impose some memory and speed overhead for managing and accessing objects.
When a variable holds a value type, the data itself is stored in the variable. When a variable holds a
reference type, a reference to the data (also known as a pointer) is stored in the variable, and the data
itself is stored somewhere else. Visual Basic .NET's primitive types include both value types and
reference types (see "Fundamental Types" in this section). For extending the type system, Visual
Basic .NET provides syntax for defining both new value types and new reference types (see "Custom
Types" later in this section).

All reference types derive from the Object type. To unify the type system, value types can be treated
as reference types when needed. This means that all types can derive from the Object type. Treating
value types as reference types (a process known as boxing) is addressed later in this chapter, in
Section 2.16.

2.5.1 Fundamental Types

Visual Basic .NET has several built-in types. Each of these types is an alias for a type supplied by
the .NET architecture. Because Visual Basic .NET types are equivalent to the corresponding
underlying .NET-supplied types, there are no type-compatibility issues when passing arguments to
components developed in other languages. In code, it makes no difference to the compiler whether
types are specified using the keyword name for the type or using the underlying .NET type name. For
example, the test in this code fragment succeeds:

Dim x As Integer
Dim y As System.Int32
If x.GetType() Is y.GetType() Then
 Console.WriteLine("They're the same type!")
Else
 Console.WriteLine("They're not the same type.")
End If

The fundamental Visual Basic .NET types are:

Boolean

The Boolean type is limited to two values: True and False. Visual Basic .NET includes many
logical operators that result in a Boolean type. For example:

Public Shared Sub MySub(ByVal x As Integer, ByVal y As Integer)
 Dim b As Boolean = x > y
 ' other code
End Sub ' MySub

The result of the greater-than operator (>) is of type Boolean. The variable b is assigned the
value True if the value in x is greater than the value in y and False if it is not. The
underlying .NET type is System.Boolean.

Byte

The Byte type can hold a range of integers from 0 through 255. It represents the values that
can be held in eight bits of data. The underlying .NET type is System.Byte.

Char

 32

The Char type can hold any Unicode[1] character. The Char data type is new to Visual
Basic .NET. The underlying .NET type is System.Char.

[1] Unicode is a 16-bit character-encoding scheme that is standard across all platforms, programs, and languages (human
and machine). See http://www.unicode.org for information on Unicode.

Date

The Date type holds values that specify dates and times. The range of values is from midnight
on January 1, 0001 (0001-01-01T00:00:00) through 1 second before midnight on December
31, 9999 (9999-12-31T23:59:59). The Date type contains many members for accessing,
comparing, and manipulating dates and times. The underlying .NET type is System.DateTime.

Decimal

The Decimal type holds decimal numbers with a precision of 28 significant decimal digits. Its
purpose is to represent and manipulate decimal numbers without the rounding errors of the
Single and Double types. The Decimal type replaces Visual Basic 6's Currency type. The
underlying .NET type is System.Decimal.

Double

The Double type holds a 64-bit value that conforms to IEEE standard 754 for binary floating
point arithmetic. The Double type holds floating point numbers in the range -
1.7976931348623157E308 through 1.7976931348623157E308. The smallest nonnegative
number (other than zero) that can be held in a Double is 4.94065645841247E-324. The
underlying .NET type is System.Double.

Integer

The Integer type holds integers in the range -2147483648 through 2147483647. The Visual
Basic .NET Integer data type corresponds to the VB 6 Long data type. The underlying .NET
type is System.Int32.

Long

The Long type holds integers in the range -9223372036854775808 through
9223372036854775807. In Visual Basic .NET, Long is a 64-bit integer data type. The
underlying .NET type is System.Int64.

Object

The Object type is the base type from which all other types are derived. The Visual
Basic .NET Object data type replaces the Variant in VB 6 as the universal data type. The
underlying .NET type is System.Object.

Short

The Short type holds integers in the range -32768 through 32767. The Short data type
corresponds to the VB 6 Integer data type. The underlying .NET type is System.Int16.

Single

The Single type holds a 32-bit value that conforms to IEEE standard 754 for binary floating
point arithmetic. The Single type holds floating point numbers in the range -3.40282347E38
through 3.40282347E38. The smallest nonnegative number (other than zero) that can be held
in a Double is 1.401298E-45. The underlying .NET type is System.Single.

Programming Visual Basic .NET

 33

String

The String type holds a sequence of Unicode characters. The underlying .NET type is
System.String.

Of the fundamental types, Boolean, Byte, Char, Date, Decimal, Double, Integer, Long, Short, and
Single (that is, all of them except Object and String) are value types. Object and String are reference
types.

2.5.2 Custom Types

Visual Basic .NET provides rich syntax for extending the type system. Programmers can define both
new value types and new reference types. Types declared with Visual Basic .NET's Structure and
Enum statements are value types, as are all .NET Framework types that derive from
System.ValueType. Reference types include Object, String, all types declared with Visual
Basic .NET's Class, Interface, and Delegate statements, and all .NET Framework types that
don't derive from System.ValueType.

2.5.3 Arrays

Array declarations in Visual Basic .NET are similar to those in Visual Basic 6 and other languages. For
example, here is a declaration of an Integer array that has five elements:

Dim a(4) As Integer

The literal 4 in this declaration specifies the upper bound of the array. All arrays in Visual Basic .NET
have a lower bound of 0, so this is a declaration of an array with five elements, having indexes 0, 1, 2,
3, and 4.

The previous declaration is of a variable named a, which is of type "array of Integer." Array types
implicitly inherit from the .NET Framework's Array type (defined in the System namespace) and,
therefore, have access to the methods defined in that type. For example, the following code displays
the lower and upper bounds of an array by calling the Array class's GetLowerBound and
GetUpperBound methods:

Dim a(4) As Integer

Console.WriteLine("LowerBound is " & a.GetLowerBound(0).ToString())
Console.WriteLine("UpperBound is " & a.GetUpperBound(0).ToString())

The output is:

LowerBound is 0
UpperBound is 4

Note that the upper bound of the array is dynamic: it can be changed by methods available in the
Array type.

Array elements are initialized to the default value of the element type. A type's default value is
determined as follows:

• For numeric types, the default value is 0.
• For the Boolean type, the default value is False.
• For the Char type, the default value is the character whose Unicode value is 0.

 34

• For structure types (described later in this chapter), the default value is an instance of the
structure type with all of its fields set to their default values.

• For enumeration types (described later in this chapter), the default value is an instance of the
enumeration type with its internal representation set to 0, which may or may not correspond to
a legal value in the enumeration.

• For reference types (including String), the default value is Nothing.

You can access array elements by suffixing the array name with the index of the desired element
enclosed in parentheses, as shown here:

For i = 0 To 4
 Console.WriteLine(a(i))
Next

Arrays can be multidimensional. Commas separate the dimensions of the array when used in
declarations and when accessing elements. Here is the declaration of a three-dimensional array,
where each dimension has a different size:

Dim a(5, 10, 15) As Integer

As with single-dimensional arrays, array elements are initialized to their default values.

2.5.3.1 Initializing arrays

Arrays of primitive types can be initialized by enclosing the initial values in curly brackets ({}). For
example:

Dim a() As String = {"First", "Second", "Third", "Fourth", "Fifth"}

Notice that when arrays are initialized in this manner, the array declaration is not permitted to specify
an explicit size. The compiler infers the size from the number of elements in the initializer.

To initialize multidimensional arrays, include the appropriate number of commas in the array-name
declaration and use nested curly brackets in the initializer. Here is a declaration of a two-dimensional
array having three rows and two columns:

Dim a(,) As Integer = {{1, 2}, {3, 4}, {5, 6}}

This declaration produces the following array:

a(0,0)=1 a(0,1)=2
a(1,0)=3 a(1,1)=4
a(2,0)=5 a(2,1)=6

When initializing multidimensional arrays, the innermost curly brackets correspond to the rightmost
dimension.

2.5.3.2 Dynamically allocating arrays

Use the New keyword to allocate arrays of any type. For example, this code creates an array of five
Integers and initializes the elements as shown:

Dim a() As Integer
a = New Integer(4) {1, 2, 3, 4, 5}

Programming Visual Basic .NET

 35

If the array elements won't be initialized by the allocation, it is still necessary to include the curly
brackets:

Dim a() As Integer
' allocates an uninitialized array of five Integers
a = New Integer(5) {}

Curly brackets are required so the compiler won't confuse the array syntax with constructor syntax.

Note also the meaning of this declaration by itself:

Dim a() As Integer

This is the declaration of a reference that could point to a single-dimensional array of Integers, but
doesn't yet. Its initial value is Nothing.

2.5.4 Collections

A collection is any type that exposes the ICollection interface (defined in the System.Collections
namespace). (Interfaces are explained later in this chapter. Briefly, an interface is an agreement in
which the type will expose certain methods, properties, and other members. By exposing the
ICollection interface, a type ensures that it can be used anywhere a collection is expected.) In
general, collections store multiple values and provide a way for iterating through those values.
Specialized collection types may also provide other means for adding and reading values. For
example, the Stack type (defined in the System.Collections namespace) provides methods, such as
Push and Pop, for performing operations that are appropriate for the stack data structure.

The Visual Basic .NET runtime provides a type called Collection (defined in the Microsoft.VisualBasic
namespace) that mimics the behavior of Visual Basic 6 collections and exposes the ICollection
interface. Example 2-1 shows its use.

Example 2-1. Using the Collection type
' Create a new collection object.
Dim col As New Collection()

' Add some items to the collection.
col.Add("Some value")
col.Add("Some other value")
col.Add("A third value")

' Iterate through the collection and output the strings.
Dim obj As Object
For Each obj In col
 Dim str As String = CType(obj, String)
 Console.WriteLine(str)
Next

The Collection type's Add method adds items to the collection. Although strings are added to the
collection in Example 2-2, the Add method is defined to take items of type Object, meaning that any
type can be passed to the method. After items are added to the collection, they can be iterated using
the For Each statement (discussed later in this chapter, under Section 2.13). Because the
Collection class is defined to store items of type Object, the loop variable in the For Each statement
must be of type Object. Because the items are actually strings, the code in Example 2-1 converts the
Object references to String references using the CType function. Type conversions are discussed later
in this section. The output of the code in Example 2-1 is:

 36

Some value
Some other value
A third value

The items in a Collection object can also be iterated using a numerical index. The Collection object
has a Count property, which indicates the number of items in the collection. Example 2-2 is precisely
the same as Example 2-1, except that it iterates through the Collection object using a numerical
index and a standard For loop.

Example 2-2. Using a numerical index on a collection object
' Create a new collection object.
Dim col As New Collection()

' Add some items to the collection.
col.Add("Some value")
col.Add("Some other value")
col.Add("A third value")

' Iterate through the collection and output the strings.
Dim i As Integer
For i = 1 To col.Count
 Dim str As String = CType(col(i), String)
 Console.WriteLine(str)
Next

Note that to access an item by index, the index number is placed within parentheses following the
name of the Collection reference variable, as shown again here:

col(i)

The syntax of the Add method is:

Public Sub Add(_
 ByVal
Item As Object, _
 Optional ByVal
Key As String = Nothing, _
 Optional ByVal
Before As Object = Nothing, _
 Optional ByVal
After As Object = Nothing _
)

The parameters are:

Item

The item to add to the collection.

Key

An optional string value that can be used as an index to retrieve the associated item. For
example, the following code adds an item to a collection and then uses the key value to
retrieve the item:

Dim col As New Collection()
col.Add("Some value", "Some key")

Programming Visual Basic .NET

 37

' ...
Dim str As String = CType(col("Some key"), String)
Console.WriteLine(str)

The output is:

Some value
Before

The item before which the new item should be added.

After

The item after which the new item should be added.

The .NET Framework class library provides several additional collection types, which are listed and
briefly discussed in Chapter 3.

2.5.5 Type Conversions

Visual Basic .NET provides a variety of ways for values of one type to be converted to values of
another type. There are two main categories of conversions: widening conversions and narrowing
conversions. Widening conversions are conversions in which there is no possibility for data loss or
incorrect results. For example, converting a value of type Integer to a value of type Long is a widening
conversion because the Long type can accommodate every possible value of the Integer type.
Narrowing is the reverse operation—converting from a Long to an Integer—because some values of
type Long can't be represented as values of type Integer.

Visual Basic .NET performs widening conversions automatically whenever necessary. For example, a
widening conversion occurs in the second line of the following code. The Integer value on the
righthand side of the assignment is automatically converted to a Long value so it can be stored in the
variable b:

Dim a As Integer = 5
Dim b As Long = a

A conversion that happens automatically is called an implicit conversion.

Now consider the reverse situation:

Dim a As Long = 5
Dim b As Integer = a

The second line of code here attempts to perform an implicit narrowing conversion. Whether the
compiler permits this line of code depends on the value set for the Option Strict compiler option.
When Option Strict is On, attempts to perform an implicit widening conversion result in a compiler
error. When Option Strict is Off, the compiler automatically adds code behind the scenes to
perform the conversion. At runtime, if the actual value being converted is out of the range that can be
represented by the target type, a runtime exception occurs.

Option Strict can be set in either of two ways. First, it can be set in code at the top of a source file,
like this:

Option Strict On
' ...

 38

or:

Option Strict Off
' ...

The other way is to set a compiler switch, which affects all source files in the application. If you're
compiling from the command line, specify /optionstrict+ on the command line to set Option
Strict On. Specify /optionstrict- to set Option Strict Off. For example:

vbc MySource.vb /optionstrict+

To set Option Strict in Visual Studio .NET:

1. Right-click on the project name in the Solution Explorer window and choose Properties. This
brings up the Project Property Pages dialog box. (If the Solution Explorer window is not visible,
choose View Solution Explorer from the Visual Studio .NET main menu to make it appear.)

2. Within the Project Property Pages dialog box, choose the Common Properties folder. Within
that folder, choose the Build property page. This causes the project-build options to appear on
the right side of the dialog box.

3. Set the desired value for the Option Strict option.

By default, Option Strict is Off, meaning that implicit narrowing conversions are allowed. This
matches the default setting of Visual Basic 6. However, most experienced developers consider it
beneficial to set Option Strict On so the compiler can help detect coding errors before they
become runtime errors. Attempting to assign a Long to an Integer, for example, is usually a sign either
that something was mistyped or that there is a problem with the design of the program. Setting
Option Strict On helps the developer discover such errors at compile time. On the other hand,
there may sometimes be a legitimate need to perform a narrowing conversion. Perhaps the application
is interfacing to another application that passes a value as a Long, but it is guaranteed that the actual
value passed will never be outside the range of the Integer type. Option Strict could be set to Off
to allow implicit narrowing conversions, but a better alternative is to have Option Strict On (so it
can protect the majority of the program) and to specify an explicit narrowing conversion. For example:

Dim a As Long = 5
Dim b As Integer = CInt(a)

This is known as an explicit conversion because the programmer is explicitly requesting a conversion
to Integer. If at runtime a contains a value that is outside the Integer range, an exception is thrown.

Table 2-3 shows Visual Basic .NET's conversion functions.

Table 2-3. Conversion functions
Conversion function Converts its argument to

CBool A Boolean
CByte A Byte
CChar A Char
CDate A Date
CDbl A Double
CDec A Decimal
CInt An Integer
CLng A Long
CObj An Object

Programming Visual Basic .NET

 39

CSng A Single
CStr A String

The functions shown in Table 2-3 all take a single argument. If the argument can't be converted to
the given type, an exception is thrown. Note the following:

• When converting from any numeric value to Boolean, zero converts to False and nonzero
converts to True.

• When converting from Boolean to a numeric value, False converts to 0 and True converts to
-1.

• When converting from String to Boolean, the string must contain either the word "false",
which converts to False, or the word "true", which converts to True. The case of the string
is not important.

• When converting from Boolean to String, True converts to "True" and False converts to
"False".

• Anything can be converted to type Object.

It's also possible to convert between reference types. Any object-reference conversion of a derived
type to a base type is considered a widening conversion and can therefore be done implicitly.
Conversely, conversion from a base type to a derived type is a narrowing conversion. As previously
discussed, in order for narrowing conversions to compile, either Option Strict must be Off or an
explicit conversion must be performed. Explicit conversions of reference types are done with the
CType function. The CType function takes two arguments. The first is a reference to some object, and
the second is the name of the type to which the reference will convert. At runtime, if a conversion is
possible, the return value of the function is an object reference of the appropriate type. If no
conversion is possible, an exception is thrown.

Here is an example of converting between base and derived classes:

' This is a base class.
Public Class Animal
 ' ...
End Class

' This is a derived class.
Public Class Cat
 Inherits Animal
 ' ...
End Class

' This is another derived class.
Public Class Dog
 Inherits Animal
 ' ...
End Class

' This is a test class.
Public Class AnimalTest
 Public Shared Sub SomeMethod()
 Dim myCat As New Cat()
 Dim myDog As New Dog()
 Dim myDog2 As Dog
 Dim myAnimal As Animal = myCat ' Implicit conversion OK
 myAnimal = myDog ' Implicit conversion OK
 myDog2 = CType(myAnimal, Dog) ' Explicit conversion required
 End Sub
End Class

 40

Object references can also be implicitly converted to any interface exposed by the object's class.

2.6 Namespaces

Thousands of types are defined in the .NET Framework. In addition, programmers can define new
types for use in their programs. With so many types, name clashes are inevitable. To prevent name
clashes, types are considered to reside inside of namespaces. Often, this fact can be ignored. For
example, in Visual Basic .NET a class may be defined like this:

Public Class SomeClass
 ' ...
End Class

This class definition might be in a class library used by third-party customers, or it might be in the
same file or the same project as the client code. The client code that uses this class might look
something like this:

Dim x As New SomeClass()
x.DoSomething()

Now consider what happens if the third-party customer also purchases another vendor's class library,
which also exposes a SomeClass class. The Visual Basic .NET compiler can't know which definition of
SomeClass will be used. The client must therefore use the full name of the type, also known as its fully
qualified name . Code that needs to use both types might look something like this:

' The namespace is "FooBarCorp.SuperFoo2100".
Dim x As New FooBarCorp.SuperFoo2100.SomeClass()
x.DoSomething()
' ...
' The namespace is "MegaBiz.ProductivityTools.WizardMaster".
Dim y As New MegaBiz.ProductivityTools.WizardMaster.SomeClass()
y.DoSomethingElse()

Note that a namespace name can itself contain periods (.). When looking at a fully qualified type
name, everything prior to the final period is the namespace name. The name after the final period is
the type name.

Microsoft recommends that namespaces be named according to the format
CompanyName.TechnologyName. For example, "Microsoft.VisualBasic".

2.6.1 The Namespace Statement

So how does a component developer specify a type's namespace? In Visual Basic .NET, this can be
done several ways. One is to use the Namespace keyword, like this:

Namespace MegaBiz.ProductivityTools.WizardMaster

 Public Class SomeClass
 ' ...
 End Class

End Namespace

Note that it is permissible for different types in the same source file to have different namespaces.

Programming Visual Basic .NET

 41

A second way to provide a namespace is to use the /rootnamespace switch on the Visual
Basic .NET command-line compiler. For example:

vbc src.vb /t:library /rootnamespace:MegaBiz.ProductivityTools.WizardMaster

All types defined within the compiled file(s) then have the given namespace.

If you're compiling in the Visual Studio .NET IDE, the root namespace is specified in the Project
Property Pages dialog box, which can be reached by right-clicking the project name in the Solution
Explorer window of the IDE, then choosing Properties (see Figure 2-1 for the resulting WizardMaster
Property Pages dialog). By default, Visual Studio .NET sets the root namespace equal to the name of
the project.

Figure 2-1. Setting the root namespace in the Visual Studio .NET IDE

Note that regardless of which compiler is used (command line or Visual Studio .NET), if a root
namespace is specified and the Namespace keyword is used, the resulting namespace will be the
concatenation of the root namespace name and the name specified using the Namespace keyword.

2.6.2 The Imports Statement

So far, the discussion has implied that it's not necessary for the user of a type to specify the type's full
name unless there is a name clash. This isn't exactly true. The CLR deals with types only in terms of
their full names. However, because humans don't like to deal with long names, Visual Basic .NET
offers a shortcut. As an example, the .NET Framework provides a drawing library, in which a type
called Point is defined. This type's namespace is called System.Drawing, so the type's fully qualified
name is System.Drawing.Point. Code that uses this type might look like this:

Dim pt As System.Drawing.Point
pt.X = 10
pt.Y = 20
' ...

Typing the full name of every type whenever it is used would be too cumbersome, though, so Visual
Basic .NET offers the Imports statement. This statement indicates to the compiler that the types from
a given namespace will appear without qualification in the code. For example:

 42

' At the top of the source code file:
Imports System.Drawing
' ...
' Somewhere within the source code file:
Dim pt As Point
pt.X = 10
pt.Y = 20
' ...

To import multiple namespaces, list each one in its own Imports statement. It's okay if multiple
imported namespaces have some name clashes. For the types whose names clash, the full name
must be specified wherever the type is used.

The Imports statement is just a convenience for the developer. It does not set a reference to the
assembly in which the types are defined. See the discussion of assemblies in Chapter 3 to learn how
to reference assemblies that contain the types you need.

Finally, note that namespaces, too, are just a convenience for the developer writing source code. To
the runtime, a type is not "in" a namespace—a namespace is just another part of a type name. It is
perfectly acceptable for any given assembly to have types in different namespaces, and more than
one assembly can define types in a single namespace.

2.7 Symbolic Constants

Consider this function:

Public Shared Function RemainingCarbonMass(_
 ByVal InitialMass As Double, _
 ByVal Years As Long _
) As Double
 Return InitialMass * ((0.5 ^ (Years / 5730)))
End Function

What's wrong with this code? One problem is readability. What does it mean to divide Years by 5730?
In this code, 5730 is referred to as a magic number -- one whose meaning is not readily evident from
examining the code. The following changes correct this problem:

Public Const CarbonHalfLifeInYears As Double = 5730

Public Shared Function RemainingCarbonMass(_
 ByVal InitialMass As Double, _
 ByVal Years As Long _
) As Double
 Return InitialMass * ((0.5 ^ (Years / CarbonHalfLifeInYears)))
End Function

There is now no ambiguity about the meaning of the divisor.

Another problem with the first code fragment is that a program filled with such code is hard to maintain.
What if the programmer later discovers that the half-life of carbon is closer to 5730.1 years, and she
wants to make the program more accurate? If this number is used in many places throughout the
program, it must be changed in every case. The risk is high of missing a case or of changing a number
that shouldn't be changed. With the second code fragment, the number needs to be changed in only
one place.

See also the discussion of read-only fields later in this chapter, under Section 2.14.

Programming Visual Basic .NET

 43

2.8 Variables

A variable is an identifier that is declared in a method and that stands for a value within that method.
Its value is allowed to change within the method. Each variable is of a particular type, and that type is
indicated in the declaration of the variable. For example, this line declares a variable named i whose
type is Integer:

Dim i As Integer

The keyword Dim indicates a variable declaration. Dim is short for dimension and dates back to the
original days of the BASIC programming language in the late 1960s. In that language, variables were
not declared; they were just used where needed (except for arrays). Because of how arrays were laid
out in memory, the BASIC language interpreter had to be told of the dimensions of an array before the
array was used. This was the purpose of the Dim statement. In later years, when declaration of all
variables was agreed upon to be a good thing, the use of the Dim statement was broadened to include
all variable declarations.

Variable identifiers may be suffixed with type characters that serve to indicate the variable's type. For
example, this line declares a variable of type Integer:

Dim x%

The effect is precisely the same as for this declaration:

Dim x As Integer

The set of type characters is shown in Table 2-4; note that not all data types have a type character.

Table 2-4. Type characters
Data type Type character Example

Decimal @ Dim decValue@ = 132.24

Double # Dim dblValue# = .0000001327

Integer % Dim iCount% = 100

Long & Dim lLimit& = 1000000

Single ! Dim sngValue! = 3.1417

String $ Dim strInput$ = ""

As a matter of style, type characters should be avoided in preference to spelling out type names and
using descriptive variable names.

2.8.1 Variable Initializers

New to Visual Basic .NET is the ability to combine variable declaration and assignment. For example,
this code declares an Integer i and gives it an initial value of 10:

Dim i As Integer = 10

This is equivalent to the following code:

Dim i As Integer
i = 10

 44

2.9 Scope

Scope refers to the so-called visibility of identifiers within source code. That is, given a particular
identifier declaration, the scope of the identifier determines where it is legal to reference that identifier
in code. For example, these two functions each declare a variable CoffeeBreaks. Each declaration
is invisible to the code in the other method. The scope of each variable is the method in which it is
declared.

Public Sub MyFirstMethod()
 Dim CoffeeBreaks As Integer
 ' ...
End Sub

Public Sub MySecondMethod()
 Dim CoffeeBreaks As Long
 ' ...
End Sub

Unlike previous versions of Visual Basic, Visual Basic .NET has block scope. Variables declared within
a set of statements ending with End, Loop, or Next are local to that block. For example:

Dim i As Integer
For i = 1 To 100
 Dim j As Integer
 For j = 1 To 100
 ' ...
 Next
Next
' j is not visible here

Visual Basic .NET doesn't permit the same variable name to be declared at both the method level and
the block level. Further, the life of the block-level variable is equal to the life of the method. This means
that if the block is re-entered, the variable may contain an old value (don't count on this behavior, as it
is not guaranteed and is the kind of thing that might change in future versions of Visual Basic).

2.10 Access Modifiers

Access modifiers control the accessibility of types (including enumerations, structures, classes,
standard modules, and delegates) and type members (including methods, constructors, events,
constants, fields [data members], and properties) to other program elements. They are part of the
declarations of types and type members. In the following code fragment, for example, the keywords
Public and Private are access modifiers:

Public Class SomeClass

 Public Sub DoSomething()
 ' ...
 End Sub

 Private Sub InternalHelperSub()
 ' ...
 End Sub

End Class

The complete list of access modifiers and their meanings is shown in Table 2-5.

Programming Visual Basic .NET

 45

Table 2-5. Access modifiers
Access
modifier Description

Friend Defines a type that is accessible only from within the program in which it is declared.

Private

Defines a type that is accessible only from within the context in which it is declared.
For instance, a Private variable declared within a class module is accessible only from
within that class module. A Private class is accessible only from classes within which it
is nested.

Protected Applies to class members only. Defines a type that is accessible only from within its
own class or from a derived class.

Protected
Friend

Defines a type that is accessible from within the program in which it is declared as well
as from derived classes.

Public Defines a type that is publicly accessible. For example, a public method of a class can
be accessed from any program that instantiates that class.

2.11 Assignment

In Visual Basic .NET, assignment statements are of the form:

variable,
field, or
property =
expression

Either the type of the expression must be the same as that of the item receiving the assignment, or
there must exist an appropriate implicit or explicit conversion from the type of the expression to the
type of the item receiving the assignment. For information on implicit and explicit conversions, see
Section 2.5.5 earlier in this chapter.

When an assignment is made to a value type, the value of the expression is copied to the target. In
contrast, when an assignment is made to a reference type, a reference to the value is stored in the
target. This is an important distinction that is worth understanding well. Consider the code in Example
2-3.

Example 2-3. Value-type assignment versus reference-type assignment
Public Structure SomeStructure
 Public MyPublicMember As String
End Structure

Public Class SomeClass
 Public MyPublicMember As String
End Class

Public Class AssignmentTest

 Public Shared Sub TestValueAndReferenceAssignment()

 Dim a, b As SomeStructure
 Dim c, d As SomeClass

 ' Test assignment to value type.
 a.MyPublicMember = "To be copied to 'b'"
 b = a
 a.MyPublicMember = "New value for 'a'"
 Console.WriteLine("The value of b.MyPublicMember is """ _

 46

 & b.MyPublicMember & """")

 ' Test assignment to reference type.
 c = New SomeClass()
 c.MyPublicMember = "To be copied to 'd'"
 d = c
 c.MyPublicMember = "New value for 'c'"
 Console.WriteLine("The value of d.MyPublicMember is """ _
 & d.MyPublicMember & """")

 End Sub

End Class

The output of the TestValueAndReferenceAssignment method in Example 2-3 is:

The value of b.MyPublicMember is "To be copied to 'b'"
The value of d.MyPublicMember is "New value for 'c'"

In Example 2-3, the SomeStructure structure and the SomeClass class have identical definitions,
except that one is a structure and the other is a class. This leads to very different behavior during
assignment. When a value type is copied, the actual value is copied. When a reference type is copied,
only the reference is copied, resulting in two references to the same value. If the value is subsequently
changed through one of the references, the new value is also seen through the other reference.

This difference is shown in the output from Example 2-3. The value type in variable a is copied to
variable b. The value of a.MyPublicMember is then modified. Subsequently, the call to
Console.WriteLine shows that this modification does not affect b.MyPublicMember. In contrast, the
assignment of c to d copies only a reference, which means that after the assignment, both c and d
reference the same object. The value of c.MyPublicMember is then modified. The subsequent call
to Console.WriteLine shows that this modification did affect d.MyPublicMember. Indeed,
d.MyPublicMember refers to the same memory as c.MyPublicMember.

2.12 Operators and Expressions

Operators are symbols (characters or keywords) that specify operations to be performed on one or two
operands (or arguments). Operators that take one operand are called unary operators. Operators that
take two operands are called binary operators. Unary operators use prefix notation, meaning that the
operator precedes the operand (e.g., -5). Binary operators (except for one case) use infix notation,
meaning that the operator is between the operands (e.g., 1 + 2). The TypeOf...Is operator is a
binary operator that uses a special form that is neither prefix nor infix notation.

2.12.1 Unary Operators

Visual Basic supports the following unary operators:

+ (unary plus)

The unary plus operator takes any numeric operand. It's not of much practical use because
the value of the operation is equal to the value of the operand.

- (unary minus)

The unary minus operator takes any numeric operand (except as noted later). The value of the
operation is the negative of the value of the operand. In other words, the result is calculated by
subtracting the operand from zero. If the operand type is Short, Integer, or Long, and the value

Programming Visual Basic .NET

 47

of the operand is the maximum negative value for that type, then applying the unary minus
operator will cause a System.OverflowException error, as in the following code fragment:

Dim sh As Short = -32768
Dim i As Integer = -sh

Not (logical negation)

The logical negation operator takes a Boolean operand. The result is the logical negation of
the operand. That is, if the operand is False, the result of the operation is True, and vice
versa.

AddressOf

The AddressOf operator returns a reference to a method. Two different kinds of references
can be obtained, depending on the context in which the operator is used:

• When the AddressOf operator is used within the argument list of a call to a method,
which is made available via the Declare statement, it returns a function pointer that
is suitable for such calls.

• When the AddressOf operator is used in any other context, a delegate object is
returned. See Section 2.19 later in this chapter for information.

2.12.2 Arithmetic Operators

The arithmetic operators perform the standard arithmetic operations on numeric values. The arithmetic
operators supported by Visual Basic .NET are:

* (multiplication)

The multiplication operator is defined for all numeric operands. The result is the product of the
operands.

/ (regular division)

The regular division operator is defined for all numeric operands. The result is the value of the
first operand divided by the second operand.

\ (integer division)

The integer division operator is defined for integer operands (Byte, Short, Integer, and Long).
The result is the value of the first operand divided by the second operand, then rounded to the
integer nearest to zero.

Mod (modulo)

The modulo operator is defined for integer operands (Byte, Short, Integer, and Long). The
result is the remainder after the integer division of the operands.

^ (exponentiation)

The exponentiation operator is defined for operands of type Double. Operands of other
numeric types are converted to type Double before the result is calculated. The result is the
value of the first operand raised to the power of the second operand.

+ (addition)

 48

The addition operator is defined for all numeric operands and operands of an enumerated type.
The result is the sum of the operands. For enumerated types, the sum is calculated on the
underlying type, but the return type is the enumerated type. See the discussion of enumerated
types in the "Enumerations" section later in this chapter for more information on the types that
can underlie an enumerated type. See also Section 2.12.4 later in this section.

- (subtraction)

The subtraction operator is defined for all numeric operands and operands of an enumerated
type. The result is the value of the first operand minus the second operand. For enumerated
types, the subtraction is calculated on the underlying type, but the return type is the
enumerated type. See the discussion of enumerated types in Section 2.17 later in this
chapter for more information on the types that can underlie an enumerated type.

2.12.3 Relational Operators

The relational operators all perform some comparison between two operands and return a Boolean
value indicating whether the operands satisfy the comparison. The relational operators supported by
Visual Basic .NET are:

= (equality)

The equality operator is defined for all primitive value types and all reference types. For
primitive value types and for the String type, the result is True if the values of the operands
are equal; False if not. For reference types other than String, the result is True if the
references refer to the same object; False if not. If the operands are of type Object and they
reference primitive value types, value comparison is performed rather than reference
comparison.

<> (inequality)

The inequality operator is defined for all primitive value types and for reference types. For
primitive value types and for the String type, the result is True if the values of the operands
are not equal; False if equal. For reference types other than String, the result is True if the
references refer to different objects; False if they refer to the same object. If the operands are
of type Object and they reference primitive value types, value comparison is performed rather
than reference comparison.

< (less than)

The less-than operator is defined for all numeric operands and operands of an enumerated
type. The result is True if the first operand is less than the second; False if not. For
enumerated types, the comparison is performed on the underlying type.

> (greater than)

The greater-than operator is defined for all numeric operands and operands that are of an
enumerated type. The result is True if the first operand is greater than the second; False if
not. For enumerated types, the comparison is performed on the underlying type.

<= (less than or equal to)

The less-than-or-equal-to operator is defined for all numeric operands and operands of an
enumerated type. The result is True if the first operand is less than or equal to the second
operand; False if not.

Programming Visual Basic .NET

 49

>= (greater than or equal to)

The greater-than-or-equal-to operator is defined for all numeric operands and operands of an
enumerated type. The result is True if the first operand is greater than or equal to the second
operand; False if not.

TypeOf...Is

The TypeOf...Is operator is defined to take a reference as its first parameter and the name
of a type as its second parameter. The result is True if the reference refers to an object that is
type-compatible with the given type-name; False if the reference is Nothing or if it refers to
an object that is not type-compatible with the given type name.

Use the TypeOf...Is operator to determine whether a given object:

• Is an instance of a given class
• Is an instance of a class that is derived from a given class
• Exposes a given interface

In any of these cases, the TypeOf expression returns True.

Is

The Is operator is defined for all reference types. The result is True if the references refer to
the same object; False if not.

Like

The Like operator is defined only for operands of type String. The result is True if the first
operand matches the pattern given in the second operand; False if not.

The rules for matching are:

• The ? (question mark) character matches any single character.
• The * (asterisk) character matches zero or more characters.
• The # (number sign) character matches any single digit.
• A sequence of characters within [] (square brackets) matches any single character in

the sequence.

Within such a bracketed list, two characters separated by a - (hyphen) signify a range
of Unicode characters, starting with the first character and ending with the second
character. A - character itself can be matched by placing it at the beginning or end of
the bracketed sequence.

Preceding the sequence of characters with an ! (exclamation mark) character
matches any single character that does not appear in the sequence.

• The ?, *, #, and [characters can be matched by placing them within [] in the pattern
string. Consequently, they cannot be used in their wildcard sense within [].

• The] character does not need to be escaped to be explicitly matched. However, it
can't be used within [].

 50

2.12.4 String-Concatenation Operators

The & (ampersand) and + (plus) characters signify string concatenation. String concatenation is
defined for operands of type String only. The result is a string that consists of the characters from the
first operand followed by the characters from the second operand.

2.12.5 Bitwise Operators

It is sometimes necessary to manipulate the individual bits that make up a value of one of the integer
types (Byte, Short, Integer, and Long). This is the purpose of the bitwise operators. They are defined
for the four integer types and for enumerated types. When the bitwise operators are applied to
enumerated types, the operation is done on the underlying type, but the result is of the enumerated
type.

The bitwise operators work by applying the given Boolean operation to each of the corresponding bits
in the two operands. For example, consider this expression:

37 And 148

To calculate the value of this expression, consider the binary representation of each operand. It's
helpful to write one above the other so that the bit columns line up:

00100101 (37)
10010100 (148)

Next, apply the Boolean And operation to the bits in each column:

 00100101 (37)
And 10010100 (148)

 00000100 (4)

37 And 148, therefore, equals 4.

The bitwise operators are:

And

Performs a Boolean And operation on the bits. (The result bit is 1 if and only if both of the
source bits are 1.)

AndAlso

The result is True if and only if both the operands are True; otherwise, the result is False.
AndAlso performs logical short-circuiting: if the first operand of the expression is False, the
second operand is not evaluated.

Or

Performs a Boolean Or operation on the bits. (The result bit is 1 if either or both of the source
bits are 1.)

OrElse

Programming Visual Basic .NET

 51

The result is True if either or both the operands is True; otherwise, the result is False.
OrElse performs logical short-circuiting: if the first operand of the expression is True, the
second operand is not evaluated.

Xor

Performs a Boolean exclusive or operation on the bits. (The result bit is 1 if either of the
source bits is 1, but not both.)

Not

Performs a Boolean Not operation on the bits in the operand. This is a unary operator. (The
result is 1 if the source bit is 0 and 0 if the source bit is 1.)

2.12.6 Logical Operators

Logical operators are operators that require Boolean operands. They are:

And

The result is True if and only if both of the operands are True; otherwise, the result is False.

Or

The result is True if either or both of the operands is True; otherwise, the result is False.

Xor

The result is True if one and only one of the operands is True; otherwise, the result is False.

Not

This is a unary operator. The result is True if the operand is False; False if the operand is
True.

2.12.7 Operator Precedence

Operator precedence defines the order in which operators are evaluated. For example, the expression
1 + 2 * 3 has the value 9 if the addition is performed first but has the value 7 if the multiplication is
performed first. To avoid such ambiguity, languages must define the order in which operations are
evaluated. Visual Basic .NET divides the operators into groups and defines each group's precedence
relative to the others. Operators in higher-precedence groups are evaluated before operators in lower-
precedence groups. Operators within each group have the same precedence relative to each other.
When an expression contains multiple operators from a single group, those operators are evaluated
from left to right.

Table 2-6 shows Visual Basic .NET's operators, grouped by precedence from highest to lowest order
of evaluation.

Table 2-6. The precedence of Visual Basic .NET's operators
Category Operator

Arithmetic and Exponentiation

 52

concatenation
 Negation
 Multiplication and division
 Integer division
 Modulus arithmetic
 Addition and subtraction, string concatenation (+)

 String concatenation (&)

Comparison operators
Equality, inequality, greater than, less than, greater than or equal to, less
than or equal to, Is, TypeOf, Like

Logical and bitwise
operators Negation (Not)

 Conjunction (And, AndAlso)

 Disjunction (Or, OrElse, Xor)

Parentheses override the default order of evaluation. For example, in the expression 1 + 2 * 3, the
multiplication is performed before the addition, yielding a value of 7. To perform the addition first, the
expression can be rewritten as (1 + 2) * 3, yielding a result of 9.

2.12.8 Operator Overloading

Operator overloading is a feature that some languages (C#, for example) provide to allow developers
to specify how the built-in operators (+, -, *, /, =, etc.) should behave when applied to programmer-
defined types. For example, the developer of a type representing complex numbers could use operator
overloading to specify appropriate functionality for the built-in arithmetic operators when applied to
operands of the custom type.

The .NET Framework supports operator overloading, but .NET languages are not required to do so.
The current version of Visual Basic .NET doesn't support operator overloading, although there's no
reason that Microsoft couldn't add it in the future. Components that are written in other languages may
overload operators, but Visual Basic .NET will not be aware of the overloads. Well-designed
components provide an alternative mechanism for accessing the functionality provided by the
overloads. For example, if a component written in C# provides a class that overloads the + operator, it
should also provide a method that takes two parameters and returns their sum. Thus, what would be
written as:

c = a + b

in a language that supports overloading would be written as:

c = MyCustomType.Add(a, b)

in Visual Basic .NET.

The name of the actual method would depend on the component's implementer.

2.13 Statements

Visual Basic .NET is a line-oriented language, in which line breaks generally indicate the ends of
statements. However, there are times when a programmer may wish to extend a statement over
several lines or have more than one statement on a single line.

Programming Visual Basic .NET

 53

To extend a statement over several lines, use the line-continuation character, an underscore (_). It
must be the last character on its line, and it must be immediately preceded by a space character.
Lines connected in this way become a single logical line. Here is an example:

Dim strSql As String = "SELECT Customers.CompanyName," _
 & " COUNT(Orders.OrderID) AS OrderCount" _
 & " FROM Customers INNER JOIN Orders" _
 & " ON Customers.CustomerID = Orders.CustomerID" _
 & " GROUP BY Customers.CompanyName" _
 & " ORDER BY OrderCount DESC"

A line break can occur only where whitespace is allowed.

To place two or more statements on a single line, use the colon (:) between the statements, like this:

i = 5 : j = 10

The remainder of this section discusses the statements in Visual Basic .NET.

2.13.1 Option Statements

There are three Option statements, which affect the behavior of the compiler. If used, they must
appear before any declarations in the same source file. They control the compilation of the source
code in the file in which they appear. They are:

Option Compare

The Option Compare statement controls the manner in which strings are compared to each
other. The syntax is:

Option Compare [Binary | Text]

If Binary is specified, strings are compared based on their internal binary representation (i.e.,
string comparisons are case-sensitive). If Text is specified, strings are compared based on
case-insensitive alphabetical order. The default is Binary.

Option Explicit

The Option Explicit statement determines whether the compiler requires all variables to
be explicitly declared. The syntax is:

Option Explicit [On | Off]

If On is specified, the compiler requires all variables to be declared. If Off is specified, the
compiler considers a variable's use to be an implicit declaration. It is considered good
programming practice to require declaration of variables. The default is On.

Option Strict

The Option Strict statement controls the implicit type conversions that the compiler will
allow. The syntax is:

Option Strict [On | Off]

 54

If On is specified, the compiler only allows implicit widening conversions; narrowing conversions must
be explicit. If Off is specified, the compiler allows implicit narrowing conversions as well. This could
result in runtime exceptions not foreseen by the developer. It is considered good programming
practice to require strict type checking. The default is Off.

See Section 2.5.5 earlier in this chapter for the definitions of widening and narrowing conversions.

2.13.2 Branching Statements

Visual Basic .NET supports a number of branching statements that interrupt the sequential flow of
program execution and instead allow it to jump from one portion of a program to another. These can
be either conditional statements (such as If or Select Case) or unconditional (such as Call and
Exit).

2.13.2.1 Call

The Call statement invokes a subroutine or function. For example:

Call SomeMethod()

When the invoked subroutine or function finishes, execution continues with the statement following the
Call statement. If a function is invoked, the function's return value is discarded.

The Call statement is redundant because subroutines and functions can be invoked simply by
naming them:

SomeMethod()

2.13.2.2 Exit

The Exit statement causes execution to exit the block in which the Exit statement appears. It is
generally used to prematurely break out of a loop or procedure when some unusual condition occurs.

The Exit statement should be avoided when possible because it undermines the structure of the
block in which it appears. For example, the exit conditions of a For loop should be immediately
apparent simply by looking at the For statement. It should not be necessary to read through the entire
loop to determine if there are additional circumstances under which the loop might exit. If a given For
loop truly needs an Exit statement, investigate whether a different loop construct would be better
suited to the task. If a given procedure truly needs an Exit statement, investigate whether the
procedure is factored appropriately.

The Exit statement has a different form for each type of block in which it can be used, as listed here:

Exit Do

Exits a Do loop. Execution continues with the first statement following the Loop statement.

Exit For

Exits a For loop. Execution continues with the first statement following the Next statement.

Exit Function

Programming Visual Basic .NET

 55

Exits a function. Execution continues with the first statement following the statement that
called the function.

Exit Property

Exits a property get or property set procedure. Execution continues with the first statement
following the statement that invoked the property get or property set procedure.

Exit Sub

Exits a subroutine. Execution continues with the first statement following the statement that
called the subroutine.

Exit Try

Exits the Try clause of a Try block. If the Try block has a Finally clause, execution
continues with the first statement in the Finally clause. If the Try block does not have a
Finally clause, execution continues with the first statement following the Try block.

2.13.2.3 Goto

The Goto statement transfers execution to the first statement following the specified label. For
example:

 ' ...
 Goto MyLabel
 ' ...
MyLabel:
 ' ...

The label must be in the same procedure as the Goto statement.

The Goto statement is generally avoided in structured programming because it often leads to code
that is difficult to read and debug.

2.13.2.4 If

The If statement controls whether a block of code is executed based on some condition. The
simplest form of the If statement is:

If expression Then
 statements
End If

expression is any expression that can be interpreted as a Boolean value. If expression is True,
the statements within the If block are executed. If expression is False, those statements are
skipped.

To provide an alternative set of statements to execute when expression is False, add an Else
clause, as shown here:

If expression Then
 statements
Else
 statements

 56

End If

If expression is True, only the statements in the If clause are executed. If expression is False,
only the statements in the Else clause are executed.

Finally, a sequence of expressions can be evaluated by including one or more ElseIf clauses, as
shown here:

If expression Then
 statements
ElseIf expression Then
 statements
ElseIf expression Then
 statements
Else
 statements
End If

The first If or ElseIf clause whose expression evaluates to True will have its statements executed.
Statements in subsequent ElseIf clauses will not be executed, even if their corresponding
expressions are also True. If none of the expressions evaluate to True, the statements in the Else
clause will be executed. The Else clause can be omitted if desired.

2.13.2.5 RaiseEvent

The RaiseEvent statement fires the given event. After the event has been fired to all listeners,
execution continues with the first statement following the RaiseEvent statement. See Section 2.20
later in this chapter for more information.

2.13.2.6 Return

The Return statement exits a function and provides a return value to the caller of the function.
Execution continues with the first statement following the statement that called the function. Here is an
example:

Public Shared Function MyFactorial(ByVal value As Integer) As Integer
 Dim retval As Integer = 1
 Dim i As Integer
 For i = 2 To value
 retval *= i
 Next
 Return retval
End Function

Another way to return a value to the caller of the function is to assign the value to the function name
and then simply drop out of the bottom of the function. This is how it was done in Visual Basic 6 (and
can still be done in Visual Basic .NET). Here is an example:

Public Shared Function MyFactorial(ByVal value As Integer) As Integer
 Dim retval As Integer = 1
 Dim i As Integer
 For i = 2 To value
 retval *= i
 Next
 MyFactorial = retval
End Function

Programming Visual Basic .NET

 57

In Visual Basic 6, the Return statement was used to return
execution to the statement following a GoSub statement. In Visual
Basic .NET, the GoSub statement no longer exists, and the
Return statement is now used as described here.

2.13.2.7 Select Case

The Select Case statement chooses a block of statements to execute based on some value. For
example:

Select Case strColor
 Case "red"
 ' ...
 Case "green"
 ' ...
 Case "blue"
 ' ...
 Case "yellow"
 ' ...
 Case Else
 ' ...
End Select

If strColor in this example contains "blue", only the statements in the Case "blue" clause are
executed. If none of the Case clauses matches the value in the Select Case statement, the
statements in the Case Else clause are executed. If more than one Case clause matches the given
value, only the statements in the first matching Case clause are executed.

Case statements can include multiple values to be matched against the value given in the Select
Case statement. For example:

Case "red", "green", "blue", strSomeColor

This case will be matched if the value in the Select Case statement is "red", "green", "blue", or
the value contained in strSomeColor. The To keyword can be used to match a range of values, as
shown here:

Case "apples" To "oranges"

This Case statement matches any string value that falls alphabetically within this range.

The Is keyword can be used for matching an open-ended range:

Case Is > "oranges"

Don't confuse this use of the Is keyword with the Is comparison operator.

2.13.3 Iteration Statements

Iteration statements, also known as looping statements, allow a group of statements to be executed
more than once. The group of statements is known as the body of the loop. Three statements fall
under this category in Visual Basic .NET: Do, For, and For Each.

 58

2.13.3.1 Do

The Do loop executes a block of statements either until a condition becomes true or while a condition
remains true. The condition can be tested at the beginning or at the end of each iteration. If the test is
performed at the end of each iteration, the block of statements is guaranteed to execute at least once.
The Do loop can also be written without any conditions, in which case it executes repeatedly until and
unless an Exit Do statement is executed within the body of the loop. Here are some examples of Do
loops:

Do While i < 10
 ' ...
Loop

Do Until i >= 10
 ' ...
Loop

Do
 ' ...
Loop While i < 10

Do
 ' ...
Loop Until i >= 10

Do
 ' ...
Loop

2.13.3.2 For

The For loop executes a block of statements a specified number of times. The number of iterations is
controlled by a loop variable, which is initialized to a certain value by the For statement, then is
incremented for each iteration of the loop. The statements in the body of the loop are repeatedly
executed until the loop variable exceeds a given upper bound.

The syntax of the For loop is:

For variable = expression To expression [Step expression]
 statements
Next [variable_list]

The loop variable can be of any numeric type. The variable is set equal to the value of the first
expression before entering the first iteration of the loop body. Prior to executing each iteration of the
loop, the loop variable is compared with the value of the second expression. If the value of the loop
variable is greater than the expression (or less than the expression if the step expression is negative),
the loop exits and execution continues with the first statement following the Next statement.

The step expression is a numeric value that is added to the loop variable between loop iterations. If
the Step clause is omitted, the step expression is taken to be 1.

The Next statement marks the end of the loop body. The Next keyword can either appear by itself in
the statement or be followed by the name of the loop variable. If For statements are nested, a single
Next statement can terminate the bodies of multiple loops. For example:

For i = 1 To 10
 For j = 1 To 10

Programming Visual Basic .NET

 59

 For k = 1 To 10
 ' ...
Next k, j, I

This code is equivalent to the following:

For i = 1 To 10
 For j = 1 To 10
 For k = 1 To 10
 ' ...
 Next
 Next
Next

I recommend the latter style, since it is considered more structured to terminate each block explicitly.

It is interesting to note that the For loop is equivalent to the following Do loop construction (assuming
that step_expression is nonnegative):

loop_variable = from_expression
Do While loop_variable <= to_expression
 statements
 loop_variable += step_expression
Loop

If step_expression is negative, the For loop is equivalent to this (only the comparison in the Do
statement is different):

loop_variable = from_expression
Do While loop_variable >= to_expression
 statements
 loop_variable += step_expression
Loop

2.13.3.3 For Each

The For Each statement is similar to the For statement, except that the loop variable need not be
numeric, and successive iterations do not increment the loop variable. Instead, the loop variable takes
successive values from a collection of values. Here is the syntax:

For Each variable In expression
 statements
Next [variable]

The loop variable can be of any type. The expression must be a reference to an object that exposes
the IEnumerable interface (interfaces are discussed later in this chapter). Generally, types that are
considered collections expose this interface. The .NET Framework class library provides several
useful collection types, which are listed in Chapter 3. (See Section 2.5.4 earlier in this chapter for
an explanation of what constitutes a collection type.) The type of the items in the collection must be
compatible with the type of the loop variable. The statements in the body of the loop execute once for
each item in the collection. During each iteration, the loop variable is set equal to each consecutive
item in the collection.

Because all Visual Basic .NET arrays expose the IEnumerable interface, the For Each statement
can be used to iterate through the elements of an array. For example:

Dim a() As Integer = {1, 2, 3, 4, 5}

 60

Dim b As Integer
For Each b In a
 Console.WriteLine(b)
Next

This is equivalent to the following code:

Dim a() As Integer = {1, 2, 3, 4, 5}
Dim b As Integer
Dim i As Integer
For i = a.GetLowerBound(0) To a.GetUpperBound(0)
 b = a(i)
 Console.WriteLine(b)
Next

Because all arrays in Visual Basic .NET implicitly derive from the Array type (in the System
namespace), the a array in this example has access to methods defined on the Array type (specifically
GetLowerBound and GetUpperBound).

In case you're interested, here is the equivalent code using a Do loop. This is essentially what the For
Each statement is doing under the covers, although the For Each construct is likely to compile to
faster code.

Dim a() As Integer = {1, 2, 3, 4, 5}
Dim b As Integer
Dim e As Object = a.GetEnumerator()
Do While CType(e.GetType().InvokeMember("MoveNext", _
 Reflection.BindingFlags.InvokeMethod, Nothing, e, Nothing), Boolean)
 b = CType(e.GetType().InvokeMember("Current", _
 Reflection.BindingFlags.GetProperty, Nothing, e, Nothing), Integer)
 Console.WriteLine(b)
Loop

2.13.4 Mathematical Functions

Mathematical functions are provided through the Math class (defined in the System namespace). The
Math class constants and methods are listed in Appendix E.

2.13.5 Input/Output

File and Internet I/O features are provided by the .NET Framework class library and will be briefly
touched on in Chapter 3. In addition, Visual Basic .NET provides its own class library that includes
functions for opening, reading, and closing files. File access and network-protocol programming are
not discussed in this book. Instead, preference is given to the much more common tasks of database
access and web-service programming.

2.14 Classes

A class is one form of data type. As such, a class can be used in contexts where types are expected—
in variable declarations, for example. In object-oriented design, classes are intended to represent the
definition of real-world objects, such as customer, order, product, etc. The class is only the definition,
not an object itself. An object would be a customer, an order, or a product. A class declaration defines
the set of members—fields, properties, methods, and events—that each object of that class
possesses. Together, these members define an object's state, as well as its functionality. An object is
also referred to as an instance of a class. Creating an object of a certain class is called instantiating an
object of the class.

Programming Visual Basic .NET

 61

Consider the class definition in Example 2-4.

Example 2-4. A class definition
Public Class Employee

 Public EmployeeNumber As Integer
 Public FamilyName As String
 Public GivenName As String
 Public DateOfBirth As Date
 Public Salary As Decimal

 Public Function Format() As String
 Return GivenName & " " & FamilyName
 End Function

End Class

The code in Example 2-4 defines a class called Employee. It has five public fields (also known as
data members) for storing state, as well as one member function. The class could be used as shown
in Example 2-5.

Example 2-5. Using a class
Dim emp As New Employee()

emp.EmployeeNumber = 10
emp.FamilyName = "Rodriguez"
emp.GivenName = "Celia"
emp.DateOfBirth = #1/28/1965#
emp.Salary = 115000

Console.WriteLine("Employee Name: " & emp.Format())
Console.WriteLine("Employee Number: " & emp.EmployeeNumber)
Console.WriteLine("Date of Birth: " & emp.DateOfBirth.ToString("D",
Nothing))
Console.WriteLine("Salary: " & emp.Salary.ToString("C", Nothing))

The resulting output is:

Employee Name: Celia Rodriguez
Employee Number: 10
Date of Birth: Thursday, January 28, 1965
Salary: $115,000.00

2.14.1 Object Instantiation and New

Object instantiation is done using the New keyword. The New keyword is, in effect, a unary operator
that takes a type identifier as its operand. The result of the operation is a reference to a newly created
object of the given type. Consider the following:

Imports System.Collections
' ...
Dim ht As Hashtable
ht = New Hashtable()

The Dim statement declares a variable that is capable of holding a reference to an object of type
Hashtable, but it doesn't actually create the object. The code in the line following the Dim statement
instantiates an object of type Hashtable and assigns to the variable a reference to the newly created

 62

object. As with any other variable declaration, the assignment can be done on the same line as the
declaration, as shown here:

Imports System.Collections
' ...
Dim ht As Hashtable = New Hashtable()

Visual Basic .NET permits a typing shortcut that produces the same result:

Imports System.Collections
' ...
Dim ht As New Hashtable()

2.14.2 Constructors

When a class is instantiated, some initialization often must be performed before the type can be used.
To provide such initialization, a class may define a constructor. A constructor is a special kind of
method. It is automatically run whenever an object of the class is instantiated. Constructor declarations
use the same syntax as regular method declarations, except that in place of a method name, the
constructor declaration uses the keyword New. For example:

Public Class SomeClass
 Public Sub New()
 ' Do any necessary initialization of the object here.
 End Sub
End Class

To invoke the constructor, a new object must be instantiated:

Dim obj As New SomeClass()

Note the parentheses (()) following the name of the class. Until you get used to it, this method-style
syntax following a class name may appear odd. However, the empty parentheses indicate that the
class's constructor takes no arguments.

Constructors can take arguments, if they are necessary for the initialization of the object:

Public Class SomeClass

 Dim m_value As Integer

 Public Sub New(ByVal InitialValue As Integer)
 m_value = InitialValue
 End Sub

End Class

When objects of this class are instantiated, a value must be provided for the constructor's argument:

Dim obj As New SomeClass(27)

Constructors can be overloaded, if desired. For example:

Public Class SomeClass

 Dim m_value As Integer

Programming Visual Basic .NET

 63

 Public Sub New()
 m_value = Date.Today.Day ' for example
 End Sub

 Public Sub New(ByVal InitialValue As Integer)
 m_value = InitialValue
 End Sub

End Class

The constructor that is called depends on the arguments that are provided when the class is
instantiated, as shown here:

Dim obj1 As New SomeClass() ' calls parameterless constructor
Dim obj2 As New SomeClass(100) ' calls parameterized constructor

Constructors are usually marked Public. However, there are times when it may be desirable to mark
a constructor as Protected or Private. Protected access prohibits the class from being instantiated
by any class other than a class derived from this class. Private access prohibits the class from being
instantiated by any code other than its own. For example, a particular class design might require that
the class itself be in control of whether and when instances are created. Example 2-6 shows a class
that implements a crude form of object pooling.

Example 2-6. Using a private constructor
Imports System.Collections
' ...
Public Class MyPooledClass

 ' This shared field keeps track of instances that can be handed out.
 Private Shared m_pool As New Stack()

 ' This shared method hands out instances.
 Public Shared Function GetInstance() As MyPooledClass
 If m_pool.Count > 0 Then
 ' We have one or more objects in the pool. Remove one from the
 ' pool and give it to the caller.
 Return CType(m_pool.Pop(), MyPooledClass)
 Else
 ' We don't have any objects in the pool. Create a new one.
 Return New MyPooledClass()
 End If
 End Function

 ' This method must be called to signify that the client is finished
 ' with the object.
 Public Sub ImDone()
 ' Put the object in the pool.
 m_pool.Push(Me)
 End Sub

 ' Declaring a private constructor means that the only way to
 ' instantiate this class is through the GetInstance method.
 Private Sub New()
 End Sub

End Class

The class in Example 2-6 would be used like this:

 64

Dim obj As MyPooledClass = MyPooledClass.GetInstance()
' ...
obj.ImDone()

Sometimes when constructors are overloaded, it makes sense to implement one constructor in terms
of another. For example, here is a class that has a constructor that takes a SqlConnection object as a
parameter. However, it also has a parameterless constructor that creates a SqlConnection object and
passes it to the class's parameterized constructor. Note the use of the MyClass keyword to access
members of the type:

Imports System.Data.SqlClient
' ...
Public Class SomeClass

 Public Sub New()
 MyClass.New(New SqlConnection())
 End Sub

 Public Sub New(ByVal cn As SqlConnection)
 ' Do something with the connection object.
 End Sub

End Class

Similarly, MyBase.New can call a base-class constructor. If this is done, it must be done as the first
statement in the derived class's constructor. Note that if no explicit call is made, the compiler creates a
call to the base-class constructor's parameterless constructor. Even if the base class exposes a
parameterized constructor having the same signature (i.e., the same number and types of parameters)
as the derived class's constructor, by default the compiler generates code that calls the base class's
parameterless constructor.

If a class has shared fields that must be initialized before access, and that initialization can't be
performed by initializers in the fields' declarations, a shared constructor may be written to initialize the
fields, as shown here:

Public Class SomeClass

 Public Shared SomeStaticField As Integer

 Shared Sub New()
 SomeStaticField = Date.Today.Day
 End Sub

End Class

The shared constructor is guaranteed to run sometime before any members of the type are referenced.
If any shared fields have initializers in their declarations, the initializers are assigned to the fields
before the shared constructor is run.

Shared constructors may not be overloaded, nor may they have access modifiers (Public, Private,
etc.). Neither feature is meaningful in the context of shared constructors.

2.14.3 Fields

Fields, also known as data members, hold the internal state of an object. Their declarations appear
only within class and structure declarations. Field declarations include an access modifier, which
determines how visible the field is from code outside the containing class definition. Access modifiers
were discussed earlier in this chapter, under Section 2.10.

Programming Visual Basic .NET

 65

The value stored in a field is specific to a particular object instance. Two instances can have different
values in their corresponding fields. For example:

Dim emp1 As New Employee()
Dim emp2 As New Employee()

emp1.EmployeeNumber = 10
emp2.EmployeeNumber = 20 ' Doesn't affect emp1.

Sometimes it is desirable to share a single value among all instances of a particular class. Declaring a
field using the Shared keyword does this, as shown here:

Public Class X
 Public Shared a As Integer
End Class

Changing the field value through one instance affects what all other instances see. For example:

Dim q As New X()
Dim r As New X()

q.a = 10
r.a = 20

Console.WriteLine(q.a) ' Writes 20, not 10.

Shared fields are also accessible through the class name:

Console.WriteLine(X.a)

2.14.3.1 Read-only fields

Fields can be declared with the ReadOnly modifier, which signifies that the field's value can be set
only in a constructor for the enclosing class. This gives the benefits of a constant when the value of
the constant isn't known at compile time or can't be expressed in a constant initializer. Here's an
example of a class that has a read-only field initialized in the class's constructor:

Public Class MyDataTier

 Public ReadOnly ActiveConnection As System.Data.SqlClient.SqlConnection

 Public Sub New(ByVal ConnectionString As String)
 ActiveConnection = _
 New System.Data.SqlClient.SqlConnection(ConnectionString)
 End Sub

End Class

The ReadOnly modifier applies only to the field itself—not to members of any object referenced by
the field. For example, given the previous declaration of the MyDataTier class, the following code is
legal:

Dim mydata As New MyDataTier(strConnection)
mydata.ActiveConnection.ConnectionString = strSomeOtherConnection

 66

2.14.4 Handling Events

When a field is of an object type that exposes events, the field's enclosing class may define methods
for handling those events. For an explanation of events, see Section 2.20 later in this chapter.

Here is an example:

Imports System.Data.SqlClient

Public Class EventHandlingTest

 Private WithEvents m_cn As SqlConnection

 Public Sub MySqlInfoMessageEventHandler(_
 ByVal sender As Object, _
 ByVal e As SqlInfoMessageEventArgs _
) Handles m_cn.InfoMessage
 Dim sqle As SqlError
 For Each sqle In e.Errors
 Debug.WriteLine(sqle.Message)
 Next
 End Sub

 ' ...

End Class

This class has a field, m_cn, that holds a database connection. The field is declared with the
WithEvents keyword, so the class is capable of receiving and handling events raised by the
Connection object. In order to handle the Connection object's InfoMessage event, the class defines a
method having the appropriate parameter list and a Handles clause:

Public Sub MySqlInfoMessageEventHandler(_
 ByVal sender As Object, _
 ByVal e As SqlInfoMessageEventArgs _
) Handles m_cn.InfoMessage

This declaration signifies that when the InfoMessage event is raised by the object referenced in m_cn,
the MySQLInfoMessageEventHandler method should be called to handle it. The body of the event
handler in this case simply outputs the messages received from SQL Server.

2.14.5 Inheritance

Inheritance is one way to reuse and extend previously written code. A program's design often requires
several classes as variations of a common theme. Consider a drawing program that deals with many
shapes. Such a program would probably define a class for each kind of shape. However, there would
be much in common among such classes, including many of their fields, methods, and events.
Inheritance allows these common features to be extracted into a base class from which the various
specific shape classes are derived. Example 2-7 shows a base class called Shape, two utility
classes used by Shape (Point and Extent), and two classes derived from Shape (Circle and Square).

Example 2-7. Class inheritance
' This structure represents a point on a plane.
Public Structure Point
 Public X As Integer
 Public Y As Integer
End Structure

Programming Visual Basic .NET

 67

' This structure represents a size or offset.
Public Structure Extent
 Public XExtent As Integer
 Public YExtent As Integer
End Structure

' This class represents the functionality that is common for
' all shapes. This class can't itself be instantiated, because
' of the "MustInherit" modifier.
Public MustInherit Class Shape

 ' The upper-left corner of the shape.
 Public Origin As Point

 ' The width and height of the shape.
 Public Size As Extent

 ' This forces all derived classes to implement a method
 ' called Draw. Notice that a method marked with MustInherit
 ' has no body in the base class.
 Public MustOverride Sub Draw()

 ' This subroutine moves a shape.
 Public Sub Offset(ByVal Amount As Extent)
 Origin.X += Amount.XExtent
 Origin.Y += Amount.YExtent
 End Sub

 ' This property allows the class user to find or set the
 ' center of a shape.
 Public Property Center() As Point
 Get
 Dim retval As Point
 retval.X = Origin.X + (Size.XExtent \ 2)
 retval.Y = Origin.Y + (Size.YExtent \ 2)
 Return retval
 End Get
 Set
 Dim currentCenter As Point = Center
 Origin.X += Value.X - currentCenter.X
 Origin.Y += Value.Y - currentCenter.Y
 End Set
 End Property

End Class

Public Class Circle
 Inherits Shape
 Public Overrides Sub Draw()
 ' Just a dummy statement for the example.
 Console.WriteLine("Circle.Draw() was called.")
 End Sub
End Class

Public Class Square
 Inherits Shape
 Public Overrides Sub Draw()
 ' Just a dummy statement for the example.
 Console.WriteLine("Square.Draw() was called.")
 End Sub

 68

End Class

Note the following:

• The MustInherit modifier in the Shape class declaration indicates that this class can't be
instantiated—it can only be used as a base class in a derivation. In object-oriented design
terminology, such a class is known as an abstract class.

• The Circle and Square classes inherit the public members declared in the Shape class.
• Using the MustOverride modifier on the Draw method declaration in the Shape class forces

derived classes to provide an implementation for this method.
• Constructors aren't inherited. The Ellipse and Rectangle classes therefore declare their own

constructors.

When no constructor is explicitly provided in a class definition, the compiler automatically
creates one. Therefore, all classes have at least one constructor. The autogenerated
constructor (also known as the default constructor) created by the compiler is the same as if
the following code were written in the class definition:

Public Sub New()
 MyBase.New()
End Sub

That is, the default constructor simply calls the base class's parameterless constructor. If there
is no parameterless constructor on the base class, the compiler generates an error. If a class
defines a parameterized constructor, the compiler does not generate a default constructor.
Therefore, if both parameterless and parameterized constructors are needed, both must be
explicitly written in the class definition.

It is possible to define a class from which it is not possible to inherit. This is done with the
NotInheritable keyword in the class declaration, as shown here:

Public NotInheritable Class SomeClass
 ' ...
End Class

2.14.6 Methods

Methods are members that contain code. They are either subroutines (which don't have a return value)
or functions (which do have a return value).

Subroutine definitions look like this:

[method_modifiers] Sub [attribute_list] _
 method_name ([parameter_list]) [handles_or_implements]
[method_body]
End Sub

Function definitions look like this:

[method_modifiers] Function [attribute_list] _
 method_name ([parameter_list]) [As type_name] _
 [handles_or_implements]
[method_body]
End Function

The elements of method definitions are:

Programming Visual Basic .NET

 69

method_modifiers

Keywords that affect the accessibility or use of the method. These include the following:

Access modifiers

Public, Protected, Friend, Protected Friend, or Private, as described in Table 2-
5. If no access-modifier keyword is given, Public is assumed.

Override modifiers

Overrides, MustOverride, Overridable, or NotOverridable. See Section 2.14.6.6.

Overloads keyword

Specifies that this method is an overload. See Section 2.14.6.7 later in this section.

Shared keyword

Specifies that this method does not access object state. That means that the method does not
access any nonshared members.

Sub or Function keyword

Specifies whether this method is a subroutine or a function.

attribute_list

An optional list of attributes to be applied to the method. See Section 2.22 later in this
chapter.

method_name

The name of the method.

parameter_list

An optional list of formal parameters for the method. See Section 2.14.6.1.

As type_name

For functions only, the data type of the value returned from this function. If Option Strict is
off, the As type_name clause is optional; otherwise, it is required. If it is omitted, the
function's return type defaults to Object. Subroutine declarations do not have an As
type_name clause.

handles_or_implements

Either the Handles keyword followed by a list of events from the enclosing class's data
members, or the Implements keyword followed by a list of methods from an interface
implemented by the enclosing class. See Section 2.20 and Section 2.15 later in this
chapter.

method_body

 70

Visual Basic .NET statements.

End Sub or End Function keywords

Indicates the end of the method definition.

2.14.6.1 Method parameters

Methods can be defined to take arguments. As already shown, method definitions can take an optional
parameter list. A parameter list looks like this:

parameter { , parameter }

That is, a parameter list is one or more parameters separated by commas. Each parameter in the list
is of the form:

[Optional] [ParamArray] [ByRef | ByVal] [attribute_list] _
 parameter_name [As type_name] [= constant_expression]

The elements of each parameter declaration are:

Optional keyword

Specifies that an actual argument may be omitted for this parameter in a call to this method. If
Optional is specified, the = constant_expression, which defines the default value of an
omitted argument, must also be specified. Nonoptional parameters can't follow optional
parameters in a parameter list. Optional and ParamArray parameters can't appear in the
same parameter list.

ParamArray keyword

Specifies that the caller can provide a variable number of arguments. The actual arguments
are passed to the method in an array. Only the last parameter in a list may have the
ParamArray keyword attached to it. Optional and ParamArray parameters can't appear in
the same parameter list. Parameter arrays are discussed later in this section, under Section
2.14.6.3.

ByRef or ByVal keyword

Specifies whether the actual argument will be passed to the method by reference or by value.
When an argument is passed by reference, the address of the argument is passed to the
routine; as a result, assignments to the parameter within the method affect the argument in the
calling environment. When an argument is passed by value, a copy of the argument is passed
to the routine; as a result, assignments to the parameter within the method do not affect the
argument in the calling environment. Consider this code:

 Public Shared Sub TestByRef(ByRef MyParameter As Integer)
 MyParameter += 1
 End Sub

 Public Shared Sub TestByVal(ByVal MyParameter As Integer)
 MyParameter += 1
 End Sub

 Public Shared Sub DoTest()

Programming Visual Basic .NET

 71

 Dim x As Integer = 1
 TestByRef(x)
 Console.WriteLine("x = " & x)

 Dim y As Integer = 1
 TestByVal(y)
 Console.WriteLine("y = " & y)

 End Sub

The output of the DoTest method is:

 x = 2
 y = 1

The TestByRef and TestByVal methods both increment the values of the arguments passed to them
by one. However, because the parameter of the TestByRef method is ByRef, the new value is written
back to the argument in the caller (in this case, the variable x in the DoTest method). In contrast, the
TestByVal method's parameter is ByVal, so the assignment to the parameter doesn't affect the caller.

Be aware of the effects of ByRef and ByVal on arguments that are reference types. ByRef means
that a reference to the reference is being passed; ByVal means that the reference itself is being
passed. That means that inside the method, the reference could be used to modify the state of the
object in the calling environment. For example:

Public Class SomeClass
 Public a As Integer
End Class

Public Class TestSomeClass

 Public Shared Sub TestByRef(ByRef MyParameter As SomeClass)
 MyParameter.a += 1
 End Sub

 Public Shared Sub TestByVal(ByVal MyParameter As SomeClass)
 MyParameter.a += 1
 End Sub

 Public Shared Sub DoTest()

 Dim x As New SomeClass()
 x.a = 1
 TestByRef(x)
 Console.WriteLine("x.a = " & x.a)

 Dim y As New SomeClass()
 y.a = 1
 TestByRef(y)
 Console.WriteLine("y.a = " & y.a)

 End Sub
End Class

The output of the DoTest method in this code is:

x.a = 2
y.a = 2

 72

Observe that even though the variable y is passed by value to the TestByVal method, one of its
members nevertheless is updated. In this case, ByVal merely keeps the reference in y from being
overwritten by another reference.

attribute_list

Specifies a list of custom attributes to apply to the parameter. Attributes are discussed later in
this chapter.

parameter_name

Specifies the name of the parameter.

As type_name

Specifies the data type of the parameter. When the method is called, the type of the actual
argument must be compatible with the type of the parameter. The As type_name element is
optional if Option Strict is off; otherwise, it is required. If it is omitted, Object is assumed.

constant_expression

Specifies a constant expression that specifies what value the parameter should take if no
actual argument is provided. This is permitted only on optional parameters.

2.14.6.2 Passing arrays as parameters

To declare a parameter as able to receive an array, include parentheses after the parameter name in
the declaration. The caller leaves off the parentheses when naming the actual argument. For example:

Public Shared Sub SomeMethod(ByVal x() As String)
 Dim str As String
 For Each str In x
 Console.WriteLine(str)
 Next
End Sub

Public Shared Sub TestSomeMethod()
 Dim a(5) As String
 a(0) = "First"
 a(1) = "Second"
 a(2) = "Third"
 a(3) = "Fourth"
 a(4) = "Fifth"
 SomeMethod(a)
End Sub

In the SomeMethod method, parameter x represents an array of String objects. In the
TestSomeMethod method, a String array is allocated, its elements are assigned, and the array as a
whole is passed to the SomeMethod method, which then prints the array's contents.

All array types are reference types. That means that when passing an array as a parameter, only a
reference to the array is passed. Because the target method receives a reference to the array, the
array elements can be changed by the method, even if the array reference was passed by value. If the
array reference is passed by reference, the array reference itself can be changed by the method. For
example, the method could allocate a new array and return it through the ByRef parameter, like this:

Public Shared Sub DumpArray(ByVal x() As String)

Programming Visual Basic .NET

 73

 Dim str As String
 For Each str In x
 Console.WriteLine(str)
 Next
End Sub

Public Shared Sub CreateNewArray(ByRef x() As String)
 Dim newval(7) As String
 newval(0) = "1st"
 newval(1) = "2nd"
 newval(2) = "3rd"
 newval(3) = "4th"
 newval(4) = "5th"
 newval(5) = "6th"
 newval(6) = "7th"
 x = newval
End Sub

Public Shared Sub DoTest()

 ' Set up a five-element string array and show its contents.
 Dim a(5) As String
 a(0) = "First"
 a(1) = "Second"
 a(2) = "Third"
 a(3) = "Fourth"
 a(4) = "Fifth"
 Console.WriteLine("a() before calling the CreateNewArray method:")
 DumpArray(a)

 ' Now pass it to the CreateNewArray method and then show its
 ' new contents.
 CreateNewArray(a)
 Console.WriteLine()
 Console.WriteLine("a() after calling the CreateNewArray method:")
 DumpArray(a)

End Sub

In this code, the DoTest method creates a five-element string array and passes it to DumpArray to
show the array's contents. The DoTest method then calls CreateNewArray, which allocates a new
string array—this time with seven elements. It would not be possible, however, to pass back an array
with a different number of dimensions, because the parameter is explicitly declared as one-
dimensional. Visual Basic .NET considers the dimensionality of an array to be part of its type, but the
size of any particular dimension is not part of the array's type.

2.14.6.3 Variable-length parameter lists

Some methods need to take a variable number of arguments. For example, a function to compute the
average of the numbers passed to it should accommodate as few or as many numbers as needed.
Visual Basic .NET provides this capability through parameter arrays . A parameter array is a
parameter that to the method looks like an array but to the caller looks like a variable number of
parameters. Here is the average-calculation method just mentioned:

Public Shared Function Avg(ParamArray ByVal Numbers() As Integer) As
Double
 Dim sum As Integer = 0
 Dim count As Integer = 0
 Dim n As Integer
 For Each n In Numbers

 74

 sum += n
 count += 1
 Next
 Return sum / count
End Function

This method declares only a single parameter—an array of Integers. However, it includes the
ParamArray keyword in the declaration, which tells the compiler to allow calls such as this:

' Compute the average of some numbers.
Dim d As Double = Avg(31, 41, 59, 26, 53, 58)

It's worth noting that an actual array can be passed through the ParamArray parameter—something
that wasn't possible in Visual Basic 6. For example:

' Compute the average of some numbers.
Dim args() As Integer = {31, 41, 59, 26, 53, 58}
Dim d As Double = Avg(args)

2.14.6.4 Main method

When an executable application is compiled, some code must be identified as the startup routine. This
portion is what is executed when the application is run. The Visual Basic .NET compiler looks for a
method named Main to fulfill this need. In .NET, all code exists as methods within classes, even the
Main method. To make it accessible without having to instantiate a class, the Main method must be
declared as shared. For example:

Public Class App
 Public Shared Sub Main()
 ' ...
 End Sub
End Class

The name of the class is not important. At compile time, the Visual Basic .NET compiler looks for a
public shared subroutine named Main somewhere in the code. If more than one class has such a
method, the developer must specify which one to use by setting the startup object in the Project
Properties dialog box. If you're using the command-line compiler, specify the desired startup object
with the /main:<class> switch.

A program's Main method can also appear within a Visual Basic .NET module (not to be confused
with .NET modules, which are described in Chapter 3). Because Visual Basic .NET modules are
classes wherein everything is shared, the Shared keyword is not used in such a declaration:

Module App
 Public Sub Main()
 ' ...
 End Sub
End Module

2.14.6.5 Implementing interface methods

Classes can be declared as implementing one or more interfaces. (See Section 2.15.) To implement
an interface, the class must expose methods that correspond to the methods defined by the interface.
This is done by declaring the methods in the usual way, but with an Implements clause as part of the
declaration. Note the Implements keyword added to the declaration of the CompareTo method in this
example:

Programming Visual Basic .NET

 75

Public Class SomeClass
 Implements IComparable

 Public Function CompareTo(_
 ByVal obj As Object _
) As Integer Implements IComparable.CompareTo
 ' ...
 End Function

End Class

When appearing in a method declaration, the Implements keyword must be followed by the name of
the interface and method that the given method implements. The class's method must have the same
signature and return type as the interface's method, but they need not have the same name.

