
Introducing
Dart Sass

A Practical Introduction to the
Replacement for Sass, Built on Dart
—
Alex Libby

Introducing Dart Sass
A Practical Introduction to
the Replacement for Sass,

Built on Dart

Alex Libby

Introducing Dart Sass

ISBN-13 (pbk): 978-1-4842-4371-8 ISBN-13 (electronic): 978-1-4842-4372-5
https://doi.org/10.1007/978-1-4842-4372-5

Library of Congress Control Number: 2019932808

Copyright © 2019 by Alex Libby

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.
com/9781484243718. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Alex Libby
Rugby, Warwickshire, UK

https://doi.org/10.1007/978-1-4842-4372-5

This is dedicated to my family, with thanks for their love
and support whilst writing this book.

v

Table of Contents

Chapter 1: Introducing Sass ���1

What Is Sass? ���1

Understanding the Advantages of Using Sass ��2

The Different Syntaxes of Sass ���4

Some Project Housekeeping ���5

Setting Up Sass ���5

Understanding What Happened���9

Setting Up a Workflow ���13

Setting Up a Folder Structure ��13

Enabling Source Map Support ���14

Automating the Compilation Process ��16

Adjusting the Output Format ���16

Editing Sass Code ��17

Making a Choice ��19

Automating the Process ��20

Breaking Down Our Process ��24

Getting Acquainted with Key Terms ��27

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

Introduction ��xvii

vi

Getting Help ��30

Summary���33

Chapter 2: Introducing Variables and Mixins �������������������������������������35

Creating Variables in a Practical Context ��35

Exploring What Happened ���38

Taking Care Over Variable Names ��40

Adding Comments ���42

Making Use of Standard Mixins ��44

Creating Reusable Code ��45

Exploring Our Code in Detail ��47

Using Prebuilt Mixins ��48

Understanding How the Code Works ���52

Passing Values to Mixins ���53

Dissecting Our Code ��56

Working Across Multiple Files ���57

Exploring How Our Code Works ���60

Summary���62

Chapter 3: Creating Nested Styles ��63

Breaking Apart the Concept of Nesting ���64

Breaking Apart Our Code ���68

Working a More Complex Example ���69

Exploring the Pitfalls of Nesting ��70

Is Nesting a Bad Thing? ���71

Exploring the Benefits of Nesting ��72

Referencing Parent Selectors ���73

Exploring Our Code in Detail ��76

Table of ConTenTsTable of ConTenTs

vii

Applying the @extend Directive ��76

Working Through an Example ��77

A Practical Example ���78

Dissecting Our Code in Detail ��83

Using Extends or Mixins? ��85

Summary���88

Chapter 4: Calculating Values Using Operations ��������������������������������89

Number-Based Operations ��89

Operators for String-Based Content ��90

Boolean-Based Operators ��90

List-Based Operators ���91

Putting This Into Practice ���92

Understanding What Happened ���97

Defining Functions ��98

Working with Colors – a Mini Case Study ��101

Breaking Apart the Code in Detail ��106

Assessing the Benefits from Using this Approach ���������������������������������������108

Evaluating Conditions��109

Applying @if and @if(): ���109

Understanding What Happened ���113

Looping Through Styles���114

Working with @for ���114

Understanding How Our Code Works ���117

Looping Using @each ��118

Dissecting the Demo ���121

Looping if a Condition Is True ��122

Exploring the Code in Detail ��125

Table of ConTenTsTable of ConTenTs

viii

Applying Styles to a Property List or Map ���126

Breaking Down Our Code ��129

Creating Breakpoints Using @media ��130

Understanding What Happened ���134

Summary���135

Chapter 5: Making the Conversion to Using Sass �����������������������������137

Simplifying the Process ��138

Making a Start on Conversion ���143

Using the css2scss Tool – a Postscript ��146

Using a Prebuilt Library ���147

Exploring Prebuilt Options ���148

Assessing the Pitfalls – a Postscript ���150

Optimizing the Import Process ��153

Understanding the Changes ��159

Working Through an Example ���161

Exploring the Changes and More in Detail ��164

Summary���168

Chapter 6: Introducing Our Project ���171

Setting Up Our Initial Cart ���172

Understanding What Has Happened ��174

Preparing Our Style Sheet ���175

Assigning Our Variables ���177

Setting Up the Main Style Sheet ��181

Tying It All Together ���192

Compiling Our Code ��193

The Final Result ��194

Table of ConTenTsTable of ConTenTs

ix

Future Changes ���196

Summary���198

Appendix: Adding Sass to Your Path���199

Windows ���199

Mac OS X ���200

Linux ���200

Index ���203

Table of ConTenTsTable of ConTenTs

xi

About the Author

Alex Libby is an A/B testing developer and seasoned computer book

author who hails from England. His passion for all things Open Source

dates back to the days of his degree studies, where he first came across web

development, and has been hooked ever since. His daily work involves

extensive use of JavaScript, HTML, and CSS to manipulate existing website

content; Alex enjoys tinkering with different open source libraries to see

how they work. He has spent a stint maintaining the jQuery Tools library

and enjoys writing about Open Source technologies, principally for front-

end UI development. Away from developing code, Alex enjoys managing

stage shows, photography, or being out and about cycling around his

hometown on his bike.

xiii

About the Technical Reviewer

Ferit Topcu is a software developer who has

been enjoying the last years working and

exploring the Web and JavaScript. He’s been

in web development for five+ years and has

worked in different areas from researching

topics, social media analytics, and Internet

of Things, to recently joining one of Europe’s

biggest e-commerce companies – Zalando.

There he is developing web applications to

improve the whole retail process.

xv

Acknowledgments

Writing a book can be a long but rewarding process; it is not possible

to complete it without the help of other people. I would like to offer a

huge vote of thanks to my editors – in particular, Nancy Chen and Louise

Corrigan; my thanks also to Ferit Topcu as my technical reviewer, and

James Markham for his help during the process. All four have made writing

this book a painless and enjoyable process, even with the edits.

My thanks also to my family for being understanding and supporting

me while writing – I frequently spend lots of late nights writing alone, so

their words of encouragement have been a real help in getting past those

bumps in the road and producing the finished book that you now hold in

your hands.

xvii

Introduction

Introducing Dart Sass is for people who want to quickly create valid CSS

styles for use within websites.

Originally written in Ruby, and released back in 2006, this new version

has been rewritten from ground up to be faster and simpler to use, yet still

retain the same features that users of Sass have come to know and love.

Over the course of this book, I’ll take you on a journey through using

the library, showing you how easy it is to quickly create reusable styles with

the minimum of fuss – we’ll cover such diverse topics as operations, string

interpolation, creating and manipulating content using functions, and

more, with lots of simple exercises to help develop your skills using Sass as

a tool.

Introducing Dart Sass is for the website developer who is keen to learn

how to quickly leverage the power of Sass to produce valid style sheet

code, where pressure is on to produce results rapidly. It’s perfect for those

in Agile teams where time is of the essence, or for developers keen to build

reusable styles to help save development time and resources for present

and future projects.

1© Alex Libby 2019
A. Libby, Introducing Dart Sass, https://doi.org/10.1007/978-1-4842-4372-5_1

CHAPTER 1

Introducing Sass
Imagine the scene if you will – it’s late on Friday, and you’re ready
to go home. Only your boss walks up to your desk and says there’s
a last-minute change needed on some styles for the buttons in
your latest project. Ugh – so much for finishing on time. …

Sound familiar? Ordinarily, we might have to spend hours poring through

style sheets, working out which styles to change and where, hoping that we

don’t miss anything in our hunt. This is a real drag, particularly when you

had hopes to go on a night out – no problem if you use Sass!

The term “Sass” has been floating around for a few years, with some

well-known names as proponents of the technology. The real question I’ll

bet you’re asking though is this: What is all of the hype about, and how will

it help in my development?

 What Is Sass?
These are two very good questions ask to really understand what Sass

is all about; however, we must first answer one question: What is a CSS

preprocessor?

Put simply, a preprocessor is a scripting language that we can use to

extend CSS; we use it to write code in one language before compiling it

into CSS. Sass is arguably the most popular of these although others exist,

such as Less or Stylus. Sass allows us to create all types of shortcuts: from

simple placeholders to update multiple instances of a single value, through

to creating new styles that subsume existing base styles.

2

So now that we’ve been introduced to preprocessors, it’s time we

answered those two questions: What is Sass all about, and how is it going

to help in my development?

First appearing back in 2006 and created by Hampton Catlin, Sass,

or Syntactically Awesome Stylesheets (yes, it is a bit of a mouthful), is

billed as an extension of CSS. It brings in the power of basic scripting tools

such as variables and loops, to help keep your code more organized and

create style sheets faster than with ordinary CSS. If the thought of creating

variables or loops scares you, then don’t worry – they are much easier to

use than the terms might imply! We will go through all of the core functions

of Sass over the course of this book; by the end, you will be more at ease

with Sass and wonder why you hadn’t made the change to using it sooner.

Okay – let’s move on: now that we’ve been formally introduced, let’s

answer the second question: How is Sass going to help me when it comes

to developing style sheets?

 Understanding the Advantages of
Using Sass
When working with Sass over time, it would be easy to understand why

some consider it to be a real Swiss army knife of a toolbox. Although

it contains a healthy selection of tools, its power is only really limited

by one’s imagination! Taking a step back, though, there are some key

advantages to using the library, so let’s take a look at them in detail:

• Sass allows us to break large style sheet files into

smaller, more manageable files; we can work on

individual files and let Sass compile all of them into one

larger file. Take a look at WordPress, for example – it’s

lengthy style sheet (which weighs in at 4,500+ lines)

makes use of Sass to help break this monster into

smaller, easier-to-edit files.

Chapter 1 IntroduCIng SaSS

3

• Traditional development might have involved us

creating multiple style sheets, particularly if we’re

catering for specific browsers, such as IE9 or below.

Although this principle works, it results in increased

HTTP requests, which all require resources. Sass allows

us to make use of the @import statement to not only

break the style sheet into smaller files, but which also

helps to reduce the number of HTTP requests made to

the server.

• One of the most important benefits of Sass, though, is

reducing repetition. Put simply, we can create styles

that are extensions of existing ones; the new ones

contain the same attributes as the base style, without us

having to repeat them.

• We can incorporate as little or as much of Sass-style

code into our style sheet as we like; Sass will ignore any

standard CSS rules, so as long as the file structure is in

place, then we can update rules in stages, and not in

one large change.

• Another benefit of using Sass is the ability to

create variables or placeholders for values. These

placeholders can be reused throughout our projects – if

we need to change a value, we change it once, and this

ripples throughout the style sheet during compilation.

A great example of this comes when working with

colors – if we need to change a shade of red, for

example, we can do it once; Sass updates each instance

of this shade throughout our style sheet automatically.

Chapter 1 IntroduCIng SaSS

4

Okay – enough chitchat: it’s time to get stuck into the detail! We’ve

explored a number of key benefits of using Sass; these will come to

life throughout the course of this book. But – as they say – we must

start somewhere, and the best place is with the different syntaxes and

implementations available when using Sass, and why it really pays to take

care when writing Sass code…

 The Different Syntaxes of Sass
Hold on – did you just say different … syntaxes? Yes, you heard correctly:

Sass does indeed have two syntaxes, but before you run to the hills, don’t

fret. We’re not going to learn both! It’s worth clarifying what is available

though, so let me explain:

• The original, or indented syntax, uses something

similar to the Haml scripting language – it uses

indentation to separate code blocks and newline

characters to separate rules. This uses the .sass file

extension.

• The newer syntax, “SCSS” (or Sassy CSS), uses block

formatting similar to that of CSS; it uses braces to

denote code blocks and semicolons to separate lines

within a block. This uses the .scss file extension.

To complicate matters further, there are also different implementations

of Sass available, including ones written in C, PHP, and Java – it’s no

wonder things might seem a little confusing!

Throughout the course of this book, we’ll use the latest version of Sass,

which has been rewritten using Dart; you may see references to Ruby Sass,

but this has been deprecated in favor of Dart Sass, and it will go out of

support. At the same time, we will use the newer syntax – its proximity to

vanilla CSS makes it much easier to learn.

Chapter 1 IntroduCIng SaSS

5

the original syntax for Sass is still available – it requires the use
of indents and newline characters to format code, which makes it
harder to learn for those new to using Sass.

Okay – hopefully that has cleared up some of the confusion about the

various implementations of Sass; it’s time we moved on and got stuck

into more practical matters! There is no better place to start than to get

ourselves set up with Sass; before we do so, there is a little housekeeping

task we must perform first.

 Some Project Housekeeping
When you start on a project for the first time, there is nearly always some

form of housekeeping to be done, right?

Well, we’re not going to break with tradition here – we have one simple

task to do: go ahead and create a folder called dart-sass, which we will

use to store the code from each exercise throughout this book. It doesn’t

matter where it is stored, although I will assume for our purposes that it is

stored at the root of your PC or laptop; we’ll refer to it as our project folder

throughout this book. With that in place, let’s make a start on our first

exercise, which is to install and configure Sass for use.

 Setting Up Sass
Although we talk of “setting up” Sass, there is nothing complicated to do –

there are very few steps involved! Gone are the days of having to install big

dependencies such as Ruby (if you happened to have used older versions

of Sass); the Dart version of Sass is based entirely on JavaScript so is a

cinch to install.

Chapter 1 IntroduCIng SaSS

6

Over the course of the next few pages, we’ll go through the process

step by step – at the end of this chapter you will have a basic system in

place that can easily be extended, along with an understanding of what is

required to work with Sass.

INSTALLING SASS

Let’s make a start on installing Sass:

 1. We’ll start by downloading Sass from https://github.com/

sass/dart-sass/releases/; make sure you choose the

appropriate version for your platform. Save the compressed

file into a new folder called firstcompile, at the root of our

project area.

 2. next, open the compressed file, and extract the contents into

the same firstcompile folder.

 3. We now need to add the location to your Path variable for

your platform.

If you’re unsure how to do this, then take a look at the appendix at
the end of this book, which details the procedure for Mac, Windows,
and Linux platforms.

 4. We’re ready to test that Sass has been installed correctly – for

this, fire up a terminal session and change the working folder to

the firstcompile folder we created in step 1.

Chapter 1 IntroduCIng SaSS

https://github.com/sass/dart-sass/releases/
https://github.com/sass/dart-sass/releases/

7

 5. at the prompt, enter sass --version and press enter – if all

is well, we should see it return a number, indicating the version

installed, similar to that shown in Figure 1-1.

Figure 1-1. Checking that Sass is installed

 6. For now, keep the terminal node session open – we will revert

back to it very shortly in the next exercise.

That was really easy – if you were expecting more, then I am sorry to

disappoint! There’s no need to install any dependencies (unlike in the days

of working with Ruby Sass, which required Ruby); instead, it’s just a matter

of unzipping an archive file in a folder of our choice.

This is all very well, but as they say, the proof of the pudding is in its

tasting – it’s only good if it compiles a Sass file to valid CSS! This should

be a formality though: to prove this is indeed the case, let’s take a look at

testing the compilation process in more detail.

Chapter 1 IntroduCIng SaSS

8

OUR FIRST COMPILATION

at this stage don’t worry if the Sass code doesn’t make sense just yet – all we’re

interested in is making sure that our compilation process produces a valid style

sheet. We have a couple of steps to go through, so let’s make a start:

 1. First, go ahead and open a new document in your usual text

editor, and add the following lines. don’t worry about them not

making sense just yet; we will go into detail at the end of the

exercise:

$font-stack: Helvetica, sans-serif;

$primary-color: #ccc;

$decoration-color: #0cf;

body { font: 100% $font-stack; color: $primary-color;

text- decoration- color: $decoration-color}

 2. Save this as test.scss at the root of our dart-sass folder,

then go ahead and fire up a terminal session.

 3. Change the working folder to your dart-sass folder, then

enter this command and press enter:

sass test.scss output.css

 4. at this stage, we won’t see any message appear to confirm

success – for this, we need to look in our dart-sass folder,

where we can see two new files have appeared, plus our

test.scss file (Figure 1-2).

Chapter 1 IntroduCIng SaSS

9

See how easy that was? Granted, our demo did make use of a terminal

session, which might scare some; there are ways to get around this, which we

will go through later in this chapter. For now, our demo has touched on some

key points we should explore, so let’s break down our compilation process in

more detail, to understand how we arrived at our compiled style sheet.

 Understanding What Happened
At first glance, our demo looks simple enough (at least in terms of quantity),

even if we might not be sure about exactly what has taken place! Let me reveal

all – our demo has covered two key steps upon which we will elaborate later

in this book. For now, they can be summarized as the following:

• Compiling code from Sass to CSS,

• Creating and reusing variables (or placeholders).

Figure 1-2. Our first compilation

Chapter 1 IntroduCIng SaSS

10

Let’s first take a look at the compilation process – at a very basic level,

we simply need to specify a source file (in this case, test.scss), and the

name of the output file we want to create (output.css). It doesn’t matter

where we run the compilation process – the key things, though, are that

we clearly specify the right file names, and that the Sass compiler will

automatically replace existing files in the destination folder.

We touched on the second key point being the creation of

variables – this might seem a little scary for those of you not familiar with

programming techniques, but trust me: they are easier to use than it might

sound! If we take a look at the contents of test.scss, we will see the code

listed in Figure 1-3.

Figure 1-3. Examining our source Sass file …

Chapter 1 IntroduCIng SaSS

11

Sass will not attempt to try to compile CSS rules already in the Sass
file; these will be copied across to the destination file untouched. It’s a
useful point to bear in mind – we will explore why, later in this book.

Let’s go though it line by line –

• We then open a rule for body – inside of which

we specify properties for font, font color, and text

decoration. Instead of specifying fixed values, we’ve

inserted placeholders that correspond to the variables

listed in lines 1 to 3 of our code.

• Our first three lines specify placeholder values, or

variables – one for our font-family name, with two for

colors (one as the font color, and the second as a text-

decoration color). Sass is pretty flexible when it comes

to naming conventions; you can use any name that is

appropriate, as long as it is not an existing keyword; any

variable must start with a $ symbol to signify it as such.

Think of variables as buckets or placeholders – these tell Sass where to

insert the real value during compilation. To prove this, go ahead and open

up output.css; inside you will see our three properties now have human-

readable values, as indicated in Figure 1-4.

Chapter 1 IntroduCIng SaSS

12

The compilation process performs a number of tasks, one of which is

replacing variables with proper values. Our example only had three, but

imagine if this were repeated multiple times in a lengthy style sheet (such

as WordPress)? At a stroke, we can update a single instance of a variable

and recompile our file – we eliminate any risk of missing a variable, as Sass

will update every instance it finds automatically.

We will revisit the concept of variables in Chapter 2, “Introducing
Variables and Mixins.”

Okay – let’s change tack: our process works, but it will get a little

tedious if we have to continue compiling code by hand all of the time. In

addition, we can definitely improve on our folder structure; it’s time we

took a look at how we might set up a suitable workflow to help with the

compilation process.

Figure 1-4. ... and the output file

Chapter 1 IntroduCIng SaSS

13

 Setting Up a Workflow
When working with Sass, it pays to be organized – we might get away with

what we’ve set up thus far if we’re only going to work on a couple of files. If,

however, we need to work on anything more substantial, then this clearly

won’t work: it’s time we got ourselves organized.

I’m a great believer in keeping things simple – after all, there is no

benefit in making something more complicated than it needs to be!

There are a few changes we can make that will certainly help us, so let’s

take a look:

• Setting up a suitable folder structure to store our assets,

• Enabling CSS source map support,

• Automating the compilation process,

• Adjusting the output format of our code,

• Making sure we have a good text editor available.

We will add to this over the course of this book, by exploring ways

of producing reusable code, or extra tips to help with the development

process. The important thing to understand though is that although we

may not need anything complicated to get started, it is important to get

them configured correctly; let’s dive in and explore this in more detail.

 Setting Up a Folder Structure
I would absolutely recommend creating a folder structure to store your

assets; as a starting point, I would suggest one folder for Sass source files

and another for the compiled CSS style sheet files. One of the key benefits

of Sass is the ability to break a larger style sheet into smaller files; over time

we could build up a folder structure similar to that shown in Figure 1-5.

Chapter 1 IntroduCIng SaSS

14

Of course, this takes time to develop, so if we start with a simple

folder for source files (in this example, sass), and a separate one (such

as stylesheets from our example), then this will put us in good stead for

developing Sass code.

 Enabling Source Map Support
Take another look at the bottom of our compiled test.css file – did you

notice the presence of this line?

/*# sourceMappingURL=maps/test.css.map */

Figure 1-5. A typical folder structure for Sass development

Chapter 1 IntroduCIng SaSS

15

This is a link to a CSS source map – this is an indispensable tool when

it comes to working with Sass. Put simply, it translates each compiled rule

in our style sheet back to the original Sass code; we can use it to identify

exactly where an issue might be in our code.

Source maps are automatically produced when compiling via the

command line (or terminal session). To use them, we have to enable

browser support – let’s run through how, using Chrome as our example

browser:

• Fire up the browser and then press Ctrl + Shift + I

(or Command + Apple + I for Macs), to bring up the

Developer Console.

• Click on the three dots to the top right of Console, then

hit Settings.

• Look for the Enable CSS source maps entry, under

Sources (Figure 1-6).

Figure 1-6. Enabling CSS source maps option

If you take a look at Figure 1-2 again, you’ll see the presence of a

output.css.map file – this was created automatically when we compiled

our first file on the command line. Opening the file in a text editor, we will

see something akin to this:

{"version":3,"sourceRoot":"","sources":["../sass/test.scss"],

"names":[],"mappings":"AAIA;EACE;EACA,OALc;EAMd,uBALiB","file":

"output.css"}

Chapter 1 IntroduCIng SaSS

16

It probably looks like meaningless code, but it contains mappings

from the compiled CSS file (output.css), which point to the relevant code

within our original source file, test.scss. Suffice to say that we don’t need

to worry about what is produced inside this file – the compilation process

takes care of this for us. As long as one is present, and support is enabled

in our browser, we will be able to relate compiled code back to its

original source.

 Automating the Compilation Process
In the Our first compilation demo, we used this line to compile our code:

sass test.scss output.css

It’s a simple command – it does the job with no frills, assuming of

course we’ve written valid Sass code! However, running this each time

will quickly get tedious; we can absolutely improve on this, by use of

the --watch parameter.

This requires a simple change to our command – it’s almost worth

getting into the habit of including it when running a compile from a

terminal session! Instead of the command we used, we can use this:

sass --watch test.scss output.css

This will watch for changes and recompile our source file

automatically – there is something we need to look out for though, but I

will cover this in Chapter 2.

 Adjusting the Output Format
If you take a look at a compiled CSS file, you may notice that Sass has

produced something that is easy to read but takes a lot of space. This

clearly isn’t ideal for use in production sites – we want our files to be as

Chapter 1 IntroduCIng SaSS

17

small as possible! Fortunately there’s an easy change we can make to

our compilation process – remember our first compile command, which

looked like this?

sass test.scss output.css

If we add in the command highlighted in bold:

sass test.scss output.css --style=compressed

... this will compress our compiled style sheet, which will be ideal for

use on production sites.

By default, if you omit this command, Sass will produce code in
expanded format – if you prefer to specify this explicitly, then use
--style=expanded instead.

 Editing Sass Code
Now – this might seem like an odd point to pick up on, but you’ll

understand why in a moment: although there is a good selection of tools

that we can use to edit Sass code, we don’t necessarily need them! Let me

explain what I mean:

At a basic level, Sass is nothing more than an extension of CSS – it

means that pretty much any text editor can be used to edit Sass code.

I suspect many of you will already have a favorite editor that will work fine

with Sass. I personally use Sublime Text 3, which is a commercial offering,

but the 80USD price tag is definitely worth the price!

For the purposes of this book, I will assume you already have a

suitable editor that already works well for you. If not, then it helps to have

one that has syntax support for Sass and can open and format multiple

Chapter 1 IntroduCIng SaSS

18

files (not really a problem, as most do anyway). If you don’t already have

something, then one of these might be a good place to start:

• Atom (cross platform) – available from https://atom.io/

• TextMate (Mac OS only) – https://macromates.com

• Sublime Text (cross platform, commercial) –

downloadable from https://www.sublimetext.com

• Visual Code (cross platform, free) – available from

https://code.visualstudio.com/

However, there is another option that will really turn things on their

head: if you want to use a dedicated stand-alone tool for compiling Sass,

then there is also a mix of open source and commercial offerings available.