2.14.6.6 Overriding inherited methods

Example 2-7 showed how a base class can be written such that it forces derived classes to
implement certain methods. In this case, the Shape class contains this declaration:

Public MustOverride Sub Draw()

This declares the Draw method, which takes no arguments. The MustOverride keyword specifies
that the base class does not provide an implementation for this method and that derived classes must
do so.

It is sometimes preferable to allow the base class to provide a default implementation, yet allow
derived classes to substitute their own implementations. Classes that don't provide their own
implementations use the base class's implementation by default. Consider the following class
definitions:

Class BaseClass
 Public Overridable Sub SomeMethod()
 Console.WriteLine("BaseClass definition")
 End Sub
End Class ' BaseClass

Class DerivedClass
 Inherits BaseClass
 Public Overrides Sub SomeMethod()
 Console.WriteLine("DerivedClass definition")
 End Sub
End Class ' DerivedClass

Class DerivedClass2
 Inherits BaseClass
End Class ' DerivedClass2

The BaseClass class defines a method called SomeMethod. In addition to providing an
implementation of this method, the declaration specifies the Overridable keyword. This signals to
the compiler that it's okay to override the method in derived classes. Without this modifier, derived
classes cannot override the method. The DerivedClass class overrides this method by defining a
method having the same name and signature and by specifying the Overrides keyword. The Visual
Basic .NET compiler requires that the Overrides keyword be present to ensure that the developer
actually meant to override a base-class method. The DerivedClass2 class does not override the
SomeMethod method. Calls to SomeMethod through objects of type DerivedClass2 will invoke the
BaseClass definition of SomeMethod. Here is an example:

 76

Dim b As New BaseClass()
Dim d As New DerivedClass()
Dim d2 As New DerivedClass2()

b.SomeMethod()
d.SomeMethod()
d2.SomeMethod()

This code results in the following output:

BaseClass definition
DerivedClass definition
BaseClass definition

The SomeMethod implementation in the DerivedClass class can itself be overridden by a class
deriving from DerivedClass. This can be prevented, if desired, by specifying the NotOverridable
keyword in the definition of the SomeMethod method of the DerivedClass class, as shown here:

Class DerivedClass
 Inherits BaseClass
 Public NotOverridable Overrides Sub SomeMethod()
 ' ...
 End Sub
End Class ' DerivedClass

2.14.6.7 Overloading

When two or more different methods conceptually perform the same task on arguments of different
types, it is convenient to give the methods the same name. This technique is called overloading and is
supported by Visual Basic .NET. For example, the following code defines an overloaded SquareRoot
method that can take either a Long or a Double as a parameter:

Public Function SquareRoot(_
 ByVal Value As Long _
) As Double
 ' ...
End Function

Public Function SquareRoot(_
 ByVal Value As Double _
) As Double
 ' ...
End Function

When a call is made to the SquareRoot method, the version called is determined by the type of the
parameter passed to it. For example, the following code calls the version of the method that takes a
Long:

Dim result As Double = SquareRoot(10)

And this code calls the version that takes a Double:

Dim result As Double = SquareRoot(10.1)

Careful readers will note that in the first case the type of the argument is actually Integer, not Long.
The Long version of the method is invoked because it is the closest match to the given argument. If
there were also an Integer version of the method, that version would have been invoked, because it is
a better match to the given argument. The .NET runtime (discussed in Chapter 3) always attempts to

Programming Visual Basic .NET

 77

invoke the most appropriate version of an overloaded function, given the arguments provided. If no
suitable overload is found, a compiler error occurs (if Option Strict is on) or a runtime exception
occurs (if Option Strict is off).

The name of a method together with the number and types of its arguments are called the signature of
the method. The signature uniquely identifies a specific overloaded version of a specific method. Note
that the return type is not part of the signature. Two versions of an overloaded method are not
permitted to differ only by return type.

2.14.6.8 Overloading inherited methods

A method can also overload a method in a base class. Be careful to note the difference between
overloading a base-class method and overriding a base-class method. Overriding means that the
base-class method and the derived-class method have the same signature and that the derived-class
method is replacing the base-class method. In addition, the base-class method must be marked with
the Overridable keyword. Overloading means that they have different signatures and that both
methods exist as overloads in the derived class. When overloading a method defined in a base class,
the derived-class method declaration must include the Overloads keyword, but the base-class
method doesn't have any special keyword attached to it. Here's an example:

Public Class BaseClass
 Public Sub SomeMethod()
 ' ...
 End Sub
End Class

Public Class DerivedClass
 Inherits BaseClass
 Public Overloads Sub SomeMethod(ByVal i As Integer)
 ' ...
 End Sub
End Class

The requirement for the Overloads keyword helps to document the fact that a base-class method is
being overloaded. There is no technical reason that the compiler requires it, but it is required
nevertheless to help prevent human error.

2.14.6.9 Shadowing

The Shadows keyword allows a derived-class method to hide all base-class methods with the same
name. Consider the following code, which does not use the Shadows keyword:

Public Class BaseClass
 Public Overridable Sub SomeMethod()
 ' ...
 End Sub
 Public Overridable Sub SomeMethod(ByVal i As Integer)
 ' ...
 End Sub
End Class

Public Class DerivedClass
 Inherits BaseClass
 Public Overloads Overrides Sub SomeMethod()
 ' ...
 End Sub
End Class

 78

The base class overloads the SomeMethod method, and the derived class overrides the version of the
method having no parameters. Instances of the derived class not only possess the parameterless
version defined in the derived class, but they also inherit the parameterized version defined in the
base class. In contrast, consider the following code, which is the same except for the declaration of the
SomeMethod method in the derived class:

Public Class BaseClass
 Public Overridable Sub SomeMethod()
 ' ...
 End Sub
 Public Overridable Sub SomeMethod(ByVal i As Integer)
 ' ...
 End Sub
End Class

Public Class DerivedClass
 Inherits BaseClass
 Public Shadows Sub SomeMethod()
 ' ...
 End Sub
End Class

In this version, instances of the derived class possess only the parameterless version declared in the
derived class. Neither version in the base class can be called through a reference to the derived class.

2.14.7 Properties

Properties are members that are accessed like fields but are actually method calls. The idea is that a
class designer may wish to expose some data values but needs to exert more control over their
reading and writing than is provided by fields. Properties are also useful for exposing values that are
calculated. This is demonstrated by the Center property in the Shape class of Example 2-7. The
property can be read and written just like the Origin and Size fields. However, there is no actual data
member called Center. When code reads the Center property, a call is generated to the Center
property's getter. When a new value is assigned to the Center property, a call is generated to the
property's setter.

Property declarations look like this:

[property modifiers] Property [attributes] Property_Name _
 ([parameter list]) [As Type_Name] [implements list]
[getter]
[setter]
End Property

The components of the declaration are:

property modifiers

Further defined as:

[Default][access modifier][override modifier] _
 [overload modifier] [
shared modifier] [
read/write modifier]

If the Default keyword is present, it specifies the property as the default property of the class.
Only one property in a class can be the class's default property, and only parameterized (or

Programming Visual Basic .NET

 79

indexed) properties can be default properties. So what is a default property? A default
property is just a property that can be referenced without actually specifying the property's
name. For example, if a class has a default property called Item, takes an Integer argument,
and is of type String, the following two lines are equivalent to each other:

myObject.Item(3) = "hello, world"
myObject(3) = "hello, world"

Note that previous versions of Visual Basic did not constrain parameterized properties as the
only possible default properties.

The access modifier, override modifier, overload modifier, and shared
modifier clauses have the same meanings as discussed later in this chapter in relation to
method definitions. The read/write modifier clause is defined as:

ReadOnly | WriteOnly

This clause determines whether the property is read/write (signified by the absence of
ReadOnly and WriteOnly), read-only (signified by ReadOnly), or write-only (signified by
WriteOnly).

Property keyword

Identifies this as a property definition.

attributes

Represents a comma-separated list of attributes to be stored as metadata with the property.
Attributes are discussed earlier in this chapter.

Property_Name

Represents the name of the property.

parameter list

Permits properties to have parameters. Parameterized properties are also called indexed
properties. See the discussion of parameter lists in Section 2.14.6 earlier in this chapter.

As Type_Name

Indicates the data type of the property. This clause is optional if Option Strict is off;
otherwise, it is required. If this clause is omitted, the property defaults to type Object.

implements list

Has the same meaning as for method definitions.

getter

Provides the method that is executed when the property is read. Its form is:

Get
 ' code
End Get

 80

The value returned by the getter is returned as the value of the property. To return a value
from the getter, either use the Return statement with an argument or assign a value to the
property name. The value returned must be compatible with the data type of the property.

It is an error to provide a getter if the property has been marked WriteOnly.

setter

Provides the method that is executed when the property is written. Its form is:

Set [(ByVal Value [As Type_Name])]
 ' code
End Set

The value assigned to the property is passed to the method through the parameter specified in
the Set statement. The type specified in the Set statement must match the type specified in
the Property statement. Alternatively, the parameter declaration can be omitted from the
Set statement. In this case, the value assigned to the property is passed to the method
through a special keyword called Value. For example, this setter copies the passed-in
value to a class data member called MyDataMember:

Set
 MyDataMember = Value
End Set

The data type of Value is the same as the data type of the property.

End Property keywords

Indicates the end of the property definition.

Review the property definition from Example 2-7:

 ' This property allows the class user to find or set the
 ' center of a shape.
 Public Property Center() As Point
 Get
 Dim retval As Point
 retval.X = Origin.X + (Size.XExtent \ 2)
 retval.Y = Origin.Y + (Size.YExtent \ 2)
 Return retval
 End Get
 Set
 Dim currentCenter As Point = Center
 Origin.X += Value.X - currentCenter.X
 Origin.Y += Value.Y - currentCenter.Y
 End Set
 End Property

This is a public property called Center that has a type of Point. The getter returns a value of
type Point that is calculated from some other members of the class. The setter uses the
passed-in value to set some other members of the class.

Programming Visual Basic .NET

 81

2.14.8 The Me and MyClass Keywords

There are several ways for code to access members of the class in which the code is running. As long
as the member being accessed is not hidden by a like-named declaration in a more immediate scope,
it can be referenced without qualification:

Public Class SomeClass

 Public SomeValue As Integer

 Public Sub SomeMethod()
 ' ...
 SomeValue = 5
 ' ...
 End Sub

End Class

If the member is hidden by a more immediate declaration, the Me keyword can be used to qualify the
reference. Unqualified references refer to the more local declaration, as shown here:

Public Class SomeClass

 Public SomeValue As Integer

 Public Sub SomeMethod(ByVal SomeValue As Integer)
 ' ...
 ' Assign the passed-in value to a field.
 Me.SomeValue = SomeValue
 ' ...
 End Sub

End Class

The Me keyword is an implicit variable that holds a reference to the object instance running the code.
Related to the Me keyword, but subtly different, is the MyClass keyword. While the Me keyword can be
used in any context in which an object reference is expected, the MyClass keyword is used only for
member access; it must always be followed by a period and the name of a member, as shown here:

Public Class SomeClass

 Public SomeValue As Integer

 Public Sub SomeMethod(ByVal SomeValue As Integer)
 ' ...
 ' Assign the passed-in value to a field.
 MyClass.SomeValue = SomeValue
 ' ...
 End Sub

End Class

As you can see, there is overlap in the contexts in which these two keywords can be used, and for
most circumstances they can be considered synonymous. However, there are situations in which the
two keywords differ:

• The Me keyword can't be used in shared methods because it represents a specific object
instance of the class, yet shared methods can be executed when no instance exists.

 82

• The keywords can behave differently when used in a class from which other classes are
derived. Consider this code:

• Public Class BaseClass
• Public Sub Method1()
• Console.WriteLine("Invoking Me.Method2...")
• Me.Method2()
• Console.WriteLine("Invoking MyClass.Method2...")
• MyClass.Method2()
• End Sub
• Public Overridable Sub Method2()
• Console.WriteLine("BaseClass.Method2")
• End Sub
• End Class
•
• Public Class DerivedClass
• Inherits BaseClass
• Public Overrides Sub Method2()
• Console.WriteLine("DerivedClass.Method2")
• End Sub

End Class

This code defines two classes: BaseClass and DerivedClass. BaseClass defines two methods:
Method1 and Method2. DerivedClass inherits Method1 but provides its own implementation
for Method2.

Now consider the following instantiation of DerivedClass, as well as a call through it to the
Method1 method:

Dim d As New DerivedClass()
d.Method1()

This produces the following output:

Invoking Me.Method2...
DerivedClass.Method2
Invoking MyClass.Method2...
BaseClass.Method2

The call to Method1 through the DerivedClass instance calls the Method1 implementation
inherited from BaseClass. Method1 calls Method2 twice: once through the Me keyword and
once through the MyClass keyword. The Me keyword is a reference to the actual object
instance, which is of type DerivedClass. Therefore, Me.Method2() invokes the
DerivedClass class's implementation of Method2. In contrast, the MyClass keyword is used
for referencing members in the class in which the code is defined, which in this case is the
BaseClass class. Therefore, MyClass.Method2() invokes the BaseClass class's
implementation of Method2.

2.14.9 The MyBase Keyword

The MyBase keyword is used to access methods on the base class. This feature is commonly used
when an overriding method needs to call the base-class implementation of the same method:

Public Class BaseClass
 Public Overridable Sub DoSomething()
 ' ...

Programming Visual Basic .NET

 83

 End Sub
End Class

Public Class DerivedClass
 Inherits BaseClass
 Public Overrides Sub DoSomething()
 ' Start by calling the base-class implemenation of DoSomething.
 MyBase.DoSomething()
 ' Then continue on with additional stuff required by DerivedClass.
 ' ...
 End Sub
End Class

2.14.10 Nested Classes

Class definitions can be nested. The nested class is considered a member of the enclosing class. As
with other members, dot notation is used for accessing the inner class definition. Consider this nested
class definition:

Public Class OuterClass
 Public Class InnerClass
 Public Sub SomeMethod()
 Console.WriteLine("Hello from InnerClass.SomeMethod!")
 End Sub
 End Class
End Class

Instantiating an object of type InnerClass requires qualifying the name with the name of the enclosing
class:

Dim x As New OuterClass.InnerClass()
x.SomeMethod()

The accessibility of the inner-class declaration can be controlled with the class declaration's access
modifier. For example, in the following definition, InnerClass has been declared with the Private
modifier, making it visible only within the confines of the OuterClass class:

Public Class OuterClass
 Private Class InnerClass
 ' ...
 End Class
End Class

Classes can be nested as deeply as desired.

2.14.11 Destructors

Just as constructors are methods that run when objects are instantiated, it is often convenient to
define methods that run when objects are destroyed (that is, when the memory that was allocated to
them is returned to the pool of free memory). Such a method is called a destructor. Visual Basic .NET
doesn't have special syntax for declaring destructors, as it does for constructors. Instead, Visual
Basic .NET uses the specially named methods Finalize and Dispose to perform the work normally
associated with destructors. Because this mechanism is actually part of the .NET Framework rather
than Visual Basic .NET, it is explained in Chapter 3, under "Memory Management and Garbage
Collection."

 84

2.14.12 Early Versus Late Binding

Declarations permit the compiler to know the data type of the item being declared. Here is the
declaration of a variable of type String:

Dim s As String

Knowing the data type of a variable (or parameter, field, etc.) allows the compiler to determine what
operations are permitted on any object referenced by the variable. For example, given the previous
declaration of s as String, the compiler knows that the expression s.Trim() is permitted (because it
is defined in the String class), while s.Compact() is not (because there is no such method in the
String class). During compilation, the Visual Basic .NET compiler complains if it encounters such
errors.

There is, however, one case in which the developer is permitted to relax this constraint. If Option
Strict is turned off, the compiler forgoes this kind of checking on variables of type Object. For
example, the following code will compile without difficulty, even though the Object class doesn't have a
method called "Whatever":

Option Strict Off
' ...
Dim obj As Object
obj.Whatever()

With Option Strict off, the compiler compiles obj.Whatever() to code that checks to see if the
runtime type of the object referenced by obj is a type that possesses a Whatever method. If it does,
the Whatever method is called. If not, a runtime exception is raised. Here is such a scenario:

Option Strict Off

Public Class WhateverClass
 Public Sub Whatever()
 Console.WriteLine("Whatever!")
 End Sub
End Class

Public Class TestClass
 Public Shared Sub TestMethod()
 Dim obj As Object
 obj = New WhateverClass()
 obj.Whatever()
 End Sub
End Class

Because Option Strict is off, this code compiles just fine. Because obj references an object at
runtime that is of a class that implements a Whatever method, it also runs just fine. However, consider
what happens if the Whatever method is removed from the WhateverClass class:

Option Strict Off

Public Class WhateverClass
End Class

Public Class TestClass
 Public Shared Sub TestMethod()
 Dim obj As Object
 obj = New WhateverClass()
 obj.Whatever()

Programming Visual Basic .NET

 85

 End Sub
End Class

The code still compiles without a problem, because Option Strict is off. However, at runtime there
is a problem, as shown in Figure 2-2.

Figure 2-2. A problem

The technique of accessing members through a generic object of type Object is called late binding.
"Late" means that whether the desired member is really there is not known until the statement is
actually executed. In contrast, leaving Option Strict on and accessing members only through
variables that have been declared as the appropriate type is known as early binding. "Early" means
that whether the member access is legitimate is known at compile time.

Late binding is less efficient than early binding because additional checks are needed at runtime to
determine whether the requested member actually exists on the runtime object and, if it does, to
access that member. The worst part of late binding is that it can mask certain program errors (such as
mistyped member names) until runtime. In general, this is bad programming practice.

2.15 Interfaces

It is useful to make a distinction between a class's interface and its implementation. Conceptually, the
interface of a class is the set of members that are visible to users of the class—i.e., the class's public
members. The public members are thought of as comprising the class's interface because they are the
only way that code outside of the class can interact (i.e., interface) with objects of that class. In
contrast, the implementation is comprised of the class's code plus the set of members that are not
public.

It is possible to take this interface concept further and separate interface definition from class definition
altogether. This has benefits that will be shown shortly. To define an interface, use the Interface
statement:

Public Interface ISomeInterface
 Sub SomeSub()
 Function SomeFunction() As Integer
 Property SomeProperty() As String
 Event SomeEvent(_
 ByVal sender As Object, _
 ByVal e As SomeEventArgs _
)
End Interface

An interface declaration defines methods, properties, and events that will ultimately be implemented
by some class or structure definition. Because interfaces never include any implementation, the
declarations are headers only—never any implementation code; End Sub, End Function, or End
Property statements; or property get or set blocks. There are no access modifiers (Public,
Private, etc.) because all members of an interface are public by definition. By convention, interface
names start with the letter "I".

 86

To provide an implementation for a given interface, it is necessary to define a class or structure. For
example, the following class implements the interface defined earlier:

Public Class SomeClass
 ' This indicates that the class implements the methods,
 ' properties, and events of the ISomeInterface interface.
 Implements ISomeInterface

 ' This method implements the SomeSub method of the
 ' ISomeInterface interface.
 Private Sub SomeSub() Implements ISomeInterface.SomeSub
 ' ...
 End Sub

 ' This method implements the SomeFunction method of the
 ' ISomeInterface interface.
 Private Function SomeFunction() As Integer _
 Implements ISomeInterface.SomeFunction
 ' ...
 End Function

 ' This property implements the SomeProperty property of the
 ' ISomeInterface interface.
 Private Property SomeProperty() As String _
 Implements ISomeInterface.SomeProperty
 Get
 ' ...
 End Get
 Set
 ' ...
 End Set
 End Property

 ' This event implements the SomeEvent event of the
 ' ISomeInterface interface.
 Private Event SomeEvent(_
 ByVal sender As Object, _
 ByVal e As SomeEventArgs _
) Implements ISomeInterface.SomeEvent

End Class

The key elements of this class definition are:

• The class-declaration header is immediately followed by the Implements statement,
indicating that this class will expose the ISomeInterface interface:

• Public Class SomeClass
• ' This indicates that the class implements the methods,
• ' properties, and events of the ISomeInterface interface.

 Implements ISomeInterface

This information is compiled into the class. Class users can find out whether a given class
implements a given interface by attempting to assign the object reference to a variable that
has been declared of the interface type, like this:

Dim obj As Object
Dim ifce As ISomeInterface
' ...
' Get an object reference from somewhere.

Programming Visual Basic .NET

 87

obj = New SomeClass()
' ...
' Try to convert the object reference to a reference of type
' ISomeInterface. If the object implements the ISomeInterface
' interface, the conversion succeeds. If the object doesn't
' implement the ISomeInterface interface, an exception of
' type InvalidCastException (defined in the System namespace)
' is thrown.
ifce = CType(obj, ISomeInterface)

• For each method, property, and event in the interface, there is a corresponding method,
property, or event in the class that has precisely the same signature and return value. The
names don't have to match, although they match in the example.

• The declaration header for each method, property, and event in the class that implements a
corresponding item in the interface must have an implements clause. This is the keyword
Implements followed by the qualified name of the interface method, property, or event being
implemented.

Additional things to note about implementing interfaces include:

• The access modifiers in the class-member declarations need not be Public. Note that in the
example all the members are marked as Private. This means that the members are
accessible only when accessed through the ISomeInterface interface. This will be shown
in a moment.

• The class definition can include members that are not part of the implemented interface.
These can be public if desired. This results in a class that effectively has two interfaces: the
default interface, which is the set of members defined as Public in the class definition; and
the implemented interface, which is the set of members defined in the interface named in the
Implements statement.

• Classes are permitted to implement multiple interfaces.

To access members defined by an interface, declare a variable as that interface type and manipulate
the object through that variable. For example:

Dim x As ISomeInterface = New SomeClass()
x.SomeFunction()

This code declares x as a reference to an object of type ISomeInterface. That's right: interface
definitions define new types. Declared in this way, x can take a reference to any object that
implements the ISomeInterface interface and access all the members that ISomeInterface
defines, confident that the underlying object can handle such calls. This is a powerful feature of
defining and implementing explicit interfaces. Objects that explicitly implement an interface can be
used in any context in which that interface is expected; objects that implement multiple interfaces can
be used in any context in which any of the interfaces is expected.

Interface definitions can inherit from other interface definitions in the same way that classes can inherit
from other classes. For example:

Public Interface ISomeNewInterface
 Inherits ISomeInterface
 Sub SomeNewSub()
End Interface

This defines a new interface called ISomeNewInterface that has all the members of the
ISomeInterface interface plus a new member, called SomeNewSub. Any class or structure that
implements the ISomeNewInterface interface must implement all members in both interfaces. Any

 88

such class is then considered to implement both interfaces and could be used in any context where
either ISomeInterface or ISomeNewInterface is required.

2.16 Structures

Structures define value types. Variables of a value type store an actual value, as opposed to a
reference to a value stored elsewhere. Contrast this with classes, which define reference types.
Variables of a reference type store a reference (a pointer) to the actual value. See the discussion of
value types versus reference types in Section 2.5 earlier in this chapter. Example 2-8 shows a
structure definition.

Example 2-8. A structure definition
Public Structure Complex
 ' The IFormattable interface provides a generic mechanism for
 ' asking a value to represent itself as a string.
 Implements IFormattable

 ' These private members store the value of the complex number.
 Private m_RealPart As Double
 Private m_ImaginaryPart As Double

 ' These fields provide potentially useful values, similar to the
 ' corresponding values in the Double type. They are initialized
 ' in the shared constructor. The ReadOnly modifier indicates that
 ' they can be set only in a constructor.
 Public Shared ReadOnly MaxValue As Complex
 Public Shared ReadOnly MinValue As Complex

 ' This is a shared constructor. It is run once by the runtime
 ' before any other access to the Complex type occurs. Note again
 ' that this is run only once in the life of the program--not once
 ' for each instance. Note also that there is never an access
 ' modifier on shared constructors.
 Shared Sub New()
 MaxValue = New Complex(Double.MaxValue, Double.MaxValue)
 MinValue = New Complex(Double.MinValue, Double.MinValue)
 End Sub

 ' The RealPart property gives access to the real part of the
 ' complex number.
 Public Property RealPart() As Double
 Get
 Return m_RealPart
 End Get
 Set(ByVal Value As Double)
 m_RealPart = Value
 End Set
 End Property

 ' The ImaginaryPart property gives access to the imaginary part
 ' of the complex number.
 Public Property ImaginaryPart() As Double
 Get
 Return m_ImaginaryPart
 End Get
 Set(ByVal Value As Double)
 m_ImaginaryPart = Value
 End Set
 End Property

Programming Visual Basic .NET

 89

 ' This is a parameterized constructor allowing initialization of
 ' a complex number with its real and imaginary values.
 Public Sub New(_
 ByVal RealPart As Double, _
 ByVal ImaginaryPart As Double _
)
 m_RealPart = RealPart
 m_ImaginaryPart = ImaginaryPart
 End Sub

 ' This function computes the sum of two Complex values.
 Public Shared Function Add(_
 ByVal Value1 As Complex, _
 ByVal Value2 As Complex _
) As Complex
 Dim retval As Complex
 retval.RealPart = Value1.RealPart + Value2.RealPart
 retval.ImaginaryPart = Value1.ImaginaryPart + Value2.ImaginaryPart
 Return retval
 End Function

 ' This function computes the difference of two Complex values.
 Public Shared Function Subtract(_
 ByVal Value1 As Complex, _
 ByVal Value2 As Complex _
) As Complex
 Dim retval As Complex
 retval.RealPart = Value1.RealPart - Value2.RealPart
 retval.ImaginaryPart = Value1.ImaginaryPart - Value2.ImaginaryPart
 Return retval
 End Function

 ' This function computes the product of two Complex values.
 Public Shared Function Multiply(_
 ByVal Value1 As Complex, _
 ByVal Value2 As Complex _
) As Complex
 Dim retval As Complex
 retval.RealPart = Value1.RealPart * Value2.RealPart _
 - Value1.ImaginaryPart * Value2.ImaginaryPart
 retval.ImaginaryPart = Value1.RealPart * Value2.ImaginaryPart _
 + Value1.ImaginaryPart * Value2.RealPart
 Return retval
 End Function

 ' This function computes the quotient of two Complex values.
 Public Shared Function Divide(_
 ByVal Value1 As Complex, _
 ByVal Value2 As Complex _
) As Complex
 Dim retval As Complex
 Dim numerator1 As Double
 Dim numerator2 As Double
 Dim denominator As Double

 numerator1 = Value1.RealPart * Value2.RealPart _
 + Value1.ImaginaryPart * Value2.ImaginaryPart
 numerator2 = Value1.ImaginaryPart * Value2.RealPart _
 - Value1.RealPart * Value2.ImaginaryPart
 denominator = Value2.RealPart ^ 2 + Value2.ImaginaryPart ^ 2

 90

 retval.RealPart = numerator1 / denominator
 retval.ImaginaryPart = numerator2 / denominator
 Return retval
 End Function

 ' This function implements IFormattable.ToString. Because it is
 ' declared Private, this function is not part of the Complex
 ' type's default interface. Note that the function name need
 ' not match the name as declared in the interface, nor need
 ' it be in the format shown here.
 Private Function IFormattable_ToString(_
 ByVal format As String, _
 ByVal formatProvider As IFormatProvider _
) As String Implements IFormattable.ToString
 Dim realFormatter As IFormattable = m_RealPart
 Dim imaginaryFormatter As IFormattable = m_ImaginaryPart
 Return realFormatter.ToString(format, formatProvider) & " + " _
 & imaginaryFormatter.ToString(format, formatProvider) & "i"
 End Function

 ' This function formats the Complex value as a string.
 Public Overrides Function ToString() As String
 Return CType(Me, IFormattable).ToString(Nothing, Nothing)
 End Function

End Structure ' Complex

Structure definitions can include fields, properties, methods, constructors, and more—any member, in
fact, that a class definition can have. Unlike class definitions, however, structures are constrained in
several ways:

• Structures are not permitted to inherit from any other type. (However, structures implicitly
inherit from System.ValueType, which in turn inherits from Object.)

• Structures cannot override methods implicitly inherited from System.ValueType.
• No type can inherit from a structure.
• Structures are not permitted to have parameterless constructors. Consider this array

declaration:

Dim a(1000000) As SomeStructure

When an array of value types is created, it is immediately filled with instances of the value
type. This behavior corresponds to what you'd expect from an array holding a primitive type
(such as Integer). If parameterless constructors were permitted for structures, this array
declaration would result in 1,000,000 calls to the constructor. Ouch.

• Structures are not permitted to have destructors.
• Field members in structures are not permitted to be initialized in their declarations. This

includes the special cases of using As New type in the declaration or specifying an initial size
in an array declaration.

2.16.1 Boxing and Unboxing

Value types are optimized for size and speed. They don't carry around the same amount of overhead
as reference types. It would not be very efficient if every four-byte integer also carried around a four-
byte reference. There are times, however, when treating value types and reference types in a
polymorphic way would be nice. Consider this method declaration, which takes any number of
arguments of any type and processes them in some way:

Programming Visual Basic .NET

 91

Public Shared Sub Print(ParamArray ByVal objArray() As Object)

 Dim obj As Object

 For Each obj In objArray
 ' ...
 Next

End Sub

Clearly, objArray is an array of reference types, and obj is a reference type. Yet it would be nice to
pass value types and reference types to the method, like this:

Print("hello, world", SomeObject, 4, True)

In fact, this is possible. When a value type is assigned to a variable of type Object or passed in a
parameter of type Object, it goes through a process known as boxing. To box a value type means to
allocate memory to hold a copy of the value, then copy the value into that memory, and finally
manipulate or store a reference to the value. Unboxing is the opposite process: taking a reference to a
value type and copying the referenced value into an actual value type.

Boxing and unboxing are done on your behalf by the .NET runtime—there is nothing you have to do to
facilitate it. You should be aware of it, however, because the box and unbox operations aren't free.

2.17 Enumerations

An enumeration is a type whose values are explicitly named by the creator of the type. The .NET
Framework and Visual Basic .NET define many enumerations for their and your use. In addition,
Visual Basic .NET provides syntax for defining new enumerations. Here is an example:

Public Enum Rainbow
 Red
 Orange
 Yellow
 Green
 Blue
 Indigo
 Violet
End Enum

This declaration establishes a new type, called Rainbow. The identifiers listed within the body of the
declaration become constant values that may be assigned to variables of the Rainbow type. Here is a
declaration of a variable of type Rainbow and an initial assignment to it:

Dim myRainbow As Rainbow = Rainbow.Blue

Note that the value name is qualified by the type name.

Enumerations are value types that implicitly inherit from the .NET Framework's System.Enum type
(which in turn inherits from System.ValueType). That means that every enumeration has access to the
members defined by System.Enum. One such member is the ToString method, which returns a string
containing the name of the value. This is handy for printing:

Dim myRainbow As Rainbow = Rainbow.Blue
Console.WriteLine("The value of myRainbow is: " & myRainbow.ToString())

This code results in the following output:

 92

The value of myRainbow is: Blue

The values of an enumeration are considered as ordered. Thus, comparisons are permitted between
variables of the enumeration type:

Dim myRainbow As Rainbow
Dim yourRainbow As Rainbow
' ...
If myRainbow < yourRainbow Then
 ' ...
End If

Variables of an enumeration type can be used as indexes in For...Next statements. For example:

For myRainbow = Rainbow.Red To Rainbow.Violet
 ' ...
Next

Internally, Visual Basic .NET and the .NET Framework use values of type Integer to represent the
values of the enumeration. The compiler starts with 0 and assigns increasing Integer values to each
name in the enumeration. It is sometimes useful to override the default Integer values that are
assigned to each name. This is done by adding an initializer to each enumeration constant. For
example:

Public Enum MyLegacyErrorCodes
 NoError = 0
 FileNotFound = -1000
 OutOfMemory = -1001
 InvalidEntry = -2000
End Enum

It is also possible to specify the type of the underlying value. For example:

Public Enum Rainbow As Byte
 Red
 Orange
 Yellow
 Green
 Blue
 Indigo
 Violet
End Enum

This could be an important space-saving measure if many values of the enumeration will be stored
somewhere. The only types that can be specified for an enumeration are Byte, Short, Integer, and
Long.

Sometimes enumerations are used as flags, with the idea that multiple flags can be combined in a
single value. Such an enumeration can be defined by using the Flags attribute. (Attributes are
discussed later in this chapter.) Here is an example:

<Flags()> Public Enum Rainbow
 Red = 1
 Orange = 2
 Yellow = 4
 Green = 8
 Blue = 16
 Indigo = 32

Programming Visual Basic .NET

 93

 Violet = 64
End Enum

Note two important things in this definition:

• The first line of the definition starts with <Flags()>. This indicates that values of this type
can be composed of multiple items from the enumeration.

• The items in the enumeration have values that are powers of two. This ensures that each
combination of items has a unique sum. For example, the combination of Yellow, Blue, and
Violet has a sum of 84, which can't be attained with any other combination of items.

Individual values are combined using the Or operator.

The ToString method is smart enough to sort out the value names when creating a string
representation of the value. For example, given the previous assignment, consider the following call to
the ToString method:

Console.WriteLine(myRainbow.ToString())

This statement produces the following output:

Green, Blue

2.18 Exceptions

Sometimes errors or exceptional conditions prohibit a program from continuing its current activity. A
classic example is division by zero:

Dim x As Integer = 0
Dim y As Integer = 1 \ x

When the process hits the line containing the integer division, an exception occurs. An exception is
any occurrence that is not considered part of normal, expected program flow. The runtime detects, or
catches, this exception and takes appropriate action, generally resulting in termination of the offending
program. Figure 2-3 shows the message box that is displayed when this code is run within the Visual
Studio .NET IDE.

Figure 2-3. A divide-by-zero exception

Visual Basic .NET programs can and should be written to catch exceptions themselves. This is done
by wrapping potentially dangerous code in Try...End Try blocks. Example 2-9 shows how to
catch the divide-by-zero exception.

Example 2-9. Catching an exception
Try
 Dim x As Integer = 0
 Dim y As Integer = 1 \ x

 94

Catch e As Exception
 Console.WriteLine(e.Message)
End Try

When the program attempts the division by zero, an exception occurs, and program execution jumps
to the first statement in the Catch block. The Catch statement declares a variable of type Exception
that receives information about the exception that occurred. This information can then be used within
the Catch block to record or report the exception, or to take corrective action. The previous code
merely displays the message associated with the exception that occurred, as shown here:

Attempted to divide by zero.

After executing the statements in the Catch block, program execution continues with whatever follows
the End Try statement. In Try blocks in which no exception occurs, execution continues through to
the last statement of the Try block and then skips the statements in the Catch block.

The variable declared in the Catch statement of Example 2-9 is of type Exception (defined in the
System namespace). All exceptions are represented by types that derive, either directly or indirectly,
from the Exception type. The As type_name clause of the Catch statement specifies the type of
exception that the associated block of code can handle. Exceptions of the indicated type, or of any
type derived (directly or indirectly) from the indicated type, are handled by the associated block of
code.

Look again at the Catch statement from Example 2-9:

Catch e As Exception

Because all exceptions derive from the Exception type, any exception that occurs during execution of
the Try block in Example 2-9 results in execution of the Catch block. This behavior can be modified
by providing a more specific exception type in the Catch statement. Example 2-10 is identical to
Example 2-9, except that it catches only divide by zero exceptions.

Example 2-10. Catching a specific exception
Try
 Dim x As Integer = 0
 Dim y As Integer = 1 \ x
Catch e As System.DivideByZeroException
 Console.WriteLine(e.Message)
End Try

If any exception other than DivideByZeroException were to occur in the Try block of Example 2-10,
it would not be caught by the code shown. What happens in that case depends on the rest of the code
in the program. Try...End Try blocks can be nested, so if there is a surrounding Try...End Try
block with a suitable Catch statement, it will catch the exception. Alternatively, if the calling routine
couches the method call within a Try...End Try block having a suitable Catch statement,
execution jumps out of the current method and into the associated Catch block in the calling routine.
If no suitable Catch block exists in the calling routine, the search for a suitable Catch continues up
the call chain until one is found or until all callers have been examined. If no suitable Catch block
exists anywhere in the call chain, the runtime environment catches the exception and terminates the
application.

Try...End Try blocks can include multiple Catch blocks, which allows different exceptions to be
handled in different ways. For example, the following code handles two specific exceptions, allowing
all others to go unhandled:

Try

Programming Visual Basic .NET

 95

 ' ...
Catch e As System.DivideByZeroException
 ' ...
Catch e As System.OverflowException
 ' ...
End Try

Because all exception types are derived from the Exception type, the properties and methods of the
Exception type are available on all exception types. In fact, most exception types don't define any
additional properties or methods. The only reason they're defined as specific types is so that they can
be specifically caught. The properties of the Exception class are:

HelpLink

A URN or URL that links to a help-file topic that explains the error in further detail. The type is
String.

HResult

A COM HRESULT representing the exception. This is used for interoperating with COM
components (a topic that is not discussed in this book). The type is integer.

InnerException

Sometimes a method may choose to throw an exception because it has caught an exception
from some other internal method call. The outer method throws an exception that is
meaningful to it and its caller, but the exception thrown by the inner method should also be
communicated to the caller. This is the purpose of the InnerException property. This property
contains a reference to the internal exception (if any) that led to the current exception. The
type is Exception.

Message

The message associated with the exception. In general, this is a description of the condition
that led to the exception and, where possible, an explanation of how to correct it. The type is
String.

Source

The name of the application or object in which the exception occurred. The type is String.

StackTrace

A textual representation of the program call stack at the moment the exception occurred. The
type is String.

TargetSite

A reference to an object of type MethodBase (defined in the System.Reflection namespace)
that represents the method in which the exception occurred. If the system cannot obtain this
information, this property contains Nothing.

The methods of the Exception class are:

GetBaseException

 96

As discussed for the InnerException property, indicates that the current exception may be the
end exception in a chain of exceptions. The GetBaseException method returns the first
exception in the chain. This method takes no parameters. The return type is Exception.

GetObjectData

Serializes the Exception object into a SerializationInfo object (a process not discussed in this
book). The syntax is:

Overridable Public Sub GetObjectData(_
 ByVal info As SerializationInfo, _
 ByVal context As StreamingContext _
) Implements ISerializable.GetObjectData

ToString

Returns a text representation of the Exception. This includes the exception type, the message,
the stack trace, and similar information for any inner exceptions.

When an exception occurs, there is no facility for retrying the statement that caused the exception. If
such behavior is desired, it must be explicitly coded. Here's one possibility:

Dim bSuccess As Boolean = False
Do
 Try
 ' Some code that is to be protected.
 ' ...
 bSuccess = True
 Catch e As Exception
 ' Some recovery action.
 ' ...
 End Try
Loop Until bSuccess

Sometimes you must ensure that certain code is executed regardless of whether there is an exception.
For example, if a file is opened, the file should be closed even when an exception occurs. Try...End
Try blocks can include Finally blocks for this purpose. Code appearing in a Finally block is
executed regardless of whether an exception occurs. If no exception occurs, the statements in the
Finally block are executed after the statements in the Try block have been executed. If an
exception does occur, the statements in the Finally block are executed after the statements in the
Catch block that handles the exception are executed. If the exception is not handled, or if there are
no Catch blocks, the statements in the Finally block are executed prior to forwarding the exception
to any enclosing exception handlers. Here's an example of using a Finally block:

Dim s As System.IO.Stream =_
 System.IO.File.Open("c:\test.txt", System.IO.FileMode.CreateNew)
Try
 ' Do something with the open stream.
 ' ...
Catch e As Exception
 ' Handle any exceptions.
 ' ...
Finally
 ' The stream should be closed whether or not there is an error.
 s.Close()
End Try

Visual Basic .NET applications can intentionally throw exceptions to indicate errors or other unusual
occurrences. For example, if a method is expecting an argument that is within a specific range and the

Programming Visual Basic .NET

 97

actual value passed to the method is outside of that range, the method can throw an exception of type
ArgumentOutOfRangeException (defined in the System namespace). This is done with the Throw
statement, as shown in Example 2-11.

Example 2-11. Throwing an exception
Public Sub SomeMethod(ByVal MyParameter As Integer)
 ' Ensure that the argument is valid.
 If (MyParameter < 10) Or (MyParameter > 100) Then
 Throw New ArgumentOutOfRangeException()
 End If
 ' Remainder of method.
 ' ...
End Sub

The Throw statement requires an instance of some type derived from the Exception type. When the
Throw statement is reached, the runtime looks for an appropriate Catch block in the calling code to
handle the exception. If no suitable Catch block is found, the runtime catches the exception itself and
terminates the application. See Appendix B for a list of exception types defined in the System
namespace.

Visual Basic .NET applications can create their own exception types simply by declaring types that
derive from the Exception type. Example 2-12 shows how the exception handling of Example 2-11
can be made more specific to the actual error that occurs. In Example 2-12, a new exception type
called MyParameterOutOfRangeException is declared. Next, a method is shown that throws this
exception. Lastly, a method is shown that handles the exception.

Example 2-12. Defining and using a custom exception
' Define a custom exception class to represent a specific error condition.
Public Class MyParameterOutOfRangeException
 Inherits Exception
 Public Sub New()
 ' The Exception type has a constructor that takes an error message
 ' as its argument. Because the Message property of the Exception
 ' type is read-only, using this constructor is the only way that
 ' the Message property can be set.
 MyBase.New("The value passed in the MyParameter parameter" _
 & " is out of range. The value must be in the range of" _
 & " 10 through 100.")
 End Sub
End Class

' ...

 ' Define a method that may throw a custom exception.
 Public Sub SomeMethod(ByVal MyParameter As Integer)
 ' Ensure that the argument is valid.
 If (MyParameter < 10) Or (MyParameter > 100) Then
 Throw New MyParameterOutOfRangeException()
 End If
 ' Remainder of method.
 ' ...
 End Sub

' ...

 ' Call the SomeMethod method, catching only the
 ' MyParameterOutOfRangeException exception.
 Public Sub SomeCaller()

 98

 Try
 SomeMethod(500)
 Catch e As MyParameterOutOfRangeException
 ' ...
 End Try
 End Sub

What About On Error?

Visual Basic 6 did not have exception objects and Try...Catch blocks.
Instead, it used the On Error statement to specify a line within the current
procedure to which execution should jump if an error occurred. The code at
that point in the procedure could then examine the Err intrinsic object to
determine the error that had occurred. For compatibility with previous
versions, Visual Basic .NET continues to support the On Error and related
statements, but they should not be used in new development, for the
following reasons:

• Structured exception handling is more flexible.
• Structured exception handling does not use error codes. (Application-

defined error codes often clashed with error codes defined by other
applications.)

• Structured exception handling exists at the .NET Framework level,
meaning that regardless of the language in which each component is
written, exceptions can be thrown and caught across component
boundaries.

Error handling with the On Error and related statements are not discussed
in this book.

2.19 Delegates

A delegate is a programmer-defined type that abstracts the ability to call a method. A delegate-type
declaration includes the declaration of the signature and return type that the delegate encapsulates.
Instances of the delegate type can then wrap any method that exposes the same signature and return
type, regardless of the class on which the method is defined and whether the method is an instance
method or shared method of the defining class. The method thus wrapped can be invoked through the
delegate object. The delegate mechanism provides polymorphism for methods having the same
signature and return type.

Delegates are often used to implement callback mechanisms. Imagine a class that will be used by a
program you are writing. This class provides some useful functionality, including the ability to call in to
a method that you must implement within your program. Perhaps this callback mechanism is provided
to feed your program data as it becomes available in the class you are using. One way to achieve this
capability is through the use of delegates. Here's how:

1. The writer of the class you're using (call it a server class) declares a public delegate type that
defines the signature and return value of the method that you will implement.

2. The writer of the server class exposes a method for clients of the class to pass in an instance
of the delegate type.

3. You implement a method having the appropriate signature and return value.
4. You instantiate a new object of the delegate type.
5. You connect your method to your delegate instance.
6. You call the method defined in Step 2, passing in your delegate instance.

Programming Visual Basic .NET

 99

7. The server class now has a delegate instance that wraps your method. The class can call your
method through the delegate at any time.

8. Depending on the application, it might be appropriate for the writer of the server class to
provide a method that allows the client application to disconnect its delegate from the server to
stop receiving callbacks.

Example 2-13 shows an example of this mechanism.

Example 2-13. Defining and using a delegate type to implement a
callback mechanism
' This class is defined in the server component.
Public Class ServerClass

 ' Even though the following declaration looks similar to a
 ' method declaration, it is actually a type declaration. It
 ' compiles to a type that ultimately derives from the
 ' System.Delegate type. The purpose of the method syntax in
 ' this declaration is to define the signature and return type
 ' of the methods that instances of this delegate type are able
 ' to wrap.
 Public Delegate Sub MessageDelegate(ByVal msg As String)

 ' The following is a private field that will hold an instance of
 ' the delegate type. The instance will be provided by the client
 ' by calling the RegisterForMessages method. Even though this
 ' field can hold only a single delegate instance, the
 ' System.Delegate class itself is designed such that a
 ' delegate instance can refer to multiple other delegate
 ' instances. This feature is inherited by all delegate types.
 ' Therefore, the client will be able to register multiple
 ' delegates, if desired. See the RegisterForMessages and
 ' UnregisterForMessages methods in the current class to see
 ' how multiple delegates are saved.
 Private m_delegateHolder As MessageDelegate = Nothing

 ' The client calls the RegisterForMessages method to give the
 ' server a delegate instance that wraps a suitable method on
 ' the client.
 Public Sub RegisterForMessages(ByVal d As MessageDelegate)
 ' The System.Delegate class's Combine method takes two
 ' delegates and returns a delegate that represents them
 ' both. The return type is System.Delegate, which must be
 ' explicitly converted to the appropriate delegate type.
 Dim sysDelegate As System.Delegate = _
 System.Delegate.Combine(m_delegateHolder, d)
 m_delegateHolder = CType(sysDelegate, MessageDelegate)
 End Sub

 ' The client calls the UnregisterForMessages method to tell
 ' the server not to send any more messages through a
 ' particular delegate instance.
 Public Sub UnregisterForMessages(ByVal d As MessageDelegate)
 ' The System.Delegate class's Remove method takes two
 ' delegates. The first is a delegate that represents a list
 ' of delegates. The second is a delegate that is to be
 ' removed from the list. The return type is
 ' System.Delegate, which must be explicitly converted to
 ' the appropriate delegate type.
 Dim sysDelegate As System.Delegate = _
 System.Delegate.Remove(m_delegateHolder, d)

 100

 m_delegateHolder = CType(sysDelegate, MessageDelegate)
 End Sub

 ' The DoSomethingUseful method represents the normal
 ' processing of the server object. At some point during normal
 ' processing, the server object decides that it is time to
 ' send a message to the client(s).
 Public Sub DoSomethingUseful()
 ' ...
 ' Some processing has led up to a decision to send a
 ' message. However, do so only if a delegate has been
 ' registered.
 If Not (m_delegateHolder Is Nothing) Then
 ' The delegate object's Invoke method invokes the
 ' methods wrapped by the delegates represented by
 ' the given delegate.
 m_delegateHolder.Invoke("This is the msg parameter.")
 End If
 ' ...
 End Sub

End Class ' ServerClass

' This class is defined in the client component.
Public Class ClientClass

 ' This is the callback method. It will handle messages
 ' received from the server class.
 Public Sub HandleMessage(ByVal msg As String)
 Console.WriteLine(msg)
 End Sub

 ' This method represents the normal processing of the client
 ' object. As some point during normal processing, the client
 ' object creates an instance of the server class and passes it
 ' a delegate wrapper to the HandleMessage method.
 Public Sub DoSomethingUseful()
 ' ...
 Dim server As New ServerClass()
 ' The AddressOf operator in the following initialization
 ' is a little misleading to read. It's not returning an
 ' address at all. Rather, a delegate instance is being
 ' created and assigned to the myDelegate variable.
 Dim myDelegate As ServerClass.MessageDelegate _
 = AddressOf HandleMessage
 server.RegisterForMessages(myDelegate)
 ' ...
 ' This represents other calls to the server object, which
 ' might somehow trigger the server object to call back to
 ' the client object.
 server.DoSomethingUseful()
 ' ...
 ' At some point, the client may decide that it doesn't want
 ' any more callbacks.
 server.UnregisterForMessages(myDelegate)
 End Sub

End Class ' ClientClass

Delegates are central to event handling in the .NET Framework. See the next section for more
information.

Programming Visual Basic .NET

 101

Delegates don't provide any capabilities that can't be achieved in other ways. For example, the
solution in Example 2-13 could have been achieved in at least two ways that don't involve delegates:

• The server component could define an abstract base class defining the method to be
implemented by the client. The client would then define a class that inherits from the server's
abstract base class, providing an implementation for the class's one method. The server
would then provide methods for registering and unregistering objects derived from the abstract
base class.

• The server component could define an interface that includes the definition of the method to
be implemented by the client. The client would then define a class that implemented this
interface, and the server would provide methods for registering and unregistering objects that
expose the given interface.

Any of these methods (including delegates) could be a reasonable solution to a given problem.
Choose the one that seems to fit best.

Delegates are sometimes characterized as safe function pointers. I don't think that this
characterization aids the learning process, because delegates aren't any sort of pointer—safe or
otherwise. They are objects that encapsulate method access. Delegate objects can invoke methods
without knowing where the actual methods are implemented. In effect, this allows individual methods
to be treated in a polymorphic way.

2.20 Events

An event is a callback mechanism. With it, objects can notify users that something interesting has
happened. If desired, data can be passed from the object to the client as part of the notification.
Throughout this section, I use the terms event producer, producer class, and producer object to talk
about a class (and its instances) capable of raising events. I use the terms event consumer, consumer
class, and consumer object to talk about a class (and its instances) capable of receiving and acting on
events raised by an event producer.

Here is a class that exposes an event:

Public Class EventProducer

 Public Event SomeEvent()

 Public Sub DoSomething()
 ' ...
 RaiseEvent SomeEvent()
 ' ...
 End Sub

End Class

The Event statement in this code fragment declares that this class is capable of raising an event
called SomeEvent. The empty parentheses in the declaration indicate that the event will not pass any
data. An example later in this section will show how to define events that pass data.

The RaiseEvent statement in the DoSomething method raises the event. Any clients of the object
that have registered their desire to receive this event will receive it at this time. Receiving an event
means that a method will be called on the client to handle the event. Here is the definition of a client
class that receives and handles events from the EventProducer class:

Public Class EventConsumer

 Private WithEvents producer As EventProducer

 102

 Public Sub producer_SomeEvent() Handles producer.SomeEvent
 Console.WriteLine("Hey, an event happened!!")
 End Sub

 Public Sub New()
 producer() = New EventProducer()
 End Sub

 Public Sub DoSomething()
 ' ...
 producer().DoSomething()
 ' ...
 End Sub

End Class

The key aspects here are:

• The consumer object has a field that contains a reference to the producer object.
• The consumer object has a method capable of handling the event. A method is capable of

handling an event if the method and event have the same signature. The name of the method
is not important.

• The handler-method declaration has a handles clause.
• The handles clause specifies the event to be handled. The identifier before the dot indicates

the field with the object to generate events. The identifier after the dot indicates the name of
the event.

The handler method is called synchronously, which means that the statement following the
RaiseEvent statement in the event producer does not execute until after the method handler in the
consumer completes. If an event has multiple consumers, each consumer's event handler is called in
succession. The order in which the multiple consumers are called is not specified.

Here's a class that exposes an event with parameters:

Public Class EventProducer

 Public Event AnotherEvent(ByVal MyData As Integer)

 Public Sub DoSomething()
 ' ...
 RaiseEvent AnotherEvent(42)
 ' ...
 End Sub

End Class

And here's a class that consumes it:

Public Class EventConsumer

 Private WithEvents producer As EventProducer

 Public Sub New()
 producer = New EventProducer()
 End Sub

 Public Sub producer_AnotherEvent(ByVal MyData As Integer) _
 Handles producer.AnotherEvent
 Console.WriteLine("Received the 'AnotherEvent' event.")

Programming Visual Basic .NET

 103

 Console.WriteLine("The value of MyData is {0}.", Format(MyData))
 End Sub

 Public Sub DoSomething()
 ' ...
 producer().DoSomething()
 ' ...
 End Sub

End Class

The result of calling the EventConsumer class's DoSomething method is:

Received the 'AnotherEvent' event.
The value of MyData is 42.

2.20.1 Using Events and Delegates Together

Under the covers, .NET uses delegates as part of its events architecture. Delegates are necessary in
this architecture because they enable hooking up the consumer class's event-handler method to the
event producer (recall that delegates encapsulate method invocation). The Visual Basic .NET compiler
hides the details of this mechanism, quietly creating delegates as needed under the surface. However,
the programmer is free to make this process explicit. The following definition of the EventProducer
class is semantically equivalent to the previous one:

Public Class EventProducer

 Public Delegate Sub SomeDelegate(ByVal MyData As Integer)

 Public Event AnotherEvent As SomeDelegate

 Public Sub DoSomething()
 ' ...
 RaiseEvent AnotherEvent(42)
 ' ...
 End Sub

End Class

Note here that the declaration of SomeDelegate defines a delegate capable of wrapping any
subroutine whose signature matches the signature given in the declaration. The subsequent
declaration of AnotherEvent defines an event that will use the signature defined by SomeDelegate.
Regardless of which syntax is being used, events are actually fields whose type is some delegate type.

Variations in syntax are possible on the consumer side, too. When the WithEvents and Handles
keywords are used, Visual Basic .NET creates a delegate that wraps the given handler method and
then registers that delegate with the object and event given in the Handles clause. The WithEvents
and Handles keywords can be omitted, and the delegate declaration and hookup can be done
explicitly, as shown here:

Public Class EventConsumer

 Private producer As EventProducer

 Public Sub New()
 producer = New EventProducer()
 AddHandler producer.AnotherEvent, _
 New EventProducer.SomeDelegate(AddressOf producer_AnotherEvent)
 End Sub

 104

 Public Sub producer_AnotherEvent(ByVal MyData As Integer)
 Console.WriteLine("Received the 'AnotherEvent' event.")
 Console.WriteLine("The value of MyData is {0}.", Format(MyData))
 End Sub

 Public Sub DoSomething()
 ' ...
 producer.DoSomething()
 ' ...
 End Sub

End Class

The hookup of the handler method to the event producer is done with this statement in the
EventConsumer class's constructor:

AddHandler producer.AnotherEvent, _
 New EventProducer.SomeDelegate(AddressOf producer_AnotherEvent)

The AddHandler statement and its companion, the RemoveHandler statement, allow event
handlers to be dynamically registered and unregistered. The RemoveHandler statement takes
exactly the same parameters as the AddHandler statement.

2.21 Standard Modules

A standard module is a type declaration. It is introduced with the Module statement, as shown here:

Public Module ModuleTest
 ' ...
End Module

Don't confuse the Visual Basic .NET term, standard module, with
the .NET term, module. They are unrelated to each other. See
Chapter 3 for information about .NET modules.

Standard module definitions are similar to class definitions, with these differences:

• Standard module members are implicitly shared.
• Standard modules cannot be inherited.
• The members in a standard module can be referenced without being qualified with the

standard module name.

Standard modules are a good place to put global variables and procedures that aren't logically
associated with any class.

2.22 Attributes

An attribute is a program element that modifies some declaration. Here is a simple example:

<SomeAttribute()> Public Class SomeClass
 ' ...
End Class

This example shows a fictitious SomeAttribute attribute that applies to a class declaration.
Attributes appear within angle brackets (<>) and are following by parentheses (()), which may

Programming Visual Basic .NET

 105

contain a list of arguments. To apply multiple attributes to a single declaration, separate them with
commas within a single set of angle brackets, like this:

<SomeAttribute(), SomeOtherAttribute()> Public Class SomeClass
 ' ...
End Class

Attributes can be placed on the following kinds of declarations:

Types

This includes classes, delegates, enumerations, events, interfaces, Visual Basic .NET
standard modules, and structures.

The attribute is placed at the beginning of the first line of the type declaration:

<SomeAttribute()> Public Class SomeClass
 ' ...
End Class

Constructors

The attribute is placed at the beginning of the first line of the constructor declaration:

<SomeAttribute()> Public Sub New()
 ' ...
End Sub

Fields

The attribute is placed at the beginning of the field declaration:

<SomeAttribute()> Public SomeField As Integer
Methods

The attribute is placed at the beginning of the first line of the method declaration:

<SomeAttribute()> Public Sub SomeMethod()
' ...
End Sub

Parameters

The attribute is placed immediately prior to the parameter declaration. Each parameter can
have its own attributes:

Public Sub SomeMethod(<SomeAttribute()> ByVal SomeParameter As
Integer)

Properties

An attribute that applies to a property is placed at the beginning of the first line of the property
declaration. An attribute that applies specifically to one or both of a property's Get or Set
methods is placed at the beginning of the first line of the respective method declaration:

<SomeAttribute()> Public Property SomeProperty() As Integer
Get
 ' ...
End Get
<SomeOtherAttribute()> Set(ByVal Value As Integer)
 ' ...

 106

End Set
End Property

Return values

The attribute is placed after the As keyword and before the type name:

Public Function SomeFunction() As <SomeAttribute()> Integer
 ' ...
End Function

Assemblies

The attribute is placed at the top of the Visual Basic .NET source file, following any Imports
statements and preceding any declarations. The attribute must be qualified with the
Assembly keyword so that the compiler knows to apply the attribute to the assembly rather
than the module. Assemblies and modules are explained in Chapter 3.

Imports ...
<Assembly: SomeAttribute()>
Public Class ...

Modules

The attribute is placed at the top of the Visual Basic .NET source file, following any Imports
statements and preceding any declarations. The attribute must be qualified with the Module
keyword so that the compiler knows to apply the attribute to the module rather than the
assembly. Assemblies and modules are explained in Chapter 3.

Imports ...
<Module: SomeAttribute()>
Public Class ...

Some attributes are usable only on a subset of this list.

The .NET Framework supplies several standard attributes. For example, the Obsolete attribute
provides an indication that the flagged declaration should not be used in new code. This allows
component developers to leave obsolete declarations in the component for backward compatibility,
while still providing a hint to component users that certain declarations should no longer be used.
Here's an example:

<Obsolete("Use ISomeInterface2 instead.")> Public Interface ISomeInterface
 ' ...
End Interface

When this code is compiled, the Obsolete attribute and the associated message are compiled into
the application. Tools or other code can make use of this information. For example, if the compiled
application is a code library referenced by some project in Visual Studio .NET, Visual Studio .NET
warns the developer when she tries to make use of any items that are flagged as Obsolete. Using
the previous example, if the developer declares a class that implements ISomeInterface, Visual
Studio .NET displays the following warning:

Obsolete: Use ISomeInterface2 instead.

See Appendix A for the list of attributes defined by the .NET Framework.

Programming Visual Basic .NET

 107

2.22.1 Creating Custom Attributes

The attribute mechanism is extensible. A new attribute is defined by declaring a class that derives from
the Attribute type (in the System namespace) and that provides an indication of what declarations the
attribute should be allowed to modify. Here's an example:

<AttributeUsage(AttributeTargets.All)> Public Class SomeAttribute
 Inherits System.Attribute
End Class

This code defines an attribute called SomeAttribute. The SomeAttribute class itself is modified by
the AttributeUsage attribute. The AttributeUsage attribute is a standard .NET Framework
attribute that indicates which declarations can be modified by the new attribute. In this case, the value
of AttributeTargets.All indicates that the SomeAttribute attribute can be applied to any and
all declarations. The argument of the AttributeUsage attribute is of type AttributeTargets (defined
in the System namespace). The values in this enumeration are: Assembly, Module, Class, Struct,
Enum, Constructor, Method, Property, Field, Event, Interface, Parameter, Delegate,
ReturnValue, and All.

To create an attribute that takes one or more arguments, add a parameterized constructor to the
attribute class. Here's an example:

<AttributeUsage(AttributeTargets.Method)> _
Public Class MethodDocumentationAttribute
 Inherits System.Attribute

 Public ReadOnly Author As String
 Public ReadOnly Description As String

 Public Sub New(ByVal Author As String, ByVal Description As String)
 Me.Author = Author
 Me.Description = Description
 End Sub

End Class

This code defines an attribute that takes two parameters: Author and Description. It could be
used to modify a method declaration like this:

<MethodDocumentation("Dave Grundgeiger", "This is my method.")> _
Public Sub SomeMethod()
 ' ...
End Sub

By convention, attribute names end with the word Attribute.
Visual Basic .NET references attributes either by their full
names—for example, MethodDocumentationAttribute—or
by their names less the trailing Attribute—for example,
MethodDocumentation. Attributes whose names do not end
with the word Attribute are simply referenced by their full
names.

2.22.2 Reading Attributes

Compiled applications can be programmatically examined to determine what attributes, if any, are
associated with the applications' various declarations. For example, it is possible to write a Visual

 108

Basic .NET program that searches a compiled component for the Obsolete attribute and produces a
report. This is done by using the .NET Framework's reflection capability. Reflection is the ability to
programmatically examine type information. The .NET Framework provides a great deal of support for
reflection in the Type class (in the System namespace) and in the types found in the
System.Reflection namespace.

Reflection deserves a book of its own, but here's a brief look to get you started:

Imports System
Imports System.Reflection
' ...
Dim typ As Type = GetType(System.Data.SqlClient.SqlConnection)
Dim objs() As Object = typ.GetCustomAttributes(False)
Dim obj As Object

For Each obj In objs
 Console.WriteLine(obj.GetType().FullName)
Next

This code fragment does the following:

• Uses the GetType function to get a Type object that represents the SqlConnection type
(defined in the System.Data.SqlClient namespace). You can experiment with putting any type
name here (including the types that you create). I chose SqlConnection because I know that it
happens to have an attribute associated with it.

• Calls the GetCustomAttributes method of the Type object to get an array of objects that
represent the attributes associated with the type. Each object in the array represents an
attribute.

• Loops through the object array and prints the type name of each object. The type name is the
name of the attribute.

The output is shown here:

System.ComponentModel.DefaultEventAttribute

Reflection is not discussed further in this book. Review the .NET documentation for the
System.Reflection namespace for more information.

2.23 Conditional Compilation

Conditional compilation is the ability to specify that a certain block of code will be compiled into the
application only under certain conditions. Conditional compilation uses precompiler directives to affect
which lines are included in the compilation process. This feature is often used to wrap code used only
for debugging. For example:

#Const DEBUG = True

Public Sub SomeMethod()

#If DEBUG Then
 Console.WriteLine("Entering SomeMethod()")
#End If

 ' ...

#If DEBUG Then
 Console.WriteLine("Exiting SomeMethod()")

Programming Visual Basic .NET

 109

#End If
End Sub

The #Const directive defines a symbolic constant for the compiler. This constant is later referenced in
the #If directives. If the constant evaluates to True, the statements within the #If block are
compiled into the application. If the constant evaluates to False, the statements within the #If block
are ignored.

The scope of constants defined by the #Const directive is the source file in which the directive
appears. However, if the constant is referenced prior to the definition, its value is Nothing. It is
therefore best to define constants near the top of the file. Alternatively, compiler constants can be
defined on the command line or within the Visual Studio .NET IDE. If you're compiling from the
command line, use the /define compiler switch, like this:

vbc MySource.vb /define:DEBUG=True

You can set multiple constants within a single /define switch by separating the symbol=value
pairs with commas, like this:

vbc MySource.vb /define:DEBUG=True,SOMECONSTANT=42

To assign compiler constants in Visual Studio .NET:

1. Right-click on the project name in the Solution Explorer window and choose Properties. This
brings up the Project Property Pages dialog box. (If the Solution Explorer window is not visible,
choose View Solution Explorer from the Visual Studio .NET main menu to make it appear.)

2. Within the Project Property Pages dialog box, choose the Configuration Properties folder.
Within that folder, choose the Build property page. This causes the configuration build options
to appear on the right side of the dialog box.

3. Add values to the Custom constants text box on the right side of the dialog box.

2.24 Summary

This chapter provided an overview of the syntax of the Visual Basic .NET language. In Chapter 3,
you'll learn about the .NET Framework—an integral part of developing in any .NET language.
Subsequent chapters will teach you how to accomplish specific programming tasks in Visual
Basic .NET.

 110

Programming Visual Basic .NET

 111

Chapter 3. The .NET Framework

The .NET Framework is the next iteration of Microsoft's platform for developing component-based
software. It provides fundamental advances in runtime services for application software. It also
supports development of applications that can be free of dependencies on hardware, operating
system, and language compiler.

This chapter provides an overview of the architecture of the .NET Framework and describes the base
features found in the core of its class library.

3.1 Common Language Infrastructure (CLI) and Common Language
Runtime (CLR)

At the heart of the .NET Framework is a new mechanism for loading and running programs and
managing their interactions. This mechanism is described in the Common Language Infrastructure
(CLI), a specification for a runtime environment that allows software components to:

• Pass data between each other without regard to the programming language in which each
component is written

• Execute on different operating systems and on different hardware platforms without having to
recompile the high-level source code (a low-level compilation still automatically occurs on the
target platform, as will be discussed in this chapter)

Although the CLI specification was created by Microsoft, it has since been submitted to the ECMA
standards organization (http://www.ecma.ch), which now has responsibility and control over it.

The CLI is just a specification—it has to be implemented in order to be useful. An implementation of
the CLI is known as a Common Language Runtime (CLR). Microsoft's CLR implementation on the
Windows platform is not under ECMA's control, but it is Microsoft's intention that the CLR be a fully
compliant implementation of the CLI. As of this writing, the CLI has not been implemented on non-
Windows platforms, but Microsoft and others have announced intentions to do so.

The CLI specifies how executable code is loaded, run, and managed. The portion of the CLR that
performs the tasks of loading, running, and managing .NET applications is called the virtual execution
system (VES). Code run by the VES is called managed code .

The CLI greatly expands upon concepts that exist in Microsoft's Component Object Model (COM). As
its core feature, COM specifies how object interfaces are laid out in memory. Any component that can
create and consume this layout can share data with other components that do the same. COM was a
big step forward when it was introduced (circa 1992), but it has its shortcomings. For example, in spite
of its name, COM actually has no concept of an object—only object interfaces. Therefore, COM can't
support passing native types from one component to another.

3.2 Common Type System (CTS)

The CLI specification defines a rich type system that far surpasses COM's capabilities. It's called the
Common Type System (CTS). The CTS defines at the runtime level how types are declared and used.
Previously, language compilers controlled the creation and usage of types, including their layout in
memory. This led to problems when a component written in one language tried to pass data to a
component written in a different language. Anyone who has written Visual Basic 6 code to call
Windows API functions, for instance, or who has tried to pass a JavaScript array to a component
written either in Visual Basic 6 or C++, is aware of this problem. It was up to the developer to translate
the data to be understandable to the receiving component. The CTS obliterates this problem by
providing the following features:

 112

• Primitive types (Integer, String, etc.) are defined at the runtime level. Components can easily
pass instances of primitive types between each other because they all agree on how that data
is formatted.

• Complex types (structures, classes, enumerations, etc.) are constructed in a way that is
defined at the runtime level. Components can easily pass instances of complex types between
each other because they all agree on how complex types are constructed from primitive types.

• All types carry rich type information with them, meaning that a component that is handed an
object can find out the definition of the type of which the object is an instance. This is
analogous to type libraries in COM, but the CTS is different because the type information is
much richer and is guaranteed to be present.

3.2.1 Namespaces

Namespaces were introduced in Chapter 2 as a way to group related types. They are mentioned
again here because they aren't just a Visual Basic .NET concept; they are also used by the CLR and
by other languages that target the .NET platform. It's important to keep in mind that to the CLR, a
namespace is just part of a fully qualified type name, and nothing more. See Section 3.4.2 later in
this chapter for more information.

3.3 Portions of the CLI

The CLI specification recognizes that the CLR can't be implemented to the same extent on all
platforms. For example, the version of the CLR implemented on a cell phone won't be as versatile as
the one implemented on Windows 2000 or Windows XP. To address this issue, the CLI defines a set
of libraries. Each library contains a set of classes that implement a certain portion of the CLI's
functionality. Further, the CLI defines profiles. A profile is a set of libraries that must be implemented
on a given platform.

The libraries defined by the CLI are:

Runtime Infrastructure Library

This library provides the core services that are needed to compile and run an application that
targets the CLI.

Base Class Library

This library provides the runtime services that are needed by most modern programming
languages. Among other things, the primitive data types are defined in this library.

Network Library

This library provides simple networking services.

Reflection Library

This library provides the ability to examine type information at runtime and to invoke members
of types by supplying the member name at runtime, rather than at compile time.

XML Library

This library provides a simple XML parser.

Floating Point Library

This library provides support for floating point types and operations.

Programming Visual Basic .NET

 113

Extended Array Library

This library provides support for multidimensional arrays.

The profiles defined by the CLI at this time are:

Kernel Profile

This profile defines the minimal functionality of any system claimed as an implementation of
the CLI. CLRs that conform to the Kernel Profile must implement the Base Class Library and
the Runtime Infrastructure Library.

Compact Profile

This profile includes the functionality of the Kernel Profile, plus the Network Library, the
Reflection Library, and the XML Library. It is intended that an implementation of the Compact
Profile can be lightweight, yet provide enough functionality to be useful.

Additional profiles will be defined in future versions of the CLI specification. Any given implementation
of the CLI is free to implement more than the functionality specified by these minimal profiles. For
example, a given implementation could support the Compact Profile but also support the Floating
Point Library. The .NET Framework on Windows 2000 supports all the CLI libraries, plus additional
libraries not defined by the CLI.

Note that the CLI does not include such major class libraries as Windows Forms, ASP.NET, and
ADO.NET. These are Microsoft-specific class libraries for developing applications on Windows
platforms. Applications that depend on these libraries will not be portable to other implementations of
the CLI unless Microsoft makes those class libraries available on those other implementations.

3.4 Modules and Assemblies

A module is an .exe or .dll file. An assembly is a set of one or more modules that together make up an
application. If the application is fully contained in an .exe file, fine—that's a one-module assembly. If
the .exe is always deployed with two .dll files and one thinks of all three files as comprising an
inseparable unit, then the three modules together form an assembly, but none of them does so by
itself. If the product is a class library that exists in a .dll file, then that single .dll file is an assembly. To
put it in Microsoft's terms, the assembly is the unit of deployment in .NET.

An assembly is more than just an abstract way to think about sets of modules. When an assembly is
deployed, one (and only one) of the modules in the assembly must contain the assembly manifest,
which contains information about the assembly as a whole, including the list of modules contained in
the assembly, the version of the assembly, its culture, etc. The command-line compiler and the Visual
Studio .NET compiler create single-module assemblies by default. Multiple-module assemblies are not
used in this book.

Assembly boundaries affect type resolution. When a source file is compiled, the compiler must resolve
type names used in the file to the types' definitions. For types that are defined in the same source
project, the compiler gets the definitions from the code it is compiling. For types that are defined
elsewhere, the compiler must be told where to find the definitions. This is done by referencing the
assemblies that contain the compiled type definitions. When the command-line compiler is used, the
/reference switch identifies assemblies containing types used in the project being compiled. An
assembly has the same name as the module that contains the assembly manifest, except for the file
extension. In some cases, however, an assembly is specified by giving the full name of the module
that contains the assembly manifest. For example, to compile an application that uses the
System.Drawing.Point class, you could use the following command line:

vbc MySource.vb /reference:System.Drawing.dll

 114

The documentation for the command-line compiler states that the argument to the reference switch is
an assembly. This is not quite accurate. The argument is the name of the module that contains the
assembly manifest for an assembly.

If more than one assembly needs to be referenced, you can list them all in the same /reference
switch, separated by commas, like this:

vbc MySource.vb /reference:System.Drawing.dll,System.Windows.Forms.dll

The Visual Basic .NET command-line compiler automatically references two assemblies: mscorlib.dll,
which contains most of the types found in the System namespace; and Microsoft.VisualBasic.dll,
which contains the types found in the Microsoft.VisualBasic namespace.

When you're working within the Visual Studio .NET IDE, external assemblies are referenced by doing
the following:

1. In the Solution Explorer window, right-click on References, then click on Add Reference. The
Add Reference dialog box appears, as shown in Figure 3-1.

2. Scroll down to find the desired assembly.
3. Double-click or highlight the assembly name, and press the Select button. The assembly

name appears in the Selected Components frame of the dialog box.
4. Select additional assemblies, or click OK.

Figure 3-1. The Add Reference dialog box

3.4.1 Global Assembly Cache (GAC)

By default, assemblies are not shared. When one assembly is dependent on another, the two
assemblies are typically deployed into a single application directory. This makes it easy to install and
remove an application. To install an application, simply create the application directory and copy the
files into it. To delete the application, just delete the application directory. The Windows Registry is not
used at all.

Programming Visual Basic .NET

 115

If an assembly must be shared among more than one program, either it can be copied into each
appropriate application directory or it can be installed into the global assembly cache (GAC). The GAC
is an area on disk (typically, it's the assembly subdirectory of the Windows directory) that holds
assemblies to be shared among all applications. All of the .NET Framework assemblies reside in the
GAC. (See Figure 3-2 for a partial view of the assemblies in a typical GAC.) Placing an assembly into
the GAC should be avoided if possible: it makes application installation and removal more difficult.
This is because the Windows Installer or gacutil.exe must be used to manipulate the GAC—you can
no longer simply copy or remove the application directory. Installing assemblies into the GAC is not
covered in this book. For information, point your browser to http://msdn.microsoft.com and
perform a search for "Deploying Shared Components."

Figure 3-2. Partial view of a typical GAC

3.4.2 Comparison of Assemblies, Modules, and Namespaces

It's easy to confuse the three concepts of namespace, module, and assembly. Here is a recap:

Namespace

A portion of a type name. Specifically, it is the portion that precedes the final period in a fully
qualified type name.

Module

A file that contains executable code (.exe or .dll).

Assembly

A set of one or more modules that are deployed as a unit. The assembly name is the same as
the name of the module that contains the assembly manifest, minus the filename extension.

Depending on how things are named, it can seem like these three terms are interchangeable. For
example, System.Drawing.dll is the name of a module that is deployed as part of the .NET Framework.

 116

As it happens, this module is part of a single-module assembly. Because assemblies are named after
the module that contains the assembly manifest, the assembly is called System.Drawing. A compiler
will reference this assembly as System.Drawing.dll. Many (but not all) of the types in this assembly
have a namespace of System.Drawing. (Other types in the System.Drawing assembly have
namespaces of System.Drawing.Design, System.Drawing.Drawing2D, System.Drawing.Imaging,
System.Drawing.Printing, and System.Drawing.Text.) Note that even though the namespace, module,
and assembly are similarly named in this case, they are distinct concepts. Note in particular that
importing a namespace and referencing an assembly are different operations with different purposes.
The statement:

Imports System.Drawing

allows the developer to avoid typing the fully qualified names of the types in the System.Drawing
namespace. It does not reference the assembly in which those types are defined. To use the types,
the System.Drawing assembly (contained in the System.Drawing.dll module) must be referenced as
described earlier in this section. The Imports statement was introduced in Chapter 2.

In other cases, namespace and assembly names don't correspond. One example is the System
namespace. Some types with this namespace are found in the mscorlib assembly, and others are
found in the System assembly. In addition, each of those assemblies has types with other
namespaces. For example, the System assembly contains types with the Microsoft.VisualBasic
namespace, even though most of the types with that namespace are found in the
Microsoft.VisualBasic assembly. (The reason for this apparent inconsistency is actually quite sound.
Namespaces group types according to functionality, while assemblies tend to group types according to
which types are most likely to be used together. This improves performance because it minimizes the
number of assemblies that have to be loaded at runtime.)

When thinking about namespaces, just remember that types can have any namespace at all,
regardless of where they're defined—the namespace is just part of the type name.

3.5 Application Domains

Application domains are to the CLR what processes are to an operating system. It may be surprising
to note that the CLR can run multiple .NET applications within a single process, without any contention
or security difficulties. Because the CLR has complete control over loading and executing programs,
and because of the presence of type information, the CLR guarantees that .NET applications cannot
read or write each other's memory, even when running in the same process. Because there is less
performance overhead in switching between application domains than in switching between processes,
this provides a performance gain. This is especially beneficial to web applications running in Internet
Information Services (IIS), where scalability is an issue.

3.6 Common Language Specification (CLS)

The CLI defines a runtime that is capable of supporting most, if not all, of the features found in modern
programming languages. It is not intended that all languages that target the CLR will support all CLR
features. This could cause problems when components written in different languages attempt to
interoperate. The CLI therefore defines a subset of features that are considered compatible across
language boundaries. This subset is called the Common Language Specification (CLS).

Vendors creating components for use by others need to ensure that all externally visible constructs
(e.g., public types, public and protected methods, parameters on public and protected methods, etc.)
are CLS-compliant. This ensures that their components will be usable within a broad array of
languages, including Visual Basic .NET. Developers authoring components in Visual Basic .NET have
an easy job because all Visual Basic .NET code is CLS-compliant (unless the developer explicitly
exposes a public or protected type member or method parameter that is of a non-CLS-compliant type).

Programming Visual Basic .NET

 117

Because Visual Basic .NET automatically generates CLS-compliant components, this book does not
describe the CLS rules. However, to give you a sense of the kind of thing that the CLS specifies,
consider that some languages support a feature called operator overloading . This allows the
developer to specify actions that should be taken if the standard operator symbols (+, -, *, /, =, etc.)
are used on user-defined classes. Because it is not reasonable to expect that all languages should
implement such a feature, the CLS has a rule about it. The rule states that if a CLS-compliant
component has public types that provide overloaded operators, those types must provide access to
that functionality in another way as well (usually by providing a public method that performs the same
operation).