Some will work across multiple platforms, while others target specific

platforms only. Let’s take a look at some of the options open to us:

• CodeKit – this commercial offering is available from

https://codekitapp.com/ but is for Mac only

• GhostLab – available as a commercial application for Mac

or Windows, from http://www.vanamco.com/ghostlab/

• Hammer – a Mac-only commercial editor, available

from https://hammerformac.com/

• Koala – downloadable from http://koala-app.com/,

Koala is a cross-platform, open source editor, although

it has not seen any updates since late 2017

• Prepos – this shareware editor is available from

https://prepros.io/ with versions available for Mac,

Windows, and Linux

• Scout-App – an open source editor available for Mac,

Windows, and Linux, downloadable from http://

scout-app.io/

Chapter 1 IntroduCIng SaSS

https://atom.io/
https://macromates.com
https://www.sublimetext.com
https://code.visualstudio.com/
https://codekitapp.com/
http://www.vanamco.com/ghostlab/
https://hammerformac.com/
http://koala-app.com/
https://prepros.io/
http://scout-app.io/
http://scout-app.io/

19

Note “all” in the above list refers to Mac, Windows, and Linux support.

Oh – and guess what? There’s yet another route to compiling Sass that

we can choose! If your preference is to not install yet another tool into your

development workflow, then you can always choose to compile your code

online.

There are several options available for this, but one that is

recommended is SassMeister, hosted at https://www.sassmeister.com.

This gives you all of the benefit of compiling Sass in exactly the same way

as if we were doing so offline; it’s probably less suited to compiling lengthy,

complex blocks of code, but ideal if you want to try ideas out before

committing changes to your source code.

 Making a Choice
I’m sure the question on everyone’s mind is this: With all of those options,

how do I choose which one to use?

The short but simple answer is this: it depends. I know this might

sound like a cop-out, but there is no right or wrong answer to how Sass

should be compiled. It all depends on what you already have installed,

what you feel comfortable using, and (to a lesser extent) which platform

you use.

For example, if you prefer using a visual approach, then using one

of the editors with dedicated support (such as Prepos), then this will

work fine. However, if you happen to use Node.js, then it makes sense to

consider adapting your workflow to incorporate a step for compiling Sass.

You might equally not want to have to install anything extra at all – in this

case, using a terminal approach is the simplest route (and doesn’t require

installing!). The key point being though is that there are plenty of ways of

editing Sass – don’t be afraid to try out different applications until you find

one that you like and works well for you.

Chapter 1 IntroduCIng SaSS

https://www.sassmeister.com

20

For the purposes of this book, I will use the terminal approach to
keep things simple and the focus on Sass code, not the compiling
process – please feel free to switch to using a visual editor if you
prefer to use this option.

Okay – let’s move on; there is another part of this process we should

consider. Remember how I said it can be a pain to have to recompile code

manually all of the time? Well, we can automate the process using a task

runner such as Gulp – let’s take a look at what is involved in more detail.

 Automating the Process
Although compiling Sass code manually is fine for light development, it

will soon become a pain for anything much larger! Surely there has to be a

better way to do this … absolutely – we could use a dedicated application

such as Koala or Prepos, or even compile directly in the browser, using

SassMeister. However, it will become tedious when switching between

applications; it also opens the risk of making mistakes in our code!

There is an alternative: Why not automate the compilation process?

Sure, it’s not essential for developing Sass code, but creating something

that can deal with low-value tasks, such as compiling, presents several

benefits:

• We can set it up to run in the background – any changes

we make to code will be compiled automatically for us;

• We can link in other tasks as part of the process, such as

compressing JavaScript files or adding vendor prefixes

to style rules;

• It removes the need for us to be involved in tasks of low

value, allowing us to spend more time on important

matters.

Chapter 1 IntroduCIng SaSS

21

With this in mind, our next exercise will set up an automatic

compilation process using Gulp and the gulp-dart-sass package, the latter

of which is a wrapper for the Dart Sass library. Once installed and running,

this will then happily sit running in the background; as soon as changes

to a Sass file are noted, it will automatically compile them into a valid CSS

style sheet file. Let’s take a look at what is involved in more detail.

AUTOMATING PROCESS

task runners such as gulp need to be installed using the node.js runtime

environment – this is available for the Windows, Mac, and Linux platforms,

with binaries available for others. We have a few steps to run through, so let’s

make a start:

 1. the first step is to install node.js – for this, head over to

https://nodejs.org, and download the version appropriate

for your platform. If prompted, accept all defaults; this is

sufficient for the purposes of this exercise.

 2. once installed, fire up a terminal session and enter this

command to confirm node and npM have been successfully

installed:

node –v && npm –v

If all is well, node will return v8.11.3 or higher, and npM (node’s

package manager) will display 5.6.0 or higher.

 3. next, run this command at the prompt – it turns off the creation

of package-lock.json files, which are a new feature of npM

version 5 or above, but are not needed for the demos in this book:

npm config set package-lock false

Chapter 1 IntroduCIng SaSS

https://nodejs.org

22

 4. now go ahead and extract a copy of the automate folder to

your project area.

 5. We have a few things to install, so for this, fire up terminal

session, and first run this command – this will install

dependencies for gulp:

npm install –g gulp-cli

 6. once completed, go ahead and run this command at the

prompt – this will install the remaining packages (Sass, gulp,

Sourcemap support and autoprefixer for gulp – a postCSS

tool, but works fine with standard CSS) listed in the package.

json file we copied over in the automate folder, as shown in

Figure 1-7.

npm install

Figure 1-7. Installing our packages

the warnings about fsevents and deprecated packages can be
ignored for the purposes of this exercise.

Chapter 1 IntroduCIng SaSS

23

at this stage, our automated process is set up; let’s put it to the test by editing

our test file, and watch it compile. For this next step, I would recommend

having the sass and css folders open on screen, along with our terminal

session:

 7. go ahead and enter gulp at the prompt, then press enter.

 8. the initial default task is run – this can be ignored. open test.

scss in the sass folder, and change the hex code assigned to

$primary-color to #dcdcdc (a light gray color) .

 9. Save the change – if all is well, gulp’s watch facility will kick in

and automatically recompile our code, as shown in Figure 1-8.

 10. take a look inside the css folder – you will now see a newly

compiled style sheet and map folder, which contains our source

map file.

Hopefully that wasn’t too painful – it may seem like a good few steps,

but it opens up a host of possibilities for later development. That aside, our

process covers a number of key points that we should be aware of, so let’s

dive in and break down what happened in more detail.

Figure 1-8. Recompiling our code automatically

Chapter 1 IntroduCIng SaSS

24

 Breaking Down Our Process
Over the course of the last few pages, we’ve created a basic system that can

automatically compile Sass, using the power of Node.js (and its package

manager, NPM). To achieve this, we’ve installed Node and some NPM

packages using some preconfigured instruction files. Let’s take a look at

these instruction files in detail, starting with package.json.

The package.json file contains details of all of the packages we will

use – in this case, we’ve specified Gulp as our task runner, along with gulp-

sourcemaps (to provide source maps), our obligatory gulp-dart-sass (for

Sass support), and gulp-autoprefixer (to add or remove vendor prefixes

as needed). You will notice that the exercise didn’t run through the install

for each separately: this is by design. It’s more efficient to run npm install

that will look for the presence of any package.json file in the same folder

and install listed packages within, by default. It does require some pre-

work to create our package.json file beforehand, but this will simplify the

installation process.

exploring the specifics of setting up the package.json is outside of
the scope of this book – if you are interested in learning more, then
I would recommend heading over to https://docs.npmjs.com/
getting-started/using-a-package.json for more details.

Once the packages were installed, we then made use of the gulpfile.
js file to perform the compilation. This file contains a set of instructions

to perform each time it detects the presence of a file change within our

targeted folder. Let’s take a look at that code, starting with a handful of

declarations – the first is to enforce strict error checking:

'use strict';

Chapter 1 IntroduCIng SaSS

https://docs.npmjs.com/getting-started/using-a-package.json
https://docs.npmjs.com/getting-started/using-a-package.json

25

We then set up some require declarations to various packages, which

are called as and when required:

var gulp = require('gulp');

var sass = require('gulp-dart-sass');

var sourcemaps = require('gulp-sourcemaps');

var autoprefixer = require('gulp-autoprefixer');

The next block down is our sass task – this takes care of compiling our

source files into valid CSS style sheet files:

gulp.task('sass', function () {

 return gulp.src('sass/*.scss')

 .pipe(autoprefixer({ browsers: ['last 2 versions'] }))

 .pipe(sourcemaps.init('/maps'))

 .pipe(sass().on('error', sass.logError))

 .pipe(sourcemaps.write('./maps'))

 .pipe(gulp.dest('./css')) ;

});

It starts off by targeting files in the sass folder with the scss extension;

this is to prevent the compiler from trying to work on files that are not

valid Sass source files! The next step is to then add vendor prefixes for CSS

properties that are yet to be standardized; in this case, we’re supporting

the latest two releases of each browser.

The next step is the crucial one – this takes care of the compilation

process; it will either compile our file or display any errors it encounters on

screen. We then finish off by creating the appropriate source map file (in a

similar way to when we compiled in a terminal session), before writing the

files to disk (in the css subfolder).

Chapter 1 IntroduCIng SaSS

26

as an aside – by default, the output format will be expanded; if we
want to change the output format, then alter the code as indicated:
sass({outputStyle: 'compressed'}).

None of this will work without the final task – the default one runs as

soon as we enter gulp at the terminal session prompt. This watches out

for any Sass files within the sass folder; any changes made will trigger the

sass task:

gulp.task('default', function () {

 gulp.watch('sass/*.scss', ['sass'])

 .on('change', function(evt) {

 console.log(

 '\n[watcher] File ' + evt.path.replace(/.*(?=sass)/,") +

 ' was ' + evt.type + ', compiling...'

);

 });

});

As soon as a change is made, we call a small function to display a

message to confirm a named file has been changed; the code is then

recompiled before saved to disk as new style sheet and map files.

Ultimately this might seem a lot of work to get set up, but it is

important to note that you may have part of this in place already. It’s just

one way of automating our compilation process; you might prefer to use

something like Grunt or Webpack instead. The aim, though, is to consider

what you may or may not already have, whether you have any preferences

(if you’ve used a task runner before), and to decide if the nature of your

projects mean that you can benefit from automating the process.

Chapter 1 IntroduCIng SaSS

27

as an aside, it’s worth noting that I will use this process for exercises
throughout this book, unless specified otherwise. this is just personal
preference; please feel free to use whichever compilation process
works best for you.

Right – enough chitchat: time to change tack! Hopefully you’ll have

tried a few options and have found something that works for you, or is at

least working. It’s time we focused more on Sass itself, so without further

ado, let’s begin with covering some of the key terms you will meet when

working with Sass.

 Getting Acquainted with Key Terms
Over the course of this book, we’ll meet a host of different techniques and

key terms when working with Sass – some will be easy to get to grips with,

while others may take a little more time!

We’ve already met the most important one – the compilation process.

For us, it’s less about understanding the internal machinations of how it

works, as it is a bit of a black box of tricks, so to speak! It’s more important

to gain an appreciation of what we can do – for example, if we’re creating a

set of buttons, we can write code that automates much of this for us, which

Sass will compile (or transform) into valid CSS code.

Compiling isn’t the only concept we cover, though – Sass has a number

of key terms that we will explore throughout this book. Although many of

these terms won’t mean anything just yet, I thought I would summarize

some of the key ones here, so you can get a feel for what to expect later

Chapter 1 IntroduCIng SaSS

28

in the book. I will also include the relevant chapter number, so if you get

stuck, you know which chapter to turn to for help:

• Comments – this is one of the simplest techniques to use

in Sass; it works just in the same way as you would for

normal CSS. The key to using them though is in the type

of comment you use – for example, single line comments

are removed during compilation, while multi-line

comments are preserved. We’ll cover this in more detail

in the section “Adding Comments,” in Chapter 2.

• Variables – think of these as placeholders for values; Sass

looks for every single instance of a particular variable

and replaces it with the real value that we set up at the

start. It doesn’t matter how many instances we have of a

particular variable in our code – Sass replaces them all!

We’ll talk more on this subject in the section “Creating

Variables in a Practical Context,” in Chapter 2.

• Mixins – variables are a good start, but what if we wanted

to define bigger blocks of code in the same way? Step up

mixins – these act as predefined blocks of code we can

literally “mix in” to our code. We can define them once

and reuse them in multiple projects – turn to Chapter 2

to learn more about this useful technique.

• Importing and Partials – if you’ve ever had to work

on large spreadsheets (such as the monster that is

WordPress, at 4,500+ lines!), then you will know only

too well how painful it can get when managing so many

lines of code. Sass has an @import function, similar to

CSS; we can use it to create partials or fragments of CSS

code that we can import to our main style sheet. We’ll

cover this, and more, in Chapter 2.

Chapter 1 IntroduCIng SaSS

29

• Nesting – how many times have you written CSS code

for something such as a menu system, only to find

yourself repeating multiple styles? Well, with Sass, we

can nest styles within a style – think of it as grouping

styles together, inside a base style that is common to

all. In a sense it’s a form of shorthand, which makes it

easier to read the code – we’ll cover this in Chapter 3,

“Creating Nesting Styles.”

• Inheritance – this is a little more tricker: instead of

rewriting code blocks with similar properties multiple

times, how about inheriting one from another? A perfect

example is creating buttons – we can write a base style

rule to cover attributes such as size and font. Any buttons

we create can then inherit this base style, plus any we

specify for each button, such as its color. It’s a great

technique to learn but takes time to really master – we’ll

start that journey in Chapter 3, “Creating Nesting Styles.”

• Operators – I suspect in many cases you might specify

fixed values in your spreadsheet, such as 16px for a

font-size attribute, right? What if we could work out

values dynamically, using nothing more than simple

operations such as addition or subtraction? Gone

are the days when we might have to specify a whole

set of color palette values, for example – as long as

we have one, we can use a little math to work out

complementary colors automatically. I’ll reveal how,

and more, in Chapter 4, “Calculating Values Using

Operations.”

Chapter 1 IntroduCIng SaSS

30

• Directives – this is where things get really interesting!

CSS already has several @-rules; Sass adds to these

with some such as @extend or @media. Think of these

as rules that help control the flow and logic in your

Sass code – a great example is @media, which we

use to specify which rules to apply for responsive site

development. We’ll dive in to the world of directives in

Chapter 4, “Calculating Values Using Operations.”

Phew – there’s a real bunch of exciting techniques coming our way!

Of course, we don’t have to cover them in all in one go – the great thing

about Sass is that we can start with simple techniques such as setting up

variables, then gradually make use of more tools as we develop our style

sheets. Before we start on that journey, though, there is one topic that I

know will be of most benefit to anyone starting with Sass – where I can I get

help if something isn’t working or I get stuck?

 Getting Help
“Help! Why is my mixin not performing as it should …?”

Although Sass is relatively easy to learn, there will come a time when

you need help – sure, there are lots of people online who have written

about Sass, but sometimes it helps to have someone get you out of that

sticky problem! Don’t worry – there are several ways of getting help; they

include the following:

• If you’re stuck on something, and am struggling to

get it working, then your first port of call should be

the StackOverflow site, at https://stackoverflow.

com. This is managed by a community of volunteers,

where anyone can post a question; I would strongly

recommend reading the guidelines available at

Chapter 1 IntroduCIng SaSS

https://stackoverflow.com
https://stackoverflow.com

31

https://stackoverflow.com/help/ to help improve

the likelihood of getting a response that helps solve

your issue.

It’s also worth running a quick search to see if

anyone else has come across the same issue – try

https://stackoverflow.com/search?q=Dart+Sass;

you never know, someone may already know the

answer! Please be patient though: it is a volunteer

operation, so you may not get a response quickly.

• If, however, you think you’ve identified a bug, where

behavior is not working as advertised or a core function

is clearly faulty, then GitHub is a good place to report

them. The GitHub site for Dart Sass is at https://

github.com/sass/dart-sass – make sure you get the

right one though, as the Sass team run several GitHub

site for different versions of Sass.

If you do need to raise an issue, it can seem a little

daunting if you’ve not done it before. It’s worth noting

that GitHub sites are often maintained by volunteers

who have seen issues before, and they are always

willing to help. There are some useful tips you can

follow to help with the process of logging an issue:

• Do have a good look through past issues – it is

possible (although not always) that someone has

already logged a similar problem, which may help

you, without the need to raise one yourself.

Chapter 1 IntroduCIng SaSS

https://stackoverflow.com/help/
https://stackoverflow.com/search?q=Dart+Sass
https://github.com/sass/dart-sass
https://github.com/sass/dart-sass

32

• Do add a title and description, and be as detailed

as you can about the issue – include screenshots,

steps to reproduce, what you’ve tried so far, and the

results, but don’t write an encyclopedia! GitHub

volunteers’ time is precious, so keeping it detailed

but concise is essential.

• Please be polite and courteous when posting – GitHub

sites are run by volunteers who have families and

paid jobs, and who are less likely to help you if you

are rude. If you treat them with respect, then they will

only be too happy to help guide you.

• If you’ve discovered something that you consider

to be a bug, but the response is that it is “by design,”

then please respect their decision. If however you

feel strongly, then politely present your case, with

detail, and be willing to discuss the merits of your

points. Maintainers can’t cater for all circumstances

and will always consider new evidence, but they

won’t be willing to help if you are abusive or rude.

Equally, if a maintainer has reviewed your request

but come to the decision that no changes should be

made, then please respect their decision.

• Please allow a reasonable amount of time before

chasing a response – people may have other

commitments, or time differences may get in the

way; you need to allow for this when posting issues.

• Always try to respond quickly if suggestions have

been made to help you; no one likes responding to

an issue only to find you can’t be bothered to try

things out!

Chapter 1 IntroduCIng SaSS

33

I could go on, but most of these guidelines can really be summarized

into three key points: always be polite and respectful, make sure you have

sufficient detail around your issue, and respond in a timely manner when

appropriate. As long as you follow these guidelines, then plenty of people

will be willing to help pass on their knowledge to someone who is just

starting out in to the world of Sass.

as an aside, you will see similar guidelines on the Sass site, at
http://sass-lang.com/community-guidelines.

 Summary
The discovery and exploring of a technology for the first time can open up

some real possibilities – this particularly applies to the world of Sass! We’ve

covered some useful tips and tricks in the first part of our voyage through

Sass, so let’s take a moment to recap what we’ve learned.

We kicked off with an introduction to Sass as a technology, exploring

what it is, and the reasons why we might want to use it in our projects. We

then covered some of the different versions and syntaxes associated with

Sass, before making sure we were clear on the one we’ll use in this book.

Next up came the initial installation of Sass; we saw how easy it

was to compile our first file, before exploring what happens during the

compilation process. We then moved onto looking at setting up a suitable

workflow to get the best out of using Sass, before covering how to automate

the compilation process, so we can spend time on more important tasks.

We then rounded out the chapter with a quick look at some of the key terms

we’ll cover throughout this book and how to get help, in case we get stuck.

Phew – it’s a good start, but there is so much more to cover! In the next

chapter we’ll begin to really get stuck into using Sass; our first port of call

will be to learn how creating variables and mixins can help reduce the

amount of code and simplify the process of keeping values updated. All

aboard folks – the ship is about to depart…

Chapter 1 IntroduCIng SaSS

http://sass-lang.com/community-guidelines

35© Alex Libby 2019
A. Libby, Introducing Dart Sass, https://doi.org/10.1007/978-1-4842-4372-5_2

CHAPTER 2

Introducing Variables
and Mixins

It’s late on Friday, you’ve had a busy week and are looking
forward to finishing up for the day. In your mind, you can see
a welcoming cold drink with your name all over it, waiting for
you at home ... except your boss enters the office, and judging
by the look on his face, any thought of finishing on time is
rapidly disappearing out the window. ...

I’ll bet this scenario sounds all too familiar: customers who – shall we say,

are challenging? – aren’t happy with a design, and want to try changing

the color scheme. However, their site is really complicated, with different

colors in use throughout the style sheet. Sure, you can do a search and

replace, but do you really want to have to wade through thousands of lines

of code to make sure you’ve changed all of the colors ...?

 Creating Variables in a Practical Context
Absolutely not! There is indeed a better way to do this – enter the power

of Sass. One of the key features of Sass is variables; they work in the same

way as many scripting languages, such as JavaScript. Now – before you run

screaming to the hills: don’t worry – it’s not as complicated as it sounds.

Let me explain how this works, using colors as the basis for our example.

36

When working in a style sheet, normal practice would be to assign

colors where needed throughout our style sheet – if we had to change them,

we’d likely perform a search and replace. There’s nothing wrong with this,

provided we’ve used the same case throughout – clearly replacing #fff

with #000 won’t catch any instance where we’ve used white instead!

Instead, we can simply set placeholder names for each instance of a

color, such as darkGrey or antiqueWhite – for now, it doesn’t matter what

names are provided (although I will revisit this later) .

The real magic comes at the start of our style sheet – we specify values

for each of these placeholders, rather like a legend for a chart. At the

point of compiling our code, Sass simply does a search and replace for

each instance of our placeholder variable and replaces them with the

appropriate value from our “legend” list. It means that if we do have a

demanding customer, then we only have one change to make per color –

we can change it at the start of our style sheet, and Sass will automatically

update it during compilation.

To see how easy it is, let’s take a look at a simple example – in our

next exercise, we’re going to add some simple elements on a page but use

variables to apply colors using Sass. I’ve used colors that work better in

a black and white environment (for printing), but this will work with any

color you choose.

ASSIGNING VARIABLES

Let’s make a start on our code:

 1. We’ll start by downloading and extracting a copy of the

variables folder from the code download that accompanies

this book – go ahead and save this folder into our project area.

 2. Next, fire up your text editor – we can now add in our styles, so

for this, go ahead and create a new file, saving it as variables.

scss in the scss subfolder of the variables folder.

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

37

 3. We’ll be adding in a number of styles to our style sheet – the

first group is a set of variables we’ll use to define colors in this

demo:

$color-gainsboro: #c0c0c0;

$color-dimgrey: #696969;

$color-slategrey: #708090;

 4. Leave a bank line, then add the following base styles:

@font-face { font-family: 'pt_sansregular'; src:

url('../font/pt_sansregular.woff') format('woff'); font-

weight: normal; font-style: normal; }

body { font-family: 'pt_sansregular', sans-serif;

padding: 20px; }

h2 { text-align: center; }

section { border: 1px solid #000; width: 450px; padding:

20px; margin-left: auto; margin-right: auto; }

 5. Leave another blank line, then immediately below add in the

following styles that will make use of sass:

section span { color: $color-dimgrey; font-size: 20px;

font- weight: bold; }

p { color: $color-gainsboro; font-size: 16px; font-

weight: bold;}

a { color: $color-slategrey; text-decoration: none; }

a:hover { text-decoration: underline; background-color:

antiquewhite; font-weight: bold; }

 6. save the file as variables.scss in the scss folder.

 7. Next, fire up a terminal session and change the working folder

to the variables folder under our project area.

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

38

 8. at the prompt, type the following command and press enter:

sass sass\variables.scss css\variables.css

 9. If all is well, we should see a variables.css file appear

in the css folder, along with a source map – previewing

the results will show a simple box with styled elements, as

indicated in Figure 2-1.

Figure 2-1. Creating basic variables

See how easy that was? Granted, our example was very simplistic, but

this doesn’t matter – we can use this in all types of different scenarios. This

is an important feature to come to grips with, so let’s take a few moments

to understand how this works in greater detail.

 Exploring What Happened
Although the idea of using variables may scare some, creating and using

variables isn’t as hard as it might look. We touched on this in our first

demo back in Chapter 1, when we compiled a single style rule that used

three variables.

In reality, using variables is nothing more than a search and replace –

our demo made use of three variables, namely $color-gainsboro, $color-

dimgrey, and $color-slategrey. To each of these, we assign the relevant

color code (we could use RGB, or even RGBA if we’d wanted). We then

added the appropriate variable at the appropriate point in our code – so,

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

39

for example $color-gainsboro appears against the color attribute at line

22. At the point of compilation, Sass looks for each variable used and

simply replaces them with the appropriate value – in this instance, our

value would become color: #c0c0c0; in the compiled style sheet.

To prove this is the case, take a look at the compiled style sheet from

within your browser’s DOM inspector – if we have source map support

enabled, we’ll see the final compiled result, along with a link to the original

source file, as indicated in Figure 2-2.

Figure 2-2. Viewing compiled CSS in a browser

If we were to click on the variables.scss name shown in Figure 2-2,

we’d see the original Sass code, as shown in Figure 2-3.

Figure 2-3. Translating compiled CSS to original SCSS

At this point, there are a couple of points we should be aware of: our

naming convention, and making sure we use the right names! This is

something that could easily trip you up, so let’s take a moment to cover this

in more detail.

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

40

 Taking Care Over Variable Names
Names, names – surely all we need is something to identify a value, right ...?

Well, yes – and no. Sure, any name we give must give some indication

of what it relates to, but there is more to it than that when using Sass. Let

me explain what I mean:

In our example, we’ve used the format $color-XXXXX to name three

colors. By themselves, they seem reasonable: there’s something of a

naming convention in place, and the format is consistent.

But – I’m sure we know what dimgrey is as a color: Could you tell what

gainsboro is though? All three colors are various shades of gray; however,

what indication do we have that this is the case? None – to get around this,

there are a couple of changes we can consider making:

• When creating colors, consider reordering the names

used, so instead of $color-dimgrey, have something such

as $grey-dim, or $grey-dark. This makes the name more

modular – we’re sharing common terms, and describing

their function means we’re going from generic to specific,

in much the same way as CSS works with specificity.

• We can take it a step further though – instead of putting

the color directly into our Sass rules, we can create a

variable to describe the color according to its function

in our code. When it comes to editing, most editors will

automatically display suggested colors, based on what

we’ve defined in our variable list. So, to rewrite our

previous example, it would look something like this:

$grey-dim: #696969;

$color-title: $grey-dim;

section span { color: $color-title; font-size: 20px;

font- weight: bold; }

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

41

• It has the added bonus that if we decide to change the

shade of color for $color-title, then we can do this in

one go: we only need to change one entry, rather than

change multiple entries throughout our code.

There is not necessarily any right or wrong way to write variables,

particularly where colors are involved; it makes sense, though, to ensure

you use a consistent naming convention. Making it modular, as we have

done here, means that we can even define a small palette of colors and use

functions to create completely different colors!

to see what I mean, check out the examples by Jackie balzer at
http://jackiebalzer.com/color – all of them have been
created from just one color - #f8af1e, or a deep shade of yellow. We’ll
revisit this idea in Chapter 4, “Calculating Values using observations.”

There is a more serious side though to using variables – when writing

code for this book, I came across the compilation error shown in Figure 2- 4.

Figure 2-4. Dealing with a compilation error

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

http://jackiebalzer.com/color

42

At first glance it looks a little blunt, but in reality, there is a simple cause.

In this example, I had used the -- watch parameter to automatically

compile the code when changes were made. However, the colors used in

the demo weren’t suitable; I had to change them. I’d removed the $color-

antiqueyellow variable but not updated a rule that still referred to this

variable. Sass quite rightly complained – the fix, of course, is to make sure

the style rule is updated.

In this case, if we had used the example we covered at the start of this

section, then potentially we could avoid generating the error – as long as

we don’t remove one of the other variables too! Variables make managing

code much easier, but it does pay to take care over the use of a naming

convention, and how your code is updated during development.

 Adding Comments
Up until now, we’ve written very simple CSS rules – the rule name should

be reasonably self-explanatory as to how it might be used. Trouble is, what

happens if we start to add more and more rules, particularly if some of

those rules aren’t as self-explanatory?

Clearly, we need comments – thankfully Sass supports them in much

the same way as we would use them in CSS. There are a couple of things

we need to be aware of though:

• If we use single line comments, these will be removed

by default at compilation;

• If we use multi-line comments, these will be removed

if the output style is set to compressed, but left

untouched when set to expanded.

To see what I mean, let’s dive in and put this to the test.

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

43

COMPILING COMMENTS

 1. go ahead and open up one of the sass files from a previous

demo – I’ve used the one from the variables folder.

 2. add the following code as highlighted, then save the file:

/* This is a test comment

 * over several lines, which

 * uses the standard CSS comment

 * syntax, and will appear in

 * compiled output */

$color-gainsboro: #c0c0c0;

 3. Next, fire up a terminal session and change the working folder

to the variables folder under our project area.

 4. at the prompt, type the following command and press enter:

sass sass\variables.scss css\variables.css

 5. If all is well, we should see a variables.css and source map

files appear in the css folder as before – if you open it up this

time though, you will see the comment appear at the start of

our style sheet (Figure 2-5).

Figure 2-5. The results of compiling with comments

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

44

 6. try running the compile command, but this time with a slight

change:

sass --style=compressed sass\variables.scss css\

variables.css

If we take a look at the compiled file, notice how it has disappeared?

 7. this time, try replacing the multi-line comment with this single

line one:

// This is a test comment

@font-face {

 8. try compiling the code now – notice how the comment is

removed, and that if you run the compilation again with

style=compressed attribute set, the comment is still removed.

See how easy it is to manage comments? Adding comments is an

important part of writing a style sheet; the key point though is that we

should be careful about which style of comment to use, so that we strike

the right balance between adding comments throughout our source, and

those that remain in our compiled style sheet. Okay – time for us to change

tack: let’s take a look at our next feature in Sass. How many times have you

written code that could be reusable, with or without tweaking it?

 Making Use of Standard Mixins
If you spend time writing CSS, I am sure you will come across occasions

where it can get a little tedious – creating font styles, animating using

transform, scalable elements such as videos, dealing with vendor prefixes

(where they still apply), and the like.

To remove some of this tedium, we can make use of a great feature in

Sass: mixins. These allow us to group together CSS declarations into blocks

of code that we can reuse throughout our projects. We can use one of two

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

45

types – basic mixins are simply slotted into our code, whereas parametric

mixins allow us to pass in values, but still use the same core styles. We’ll

cover how these work shortly, but let’s first take a look at implement

reusable code, with basic mixins.

 Creating Reusable Code
We touched on a couple of use case scenarios in our introduction,

where mixins would be a perfect solution – one in particular is to center

responsive content on the page, no matter how it is scaled.

When creating responsive content, we would typically use percentage

values – Chris Coyier of CSS-Tricks.com came up with a great mixin that

allows us to center any content, leaving us free to style it as we wish. I’ve

used this as a basis for our next demo, which will center a standard <div>

element on screen.

You can see Chris’s original example at https://codepen.io/
chriscoyier/pen/BvdgL.

CREATING MIXINS

Let’s make a start on that code:

 1. We’ll begin by downloading and extracting a copy of the

centerdiv folder to our project area.

 2. In your usual text editor, go ahead and create a new document,

then add in the following lines of code – we’ll begin with a

variable followed by our mixin:

$color-slategrey: #708090;

@mixin centerdiv { position: absolute; left: 50%; top:

50%; transform: translate(-50%, -50%); }

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

http://css-tricks.com
https://codepen.io/chriscoyier/pen/BvdgL
https://codepen.io/chriscoyier/pen/BvdgL

46

 3. Leave a blank line, then add in the following base styles for our

demo:

@font-face { font-family: 'pt_sansregular'; src: url('../

font/pt_sansregular.woff') format('woff'); font-weight:

normal; font-style: normal; }

body { font-family: 'pt_sansregular', sans-serif;

background: #fff; }

h2 { text-align: center; }

 4. We’ve added in our mixin, but it won’t be used unless we make

a call to it – for this, add the following style rule below the

previous set of rules:

div {

 @include centerdiv;

 width: 40%; height: 50%; padding: 20px; background:

$color- slategrey; color: antiquewhite; text-align:

center; box-shadow: 0 0 30px rgba(0, 0, 0, 0.2);

border-radius: 10px; font-size: 18px; font-weight:

bold; letter-spacing: 1px;

}

 5. save this file as centerdiv.scss in the scss subfolder

within the centerdiv folder we saved in step 1.

 6. Next, fire up a terminal session and change the working folder

to the centerdiv folder under our project area. at the prompt,

enter the following command and press enter:

sass sass\centerdiv.scss css\centerdiv.css

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

47

 7. If all is well, we should see a centerdiv.css file appear

in the css folder, along with a source map – previewing the

results will show a simple box that remains centered on screen,

as indicated in Figure 2-6.

Figure 2-6. Centering a div using a mixin

Try resizing your browser window – notice that no matter how small or

large you make it, the div element is always centered on screen? Although

we’ve set suitable values for left and top in our code, they won’t work by

themselves – let’s quickly cover what really makes this demo come together.

 Exploring Our Code in Detail
The test of our demo lies in how our Sass code has been compiled – we can

see the first part of it in Figure 2-7.

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

48

Figure 2-7. Our mixin, compiled as CSS

Our demo incorporated the contents of the centerdiv mixin during

compilation – mixins are written as CSS rules but must be proceeded with

the keyword @mixin and referenced using the keyword @include with the

mixin name.

The key thing to note is that mixins will not themselves be compiled,

but the rules within will be included into any ruleset that calls the mixin.

It does mean that our source file may be larger than the compiled version,

but this doesn’t matter: as long as we create suitable mixins, they will only

be included in rulesets that call them, and not be compiled themselves in

our style sheet.

 Using Prebuilt Mixins
Armed with our newfound knowledge of creating mixins, we can go ahead

and create new ones for use in our projects. However, before we go and

reinvent the wheel, why not take a look online?

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

49

A look on Google will show dozens of people who have written mixins

and released them for use; more often than not, we may find someone who

has written a mixin already that would serve our needs. Using existing mixins

will save us time and development effort – granted, we may have to tweak the

code, but it will remove the need to develop something from scratch.

USING PREBUILT MIXINS

there are dozens of mixins available online, either single or as part of

libraries – if you search on google for “sass mixin libraries,” you will see

references to the likes of bourbon, scotch, and Compass, among others. some

of these have been around for some time; with the advances of Css, they

become less and less useful (primarily if they contain vender-prefixed versions

of code that are no longer necessary) .

one example of a mixin library is Cssgram, created by una Kravets – this

is a take on the filters used in the popular Instagram applet. available from

https://una.im/CSSgram/, we’re going to make use of one of the filters

to style a before and after of a vintage image.

For this demo, we’ll be using the image of a camera from https://
www.pexels.com/photo/camera-photography-vintage-
old-36732/; please feel free to adjust if you want to use another image.

Let’s start creating our demo:

 1. We’ll begin by downloading and extracting a copy of the

prebuilt folder to our project area.

 2. In your usual text editor, go ahead and create a new document,

then add in the following lines of code – we’ll begin some base

styles for our demo:

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

https://una.im/CSSgram/
https://www.pexels.com/photo/camera-photography-vintage-old-36732/
https://www.pexels.com/photo/camera-photography-vintage-old-36732/
https://www.pexels.com/photo/camera-photography-vintage-old-36732/

50

@import "cssgram.scss";

@font-face { font-family: 'pt_sansregular'; src: url('../

font/pt_sansregular.woff') format('woff'); font-weight:

normal; font-style: normal; }

body { font-family: 'pt_sansregular', sans-serif;

background: #fff; }

h2 { text-align: center; }

 3. We now need to add in the styles that will place the images on

the page:

p { width: 100px; display: inline-block; margin: 0;

padding: 0; }

section { width: 320px; margin-left: auto; margin-right:

auto; }

div.filter, div.nofilter { width: 300px; display: inline-

block; margin: 10px; }

 4. Last but by no means least come the styles required to

implement the filter used in our demo:

div.filter { @extend %stinson; }

div.nofilter img { width: 100%; z-index: 1; }

 5. save this file as prebuilt.scss in the scss subfolder within

the prebuilt folder we saved in step 1.

 6. Next, fire up a terminal session and change the working folder

to the prebuilt folder under our project area. at the prompt

enter the following command and press enter:

sass sass\prebuilt.scss css\prebuilt.css

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

51

 7. If all is well, we should see a prebuilt.css file appear in the

css folder, along with a source map – previewing the results

will show two images, one without a filter and one with, as

indicated in Figure 2-8.

Although our demo is relatively straightforward to create, there is a

key point that deserves further attention. If you take a look at the CSSgram

file download, you’ll see it is huge. It is full of different filter effects – it

would be understandable if you had become concerned at just how much

code we’re using! Fortunately, we’re using a lot less than it would initially

appear – let’s dive in and take a look in more detail.

Figure 2-8. Applying a filter using a mixin library

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

52

 Understanding How the Code Works
So – even though we’re making use of the CSSgram mixin library, how

come our CSS style sheet isn’t larger than it should be?

The trick behind making this work is the use of the @import statement

at the head of our style sheet – by default, Sass only imports mixins where

there is a direct reference to them from within our code. In this case we’ve

only called the stinson mixin, so Sass simply ignores all of the other filter

mixin files in the scss folder during compilation.

Including the file extension is not obligatory when importing files: in
this instance, we could use @import "cssgram"; equally as well
in our demo. We’ll touch on this later in this chapter.

However, there is a twist in this tale: the keen-eyed among you should

spot that our code doesn’t include the mixin keyword! What gives? Well,

we’re making use of another feature: @extend. We’ll cover this in more detail

in Chapter 3, “Creating Nesting Styles,” but for now, it’s enough to know that

it works in a similar fashion to mixins but can produce more efficient code.

If you take a look at the stinson.scss file, though, you will indeed see

the @include keyword in use; this calls a base filter mixin, which is used in

all of the filters within the CSSgram library. There are some key differences

though to how mixins and the @extend keyword work; we’ll explore this in

more detail, when we take a look at using @extend in the next chapter.

Okay – let’s move on: creating or importing base mixins is a great way

to write more efficient code, but there is one small limitation. There will

come a point where you may have multiple blocks of code that could be

served by a single mixin, but different values are needed. Ordinarily we

might think there isn’t anything we can do, but as we’re using Sass, there

is – it’s time to learn about parametric mixins.

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

53

 Passing Values to Mixins
So far, we’ve explored how to create and use mixins – these are perfect

for including reusable, static groups of rules, but what if we had instances

where we could use a mixin but can’t as values are not quite the same?

There may be occasions where we might be able to fine tweak values so

that we can, but this is unlikely – a far better idea is to make use of parametric

mixins. These work in much the same way as standard mixins, but with one

difference – instead of containing a static set of values, we can pass different

values into the mixin and allow Sass to render it as standard CSS.

The syntax for parametric mixins is very similar – we have the same

@mixin keyword at the start, but this time around we include the values

we’ll be passing into the mixin:

@mixin button-bg($bg, $fg) {

...the values are used in the mixin...

}

At the point of compilation, Sass inserts the different values into the

placeholders within the mixin and compiles it into valid CSS, ready for use

in our projects. We can see how this works in more detail, by creating a

demo around the humble button – we often have different colors in use in

a site, so this makes it a perfect fit for using mixins.

CREATING PARAMETRIC MIXINS

Let’s start creating our demo:

 1. We’ll begin by downloading and extracting a copy of the

parametric folder to our project area.

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

54

 2. In your usual text editor, go ahead and create a new document,

then add in the following lines of code – we’ll begin some base

styles for our demo:

@mixin button-bg($bg, $fg) {

 background: $bg;

 color: $fg;

 &:hover {

 background:darken($bg,8%);

 transition: all 0.3s ease;

 }

 &:active {

 background:darken($bg,30%);

 }

}

@font-face { font-family: 'pt_sansregular'; src: url('../

font/pt_sansregular.woff') format('woff'); font-weight:

normal; font-style: normal; }

body { font-family: 'pt_sansregular', sans-serif;

padding: 20px;}

h2 { text-align: center; }

p { margin: 0; padding: 0; margin-bottom: 30px; width:

480px; margin-left: auto; margin-right: auto;

 3. We now need to add in the styles that will place the buttons on

the page:

.wrap { margin:0 auto; width: 800px; text-align:center; }

.btn { text-decoration: none; padding: 5px 10px; border-

radius: 4px; font-size: 22px; }

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

55

 4. We’ve added the base style for our button, but for them to

resemble something useful, we need to provide some color. the

following rules will take care of this:

.btn-antiquewhite { @include button-bg(#faebd7, #000); }

.btn-darkgrey { @include button-bg(#a9a9a9, #000); }

.btn-gainsboro{ @include button-bg(#dcdcdc, #000); }

.btn-slategrey { @include button-bg(#708090, #fff); }

 5. save this file as parametric.scss in the scss subfolder

within the parametric folder we saved in step 1.

 6. Next, fire up a terminal session and change the working folder

to the parametric folder under our project area. at the

prompt, enter the following command and press enter:

sass sass\parametric.scss css\parametric.css

 7. If all is well, we should see a parametric.css file appear in

the css folder (in the same way as previous exercises), along

with a source map – previewing the results will show a series

of styled buttons, as indicated in Figure 2-9.

This demo may be simple, but it is a perfect way to illustrate the

effectiveness of using parametric mixins. We’ve created four different

buttons using the same base code but with different values passed in – let’s

take a look at how this works in practice.

Figure 2-9. Creating buttons with parametric mixins

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

56

 Dissecting Our Code
So – how does our demo manage to produce four identically shaped

buttons, yet with different colors for each one? The trick to making our

demo work lies in this mixin:

@mixin button-bg($bg, $fg) {

 background: $bg;

 color: $fg;

 &:hover {

 background:darken($bg,8%);

 transition: all 0.3s ease;

 }

 &:active {

 background:darken($bg,30%);

 }

}

By itself, it won’t do anything, but once we call it from within our code,

it will compile into the styles required for each button. If we take the first

call as an example:

.btn-antiquewhite { @include button-bg(#faebd7, #000); }

... we see that the first value passed in is #faebd7; this represents an off-

white (or antique) shade of white. The second value passed into our mixin

is black – this will be used to style the text shown in our button.

When we look at the hover function, this is where it gets interesting –

we have several new keywords in use. It starts with the use of &: - this is

a reference to the parent selector, so when compiled, it becomes .btn-

antiquewhite:hover. We then use the $bg variable (represents the first value

passed to our mixin) and the Sass darken() function to produce two new

colors: #f5d9b3 for the hover state, and #e9a74f for our button’s active state.

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

57

We’ll revisit references to parent selectors as part of nesting, in the
next chapter.

Okay – let’s move on: we’re almost ready to start looking at a new part

of Sass, but before we do so, we need to revisit a feature we’ve touched on

earlier in this chapter. Managing Sass style sheets can get tricky, the larger

they grow. The question is how to best manage them before they do get too

unwieldy?

 Working Across Multiple Files
Over the course of this chapter, we’ve created simple style sheets – these

work well, but as we’ve just mentioned, they can cause real problems if

they get too large!

Thankfully we can make use of Sass’s @import option to help break

down our style sheet into smaller, more manageable chunks. This function

already exists within standard CSS, but Sass extends its functionality. We

touched on how to use it back in the “Using prebuilt mixins” demo; as a

quick reminder, we can create any number of Sass files, which contain

variables, mixins, and the like:

// _reset.scss

html, body, ul, ol { margin: 0; padding: 0; }

We then import them into our style sheet as needed, as indicated in

this example:

// base.scss

@import 'reset';

body { font: 100% Helvetica, sans-serif; background-color:

#efefef; }

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

58

Notice how in our base.scss example file, we’re not specifying a file

extension? These are not obligatory; Sass will look for files that end in

either .sass (the old format), or .scss (the current format) and import

them accordingly. In this case, our code example would compile to this:

html, body, ul, ol { margin: 0; padding: 0; }

body { font: 100% Helvetica, sans-serif; background-color:

#efefef; }

This gives us a perfect excuse to group styles together in separate files,

such as variables, font mixins, resets, and so on – we can then import them

as needed into our project.

to learn more about importing, please refer to the documentation on
the dart sass site at http://sass-lang.com/documentation/
file.SASS_REFERENCE.html#import.

In our next demo, we’ll put this to the test by converting our previous

buttons demo to use an imported file – you’ll see how easy it is to make the

switch!

IMPORTING FILES

Let’s make a start on updating the previous demo:

 1. We’ll begin by downloading and extracting a copy of the

import folder and saving it to our project area.

 2. We need to extract the mixin from our main sass file and move

it to a new one – for this, go ahead and create a new file called

mixins.scss; store this in the scss subfolder within the

import folder. Leave it open for the moment, as we will use it

in the next step.

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#import
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#import

59

 3. go ahead and open importfile.scss in your text editor, then

copy lines 1 to 11 and paste them in mixins.scss. save the

file, and close it.

 4. revert back to importfile.scss, then delete lines 1 to 11.

add in the following line of code, as highlighted:

@import "mixins";

@font-face {

 font-family: 'pt_sansregular';

 src: url('../font/pt_sansregular.woff') format('woff');

 5. save inportfile.scss and close it – we can now compile

the file to produce our style sheet.

 6. Next, fire up a terminal session and change the working folder

to the import folder under our project area. at the prompt, type

the following command and press enter:

sass sass\importfile.scss css\importfile.css

 7. If all is well, we should see a importfile.css file appear in the

css folder (in the same way as previous exercises), along with a

source map – previewing the results will show the same set of

styled buttons from before, as indicated in Figure 2-10.

Figure 2-10. Our (updated) styled buttons

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

60

This is an easy way to improve the management of our style sheet – the

trick though is to learn how best to manage the breakdown of files into

smaller ones, so that we don’t end up importing files unnecessarily! There

are a couple of useful tips around importing files that we should be aware

of, so let’s take a look at them in more detail.

 Exploring How Our Code Works
Although we’ve had to make a few changes to our code, this relatively

straightforward change can be a real life saver! Take, for example, a

standard style sheet for a CMS application such as WordPress – its’ style

sheet weighs into some 4,500+ lines, so the ability to break down our styles

into smaller files is a real boon.

Focusing on our demo, we’ve moved the existing button-bg mixin into

a new file, and removed it from the original master file. The original lines

in the master file were replaced with an appropriately named @import

statement, which calls the file in during compilation. Sass then merges the

content into one file and produces one finished style sheet at the end of the

compilation process. If we wanted to, we can verify that the code is indeed

coming from two separate files, as indicated in Figure 2-11.

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

61

It does raise some important questions though about managing

imported files – the aforementioned WordPress file isn’t one long style

sheet but is made up from multiple imported files. It means that we can

use one to store variables, another to deal with the header, a third for

posts, and perhaps a fourth for responsive media queries, and so on. The

real trick is to make sure that we store the right content in each file, so that

we’re not importing files that then import others – that can become really

messy if we’re not careful!

In addition, there are some occasions though where imported files will

not be compiled as a Sass file, but as a CSS file – they are:

• If the file’s extension is .css

• If the filename begins with http://

• If the filename is a url()

• If the @import has any media queries

Provided the extension ends in .scss (or .sass) then Sass will attempt

to import the file into the master style sheet during the compilation

process.

Figure 2-11. Proving our mixin file is being used ...

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

62

 Summary
Phew – that was a bit of a whistle-stop tour through Sass variables and

mixins! We’ve covered some useful key topics throughout this chapter, so

let’s take a moment to review what we’ve learned.

We kicked off our journey through the world of Sass with a look

first at creating variables; we covered how these can be really useful to

implement, particularly when working with values such as colors. We

explored how it pays to take care over our choice of names, so that if

changes are needed, then we can reduce the impact of those changes to

our code.

Next up came a quick exploration of adding comments – we saw how

these in the main are similar to standard CSS, but that there are some

differences when compiling Sass code.

We then moved onto learning about mixins – we started with creating

a basic mixin, before learning how to incorporate mixins created by others,

and taking a look at ones that can produce different code based on values

passed into the mixin. We then rounded out the chapter by revisiting the

subject of importing separate files into our Sass development, so we can

better manage our code during development.

We won’t be stopping for long though – we still have plenty to cover!

We’ve created single rules, but there are often occasions where some of

the rules we create are duplicated in part (as they touch the same element,

class or selector ID). This can make developing styles repetitive – what if

we could nest our styles, or reuse existing styles more efficiently? We can –

you’ll learn all you need to started in the next chapter.

Chapter 2 INtroduCINg VarIabLes aNd MIxINs

63© Alex Libby 2019
A. Libby, Introducing Dart Sass, https://doi.org/10.1007/978-1-4842-4372-5_3

CHAPTER 3

Creating Nested
Styles
If you spend any time writing CSS styles, I have no doubt that sooner

or later, you will have come across instances where your code contains

selectors or classes that go several levels deep. What do I mean by this?

Well, let me explain.

Take, for example, a navigation bar. This has been around for years –

it’s a basic staple of websites, although how we decide to skin it will differ

between sites. However, the basic principle uses unordered lists, which can

go several levels deep:

<nav>

 Heading 1

 Test link

 Test link

 Test link

 Test link

64

 Heading 2

 Heading 3

 Test link

 Test link

 Test link

 Test link

</nav>

Granted, our example is a little simplistic, but hopefully you get the

idea! To style our example, we would use the following classes:

nav {...}

nav li a {...}

nav li ul {...}

nav li ul li a {...}

Notice any similarities between each style – say, for example, how

some of the element names repeat themselves …?

The elements we’re using are fairly short, but if we had decided to

reference longer class names (such as ul.navigation li a.about ul li

a, for example), then our code will soon become awkward to read. This will

cause a real problem – is there a better way? Thankfully, with the power of

Sass there is – let me introduce you to the concept of nesting.