3.7 Intermediate Language (IL) and Just-In-Time (JIT) Compilation

All compilers that target the CLR compile source code to Intermediate Language (IL), also known as
Common Intermediate Language (CIL). IL is a machine language that is not tied to any specific
machine. Microsoft designed it from scratch to support the CLI's programming concepts. The CLI
specifies that all CLR implementations can compile or interpret IL on the machine on which the CLR is
running. If the IL is compiled (versus interpreted), compilation can occur at either of two times:

• Immediately prior to a method in the application being executed
• At deployment time

In the first case, each method is compiled only when it is actually needed. After the method is
compiled, subsequent calls bypass the compilation mechanism and call the compiled code directly.
The compiled code is not saved to disk, so if the application is stopped and restarted, the compilation
must occur again. This is known as just-in-time (JIT) compilation and is the most common scenario.

In the second case, the application is compiled in its entirety at deployment time.

IL is saved to .exe and .dll files. When such a file containing IL is executed, the CLR knows how to
invoke the JIT compiler and execute the resulting code.

Note that on the Microsoft Windows platforms, IL is always compiled—never interpreted.

3.8 Metadata

Source code consists of some constructs that are procedural in nature and others that are declarative
in nature. An example of a procedural construct is:

someObject.SomeMember = 5

This is procedural because it compiles into executable code that performs an action at runtime.
Namely, it assigns the value 5 to the SomeMember member of the someObject object.

In contrast, here is a declarative construct:

Dim someObject As SomeClass

This is declarative because it doesn't perform an action. It states that the symbol someObject is a
variable that holds a reference to an object of type SomeClass.

In the past, declarative information typically was used only by the compiler and did not compile directly
into the executable. In the CLR, however, declarative information is everything! The CLR uses type
and signature information to ensure that memory is always referenced in a safe way. The JIT compiler
uses type and signature information to resolve method calls to the appropriate target code at JIT
compile time. The only way for this to work is for this declarative information to be included alongside
its associated procedural information. Compilers that target the CLR therefore store both procedural

 118

and declarative information in the resulting .exe or .dll file. The procedural information is stored as IL,
and the declarative information is stored as metadata. Metadata is just the CLI's name for declarative
information.

The CLI has a mechanism that allows programmers to include arbitrary metadata in compiled
applications. This mechanism is known as custom attributes and is available in Visual Basic .NET.
Custom attributes were discussed in detail in Chapter 2.

3.9 Memory Management and Garbage Collection

In any object-oriented programming environment, there arises the need to instantiate and destroy
objects. Instantiated objects occupy memory. When objects are no longer in use, the memory they
occupy should be reclaimed for use by other objects. Recognizing when objects are no longer being
used is called lifetime management, which is not a trivial problem. The solution the CLR uses has
implications for the design and use of the components you write, so it is worth understanding.

In the COM world, the client of an object notified the object whenever a new object reference was
passed to another client. Conversely, when any client of an object was finished with it, the client
notified the object of that fact. The object kept track of how many clients had references to it. When
that count dropped to zero, the object was free to delete itself (that is, give its memory back to the
memory heap). This method of lifetime management is known as reference counting. Visual Basic
programmers were not necessarily aware of this mechanism because the Visual Basic compiler
automatically generated the low-level code to perform this housekeeping. C++ developers had no
such luxury.

Reference counting has some drawbacks:

• A method call is required every time an object reference is copied from one variable to another
and every time an object reference is overwritten.

• Difficult-to-track bugs can be introduced if the reference-counting rules are not precisely
followed.

• Care must be taken to ensure that circular references are specially treated (because circular
references can result in objects that never go away).

The CLR mechanism for lifetime management is quite different. Reference counting is not used.
Instead, the memory manager keeps a pointer to the address at which free memory (known as the
heap) starts. To satisfy a memory request, it just hands back a copy of the pointer and then
increments the pointer by the size of the request, leaving it in a position to satisfy the next memory
request. This makes memory allocation very fast. No action is taken at all when an object is no longer
being used. As long as the heap doesn't run out, memory is not reclaimed until the application exits. If
the heap is large enough to satisfy all memory requests during program execution, this method of
memory allocation is as fast as is theoretically possible, because the only overhead is incrementing
the heap pointer on memory allocations.

If the heap runs out of memory, there is more work to do. To satisfy a memory request when the heap
is exhausted, the memory manager looks for any previously allocated memory that can be reclaimed.
It does this by examining the application variables that hold object references. The objects that these
variables reference (and therefore the associated memory) are considered in use because they can be
reached through the program's variables. Furthermore, because the runtime has complete access to
the application's type information, the memory manager knows whether the objects contain members
that reference other objects, and so on. In this way, the memory manager can find all of the memory
that is in use. During this process, it consolidates the contents of all this memory into one contiguous
block at the start of the heap, leaving the remainder of the heap free to satisfy new memory requests.
This process of freeing up memory is known as garbage collection (GC), a term that also applies to
this overall method of lifetime management. The portion of the memory manager that performs
garbage collection is called the garbage collector.

The benefits of garbage collection are:

Programming Visual Basic .NET

 119

• No overhead is incurred unless the heap becomes exhausted.
• It is impossible for applications to cause memory leaks.
• The application need not be careful with circular references.

Although the process of garbage collection is expensive (on the order of a fraction of a second when it
occurs), Microsoft claims that the total overhead of garbage collection is on average much less than
the total overhead of reference counting (as shown by their benchmarks). This, of course, is highly
dependent on the exact pattern of object allocation and deallocation that occurs in any given program.

3.9.1 Finalize

Many objects require some sort of cleanup (i.e., finalization) when they are destroyed. An example
might be a business object that maintains a connection to a database. When the object is no longer in
use, its database connection should be released. The .NET Framework provides a way for objects to
be notified when they are about to be released, thus permitting them to release nonmemory resources.
(Memory resources held by the object can be ignored because they will be handled automatically by
the garbage collector.) Here's how it works: the Object class (defined in the System namespace) has a
method called Finalize that can be overridden. Its default implementation does nothing. If it is
overridden in a derived class, however, the garbage collector automatically calls it on an instance of
that class when that instance is about to be reclaimed. Here's an example of overriding the Finalize
method:

Public Class SomeClass
 Protected Overrides Sub Finalize()
 ' Release nonmanaged resources here.
 MyBase.Finalize() ' Important
 End Sub
End Class

The Finalize method should release any nonmanaged resources that the object has allocated.
Nonmanaged resources are any resources other than memory (for example, database connections,
file handles, or other OS handles). In contrast, managed resources are object references. As already
mentioned, it is not necessary to release managed resources in a Finalize method—the garbage
collector will handle it. After releasing resources allocated by the class, the Finalize method must
always call the base class's Finalize implementation so that it can release any resources allocated by
base-class code. If the class is derived directly from the Object class, technically this could be omitted
(because the Object class's Finalize method doesn't do anything). However, calling it doesn't hurt
anything, and it's a good habit to get into.

An object's Finalize method should not be called by application code. The Finalize method has special
meaning to the CLR and is intended to be called only by the garbage collector. If you're familiar with
destructors in C++, you'll recognize that the Finalize method is the identical concept. The only
difference between the Finalize method and C++ destructors is that C++ destructors automatically call
their base class destructors, whereas in Visual Basic .NET, the programmer must remember to put in
the call to the base class's Finalize method. It is interesting to note that C#—another language on
the .NET platform—actually has destructors (as C++ does), but they are automatically compiled into
Finalize methods that work as described here.

3.9.2 Dispose

The downside of garbage collection and the Finalize method is the loss of deterministic finalization .
With reference counting, finalization occurs as soon as the last reference to an object is released (this
is deterministic because object finalization is controlled by program flow). In contrast, an object in a
garbage-collected system is not destroyed until garbage collection occurs or until the application exits.
This is nondeterministic because the program has no control over when it happens. This is a problem
because an object that holds scarce resources (such as a database connection) should free those
resources as soon as the object is no longer needed. If this is not done, the program may run out of
such resources long before it runs out of memory.

 120

Unfortunately, no one has discovered an elegant solution to this problem. Microsoft does have a
recommendation, however. Objects that hold nonmanaged resources should implement the
IDisposable interface (defined in the System namespace). The IDisposable interface exposes a
single method, called Dispose, which takes no parameters and returns no result. Calling it tells the
object that it is no longer needed. The object should respond by releasing all the resources it holds,
both managed and nonmanaged, and should call the Dispose method on any subordinate objects that
also expose the IDisposable interface. In this way, scarce resources are released as soon as they
are no longer needed.

This solution requires that the user of an object keep track of when it is done with the object. This is
often trivial, but if there are multiple users of an object, it may be difficult to know which user should
call Dispose. At the time of this writing, it is simply up to the programmer to work this out. In a sense,
the Dispose method is an alternate destructor to address the issue of nondeterministic finalization
when nonmanaged resources are involved. However, the CLR itself never calls the Dispose method. It
is up to the client of the object to call the Dispose method at the appropriate time, based on the client's
knowledge of when it is done using the object. This implies responsibilities for both the class author
and client author. The class author must document the presence of the Dispose method so that the
client author knows that it's necessary to call it. The client author must make an effort to determine
whether any given class has a Dispose method and, if so, to call it at the appropriate time.

Even when a class exposes the IDisposable interface, it should still override the Finalize method,
just in case the client neglects to call the Dispose method. This ensures that nonmanaged resources
are eventually released, even if the client forgets to do it. A simple (but incomplete) technique would
be to place a call to the object's Dispose method in its Finalize method, like this:

' Incomplete solution. Don't do this.
Public Sub Dispose() Implements IDisposable.Dispose
 ' Release resources here.
End Sub

Protected Overrides Sub Finalize()
 Dispose()
 MyBase.Finalize()
End Sub

In this way, if the client of the object neglects to call the Dispose method, the object itself will do so
when the garbage collector destroys it. Microsoft recommends that the Dispose method be written so it
is not an error to call it more than once. This way, even if the client calls it at the correct time, it's OK
for it to be called again in the Finalize method.

If the object holds references to other objects that implement the IDisposable interface, the code
just shown may cause a problem. This is because the order of object destruction is not guaranteed.
Specifically, if the Finalize method is executing, it means that garbage collection is occurring. If the
object holds references to other objects, the garbage collector may have already reclaimed those
other objects. If the object attempts to call the Dispose method on a reclaimed object, an error will
occur. This situation exists only during the call to Finalize—if the client calls the Dispose method,
subordinate objects will still be there. (They can't have been reclaimed by the garbage collector
because they are reachable from the application's code.)

To resolve this race condition, it is necessary to take slightly different action when finalizing than when
disposing. Here is the modified code:

Public Sub Dispose() Implements IDisposable.Dispose
 DisposeManagedResources()
 DisposeUnmanagedResources()
End Sub

Protected Overrides Sub Finalize()
 DisposeUnmanagedResources()

Programming Visual Basic .NET

 121

 MyBase.Finalize()
End Sub

Private Sub DisposeManagedResources()
 ' Call subordinate objects' Dispose methods.
End Sub

Private Sub DisposeUnmanagedResources()
 ' Release unmanaged resources, such as database connections.
End Sub

Here, the Finalize method only releases unmanaged resources. It doesn't worry about calling the
Dispose method on any subordinate objects, assuming that if the subordinate objects are also
unreachable, they will be reclaimed by the garbage collector and their finalizers (and hence their
Dispose methods) will run.

An optimization can be made to the Dispose method. When the Dispose method is called by the client,
there is no longer any reason for the Finalize method to be called when the object is destroyed.
Keeping track of and calling objects' Finalize methods imposes overhead on the garbage collector. To
remove this overhead for an object with its Dispose method called, the Dispose method should call the
SuppressFinalize shared method of the GC class, like this:

Public Sub Dispose() Implements IDisposable.Dispose
 DisposeManagedResources()
 DisposeUnmanagedResources()
 GC.SuppressFinalize(Me)
End Sub

The type designer must decide what will occur if the client attempts to use an object after calling its
Dispose method. If possible, the object should automatically reacquire its resources. If this is not
possible, the object should throw an exception. Example 3-1 shows the latter.

Example 3-1. A complete Finalize/Dispose example
Public Class SomeClass
 Implements IDisposable

 ' This member keeps track of whether the object has been disposed.
 Private disposed As Boolean = False

 ' The Dispose method releases the resources held by the object.
 ' It must be called by the client when the client no longer needs
 ' the object.
 Public Sub Dispose() Implements IDisposable.Dispose
 If Not disposed Then
 DisposeManagedResources()
 DisposeUnmanagedResources()
 GC.SuppressFinalize(Me)
 disposed = True
 End If
 End Sub

 ' The Finalize method releases nonmanaged resources in the case
 ' that the client neglected to call Dispose. Because of the
 ' SuppressFinalize call in the Dispose method, the Finalize method
 ' will be called only if the Dispose method is not called.
 Protected Overrides Sub Finalize()
 DisposeUnmanagedResources()
 MyBase.Finalize()
 End Sub

 122

 Private Sub DisposeManagedResources()
 ' Call subordinate objects' Dispose methods.
 End Sub

 Private Sub DisposeUnmanagedResources()
 ' Release unmanaged resources, such as database connections.
 End Sub

 Private Sub DoSomething()
 ' Call the EnsureNotDisposed method at the top of every method that
 ' needs to access the resources held by the object.
 EnsureNotDisposed()
 ' ...
 End Sub

 Private Sub EnsureNotDisposed()
 ' Make sure that the object hasn't been disposed.
 ' Instead of throwing an exception, this method could be written
 ' to reacquire the resources that are needed by the object.
 If disposed Then
 Throw New ObjectDisposedException(Me.GetType().Name)
 End If
 End Sub

End
 Class

3.10 A Brief Tour of the .NET Framework Namespaces

The .NET Framework provides a huge class library—something on the order of 6,000 types. To help
developers navigate though the huge hierarchy of types, Microsoft has divided them into namespaces.
However, even the number of namespaces can be daunting. Here are the most common namespaces
and an overview of what they contain:

Microsoft.VisualBasic

Runtime support for applications written in Visual Basic .NET. This namespace contains the
functions and procedures included in the Visual Basic .NET language.

Microsoft.Win32

Types that access the Windows Registry and provide access to system events (such as low
memory, changed display settings, and user logout).

System

Core system types, including:

• Implementations for Visual Basic .NET's fundamental types (see "Types" in Chapter
2 for a list of fundamental types and the .NET classes that implement them).

• Common custom attributes used throughout the .NET Framework class library (see
Appendix A), as well as the Attribute class, which is the base class for most
(although not all) custom attributes in .NET applications.

• Common exceptions used throughout the .NET Framework class library (see
Appendix B), as well as the Exception class, which is the base class for all
exceptions in .NET applications.

Programming Visual Basic .NET

 123

• The Array class, which is the base class from which all Visual Basic .NET arrays
implicitly inherit.

• The Convert class, which contains methods for converting values between various
types.

• The Enum class, from which all enumerations implicitly derive.
• The Delegate class, from which all delegates implicitly derive.
• The Math class, which has many shared methods for performing common

mathematical functions (e.g., Abs, Min, Max, Sin, and Cos). This class also defines
two constant fields, E and PI, that give the values of the numbers e and pi,
respectively, within the precision of the Double data type.

• The Random class, for generating pseudorandom numbers.
• The Version class, which encapsulates version information for .NET assemblies.

System.CodeDom

Types for automatically generating source code (used by tools such as the wizards in Visual
Studio .NET and by the ASP.NET page compiler).

System.Collections

Types for managing collections, including:

ArrayList

Indexed like a single-dimensional array and iterated like an array, but much more flexible than
an array. With an ArrayList, it is possible to add elements without having to worry about the
size of the list (the list grows automatically as needed), insert and remove elements anywhere
in the list, find an element's index given its value, and sort the elements in the list.

BitArray

Represents an array of bits. Each element can have a value of True or False. The BitArray
class defines a number of bitwise operators that operate on the entire array at once.

Hashtable

Represents a collection of key/value pairs. Both the key and value can be any object.

Queue

Represents a queue, which is a first-in-first-out (FIFO) list.

SortedList

Like a Hashtable, represents a collection of key/value pairs. When enumerated, however, the
items are returned in sorted key order. In addition, items can be retrieved by index, which the
Hashtable cannot do. Not surprisingly, SortedList operations can be slower than comparable
Hashtable operations because of the increased work that must be done to keep the structure
in sorted order.

Stack

Represents a stack, which is a last-in-first-out (LIFO) list.

 124

Be aware that in addition to these types, there is also the Array type, defined in the System
namespace, and the Collection type, defined in the Microsoft.VisualBasic namespace. The
latter is a collection type that mimics the behavior of Visual Basic 6 collection objects.

System.ComponentModel

Support for building components that can be added to Windows Forms and Web Forms.

System.Configuration

Support for reading and writing program configuration.

System.Data

Support for data access. The types in this namespace constitute ADO.NET.

System.Diagnostics

Support for debugging and tracing.

System.Drawing

Graphics-drawing support.

System.EnterpriseServices

Transaction-processing support.

System.Globalization

Internationalization support.

System.IO

Support for reading and writing streams and files.

System.Net

Support for communicating over networks, including the Internet.

System.Reflection

Support for runtime type discovery.

System.Resources

Support for reading and writing program resources.

System.Security

Support for accessing and manipulating security information.

System.ServiceProcess

Types for implementing system services.

Programming Visual Basic .NET

 125

System.Text

Types for manipulating text and strings.

Note in particular the StringBuilder type. When strings are built from smaller parts, the
methods on the StringBuilder class are more efficient than similar methods on the String class.
This is because the instances of the String class can't be modified in place; every time a
change is made to a String object, a new String object is actually created to hold the new
value. In contrast, the methods in StringBuilder that modify the string actually modify the string
in place.

System.Threading

Support for multithreaded programming.

System.Timers

Provides the Timer class, which can generate an event at predetermined intervals. This
addresses one of the limitations of the Visual Basic 6 Timer control: it had to be hosted in a
container and therefore could be used only in an application with a user interface.

System.Web

Support for building web applications. The types in this namespace constitute Web Forms and
ASP.NET.

System.Windows.Forms

Support for building GUI (fat client) applications. The types in this namespace constitute
Windows Forms.

System.Xml

Support for parsing, generating, transmitting, and receiving XML.

3.11 Configuration

System and application configuration is managed by XML files with a .config extension. Configuration
files exist at both the machine and application level. There is a single machine-level configuration file,
located at runtime_install_path\CONFIG\machine.config. For example,
C:\WINNT\Microsoft.NET\Framework\v1.0.2914\CONFIG\machine.config. Application-configuration
files are optional. When they exist, they reside in the application's root folder and are named
application_file_name.config. For example, myApplication.exe.config. Web application-
configuration files are always named web.config. They can exist in the web application's root folder
and in subfolders of the application. Settings in subfolders' configuration files apply only to pages
retrieved from the same folder and its child folders and override settings from configuration files in
higher-level folders.

Configuration files should be used for all application-configuration information; the Windows Registry
should no longer be used for application settings.

3.11.1 Configuration File Format

Configuration files are XML documents, where the root element is <configuration>. For example:

 126

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
 <!-- More stuff goes in here. -->
</configuration>

To be as flexible as possible, .NET configuration files use a scheme in which the application developer
can decide on the names of the subelements within the <configuration> element. This is done
using the <configSections>, <section>, and <sectionGroup> elements. Example 3-2 shows
how this is done using the <configSections> and <section> elements; the <sectionGroup>
element is discussed later in this section.

Example 3-2. Defining a section in a configuration file
<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <configSections>
 <section
 name="mySectionName"
 type="System.Configuration.SingleTagSectionHandler" />
 </configSections>

 <mySectionName
 someSetting="SomeValue"
 anotherSetting="AnotherValue" />

</configuration>

The name attribute of the <section> element specifies the name of an element that will (or could)
appear later in the file. The type attribute specifies the name of a configuration section handler, which
is a class that knows how to read an XML section that's formatted in a particular way. The .NET
Framework provides stock configuration section handlers (notably the SingleTagSectionHandler and
the NameValueSectionHandler classes, both of which will be discussed later in this section), which are
sufficient for the majority of cases. Although it's beyond the scope of this book, a custom configuration
section handler can be created by writing a class that implements the
IConfigurationSectionHandler interface.

The SingleTagSectionHandler configuration section handler reads XML sections that are of the form:

<sectionName key1Name="Value1" key2Name="Value2" etc... />

The element can contain any number of key/value pairs.

The configuration section handler class is not used directly in code. To read information from an
application's configuration file, use the GetConfig method in the ConfigurationSettings class (defined in
the System.Configuration namespace). The syntax of the GetConfig method is:

Public Shared Function GetConfig(ByVal
sectionName As String) As Object

Here's how the mechanism works (an example will follow):

1. The application calls the GetConfig method, passing it the name of the configuration section
that is to be read.

2. Internally, the GetConfig method instantiates the configuration section handler class that is
appropriate for reading that section. (Recall that it is the values found in the

Programming Visual Basic .NET

 127

<configSections> portion of the configuration file that identify the appropriate configuration
section handler class to use.)

3. The Create method of the configuration section handler is called and is passed the XML from
the requested configuration section.

4. The configuration section handler's Create method returns an object containing the values
read from the configuration section.

5. The object returned from the Create method is passed back to the caller of the GetConfig
method.

The type of object returned from GetConfig is determined by the specific configuration section handler
that handles the given configuration section. The caller of the GetConfig method must have enough
information about the configuration section handler to know how to use the object that is returned. Two
stock configuration section handlers—and the objects they create—will be discussed in this section.

Example 3-3 shows how to read the configuration file shown in Example 3-2. To run this example,
do the following:

1. Create a new directory for the application.
2. Save the code from Example 3-3 into a file named ConfigurationTest.vb.
3. Compile the code with this command line:

vbc ConfigurationTest.vb /reference:System.dll

The reference to the System assembly is required because the System assembly contains the
definition of the ConfigurationSettings class.

The compiler creates an executable file named ConfigurationTest.exe.

4. Save the configuration file from Example 3-2 into a file named ConfigurationTest.exe.config.
Run the executable from the command prompt. The application prints the configuration values
to the command window.

Example 3-3. Reading the configuration file shown in Example 3-2
Imports System
Imports System.Collections
Imports System.Configuration

Public Module SomeModule

 Public Sub Main()

 Dim cfg As Hashtable
 Dim strSomeSetting As String
 Dim strAnotherSetting As String

 cfg = CType(ConfigurationSettings.GetConfig("mySectionName"), _
 Hashtable)
 If Not (cfg Is Nothing) Then
 strSomeSetting = CType(cfg("someSetting"), String)
 strAnotherSetting = CType(cfg("anotherSetting"), String)
 End If

 Console.WriteLine(strSomeSetting)
 Console.WriteLine(strAnotherSetting)

 End Sub

End Module

 128

To read the configuration settings, the code in Example 3-3 calls the GetConfig method of the
ConfigurationSettings class. The SingleTagSectionHandler configuration section handler creates a
Hashtable object (defined in the System.Collections namespace) to hold the key/value pairs found in
the configuration file. That is why the code in Example 3-3 calls the CType function to convert the
reference returned by the GetConfig method to a Hashtable reference. After that is done, the code can
do anything appropriate for a Hashtable object, including retrieving specific values by key (as shown in
Example 3-3) or iterating through the Hashtable object's items. Also note that because Hashtable
objects store values of type Object, the object references retrieved from the Hashtable have to be
converted to the appropriate reference type, which in this case is String. The Visual Basic CStr
function could have been used here, although in this case the Visual Basic CType function is called
instead.

The application does not specify the name of the configuration file in which to look for the configuration
information. The system automatically looks in the application_file_name.config file found in the
application's directory. If the requested section is not found in that file, the system automatically looks
for it in the machine-configuration file.

Another stock configuration section handler is the NameValueSectionHandler class. This handler also
reads key/value pairs, but in a different format. Example 3-4 is the same as Example 3-2, but
rewritten to use NameValueSectionHandler.

Example 3-4. Using the NameValueSectionHandler configuration section
handler
<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <configSections>
 <section
 name="mySectionName"
 type="System.Configuration.NameValueSectionHandler" />
 </configSections>

 <mySectionName>
 <add key="someSetting" value="SomeValue" />
 <add key="anotherSetting" value="AnotherValue" />
 </mySectionName>

</configuration>

Example 3-5 shows the code that reads this configuration section.

Example 3-5. Reading the configuration file shown in Example 3-4
Imports System
Imports System.Collections.Specialized
Imports System.Configuration

Public Module SomeModule

 Public Sub Main()

 Dim cfg As NameValueCollection
 Dim strSomeSetting As String
 Dim strAnotherSetting As String

 cfg = CType(ConfigurationSettings.GetConfig("mySectionName"), _
 NameValueCollection)
 If Not (cfg Is Nothing) Then

Programming Visual Basic .NET

 129

 strSomeSetting = CType(cfg("someSetting"), String)
 strAnotherSetting = CType(cfg("anotherSetting"), String)
 End If

 Console.WriteLine(strSomeSetting)
 Console.WriteLine(strAnotherSetting)

 End Sub

End Module

The main difference to note in Example 3-5 is that the NameValueSectionHandler creates an object
of type NameValueCollection (defined in the System.Collections.Specialized namespace).

3.11.2 Configuration Section Groups

If application-configuration information is to be stored in the machine-configuration file, it is a good
idea to introduce configuration section groups into the picture. (Recall that if the runtime doesn't find
the requested section in the application-configuration file, it automatically looks for it in the machine-
configuration file.) This simply groups an application's settings into an enclosing group element in the
configuration file, so that the contained elements won't potentially conflict with like-named elements for
other applications. Example 3-6 shows how to introduce a section group. It is identical to the
configuration file shown in Example 3-2, except that a section group is defined.

Example 3-6. Creating a section group
<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <configSections>
 <sectionGroup name="myGroupName">
 <section
 name="mySectionName"
 type="System.Configuration.SingleTagSectionHandler" />
 </sectionGroup>
 </configSections>

 <myGroupName>
 <mySectionName
 someSetting="SomeValue"
 anotherSetting="AnotherValue" />
 </myGroupName>

</configuration>

Example 3-7 shows how to read this configuration file in code.

Example 3-7. Reading the configuration file shown in Example 3-6
Imports System
Imports System.Collections
Imports System.Configuration

Public Module SomeModule

 Public Sub Main()

 Dim cfg As Hashtable
 Dim strSomeSetting As String

 130

 Dim strAnotherSetting As String

 cfg = CType(_
 ConfigurationSettings.GetConfig("myGroupName/mySectionName"), _
 Hashtable)
 If Not (cfg Is Nothing) Then
 strSomeSetting = CType(cfg("someSetting"), String)
 strAnotherSetting = CType(cfg("anotherSetting"), String)
 End If

 Console.WriteLine(strSomeSetting)
 Console.WriteLine(strAnotherSetting)

 End Sub

End Module

The only difference between Example 3-7 and Example 3-3 is the path-style syntax in Example 3-
7 used to specify the section name: "myGroupName/mySectionName". Group definitions can be
nested, if desired.

3.11.3 The <appSettings> Section

Most applications just need a simple way to store key/value pairs. To support this, the machine.config
file contains a predefined section definition called <appSettings>. It is always legal to include an
<appSettings> section in any configuration file. The configuration section handler for the
<appSettings> section is the NameValueSectionHandler class, so the section should be in this form:

<appSettings>
 <add key="setting1" value="value1" />
 <add key="setting2" value="value2" />
 <add key="setting3" value="value3" />
</appSettings>

Although the <appSettings> section can be read using the GetConfig method just like any other
section, the ConfigurationSettings class has a property that is specifically intended to assist with
reading the <appSettings> section. The read-only AppSettings property of the
ConfigurationSettings class returns a NameValueCollection object that contains the key/value pairs
found in the <appSettings> section. Example 3-8 shows how to read the settings shown in the
previous code listing.

Example 3-8. Reading the <appSettings> section
Imports System
Imports System.Collections.Specialized
Imports System.Configuration

Public Module SomeModule

 Public Sub Main()

 Dim cfg As NameValueCollection
 Dim strSetting1 As String
 Dim strSetting2 As String
 Dim strSetting3 As String

 cfg = CType(ConfigurationSettings.AppSettings, NameValueCollection)
 If Not (cfg Is Nothing) Then
 strSetting1 = CType(cfg("setting1"), String)

Programming Visual Basic .NET

 131

 strSetting2 = CType(cfg("setting2"), String)
 strSetting3 = CType(cfg("setting3"), String)
 End If

 Console.WriteLine(strSetting1)
 Console.WriteLine(strSetting2)
 Console.WriteLine(strSetting3)

 End Sub

End Module

The name/value pairs in the <appSettings> section are developer-defined. The CLR doesn't
attribute any intrinsic meaning to any particular name/value pair.

3.12 Summary

The .NET Framework is a broad and deep new foundation for application development. At its core is a
runtime that provides services that were previously found in compiler libraries. This runtime eliminates
the application's need to possess knowledge of the underlying operating system and hardware, while
providing performance on par with natively compiled code.

 132

Programming Visual Basic .NET

 133

Chapter 4. Windows Forms I: Developing Desktop
Applications

Windows Forms is a set of classes that encapsulates the creation of the graphical user interface (GUI)
portion of a typical desktop application. Previously, each programming language had its own way of
creating windows, text boxes, buttons, etc. This functionality has all been moved into the .NET
Framework class library—into the types located in the System.Windows.Forms namespace. Closely
related is the System.Drawing namespace, which contains several types used in the creation of GUI
applications. The capabilities provided by the types in the System.Drawing namespace are commonly
referred to as GDI+ (discussed more fully later in this chapter).

In this chapter, we'll examine the form (or window) as the central component in a classic desktop
application. We'll look at how forms are programmatically created and how they're hooked to events.
We'll also examine how multiple forms in a single application relate to one another and how you
handle forms in an application that has one or more child forms. Finally, we'll discuss two topics,
printing and 2-D graphics, that are relevant to desktop application development.

4.1 Creating a Form

The easiest way to design a form is to use the Windows Forms Designer in Visual Studio .NET. The
developer can use visual tools to lay out the form, with the designer translating the layout into Visual
Basic .NET source code. If you don't have Visual Studio .NET, you can write the Visual Basic .NET
code directly and not use the designer at all. This section will demonstrate both methods.

Programmatically, a form is defined by deriving a class from the Form class (defined in
System.Windows.Forms). The Form class contains the know-how for displaying an empty form,
including its title bar and other amenities that we expect from a Windows form. Adding members to the
new class and overriding members inherited from the Form class add visual elements and behavior to
the new form.

4.1.1 Creating a Form Using Visual Studio .NET

To create a GUI application in Visual Studio .NET:

1. Select File New Project. The New Project dialog box appears, as shown in Figure 4-1.

Figure 4-1. The New Project dialog box

 134

2. Select Visual Basic Projects in the Project Types pane on the left side of the dialog box.
3. Select Windows Application in the Templates pane on the right side of the dialog box.
4. Enter a name in the Name text box.
5. Click OK. Visual Studio .NET creates a project with a form in it and displays the form in a

designer, as shown in Figure 4-2.

Figure 4-2. The Windows Forms Designer

Programming Visual Basic .NET

 135

To see the code created by the form Windows Forms Designer, right-click on the form, then select
View Code. Doing this for the blank form shown in Figure 4-2 reveals the code shown here:

Public Class Form1
 Inherits System.Windows.Forms.Form

 Windows Form Designer generated code

End Class

This shows the definition of a class named Form1 that inherits from the Form class. The Windows
Forms Designer also creates a lot of boilerplate code that should not be modified by the developer. By
default, it hides this code from view. To see the code, click on the "+" symbol that appears to the left of
the line that says "Windows Form Designer generated code." Doing so reveals the code shown in
Example 4-1.

Example 4-1. The Windows Forms Designer-generated code for a blank
form
Public Class Form1
 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.Container

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()
 components = New System.ComponentModel.Container()
 Me.Text = "Form1"
 End Sub

#End Region

End Class

 136

The Windows Forms Designer autogenerates the code for four class members:

New method (the class constructor)

The constructor calls the base class's constructor and then invokes the InitializeComponent
method. Developer-supplied initialization code should follow the call to InitializeComponent.
After the constructor is generated, the designer doesn't touch it again.

Dispose method

The Dispose method is where the object gets rid of any expensive resources. In this case, it
calls the base class's Dispose method to give it a chance to release any expensive resources
that it may hold, then it calls the components field's Dispose method. (For more on the
components field, see the next item.) This in turn calls the Dispose methods on each
individual component in the collection. If the derived class uses any expensive resources, the
developer should add code here to release them. When a form is no longer needed, all code
that uses the form should call the form's Dispose method. After the Dispose method is
generated, the designer doesn't touch it again.

Components field

The components field is an object of type IContainer (defined in the System.ComponentModel
namespace). The designer-generated code uses the components field to manage finalization
of components that may be added to a form (for example, the Timer component).

InitializeComponent method

The code in this method should not be modified or added to by the developer in any way. The
Windows Forms Designer automatically updates it as needed. When controls are added to the
form using the designer, code is added to this method to instantiate the controls at runtime
and set their initial properties. Note also in Example 4-1 that properties of the form itself
(such as Text and Name) are initialized in this method.

One thing missing from this class definition is a Main method. Recall from Chapter 2 that .NET
applications must expose a public, shared Main method. This method is called by the CLR when an
application is started. So why doesn't the designer-generated form include a Main method? It's
because the Visual Basic .NET compiler in Visual Studio .NET automatically creates one as it
compiles the code. In other words, the compiled code has a Main method in it even though the source
code does not. The Main method in the compiled code is a member of the Form1 class and is
equivalent to this:

<System.STAThreadAttribute()> Public Shared Sub Main()
 System.Threading.Thread.CurrentThread.ApartmentState = _
 System.Threading.ApartmentState.STA
 System.Windows.Forms.Application.Run(New Form1())
End Sub

Note that the Visual Basic .NET command-line compiler doesn't automatically generate the Main
method. This method must appear in the source code if the command-line compiler is to be used.

The next steps in designing the form are to name the code file something meaningful and to set some
properties on the form, such as the title-bar text. To change the name of the form's code file, right-click
on the filename in the Solution Explorer window and select Rename. If you're following along with this
example, enter HelloWindows.vb as the name of the file.

Programming Visual Basic .NET

 137

Changing the name of the file doesn't change the name of the class. To change the name of the class,
right-click the form in the designer and choose Properties. In the Properties window, change the value
of the Name property. For this example, change the name to "HelloWindows".

To change the form's caption, set the form's Text property to a new value. Set the Text property in this
example to "Programming Visual Basic .NET".

Next, controls can be added to the form from the Visual Studio .NET toolbox. To display the toolbox,
select View Toolbox from the Visual Studio .NET main menu. For this example, double-click on the
Label control in the toolbox to add a Label control on the form. Use the Properties window to change
the label's Text property to "Hello, Windows!" and its Font property to Arial 24pt.

Next, double-click on the Button control in the toolbox to add a Button control to the form. Use the
Properties window to change the button's Name property to "OkButton" and its Text property to "OK".

Finally, position the controls as desired, size the Label control and the form to be appealing, and set
the form's FormBorderStyle property to "FixedToolWindow". The resulting form should look something
like the one shown in Figure 4-3.

Figure 4-3. A form with controls

Press the F5 key to build and run the program. The result should look something like Figure 4-4.

Figure 4-4. Hello, Windows!, as created by the Windows Forms Designer

The code generated by the designer is shown in Example 4-2.

Example 4-2. Hello, Windows! code, as generated by the Windows Forms
Designer

 138

Public Class HelloWindows
 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub
 Friend WithEvents Label1 As System.Windows.Forms.Label
 Friend WithEvents OkButton As System.Windows.Forms.Button

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.Container

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()
 Me.Label1 = New System.Windows.Forms.Label()
 Me.OkButton = New System.Windows.Forms.Button()
 Me.SuspendLayout()
 '
 'Label1
 '
 Me.Label1.Font = New System.Drawing.Font("Arial", 24!, _
 System.Drawing.FontStyle.Regular, _
 System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label1.Location = New System.Drawing.Point(8, 8)
 Me.Label1.Name = "Label1"
 Me.Label1.Size = New System.Drawing.Size(264, 48)
 Me.Label1.TabIndex = 0
 Me.Label1.Text = "Hello, Windows!"
 '
 'OkButton
 '
 Me.OkButton.Location = New System.Drawing.Point(280, 16)
 Me.OkButton.Name = "OkButton"
 Me.OkButton.TabIndex = 1
 Me.OkButton.Text = "OK"
 '
 'HelloWindows
 '
 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
 Me.ClientSize = New System.Drawing.Size(362, 58)

Programming Visual Basic .NET

 139

 Me.Controls.AddRange(New System.Windows.Forms.Control() _
 {Me.OkButton, Me.Label1})
 Me.FormBorderStyle = _
 System.Windows.Forms.FormBorderStyle.FixedToolWindow
 Me.Name = "HelloWindows"
 Me.Text = "Programming Visual Basic .NET"
 Me.ResumeLayout(False)

 End Sub

#End Region

End Class

Note that the designer made the following modifications to the code:

• Two Friend fields were added to the class, one for each of the controls that were added to the
form:

• Friend WithEvents Label1 As System.Windows.Forms.Label
Friend WithEvents OkButton As System.Windows.Forms.Button

The Friend keyword makes the members visible to other code within the project, but it hides
them from code running in other assemblies.

The WithEvents keyword allows the HelloWindows class to handle events generated by the
controls. In the code shown, no event handlers have been added yet, but you'll see how to do
that later in this section.

Note that the field names match the control names as shown in the Properties window.

• Code was added to the InitializeComponent method to instantiate the two controls and assign
their references to the member fields:

• Me.Label1 = New System.Windows.Forms.Label()
Me.OkButton = New System.Windows.Forms.Button()

• Code was added to the InitializeComponent method to set various properties of the label,
button, and form. Some of these assignments directly correspond to the settings made in the
Properties window, while others are the implicit result of other actions taken in the designer
(such as sizing the form).

4.1.1.1 Adding event handlers

The Hello, Windows! application built thus far has an OK button, but the application doesn't yet
respond to button clicks. To add a Click event handler for the OK button, double-click on the button in
the Windows Forms Designer. The designer responds by switching to the form's code view and
inserting a subroutine that handles the Click event (i.e., it will be called when the user of the running
application clicks the OK button). The subroutine the designer creates looks like this (note that I added
the line-continuation character for printing in this book):

Private Sub OkButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles OkButton.Click

End Sub

The body of the subroutine can then be added. This would be a likely implementation for this event
handler:

 140

Private Sub OkButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles OkButton.Click
 Me.Close()
 Me.Dispose()
End Sub

An alternative way to add an event handler is to use the drop-down lists at the top of the form's code-
view window. In the lefthand drop-down list, choose the object for which you would like to add an
event handler. Then, in the righthand drop-down list, choose the desired event. See Figure 4-5.

Figure 4-5. Adding an event handler using the code view's drop-down
lists

Event handlers can be typed directly into the form's code if you know the correct signature for the
handler. Event-handler signatures are documented in the Microsoft Developer Network (MSDN)
Library.

4.1.2 Creating a Form in Code

Although form designers are convenient, it is certainly possible to code a form directly. To do so, follow
these steps:

1. Define a class that is derived from the Form class (defined in the System.Windows.Forms
namespace). If the form is to be the startup form for an application, include a public, shared
Main method. For example:

2. Imports System.Windows.Forms
3.
4. Public Class HelloWindows
5. Inherits Form
6.
7. ' Include this method only if this is the application's startup

form.
8. ' Alternatively, place this method in a separate module in the
9. ' application. If it is placed in a separate module, remove the
10. ' Shared keyword.
11. <System.STAThreadAttribute()> Public Shared Sub Main()
12. System.Threading.Thread.CurrentThread.ApartmentState = _
13. System.Threading.ApartmentState.STA
14. Application.Run(New HelloWindows())
15. End Sub ' Main
16.

Programming Visual Basic .NET

 141

End Class

17. Declare a data member for each control that is to appear on the form. If you want to handle
events from the control, use the WithEvents keyword in the declaration. For example:

18. Imports System.Windows.Forms
19.
20. Public Class HelloWindows
21. Inherits Form
22.
23. Private lblHelloWindows As Label
24. Private WithEvents btnOK As Button
25.
26. <System.STAThreadAttribute()> Public Shared Sub Main()
27. System.Threading.Thread.CurrentThread.ApartmentState = _
28. System.Threading.ApartmentState.STA
29. Application.Run(New HelloWindows())
30. End Sub ' Main
31.

End Class

The visibility (Private, Friend, Protected, or Public) of these data members is a design
issue that depends on the project and on the developer's preferences. My own preference is
to make all data members private. If code external to the class needs to modify the data held
by these members, specific accessor methods can be added for the purpose. This prevents
internal design changes from affecting external users of the class.

32. Declare a constructor. Perform the following operations in the constructor:
a. Instantiate each control.
b. Set properties for each control and for the form.
c. Add all controls to the form's Controls collection.

For example:

Imports System.Drawing
Imports System.Windows.Forms

Public Class HelloWindows
 Inherits Form

 Private lblHelloWindows As Label
 Private WithEvents btnOK As Button

 Public Sub New

 ' Instantiate a label control and set its properties.
 lblHelloWindows = New Label()
 With lblHelloWindows
 .Font = New Font("Arial", 24)
 .Location = New Point(16, 8)
 .Size = New Size(248, 40)
 .TabIndex = 0
 .Text = "Hello, Windows!"
 End With

 ' Instantiate a button control and set its properties.
 btnOK = New Button()
 With btnOK
 .Location = New Point(320, 16)
 .TabIndex = 1

 142

 .Text = "OK"
 End With

 ' Set properties on the form.
 FormBorderStyle = FormBorderStyle.FixedToolWindow
 ClientSize = New Size(405, 61)
 Text = "Programming Visual Basic .NET"

 ' Add the controls to the form's Controls collection.
 Controls.Add(lblHelloWindows
 Controls.Add(btnOK)
 End Sub

 <System.STAThreadAttribute()> Public Shared Sub Main()
 System.Threading.Thread.CurrentThread.ApartmentState = _
 System.Threading.ApartmentState.STA
 Application.Run(New HelloWindows())
 End Sub ' Main

End Class

An Imports statement was added to give access to types in the System.Drawing namespace,
such as Point and Size.

4.1.2.1 Adding event handlers

Define event handlers directly in code for any events that you wish to handle. For example:

Private Sub btnOK_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click
 Close()
 Dispose()
End Sub

The complete code for a standalone Windows Forms application is shown in Example 4-3. Compile it
from the command line with this command:

vbc HelloWindows.vb
/r:System.dll,System.Drawing.dll,System.Windows.Forms.dll /t:winexe

(Note that the command should be typed on a single line.)

Example 4-3. Hello, Windows! code generated outside of Visual Studio
Imports System.Drawing
Imports System.Windows.Forms
Public Class HelloWindows
 Inherits Form
 Private lblHelloWindows As Label
 Private WithEvents btnOK As Button

 Private Sub btnOK_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click
 Close()
 Dispose()
 End Sub
 Public Sub New
 ' Instantiate a label control and set its properties.
 lblHelloWindows = New Label ()

Programming Visual Basic .NET

 143

 With lblHelloWindows
 .Font = New Font("Arial", 24)
 .Location = New Point(16, 8)
 .Size = New Size(248, 40)
 .TabIndex = 0
 .Text = "Hello, Windows!"
 End With
 ' Instantiate a button control and set its properties.
 btnOK = New Button()
 With btnOK
 .Location = New Point(320, 16)
 .TabIndex = 1
 .Text = "OK"
 End With
 ' Set properties on the form.
 FormBorderStyle = FormBorderStyle.FixedToolWindow
 ClientSize = New Size(405, 61)
 Text = "Programming Visual Basic .NET"
 ' Add the controls to the form's Controls collection.
 Controls.Add(lblHelloWindows)
 Controls.Add(btnOK)
 End Sub

 <System.STAThreadAttribute()> Public Shared Sub Main()
 System.Threading.Thread.CurrentThread.ApartmentState = _
 System.Threading.ApartmentState.STA
 Application.Run(New HelloWindows())
 End Sub ' Main
End Class

4.2 Handling Form Events

The base Form class may at times raise events. These events can be handled by the derived Form
class. One way to do this is to define a handler subroutine that uses the MyBase keyword in the
Handles clause, like this:

' This is not the preferred technique.
Private Sub Form_Closing(_
 ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs _
) Handles MyBase.Closing
 ' ...
End Sub

However, a better technique is to override the protected methods, which are provided by the Form
class for this purpose. For example, the following method could be placed in the derived class's
definition, providing a way to respond to the form's imminent closing:

' Assumes Imports System.ComponentModel
Protected Overrides Sub OnClosing(_
 ByVal e As CancelEventArgs _
)
 ' ...
 MyBase.OnClosing(e) ' Important
End Sub

Note that the implementation of the OnClosing method includes a call to the base class's
implementation. This is important. If this is not done, the Closing event won't be raised, which will
affect the behavior of any other code that has registered for the event.

 144

Following is the list of events the Form class defines, including a brief description of each event and
the syntax for overriding the protected method that corresponds to each event. Note also that the
Form class indirectly derives from the Control class and that the Control class also exposes events
and overridable methods that aren't shown here.

Activated

Fired when the form is activated. Its syntax is:

Protected Overrides Sub OnActivated(ByVal e As System.EventArgs)
Closed

Fired when the form has been closed. Its syntax is:

Protected Overrides Sub OnClosed(ByVal e As System.EventArgs)
Closing

Fired when the form is about to close. Its syntax is:

Protected Overrides Sub OnClosing(_
 ByVal e As System.ComponentModel.CancelEventArgs)

The CancelEventArgs.Cancel property can be set to True to prevent the form from closing; its
default value is False.

Deactivate

Fired when the form is deactivated. Its syntax is:

Protected Overrides Sub OnDeactivate(ByVal e As System.EventArgs)
InputLanguageChanged

Fired when the form's input language has been changed. Its syntax is:

Protected Overrides Sub OnInputLanguageChanged(_
 ByVal e As System.Windows.Forms.InputLanguageChangedEventArgs)

The InputLanguageChangedEventArgs class has three properties that identify the new
language: CharSet, which defines the character set associated with the new input language;
Culture, which contains the culture code (see Appendix C) of the new input language; and
InputLanguage, which contains a value indicating the new language.

InputLanguageChanging

Fired when the form's input language is about to be changed. Its syntax is:

Protected Overrides Sub OnInputLanguageChanging(_
 ByVal e As System.Windows.Forms.InputLanguageChangingEventArgs)

The InputLanguageChangingEventArgs class has a Culture property that identifies the
proposed new language and locale. It also has a Cancel property that can be set to True
within the event handler to cancel the change of input language; the default value of the
Cancel property is False.

Load

Programming Visual Basic .NET

 145

Fired when the form is loaded. Its syntax is:

Protected Overrides Sub OnLoad(ByVal e As System.EventArgs)
MaximizedBoundsChanged

Fired when the value of the form's MaximizedBounds property (which determines the size of
the maximized form) is changed. Its syntax is:

Protected Overrides Sub OnMaximizedBoundsChanged(_
 ByVal e As System.EventArgs)

MaximumSizeChanged

Fired when the value of the form's MaximumSize property (which defines the maximum size to
which the form can be resized) is changed. Its syntax is:

Protected Overrides Sub OnMaximumSizeChanged(ByVal e As
System.EventArgs)

MdiChildActivate

Fired when an MDI child window is activated. Its syntax is:

Protected Overrides Sub OnMdiChildActivate(ByVal e As
System.EventArgs)

MenuComplete

Fired when menu selection is finished. Its syntax is:

Protected Overrides Sub OnMenuComplete(ByVal e As System.EventArgs)
MenuStart

Fired when a menu is displayed. Its syntax is:

Protected Overrides Sub OnMenuStart(ByVal e As System.EventArgs)
MinimumSizeChanged

Fired when the value of the form's MinimumSize property (which defines the minimum size to
which the form can be resized) is changed. Its syntax is:

Protected Overrides Sub OnMinimumSizeChanged(ByVal e As
System.EventArgs)

4.3 Relationships Between Forms

The Form class has two properties that control a form's relationship to other forms: the Parent property
(inherited from the Control class) and the Owner property. Setting the Parent property causes the
constrained form to appear only within the bounds of the parent—and always to appear on top of the
parent. This gives an effect similar to MDI applications (which have other features as well and are
discussed later in this chapter). When a form has a parent, it can be docked to the parent's edges, just
like any other control. The code in Example 4-4 demonstrates this. It can be compiled from the
command line with this command:

vbc filename.vb /r:System.dll,System.Drawing.dll,System.Windows.Forms.dll
/t:winexe

The result is displayed in Figure 4-6.

 146

Figure 4-6. A form with a parent

Example 4-4. Creating a form with a parent
Imports System.Drawing
Imports System.Windows.Forms

Module modMain
 <System.STAThreadAttribute()> Public Sub Main()
 System.Threading.Thread.CurrentThread.ApartmentState = _
 System.Threading.ApartmentState.STA
 System.Windows.Forms.Application.Run(New MyParentForm())
 End Sub
End Module

Public Class MyParentForm
 Inherits Form
 Public Sub New()
 ' Set my size.
 Me.ClientSize = New System.Drawing.Size(600, 400)
 ' Create and show a child form.
 Dim frm As New MyChildForm(Me)
 frm.Show()
 End Sub
End Class

Public Class MyChildForm
 Inherits Form
 Public Sub New(ByVal Parent As Control)
 ' TopLevel must be False for me to have a parent.
 Me.TopLevel = False
 ' Set my parent.
 Me.Parent = Parent
 ' Dock to my parent's left edge.
 Me.Dock = DockStyle.Left
 End Sub
End Class

If the child form is maximized, it expands to fill the parent form. If the child form is minimized, it shrinks
to a small rectangle at the bottom of the parent window. Because the child form in this example has a
title bar and a sizable border, it can be moved and sized even though it has been docked. This
behavior can be changed by modifying the form's FormBorderStyle property.

Programming Visual Basic .NET

 147

Setting the Owner property of a form causes another form to own the first. An owned form is not
constrained to appear within the bounds of its owner, but when it does overlay its owner, it is always
on top. Furthermore, the owned form is always minimized, restored, or destroyed when its owner is
minimized, restored, or destroyed. Owned forms are good for floating-tool windows or Find/Replace-
type dialog boxes. The code in Example 4-5 creates an owner/owned relationship. Compile it with
this command:

vbc filename.vb /r:System.dll,System.Drawing.dll,System.Windows.Forms.dll
/t:winexe

Example 4-5. Creating a form with an owner
Imports System.Drawing
Imports System.Windows.Forms

Module modMain
 <System.STAThreadAttribute()> Public Sub Main()
 System.Threading.Thread.CurrentThread.ApartmentState = _
 System.Threading.ApartmentState.STA
 System.Windows.Forms.Application.Run(New MyOwnerForm())
 End Sub
End Module

Public Class MyOwnerForm
 Inherits Form
 Public Sub New()
 ' Set my size.
 Me.ClientSize = New System.Drawing.Size(600, 450)
 ' Create and show an owned form.
 Dim frm As New MyOwnedForm(Me)
 frm.Show()
 End Sub
End Class

Public Class MyOwnedForm
 Inherits Form
 Public Sub New(ByVal Owner As Form)
 ' Set my owner.
 Me.Owner = Owner
 End Sub
End Class

4.4 MDI Applications

Multiple document interface (MDI) applications permit more than one document to be open at a time.
This is in contrast to single document interface (SDI) applications, which can manipulate only one
document at a time. Visual Studio .NET is an example of an MDI application—many source files and
design views can be open at once. In contrast, Notepad is an example of an SDI application—opening
a document closes any previously opened document.

There is more to MDI applications than their ability to have multiple files open at once. The Microsoft
Windows platform SDK specifies several UI behaviors that MDI applications should implement. The
Windows operating system provides support for these behaviors, and this support is exposed through
Windows Forms as well.

 148

4.4.1 Parent and Child Forms

MDI applications consist of a main form, which does not itself display any data, and one or more child
forms, which appear only within the main form and are used for displaying documents. The main form
is called the MDI parent, and the child forms are called the MDI children.

The Form class has two properties that control whether a given form is an MDI parent, MDI child, or
neither. The Boolean IsMdiContainer property determines whether a form behaves as an MDI parent.
The MdiParent property (which is of type Form) controls whether a form behaves as an MDI child.
Setting the MdiParent property of a form to reference the application's MDI parent form makes the
form an MDI child form. Example 4-6 shows the minimum amount of code required to display an MDI
parent form containing a single MDI child form.

Example 4-6. A minimal MDI application
Imports System
Imports System.Windows.Forms

Public Module AppModule
 Public Sub Main()
 Application.Run(New MainForm())
 End Sub
End Module

Public Class MainForm
 Inherits Form

 Public Sub New()
 ' Set the main window caption.
 Text = "My MDI Application"
 ' Set this to be an MDI parent form.
 IsMdiContainer = True
 ' Create a child form.
 Dim myChild As New DocumentForm("My Document", Me)
 myChild.Show
 End Sub

End Class

Public Class DocumentForm
 Inherits Form

 Public Sub New(ByVal name As String, ByVal parent As Form)
 ' Set the document window caption.
 Text = name
 ' Set this to be an MDI child form.
 MdiParent = parent
 End Sub

End Class

Assuming that the code in Example 4-6 is saved in a file named MyApp.vb, it can be compiled from
the command line with this command:

vbc MyApp.vb /r:System.dll,System.Windows.Forms.dll

Running the resulting executable produces the display shown in Figure 4-7.

Programming Visual Basic .NET

 149

Figure 4-7. A minimal MDI application (the output of the code in
Example 4-6)

The Form class has two read-only properties related to MDI behavior. The IsMdiChild property returns
a Boolean value that indicates whether the form is an MDI child. The MdiChildren property of a parent
form contains a collection of references to the form's child forms. The IsMdiChild and MdiChildren
properties are both automatically maintained in response to setting the child forms' MdiParent
properties.

4.4.2 Creating a Window Menu

MDI applications usually have a main-menu item called Window. On this menu appear standard items
for cascading, tiling, and activating child windows and arranging the icons of minimized child windows.
Figure 4-8 shows a typical example.

Figure 4-8. A typical Window menu

Such a menu is easy to create using the support in Windows Forms. Assuming that you were to do it
programmatically, Example 4-7 shows a revised version of Example 4-6 that has been modified to
include a Window menu; the added code is shown in boldface. For details on how to work with menus
from the Visual Studio IDE, as well as programmatically, see Section 5.5 in Chapter 5.

Example 4-7. An MDI application with a Window menu
Imports System
Imports System.Windows.Forms

Public Module AppModule
 Public Sub Main()
 Application.Run(New MainForm())

 150

 End Sub
End Module

Public Class MainForm
 Inherits Form

 ' Declare MainForm's main menu
 Private myMainMenu As MainMenu

 ' Declare Windows menu
 Protected WithEvents mnuWindow As MenuItem
 Protected WithEvents mnuTileHoriz As MenuItem
 Protected WithEvents mnuCascade As MenuItem
 Protected WithEvents mnuTileVert As MenuItem
 Protected WithEvents mnuArrangeAll As MenuItem

 Public Sub New()
 ' Set the main window caption.
 Text = "My MDI Application"
 ' Set this to be an MDI parent form.
 IsMdiContainer = True
 ' Create main menu
 MyMainMenu = New MainMenu()
 ' Define menu items
 mnuWindow = New MenuItem()
 mnuTileHoriz = New MenuItem()
 mnuTileVert = New MenuItem()
 mnuCascade = New MenuItem()
 mnuArrangeAll = New MenuItem()
 ' Set menu properties
 mnuWindow.Text = "&Window"
 mnuWindow.MdiList = True
 mnuTileHoriz.Text = "Tile Horizontally"
 mnuTileVert.Text = "Tile Vertically"
 mnuCascade.Text = "Cascade"
 mnuArrangeAll.Text = "Arrange Icons"
 ' Add items to menu
 MyMainMenu.MenuItems.Add(mnuWindow)
 mnuWindow.MenuItems.Add(mnuCascade)
 mnuWindow.MenuItems.Add(mnuTileHoriz)
 mnuWindow.MenuItems.Add(mnuTileVert)
 mnuWindow.MenuItems.Add(mnuArrangeAll)
 ' Assign menu to form
 Me.Menu = MyMainMenu
 ' Create a child form.
 Dim myChild As New DocumentForm("My Document", Me)
 myChild.Show
 End Sub

 Public Sub mnuCascade_Click(o As Object, e As EventArgs) _
 Handles mnuCascade.Click
 LayoutMdi(MdiLayout.Cascade)
 End Sub

 Public Sub mnuTileHoriz_Click(o As Object, e As EventArgs) _
 Handles mnuTileHoriz.Click
 LayoutMdi(MdiLayout.TileHorizontal)
 End Sub

 Public Sub mnuTileVert_Click(o As Object, e As EventArgs) _
 Handles mnuTileVert.Click

Programming Visual Basic .NET

 151

 LayoutMdi(MdiLayout.TileVertical)
 End Sub

 Public Sub mnuArrangeAll_Click(o As Object, e As EventArgs) _
 Handles mnuArrangeAll.Click
 LayoutMdi(MdiLayout.ArrangeIcons)
 End Sub

End Class

Public Class DocumentForm
 Inherits Form

 Public Sub New(ByVal name As String, ByVal parent As Form)
 ' Set the document window caption.
 Text = name
 ' Set this to be an MDI child form.
 MdiParent = parent
 End Sub

End Class

To add a Window menu to the parent form of an MDI application, perform the following steps. First,
add a menu item to the MDI parent form's main menu, setting its Text property to anything desired
(usually Window) and its MdiList property to True. It is the MdiList property that makes the Window
menu a Window menu. Setting the MdiList property to True causes the Windows Forms framework to
add and delete menu items to and from this menu item as necessary. This in turn will always display
the current list of MDI child windows in the menu.

Next, add menu items for Cascade, Tile Horizontally, Tile Vertically, and Arrange Icons. In the Click
event handler for each of these menu items, call the Form class's LayoutMdi method, passing the
appropriate parameter value for the desired action.

The syntax of the LayoutMdi method is:

Public Sub LayoutMdi(ByVal
value As MdiLayout)

The method's single argument must be a value from the MdiLayout enumeration (defined in the
System.Windows.Forms namespace). The values in this enumeration are:

ArrangeIcons

Indicates that the icons for the minimized MDI child windows should be neatly arranged.

Cascade

Indicates that the MDI child windows should be cascaded (displayed overlapping each other).

TileHorizontal

Indicates that the MDI child windows should be tiled (displayed without overlapping), with each
child window filling the width of the MDI parent.

TileVertical

Indicates that the MDI child windows should be tiled, with each child window filling the height
of the MDI parent.

 152

4.4.3 Merging Menus

Often, the items that should appear on an MDI application's main menu are dependent on the type of
document being displayed or on whether any document is displayed at all. Of course, this effect could
be achieved in code by dynamically adding and removing menu items each time a child window is
activated. However, the Windows Forms framework provides an easier way.

If an MDI child form has a main menu of its own, it and the MDI parent form's main menu are merged
to produce the menu that is shown to the user when the child form is displayed. Two properties of the
MenuItem class affect how the menu items are merged. First, the MergeOrder property determines the
order in which the menu items are displayed. This property can be set to any Integer value, and the
values don't have to be contiguous. The menu items from the two menus are sorted on this value to
determine the order in which the menu items are displayed on screen.

For example, consider an MDI parent form that has a main menu with three menu items representing
File, Window, and Help menus. Further, say that the MergeOrder properties of these menu items are
10, 20, and 30, respectively. Now, if an MDI child form is displayed and its main menu has, for
example, an Edit item with a MergeOrder property value of 15, the menu displayed to the user will
have four items: File, Edit, Window, and Help, in that order. Example 4-8 shows a revised version of
Example 4-6 that contains the code necessary to create such a menu; lines shown in boldface have
been added to define the main menu and its menu items.

Example 4-8. An MDI application with merged menus
Imports System
Imports System.Windows.Forms

Public Module AppModule
 Public Sub Main()
 Application.Run(New MainForm())
 End Sub
End Module

Public Class MainForm
 Inherits Form

 ' Declare MainForm's main menu.
 Private myMainMenu As MainMenu

 ' Declare the Window menu.
 Protected WithEvents mnuFile As MenuItem
 Protected WithEvents mnuWindow As MenuItem
 Protected WithEvents mnuHelp As MenuItem

 Public Sub New()
 ' Set the main window caption.
 Text = "My MDI Application"
 ' Set this to be an MDI parent form.
 IsMdiContainer = True
 ' Create main menu
 MyMainMenu = New MainMenu()
 ' Define menu items
 mnuFile = New MenuItem()
 mnuWindow = New MenuItem()
 mnuHelp = New MenuItem()
 ' Set menu properties
 mnuFile.Text = "&File"
 mnuFile.MergeOrder = 10
 mnuWindow.Text = "&Window"
 mnuWindow.MergeOrder = 20

Programming Visual Basic .NET

 153

 mnuWindow.MdiList = True
 mnuHelp.Text = "&Help"
 mnuHelp.MergeOrder = 30
 ' Add items to menu
 MyMainMenu.MenuItems.Add(mnuFile)
 MyMainMenu.MenuItems.Add(mnuWindow)
 MyMainMenu.MenuItems.Add(mnuHelp)
 ' Assign menu to form
 Me.Menu = MyMainMenu
 ' Create a child form.
 Dim myChild As New DocumentForm("My Document", Me)
 myChild.Show
 End Sub

End Class

Public Class DocumentForm
 Inherits Form

 ' Declare menu
 Private mdiMenu As New MainMenu
 ' Declare menu items
 Protected WithEvents mnuEdit As MenuItem

 Public Sub New(ByVal name As String, ByVal parent As Form)
 ' Set the document window caption.
 Text = name
 ' Set this to be an MDI child form.
 MdiParent = parent
 ' Instantiate menu and menu items
 mdiMenu = New MainMenu()
 mnuEdit = New MenuItem()
 ' Set menu properties
 mnuEdit.Text = "&Edit"
 mnuEdit.MergeOrder = 15
 ' Add item to main menu
 mdiMenu.MenuItems.Add(mnuEdit)
 ' Add menu to child window
 Me.Menu = mdiMenu
 End Sub

End Class

If a menu item in the MDI child form menu has the same MergeOrder value as a menu item in the MDI
parent form menu, a second property comes into play. The MergeType property of both MenuItem
objects is examined, and the behavior is determined by the combination of their values. The
MergeType property is of type MenuMerge (an enumeration defined in the System.Windows.Forms
namespace) and can have one of the following values:

Add

The menu item appears as a separate item in the target menu, regardless of the setting of the
other menu item's MergeType property.

MergeItems

If the other menu item's MergeType property is also set to MergeItems, the two menu items
are merged into a single item in the target menu. Merging is then recursively applied to the
subitems of the source menus, using their MergeOrder and MergeType properties.

 154

If the other menu item's MergeType property is set to Add, both menu items appear in the
target menu (just as though both had specified Add).

If the other menu item's MergeType property is set to Remove, only this menu item appears in
the target menu (again, the same as specifying Add for this menu item).

If the other menu item's MergeType property is set to Replace, only the child form's menu
item is displayed, regardless of which one is set to MergeItems and which one is set to
Replace. (This seems like inconsistent behavior and may be a bug.)

Remove

The menu item isn't shown in the target menu, regardless of the setting of the other menu
item's MergeType property.

Replace

If the other menu item's MergeType property is set to Add, both menu items appear in the
target menu (just as though both had specified Add).

If the other menu item's MergeType property is set to MergeItems or Replace, only the child
form's menu item is shown. (This seems like inconsistent behavior and may be a bug.)

If the other menu item's MergeType property is also set to Replace, only the child form's
menu item is shown.

4.4.4 Detecting MDI Child Window Activation

Code in the MDI parent form class can be notified when an MDI child form becomes active inside an
MDI parent form. ("Active" means that the child form receives the input focus after another MDI child
form or the MDI parent form had the input focus.) To receive such notification, the MDI parent form
must override the OnMdiChildActivate method (defined in the Form class). For example:

' Place this within the class definition of the MDI parent form.
Protected Overrides Sub OnMdiChildActivate(ByVal e As EventArgs)
 MyBase.OnMdiChildActivate(e) ' Important
 ' ...
End Sub

It is important to call the base-class implementation of OnMdiChildActivate within the overriding
function, so that any necessary base-class processing (including raising of the MdiChildActivate event)
can occur.

The e parameter carries no information. To find out which MDI child form became active, read the
ActiveMdiChild property of the MDI parent form. This property is of type Form. Convert it to the MDI
child form's type to gain access to any public members that are specific to that type. For example:

Protected Overrides Sub OnMdiChildActivate(ByVal e As EventArgs)
 MyBase.OnMdiChildActivate(e)
 ' Assumes that SomeFormType is defined elsewhere and inherits
 ' from Form. Also assumes that the MDI child forms in the
 ' application are always of this type.
 Dim childForm As SomeFormType = _
 CType(ActiveMdiChild, SomeFormType)
 ' Do something with childForm here.
 ' ...

Programming Visual Basic .NET

 155

End Sub

To have code outside of the MDI parent form class notified when an MDI child form becomes active,
write a handler for the MDI parent form's MdiChildActivate event. This event is defined in the Form
class as:

Public Event MdiChildActivate(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
)

The sender parameter is the MDI parent form, not the MDI child form that has been activated. The e
parameter does not contain any additional information about the event. As when overriding the
OnMdiChildActivate method, read the MDI parent form's ActiveMdiChild property to discover which
MDI child form has been activated.

4.5 Component Attributes

As explained in Chapter 2, attributes can be added to code elements to provide additional
information about those elements. The System.ComponentModel namespace defines several
attributes for use in component, control, and form declarations. These attributes don't affect
component behavior. Rather, they provide information that is used or displayed by the Visual
Studio .NET IDE. The following is a description of each attribute:

AmbientValueAttribute

For ambient properties, specifies the property value that will mean "get this property's actual
value from wherever ambient values come from for this property." Ambient properties are
properties able to get their values from another source. For example, the BackColor property
of a Label control can be set either to a specific Color value or to the special value
Color.Empty, which causes the Label's background color to be the same as the background
color of the form on which it is placed.

Putting this attribute on a property definition isn't what causes the property to behave as an
ambient property: the control itself must be written such that when the special value is written
to the property, the control gets the actual value from the appropriate location. This attribute
simply provides the Windows Forms Designer with a way to discover what the special value is.

When specifying this attribute, pass the special value to the attribute's constructor. For
example, <AmbientValue(0)>.

BindableAttribute

Indicates whether a property is typically usable for data binding. Specify <Bindable(True)>
to indicate that the property can be used for data binding or <Bindable(False)> to indicate
that the property typically is not used for data binding. This attribute affects how a property is
displayed in the IDE, but does not affect whether a property can be bound at runtime. By
default, properties are considered not bindable.

BrowsableAttribute

Indicates whether a property should be viewable in the IDE's Properties window. Specify
<Browsable(True)> to indicate that the property should appear in the Properties window or
<Browsable(False)> to indicate that it should not. By default, properties are considered
browsable.

 156

CategoryAttribute

Indicates the category to which a property or event belongs ("Appearance," "Behavior," etc.).
The IDE uses this attribute to sort the properties and events in the Properties window. Specify
the category name as a string argument to the attribute. For example,
<Category("Appearance")>. The argument can be any string. If it is not one of the
standard strings, the Properties window will add a new group for it. The standard strings are:

Action

Used for events that indicate a user action, such as the Click event.

Appearance

Used for properties that affect the appearance of a component, such as the BackColor
property.

Behavior

Used for properties that affect the behavior of a component, such as the AllowDrop property.

Data

Used for properties that relate to data, such as the DecimalPlaces property of the
NumericUpDown control.

Design

Used for properties that relate to the design-time appearance or behavior of a component.

DragDrop

Used for properties and events that relate to drag and drop. No Windows Forms components
have any properties or events marked with this category.

Focus

Used for properties and events that relate to input focus, such as the CanFocus property and
the GotFocus event.

Format

Used for properties and events that relate to formats. No Windows Forms components have
any properties or events marked with this category.

Key

Used for events that relate to keyboard input, such as the KeyPress event.

Layout

Used for properties and events that relate to the visual layout of a component, such as the
Height property and the Resize event.

Mouse

Programming Visual Basic .NET

 157

Used for events that relate to mouse input, such as the MouseMove event.

WindowStyle

Used for properties and events that relate to the window style of top-level forms. No Windows
Forms components have any properties or events marked with this category.

If no CategoryAttribute is specified, the property is considered to have a category of
Misc.

DefaultEventAttribute

Indicates the name of the event that is to be considered the default event of a component. For
example, <DefaultEvent("Click")>. When a component is double-clicked in the
Windows Forms Designer, the designer switches to code view and displays the event handler
for the default event. This attribute can be used only on class declarations.

DefaultPropertyAttribute

Indicates the name of the property that is to be considered the default property of a
component. For example, <DefaultProperty("Text")>. This attribute can be used only
on class declarations. The default property is the property that the Windows Forms Designer
highlights in the Properties window when a component is clicked in design view.

Don't confuse this usage of the term default property with the
usage associated with the Default modifier of a property
declaration. The two concepts are unrelated. Refer to Chapter 2
for details on the Default modifier.

DefaultValueAttribute

Indicates the default value of a property. For example, <DefaultValue(0)>. If the IDE is
used to set a property value to something other than the default value, the code generator will
generate the appropriate assignment statement in code. However, if the IDE is used to set a
property to the default value, no assignment statement is generated.

DescriptionAttribute

Provides a description for the code element. For example, <Description("The text
contained in the control.")>. The IDE uses this description in tool tips and
IntelliSense.

DesignerAttribute

Identifies the class that acts as the designer for a component. For example,
<Designer("MyNamespace.MyClass")>. The designer class must implement the
IDesigner interface. This attribute can be used only on class declarations and is needed
only if the built-in designer isn't sufficient. Creating custom designers is not discussed in this
book.

DesignerCategoryAttribute

Used with custom designers to specify the category to which the class designer belongs.

DesignerSerializationVisibilityAttribute

 158

Used with custom designers to specify how a property on a component is saved by the
designer.

DesignOnlyAttribute

Indicates when a property can be set. Specify <DesignOnly(True)> to indicate that the
property can be set at design time only or <DesignOnly(False)> to indicate that the
property can be set at both design time and runtime (the default).

EditorAttribute

Identifies the "editor" to use in the IDE to allow the user to set the values of properties that
have the type on which the EditorAttribute attribute appears. In this way, a component
can declare new types and can declare properties having those types, yet still allow the user
to set the values of the properties at design time. Creating custom type editors is not
discussed in this book.

EditorBrowsableAttribute

Indicates whether a property is viewable in an editor. The argument to the attribute's
constructor must be one of the values defined by the EditorBrowsableState enumeration
(defined in the System.ComponentModel namespace). The values of this enumeration are:

Advanced

Only advanced users should see the property. It is up to the editor to determine when it's
appropriate to display advanced properties.

Always

The property should always be visible within the editor.

Never

The property should never be shown within the editor.

ImmutableObjectAttribute

Indicates whether a type declaration defines a state that can change after an object of that
type is constructed. Specify <ImmutableObject(True)> to indicate that an object of the
given type is immutable. Specify <ImmutableObject(False)> to indicate that an object of
the given type is not immutable. The IDE uses this information to determine whether to render
a property as read-only.

InheritanceAttribute

Used to document an inheritance hierarchy that can be read using the
IInheritanceService interface. This facility is not discussed in this book.

InstallerTypeAttribute

Used on type declarations to specify the installer for the type. Installers are not discussed in
this book.

LicenseProviderAttribute

Programming Visual Basic .NET

 159

Indicates the license provider for a component.

ListBindableAttribute

Indicates whether a property can be used as a data source. (A data source is any object that
exposes the IList interface.) Specify <ListBindable(True)> to indicate that the property
can be used as a data source. Specify <ListBindable(False)> to indicate that the
property can't be used as a data source.

LocalizableAttribute

Indicates whether a property's value should be localized when the application is localized.
Specify <Localizable(True)> to indicate that the property's value should be localized.
Specify <Localizable(False)> or omit the LocalizableAttribute attribute to indicate
that the property's value should not be localized. The values of properties declared with
<Localizable(True)> are stored in a resource file, which can be localized.

MergablePropertyAttribute

Indicates where property attributes can be merged. By default, when two or more components
are selected in the Windows Forms Designer, the Properties window typically shows the
properties that are common to all of the selected components. If the user changes a value in
the Properties window, the value is changed for that property in all of the selected components.
Placing <MergableProperty(False)> on a property declaration changes this behavior.
Any property declared in this way is omitted from the Properties window when two or more
components are selected. Specifying <MergableProperty(True)> is the same as omitting
the attribute altogether.

NotifyParentPropertyAttribute

Indicates whether the display of a property's parent property should be refreshed when the
given property changes its value.

ParenthesizePropertyNameAttribute

Indicates whether the property name should be parenthesized in the Properties window.
Specify <ParenthesizePropertyName(True)> to indicate that the property name should
appear within parentheses. Specify <ParenthesizePropertyName(False)> to indicate
that the property name should not appear within parentheses. Omitting the attribute is the
same as specifying <ParenthesizePropertyName(False)>.

The only benefit to parenthesizing property names in the property window is that they are
sorted to the top of the list. Microsoft has no specific recommendations for when to
parenthesize a property name.

PropertyTabAttribute

Specifies a type that implements a custom property tab (or tabs) for a component. This facility
is not discussed in this book.

ProvidePropertyAttribute

Used with extender providers—i.e., classes that provide properties for other objects. Extender
providers are not discussed in this book.

ReadOnlyAttribute

 160

Indicates whether a property is read-only at design time. Specify <ReadOnly(True)> to
indicate that the property is read-only at design time. Specify <ReadOnly(False)> to
indicate that the property's ability to be modified at design time is determined by whether a Set
method is defined for the property. Omitting the attribute is the same as specifying
<ReadOnly(False)>.

RecommendedAsConfigurableAttribute

Indicates whether a property is configurable. Configurable properties aren't discussed in this
book.

RefreshPropertiesAttribute

Determines how the Properties window is refreshed when the value of the given property
changes.

RunInstallerAttribute

Indicates whether an installer should be invoked during installation of the assembly that
contains the associated class. This attribute can be used only on class declarations, and the
associated class must inherit from the Installer class (defined in the
System.Configuration.Install namespace). Installers are not discussed in this book.

ToolboxItemAttribute

Specifies a type that implements a toolbox item related to the declaration on which the
attribute is placed. This facility is not discussed in this book.

ToolboxItemFilterAttribute

Specifies a filter string for a toolbox-item filter. This facility is not discussed in this book.

TypeConverterAttribute

Indicates the type converter to be used with the associated item. Type converters are not
discussed in this book.

4.6 2-D Graphics Programming with GDI+

The Windows operating system has always included support for drawing two-dimensional graphics.
This support is known as the Graphics Device Interface (GDI) library. The GDI library is now easier to
use and provides additional features. The new capabilities are known collectively as GDI+. GDI+
features are exposed in the .NET Framework through classes in the System.Drawing,
System.Drawing.Drawing2D, System.Drawing.Imaging, and System.Drawing.Text namespaces. This
section discusses some of those capabilities.

4.6.1 The Graphics Class

Objects of type Graphics (defined in the System.Drawing namespace) represent two-dimensional
surfaces on which to draw. A Graphics object must be obtained before any drawing can be done. A
common way to obtain a Graphics object is to override the OnPaint method of a form or user control,
as shown in the following code fragment:

Public Class MyControl
 Inherits UserControl

Programming Visual Basic .NET

 161

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
 e.Graphics.FillEllipse(New SolidBrush(Me.ForeColor), _
 Me.ClientRectangle)
 End Sub

 Public Sub New()
 Me.ResizeRedraw = True
 End Sub

End Class

The single argument passed to the OnPaint method, e, is of type PaintEventArgs. This class has a
property called Graphics, which holds a reference to the Graphics object to be used for drawing on the
user control or form. The PaintEventArgs class is defined in the System.Windows.Forms namespace.
It has two properties:

ClipRectangle

Defines the area that needs to be drawn. Drawing done outside the limits of the clip rectangle
will not be displayed. The coordinates of the rectangle are relative to the client rectangle of the
user control or form.

The syntax of the ClipRectangle property is:

Public ReadOnly Property ClipRectangle() As
System.Drawing.Rectangle

Graphics

Defines the graphics surface on which to draw. The syntax of the Graphics property is:

Public ReadOnly Property Graphics() As System.Drawing.Graphics

The following list shows some of the Graphics class's many methods that are available for drawing
various lines and shapes, and Example 5-7 in Chapter 5 gives an example of drawing a filled
ellipse. This list is just to get you started; it is beyond the scope of this book to document the syntax of
each of these methods.

DrawArc

Draws an arc (that is, a portion of an ellipse).

DrawBezier

Draws a Bezier curve.

DrawBeziers

Draws a series of Bezier curves.

DrawClosedCurve

Is the same as the DrawCurve method (see the next item in this list), except that the last point
in the curve is connected back to the first point.

DrawCurve

 162

Draws a smooth, curved figure that passes through a given array of points.

DrawEllipse

Draws an ellipse.

DrawIcon

Draws an icon. Icons are represented by objects of type Icon (defined in the System.Drawing
namespace). The Icon class defines various methods for loading icons.