 Breaking Apart the Concept of Nesting
Put simply, nesting allows us to store (or nest) styles within others, when

there is a clear sense of commonality between elements. This means that

instead of having to write the class or selector out in full for each rule,

we can just include the part is specific to our nested rule. At the point of

Chapter 3 Creating nested styles

65

compilation, Sass will turn each declaration into a valid rule by referencing

the parent selector or class. To see what I mean, let’s take our simple

example and convert it to Sass:

nav {

 ...

 li {

 a {...}

 ul {...}

 li a {...}

 }

}

There – that looks a little easier to read, right? Nesting is a great time

saver, as it helps cut down the number of times we have to repeat the same

selector; it also feels more natural and easier to understand when reading

our code.

Let’s put this into practice and create – yes, you probably guessed

what’s coming: a basic navigation! Nesting can be used at any time

when developing Sass – as long as we have multiple styles that reference

the same parent element or class, then nesting can be applied. As it so

happens, navigation lends itself really well to nesting, so let’s dive in and

see how this works in practice.

CREATING A SIMPLE MENU BAR

let’s make a start on creating our demo:

 1. We’ll begin by downloading and extracting a copy of the

nesting folder from the code download that accompanies this

book – save it to our project area.

 2. next, fire up your text editor – we’re going to add in the styles

needed for our demo.

Chapter 3 Creating nested styles

66

 3. We’ll add the code required, in blocks – go ahead and add the

following base styles for our demo:

@font-face {

 font-family: 'pt_sansregular';

 src: url('../font/pt_sansregular.woff') format('woff');

 font-weight: normal;

 font-style: normal;

}

body {

 font-family: 'pt_sansregular', sans-serif;

 padding: 20px;

}

h1 {

 font-size: 20px;

}

 4. the crux of our demo is the navigation bar we’re creating – for

this, add the following style rule below the previous h1 tag,

leaving a blank line after that tag:

nav {

 width: 600px;

}

 5. next, we need to add in the style rule for our unordered list

that forms our navigation – for this, leave a blank line after the

width: 600px declaration, then add this:

ul {

 list-style: none;

 margin: 0 3%;

 padding: 0;

}

Chapter 3 Creating nested styles

67

 6. With our unordered list container in place, we can now style

each of the menu items – for this, leave a blank line after the

closing bracket of the previous step, then add this:

li {

 display: inline-block;

 padding-right: 10px;

}

 7. to make our navigation work, we need to add links for each

entry – go ahead and leave a blank line after the closing

bracket of step 6, then add these styles:

a {

 background-color: #faebd7;

 border: 1px solid #ccc;

 color: #666;

 display: block;

 padding: 6px 12px;

 text-decoration: none;

 font-size: 32px;

}

a:hover, a:focus{

 background-color: darken(#faebd7, 20%);

}

a:active {

 background-color: #666;

 border-color: #666;

 color: #efefef;

}

 8. save the file as nesting.scss in the scss folder.

 9. next, fire up a terminal session and change the working folder

to the nesting folder under our project area.

Chapter 3 Creating nested styles

68

 10. at the prompt, type the following command and press enter:

sass sass\nesting.scss css\nesting.css

 11. if all is well, we should see a nesting.css file appear in the

css folder, along with a source map.

 12. if we preview the results in a browser, we will show a simple

box with styled elements, as indicated in Figure 3-1:

Figure 3-1. Creating a basic menu using nesting

See how easy it was to nest our code? The basic principle of nesting is

straightforward, but the real test of applying nesting comes with making

sure you use the right parent selector, so that any nested style names are as

short as possible and keep duplication to a minimum. To see what I mean,

let’s take a few moments to explore our demo’s code in more detail, so you

can see how we arrived at the structure used in the code.

 Breaking Apart Our Code
Okay, granted, I may have been a little too presumptuous with the

beginning statement of that last paragraph, but in reality, nesting isn’t a

hard technique to understand. The skill lies in making sure that we pick

the right selector to form the basis for our nesting. Let’s work through our

example in a little more detail:

Chapter 3 Creating nested styles

69

We kicked off this demo by setting some styles to help with the

presentation of our demo – the crux of our demo kicks in with the initial

<nav> statement on line 17. Any styles we need to apply to the <nav> element

sit immediately under it; styles for child rules are then simply indented

below this initial declaration. In our case, this means that the ul, li, and

a (and pseudo-its classes), are all indented at the first level only. They will

become nav ul, nav li, nav a, and so on – Sass understanding that nav in

this instance is the common element and therefore acts as the parent.

 Working a More Complex Example
Our previous example was hosted at the first level (or indent) – in many

cases this may work for your projects, but what if we needed to go a level

lower (as we had more subclasses to contend with)?

Well, we can nest more deeply using Sass, although a word of caution –

a good rule of thumb is to nest no more than two or three levels deep.

Anything else is technically possible, but I would not recommend it – the

level of CSS specificity will be too deep, and a good indicator that we

should revisit how our style class names are structured.

Assuming we’re nesting to sensible levels, then this is an example of

how a nested block of code to three levels might work:

.sidebar {

 position: fixed;

 height: 100%;

 &-list {

 background-color: white;

 &-link {

 text-decoration: none;

 }

 }

}

Chapter 3 Creating nested styles

70

In this case, the common element is .sidebar; all three styles use this

in their names. However, I see an ampersand and hyphen at the start of

two of the names – what’s that all about? These are placeholders – in this

instance, the second- and third-level class names will become .sidebar-

list and .sidebar-list-link respectively.

We’ll cover placeholders in this context in a little more detail later in
this chapter, in “referencing parent selectors.”

Okay – to use a common driving expression, it’s time to change lanes:

nesting is a great technique to learn, but it is not without some quirks. Let’s

take a look at a few to see what I mean – for now, you may not come across

them when starting out with Sass, but sooner or later they may well rear

their ugly heads, so to speak ...

 Exploring the Pitfalls of Nesting
Take a look at the code example in the previous section again – we

mentioned in the previous section that it would create three rules, and

Figure 3-2 indeed confirms this is the case.

Figure 3-2. Our compiled example, using Sassmeister

Chapter 3 Creating nested styles

71

Our code has compiled to valid CSS, producing three example rules

from code that is nested to three levels deep. This works very well, but can

lead us into a false sense of security! There are advantages and drawbacks

to using nesting, if we’re not careful, so let’s take a look at the downsides

first as these are the easiest to explain.

 Is Nesting a Bad Thing?
Let’s say we’re using the following code:

<main>

 <div class="one">

 <p class="two">Some text

 </p>

 </div>

</main>

This produces overly specific CSS code – to reference the a tag inside

this block of code, we would have to use main.one.two.a as a CSS rule:

main {

 .one {

 .two {

 a {color: red}

 }

 }

}

This level of specificity is not recommended and should be avoided, as

it makes our CSS very tightly coupled to our HTML structure. To override

this code, we would have to create even more specific CSS to change this

code; this only serves to compound the original problem! What doesn’t

Chapter 3 Creating nested styles

72

help is that if you had nested this code using Sass, it would make it appear

as if you had styled a simple link. The reality is that Sass just hides the

problem, which will still produce the same overly specific code during

compilation.

Ultimately, nesting can be a great feature when used with care – as

a general rule of thumb, I would recommend using no more than three

levels of nesting. This keeps the code simple and easy to read, and it won’t

produce overly specific code that would otherwise create problems later

during development.

 Exploring the Benefits of Nesting
Ouch – one might be forgiven for thinking that nesting isn’t that great,

particularly after that warning! The truth though is that like any tool used

responsibly, it can have a very positive impact on your code.

In this instance, the principal benefit of using nesting is in producing

code that is easier to read and maintain. Nesting allows us to group all

of the child selectors that inherit from a parent together; it also saves on

typing, as we don’t have to write the parent selector in front of each child

selector at the same time. The trick of course is to make sure we don’t

nest our code too deeply – it may be tempting to go to the extreme, but

remember: nesting doesn’t fix bad code – if you put rubbish in, then you

will only get rubbish out!

Okay – let’s move swiftly on: if we’re nesting code using Sass, then you

might assume that this can cover pseudo-selectors, such as :hover and

:focus, right? Unfortunately not – this will throw an error if you try to nest

them in this way. Fortunately there is a solution to this – we need to tweak

how we reference them when nesting our code. Let’s take a look at what is

involved in more detail.

Chapter 3 Creating nested styles

73

 Referencing Parent Selectors
When nesting Sass statements, many will fit in where there is already

duplication within our code. However, you will no doubt be using pseudo-

selectors of some description in your code – what about these?

Well, Sass can nest them too – instead of simply indenting them in the

same way as normal statements, we have to put a placeholder character

immediately before the colon. Take for example the extract of code shown

in Figure 3-3.

Figure 3-3. Our code, before the update ...

This shows all three styles (a, a:hover, and a:focus) written out in

full – it’s perfectly valid code, but is a little wasteful on space, and repeats

the selector name. Instead, we can simply nest each style – to show you

how this works, we can dive into a quick demo to update the code from the

previous menu exercise.

Chapter 3 Creating nested styles

74

REFERENCING PARENT SELECTORS

let’s see how easy it is to make the change to our code:

 1. First, download and extract a copy of the parent folder from

the code download for this book – save this to our project

folder.

 2. next, open up the parent.scss file, and look for these lines,

on or around line 29:

a {

 background-color: #faebd7;

 border: 1px solid #ccc;

 color: #666;

 3. go ahead and edit the a rule – we’re nesting the hover and

focus declarations within it, as indicated in bold:

a {

 background-color: #faebd7;

 border: 1px solid #ccc;

 color: #666;

 display: block;

 padding: 6px 12px;

 text-decoration: none;

 font-size: 32px;

 &:hover, &:focus {

 background-color: darken(#faebd7, 20%);

 }

 &:active{ background-color: #666; border-color:

#666; color: #efefef; }

 }

Chapter 3 Creating nested styles

75

 4. next, go ahead and delete the stand-alone active, hover,

and focus rules – we should be left with the ones nested

inside the parent a rule, and that the last line of code will be a

closing bracket from the nav rule.

 5. save the file as parent.scss in the scss folder.

 6. next, fire up a terminal session and change the working folder

to the parent folder under our project area.

 7. at the prompt, type the following command and press enter:

sass sass\parent.scss css\parent.css

 8. if all is well, we should see a parent.css file appear in the

css folder, along with a source map.

 9. try previewing the results in a browser – if all is well, it will show

a simple box with styled elements, as indicated in Figure 3-4.

Figure 3-4. Updating our navigation demo

When nesting, this is an important concept to understand – not getting

it right, or missing ampersands may at best produce code that is broken

(but unlikely to show any errors), or at worst, fail to compile.

The key thing to remember is to include the placeholder – we may not

get the right level of nesting immediately, but with the placeholder, the

code should at least compile correctly! In the meantime, let’s take a quick

look at our code in more detail – you will see it uses the same principles as

before, with just the addition of the ampersand as a placeholder.

Chapter 3 Creating nested styles

76

 Exploring Our Code in Detail
If we had run a completed version of this demo, without having seen the

changes we’ve made, then you might be forgiven for thinking that it looks

no different to the original version of this demo! Don’t worry – this is

intentional: it shows that although changes have been made to nest some

of the classes we’ve used, the test shows that our demo still runs correctly.

So – what did we change? Well, the changes in this instance are

minor – we moved the hover, focus and active pseudo-selectors inside the

parent a rule. In each instance, we’ve inserted an ampersand to tell Sass to

reference the parent class when compiling this rule; this will transform it

into the same valid CSS we used in the original nesting demo.

 Applying the @extend Directive
There are often cases during development, where we might decide that to

style an element, we first create a base class, then add subsequent classes

to cover variations of the base class. A good example of this would be

designing alert messages – our base class would include the styles needed

to create the shell, with the variations (in terms of styling, icons) covered

by the use of subsequent classes that inherit from the base class.

The trouble is, this approach is not without its problems – it means

we have not one but at least two classes in use; this creates a maintenance

burden and can be tricky to debug at a later date. Question is: Can we get

around this?

Absolutely – let me introduce you to the extend keyword! This keyword

takes the following syntax:

@extend .classname;

Chapter 3 Creating nested styles

77

… and allows classes to share a set of properties with other classes.

To use it, we would specify the name of the extend class as a declaration

within a CSS rule, thus:

.classname {

 border: 1px solid black;

 font-weight: bold;

}

.foo {

 @extend .classname;

 color: #fcc;

 ...

}

In this instance, we will end up with two classes – .foo and .classname -

both sharing the same font-weight and border properties. The .foo class

will also have the color property set as a separate declaration.

 Working Through an Example
Making use of @extend is perfect if we want to reduce the reliance on

multiple classes; we can instead create a rule that is inherited by others

during compilation.

To see what I mean, take a look at this example piece of code:

.error {

 border: 1px #f00;

 background-color: #fdd;

}

.seriousError {

 @extend .error;

 border-width: 3px;

}

Chapter 3 Creating nested styles

78

When compiling (using a tool such as Sassmeister), we get the CSS

shown in Figure 3-5.

Figure 3-5. The results of compiling an @extend

See how the second rule (.seriousError) has inherited the properties

defined in the first rule, as well as kept the property specified in its own

rule? This is perfect for styling elements that share the same properties –

we write one rule for our base declaration, then use @extend in each class

that needs to inherit this rule and specify additional properties unique to

that class.

This feature can be a little tricky to get our heads around and fully

understand its use, so let’s begin with a demo to show off how it works in

more detail.

 A Practical Example
Cast your minds back – anyone remember Polaroids? Yes, before the

advent of digital images, Polaroids were all the rage: no need to wait

for films to be developed, when the final picture appeared in just a few

minutes, once we had taken the shot!

Chapter 3 Creating nested styles

79

Polaroid cameras may not be as popular as they once were, but the

effect still lives on – it’s very easy to re-create the effect of a Polaroid (the

image look, not the developing process!). Let’s take a look at how, using the

power of Sass and its @extend function.

EXTENDING SASS CLASSES

let’s make a start on coding our demo:

 1. We’ll begin by downloading and extracting a copy of the

extend folder from the code download that accompanies this

book – go ahead and save the folder to our project folder.

 2. next, go ahead and open your text editor – we have a whole

bunch of styles to add to our demo! We’ll add them block by

block, beginning with some basic styles for our demo:

%imgeffect {

 height: 20%;

 width: 47%;

 bottom: 30px;

 right: 12px;

 box-shadow: 0 33.6px 32px rgba(0,0,0,0.4);

}

@font-face {

 font-family: 'pt_sansregular';

 src: url('../font/pt_sansregular.woff') format('woff');

 font-weight: normal;

 font-style: normal;

}

* {

 box-sizing: border-box;

}

Chapter 3 Creating nested styles

80

body {

 font-family: 'pt_sansregular', sans-serif;

 margin: 32px;

}

 3. this next block adds a set of styles common to each of the

polaroid effect images:

.polaroid {

 background: #fff;

 padding: 16px;

 box-shadow: 0 3.2px 19.2px rgba(0,0,0,0.2);

}

.polaroid > img {

 max-width: 100%;

 height: auto;

}

.caption {

 font-size: 28px;

 text-align: center;

 line-height: 32px;

}

 4. We now need to style each of the images we’ve added using

the polaroid effect – this adds the initial grayscale effect and

rotates the images off their horizontal position:

.item {

 width: 30%;

 display: inline-block;

 filter: grayscale(100%);

}

Chapter 3 Creating nested styles

81

.item .polaroid:before {

 content: ";

 position: absolute;

 z-index: -1;

 transition: all 0.35s;

}

.item:nth-of-type(4n+1) {

 transform: scale(0.8, 0.8) rotate(5deg);

}

.item:nth-of-type(4n+1) .polaroid:before {

 @extend %imgeffect;

 transform: rotate(6deg);

}

.item:nth-of-type(4n+2) {

 transform: scale(0.8, 0.8) rotate(-5deg);

}

.item:nth-of-type(4n+2) .polaroid:before {

 @extend %imgeffect;

 transform: rotate(-6deg);

}

.item:nth-of-type(4n+3) {

 transform: scale(0.8, 0.8) rotate(-3deg);

}

.item:nth-of-type(4n+3) .polaroid:before {

 @extend %imgeffect;

 transform: rotate(-4deg);

}

Chapter 3 Creating nested styles

82

 5. this final set of rules applies a rotation and scaling effect when

we hover over each image; we also tweak the size and box-

shadow effect at the same time:

.item:hover {

 filter: none;

 transform: scale(1, 1) rotate(0deg);

 transition: all 0.35s;

}

.item:hover .polaroid:before {

 z-index: -1;

 transform: rotate(0deg);

 height: 90%;

 width: 90%;

 bottom: 0%;

 right: 5%;

 box-shadow: 0 16px 48px rgba(0,0,0,0.2);

 transition: all 0.35s;

}

 6. save the file as extend.scss in the scss folder.

 7. next, fire up a terminal session and change the working folder

to the extend folder under our project area.

 8. at the prompt, type the following command and press enter:

sass sass\extend.scss css\extend.css

 9. if all is well, we should see a extend.css file appear in the

css folder, along with a source map – previewing the results

will show our three images styled as polaroids, with the center

one in mid-hover (Figure 3-6).

Chapter 3 Creating nested styles

83

This demo is something of trip down memory lane – this CSS styling

effect has been around for a few years. However, there is a little bit of a

sting in this tale though: before we discover what it is, let’s take a look at

how our code works in more detail.

 Dissecting Our Code in Detail
Our Polaroid-inspired demo contains what at first glance looks like a good

chunk of styling code, but in reality, much of this is used to style each image.

There are two key declarations that we should explore, though, which use

Sass and help make our demo come to life. They are the extend block:

%imgeffect {

 height: 20%;

 width: 47%;

 bottom: 30px;

 right: 12px;

 box-shadow: 0 33.6px 32px rgba(0,0,0,0.4);

}

Figure 3-6. Displaying images using @extend

Chapter 3 Creating nested styles

84

... and the three declarations where we make use of this extend:

.item:nth-of-type(4n+1) .polaroid:before {

 @extend %imgeffect;

 transform: rotate(6deg);

}

.item:nth-of-type(4n+2) .polaroid:before {

 @extend %imgeffect;

 transform: rotate(-6deg);

}

.item:nth-of-type(4n+3) .polaroid:before {

 @extend %imgeffect;

 transform: rotate(-4deg);

}

If we were to compile this into valid CSS, we would end up with the

code shown in Figure 3-7.

Figure 3-7. Compiling code from our @extend demo

Chapter 3 Creating nested styles

85

In our demo, we’ve specified our initial extend in lines 1 to 7; this

contains a standard set of CSS properties, which are used in each Polaroid

effect. The extend is called as part of defining the three.item:nth-

of- type() declarations, one for each instance of the Polaroid effect.

Figure 3-7 shows a screenshot of two instances of our item:nth-of-

type() declarations compiled in Sassmeister as an example of how it will

look, where we can indeed see the common class displayed before the

additional variations.

try it for yourself using the online tool at sassmeister.com – i’ve not
included the third instance as only two is enough to show the effect
of using the extend function.

Some of you may have spotted something from earlier in this chapter,

where we talked about both the base class and the extended class being

present. I don’t see the base class present, although in theory it should be

displayed – why isn’t it?

 Using Extends or Mixins?
Aha – there is a good reason for this: we’re deliberately stopping Sass from

displaying it. However, there is more to it than just hiding code – it has

much to do with how extends work, similarities with mixins, and why it is

important to choose the right function when writing code.

Although both mixins and extends are very similar, there are two key

differences we should be aware of:

• The extend rule doesn’t take parameters – mixins do.

• The extend rule can combine selectors, whereas mixins

don’t.

Chapter 3 Creating nested styles

http://sassmeister.com

86

Put simply, extends are more efficient than mixins, but they don’t give

us any opportunity to be flexible about values that we might otherwise

pass to mixins. The best way to illustrate this is with an example; here’s the

Sass part of the code from the previous demo, rewritten using a mixin:

@mixin imgeffect {

 height: 20%;

 width: 47%;

 bottom: 30px;

 right: 12px;

 box-shadow: 0 33.6px 32px rgba(0,0,0,0.4);

}

.item:nth-of-type(4n+1) .polaroid:before {

 @include imgeffect;

 transform: rotate(6deg);

}

.item:nth-of-type(4n+2) .polaroid:before {

 @include imgeffect;

 transform: rotate(-6deg);

}

.item:nth-of-type(4n+3) .polaroid:before {

 @include imgeffect;

 transform: rotate(-4deg);

}

Try dropping this into a Sassmeister session – notice how, although it

compiles correctly (producing 26 lines of code), it contains a great deal of

repetition?

Chapter 3 Creating nested styles

87

Clearly this isn’t ideal – it will work, but compiling code in this manner

will soon add a lot of extra bloat to our style sheet, and slow our site down.

It’s for this reason that we need to be careful about whether we use a

mixin or extend – there are some other considerations we should take into

account when choosing what to use:

• As extends can’t accept parameters, this makes them

less flexible than mixins – they are best suited to

replicating the same styles across multiple elements,

and where different properties are set by exception.

• We can’t use extends when creating responsive media

directives; only mixins can be used in this instance.

• When using classes that contain extended code, any

subclasses we then specify will automatically contain

the extended code too. This can make for some odd

effects if we’re not careful!

• On a more technical note – many people will claim

that extends are faster than mixins. However, with

modern server technologies (such as file compression),

this isn’t always the case; in fact, mixins can be more

effective, as strings are frequently repeated, which

works better for compression.

So – thinking back to our code: we can use either an extend or mixin

in our instance. I chose to use an extend rule to illustrate how they work,

but if you have server-based compression enabled (as do many servers),

then you might decide to use a mixin instead. Ultimately it is all about

taking care; it will depend on how your code is set up, and the number

of levels your styles are set, as to which route you take when using mixins

or extends.

Chapter 3 Creating nested styles

88

 Summary
The art of nesting and inheriting styles in Sass is a key topic – it’s one where

the basics might be easy to learn, but mastering it can be a real skill! Over

the course of this chapter, we’ve been introduced to both nesting and use

of the extend rule, so let’s take a moment to review what we have learned.

We kicked off this chapter by exploring how to nest our code – we

understood that it helped to avoid repetition and reduce the amount of

code we have to write. This was swiftly followed by a look at some of the

pitfalls we might encounter when nesting code; at the same time, we

discussed whether nesting is a bad practice, or just one that requires a

certain amount of care when used.

Moving on, we then switched to covering the use of parent selectors;

we examined how this is essential for instances such as nesting pseudo-

elements in code. We then took an in-depth look at the basics around the

@extend directive – this included working through a detailed example

before weighing up the pros and cons of using extends or mixins, given the

similarities between both in Sass.

Okay – let’s move on: we often have to write code that determines

the outcome only after satisfying a condition. It’s an all-too common

technique when writing script, but what about if we were creating styles?

Plain CSS doesn’t allow for this, so styles have to be written statically. Not

anymore: it’s time to turn the tables and start to use scripting techniques to

control our CSS styles too …

Chapter 3 Creating nested styles

89© Alex Libby 2019
A. Libby, Introducing Dart Sass, https://doi.org/10.1007/978-1-4842-4372-5_4

CHAPTER 4

Calculating Values
Using Operations
One of the key benefits to using Sass is the ability to calculate values

dynamically – I don’t just mean by using something like percentage values,

but working out values using operators such as addition or subtraction.

Yes, you read correctly – using math! Now, before you run for the hills,

this isn’t as crazy as it may seem: we can already write statements such as

font: 10px/8px; in our code. As Sass is an extension of CSS, Sass not only

supports this, but takes it to a whole new level. The great thing about this

though is that the math involved does not have to be complicated at all – it

can be as simple as adding two numbers together, or dividing a number.

With this in mind, let’s take a look at the different type of operations we

can perform using Sass, starting with some number-based operations.