DrawIconUnstretched

Is the same as the DrawIcon method, but does not stretch the icon to fit the clipping rectangle.

DrawImage

Draws an image. Images are represented by objects of type Image (defined in the
System.Drawing namespace). The Image class defines various methods for loading images in
standard formats, such as bitmaps and JPEGs.

DrawImageUnscaled

Is the same as DrawImage, except that the DrawImageUnscaled method ignores any width
and height parameters passed to it.

DrawLine

Draws a line.

DrawLines

Draws a series of lines.

DrawPath

Draws a series of lines and curves that are defined by a GraphicsPath object. The
GraphicsPath class is beyond the scope of this book.

DrawPie

Draws a pie section.

DrawPolygon

Draws lines to connect a series of points.

DrawRectangle

Draws a rectangle.

DrawRectangles

Draws a series of rectangles.

Programming Visual Basic .NET

 163

DrawString

Draws text.

FillClosedCurve

Draws a filled, closed curve.

FillEllipse

Draws a filled ellipse.

FillPath

Draws a filled figure whose shape is given by a GraphicsPath object. The GraphicsPath class
is beyond the scope of this book.

FillPie

Draws a filled pie section.

FillPolygon

Draws a filled polygon (see the DrawPolygon method earlier in this list).

FillRectangle

Draws a filled rectangle.

FillRectangles

Draws a series of filled rectangles.

FillRegion

Draws a filled figure whose shape is given by a Region object.

4.6.2 The Pen Class

Pen objects hold the settings used when drawing lines. All of the Graphics class's Draw...methods
(DrawArc, DrawBezier, etc.) require that the caller supply a Pen object. The supplied Pen object
determines the properties of the line used for drawing (for example, its color, width, etc.). Example 4-
9 shows an OnPaint method that can be used to draw an ellipse on a user control or a form. It is
similar to the code in Example 5-6 in Chapter 5, but displays the ellipse a little smaller, and with
only a border. The resulting display is shown in Figure 4-9.

Example 4-9. Drawing an ellipse on a form
Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
 Dim pn As New Pen(Me.ForeColor)
 Dim rect As Rectangle

 rect.X = Me.ClientRectangle.X + (Me.ClientRectangle.Width \ 4)
 rect.Y = Me.ClientRectangle.Y + (Me.ClientRectangle.Height \ 4)
 rect.Width = Me.ClientRectangle.Width \ 2
 rect.Height = Me.ClientRectangle.Height \ 2

 164

 e.Graphics.DrawEllipse(pn, rect)
 pn.Dispose()
End Sub

Figure 4-9. The ellipse drawn by the code in Example 4-9

In Example 4-9, the Graphics class's DrawEllipse method is passed a Pen object, which determines
the appearance of the line used for drawing the ellipse, and a rectangle, which defines the shape of
the ellipse. The Pen class has four constructors. The constructor used in Example 4-9 takes a
parameter of type Color (defined in System.Drawing). The color passed to the Pen class constructor in
Example 4-9 is the foreground color of the form (Me.ForeColor). This is a nice touch ensuring that
the ellipse will be drawn using whatever color is set as the foreground color of the form on which the
ellipse is drawn. See Section 4.6.4 later in this chapter for information on choosing and manipulating
colors. Finally, note this line in Example 4-9:

pn.Dispose()

By convention, objects that allocate scarce resources expose a Dispose method to allow the object
client to tell the object to release its resources. When using any object that exposes a Dispose method
(as the Pen object does), the Dispose method must be called when the client code is finished using
the object. If the Dispose method isn't called (or if it isn't implemented), resources will be held longer
than necessary, which may in turn result in resources being unavailable for other code that needs
them.

The .NET Framework provides a number of predefined pens through the properties of the Pens and
SystemPens classes (defined in the System.Drawing namespace). For example, the Blue property of
the Pens class returns a Pen object whose color is set to Color.Blue. Thus, the following line of
code draws a blue ellipse:

e.Graphics.DrawEllipse(Pens.Blue, rect)

Similarly, the SystemPens class's WindowText property returns a Pen object whose color is set to the
system's window text color. Using the standard pens provided by the Pens and SystemPens classes
can be more efficient than instantiating new Pen objects. However, their properties (such as line width)
cannot be altered.

See Table 4-1, later in this chapter, for the list of Pen objects available through the Pens class. See
Section 4.6.4.1 in Section 4.6.4 later in this chapter for the list of Pen objects available through the
SystemPens class.

Programming Visual Basic .NET

 165

When working with a user-instantiated pen, you can modify the line that is drawn by setting properties
of the Pen object. The code in Example 4-10 sets the Pen object's Width property to widen the
outline of the ellipse. The lines of code that differ from Example 4-9 are shown in bold. The resulting
display is shown in Figure 4-10.

Example 4-10. Setting Pen properties
Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
 Dim pn As New Pen(Me.ForeColor)
 pn.Width = 10
 pn.DashStyle = Drawing.Drawing2D.DashStyle.Dash
 Dim rect As Rectangle

 rect.X = Me.ClientRectangle.X + (Me.ClientRectangle.Width \ 4)
 rect.Y = Me.ClientRectangle.Y + (Me.ClientRectangle.Height \ 4)
 rect.Width = Me.ClientRectangle.Width \ 2
 rect.Height = Me.ClientRectangle.Height \ 2

 e.Graphics.DrawEllipse(pn, rect)
 pn.Dispose()
End Sub

Figure 4-10. The ellipse drawn by the code in Example 4-10

Example 4-10 sets the Pen object's Width and DashStyle properties to attain the effect shown in
Figure 4-10. The Width property is a value of type Single that determines the width of lines drawn
with this pen. The default is 1. The unit of measurement is determined by the PageUnit property of the
Graphics object in which the lines are drawn. The PageUnit property is of the enumeration type
GraphicsUnit (defined in the System.Drawing namespace). The values of GraphicsUnit that are
appropriate for assignment to the PageUnit property are:

Display

Units are specified in 1/75 of an inch.

Document

Units are specified in 1/300 of an inch.

Inch

Units are specified in inches.

 166

Millimeter

Units are specified in millimeters.

Pixel

Units are specified in pixels.

Point

Units are specified in points (1/72 of an inch).

The DashStyle property of the Pen object determines the whether the line is solid or dashed, as well
as the style of the dash. The DashStyle property is of the enumeration type DashStyle (defined in the
System.Drawing.Drawing2D namespace), which defines the following values:

Custom

Specifies a programmer-defined dash style. If this value is used, other properties of the Pen
object control the exact appearance of the dashes in the line. Creating custom dash styles is
not discussed in this book.

Dash

Specifies a dashed line.

DashDot

Specifies a line consisting of alternating dashes and dots.

DashDotDot

Specifies a line consisting of alternating dashes and two dots.

Dot

Specifies a dotted line.

Solid

Specifies a solid line.

The standard dash styles are shown in Figure 4-11.

Figure 4-11. The standard DashStyle values

Programming Visual Basic .NET

 167

4.6.3 The Brush Class

Brush objects hold the settings used when filling graphics areas. All of the Graphics class's
Fill...methods (FillClosedCurve, FillEllipse, etc.) require that the caller supply a Brush object. The
supplied Brush object determines how the interior of the figure will be painted. Example 4-11 shows
an OnPaint method that can be used to draw an ellipse on a user control or a form. It is similar to
Example 4-9, but draws a filled ellipse rather than an outline. The lines that differ from Example 4-9
are shown in bold. The resulting display is shown in Figure 4-12.

Example 4-11. Drawing a filled ellipse on a form
Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
 Dim br As New SolidBrush(Me.ForeColor)
 Dim rect As Rectangle

 rect.X = Me.ClientRectangle.X + (Me.ClientRectangle.Width \ 4)
 rect.Y = Me.ClientRectangle.Y + (Me.ClientRectangle.Height \ 4)
 rect.Width = Me.ClientRectangle.Width \ 2
 rect.Height = Me.ClientRectangle.Height \ 2

 e.Graphics.FillEllipse(br, rect)
 br.Dispose()
End Sub

Figure 4-12. The ellipse drawn by the code in Example 4-11

Note that Example 4-11 is not entirely parallel to Example 4-9. Specifically, Example 4-9
instantiated a Pen object directly, but Example 4-11 instantiates an object from a class that derives
from the Brush class rather than directly from the Brush class. Objects can't be directly instantiated
from the Brush class. The classes that derive from Brush are:

HatchBrush

Fills an area with a hatch pattern. Hatch patterns are patterns of lines and spaces. The
HatchBrush class's HatchStyle property determines the exact pattern of the hatch. It is defined
in the System.Drawing.Drawing2D namespace.

LinearGradientBrush

Fills an area with a gradient blend of two or more colors. It is defined in the
System.Drawing.Drawing2D namespace.

 168

PathGradientBrush

Fills the internal area of a GraphicsPath object with a gradient blend of two or more colors. It is
defined in the System.Drawing.Drawing2D namespace.

SolidBrush

Fills an area with a solid color. It is defined in the System.Drawing namespace.

TextureBrush

Fills an area with an image. It is defined in the System.Drawing namespace.

The .NET Framework provides a number of predefined brushes through the properties of the Brushes
and SystemBrushes classes (defined in the System.Drawing namespace). For example, the Blue
property of the Brushes class returns a Brush object that fills areas with solid blue. Thus, the following
line of code draws a solid blue ellipse:

e.Graphics.FillEllipse(Brushes.Blue, rect)

Similarly, the SystemBrushes class's Window property returns a Brush object whose color is set to the
background color of the system's window client area. Using the standard brushes provided by the
Brushes and SystemBrushes classes can be more efficient than instantiating new Brush objects.
However, their properties cannot be altered.

See Table 4-1 for the list of Brush objects available through the Brushes class. See Section 4.6.4.1
for the list of Brush objects available through the SystemBrushes class.

4.6.4 The Color Structure

Colors are represented by values of type Color. The Color structure defines 141 named colors and
exposes them as shared read-only properties whose values are of type Color. They serve the purpose
of color constants. For example, the following code fragment sets the background color of the form
frm to white:

frm.BackColor = Color.White

The color properties exposed by the Color structure have the same names as the pen properties
exposed by the Pens class and the brush properties exposed by the Brushes class. The list is lengthy,
so it is printed here only once, in Table 4-1.

Table 4-1. Properties common to the Color, Pens, and Brushes classes
AliceBlue AntiqueWhite Aqua
Aquamarine Azure Beige
Bisque Black BlanchedAlmond
Blue BlueViolet Brown
BurlyWood CadetBlue Chartreuse
Chocolate Coral CornflowerBlue
Cornsilk Crimson Cyan
DarkBlue DarkCyan DarkGoldenrod
DarkGray DarkGreen DarkKhaki
DarkMagenta DarkOliveGreen DarkOrange

Programming Visual Basic .NET

 169

DarkOrchid DarkRed DarkSalmon
DarkSeaGreen DarkSlateBlue DarkSlateGray
DarkTurquoise DarkViolet DeepPink
DeepSkyBlue DimGray DodgerBlue
Firebrick FloralWhite ForestGreen
Fuchsia Gainsboro GhostWhite
Gold Goldenrod Gray
Green GreenYellow Honeydew
HotPink IndianRed Indigo
Ivory Khaki Lavender
LavenderBlush LawnGreen LemonChiffon
LightBlue LightCoral LightCyan
LightGoldenrodYellow LightGray LightGreen
LightPink LightSalmon LightSeaGreen
LightSkyBlue LightSlateGray LightSteelBlue
LightYellow Lime LimeGreen
Linen Magenta Maroon
MediumAquamarine MediumBlue MediumOrchid
MediumPurple MediumSeaGreen MediumSlateBlue
MediumSpringGreen MediumTurquoise MediumVioletRed
MidnightBlue MintCream MistyRose
Moccasin NavajoWhite Navy
OldLace Olive OliveDrab
Orange OrangeRed Orchid
PaleGoldenrod PaleGreen PaleTurquoise
PaleVioletRed PapayaWhip PeachPuff
Peru Pink Plum
PowderBlue Purple Red
RosyBrown RoyalBlue SaddleBrown
Salmon SandyBrown SeaGreen
SeaShell Sienna Silver
SkyBlue SlateBlue SlateGray
Snow SpringGreen SteelBlue
Tan Teal Thistle
Tomato Transparent Turquoise
Violet Wheat White
WhiteSmoke Yellow YellowGreen

4.6.4.1 System colors

It is useful to discover the colors that Windows uses to draw specific window elements, such as the
active window's title bar. If the color itself is required, it can be obtained from the SystemColors class.
If a pen or brush of the appropriate color is needed, the pen or brush can be obtained from the
corresponding property of the Pens or Brushes class, respectively. The property names exposed by
these three classes overlap and, therefore, are presented here in a single list:

ActiveBorder

 170

The color of the filled area of the border of the active window. (Not available on the Pens
class.)

ActiveCaption

The background color of the title bar of the active window. (Not available on the Pens class.)

ActiveCaptionText

The text color in the title bar of the active window.

AppWorkspace

The background color of MDI parent windows. (Not available on the Pens class.)

Control

The background color of controls.

ControlDark

The shadow color of controls (for 3-D effects).

ControlDarkDark

The very dark shadow color of controls (for 3-D effects).

ControlLight

The highlight color of controls (for 3-D effects).

ControlLightLight

The very light highlight color of controls (for 3-D effects).

ControlText

The color of text on controls.

Desktop

The color of the Windows desktop. (Not available on the Pens class.)

GrayText

The text color of disabled controls or other disabled visual elements. (Not available on the
Brushes class.)

Highlight

The background color of highlighted (selected) text.

HighlightText

The text color of highlighted (selected) text.

Programming Visual Basic .NET

 171

HotTrack

The background color of a hot tracked item. Hot tracking is highlighting an item as the mouse
moves over it. Windows menus use hot tracking. (Not available on the Pens class.)

InactiveBorder

The color of the filled areas of the borders of inactive windows. (Not available on the Pens
class.)

InactiveCaption

The background color of the title bars of inactive windows. (Not available on the Pens class.)

InactiveCaptionText

The text color in the title bars of inactive windows. (Not available on the Brushes class.)

Info

The background color of tool tips. (Not available on the Pens class.)

InfoText

The text color of tool tips. (Not available on the Brushes class.)

Menu

The background color of menus. (Not available on the Pens class.)

MenuText

The text color of menus. (Not available on the Brushes class.)

ScrollBar

The color of scroll bars in the area not occupied by the scroll box (or thumb). (Not available on
the Pens class.)

Window

The background color of the client areas of windows. (Not available on the Pens class.)

WindowFrame

The color of the frames surrounding windows. (Not available on the Brushes class.)

WindowText

The color of the text in the client areas of windows.

Note that some of these properties aren't available on either the Pens class or the Brushes class. In
such cases, it is still possible to get a Pen or Brush object of the appropriate color by instantiating a
new Pen or Brush object, passing to its constructor the desired color value, like this:

 172

Dim br As New SolidBrush(SystemColors.InfoText)

4.6.5 Alpha Blending

Alpha blending is a process that allows a Graphics object to appear transparent, causing Graphics
objects beneath it to be seen through the object. The degree of transparency can be controlled in
steps from completely transparent (invisible) to completely opaque (obscuring any objects beneath it).
To draw a transparent object, instantiate Pen and Brush objects having colors whose alpha
component is less than the maximum value of 255. A color's alpha component is given by the A
property of the Color structure. This property is a Byte, so it can take values from 0 (invisible) to 255
(completely opaque).

Example 4-12 shows an OnPaint method that draws text and then draws two overlapping,
transparent ellipses in the same space as the text. Normally, the ellipses would obscure the text, and
the second ellipse would obscure the first. In this case, however, the text can be seen through the
ellipses because the ellipses are transparent, and the first ellipse can be seen through the second.
The result is shown in Figure 4-13.

Example 4-12. Drawing transparent figures
Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 ' Determine the text to display and its font.
 Dim str As String = "Here is some text to display in a form."
 Dim fnt As New Font("Arial", 10, FontStyle.Regular, GraphicsUnit.Point)

 ' Determine the X and Y coordinates at which to draw the text so
 ' that it is centered in the window.
 Dim szf As SizeF = e.Graphics.MeasureString(str, fnt)
 Dim xText As Single = (Me.DisplayRectangle.Width - szf.Width) / 2
 Dim yText As Single = (Me.DisplayRectangle.Height - szf.Height) / 2

 ' Draw the text.
 e.Graphics.DrawString(str, fnt, Brushes.Black, xText, yText)

 ' Create a blue brush that is mostly transparent.
 Dim br As New SolidBrush(Color.FromArgb(160, Color.Blue))

 ' Determine the bounding rectangle for the first ellipse.
 Dim rect As Rectangle
 rect.X = Me.DisplayRectangle.X + (Me.DisplayRectangle.Width \ 8)
 rect.Y = Me.DisplayRectangle.Y + (Me.DisplayRectangle.Height \ 8)
 rect.Width = Me.DisplayRectangle.Width \ 2
 rect.Height = Me.DisplayRectangle.Height \ 2

 ' Draw the first ellipse.
 e.Graphics.FillEllipse(br, rect)

 ' Release the brush.
 br.Dispose()

 ' Create a red brush that is mostly transparent.
 br = New SolidBrush(Color.FromArgb(160, Color.Red))

 ' Determine the bounding rectangle for the second ellipse.
 rect.X += (Me.DisplayRectangle.Width \ 4)
 rect.Y += (Me.DisplayRectangle.Height \ 4)

 ' Draw the second ellipse.
 e.Graphics.FillEllipse(br, rect)

Programming Visual Basic .NET

 173

 ' Release the brush.
 br.Dispose()

End Sub

Figure 4-13. The display drawn by the code in Example 4-12

4.6.6 Antialiasing

Antialiasing is a technique for making the edges of graphics figures appear less jagged. To turn on
antialiasing, set the Graphics object's SmoothingMode property to SmoothingMode.AntiAlias.
(SmoothingMode is an enumeration defined in the System.Drawing.Drawing2D namespace.) Compare
the arcs shown in Figure 4-14. Both arcs were drawn by calling the DrawArc method of the Graphics
class, but the arc on the left was drawn with the SmoothingMode property set to
SmoothingMode.None (the default), and the arc on the right was drawn with the SmoothingMode
property set to SmoothingMode.AntiAlias. Figure 4-15 shows a close-up comparison view of
the upper portion of both arcs.

Figure 4-14. Nonantialiased versus antialiased arcs

Figure 4-15. Close-up view of nonantialiased and antialiased arcs

As Figure 4-15 shows, antialiasing appears to improve pixel resolution by using gradient shades of
the color being rendered and of the background color (in this case, black and white, respectively).

The downside to antialiasing is that it takes more time to render.

 174

4.7 Printing

Most Visual Basic .NET programs will never need to use the .NET Framework's native printing
capabilities. Reporting tools such as Crystal Reports, as well as RAD tools for laying out reports,
provide most of the printing facilities that typical Visual Basic .NET programs need. However, for the
cases in which a reporting tool is not flexible enough, this section describes the .NET Framework's
support for outputting text and graphics directly to a printer.

4.7.1 Hello, Printer!

Example 4-13 shows a minimal printing example.

Example 4-13. Hello, Printer!
Imports System.Drawing
Imports System.Drawing.Drawing2D
Imports System.Drawing.Printing

' ...
' These two lines initiate printing. Place this code in an
' appropriate place in the application.
Dim pd As New HelloPrintDocument()
pd.Print()
' ...

' This class manages the printing process.
Public Class HelloPrintDocument
 Inherits PrintDocument

 Protected Overrides Sub OnPrintPage(ByVal e As PrintPageEventArgs)
 MyBase.OnPrintPage(e)

 ' Draw text to the printer graphics device.
 Dim fnt As New Font("Arial", 10, FontStyle.Regular, _
 GraphicsUnit.Point)
 e.Graphics.DrawString("Hello, Printer!", fnt, Brushes.Black, 0, 0)
 fnt.Dispose()

 ' Indicate that there are no more pages.
 e.HasMorePages = False
 End Sub

End Class

Printing is managed by defining a class that inherits from the PrintDocument class (defined in the
System.Drawing.Printing namespace). Printing is initiated by instantiating the derived class and calling
its Print method (inherited from the PrintDocument class). The Print method repeatedly calls the
OnPrintPage method, until the HasMorePages property of the PrintPageEventArgs parameter is set to
False. It is the job of the OnPrintPage method to generate each page of output that is sent to the
printer.

Take a closer look at the OnPrintPage method in Example 4-13, starting with the first line:

MyBase.OnPrintPage(e)

This line of code calls the OnPrintPage method implemented by the base PrintDocument class,
passing it the same argument that was passed into the derived class's OnPrintPage method. This call
is important because the PrintDocument class's OnPrintPage method is responsible for firing the

Programming Visual Basic .NET

 175

PrintDocument object's PrintPage event. If this is not done, any code that has registered for this event
will not receive it. This is not an issue in this small example, but it's nevertheless good programming
practice.

The next three lines of code are responsible for handling the printing:

' Draw text to the printer graphics device.
Dim fnt As New Font("Arial", 10, FontStyle.Regular, _
 GraphicsUnit.Point)
e.Graphics.DrawString("Hello, Printer!", fnt, Brushes.Black, 0, 0)
fnt.Dispose()

This code draws some text to the Graphics object provided through the PrintPageEventArgs
parameter. Everything you learned in the previous section about the Graphics object is applicable here.

Finally, since we're printing just one page in our example program,
PrintPageEventArgs.HasMorePages is set to False:

' Indicate that there are no more pages.
e.HasMorePages = False

This line indicates to the Print method that the end of the document has been reached. If more pages
need to be printed, the OnPrintPage method should set the HasMorePages property to True.

4.7.2 The PrintPageEventArgs Class

The PrintPageEventArgs class is declared in the System.Drawing.Printing namespace as:

Public Class PrintPageEventArgs
 Inherits System.EventArgs

Its properties are:

Cancel

An indication of whether the print job is being canceled. This property is set to True by the
printing system if the user cancels the print job. Code in the OnPrintPage method can read
this value and take any appropriate action. However, programmatically setting this property
back to False does not resume the print job. On the other hand, programmatically setting it to
True does cancel the print job, even if the user has not clicked the Cancel button. The syntax
of the Cancel property is:

Public Property Cancel() As Boolean
Graphics

The Graphics object that represents the page surface. The syntax of the Graphics property is:

Public ReadOnly Property Graphics() As System.Drawing.Graphics
HasMorePages

The mechanism for the OnPrintPage method to indicate to the printing system whether there
are more pages to be printed after the current page. The OnPrintPage method should set this
property to True when there are more pages to print and to False when there are no more
pages to print. The syntax of the HasMorePages property is:

Public Property HasMorePages() As Boolean

 176

MarginBounds

A rectangle that specifies the area of the page that is within the document margins (i.e., the
area of the page on which rendering should occur). The syntax of the MarginBounds property
is:

Public ReadOnly Property MarginBounds() As System.Drawing.Rectangle
PageBounds

A rectangle that specifies the full area of the page, including the area outside the margins. The
syntax of the PageBounds property is:

Public ReadOnly Property PageBounds() As System.Drawing.Rectangle
PageSettings

The page settings that apply to the page currently being printed. The syntax of the
PageSettings property is:

Public ReadOnly Property PageSettings() As _
 System.Drawing.Printing.PageSettings

The PageSettings class is described later in this section.

4.7.3 The OnBeginPrint and OnEndPrint Methods

The PrintDocument class provides the OnBeginPrint and OnEndPrint methods for managing the start
and finish of print jobs. The OnBeginPrint method is called prior to the first call to OnPrintPage, and
the OnEndPrint method is called after the final call to OnPrintPage. The OnBeginPrint method is a
good place to set up objects that will be used throughout the life of the print job—pens, brushes, and
fonts, for example. The HelloPrintDocument class in Example 4-13 instantiates a Font object during
the OnPrintPage method. This is acceptable here because only one page is being printed. However,
in practice documents may contain many pages, so it is better to move this code to the OnBeginPrint
method. Example 4-14 shows how the HelloPrintDocument looks when modified in this way.

Example 4-14. Using OnBeginPrint and OnEndPrint to set up and tear
down objects used during printing
Public Class HelloPrintDocument
 Inherits PrintDocument

 ' Private member to hold the font that will be used for printing.
 Private m_fnt As Font

 Protected Overrides Sub OnBeginPrint(ByVal e As PrintEventArgs)
 MyBase.OnBeginPrint(e)

 ' Create the font that will be used for printing.
 m_fnt = New Font("Arial", 10, FontStyle.Regular, _
 GraphicsUnit.Point)
 End Sub

 Protected Overrides Sub OnEndPrint(ByVal e As PrintEventArgs)
 MyBase.OnEndPrint(e)

 ' Release the font.
 m_fnt.Dispose()
 End Sub

Programming Visual Basic .NET

 177

 Protected Overrides Sub OnPrintPage(ByVal e As PrintPageEventArgs)
 MyBase.OnPrintPage(e)

 ' Draw text to the printer graphics device.
 Dim rect As Rectangle = e.MarginBounds
 e.Graphics.DrawString("Hello, Printer!", m_fnt, Brushes.Black, 0, 0)

 ' Indicate that there are no more pages.
 e.HasMorePages = False
 End Sub

End Class

4.7.4 Choosing a Printer

The code given in Examples Example 4-13 and Example 4-14 merely prints to the default printer.
To allow the user to select a specific printer and set other printer options, pass the PrintDocument
object to a PrintDialog object and call the PrintDialog object's ShowDialog method. The ShowDialog
method displays a PrintDialog dialog box (shown in Figure 5-19 in Chapter 5). When the user clicks
OK in the PrintDialog dialog box, the ShowDialog method sets the appropriate values in the given
PrintDocument object. The PrintDocument object's Print method can then be called to print the
document to the selected printer. Here is the code:

' Create the PrintDocument object and the dialog box object.
Dim pd As New HelloPrintDocument()
Dim dlg As New PrintDialog()
' Pass the PrintDocument object to the dialog box object.
dlg.Document = pd
' Show the dialog box. Be sure to test the result so that printing
' occurs only if the user clicks OK.
If dlg.ShowDialog = DialogResult.OK Then
 ' Print the document.
 pd.Print()
End If

This code assumes the presence of the HelloPrintDocument class defined in Example 4-13 or
Example 4-14. Note that the HelloPrintDocument class itself does not need to be modified to support
choosing a printer.

4.7.5 The PageSettings Class

As mentioned earlier, the PrintPageEventArgs object passed to the OnPrintPage method has a
PageSettings property that holds a PageSettings object. This object holds the settings applicable to
printing a single page. The properties of the PageSettings class are:

Bounds

Represents a rectangle that specifies the full area of the page, including the area outside the
margins. This is the same value found in the PageBounds property of the PrintPageEventArgs
class. The syntax of the Bounds property is:

Public ReadOnly Property Bounds() As System.Drawing.Rectangle
Color

Indicates whether the page should be printed in color. The syntax of the Color property is:

Public Property Color() As Boolean

 178

Landscape

Indicates whether the page is being printed in landscape orientation. The syntax of the
Landscape property is:

Public Property Landscape() As Boolean
Margins

Indicates the size of the margins. The syntax of the Margins property is:

Public Property Margins() As System.Drawing.Printing.Margins

The Margins class has four properties, Left, Top, Right, and Bottom, each of which is an
Integer expressing the size of the respective margin.

PaperSize

Indicates the size of the paper. The syntax of the PaperSize property is:

Public Property PaperSize() As System.Drawing.Printing.PaperSize

The PaperSize class has four properties:

Width

An Integer expressing the width of the paper. This is the same value found in the Width
member of the Bounds property of the PageSettings object.

Height

An Integer expressing the height of the paper. This is the same value found in the Height
member of the Bounds property of the PageSettings object.

Kind

An enumeration of type PaperKind expressing the size of the paper in terms of standard
named sizes, such as Letter and Legal.

PaperName

A string giving the name of the paper size, such as "Letter" and "Legal".

PaperSource

Indicates the paper tray from which the page will be printed. The syntax of the PaperSource
property is:

Public Property PaperSource() As
System.Drawing.Printing.PaperSource

The PaperSource class has two properties:

Kind

Programming Visual Basic .NET

 179

An enumeration of type PaperSourceKind expressing the paper source in terms of standard
names, such as Lower and Upper.

SourceName

A string giving the name of the paper source, such as "Lower" and "Upper".

PrinterResolution

Indicates the resolution capability of the printer. The syntax of the PrinterResolution property is:

Public Property PrinterResolution() As _
 System.Drawing.Printing.PrinterResolution

The PrinterResolution class has three properties:

X

An Integer expressing the horizontal resolution of the printer in dots per inch.

Y

An Integer expressing the vertical resolution of the printer in dots per inch.

Kind

An enumeration of type PrinterResolutionKind expressing the resolution mode. The values of
this enumeration are Draft, Low, Medium, High, and Custom.

PrinterSettings

Indicates the settings applicable to the printer being used. The syntax of the PrinterSettings
property is:

Public Property PrinterSettings() As _
 System.Drawing.Printing.PrinterSettings

The PrinterSettings class is described in the next section.

4.7.6 The PrinterSettings Class

The PrinterSettings class holds values that describe the capabilities and settings of a specific printer. It
exposes these properties:

CanDuplex

Indicates whether the printer can print on both sides of the paper. The syntax of the
CanDuplex property is:

Public ReadOnly Property CanDuplex() As Boolean
Collate

Indicates whether the document being printed will be collated. The syntax of the Collate
property is:

 180

Public Property Collate() As Boolean
Copies

Indicates the number of copies to print. The syntax of the Copies property is:

Public Property Copies() As Short
DefaultPageSettings

Indicates the default page settings for this printer. The syntax of the DefaultPageSettings
property is:

Public ReadOnly Property DefaultPageSettings() As _
 System.Drawing.Printing.PageSettings

The PageSettings class was described in the previous section.

Duplex

Indicates whether the print job is to print on both sides of the paper. The syntax of the Duplex
property is:

Public Property Duplex() As System.Drawing.Printing.Duplex

The Duplex type is an enumeration with the following values:

Simplex

The document will print only on one side of each page.

Horizontal

The document will print using both sides of each page.

Vertical

The document will print using both sides of each page, and the second side will be inverted to
work with vertical binding.

Default

The document will print using the printer's default duplex mode.

FromPage

Specifies the first page to print if the PrintRange property is set to SomePages. The syntax of
the FromPage property is:

Public Property FromPage() As Integer
InstalledPrinters

Indicates the names of the printers installed on the computer. This list includes only the
printers physically connected to the machine (if any), not necessarily all printers set up in the
Control Panel. The syntax of the InstalledPrinters property is:

Public Shared ReadOnly Property InstalledPrinters() As _

Programming Visual Basic .NET

 181

 System.Drawing.Printing.PrinterSettings.StringCollection

The StringCollection class is a collection of strings. It can be iterated using code such as this:

' Assume pts is of type PrinterSettings.
Dim str As String
For Each str In pts.InstalledPrinters
 Console.WriteLine(str)
Next

IsDefaultPrinter

Indicates whether this printer is the user's default printer. The syntax of the IsDefaultPrinter
property is:

Public ReadOnly Property IsDefaultPrinter() As Boolean

If the PrinterName property is explicitly set to anything other than Nothing, this property
always returns False.

IsPlotter

Indicates whether this printer is a plotter. The syntax of the IsPlotter property is:

Public ReadOnly Property IsPlotter() As Boolean
IsValid

Indicates whether the PrinterName property designates a valid printer. The syntax of the
IsValid property is:

Public ReadOnly Property IsValid() As Boolean

This property is useful if the PrinterName property is being set explicitly. If the PrinterName is
set as a result of allowing the user to select a printer through the PrintDialog dialog box, this
property will always be True.

LandscapeAngle

Indicates the angle (in degrees) by which portrait orientation is rotated to produce landscape
orientation. The syntax of the LandscapeAngle property is:

Public ReadOnly Property LandscapeAngle() As Integer

This value can only be 90 or 270. If landscape orientation is not supported, this value can only
be 0.

MaximumCopies

Indicates the maximum number of copies that the printer can print at one time. The syntax of
the MaximumCopies property is:

Public ReadOnly Property MaximumCopies() As Integer
MaximumPage

Indicates the highest page number that can be entered in a PrintDialog dialog box. The syntax
of the MaximumPage property is:

 182

Public Property MaximumPage() As Integer

Set this value prior to calling the PrintDialog object's ShowDialog method to prohibit the user
from entering a page number that is too high.

MinimumPage

Indicates the lowest page number that can be entered in a PrintDialog dialog box. The syntax
of the MinimumPage property is:

Public Property MinimumPage() As Integer

Set this value prior to calling the PrintDialog object's ShowDialog method to prohibit the user
from entering a page number that is too low.

PaperSizes

Indicates the paper sizes that are supported by this printer. The syntax of the PaperSizes
property is:

Public ReadOnly Property PaperSizes() As _
 System.Drawing.Printing.PrinterSettings+PaperSizeCollection

The PaperSizeCollection is a collection of objects of type PaperSize. The PaperSize type was
described in the previous section, under the description for the PaperSize property of the
PageSettings class. The PaperSizeCollection can be iterated using the following code:

' Assume pts is of type PrinterSettings.
Dim pprSize As PaperSize
For Each pprSize In pts.PaperSizes
 Console.WriteLine(pprSize.PaperName)
Next

PaperSources

Indicates the paper sources that are available on the printer. The syntax of the PaperSources
property is:

Public ReadOnly Property PaperSources() As _
 System.Drawing.Printing.PrinterSettings+PaperSourceCollection

The PaperSourceCollection is a collection of objects of type PaperSource. The PaperSource
type was described in the previous section, under the description for the PaperSource
property of the PageSettings class. The PaperSourceCollection can be iterated using the
following code:

' Assume pts is of type PrinterSettings.
Dim pprSource As PaperSource
For Each pprSource In pts.PaperSources
 Console.WriteLine(pprSource.SourceName)
Next

PrinterName

Indicates the name of the printer. The syntax of the PrinterName property is:

Public Property PrinterName() As String

Unless a string has been explicitly assigned to the property, its value is Null.

Programming Visual Basic .NET

 183

PrinterResolutions

Indicates the resolution supported by this printer. The syntax of the PrinterResolutions
property is:

Public ReadOnly Property PrinterResolutions() As _

System.Drawing.Printing.PrinterSettings.PrinterResolutionCollection

The PrinterResolutionCollection is a collection of objects of type PrinterResolution. The
PrinterResolution type was described in the previous section, under the description for the
PrinterResolution property of the PageSettings class. The PrinterResolutionCollection can be
iterated using the following code:

' Assume pts is of type PrinterSettings.
Dim ptrResolution As PrinterResolution
For Each ptrResolution In pts.PrinterResolutions
 Console.WriteLine(ptrResolution.Kind.ToString())
Next

PrintRange

Indicates the range of pages that are to be printed. The syntax of the PrintRange property is:

Public Property PrintRange() As System.Drawing.Printing.PrintRange

The PrintRange type is an enumeration having the following values:

AllPages

Prints the entire document.

Selection

Prints only the selected portion of the document.

SomePages

Prints the pages starting at the page specified in the FromPage property and ending at the
page specified in the ToPage property.

SupportsColor

Indicates whether the printer supports color printing. The syntax of the SupportsColor property
is:

Public ReadOnly Property SupportsColor() As Boolean
ToPage

Specifies the final page to print if the PrintRange property is set to SomePages. The syntax of
the ToPage property is:

Public Property ToPage() As Integer

The methods of the PrinterSettings class are:

Clone

 184

Creates a copy of the PrinterSettings object. The syntax of the Clone method is:

Public NotOverridable Function Clone() As Object _
 Implements System.ICloneable.Clone

GetHdevmode

Returns a handle to a Windows DEVMODE (device mode) structure corresponding to this
PrinterSettings object. The GetHdevmode method has two forms:

Public Overloads Function GetHdevmode() As System.IntPtr

and:

Public Overloads Function GetHdevmode(_
 ByVal pageSettings As System.Drawing.Printing.PageSettings _
) As System.IntPtr

The DEVMODE structure is part of the Windows API and is not discussed further in this book.

GetHdevnames

Returns a handle to a Windows DEVNAMES structure corresponding to this PrinterSettings
object. The syntax of the GetHdevnames method is:

Public Function GetHdevnames() As System.IntPtr

The DEVNAMES structure is part of the Windows API and is not discussed further in this book.

SetHdevmode

Sets properties of this PrinterSettings object based on values in the given DEVMODE structure.
The syntax of the SetHdevmode method is:

Public Sub SetHdevmode(ByVal hdevmode As System.IntPtr)

The DEVMODE structure is part of the Windows API and is not discussed further in this book.

SetHdevnames

Sets properties of this PrinterSettings object based on values in the given DEVNAMES structure.
The syntax of the SetHdevnames method is:

Public Sub SetHdevnames(ByVal hdevnames As System.IntPtr)

The DEVNAMES structure is part of the Windows API and is not discussed further in this book.

4.7.7 Page Setup Dialog Box

Windows Forms provides a common dialog box for page setup (shown in Figure 5-18 in Chapter 5).
Settings entered by the user in this dialog box are saved to a PageSettings object. This PageSettings
object can be saved by the application and passed to the PrintDocument object prior to calling the
PrintDocument object's Print method. The PrintDocument object will then use the given settings for
printing. Here's the code that displays the dialog box:

Private Sub ShowPageSetup()

Programming Visual Basic .NET

 185

 ' Display the page settings dialog box. This assumes that there is
 ' a class-level variable of type PageSettings called m_pgSettings.
 Dim pgSetupDlg As New PageSetupDialog()
 pgSetupDlg.PageSettings = m_pgSettings
 pgSetupDlg.ShowDialog()
End Sub

This code depends on the existence of a class-level variable of type PageSettings called
m_pgSettings. Here is a suitable definition for this variable:

' Private member to hold the application's page settings.
' This could be placed in an application's main form or in another
' class that is accessible to the code that will need to print.
Private m_pgSettings As New PageSettings()

Note the use of the New keyword to ensure that the PageSettings object is instantiated as soon as the
enclosing class is instantiated.

All that remains is to hand the PageSettings object to the PrintDocument object when it's time to print.
Here is the code:

Private Sub PrintTheDocument()
 ' Create the PrintDocument object.
 Dim pd As New HelloPrintDocument()
 ' Hand it the PageSettings object.
 pd.DefaultPageSettings = m_pgSettings
 ' Create the dialog box object.
 Dim dlg As New PrintDialog()
 ' Pass the PrintDocument object to the dialog box object.
 dlg.Document = pd
 ' Show the dialog box. Be sure to test the result so that printing
 ' occurs only if the user clicks OK.
 If dlg.ShowDialog = DialogResult().OK Then
 ' Print the document.
 pd.Print()
 End If
End Sub

4.7.8 Print Preview

Generating a print preview is trivial. An instance of the PrintDocument object is created and passed to
a PrintPreviewDialog object, whose ShowDialog method is then called to show the print preview. Here
is the code:

Private Sub ShowPrintPreview()
 ' Create the PrintDocument object.
 Dim pd As New HelloPrintDocument()
 ' Hand it the PageSettings object.
 pd.DefaultPageSettings = m_pgSettings
 ' Create the print preview dialog box object.
 Dim dlg As New PrintPreviewDialog()
 ' Pass the PrintDocument object to the dialog box object.
 dlg.Document = pd
 ' Show the dialog box.
 dlg.ShowDialog()
End Sub

The result is shown in Figure 4-16.

 186

Figure 4-16. Hello, Printer! in a print preview window

4.7.9 Summary of Printing

The .NET Framework hides the mechanics of printing. Applications don't have to know how to find
printers, they don't have to know what a given printer's capabilities are, and they don't have to know
how to issue commands that are meaningful to a given brand of printer. The Framework abstracts all
of this away. However, the Framework doesn't know anything about a given application's documents.
It is up to the application developer to know how to paginate the application's documents and render
each page in response to each call to the PrintDocument class's OnPrintPage method.

4.8 Summary

In this chapter, you've seen how to work with Windows forms in creating a desktop application. A
Windows form, however, is simply a container for the application's user interface components. In the
next chapter, you'll round out your examination of desktop application development by looking at
controls, common dialogs, and menus.

Programming Visual Basic .NET

 187

Chapter 5. Windows Forms II: Controls, Common
Dialog Boxes, and Menus

By themselves, one or more forms provide very little functionality to most desktop applications. For the
most part, forms are valuable insofar as they serve as containers for controls. In this chapter, we'll
complete our discussion of building desktop applications by focusing on the objects that forms
contain—in particular, controls and components, common dialogs, and menus.

5.1 Common Controls and Components

This section contains a summary of the controls and components defined in the
System.Windows.Forms namespace. Components are classes derived from the Component class
(defined in the System.ComponentModel namespace). They may or may not provide a visual interface.
They are often used as elements of forms but don't have to be. Controls are classes derived from the
Control class (defined in the System.Windows.Forms namespace). Controls generally are used to
build the visual appearance of a form. The Control class itself is derived from the Component class, so
controls are also components.

The common dialog boxes are not listed here, even though they all derive from the Component class.
They are given their own section, Section 5.4 later in this chapter.

5.1.1 The Button Class

This class represents a button control, which is one of the most commonly used controls in Windows
applications. The Button class's Click event, which it inherits from Control, is its most commonly used
event.

The Button class inherits two important properties from ButtonBase: FlatStyle and Image. The first
determines the appearance of the button and can take any value of the FlatStyle enumeration: Flat,
Popup, Standard (the default), and System. Buttons with these four settings are shown in Figure 5-
1. Assigning FlatStyle.System as the value of the FlatStyle property makes the appearance of the
button dependent on the operating system.

Figure 5-1. Various appearances of the Button control

The Image property allows you to embed an image into a button. The following code shows how to
programmatically set the Image property of Button:

Button1.Image = New System.Drawing.Bitmap(filepath)

5.1.2 The CheckBox Class

The CheckBox class represents a checkbox control. Its appearance is determined by its Appearance
property, which can take either value of the Appearance enumeration: Button or Normal (the
default). The Button value is rarely used because this setting makes the checkbox look like a Button
control.

 188

The CheckBox class's Checked property can be set to True to make the checkbox checked or False
to uncheck it.

5.1.3 The ComboBox Class

Both the ComboBox and ListBox classes derive from the ListControl class; therefore, the ComboBox
class is very similar to the ListBox class and has properties and methods similar to those of the
ListBox class. Refer to Section 5.1.9 for information on these common properties and methods.

The following properties are specific to the ComboBox class:

DropDownStyle

Defines the drop-down style of the ComboBox. It can take any value of the ComboBoxStyle
enumeration: DropDown (the default value), DropDownList, and Simple. Both DropDown
and DropDownList require the user to click the arrow button to display the drop-down
portion of the ComboBox; however, DropDown allows the user to edit the text portion of the
ComboBox. Simple makes a ComboBox's text portion editable and its drop-down portion
always visible.

DroppedDown

Specifies whether the drop-down portion of a ComboBox is visible.

5.1.4 The DateTimePicker Class

The DateTimePicker class represents a control that allows users to select a date in the calendar, just
like the MonthCalendar control. Unlike MonthCalendar, however, the DateTimePicker control only
displays a box, which looks like a combo box, containing the selected date. When the user clicks the
arrow, the control displays a drop-down calendar similar to the MonthCalendar control, from which the
user can select a date. This drop-down portion closes as soon as the user selects a date. The user
can also click on the day, date, month, or year portion of the control for editing.

The DateTimePicker class has MinDate and MaxDate properties that are similar to the ones in the
MonthCalendar class. To set the current date or to obtain the selected date, use the Value property of
the DateTimePicker class. The selected date is readily available as a DateTime data type.

5.1.5 The GroupBox Class

As the name implies, a GroupBox control is used for grouping other controls, such as radio buttons or
checkboxes; it corresponds to the Frame control in Visual Basic 6.0. A GroupBox grouping two radio
buttons is shown in Figure 5-2.

Figure 5-2. A GroupBox grouping two radio buttons

The Controls property of GroupBox represents a Control.ControlCollection class. It has methods such
as Add, AddRange, Clear, GetEnumerator, and Remove, which behave exactly as do the same

Programming Visual Basic .NET

 189

methods in Form.ControlCollection. For example, you can add several controls at once to a GroupBox
using its AddRange method, as demonstrated by the following code that adds two radio buttons to a
GroupBox named groupBox1:

groupBox1.Controls.AddRange(New Control() {radioButton1, radioButton2})

5.1.6 The ImageList Class

The ImageList class allows you to manage a collection of images. The most important property of this
class is Images, which returns an ImageList.ImageCollection object. The ImageList.ImageCollection
class has methods to add and remove images from the collection.

The Add method of the ImageList.ImageCollection class adds a bitmap image or an icon to the
ImageList's image collection. The Add method has three overloads, whose signatures are given as
follows:

Overloads Public Sub Add(ByVal value As System.Drawing.Icon)
Overloads Public Sub Add(ByVal value As System.Drawing.Image)
Overloads Public Sub Add(ByVal value As System.Drawing.Image, _
 ByVal transparentColor as System.Drawing.Color)

The first overload allows you to add an icon, and the second overload is used to add an object of type
System.Drawing.Image. The third overload is used to add an image and make a color of that image
transparent. For example, if you have an image with a blue background color, you can make the
added image transparent by passing a blue color as the second argument to the third overload of the
Add method.

The RemoveAt method of the ImageList.ImageCollection class allows you to remove an image.

Once you instantiate an ImageList object, you can start adding images or icons. The following code,
for example, adds three images and icons using three different overloads of the Add method:

Imports System.Drawing
Dim imageList1 As ImageList1 = New ImageList()
ImageList1.Images.Add(New Icon("C:\Palm.ico"))
ImageList1.Images.Add(New Bitmap("C:\TV.bmp"))
ImageList1.Images.Add(New Bitmap("C:\Dog.bmp"), Color.White)

Important properties of the ImageList class include ColorDepth and ImageSize. The ColorDepth
property determines the number of colors available for the ImageList. For example, a value of 4 means
that 2^4 = 16 colors are available.

The ImageSize property determines the sizes of all images in the list. By default, the value is
System.Drawing.Size(16, 16).

You can assign an ImageList object to the ImageList property of controls such as Label, Button, and
ListView. You can then select an image from the ImageList to be displayed on the control using the
control's ImageIndex property. For example, the following code uses an ImageList for a button and
selects the first image as the background image for the button:

button1.ImageList = imageList1
button1.ImageIndex = 0

5.1.7 The Label Class

This class represents a Label control. Its appearance is determined by two properties: BorderStyle and
FlatStyle. The BorderStyle property defines the appearance of the control's border and takes any of

 190

the three members of the BorderStyle enumeration: None (the default), FixedSingle, and Fixed3D.
Figure 5-3 shows three labels with three different values of BorderStyle.

Figure 5-3. Three labels with different BorderStyle values

The FlatStyle property defines the appearance of the control and can take as its value any member of
the FlatStyle enumeration: Flat, Popup, Standard, and System. However, if the value of the
BorderStyle property is set to None, the label's FlatStyle property can take no other value than
FlatStyle.Standard. For more information on the FlatStyle property, see Section 5.1.1 earlier in
this chapter.

You normally assign a String to the label's Text property. However, you can also assign an image to
its Image property. For example, the following code programmatically sets the Image property of a
label:

Label1.Image = New System.Drawing.Bitmap(filepath)

Another important property is TextAlign, which determines how the label's text is aligned. This property
can take any member of the ContentAlignment enumeration, including BottomCenter, BottomLeft,
BottomRight, MiddleCenter, MiddleLeft, MiddleRight, TopCenter, TopLeft (the default
value), and TopRight.

The UseMnemonic property can be set to True so that the label accepts an ampersand character in
the Text property as an access-key prefix character.

5.1.8 The LinkLabel Class

The LinkLabel class represents a label that can function as a hyperlink, which is a URL to a web site.
Its two most important properties are Text and Links. The Text property is a String that defines the
label of the LinkLabel object. You can specify that some or all of the Text property value is a hyperlink.
For example, if the Text property has the value "Click here for more details", you can make the whole
text a hyperlink, or you can make part of it (e.g., the word "here") a hyperlink. How to do this will
become clear after the second property is explained.

For a LinkLabel to be useful, it must contain at least one hyperlink. The Links property represents a
LinkLabel.LinkCollection class of the LinkLabel object. You use the Add method of the
LinkLabel.LinkCollection class to add a LinkLabel.Link object. The Add method has two overloads; the
one that will be used here has the following signature:

Overloads Public Function Add(_
 ByVal start As Integer, _
 ByVal length As Integer, _
 ByVal linkData As Object _
) As Link

The start argument is the first character of the Text property's substring that you will turn into a
hyperlink. The length argument denotes the length of the substring. The linkData argument is
normally a String containing a URL, such as "www.oreilly.com". For example, if your Text property

Programming Visual Basic .NET

 191

contains "Go to our web site", and you want "web site" to be the hyperlink, here is how you would use
the Add method:

linkLabel1.Links.Add(10, 8, "www.oreilly.com")

10 is the position of the character w in the Text property, and 8 is the length of the substring "web site".

The LinkLabel class has a LinkClicked event that you can capture so that you can run code when a
LinkLabel object is clicked. The following example creates a LinkLabel object that is linked to the URL
www.oreilly.com and starts and directs the default browser to that URL when the LinkLabel is clicked:

Dim WithEvents linkLabel1 As LinkLabel = new LinkLabel()
linkLabel1.Text = "Go to our web site"
linkLabel1.Links.Add(10, 8, "www.oreilly.com")
linkLabel1.Location = New System.Drawing.Point(64, 176)
linkLabel1.Name = "LinkLabel1"
linkLabel1.Size = New System.Drawing.Size(120, 16)
' Add to a form.
Me.Controls.Add(linkLabel1)

Private Sub LinkLabel1_LinkClicked(_
 ByVal sender As Object, _
 ByVal e As LinkLabelLinkClickedEventArgs) _
 Handles linkLabel1.LinkClicked
 ' Start the default browser and direct it to "www.oreilly.com".
 System.Diagnostics.Process.Start(e.Link.LinkData.ToString())
End Sub

The LinkLabel class has a number of properties that are related to the appearance of a LinkLabel
object:

ActiveLinkColor

Represents the color of the LinkLabel when it is being clicked (i.e., when you press your
mouse button but before you release it). By default, the value of ActiveLinkColor is
System.Drawing.Color.Red.

DisabledLinkColor

Represents the color of the LinkLabel when it is disabled.

LinkColor

Represents the color of the LinkLabel in its normal condition. By default, the value is
System.Drawing.Color.Blue.

VisitedLinkColor

Represents the color of a LinkLabel that has been visited. By default, this property value is
System.Drawing.Color.Purple. The LinkLabel does not automatically display in its
VisitedLinkColor after it is clicked. You must change its LinkVisited property to True. Normally,
you do this inside the LinkClicked event handler of the LinkLabel object. Therefore, in the
previous example, if you want the LinkLabel to change color after it is clicked, you can modify
its LinkClicked event handler with the following:

Private Sub LinkLabel1_LinkClicked(_
 ByVal sender As Object, _

 192

 ByVal e As LinkLabelLinkClickedEventArgs) _
 Handles linkLabel1.LinkClicked

 LinkLabel1.LinkVisited = True

 ' Start the default browser and direct it to "www.oreilly.com".
 System.Diagnostics.Process.Start(e.Link.LinkData.ToString())
End Sub

LinkBehavior

Determines how the LinkLabel is displayed. This property can take any member of the
LinkBehavior enumeration: AlwaysUnderline, HoverUnderline, NeverUnderline, and
SystemDefault (the default value).

5.1.9 The ListBox Class

The ListBox class represents a box that contains a list of items. The following are its more important
properties:

MultiColumn

This is a Boolean that indicates whether the listbox has more than one column. Its default
value is False.

ColumnWidth

In a multicolumn listbox, this property represents the width of each column in pixels. By default,
the value of this property is zero, which makes each column have a default width.

Items

This is the most important property of the ListBox class. It returns the ListBox.ObjectCollection
class, which is basically the Items collection in the ListBox. You can programmatically add an
item using the Add method or add a range of items using the AddRange method of the
ListBox.ObjectCollection class. For example, the following code adds the names of vegetables
and fruits to a ListBox object named listBox1:

listBox1.Items.AddRange(New Object() _
 {"apple", "avocado", "banana", "carrot", _
 "mandarin", "orange"})

For more information about the ListBox.ObjectCollection class, see Section 5.1.10.

SelectionMode

This property determines whether multi-item selection is possible in a ListBox object. It can be
assigned any member of the SelectionMode enumeration: None, One (the default value),
MultiSimple, and MultiExtended. Both MultiSimple and MultiExtended allow the
user to select more than one item. However, MultiExtended allows the use of the Shift, Ctrl,
and arrow keys to make a selection.

SelectedIndex

This is the index of the selected item. The index is zero-based. If more than one item is
selected, this property represents the lowest index. If no item is selected, the property returns
-1.

Programming Visual Basic .NET

 193

SelectedIndices

This read-only property returns the indices to all items selected in a ListBox object in the form
of a ListBox.SelectedIndexCollection object. The ListBox.SelectedIndexCollection class has a
Count property that returns the number of selected indices and an Item property that returns
the index number. For example, the following code returns the index number of all selected
items in a ListBox control named listBox1:

Dim selectedIndices As ListBox.SelectedIndexCollection
' Obtain the selected indices.
selectedIndices = listBox1.SelectedIndices
' Get the number of indices.
Dim count As Integer = selectedIndices.Count
Dim i As Integer
For i = 0 To count - 1
 Console.WriteLine(selectedIndices(i))
Next

SelectedItem

This read-only property returns the selected item as an object of type Object. You must cast
the returned value to an appropriate type, which is normally String. If more than one item is
selected, the property returns the item with the lowest index.

SelectedItems

This read-only property returns all items selected in a ListBox object in the form of a
ListBox.SelectedObjectCollection object. The ListBox.SelectedObjectCollection class has a
Count property that returns the number of items in the collection and an Item property that you
can use to obtain the selected item. For example, the following code displays all the selected
items of a ListBox control called listBox1:

Dim selectedItems As ListBox.SelectedObjectCollection
selectedItems = listBox1.SelectedItems
Dim count As Integer = selectedItems.Count
Dim i As Integer
For i = 0 To count - 1
 Console.WriteLine(selectedItems(i))
Next

Sorted

A value of True means that the items are sorted. Otherwise, the items are not sorted. By
default, the value of this property is False.

Text

This is the currently selected item's text.

TopIndex

This is the index of the first visible item in the ListBox. The value changes as the user scrolls
through the items.

5.1.10 The ListBox.ObjectCollection Class

This class represents all the items in a ListBox object. It has a Count property that returns the number
of items in the ListBox and an Item property that returns the item object in a certain index position.

 194

The following sample code reiterates all the items in a ListBox control named listBox1:

Dim items As ListBox.ObjectCollection
items = ListBox1.Items
Dim count As Integer = items.Count
Dim i As Integer
For i = 0 To count - 1
 Console.WriteLine(items(i))
Next

In addition, the ListBox.ObjectCollection class has the following methods:

Add

Adds an item to the ListBox object. Its syntax is:

ListBox.ObjectCollection.Add(item)

where item is data of type Object that is to be added to the collection. The method returns the
zero-based index of the new item in the collection.

AddRange

Adds one or more items to the ListBox object. Its most common syntax is:

ListBox.ObjectCollection.AddRange(items())

where items is an array of objects containing the data to be added to the ListBox.

Clear

Clears the ListBox, removing all the items. Its syntax is:

ListBox.ObjectCollection.Clear()
Contains

Checks whether an item can be found in the list of items. Its syntax is:

ListBox.ObjectCollection.Contains(value)

where value is an Object containing the value to locate in the ListBox. The method returns
True if value is found; otherwise, it returns False.

CopyTo

Copies all items to an object array. Its syntax is:

ListBox.ObjectCollection.CopyTo(dest(), arrayIndex)

where dest is the Object array to which the ListBox items are to be copied, and arrayIndex
is the starting position within dest at which copying is to begin.

IndexOf

Returns the index of a particular item. Its syntax is:

Programming Visual Basic .NET

 195

ListBox.ObjectCollection.IndexOf(value)

where value is an Object representing the item to locate in the collection. The method returns
the item's index. If the item cannot be found, the method returns -1.

Insert

Inserts an item into the ListBox at the specified index position. Its syntax is:

ListBox.ObjectCollection.Insert(index, item)

where index is the zero-based ordinal position at which the item is to be inserted, and item
is an Object containing the data to be inserted into the collection.

Remove

Removes the item that is passed as an argument to this method from the ListBox. Its syntax is:

ListBox.ObjectCollection.Remove(value)

where value is an Object representing the item to remove from the collection.

RemoveAt

Removes an item at the specified index position. Its syntax is:

ListBox.ObjectCollection.RemoveAt(index)

where index is the zero-based ordinal position in the collection of the item to be removed.

5.1.11 The ListView Class

A ListView is a container control that can hold a collection of items. Each item in a ListView can have
descriptive text and an image, and the items can be viewed in four modes. The righthand pane of
Windows Explorer is a ListView control.

An item in a ListView is represented by an object of type ListViewItem. The various constructors of the
ListViewItem class permit a ListViewItem to be constructed with a String or with a String and an index
number. If an index number is used, it represents the index of the item's image in the ImageList
referenced by the ListView.

The following code constructs two ListViewItem objects. The first has the text "Item1" and uses the
first image in the ImageList. The second has the text "Item2" and uses the second image of the
ImageList:

Dim listViewItem1 As ListViewItem = New ListViewItem("Item1", 0)
Dim listViewItem2 As ListViewItem = New ListViewItem("Item2", 1)

Once you have references to one or more ListViewItem objects, you can add the items to your
ListView object. To add an item or a group of items, you first need to reference the
ListView.ListViewItemCollection collection of the ListView object. This collection can easily be
referenced using the Items property of the ListView class. The ListView.ListViewItemCollection has
Add and AddRange methods that you can use to add one item or a group of items. For instance, the
following code uses the AddRange method to add two ListViewItem objects to a ListView object:

 196

listView1.Items.AddRange(New ListViewItem() _
 {listViewItem1, listViewItem2})

The Add method of the ListView.ListViewItemCollection has three overloads, two of which allow you
add to a ListViewItem without first creating a ListViewItem object.

To add a ListViewItem object to the collection, you can use the following overload of the Add method:

Overridable Overloads Public Function Add _
 (ByVal value As ListViewItem) _
 As ListViewItem

Or, to add a String and convert it into a ListViewItem object, use the following overload:

Overridable Overloads Public Function Add _
 (ByVal text As String) _
 As ListViewItem

Alternatively, you can pass a String and an image index to the third overload:

Overridable Overloads Public Function Add _
 (ByVal text As String, _
 ByVal imageIndex As Integer) _
 As ListViewItem

The following code demonstrates how to add two ListViewItem objects to a ListView. The ListView is
linked to an ImageList that has two images in its collection. When the code is run, it produces
something similar to Figure 5-4.

Figure 5-4. A ListView control with two ListViewItem objects

' Declare and instantiate an ImageList called imageList1.
Dim imageList1 As ImageList = New ImageList()
' Set the ColorDepth and ImageSize properties of imageList1.
imageList1.ColorDepth = ColorDepth.Depth8Bit
imageList1.ImageSize = New System.Drawing.Size(48, 48)
' Add two images to imageList1.
imageList1.Images.Add(New Icon("c:\Spotty.ico"))
imageList1.Images.Add(New Bitmap("c:\StopSign.bmp"))

' Declare and instantiate two ListViewItem objects named
' listViewItem1 and listViewItem2.
' The text for listItem1 is "Item1", and the image is the first

Programming Visual Basic .NET

 197

' image in the imageList1.
' The text for listItem1 is "Item2", and the image is the second
' image in the imageList1.
Dim listViewItem1 As ListViewItem = New ListViewItem("Item1", 0)
Dim listViewItem2 As ListViewItem = New ListViewItem("Item2", 1)

' Declare and instantiate a ListView called listView1.
Dim listView1 As ListView = New ListView()
' Set its properties.
listView1.View = View.LargeIcon
listView1.LargeImageList = imageList1
listView1.Location = New System.Drawing.Point(16, 16)
listView1.Name = "ListView1"
listView1.Size = New System.Drawing.Size(264, 224)
listView1.SmallImageList = Me.ImageList1

' Add listViewItem1 and listViewItem2.
listView1.Items.AddRange(New ListViewItem() _
 {listViewItem1, listViewItem2})

' Add listView1 to the form.
Me.Controls.AddRange(New Control() {listView1})

Two properties of the ListView class tell you which item(s) are selected: SelectedIndices and
SelectedItems. The first returns a ListView.SelectedIndexCollection object, and the second returns a
ListView.SelectedListViewItemCollection object.

The ListView.SelectedIndexCollection class has a Count property that tells you how many items are
selected and an Item property that returns the index of the designated item. For example, you can
retrieve the index of the first selected item by passing 0 to the Item property, as follows:

Index = ListView1.SelectedIndices.Item(0)

The ListView.SelectedListViewItemCollection class is very similar to ListView.SelectedIndexCollection.
Its Count property indicates how many items are selected. However, its Item property returns the item
itself, not an index number.

5.1.12 The MonthCalendar Class

The MonthCalendar class represents a control that displays days of a month. A MonthCalendar control
is shown in Figure 5-5. By default, when first displayed, the control displays the current month on the
user's computer system. Users can select a day by clicking on it or select a range of dates by holding
the Shift key while clicking the date at the end of the desired range. Users can also scroll backward
and forward to previous or upcoming months, or they can click on the month part and more quickly
select one of the 12 months. To change the year, users can click on the year part and click the
scrollbar that appears.

Figure 5-5. A MonthCalendar control

 198

Two properties determine the date range that users can select: MinDate and MaxDate. The MinDate
property is a DateTime value representing the minimum date permitted; its default is January 1, 1753.
The MaxDate property determines the maximum date allowed. By default, the value of MaxDate is
December 31, 9998.

If you want your MonthCalendar to display a certain range of dates, you need to change these two
properties. For instance, the following code allows the user to select a date between January 1, 1980
and December 14, 2010:

MonthCalendar1.MinDate = New DateTime(1980, 1, 1)
MonthCalendar1.MaxDate = New DateTime(2010, 12, 14)

The MonthCalendar class has a TodayDate property that represents today's date. The user selecting
a new date does not automatically change the value of TodayDate. If you want the date selected by
the user to be reflected as today's date, you can use the Date_Changed event handler to change its
value explicitly, as shown in the following code:

Private Sub MonthCalendar1_DateChanged(_
 ByVal sender As System.Object, _
 ByVal e As DateRangeEventArgs) _
 Handles MonthCalendar1.DateChanged

 MonthCalendar1.TodayDate = e.Start
End Sub

A DateRangeEventArgs object is passed as an argument to the DateChanged event handler. Its
members include a Start property, which represents the beginning of the range of selected dates, and
an End property, which represents the end of the range of selected dates. The previous code simply
assigns the value of the Start property to TodayDate. Later, if you need to know the value of the user-
selected date, you can query the TodayDate property.

Note that the MonthCalendar control has a fixed size. It will ignore any attempt to change its Size
property. If you need more flexibility in terms of the space it occupies, use a DateTimePicker control.

5.1.13 The Panel Class

A panel is a container that can hold other controls. Panels are typically used to group related controls
in a form. Like the PictureBox class, the Panel class has a BorderStyle property that defines the
panel's border and can take as its value any member of the BorderStyle enumeration: None (the
default value), FixedSingle, and Fixed3D.

You can add controls to a Panel object using the Add method or the AddRange method of the
Control.ControlCollection class. The following code adds a button and a text box to a Panel control
called panel1:

Programming Visual Basic .NET

 199

Dim panel1 As Panel = New Panel()
Dim textBox1 As TextBox = New TextBox()
Dim WithEvents button1 As Button

button1 = New Button()

' button1
button1.Location = New System.Drawing.Point(104, 72)
button1.Name = "button1"
button1.Size = New System.Drawing.Size(64, 48)
button1.TabIndex = 0
button1.Text = "Button1"

' textBox1
textBox1.Location = New System.Drawing.Point(128, 48)
textBox1.Name = "textBox1"
textBox1.TabIndex = 1

panel1.Controls.AddRange(New Control() {textBox1, button1})
panel1.Location = New System.Drawing.Point(24, 24)
panel1.Name = "Panel1"
panel1.Size = New System.Drawing.Size(336, 216)
Me.Controls.Add(panel1)

5.1.14 The PictureBox Class

The PictureBox class represents a control to display an image. Loading an image into this control is
achieved by assigning a System.Drawing.Bitmap object to its Image property, as the following code
does:

Dim pictureBox1 As PictureBox = New PictureBox()
pictureBox1.Image = New System.Drawing.Bitmap("c:\tv.bmp")
pictureBox1.Location = New System.Drawing.Point(72, 64)
pictureBox1.Size = New System.Drawing.Size(144, 128)
Me.Controls.Add(pictureBox1)

In addition, the PictureBox class has the BorderStyle and SizeMode properties. The BorderStyle
property determines the PictureBox object's border and can take as its value any member of the
BorderStyle enumeration: None (the default value), FixedSingle, and Fixed3D.

The SizeMode property determines how the image assigned to the Image property is displayed. The
SizeMode property can take any of the members of the PictureBoxSizeMode enumeration: AutoSize,
CenterImage, Normal (the default value), and StretchImage.

5.1.15 The RadioButton Class

The RadioButton class represents a radio button. When you add more than one radio button to a form,
those radio buttons automatically become one group, and you can select only one button at a time. If
you want to have multiple groups of radio buttons on a form, you need to use a GroupBox or Panel
control to add radio buttons in the same group to a single GroupBox or Panel.

The following code shows how you can add two radio buttons to a GroupBox and then add the
GroupBox to a form. Notice that you don't need to add each individual radio button to a form:

' Declare and instantiate a GroupBox and two radio buttons.
Dim groupBox1 As GroupBox = New GroupBox()
Dim radioButton1 As RadioButton = new RadioButton()
Dim radioButton2 As RadioButton = new RadioButton()

 200

' Set the Size and Location of each control.
groupBox1.Size = New System.Drawing.Size(248, 88)
groupBox1.Location = New System.Drawing.Point(112, 168)
radioButton1.Location = New System.Drawing.Point(16, 10)
radioButton1.Size = New System.Drawing.Size(104, 20)
radioButton2.Location = New System.Drawing.Point(16, 50)
radioButton2.Size = New System.Drawing.Size(104, 20)
' Add radioButton1 and radioButton2 to the GroupBox.
groupBox1.Controls.AddRange(New Control() {radioButton1, radioButton2})

' Add the GroupBox to the form.
Me.Controls.Add(groupBox1)

Like a checkbox, the appearance of a radio button is determined by its Appearance property, which
can take one of two members of the Appearance enumeration: Normal (the default) and Button. You
don't normally use Appearance.Button because it will make your radio button look like a button.

The CheckAlign property determines the text alignment of the radio button. Its value is one of the
members of the ContentAlignment enumeration: BottomCenter, BottomLeft, BottomRight,
MiddleCenter, MiddleLeft (the default), MiddleRight, TopCenter, TopLeft, and TopRight.
The Checked property takes a Boolean. Setting this property to True selects the radio button (and
deselects others in the group); setting it to False unselects it.

5.1.16 The TextBox Class

This class represents a text-box control, a control that can accept text as user input. Its major
properties are:

Multiline

This property can be set to True (indicating that multiple lines are permitted) or False
(single-line mode). By default, the value for this property is False.

AcceptsReturn

If True (its default value), and if the Multiline property is also True, pressing the Enter key will
move to the next line in the text box. Otherwise, pressing Enter will have the same effect as
clicking the form's default button.

CharacterCasing

This property determines how characters that are input by the user appear in the text box. It
can take any member of the CharacterCasing enumeration: Normal (the default), Upper, and
Lower. Setting this property to CharacterCasing.Upper translates all input characters to
uppercase. Assigning CharacterCasing.Lower to this property converts all input to
lowercase. CharacterCasing.Normal means that no conversion is performed on the input.

PasswordChar

This property defines a mask character to be displayed in place of each character input by the
user, thereby turning the text box into a password box. This property applies only to a single-
line text box (i.e., a text box whose Multiline property is False). It affects the display, but not
the value of the Text property.

ScrollBars

Programming Visual Basic .NET

 201

In a multiline text box, this property determines whether scrollbars are shown on the control.
The property can take any member of the ScrollBars enumeration: None (the default),
Horizontal, Vertical, and Both.

TextAlign

This property determines how text is aligned in the text box. It can take any member of the
HorizontalAlignment enumeration: Center, Left, and Right.

5.1.17 The Timer Class

The Timer class represents a timer that can trigger an event at a specified interval. At each interval, a
Timer object raises its Tick event. You can write code in the Tick event handler that runs regularly.

The Timer will raise its Tick event only after you call its Start method. To stop the timer, call its Stop
method.

The interval for the Timer is set by assigning a value to its Interval property. It accepts a number
representing the interval in milliseconds. The following code, which prints an incremented integer from
1 to 20 to the console, shows how to use a timer:

Dim i As Integer
Friend WithEvents timer1 As Timer
timer1 = New Timer()
timer1.Interval = 1000
timer1.Start()

' The event handler for Tick.
Private Sub Timer1_Tick(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Timer1.Tick

 If i < 20 Then
 i = i + 1
 Console.WriteLine(i)
 Else
 timer1.Stop()
 End If
End Sub

5.1.18 Other Controls and Components

In addition to the controls we've discussed in some detail in the preceding sections, the .NET
Framework includes a number of other controls and components for Windows application
development. These include:

AxHost

Wraps ActiveX controls to let them be used within Windows Forms.

CheckedListBox

The same as the ListBox control, except that checkboxes are displayed to the left of each item.
The CheckedListBox control derives from the ListBox control.

ContainerControl

 202

A container for other controls. The emphasis of this control is on managing the focus state of
contained controls. For example, it has a method that can be called to force activation of a
given contained control (ActivateControl) and an overridable method that is invoked when the
user tabs between contained controls (ProcessTabKey).

The ContainerControl control provides automatic support for scrolling because it derives from
ScrollableControl.

When contained controls are anchored or docked, they anchor or dock to the edges of the
containing control.

ContextMenu

Provides a method for displaying a context menu (also known as a pop-up menu). Context
menus are usually displayed in response to the user right-clicking the mouse. See Section
5.5 later in this chapter for details.

DataGrid

A grid control for displaying ADO.NET data. See Chapter 8 for examples.

DomainUpDown

A Windows up-down control (also known as a spin button) that allows the user to select from a
list of text values by clicking the control's up and down arrows. See also NumericUpDown,
later in this list.

HScrollBar

A standard Windows horizontal scrollbar.

MainMenu

Provides a method for displaying an application's main menu. See Section 5.5 later in this
chapter for details.

MenuItem

Represents a menu item within a menu. See Section 5.5 later in this chapter for details.

NotifyIcon

Provides a way to put an icon into the Windows System Tray.

NumericUpDown

A Windows up-down control (also known as a spin button) that allows the user to select from a
list of numeric values by clicking the control's up and down arrows. See also DomainUpDown,
earlier in this list.

PrintPreviewControl

Displays a preview image of a document to be printed. The PrintPreviewControl is not usually
used directly. It is found on the PrintPreviewDialog form discussed later in this chapter, in
Section 5.4.

Programming Visual Basic .NET

 203

ProgressBar

A standard Windows progress bar.

PropertyGrid

A user interface for viewing and setting the properties of any object.

RichTextBox

A standard Windows rich text box (also known as a rich edit control). The RichTextBox control
can manipulate text in Rich Text Format (RTF).

ScrollableControl

Not used directly. The ScrollableControl control serves as the base class for controls that
need to provide automatic support for scrolling. The ContainerControl control and the Panel
control are both derived from ScrollableControl.

Splitter

Provides the user with a way to resize docked controls using the mouse. This will be
discussed later in this chapter, under Section 5.3.

StatusBar

A standard Windows status bar.

TabControl

A container that provides pages to contain other controls and tabs to click to move between
the pages. The pages are instances of the TabPage control, which is derived from the Panel
control.

ToolBar

A standard Windows toolbar.

TrackBar

A standard Windows trackbar (also known as a slider)

TreeView

A standard Windows tree view.

UserControl

Not used directly. UserControl serves as the base class for developer-created container
controls. See Section 5.6 later in this chapter.

VScrollBar

A standard Windows vertical scrollbar.

 204

5.2 Control Events

Controls on a form are represented in code as fields—one field for each control. For example, when
the Visual Studio .NET Windows Forms Designer is used to add a text box to a form, the following
declaration is added to the form class:

Private WithEvents TextBox1 As System.Windows.Forms.TextBox

This declaration doesn't instantiate the control; it only defines a field that can hold a reference to a
control of type TextBox. The control is instantiated in the InitializeComponent subroutine, which is
called in the Form class's constructor. The code that instantiates the control looks like this:

Me.TextBox1 = New System.Windows.Forms.TextBox()

As discussed in Chapter 2, when a field declaration includes the WithEvents keyword, the parent
class can handle events that the referenced object raises. To do so, the parent class must define a
handler method having the appropriate signature, and the definition of the method must include a
Handles clause to link the method to the appropriate event on the appropriate object. For example,
here is the definition of a handler method for the Click event of TextBox1:

Private Sub TextBox1_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs _
) Handles TextBox1.Click
 ' ...
End Sub

The event-handler method can be given any name, but it is a common convention to use a name of
the form FieldName_EventName. The event-handler method's signature must correspond to the
signature of the event being handled. By convention, event signatures have two parameters: sender
and e. The sender parameter is always of type Object and holds a reference to the object that raised
the event. The e parameter is of type EventArgs—or of a type that inherits from EventArgs—and holds
a reference to an object that provides any extra information needed for the event. Events that pass a
generic EventArgs argument have no event information to pass. Events that pass an argument of an
EventArgs-derived type pass additional information within the fields of the passed object.

The correct signature for handling a specific event can be determined either by referring to the
control's documentation or by using Visual Studio .NET's built-in object browser. In addition, the Visual
Studio .NET Windows Forms Designer can automatically generate a handler-method declaration for
any event exposed by any control on a given form.

5.3 Form and Control Layout

Windows Forms allows developers to lay out sophisticated user interfaces that are capable of
intelligently resizing without writing a line of code. Previously, developers writing desktop applications
for Windows typically spent a good deal of time writing resizing code to handle the placement of
controls on the form when the user resized the form. The .NET platform, however, allows you to define
a control's layout and size by setting a few properties.

5.3.1 The Anchor Property

The Anchor property lets a control anchor to any or all sides of its container. Each anchored side of
the control is kept within a constant distance from the corresponding side of its container. When the
container is resized, its anchored controls are repositioned and resized as necessary to enforce this
rule. The Anchor property is defined by the Control class (in the System.Windows.Forms namespace)
and so is inherited by all controls and forms. Its syntax is:

Programming Visual Basic .NET

 205

Public Overridable Property Anchor() As System.Windows.Forms.AnchorStyles

The AnchorStyles type is an enumeration that defines the values Left, Top, Right, Bottom, and
None. To anchor a control on more than one edge, combine the values with the Or operator, as shown
here:

' Assumes Imports System.Windows.Forms
SomeControl.Anchor = AnchorStyles.Top Or AnchorStyles.Right

By default, controls are anchored on the top and left sides. This means that if a form is resized, its
controls maintain a constant distance from the top and left edges of the form. This behavior matches
the behavior of Visual Basic 6 forms.

For example, Figure 5-6 shows a common button configuration, where the OK and Cancel buttons
should track the right edge of the form as the form is resized. In previous versions of Visual Basic, it
was necessary to add code to the form's Resize event handler to reposition the buttons as the form
was resized. In Visual Basic .NET, however, it is necessary only to set the button's Anchor property
appropriately. This can be done either in Visual Studio .NET's Properties window or in code (in the
form's constructor).

Figure 5-6. A sizable form with controls that should be anchored on the
top and right edges

The code to anchor a button on the top and right edges looks like this:

' Assumes Imports System.Windows.Forms
btnOk.Anchor = AnchorStyles.Top Or AnchorStyles.Right

Sometimes a control should stretch as the form is resized. This is accomplished by anchoring the
control to two opposite sides of the form. For example, the text box in Figure 5-7 should always fill
the space between the left edge of the form and the OK button on the right side of the form.

Figure 5-7. In this form, the text box should expand and shrink to fill the
available space

To accomplish this, lay out the form as shown, anchor the buttons on the top and right edges as
already discussed, then anchor the text box on the top, left, and right edges. By default, the label in
the form is already anchored on the top and left edges. The code looks like this:

' Assumes Imports System.Windows.Forms

 206

' Anchor the OK and Cancel buttons on the top and right edges.
btnOk.Anchor = AnchorStyles.Top Or AnchorStyles.Right
btnCancel.Anchor = AnchorStyles.Top Or AnchorStyles.Right

' Anchor the Filename text box on the top, left, and right edges.
' This causes the text box to resize itself as needed.
txtFilename.Anchor = AnchorStyles.Top Or AnchorStyles.Left _
 Or AnchorStyles.Right

5.3.2 The Dock Property

The Dock property lets a control be docked to any one side of its container or lets it fill the container.
Docking a control to one side of a container resembles laying out the control with three of its edges
adjacent and anchored to the three corresponding edges of its container. Figure 5-8 shows a text
box control docked to the left side of its form.