 Number-Based Operations
All of the standard operations such as addition or division are supported

(including relational operators such as >=); it means we can write a

declaration such as this:

p {

 $width: 780px;

 width: $width/2;

}

90

… which will compile to:

p { width: 390px; }

 Operators for String-Based Content
There are two main uses for operators when working with strings: we

can concatenate text together or perform inline calculations using string

interpolation. The latter isn’t complicated – it requires us to place our

calculation inside curly brackets and precede this with a #, which tells Sass

to calculate the total, as shown in this example:

p:before {

 content: "I ate #{5 + 10} large " + apples;

}

 Boolean-Based Operators
On occasion, it may be useful to include declarations based on a condition

being true or false; the declaration will be included if true, otherwise it will

be omitted. Our third operation type allows Boolean values to control what

is displayed:

p:before {

 $count: 5;

 $yes: 1;

 @if ($count > 3 and $yes == 1) {

 content: "I ate #{5 + 10} large " + apples;

 }

}

Chapter 4 CalCulating Values using OperatiOns

91

When compiled, we get the following result:

p:before {

 content: "I ate 15 large apples";

}

 List-Based Operators
The final category covers all of the types of operations we can perform on

lists of data used in Sass. Lists are a useful way to group together similar

properties we might use later in our code, such as colors or border types,

so that we can control what is used in our code:

$colors: red green blue;

$padding: 10px, 20px, 30px;

$border: solid, dotted;

With the list defined, we can use a function such as nth to choose an

item from that list, in this case green:

div {

 background: nth($colours, 2);

 padding: nth($padding, 2); // "20px"

 border: 2px nth($border, 2));

}

This results in the following code, when compiled:

div {

 background: green;

 padding: 20px;

 border: 2px dotted;

}

Chapter 4 CalCulating Values using OperatiOns

92

List items can be delineated using commas or spaces, but if you are

using the latter, then properties should be encased in quotes, and the

unquote() function should be used to remove them in code.

We’ve only touched the surface of the different types of operations
that are p[possible using sass – the main website documents
all of the functions available, at http://sass-lang.com/
documentation/Sass/Script/Functions.html.

Okay – let’s move on: the examples we’ve used are somewhat theoretical;

to really see how they work, we should create something that shows off how

they work. A great example is by creating a grid-based page template, so

without further ado, let’s dive in and see how this works in practice.

 Putting This Into Practice
For our next demo, we’re going to make use of Sass’s operations to create

a basic skeleton page, where values for widths such as the main content

block are worked out automatically for us. We’ll make use of one additional

resource in this demo, in the form of a script font – Homemade Apple,

which is available for download from https://www.fontsquirrel.com/

fonts/homemade-apple in WOFF format (which should cover most recent

browsers).

CREATING A FRAMEWORK

let’s make a start on building our demo:

 1. We’ll begin by extracting a copy of the skeleton folder from

the code download that accompanies this book – go ahead and

save it to the root of our project folder.

Chapter 4 CalCulating Values using OperatiOns

http://sass-lang.com/documentation/Sass/Script/Functions.html
http://sass-lang.com/documentation/Sass/Script/Functions.html
https://www.fontsquirrel.com/fonts/homemade-apple
https://www.fontsquirrel.com/fonts/homemade-apple

93

 2. Our demo contains all of the relevant markup already in place,

but if we were to run it now, it will look awful! it’s at this point

we need to add styling – for this, we have a fair few rules to

add, so let’s make a start with some basic styles for fonts and

links used in the site:

@font-face { font-family: 'pt_sansregular'; src: url('../

font/pt_sansregular.woff') format('woff'); font-weight:

normal; font-style: normal; }

@font-face { font-family: 'homemade_appleregular'; src:

url('../font/HomemadeApple-webfont.woff') format('woff');

font- weight: normal; font-style: normal; }

body { font-family: 'pt_sansregular', sans-serif; margin:

32px;

 width: 900px; }

a {

 text-decoration: none;

 &:hover {

 color: #6db046;

 }

}

#container {

 width: 100%;

 border: 1px solid black;

 min-height: 100px;

 background-color: #f5f5f5;

 > p > i {

 padding-right: 3px;

 }

}

Chapter 4 CalCulating Values using OperatiOns

94

 3. next up comes the key to this demo – we’re adding the styles

for the main part of the page, header, footer, and sidebar:

article[role="main"], header {

 float: left;

 width: 600px / 960px * 100%;

 margin: 15px 0px 15px 15px;

 padding: 10px;

}

article[role="main"] {

 min-height: 500px;

 background-color: #fff;

 padding: 15px;

}

header {

 height: 55px; padding: 10px 10px 0 0px; margin: 15px 0 0 15px;

 h2{

 font-family: 'homemade_appleregular'; font-size: 30px;

 margin-top: 5px; color: #6db046;

 }

}

aside {

 float: right;

 width: 200px / 960px * 100%;

 margin: 100px 15px 15px 10px;

 float: left;

 padding: 10px;

 min-height: 200px;

 background-color: #fff;

 ul {

 padding-left: 25px;

Chapter 4 CalCulating Values using OperatiOns

95

 h3 {

 border-bottom: 1px solid green;

 margin-left: -20px;

 }

 }

}

footer { clear: both; background-color: #6db046;

padding: 10px; width: 880px; }

 4. We now need to add in styling for some of the detail – the next

three rules cover the images shown at the foot of the page, the

comments tag, and date of posting, respectively:

section { margin-left: auto; margin-right: auto;

width: 600px; }

.details { font-size: 14px; clear: both; padding-top: 5px;

 border-top: 1px solid #6db046; }

.date {

 width: 250px / 960px * 100%;

 font-size: 14px;

 clear: both;

 padding-top: 5px;

 margin-left: 15px;

 border-top: 1px solid #000;

}

 5. Within the <section> block at the foot of our page, we’ve added

in images – these need adjusting, using the following styles:

.subimage { width: 275px / 960px * 100%; border: 1px

solid brown; height: 175px; clear: both; display: inline-

block; margin-right: 15px; }

img { width: 100%; height: auto; }

Chapter 4 CalCulating Values using OperatiOns

96

 6. last, but by no means least, we’ll add in the final rule to take

care of styling the labeling for each of the images:

.tileText { width: 100%; height: 30px; padding: 0px 5px

0px 5px; display: block; font-weight: bold; }

 7. save the file as skeleton.scss in the scss folder.

 8. next, fire up a terminal session and change the working folder

to the skeleton folder under our project area.

 9. at the prompt, type the following command and press enter:

sass sass\skeleton.scss css\skeleton.css

 10. if all is well, we should see a skeleton.css file appear in the

css folder, along with a source map – previewing the results

will show a simple template page with styled elements, as

indicated in Figure 4-1.

Figure 4-1. Creating a skeleton page template

Chapter 4 CalCulating Values using OperatiOns

97

Our demo shows how easy it is to create templates when using Sass –

indeed, the basic principles we’ve used here can easily form the basis of

many of the grid systems available for use today. However, there are a

couple of key points to note; before we cover them, let’s take a look at the

code we’ve created in more detail.

 Understanding What Happened
Although the code we’ve used looks lengthy, in reality much of it is used to

style existing elements such as font sizes or colors. We have, however, used

standard Sass nesting to lay out each rule within our style sheet – Sass will

recompile each into valid CSS during compilation.

The key parts of interest to us though, lie on or around lines 40, 65, 101,

and 110, where we have code similar to this:

width: 200px / 960px * 100%;

Sass automatically calculates this equation during compilation; if we

were to take the rule we created for article[role="main"] and header

(which specifies width: 600px / 960px * 100%), and pasted it into

Sassmeister, it would give us this compiled code (Figure 4-2).

Figure 4-2. Viewing the results of a calculation

Chapter 4 CalCulating Values using OperatiOns

98

Although it’s not 100% obvious, the calculation used is based on the

principle of the Golden Ratio. This ratio has helped quantify what makes

certain designs more pleasing than others – it’s all about ensuring that

proportions of larger elements are twice that of smaller ones. In our

case though, the numbers are not quite there – 62.5% of 960px (our base

measurement) equates to 600px, whereas if we follow the ratio exactly, it

should be nearer 594px. Hey – what’s 6px in a demo design?

if you would like to learn more about this principle, then google
has plenty of references to articles online, such as https://www.
interaction-design.org/literature/article/the-
golden- ratio-principles-of-form-and-layout.

Performing simple math in Sass is just the tip of the iceberg, with

regard to what is possible: there is a host of other functions we can use!

They range from manipulating strings, to numbers, and even changing

colors – we can work out the lengths of strings, cut them into smaller

chunks, or even create a palette of new colors from existing values. This is

one area that is well worth becoming familiar with, so let’s dive in and take

a look at some examples in more detail.

 Defining Functions
If you spend any time writing styles for websites, then I am sure you’ll

appreciate the need to specify absolute values for properties, such as

background-color() or font-size(). It’s a real drag, but what if I said you

may not have to …?

Yes – that’s right: once you start using Sass, there will be occasions

where you don’t have to work out values manually: you can get Sass to

do the heavy lifting for you. Sass borrows many of its function principles

Chapter 4 CalCulating Values using OperatiOns

https://www.interaction-design.org/literature/article/the-golden-ratio-principles-of-form-and-layout
https://www.interaction-design.org/literature/article/the-golden-ratio-principles-of-form-and-layout
https://www.interaction-design.org/literature/article/the-golden-ratio-principles-of-form-and-layout

99

from scripting languages such as JavaScript – indeed, many will say

that this is one area where the lines between JavaScript and CSS really

begins to blur!

That aside, functions within Sass can be split into several categories,

which are summarized in Table 4-1.

Table 4-1. Function Types Available in Sass

Group Description (with examples)

Colors (including

opacity)

this splits into three categories – rgB, hsl, and opacity; this

grouping covers functions such as saturation() or hsl(),

which are designed to get or manipulate colors.

strings this group of functions allows us to manipulate strings using

sass – performing tasks such as changing text case, inserting

characters into strings, and getting the length of a string.

numbers We’ve already seen how you can use basic operators in sass,

such as addition – this group takes it up a level with functions

such as round(), abs(), and random().

lists this group of functions allows us to manipulate sass lists, such

operations such as length() or nth() to get a specific item

from a list.

Note: lists are immutable in sass, so will return a new list, rather

than update an existing one in place.

Maps Maps are a relatively new feature in sass – they allow us to

create a configuration area, rather than have to create multiple

single variables. this group of functions allows us to get and

manipulate content within maps, using functions such as

map-get() or map- values().

(continued)

Chapter 4 CalCulating Values using OperatiOns

100

the full list of functions is available on the main sass website at
http://sass-lang.com/documentation/Sass/Script/
Functions.html.

To fully understand how these functions work, would be outside of the

scope of this book – indeed, we could probably write a tome just on the

subject in its own right!

This said, it’s worth spending time on exploring at least part of what

is available within the world of Sass functions. Over the course of the next

few pages, we’re going to dive into manipulating Sass colors as a mini case

study; it goes without saying that color is so important, and this is one

area where Sass can really help with producing code in our development

process.

Table 4-1. (continued)

Group Description (with examples)

selectors if we need to perform tasks such as joining selectors, or

replacing one with another within our sass code – this group

of functions allows us to do this, using commands such as

selector- append() or selector-unify().

introspection this group of functions helps determine if certain functions,

variables, or mixins exist in the current scope within our code, or

can return the type associated with a value.

Miscellaneous this contains two functions that don’t sit within any of the other

groups – if() and unique-id(). note: the if() function is a

ternary operator in this context, and not a conditional function as

we will see later in this chapter.

Chapter 4 CalCulating Values using OperatiOns

http://sass-lang.com/documentation/Sass/Script/Functions.html
http://sass-lang.com/documentation/Sass/Script/Functions.html

101

 Working with Colors – a Mini Case Study
A site without color would be like life without excitement – very boring!

Indeed, not only does color add that extra sparkle to a site, it can also help

convey a message: for example, red in China conveys a sense of happiness.

In the past, we might have specified an array of colors in our palette –

not only is this time consuming to get right, it is also a real pain to keep

updated, particularly if clients change their mind at the last minute!

To help with this, Sass contains a host of different functions that allow

us to manipulate colors in a manner of different ways. For example, we

can adjust the saturation levels, change the brightness, or alter the hue of a

color – the list is endless. To see how this might look in action, take a look at

http://jackiebalzer.com/color: this only specifies two colors but contains

over 30 different shades, created using Sass functions. This is just one

example: a quick look online shows other similar examples, such as these:

• http://scg.ar-ch.org/ – enter a color to get the hex

codes for various shades, such as lighten or desaturate;

• http://jim-nielsen.com/sassme/ – use the sliders

to generate a new color, and grab the code for use in a

style sheet;

• https://codepen.io/KatieK2/pen/hbqsB – more

experiments using color functions;

• https://css-tricks.com/snippets/sass/tint-

shade- functions/ – two custom functions created by

Hugo Giraudel, to get a slightly lighter or darker shade

of a color.

Let’s put one of these functions to use, and adjust the color used to fill

in an SVG image – the base color is a shade of light gray; we’ll make it even

lighter using the lighten() function.

Chapter 4 CalCulating Values using OperatiOns

http://jackiebalzer.com/color
http://scg.ar-ch.org/
http://jim-nielsen.com/sassme/
https://codepen.io/KatieK2/pen/hbqsB
https://css-tricks.com/snippets/sass/tint-shade-functions/
https://css-tricks.com/snippets/sass/tint-shade-functions/

102

MANIPULATING COLORS

let’s make a start on creating our demo:

 1. We’ll start by downloading a copy of the colorfunctions

folder from the code download that accompanies this book – go

ahead and save it to our project folder.

 2. next, open a new document and add the following rules:

@font-face { font-family: 'pt_sansregular'; src: url('../

font/pt_sansregular.woff') format('woff'); font-weight:

normal; font-style: normal; }

body { font-family: 'pt_sansregular', sans-serif; margin:

32px; width: 850px; }

ellipse { fill: lighten(#c6c6c6, 8); }

 3. save the file as colorfunctions.scss in the scss folder.

 4. next, fire up a terminal session and change the working folder

to the colorfunctions folder under our project area.

 5. at the prompt, type the following command and press enter:

sass sass\colorfunctions.scss css\colorfunctions.css

 6. if all is well, we should see a colorfunctions.css file

appear in the css folder, along with a source map – previewing

the results will show a simple template page with styled

elements, as indicated in Figure 4-3.

Chapter 4 CalCulating Values using OperatiOns

103

This is a very basic demo, but it is designed to show how easy it is to

use a Sass color function. In this instance, we used fill: as this is required

when using SVG images; we could easily have used background-color

or color if it was for a standard HTML element. Our demo increased the

lightness of the initial value by a factor of 8%, from #c6c6c6 to #dadada –

we could easily specify this as a new color for another element, rather than

create a new variable that will use valuable resources.

Let’s step things up a few notches and create something a little more

practical – how about creating a color palette for a website? Yes, you heard

me correctly – this is a perfect opportunity for Sass to do the heavy lifting

for us; we only need to specify one color and let Sass create every other

color for us automatically.

The great thing though is that we don’t even have to work out the math

involved to generate our target color – we can use a tool hosted at http://

razorltd.github.io/sasscolourfunctioncalculator/ to provide the

transformation for us. To see how this works, we’re going to make use of an

example palette from the Color Palettes website at http://colorpalettes.

net/ and get Sass to generate the colors for us during compilation.

Figure 4-3. Adjusting a color within an SVG image

Chapter 4 CalCulating Values using OperatiOns

http://razorltd.github.io/sasscolourfunctioncalculator/
http://razorltd.github.io/sasscolourfunctioncalculator/
http://colorpalettes.net/
http://colorpalettes.net/

104

PART 2 – CREATING COLORS

let’s begin creating our demo:

 1. We’ll start by downloading and extracting a copy of the

palette folder from the code download that accompanies this

book – go ahead and save it to our project folder.

 2. We need to add our styles; so for this, go ahead and open a

new document. there are a good few present, so we’ll add

them block by block, starting with some base styles:

$basecolor: #213451;

@font-face { font-family: 'pt_sansregular'; src: url('../

font/pt_sansregular.woff') format('woff'); font-weight:

normal; font-style: normal; }

body { font-family: 'pt_sansregular', sans-serif;

margin: 32px; width: 850px; }

#palette { margin-bottom: 15px; }

 3. With the base styles in place, we can now add the rules to style

each swatch:

.swatch { height: 125px; width: 75px; display: inline-

block; margin-right: 17px; }

.swlabel { border: 1px solid #bfbfbf; width: 75px;

display: inline-block; margin-right: 15px; margin-top:

-15px; text- align: center; padding: 10px 0px 10px 0;}

 4. to give each swatch color, we need to add in the following rules

to our style sheet:

.swatch:nth-child(1) { background-color: $basecolor; }

.swatch:nth-child(2) {

Chapter 4 CalCulating Values using OperatiOns

105

 background-color: lighten(desaturate($basecolor,

22.27), 30.20);

}

.swatch:nth-child(3) {

 background-color: lighten(desaturate(adjust-

hue($basecolor, 119), 15.54), 52.55);

}

.swatch:nth-child(4) {

 background-color: lighten(desaturate(adjust-

hue($basecolor, 114), 32.11), 73.73);

}

.swatch:nth-child(5) {

 background-color: lighten(saturate(adjust-hue(#213451,

-131), 57.89), 4.90);

}

 5. save the file as palette.scss in the scss folder.

 6. next, fire up a terminal session and change the working folder

to the palette folder under our project area.

 7. at the prompt, type the following command and press enter:

sass sass\palette.scss css\palette.css

 8. if all is well, we should see a palette.css file appear in the

css folder, along with a source map – previewing the results

will show a simple template page with styled elements, as

indicated in Figure 4-4.

Chapter 4 CalCulating Values using OperatiOns

106

Although the Sass code in this demo may look complex, in reality

we don’t have to worry about the specifics, as most of the heavy lifting is

done for via the Sass color function tool we used in this demo. There are

nevertheless some really useful benefits to creating palettes in this manner,

so let’s dive in and take a look at our code in more detail.

 Breaking Apart the Code in Detail
The traditional approach to creating palettes would likely take the form

of choosing colors, then deciding which should be used and where, and

hoping that we retain some form of consistency during development! (I’m

sure this sounds worse than it really is, but nevertheless it is a manual

approach that is opens us to a degree of risk.)

When you first start with Sass, though, the temptation might be to

assign different colors to variables – so you might have $white for white,

and $desaturatedblue would represent #213451. Creating variables

though is tedious – we have to make sure all of the colors complement

each other, and that our general palette looks sensible (and fits in with

brand guidelines).

Figure 4-4. Creating a color palette with Sass

Chapter 4 CalCulating Values using OperatiOns

107

Instead, we can flip things entirely on its head – while a good chunk

of code sets up each swatch, we only specify one base color, at line 16.

Although this may seem crazy, there is a good reason for this – we transform

the base color to become each of the palette colors chosen for this demo. If

we take a look at the middle one, which has this set as its color:

background-color: lighten(desaturate(adjust-hue($basecolor, 119),

15.54), 52.55);

… we can break it down into its constituent parts:

• adjust-hue($basecolor, 119) – this gives us our first

intermediate color (or color1);

• desaturate(color1, 15.54) – this results in our

second color (or color2);

• lighten(color2, 52.55) – our third and final color.

In this instance, we’ve created 3 new colors that could be used in their

own right; instead, we’re getting Sass to automatically calculate color3

directly from our base color in a single pass. The same principles apply

to each of the colors we’ve created for the palette – our calculations have

resulted in a total of 11 colors that could be created from just 1 color!

to see the effect of splitting this calculation, take a look at https://
gist.github.com/alexlibby/6fd1492781a08757c0112bb8
5c7a832a. this shows the big calculation split into rheww separate
entries. notice how p:nth-child(3) equals p:nth-child(4) –
our code steps through each calculation, using the results from the
previous color change as the basis for the new one.

Chapter 4 CalCulating Values using OperatiOns

https://gist.github.com/alexlibby/6fd1492781a08757c0112bb85c7a832a
https://gist.github.com/alexlibby/6fd1492781a08757c0112bb85c7a832a
https://gist.github.com/alexlibby/6fd1492781a08757c0112bb85c7a832a

108

 Assessing the Benefits from Using this Approach
It might seem a complex way to create colors, but there are some good

reasons for using this approach:

• We can always perform a search and replace, but what

happens if our code uses a slightly different spelling

of a color or variable? The search and replace may not

pick it up, leading to unexpected effects in our code.

• If a client asks for a last-minute change, then you only

have one value that needs updating; everything else is

worked out automatically during compilation.

• We don’t need to create variables for each color –

although compiling a calculation such as ours may take

a few seconds more, we are not compiling code “on-

the- fly,” so we can live with the extra compiling time

required.

Of course, if we end up with a monster style sheet (and I’m talking tens

of thousands of lines), then this extra compilation time may start to add

up – if this is the case, we may prefer to use variables instead.

Okay – let’s crack on: we’ve touched on some of the functions available

and explored how we might use them in a practical context in our code.

Although this introduces an element of dynamism to our code, we’re still

limited in as much as our functions will result in one value (as was the case

in the last demo).

What happens if we need to specify different values, based on

satisfying set conditions? Well, Sass can help here – it borrows techniques

from scripting language such as JavaScript to implement features such

as loops. It’s an important part of the library that is well worth exploring,

so let’s take a look at the features available that we can use to evaluate

conditions in our Sass code, in more detail.

Chapter 4 CalCulating Values using OperatiOns

109

 Evaluating Conditions
Decisions, decisions – do we use this color, or another …? What
about positioning that content at the top of the page …?

Our lives are full of decisions that have to be made – in most cases, we will

make the right one, but sometimes we may not! The same applies to styling

content: we might choose a color that ends up clashing with others used

on the site, or a background color we apply ends up making text illegible.

One of the key benefits of using Sass, though, is that we can build

in a certain amount of control to reduce these issues – if the color of an

element is particularly dark, then Sass can be told to select a lighter color

so our content remains legible.

How can we achieve this? Well, it’s time we met Sass’s Control

Directives and Expressions! This mouthful of a name represents a group

of functions that allow us to control which styles are used and when – it’s

worth noting that they are intended more for use in mixins, but can be

used in day-to-day styling if required. Let’s take a look at each of them,

beginning with the @if functions.

 Applying @if and @if():
Let’s say for argument’s sake we had run into an issue of clashing colors,

caused as a result of insufficient contrast – how would we solve this

problem? Well, one way to solve it would, of course, be to replace the

offending color, but this is a manual task that requires effort. Instead, how

about getting Sass to choose for us?

No problem – Sass has two functions that can help here: ironically both

are called @if, but they each have different uses! The first, @if(), takes this

format: if(true, 1px, 2px) => 1px – it is used to decide if we should

apply the first value (1px), or choose 2px if that variable doesn’t exist or

might cause an error (such as divide by zero).

Chapter 4 CalCulating Values using OperatiOns

110

The second is more straightforward – we can use @if to decide if

we include a value or not, such as in this example: @if 1 + 1 == 2 {

border: 1px solid; }, which will render as true. If it had rendered as

false, then the border property simply wouldn’t be set. Both can be a little

tricky to fully understand, so let’s create a demo to explore how these two

work in more detail.

USING IF STATEMENTS

the first step is to grab a copy of the download that accompanies this book –

once you have it, follow these steps:

 1. We’ll start by downloading and extracting a copy of the example

condition folder from the code download that accompanies

this book – go ahead and save it to our project folder.

 2. Our demo doesn’t contain the sass styles needed to make it

work – for this, go ahead and create a new file, saving it as

condition.scss in the sass subfolder in the condition

folder we saved in step 1.

 3. We have a few style rules to add in, which we will add in block by

block, starting with some basic styles required to set up our demo:

@font-face { font-family: 'pt_sansregular'; src: url('../

font/pt_sansregular.woff') format('woff'); font-weight:

normal; font-style: normal; }

body { font-family: 'pt_sansregular', sans-serif;

margin: 32px; font-size: 20px; }

li { padding: 20px 5px; margin: 10px; color: white;

width: 400px; list-style: none; }

Chapter 4 CalCulating Values using OperatiOns

111

 4. next up comes the crux of our demo – we first specify

three colors, which are defined by the outcomes of three if

statements:

$first-color: if(true, antiquewhite, black);

$second-color: if(false, black, slategrey);

$third-color: if(4 > 2, silver, black);

 5. We now need to add in the conditions that determine some of

the properties used in each of the four list items:

li:nth-of-type(1) {

 background: $first-color;

 @if (lightness($first-color) > 75%) {

 color: black;

 } @else {

 color: white;

 }

}

li:nth-of-type(2) {

 @if 1 + 1 == 2 { background: $second-color; }

 @if 5 > 3 { border: 3px dotted $third-color;

width: 394px; }

 @if true { font-family: 'sans-serif'; }

}

li:nth-of-type(3) {

 background: $third-color;

 @if (lightness($third-color) > 75%) {

 color: black;

 } @else {

 color: white;

 }

}

Chapter 4 CalCulating Values using OperatiOns

112

li:nth-of-type(4) {

 @if 1 + 1 == 2 { background: darken($second-color, 50%); }

 @else if 1 + 2 == 3 { background: $second-color; }

 @else if 5 > 3{ border: 2px dotted $third-color; }

}

 6. go ahead and save the file – next, fire up a terminal session

and change the working folder to the condition folder under

our project area.

 7. at the prompt, type the following command and press enter:

sass sass\condition.scss css\condition.css

 8. if all is well, we should see a colorfunctions.css file

appear in the css folder, along with a source map – previewing

the results will show a simple template page with styled

elements, as indicated in Figure 4-5.

Figure 4-5. Using @if...@else statements

Chapter 4 CalCulating Values using OperatiOns

113

At first glance our demo looks very simple, with straightforward

styling for each list item. However, under the covers it hides a fair

amount of decision making that determines which color each list item

should use! We’ve used two key functions within this demo that are

important to understand, so let’s take a few minutes to explore how

they work in more detail.

 Understanding What Happened
The first part of the style sheet for our demo contains some standard rules

that we use to define some basic styling for the demo and each list item.

The crux of our demo though starts on line 22, where we use three @if()

statements to create our colors.

The simplest way to understand how these work, is to say, “If

condition is X, we use the first value (true), otherwise we use the

second (false).” For the first one, we specify antique white as the truthy

color; as our condition is set to true, this is the color that will be used in

our style sheet.

For the second type of @if statement, where we’re setting three

properties for the second list item, we simply need to satisfy each

condition. If the answer is correct (i.e., true), then the attribute shown in

brackets is applied; if not, it is discarded.

the remaining two examples work in the same way as the first two –
list item three uses the same principle as the first list item, with the
fourth following the same technique as the second list item.

Chapter 4 CalCulating Values using OperatiOns

114

 Looping Through Styles
One of Sass’s key abilities is taking over the effort of generating styles – for

example, we can use functions to create an entire color palette, or get Sass

to choose what color to apply to a background, so that it doesn’t clash with

foreground colors.

This is just a small part though of what Sass can achieve – where Sass

really comes into its own is iterating through multiple elements, applying

styles to each from a single set of instructions. For example, how about

creating a set of payment card icons for an e-commerce site – we can

create a common set of styles, but use Sass to create those styles unique to

each image, from a single list of names.

Sass has a number of functions that are suited to this kind of task – they

each have their own unique traits, but each work on a similar principle

of iterating through a group of items. Let’s take a look at each in turn,

beginning with the @for function.

 Working with @for
The first of our functions, @for, is used to repeatedly create a set of

styles – it uses a counter to iterate through each instance of that style,

adjusting each based on what is specified in the directive. The syntax for

this directive is very straightforward: @for $var from <start> through

<end>, with the changes enclosed in brackets.

there is a second format you can use – replace the word through
with to, which works equally well.

Let’s take a look at how this function works in detail, with a quick

demo.

Chapter 4 CalCulating Values using OperatiOns

115

APPLYING STYLES USING @FOR

let’s make a start on setting up our demo:

 1. We’ll begin by downloading and extracting a copy of the

forloop folder from the code download that comes with this

book; go ahead and save it to our project folder.

 2. the download contains all of the markup, but this will be

useless without our styling, so let’s create a new file, saving it

as forloop.scss in the sass folder for this demo.

 3. in the file, go ahead and add the following code blocks in turn,

beginning with some basic styles to set up our demo:

$basecolor: #213451;

@font-face {

 font-family: 'pt_sansregular';

 src: url('../font/pt_sansregular.woff') format('woff');

 font-weight: normal;

 font-style: normal;

}

body { font-family: 'pt_sansregular', sans-serif; margin:

32px;}

ul { width: 150px; background-color: rgba(0,0,0,0.6) }

 4. the remaining rules form the crux of our demo – these take

care of styling each list item:

$rainbow: silver slategrey antiquewhite darkgrey

gainsboro;

@for $i from 1 through 5 {

 li:nth-child(#{$i}) {

 color: nth($rainbow, $i);

Chapter 4 CalCulating Values using OperatiOns

116

 font-size: 32px;

 font-weight: bold;

 }

}

 5. go ahead and save the file – next, fire up a terminal session

and change the working folder to the forloop folder under our

project area.

 6. at the prompt, type the following command and press enter:

sass sass\forloop.scss css\forloop.css

 7. if all is well, we should see a forloop.css file appear in the

css folder, along with a source map – previewing the results

will show a simple template page with styled elements, as

indicated in Figure 4-6.

Figure 4-6. Looping through styles with @for

Hehe – I bet you didn’t know a demo could be so friendly! Okay – yes,

that was a terrible joke, but leaving aside the content, our demo shows of a

useful concept that is worth coming to grips with when developing using

Sass. Let’s take a look at that concept in more detail.

Chapter 4 CalCulating Values using OperatiOns

117

 Understanding How Our Code Works
So – what is that concept that we speak of? It’s one of repetition – we have

five items that form a simple list: all of which need styling, but not all with

the same values!

Our demo consists of five list items in a simple unordered list – as most

of the styles are similar, we only need write one instance of it and use a

Sass for loop to iterate through each item, in turn, to apply the appropriate

styles:

$rainbow: silver slategrey antiquewhite darkgrey gainsboro;

@for $i from 1 through 5 {

 li:nth-child(#{$i}) {

 color: nth($rainbow, $i);

 font-size: 32px;

 font-weight: bold;

 }

}

The catch though is the color attribute – as we want to apply different

colors, we create a list, and assign this to the variable $rainbow. In our

for loop, we then count through this list and apply a color to each in turn,

which is formatted using string interpolation (replacing (#{$i}) with the

appropriate number). When compiled, the code for each of the list items

will look something like the example shown in Figure 4-7.

Figure 4-7. Styling a list item

Chapter 4 CalCulating Values using OperatiOns

118

This is a great way to apply styles, but the key thing to remember is that

of repetition – the items we are targeting must be of the same type. In this

instance, we were targeting list items; elements of other types would have

to be styled separately.

 Looping Using @each
This next looping function is a little more complex – it is not a loop

function as such, but we are looping through multiple items! Let me

explain what I mean:

The @each function allows us to set a variable to each item in a list or

Sass map – a list is just a comma-separated set of values. A map takes this up a

level – it allows us to assign multiple values to a single item, where they relate

to the same item. For example, we might be talking about a group of cars – the

properties could be color, make, model: these each apply to each car.

We will revisit the subject of sass maps in more detail, later in
this chapter.

To see what this means in practice, we’re going to create a simple

demo that sets up a number of buttons using the @each function – for each,

we’re going to specify the color and button function using a Sass list, then

iterate through each to create our final style rules.

STYLING EACH ITEM

let’s make a start on our demo:

 1. We’ll begin by downloading a copy of the eachitem folder

from the code download that accompanies this book – save it

to the root of our project folder.

Chapter 4 CalCulating Values using OperatiOns

119

 2. next, we need to add in our sass styling – for this, go ahead

and create a new file, saving it as eachitem.scss in the sass

subfolder in the condition folder we saved in step 1.

 3. We have a few style rules to add in, which we will add in block by

block, starting with some basic styles required to set up our demo:

@import url(https://fonts.googleapis.com/

css?family=Poiret+One);

@font-face {

 font-family: 'pt_sansregular';

 src: url('../font/pt_sansregular.woff') format('woff');

 font-weight: normal;

 font-style: normal;

}

body {

 font-family: 'pt_sansregular', sans-serif;

 margin: 32px;

}

 4. next up are some initial values we create, along with a sass

list to store values in pairs (each pair containing the button type

and a variable pointing to its color):

$publish: gainsboro;

$postpone: antiquewhite;

$delete: silver;

$states: (publish, $publish),

 (postpone, $postpone),

 (delete, $delete);

Chapter 4 CalCulating Values using OperatiOns

120

 5. With our base values in place, we can now style our button –

for this, go ahead and add the following code:

@each $buttonstate, $color in $states {

 button { color: #000; text-decoration: none; padding:

5px 10px; border-radius: 3px; font-family: 'Poiret One',

cursive; font-size: 32px; font-weight: bold; outline: 0; }

 .#{$buttonstate} {

 padding: 10px 20px;

 border: none;

 background-color: $color;

 &:hover { background-color: darken($color, 10%);

 transition: all 0.3s ease; }

 &:active { background: darken($color,25%); }

 }

}

 6. go ahead and save the file – next, fire up a terminal session

and change the working folder to the easchitem folder under

our project area.

 7. at the prompt, type the following command and press enter:

sass sass\eachitem.scss css\eachitem.css

 8. if all is well, we should see a colorfunctions.css file

appear in the css folder, along with a source map – previewing

the results will show a simple template page with styled

elements, as indicated in Figure 4-8.

Chapter 4 CalCulating Values using OperatiOns

121

Up until now, we’ve talked about applying styles to items in an iterative

process – it doesn’t matter how many items feature in our group; each will

have the same set of styles applied to them. This demo shows a different

way of looping through items; it has one key difference, so let’s pause for a

moment and reflect on the code from our demo in more detail.

 Dissecting the Demo
The @each function is different – as a start, there is no emphasis on

numbers; @each will iterate through everything that is included in the

targeted list. However, where using @each helps, is in the ability to group

properties together for each item in a list; Sass will apply each property to

that item in turn.

Take for example our demo – we created a set of three buttons, which

had button types and colors applied to them, in pairs:

$states: (publish, $publish),

 (postpone, $postpone),

 (delete, $delete);

@each $buttonstate, $color in $states {

 ...

 .#{$buttonstate} {

 ...

 &:hover { background-color: darken($color, 10%);

 transition: all 0.3s ease; }

Figure 4-8. Creating button styles using @each

Chapter 4 CalCulating Values using OperatiOns

122

 &:active { background: darken($color,25%); }

 }

}

We started by creating a list of items for each button – the list items are

in pairs, with $buttonstate and $color values assigned to each button. We

then iterate through each pairing, using string interpolation to create styles

based on the button type. At the same type, we create hover and active

states for each button, using the supplied $color value which is darkened

by 10% for hover and 25% for active states respectively.

 Looping if a Condition Is True
On occasions we may not have a defined number of items to iterate

through, or that this number may vary – in these instances using a @for

loop or @each in an array will not work. Instead, we must use another

function – @while.

So – I hear you ask: What’s the difference? Well, the answer is simple – it

works on the basis that it will keep loop while a given condition can be met.

The moment we can’t satisfy this condition, then the loop will stop, and

Sass will move on to compile the next set of rules in the style sheet. In many

cases, a @while loop works in much the same way as other languages such as

JavaScript – to see what I mean, let’s take a look at a simple example, where

we iterate through ten list items, styling each with a darker shade of color.

LOOPING @WHILE TRUE

Our demo is very simple to put together, so let’s make a start:

 1. We’ll begin by downloading a copy of the whileloop folder

from the code download that accompanies this book – save it

to the root of our project folder.

Chapter 4 CalCulating Values using OperatiOns

123

 2. next, we need to add in our sass styling – for this, go ahead

and create a new file, saving it as whileloop.scss in the

sass subfolder in the condition folder we saved in step 1.

 3. We have a few style rules to add in, which we will add in block by

block, starting with some basic styles required to set up our demo:

$start-color: gainsboro;

$end-color: black;

$white: #ffffff;

$step: 1; // Set the initial step value

@font-face {

 font-family: 'pt_sansregular';

 src: url('../font/pt_sansregular.woff') format('woff');

 font-weight: normal;

 font-style: normal;

}

body { font-family: 'pt_sansregular', sans-serif;

margin: 32px; padding: 32px 80px; width: 550px; }

 4. We’re creating a set of list items, so for this we need to apply

some basic styling that is common to each list item, such as

font size:

ul { margin: 0; padding: 0; }

li {

 color: $white;

 display: inline-block;

 font-size: 24px;

 list-style-type: none;

 margin-bottom: 3.2px;

 padding: 8px;

 width: 80px;

}

Chapter 4 CalCulating Values using OperatiOns

124

 5. the last part of our sass styling takes care of applying an

increasingly darker shade of color to each list item:

@while $step <=10 {

 // changes from one color to another

 .mix li:nth-child(#{$step}) {

 background-color: mix($end-color, $start-color,

($step * 10));

 }

 $step: $step + 1;

}

 6. go ahead and save the file – next, fire up a terminal session

and change the working folder to the whileloop folder under

our project area.

 7. at the prompt, type the following command and press enter:

sass sass\whileloop.scss css\whileloop.css

 8. if all is well, we should see a whileloop.css file appear

in the css folder, along with a source map – previewing the

results will show a simple template page with styled elements,

as indicated in Figure 4-9.

Figure 4-9. Styling list items using a while loop

Chapter 4 CalCulating Values using OperatiOns

125

When working with multiple items of the same type, using a loop is

a great way to apply styles iteratively, without the need to write out style

declarations for each item individually. This is a useful technique to learn,

even if it is not one you might use immediately when starting with Sass –

let’s take a moment to explore how our code works in more detail.

 Exploring the Code in Detail
So – how does our code work? Well, most of the style declarations are

standard CSS – the key to making our demo work lies in this function:

@while $step <=10 {

 // changes from one color to another

 .mix li:nth-child(#{$step}) {

 background-color: mix($end-color, $start-color, ($step * 10));

 }

 $step: $step + 1;

}

In this code, we create a loop, with a variable $step set to an (implied)

value of zero. We then use this value to replace the code highlighted

in bold (an interpolated string), to create our rule – this rule contains

a declaration for background-color, which is a mix of two colors

(gainsboro – or very light gray - and black). We then round out the loop by

increasing the value of $step by 1 – this moves us onto the next list item

in the group. We can see the effects of this function in the example code

shown in Figure 4-10.

Chapter 4 CalCulating Values using OperatiOns

126

Figure 4-10. Compiled code from a @while loop

See how easy that was to style each item? Granted, our code is

probably a little over-simplistic, but the same principle of repeatability

applies here too – as long as we have a suitable group of elements (such as

list items), we can then use Sass to apply styles to each automatically.

Okay – let’s move on: it’s time to turn our attention to a more recent

addition to Sass. When styling elements, we might create a “palette” of

styles that should be kept for certain elements, such as headings or tables.

Instead of creating a host of different variables, we can use a more efficient

process: we can create a map. Okay – I don’t mean trying to replicate

cartographers have been doing for years, but something different: a way

of referring to particular properties that have been grouped together. Let’s

dive in and take a look to see what this means in practice.

 Applying Styles to a Property List or Map
Although Sass maps are a relatively new concept to Sass (having been

introduced in version 3.3 of Ruby Sass, the predecessor to Dart Sass), it is

worth its weight in gold – why? Well, let me explain how they work:

Chapter 4 CalCulating Values using OperatiOns

127

Historically, we would likely have created multiple variables to store

values – this works, but is a very manual, inefficient way to store values:

in addition, we can’t really group each item, save for where they might

appear in a style sheet.

Instead, we can use a map – these consist of a minimum of two parts:

the initial map variable and the block where we call each reference. In the

single variable, we can assign multiple key pairings, using this syntax:

$map: (key1: value1, key2: value2, key3: value3);

… where the key is the map reference, and the value is the attribute we

want to display in our style sheet at compilation. When we need to call a

value, we would use something akin to this:

text-align: map-get(<name of map reference, or key>, <property

from that map>)

Let’s put this into practice, by revisiting one of my favorite effects –

we’ll style an image of a vintage camera, using the classic Polaroid effect.

CREATING AND USING SASS MAPS

For this next demo, we’ll use a premade demo that already uses sass but

which can easily be converted to use a sass map. Our vintage camera image

was sourced from the pexels website at https://www.pexels.com/

photo/antique-camera-classic-lens-242433/.

let’s update the demo to use a sass map:

 1. We’ll begin by downloading a copy of the sassmap folder from

the code download that accompanies this book – save it to the

root of our project folder.

 2. this time around, our demo already has sass styling, but we’re

going to modify it – for this, open the sassmap.scss file in the

sass subfolder in the sassmap folder we saved in step 1.

Chapter 4 CalCulating Values using OperatiOns

https://www.pexels.com/photo/antique-camera-classic-lens-242433/
https://www.pexels.com/photo/antique-camera-classic-lens-242433/

128

 3. at the top of the file, go ahead and insert this, before the

opening @font-face declaration:

$styling-figcaption: (

 'text-align': center,

 'font-family': Reenie Beanie,

 'font-size': 20.8px,

 'color': #454f40,

 'letter-spacing': 1.44px,

);

 4. scroll down until you see figcaption{, on or around line 69.

 5. go ahead and replace the contents of this style rule, so it looks

like this:

figcaption {

 text-align: map-get($styling-figcaption, 'text-align');

 font-family: map-get($styling-figcaption, 'font-family');

 font-size: map-get($styling-figcaption, 'font-size');

 color: map-get($styling-figcaption, 'color');

 letter-spacing: map-get($styling-figcaption, 'letter-

spacing');

}

 6. go ahead and save the file – next, fire up a terminal session

and change the working folder to the sassmap folder under our

project area.

 7. at the prompt, type the following command and press enter:

sass sass\sassmap.scss css\sassmap.css

 8. if all is well, we should see a sassmap.css file appear in the

css folder, along with a source map – previewing the results

will show a simple template page with styled elements, as

indicated in Figure 4-11.

Chapter 4 CalCulating Values using OperatiOns

129

A really simple change to make, but one which makes our code

infinitely easier to manage – not only can we now access each property from

a single variable, we can do so multiple times throughout our code. We’ve

only scratched the surface of how maps work in Sass, though: there is a lot

more we can do! Nevertheless, it’s worth spending a moment going through

our code, to see just how powerful maps really are in Sass development.

 Breaking Down Our Code
At first glance, our updated code may look more “wordy” (i.e., there is

more code there than previously). However, bear in mind that Sass often

has instances where this is the case – in this case, it’s all about making it

easier to get a sense of which value we are using in our code.

Our code starts by adding in a map, which is a group of paired

properties; this is assigned to a single variable. Think of it as an array,

for those of you who are familiar with this technique; it works in much

the same way. Maps are perfect for grouping together common styles for

particular elements on a page, such as titles or an <h2> tag.

Figure 4-11. Creating a Polaroid image using a map

Chapter 4 CalCulating Values using OperatiOns

130

We then make reference to this map when we create the figcaption

rule – instead of entering the values directly into the rule, we simply

replace them with calls to the $styling-figcaption map, with

appropriate references to the attribute we want to retrieve.

The grouping together makes it easier to identify what that property

relates to, and eliminates the need for multiple variables in our code. So –

for example, if we were to call map-get($styling-figcaption, 'text-

align'), we would get back center as the attribute. We might have initially

set as one of several attributes for titles (as mentioned previously), but we

can call this map-get()function and use it for any example in our code, not

just for titles!

 Creating Breakpoints Using @media
Throughout the course of this chapter, we’ve touched on the various ways

we can use Sass functions to perform tasks (such as generating colors),

or its control directives to determine what should be written to our style

sheet.

There is however one more control directive we’ve yet to cover – and

one which should be instantly recognizable to anyone who has spent time

developing for responsive sites. Yes, I am talking about @media – this works

in much the same way as in standard CSS, with one extra capability: media

directives can be nested within Sass content.

Put simply, this means that any which appear in a CSS rule will bubble

up to the top level of the style sheet – it makes it easy to add in media-

specific styles without having to repeat selectors or wreck the flow of our

style sheet. Let’s take a look at what this means in practice, with a simple

proof of concept to show off how we might implement media directives

using Sass.

Chapter 4 CalCulating Values using OperatiOns

131

CREATING BREAKPOINTS

For the purposes of this demo, we’re going to keep it super simple in terms of

elements – we’ll have a single <div> that will change color when the screen

width has been resized. let’s make a start on setting up our exercise:

 1. We’ll begin by downloading a copy of the breakpoints folder

from the code download that accompanies this book – save it

to the root of our project folder.

 2. the download contains all of the markup, but this will be

useless without our styling, so let’s create a new file, saving it

as breakpoints.scss in the sass folder for this demo.

 3. We have a few style rules to add in, which we will add in block by

block, starting with some basic styles required to set up our demo:

@font-face {

 font-family: 'pt_sansregular';

 src: url('../font/pt_sansregular.woff') format('woff');

 font-weight: normal;

 font-style: normal;

}

body { font-family: 'pt_sansregular', sans-serif;

margin: 32px; font-size: 20.8px; }

 4. next up come the styles required to set our breakpoints – we

first set a sass map to store our breakpoints:

$media-queries: (

 tablet: (

 breakpoint: '(min-width: 480px) and (max-width: 768px)',

),

Chapter 4 CalCulating Values using OperatiOns

132

 mobile: (

 breakpoint: '(max-width: 480px)'

)

);

 5. We then need to add in our mixin, which will be called on to

create our styles:

@mixin media-query ($size) {

 @each $item, $value in $media-queries {

 @if $item == $size {

 @if map-get($value, breakpoint) != null {

 @media only screen and #{map-get($value,

breakpoint)} {

 @content;

 }

 }

 }

 }

}

 6. We’re almost done with the styles – last, but by no means least,

comes the basic style for our responsive <div> element, along

with the calls to the mixin to add our responsive colors:

.row { display: inline-block; width: 100%; font-size:

22.4px;

 text-align: center; color: #FFF; padding: 4% 10%; box-

sizing: border-box; }

.row {

 background: darkgrey;

 @include media-query(mobile) {

 background: lightgrey;

 }

Chapter 4 CalCulating Values using OperatiOns

133

 @include media-query(tablet) {

 background: darkgrey;

 }

}

 7. go ahead and save the file – next, fire up a terminal session

and change the working folder to the breakpoints folder

under our project area.

 8. at the prompt, type the following command and press enter:

sass sass\breakpoints.scss css\breakpoints.css

 9. if all is well, we should see a breakpoints.css file appear

in the css folder, along with a source map – previewing the

results will show a simple template page with styled elements,

as indicated in Figure 4-12.

Figure 4-12. Our finished breakpoint example, at table width

Although our demo only contains one element, there is still a

reasonable amount of code that we’ve had to add to make it responsive!

Our code shows off some key techniques that are worth mastering; most

of these you have already met earlier in the book, but not in the context of

making elements responsive. Let’s take a few minutes to revisit the code to

see how it works in more detail.

Chapter 4 CalCulating Values using OperatiOns

134

 Understanding What Happened
Although we’ve met most of the techniques used in this demo before, at first

glance you might be confused for thinking it looks harder than it first appears.

In reality, it’s fairly straightforward code, so let’s go through it step by step:

The real meat of our code starts in step 4, where we’ve created that

map of media breakpoints – we’ve specified two typical ones (tablet and

mobile), but could equally include breakpoints for desktop and other

devices as needed. Inside this map, we’ve specified a breakpoint

between 480px and 768px, alongside another to cater to devices no

wider than 480px.

Next up we have a mixin – into this we pass the size as a text name,

which in this case will be mobile or tablet. We then iterate through each item

within the map; if the map contains an item of the right size, we map-get its

breakpoint $value, provided a suitable value exists in the map. Assuming

such a value exists, then we use the special keyword content to apply this

media query across all declarations, right up to the top level of that selector.

This will give us something akin to the example shown in Figure 4-13.

Figure 4-13. Our compiled media query

Our code looks complex, but in reality, the only parts we need to worry

about are the Sass map and calls to the mixin – the mixin itself won’t

change, and can equally be imported from a separate style sheet using

the @include command. This lets us concentrate on providing the right

breakpoints for the media query map (which could equally be imported

Chapter 4 CalCulating Values using OperatiOns

135

too), and to ensure that calls are positioned at appropriate points in our

style sheet.

 Summary
Phew – what a ride! We’ve covered a huge amount of content throughout

this chapter, so before we move onto creating the demo in the next chapter,

let’s take a moment to review what we’ve learned in this chapter.

We kicked off with a look at using functions within Sass – we saw how

these can be used for a variety of purposes but which are particularly

suited to tasks such as creating colors. We also explored the benefits of

using functions in this manner, and how this makes it easier to create code.

Next up came a look at how we might assign styles at compilation,

based on evaluating certain conditions – this included a look at Sass’s

control directives and expressions, and the various ways we can automate

the creation of styles by iterating through groups of elements in a loop. We

also took a look at how we can either specify a known number of items in

that loop, or use a loop which will only run if certain conditions can be met

in our code.

We then moved on to explore the use of Sass maps and saw how easy

it is to assign values to a single placeholder, whereas before we might have

used multiple variables to perform the same task. We then rounded out the

chapter with a brief look at the @media directive, to see how Sass might

help with creating media queries for responsive sites or online applications.

Well – we’re almost at the end of the book, but we can’t leave without

putting some of what we’ve covered thus far into practice! To help with

this, we’re going to run through a mini case study to see how we might use

some of the techniques we’ve learned in a more practical example – it’s

time to get those dummy credit cards at the ready, as we’re going to create

the user interface for a shopping cart. If I were you, I would go get a coffee

or drink first, as we have a lot to cover over the next few pages …!