Figure 5-8. A TreeView docked to the left side of a form

The Dock property is defined by the Control class (in the System.Windows.Forms namespace) and so
is inherited by all controls and forms. Its syntax is:

Public Overridable Property Dock() As System.Windows.Forms.DockStyle

The DockStyle type is an enumeration that defines the values Left, Top, Right, Bottom, Fill, and
None. Only one value can be used at a time. For example, a control can't be docked to both the left
and right edges of its container. Setting the Dock property to DockStyle.Fill causes the control to
expand to fill the space available in its container. If the control is the only docked control in the
container, it expands to fill the container. If there are other docked controls in the container, the control
expands to fill the space not occupied by the other docked controls. For example, in Figure 5-9, the
Dock property of textBox1 is set to DockStyle.Left, and the Dock property of textBox2 is set to
DockStyle.Fill.

Figure 5-9. A left-docked control and a fill-docked control

5.3.2.1 Controlling dock order

Programming Visual Basic .NET

 207

Controls have an intrinsic order within their container. This is known as their z-order (pronounced "zee
order"). The z-order of each control is unique within a given container. When two controls overlap in
the same container, the control with the higher z-order eclipses the control with the lower z-order.

Docking behavior is affected by z-order. When two or more controls are docked to the same side of a
form, they are docked side by side. For example, the two text-box controls shown in Figure 5-10 are
both docked left.

Figure 5-10. Docking two controls to the same side of a form

In such a situation, the relative position of each docked control is determined by its z-order. The
control with the lowest z-order is positioned closest to the edge of the form. The control with the next
higher z-order is placed next to that, and so on. In Figure 5-10, textBox1 has the lower z-order, and
textBox2 has the higher z-order.

So how is z-order determined? In code, z-order is determined by the order in which controls are added
to their container's Controls collection. The first control added through the collection's Add method has
the highest z-order; the last control added has the lowest z-order. For example, to produce the display
shown in Figure 5-10, textBox2 must be added to the Controls collection first, as shown here:

Me.Controls.Add(Me.textBox2)
Me.Controls.Add(Me.textBox1)

This results in textBox1 having the lower z-order and therefore getting docked directly to the edge of
the form.

If the Controls collection's AddRange method is used to add an array of controls to a container, the
first control in the array has the highest z-order and the last control in the array has the lowest z-order.
For example, textBox1 and textBox2 in Figure 5-10 could have been added to their container using
this code:

' Assumes Imports System.Windows.Forms
Me.Controls.AddRange(New Control() {Me.textBox2, Me.textBox1})

After controls have been added to their container's Controls collection, you can change their z-order
by calling the Control class's SendToBack or BringToFront methods. The SendToBack method gives
the control the lowest z-order within its container (causing it to dock closest to the edge of the form).
The BringToFront method gives the control the highest z-order within its container (causing it to dock
furthest from the edge of the form). For example, the following code forces the controls to dock as
shown in Figure 5-10, regardless of the order in which they were added to the form's Controls
collection:

Me.textBox2.BringToFront()

The order in which the controls are instantiated in code and the order in which their respective Dock
properties are set do not affect the controls' z-orders.

 208

When you design forms using Visual Studio .NET's Windows Forms Designer, the controls added
most recently have the highest z-orders and therefore dock furthest from the edges of their containers.
The z-orders of the controls can be changed within the designer by right-clicking on a control and
choosing "Bring to Front" or "Send to Back."

When one of the controls in a container is fill-docked, that control should be last in the dock order (i.e.,
it should have the highest z-order), so that it uses only the space that is not used by the other docked
controls.

Dock order also comes into play when controls are docked to adjacent sides of a container, as shown
in Figure 5-11.

Figure 5-11. Docking two controls to adjacent sides of a form

The control with the lowest z-order is docked first. In Figure 5-11, textBox1 has the lowest z-order
and so is docked fully to the left side of the form. textBox2 is then docked to what remains of the top of
the form. If the z-order is reversed, the appearance is changed, as shown in Figure 5-12.

Figure 5-12. Reversing the dock order

In Figure 5-12, textBox2 has the lowest z-order and so is docked first, taking up the full length of the
side to which it is docked (the top). Then textBox1 is docked to what remains of the left side of the
form. This behavior can be exploited to provide complex docking arrangements, such as the one
shown in Figure 5-13.

Figure 5-13. Complex docking arrangements are easily created

Programming Visual Basic .NET

 209

The text boxes in Figure 5-13 are in ascending z-order (textBox1 is lowest; textBox6 is highest). The
Dock properties of the controls are set like this:

textBox1.Dock = DockStyle.Left
textBox2.Dock = DockStyle.Top
textBox3.Dock = DockStyle.Right
textBox4.Dock = DockStyle.Bottom
textBox5.Dock = DockStyle.Left
textBox6.Dock = DockStyle.Fill

5.3.2.2 The Splitter control

By default, the internal edges of docked controls aren't draggable. To make the edge of a given
docked control draggable, add a Splitter control to the form. The Splitter control must appear in the
dock order immediately after the control whose edge is to be draggable, so the Splitter control's z-
order must be just above that control's z-order. Further, the Splitter control must be docked to the
same edge of the form as the control whose edge is to be draggable. The Splitter control provides a
vertical splitter if docked left or right and a horizontal splitter if docked top or bottom.

Consider again Figure 5-9. To make the edge between the two text-box controls draggable, a Splitter
control must be added to the form (call it splitter1), and the z-order must be textBox2 (highest), then
splitter1, and then textBox1 (lowest). This can be accomplished in the Visual Studio .NET Windows
Forms Designer by adding the controls to the form in dock order (textBox1, splitter1, textBox2). As
previously mentioned, if the controls have already been added to the form, their z-order can be
rearranged by right-clicking the controls one-by-one in dock order and choosing "Bring To Front". The
z-order can also be controlled in code, as previously discussed.

It is possible to automate the task of Splitter creation. The subroutine in Example 5-1 takes as a
parameter a reference to a docked control and instantiates a Splitter control that makes the given
control's inside edge draggable.

Example 5-1. Dynamically creating a Splitter control
Shared Sub AddSplitter(ByVal ctl As Control)

 ' Create a Splitter control.
 Dim split As New Splitter()

 ' Get the Controls collection of the given control's container.
 Dim controls As System.Windows.Forms.Control.ControlCollection _
 = ctl.Parent.Controls

 ' Add the Splitter to the same container as the given control.
 controls.Add(split)

 210

 ' Move the Splitter control to be immediately prior to the given
 ' control in the Controls collection. This causes the Splitter
 ' control's z-order to be just above the given control's z-order,
 ' which in turn means that the Splitter control will be docked
 ' immediately following the given control.
 controls.SetChildIndex(split, controls.GetChildIndex(ctl))

 ' Dock the Splitter control to the same edge as the given control.

 split.Dock = ctl.Dock

End Sub

5.4 Common Dialog Boxes

There are several classes that implement common dialog boxes, such as color selection and print
setup. These classes all derive from the CommonDialog class and, therefore, all inherit the
ShowDialog method. The syntax of the ShowDialog method is:

Public Function ShowDialog() As System.Windows.Forms.DialogResult

Calling the ShowDialog method causes the dialog box to be displayed modally, meaning that other
windows in the application can't receive input focus until the dialog box is dismissed. The call is
asynchronous, meaning that code following the call to the ShowDialog method isn't executed until the
dialog box is dismissed.

The return value of the ShowDialog method is of type DialogResult (defined in the
System.Windows.Forms namespace). DialogResult is an enumeration that defines several values that
a dialog box could return. The common dialog boxes, however, return only OK or Cancel, indicating
whether the user selected the OK or Cancel button, respectively.

In Visual Studio .NET's Windows Forms Designer, common dialog boxes are added to forms in much
the same way that controls and nonvisual components are. Just select the desired dialog box from the
Windows Forms tab of the Toolbox. As with nonvisual components, a representation of the dialog box
appears within a separate pane rather than directly on the form that is being designed. The properties
of the component can then be set in Visual Studio .NET's Properties window. The Windows Forms
Designer creates code that declares and instantiates the dialog box, but you must add code to show
the dialog box and use the values found in its properties.

Alternatively, common dialog-box components can be instantiated and initialized directly in code,
bypassing the Windows Forms Designer. For example, this method instantiates and shows a
ColorDialog component:

' Assumes Imports System.Windows.Forms
Public Class SomeClass
 Public Sub SomeMethod()
 Dim clrDlg As New ColorDialog()
 If clrDlg.ShowDialog = DialogResult.OK Then
 ' Do something with the value found in clrDlg.Color.
 End If
 End Sub
End Class

The remainder of this section briefly describes each of the common dialog-box components.

Programming Visual Basic .NET

 211

5.4.1 ColorDialog

The ColorDialog component displays a dialog box that allows the user to choose a color. After the user
clicks OK, the chosen color is available in the ColorDialog object's Color property. The Color property
can also be set prior to showing the dialog box. This causes the dialog box to initially display the given
color. Figure 5-14 shows an example of the ColorDialog dialog box.

Figure 5-14. The ColorDialog dialog box

5.4.2 FontDialog

The FontDialog component displays a dialog box that allows the user to choose a font. After the user
clicks OK, the chosen font is available in the FontDialog object's Font property. The Font property can
also be set prior to showing the dialog box. This causes the dialog box to initially display the given font.
Figure 5-15 shows an example of the FontDialog dialog box.

Figure 5-15. The FontDialog dialog box

 212

5.4.3 OpenFileDialog

The OpenFileDialog component displays a dialog box that allows the user to choose a file to open.
After the user clicks OK, the name of the file (including the path) is available in the OpenFileDialog
object's FileName property. The FileName property can be set prior to showing the dialog box. This
causes the dialog box to initially display the given filename. Figure 5-16 shows an example of the
OpenFileDialog dialog box.

Figure 5-16. The OpenFileDialog dialog box

In most cases, your applications should set the InitialDirectory, Filter, and FilterIndex properties prior
to calling ShowDialog. This is not necessary for proper functioning of the dialog box, but it will give
your application a more professional look and feel.

The InitialDirectory property determines which directory is shown when the dialog box first appears.
The default is an empty string, which causes the dialog box to display the user's My Documents
directory.

The Filter property holds a String value that controls the choices in the "Files of type" drop-down list.
The purpose of this drop-down list is to let the user limit the files shown in the dialog box based on
filename extension. A typical example is shown in Figure 5-17.

Figure 5-17. A typical "Files of type" drop-down list

Even though the "Files of type" list can include many items and each item can represent many
filename extensions, a single String property represents the whole thing. Here's how it works:

• Each item in the drop-down list is represented by a substring having two parts separated by
the vertical bar character (|). The first part is the description that appears in the drop-down list
(e.g., "All Files (*.*)"). The second part is the corresponding filter (e.g., "*.*").
Taking them together and adding the vertical bar character, the first item in the list in Figure
5-17 is represented by the substring:

"All Files (*.*)|*.*"

Programming Visual Basic .NET

 213

• If a given item has multiple filters, the filters are separated by semicolons (;). The second item
in the list in Figure 5-17 is therefore represented by:

"Executable Files (*.exe; *.dll)|*.exe;*.dll"

• The value to assign to the Filter property is the concatenation of all the substrings thus
attained, again separated by the vertical bar character. Therefore, the Filter property value
that produced the drop-down list in Figure 5-17 is:

"All Files (*.*)|*.*|Executable Files (*.exe; *.dll)|*.exe;*.dll"

The default value of the Filter property is an empty string, which results in an empty "Files of type"
drop-down list.

The FilterIndex property determines which filter is in force when the dialog box is initially shown. This
is a 1-based index that refers to the Filter string. For example, referring again to Figure 5-17, if the
FilterIndex property is set to 1, the "All Files" item will be selected when the dialog box is shown. If the
FilterIndex is set to 2, the "Executable Files" item will be shown. The default value is 1.

5.4.4 PageSetupDialog

The PageSetupDialog component displays a dialog box that allows the user to choose page settings
for a document. Certain properties in the PageSetupDialog object must be set prior to showing the
dialog box. After the user clicks OK, new settings can be read from the object. See "Printing" in
Chapter 4 for details. Figure 5-18 shows an example of the PageSetupDialog dialog box.

Figure 5-18. The PageSetupDialog dialog box

5.4.5 PrintDialog

The PrintDialog component displays a dialog box that allows the user to choose printer settings for a
document. Certain properties in the PrintDialog object must be set prior to showing the dialog box.
After the user clicks OK, new settings can be read from the object. See "Printing" in Chapter 4 for
details. Figure 5-19 shows an example of the PrintDialog dialog box.

 214

Figure 5-19. The PrintDialog dialog box

5.4.6 PrintPreviewDialog

The PrintPreviewDialog component displays a dialog box that allows the user to view a document
before printing it. Prior to showing the dialog box, the PrintPreviewDialog object must be loaded with
information about the document to be printed. See "Printing" in Chapter 4 for details. The dialog box
itself displays a preview of the printed version of the document, allowing the user to navigate through it.
Figure 5-20 shows an example of the PrintPreviewDialog dialog box, although this example doesn't
have a document loaded.

Figure 5-20. The PrintPreviewDialog dialog box

5.4.7 SaveFileDialog

The SaveFileDialog component displays a dialog box that allows the user to specify a filename to be
used for saving. After the user clicks OK, the name of the file (including the path) is available in the
SaveFileDialog object's FileName property (which can be set prior to showing the dialog box). This
causes the dialog box to initially display the given filename. Figure 5-21 shows an example of the
SaveFileDialog dialog box.

Figure 5-21. The SaveFileDialog dialog box

Programming Visual Basic .NET

 215

As with the OpenFileDialog component, most applications should set the InitialDirectory, Filter, and
FilterIndex properties prior to calling ShowDialog. Their usage with the SaveFileDialog component is
precisely the same as with OpenFileDialog.

5.5 Menus

The Windows Forms library provides three components for creating and managing menus:

• The MainMenu class manages the display of a menu across the top of a form.
• The ContextMenu class manages the display of a context menu (also known as a pop-up

menu).
• The MenuItem class represents a specific menu item within a main menu or context menu.

Menus can be created either in the Visual Studio .NET Windows Forms Designer or programmatically.

5.5.1 Adding Menus in the Visual Studio .NET Windows Forms
Designer

Visual Studio .NET includes an in-place WYSIWYG menu editor that is a dramatic improvement over
the menu editor in Visual Basic 6. To create an application menu in the Windows Forms Designer, add
a MainMenu component to the form. This causes a representation of the component to appear in the
lower pane of the form's design view. When the component is selected, Visual Studio .NET adds a
WYSIWYG editor to the top of the form, as shown in Figure 5-22.

Figure 5-22. In-place editing of a main menu

 216

To create a menu item, type a value into the "Type Here" box. The menu editor automatically adds
"Type Here" boxes to the right and beneath the box in which you are typing. As was the case in
previous Windows development environments, typing an ampersand (&) within the menu name
causes the character following the ampersand to be an accelerator key. Typing a single hyphen (-)
within a "Type Here" box creates a menu-separator bar. Figure 5-23 shows a menu containing
several items.

Figure 5-23. A menu containing several items

After a menu item has been added, its properties can be set in the Properties window. The Properties
window of the Edit Paste item shown in Figure 5-23 is shown in Figure 5-24.

Figure 5-24. The Properties window display for the Edit Paste menu
item shown in Figure 5-23

Programming Visual Basic .NET

 217

The properties shown in Figure 5-24 are:

Checked

Indicates whether a checkmark appears next to the menu item. The type is Boolean. The
default is False.

DefaultItem

Indicates whether the menu item is the default item in its menu or submenu. Default menu
items are displayed in bold. The type is Boolean. The default is False.

Enabled

Indicates whether the menu item is enabled. If this is False, the menu item is grayed and
can't be selected. The type is Boolean. The default is True.

MdiList

In MDI applications, indicates whether the menu item should have subitems for each of the
open MDI child forms. This property should be set to True for the Windows menu item. The
type is Boolean. The default is False.

MergeOrder

In applications where two menus might be merged (such as an MDI application where a child
form menu might be merged with its parent form menu), sorts the merged menu items based
on this property. The type is Integer. The default is 0. See "MDI Applications" in Chapter 4 for
more information.

MergeType

Indicates how two menu items having the same MergeOrder value should be merged. The
value is of type MenuMerge (defined in the System.Windows.Forms namespace). The default
is MenuMerge.Add. See "MDI Applications" in Chapter 4 for more information.

 218

Modifiers

Specifies the declaration modifiers that are placed on the menu-item field declaration within
the generated code. This is not actually a property of the MenuItem class. Rather, it becomes
part of the field declaration in source code. The default is Private.

OwnerDraw

Indicates whether the menu item requires custom drawing. If you set this property to True,
you must handle the menu item's DrawItem event. The type is Boolean. The default is False.

RadioCheck

If the Checked property is True, indicates whether to display the checkmark as a radio button
instead. The type is Boolean. The default is False.

Shortcut

Specifies the shortcut key combination that invokes this menu item. The value is of type
Shortcut (defined in the System.Windows.Forms namespace). The Shortcut enumeration
defines a unique value for each potential shortcut key combination. The values of the Shortcut
enumeration are shown in Table 5-1. The default is Shortcut.None.

Table 5-1. Values defined by the System.Windows.Forms.Shortcut
enumeration

None Ins Del F1
F2 F3 F4 F5
F6 F7 F8 F9
F10 F11 F12 ShiftIns
ShiftDel ShiftF1 ShiftF2 ShiftF3
ShiftF4 ShiftF5 ShiftF6 ShiftF7
ShiftF8 ShiftF9 ShiftF10 ShiftF11
ShiftF12 CtrlIns CtrlDel CtrlA
CtrlB CtrlC CtrlD CtrlE
CtrlF CtrlG CtrlH CtrlI
CtrlJ CtrlK CtrlL CtrlM
CtrlN CtrlO CtrlP CtrlQ
CtrlR CtrlS CtrlT CtrlU
CtrlV CtrlW CtrlX CtrlY
CtrlZ CtrlF1 CtrlF2 CtrlF3
CtrlF4 CtrlF5 CtrlF6 CtrlF7
CtrlF8 CtrlF9 CtrlF10 CtrlF11
CtrlF12 CtrlShiftA CtrlShiftB CtrlShiftC
CtrlShiftD CtrlShiftE CtrlShiftF CtrlShiftG
CtrlShiftH CtrlShiftI CtrlShiftJ CtrlShiftK
CtrlShiftL CtrlShiftM CtrlShiftN CtrlShiftO
CtrlShiftP CtrlShiftQ CtrlShiftR CtrlShiftS
CtrlShiftT CtrlShiftU CtrlShiftV CtrlShiftW
CtrlShiftX CtrlShiftY CtrlShiftZ CtrlShiftF1
CtrlShiftF2 CtrlShiftF3 CtrlShiftF4 CtrlShiftF5

Programming Visual Basic .NET

 219

CtrlShiftF6 CtrlShiftF7 CtrlShiftF8 CtrlShiftF9
CtrlShiftF10 CtrlShiftF11 CtrlShiftF12 AltBksp
AltF1 AltF2 AltF3 AltF4
AltF5 AltF6 AltF7 AltF8
AltF9 AltF10 AltF11 AltF12
ShowShortcut

If a shortcut key combination is defined for the menu item, indicates whether the key
combination should be shown on the menu. The type is Boolean. The default is True.

Text

Represents the text shown on the menu item. The type is String. The default is an empty
string.

Visible

Indicates whether the menu item should be visible. The type is Boolean. The default is True.

The Windows Forms Designer creates code that declares a field for the MainMenu object, as well as
fields for the MenuItem objects that represent each menu item in the menu. The designer also creates
code that instantiates the objects at runtime and sets their properties according to the values set in the
IDE's Properties window. In addition, the top-level MenuItem objects are added to the MenuItems
collection of the MainMenu object, and the lower-level MenuItem objects are added to the MenuItems
collection of the menu of which they are submenus. Finally, the MainMenu object is assigned to the
form's Menu property.

To create a context menu in the Windows Forms Designer, add a ContextMenu component to the form.
This causes a representation of the component to appear in the lower pane of the form's design view.
When the component is selected, Visual Studio .NET adds a WYSIWYG editor to the top of the form.
Clicking on the editor drops down a "Type Here" box, as shown in Figure 5-25.

Figure 5-25. In-place editing of a context menu

Adding menu items and setting their properties work the same with context menus as with main
menus. For a context menu to be displayed, it must be associated with some control on the form or
with the form itself. When the user right-clicks on that control or form, the context menu is displayed.
To make this association, perform these steps:

1. In the Windows Forms Designer, right-click the control or form that is to be associated with the
context menu, and choose Properties.

 220

2. In the Properties window, find the ContextMenu property, and click the arrow of the drop-down
list associated with it.

3. The drop-down list displays the ContextMenu objects that are defined on the current form.
Choose the desired one.

The same effect can be achieved in code by assigning the ContextMenu object to the ContextMenu
property of a control or form, like this:

' Somewhere within the definition of a Form class.
Me.Button1.ContextMenu = Me.ContextMenu1

5.5.2 Programmatically Creating Menus

Main menus and context menus can be instantiated and populated directly in code. Example 5-2
shows how to create a simple main menu having File and Edit items, with the File item having an Exit
item. Compile it from the command line with this command:

vbc filename.vb /r:System.dll,System.Drawing.dll,System.Windows.Forms.dll
/t:winexe

The code in Example 5-2 is similar to the code that would be created by the Windows Forms
Designer if its visual menu editor were used to create this menu. The essential steps are:

1. Declare a MainMenu object to represent the menu.
2. Declare a MenuItem object for each menu item.
3. Instantiate the MainMenu object and all the MenuItem objects.
4. Set the properties of the MenuItem objects (such as the Text property) as desired.
5. Add the top-level MenuItem objects to the MenuItems collection of the MainMenu object, then

add the lower-level MenuItem objects to the MenuItems collection of the MenuItem object
under which they should appear.

Example 5-2. Creating a main menu in code
Imports System.Drawing
Imports System.Windows.Forms

Module modMain
 <System.STAThreadAttribute()> Public Sub Main()
 System.Threading.Thread.CurrentThread.ApartmentState = _
 System.Threading.ApartmentState.STA
 System.Windows.Forms.Application.Run(New Form1())
 End Sub
End Module

Public Class Form1
 Inherits Form

 ' Declare the main menu component.
 Private myMenu As MainMenu

 ' Declare the menu items that will be in the menu. Use the
 ' WithEvents keyword so that event handlers can be added later.
 Private WithEvents mnuFile As MenuItem
 Private WithEvents mnuFileExit As MenuItem
 Private WithEvents mnuEdit As MenuItem

 Public Sub New()

 ' Instantiate the menu objects.

Programming Visual Basic .NET

 221

 myMenu = New MainMenu()
 mnuFile = New MenuItem()
 mnuFileExit = New MenuItem()
 mnuEdit = New MenuItem()

 ' Set the properties of the menu items.
 mnuFile.Text = "&File"
 mnuFileExit.Text = "E&xit"
 mnuEdit.Text = "&Edit"

 ' Connect the menu items to each other and to the main menu.
 mnuFile.MenuItems.Add(mnuFileExit)
 myMenu.MenuItems.Add(mnuFile)
 myMenu.MenuItems.Add(mnuEdit)

 ' Connect the main menu to the form.
 Me.Menu = myMenu

 End Sub

End Class

5.5.3 Handling Menu Events

User interaction with a menu causes menu events to be fired. The most common menu event is the
Click event of the MenuItem class, which fires when a user clicks a menu item. Here is an example of
a Click event handler (this code could be added to the Form1 class of Example 5-2):

Private Sub mnuFileExit_Click(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
) Handles mnuFileExit.Click
 Me.Close()
End Sub

The events of the MenuItem class are:

Click

Fired when the menu item is chosen either by clicking it with the mouse or by pressing a
shortcut key combination defined for the menu item. The syntax of the Click event is:

Public Event Click As System.EventHandler

This is equivalent to:

Public Event Click(ByVal sender As Object, ByVal e As
System.EventArgs)

Disposed

Fired when the MenuItem object's Dispose method is called. The syntax of the Disposed
event is:

Public Event Disposed As System.EventHandler

This is equivalent to:

Public Event Disposed(ByVal

 222

sender As Object, ByVal
e As System.EventArgs)

The event is inherited from the Component class.

DrawItem

Fired when the menu item needs to be drawn, when the MenuItem object's OwnerDraw
property is True. The syntax of the DrawItem event is:

Public Event DrawItem As System.Windows.Forms.DrawItemEventHandler

This is equivalent to:

Public Event DrawItem(_
 ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DrawItemEventArgs _
)

The e parameter, of type DrawItemEventArgs, provides additional information that is needed
for drawing the menu item. The properties of the DrawItemEventArgs class are:

BackColor

The background color that should be used when drawing the item. The type is Color (defined
in the System.Drawing namespace).

Bounds

The bounding rectangle of the menu item. The type is Rectangle (defined in the
System.Drawing namespace).

Font

The font that should be used when drawing the item. The type is Font (defined in the
System.Drawing namespace).

ForeColor

The foreground color that should be used when drawing the item. The type is Color (defined in
the System.Drawing namespace).

Graphics

The graphics surface on which to draw the item. The type is Graphics (defined in the
System.Drawing namespace).

Index

The index of the menu item within its parent menu. The type is Integer.

State

The state of the menu item. The type is DrawItemState (defined in the
System.Windows.Forms namespace). DrawItemState is an enumeration that defines the

Programming Visual Basic .NET

 223

values None, Selected, Grayed, Disabled, Checked, Focus, Default, HotLight,
Inactive, NoAccelerator, NoFocusRect, and ComboBoxEdit.

MeasureItem

Fired prior to firing the DrawItem event when the MenuItem object's OwnerDraw property is
True. The MeasureItem event allows the client to specify the size of the item to be drawn.
The syntax of the MeasureItem event is:

Public Event MeasureItem As
System.Windows.Forms.MeasureItemEventHandler

This is equivalent to:

Public Event MeasureItem(_
 ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MeasureItemEventArgs _
)

The e parameter, of type MeasureItemEventArgs, provides additional information needed by
the event handler and provides fields that the event handler can set to communicate the item
size to the MenuItem object. The properties of the MeasureItemEventArgs are:

Graphics

The graphics device upon which the menu item will be drawn. This is needed so the client can
determine the scale of the device upon which the menu item will be rendered. The type is
Graphics (defined in the System.Drawing namespace).

Index

The index of the menu item within its parent menu. The type is Integer.

ItemHeight

The height of the menu item. The type is Integer.

ItemWidth

The width of the menu item. The type is Integer.

Popup

Fired when the submenu is about to be displayed, when a menu item has subitems associated
with it. This provides the client with an opportunity to set the menu states (checked, enabled,
etc.) of the submenu items to match the current program state. The syntax of the Popup event
is:

Public Event Popup As System.EventHandler

This is equivalent to:

Public Event Popup(ByVal sender As Object, ByVal e As
System.EventArgs)

Select

 224

Fired when the user places the mouse over the menu item or when the user highlights the
menu item by navigating to it with the keyboard arrow keys. The syntax of the Select event is:

Public Event Select As System.EventHandler

This is equivalent to:

Public Event Select(ByVal sender As Object, ByVal e As
System.EventArgs)

The ContextMenu class also exposes a Popup event, which is fired just before the context menu is
displayed. The syntax of the Popup event is:

Public Event Popup As System.EventHandler

This is equivalent to:

Public Event Popup(ByVal sender As Object, ByVal e As System.EventArgs)

5.5.4 Cloning Menus

Sometimes menu items and their submenus need to appear on more than one menu. A common
example is an application that has context menus containing some of the same functionality as the
application's main menu. However, MenuItem objects don't work correctly if they are assigned to more
than one menu. To provide an easy solution for developers who need to duplicate functionality on
multiple menus, the MenuItem class provides the CloneMenu method. This method returns a new
MenuItem object whose properties are set the same as those of the MenuItem object on which the
CloneMenu method is called. If the original MenuItem object has submenus, the submenu MenuItem
objects are cloned as well.

Example 5-3 shows the complete code for a program that has both a main menu and a context
menu. It can be compiled from the command line with this command:

vbc filename.vb /r:System.dll,System.Drawing.dll,System.Windows.Forms.dll
/t:winexe

The code in Example 5-3 sets up a menu item labeled Format that has four options beneath it: Font,
ForeColor, BackColor, and Reset. After this menu structure is set up, it is added to the MainMenu
object, which is then attached to the form, as shown here:

MainMenu1.MenuItems.Add(mnuFormat)
Menu = MainMenu1

An identical menu structure is then created and assigned to the ContextMenu object, which is then
attached to the Label1 control, as shown here:

ContextMenu1.MenuItems.Add(mnuFormat.CloneMenu())
Label1.ContextMenu = ContextMenu1

The CloneMenu method even detects the event handlers that are defined for the MenuItems being
cloned and automatically registers those handlers with the corresponding events on the newly created
MenuItem objects. This means that the event handlers shown in Example 5-3 handle the events both
from the main menu and from the context menu. Figure 5-26 shows the running application with the
context menu displayed (the Label control was right-clicked).

Figure 5-26. The display produced by Example 5-3

Programming Visual Basic .NET

 225

Example 5-3. Cloning menus
Imports System
Imports System.Drawing
Imports System.Windows.Forms

Module modMain
 <STAThreadAttribute()> Public Sub Main()
 System.Threading.Thread.CurrentThread.ApartmentState = _
 System.Threading.ApartmentState.STA
 Application.Run(New Form1())
 End Sub
End Module

Public Class Form1
 Inherits Form

 ' This member references the label used for displaying text.
 Private WithEvents Label1 As New Label()

 ' These members store original font and color properties of the
 ' Label1 control.
 Private origFont As Font
 Private origForeColor As Color
 Private origBackColor As Color

 ' These members hold the MainMenu and ContextMenu objects.
 Private WithEvents MainMenu1 As New MainMenu()
 Private WithEvents ContextMenu1 As New ContextMenu()

 ' These members hold the MenuItem objects.
 Private WithEvents mnuFormat As New MenuItem()
 Private WithEvents mnuFormatFont As New MenuItem()
 Private WithEvents mnuFormatForeColor As New MenuItem()
 Private WithEvents mnuFormatBackColor As New MenuItem()
 Private mnuSeparator As New MenuItem()
 Private WithEvents mnuFormatReset As New MenuItem()

 Public Sub New()
 MyBase.New()

 ' Set up the Format menu.

 mnuFormat.Text = "F&ormat"
 mnuFormatFont.Text = "&Font..."
 mnuFormatForeColor.Text = "F&oreColor..."
 mnuFormatBackColor.Text = "&BackColor..."
 mnuSeparator.Text = "-"
 mnuFormatReset.Text = "&Reset"
 mnuFormat.MenuItems.AddRange(New MenuItem() {mnuFormatFont, _
 mnuFormatForeColor, mnuFormatBackColor, mnuSeparator, _
 mnuFormatReset})

 226

 ' Attach the Format menu to the main menu and attach the main
 ' menu to the form.

 MainMenu1.MenuItems.Add(mnuFormat)
 Menu = MainMenu1

 ' Clone the Format menu, attach the clone to the context menu, and
 ' attach the context menu to the Label control.

 ContextMenu1.MenuItems.Add(mnuFormat.CloneMenu())
 Label1.ContextMenu = ContextMenu1

 ' Set up non-menu-related properties of the form and the label.
 AutoScaleBaseSize = New Size(5, 13)
 ClientSize = New Size(312, 81)
 Controls.Add(Label1)
 Menu = MainMenu1
 Name = "Form1"
 Text = "Menu Cloning Test"
 Label1.Text = "Some Display Text"
 Label1.AutoSize = True

 ' Save the original font and color properties of the Label1 control.
 origFont = Label1.Font
 origForeColor = Label1.ForeColor
 origBackColor = Label1.BackColor

 End Sub

 ' Font Click event handler
 Private Sub mnuFormatFont_Click(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
) Handles mnuFormatFont.Click
 Dim dlg As New FontDialog()
 dlg.Font = Label1.Font
 If dlg.ShowDialog = DialogResult.OK Then
 Label1.Font = dlg.Font
 End If
 dlg.Dispose()
 End Sub

 ' ForeColor Click event handler
 Private Sub mnuFormatForeColor_Click(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
) Handles mnuFormatForeColor.Click
 Dim dlg As New ColorDialog()
 dlg.Color = Label1.ForeColor
 If dlg.ShowDialog = DialogResult.OK Then
 Label1.ForeColor = dlg.Color
 End If
 dlg.Dispose()
 End Sub

 ' BackColor Click event handler
 Private Sub mnuFormatBackColor_Click(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
) Handles mnuFormatBackColor.Click

Programming Visual Basic .NET

 227

 Dim dlg As New ColorDialog()
 dlg.Color = Label1.BackColor
 If dlg.ShowDialog = DialogResult.OK Then
 Label1.BackColor = dlg.Color
 End If
 dlg.Dispose()
 End Sub

 ' Resent Click event handler
 Private Sub mnuFormatReset_Click(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
) Handles mnuFormatReset.Click
 Label1.Font = origFont
 Label1.ForeColor = origForeColor
 Label1.BackColor = origBackColor
 End Sub

End Class

5.6 Creating a Control

A control is a component with a visual representation. The Windows Forms class library provides the
base functionality for controls through the Control class (defined in the System.Windows.Forms
namespace). All controls derive directly or indirectly from the Control class. In addition, Windows
Forms provides a class called UserControl for the purpose of making it easy to write custom control
classes. The derivation of the UserControl class is shown in Figure 5-27.

Figure 5-27. The derivation hierarchy of the UserControl class

5.6.1 Building Controls from Other Controls

The easiest way to create a new control is to aggregate and modify the functionality of one or more
existing controls. To do this in Visual Studio .NET's Windows Forms Designer, perform the following
steps:

1. Choose Project Add User Control from the main menu.
2. Type the name of the .vb file that will hold the code for the control, and click OK. The designer

displays a blank user control in design mode, as shown in Figure 5-28.

Figure 5-28. A blank user control in Visual Studio .NET's Windows
Forms Designer

 228

3. Add controls from the Toolbox window just as you would when laying out a form. Controls that
are made part of another control are called constituent controls . Figure 5-29 shows a user
control that has two constituent controls: a Label and a TextBox.

Figure 5-29. A user control with two constituent controls

The user control shown in Figure 5-29 is a good start on a captioned text-box control—a text
box that carries around its own caption. These additional steps would also be helpful:

a. Set the Label control's AutoSize property to True so the label expands to the size
needed for displaying its text.

b. Dock the Label control to the left side of the user control. This allows the TextBox
control to be docked to the Label control. The benefit of docking the TextBox control
to the Label control is that the TextBox control will move whenever the Label control
resizes itself.

c. Dock the TextBox control to fill the remainder of the space.
4. Add any appropriate properties to the user control. This could involve overriding properties

inherited from base classes or creating new properties. For the captioned text-box user control,
do the following:

a. Override the Text property. The purpose of this property is to allow the client
environment to set and read the text displayed in the constituent TextBox control.
Here is the code:

b. Public Overrides Property Text() As String
c. Get
d. Return txtText.Text
e. End Get
f. Set(ByVal Value As String)
g. txtText.Text = Value
h. End Set

End Property

As can be seen from the code, the user control's Text property is simply mapped to
the TextBox control's Text property.

i. Create a new property for setting the caption text. Here is the code:
j. Public Property Caption() As String
k. Get
l. Return lblCaption().Text
m. End Get
n. Set(ByVal Value As String)
o. lblCaption().Text = Value
p. End Set

Programming Visual Basic .NET

 229

End Property

In this case, the Caption property is mapped to the Label control's Text property.

5. Add any appropriate events to the user control. This could involve invoking base-class events
or creating and invoking new events. For the captioned text-box user control, do the following:

a. Add a handler for the constituent TextBox control's TextChanged property. Within the
handler, invoke the base class's TextChanged event. Here is the code:

b. Private Sub txtText_TextChanged(_
c. ByVal sender As Object, _
d. ByVal e As EventArgs _
e.) Handles txtText.TextChanged
f. Me.OnTextChanged(e)

End Sub

Notice that this code calls the OnTextChanged method, which is declared in the
Control class. The purpose of this method is to fire the TextChanged event, which is
also declared in the Control class (Visual Basic .NET doesn't provide a way to fire a
base-class event directly.) There are OnEventName methods for each of the events
defined in the Control class.

The OnTextChanged method is overridable. If you override it in your derived class, be
sure that your overriding method calls MyBase.OnTextChanged. If you don't, the
TextChanged event won't be fired.

g. Declare a new event to notify the client when the user control's Caption property is
changed. Name the event CaptionChanged. Add a handler for the Label control's
TextChanged event and raise the CaptionChanged event from there. Here's the code:

h. Event CaptionChanged As EventHandler
i.
j. Private Sub lblCaption_TextChanged(_
k. ByVal sender As Object, _
l. ByVal e As EventArgs _
m.) Handles lblCaption.TextChanged
n. RaiseEvent CaptionChanged(Me, EventArgs.Empty)

End Sub

Note the arguments to the CaptionChanged event. The value Me is passed as the
sender of the event, and EventArgs.Empty is passed as the event arguments. The
Empty field of the EventArgs class returns a new, empty EventArgs object.

6. Add any appropriate attributes to the syntax elements of the class. For example, the Caption
property will benefit from having a Category attribute and a Description attribute, as shown in
bold here:

7.
8. <Category("Appearance"), _
9. Description("The text appearing next to the textbox.")> _
10. Public Property _
11. Caption() As String
12. Get
13. Return lblCaption().Text
14. End Get
15. Set(ByVal Value As String)
16. lblCaption().Text = Value
17. End Set

End Property

These attributes are compiled into the code and are picked up by the Visual Studio .NET IDE.
The Category attribute determines in which category the property will appear in the

 230

Properties window. The Description attribute determines the help text that will be displayed
in the Properties window when the user clicks on that property. See "Component Attributes" in
Chapter 4 for a list of attributes defined in the System.ComponentModel namespace.

This is all very similar to creating forms. As with forms, custom controls can be defined directly in code.
Example 5-4 shows a complete class definition for the captioned text-box control, created without the
aid of the Windows Forms Designer. It can be compiled from the command line with this command:

vbc filename.vb /r:System.dll,System.Drawing.dll,System.Windows.Forms.dll
/t:library

(Note the /t:library switch for creating a .dll rather than an .exe file.)

Example 5-4. A custom Control class
Imports System
Imports System.ComponentModel
Imports System.Drawing
Imports System.Windows.Forms

Public Class MyControl
 Inherits UserControl

 Private WithEvents lblCaption As Label
 Private WithEvents txtText As TextBox

 Event CaptionChanged As EventHandler

 Public Sub New()
 MyBase.New()

 ' Instantiate a Label object and set its properties.
 lblCaption = New Label()
 With lblCaption
 .AutoSize = True
 .Dock = DockStyle.Left
 .Size = New Size(53, 13)
 .TabIndex = 0
 .Text = "lblCaption"
 End With

 ' Instantiate a TextBox object and set its properties.
 txtText = New TextBox()
 With txtText
 .Dock = DockStyle.Fill
 .Location = New Point(53, 0)
 .Size = New Size(142, 20)
 .TabIndex = 1
 .Text = "txtText"
 End With

 ' Add the label and text box to the form's Controls collection.
 Me.Controls.AddRange(New Control() {txtText, lblCaption})

 ' Set the size of the form.
 Me.Size = New Size(195, 19)

 End Sub

 ' Override the Control class's Text property. Map it to the

Programming Visual Basic .NET

 231

 ' constituent TextBox control's Text property.
 <Category("Appearance"), _
 Description("The text contained in the textbox.")> _
 Public Overrides Property Text() As String
 Get
 Return txtText.Text
 End Get
 Set(ByVal Value As String)
 txtText.Text = Value
 End Set
 End Property

 ' Add a Caption property. Map it to the constituent Label
 ' control's Text property.
 <Category("Appearance"), _
 Description("The text appearing next to the textbox.")> _
 Public Property _
 Caption() As String
 Get
 Return lblCaption.Text
 End Get
 Set(ByVal Value As String)
 lblCaption.Text = Value
 End Set
 End Property

 ' When the constituent TextBox control's TextChanged event is
 ' received, fire the user control's TextChanged event.
 Private Sub txtText_TextChanged(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
) Handles txtText.TextChanged
 Me.OnTextChanged(e)
 End Sub

 ' When the constituent Label control's TextChanged event is
 ' received, fire the user control's CaptionChanged event.
 Private Sub lblCaption_TextChanged(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
) Handles lblCaption.TextChanged
 RaiseEvent CaptionChanged(Me, EventArgs.Empty)
 End Sub

End Class

After compiling the code in Example 5-4, either the custom control can be added to the Visual
Studio .NET toolbox and added to forms just like other controls, or it can be referenced and
instantiated from an application compiled at the command line.

To add the custom control to the Visual Studio .NET toolbox:

1. Deploy the custom control's .dll file into the client application's bin directory. (The bin directory
is a directory created by Visual Studio .NET when the client application is created.)

2. From the Visual Studio .NET menu, select Tools Customize Toolbox. The Customize
Toolbox dialog box appears, as shown in Figure 5-30.

Figure 5-30. The Customize Toolbox dialog box

 232

3. Click the .NET Framework Components tab, then click the Browse button.
4. Browse for and select the .dll file compiled from the code in Example 5-4.
5. The controls in the .dll file are added to the Customize Toolbox dialog box, as shown in

Figure 5-31. (In this case there is only one control in the .dll file—the MyControl control.)

Figure 5-31. Adding a control to the Customize Toolbox dialog box

6. Ensure that a checkmark appears next to the control name, and click OK.

The control should now appear on the General tab of the Toolbox window, as shown in Figure 5-32.

Figure 5-32. The Toolbox window, showing the custom control from
Example 5-4

Programming Visual Basic .NET

 233

After you add the custom control to the Toolbox, the control can be added to a form just like any other
control.

To use the custom control from a non-Visual Studio .NET application, these steps are required:

1. Deploy the custom control's .dll file into the same directory as the client .vb file.
2. Declare, instantiate, and use the control in client application code, in the same way that has

been done throughout this chapter for standard controls.
3. Reference the control's assembly in the compilation command.

The code in Example 5-5 shows how to use the control. It can be compiled with this command:

vbc MyApp.vb
/r:System.dll,System.Drawing.dll,System.Windows.Forms.dll,MyControl.dll
/t:winexe

(Note that the command should be typed on a single line.)

Example 5-5. Using a custom control
Imports System.Drawing
Imports System.Windows.Forms

Module modMain
 <System.STAThreadAttribute()> Public Sub Main()
 System.Threading.Thread.CurrentThread.ApartmentState = _
 System.Threading.ApartmentState.STA
 System.Windows.Forms.Application.Run(New Form1())
 End Sub
End Module

Public Class Form1
 Inherits System.Windows.Forms.Form

 Private ctrl As New MyControl()

 Public Sub New()
 ctrl.Caption = "This is the caption."
 ctrl.Text = "This is the text."
 Controls.Add(ctrl)
 End Sub

End Class

The resulting display is shown in Figure 5-33.

 234

Figure 5-33. Using a custom control

5.6.2 Building Controls That Draw Themselves

Adding constituent controls to a user control is just one way to make a custom control. Another way is
to draw the user interface of the control directly onto the control's surface. Example 5-6 shows the
definition of a control that draws its own (albeit simple) user interface. Figure 5-34 shows the control
after it has been placed on a form in design mode in the Windows Forms Designer.

Example 5-6. A control that renders itself
Public Class MyControl
 Inherits UserControl

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
 e.Graphics.FillEllipse(New SolidBrush(Me.ForeColor), _
 Me.ClientRectangle)
 End Sub

 Public Sub New()
 Me.ResizeRedraw = True
 End Sub

End Class

Figure 5-34. The MyControl control as it appears on a form in the
Windows Forms Designer

The control in this example overrides the OnPaint method declared in the Control class. Windows
invokes the OnPaint method whenever the control needs repainting. The PaintEventArgs object
passed to the OnPaint method provides information useful within the OnPaint method. The
PaintEventArgs type was discussed in detail in Chapter 4 under Section 4.6. The OnPaint method
in Example 5-6 draws an ellipse sized to fill the client area of the control.

Setting the control's ResizeRedraw property to True causes the OnPaint method to be called
whenever the control is resized. Because the appearance of the control in Example 5-6 depends on

Programming Visual Basic .NET

 235

the size of the control, the control's constructor sets the ResizeRedraw property to True. When
ResizeRedraw is False (the default), resizing the control does not cause the OnPaint method to be
called.

Although the code in Example 5-6 was built by hand, the OnPaint method can also be added (by
hand) to the code built by the Windows Forms Designer. In addition, the techniques of using
constituent controls and drawing directly on the user control can both be used within the same user
control.

5.6.3 Building Nonrectangular Controls

User controls are rectangular by default, but controls having other shapes can be made by setting the
control's Region property. The Region property accepts a value of type Region (defined in the
System.Drawing namespace). Objects of type Region define complex areas and are commonly used
for window clipping. Consider again Example 5-6 and Figure 5-34. Notice in Figure 5-34 that the
grid dots on the form do not show through the background of the control. Example 5-7 shows how to
clip the area of the control to match the ellipse being drawn in the OnPaint method. It is based on
Example 5-6, with new code shown in bold.

Example 5-7. Clipping the area of a control
' Assumes Imports System.Drawing.Drawing2D
Public Class MyControl
 Inherits UserControl

 Private Function CreateRegion() As Region
 Dim gp As New GraphicsPath()
 gp.AddEllipse(Me.ClientRectangle)
 Dim rgn As New Region(gp)
 Return rgn
 End Function

 Protected Overrides Sub OnResize(ByVal e As EventArgs)
 Me.Region = Me.CreateRegion()
 End Sub

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
 e.Graphics.FillEllipse(New SolidBrush(Me.ForeColor), _
 Me.ClientRectangle)
 End Sub

 Public Sub New()
 Me.ResizeRedraw = True
 End Sub

End Class

The CreateRegion method in Example 5-7 creates a region in the shape of an ellipse sized to fill the
client area of the control. To create nonrectangular regions, you must instantiate a GraphicsPath
object, use the drawing methods of the GraphicsPath class to define a complex shape within the
GraphicsPath object, and then instantiate a Region object, initializing it from the GraphicsPath object.
Example 5-7 calls the GraphicsPath class's AddEllipse method to create an ellipse within the
GraphicsPath object. Additional methods could be called to add more shapes (including line-drawn
shapes) to the GraphicsPath object. The OnResize method in Example 5-7 ensures that the control's
Region property is reset every time the control is resized. Figure 5-35 shows the control after it has
been placed on a form in design mode in the Windows Forms Designer. Note that the grid dots now
show through the corners of the control. This clipped area is no longer considered part of the control. If
the user clicks on this area, the click passes through to the object underneath the control (in this case,
the form).

 236

Figure 5-35. A control with its Region property set to clip everything
outside of the ellipse

5.7 Summary

The Windows Forms architecture is broad and deep. This chapter has presented everything you need
to know to get started developing GUI desktop applications, but there is more power waiting for you
after you assimilate what's here. Once you master the material in this chapter, you can write complex
GUI applications. You'll also be able to tackle and understand additional types and functionality
documented in the online .NET reference material.

Programming Visual Basic .NET

 237

Chapter 6. ASP.NET and Web Forms: Developing
Browser-Based Applications

ASP.NET is a technology for developing dynamic web pages. It has evolved from Microsoft's ASP
technology, so experience with ASP transfers fairly well to ASP.NET. While I don't assume in this
chapter that you have such experience, I do assume that you have at least a passing familiarity with
HTML.

ASP.NET works with Microsoft's Internet Information Services (IIS) to dynamically create HTML
content so it can be sent to a web browser. This technology supports all browsers, because ASP.NET
runs entirely on the server and sends only HTML (and, optionally, client-side JavaScript) to the
browser.

With ASP.NET, web browsing works like this:

1. A user enters a web page address into a browser (or links to the address from another web
page). For example, http://www.gotdotnet.com/default.aspx.

2. The browser sends a request to the server (in this case, www.gotdotnet.com), asking for the
given web page (in this case, default.aspx).

3. The server receives the request and attempts to fulfill it. How the server fills the request
depends on the type of page requested, as indicated by the filename extension. Files with
an .html or .htm extension are assumed to contain plain HTML text and are sent to the
browser as is. Files with an .aspx extension are assumed to contain ASP.NET application
code and are therefore compiled and executed. Executing the ASP.NET code usually results
in generating HTML content and sending it to the browser. Note the following:

o The browser is unaware that the content is dynamically generated. From the
browser's perspective, the response could be from a static HTML file.

o The .aspx file is compiled only once. The first time a browser requests the file, the
ASP.NET framework compiles the file and stores the executable code on the server.
Subsequent requests for the same page call directly into the executable code.

The term Web Forms refers to a set of classes in the .NET Framework that provides support for
building web applications. With the Visual Studio .NET IDE's built-in awareness of Web Forms,
building web pages now has (nearly) the same drag-and-drop simplicity as building form-based
desktop applications.

In the ASP.NET framework, .aspx files can contain standard HTML tags (which are sent as is to the
browser), Web Forms tags (which represent Web Forms classes and are interpreted by the ASP.NET
runtime, rather than being sent to the browser), and code written in one of the .NET languages.

ASP.NET pages are compiled. Even if an .aspx file contains only HTML, it is still compiled. This is
quite interestingly done. During the compilation process, ASP.NET reads the .aspx file and creates a
class capable of outputting the HTML found in the file. If the .aspx file contains any embedded Visual
Basic .NET (or other .NET language) code, this code is compiled into the class. For example, if
the .aspx file contains an embedded subroutine declaration, the subroutine becomes a method of the
compiled class. At runtime, the compiled class is asked to generate its HTML, which is then sent to the
browser.

The compiled class that represents an ASP.NET web page is a .NET class. As such, it must inherit
from some other class. By default, classes created by ASP.NET inherit from the Page class (defined in
the System.Web.UI namespace). This means the generated classes have all the capabilities that are
built into the Page class. These capabilities are described later in this chapter, in Section 6.2.

If desired, ASP.NET pages can specify a class from which to inherit, as long as the specified class
itself ultimately inherits from the Page class. This is the foundation for separating a page's code from
its HTML. Code is placed in a class that inherits from the Page class. The web page then specifies a
directive indicating that its compiled class should derive from the custom class, rather than directly

 238

from the Page class. This technique is referred to as code behind. The .vb file that contains the base-
class definition is referred to as the code-behind file. The class from which the web page class inherits
is called the code-behind class. These concepts are explained more fully throughout this chapter.

6.1 Creating a Web Form

The easiest way to design a web form is to use the Web Forms Designer in Visual Studio .NET. The
developer uses visual tools to lay out the form, and the designer translates the layout into a web page
and its associated Visual Basic .NET source code. Web page files (.aspx) and their associated Visual
Basic .NET source-code files (.vb) are editable as plain text, if desired. If you don't have Visual
Studio .NET, you can write the web pages and source code by hand using a text editor. The following
two sections demonstrate both methods.

6.1.1 Creating a Form Using Visual Studio .NET

To create a web-based application in Visual Studio .NET:

1. Select File New Project. The New Project dialog box appears, as shown in Figure 6-1.

Figure 6-1. The New Project dialog box

2. Select "Visual Basic Projects" in the Project Types pane on the left side of the dialog box.
3. Select "ASP.NET Web Application" in the Templates pane on the right side of the dialog box.
4. Enter a name in the Name text box. This name is used as the name of a new folder, in which

Visual Studio .NET places the project.
5. Enter a location in the Location text box (for example, http://localhost/ or

http://localhost/MyProjects/. The physical location of this folder is determined by settings in IIS,
as configured in Internet Services Manager.

The values entered for Location and Name determine the full path to the project. For example,
if the Location is http://localhost/MyProjects/ and the name is SomeProject, the full virtual path
to the files in the project is http://localhost/MyProjects/SomeProject/. Furthermore, if the
MyProjects virtual folder maps to the physical folder C:\Documents and Settings\daveg\My
Documents\My Code\, the full physical path to the files in the project is C:\Documents and
Settings\daveg\My Documents\My Code\SomeProject\.

Programming Visual Basic .NET

 239

If the Location is given simply as http://localhost/ (i.e., as the hostname with no virtual folder
name), the physical path is determined by IIS's settings for the host's default web site (again,
as configured in Internet Services Manager). By default, this is C:\Inetpub\wwwroot\. For
example, if the Name is SomeProject and the Location is http://localhost/, the full physical path
to the files in the project is C:\Inetpub\wwwroot\SomeProject\.

6. Click OK. Visual Studio .NET creates a project with a web form in it and displays the form in
the designer, as shown in Figure 6-2.

Figure 6-2. The Web Forms Designer in design view

There are three ways to view and work with a web form. The first is in design mode, which is the mode
shown in Figure 6-2. In design mode, controls can be added to the form from the Toolbox and
positioned as desired. This is similar to designing a form in a GUI desktop application. See later in this
section for examples of adding controls to a form.

The second way to work with a web form is by directly editing its HTML. To view a form's HTML, click
the HTML tag in the Web Forms Designer. The resulting display is shown in Figure 6-3.

Figure 6-3. The Web Forms Designer in HTML view

 240

The boilerplate HTML produced for a blank web form is shown in Example 6-1.

Example 6-1. The Web Forms Designer's boilerplate HTML for a blank
web form
<%@ Page Language="vb" AutoEventWireup="false"
 Codebehind="WebForm1.aspx.vb" Inherits="IdeExamples.WebForm1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title></title>
 <meta name="GENERATOR" content="Microsoft Visual Studio .NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </head>
 <body MS_POSITIONING="GridLayout">
 <form id="Form1" method="post" runat="server">
 </form>
 </body>
</html>

The code in Example 6-1 has the following qualities:

• The Page directive at the beginning of the file provides information about how ASP.NET
should process the page. Directives are described in detail later in this chapter, in Section
6.5. The Page directive shown in Example 6-1 specifies the following settings:

Language="vb"

Programming Visual Basic .NET

 241

Specifies which language compiler to use when compiling embedded code in this file.
Example 6-1 doesn't have any embedded code, but the developer could add code later.

AutoEventWireup="false"

Determines how events generated by server-side controls are handled. It is explained later in
this chapter, under Section 6.2.1 in Section 6.2.

Codebehind="WebForm1.aspx.vb"

Specifies the name of the code-behind file.

Inherits="IdeExamples.WebForm1"

Specifies the name of the class from which this page should inherit. This must be the name of
a class defined in the given code-behind file. In this example, the class name is WebForm1 in
a namespace called IdeExamples.

• The <meta> tags contain information that is meaningful to the Web Forms Designer. Their
presence is not necessary for the correct operation of the page.

• The <body> tag contains a Microsoft-specific attribute called MS_POSITIONING. This
attribute is used by the Web Forms Designer and by the ASP.NET compiler to determine how
to format the HTML generated by the compiled page. The attribute itself is not actually sent to
the browser.

• The <form> tag is central to Web Forms. Web Forms uses the capabilities of the HTML
<form> tag's post mechanism to implement interaction with the user. This will be discussed in
more detail throughout this chapter. Note in Example 6-1 that the <form> tag has the
runat="server" attribute. This means that this tag is not sent as is to the browser. Rather,
the ASP.NET compiler processes this tag and its contents to determine the best way to render
the form that it represents.

The third way to work with a web form is by editing the code in the form's code-behind page. To see
the code created by the designer, right-click on the form, then select View Code. Doing this for the
blank form shown in Figure 6-2 reveals the code shown here:

Public Class WebForm1
 Inherits System.Web.UI.Page

 Web Form Designer Generated Code

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here.
 End Sub

End Class

This shows the definition of a class, WebForm1, that inherits from the Page class. The designer also
creates a lot of boilerplate code that should not be modified by the developer. By default, it hides this
code from view. To see the code, click on the "+" symbol that appears to the left of the line that says,
"Web Form Designer Generated Code." Doing so reveals the code shown in Example 6-2. (Some of
the lines in Example 6-2 have been wrapped for printing in this book.)

Example 6-2. The Web Forms Designer-generated code for a blank form
Public Class WebForm1
 Inherits System.Web.UI.Page

 242

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 End Sub

End Class

The Web Forms Designer autogenerates the code for three class members:

InitializeComponent method

The code in this method should not be modified or added to by the developer in any way. The
Web Forms Designer automatically updates it as needed.

Page_Init method

This is an event handler that handles the base class's Init event. The Init event is inherited
from the Control class (defined in System.Web.UI) and is raised when the Page object is
created. This is the first event that is fired when the object is created. Code that initializes the
object instance should be placed in this method. References to the page's controls are not yet
available when the Init event is raised.

Page_Load method

This is an event handler that handles the base class's Load event. The Load event is inherited
from the Control class (defined in System.Web.UI) and is raised after the Page object has
been initialized. References to the page's controls are available at this time.

The next steps in designing the form are to name the .aspx file and set some properties on the form,
such as the title of the web page. To change the name of the form's file, right-click on the filename in
the Solution Explorer window and select Rename. If you're following along with this example, enter
HelloBrowser.aspx as the name of the file. This also automatically changes the name of the code-
behind file to HelloBrowser.aspx.vb.

Changing the name of the file doesn't change the name of the code-behind class. To change the
name of this class, right-click the form, select View Code, then change the class name in the class
declaration from WebForm1 to HelloBrowser. To keep the code-behind file in sync with the .aspx file,
you must also make a corresponding change to the Inherits attribute of the .aspx file's Page
directive, as shown here:

Programming Visual Basic .NET

 243

<%@ Page Language="vb" AutoEventWireup="false"
 Codebehind="HelloBrowser.aspx.vb" Inherits="IdeExamples.HelloBrowser"%>

To change the web page's title, right-click the form in the designer and choose Properties. Scroll down
the Properties window to find the Title property, then enter a new value, "Programming Visual
Basic .NET". This is shown in Figure 6-4.

Figure 6-4. Changing the title of a web page

Next, you can add controls to the web form from the Visual Studio .NET toolbox. To display the
toolbox, select View Toolbox from the Visual Studio .NET main menu. For this example, double-
click on the Label control in the toolbox to add a Label control on the form. Use the Properties window
to change the label's Text property to "Hello, Browser!". Set the Name member of the Font property to
"Arial" and the Size member to "X-Large".

Next, double-click on the Button control in the toolbox to add a button control to the form. Use the
Properties window to change the button's ID property to "btnBlack" and its Text property to "Black".

Add two more buttons, setting their ID properties to "btnBlue" and "btnGreen" and their Text properties
to "Blue" and "Green", respectively.

Finally, position the controls as desired. The resulting form should look something like the one shown
in Figure 6-5.

Figure 6-5. A web form with controls

 244

Press the F5 key to build and run the program. The result should look something like Figure 6-6.

Figure 6-6. Hello, Browser!, as created by the Web Forms Designer

The HTML generated by the designer is shown in Example 6-3.

Example 6-3. Hello, Browser! HTML, as generated by the Web Forms
Designer
<%@ Page Language="vb" AutoEventWireup="false"
 Codebehind="HelloBrowser.aspx.vb"
 Inherits="IdeExamples.HelloBrowser"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
 <HEAD>
 <title>Programing Visual Basic .NET</title>
 <meta name="GENERATOR" content="Microsoft Visual Studio .NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"

Programming Visual Basic .NET

 245

 content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form id="Form1" method="post" runat="server">
 <asp:Label id="Label1"
 style="Z-INDEX: 101; LEFT: 8px; POSITION: absolute;
 TOP: 8px"
 runat="server" Font-Size="X-Large"
 Font-Names="Arial">Hello, Browser!</asp:Label>
 <asp:Button id="btnGreen"
 style="Z-INDEX: 104; LEFT: 112px; POSITION: absolute;
 TOP: 56px"
 runat="server" Text="Green"></asp:Button>
 <asp:Button id="btnBlue"
 style="Z-INDEX: 103; LEFT: 64px; POSITION: absolute;
 TOP: 56px"
 runat="server" Text="Blue"></asp:Button>
 <asp:Button id="btnBlack"
 style="Z-INDEX: 102; LEFT: 8px; POSITION: absolute;
 TOP: 56px"
 runat="server" Text="Black"></asp:Button>
 </form>
 </body>
</HTML>

The Visual Basic .NET code-behind code is shown in Example 6-4.

Example 6-4. Hello, Browser! code-behind code, generated by the Web
Forms Designer
Public Class HelloBrowser
 Inherits System.Web.UI.Page
 Protected WithEvents btnBlack As System.Web.UI.WebControls.Button
 Protected WithEvents btnBlue As System.Web.UI.WebControls.Button
 Protected WithEvents btnGreen As System.Web.UI.WebControls.Button
 Protected WithEvents Label1 As System.Web.UI.WebControls.Label

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 End Sub

End Class

 246

The HTML that is sent to the browser is shown in Example 6-5.

Example 6-5. The HTML sent to the browser from the Hello, Browser!
application
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
 <HEAD>
 <title>Programing Visual Basic .NET</title>
 <meta name="GENERATOR" content="Microsoft Visual Studio .NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form name="Form1" method="post" action="HelloBrowser.aspx"
 id="Form1">
 <input type="hidden" name="_ _VIEWSTATE"
 value="dDwtMTc0NzM4OTU5Ozs+" />
 <span id="Label1"
 style="font-family:Arial;font-size:X-Large; Z-INDEX: 101;
 LEFT: 8px; POSITION: absolute; TOP: 8px">
 Hello, Browser!
 <input type="submit" name="btnGreen" value="Green" id="btnGreen"
 style="Z-INDEX: 104; LEFT: 112px; POSITION: absolute;
 TOP: 56px" />
 <input type="submit" name="btnBlue" value="Blue" id="btnBlue"
 style="Z-INDEX: 103; LEFT: 64px; POSITION: absolute;
 TOP: 56px" />
 <input type="submit" name="btnBlack" value="Black" id="btnBlack"
 style="Z-INDEX: 102; LEFT: 8px; POSITION: absolute;
 TOP: 56px" />
 </form>
 </body>
</HTML>

When the four controls were added to the form in the Web Forms Designer, the designer added four
tags to the form's HTML: one for the label and three for the three buttons. Consider first the tag for the
Label control:

<asp:Label id="Label1"
 style="Z-INDEX: 101; LEFT: 8px; POSITION: absolute; TOP: 8px"
 runat="server" Font-Size="X-Large"
 Font-Names="Arial">Hello, Browser!</asp:Label>

This is an <asp:Label> tag, which clearly isn't a standard HTML tag. Rather, it is recognized and
acted on by the ASP.NET runtime. When the ASP.NET runtime sees this tag, the runtime instantiates
an object of type Label (defined in the System.Web.UI.WebControls namespace) on the web server.
The runtime initializes this control according to the attribute values of the <asp:Label> tag. The
runtime then sets the control's Text property with the text found between the <asp:Label> tag and
its closing tag, </asp:Label>. The Label object is responsible for outputting standard HTML that
renders the value of the object. In this case, that HTML can be seen in Example 6-5. The portion of
Example 6-5 related to the Label control is reproduced here:

<span id="Label1"
 style="font-family:Arial;font-size:X-Large; Z-INDEX: 101;
 LEFT: 8px; POSITION: absolute; TOP: 8px">

Programming Visual Basic .NET

 247

 Hello, Browser!

As you can see, the Label control rendered itself as simple text (Hello, Browser!), surrounded by a
 tag. The purpose of the tag is to apply id and style attributes to the text.

Similarly, consider the first Button control added to the web form. The Web Forms Designer generated
this HTML representation of the control:

<asp:Button id="btnGreen"
 style="Z-INDEX: 104; LEFT: 112px; POSITION: absolute; TOP: 56px"
 runat="server" Text="Green"></asp:Button>

The <asp:Button> tag represents the Button control. When the runtime sees this tag, it instantiates
an object of type Button (defined in the System.Web.UI.WebControls namespace) on the server. This
object is then responsible for outputting standard HTML that renders the value (and in this case,
functionality) of the object. The HTML sent to the browser for this button is:

<input type="submit" name="btnGreen" value="Green" id="btnGreen"
 style="Z-INDEX: 104; LEFT: 112px; POSITION: absolute; TOP: 56px" />

Note that the Button control rendered itself as an <input> tag with type="submit". This displays a
button in the browser window. The other attributes of the tag specify its name, text, and style.

Label and Button controls are examples of server controls. The full set of server controls is listed later
in this chapter, in Section 6.3.

6.1.1.1 Adding event handlers

The Hello, Browser! application built thus far has three buttons, but the application doesn't yet do
anything in response to button clicks. To add a Click event handler to the existing code in Visual
Studio .NET, follow these steps:

1. Switch to the code-view window for the web form.
2. At the top of the source-code window are two side-by-side drop-down lists. Select the desired

control, btnBlack, in the lefthand list, then select the desired event, btnBlack_Click, in the
righthand list. The Web Forms Designer adds an event handler to the code (see Figure 6-7).

Figure 6-7. Choosing a control and event for which to add a handler

 248

3. Add code to the event handler. For this exercise, have the event handler set the color of the
Label control to black:

4. Private Sub btnBlack_Click(_
5. ByVal sender As Object, _
6. ByVal e As System.EventArgs _
7.) Handles btnBlack.Click
8. Label1.ForeColor = System.Drawing.Color.Black

 End Sub

9. Similarly, add event handlers for the btnBlue and btnGreen Button controls. The finished event
handlers should look like this:

10. Private Sub btnBlue_Click(_
11. ByVal sender As System.Object, _
12. ByVal e As System.EventArgs _
13.) Handles btnBlue.Click
14. Label1.ForeColor = System.Drawing.Color.Blue
15. End Sub
16.
17. Private Sub btnGreen_Click(_
18. ByVal sender As System.Object, _
19. ByVal e As System.EventArgs _
20.) Handles btnGreen.Click
21. Label1.ForeColor = System.Drawing.Color.Green

End Sub

The web form created here allows the user to change the color of the words, "Hello, Browser!" by
clicking on one of the form's three buttons. This was done by dragging controls onto the form and
creating event handlers. At runtime, the ASP.NET framework generates the standard HTML that
implements the given behavior. The developer now can work with a familiar event-driven model and
largely ignore the requirements of HTML.

6.1.2 Creating a Form in Code

Although Visual Studio .NET's Web Forms Designer is convenient for developing web forms, it is not
required. To create a web form without the assistance of Visual Studio .NET, follow these steps:

Programming Visual Basic .NET

 249

1. Create a .vb file that will serve as the code-behind file. This file can be named anything
because the name itself will be referenced in the associated .aspx file. In the code-behind file,
place a class that inherits from the Page class, like this:

2. Imports System.Web.UI
3.
4. Public Class HelloBrowser
5. Inherits Page
6.

End Class

7. Add member variables and event handlers for the controls that are to appear on the form. For
example:

8. Imports System.Web.UI
9. Imports System.Web.UI.WebControls
10.
11. Public Class HelloBrowser
12. Inherits Page
13.
14. Protected WithEvents Label1 As Label
15. Protected WithEvents btnBlack As Button
16. Protected WithEvents btnBlue As Button
17. Protected WithEvents btnGreen As Button
18.
19. Protected Sub btnBlack_Click(_
20. ByVal sender As Object, _
21. ByVal e As System.EventArgs _
22.) Handles btnBlack.Click
23. Label1.ForeColor = System.Drawing.Color.Black
24. End Sub
25.
26. Protected Sub btnBlue_Click(_
27. ByVal sender As System.Object, _
28. ByVal e As System.EventArgs _
29.) Handles btnBlue.Click
30. Label1.ForeColor = System.Drawing.Color.Blue
31. End Sub
32.
33. Protected Sub btnGreen_Click(_
34. ByVal sender As System.Object, _
35. ByVal e As System.EventArgs _
36.) Handles btnGreen.Click
37. Label1.ForeColor = System.Drawing.Color.Green
38. End Sub
39.

End Class

40. Create an .aspx file to serve as the application's main page. Reference the code-behind class
using the Src and Inherits attributes of the Page directive, and include <asp:...> tags
for the controls that are to appear on the form. For example:

41. <%@ Page Language="vb" AutoEventWireup="false"
42. Src="HelloBrowser.vb" Inherits="HelloBrowser"%>
43. <html>
44. <head>
45. <title>Programing Visual Basic .NET</title>
46. </head>
47. <body>
48. <form id="Form1" method="post" runat="server">
49. <asp:Label id="Label1" runat="server" Font-Size="X-Large"
50. Font-Names="Arial" Text="Hello, Browser!" />

51. <asp:Button id="btnGreen" runat="server" Text="Green" />

 250

52. <asp:Button id="btnBlue" runat="server" Text="Blue" />
53. <asp:Button id="btnBlack" runat="server" Text="Black" />
54. </form>
55. </body>

</html>

Here, the code-behind .vb file is referenced using the Src attribute; in the Visual Studio .NET
code shown earlier, the code-behind file was referenced in the CodeBehind attribute. This is
an important distinction. The CodeBehind attribute is used only by Visual Studio .NET; it's
ignored by the ASP.NET compiler.

Be sure that the value of the id attribute of each <asp:...> tag matches the name of the
associated member variable in the code-behind class. This name is how the ASP.NET
framework matches up each member variable with the corresponding server control.

To run this application, enter the two code fragments and save them into two files, named
HelloBrowser.vb and HelloBrowser.aspx, respectively. The files must be located in an IIS virtual
directory on a machine with the .NET Framework installed. After you save the files, point a web
browser to HelloBrowser.aspx. The ASP.NET runtime automatically compiles and runs the application,
delivering the output to the browser.

6.1.2.1 Setting control properties using attributes

The properties of server control objects can be initialized by specifying values for attributes within the
<asp:...> tags. For example, the button created by the following tag has its Text property set to
"Green":

<asp:Button id="btnGreen" runat="server" Text="Green" />

This assignment could instead have been handled elsewhere in code—either in a <script> block or
in a code-behind class. In general, any writable property can be set using an attribute of the same
name.

6.1.2.2 Adding event handlers

Define event handlers directly in the code-behind class for any events you wish to handle. For
example:

Private Sub btnBlack_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs _
) Handles btnBlack.Click
 Label1.ForeColor = System.Drawing.Color.Black
End Sub

Private Sub btnBlue_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs _
) Handles btnBlue.Click
 Label1.ForeColor = System.Drawing.Color.Blue
End Sub

Private Sub btnGreen_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs _
) Handles btnGreen.Click
 Label1.ForeColor = System.Drawing.Color.Green

Programming Visual Basic .NET

 251

End Sub

6.2 Handling Page Events

The base Page class may at times raise events. These events can be handled by the derived Page
class (the code-behind class) or by code embedded in the web page. Although it's possible to define
an event-handler subroutine, the preferred response to events raised by the Page class is to override
the protected methods provided by the Page class. For example, the following method could be
placed in the code-behind class, providing a way to respond to the loading of the page:

Protected Overrides Sub OnLoad(e As EventArgs)
 MyBase.OnLoad(e)
 ' ...
End Sub

When overriding an OnEvent-style method, ensure that the
overriding method calls the base-class implementation, in addition
to its own processing. The job of the base-class implementation is
to raise the corresponding event. If the base-class implementation
is not called, the event won't be raised.

Following is the list of events a Page object might raise. The Page class itself doesn't define these
events: it inherits them from its parent classes. This list of events includes a brief description of each
event, the class in which the event is defined, and the syntax for overriding the protected method that
corresponds to the event.

AbortTransaction (inherited from System.Web.UI.TemplateControl)

Raised when a COM+ transaction in which the page is participating is aborted. Its syntax is:

 Protected Overrides Sub OnAbortTransaction(ByVal e As EventArgs)
CommitTransaction (inherited from System.Web.UI.TemplateControl)

Raised when a COM+ transaction in which the page is participating is committed. Its syntax is:

 Protected Overrides Sub OnCommitTransaction(ByVal e As EventArgs)
DataBinding (inherited from System.Web.UI.Control)

Raised when the page binds to a data source. Its syntax is:

 Protected Overrides Sub OnDataBinding(ByVal e As EventArgs)
Disposed (inherited from System.Web.UI.Control)

Raised after the Page object's Dispose method has finished its processing. The Dispose
method is called by the ASP.NET framework after the page has been rendered and the object
is no longer needed. There is no corresponding OnDisposed method. To add a handler for this
event in a derived class, use the following code:

Private Sub Page_Disposed(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
) Handles MyBase.Disposed
 ' ...
End Sub
Error (inherited from System.Web.UI.TemplateControl)

 252

Raised when an unhandled exception is thrown. This provides a last-chance opportunity to
gracefully deal with unexpected errors (perhaps by displaying a friendly "We're sorry, but our
web application has barfed" message. Its syntax is:

 Protected Overrides Sub OnError(ByVal e As EventArgs)
Init (inherited from System.Web.UI.Control)

Raised when the Page object has been created, but before the view state has been loaded. Its
syntax is:

 Protected Overrides Sub OnInit(ByVal e As EventArgs)
Load (inherited from System.Web.UI.Control)

Raised when the Page object has finished loading. Its syntax is:

 Protected Overrides Sub OnLoad(ByVal e As EventArgs)
PreRender (inherited from System.Web.UI.Control)

Raised immediately prior to the page rendering itself. Its syntax is:

 Protected Overrides Sub OnPreRender(ByVal e As EventArgs)
Unload (inherited from System.Web.UI.Control)

Raised after the page has been rendered but before the Page object's Dispose method is
called. Its syntax is:

 Protected Overrides Sub OnUnload(ByVal e As EventArgs)

The last four events are raised on each page request, in the order shown. The three events that are
raised prior to page rendering (Init, Load, and PreRender) are raised at different points during the
creation of the page:

• The Init event is raised after the Page object has been created but before it has loaded values
into its constituent controls or processed any postback data.

• The Load event is raised after constituent controls have been loaded with their values.
However, postback processing is not guaranteed to be finished.

• The PreRender event is raised after all loading and postback processing is finished and the
page is about to be rendered into HTML.

6.2.1 AutoEventWireup

If the developer of a web page or code-behind class chooses to handle base-class events explicitly,
the event-handler methods must be associated with the events that they are to handle. In Visual
Basic .NET this is generally done with a Handles clause in the method definition, as described in
Chapter 2 and shown by example here:

Protected Sub Page_Load(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
) Handles MyBase.Load
 ' ...
End Sub

In addition to this syntax, ASP.NET provides an alternative way to hook up page event handlers to
their associated events. If all of the following conditions are met, the ASP.NET framework
automatically hooks up the page events with the correct handler methods:

Programming Visual Basic .NET

 253

• The AutoEventWireup attribute of the @ Page directive is set to "true" (which it is by
default). This means that the AutoEventWireup attribute's value is true if the attribute is
omitted from the @ Page directive, as well as if the @ Page directive itself is omitted.

• The handler-method name is of the form Page_EventName.
• The handler-method signature matches the signature of the corresponding event.

For example, if these conditions are met, the following code is automatically hooked up to the page's
Load event:

Protected Sub Page_Load(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
)
 ' ...
End Sub

The handler method can appear in either the page or the code-behind class (if any).

To disallow autowiring of events, specify "false" for the AutoEventWireup attribute, like this
(other attributes omitted for brevity):

<%@ Page AutoEventWireup="false" %>

There is no clear advantage to either setting. Event autowiring may feel more familiar to developers
who have used Visual Basic 6, where appropriately named methods automatically handled the
corresponding events. On the other hand, some developers may feel more comfortable forcing event-
handler methods to explicitly declare the events they are handling. In addition, the explicit declaration
frees the developer from having to name the method according to the Page_EventName pattern.

6.3 More About Server Controls

ASP.NET provides two sets of server controls: web controls and HTML controls. Web controls
(defined in the System.Web.UI.WebControls namespace) are similar to controls found in standard
desktop applications. They shield the developer as much as possible from representing the controls in
HTML. In other words, web controls are as similar as possible to desktop-application controls, leaving
it up to each control to worry about how it will represent itself in HTML. This lets the developer design
a UI without worrying much about the limitations of HTML. The controls presented thus far are web
controls.

In contrast, HTML controls (defined in the System.Web.UI.HtmlControls namespace) are a thin
wrapper over HTML client controls defined in the HTML standard. HTML server controls let the
developer omit specific HTML client controls, while retaining the programmatic capabilities that server
controls provide. Web page developers are likely to use HTML server controls only when they want to
generate and manipulate specific HTML client controls with server-side technology. Microsoft makes
no statement about which set of server controls is "better" to use. They present both, leaving it to the
developer to decide which controls fit better into a given application.

6.3.1 Web Controls

The web controls can be created using HTML syntax as well as programmatically. When you create a
control using HTML syntax, the control's tag name consists of the prefix asp: followed by the name of
the control. For example, the following statement creates a CheckBox web control:

<asp:checkbox id="chkMail" text="Be placed on our mailing list? "
 autopostback="false" checked="true" runat="Server" />

 254

Instances of web controls declared using HTML syntax have a number of common attributes that are
worth noting. The ID attribute defines the name of the instance of the web control and should be used
in all statements that create web controls. It corresponds to the control class's ID property, which
defines the name by which the control is referenced programmatically. A second is AutoPostBack,
an optional attribute common to many controls, which determines whether the state of the control is
posted back to the server whenever it is clicked. By default, its value is False. It corresponds directly
to the control class's AutoPostBack property. Finally, the RunAt attribute is required when creating a
web control; without it, the downstream browser will attempt to interpret the HTML tag and will simply
fail to render the control.

Each web control also has a class definition in the System.Web.UI.WebControls namespace of
the .NET Framework Class Library. By using its ID attribute or ID property, you can reference in code
a web control created using HTML syntax. For example, the following statement unchecks the
CheckBox control we defined in the previous code fragment:

chkMail.Checked = False

Web controls can also be created programmatically, as the following code fragment, which creates a
CheckBox control identical to the one defined earlier using HTML syntax, shows:

Dim chkMail As New CheckBox
chkMail.Text= "Be placed on our mailing list? "
chkMail.Checked = True
chkMail.AutoPostBack = False

Note that, except for RunAt, the attributes available for a control using HTML syntax correspond
directly to a property of the control class both in name and in data type.