Chapter 4 CalCulating Values using OperatiOns

137© Alex Libby 2019
A. Libby, Introducing Dart Sass, https://doi.org/10.1007/978-1-4842-4372-5_5

CHAPTER 5

Making the Conversion
to Using Sass
Over the course of this book, we’ve met Sass for the first time and have

been introduced to a number of new techniques to help with producing

valid CSS code. Much of the code we’ve written has been from ground

up; I suspect that many will ask – how do I convert an existing project to

use Sass?

It’s a great question: much of what we’ve learned assumes that in an

ideal world, we’d be writing code from scratch, which is the best way to get

the most out of Sass. Clearly this perfect scenario doesn’t always happen,

so we must allow for this in our development. It might seem daunting to

convert a monster style sheet into something resembling valid Sass code,

but with a little patience and careful planning, it can happen. To help with

this, there are three key factors to bear in mind:

• Sass is just a superset of CSS – don’t think you have

to convert everything in one go! Instead, make your

changes in stages: it may take longer but will be more

effective longer term.

• Planning and being methodical is absolutely key –

make sure your code is consistently formatted: for

example, color codes should use the same notation

(#fff or #ffffff for white, but not both).

138

• Automate as much as you can – there are tools available

to help, such as using Autoprefixer to cater for any

vendor prefixes during compilation.

It doesn’t matter how long or short a style sheet is – we can use the same

techniques to break it down and convert it into its Sass equivalent. Indeed,

you may find the longer the better: take, for example, WordPress’s own style

sheet, which is over 4,500 lines long and is itself written using Sass.

There are a few tricks we can use to help with making the transition to

using Sass, so no matter what the project is, let’s take a look at how we can

make the conversion process easier.

 Simplifying the Process
At first glance, converting a monster-sized style sheet will indeed seem

daunting – over the course of this chapter, I will show you a number of tips

and techniques we can use to make a start on the conversion process, and

break it down into more manageable steps.

The first priority, of course, is to get our Sass development workflow set

up – we’ve already used the manual compiler to produce CSS code, but it’s

likely we will want more; it’s time to step things up a notch! It’s at this point

we will need to automate our process: I would recommend using Node.js,

along with some of these tools:

• Autoprefixer for adding vendor prefixes where needed:

https://github.com/postcss/autoprefixer;

• Image spriting / minifier tools – try this plugin for

creating sprites: https://www.npmjs.com/package/

spritesmith, or https://www.npmjs.com/package/

imagemin for an image minifier plugin;

• Live-Reload: head over to https://www.npmjs.com/

package/livereload for a version that works with Node.js;

Chapter 5 Making the Conversion to Using sass

https://github.com/postcss/autoprefixer
https://www.npmjs.com/package/spritesmith
https://www.npmjs.com/package/spritesmith
https://www.npmjs.com/package/imagemin
https://www.npmjs.com/package/imagemin
https://www.npmjs.com/package/livereload
https://www.npmjs.com/package/livereload

139

• A task runner – an optional extra; you can use any such

as Gulp (https://gulpjs.com) or Grunt (https://

gruntjs.com), or remain with pure Node.js if preferred;

• Syntax checker for text editor – my personal favorite

is Sublime Text (https://www.sublimetext.com/3);

this has a syntax checker plugin for Sass available from

https://packagecontrol.io/packages/Sass.

Of course, a lot of what you use will depend on whether you have

an existing workflow in place; Sass is one of those libraries that doesn’t

require a lot of additional tools to get started. Assuming we’ve set up our

development environment, here’s a checklist of pointers to help with the

initial changes to using Sass:

• Before we make any changes, I would recommend

reading the content at https://sass-guidelin.es/ –

written by Hugo Giraudel, this gives some useful tips on

how to structure Sass style sheets and code.

• The simplest change we can make is to rename our

style sheet to have an .scss extension – Sass is just

a superset of CSS, so any styles within will compile

just fine (and in reality, will be left untouched by the

compiler anyway!).

• Consider removing any vendor prefixed versions

declarations in your code; this will simplify your code,

and these can be added later automatically using the

Autoprefixer tool.

• Make sure all of your values are consistently formatted.

This will make it easier to replace code when we start

to add variables, using the search and replace option in

our text editor.

Chapter 5 Making the Conversion to Using sass

https://gulpjs.com
https://gruntjs.com
https://gruntjs.com
https://www.sublimetext.com/3
https://packagecontrol.io/packages/Sass
https://sass-guidelin.es/

140

• I would recommend checking and restructuring your

code into recognizable sections where possible – this

will make it easier to convert into partials, which can be

imported during compilation.

• Start reading through your code carefully – do you see

any repetition in your code, where you’re specifying the

same values in more than one place?

At this point it’s absolutely worth spending time planning how your

style sheet will look once converted to Sass. We should make full use of

Sass’s ability to import multiple files during the compilation process,

so common elements can easily be grouped together and stored in

individual files.

There is no right or wrong way to how you structure these files; much

of it will depend on individual requirements, but over time you will find

yourself developing a structure that suits most of the projects you work on

when using Sass.

The key to ultimate success, though, will be how your partials are

structured – your aim is to separate code into separate files, such that you

keep the need for importing files multiple times to a minimum. To give you

a flavor of how one might structure folders, you can check out the example

given by Danny Huang – for smaller projects, he uses a base file (for most

of his code, including resets), a components file (for reusable code such as

buttons), and a layout file to handle the overall layout of content. These are

all combined into his main file during compilation.

You can read Danny’s article on structuring sass code at
https://medium.com/@dannyhuang_75970/sass-project-
structure-for-big-projects-8c4a740846ee.

Chapter 5 Making the Conversion to Using sass

https://medium.com/@dannyhuang_75970/sass-project-structure-for-big-projects-8c4a740846ee
https://medium.com/@dannyhuang_75970/sass-project-structure-for-big-projects-8c4a740846ee

141

For larger projects, though, this might not be enough – instead, we can

use something akin to his model for larger projects:

• base/ - for animations, typography, and utilities

• components/ - stored as single Sass files for each

component

• layout/ - used for storing header, grid, footer, and

navigation styles

• pages/ - depending on structure, we might have a

single Sass file for each page

• abstracts/ - for functions, mixins, and variables

• vendors/ - third-party CSS

• main.scss

It’s all about planning – the more you can do now, the easier it will

be later! Bear in mind, though: a structure doesn’t have to be rigid –

we can absolutely develop something to suit projects and modify it if

circumstances change.

Okay – let’s return to that checklist:

• Assuming you’ve seen instances of repetition – how

much is common between multiple styles? In an

ideal world, you’re looking for instances where 3–4

declarations are the same (or very close): these could

be turned into mixins and these called from within the

relevant rules.

• Check items such as buttons, where styles are likely

to consist of some common base rules, with only

minimal differences such as colors. If this is the case,

then consider using the extend function, to reduce

duplication of content.

Chapter 5 Making the Conversion to Using sass

142

• If you read through your code, do you see instances

where you have CSS rules that go several levels deep?

A typical example might be within navigation, where

you use multiple elements to style each part of

an unordered list. Consider converting these to nested

styles – it will make it easier to read your content and

help cut down on duplication of code.

• A longer-term change you can make is to consider

making use of prebuilt libraries where others have

already developed code such as mixins or color

variables that you can reuse in your code.

• Images – can any be converted to sprites, if you aren’t

already using them? Sass makes using sprites very

easy – it won’t suit some of the larger images, but it

will be perfect for smaller ones. Alternatively, consider

using SVG images for icons – as these are made up of

HTML and CSS, they can be styled using Sass with ease,

and (depending on how you call them), can also reduce

the number of requests we make of our server!

See how easy it is to start using Sass, with just a few changes? Granted,

there will be other changes we can make over time, but these will give

you a good head start when making the initial change to using Sass as a

development tool.

Talking of making changes – we can do these manually (as it gives us

a great feel for where we can make them), or we can make use of some

conversion tools to do some of the heavy lifting for us. Although these tools

may not give us the finished article, they will at least give us a good head

start – over the next few pages, we’ll take a look at one of these tools in

more detail, to see just how they work in action.

Chapter 5 Making the Conversion to Using sass

143

 Making a Start on Conversion
Okay – so we’ve talked about how we might approach the conversion

process: it’s time for action!

When converting Sass, one should always consider it to be an iterative

process that evolves over time; the likelihood of us having a really simple

style sheet is probably next to zero. We can, of course, try to convert it

manually, but this will be a time-consuming process.

Instead, why not put it through one of several tools already available

for download, which can do some of the heavy lifting for us? There are a

couple of examples available, including css2scss (https://www.css2scss.

com/), or the css2sass app available at http://css2sass.herokuapp.com/.

A personal favorite, though, is the Styleflux tool, which you can

install using Node.js from https://www.npmjs.com/package/styleflux.

Granted, it might not produce perfect results, but as the only cost to using

it is a the initial set-up (which only has to be done once), why not give it

a try? The worst that can happen is that it falls into a complete heap and

produces garbage; in many cases, you will get something respectable,

which may only need a little tweaking and tidying up. Let’s put this theory

to the test, and see how it works, as part of our next demo.

CONVERT TO SASS USING STYLEFLUX

For this exercise, we’ll assume you have node.js installed from Chapter 1 – if

you don’t, then i would recommend revisiting that chapter for a reminder!

assuming we have node.js installed, then we need to follow these steps:

 1. We’ll start by creating a new folder in our project area – call it

css2scss.

 2. next, fire up a node.js terminal session (not a standard one!),

and navigate to our project area.

Chapter 5 Making the Conversion to Using sass

https://www.css2scss.com/
https://www.css2scss.com/
http://css2sass.herokuapp.com/
https://www.npmjs.com/package/styleflux

144

 3. We now need to create a package.json file, which node.

js uses to tell it which packages to use – for this, enter the

following at a prompt, and press enter:

npm init –y

 4. When it confirms a package.json file has been created, then

enter this at the prompt and press enter:

npm install styleflux –save

if you get node complaining of a package-lock.json file being
created, then you can stop this from happening – copy the .npmrc
and .gitignore files from the code download to the root of the
css2scss folder.

 5. next, we need to create our conversion script – for this, go

ahead and add the following code to a new file, saving it as

styleflux.js in our project area:

const cssConverter = require('styleflux');

cssConverter.processCSSFile("test.css");

 6. We can now test our file conversion – for this, switch back to

the terminal session, then make sure the working folder is the

css2scss folder.

 7. at the prompt, enter this command, and press enter:

node styleflux.js

 8. if all is well, we should see the name of a new file being

created with our sass code, as indicated in Figure 5-1.

Chapter 5 Making the Conversion to Using sass

145

Figure 5-1. Successful conversion of a CSS file

as an aside – if you want to try different style sheets, please change
the name highlighted in step 5, before running saving the file and
running it from step 6 onward.

 9. once the file has finished being converted, you will see

confirmation posted on screen – go ahead and open the file,

which will be in the root of the css2scss folder, to confirm it

has indeed produced a workable result.

At this point, I’ll bet you’ll be asking either one of two questions – how

effective is this tool with larger files? And why didn’t we simply use it first

...? These are equally pertinent questions: the answer to the first might

surprise you, and there is a good reason for not simply using the tool

outright. Intrigued? Let’s dive in and take a look at why. ...

Chapter 5 Making the Conversion to Using sass

146

 Using the css2scss Tool – a Postscript
Anyone who knows me personally will say that I’m a big fan of the KISS

principle – for those of you who are unaware, it means keep it simple,

stu.....okay, I’ll let you fill in the rest!

But seriously though: we live in an age where time is crucial, and I’m

all for automating those tasks that are time consuming and add little of

value. That said, I’ve also said we should absolutely read through our

code to understand where we can make changes. This would appear to

contradict the previous approach, so what gives?

There are several reasons why we should follow both approaches – a

conversion tool won’t be 100% perfect; it is reliant on us producing code

that uses consistent notation, such as using just 6-digit hex codes, or

mixing in color names. A read through the code to start with means we can

check it for consistency; we can also get a feel for where we will be able to

convert it to using Sass. Once this is done, we can then run it through the

css2scss tool before checking the results in a text editor.

In terms of how well it works – this might surprise you: while

researching for this book, I tested it on a heavy style sheet from the

twentyseventeen theme that comes with WordPress. This beast weighs

in at around 4,300 lines of code – it certainly is no lightweight. However,

it doesn’t seem to have caused any issue: the tool converted it with little

difficulty, producing a Sass style sheet that weighs in at just under 2,000

lines! It has to be said this would need checking, but it’s definitely worth

giving it a try, if only to understand more about how we might make the

changes manually.

Okay – let’s change tack: as part of converting a style sheet to using

Sass, we might decide to split it into smaller, more manageable chunks,

or partials. There is nothing wrong with this; it’s a perfectly acceptable

approach.

Chapter 5 Making the Conversion to Using sass

147

However, I suspect you may find yourself creating code similar to that

created by other developers and who have posted it online – why not have

a look? Rather than reinvent the wheel, see what you can find that people

may have already created: there are dozens of libraries available online for

us to use. I would absolutely recommend taking time to research possible

options; who knows what you might find! Making use of prebuilt libraries

is not without its issues – to understand why, let’s dive in and take a look at

what is involved in more detail.

 Using a Prebuilt Library
Cast your mind back to our discussion earlier in this chapter, under

“Simplifying the Process.” Remember how we talked about using the

@import function to break down larger style sheets into more manageable

chunks?

This is the basic principle of how we create Sass libraries – they are

nothing more than smaller files containing code such as mixins, loops,

variables, and the like, or even components relating to a specific part of the

site (such as navigation). The key though is that if we import the file into

our style sheet, Sass will only call code that is directly referenced from the

main style sheet.

We can take this a step further – we can, of course, create our own

libraries. In some cases, though, there may be no need: others may have

done something for us already that we can reuse in our code. Instead of

trying to reinvent the wheel, we can simply import their file – Sass will use

only those mixins, functions, and the like that are called from our main

style sheet, and the rest will be left untouched.

To really understand how this works, let’s dive into a demo – it may be

somewhat simplistic in nature, but when using @import, it’s the process

that counts, not the end result.

Chapter 5 Making the Conversion to Using sass

148

 Exploring Prebuilt Options
Process, process – surely the end result is more important,
I hear you ask?

Yes – clearly, we want to achieve the right result. However, the means by

which we get there is arguably more important. Let me explain what I mean.

If we opt to use a prebuilt library, it’s an almost certain that we will find

one that contains all of the mixins, variables, or functions that we need for

a project. The trick here is to find the ones that strike the right balance of

functionality we can use, against options that are of no interest to us (at

least for the project in hand).

We can, of course, simply import multiple libraries, but this is

inefficient – there is little point importing one if we only use a tiny

proportion of the functionality within it. We may also find others at a later

date that contain better versions of mixins, or include more functionality

within – we can then decide to refactor our code to do away with

redundant libraries if we want to use a better option.

This is just a scratch on the surface of what we might have to consider

when using @import – we’ll come back to this shortly; but for now, let’s

work through a simple example to show you how we can use @import to

reference libraries when working with Sass.

USING A PREBUILT LIBRARY

this demo assumes that you have installed node.js from Chapter 1, which we

need to use to download Bourbon – if you’ve not already done it, make sure

you have installed it, before you continue with this exercise.

assuming it is in place and working, these are the steps you need to follow:

 1. We’ll begin by extracting a copy of the library-prebuilt

folder from the code download that accompanies this book: go

ahead and store it in our project folder.

Chapter 5 Making the Conversion to Using sass

149

 2. We now need to download the Bourbon library, so fire up a

node.js terminal session and change the working folder to the

library-prebuilt folder in our project area.

 3. at the terminal prompt, enter this command and press enter:

npm install bourbon --save

 4. When the download has completed, go ahead and copy the _

bourbon.scss file and bourbon folder from node_modules\

bourbon\core to the sass folder under the library-

prebuilt folder.

We now have Bourbon in place – if you’ve gotten this far: well done! it does

raise some questions about how we use libraries, but for now, let’s update our

code to use Bourbon:

 5. go ahead and open library-prebuilt.scss, then add this

line at the very top of the file:

@import "_bourbon.scss";

 6. a little further down, drop this code in place of the comment at

line 10:

$size: 200px;

 7. on or around line 36, change the declaration for background

color to this:

background-color: tint(#6ecaa6, 40%);

 8. save the file, then fire up a terminal session and change the

working folder to the library-prebuilt folder under our

project area.

 9. at the prompt, type the following command and press enter:

sass sass\skeleton.scss css\skeleton.css

Chapter 5 Making the Conversion to Using sass

150

 10. if all is well, we should see a library-prebuilt.css file

appear in the css folder, along with a source map – previewing

the results will show a simple template page with styled

elements, as indicated in Figure 5-2.

Figure 5-2. Switching to use a prebuilt library

At face value, the steps we’ve worked through in this demo are

relatively straightforward – they illustrate the kind of changes we might

have to make to existing Sass code, if we decide to switch to using a

prebuilt library of some description. However, I intimated that this is just a

small part of the overall process – there are some key points we should be

aware of when using @import, so let’s dive in and find out how these might

affect our development.

 Assessing the Pitfalls – a Postscript
If you plug in the phrase “sass code libraries” into a browser, you will get

dozens of results – some will be reviews of libraries, or you may see links

for individual sites such as Bourbon (https://bourbon.io) and Saffron

(http://colindresj.github.io/saffron/), or some of the lesser-known

ones such as Sassmatic (http://sassmatic.com/) or Scut (http://

davidtheclark.github.io/scut/).

Chapter 5 Making the Conversion to Using sass

https://bourbon.io
http://colindresj.github.io/saffron/
http://sassmatic.com/
http://davidtheclark.github.io/scut/
http://davidtheclark.github.io/scut/

151

Trouble is – how to decide which one to use? It’s a good question:

this is one process that takes time, patience, and lots of testing before you

find the right answer! To help with the process, there are a few tips I can

recommend:

• Have a good look online at articles where people have

selected libraries for review – you may find some names

appearing mo re than once, which is a good indicator of

their popularity. Alternatively look for curated lists such

as the one at https://github.com/Famolus/awesome-

sass – this will contain some useful starting links,

although some may now be out of date!

• Many libraries are open source – this means that while

others may have contributed fixes and improvements,

there will not likely be any form of formal support offer

in place. It means you will be reliant on the goodwill

of others to help resolve problems, and that there is no

guarantee a fix will be implemented quickly if you have

a time-sensitive issue! This may not be a problem, but it

is something to bear in mind.

• On a more serious note, as Dart Sass is still relatively new,

you will find that many libraries still refer to the older

Ruby method of installing them. This isn’t necessary, but

it does mean you may be limited in terms of which library

you use, or how you install it – not every library may have

versions available for NPM, Yarn, or the like.

• You may find people have created libraries that offer

mixins that cater to your need, but which work slightly

differently to achieve the same result – bear in mind

that you may have to adapt your code first to match it,

before you switch to using the prebuilt version.

Chapter 5 Making the Conversion to Using sass

https://github.com/Famolus/awesome-sass
https://github.com/Famolus/awesome-sass

152

• Although Sass will only use import mixins where they

are directly referenced in code, there is little benefit in

referencing a large library for a small amount of code,

such as one or two mixins only! In this case, it’s better to

copy them into your own library – it will make it easier

to manage and keep the compilation times down.

• Many libraries contain mixins solely for the purpose of

providing vendor support, which isn’t necessary, for

all but the newest of CSS properties. We can use a tool

such as Autoprefixer during compilation (although

this will require Node.js) – this tool will take care of

vendor prefixes automatically. A good example of this

are the mixins provided by the Compass library at

http://www.compass-style.org, for properties such

as background- clip; this is now supported without the

need for vendor prefixes.

• Consider this as an evolving process – it’s rare that you

will find all of the mixins, functions, variables, and the like

already in a prebuilt library. You may need to go through

several iterations of libraries before you find the right

combination that best serves the needs of your project.

These are just a few of the considerations we will likely need to bear

in mind when choosing prebuilt libraries – hopefully you will see that the

process of choosing is just as important as the end result, if not more so!

Whichever library (or libraries) you choose to use in your project, there

is one thing that we absolutely must do: ensure our import process has

been optimized. Optimization can mean the difference between compiling

concise code and code with hundreds of extra lines of bloat – clearly not

something we need. It’s a key part of importing, so let’s dive in and see

what this means in practice for us.

Chapter 5 Making the Conversion to Using sass

http://www.compass-style.org

153

 Optimizing the Import Process
Over the last few pages, we’ve talked about importing files, and how

this powerful tool can really help with managing your style sheets –

instead of having to try to manage a monster file as one, we can break

it down into smaller, more manageable chunks that make it easier to

maintain.

There is a risk, though, when using the @import function – if we’re

not careful about how we structure it, we can end up creating more

styles than intended! For a small project, this is less of an issue; but, for

larger ones, this could have a real impact on speed, particularly if our

browser has to wade through hundreds of extra lines of code that are

redundant.

To understand what an impact this can have, we’re going to turn our

attention to a small demo – the main style sheet only has three style rules

within it, but as you will shortly see, this is not what we get once our file is

compiled. ...

CARELESS IMPORTING

i have a small confession to make – i am sure the title of this demo will not

apply to you, but once you’ve seen the result of this demo, i’m sure you will

understand the significance! With that in mind, let’s make a start on our demo:

 1. We’ll begin by extracting a copy of the import-original

file from the code download that accompanies this book – go

ahead and save it in our project area.

 2. next, open your text editor, and add the following code to a new

file, saving it as font-sizes.scss in our project folder:

$h1-size: 36px;

$h2-size: 24px;

$h3-size: 18px;

Chapter 5 Making the Conversion to Using sass

154

$grey: #212121;

$lightgrey: #616161;

.h1 {

 color: $grey;

 font-size: $h1-size;

}

.h2 {

 color: $grey;

 font-size: $h2-size;

}

.h3 {

 color: $lightgrey;

 font-size: $h3-size;

}

.copy {

 color: $grey;

 font-size: $h3-size * 0.5;

}

 3. We need to add one more file – for this, add the following styles

to a new file, saving it as page.scss in our project folder:

@import "font-sizes";

.page_title { @extend .h1; }

.page_cta { @extend .h3; }

.page_special_button { background-color: black; color:

white; }

 4. Fire up a terminal session, then change the working folder to

the import-original folder we created in step 1.

Chapter 5 Making the Conversion to Using sass

155

 5. at the prompt, enter this command, and press enter:

sass page.scss css\page.css

 6. if we look inside the css folder, we should see two files –

page.css and page.css.map; these contain our compiled

styles. Don’t open the file just yet – we will do that in a

moment!

At this point we should have a compiled style sheet in the css folder –

before you open the file up, any idea on how many rules you would expect

to see? If the answer is three, then I am sorry to disappoint – the true

answer is five with two shared rules, as indicated in Figure 5-3.

Chapter 5 Making the Conversion to Using sass

156

Figure 5-3. The results of not properly importing files

Chapter 5 Making the Conversion to Using sass

157

Ouch – our style sheet has nearly doubled! We originally wanted three

compiled styles, but thanks to how we’ve set up our style sheet, Sass has

treated the extra code as additional style rules and added them during

compilation.

The real irony though is that the cause of these extra styles appearing

is down to one character that is repeated multiple times in this style

sheet, but which forces Sass to add these extra styles during compilation.

Yes – the humble full stop is to blame; just like in normal punctuation, its

position can make a real difference!

DEMO – OPTIMIZED IMPORTING

Fortunately, we can make a simple change to our code to cure this problem –

let’s make a start on updating our demo:

 1. We’ll begin by extracting a copy of the import-optimized file

from the code download that accompanies this book – go

ahead and save it in our project area.

 2. next, open font-sizes.scss in your text editor – change the full

stops on lines 7, 12, 17, and 22 to a % sign, so the start of the

code looks similar to this example:

%h1 {

 color: $grey;

...

 3. We also need to update page.scss to use the renamed

placeholders – for this go ahead and change the full stop in

lines 4 and 8 to a % sign, similar to this:

.page_title {

 @extend %h1;

}

Chapter 5 Making the Conversion to Using sass

158

 4. Fire up a terminal session, then change the working folder to

the import-original folder we created in step 1.

 5. at the prompt, enter this command, and press enter:

sass page.scss css\page.css

 6. if we look inside the css folder, we should see two new files –

page.css and page.css.map; these contain our updated styles.

Now – remember what we did at the end of the previous exercise? This

time around, we won’t have the same six rules we had before – instead, we’ll

have just three, which is what we would expect to see in our finished article.

At this point, go ahead and open the finished style sheet that you will

see as page.css in the css subfolder – inside we can indeed see just three

rules, as indicated in Figure 5-4.