The following sections document the web controls available in the .NET Framework.

6.3.1.1 The Button control

The Button server control represents a command button and can be used as a Submit button (its
default behavior) or any other type of command button on a form. The Submit button has the following
HTML syntax:

<asp:Button id="ButtonName"
 Text="label"
 OnClick="OnClickMethod"
 runat="server"/>

When used as a command button for some other purpose, the Button control has the following HTML
syntax:

<asp:Button id="ButtonName"
 Text="label"
 CommandName="command"
 CommandArgument="commandArgument"
 OnCommand="OnCommandMethod"
 runat="server"/>

The OnClick attribute defines the event handler that is executed when the button is clicked. The
Text attribute determines the caption displayed on the button face. If used as a Submit button, the
CommandName and CommandArgument attributes are not used; otherwise, at a minimum, the
CommandName attribute, which indicates the command the button is to carry out, should be present.
The optional CommandArguments attribute provides any arguments needed to execute the command.

Programming Visual Basic .NET

 255

The Text, CommandName, and CommandArgument attributes all correspond to identically named
properties of the System.Web.UI.WebControls.Button class.

When the Submit button is clicked, the event handler defined by the OnClick attribute is executed.
The signature of the event is:

Sub OnClickMethod(sender As Object, e As EventArgs)

For any other command button, the Command event corresponds to the Submit button's Click event,
and the event handler defined by the OnCommand attribute is executed. The event handler must have
the following signature:

Sub OnCommandMethod(sender As Object, e As CommandEventArgs)

The CommandEventArgs object has two properties: CommandName, which corresponds to the
CommandName attribute and represents the name of the command; and CommandArgument, which
corresponds to the CommandArgument attribute and represents an argument supplied to the
command. These property values can be used to identify which button was clicked in the event that a
single event handler is used for more than one Button control.

6.3.1.2 The CheckBox control

The CheckBox control represents a checkbox that can have a value of True or False (or On or Off).
It has the following HTML syntax:

<asp:CheckBox id="CheckBoxName"
 AutoPostBack="True|False"
 Text="CheckBoxCaption"
 TextAlign="Right|Left"
 Checked="True|False"
 OnCheckedChanged="OnCheckedChangedMethod"
 runat="server"/>

The Checked attribute determines whether the checkbox is initially checked. It corresponds to the
CheckBox class's Checked property, which is a Boolean. The Text attribute defines the caption that
appears to either the left (the default) or the right of the checkbox itself, depending on the value of the
TextAlign attribute. The Text property of the CheckBox class similarly contains the checkbox's
caption, while its alignment is determined by the CheckBox class's TextAlign property. The value of
the TextAlign property is either of the two members of the TextAlign enumeration: TextAlign.Left,
which positions the text to the left of the checkbox (the default); and TextAlign.Right, which
positions the text to the right of the checkbox.

The OnCheckedChanged attribute defines an event handler that will be executed whenever the
Checked property of the checkbox is changed. The event handler designated by the
OnCheckedChanged attribute must have the following signature:

Sub OnCheckedChangeMethod(sender As Object, e As EventArgs)

6.3.1.3 The DropDownList control

The DropDownList control allows the user to make a single selection from a drop-down listbox. The
DropDownList control has the following HTML syntax:

<asp:DropDownList id="DropDownListName" runat="server"
 DataSource="<% databindingexpression %>"
 DataTextField="DataSourceField"

 256

 DataValueField="DataSourceField"
 AutoPostBack="True|False"
 OnSelectedIndexChanged="OnSelectedIndexChangedMethod">

 <asp:ListItem value="value" selected="True|False">
Text
 </asp:ListItem>

</asp:DropDownList>

Rather than supplying the data either using HTML or programmatically, you can populate the listbox
from a data source. The DataSource attribute defines the data source to which the listbox is bound,
the DataTextField attribute defines the field that will determine which items are displayed in the
listbox, and the DataValueField attribute defines the field whose rows will provide the value of each
list item. Each of these attributes corresponds directly to a property of the
System.Web.UI.WebControls.DropDownList class, which also allows you to dynamically populate a
drop-down listbox at runtime.

In addition, the DropDownList class has a two major properties that don't correspond to attributes of
the DropDownList tag. The SelectedIndex property returns the index of the selected item. The
SelectedItem property returns the selected ListItem object in the drop-down list. Since the
DropDownList object allows the user to select only a single item, these properties in most cases allow
you to skip directly working with individual ListItem objects.

If the DropDownList is not bound to a data source, the ListItem tag is used to define each item in
the list. Text determines the item's text that's displayed in the listbox. The value attribute determines
the item's value. The Selected attribute determines whether or not the item is initially selected when
the listbox is displayed.

Finally, the OnSelectedIndexChanged attribute defines an event handler that will be executed
whenever a new item is selected in the drop-down listbox. The event handler designated by the
OnSelectedIndexChanged attribute must have the following signature:

Sub OnSelectedIndexChangedMethod(sender As Object, e As EventArgs)

Programmatically, the items in the drop-down listbox consist of ListItem objects. These can be
accessed through the ListBox class' Items property, which returns a ListItemCollection object
consisting of all the ListItem objects in the listbox. You can add items to the end of the listbox by
calling the ListItemCollection object's Add method, which has the following syntax:

ListItemCollection.Add(item)

where item is either a String or a ListItem object. To add an item to a particular place in the drop-
down listbox, you can call the Insert method, which has the following syntax:

ListItemCollection.Insert(index, item)

where index is the zero-based position in the listbox at which the item is to be added and item is a
String or a ListItem object to be added to the listbox. You can also remove items from the
ListItemCollection by calling its Remove and RemoveAt methods. The syntax of the Remove method
is:

ListItemCollection.Remove(item)

where item is a String or a ListItem object representing the item to be removed. The syntax of the
RemoveAt method is:

Programming Visual Basic .NET

 257

ListItemCollection.RemoveAt(index)

where index is the position of the item to be removed from the listbox. The number of items in the
drop-down listbox is provided by the ListItemCollection object's Count property.

Three properties of the individual ListItem objects also make it possible to work with the items in the
list. The Text property contains the text of the ListItem object as it's displayed in the listbox. The Value
property contains the value associated with the ListItem object. Finally, the Selected property returns a
Boolean indicating whether the item is selected.

6.3.1.4 The Image control

The Image control displays an image on a web page. Its HTML syntax is:

<asp:Image id="ImageName" runat="server"
 ImageUrl="string"
 AlternateText="string"
 ImageAlign="NotSet|AbsBottom|AbsMiddle|BaseLine|
 Bottom|Left|Middle|Right|TextTop|Top"/>

The ImageUrl attribute contains the URL at which the image is found. The AlternateText attribute
defines the text to be displayed in the event that the browser either does not support or is configured
to not display images. The ImageAlign attribute determines the alignment of the image in relation to
other elements on the page. All three attributes correspond to identically named properties of the
Image class. The value of the ImageAlign property is a member of the ImageAlign enumeration and
can be one of the following:

ImageAlign.AbsBottom

The image's bottom edge is aligned with the bottom edge of the largest element on the same
line.

ImageAlign.AbsMiddle

The middle of the image is aligned with the middle of the largest element on the same line.

ImageAlign.Baseline

The image's bottom edge is aligned with the bottom edge of the first line of text.

ImageAlign.Bottom

The image's bottom edge is aligned with the bottom edge of the first line of text.

ImageAlign.Left

The image is aligned on the left edge of the web page, with text wrapping on the right.

ImageAlign.Middle

The middle of the image is aligned with the bottom edge of the first line of text.

ImageAlign.NotSet

The image's alignment is not defined.

 258

ImageAlign.Right

The image is aligned on the right edge of the web page, with text wrapping on the left.

ImageAlign.TextTop

The image's top edge is aligned with the top edge of the highest text on the line.

ImageAlign.Top

The image's top edge is aligned with the top edge of the highest element on the same line.

6.3.1.5 The Label control

The Label control typically displays static text. Perhaps the simplest of controls, it has the following
HTML syntax:

<asp:Label id="Label1"
 Text="label"
 runat="server"/>

The text displayed by the label is represented by the Text attribute. It directly corresponds to the
identically named property of the System.Web.UI.WebControls.Label control.

6.3.1.6 The ListBox control

The ListBox control presents the user with a list of items and allows the user to select either a single
item or multiple items. The ListBox control has the following HTML syntax:

<asp:ListBox id="ListboxName"
 DataSource="<% databindingexpression %>"
 DataTextField="DataSourceField"
 DataValueField="DataSourceField"
 AutoPostBack="True|False"
 Rows="rowcount"
 SelectionMode="Single|Multiple"
 OnSelectedIndexChanged="OnSelectedIndexChangedMethod"
 runat="server">

 <asp:ListItem value="value" selected="True|False">
Text
 </asp:ListItem>

</asp:ListBox>

The SelectionMode attribute determines whether the user can select only a single item (the default)
or multiple items. The Rows attribute determines the number of rows displayed in the listbox.

Rather than supplying the data either using HTML or programmatically, you can populate the list box
from a data source. The DataSource attribute defines the data source to which the listbox is bound,
the DataTextField attribute defines the field that will determine which items are displayed in the
listbox, and the DataValueField attribute defines the field whose rows will provide the value of each
list item.

Each of these attributes (SelectionMode, Rows, DataSource, DataTextField,
DataValueField) directly corresponds to a property of the System.Web.UI.WebControls.ListBox

Programming Visual Basic .NET

 259

class. The value of the SelectionMode property must be a member of the ListSelectionMode
enumeration; its two possible values are ListSelectionMode.Single and
ListSelectionMode.Multiple. The Rows property is an Integer that determines how many rows
the listbox displays.

In addition, the ListBox class has a two major properties that don't correspond to attributes of the
ListBox tag. The SelectedIndex property returns the lowest index of a selected item. The
SelectedItem property returns the first selected ListItem object in the listbox. For single-selection
listboxes, these properties return the index of the selected item and the selected item itself,
respectively. For multi-selection listboxes, you have to iterate the ListItemCollection collection to
determine which items are selected.

If the listbox is not bound to a data source, the ListItem tag is used to define each item in the list.
Text determines the item's text that's displayed in the listbox. The value attribute determines the
item's value. The Selected attribute determines whether or not the item is initially selected when the
listbox is displayed.

Finally, the OnSelectedIndexChanged attribute defines an event handler that will be executed
whenever a new item is selected in the listbox. The event handler designated by the
OnSelectedIndexChanged attribute must have the following signature:

Sub OnSelectedIndexChangedMethod(sender As Object, e As EventArgs)

Programmatically, the items in the listbox consist of ListItem objects. These can be accessed through
the ListBox class' Items property, which returns a ListItemCollection object consisting of all the
ListItem objects in the listbox. You can add items to the end of the listbox by calling the
ListItemCollection object's Add method, which has the following syntax:

ListItemCollection.Add(item)

where item is either a String or a ListItem object. To add an item to a particular place in the listbox,
you can call the Insert method, which has the following syntax:

ListItemCollection.Insert(index, item)

where index is the zero-based position in the listbox at which the item is to be added and item is a
String or a ListItem object to be added to the listbox. You can also remove items from the
ListItemCollection by calling its Remove and RemoveAt methods. The syntax of the Remove method
is:

ListItemCollection.Remove(item)

where item is a String or a ListItem object representing the item to be removed. The syntax of the
RemoveAt method is:

ListItemCollection.RemoveAt(index)

where index is the position of the item to be removed from the listbox. The number of items in the
listbox is provided by the ListItemCollection object's Count property.

Three properties of the individual ListItem objects also make it possible to work with the items in the
list. The Text property contains the text of the ListItem object as it's displayed in the listbox. The Value
property contains the value associated with the ListItem object. Finally, the Selected property returns a
Boolean indicating whether the item is selected. In the case of multi-selection listboxes, you can
determine whether an item is selected by iterating the members of the ListItemCollection object and
examining the Selected property of each, as the following code fragment shows:

 260

Dim oList As ListItem
For Each oList In oListBox.Items
 If oList.Selected Then
 ' Do something
 End If
Next

6.3.1.7 The RadioButton control

The RadioButton control corresponds to a single button in a group of buttons used to indicate mutually
exclusive choices. It has the following HTML syntax:

<asp:RadioButton id="RadioButtonName"
 AutoPostBack="True|False"
 Checked="True|False"
 GroupName="GroupName"
 Text="label"
 TextAlign="Right|Left"
 OnCheckedChanged="OnCheckedChangedMethod"
 runat="server"/>

As in the CheckBox control, the Checked attribute determines whether the control is checked. Only
one control in the group designated by GroupName can be set to True. The default value of the
Checked attribute is False. However, since it is possible for the Checked attributes of all radio
buttons in a group to be False, it is important to initially set the Checked attribute of one member of
the group to True. The GroupName attribute provides a common name by which all radio buttons in
the group can be identified. The Text attribute defines the caption that appears either to the left (the
default) or to the right of the radio button, depending on the setting of the TextAlign attribute.

Each of these attributes of the RadioButton control directly corresponds to an identically named
property of the System.Web.UI.WebControls.RadioButton class. The value of the TextAlign property is
either of the two members of the TextAlign enumeration: TextAlign.Left, which positions the text
to the left of the checkbox (the default); and TextAlign.Right, which positions the text to the right
of the checkbox. The Checked property is a Boolean that can be programmatically set and can also
change as a result of user interaction. Note that the user changing the Checked property of another
radio button in the group from False to True automatically changes the value of the Checked
property of any checked radio button from True to False.

Finally, the OnCheckedChanged attribute defines an event handler that will be executed whenever
the Checked property of the radio button is changed. The event handler designated by the
OnCheckedChanged attribute must have the following signature:

Sub OnCheckedChangedMethod(sender As Object, e As EventArgs)

6.3.1.8 The Table control

The Table control corresponds to a table consisting of multiple rows, each having one or more
columns. A table need not be symmetrical—that is, it need not have the same number of columns in
each row. The Table control has the following HTML syntax:

<asp:Table id="TableName"
 BackImageUrl="url"
 CellSpacing="cellspacing"
 CellPadding="cellpadding"
 GridLines="None|Horizontal|Vertical|Both"
 HorizontalAlign="Center|Justify|Left|NotSet|Right"
 runat="server">

Programming Visual Basic .NET

 261

 <asp:TableRow>

 <asp:TableCell>
 Cell text
 </asp:TableCell>

 </asp:TableRow>

</asp:Table>

The TableRow tag defines a new table row, while the TableCell tag defines a new cell within a
particular row. The contents of the individual cell are defined by Cell text. The HorizontalAlign
attribute determines the horizontal alignment of the table on the page. The GridLines attribute
determines the appearance of grid lines in the table. The CellSpacing attribute determines the
number of pixels that separate individual cells of the table, while the CellPadding attribute
determines the number of pixels between the cell's border and its contents. The BackImageURL
attribute contains the URL of an image to be used as the background for the table.

Each of these attributes corresponds to an identically named property of the Table class. The
CellPadding and CellSpacing properties are of type Integer. The value of the HorizontalAlign property
is one of the following members of the HorizontalAlign enumeration: Center, Justify, Left,
NotSet, and Right. The value of the GridLines property is one of the following members of the
GridLines enumeration: Both, Horizontal, None, and Vertical.

You programmatically manipulate a table by manipulating its rows and its individual cells. The table
rows are accessible through the Table object's Rows property, which returns a TableRowCollection
object containing TableRow objects that represent the rows of the table. The TableRowCollection
collection allows you to add rows to the end of the table by calling its Add method, which has the
following syntax:

TableRowCollection.Add(
row)

where row is a TableRow object that represents a row of the table. To add a row to a particular place
in the table, you can call the Insert method, which has the following syntax:

TableRowCollection.Insert(index, row)

where index is the zero-based position in the table at which the row is to be added and row is a
RowTable object representing the row to be added to the table. You can also remove rows from the
table by calling the TableRowCollection object's Remove and RemoveAt methods. The syntax of the
Remove method is:

TableRowCollection.Remove(row)

where row is a TableRow object representing the row to be deleted. The syntax of the RemoveAt
method is:

TableRowCollection.RemoveAt(index)

where index is the position of the row to be removed from the table. The number of items in the table
is provided by the TableRowCollection object's Count property. Individual TableRow objects
representing individual rows of the table can be retrieved using the Item property, whose syntax is:

TableRowCollection.Item(index)

 262

where index is the zero-based ordinal position of the row whose TableRow object you wish to
retrieve.

Once you've retrieved a reference to an individual table row, you can use its Cells property to retrieve
a reference to a TableCellCollection object, which contains a collection of TableCell objects
representing the individual cells of the row. Like the TableRowCollection class, the TableCellCollection
class has members to add and remove individual cells as well as to determine how many cells are in
the collection. Its syntax for adding and removing cells is identical to that of the TableRowCollection
class, except that TableCell objects are used instead of TableRow objects. Finally, to retrieve an
individual cell, you use the TableCellCollection object's Item method, which has the following syntax:

TableCellCollection.Item(index)

where index is the zero-based ordinal position of the cell in the row. The property returns a TableCell
object representing the cell.

Finally, the TableCell class has a number of properties that control the content and appearance of the
cell. The Text property determines the cell's content. The Boolean Wrap property determines whether
the contents of the cell wrap in the cell; its default value is True. The RowSpan and ColumnSpan
properties are Integer values that indicate how many table rows and how many table columns the cell
spans. The HorizontalAlign property, whose value is a member of the HorizontalAlign enumeration
discussed earlier in this section, determines the horizontal alignment of the cell's contents. The
VerticalAlign property determines the vertical alignment of the cell's contents. Its value must be a
member of the VerticalAlign enumeration, which has the following members: Bottom, Middle,
NotSet, and Top.

6.3.1.9 The TextBox control

The TextBox control corresponds to a single- or multi-line text box for displaying information and
getting textual input from the user. It has the following HTML syntax:

<asp:TextBox id="TextBoxName"
 AutoPostBack="True|False"
 Columns="characters"
 MaxLength="characters"
 Rows="rows"
 Text="text"
 TextMode="Single|Multiline|Password"
 Wrap="True|False"
 OnTextChanged="OnTextChangedMethod"
 runat="server"/>

The Text attribute defines the actual text to be stored in the text box when the control is rendered.
The Columns attribute determines the number of characters that the text box displays, while the
MaxLength attribute determines the total number of characters that can be input into the text box.
The TextMode attribute determines whether the TextBox control has one line (the default), multiple
lines, or a single line into which the user is to enter a password. For a multi-line text box, the Rows
attribute determines how many rows the text box displays, and the Wrap attribute determines whether
text wraps onto the next line. By default, Wrap is False; input will appear on a single line until the
user enters a carriage return.

Each of these attributes directly corresponds to an identically named property of the
System.Web.UI.WebControls.TextBox class. The MaxLength, Columns, and Rows properties are all of
type Integer and all have a default value of 0. In the case of the MaxLength property, this means that
there is no limit to the number of characters that can be input to the text box. For the Columns and
Rows properties, it means that as many columns or (in the case of multi-line text boxes) rows as
possible will be displayed based on the size of the text box. The value of the TextMode property must

Programming Visual Basic .NET

 263

be a member of the TextBoxMode enumeration; possible values are TextBoxMode.SingleLine
(the default), TextBoxMode.MultiLine, and TextBoxMode.Password. The Text property, of
course, is the most important property of the control. Its value includes any carriage return and
linefeed characters (the vbCrLf character) entered by the user if the TextMode property is set to
TextBoxMode.MultiLine. In addition, if the TextMode property is set to TextBoxMode.Password,
asterisks are displayed whenever the user enters a character; however, the actual string input by the
user is stored as is in the Text property.

Finally, the OnTextChanged attribute defines an event handler that will be executed whenever the
Text property of the text box is changed. The event handler designated by the OnTextChanged
attribute must have the following signature:

Sub OnTextChangedMethod(sender As Object, e As EventArgs)

6.3.1.10 Other web controls

The remaining controls defined in the System.Web.UI.WebControls namespace are:

AdRotator

Displays an advertisement. The AdRotator control can be set to display a different ad each
time the page is viewed.

Calendar

Displays a one-month calendar on the web page and allows the user to select a date.

CheckBoxList

Displays a group of checkboxes on the web page.

CompareValidator

Validates the value entered into a control by comparing it to the value in another control or to a
constant value. See Section 6.4 later in this chapter for more information.

CustomValidator

Validates the value entered into a control by running custom validation code. See Section
6.4 later in this chapter for more information.

DataGrid

Displays the values from a data source in a table format on the web page. See Chapter 8 for
more information.

DataGridItem

Represents a row in the DataGrid control.

DataList

Displays the values from a data source in a list-control format on the web page.

DataListItem

 264

Represents an item in the DataList control.

HyperLink

Displays a link to another web page. The link can be text or an image.

ImageButton

Displays an image on the web page. This control differs from the Image control in that it
generates a server-side event when the image is clicked.

LinkButton

Displays a link to another web page. The LinkButton control has the same appearance as the
HyperLink control, but it has the same behavior as the Button control.

Literal

Displays static text on the web page.

Panel

Contains other controls on the web page.

RadioButtonList

Displays a list of radio buttons on the web page.

RangeValidator

Validates the value entered into a control by comparing it to a given range of values. See
Section 6.4 later in this chapter for more information.

RegularExpressionValidator

Validates the value entered into a control by matching it against a given regular expression.
See Section 6.4 for more information.

RequiredFieldValidator

Validates a value entered into a control by ensuring that the value is different from the
control's original value. See Section 6.4 for more information.

TableHeaderCell

Represents a header cell in a Table control.

ValidationSummary

Displays a summary of validation errors on the web page. See Section 6.4 for more
information.

Programming Visual Basic .NET

 265

6.3.2 HTML Controls

The controls defined in the System.Web.UI.HtmlControls namespace are:

HtmlAnchor

Wraps the HTML <a> tag.

HtmlButton

Wraps the HTML <button> tag.

HtmlForm

Wraps the HTML <form> tag.

HtmlGenericControl

Represents any HTML tag (such as <body>) that isn't wrapped by a specific HTML server
control.

HtmlImage

Wraps the HTML tag.

HtmlInputButton

Wraps the HTML <input type="button">, <input type="submit">, and <input
type="reset"> tags.

HtmlInputCheckBox

Wraps the HTML <input type="checkbox"> tag.

HtmlInputFile

Wraps the HTML <input type="file"> tag.

HtmlInputHidden

Wraps the HTML <input type="hidden"> tag.

HtmlInputImage

Wraps the HTML <input type="image"> tag.

HtmlInputRadioButton

Wraps the HTML <input type="radio"> tag.

HtmlInputText

Wraps the HTML <input type="text"> and <input type="password"> tags.

 266

HtmlSelect

Wraps the HTML <select> tag.

HtmlTable

Wraps the HTML <table> tag.

HtmlTableCell

Wraps the HTML <td> and <th> tags.

HtmlTableRow

Wraps the HTML <tr> tag.

HtmlTextArea

Wraps the HTML <textarea> tag.

6.3.3 Handling Control Events

Controls on a web form are represented in the code-behind class as fields—one field for each control.
For example, when the Visual Studio .NET Web Forms Designer is used to add a text box to a form,
the following declaration is added to the code-behind class:

Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox

This declaration doesn't instantiate the control; it only defines a field that can hold a reference to a
control of type TextBox. In addition, the designer adds this tag to the web page:

<asp:TextBox id="TextBox1"
 style="Z-INDEX: 105; LEFT: 8px; POSITION: absolute;
 TOP: 8px" runat="server">
</asp:TextBox>

The <asp:TextBox> tag signifies that ASP.NET should instantiate a TextBox control when a browser
requests this page. The id="TextBox1" attribute names the control TextBox1. This name is what
associates the control with the TextBox1 field in the code-behind class.

If code behind is not being used, it is not necessary to declare a member variable to hold a reference
to the control. The ASP.NET framework will implicitly do this when the web page is compiled.

As discussed in Chapter 2, when a field declaration includes the WithEvents keyword, the
containing class can handle events raised by the referenced object. To do so, the containing class
defines a handler method with a signature matching the event signature. The handler method includes
a Handles clause to link the method to the desired event on the object. For example, here is the
definition of a handler method for the TextChanged event of TextBox1:

Private Sub TextBox1_TextChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs _
) Handles TextBox1.TextChanged
 ' ...
End Sub

Programming Visual Basic .NET

 267

The event-handler method can be given any name, but it is a common convention to use a name of
the form FieldName_EventName.

Also by convention, event signatures for controls conform to the signature shown, with the exception
of the e parameter being some other type derived from the EventArgs type. The sender parameter
passed to the handler method holds a reference to the object that fired the event, and the e parameter
holds a reference to an object that provides any extra information needed for the event. Events that
pass a generic EventArgs argument have no event information to pass. Events that pass an argument
of a type derived from EventArgs pass additional information within the fields of the passed object.

You can determine the correct signature for handling a specific event by referring to the control's
documentation or by using Visual Studio .NET's built-in object browser. In addition, the Visual
Studio .NET Web Forms Designer can automatically generate a handler-method declaration for any
event exposed by any control on a given form.

6.3.4 Programmatically Instantiating Controls

It's easy to dynamically instantiate server controls at runtime. A convenient place to do this is in an
override of the OnPreRender method of the Page class. Recall that the OnPreRender method is called
after the page and its controls have been instantiated and initialized but prior to any rendering.
Controls created here and added to the Page object's Controls collection will be rendered on the page.
The code is simple:

Private WithEvents ctl As TextBox

Protected Overrides Sub OnPreRender(ByVal e As EventArgs)

 ' Instantiate a TextBox control and set some of its properties.
 ctl = New TextBox()
 ctl.ID = "TextBox1"
 ctl.Text = "This is my text box."

 ' Add the control to the page.
 Me.Controls.Add(ctl)

 ' Let the base class raise the PreRender event.
 MyBase.OnPreRender(e)

End Sub

This code can be placed either in a code-behind class or directly within a <script> block in the .aspx
page.

The Controls property of the Page class is of type ControlCollection. The Add method of the
ControlCollection class adds the given control to the end of the collection. Visually, the newly added
control appears as the last element in the rendered page. To add the control at a specific location in
the collection, use the ControlCollection class's AddAt method. The AddAt method syntax looks like
this:

Public Overridable Sub AddAt(_
 ByVal index As Integer, _
 ByVal child As System.Web.UI.Control)

The parameters of the AddAt method are:

index

 268

Specifies the position in the collection at which to insert the new control. This number is zero-
based.

child

Specifies the control to add to the collection.

The AddAt method is even more convenient when used with the ControlCollection class's IndexOf
method. The IndexOf method returns the integer index within the collection of a given control. For
example, assuming that a web page has a control named Label2 and that the variable ctl contains a
reference to a newly created control, the following line adds the new control to the page, rendering it
immediately prior to the Label2 control:

Me.Controls.AddAt(Me.Controls.IndexOf(Label2), ctl)

6.4 Adding Validation

Validating user input is a common requirement of any application that relies on the user to provide
data. The ASP.NET framework provides tools to make input validation easy. ASP.NET supports
validation by providing server controls that handle the validation process. Each server control placed
on a form is responsible for validating the value in some other control on the form. The validation
process occurs both on the client (if the browser is capable) and on the server, or just on the server (if
the browser can't handle it). Validation occurs on the server, even if it occurs on the client, to prohibit a
hostile client from submitting invalid data.

The server controls that relate to validation are:

CompareValidator

Compares the value in a control with either a constant value or the value in another control.
The developer chooses the comparison to be performed (equal, less than, greater than, etc.).
The validation succeeds if the comparison is True.

CustomValidator

Allows the application to perform validation logic that isn't provided by the standard
comparison controls.

RangeValidator

Compares the value in a control to a given range. The validation succeeds if the value is
within the range.

RegularExpressionValidator

Compares the value in a control to a given regular expression. The validation succeeds if the
value is matched by the regular expression.

RequiredFieldValidator

Checks that a value has been entered into a control. The validation succeeds if the value is
nonempty.

ValidationSummary

Provides an on-screen summary of the validation errors that have occurred on the page.

Programming Visual Basic .NET

 269

These controls are defined in the System.Web.UI.WebControls namespace.

The first step in using validation controls is to build a web page in the usual way. Example 6-6 shows
the code for a simple data-input web page. Validation controls have not yet been added to this page—
that will be done next. Figure 6-8 shows the resulting display.

Figure 6-8. The output from Example 6-6

Example 6-6. A simple data-input web form
<%@ Page Explicit="True" Strict="True" %>

<html>

 <head>
 <title>Validation Test</title>
 </head>

 <body>
 <form action="ValidationTest.aspx" method="post" runat="server">
 <table>
 <tr>
 <td align="right">Full Name:</td>
 <td><asp:TextBox id="txtFullName" runat="server" />*</td>
 </tr>
 <tr>
 <td align="right">Job Title:</td>
 <td><asp:TextBox id="txtJobTitle" runat="server" /></td

 270

 </tr>
 <tr>
 <td align="right">Company:</td>
 <td><asp:TextBox id="txtCompany" runat="server" /></td>
 </tr>
 <tr>
 <td align="right">Address Line 1:</td>
 <td><asp:TextBox id="txtAddressLine1" runat="server"
/>*</td>
 </tr>
 <tr>
 <td align="right">Address Line 2:</td>
 <td><asp:TextBox id="txtAddressLine2" runat="server" /></td>
 </tr>
 <tr>
 <td align="right">City:</td>
 <td><asp:TextBox id="txtCity" runat="server" />*</td>
 </tr>
 <tr>
 <td align="right">State/Province:</td>
 <td><asp:TextBox id="txtStateProvince" runat="server"
/>*</td>
 </tr>
 <tr>
 <td align="right">ZIP/Postal Code:</td>
 <td><asp:TextBox id="txtPostalCode" runat="server" />*</td>
 </tr>
 <tr>
 <td align="right">Country:</td>
 <td><asp:TextBox id="txtCountry" runat="server" /></td>
 </tr>
 <tr>
 <td align="right">Business Phone:</td>
 <td><asp:TextBox id="txtBusinessPhone" runat="server"
/></td>
 </tr>
 <tr>
 <td align="right">Home Phone:</td>
 <td><asp:TextBox id="txtHomePhone" runat="server" /></td>
 </tr>
 <tr>
 <td align="right">Business Fax:</td>
 <td><asp:TextBox id="txtBusinessFax" runat="server" /></td>
 </tr>
 <tr>
 <td align="right">Email Address:</td>
 <td><asp:TextBox id="txtEmailAddress" runat="server" /></td>
 </tr>
 <tr>
 <td align="right">Birthday:</td>
 <td><asp:TextBox id="txtBirthday" runat="server" /></td>
 </tr>
 <tr>
 <td colspan="2">
 * <i>Items marked with an asterisk are required.</i>
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <asp:Button id="btnSubmit" text="Submit" runat="server"
/>

Programming Visual Basic .NET

 271

 </td>
 </tr>
 </table>
 </form>
 </body>

</html>

Validation controls can be added either manually in code or graphically by using the Web Forms
Designer in Visual Studio .NET. This section shows how to add the controls in code. All the
information in this section is also applicable when using Visual Studio .NET.

The following validations will be added for the code in Example 6-6:

• Full Name, Address Line 1, City, State/Province, and ZIP/Postal Code will be required fields.
• If Email Address is filled in, it will be checked for correct format.
• If Birthday is entered, it will be checked to ensure that the date entered is no later than the

current system date on the web server.

The modified code is shown in Example 6-7. Code that differs from Example 6-6 is shown in bold.

Example 6-7. A simple data-input web form with validation controls
<%@ Page Explicit="True" Strict="True" %>

<script language="vb" runat="server">

 Private Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 cmpBirthday.ValueToCompare = DateTime.Today.ToString("yyyy-MM-dd")
 End Sub

</script>

<html>

 <head>
 <title>Validation Test 2</title>
 </head>

 <body>
 <form action="ValidationTest2.aspx" method="post" runat="server">
 <table>
 <tr>
 <td align="right">Full Name:</td>
 <td><asp:TextBox id="txtFullName" runat="server" />*</td>
 <td>
 <asp:RequiredFieldValidator id="recFldFullName"
 ControlToValidate="txtFullName"
 ErrorMessage="Full Name is required."
 runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right">Job Title:</td>
 <td><asp:TextBox id="txtJobTitle" runat="server" /></td
 </tr>
 <tr>
 <td align="right">Company:</td>
 <td><asp:TextBox id="txtCompany" runat="server" /></td>
 </tr>

 272

 <tr>
 <td align="right">Address Line 1:</td>
 <td><asp:TextBox id="txtAddressLine1" runat="server"
/>*</td>
 <td>
 <asp:RequiredFieldValidator id="recFldAddressLine1"
 ControlToValidate="txtAddressLine1"
 ErrorMessage="Address Line 1 is required."
 runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right">Address Line 2:</td>
 <td><asp:TextBox id="txtAddressLine2" runat="server" /></td>
 </tr>
 <tr>
 <td align="right">City:</td>
 <td><asp:TextBox id="txtCity" runat="server" />*</td>
 <td>
 <asp:RequiredFieldValidator id="recFldCity"
 ControlToValidate="txtCity"
 ErrorMessage="City is required."
 runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right">State/Province:</td>
 <td><asp:TextBox id="txtStateProvince" runat="server"
/>*</td>
 <td>
 <asp:RequiredFieldValidator id="recFldStateProvince"
 ControlToValidate="txtStateProvince"
 ErrorMessage="State/Province is required."
 runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right">ZIP/Postal Code:</td>
 <td><asp:TextBox id="txtPostalCode" runat="server" />*</td>
 <td>
 <asp:RequiredFieldValidator id="recFldPostalCode"
 ControlToValidate="txtPostalCode"
 ErrorMessage="ZIP/Postal Code is required."
 runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right">Country:</td>
 <td><asp:TextBox id="txtCountry" runat="server" /></td>
 </tr>
 <tr>
 <td align="right">Business Phone:</td>
 <td><asp:TextBox id="txtBusinessPhone" runat="server"
/></td>
 </tr>
 <tr>
 <td align="right">Home Phone:</td>
 <td><asp:TextBox id="txtHomePhone" runat="server" /></td>
 </tr>
 <tr>
 <td align="right">Business Fax:</td>

Programming Visual Basic .NET

 273

 <td><asp:TextBox id="txtBusinessFax" runat="server" /></td>
 </tr>
 <tr>
 <td align="right">Email Address:</td>
 <td><asp:TextBox id="txtEmailAddress" runat="server" /></td>
 <td>
 <asp:RegularExpressionValidator id="regExEmailAddress"
 ControlToValidate="txtEmailAddress"
 ErrorMessage="Email format must be name@company.com."
 ValidationExpression=
 "^[\w-]+@[\w-]+\.(com|net|org|edu|mil)$"
 runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right">Birthday:</td>
 <td><asp:TextBox id="txtBirthday" runat="server" /></td>
 <td>
 <asp:CompareValidator id="cmpBirthday"
 ControlToValidate="txtBirthday"
 Type="Date"
 Operator="LessThanEqual"
 ErrorMessage="Birthday must not be later than today."
 runat="server" />
 </td>
 </tr>
 <tr>
 <td colspan="2">
 * <i>Items marked with an asterisk are required.</i>
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <asp:Button id="btnSubmit" text="Submit" runat="server"
/>
 </td>
 </tr>
 </table>
 </form>
 </body>

</html>

When the web page from Example 6-7 is displayed in a browser, it appears identical to Figure 6-8.
What's different in this version is that if any of the required fields are empty, if the Email Address field
is not in the correct format, or if the Birthday field contains a date in the future, appropriate messages
are shown when the user clicks the Submit button. Figure 6-9 shows the resulting display. Note that
on a computer screen, the error messages are shown in red by default.

Figure 6-9. The output from Example 6-7 when fields are missing or
invalid

 274

Note the following in Example 6-7:

• To make the given fields required, RequiredFieldValidator controls were added, one per field.
• To prohibit invalid entries in the Email Address field, a RegularExpressionValidator control

was added.[1]

[1] The regular expression used here is a simple one taken from the Microsoft documentation. It matches only the simplest
email addresses of the form user@company.com and should not be used in production systems. It turns out that matching
Internet email addresses in the general case is not a trivial endeavor. See the book Mastering Regular Expressions by Jeffrey
E. F. Friedl (O'Reilly) for a description of the problem and its solution.

• To prohibit future dates from the Birthday field, a CompareValidator control was added. Note
that the value to which to compare (the current date) can't be specified within the
<asp:CompareValidator> tag, so this was coded into the Page_Load method near the top
of the example.

The RequiredFieldValidator control is the only validation control
that checks for a missing entry. The other validation controls
perform their validations only if data has been entered into the
corresponding fields. If no data has been entered, the validation
succeeds. If it is necessary to enforce the entry of a field, a
RequiredFieldValidator control must be used in addition to any
other validation controls associated with the field.

Programming Visual Basic .NET

 275

6.4.1 More About Validation-Control Tag Attributes

In addition to the attributes supported by all web controls, the validation controls recognize the
following attributes within their respective tags:

ControlToValidate

Represents the name of the control to validate, as given by the control's ID property.

Display

Specifies whether visual space for the error message should be reserved on the web page,
even if the message isn't currently being displayed. The possible values are:

"Dynamic"

Space for the error message is added to the page if validation fails.

"Static"

Space for the error message is added to the page, regardless of whether the message is
actually displayed. This is the default.

"None"

The error message is never displayed, even if validation fails. This setting is used when the
error message is displayed only in a validation summary control.

EnableClientSideScript

Specifies whether to enable client-side validation (if supported by the browser). The default is
"True".

ErrorMessage

Provides the message displayed to the user if validation fails. The default is an empty string.

ForeColor

Defines the color in which the error message is displayed. The default is "Red". Valid values
for this attribute are given by the Color structure (defined in the System.Drawing namespace).
See Chapter 4 for information about the Color structure.

The CompareValidator control recognizes these additional attributes:

ControlToCompare

The name of the control that contains the value to compare. If this attribute is specified, the
ValueToCompare attribute should not be specified.

Operator

The comparison to be performed. The possible values are:

"DataTypeCheck"

 276

Validation succeeds if the value in the control to validate can convert to the type specified by
the Type attribute.

"Equal"

Validation succeeds if the value in the control to validate is equal to the comparison value.

"GreaterThan"

Validation succeeds if the value in the control to validate is greater than the comparison value.

"GreaterThanEqual"

Validation succeeds if the value in the control to validate is greater than or equal to the
comparison value.

"LessThan"

Validation succeeds if the value in the control to validate is less than the comparison value.

"LessThanEqual"

Validation succeeds if the value in the control to validate is less than or equal to the
comparison value.

"NotEqual"

Validation succeeds if the value in the control to validate is not equal to the comparison value.

Type

The data type of the values being compared. The values are converted to this type before the
comparison is made. The possible values are "Currency", "Date", "Double",
"Integer", and "String".

ValueToCompare

The value to use for comparison. If this attribute is specified, the ControlToCompare
attribute should not be specified.

The CustomValidator control recognizes this additional attribute:

ClientValidationFunction

The name of the client-side script function to call to perform client-side validation.

Server-side custom validation is performed by responding to the CustomValidator control's
ServerValidate event. See Section 6.4.4 later in this chapter for details.

The RangeValidator control recognizes these additional attributes:

MaximumValue

The maximum value of the range. The default is an empty string.

Programming Visual Basic .NET

 277

MinimumValue

The minimum value of the range. The default is an empty string.

Type

The data type of the value being validated. The value being validated, as well as the maximum
and minimum values, are all converted to this type before the comparisons are made. The
possible values are "Currency", "Date", "Double", "Integer", and "String". The
default is "String".

The RegularExpressionValidator control recognizes this additional attribute:

ValidationExpression

The regular expression against which to validate.

The RequiredFieldValidator control recognizes this additional attribute:

InitialValue

The value considered a "blank" value. The default is an empty string. Validation fails if and
only if the value in the control to be validated matches the value given in the InitialValue
attribute.

6.4.2 Using Validation-Control Properties

The names of the attributes listed in the previous section are also the names of the corresponding
properties of the control classes. These properties can be read or set in code, if desired. For example,
after a value is specified for the ErrorMessage attribute, that value can be read in code by reading
the ErrorMessage property of the control. Similarly, attributes need not be used at all. Instead, values
can be directly written to the corresponding properties in code.

In addition to the properties that match the attributes in the previous section, the validator controls all
have the following properties:

Enabled

This Boolean property specifies whether the validation control is enabled. When this property
is set to False, the control does not attempt to perform validation. The default is True.

IsValid

This Boolean property indicates whether the value in the associated control passes validation.

PropertiesValid

This read-only Boolean property indicates whether the value specified by the
ControlToValidate property is a valid control on the page.

RenderUplevel

This read-only Boolean property indicates whether the browser supports up-level rendering.

 278

6.4.3 Providing a Summary View of Validation Failures

In addition to placing each error message next to the field that is in error, there is another option.
Using the ValidationSummary control, you can display a summary of a web page's validation errors
either on the page, in a message box (if the browser is enabled for client-side JavaScript), or both. For
example, you could add the following fragment to the code in Example 6-7 (new code is shown in
bold; the surrounding lines are shown for context):

<body>
 <form action="ValidationTest2.aspx" method="post" runat="server">
 <asp:ValidationSummary
 HeaderText="Some information is missing or mis-typed. Please
 make corrections for the following items, then click the
 Submit button again. Thank you!"
 runat="server" />
 <table>
 <tr>

The ValidationSummary control automatically detects validation controls that are on the same page. If
validation fails, the ValidationSummary control displays the ErrorMessage properties from all validation
controls that reported failure. This displays in addition to the display of each individual validation
control. In practice, it is unlikely that both displays are desired, so the Display attribute of each
validation control can be set to "None" to suppress individual display, like this:

<asp:RequiredFieldValidator id="recFldFullName"
 ControlToValidate="txtFullName"
 ErrorMessage="Full Name is required."
 Display="None"
 runat="server" />

Figure 6-10 shows how these changes affect the web page when validation fails.

Figure 6-10. Using the ValidationSummary control

Programming Visual Basic .NET

 279

The attributes recognized by the ValidationSummary control are:

DisplayMode

Specifies the format in which the error messages are displayed. The possible values are:

"BulletList"

Displays the error messages in a bulleted list. This is the default.

"List"

Displays the error messages in a list without bullets.

"SingleParagraph"

 280

Displays the error messages in paragraph form.

EnableClientScript

Specifies whether to enable a client-side script (if supported by the browser). The default is
"True".

ForeColor

Defines the color in which the summary is displayed. The default is "Red". Valid values for
this attribute are given by the Color structure (defined in the System.Drawing namespace).
See Chapter 4 for information about the Color structure.

HeaderText

Displays a message above the summarized items. The default is an empty string.

ShowMessageBox

Indicates whether to show the summary in a message box using a client-side script. If this
attribute is set to "True" and the browser supports JavaScript, the summary is shown in a
message box (see Figure 6-11). If set to "False", no message box is shown. The default is
"False".

Figure 6-11. Showing the validation summary in a message box

ShowSummary

Indicates whether to show the summary on the web page. If this attribute is set to "True", the
summary is shown on the web page. If set to "False", the summary is not shown on the web
page. The default is "True".

Note that the ShowMessageBox and ShowSummary attributes are independent of each other. If both
are set to "True", the summary is shown in both ways.

These attributes all correspond to like-named properties of the ValidationSummary class and can be
read and modified in code.

6.4.4 Performing Custom Validation

For situations in which the standard validation controls aren't sufficient, ASP.NET provides the
CustomValidator control. This control allows the developer to specify custom functions—on both the
client and the server—that validate the contents of the associated control. The client-side validation
function must be a JavaScript or VBScript code block that is part of the web page. The server-side
validation function is a method defined in the web page class.

Example 6-8 shows code using a CustomValidator control. The code generates a page with a single
text box in which the user is expected to type a mathematical expression. The validation that occurs

Programming Visual Basic .NET

 281

on the value simply ensures that there are an equal number of left and right parentheses. Figure 6-
12 shows the display before validation occurs. Figure 6-13 shows the display when validation fails.

Figure 6-12. The display from Example 6-8 before validation occurs

Figure 6-13. The display from Example 6-8 when validation fails

Example 6-8. Using the CustomValidator control
<%@ Page Explicit="True" Strict="True" %>

<script language="VB" runat="server">

 Private Sub cstExpression_ServerValidate(_
 ByVal sender As Object, _
 ByVal e As ServerValidateEventArgs _
)
 e.IsValid = _
 (CountSubString(e.Value, "(") = CountSubString(e.Value, ")"))
 End Sub

 Private Function CountSubString(_
 ByVal strSearchThis As String, _
 ByVal strSearchFor As String _
) As Integer
 Dim count As Integer = 0
 Dim pos As Integer = strSearchThis.IndexOf(strSearchFor)
 Do While pos <> -1
 count += 1
 pos = strSearchThis.IndexOf(strSearchFor, _
 pos + strSearchFor.Length)
 Loop
 Return count

 282

 End Function

</script>

<script language="JavaScript">

 function countSubString(searchThis, searchFor) {
 var count = 0;
 var pos = searchThis.indexOf(searchFor);
 while pos != -1 {
 count++;
 pos = searchThis.indexOf(searchFor, pos + searchFor.length);
 }
 return count;
 }

 function cstExpression_ClientValidate(sender, e) {
 e.IsValid =
 (countSubString(e.Value, "(") == countSubString(e.Value, ")"))
 }

</script>

<html>

 <head>
 <title>CustomValidator Test</title>
 </head>

 <body>
 <form action="CustomValidatorTest.aspx" method="post" runat="server">
 <table>
 <tr>
 <td align="right">Enter an expression:</td>
 <td><asp:TextBox id="txtExpression" runat="server" /></td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:CustomValidator id="cstExpression"
 ControlToValidate="txtExpression"
 OnServerValidate="cstExpression_ServerValidate"
 ClientValidateFunction="cstExpression_ClientValidate"
 ErrorMessage="The number of left parentheses in
 the expression must be the same as the number
 of right parentheses."
 runat="server" />
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <asp:Button id="btnSubmit" text="Submit"
 runat="server" />
 </td>
 </tr>
 </table>
 </form>
 </body>

</html>

Programming Visual Basic .NET

 283

The code in Example 6-8 is straightforward. First, a server-side method called
cstExpression_ServerValidate is added to the page to handle server-side validation. This method is
actually an event handler with a signature that's appropriate for the CustomValidator control's
ServerValidate event. Setting the OnServerValidate attribute of the <asp:CustomValidator>
tag wires the handler method to the event. Second, a client-side function,
cstExpression_ClientValidate, is added to the page to handle client-side validation. This function is
called by the client-side validation code when it is time for the txtExpression field to be validated.
Setting the ClientValidateFunction attribute of the <asp:CustomValidator> tag wires up this
function.

6.5 Using Directives to Modify Web Page Compilation

You can modify web page compilation by including directives. Directives are keywords that are
recognized and acted on by the ASP.NET page compiler. They affect a page's compilation, rather than
its presentation. Directives are delimited by the characters <%@ and %> and can appear at any location
in the source file (although Microsoft says that "standard practice" is to place them at the top of the
file). For example, the following <%@ Page %> directive was shown in Example 6-1, earlier in this
chapter:

<%@ Page Language="vb" AutoEventWireup="false"
 CodeBehind="WebForm1.aspx.vb" Inherits="IdeExamples.WebForm1"%>

Directives are similar in form to HTML tags. There is the directive itself, followed by one or more
attributes that specify various settings associated with the directive. A directive without attributes has
no effect. Directives are different from HTML tags in that the delimiters are different and in that
directives have no closing tags.

ASP.NET defines the following directives and associated attributes:

@ Assembly

Provides a way to reference assemblies defined elsewhere. This directive's attributes are:

Name

Specifies the name of an assembly in the global assembly cache. For example:

<%@ Assembly Name="System.Windows.Forms" %>
SRC

Specifies the path of a Visual Basic .NET source file to be compiled and referenced. The path
is relative to the web application's virtual folder. For example:

<%@ Assembly SRC="SomeClass.vb" %>

Either the Name or the SRC attribute can be specified, but not both. If multiple assemblies are
to be referenced, the @ Assembly directive should appear multiple times, like this:

<%@ Assembly Name="System.Windows.Forms" %>
<%@ Assembly Name="System.Drawing" %>

Note the following when using the @ Assembly directive:

• Assemblies located in the application's /bin folder are automatically referenced—there
is no need to use the @ Assembly directive.

 284

• The @ Assembly directive can't reference compiled assemblies that aren't in the
global assembly cache.

• Source files referenced with the SRC attribute must be located somewhere underneath
the web application's virtual folder.

@ Control

Modifies compilation of a user control. (User controls are discussed in Section 6.11.1 later in
this chapter.) This directive's attributes are:

AutoEventWireup

Indicates whether the control's events are autowired to appropriate handlers found within the
Control class. Allowed values are "true" and "false". The default is "true". This is
identical to the same concept found in Page classes. See Section 6.2.1 in Section 6.2
earlier in this chapter.

ClassName

Specifies a class name for the compiled control. This can be any name that is valid for a
Visual Basic .NET class. By default, the name is constructed from the filename of the user
control. If the filename is "filename.ascx", then the ClassName value is
"filename_ascx".

CodeBehind

Is used by Visual Studio .NET projects instead of the Src attribute to specify a code-behind
file.

CompilerOptions

Specifies arbitrary arguments to be passed to the Visual Basic .NET compiler. The format of
these arguments is the same as for the Visual Basic .NET command-line compiler. The default
is the empty string. (Command-line compiler options are not documented in this book.)

Debug

Specifies whether to compile the control in debug mode. Allowed values are "true" and
"false". The default is "false". Compiling in debug mode enables features such as rich
error messages (suitable for developers) and setting breakpoints.

Description

Is a place for the developer to describe the control. Neither ASP.NET nor Visual Studio .NET
uses it in any way.

EnableViewState

Specifies whether view state will be maintained across page requests. Allowed values are
"true" and "false". The default is "true". See Section 6.8 later in this chapter for more
information.

Explicit

Programming Visual Basic .NET

 285

Specifies whether the control will be compiled with Option Explicit turned on. Allowed
values are "true" and "false". The default is "true". See Chapter 2 for a discussion of
this compiler option.

Inherits

Specifies a class from which the compiled control class will inherit. The value can be the name
of any accessible class that inherits from the UserControl class (defined in the System.Web.UI
namespace). If this attribute is not specified, the compiled control class inherits directly from
the UserControl class.

Language

Specifies the programming language in which embedded code is written. This can be different
from the language in which the control's code-behind class is written.

Src

Specifies a file containing the source for the control's code-behind class, if any. By default,
user controls don't have a code-behind class.

Strict

Specifies whether the control will be compiled with Option Strict turned on. Allowed values
are "true" and "false". The default is "false". See Chapter 2 for a discussion of this
compiler option.

WarningLevel

Specifies the warning level at which the compiler aborts compilation of the control. Allowed
values are "0", "1","2", "3", and"4".

@ Implements

Specifies the name of an interface that is implemented by the web page. This directive serves
the same function as the Implements statement in Visual Basic .NET. The @ Implements
directive has one attribute:

Interface

Designates the implemented interface. Only one interface can appear in each @ Implements
directive. To specify more than one interface, provide multiple @ Implements directives.

Recall that .aspx files are compiled into classes. This is why a web page can implement an
interface. The actual implementation must be provided just as it would be in a Visual
Basic .NET class definition. In this case, however, the implementation appears as Visual
Basic .NET code within a <script> block in the .aspx file.

@ Import

Imports a namespace into the page, allowing classes to be referred to by their short names
rather than by their fully qualified names. This directive serves the same function as the
Imports keyword in Visual Basic .NET. The @ Import directive has one attribute:

Namespace

 286

Designates the namespace to import. Only one namespace can appear in each @ Import
directive. To import more than one namespace, provide multiple @ Import directives.

Only namespaces that exist within referenced assemblies can be included in the @ Import
directive. In Visual Studio .NET projects, referenced assemblies appear beneath the
References item in the Solution Explorer window. You can add assembly references to the
project by right-clicking on the References item, selecting Add Reference, and then choosing
or browsing to the desired assembly in the Add Reference dialog box. In projects that are
created without the aid of Visual Studio .NET, assemblies are referenced in one of three ways.
Assemblies that are in the global assembly cache (GAC) can be referenced by using the @
Assembly directive. Assemblies that are not in the GAC can be referenced by placing them in
a bin directory within the application's root directory. Finally, at the command line, the DLL in
which an assembly resides can be referenced using the /reference (or /r) switch.

See also the @ Reference directive later in this list.

@ OutputCache

Specifies output cache settings. Aside from the attributes listed here, caching is not discussed
in this book.

Duration

The number of seconds to cache the page or user control. There is no default—this attribute
must be specified if the @ OutputCache directive is used.

Location

The location of the output cache. Allowed values are "Any" (allows the framework to choose
where to place the cache), "Client" (the cache is placed on the browser client),
"Downstream" (the cache is placed on a server that is downstream from the server
processing the request), "None" (output is not cached), and "Server" (the cache is placed
on the server processing the request).

The remaining attributes, VaryByCustom, VaryByHeader, VaryByParam, and
VaryByControl, are beyond the scope of this book.

@ Page

Modifies compilation of a web page. This directive's attributes are:

AspCompat

Indicates whether to run this page on a single-threaded apartment (STA) thread. Allowed
values are "true" and "false". The default is "false". Running the page on an STA
thread lets it call components that require an STA thread, such as components written in
Visual Basic 6.

In spite of its name, this attribute doesn't enable embedding classic ASP in an ASP.NET
(.aspx) source file.

AutoEventWireup

Programming Visual Basic .NET

 287

Indicates whether the page's events are autowired to appropriate handlers found within the
Page class. Allowed values are "true" and "false". The default is "true". See Section
6.2.1 in Section 6.2 earlier in this chapter.

Buffer

Indicates whether to enable response buffering for the page. Allowed values are "true" and
"false". The default is "true". When response buffering is enabled, the entire response is
generated before any of it is sent to the browser. If response buffering is disabled, data is sent
to the browser as it is generated.

ClassName

Specifies a class name for the compiled page. This can be any name that is valid for a Visual
Basic .NET class. By default, the name is constructed from the filename of the web page. If
the filename is "filename.aspx", the ClassName value is "filename_aspx".

ClientTarget

Overrides the ASP.NET framework's automatic detection of browser capabilities. Set this
attribute to "Uplevel" or "Downlevel" to force ASP.NET to forego browser detection and
just assume the corresponding capabilities. Alternatively, set this attribute to the value given
by the browser setting within the <browserCaps> section of a web application's .config file to
cause ASP.NET to assume the capabilities defined within that section. The default is an empty
string. This attribute corresponds to the ClientTarget property of the Page class.

CodeBehind

Used by Visual Studio .NET projects instead of the Src attribute to specify a code-behind file.

CodePage

Specifies the code page (that is, the character set) to use in rendering the web page. The
value can be any valid code page. The default is the default code page for the web server.

CompilerOptions

Specifies arbitrary arguments to be passed to the Visual Basic .NET compiler. The format of
these arguments is the same as for the Visual Basic .NET command-line compiler. The default
is the empty string. (Command-line compiler options are not documented in this book.)

ContentType

Specifies the type of data to be rendered by the page. The value can be any valid content type
as defined by the Multipurpose Internet Mail Extensions (MIME) specification. The default is
"text/html".

Culture

Specifies the culture to be used by the page. The culture specifies language and formatting
conventions used in rendering content. The value can be any standard culture name, as given
in Appendix C. The default is determined by the configuration of the web server.

Debug

 288

Specifies whether to compile the page in debug mode. Allowed values are "true" and
"false". The default is "false". Compiling in debug mode enables features such as rich
error messages (suitable for developers) and setting breakpoints.

Description

Provides a place for the developer to describe the page. Neither ASP.NET nor Visual
Studio .NET uses it in any way.

EnableSessionState

Specifies the availability of session state for the page. Allowed values are "true" (indicating
that session state is to be enabled), "false" (indicating that session state is not to be
enabled), and "ReadOnly" (indicating that session state is enabled, but read-only). The
default is "true". See Section 6.8 later in this chapter for more information.

EnableViewState

Specifies whether view state will be maintained across page requests. Allowed values are
"true" and "false". The default is "true". See Section 6.8 in this chapter for more
information.

EnableViewStateMac

Specifies whether to use increased security to verify that the user has not tampered with the
view state received in a postback. Allowed values are "true" and "false". The default is
"false".

ErrorPage

Specifies the URL of a web page to which the user should be redirected if an unhandled
exception occurs during the processing of the page request.

Note that this redirection occurs only if custom errors are enabled. This is controlled by the
<customErrors> section in the application's web.config file or in the machine's
machine.config file. By default, the machine.config file contains this entry:

<customErrors
 mode="RemoteOnly" />

This means that if an unhandled exception occurs, redirection to the page specified by the
ErrorPage attribute occurs only if the browser is not running on the web server. This is a
good default configuration, since a developer testing on a web server probably would like to
see the IIS-generated exception page rather than a customer-friendly error page. See
Chapter 3 for more information about configuration files.

Explicit

Specifies whether the page will be compiled with Option Explicit turned on. Allowed
values are "true" and "false". The default is "true". See Chapter 2 for a discussion of
this compiler option.

Inherits

Programming Visual Basic .NET

 289

Specifies a class from which the compiled page class will inherit. The value can be the name
of any accessible class that inherits from the Page class (defined in the System.Web.UI
namespace). If this attribute is not specified, the compiled page class inherits directly from the
Page class.

Language

Specifies the programming language in which embedded code is written. This can be different
from the language in which the page's code-behind class is written.

LCID

Specifies the locale to be used by this page (LCID stands for locale identifier). The LCID is a
four-byte unsigned integer that identifies the culture used when rendering the page. Specifying
a value for LCID is an alternative to specifying a value for the Culture attribute. See
Appendix C for a list of cultures and corresponding LCIDs.

ResponseEncoding

Specifies the character-encoding format to use for the web page. The default is "UTF-8".

Src

Specifies the name of a file containing the source for the page's code-behind class, if any. By
default, web pages don't have a code-behind class.

Strict

Specifies whether the page will be compiled with Option Strict turned on. Allowed values
are "true" and "false". The default is "false". See Chapter 2 for a discussion of this
compiler option.

Trace

Specifies whether to enable tracing. Allowed values are "true" and "false". The default is
"false".

TraceMode

When tracing is enabled, specifies how trace messages will be sorted. Allowed values are
"SortByCategory" and "SortByTime". The default is "SortByTime".

Transaction

Specifies whether and how the page participates in transactions. Allowed values are
"NotSupported", "Supported", "Required", and "RequiresNew". The default is
"NotSupported". Transaction processing is not discussed in this book.

WarningLevel

Specifies the warning level at which the compiler aborts compilation of the page. Allowed
values are "0", "1","2", "3", and"4".

@ Reference

 290

Provides a way to reference the data type for a control or page, which will be dynamically
loaded from the current page using the Page class's LoadControl method. This directive's
attributes are:

Page

The name of an .aspx file that defines a web page to be dynamically referenced from the
current page.

Control

The name of an .ascx file that defines a web control to be dynamically referenced from the
current page.

Only one attribute (either Page or Control) is allowed in a single @ Reference directive. To
specify multiple pages or controls, specify multiple @ Reference directives on separate lines.

The @ Reference directive is useful if the page has code similar to this:

<script language="VB" runat="server">
 Protected Overrides Sub OnLoad(ByVal e As EventArgs)
 Dim ctl As Control
 ctl = LoadControl("SomeControl.ascx")
 Controls.Add(ctl)
 End Sub
</script>

This code loads a control from an .ascx file and adds it to the current page's collection of
controls. This works just fine, but if this code needs to access properties and methods of the
loaded control without resorting to late binding, it's in trouble. It has no way to convert the
Control reference in ctl to the appropriate data type. This is where the @ Reference
directive comes in. Referencing the .ascx file in an @ Reference directive makes the data
type available to the source code on the rest of the page. Here's how it would look:

<%@ Reference Control="SomeControl.ascx" %>
<script language="VB" runat="server">
 Protected Overrides Sub OnLoad(ByVal e As EventArgs)
 Dim ctl As SomeControl
 ctl = CType(LoadControl("SomeControl.ascx"), SomeControl)
 ctl.SomeProperty = "SomeValue"
 Controls.Add(ctl)
 End Sub
</script>

ctl is now strongly typed, and the type SomeControl is available to the application code.

@ Register

Allows user controls and custom server controls to be added to a web page. It has two forms.
The first form allows all the controls in an entire namespace to be referenced. It looks like this:

<%@ Register
 TagPrefix="tagprefix_name"
 Namespace="namespace_name"
 Assembly="assembly_name"
%>

Programming Visual Basic .NET

 291

When this format is used, you can use any of the controls within the referenced namespace
on the web page by including a tag of this form:

<tagprefix_name:class_name runat="server" />

The second form of the @ Register directive registers a single control that resides in a
source file. It looks like this:

<%@ Register
 TagPrefix="tagprefix_name"
 TagName="tagname"
 Src="path"
%>

When this format is used, you can use the specific control found in the source file on the web
page by including a tag of this form:

<tagprefix_name:tagname runat="server" />

In either form, you can set properties of the control object by specifying the properties as
attributes of the tag, like this:

<tagprefix_name:tagname MyPropertyName="some value" runat="server" />

See Section 6.11 later in this chapter for additional examples.

The attributes of the @ Register directive are:

TagPrefix

A name that represents the namespace being referenced

TagName

A name that represents the class being referenced

Namespace

The namespace to reference

Src

The source file containing the control

6.6 ASP.NET Objects: Interacting with the Framework

The ASP.NET framework exposes functionality to web applications through a number of so-called
intrinsic objects. These objects are available through the Server, Application, Session, Cache,
Request, and Response properties of the Page object. This section gives an overview of these objects.

6.6.1 The Server Object

The Server object is an instance of the HttpServerUtility class (defined in the System.Web
namespace). This object provides information and services related to the web server. The
HttpServerUtility class has two properties:

 292

MachineName

Gets the name of the machine on which the application is running. The type is String.

ScriptTimeout

Gets or sets the web-request timeout in seconds. The type is Integer. The default is 90
seconds.

Some of the commonly used methods are:

ClearError

Clears the last exception that occurred (see also GetLastError in this list). The syntax is:

Public Sub ClearError()
Execute

Executes a request to another page. After the other page is processed, processing of the
current page continues. The Execute method has two overloads. The first is:

Public Overloads Sub Execute(ByVal path As String)

The path parameter specifies the path of the web page file to be executed. With this form of the
Execute method, the output of the web page is intermingled with the output of the calling page.

The second overload is:

Public Overloads Sub Execute(ByVal path As String, _
 ByVal writer As System.IO.TextWriter)

Again, the path parameter specifies the path of the web page file to be executed. The writer
parameter specifies an object of type TextWriter (defined in the System.IO namespace) that is to
receive the output from the executed web page. (The TextWriter class is not documented in this book.)

GetLastError

Gets the last exception that was thrown (see also ClearError in this list). The syntax is:

Public Function GetLastError() As System.Exception
HtmlEncode and HtmlDecode

Encode and decode strings, respectively, that might contain HTML characters. Each method
has two overrides: one that returns the encoded or decoded string as a String and one that
writes the encoded or decoded string into an object of type TextWriter (defined in the
System.IO namespace). (The TextWriter class is not documented in this book.) The syntax for
these methods is:

Public Overloads Function HtmlEncode(ByVal s As String) As String

The s parameter is the string to encode. The return value of the function is the encoded string.

Public Overloads Sub HtmlEncode(ByVal s As String, _
 ByVal output As System.IO.TextWriter)

Programming Visual Basic .NET

 293

The s parameter is the string to encode. The encoded string is written to the TextWriter object passed
in the output parameter.

Public Overloads Function HtmlDecode(ByVal s As String) As String

The s parameter is the string to decode. The return value of the function is the decoded string.

Public Overloads Sub HtmlDecode(ByVal s As String, _
 ByVal output As System.IO.TextWriter)

The s parameter is the string to decode. The decoded string is written to the TextWriter object passed
in the output parameter.

MapPath

Returns the physical path that corresponds to the given virtual path. The syntax is:

Public Function MapPath(ByVal path As String) As String
Transfer

Stops execution of the current page and begins execution of the specified page. This method
differs from the Redirect method of the Response object. The Redirect method directs the
browser to request a new page, whereas the Transfer method simply starts executing a new
page. The Transfer method has two overrides. The first is:

Public Overloads Sub Transfer(ByVal path As String)

The path parameter specifies the virtual path of the new page. The second override is:

Public Overloads Sub Transfer(ByVal path As String, _
 ByVal preserveForm As Boolean)
UrlEncode and UrlDecode

Encode and decode strings, respectively, so that they can be used within URLs. Each method
has two overrides: one that returns the encoded or decoded string as a String and one that
writes the encoded or decoded string into an object of type TextWriter (defined in the
System.IO namespace). (The TextWriter class is not documented in this book.) The syntax for
these methods is:

Public Overloads Function UrlEncode(ByVal s As String) As String

The s parameter is the string to encode. The return value of the function is the encoded string.

Public Overloads Sub UrlEncode(ByVal s As String, _
 ByVal output As System.IO.TextWriter)

The s parameter is the string to encode. The encoded string is written to the TextWriter object
passed in the output parameter.

Public Overloads Function UrlDecode(ByVal s As String) As String

The s parameter is the string to decode. The return value of the function is the decoded string.

Public Overloads Sub UrlDecode(ByVal s As String, _
 ByVal output As System.IO.TextWriter)

 294

The s parameter is the string to decode. The decoded string is written to the TextWriter object
passed in the output parameter.

6.6.2 The Application Object

The Application object is an instance of the HttpApplicationState class (defined in the System.Web
namespace). This object holds application state to be used by all web requests in an application. See
Section 6.8 later in this chapter for more information.

6.6.3 The Session Object

The Session object is an instance of the HttpSessionState class (defined in the
System.Web.SessionState namespace). This object holds application state that is specific to the
current web request's session. See "Maintaining State" later in this chapter for more information.

6.6.4 The Cache Object

The Cache object is an instance of the Cache class (defined in the System.Web.Caching namespace).
This object caches dynamically created objects on the server, thereby improving average performance
for the web site's users. Caching is not discussed further in this book.

6.6.5 The Request Object

The Request object is an instance of the HttpRequest class (defined in the System.Web namespace).
This object provides information and services related to the current web request. These are the
commonly used properties of the HttpRequest class:

ApplicationPath

The virtual path of the root folder of the application. This is a read-only property. The type is
String.

Browser

Information about the capabilities of the client browser. This is a read-only property. The type
is HttpBrowserCapabilities (defined in the System.Web namespace). The properties of the
HttpBrowserCapabilities type are listed later in this chapter under Section 6.7.

Cookies

The collection of client-side cookies sent by the browser. This is a read-only property. The
type is HttpCookieCollection (defined in the System.Web namespace). See the discussion of
cookies later in this chapter under Section 6.8.

FilePath

The virtual path of the current request. The type is String.

IsAuthenticated

An indication of whether the user has been authenticated. The type is Boolean.

IsSecureConnection

Programming Visual Basic .NET

 295

An indication of whether the current request is over a secure (HTTPS) connection.

6.6.6 The Response Object

The Response object is an instance of the HttpResponse class (defined in the System.Web
namespace). This object provides information and services related to the response that results from
the current web request. These are the commonly used properties of the Response object:

BufferOutput

An indication of whether output will be buffered while being generated. The type is Boolean.
When this property is False, output is sent to the client as it is generated. When it is True (its
default value), output is buffered until it has been completely generated, then it is sent to the
client. If a particular page request requires a lot of processing, but portions of the page
become available throughout that processing, it is beneficial to set this property to False so
that the client gets at least some output as soon as possible. On the other hand, the benefit to
setting this property to True is that the output can be stopped or changed, or the page can be
redirected, in the middle of page processing without sending spurious output to the client.

Cache

The caching policy of a web page. The type is HttpCachePolicy (defined in the System.Web
namespace). Caching is not discussed in this book.

Charset

The character set used in the output stream. The type is String. The default is "utf-8".

ContentEncoding

The character encoding used in the output stream. The type is Encoding (defined in the
System.Text namespace). The default is an instance of the UTF8Encoding class (defined in
the System.Text namespace).

ContentType

The MIME content type of the output stream. The type is String. The default is "text/html".

Cookies

A collection of HttpCookie objects representing cookies to be transmitted to the client browser.
The type is HttpCookieCollection (defined in the System.Web namespace). See the
discussion of cookies later in this chapter under Section 6.8.

Expires

The number of minutes for which the client browser should cache the web page output. The
type is Integer. The default is 0.

ExpiresAbsolute

The date and time until which the client browser should cache the web page output. The type
is Date. The default is DateTime.MinValue.

Status

 296

The HTTP status text to be returned to the client browser. The type is String. The default is
"200 OK".

StatusCode

The HTTP status code to be returned to the client browser. The type is Integer. The default is
200.

StatusDescription

The HTTP status description to be returned to the client browser. The type is String. The
default is "OK".

These are some commonly used methods of the HttpResponse class:

Redirect

Sends a redirect message to the client browser. Client browsers respond by requesting the
web page specified in the redirect message. The syntax is:

Public Sub Redirect(ByVal url As String)

The url parameter specifies the address of the new page to be requested.

Write

Writes a value directly to the output stream. This method is useful within script blocks that are
embedded on the web page. There are versions of this method that write a single character,
an array of characters, an object, and a string. The syntax for the version that writes a string is:

Public Overloads Sub Write(ByVal s As String)

6.7 Discovering Browser Capabilities

One of ASP.NET's strengths is that it accommodates differences in client browsers without requiring
any special effort from the application developer. However, it is often desirable for a web application to
discover the capabilities of the browser making a given request. For this purpose, ASP.NET makes
browser information available to the web application. ASP.NET's Request object (available through the
Page object's Request property) has a Browser property that returns an object of type
HttpBrowserCapabilities. The properties of this object are:

ActiveXControls

Indicates whether the client browser supports ActiveX controls. The type is Boolean.

AOL

Indicates whether the client browser is an America Online browser. The type is Boolean.

BackgroundSounds

Indicates whether the client browser supports background sounds. The type is Boolean.

Beta

Programming Visual Basic .NET

 297

Indicates whether the client browser is a beta release. The type is Boolean.

Browser

Indicates the browser string (e.g., "IE") received in the User-Agent header of the HTTP
request. The type is String.

CDF

Indicates whether the browser supports Channel Definition Format for webcasting. The type is
Boolean.

ClrVersion

Indicates the version of the .NET CLR installed on the client (if any). The type is Version
(defined in the System namespace).

Cookies

Indicates whether the client browser supports cookies. The type is Boolean.

Crawler

Indicates whether the client browser is a web crawler (an automated program used by online
search engines to discover web content). The type is Boolean.

EcmaScriptVersion

Indicates the version of ECMA Script that the client browser supports. The type is Version
(defined in the System namespace).

Frames

Indicates whether the client browser supports Frames. The type is Boolean.

JavaApplets

Indicates whether the client browser supports Java applets. The type is Boolean.

JavaScript

Indicates whether the client browser supports JavaScript. The type is Boolean.

MajorVersion

Indicates the major version number of the client browser. The type is Integer.

MinorVersion

Indicates the minor version number of the client browser. The type is Double. For example, if
the version of the client browser is 8.15, the value of the MinorVersion property is 0.15.

MSDomVersion

 298

Indicates the version of the Microsoft XML document object model that the client browser
supports. The type is Version (defined in the System namespace).

Platform

Indicates the platform on which the client browser is running. The type is String. For example,
for a browser running on Windows 2000 Professional, the Platform property returns "WinNT".

Tables

Indicates whether the client browser supports HTML tables. The type is Boolean.

Type

Indicates the name and major version number of the client browser (e.g., "IE6"). The type is
String.

VBScript

Indicates whether the client browser supports VBScript. The type is Boolean.

Version

Indicates the full version number of the client browser (e.g., "8.15"). The type is String.

W3CDomVersion

Indicates the version of the W3C XML document object model that the client browser supports.
The type is Version (defined in the System namespace).

Win16

Indicates whether the client browser is running on a 16-bit Windows operating system. The
type is Boolean.

Win32

Indicates whether the client browser is running on a 32-bit Windows operating system. The
type is Boolean.

6.8 Maintaining State

The process of serving web pages is inherently stateless. By default, each request to a web server is
isolated from every other request that a user might make. This is a fine model for serving static web
pages, but it's not very useful for full-featured applications. To be useful, applications must keep track
of state. This section describes the different options that web developers have for storing state.

6.8.1 The Session Object

When a user browses to a web page served by IIS, IIS considers it the start of a session for that user.
A session is an abstract concept that refers to the period of time within which a particular user is
interacting with a web application. Although it's easy to determine when a session starts, it's not so
easy to know when that session ends. This is because of the inherent disconnectedness of web
browsing. After any given web request is serviced, IIS doesn't really know whether the user will issue
more requests (browse to more pages). For this reason, IIS establishes a session timeout period. If no

Programming Visual Basic .NET

 299

new requests are received from a user after a given amount of time, IIS considers that session to have
ended.

A session corresponds to a single use of a web application by a single user. To assist the web
application in maintaining state for the duration of a session, ASP.NET provides an intrinsic object
called the Session object. When a session begins, ASP.NET instantiates a Session object. During
processing of web requests, the application can store information into the Session object in
name/value pairs. Later requests received during the same session can read the information stored in
the Session object. The Session object is of type HttpSessionState (defined in the
System.Web.SessionState namespace) and is available through the Page class's Session property.
Here is an example of saving information into a session object:

Session("FirstName") = txtFirstName.Text

For example, this code could be run in response to the user clicking a Submit button on a form. The
code assumes that the page has a text box named txtFirstName, in which the user has presumably
typed a name. The value thus saved is available (until the session ends) to all subsequent web
requests by the same user. For example, a subsequent page could use this value to personalize a
message, like this:

Response.Write("Hello, " & Session("FirstName") & ", welcome to ASP.NET!")

The commonly used properties of the HttpSessionState class are:

Count

The number of items stored in the Session object. The type is Integer.

IsNewSession

An indication of whether the current request created the session. The type is Boolean.

Keys

A collection of all keys used in the Session object. A key is the name of the data being stored
in the Session object, as opposed to the value of that data. For example, in the following line
of code, the key is "FirstName":

Session("FirstName") = txtFirstName.Text

The following code fragment loops through all the keys in the Session object:

Dim str As String
For Each str In Session.Keys
 ' ...
Next

The type of the Keys property is KeysCollection (defined within the NameObjectCollectionBase class
in the System.Collections.Specialized namespace).

StaticObjects

A collection of objects declared with the <object scope="Session"> tag in the
application's global.asax file. The type is HttpStaticObjectsCollection (defined in the
System.Web namespace). See Section 6.9 later in this chapter.

 300

Timeout

The session timeout, in minutes. If a new request isn't received in this amount of time, the
session ends. The type is Integer. The default is 20.

Some commonly used methods of the HttpSessionState class are:

Abandon

Ends the current session. The syntax is:

Public Sub Abandon()
Clear

Clears all values from the Session object. The syntax is:

Public Sub Clear()
Remove

Clears a single item from the Session object. The syntax is:

Public Sub Remove(ByVal name As String)

6.8.2 The Application Object

Some state should be maintained at the application level rather than at the session level, meaning that
the state information is available to all sessions in the application. This is what the Application object is
for. It is used just like the Session object, except that values stored in the Application object are visible
to all sessions in the application. The Application object is instantiated when the first session begins,
and it ends when no more sessions exist.

Be careful when writing new values to the Application object. Because a single Application object is
shared by all concurrent sessions (which may be running on separate threads in IIS), threading-
concurrency issues come into play. For example, consider an application in which each session stores
its user's name into an array that is stored in the Application object. The application might use this
information to display a summary screen of all users currently active in the application. Simplistic code
to accomplish this task might look like this:

' Wrong!
Dim names As ArrayList = Application("Names")
If names Is Nothing Then
 names = New ArrayList()
 Application("Names") = names
End If
names.Add(txtName.Text)

Again, this code might be executed in response to a button-click event in which the user submits some
information collected on a form. It assumes that there is a text box named txtName on the form. The
information thus collected can be used by any session in the application. Note that all sessions in the
application add their data to the same array list. A simple page to view this information might look like
this:

<%@ Page AutoEventWireup="false" Language="VB" Debug="true" %>

<script runat="server">

 Protected Overrides Sub OnLoad(e As EventArgs)

Programming Visual Basic .NET

 301

 lstNames.DataSource = Application("Names")
 lstNames.DataBind()
 End Sub

</script>

<html>
 <body>
 Currently active users:

 <asp:ListBox id="lstNames" runat="server" />
 </body>
</html>

Here the code is loading a ListBox control with the contents of the array list saved in the Application
object. (Data binding is explained in Chapter 8.)

There's nothing conceptually wrong with this approach, but the code that saves the information needs
a little more attention. The problem is that two separate requests in the same application, but in
different sessions, could attempt to modify the array list at the same time. The array list is not thread-
safe, so problems could ensue, possibly resulting in lost data or application exceptions. To resolve this
issue, wrap the code that sets the values in calls to the Application object's Lock and UnLock methods,
like this:

Application.Lock()
Dim names As ArrayList = Application("Names")
If names Is Nothing Then
 names = New ArrayList()
 Application("Names") = names
End If
names.Add(txtName.Text)
names = Nothing
Application.UnLock

During the time after the Lock method has been called but before the UnLock method has been called,
if code on another thread calls the Lock method, that thread will block (temporarily cease to run) until
the code on the first thread calls the UnLock method. This ensures that two threads aren't accessing
the array list at the same time. The downside to this is that performance is hurt if multiple threads are
blocked waiting for access to the same application data. This makes it imperative to call UnLock as
soon as possible and not to forget to call it.

The Application object is an instance of the HttpApplicationState class (defined in the System.Web
namespace). Commonly used properties of the HttpApplicationState class are:

AllKeys

An array of all keys used in the Application object. A key is the name of the data being stored
in the Application object, as opposed to the value of that data. For example, in the following
line of code, the session key is "Names":

Application("Names") = names

The following code fragment loops through all the keys in the Application object:

For Each str In Application.AllKeys
 ' ...
Next

The type of the AllKeys property is String Array.

 302

Count

The number of items stored in the Application object. The type is Integer.

StaticObjects

A collection of objects declared with the <object scope="Application"> tag in the
application's global.asax file. The type is HttpStaticObjectsCollection (defined in the
System.Web namespace). See Section 6.9 later in this chapter.

The commonly used methods of the HttpApplicationState class are:

Clear

Clears all values from the Application object. The syntax is:

Public Sub Clear()
Lock

As explained earlier, prohibits code in other sessions from writing to the Application object
until UnLock is called. The syntax is:

Public Sub Lock()
Remove

Clears a single item from the Application object. The syntax is:

Public Sub Remove(ByVal name As String)
UnLock

Unlocks the Application object after a call to Lock. The syntax is:

Public Sub UnLock()

6.8.3 Cookies

Another way to save information between web page requests is to save it on the client in a cookie. A
cookie is a name/value pair that the browser saves on behalf of the application. Cookies are keyed to
the domain of the application that created them. When the browser requests a page, it automatically
transmits the cookies that belong to that domain as part of the page request. The application can then
read the values of the cookies and take appropriate action. Cookies are an industry standard and
should work with any browser. However, be aware that users can turn off cookies in their browser
settings, so an application that relies on cookies may not be accessible to all users.

Cookies generally are used in two ways. One is to save some sort of identifying information about the
user, so that when the user returns to a given site, the application knows who the user is. The other
way is to save some sort of information indicating the application's state between web page requests
within a single session. This allows the application to recover its state on each page request. Although
any information can be saved in a cookie, the best practice is to use some sort of key to look up the
actual information on the server side. This practice minimizes traffic to and from the client, helps to
ensure that potentially sensitive information is not stored on the client, and helps to ensure that the
client can't spoof the server by substituting incorrect information in the cookies.

Cookies are created by adding items to the Cookies collection of the ASP.NET Response object
(available through the Response property of the Page class). For example:

Programming Visual Basic .NET

 303

Dim cookie As New HttpCookie("MyCookieName", "MyCookieValue")
Response.Cookies.Add(cookie)

That's all it takes. The ASP.NET framework copies the information into the HTTP response to the
client browser. The browser then stores the information on the client computer in a way that is
determined by the type of browser being used.

The constructor of the HttpCookie class has two versions. The one shown earlier takes two strings: the
first is the name of the cookie, and the second is its value. The other version of the HttpCookie class
constructor takes a single parameter: a string that is the name of the cookie. The value of the cookie is
then set by assigning a value to the HttpCookie object's Value or Values property (discussed in the
following list). The properties of the HttpCookie class are:

Domain

Represents the domain associated with the cookie. The default value is the domain of the web
page request being serviced. If the web server is //localhost, the default value of this property
is Nothing. The type is String.

Expires

Represents the date and time at which the cookie expires. The default is
DateTime.MinValue, which results in a cookie that doesn't expire. The type is Date.

HasKeys

Indicates whether the cookie has subkeys. Subkeys permit a cookie to have more than one
value. See also the Values property. The default is False. The type is Boolean.

Item

Provides a way to access the values of subkeys for cookies with subkeys. The Item property is
an indexed property that takes the subkey name as the index and returns its value. This
property is provided for syntactic similarity with classic ASP. New code should instead use the
Values collection to access the values of subkeys.

Name

Represents the name of the cookie, as given in the HttpCookie class constructor. The type is
String.

Path

Represents the path associated with the cookie. The default is "/". The type is String.

Secure

Indicates whether the cookie should be transmitted only over a secure (HTTPS) connection.
The default is False. The type is Boolean.

Value

Represents the value of the cookie. The default is an empty string. The type is String.

Values

 304

If the cookie has subkeys, the Values property is an instance of NameValuesCollection
(defined in the System.Collections.Specialized namespace). This collection holds the subkey
name/value pairs.

On subsequent requests, the cookies are available for reading from the Cookies collection of the
ASP.NET Request object (available through the Request property of the Page class). For example:

Dim cookie As HttpCookie = Request.Cookies("MyCookie")
Label1.Text = cookie.Value

6.9 Application-Level Code and global.asax

All of the code shown so far has been written at the page level, appearing either in an .aspx file or in a
code-behind file that implements a Page-derived class. However, there needs to be a way to handle
events and manipulate properties at the application level as well, without regard to any particular page.
For this purpose there is the global.asax file. global.asax is a file that optionally can appear in a web
application's root directory. If it is present, it can contain code and settings that are automatically
processed by the ASP.NET framework at the appropriate times.

6.9.1 Session and Application Startup and Shutdown

Some applications may need to run certain code whenever a new session is started or is about to end,
or when the application as a whole is first started or is about to end. This is done by placing code in
the application's global.asax file, as shown in Example 6-9.

Example 6-9. Responding to session and application start and end in a
global.asax file
<script language="vb" runat="server">

 Public Sub Session_OnStart()
 ' ...
 End Sub

 Public Sub Session_OnEnd()
 ' ...
 End Sub

 Public Sub Application_OnStart()
 ' ...
 End Sub

 Public Sub Application_OnEnd()
 ' ...
 End Sub

</script>

Notice that code is placed in <script> blocks.

The code in Example 6-9 defines four subroutines:

Session_OnStart

Called by the ASP.NET framework when a session starts

Session_OnEnd

Programming Visual Basic .NET

 305

Called by the ASP.NET framework when a session ends

Application_OnStart

Called by the ASP.NET framework when an application starts (that is, when the application's
first session starts)

Application_OnEnd

Called by the ASP.NET framework when an application ends (that is, when the application's
last remaining session ends)

These four subroutines aren't event handlers—they are simply subroutines that are automatically
executed when present. They are typically used to set up and dispose of information needed at the
session or application level. For example, an online shopping application could use the
Application_OnStart subroutine to read popular product information from a database and cache it in
the Application object, thereby improving performance for users of the application.

6.9.2 global.asax Compiles to a Class

The first time an application is accessed, its global.asax file is compiled into a class that inherits from
the HttpApplication class (defined in the System.Web namespace). The subroutines declared in
global.asax become methods of the compiled class. Although the members of the HttpApplication
class are not discussed further in this book, be aware that, if desired, those members can be accessed
by code in global.asax. In addition, events exposed by the HttpApplication class can be handled by
adding event handlers to global.asax. Each event handler must have the right signature, as defined by
that event's documentation and a Handles MyBase.EventName clause to register the handler with
the event. Again, the events exposed by the HttpApplication class aren't discussed further in this book.
However, in case you would like to pursue it on your own, Example 6-10 shows how such an event
handler can be declared in global.asax.

Example 6-10. Handling an HttpApplication class event in global.asax
<script language="vb" runat="server">

 ' ...

 ' Handle the base class's BeginRequest event. The name of the
 ' event handler is not important, but the signature and the
 ' Handles clause are.
 Private Sub HttpApplication_BeginRequest(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
) Handles MyBase.BeginRequest
 ' ...
 End Sub

</script>

6.9.3 Adding Global Objects

An application often needs to instantiate an object and make it available to all pages within a session
or within the entire application. One way to do this is by instantiating the object in the Session_OnStart
or Application_OnStart methods and saving the object reference in the ASP.NET Session or
Application object, respectively. Pages can then read the object reference from the Session or
Application object and use it as needed.

 306

A slightly more convenient way to achieve a similar result is to place an <object> element in the
global.asax file. The <object> element indicates that an instance of the given class should be
created and made available to all pages in the session or application (depending on the attributes
specified). ASP.NET makes the object available to all pages in the application by adding a property to
every page in the application. The property is named identically to the ID attribute of the <object>
element. For example, here is an <object> element that creates a Hashtable object that is available
application-wide:

<object
 id="myHashtable"
 runat="server"
 scope="Application"
 class="System.Collections.Hashtable" />

This declaration specifies the following:

• An instance of the Hashtable class (defined in the System.Collection namespace) will be
created (class="System.Collections.Hashtable").

• This single instance of the Hashtable class will be shared by all pages in the application
(scope="Application"). If there is to be a separate instance for each session, specify
scope="Session".

• A property named myHashtable will be added to every page in the application to permit web
page code easy access to the object (id="myHashtable").

Code to access the object instance from a web page would look like this:

<%@ Page Language="vb" %>

<script runat="server">
 Protected Overrides Sub OnLoad(ByVal e As EventArgs)
 ' Do something with the object created in global.asax.
 myHashtable.Add("SomeKey", "SomeValue")
 End Sub
</script>

' ...

The property that is automatically compiled into the page (in this case, the myHashtable property) is
compiled into the class that is compiled from the .aspx file. It is not compiled into the page's code-
behind class (if there is one). This means that the property is available to code that is embedded in
the .aspx file, but not to code in the code-behind class.

All objects created as a result of <object> elements appearing in global.asax are added to the
StaticObjects collection of either the Session object or the Application object (depending on the value
specified for the scope attribute of the <object> element). For example, the myHashtable object
could be accessed in this way:

<%@ Page Language="vb" %>

<script runat="server">
 Protected Overrides Sub OnLoad(ByVal e As EventArgs)
 ' Do something with the object created in global.asax.
 Dim ht As Hashtable
 ht = CType(Application.StaticObjects("myHashTable"), Hashtable)
 ht.Add("foo", "bar")
 End Sub
</script>

Programming Visual Basic .NET

 307

' ...

This has the advantage of also working from the code-behind class, or from any code that has access
to the ASP.NET Application (or Session) object.

6.10 Web-Application Security

Many web applications have portions that should be viewed or used only by certain users. In such
applications, users must somehow identify themselves to the application so that the application can
then determine what the users may access. In security terminology, the process of identifying the user
is known as authentication. After authentication occurs, the system must determine whether the given
user is permitted to access the requested resource. This is called authorization. The part of the
application to be protected is known as a protected resource.

6.10.1 Authentication

Authentication is the process by which a web application reliably discovers the identity of an
application user. The purpose of discovering the user's identity is to determine whether the user is
authorized to access a given resource. Depending on the application, the accuracy of this process
may be critical. An online-banking application, for example, must be quite sure that the user who
claims to be you really is you before it allows the user to transfer all of your money to a bank in Bora-
Bora. There are different ways that this can be done, depending on the type of application being
written and on the level of protection required.

ASP.NET supports several authentication mechanisms:

Forms authentication

Allows the developer to design a login form that is presented to the user when she attempts to
access a protected resource. If the user successfully logs in, the browser is directed back to
the resource that she was attempting to access. This is a good general-purpose solution for
most Internet applications.

Windows authentication

Allows IIS and the Windows operating system to authenticate the user. Windows
authentication can include any one or more of the following authentication types: Basic, Digest,
or Integrated Windows.

Passport authentication

Allows ASP.NET applications to use Microsoft's Passport service to authenticate users. Doing
so requires paying a fee and signing up with the service. This method of authentication is not
discussed further in this book.

All of the authentication mechanisms (except for Integrated
Windows authentication) can be compromised to varying degrees
by a hostile person using a network " sniffer" to eavesdrop on
network traffic. Therefore, these mechanisms should always be
combined with the use of Secure Sockets Layer (SSL) or another
type of message encryption. SSL is a web standard that is not
specifically related to .NET, and it is not covered in this book.

Using a secure connection, such as SSL, is especially important

 308

when using Forms or Basic authentication, as these mechanisms
send sensitive information over the network in clear text. Digest
authentication doesn't send passwords in clear text, but it is still
sensitive to various attacks when not used in conjunction with
other security techniques.

In the following sections, we'll examine each of these methods of authentication in greater detail.

6.10.1.1 Forms authentication

With Forms authentication, requests for protected resources by users who have not yet been
authenticated are redirected to a login page. The application developer creates the login page, so the
page can have any appearance and perform any logic that is appropriate to the application. Usually,
the login page has fields for the user to enter a username and password, as well as logic to check the
username and password against a list. After the login page is satisfied, the user is redirected to the
original resource. Example 6-11 shows how a login page might be coded.

Example 6-11. A login page
<%@ Page Language="vb" AutoEventWireup="False" Explicit="True"
Strict="True" %>
<%@ Import Namespace="System.Web.Security" %>

<script runat="server">

 Private Sub signIn_Click(ByVal sender As Object, e As EventArgs)
 If ((username.Text = "SomeUsername") And _
 (password.Text = "SomePassword")) Then
 FormsAuthentication.RedirectFromLoginPage(username.Text, _
 Not autoSignOut.Checked)
 Else
 msg.Text = "Your sign-in information appears to be incorrect." _
 & " Please try again."
 End If
 End Sub

</script>

<html>

 <body>

 <form runat="server">

 </p>Please sign in.</p>

 <p>
 Username:
 <asp:TextBox ID="username" runat="server" />

 Password:
 <asp:TextBox ID="password" TextMode="Password"
 runat="server" />

 <asp:CheckBox ID="autoSignOut"
 Text="Sign me out automatically when I close my browser."
 runat="server" />
 </p>

 <p>

Programming Visual Basic .NET

 309

 <asp:Button ID="signIn" Text="Sign In" OnClick="signIn_Click"
 runat="server" />
 </p>

 <p>
 <asp:Label ID="msg" ForeColor="red" runat="server" />
 </p>

 </form>

 </body>

</html>

This is a simple form that asks for a username and password and provides a Sign In button for
submitting the information. When the button is clicked, the signIn_Click method is run. At this point, the
code must determine whether a valid username and password have been entered. For this
demonstration, the code simply checks whether the username SomeUsername and the password
SomePassword were entered. A real-world production application would probably look up the
username and password in a database. The Forms authentication mechanism doesn't know or care
how the user is authenticated and, in fact, doesn't even care if it's done with a username/password
scheme.

It's up to the login form to decide what to do if the user doesn't enter correct information. In Example
6-11, the login form simply displays a message and encourages the user to try again. A real-world
application might limit the number of tries, might offer to create a new login ID, or might offer to email
the user's password to him. Again, it is up to the application designer to decide what is best for the
given application.

If the login form determines that the user has entered correct information, it calls the
RedirectFromLoginPage method of the FormsAuthentication class (defined in the
System.Web.Security namespace). Calling this method redirects the user to the protected resource
that was originally requested. The RedirectFromLoginPage method has a couple of overloads. The
syntax of the overload used in Example 6-11 is:

Public Overloads Shared Sub RedirectFromLoginPage(_
 ByVal userName As String, _
 ByValcreatePersistentCookie As Boolean)

The parameters are:

userName

This is a name by which the user is identified by the rest of the application. If the login form
collects the username from the user (as Example 6-11 does), that username can be used
here. If the login form uses some other information to identify the user, the application
designer should determine what username value makes the most sense to use.

createPersistentCookie

As part of the Forms authentication mechanism, a cookie is created and sent to the client
computer. The createPersistentCookie parameter determines whether that cookie
persists across invocations of the browser. If this parameter is set to False, closing the
browser window results in the cookie being lost. If the user opens another browser window
and attempts to access a protected resource, he will be redirected again to the login page. If
the createPersistentCookie parameter is set to True, the user can close the browser
and open a new one without being required to reauthenticate.

 310

After the login page is developed, an entry must be made in the web application's web.config file to
indicate that Forms authentication will be used for authentication. Modify the <authentication>
element in the application's web.config file. This element is a subelement of the <system.web>
element, which in turn is a subelement of the <configuration> element. Example 6-12 shows
how it should look.

Example 6-12. Setting Forms authentication
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms loginUrl="SignIn.aspx" name="myWebApplication" />
 </authentication>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

The mode attribute of the <authentication> element controls the kind of authentication to be
performed. For Forms authentication, set this to "Forms". When using Forms authentication, the
<forms> element must also be present. The loginUrl attribute of this element gives the relative
URL of the login page. The name attribute gives the name to use for the cookie that is transmitted to
the browser. The default value of the name attribute is ".ASPXAUTH". The <forms> element also
allows a path attribute. This attribute specifies the URL path for which the cookie is valid. The default
value of the path attribute is "/".

In IIS, the web site should be configured to allow anonymous access. This keeps IIS from attempting
to authenticate the user and allows the ASP.NET runtime to handle the authentication. Note also the
<authorization> element in Example 6-12:

<authorization>
 <deny users="?" />
</authorization>

Authentication won't occur unless the user attempts to access a protected resource. If all resources on
the site allow anonymous access, there is no reason to attempt to authenticate the user. This simple
<authorization> element denies access to all anonymous users, thereby triggering the
authentication process. The <authorization> element is further explained later in this section.

Example 6-13 shows a sample web page that might be protected by Forms authentication. There is
nothing special about the page—the implementation of Forms authentication is handled by ASP.NET
and the developer-supplied login page. However, the page in Example 6-13 shows the name of the
authenticated user, demonstrating that authentication has indeed occurred. Figure 6-14 shows the
login page from Example 6-11 as it appears in a browser, and Figure 6-15 shows the page from
Example 6-13.

Example 6-13. A sample web page that expects authentication
<%@ Page Language="vb" AutoEventWireup="False" Explicit="True"
Strict="True" %>

<script runat="server">

 Protected Overrides Sub OnLoad(ByVal e As EventArgs)
 MyBase.OnLoad(e)
 msg.Text = "Hello, " & Me.User.Identity.Name & "!"

Programming Visual Basic .NET

 311

 End Sub

 Private Sub signOut_Click(ByVal sender As Object, ByVal e As EventArgs)
 FormsAuthentication.SignOut()
 Response.Redirect("SignIn.aspx")
 End Sub

</script>

<html>
 <head>
 <title>Authentication Test</title>
 </head>

 <body>
 <form runat="server">
 <h1>Authentication Test</h1>
 <p>
 <asp:Label ID="msg" runat="server" />
 </p>
 <p>
 <asp:Button ID="signOut" Text="Sign Out"
 OnClick="signOut_Click" runat="server" />
 </p>
 </form>
 </body>

</html>

Figure 6-14. The browser display produced by Example 6-11

Figure 6-15. The browser display produced by Example 6-13, after
authentication has occurred

 312

6.10.1.2 Windows authentication

With Windows authentication, the ASP.NET runtime lets IIS and the Windows operating system
handle user authentication. Three kinds of authentication come under this category: Integrated
Windows authentication, Digest authentication, and Basic authentication. To use one of these
authentication methods, the web site in IIS must be set to disallow anonymous access, and one or
more of these three authentication mechanisms must be enabled. If more than one is enabled, the
most secure browser-supported method will be used in any given session.

6.10.1.2.1 Integrated Windows authentication

This is the most secure of the three methods of Windows authentication, but it works only when the
browser is Internet Explorer (IE) and only when the user is logged into a Windows system on a domain
accessible and trusted by the web server. When the user attempts to access protected resources, the
server requests the user's identity from the client. The client uses the operating system's built-in
network-authentication mechanisms to communicate the user's identity reliably and securely to the
server. This all happens automatically—no intervention from the user is needed. This is a good option
for corporate intranets.

6.10.1.2.2 Digest authentication

This is an industry-standard mechanism that should work with non-IE browsers. When the user tries to
access a protected resource, the server asks the client for the user's identity. The browser pops up a
dialog box asking for a username and password. The username and a hash of the password are sent
to the server, which then tries to verify that the username and password identify a valid login account.
Although this mechanism doesn't send the password in clear text, it is not considered to be a strong
security mechanism. Someone eavesdropping on the client/server communication can use the
gathered information to attack the system in various ways.

6.10.1.2.3 Basic authentication

This is another industry-standard mechanism. It works the same as Digest authentication, except that
passwords are sent in clear text over the network.

In the web application's web.config file, the <authentication> element is used to indicate that
Windows authentication should be used. Example 6-14 shows how.

Example 6-14. Setting Windows authentication
<?xml version="1.0" encoding="utf-8" ?>

Programming Visual Basic .NET

 313

<configuration>
 <system.web>
 <authentication mode="Windows" />
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

6.10.1.3 Understanding authentication

Choosing an authentication mechanism is something that must be done at the site level. Therefore,
only the web.config file in the application's root directory should have an <authentication>
element.

Setting an authentication mechanism does not in itself protect resources. The authentication
mechanism simply determines how a user's identity will be determined if that user attempts to access
protected resources. If no resources are protected, the authentication mechanism won't be activated.
Determining whether resources are protected is what authorization is all about.

6.10.2 Authorization

Authorization involves determining whether the authenticated user is authorized to view a given web
page or to execute some given code. As with authentication, page-access authorization can be
handled either by ASP.NET or by the Windows operating system. Code-access authorization is
handled by checks that the application developer writes into the application.

6.10.2.1 ASP.NET authorization

Access to web pages and other files is controlled by the <authorization> element in the
application's web.config file. The settings affect all files in the virtual directory that contains the
web.config file and all of its virtual subdirectories, unless it is overridden by a setting in a web.config
file in a virtual subdirectory. Therefore, if web pages or other files are to have different accessibility
rules, they must appear in different directories and there must be different web.config files in each
directory.

In this section's examples, the <authentication> element isn't
shown. It is assumed that the appropriate <authentication>
element appears in the root directory's web.config file, as
discussed in the previous section.

An example <authorization> element is shown here:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
</configuration>

This <authorization> element indicates that all users (including anonymous users) are permitted
to access all resources. This setting applies to resources in the same directory in which the web.config

 314

file appears, plus resources in all the subdirectories of that directory (except for any subdirectory that
contains its own web.config file with overriding entries).

Authorization to resources is specified with <allow> and <deny> elements, which appear within the
<authorization> element. Attributes of the elements specify who is being allowed or denied
access. The value of the users attribute is one or more usernames, separated by commas. For
example, these are all valid <allow> elements:

<allow users="*" />
<allow users="SomeUsername, SomeOtherUsername" />
<allow users="SOME-DOMAIN\SomeUser" />
<allow users="?" />

Note the following:

• "*" signifies all users (including anonymous users). If this is the only setting that appears,
authentication won't occur. The system already knows that access will be granted, so it won't
take the trouble to determine who the user is.

• "?" specifically signifies anonymous users.
• If Windows authentication is used, the username should include the domain name, like this:

"DOMAIN-NAME\username".
• If Forms authentication is used, the username should match the name that was supplied to the

first argument of the RedirectFromLoginPage method of the FormsAuthentication class
(defined in the System.Web.Security namespace). This method was discussed in the previous
section.

Users can be explicitly denied access if they are named in a <deny> element. The usage is the same
as the <allow> element.

When multiple <allow> and <deny> elements appear in a configuration file, they are examined by
ASP.NET in the order in which they appear. As soon as ASP.NET finds an element that can be
applied to the current user, the examination halts, and access is either allowed or denied, depending
on the element that was found. Consider this web.config file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <authorization>
 <allow users="*" />
 <deny users="daveg" />
 </authorization>
 </system.web>
</configuration>

Although the author of this configuration file probably intended that user daveg be denied access,
ASP.NET doesn't see it that way. The first entry in the <authorization> section grants access to
all users, including daveg, so the second entry isn't even seen. To achieve the desired effect, reverse
the entries:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <authorization>
 <deny users="daveg" />
 <allow users="*" />
 </authorization>
 </system.web>

Programming Visual Basic .NET

 315

</configuration>

In this case, when daveg attempts to access resources in a directory protected by this configuration
file, ASP.NET will note that the first entry can be applied to daveg and will apply it. The second entry
isn't seen. When other users attempt to access the same resources, ASP.NET notes that the first
entry can't be applied to them and continues looking. The second entry then allows access to all other
users.

The following <authorization> section allows access to authenticated users, regardless of who
they are. Anonymous users are denied access.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <authorization>
 <deny users="?" />
 <allow users="*" />
 </authorization>
 </system.web>
</configuration>

When nested directories each contain their own web.config files, the <authorization> element in
the current directory's web.config file is examined first. If no entries explicitly grant or deny access to
the current user, the web.config file in the parent directory is examined, and so on, up to the
computer's machine.config file. As soon as an entry is found that explicitly allows or denies access,
this examination stops. By default, the machine.config file's <authorization> section contains the
entry:

<allow users="*" />

Thus, if there is no explicit <deny> entry at a lower level, all users are granted access.

In addition to specifying authorization based on username, it is also possible to specify authorization
based on role membership. Thus, a business application could define certain roles, such as
"Customer Service Rep," "Accounting Specialist," "Auditor," etc., and specify authorization for the roles
rather than for individual users. Users can then be assigned to and removed from these roles as
necessary.

The way a user is made a member of a role depends on the type of authentication being used. If
Windows authentication is used, role membership is determined by membership in Windows groups.
In other words, the Windows groups to which the user belongs are what ASP.NET considers as the
user's roles. If Forms authentication is used, the application must specify the roles to which the user
belongs. The easiest way to do this is for Microsoft to put an additional parameter in the
RedirectFromLoginPage method that allows the code on the login page to specify a string array
containing role names. They don't do this, however, so we have to find another way. This requires that
we understand a little more about what happens during authentication.

As you know, whenever a page that requires authorization is requested, it triggers the authentication
process to determine who the user is. The first time this happens, the user is redirected to the login
page, which collects the user's credentials and stores an authorization cookie on the user's browser.
Subsequent page requests find the cookie and use it to reauthenticate the user to the application.
Note that authentication occurs during every page access but that the Forms authentication
mechanism handles subsequent authentication requests without further input from the user.

There is an event that gets triggered during each authentication request. This can be handled by
placing a method called Application_AuthenticateRequest in the application's global.asax file. It is in
this event handler that roles can be specified for the authenticated user. Example 6-15 shows the
code.

 316

Example 6-15. Specifying user roles using Forms authentication
Public Sub Application_AuthenticateRequest(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
)

 ' Do this only after the user has authenticated.
 If Not (Context.User Is Nothing) Then
 If Context.User.Identity.IsAuthenticated Then

 ' Get the username.
 Dim username As String = Context.User.Identity.Name

 ' Get the user's roles. In a real application this line
 ' should be replaced with a lookup based on the username.
 ' In addition, performance can be improved by caching the
 ' roles in session state or in a browser cookie.
 Dim roles() As String = {"Administrator", "User"}

 ' Create a new principal from the username and the roles.
 Dim ident As _
 New System.Security.Principal.GenericIdentity(username)
 Dim prin As _
 New System.Security.Principal.GenericPrincipal(ident, roles)

 ' Associate the new security principal with the request.
 Context.User = prin

 End If
 End If

End Sub

Example 6-15 examines the User property of the request context to determine whether the user has
authenticated to the system. If so, a new security principal is created based on the username and
desired roles. This security principal is then attached to the request context. Having done so, the user
can be allowed or denied access to pages based on role membership.

To control access based on role membership, use the roles attribute of the <allow> and <deny>
elements. Usage is similar to the usage of the users attribute, except that role names are given
instead of usernames. For example, if the pages in a certain directory should be limited to members of
the Accounting Specialist role, a web.config file should be placed in that directory and should have the
following entries in its <authorization> section:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <authorization>
 <allow roles="Accounting Specialist" />
 <deny users="*" />
 </authorization>
 </system.web>
</configuration>

When specifying Windows group names as role names, include
the entity that defines the group. For example, for groups defined
in a domain:

Programming Visual Basic .NET

 317

"DOMAIN-NAME\GroupName"

For groups defined on the web server machine:

"MACHINE\GroupName"

6.10.2.2 Windows NTFS authorization

This method of authorization works only in conjunction with Windows authentication. Because users
are authenticated against Windows user accounts, access to resources can be allowed or denied by
using built-in Windows security. Use the Windows administration tools to allow or deny access for
specific users or groups to specific files within the web application. Because this is purely a Windows
administration task and is not specifically related to .NET, it won't be discussed further here.

6.10.2.3 Code-access authorization

Code written on a web page or in a code-behind file can discover the username and role membership
of the current user and use this information to modify program behavior. For example, application
menu options could be disabled or removed if the user is not a member of a certain role.

The current user's information is available through the Page object's User property. This property is of
type IPrincipal (defined in the System.Security.Principal namespace). The IPrincipal type has a
property called Identity, which provides information about the user's identity. The type of the Identity
property is IIdentity (defined in the System.Security.Principal namespace). The IIdentity type has three
properties:

AuthenticationType

A string that identifies the type of authentication that was used. Some common values are:

"Forms"

Forms authentication

"NTLM"

Integrated Windows authentication

"Digest"

Digest authentication

"Basic"

Basic authentication

IsAuthenticated

A Boolean value indicating whether the user has been authenticated.

Name

A string containing the username.

 318

A web page can take action based on a username, using the following code:

If Me.User.Identity.Name = "SOME-DOMAIN\daveg" Then
 ' Do something.
Else
 ' Do something else.
End If

Role membership is tested by using the IsInRole method of the IPrincipal type. For example:

If Me.User.IsInRole("SOME-DOMAIN\Employees") Then
 ' Do something.
Else
 ' Do something else.
End If

6.10.3 Accessing Network Resources

After a user authenticates to the web application, it may be appropriate for the web application to
access network resources on behalf of the user. For example, a web application might give a
company's employees access to their corporate email accounts while away from the office. To do this,
the web application must log into the company's email server and retrieve information belonging to the
person using the application. Normally, such access to private information is blocked by the Windows
security mechanism because the web-server process does not have appropriate rights to access
resources owned by the user. There are two ways to resolve this issue. One is to give the necessary
rights to the process under which the web server is running; the other is for the web server to
impersonate the authenticated user. Each is discussed here in turn.

6.10.3.1 IUSR_ComputerName

When IIS is installed on a computer, the installation process creates a username on that computer
called "IUSR_ComputerName", where ComputerName is the name of the computer on which IIS is
installed. This is the default username under which web requests are run. IIS can be configured to use
any user account for this purpose, including domain user accounts. If you're writing a web application
that accesses network resources but doesn't depend on the identity of the web user for rights to those
resources, set up a domain username that has rights to the resources and configure IIS to use that
username. See the IIS documentation for information on how to configure this username.

6.10.3.2 Impersonation

Applications that need to access resources using the rights of the currently authenticated web user
must use impersonation. Impersonation is a Windows security term that refers to a thread's ability to
assume a different security identity for a period of time. In ASP.NET, it allows an application to
assume the identity of the web user so that the application can access resources on behalf of the user.
Impersonation happens automatically when using Windows authentication (as described earlier in this
chapter). The application is written simply to access the desired resources, and the Windows security
mechanism ensures that the access succeeds or fails depending on the end user's access rights.

If the application is using Forms authentication, impersonation must be explicitly coded. Unfortunately,
the .NET Framework doesn't provide a mechanism to do this. If an application that uses Forms
authentication needs to impersonate a user, it must call directly into the Windows API. The general
steps are:

1. Call the Windows LogonUser function to authenticate a given user.
2. Instantiate a WindowsIdentity object (defined in the System.Security.Principal namespace) to

represent the authenticated user.
3. Call the WindowsIdentity object's Impersonate method to impersonate the user.

Programming Visual Basic .NET

 319

4. Access the protected resource.
5. Undo the impersonation.

Example 6-16 gives the complete code for this process.

Example 6-16. Impersonating a Windows user from code
' Values used by the LogonUser function's logonType parameter
Public Enum LogonType
 LOGON32_LOGON_INTERACTIVE = 2
 LOGON32_LOGON_NETWORK = 3
 LOGON32_LOGON_BATCH = 4
 LOGON32_LOGON_SERVICE = 5
 LOGON32_LOGON_UNLOCK = 7
 LOGON32_LOGON_NETWORK_CLEARTEXT = 8
 LOGON32_LOGON_NEW_CREDENTIALS = 9
End Enum

' Values used by the LogonUser function's logonProvider parameter
Public Enum LogonProvider
 LOGON32_PROVIDER_DEFAULT = 0
 LOGON32_PROVIDER_WINNT35 = 1
 LOGON32_PROVIDER_WINNT40 = 2
 LOGON32_PROVIDER_WINNT50 = 3
End Enum

Declare Function LogonUser Lib "advapi32.dll" Alias "LogonUserA" (_
 ByVal username As String, _
 ByVal domain As String, _
 ByVal password As String, _
 ByVal logonType As LogonType, _
 ByVal logonProvider As LogonProvider, _
 ByRef token As IntPtr _
) As Integer

Private Sub DoSomethingUseful()

 ' Logon credentials
 Dim username As String = "username"
 Dim domain As String = "DOMAIN"
 Dim password As String = "password"

 ' A handle to the user who will be impersonated
 Dim token As IntPtr

 ' Log the user into Windows.
 Dim bLogonSuccessful As Boolean = Convert.ToBoolean(_
 LogonUser(_
 username, domain, password, _
 LogonType.LOGON32_LOGON_NETWORK, _
 LogonProvider.LOGON32_PROVIDER_DEFAULT, token))
 If Not bLogonSuccessful Then
 ' Throw an exception.
 End If

 ' Create a WindowsIdentity object that represents the logged-in user.
 Dim ident As New System.Security.Principal.WindowsIdentity(token)

 ' Impersonate the user.
 Dim ctx As System.Security.Principal.WindowsImpersonationContext = _
 ident.Impersonate()

 320

 '
 ' Access the protected resource here.
 ' ...
 '

 ' Stop impersonating the user.
 ctx.Undo()

End Sub

The LogonUser function is not part of the .NET Framework—it is part of the underlying Windows API.
To access it, one must use the Declare statement or use the .NET Framework's P/Invoke capability.
In Example 6-16, the Declare statement is used to give the code access to the LogonUser function.

The LogonUser function takes six parameters. The first three, username, domain, and password,
provide the logon credentials of the user who will be authenticated. The next two parameters,
logonType and logonProvider, provide further control of the logon process. (A discussion of these
two parameters is beyond the scope of this book.) Search for "LogonUser" in the Microsoft Developer
Network (MSDN) online documentation (http://msdn.microsoft.com/library/) for details about the
values that can be provided. The final parameter, token, is a ByRef parameter that receives a handle
to the logged-in user (if the function is successful). The return value is an Integer that indicates
whether the function was successful. A return value of 0 indicates failure; anything other than 0
indicates success. In Example 6-16, this value is converted to a Boolean using the Convert class
(defined in the System namespace).

After the user is logged in, the token value is passed to the constructor of the WindowsIdentity class
(defined in the System.Security.Principal namespace). This creates a WindowsIdentity object that
represents the authenticated user. This object has an Impersonate method, which is called to start the
impersonation. An object of type WindowsImpersonationContext (defined in the
System.Security.Principal namespace) is returned from the Impersonate method. This object is used
later to undo the impersonation. After the Impersonate method is called, the code can safely access
protected resources. When finished, the Undo method of the WindowsImpersonationContext object is
called to stop impersonation.

6.11 Designing Custom Controls

ASP.NET provides the ability to define two kinds of custom controls: user controls and server controls.
The purpose of both is the same: to encapsulate visual and programmatic behaviors for use on web
pages. (For example, a control can be used to encapsulate a navigation bar that appears on every
page in a site.) Their differences lie in how they are created and in their capabilities. User controls are
created in much the same way as standard ASP.NET pages and can include HTML, embedded code,
and code-behind files. This allows web developers to quickly and easily create controls using
techniques with which they are already familiar. In contrast, server controls are created entirely in code
and provide much more sophisticated control over rendering, postback processing, and event
generation. This means that custom server controls can do everything that built-in ASP.NET server
controls can do. Even so, user controls are usually the right choice because they are so simply
created. Server controls are not needed unless user controls are not sufficient for a given purpose.
This section shows how to create both kinds of controls.

6.11.1 User Controls

The easiest way to create a new control is to aggregate and modify the functionality of one or more
existing controls. This is done by creating a user-control file (.ascx) and then referencing it from a web
page file (.aspx). Example 6-17 shows a simple user-control file.

Example 6-17. A user control for implementing a menu

Programming Visual Basic .NET

 321

<%@ Control Language="VB" %>

<script Language="VB" runat="Server">

 Public Property SearchText() As String
 Get
 Return txtSearchFor.Text
 End Get
 Set
 txtSearchFor.Text = Value
 End Set
 End Property

 Public Event StartSearch(ByVal sender As Object, ByVal e As EventArgs)

 Private Sub btnStartSearch_Click(_
 ByVal sender As Object, _
 ByVal e As EventArgs _
)
 RaiseEvent StartSearch(Me, EventArgs.Empty)
 End Sub

</script>

<asp:Label id="lblSearch" runat="Server" Text="Search" />

<asp:TextBox id="txtSearchFor" runat="server" Text="" />
<asp:Button id="btnStartSearch" runat="server" Text="Go"
OnClick="btnStartSearch_Click" />

<asp:HyperLink id="AdvancedSearchLink" runat="server" Text="Advanced"
 NavigateUrl="http://advanced_search.aspx" Target="_top" />

Note these characteristics of user controls:

• They are defined by .ascx files.
• They contain HTML and script, just as standard ASP.NET web pages do.
• They have an @ Control directive instead of an @ Page directive.
• They do not have <html>, <head>, <body>, or <form> tags.

Example 6-18 shows a web page file that references the user control from Example 6-17. (It is
assumed that the text in Example 6-18 has been saved into a file named search.ascx).

Example 6-18. Referencing a user control from a web page
<%@ Page Language="VB" Explicit="True" Strict="True"%>
<%@ Register TagPrefix="dg" TagName="search" Src="search.ascx" %>

<script runat="server">

 Private Sub search1_StartSearch(ByVal sender As Object, e As EventArgs)
 lblMsg.Text = "You entered: " & search1.SearchText
 End Sub

</script>

<html>

 <head>
 <title>User Control Test</title>
 </head>

 322

 <body>
 <form action="index.aspx" method="post" runat="server">
 <table border="1">
 <tr>
 <td valign="top">
 <h1>Welcome to my web site!</h1>
 <p>Please use the search box at the right to
 search for items on this site.
 </p>
 </td>
 <td valign="top"><dg:search id="search1" runat="server"
 OnStartSearch="search1_StartSearch" /></td>
 </tr>
 <tr>
 <td><asp:Label id="lblMsg" runat="server" /></td>
 </tr>
 </table>
 </form>
 </body>

</html>

The web page must have an @ Register directive to provide a reference to the user-control source
file. When referencing user controls, three attributes are relevant: Src, TagPrefix, and TagName.
The Src attribute identifies the location of the .ascx file that defines the user control. The TagPrefix
and TagName attributes together determine how the user-control class is referred to in the body of the
web page. Look again at the @ Register directive shown in Example 6-18:

<%@ Register TagPrefix="dg" TagName="search" Src="search.ascx" %>

Later in Example 6-18, an instance of the user-control class is created within a table cell (shown
again here, but without the table-cell definition, to avoid clutter):

<dg:search id="search1" runat="server"
 OnStartSearch="search1_StartSearch" />

This is the same syntax that's used when instantiating a server control. The runat attribute is
required and must always be set to "server". The id attribute allows you to programmatically refer
to this instance of the control within code. Lastly, attributes having the form OnEventName are special.
Such attributes instruct the compiler to associate an event with a handler defined in the web page
class. In Example 6-18, the StartSearch event defined by the user control is associated with the
search_StartSearch method, which just sets the Text property of a label to show that the event was
received.

Figure 6-16 shows the resulting browser display, and Example 6-19 shows the HTML that is sent
to the browser.

Figure 6-16. Output from Example 6-18

Programming Visual Basic .NET

 323

Example 6-19. HTML generated by ASP.NET when executing Example
6-18
<html>

 <head>
 <title>User Control Test</title>
 </head>

 <body>
 <form name="ctrl0" method="post" action="index.aspx" id="ctrl0">
 <input type="hidden" name="_ _VIEWSTATE"
 value="dDwxNzk2NDQ0MTYzOzs+" />

 <table border="1">
 <tr>
 <td valign="top">
 <h1>Welcome to my web site!</h1>
 <p>Please use the search box at the right to
 search for items on this site.
 </p>
 </td>
 <td valign="top">
 Search

 <input name="search1:txtSearchFor" type="text"
 value="Enter a search string here."
 id="search1_txtSearchFor" />
 <input type="submit" name="search1:btnStartSearch"
 value="Go" id="search1_btnStartSearch" />

 <a id="search1_AdvancedSearchLink"
 href="http://advanced_search.aspx" target="_top">
 Advanced

 </td>
 </tr>
 <tr>
 <td></td>
 </tr>
 </table>
 </form>
 </body>

</html>

User controls can use code behind. The technique is the same as with web pages.

 324

6.11.2 Server Controls

ASP.NET provides the ability to develop custom server controls (also known as web controls). A
server control is a class that inherits from the WebControl class (in the System.Web.UI.WebControls
namespace) and overrides the Render method. This section describes how to create a server control
in the Visual Studio .NET IDE, as well as manually.

6.11.2.1 Creating a custom server control using Visual Studio .NET

To create a custom server control in Visual Studio .NET:

1. Select File New Project. The New Project dialog box appears, as previously shown in
Figure 6-1.

2. Select "Visual Basic Projects" in the Project Types pane on the left side of the dialog box.
3. Select "Web Control Library" in the Templates pane on the right side of the dialog box.
4. Enter a name in the Name text box.
5. Enter a location in the Location text box.
6. Click OK. Visual Studio .NET creates a project with some boilerplate code that implements a

server control. The code generated by Visual Studio .NET is shown in Example 6-20.

Example 6-20. Code generated by Visual Studio .NET for a new web-
control project
Imports System.ComponentModel
Imports System.Web.UI

<DefaultProperty("Text"), _
ToolboxData("<{0}:WebCustomControl1
runat=server></{0}:WebCustomControl1>")> _
Public Class WebCustomControl1
 Inherits System.Web.UI.WebControls.WebControl

 Dim _text As String

 <Bindable(True), Category("Appearance"), DefaultValue("")> _
 Property [Text]() As String
 Get
 Return _text
 End Get

 Set(ByVal Value As String)
 _text = Value
 End Set
 End Property

 Protected Overrides Sub Render(_
 ByVal output As System.Web.UI.HtmlTextWriter _
)
 output.Write([Text])
 End Sub

End Class

Note the following about the code in Example 6-20:

• It defines a class that inherits from the WebControl class (defined in the
System.Web.UI.WebControls namespace).

Programming Visual Basic .NET

 325

• The class has two custom attributes associated with it: DefaultProperty (defined in the
System.ComponentModel namespace) and ToolboxData (defined in the System.Web.UI
namespace). These attributes are not required, but they provide useful information to the
Visual Studio .NET Web Forms Designer when the control is referenced in a web-form project.

• The class has a property called Text. This is not a requirement for web controls; it is just a
design pattern used by Visual Studio .NET.

• The Text property has three custom attributes: Bindable, Category, and DefaultValue
(all defined in the System.ComponentModel namespace). Again, these custom attributes are
not required, but they provide information to the Visual Studio .NET Web Forms Designer
when the control is referenced in a web-form project.

• The class defines an override for the Render method (originally declared in the WebControl
class). The ASP.NET framework calls this method to ask the control to render itself into HTML.
It is up to the control developer (you) to render output that appropriately represents the control.
The boilerplate code simply outputs the value of the Text property.

6.11.2.2 Creating a custom server control in code

To create a custom server control without the benefit of Visual Studio .NET, derive a class from the
WebControl class and override the Render method. For good measure, add the ToolboxData
custom attribute to the class, as exemplified by the Visual Studio .NET-generated code in Example
6-20. An example is shown in Example 6-21.

Example 6-21. A web control designed without Visual Studio .NET
Imports System.ComponentModel
Imports System.Web.UI

Namespace OReilly.VBNET

<ToolboxData("<{0}:HelloWebControl runat=server></{0}:HelloWebControl>")> _
Public Class HelloWebControl
 Inherits System.Web.UI.WebControls.WebControl

 Protected Overrides Sub Render(_
 ByVal output As System.Web.UI.HtmlTextWriter _
)
 output.Write("<i>hello, world</i>")
 End Sub

End Class

End Namespace

The control in Example 6-21 renders the hard-coded string "<i>hello, world</i>" within the
page on which it is placed. (Placing custom controls on web forms is described shortly.)

To compile the code in Example 6-21, save it to a file named HelloWebControl.vb, and execute the
following command from the command line:

vbc.exe HelloWebControl.vb /r:System.dll,System.Web.dll /t:library

This creates the file HelloWebControl.dll, which can then be referenced from a web project, as
explained next.

6.11.2.3 Using a custom server control in Visual Studio .NET

To add a custom server control to the Visual Studio .NET Toolbox, perform the following steps:

 326

1. Right-click on the Toolbox in Visual Studio .NET and select Customize Toolbox. The
Customize Toolbox dialog box appears, as shown in Figure 6-17. (If the Toolbox isn't visible,
select View Toolbox from the Visual Studio .NET main menu.)

Figure 6-17. The Customize Toolbox dialog box

2. Click on the .NET Framework Components tab.
3. Click on the Browse button, browse to your custom server control's compiled .dll, and click the

Open button. The controls in the .dll are added to the list view, as shown in Figure 6-18. (In
this case there is only one control in the .dll.) Note that the checkbox next to the control is not
yet checked.

Figure 6-18. The control has been added to the Customize Toolbox
dialog box

Programming Visual Basic .NET

 327

4. Click the checkbox next to the control, then click OK.

After the control has been added to the Toolbox, it can be dropped onto a web form and manipulated
in the same way as the built-in server controls. Example 6-22 displays the HTML view of a new web
page with an instance of the control from Example 6-21 placed on it. The lines related to the control
are shown in bold, but the entire HTML view is shown for context.

Example 6-22. The HTML view generated by Visual Studio .NET when a
custom control is added to a web form
<%@ Page Language="vb" AutoEventWireup="false"
 Codebehind="WebForm1.aspx.vb" Inherits="WebApplication1.WebForm1"%>
<%@ Register TagPrefix="cc1" Namespace="OReilly.VBNET"
 Assembly="HelloWebControl" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
 <HEAD>
 <title></title>
 <meta name="GENERATOR" content="Microsoft Visual Studio .NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <meta name=vs_defaultClientScript content="JavaScript">
 <meta name=vs_targetSchema
 content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">

 <form id="Form1" method="post" runat="server">
 <cc1:HelloWebControl id="HelloWebControl1"
 style="Z-INDEX: 101; LEFT: 8px; POSITION: absolute; TOP: 8px"
 runat="server"></cc1:HelloWebControl>

 </form>

 </body>
</HTML>

The code-behind file that goes with Example 6-22 has the following line added to it:

Protected WithEvents HelloWebControl1 As OReilly.VBNET.HelloWebControl

6.11.2.4 Using a custom server control manually

To use a custom server control in a project created without the benefit of Visual Studio .NET, perform
the following:

1. Move the compiled web control dll into the web application's bin directory.
2. In the web page on which the control is to appear, place an @ Register directive to register

the custom control. (The @ Register directive was explained in Section 6.5 earlier in this
chapter.)

3. Use the custom control in the same way that built-in server controls are used.

Example 6-23 shows an .aspx page that uses the HelloWebControl control developed earlier in this
section. Example 6-24 shows the HTML that is sent to the browser when this page is processed.
Figure 6-19 shows the resulting display.

Example 6-23. Using a custom control
<%@ Page Language="vb" AutoEventWireup="false" %>
<%@ Register TagPrefix="OReilly" Namespace="OReilly.VBNET"

 328

 Assembly="HelloWebControl" %>
<html>
 <body>
 <form id="Form1" method="post" runat="server">
 <OReilly:HelloWebControl id="HelloWebControl1" runat="server" />
 </form>
 </body>
</html>

Example 6-24. HTML generated from the page in Example 6-23
<html>
 <body>
 <form name="Form1" method="post" action="TestMyControl.aspx"
 id="Form1">
<input type="hidden" name="_ _VIEWSTATE" value="dDwyMDY0ODM0MjA7Oz4=" />

 <i>hello, world</i>
 </form>
 </body>
</html>

Figure 6-19. Display generated by the page in Example 6-23

6.12 Summary

ASP.NET is a brand-new framework for delivering web-based applications. It is similar in concept and
usage to Microsoft's previous ASP technology, though it is far more powerful.

Programming Visual Basic .NET

 329

Chapter 7. Web Services

A web service is a function call over the Internet. Web services are to distributed-application
development as components are to desktop-application development. With web services, a
component-library developer can expose programmatic functionality over the Internet. The author of a
client application can easily use that functionality, even though the client application may exist on a
computer on the other side of the world. Furthermore, the client application doesn't have to be web-
based. It can just as easily be a GUI-based application, as long as the computer it's running on is
connected to the Internet.

Web services are not limited to Microsoft products. They are an industrywide movement, with
industrywide standardization. Web services running on one vendor's platform can be used by clients
running on entirely different and otherwise incompatible platforms, since they are built on HTTP, XML,
and SOAP. These three specifications have extremely broad industry support and are available on
virtually all major hardware and operating-system platforms.

HTTP (HyperText Transfer Protocol) is a protocol that was originally developed to allow users to
navigate through hypermedia -- documents and other media that link to still other documents and
media. This protocol has become the basis for today's World Wide Web. HTTP has primarily been
used to transport documents that are in the form of HTML (HyperText Markup Language), a plain-text
document markup language.

Virtually every general-purpose computer in the world is connected to the Internet and has the
capability to browse web pages. Said another way, virtually every computer in the world has the ability
to transfer data using the HTTP protocol. Because of this, it makes sense to harness the power of
HTTP for more than just requesting and delivering web pages. In addition to these tasks, HTTP is now
used to transport XML and SOAP.

XML (eXtensible Markup Language) is a specification for encoding all kinds of data as plain-text
documents. Unlike HTTP, XML doesn't define a transport mechanism. XML documents can be
transmitted over HTTP, email, FTP, or any other transport mechanism.

SOAP (Simple Object Access Protocol) is a specification that defines how to encode function calls as
XML documents.

A web service is nothing more than a web server that knows how to listen for and respond to SOAP
messages carried over HTTP. How the web service is implemented is irrelevant to the client of the
web service. The client simply knows that it can send SOAP messages to a web server located at a
specific URL and receive SOAP responses.

ASP.NET makes it easy both to expose web services and to use them. In both cases, the ASP.NET
runtime encapsulates the communication mechanism, including generating and receiving appropriate
SOAP messages. The author of a web service merely writes a class that exposes the desired
functionality. ASP.NET does the hard work of handling incoming SOAP messages and forwarding
calls to the appropriate method of the class. When the method returns, ASP.NET wraps up the return
value and sends it back to the client in a SOAP response.

To the .NET application developer using web services, a web service seems like just another type that
exposes methods to call. Behind the scenes, ASP.NET translates each method call into a SOAP
request to invoke the remote functionality.

7.1 Creating a Web Service

Example 7-1 shows the source code for a simple web service.

Example 7-1. A simple web service

 330

<%@ WebService Language="VB" Class="HelloWebService" %>

Imports System.Web.Services

<WebService(Namespace:="http://yourcompany.com/")> _
Public Class HelloWebService
 Inherits WebService

 <WebMethod> Public Function SayHello(ByVal Name As String) As String
 Return "Hello, " & Name & ", welcome to web services!"
 End Function

End Class

To create and deploy this web service, perform these steps:

1. Create a virtual directory in IIS.
2. Enter the code from Example 7-1, and save it in the virtual directory in a file with an .asmx

extension—for example, HelloWebService.asmx.

After you do so, clients can access the service. Later in this chapter, you'll see how to write a web-
service client.

Note the following features of the code in Example 7-1:

• An @ WebService directive appears at the top of the file. This directive specifies the language
in which the code is written and the name of the class that contains the implementation of the
web service.

• The lines following the @ WebService directive are not enclosed in <script> tags.
• The System.Web.Services namespace is imported. This namespace contains the

WebServiceAttribute, WebMethodAttribute, and WebService types used in this example.
• The implementation class inherits from the WebService class (defined in the

System.Web.Services namespace). This is not strictly necessary and could have been omitted
from Example 7-1. However, inheriting from the WebService class gives the implementation
class access to ASP.NET intrinsic objects (Session, Application, etc., as described in
Chapter 6).

• The SayHello method is marked with the WebMethod attribute. This is required for the web
service to expose the method.

When a request for the .asmx file comes into the web server, ASP.NET compiles the code in the file
and automatically generates the plumbing to expose the marked methods as web-service methods.

If desired, you can compile the implementation class separately instead of placing the source in
the .asmx file. To do so, place the source code for the class only (not the @ WebService directive) in
a .vb file, and compile it to a .dll using either the command-line compiler or Visual Studio .NET. Note
that the compiler must reference System.Web.Services.dll (to gain access to the types in the
System.Web.Services namespace) and System.dll (because the WebService class exposes methods
inherited from the System.ComponentModel.Component class). Here's a sample command line:

vbc HelloWebService.vb /r:System.Web.Services.dll,System.dll /t:library

After compiling the class into a .dll file, copy the file into a directory named bin in the web application's
virtual directory. Then edit the .asmx file so that it contains only the @ WebService directive, as
shown in the first line of Example 7-1. When the ASP.NET framework processes the @ WebService
directive in the .asmx file, it will look through all of the assemblies in the bin directory for one that
contains the class named in the Class attribute of the @ WebService directive.

Programming Visual Basic .NET

 331

7.1.1 The WebService Attribute

The WebService attribute (that is, the WebServiceAttribute class, defined in the
System.Web.Services namespace) provides a way to attach a name, namespace, and description to a
web service. The properties that can be set for the WebService attribute are:

Description

A description of the web service. The default is an empty string.

Name

The name of the web service. The default is the name of the class implementing the web
service.

Namespace

The namespace of the web service. To avoid name clashes between web services, they are
given namespaces in URI format. A simple way to build a unique namespace for your
company's web services is to base it on your company's URL (because URLs are valid URIs).
For example:

http://yourcompany.com/webservices/

Although this looks like a URL, it isn't. It doesn't need to correspond to a site that can be
reached on the Internet. It just needs to be a unique name that is under your company's
control and has no chance of clashing with anyone else's namespace. The default for this
property is "http://tempuri.org/". The default is OK for testing web services, but should
not be used for production web services.

Here's how the WebService attribute might look when you specify all three properties:

<WebService(_
 Description:="My first web service.", _
 Name:="FirstWebService", _
 Namespace:="http://yourcompany.com/")> _
Public Class HelloWebService
 Inherits WebService
 ' ...
End Class

Note that the WebService attribute is not required for a class to implement a web service. It only
provides a way to specify the given properties of the web service.

7.1.2 The WebMethod Attribute

The WebMethod attribute (that is, the WebMethodAttribute class, defined in the System.Web.Services
namespace) identifies a method as being a web method. When the ASP.NET framework finds this
method in a class being used as a web service, it wires up the plumbing necessary to expose the
method as part of the web service. The properties that can be set for the WebMethod attribute are:

BufferResponse

Specifies whether to buffer the response to the client while it is being built. The type is
Boolean. The default is True.

 332

CacheDuration

Specifies whether responses are cached and, if so, how long they are cached (in seconds).
The type is Integer. A value of 0 (the default) specifies that responses aren't cached.

Description

Specifies a description of the web method. Tools can retrieve this description and display it to
potential users. The type is String. The default is an empty string.

EnableSession

Specifies whether session state is enabled for the web service. The type is Boolean. The
default is False.

MessageName

Specifies the name of the web-service method. The type is String. The default is the name of
the method as it appears in the implementation class.

Web services don't support method overloading. If you're writing a
class that will be used as the implementation of a web service,
don't overload method names. If you're using an existing class
that already has overloaded method names, use the WebMethod
attribute's MessageName attribute to control the names presented
to clients of the web service.

TransactionOption

Specifies how the web method participates in transactions. The type is TransactionOption
(defined in the System.EnterpriseServices namespace). The default is Disabled.

Transactions can't propagate across web-service method
invocations. Therefore, web methods can participate in
transactions only as the root of a transaction. They can't enlist on
a transaction that is in progress.

7.1.3 The WebService Class

To obtain access to the ASP.NET framework's environment objects, a web-service class can inherit
from the WebService class (defined in the System.Web.Services namespace). Doing so causes the
web-service class to inherit five properties:

Application

This is an object that can be used to hold application state. See Chapter 6 for more
information.

Context

This is the context of the web-service request. This is an instance of the HttpContext class
(defined in the System.Web namespace). This object contains references to various items of
information concerning the current web-service request.

Programming Visual Basic .NET

 333

Server

This is an object that holds information about the web server. See Chapter 6 for more
information.

Session

This is an object that can be used to hold session state. See Chapter 6 for more information.

User

If Windows authentication is used to authenticate the web-service client, the User property
references an object containing information about the user. The type of this property is
IPrincipal.

7.2 Testing a Web Service with a Browser

Web services deployed on ASP.NET can easily be tested with a web browser, because the ASP.NET
framework itself includes the ability to generate browser screens based on the definition of the web
service. For example, browsing to the .asmx file shown in Example 7-1 (using the URL
http://localhost/WebServices/HelloWebService.asmx) produces the browser screen shown in Figure
7-1.

Figure 7-1. Browsing to a web service hosted in ASP.NET

To test a web service in a web browser, the .asmx file must be deployed in an IIS virtual directory.
Using the browser to view the .asmx file directly from disk doesn't work.

The "HelloWebService" in large font in Figure 7-1 is the name of the web service exposed at the
given URL. This is the name of the implementation class (or the value given by the Name parameter of
the WebService attribute, if present). Underneath the main heading there are two additional links.
The first, marked "Service Description", links to the WSDL description of the service. (Web-service
descriptions and WSDL are explained in the next section.)

The second, at the bottom of the test window, is the list of web methods exposed by the web service.
In the case of HelloWebService, there is only a single method, SayHello. Clicking on the name of the
method brings up a screen with information about that method and with a mechanism for testing it.
The screen is shown in Figure 7-2.

Figure 7-2. The test screen for the SayHello web method

 334

Near the top of the test screen for the SayHello web method is a place to enter a value for the
method's single parameter, Name, and a button that invokes the method. At the bottom of the screen is
a list of sample invocations and responses for the web method, in the protocols that ASP.NET
understands. ASP.NET web services can be invoked using the SOAP, HTTP GET, or HTTP POST
protocols. When you're developing clients on the .NET platform, none of this matters to you—.NET
does the work of wrapping invocations in the appropriate SOAP messages. However, when you're
calling a web service from a platform that doesn't have native support for writing web-service clients,
this information can be very helpful. Additionally, the HTTP GET and HTTP POST protocols may be
simpler to implement on platforms that don't provide SOAP support. These protocols won't be
discussed further, however, because this book is about developing on the .NET platform.

Clicking the Invoke button on the screen shown in Figure 7-2 invokes the web service using the
HTTP GET protocol. The response is an XML document that encodes the result of the web-method
invocation (see Figure 7-3). This is not a SOAP response. Rather, it is in the format used when
responding to HTTP GET or HTTP POST invocations. It is sufficiently readable to see that the web
method is performing as expected.

Figure 7-3. The result of clicking the Invoke button in Figure 7-2

Programming Visual Basic .NET

 335

7.3 Web-Service Descriptions

Web Service Description Language (WSDL) is a specification for encoding the definition of a web
service as an XML document. This is analogous to providing type information for traditional COM
software components. A web-service description identifies the name and URL of a web service, the
web methods that are available from that service, the methods' parameter names and types, and the
methods' return types.

ASP.NET automatically generates the WSDL documents for web services that it hosts. This document
can be viewed by clicking the "Service Description" link in the service test page (refer back to Figure
7-1). A portion of this document for the HelloWebService service is shown in Figure 7-4.

Figure 7-4. Viewing a WSDL document

As you can see in Figure 7-4, the WSDL document is intended more for tools that can read its
contents than it is for humans. As shown in the next section, WSDL documents are used by client
tools to generate code that knows how to talk to the given web service.

7.4 Consuming a Web Service

On the .NET platform, consuming a web service is as easy as creating one. This section contains the
steps for creating a web-service client that can call the web service shown in Example 7-1.

7.4.1 Consuming a Web Service in Visual Studio .NET

To use a web service from a Visual Studio .NET project, right-click on the References node in the
Solution Explorer window, and select Add Web Reference. This causes the Add Web Reference
dialog box to appear.

 336

In the Address field of the Add Web Reference dialog box, enter the URI of a web-service description
document, and click the Add Reference button. When adding references to web services hosted by
ASP.NET, the web-service description document is obtained by appending ?wsdl to the path of the
service itself. For example: http://www.company.com/myWebService.asmx?wsdl or
http://localhost/WebServices/Hello-WebService.asmx?wsdl.

Visual Studio .NET reads the web-service description document and builds a corresponding proxy
class that knows how to access the described web service. The proxy class is local and exposes the
same functionality as the web service. To call the web service from within the project, instantiate the
proxy class and call its methods. For example, the following code instantiates the HelloWebService
class and calls its SayHello method in response to a button click:

' Assumes that this code is part of a form having a button named
' btnOk_Click, a text box named txtName, and a text box named txtResult.
Private Sub btnOk_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs _
) Handles btnOk.Click

 If txtName.Text <> "" Then
 Dim sName As String = txtName.Text
 Dim oWS As New localhost.HelloWebService()
 Dim sMsg As String = oWS.SayHello(sName)
 oWS.Dispose()
 txtResult.Text = sMsg
 End If

End Sub

Note that the web-server machine name is used as the namespace for the web-service class. Thus,
for a class called HelloWebService exposed by the same machine as the caller, the namespace is
localhost, and the fully qualified name of the class is localhost.HelloWebService. For machine names
containing dots, the order of the parts is reversed. Thus, if the HelloWebService service were exposed
by a machine named webservices.somecompany.com, the HelloWebService class namespace would
be com.somecompany.webservices, and the fully qualified class name of the class would be
com.somecompany.webservices.HelloWebService.

Internally, the proxy class packages up method calls into SOAP wrappers and forwards them to the
web service. This process is transparent to the client of the proxy class.

7.4.2 Consuming a Web Service in Notepad

To use a web service from a project that is not developed within the Visual Studio .NET IDE, use the
command-line wsdl.exe tool to create a proxy class that wraps the web service. For example:

wsdl http://localhost/WebServices/HelloWebService.asmx?wsdl /language:vb

The wsdl.exe tool takes as an argument the URL of a web-service description document. As explained
in the preceding discussion of Visual Studio .NET, when consuming services hosted by ASP.NET, the
web-service description document is obtained by appending ?wsdl to the path of the web service, as
was done here.

The output of the wsdl.exe tool is a source-code file containing the definition of a proxy class that
knows how to access the described web service. The wsdl.exe tool's /language switch controls
whether the source is written in Visual Basic .NET or C#. The name of the class in the generated
source code is equal to the name of the service, as given in the web-service description document.
Example 7-2 shows the output of the wsdl.exe tool when run on the HelloWebService service from

Programming Visual Basic .NET

 337

Example 7-1. (Note that several of the lines have been reformatted to make them fit in this book.
Other than that, the code is unchanged.)

Example 7-2. Sample output of the wsdl.exe tool
'--
' <autogenerated>
' This code was generated by a tool.
' Runtime Version: 1.0.2914.16
'
' Changes to this file may cause incorrect behavior and will be lost if
' the code is regenerated.
' </autogenerated>
'--

Option Strict Off
Option Explicit On

Imports System
Imports System.Diagnostics
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Xml.Serialization

'
'This source code was auto-generated by wsdl, Version=1.0.2914.16.
'

<System.Web.Services.WebServiceBindingAttribute(_
 Name:="HelloWebServiceSoap", _
 [Namespace]:="http://yourcompany.com/")> _
Public Class HelloWebService
 Inherits System.Web.Services.Protocols.SoapHttpClientProtocol

 <System.Diagnostics.DebuggerStepThroughAttribute()> _
 Public Sub New()
 MyBase.New
 Me.Url = "http://localhost/WebServices/HelloWebService.asmx"
 End Sub

 <System.Diagnostics.DebuggerStepThroughAttribute(), _
 System.Web.Services.Protocols.SoapDocumentMethodAttribute(_
 "http://yourcompany.com/SayHello", _
 RequestNamespace:="http://yourcompany.com/", _
 ResponseNamespace:="http://yourcompany.com/", _
 Use:=System.Web.Services.Description.SoapBindingUse.Literal, _
 ParameterStyle:= _
 System.Web.Services.Protocols.SoapParameterStyle.Wrapped)> _
 Public Function SayHello(ByVal Name As String) As String
 Dim results() As Object = Me.Invoke("SayHello", New Object()
{Name})
 Return CType(results(0),String)
 End Function

 <System.Diagnostics.DebuggerStepThroughAttribute()> _
 Public Function BeginSayHello(_
 ByVal Name As String, _
 ByVal callback As System.AsyncCallback, _
 ByVal asyncState As Object _
) As System.IAsyncResult
 Return Me.BeginInvoke("SayHello", New Object() {Name}, callback, _

 338

 asyncState)
 End Function

 <System.Diagnostics.DebuggerStepThroughAttribute()> _
 Public Function EndSayHello(_
 ByVal asyncResult As System.IAsyncResult _
) As String
 Dim results() As Object = Me.EndInvoke(asyncResult)
 Return CType(results(0),String)
 End Function
End Class

After creating the proxy class, write client code to make use of it. Using the proxy class is just like
using any other .NET class. The proxy class hides method calls being forwarded over the Web.
Example 7-3 shows code that uses the proxy class from Example 7-2.

Example 7-3. Client code for use with Example 7-2
Imports System

Public Module SomeApplication
 Public Sub Main()
 Dim myService As New HelloWebService()
 Console.WriteLine(myService.SayHello("Annemarie"))
 End Sub
End Module

Note that the client code simply instantiates the proxy class and calls its SayHello method.

Lastly, compile the proxy class and the client code together. Here's an example of compiling from the
command line (note that this should be entered as a single command and is shown on two lines here
only for printing in this book):

vbc SomeApplication.vb HelloWebService.vb
/reference:System.Web.Services.dll,System.Xml.dll,System.dll

The three assemblies referenced in this command are required by the proxy class.

7.4.3 Synchronous Versus Asynchronous Calls

Web-method calls are synchronous by default. That is, the caller waits while the call is sent over the
network and while the result is calculated and sent back. When dealing with the Internet, this can be a
lengthy process (a fraction of a second to several seconds). There are times when it would be useful
for the client to go off and perform some other processing while waiting for the web method to
complete. Fortunately, the autogenerated proxy class (created by either Visual Studio .NET or
wsdl.exe) provides a way to do this. Example 7-4 shows client code that calls the SayHello web
method asynchronously.

Example 7-4. Calling SayHello asynchronously
Private myService As New HelloWebService()

Private Sub btnInvoke_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs _
) Handles btnInvoke.Click
 ' Assumes that there is a text box named txtName.
 myService.BeginSayHello(txtName.Text, AddressOf MySayHelloCallback, _
 Nothing)

Programming Visual Basic .NET

 339

End Sub

Private Sub MySayHelloCallback(ByVal ar As IAsyncResult)
 ' Assumes that there is a text box named txtResult.
 txtResult.Text = myService.EndSayHello(ar)
End Sub

For each web method, the web-service proxy class exposes two additional methods, named
BeginWebMethodName and EndWebMethodName, where WebMethodName is the name of the web
method to be invoked. The purpose of the BeginWebMethodName method is to invoke the web
method and immediately return. This allows client code to continue executing while the web service
processes the request. When the response arrives from the web service, it is held until the client calls
the EndWebMethodName method. If the client calls the EndWebMethodName method before the web
method's response arrives, the client blocks until the response arrives. If the client calls the
EndWebMethodName method after the response arrives, the method immediately returns with the
response value.

The parameters of the BeginWebMethodName method are exactly the same as the parameters of the
web-method call itself, plus two additional parameters:

callback

If the client would like to be notified when the web method's response has arrived, it can pass
a delegate reference in this parameter. The type of this parameter is AsyncCallback, which is
defined in the System namespace as:

Public Delegate Sub AsyncCallback(ByVal ar As IAsyncResult)

To pass a callback function to the BeginWebMethodName method, write a method having the
appropriate signature and then use the AddressOf operator to create a delegate from that
method, as shown in Example 7-4.

If the client does not want to be notified when the web method's response has arrived, it can
pass Nothing in this parameter.

asyncState

If the client would like to provide some arbitrary additional information to the callback function,
it can do so by assigning a value to the asyncState parameter. This parameter is of type
Object, so any value can be passed. The value passed in this parameter is passed on to the
callback function when the web-method call returns. If no additional information needs to be
passed to the callback function, pass Nothing in this parameter.

The BeginWebMethodName method has no return value.

When the callback function is called, it receives a reference to an object that implements IAsyncResult
(defined in the System namespace). The AsyncState property of this object holds the value passed in
the asyncState parameter of the BeginWeb-MethodName method.

The first parameter of the EndWebMethodName method is the IAsyncResult reference obtained in the
callback function. Alternatively, the client can pass Nothing in this parameter if not using a callback
function. The EndWebMethodName method may have additional parameters, depending on whether
the corresponding web method has any ByRef parameters. If there are any such parameters, they
appear here in the signature of the EndWebMethodName method. In addition, the return value of the
EndWebMethodName method is the return value of the web method.

 340

7.5 Web-Service Discovery

Up to this point, we have assumed that the client of a web service knows where to find that web
service's WSDL document. This may not always be the case. For example, consider a client
application that runs on a portable device. Its purpose is to make a reservation on the user's behalf at
the nearest hotel meeting the user's preset price and service guidelines. Before the client application
can communicate with a hotel's reservation web service, the client must have a way to discover that
the service is even there. This is the purpose of web-service directories.

Web-service directories provide a way for clients to find web services that perform a certain task or a
certain kind of task. They are like the yellow pages in a telephone directory, in which businesses are
listed according to the product or service they provide. Standards are just now being developed for
web-service directories. One strong contender is called Universal Description, Discovery, and
Integration (UDDI). Information about this standard and the implementations that currently exist can be
found at http://www.uddi.org.

You may also have heard of DISCO files. (DISCO is short for discovery.) DISCO is a Microsoft-
exclusive specification for encoding the addresses of multiple WSDL documents into a single XML
document. DISCO doesn't have directory capabilities and so is falling into disuse as UDDI grows.

7.6 Limitations of Web Services

The ASP.NET framework makes it so easy to expose and consume web services that it's easy to
forget about the communication layer between the client and server. Because web services are built
on the SOAP protocol, their capabilities are limited to the capabilities of SOAP. The most important
points to remember are:

No callback mechanism

For a web service to call back to a client, the client has to handle incoming HTTP requests.
Virtually no client systems are configured this way, so callbacks generally are not an option. If
a callback system is absolutely required, it could be faked by writing methods in the client and
server allowing the client component to periodically poll the server to determine if events have
occurred.

No transactions across the Web

The SOAP protocol currently does not provide any transaction support. A web-service method
can begin a new transaction, and local resources will enlist on that transaction, but a web
service can't enlist on an existing transaction.

Exceptions are returned as SOAP faults

When there is some error in processing a web-method call, the web service responds with a
SOAP fault. If the client of the web service is implemented on the .NET platform, the client
receives a SoapException exception (defined in the System.Web.Services.Protocols
namespace), even if both the client and server are using .NET. Put another way, even if both
client and server are running on .NET, exceptions thrown on the server aren't raised as the
same exception on the client.

Performance is an issue

There is overhead associated with representing function calls as XML. This overhead is a
necessary evil when communicating over the Internet across network firewalls. However, web
services are not a good choice for cross-component communication when the components are
running on the same machine or even on different machines on the same LAN. Web services
provide no benefit in these scenarios.

Programming Visual Basic .NET

 341

7.7 Summary

Web services are a new, industry-standard mechanism for connecting software components across
the Internet. This mechanism is based on HTTP, XML, and SOAP—all widely accepted standards.
The .NET Framework provides support for developers of web services and web-service clients,
making it just as easy to expose and consume web services as it is to write and use a simple class
that exposes methods.

 342

Programming Visual Basic .NET

 343

Chapter 8. ADO.NET: Developing Database
Applications

Many software applications benefit from storing their data in database management systems. A
database management system is a software component that performs the task of storing and
retrieving large amounts of data. Examples of database management systems are Microsoft SQL
Server and Oracle Corporation's Oracle.

Microsoft SQL Server and Microsoft Access both include a sample
database called Northwind. The Northwind database is used in
the examples throughout this chapter.

All examples in this chapter assume that the following declaration appears in the same file as the code:

Imports System.Data

Examples that use SQL Server also assume this declaration:

Imports System.Data.SqlClient

and examples that use Access assume this declaration:

Imports System.Data.OleDb

8.1 A Brief History of Universal Data Access

Database management systems provide APIs that allow application programmers to create and
access databases. The set of APIs that each manufacturer's system supplies is unique to that
manufacturer. Microsoft has long recognized that it is inefficient and error prone for an applications
programmer to attempt to master and use all the APIs for the various available database management
systems. What's more, if a new database management system is released, an existing application
can't make use of it without being rewritten to understand the new APIs. What is needed is a common
database API.

Microsoft's previous steps in this direction included Open Database Connectivity (ODBC), OLE DB,
and ADO (not to be confused with ADO.NET). Microsoft has made improvements with each new
technology.

With .NET, Microsoft has released a new mechanism for accessing data: ADO.NET. The name is a
carryover from Microsoft's ADO (ActiveX Data Objects) technology, but it no longer stands for ActiveX
Data Objects—it's just ADO.NET. To avoid confusion, I will refer to ADO.NET as ADO.NET and to
ADO as classic ADO.

If you're familiar with classic ADO, be careful—ADO.NET is not a descendant, it's a new technology. In
order to support the Internet evolution, ADO.NET is highly focused on disconnected data and on the
ability for anything to be a source of data. While you will find many concepts in ADO.NET to be similar
to concepts in classic ADO, it is not the same.

8.2 Managed Providers

When speaking of data access, it's useful to distinguish between providers of data and consumers of
data. A data provider encapsulates data and provides access to it in a generic way. The data itself can

 344

be in any form or location. For example, the data may be in a typical database management system
such as SQL Server, or it may be distributed around the world and accessed via web services. The
data provider shields the data consumer from having to know how to reach the data. In ADO.NET,
data providers are referred to as managed providers.

A data consumer is an application that uses the services of a data provider for the purposes of storing,
retrieving, and manipulating data. A customer-service application that manipulates a customer
database is a typical example of a data consumer. To consume data, the application must know how
to access one or more data providers.

ADO.NET is comprised of many classes, but five take center stage:

Connection

Represents a connection to a data source.

Command

Represents a query or a command that is to be executed by a data source.

DataSet

Represents data. The DataSet can be filled either from a data source (using a DataAdapter
object) or dynamically.

DataAdapter

Used for filling a DataSet from a data source.

DataReader

Used for fast, efficient, forward-only reading of a data source.

With the exception of DataSet, these five names are not the actual classes used for accessing data
sources. Each managed provider exposes classes specific to that provider. For example, the SQL
Server managed provider exposes the SqlConnection, SqlCommand, SqlDataAdapter, and
SqlDataReader classes. The DataSet class is used with all managed providers.

Any data-source vendor can write a managed provider to make that data source available to
ADO.NET data consumers. Microsoft has supplied two managed providers in the .NET Framework:
SQL Server and OLE DB.

The examples in this chapter are coded against the SQL Server managed provider, for two reasons.
The first is that I believe that most programmers writing data access code in Visual Basic .NET will be
doing so against a SQL Server database. Second, the information about the SQL Server managed
provider is easily transferable to any other managed provider.

8.3 Connecting to a SQL Server Database

To read and write information to and from a SQL Server database, it is necessary first to establish a
connection to the database. This is done with the SqlConnection object, found in the
System.Data.SqlClient namespace. Here's an example:

' Open a database connection.
Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _

Programming Visual Basic .NET

 345

 & "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

This code fragment instantiates an object of type SqlConnection, passing its constructor a connection
string. Calling the SqlConnection object's Open method opens the connection. A connection must be
open for data to be read or written, or for commands to be executed. When you're finished accessing
the database, use the Close method to close the connection:

' Close the database connection.
cn.Close()

The connection string argument to the SqlConnection class's constructor provides information that
allows the SqlConnection object to find the SQL Server database. The connection string shown in the
earlier code fragment indicates that the database is located on the same machine that is running the
code snippet (Data Source=localhost), that the database name is Northwind (Initial
Catalog=Northwind), and that the user ID that should be used for logging in to SQL Server is the
current Windows login account (Integrated Security=True). Table 8-1 shows the valid SQL
Server connection string settings.

Table 8-1. SQL Server connection string settings

Setting Default
Value Description

Addr Synonym for Data Source.
Address Synonym for Data Source.

Application Name
The name of the client application. If provided, SQL Server
uses this name in its sysprocesses table to help identify the
process serving this connection.

AttachDBFilename Synonym for Initial File Name.
Connect Timeout 15 Synonym for Connection Timeout.

Connection Timeout 15

The number of seconds to wait for a login response from SQL
Server. If no response is received during this period, an
SqlException exception is thrown.

This setting corresponds to the SqlConnection object's
ConnectionTimeout property.

Current Language

The language to use for this session with SQL Server. The
value of this setting must match one of the entries in either the
"name" column or the "alias" column of the
"master.dbo.syslanguages" system table. If this setting is not
specified, SQL Server uses either its system default language
or a user-specific default language, depending on its
configuration.

The language setting affects the way dates are displayed and
may affect the way SQL Server messages are displayed.

Search for "SQL Server Language Support" in SQL Server
Books Online for more information.

Data Source

The name or network address of the computer on which SQL
Server is located.

This setting corresponds to the SqlConnection object's
DataSource property.

 346

extended
properties Synonym for Initial File Name.

Initial Catalog

The name of the database to use within SQL Server.

This setting corresponds to the SqlConnection object's
Database property.

Initial File Name

The full pathname of the primary file of an attachable
database.

If this setting is specified, the Initial Catalog setting must
also be specified.

Search for "Attaching and Detaching Databases" in SQL
Server Books Online for more information.

AttachDBFilename and extended properties are
synonyms for Initial File Name.

Integrated
Security `false'

Indicates whether to use NT security for authentication. A
value of `true' or `sspi' (Security Support Provider Interface)
indicates that NT security should be used. A value of `false'
indicates that SQL Server security should be used.

Search for "How SQL Server Implements Security" in SQL
Server Books Online for more information.

Net `dbmssocn' Synonym for Network Library.
Network Address Synonym for Data Source.

Network Library `dbmssocn'

The name of the .dll that manages network communications
with SQL Server. The default value, `dbmssocn', is
appropriate for clients that communicate with SQL Server over
TCP/IP.

Search for "Communication Components" and "Net-Libraries
and Network Protocols" in SQL Server Books Online for more
information.

Password The SQL Server login password for the user specified in the
User ID setting.

Persist Security
Info `false'

Specifies whether SqlConnection object properties can return
security-sensitive information while a connection is open.

Before a connection is opened, its security-sensitive properties
return whatever was placed in them. After a connection is
opened, properties return security-sensitive information only if
the Persist Security Info setting was specified as
`true'.

For example, if Persist Security Info is `false' and
the connection has been opened, the value returned by the
SqlConnection object's ConnectionString property does not
show the Password setting, even if the Password setting
was specified.

Pwd Synonym for Password.
Server Synonym for Data Source.

Trusted_Connection `false' Synonym for Integrated Security.
User ID The SQL Server login account to use for authentication.

Programming Visual Basic .NET

 347

Workstation ID
the client
computer
name

The name of the computer that is connecting to SQL Server.

SQL Server Authentication

Before a process can access data that is located in a SQL Server database,
it must log in to SQL Server. The SqlConnection object communicates with
SQL Server and performs this login based on information provided in the
connection string. Logging in requires authentication. Authentication means
proving to SQL Server that the process is acting on behalf of a user who is
authorized to access SQL Server data. SQL Server recognizes two methods
of authentication:

• SQL Server Authentication, which requires the process to supply a
username and password that have been set up in SQL Server by an
administrator. Beginning with SQL Server 2000, this method of
authentication is no longer recommended (and is disabled by default).

• Integrated Windows Authentication, in which no username and
password are provided. Instead, the Windows NT or Windows 2000
system on which the process is running communicates the user's
Windows login name to SQL Server. The Windows user must be set
up in SQL Server by an administrator in order for this to work.

To use SQL Server Authentication:

1. (SQL Server 2000 only) Enable SQL Server Authentication. In
Enterprise Manager, right-click on the desired server, click Properties,
and then click the Security tab. Select "SQL Server and Windows"
and click OK.

2. The network administrator sets up a login account using Enterprise
Manager, specifying that the account will use SQL Server
Authentication and supplying a password. Programming books
(including this one) typically assume the presence of a user named
"sa" with an empty password, because this is the default system
administrator account set up on every SQL Server installation (good
administrators change the password, however).

3. The network administrator assigns rights to this login account as
appropriate.

4. The data access code specifies the account and password in the
connection string passed to the SqlConnection object. For example,
the following connection string specifies the "sa" account with a blank
password:

"Data Source=SomeMachine; Initial
Catalog=Northwind; User ID=sa; Password="

To use Integrated Windows Authentication:

1. The network administrator sets up the login account using Enterprise

 348

Manager, specifying that the account will use Windows Authentication
and supplying the Windows user or group that is to be given access.

2. The network administrator assigns rights to this login account as
appropriate.

3. The data access code indicates in the connection string that
Integrated Windows Security should be used, as shown here:

"Data Source= SomeMachine; Initial
Catalog=Northwind; Integrated Security=True"

When using Integrated Windows Authentication, it is necessary to know
what Windows login account a process will run under and to set up
appropriate rights for that login account in SQL Server Enterprise Manager.
A program running on a local machine generally runs under the login
account of the user that started the program. A component running in
Microsoft Transaction Server (MTS) or COM+ runs under a login account
specified in the MTS or COM+ Explorer. Code that is embedded in an
ASP.NET web page runs under a login account specified in Internet
Information Server (IIS). Consult the documentation for these products for
information on specifying the login account under which components run.
Consult the SQL Server Books Online for information on setting up SQL
Server login accounts and on specifying account privileges.

8.4 Connecting to an OLE DB Data Source

OLE DB is a specification for wrapping data sources in a COM-based API so that data sources can be
accessed in a polymorphic way. The concept is the same as ADO.NET's concept of managed
providers. OLE DB predates ADO.NET and will eventually be superseded by it. However, over the
years, OLE DB providers have been written for many data sources, including Oracle, Microsoft Access,
Microsoft Exchange, and others, whereas currently only one product—SQL Server—is natively
supported by an ADO.NET managed provider. To provide immediate support in ADO.NET for a wide
range of data sources, Microsoft has supplied an ADO.NET managed provider for OLE DB. That
means that ADO.NET can work with any data source for which there is an OLE DB data provider.
Furthermore, because there is an OLE DB provider that wraps ODBC (an even older data-access
technology), ADO.NET can work with virtually all legacy data, regardless of the source.

Connecting to an OLE DB data source is similar to connecting to SQL Server, with a few differences:
the OleDbConnection class (from the System.Data.OleDb namespace) is used instead of the
SqlConnection class, and the connection string is slightly different. When using the OleDbConnection
class, the connection string must specify the OLE DB provider that is to be used as well as additional
information that tells the OLE DB provider where the actual data is. For example, the following code
opens a connection to the Northwind sample database in Microsoft Access:

' Open a connection to the database.
Dim strConnection As String = _
 "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" _
 & "C:\Program Files\Microsoft Office\Office\Samples\Northwind.mdb"
Dim cn As OleDbConnection = New OleDbConnection(strConnection)
cn.Open()

Similarly, this code opens a connection to an Oracle database:

' Open a connection to the database.
Dim strConnection As String = _

Programming Visual Basic .NET

 349

 "Provider=MSDAORA.1;User ID=MyID;Password=MyPassword;" _
 & "Data Source=MyDatabaseService.MyDomain.com"
Dim cn As OleDbConnection = New OleDbConnection(strConnection)
cn.Open()

The values of each setting in the connection string, and even the set of settings that are allowed in the
connection string, are dependent on the specific OLE DB provider being used. Refer to the
documentation for the specific OLE DB provider for more information.

Table 8-2 shows the provider names for several of the most common OLE DB providers.

Table 8-2. Common OLE DB provider names
Data source OLE DB provider name

Microsoft Access Microsoft.Jet.OLEDB.4.0

Microsoft Indexing Service MSIDXS.1

Microsoft SQL Server SQLOLEDB.1

Oracle MSDAORA.1

8.5 Reading Data into a DataSet

The DataSet class is ADO.NET's highly flexible, general-purpose mechanism for reading and updating
data. Example 8-1 shows how to issue a SQL SELECT statement against the SQL Server Northwind
sample database to retrieve and display the names of companies located in London. The resulting
display is shown in Figure 8-1.

Figure 8-1. The output generated by the code in Example 8-1

Example 8-1. Retrieving data from SQL Server using a SQL SELECT
statement
' Open a connection to the database.
Dim strConnection As String = _
 "Data Source=localhost; Initial Catalog=Northwind;" _
 & "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

' Set up a data set command object.
Dim strSelect As String = "SELECT * FROM Customers WHERE City = 'London'"
Dim dscmd As New SqlDataAdapter(strSelect, cn)

' Load a data set.
Dim ds As New DataSet()
dscmd.Fill(ds, "LondonCustomers")

' Close the connection.
cn.Close()

 350

' Do something with the data set.
Dim dt As DataTable = ds.Tables.Item("LondonCustomers")
Dim rowCustomer As DataRow
For Each rowCustomer In dt.Rows
 Console.WriteLine(rowCustomer.Item("CompanyName"))
Next

The code in Example 8-1 performs the following steps to obtain data from the database:

1. Opens a connection to the database using a SqlConnection object.
2. Instantiates an object of type SqlDataAdapter in preparation for filling a DataSet object. In

Example 8-1, a SQL SELECT command string and a Connection object are passed to the
SqlDataAdapter object's constructor.

3. Instantiates an object of type DataSet and fills it by calling the SqlDataAdapter object's Fill
method.

8.5.1 The DataSet Class

The DataSet class encapsulates a set of tables and the relations between those tables. Figure 8-2
shows a class model diagram containing the DataSet and related classes. The DataSet is always
completely disconnected from any data source. In fact, the DataSet has no knowledge of the source of
its tables and relations. They may be dynamically created using methods on the DataSet, or they may
be loaded from a data source. In the case of the SQL Server managed provider, a DataSet can be
loaded from a SQL Server database using an SqlDataAdapter object. This is what was done in
Example 8-1.

Figure 8-2. A class model diagram for the DataSet and related classes

Programming Visual Basic .NET

 351

After a DataSet is loaded, its data can be changed, added to, or deleted, all without affecting the data
source. Indeed, a database connection does not need to be maintained during these updates. When
ready, the updates can be written back to the database by establishing a new connection and calling
the SqlDataAdapter object's Update method. Examples of writing updates to a database are shown
later in this chapter.Navigating the DataSet

In this section you'll learn how to find specific data in a DataSet object, how to make changes to that
data, and how to write those changes back to a database.

8.5.2 Finding Tables

The DataSet object's Tables property holds a TablesCollection object that contains the DataTable
objects in the DataSet. The following code loops through all the tables in the DataSet and displays
their names:

' Iterate through the tables in the DataSet ds.
Dim dt As DataTable
For Each dt In ds.Tables
 Console.WriteLine(dt.TableName)
Next

This code does the same thing, using a numeric index on the TablesCollection object:

 352

' Iterate through the tables in the DataSet ds.
Dim n As Integer
For n = 0 To ds.Tables.Count - 1
 Console.WriteLine(ds.Tables(n).TableName)
Next

The TablesCollection object can also be indexed by table name. For example, if the DataSet ds
contains a table named "Categories", this code gets a reference to it:

Dim dt As DataTable = ds.Tables("Categories")

8.5.3 Finding Rows

The DataTable object's Rows property holds a DataRowCollection object that in turn holds the table's
DataRow objects. Each DataRow object holds the data for that particular row. The following code
loops through all the rows in the DataTable and displays the value of the first column (column 0) in the
row:

' Iterate through the rows.
Dim row As DataRow
For Each row In dt.Rows
 Console.WriteLine(row(0))
Next

This code does the same thing, using a numeric index on the RowsCollection object:

' Iterate through the rows.
Dim n As Integer
For n = 0 To dt.Rows.Count - 1
 Console.WriteLine(dt.Rows(n)(0))
Next

To assist with locating specific rows within a table, the DataTable class provides a method called
Select. The Select method returns an array containing all the rows in the table that match the given
criteria. The syntax of the Select method is:

Public Overloads Function Select(_
 ByVal filterExpression As String, _
 ByVal sort As String, _
 ByVal recordStates As System.Data.DataViewRowState _
) As System.Data.DataRow()

The parameters of the Select method are:

filterExpression

This parameter gives the criteria for selecting rows. It is a string that is in the same format as
the WHERE clause in an SQL statement.

sort

This parameter specifies how the returned rows are to be sorted. It is a string that is in the
same format as the ORDER BY clause in an SQL statement.

recordStates

Programming Visual Basic .NET

 353

This parameter specifies the versions of the records that are to be retrieved. Record versions
are discussed in Section 8.5.6. The value passed in this parameter must be one of the
values given by the System.Data.DataViewRowState enumeration. Its values are:

CurrentRows

Returns the current version of each row, regardless of whether it is unchanged, new, or
modified.

Deleted

Returns only rows that have been deleted.

ModifiedCurrent

Returns only rows that have been modified. The values in the returned rows are the current
values of the rows.

ModifiedOriginal

Returns only rows that have been modified. The values in the returned rows are the original
values of the rows.

New

Returns only new rows.

None

Returns no rows.

OriginalRows

Returns only rows that were in the table prior to any modifications. The values in the returned
rows are the original values.

Unchanged

Returns only unchanged rows.

These values can be combined using the And operator to achieve combined results. For
example, to retrieve both modified and new rows, pass this value:

DataViewRowState.ModifiedCurrent And DataViewRowState.New

The return value of the Select method is an array of DataRow objects.

The Select method is overloaded. It has a two-parameter version that is the same as the full version,
except that it does not take a recordStates parameter:

Public Overloads Function Select(_
 ByVal filterExpression As String, _
 ByVal sort As String _
) As System.Data.DataRow()

 354

Calling this version of the Select method is the same as calling the full version with a recordStates
value of DataViewRowState.CurrentRows.

Similarly, there is a one-parameter version that takes only a filterExpression:

Public Overloads Function Select(_
 ByVal filterExpression As String _
) As System.Data.DataRow()

This is the same as calling the three-parameter version with sort equal to "" (the empty string) and
recordStates equal to DataViewRowState.CurrentRows.

Lastly, there is the parameterless version of Select:

Public Overloads Function Select() As System.Data.DataRow()

This is the same as calling the three-parameter version with filterExpression and sort equal to
"" (the empty string) and recordStates equal to DataViewRowState.CurrentRows.

As an example of using the Select method, this line of code returns all rows whose Country column
contains the value "Mexico":

Dim rows() As DataRow = dt.Select("Country = 'Mexico'")

Because the sort and recordStates parameters were not specified, they default to "" (the empty
string) and DataViewRowState.CurrentRows, respectively.

8.5.3.1 The Select method versus the SQL SELECT statement

If an application is communicating with a database over a fast, persistent connection, it is more
efficient to issue SQL SELECT statements that load the DataSet with only the desired records, rather
than to load the DataSet with a large amount of data and then pare it down with the DataTable's
Select method. The Select method is useful for distributed applications that might not have a fast
connection to the database. Such an application might load a large amount of data from the database
into a DataSet object, then use several calls to the DataTable's Select method to locally view and
process the data in a variety of ways. This is more efficient in this case because the data is moved
across the slow connection only once, rather than once for each query.

8.5.4 Finding Column Values

The DataRow class has an Item property that provides access to the value in each column of a row.
For example, this code iterates through all the columns of a row, displaying the value from each
column (assume that row holds a reference to a DataRow object):

' Iterate through the column values.
Dim n As Integer
For n = 0 To row.Table.Columns.Count - 1
 Console.WriteLine(row(n))
Next

Note the expression used to find the number of columns: row.Table.Columns.Count. The
DataRow object's Table property holds a reference to the DataTable object of which the row is a part.
As will be discussed shortly, the Table object's Columns property maintains a collection of column
definitions for the table. The Count property of this collection gives the number of columns in the table
and therefore in each row.

Programming Visual Basic .NET

 355

The DataRow object's Item property is overloaded to allow a specific column value to be accessed by
column name. The following code assumes that the DataRow row contains a column named
"Description". The code displays the value of this column in this row:

Console.WriteLine(row("Description"))

8.5.5 Finding Column Definitions

The DataTable object's Columns property holds a ColumnsCollection object that in turn holds the
definitions for the columns in the table. The following code iterates through the columns in the table
and displays their names:

' Iterate through the columns.
Dim column As DataColumn
For Each column In dt.Columns
 Console.WriteLine(column.ColumnName)
Next

This code does the same thing, using a numeric index on the ColumnsCollection object:

' Iterate through the columns.
Dim n As Integer
For n = 0 To dt.Columns.Count - 1
 Console.WriteLine(dt.Columns(n).ColumnName)
Next

The ColumnsCollection object can also be indexed by column name. For example, if DataTable dt
contains a column named "Description", this code gets a reference to the associated DataColumn
object:

Dim column As DataColumn = dt.Columns("Description")

8.5.6 Changing, Adding, and Deleting Rows

To change data in a DataSet, first navigate to a row of interest and then assign new values to one or
more of its columns. For example, the following line of code assumes that row is a DataRow object
that contains a column named "Description". The code sets the value of the column in this row to be
"Milk and cheese":

row("Description") = "Milk and cheese"

Adding a new row to a table in a DataSet is a three-step process:

1. Use the DataTable class's NewRow method to create a new DataRow. The method takes no
parameters.

2. Set the values of the columns in the row.
3. Add the new row to the table.

For example, assuming that dt is a DataTable object, and that the table has columns named
"CategoryName" and "Description", this code adds a new row to the table:

' Add a row.
Dim row As DataRow = dt.NewRow()
row("CategoryName") = "Software"
row("Description") = "Fine code and binaries"
dt.Rows.Add(row)

 356

The DataRow object referenced by row in this code can be indexed by the names "CategoryName"
and "Description" because the DataRow object was created by the DataTable object's NewRow
method and so has the same schema as the table. Note that the NewRow method does not add the
row to the table. Adding the new row to the table must be done explicitly by calling the
DataRowCollection class's Add method through the DataTable class's Rows property.

Deleting a row from a table is a one-liner. Assuming that row is a reference to a DataRow, this line
deletes the row from its table:

row.Delete()

When changes are made to a row, the DataRow object keeps track of more than just the new column
values. It also keeps track of the row's original column values and the fact that the row has been
changed. The Item property of the DataRow object is overloaded to allow you to specify the desired
version of the data that you wish to retrieve. The syntax of this overload is:

Public Overloads ReadOnly Property Item(_
 ByVal columnName As String, _
 ByVal version As System.Data.DataRowVersion _
) As Object

The parameters are:

columnName

The name of the column whose value is to be retrieved.

version

The version of the data to retrieve. This value must be a member of the
System.Data.DataRowVersion enumeration. Its values are:

Current

Retrieve the current (changed) version.

Default

Retrieve the current version if the data has been changed, the original version if not.

Original

Retrieve the original (unchanged) version.

Proposed

Retrieve the proposed change. Proposed changes are changes that are made after a call to a
DataRow object's BeginEdit method but before a call to its EndEdit or CancelEdit methods.
For more information, see Section 8.6 later in this chapter.

For example, after making some changes in DataRow row, the following line displays the original
version of the row's Description column:

Console.WriteLine(row("Description", DataRowVersion.Original))

The current value of the row would be displayed using any of the following lines:

Programming Visual Basic .NET

 357

Console.WriteLine(row("Description", DataRowVersion.Current))
Console.WriteLine(row("Description", DataRowVersion.Default))
Console.WriteLine(row("Description"))

Calling the DataSet object's AcceptChanges method commits outstanding changes. Calling the
DataSet object's RejectChanges method rolls records back to their original versions.

The code shown in this section affects only the DataSet object,
not the data source. To propagate these changes, additions, and
deletions back to the data source, use the Update method of the
SqlDataAdapter class, as described in Section 8.5.7.

If there are relations defined between the DataTables in the
DataSet, it may be necessary to call the DataRow object's
BeginEdit method before making changes. For more information,
see Section 8.6 later in this chapter.

8.5.7 Writing Updates Back to the Data Source

Because DataSets are always disconnected from their data sources, making changes in a DataSet
never has any effect on the data source. To propagate changes, additions, and deletions back to a
data source, call the SqlDataAdapter class's Update method, passing the DataSet and the name of
the table that is to be updated. For example, the following call to Update writes changes from the
DataTable named Categories back to the SQL Server table of the same name:

da.Update(ds, "Categories")

Before using the Update method, however, you should understand how an SqlDataAdapter object
performs updates. To change, add, or delete records, an SqlDataAdapter object must send SQL
UPDATE, INSERT, or DELETE statements, respectively, to SQL Server. The forms of these statements
either can be inferred from the SELECT statement that was provided to the SqlDataAdapter object or
can be explicitly provided to the SqlDataAdapter object.

Example 8-2 shows an example of allowing an SqlDataAdapter object to infer the SQL UPDATE,
INSERT, and DELETE statements required for applying updates to a database.

Example 8-2. Allowing an SqlDataAdapter object to infer SQL UPDATE,
INSERT, and DELETE statements from a SELECT statement
' Open a database connection.
Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _
 & "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

' Create a data adapter object and set its SELECT command.
Dim strSelect As String = _
 "SELECT * FROM Categories"
Dim da As SqlDataAdapter = New SqlDataAdapter(strSelect, cn)

' Set the data adapter object's UPDATE, INSERT, and DELETE
' commands. Use the SqlCommandBuilder class's ability to auto-
' generate these commands from the SELECT command.

 358

Dim autogen As New SqlCommandBuilder(da)

' Load a data set.
Dim ds As DataSet = New DataSet()
da.Fill(ds, "Categories")

' Get a reference to the "Categories" DataTable.
Dim dt As DataTable = ds.Tables("Categories")

' Modify one of the records.
Dim row As DataRow = dt.Select("CategoryName = 'Dairy Products'")(0)
row("Description") = "Milk and stuff"

' Add a record.
row = dt.NewRow()
row("CategoryName") = "Software"
row("Description") = "Fine code and binaries"
dt.Rows.Add(row)

' Delete a record.
row = dt.Select("CategoryName = 'MyCategory'")(0)
row.Delete()

' Update the database.
da.Update(ds, "Categories")

' Close the database connection.
cn.Close()

Note the following in Example 8-2:

1. A SqlDataAdapter object is constructed with an argument of "SELECT * FROM
Categories". This initializes the value of the SqlDataAdapter object's SelectCommand
property.

2. A SqlCommandBuilder object is constructed with the SqlDataAdapter object passed as an
argument to its constructor. This step hooks the SqlDataAdapter object to the
SqlCommandBuilder object so that later, when the SqlDataAdapter object's Update method is
called, the SqlDataAdapter object can obtain SQL UPDATE, INSERT, and DELETE commands
from the SqlCommandBuilder object.

3. The SqlDataAdapter object is used to fill a DataSet object. This results in the DataSet object
containing a DataTable object, named "Categories", that contains all the rows from the
Northwind database's Categories table.

4. One record each in the table is modified, added, or deleted.
5. The SqlDataAdapter object's Update method is called to propagate the changes back to the

database.

Step 5 forces the SqlCommandBuilder object to generate SQL statements for performing the database
update, insert, and delete operations.When the Update method is called, the SqlDataAdapter object
notes that no values have been set for its UpdateCommand, InsertCommand, and DeleteCommand
properties, and therefore queries the SqlCommandBuilder object for these commands. If any of these
properties had been set on the SqlDataAdapter object, those values would have been used instead.

The SqlCommandBuildObject can be examined to see what commands were created. To see the
commands that are generated in Example 8-2, add the following lines anywhere after the declaration
and assignment of the autogen variable:

Console.WriteLine("UpdateCommand: " & autogen.GetUpdateCommand.CommandText)
Console.WriteLine("InsertCommand: " & autogen.GetInsertCommand.CommandText)
Console.WriteLine("DeleteCommand: " & autogen.GetDeleteCommand.CommandText)

Programming Visual Basic .NET

 359

The auto-generated UPDATE command contains the following text (note that line breaks have been
added for clarity in the book):

UPDATE Categories
SET CategoryName = @p1 , Description = @p2 , Picture = @p3
WHERE (
 (CategoryID = @p4)
 AND
 ((CategoryName IS NULL AND @p5 IS NULL) OR (CategoryName = @p6)))

Similarly, the INSERT command is:

INSERT INTO Categories(CategoryName , Description , Picture)
VALUES (@p1 , @p2 , @p3)

And the DELETE command is:

DELETE FROM Categories
WHERE (
 (CategoryID = @p1)
 AND
 ((CategoryName IS NULL AND @p2 IS NULL) OR (CategoryName = @p3)))

Note the use of formal parameters (@p0, @p1, etc.) in each of these statements. For each row that is
to be changed, added, or deleted, the parameters are replaced with values from the row, and the
resulting SQL statement is issued to the database. The choice of which value from the row to use for
which parameter is controlled by the SqlCommand object's Parameters property. This property
contains an SqlParameterCollection object that in turn contains one SqlParameter object for each
formal parameter. The SqlParameter object's ParameterName property matches the name of the
formal parameter (including the "@"), the SourceColumn property contains the name of the column
from which the value is to come, and the SourceVersion property specifies the version of the value
that is to be used. Row versions were discussed in Section 8.5.6.

If desired, a DataSet object's UpdateCommand, InsertCommand, and DeleteCommand properties can
be set directly. Example 8-3 sets the value of UpdateCommand and then performs an update using
this command.

Example 8-3. Setting a DataSet object's UpdateCommand property
' Open a database connection.
Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _
 & "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

' Set up a data adapter object.
Dim da As SqlDataAdapter = New SqlDataAdapter("SELECT * FROM Categories",
cn)

' Create an UPDATE command.
'
' This is the command text.
' Note the parameter names: @Description and @CategoryID.
Dim strUpdateCommand As String = _
 "UPDATE Categories" _
 & " SET Description = @Description" _
 & " WHERE CategoryID = @CategoryID"
'

 360

' Create a SqlCommand object and assign it to the UpdateCommand property.
da.UpdateCommand = New SqlCommand(strUpdateCommand, cn)
'
' Set up parameters in the SqlCommand object.
Dim param As SqlParameter
'
' @CategoryID
param = da.UpdateCommand.Parameters.Add(_
 New SqlParameter("@CategoryID", SqlDbType.Int))
param.SourceColumn = "CategoryID"
param.SourceVersion = DataRowVersion.Original
'
' @Description
param = da.UpdateCommand.Parameters.Add(_
 New SqlParameter("@Description", SqlDbType.NChar, 16))
param.SourceColumn = "Description"
param.SourceVersion = DataRowVersion.Current

' Load a data set.
Dim ds As DataSet = New DataSet()
da.Fill(ds, "Categories")

' Get the table.
Dim dt As DataTable = ds.Tables("Categories")

' Get a row.
Dim row As DataRow = dt.Select("CategoryName = 'Dairy Products'")(0)

' Change the value in the Description column.
row("Description") = "Milk and stuff"

' Perform the update.
da.Update(ds, "Categories")

' Close the database connection.

cn.Close()

8.6 Relations Between DataTables in a DataSet

The DataSet class provides a mechanism for specifying relations between tables in a DataSet. The
DataSet class's Relations property contains a RelationsCollection object, which maintains a collection
of DataRelation objects. Each DataRelation object represents a parent/child relationship between two
tables in the DataSet. For example, there is conceptually a parent/child relationship between a
Customers table and an Orders table, because each order must belong to some customer.
Modeling this relationship in the DataSet has these benefits:

• The DataSet can enforce relational integrity.
• The DataSet can propagate key updates and row deletions.
• Data-bound controls can provide a visual representation of the relation.

Example 8-4 loads a Customers table and an Orders table from the Northwind database and then
creates a relation between them. The statement that actually creates the relation is shown in bold.

Example 8-4. Creating a DataRelation between DataTables in a DataSet
' Open a database connection.
Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _
 & "Integrated Security=True"

Programming Visual Basic .NET

 361

Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

' Set up a data adapter object.
Dim strSql As String = "SELECT * FROM Customers" _
 & " WHERE City = 'Buenos Aires' AND Country = 'Argentina'"
Dim da As SqlDataAdapter = New SqlDataAdapter(strSql, cn)

' Load a data set.
Dim ds As DataSet = New DataSet()
da.Fill(ds, "Customers")

' Set up a new data adapter object.
strSql = "SELECT Orders.*" _
 & " FROM Customers, Orders" _
 & " WHERE (Customers.CustomerID = Orders.CustomerID)" _
 & " AND (Customers.City = 'Buenos Aires')" _
 & " AND (Customers.Country = 'Argentina')"
da = New SqlDataAdapter(strSql, cn)

' Load the data set.
da.Fill(ds, "Orders")

' Close the database connection.
cn.Close()

' Create a relation.
ds.Relations.Add("CustomerOrders", _
 ds.Tables("Customers").Columns("CustomerID"), _
 ds.Tables("Orders").Columns("CustomerID"))

As shown in Example 8-4, the DataRelationCollection object's Add method creates a new relation
between two tables in the DataSet. The Add method is overloaded. The syntax used in Example 8-4
is:

Public Overloads Overridable Function Add(_
 ByVal
name As String, _
 ByVal
parentColumn As System.Data.DataColumn, _
 ByVal
childColumn As System.Data.DataColumn _
) As System.Data.DataRelation

The parameters are:

name

The name to give to the new relation. This name can be used later as an index to the
RelationsCollection object.

parentColumn

The DataColumn object representing the parent column.

childColumn

The DataColumn object representing the child column.

 362

The return value is the newly created DataRelation object. Example 8-4 ignores the return value.

8.7 The DataSet's XML Capabilities

The DataSet class has several methods for reading and writing data as XML, including:

GetXml

Returns a string containing an XML representation of the data in the DataSet object.

GetXmlSchema

Returns a string containing the XSD schema for the XML returned by the GetXml method.

WriteXml

Writes the XML representation of the data in the DataSet object to a Stream object, a file, a
TextWriter object, or an XmlWriter object. This XML can either include or omit the
corresponding XSD schema.

WriteXmlSchema

Writes the XSD schema for the DataSet to a Stream object, a file, a TextWriter object, or an
XmlWriter object.

ReadXml

Reads the XML written by the WriteXml method.

ReadXmlSchema

Reads the XSD schema written by the WriteXmlSchema method.

Example 8-5 shows how to write a DataSet to a file as XML using the WriteXml method.

Example 8-5. Saving a DataSet to a file as XML
' Open a database connection.
Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _
 & "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

' Set up a data adapter object.
Dim strSql As String = "SELECT * FROM Customers" _
 & " WHERE CustomerID = 'GROSR'"
Dim da As SqlDataAdapter = New SqlDataAdapter(strSql, cn)

' Load a data set.
Dim ds As DataSet = New DataSet("MyDataSetName")
da.Fill(ds, "Customers")

' Set up a new data adapter object.
strSql = "SELECT Orders.*" _
 & " FROM Customers, Orders" _
 & " WHERE (Customers.CustomerID = Orders.CustomerID)" _

Programming Visual Basic .NET

 363

 & " AND (Customers.CustomerID = 'GROSR')"
da = New SqlDataAdapter(strSql, cn)

' Load the data set.
da.Fill(ds, "Orders")

' Close the database connection.
cn.Close()

' Create a relation.
ds.Relations.Add("CustomerOrders", _
 ds.Tables("Customers").Columns("CustomerID"), _
 ds.Tables("Orders").Columns("CustomerID"))

' Save as XML.
ds.WriteXml("c:\temp.xml")

The majority of the code in Example 8-5 simply loads the DataSet with data. Actually writing the XML
is done with the DataSet's WriteXml method at the end of Example 8-5. The contents of the file thus
created are shown in Example 8-6. Some lines in Example 8-6 have been wrapped for printing in
this book.

Example 8-6. The file produced by the code in Example 8-5
<?xml version="1.0" standalone="yes"?>
<MyDataSetName>
 <Customers>
 <CustomerID>GROSR</CustomerID>
 <CompanyName>GROSELLA-Restaurante</CompanyName>
 <ContactName>Manuel Pereira</ContactName>
 <ContactTitle>Owner</ContactTitle>
 <Address>5th Ave. Los Palos Grandes</Address>
 <City>Caracas</City>
 <Region>DF</Region>
 <PostalCode>1081</PostalCode>
 <Country>Venezuela</Country>
 <Phone>(2) 283-2951</Phone>
 <Fax>(2) 283-3397</Fax>
 </Customers>
 <Orders>
 <OrderID>10268</OrderID>
 <CustomerID>GROSR</CustomerID>
 <EmployeeID>8</EmployeeID>
 <OrderDate>1996-07-30T00:00:00.0000000-05:00</OrderDate>
 <RequiredDate>1996-08-27T00:00:00.0000000-05:00</RequiredDate>
 <ShippedDate>1996-08-02T00:00:00.0000000-05:00</ShippedDate>
 <ShipVia>3</ShipVia>
 <Freight>66.29</Freight>
 <ShipName>GROSELLA-Restaurante</ShipName>
 <ShipAddress>5th Ave. Los Palos Grandes</ShipAddress>
 <ShipCity>Caracas</ShipCity>
 <ShipRegion>DF</ShipRegion>
 <ShipPostalCode>1081</ShipPostalCode>
 <ShipCountry>Venezuela</ShipCountry>
 </Orders>
 <Orders>
 <OrderID>10785</OrderID>
 <CustomerID>GROSR</CustomerID>
 <EmployeeID>1</EmployeeID>
 <OrderDate>1997-12-18T00:00:00.0000000-06:00</OrderDate>
 <RequiredDate>1998-01-15T00:00:00.0000000-06:00</RequiredDate>

 364

 <ShippedDate>1997-12-24T00:00:00.0000000-06:00</ShippedDate>
 <ShipVia>3</ShipVia>
 <Freight>1.51</Freight>
 <ShipName>GROSELLA-Restaurante</ShipName>
 <ShipAddress>5th Ave. Los Palos Grandes</ShipAddress>
 <ShipCity>Caracas</ShipCity>
 <ShipRegion>DF</ShipRegion>
 <ShipPostalCode>1081</ShipPostalCode>
 <ShipCountry>Venezuela</ShipCountry>
 </Orders>
</MyDataSetName>

The syntax of this overloaded version of the WriteXml function is:

Public Overloads Sub WriteXml(ByVal fileName As String)

The fileName parameter specifies the full path of a file into which to write the XML.

The XML document written by the DataSet class's WriteXml method can be read back into a DataSet
object using the ReadXml method. Example 8-7 reads back the file written by the code in Example
8-5.

Example 8-7. Recreating a DataSet object from XML
Dim ds As New DataSet()
ds.ReadXml("c:\temp.xml")

The XML created by the WriteXml method contains only data—no schema information. The ReadXml
method is able to infer the schema from the data. To explicitly write the schema information, use the
WriteXmlSchema method. To read the schema back in, use the ReadXmlSchema method.

The GetXml and GetXmlSchema methods work the same as the WriteXml and WriteXmlSchema
methods, except that each returns its result as a string rather than writing it to a file.

8.8 Binding a DataSet to a Windows Forms DataGrid

DataSet and DataTable objects can be bound to Windows Forms DataGrid objects to provide an easy
way to view data. This is done by calling a DataGrid object's SetDataBinding method, passing the
object that is to be bound to the grid. The syntax of the SetDataBinding method is:

Public Sub SetDataBinding(_
 ByVal dataSource As Object, _
 ByVal dataMember As String _
)

The parameters are:

dataSource

The source of the data to show in the grid. This can be any object that exposes the
System.Collections.IList or System.Data.IListSource interfaces, which includes
the DataTable and DataSet classes discussed in this chapter.

dataMember

If the object passed in the dataSource parameter contains multiple tables, as a DataSet
object does, the dataMember parameter identifies the table to display in the DataGrid. If a

Programming Visual Basic .NET

 365

DataTable is passed in the dataSource parameter, the dataMember parameter should
contain either Nothing or an empty string.

Example 8-8 shows how to bind a DataSource object to a DataGrid. The DataSource object contains
a Customers table and an Orders table, and a relation between them. The call to the DataGrid
object's SetDataBinding method specifies that the Customers table should be shown in the grid.
Figure 8-3 shows the resulting DataGrid display.

Example 8-8. Creating a DataSet and binding it to a Windows Forms
DataGrid
' Open a database connection.
Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _
 & "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

' Set up a data adapter object.
Dim strSql As String = _
 "SELECT CustomerID, CompanyName, ContactName, Phone FROM Customers" _
 & " WHERE City = 'Buenos Aires' AND Country = 'Argentina'"
Dim da As SqlDataAdapter = New SqlDataAdapter(strSql, cn)

' Load a data set.
Dim ds As DataSet = New DataSet()
da.Fill(ds, "Customers")

' Set up a new data adapter object.
strSql = _
 "SELECT Orders.OrderID, Orders.CustomerID, Orders.OrderDate," _
 & " Orders.ShippedDate" _
 & " FROM Customers, Orders" _
 & " WHERE (Customers.CustomerID = Orders.CustomerID)" _
 & " AND (Customers.City = 'Buenos Aires')" _
 & " AND (Customers.Country = 'Argentina')"
da = New SqlDataAdapter(strSql, cn)

' Load the data set.
da.Fill(ds, "Orders")

' Close the database connection.
cn.Close()

' Create a relation.
ds.Relations.Add("CustomerOrders", _
 ds.Tables("Customers").Columns("CustomerID"), _
 ds.Tables("Orders").Columns("CustomerID"))

' Bind the data set to a grid.
' Assumes that grid contains a reference to a
' System.WinForms.DataGrid object.
grd.SetDataBinding(ds, "Customers")

Figure 8-3. The display generated by the code in Example 8-8

 366

Note in Figure 8-3 that each row in this DataGrid has a "+" icon. The reason is that the DataGrid
object has detected the relation between the Customers table and the Orders table. Clicking on the
"+" reveals all of the relations for which the Customers table is the parent. In this case, there is only
one, as shown in Figure 8-4.

Figure 8-4. Clicking the "+" reveals relations

The name of the relation in the display is a link. Clicking on this link loads the grid with the child table
in the relation, as shown in Figure 8-5.

Figure 8-5. The Orders table

Programming Visual Basic .NET

 367

While the child table is displayed, the corresponding row from the parent table is displayed in a header
(shown in Figure 8-5). To return to the parent table, click the left-pointing triangle in the upper-right
corner of the grid.

8.9 Binding a DataSet to a Web Forms DataGrid

Example 8-9 shows how to bind a DataTable object to a Web Forms DataGrid object. Figure 8-6
shows the resulting display in a web browser.

Example 8-9. Creating a DataTable and binding it to a Web Forms
DataGrid
<%@ Page Explicit="True" Strict="True" %>

<script language="VB" runat="server">

 Protected Sub Page_Load(ByVal Sender As System.Object, _
 ByVal e As System.EventArgs)

 If Not IsPostback Then ' True the first time the browser hits the
page.
 ' Bind the grid to the data.
 grdCustomers.DataSource = GetDataSource()
 grdCustomers.DataBind()
 End If

 End Sub ' Page_Load

 Protected Function GetDataSource() As System.Collections.ICollection

 ' Open a database connection.
 Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _
 & "Integrated Security=True"
 Dim cn As New System.Data.SqlClient.SqlConnection(strConnection)
 cn.Open()

 ' Set up a data adapter object.
 Dim strSql As String = _
 "SELECT CustomerID, CompanyName, ContactName, Phone" _
 & " FROM Customers" _
 & " WHERE City = 'Buenos Aires' AND Country = 'Argentina'"
 Dim da As New System.Data.SqlClient.SqlDataAdapter(strSql, cn)

 ' Load a data set.
 Dim ds As New System.Data.DataSet()
 da.Fill(ds, "Customers")

 ' Close the database connection.
 cn.Close()

 ' Wrap the Customers DataTable in a DataView object.
 Dim dv As New System.Data.DataView(ds.Tables("Customers"))

 Return dv

 End Function ' GetDataSource

</script>

 368

<html>
 <body>

 <asp:DataGrid id=grdCustomers runat="server" ForeColor="Black">
 <AlternatingItemStyle BackColor="Gainsboro" />
 <FooterStyle ForeColor="White" BackColor="Silver" />
 <ItemStyle BackColor="White" />
 <HeaderStyle Font-Bold="True" ForeColor="White"
 BackColor="Navy" />
 </asp:DataGrid>

 </body>
</html>

Figure 8-6. The display generated by the code in Example 8-9

Note the following:

• Unlike the Windows Forms DataGrid class, the Web Forms DataGrid class has no
SetDataBinding method. Instead, set the Web Forms DataGrid's DataSource property and
then call the DataGrid's DataBind method.

• Unlike the Windows Forms DataGrid class, the Web Forms DataGrid class's DataSource
property can't directly consume a DataTable or DataSet. Instead, the data must be wrapped in
a DataView or DataSetView object. The properties and methods of the DataView and
DataSetView classes provide additional control over how data is viewed in a bound DataGrid.
DataView and DataSetView objects can be used by either Windows Forms or Web Forms
DataGrids, but they are mandatory with Web Forms DataGrids.

• The DataGrid's DataSource property can consume any object that exposes the
System.Collections.ICollection interface.

8.10 Typed DataSets

There is nothing syntactically wrong with this line of code:

Dim dt As System.Data.DataTable = ds.Tables("Custumers")

However, "Custumers" is misspelled. If it were the name of a variable, property, or method, it would
cause a compile-time error (assuming the declaration were not similarly misspelled). However,
because the compiler has no way of knowing that the DataSet ds will not hold a table called
Custumers, this typographical error will go unnoticed until runtime. If this code path is not common,
the error may go unnoticed for a long time, perhaps until after the software is delivered and running on
thousands of client machines. It would be better to catch such errors at compile time.

Microsoft has provided a tool for creating customized DataSet-derived classes. Such classes expose
additional properties based on the specific schema of the data that an object of this class is expected

Programming Visual Basic .NET

 369

to hold. Data access is done through these additional properties rather than through the generic Item
properties. Because the additional properties are declared and typed, the Visual Basic .NET compiler
can perform compile-time checking to ensure that they are used correctly. Because the class is
derived from the DataSet class, an object of this class can do everything that a regular DataSet object
can do, and it can be used in any context in which a DataSet object is expected.

Consider again Example 8-1, shown earlier in this chapter. This fragment of code displays the
names of the customers in the Northwind database that are located in London. Compare this to
Example 8-10, which does the same thing but uses a DataSet-derived class that is specifically
designed for this purpose.

Example 8-10. Using a typed DataSet
' Open a database connection.
Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _
 & "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

' Set up a data adapter object.
Dim strSelect As String = "SELECT * FROM Customers WHERE City = 'London'"
Dim da As New SqlDataAdapter(strSelect, cn)

' Load a data set.
Dim ds As New LondonCustomersDataSet()
da.Fill(ds, "LondonCustomers")

' Close the database connection.
cn.Close()

' Do something with the data set.
Dim i As Integer
For i = 0 To ds.LondonCustomers.Count - 1
 Console.WriteLine(ds.LondonCustomers(i).CompanyName)
Next

Note that in Example 8-10, ds is declared as type LondonCustomersDataSet, and this class has
properties that relate specifically to the structure of the data that is to be loaded into the DataSet.
However, before the code in Example 8-10 can be written, it is necessary to generate the
LondonCustomersDataSet and related classes.

First, create an XML schema file that defines the desired schema of the DataSet. The easiest way to
do this is to write code that loads a generic DataSet object with data having the right schema and then
writes that schema using the DataSet class's WriteXmlSchema method. Example 8-11 shows how
this was done with the LondonCustomers DataSet.

Example 8-11. Using the WriteXmlSchema method to generate an XML
schema
' This code is needed only once. Its purpose is to create
' an .xsd file that will be fed to the xsd.exe tool.

' Open a database connection.
Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _
 & "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

 370

' Set up a data adapter object.
Dim strSelect As String = "SELECT * FROM Customers WHERE City = 'London'"
Dim da As New SqlDataAdapter(strSelect, cn)

' Load a data set.
Dim ds As New DataSet("LondonCustomersDataSet")
da.Fill(ds, "LondonCustomers")

' Close the database connection.
cn.Close()

' Save as XSD.
ds.WriteXmlSchema("c:\LondonCustomersDataSet.xsd")

Next, run Microsoft's XML Schema Definition Tool (xsd.exe) against the XML schema file you just
generated. Here is the command line used for the LondonCustomers DataSet:

xsd /d /l:VB LondonCustomersDataSet.xsd

The /d option indicates that a custom DataSet and related classes should be created. The /l:VB
option specifies that the generated source code should be written in Visual Basic .NET (the tool is also
able to generate C# source code). With this command line, the tool generates a file named
LondonCustomersDataSet.vb, which contains the source code.

Finally, add the generated .vb file to a project and make use of its classes.

8.11 Reading Data Using a DataReader

As you have seen, the DataSet class provides a flexible way to read and write data in any data source.
There are times, however, when such flexibility is not needed and when it might be better to optimize
data-access speed as much as possible. For example, an application might store the text for all of its
drop-down lists in a database table and read them out when the application is started. Clearly, all that
is needed here is to read once through a result set as fast as possible. For needs such as this,
ADO.NET has DataReader classes.

Unlike the DataSet class, DataReader classes are connected to their data sources. Consequently,
there is no generic DataReader class. Rather, each managed provider exposes its own DataReader
class, which implements the System.Data.IDataReader interface. The SQL Server managed
provider exposes the SqlDataReader class (in the System.Data.SqlClient namespace). DataReader
classes provide sequential, forward-only, read-only access to data. Because they are optimized for
this task, they are faster than the DataSet class.

Example 8-12 shows how to read through a result set using an SqlDataReader object.

Example 8-12. Using a SqlDataReader object
' Open a database connection.
Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _
 & "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

' Set up a command object.
Dim strSql As String = "SELECT * FROM Customers" _
 & " WHERE Country = 'Germany'"
Dim cmd As New SqlCommand(strSql, cn)

Programming Visual Basic .NET

 371

' Set up a data reader.
Dim rdr As SqlDataReader
rdr = cmd.ExecuteReader()

' Use the data.
Do While rdr.Read
 Console.WriteLine(rdr("CompanyName"))
Loop

' Close the database connection.
cn.Close()

Opening a connection to the database is done the same as when using a DataSet object. However,
with a DataReader object, the connection must remain open while the data is read. Instead of an
SqlDataAdapter object, an SqlCommand object is used to hold the command that will be executed to
select data from the database. The SqlCommand class's ExecuteReader method is called to execute
the command and to return an SqlDataReader object. The SqlDataReader object is then used to read
through the result set. Note the Do While loop in Example 8-12, repeated here:

Do While rdr.Read
 Console.WriteLine(rdr("CompanyName"))
Loop

Developers who are used to coding against classic ADO will note that this loop appears to lack a
"move to the next row" statement. However, it is there. The SqlDataReader class's Read method
performs the function of positioning the SqlDataReader object onto the next row to be read. In classic
ADO, a RecordSet object was initially positioned on the first row of the result set. After reading each
record, the RecordSet object's MoveNext method had to be called to position the RecordSet onto the
next row in the result set. Forgetting to call MoveNext was a common cause of infinite loops. Microsoft
removed this thorn as follows:

• The DataReader object is initially positioned just prior to the first row of the result set (and
therefore has to be repositioned before reading any data).

• The Read method repositions the DataReader to the next row, returning True if the
DataReader is positioned onto a valid row and False if the DataReader is positioned past the
last row in the result set.

These changes result in tight, easy-to-write loops such as the one in Example 8-12.

The DataReader provides an Item property for reading column values from the current row. The Item
property is overloaded to take either an integer that specifies the column number, which is zero-based,
or a string that specifies the column name. The Item property is the default property of the
SqlDataReader class, so it can be omitted. For example, this line:

Console.WriteLine(rdr("CompanyName"))

is equivalent to this line:

Console.WriteLine(rdr.Item("CompanyName"))

8.12 Executing Stored ProceduresThrough a SqlCommand Object

To execute a stored procedure, set an SqlCommand object's CommandText property to the name of
the stored procedure to be executed, and set the CommandType property to the constant
CommandType.StoredProcedure (defined in the System.Data namespace). Then call the
ExecuteNonQuery method. Example 8-13 does just that.

 372

Example 8-13. Executing a parameterless stored procedure
' Open a database connection.
Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _
 & "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

' Set up a command object. (Assumes that the database contains a
' stored procedure called "PurgeOutdatedOrders".)
Dim cmd As New SqlCommand("PurgeOutdatedOrders", cn)
cmd.CommandType = CommandType.StoredProcedure

' Execute the command.
cmd.ExecuteNonQuery()

' Close the database connection.
cn.Close()

Example 8-13 assumes for the sake of demonstration that the
database contains a stored procedure called
"PurgeOutdatedOrders". If you would like to have a simple stored
procedure that works with Example 8-13, use this one:

CREATE PROCEDURE PurgeOutdatedOrders AS
DELETE FROM Orders
WHERE OrderDate < '04-Jul-1990'
 AND ShippedDate IS NOT NULL

See your SQL Server documentation for information on how to
create stored procedures.

Some stored procedures have parameters, and some have a return value. For these stored
procedures, the SqlCommand class provides the Parameters property. The Parameters property
contains a reference to an SqlParameterCollection object. To pass parameters to a stored procedure
and/or to read the return value of a stored procedure, add SqlParameter objects to this collection.

Example 8-14 calls a stored procedure that takes a single argument.

Example 8-14. Executing a parameterized stored procedure
' Open a database connection.
Dim strConnection As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" _
 & "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

' Set up a command object. (Assumes that the database contains a
' stored procedure called "PurgeOutdatedOrders2".)
Dim cmd As New SqlCommand("PurgeOutdatedOrders2", cn)
cmd.CommandType = CommandType.StoredProcedure

' Set up the @BeforeDate parameter for the stored procedure.
Dim param As New SqlParameter("@BeforeDate", SqlDBType.DateTime)
param.Direction = ParameterDirection.Input

Programming Visual Basic .NET

 373

param.Value = #7/4/1990#
cmd.Parameters.Add(param)

' Execute the command.
cmd.ExecuteNonQuery()

' Close the database connection.
cn.Close()

Example 8-14 assumes for the sake of demonstration that the
database contains a stored procedure called
"PurgeOutdatedOrders2". If you would like to have a simple
stored procedure that works with Example 8-14, use this one:

CREATE PROCEDURE PurgeOutdatedOrders2
@BeforeDate datetime
AS
DELETE FROM Orders
WHERE OrderDate < @BeforeDate
 AND ShippedDate IS NOT NULL

See your SQL Server documentation for information on how to
create stored procedures.

The steps taken in Example 8-14 are:

1. Open a connection to the database.
2. Instantiate an SqlCommand object using this constructor:
3. Public Overloads Sub New(_
4. ByVal cmdText As String, _
5. ByVal connection As System.Data.SqlClient.SqlConnection _

)

The cmdText parameter specifies the name of the stored procedure, and the connection
parameter specifies the database connection to use.

6. Set the SqlCommand object's CommandType property to
CommandType.StoredProcedure to indicate that the cmdText parameter passed to the
constructor is the name of a stored procedure.

7. Create an SqlParameter object to pass a value in the PurgeOutdatedOrders2 stored
procedure's @BeforeDate parameter. This is done as follows:

a. Instantiate an SqlParameter object using this constructor:
b. Public Overloads Sub New(_
c. ByVal parameterName As String, _
d. ByVal dbType As System.Data.SqlClient.SqlDbType _

)

The parameterName parameter specifies the name of the stored procedure
parameter and should match the name as given in the stored procedure. The dbType
parameter specifies the SQL Server data type of the parameter. This parameter can
take any value from the SqlDbType enumeration.

e. Set the SqlParameter object's Direction property to ParameterDirection.Input.
This indicates that a value will be passed from the application to the stored procedure.

f. Set the Value property of the SqlParameter object.

 374

g. Add the SqlParameter object to the SqlCommand object's Parameters collection by
calling the SqlParameterCollection object's Add method.

8. Execute the stored procedure.

Note the SqlParameter class's Direction property. Setting this property to the appropriate value from
the ParameterDirection enumeration (declared in the System.Data namespace), can make a
SqlParameter object an input parameter, an output parameter, an in/out parameter, or the stored
procedure's return value. The values in the ParameterDirection enumeration are:

Input

The parameter provides a value to the stored procedure.

InputOutput

The parameter provides a value to the stored procedure and receives a new value back from
the stored procedure.

Output

The parameter receives a value back from the stored procedure.

ReturnValue

The parameter receives the stored procedure's return value.

8.13 Summary

In this chapter, you learned about Microsoft's data-access technology, ADO.NET. You learned how to
connect to a database, how to read data with either a DataSet object or a DataReader object, how to
navigate and change data in a DataSet, how to use the DataSet's XML capabilities, how to generate
typed DataSets, and how to execute stored procedures using an SqlCommand object.

Programming Visual Basic .NET

 375

Appendix A. Custom Attributes Defined in the
System Namespace

This appendix lists the custom attribute classes that exist in the System namespace. Custom attributes
are explained in Chapter 2.

AttributeUsage

Valid on

Class

Description

When defining an attribute class, the AttributeUsage attribute specifies the program elements
upon which the newly defined attribute can be placed.

The AttributeUsageAttribute class constructor is:

Public Sub New(ByVal validOn As System.AttributeTargets)

The validOn parameter indicates the program elements to which the newly defined attribute can be
applied. Permitted values are: Assembly, Module, Class, Struct, Enum, Constructor, Method,
Property, Field, Event, Interface, Parameter, Delegate, ReturnValue, and All.

The properties of the AttributeUsageAttribute class are:

AllowMultiple

Indicates whether the attribute can be used more than once on a single program element. The
type is Boolean. The default is False.

Inherited

Indicates whether the newly defined attribute is automatically inherited by derived classes and
overridden members. The type is Boolean. The default is False.

ValidOn

Indicates the program elements to which the newly defined attribute can be applied. The type
is AttributeTargets (defined in the System namespace).

See Chapter 2 for information on defining custom attributes.

CLSCompliant

 376

Valid on

All

Description

Specifies whether the program element is CLS-compliant. The CLSCompliantAttribute class
constructor is:

Public Sub New(ByVal isCompliant As Boolean)

The isCompliant parameter indicates whether the program element is CLS-compliant.

The CLSCompliantAttribute class has a single property:

IsCompliant

Indicates whether the program element is CLS-compliant. The type is Boolean.

See Chapter 3 for information on the CLS and on what it means for a program element to be CLS-
compliant.

ContextStatic

Valid on

Field

Description

Specifies that the value of a static field is not shared between contexts (that is, each context has its
own value). Contexts are not discussed in this book.

Flags

Valid on

Enum

Description

Specifies that an enumerated type should be treated as a set of flags, which can be added together,
rather than as strictly separate values. This attribute takes no arguments and has no properties. See
Chapter 2 for information on declaring enumerated types.

Programming Visual Basic .NET

 377

LoaderOptimization

Valid on

Method

Description

Specifies a loader optimization for an application. This attribute should be used only on an
application's Main method.

The LoaderOptimizationAttribute class constructor is:

Public Sub New(ByVal value As System.LoaderOptimization)

The value parameter indicates the loader optimization that is to be performed. Permitted values are:
MultiDomain, MultiDomainHost, NotSpecified, and SingleDomain.

The LoaderOptimizationAttribute class has a single property:

Value

Indicates the loader optimization that is to be performed. The type is LoaderOptimization
(defined in the System namespace).

Loader optimizations are not discussed in this book.

MTAThread

Valid on

Method

Description

Specifies that the application is to use the multithreaded apartment model. This attribute should be
used only on an application's Main method. The MTAThread attribute takes no arguments and has no
properties. Threading models are not discussed in this book.

NonSerialized

 378

Valid on

Field

Description

When a type implements the ISerializable interface (defined in the System.Runtime.Serialization
namespace) or has the Serializable attribute, all of its fields are serializable. To prohibit a
particular field in a serializable type from being serializable, mark it with the NonSerialized attribute.
This attribute takes no arguments and has no properties.

Obsolete

Valid on

Class, Struct, Enum, Constructor, Method, Property, Field, Event, Interface, and Delegate

Description

Indicates that the given program element is obsolete.

The ObsoleteAttribute class has three overloads. The first takes no parameters and merely marks a
program element as obsolete. The second overload looks like this:

Public Overloads Sub New(ByVal message As String)

The message parameter gives a free-form text message, which can be shown to a programmer
making use of the obsolete program element. The third overload looks like this:

Public Overloads Sub New(ByVal message As String, ByVal error As Boolean)

In addition to the message parameter, this overload has an error parameter, which indicates
whether it is an error to use the given program element.

The properties of the ObsoleteAttribute class are:

IsError

Indicates whether it is an error to use the program element. The type is Boolean. The default
is False.

Message

A free-form text message, which can be shown to a programmer making use of the obsolete
program element.

ParamArray

Programming Visual Basic .NET

 379

Valid on

Parameter

Description

Indicates that a parameter actually stands for a variable number of parameters. This attribute need
never be used by Visual Basic .NET programs because Visual Basic .NET has a ParamArray
keyword. It's interesting to note that the ParamArray keyword is compiled into the ParamArray
attribute. This attribute takes no arguments and has no properties. See Chapter 2 for information
about the ParamArray keyword.

Serializable

Valid on

Class, Struct, Enum, and Delegate

Description

Indicates that a type is serializable. This attribute takes no arguments and has no properties.

STAThread

Valid on

Method

Description

Specifies that the application is to use the single-threaded apartment model. This attribute should be
used only on an application's Main method. The STAThread attribute takes no arguments and has no
properties. Threading models are not discussed in this book.

ThreadStatic

 380

Valid on

Field

Description

Specifies that the value of a static field is not shared across threads (that is, each thread in the
application has its own value). This attribute takes no arguments and has no properties.

Programming Visual Basic .NET

 381

Appendix B. Exceptions Defined in the System
Namespace

This appendix lists the exception classes that exist in the System namespace. Exceptions are
explained in Chapter 2.

AppDomainUnloadedException

Occurs upon an attempt to access an unloaded application domain.

ApplicationException

Represents the base class from which to derive application-defined exceptions.

ArgumentException

Represents the base class for ArgumentNullException, ArgumentOutOfRangeException, and
DuplicateWaitObjectException.

ArgumentNullException

Occurs when a value of Nothing is passed to a method that requires a valid object reference.

ArgumentOutOfRangeException

Occurs when a value passed to a method is outside the range that the method expects.

ArithmeticException

Represents the base class for DivideByZeroException, NotFiniteNumberException, and
OverflowException.

ArrayTypeMismatchException

Occurs upon an attempt to store a value of the wrong type in an array.

BadImageFormatException

Occurs upon an attempt to run an executable file that is in the wrong format.

CannotUnloadAppDomainException

Occurs when an attempt to unload an application domain fails.

ContextMarshalException

Occurs when an attempt to marshal an object across a context boundary fails.

DivideByZeroException

Occurs when the divisor in an integer division is 0. Floating point division by 0 doesn't throw
an exception.

 382

DllNotFoundException

Occurs when a specified .dll file can't be found.

DuplicateWaitObjectException

Occurs when an object appears more than once in an array of synchronization objects.

EntryPointNotFoundException

Occurs when the CLR can't find the requested method when calling methods in an
unmanaged (that is, non-.NET) .dll.

ExecutionEngineException

Occurs when there is an internal error in the CLR's execution engine.

FieldAccessException

Occurs upon an attempt to access a private or protected field in a class, by code that is not
permitted to do so.

FormatException

Occurs when a method argument value is incorrectly formatted.

IndexOutOfRangeException

Occurs when an array index is outside of the bounds of the array.

InvalidCastException

Occurs when an invalid conversion of a reference type is attempted.

InvalidOperationException

Occurs when a method call is invalid for the type's current state. This is the base class for the
ObjectDisposedException class.

InvalidProgramException

Occurs when a program contains invalid IL or metadata. This would only occur if there is a
bug in the compiler—there is no combination of Visual Basic .NET statements that can
produce invalid IL or metadata.

MemberAccessException

Occurs when an attempt to access a type member fails. This is the base class for the
FieldAccessException, MethodAccessException, and MissingMemberException classes.

MethodAccessException

Occurs upon an attempt to access a private or protected method in a class, by code that is not
permitted to do so.

Programming Visual Basic .NET

 383

MissingFieldException

Occurs upon an attempt to access a nonexistent field through reflection.

MissingMemberException

Occurs upon an attempt to access a nonexistent member through reflection. This is the base
class for the MissingFieldException and MissingMethodException classes.

MissingMethodException

Occurs upon an attempt to access a nonexistent method through reflection.

MulticastNotSupportedException

Occurs upon an attempt to combine two instances of a nonmulticast delegate.

NotFiniteNumberException

Occurs upon an attempt to use a nonfinite floating point number (PositiveInfinity,
NegativeInfinity, or NaN [not a number]) in an expression that requires a finite number.

NotImplementedException

Occurs when a method stub exists, but the method's functionality has not yet been
implemented.

NotSupportedException

Occurs upon an attempt to invoke functionality or features that are not supported by the
current implementation or in the current program state.

NullReferenceException

Occurs upon an attempt to access a nonshared type member through an object reference that
is set to Nothing.

ObjectDisposedException

Occurs upon an attempt to reuse an object whose Dispose method has been called, when that
object doesn't support dynamically reallocating its resources.

OutOfMemoryException

Occurs when the program is unable to allocate needed memory.

OverflowException

Occurs when an arithmetic or conversion operation results in an overflow.

PlatformNotSupportedException

Occurs upon an attempt to use a feature that is not supported on the current platform.

RankException

 384

Occurs when an array with the wrong number of dimensions is passed as a parameter in a
method call.

StackOverflowException

Occurs when the program stack overflows.

SystemException

Represents the base class for all exception classes in the System namespace.

TypeInitializationException

Occurs when a class initializer throws an exception.

TypeLoadException

Occurs when a type cannot be loaded. This is the base class for the DllNotFoundException
and EntryPointNotFoundException classes.

TypeUnloadedException

Occurs when an attempt is made to access an unloaded class.

UnauthorizedAccessException

Occurs when an unauthorized attempt is made to access an operating-system resource.

UriFormatException

Occurs when an invalid URI string is passed to the constructor of the Uri class (defined in the
System namespace).

Programming Visual Basic .NET

 385

Appendix C. Cultures

The @ Page directive can include a Culture attribute that allows you to specify the language and
culture for which the page is intended. This appendix lists the names of the cultures that can be
supplied as arguments to the Culture attribute. A culture name has the general format

<languagecode>-<country/regioncode>

where <languagecode> is a lowercase code generally consisting of two letters that defines a
language, and <country/regioncode> is an uppercase two-letter code defining the country or
region in which that language is used. In a few cases, the Culture attribute takes the form

<charactercode>-<languagecode>-<countrycode>

where <charactercode> is a mixed case two-letter code (e.g., Cy for Cyrillic) indicating the
character set, <languagecode> is a lowercase two-letter code indicating the language, and
<countrycode> is an uppercase two-letter code defining the country in which that language and
character set are used.

A culture name that takes the form <languagecode> only is a neutral culture; it is associated with a
language, but not with a particular country or region.

Culture name LCID Culture display name
af 54 Afrikaans
af-ZA 1078 Afrikaans (South Africa)
ar 1 Arabic
ar-AE 14337 Arabic (U.A.E.)
ar-BH 15361 Arabic (Bahrain)
ar-DZ 5121 Arabic (Algeria)
ar-EG 3073 Arabic (Egypt)
ar-IQ 2049 Arabic (Iraq)
ar-JO 11265 Arabic (Jordan)
ar-KW 13313 Arabic (Kuwait)
ar-LB 12289 Arabic (Lebanon)
ar-LY 4097 Arabic (Libya)
ar-MA 6145 Arabic (Morocco)
ar-OM 8193 Arabic (Oman)
ar-QA 16385 Arabic (Qatar)
ar-SA 1025 Arabic (Saudi Arabia)
ar-SY 10241 Arabic (Syria)
ar-TN 7169 Arabic (Tunisia)
ar-YE 9217 Arabic (Yemen)
az 44 Azeri
be 35 Belarusian
be-BY 1059 Belarusian (Belarus)
bg 2 Bulgarian
bg-BG 1026 Bulgarian (Bulgaria)
ca 3 Catalan
ca-ES 1027 Catalan (Spain)
cs 5 Czech

 386

cs-CZ 1029 Czech (Czech Republic)
Cy-az-AZ 2092 Azeri (Cyrillic) (Azerbaijan)
Cy-sr-SP 3098 Serbian (Cyrillic) (Serbia)
Cy-uz-UZ 2115 Uzbek (Cyrillic) (Uzbekistan)
da 6 Danish
da-DK 1030 Danish (Denmark)
de 7 German
de-AT 3079 German (Austria)
de-CH 2055 German (Switzerland)
de-DE 1031 German (Germany)
de-LI 5127 German (Liechtenstein)
de-LU 4103 German (Luxembourg)
div 101 Divehi
div-MV 1125 Divehi (Maldives)
el 8 Greek
el-GR 1032 Greek (Greece)
en 9 English
en-AU 3081 English (Australia)
en-BZ 10249 English (Belize)
en-CA 4105 English (Canada)
en-CB 9225 English (Caribbean)
en-GB 2057 English (United Kingdom)
en-IE 6153 English (Ireland)
en-JM 8201 English (Jamaica)
en-NZ 5129 English (New Zealand)
en-PH 13321 English (Republic of the Philippines)
en-TT 11273 English (Trinidad and Tobago)
en-US 1033 English (United States)
en-ZA 7177 English (South Africa)
en-ZW 12297 English (Zimbabwe)
es 10 Spanish
es-AR 11274 Spanish (Argentina)
es-BO 16394 Spanish (Bolivia)
es-CL 13322 Spanish (Chile)
es-CO 9226 Spanish (Colombia)
es-CR 5130 Spanish (Costa Rica)
es-DO 7178 Spanish (Dominican Republic)
es-EC 12298 Spanish (Ecuador)
es-ES 3082 Spanish (Spain)
es-GT 4106 Spanish (Guatemala)
es-HN 18442 Spanish (Honduras)
es-MX 2058 Spanish (Mexico)
es-NI 19466 Spanish (Nicaragua)
es-PA 6154 Spanish (Panama)
es-PE 10250 Spanish (Peru)
es-PR 20490 Spanish (Puerto Rico)
es-PY 15370 Spanish (Paraguay)
es-SV 17418 Spanish (El Salvador)

Programming Visual Basic .NET

 387

es-UY 14346 Spanish (Uruguay)
es-VE 8202 Spanish (Venezuela)
et 37 Estonian
et-EE 1061 Estonian (Estonia)
eu 45 Basque
eu-ES 1069 Basque (Spain)
fa 41 Farsi
fa-IR 1065 Farsi (Iran)
fi 11 Finnish
fi-FI 1035 Finnish (Finland)
fo 56 Faeroese
fo-FO 1080 Faeroese (Faeroe Islands)
fr 12 French
fr-BE 2060 French (Belgium)
fr-CA 3084 French (Canada)
fr-CH 4108 French (Switzerland)
fr-FR 1036 French (France)
fr-LU 5132 French (Luxembourg)
fr-MC 6156 French (Principality of Monaco)
gl 86 Galician
gl-ES 1110 Galician (Spain)
gu 71 Gujarati
gu-IN 1095 Gujarati (India)
he 13 Hebrew
he-IL 1037 Hebrew (Israel)
hi 57 Hindi
hi-IN 1081 Hindi (India)
hr 26 Croatian
hr-HR 1050 Croatian (Croatia)
hu 14 Hungarian
hu-HU 1038 Hungarian (Hungary)
hy 43 Armenian
hy-AM 1067 Armenian (Armenia)
id 33 Indonesian
id-ID 1057 Indonesian (Indonesia)
is 15 Icelandic
is-IS 1039 Icelandic (Iceland)
it 16 Italian
it-CH 2064 Italian (Switzerland)
it-IT 1040 Italian (Italy)
ja 17 Japanese
ja-JP 1041 Japanese (Japan)
ka 55 Georgian
ka-GE 1079 Georgian (Georgia)
kk 63 Kazakh
kk-KZ 1087 Kazakh (Kazakhstan)
kn 75 Kannada
kn-IN 1099 Kannada (India)

 388

ko 18 Korean
kok 87 Konkani
kok-IN 1111 Konkani (India)
ko-KR 1042 Korean (Korea)
ky 64 Kyrgyz
ky-KZ 1088 Kyrgyz (Kyrgyzstan)
lt 39 Lithuanian
Lt-az-AZ 1068 Azeri (Latin) (Azerbaijan)
lt-LT 1063 Lithuanian (Lithuania)
Lt-sr-SP 2074 Serbian (Latin) (Serbia)
Lt-uz-UZ 1091 Uzbek (Latin) (Uzbekistan)
lv 38 Latvian
lv-LV 1062 Latvian (Latvia)
mk 47 FYRO Macedonian
mk-MK 1071 FYRO Macedonian (Former Yugoslav Republic of Macedonia)
mn 80 Mongolian
mn-MN 1104 Mongolian (Mongolia)
mr 78 Marathi
mr-IN 1102 Marathi (India)
ms 62 Malay
ms-BN 2110 Malay (Brunei Darussalam)
ms-MY 1086 Malay (Malaysia)
nb-NO 1044 Norwegian (Bokmål) (Norway)
nl 19 Dutch
nl-BE 2067 Dutch (Belgium)
nl-NL 1043 Dutch (Netherlands)
nn-NO 2068 Norwegian (Nynorsk) (Norway)
no 20 Norwegian
pa 70 Punjabi
pa-IN 1094 Punjabi (India)
pl 21 Polish
pl-PL 1045 Polish (Poland)
pt 22 Portuguese
pt-BR 1046 Portuguese (Brazil)
pt-PT 2070 Portuguese (Portugal)
ro 24 Romanian
ro-RO 1048 Romanian (Romania)
ru 25 Russian
ru-RU 1049 Russian (Russia)
sa 79 Sanskrit
sa-IN 1103 Sanskrit (India)
sk 27 Slovak
sk-SK 1051 Slovak (Slovakia)
sl 36 Slovenian
sl-SI 1060 Slovenian (Slovenia)
sq 28 Albanian
sq-AL 1052 Albanian (Albania)
sv 29 Swedish

Programming Visual Basic .NET

 389

sv-FI 2077 Swedish (Finland)
sv-SE 1053 Swedish (Sweden)
sw 65 Swahili
sw-KE 1089 Swahili (Kenya)
syr 90 Syriac
syr-SY 1114 Syriac (Syria)
ta 73 Tamil
ta-IN 1097 Tamil (India)
te 74 Telugu
te-IN 1098 Telugu (India)
th 30 Thai
th-TH 1054 Thai (Thailand)
tr 31 Turkish
tr-TR 1055 Turkish (Turkey)
tt 68 Tatar
tt-TA 1092 Tatar (Tatarstan)
uk 34 Ukrainian
uk-UA 1058 Ukrainian (Ukraine)
ur 32 Urdu
ur-PK 1056 Urdu (Islamic Republic of Pakistan)
uz 67 Uzbek
vi 42 Vietnamese
vi-VN 1066 Vietnamese (Viet Nam)
zh-CHS 4 Chinese (Simplified)
zh-CHT 31748 Chinese (Traditional)
zh-CN 2052 Chinese (People's Republic of China)
zh-HK 3076 Chinese (Hong Kong S.A.R.)
zh-MO 5124 Chinese (Macau S.A.R.)
zh-SG 4100 Chinese (Singapore)
zh-TW 1028 Chinese (Taiwan)
iv 127 Invariant Language (Invariant Country)

 390

Programming Visual Basic .NET

 391

Appendix D. Resources for Developers

The amount of brainpower floating around in cyberspace is amazing. If you're stuck, you need never
stay stuck for long. In this appendix, I list some of my favorite .NET hangouts on the Web—though it is
by no means exhaustive.

The links shown here were verified at the time of printing, but of course, there is no guarantee that
they will remain so.

D.1 .NET Information
Microsoft

http://www.microsoft.com/net/

This is the official home page for information about Microsoft's .NET initiative. On this page
you will find links to:

• Definitions and overviews of .NET
• Information about .NET My Services, Microsoft's package of web-service offerings
• .NET books and articles
• .NET training
• Information about Visual Studio .NET
• .NET success stories

Microsoft Developer Network (MSDN)

http://msdn.microsoft.com/net/

This offeres complete .NET reference documentation online.

Microsoft's GotDotNet

http://www.gotdotnet.com

.NET articles, samples, and links are provided by Microsoft .NET team members, as well as
users.

Microsoft's IBuySpy

http://www.ibuyspy.com

This is a reference implementation for a complete web site developed using ASP.NET.
Complete source code is downloadable in Visual Basic .NET or C#.

O'Reilly

http://www.oreilly.com

O'Reilly has a large lineup of .NET books written by experts in the field.

Ron's VB Forum

http://vb.oreilly.com/ron/

 392

O'Reilly editor, Ron Petrusha, hosts this column in which particularly interesting VB questions
are answered.

DevX .NET Developer Resources

http://www.devx.com/dotnet/resources/

This is a great list of links to a huge number of .NET resources.

D.2 Discussion Lists

Discussion lists are one of the greatest resources on the Internet. These give you the opportunity to
ask questions of tens, hundreds, or thousands of people who are in your field of interest. The web
URLs listed here link to pages that provide instructions for subscribing to the lists.

Netiquette

If you've never before been a member of a discussion list, take care to note
the concept of netiquette. This term refers to the rules of behavior expected
from people who post messages to discussion lists. You will receive or be
directed to a list of such expectations when you subscribe to a list, but they
can be summed up as follows:

1. Monitor the discussion list a while before posting messages.
2. If available, search the list archives before posting a question.
3. Don't post questions that are outside of the list's discussion topic.
4. Be nice.
5. Answer the questions that you can.
6. Maximize your signal-to-noise ratio. (That means you should post

more helpful answers than witty remarks.)

DevelopMentor's DOTNET List

http://discuss.develop.com/dotnet.html

This is my all-time favorite .NET hangout. There are many heavy hitters on this list, including
Microsoft-development team members and program managers, as well as third-party experts
who were learning and using .NET as much as a year or two before it's official release.

ASP Lists

http://www.asplists.com

This site is amazing for its breadth of coverage. There are over 400 highly focused, moderated
lists available through this one site. Many of these are now .NET-related, and many are
available in languages other than English.

Visual Basic List

http://peach.ease.lsoft.com/archives/visbas-l.html

Programming Visual Basic .NET

 393

The members of this list discuss everything related to Visual Basic, including Visual
Basic .NET, as well as earlier versions. This is a large, very active list with developers of all
skill levels. There are plenty of advanced Visual Basic developers on this list who are ready to
lend a hand when they can. There are approximately 4,400 subscribers.

Visual Basic Beginner's List

http://peach.ease.lsoft.com/archives/visbas-beginners.html

For beginners who don't feel comfortable posting to the Visual Basic List, there is the Visual
Basic Beginner's List. There are approximately 1,000 subscribers.

 394

Programming Visual Basic .NET

 395

Appendix E. Math Functions

Math functions are provided by the members of the Math class (defined in the System namespace). All
members of the Math class are shared, so it is not necessary to instantiate the class before accessing
its members. Members are simply accessed through the class name. For example, the following line
computes the cosine of 45:

Dim result As Double = Math.Cos(45)

The Math class exposes two constants:

E

The base of natural logarithms.

PI

The ratio of the circumference of a circle to its diameter.

The methods of the Math class are as follows. Note that the trigonometric functions consider all angle
values to be in radians.

Abs

Computes the absolute value of a number.

Acos

Computes the angle whose cosine is the given number.

Asin

Computes the angle whose sine is the given number.

Atan

Computes the angle whose tangent is the given number.

Atan2

Computes the angle whose tangent is equal to the quotient of the two given numbers.

Ceiling

Computes the smallest whole number greater than or equal to the given number.

Cos

Computes the cosine of a number.

Cosh

Computers the hyperbolic cosine of a number.

 396

Exp

Computes e raised to a given power.

Floor

Computes the largest whole number less than or equal to a given number.

IEEERemainder

Calculates the remainder in the division of two numbers.

Log

Calculates the logarithm of a number (either the natural logarithm or in a given base).

Log10

Calculates the base 10 logarithm of a number.

Max

Returns the larger of two numbers.

Min

Returns the smaller of two numbers.

Pow

Raises a given number to a given power.

Round

Rounds a number to either a whole number or a specified decimal place.

Sign

Returns -1, 0, or 1 to indicate whether the argument is negative, zero, or positive, respectively.

Sin

Calculates the sine of a number.

Sinh

Calculates the hyperbolic sine of a number.

Sqrt

Calculates the square root of a number.

Tan

Programming Visual Basic .NET

 397

Calculates the tangent of a number.

Tanh

Calculates the hyperbolic tangent of a number.

 398

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Programming Visual Basic .NET is a catfish. Catfish can be found all over
the world, most often in freshwater environments. Catfish are identified by their whiskers, called
"barbels," as well by as their scaleless skin; fleshy, rayless posterior fins; and sharp, defensive spines
in the dorsal and shoulder fins. Catfish have complex bones and sensitive hearing. They are
omnivorous feeders and skilled scavengers. A marine catfish can taste with any part of its body.

Though most madtom species of catfish are no more than 5 inches in length, some Danube catfish
(called wels or sheatfish) reach lengths of up to 13 feet and weigh as much as 400 pounds. Wels
catfish (found mostly in the United Kingdom) are dark, flat, and black in color, with white bellies. They
breed in the springtime in shallow areas near rivers and lakes. The females leave their eggs on plants
for the males to guard. Two to three weeks later, the eggs hatch into tadpole-like fish, which grow
quickly in size. The largest recorded wels catfish was 16 feet long and weighed 675 pounds.

Darren Kelly was the production editor, Jeffrey Holcomb was the copyeditor, and Rachel Wheeler was
the proofreader for Programming Visual Basic .NET. Matt Hutchinson, Mary Anne Weeks Mayo, and
Claire Cloutier provided quality control. Brenda Miller wrote the index. Interior composition was done
by Philip Dangler. Linley Dolby wrote the colophon.

Pam Spremulli designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with Quark™XPress 4.1, using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. Mihaela Maier
converted the files from Microsoft Word to FrameMaker 5.5.6, using tools created by Mike Sierra. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by
Robert Romano and Jessamyn Read, using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip
and warning icons were drawn by Christopher Bing.