Figure 5-4. The results of our optimized file

Chapter 5 Making the Conversion to Using sass

159

See how much of a difference a single character can make? This raises

two important points about optimizing our code, which will help reduce

duplication and bloat – let’s take a look at these in more detail.

 Understanding the Changes
If we take a look back at the original version of the compiled code, we were

expecting to see three rules, but instead got five (with two sharing the same

rule).

The reason for this lies in the use of the full stop in the font-sizes.scss

file (and subsequent references to the styles from the page.scss file). This

forces Sass to treat them as new styles that should be imported – notice

how, for example, that there isn’t a reference to .copy in page.scss, but

this is still imported into the final result?

When we changed the full stop over to a percentage sign in the font-

sizes.scss file, we told Sass that those styles should not be imported as

styles in their own right, but only import the content of each style where

it is directly referenced from an @extend statement in the calling file. This

is why when we look at the compiled result for the optimized version, we

only see references to .page_cta, .page_title, and .page_special_

button - the .copy rule, for example, is not referenced in an @extend, so

will not appear in this version of the style sheet.

The use of the percentage sign is one way we can use to reduce code

bloat – the other lies in the order of how we import our partials, and what

is stored within each partial. Take a look at font-sizes.scss again: notice

how we have variables and style rule declarations within the same file?

Chapter 5 Making the Conversion to Using sass

160

In our small example, this works fine, but it could well lead to

duplication in more complex style sheets. A better option is to keep all

variables in one file only – importing this file early in the list will make

variables available globally, as in this example:

@import 'base/reset';

@import 'helpers/variables';

@import 'helpers/mixins';

@import 'helpers/functions';

@import 'helpers/helpers';

@import 'helpers/placeholders';

@import 'base/typography';

@import 'pages/versions';

@import 'pages/recording';

@import 'pages/lists';

@import 'pages/global';

@import 'forms/buttons';

@import 'forms/inputs';

@import 'forms/validators';

@import 'forms/fieldsets';

@import 'sections/header';

@import 'sections/navigation';

@import 'sections/sidebar-a';

@import 'sections/sidebar-b';

@import 'sections/footer';

@import 'vendors/ui-grid';

@import 'components/modals';

@import 'components/tooltip';

@import 'components/tables';

@import 'components/datepickers';

Chapter 5 Making the Conversion to Using sass

161

It may seem a lot of files, but it is important to remember that splitting

content into smaller files will make it easier to manage them, as long as we

maintain a suitable order. The above list can then be stored in the main

style sheet while you work on each partial as needed – Sass will import

them all to produce the final version during compilation.

You may see that other developers use the underscore to denote a
sass partial file – this is not obligatory, as sass will work just fine
without them.

Okay – it’s time to move on: we’ve talked a lot about the importance

of importing content; time for a little action, methinks! To help really

understand how we can use importing, we’re going to work on a large

CSS style sheet as a real-world example, and transform the content into

something more manageable for future development.

 Working Through an Example
Remember how I said earlier that you would be unlikely to get much

benefit from using @import in a small style sheet, and that the larger the

style sheet, the better? It doesn’t matter how large the style sheet is – the

same principles we’ve talked about will still apply, although we’ll get more

benefit from converting a large style sheet than a smaller one.

A great example of a large style sheet is from the TwentySeventeen

theme that comes with the self-hosted version of WordPress. The style

sheet for this theme is a real monster: it comes in at over 4,000 lines!

It may seem like a daunting task to convert a file of this size, but I will

show you that with some care and planning, we will begin to tame this

beast into something more manageable. There are, however, a couple of

Chapter 5 Making the Conversion to Using sass

162

good reasons for picking WordPress’s style sheet as the basis for what will

be our next exercise:

• WordPress’s style sheet was originally created using

Sass – it makes it a natural choice.

• Size should not matter: WordPress’s style sheet already

has comment blocks to split content. This makes it a

cinch to convert the file, one block at a time. It’s just a

matter of planning what is changed and when we make

the change.

• If we take a closer look at the code within, WordPress’s

style sheet contains plenty of examples of declarations

that can be converted. A good example would

include font names, colors, and sizes that can all be

transformed into suitably named variables.

To prove that we can bring a large style sheet under control, no matter

the size, we’re going to dive in to our next exercise, and do just that: we’ll

use the aforementioned TwentySeventeen theme, and begin to convert it

into something that is easier for us to manage.

REFACTORING WORDPRESS

For this exercise, we’ll need a copy of the self-hosted version of Wordpress –

you can download it from Wordpress’s website at https://wordpress.

org/latest.zip (Windows) or https://wordpress.org/latest.tar.

gz (Linux and Macos). the current version at the time of writing is 4.9.8,

although we can apply the same principles to any Wordpress theme.

Let’s make a start:

 1. First, we need to create a working folder for our conversion –

save it as theme under our project area.

Chapter 5 Making the Conversion to Using sass

https://wordpress.org/latest.zip
https://wordpress.org/latest.zip
https://wordpress.org/latest.tar.gz
https://wordpress.org/latest.tar.gz

163

 2. next, go ahead and extract a copy of the style sheet – you will

find it in the twentyseventeen theme folder, which is under

/wordpress/wp-content/themes. i would recommend

taking two copies: save one in a new folder called original

(under wordpress), and the second in the root of the

wordpress folder; rename this second one to style.scss.

 3. have a look through, then choose a section to work on – i’ll

assume you’ve chosen 18.0 SVGs Fallbacks, as it is nice

and small; please alter accordingly if you decide to go with a

different section.

 4. Within our wordpress folder, create a new folder called fallback.

Create a new file within it, saving it as fallback.scss.

 5. next, open a copy of style.scss, then look for section 18 – it

will be around line 3149 onward. Copy and paste all lines from

that section into the fallback.scss file and save it.

 6. revert back to style.scss, then remove the original lines

from this section (around lines 3149 to 3206).

 7. in its place, add this code, on line 3149:

@import "fallback/svg.scss"

 8. go ahead and save both style.scss and fallback.scss.

 9. Fire up a terminal session, then change the working folder to

the wordpress folder we created in step 1.

 10. at the prompt, enter this command, and press enter:

sass style.scss csss\style.css

 11. if we look inside the css folder, we should see two new files –

style.css and style.css.map; these contain our updated

styles.

Chapter 5 Making the Conversion to Using sass

164

 12. open the compiled file and press Ctrl+F to search for “18.0

svgs Fallbacks”; you should see our fallback block has been

recompiled into our master style sheet.

Notice how the code doesn’t look any different, but you can now

manage it in smaller files? The real test though will come if we were to fire

up a copy of WordPress with that theme activated; a successful test will be

that we see no apparent changes in the theme, even though it has been

compiled using Sass.

If you compare a copy of the original style sheet (in the original folder

I hope you created in step 2) with the recompiled version, you may see

comments have been removed, but otherwise the CSS should be the same.

This is a good indicator that the conversion process will have been successful,

and that our theme will continue to function as prior to the change.

Assuming this initial change was successful, this is just the start of our

journey into converting the file – there still more we can do! To give you a

flavor of what is possible, let’s dive in and take a look at our initial change

in more detail, along with some suggestions on where we can convert our

theme to use Sass.

 Exploring the Changes and More in Detail
It may seem like we had a fair few steps to work through, but in reality, we

can simplify it by making the compilation process automatic – the addition

of the --watch switch at the end of the code in step 10 will suffice. Much of

what we do though will be a simple cut-and-paste job, as long as we do it

section by section (adding the relevant import statement after each). The

key is to be methodical and remain focused – it’s too easy to get distracted

when converting code!

Now – how about continuing with those changes? We could work

through these on our own, but as it so happens, there is a version available

online that has already been converted to use Sass.

Chapter 5 Making the Conversion to Using sass

165

the code is hosted on github and was created by the developer Jim
Frenette; you can see it at https://github.com/jimfrenette/
twentyseventeen-sass.

I would absolutely encourage you though to try converting the style

sheet first yourself though – there is no fun in getting the answer without at

least giving it a try! With this in mind, I’m going to pick out a few examples

of what can be changed with little difficulty:

• I would recommend adding a variables.scss file –

this could be saved into a folder called base, then

imported using @import "base/variables.scss" at

the top of your style sheet. This would be for storing all

your initial variables, such as colors, font families, or

font sizes.

• We can then make use of this variables file – for

example, take a look at section 10, which takes care of

styling links. The first few lines look like this:

a {

 color: #222;

 text-decoration: none;

}

a:focus {

 outline: thin dotted;

}

a:hover,

a:active {

 color: #000;

 outline: 0;

}

Chapter 5 Making the Conversion to Using sass

https://github.com/jimfrenette/twentyseventeen-sass
https://github.com/jimfrenette/twentyseventeen-sass

166

We can convert them to this – it uses nesting and variables

(hence creating the variables.scss file first!):

a {

 color: $black2;

 text-decoration: none;

 &:focus {

 outline: thin dotted;

 }

 &:hover, &:active {

 color: $black1;

 outline: 0;

 }

}

• Take, for example, section 11 – Featured Image Hover;

this could easily be converted to look like this:

/*---

11.0 Featured Image Hover

---*/

.post-thumbnail {

 margin-bottom: 1em;

 a {

 img {

 -webkit-backface-visibility: hidden;

 transition: opacity 0.2s;

 }

 &:hover img, &:focus img {

 opacity: 0.7;

 }

 }

}

Chapter 5 Making the Conversion to Using sass

167

• A little more complicated, but something to try: how

about a mixin to convert font sizes to their rem unit

equivalents? WordPress makes use of both pixel and

rem values – a mixin such as this will take care of this:

// usage, x is the pixel size needed: @include font-

size(x);

@mixin font-size($sizeValue: 15) {

 font-size: $sizeValue + px;

 font-size: ($sizeValue / 16) + rem;

}

• So – where we might have something like this in the

style sheet:

.pagination, .comments-pagination {

 border-top: 1px solid $silver2;

 font-size: 14px;

 font-size: 0.875rem;

 font-weight: 800;

 padding: 2em 0 3em;

 text-align: center;

}

... we can update it to use a mixin to provide the font sizes

automatically and avoid the need to calculate the relevant sizes

manually:

.pagination, .comments-pagination {

 @include font-size(14);

 border-top: 1px solid $silver2;

 font-weight: 800;

 padding: 2em 0 3em;

 text-align: center;

}

Chapter 5 Making the Conversion to Using sass

168

These are just a few of the example changes we can make to our style

sheet – in each instance, I’ve tried to keep it simple for now, but as you

get more used to making the changes, I am sure you will find others that

are more complex and require more work! The trick though is to remain

methodical throughout – treat it as an evolving exercise that will require a

few iterations before you reach the completed solution.

 Summary
Managing styles is clearly an important part of building any online-based

project – it’s unlikely that we’ll ever have a really small site; it’s more

probable that we’ll have a lengthy style sheet that will soon collapse into

chaos without careful management! Over the course of this chapter, we’ve

covered some useful tricks to help make Sass-based style sheets easier to

manage – let’s take a moment to review what we’ve covered in this chapter.

We kicked off with an introduction to how we might begin to convert

an existing project to use Sass – we explored some of the key points

that we need to bear in mind, before making a start on a first-pass type

transformation, using one of the conversion tools available online.

Next up, we moved to how we might begin to break down our code

into smaller, more manageable chunks, and that as part of this, we may

make use of external libraries to help cut down the development time.

We explored some of the pitfalls we might encounter when using this

approach, and how with careful management we can begin to transform

our code into something that is easier to manage.

We then moved onto covering an important part of importing

libraries – the optimization process, where we learned two key tricks to

help get started with getting used to optimizing our code. We then rounded

out the chapter with a real-world example of converting a large style sheet

into something we can use with Sass, and learned how no matter what the

size of the style sheet, we can still make use of some basic principles to

convert it to using Sass.

Chapter 5 Making the Conversion to Using sass

169

We’re almost at the end of this book, but before we reach that point,

it’s time to get stuck into a real project! There are countless uses for

Sass – pretty much wherever we might have CSS, Sass can be used. Over

the course of the next chapter, we’re going to bring together some of

skills we’ve covered over the course of this book and use them to create

something that we’ll see on any e-commerce-based site – a shopping cart.

Ready to make a start ...?

Chapter 5 Making the Conversion to Using sass

171© Alex Libby 2019
A. Libby, Introducing Dart Sass, https://doi.org/10.1007/978-1-4842-4372-5_6

CHAPTER 6

Introducing Our
Project
Over the course of this book, we’ve introduced a host of different features

of Sass and begun to explore how we might make use of them in our

projects. The real test, though, comes when we start to tie everything

together and begin to build something more practical. The question is –

what should we build?

Well, coming from an e-commerce background, it makes sense to

investigate building something e-commerce related, right? After all,

e-commerce (according to a study by eMarketeer in 2016), is expected to

experience double-digit growth until 2020 – with sales estimated to top 27

trillion dollars! I think the phrase “no-brainer” comes to mind…

If you would like to learn more, the report is available on the
eMarkeeter website, at https://bit.ly/2b9RZHd.

That aside, over the next few pages, we will indeed focus on an

e-commerce-related theme – we’re going to mock up a demo shopping

cart. For reasons of space, we’ll focus more on the Sass styling (as it is,

of course, the theme for this book); we will touch on some of the HTML

markup and JavaScript used to power the site. With this in mind, let’s make

a start on setting up our cart – we’ll begin with a look at setting up our

development environment and getting the HTML markup in place.

https://bit.ly/2b9RZHd

172

 Setting Up Our Initial Cart
In the age of the Internet, it doesn’t seem sensible to try to reinvent the wheel,

right? There are dozens of examples of carts available online, all of which have

their own features, and which use a variety of technologies to power the cart.

For the purposes of this demo, I’ve elected to base ours on one created

by Žiga Miklič, which uses plain HTML markup along with standard CSS

and jQuery to power the site. Our version will have been converted to use

Sass; I’ve also simplified the look and feel and updated the CSS to remove

some of the outdated vendor prefixes. This will have the added benefit of

showing you how one might convert an existing site to using Sass, rather

than building a solution from scratch.

You can see the original version of this cart at https://codepen.
io/ziga-miklic/pen/xhpob.

Okay – the first stage is to get our markup in place and set up our

compilation process. For this demo, we’ll use Node.js – this is not only

for the purposes of compiling Sass, but to also add a source map (to

translate our compiled CSS into the equivalent source location in the Sass

code). We’ll also make use of Autoprefixer to add in any vendor prefixes

automatically – there shouldn’t be any now, but it is nevertheless preferred

practice when working with Sass.

GETTING SET UP

Assuming Node.js is installed, let’s make a start:

 1. We’ll start by extracting a copy of the shoppingcart folder –

go ahead and save it locally in our project folder. This contains

our markup (shoppingcart.html), along with the requisite

font, image, and JavaScript files needed for our demo.

ChApTer 6 INTroduCINg our proJeCT

https://codepen.io/ziga-miklic/pen/xhpob
https://codepen.io/ziga-miklic/pen/xhpob

173

 2. Next, fire up a Node.js terminal session as administrator, and

change the working folder to the shoppingcart folder we

saved in step 1.

 3. Start a Node.js terminal session, then at the prompt enter this

command and press enter: npm install – this will install a

number of packages using the supplied package.json file:

• gulp – for automating tasks,

• Autoprefixer (for gulp) – for handling any vendor prefixes,

• dart Sass,

• Sourcemaps for gulp – to provide source maps for

translating compiled CSS into the relevant source

Sass code.

re install required – it might show a few warnings, but these can be
ignored for the purposes of this demo.

 4. once installation has completed, enter gulp at the prompt and

press enter.

 5. If no errors are displayed, then you can close the terminal

session for now.

At this point the Gulp task will run but we won’t get anything to

appear in the css folder – don’t worry: it might seem a little odd to do

this, but it’s purely to prove that our compilation process is working!

There are a couple of points of note here, though, so before we move

onto setting up our style sheet, let’s pause for a moment to understand

the initial setup in more detail.

ChApTer 6 INTroduCINg our proJeCT

174

 Understanding What Has Happened
Over the course of this book, we’ve primarily used the command line

to compile Sass; in many cases, this is perfectly adequate. However, it

becomes tedious as we must run the compilation process manually – we

can use the --watch facility to automate compilation, but it is still a stand-

alone process!

It’s for this reason that we’ve selected to use Node.js and Gulp (as a

task runner) – the latter can be used to automate dozens of different tasks,

leaving us to concentrate on developing our code. In our case, we’ve used

a package.json file to tell Node.js to install Gulp, Autoprefixer (for vendor

prefix support), source map support, and of course Dart Sass. It’s worth

noting that we could use a different task runner such as Grunt or even

Broccoli – this is just a matter of personal preference; each will work in a

similar manner.

Note – in this demo, gulp was installed for use within the project
folder by default; you may prefer to install it globally, particularly if
you’ve already used it previously. For details on how to do this, please
refer to the “Automating the process” demo in Chapter 1 of this book.

For the moment, our project only has a few packages tied into the

compilation process – this is to keep things simple for now, but we can

easily develop this into something more comprehensive. We might, for

example, install a CSS linting tool such as Stylelint (https://stylelint.io),

or an image spriting tool (such as Spritesmith, available from https://

github.com/twolfson/gulp.spritesmith). The key though being that as

long as we consider which steps should come in which order, then we can

begin to automate some of those tasks that have less value, but which are

clearly a necessary part of developing our projects.

ChApTer 6 INTroduCINg our proJeCT

https://stylelint.io
https://github.com/twolfson/gulp.spritesmith
https://github.com/twolfson/gulp.spritesmith

175

Okay – let’s move on: hopefully you didn’t see any errors at the end of

the previous exercise? Assuming we didn’t, then we can continue with the

next section of our demo: adding the all-important styles for our cart.

 Preparing Our Style Sheet
Yes: it’s time to start making our demo look presentable! We’ll break this

into three parts – the first will take care of some simple font declarations,

with part two focusing on declaring variables, and the final part creating

the main style sheet.

We’ll start by setting up our font declarations: they are not obligatory

for the demo, but including them is a useful way to show how we might

import such styles into our project when using Sass.

The fonts we’ll make use of are PT Sans and Open Sans – they are

included in the code download that accompanies this book, or you

can download them from the FontSquirrel website at https://www.

fontsquirrel.com/fonts/pt-sans and https://www.fontsquirrel.com/

fonts/open-sans respectively. Let’s crack on with the demo.

PREPARING THE FONTS

We’ll start with the simplest part of our Sass style sheet – setting up the font

declarations. This we will do as a separate file or partial, which we will import

into the main style sheet during compilation:

 1. In a new file, go ahead and add the following declaration for the

pT Sans font – this is primarily for the exercise title:

@font-face {

 font-family: 'pt_sansregular';

 src: url('../font/pt_sansregular.woff') format('woff');

 font-weight: normal;

 font-style: normal;

}

ChApTer 6 INTroduCINg our proJeCT

https://www.fontsquirrel.com/fonts/pt-sans
https://www.fontsquirrel.com/fonts/pt-sans
https://www.fontsquirrel.com/fonts/open-sans
https://www.fontsquirrel.com/fonts/open-sans

176

 2. Next, leave a line, then add the following three declarations

for the open Sans font – these are used in various places

throughout the cart:

@font-face {

 font-family: 'open_sanslight';

 src: url('../font/openSans-light-webfont.woff')

format('woff');

 font-weight: normal;

 font-style: normal;

}

@font-face {

 font-family: 'open_sansregular ';

 src: url('../font/openSans-regular-webfont.woff')

format('woff');

 font-weight: normal;

 font-style: normal;

}

@font-face {

 font-family: 'open_sansbold';

 src: url('../font/openSans-bold-webfont.woff')

format('woff');

 font-weight: normal;

 font-style: normal;

}

 3. Save the file as _fonts.scss within the sass folder – you

can close the file for now, but we will revisit it later at the

compilation stage.

ChApTer 6 INTroduCINg our proJeCT

177

We now have the first of our import files in place – we aren’t done

though with imports! We have a second file to set up, which will contain

values declared as variables that we will use in our main style sheet. In

addition, this imported file will make use of several Sass functions – we’ll

go into detail shortly, but for now, let’s dive in and set up the variables.

You may have noticed the use of the underscore in the fonts.scss
filename – this is optional; it’s a good way to tell if you’re working
with a partial or the main style sheet. It can be omitted if you prefer to
use a more conventional naming format.

 Assigning Our Variables
This file is probably the most important out of all three of the style sheet

files we create in this demo – it contains all of the values we use, assigned

as variables. Without it, our demo will clearly look like rubbish when the

code is compiled! This import contains all of the colors defined for our

demo, along with declarations for font attributes.

INITIALIZING OUR VARIABLES

Let’s make a start on setting up our file:

 1. In a new file, add the following block of variables – this takes

care of defining some of the base colors we’ll use in our demo:

$color-black: #000000;

$color-yellow: #ffdb4d;

$color-pure-red: #ff0000;

 2. Next up, leave a line, then add the following lines of code –

these colors are for the remove hover link over the book and

the main checkout button:

ChApTer 6 INTroduCINg our proJeCT

178

// Cyans

$color-dark-cyan: #429188;

$color-moderate-cyan: lighten(saturate($color-dark-cyan,

2.40), 10.39);

 3. Leave a line blank, then add the following lines of code – they

take care of the background colors within each book article:

// Whites

$color-white: #ffffff;

$color-almost-white: darken($color-white, 1.18);

 4. This last group of colors will be used primarily for borders and

as a background color for the total value:

// Greys

$color-light-grey: #eeeeee;

$color-description-grey: darken($color-light-grey, 13.33);

$color-very-light-grey: darken($color-light-grey, 7.06);

$color-dark-grey: darken($color-light-grey, 33.33) ;

 5. We could use an ordinary font such as Sans Serif, but that

would look boring – to give our demo a little extra lift, we

assign four different font families to variables:

// Font families

$pt-sans-family: 'pt_sansregular', sans-serif;

$open-sans-light-family: 'open_sanslight', sans-serif;

$open-sans-regular-family: 'open_sansregular', sans-serif;

$open-sans-bold-family: 'open_sansbold', sans-serif;

 6. our demo makes use of a solitary mixin – this takes care of

assigning the right font family, size, and color to use, based on

the given weight of the font:

@mixin fontdetail ($color, $size, $weight) {

 @if $weight == 300 {

ChApTer 6 INTroduCINg our proJeCT

179

 font-family: $open-sans-light-family;

 } @else if $weight == 400 {

 font-family: $open-sans-regular-family;

 } @else {

 font-family: $open-sans-bold-family;

 }

 color: $color;

 font: {

 size: $size;

 weight: $weight;

 }

}

 7. go ahead and save the file as _variables.scss in the sass

folder – you can close the file for now, but we will return to it

during the compilation process.

Although this import file isn’t that long, it does start to make use of

Sass functionality – for example, we’re using color functions to define

some of the colors used in the palette. It’s worth taking a moment to work

through this in greater depth; it will start to come together when we look

at the main style sheet. For now, let’s break down the code we’ve used in

more detail.

 Understanding the Imported Code in Detail

In the first partial file we created, we assigned a number of @font-face

declarations – these are used depending on what font weight is assigned

to a particular element. Each declaration uses the standard format for

@font-face; we’re merely making use of Sass’s ability to import them into

the master style sheet during compilation.

ChApTer 6 INTroduCINg our proJeCT

180

In contrast, the second partial makes use of more Sass functions: we

started with defining a number of variables for colors used in the demo.

We’ve used a mix of static and dynamic values; it’s important to note that

the order is critical, as we make use of static variables to create subsequent

colors.

The trick to understanding how the functions work is something we

covered back in Chapter 4 – as a reminder, read the function from the

inside out. So, for example, the moderate cyan color used is first saturated

by 2.4%, before being lightened by 10.39%.

The reason the percentage values are so precise? The values were
generated using the Sass color tool at http://razorltd.github.
io/sasscolourfunctioncalculator/ – this tool is worth its
weight in gold, when it comes to creating colors!

Moving on, we then assigned four different font families to variables,

based on the fonts we set up in the first partial – we make use of PT Sans

and Open Sans, the latter of which is in light, bold, and regular type faces.

The style sheet is then closed out with a single mixin to assign the right font

color, weight, and size, based on the calling declaration in the main style

sheet. This uses an @if...@else statement to determine that we should

use the Light family for a font-weight value of 300, the Regular family for

400, and Bold for a weight value of 700 or higher.

It’s at this point we should point out a particular feature in use within

this mixin – we have a nested property. This is a simple way to group

together multiple styles under a single name (or namespace): each

property within that nested block is automatically preceded with the

parent name. Take a look at Figure 6-1, where we’ve grouped two font

properties together – our Sassmeister example them compiles them into

the font-* properties we know in CSS.

ChApTer 6 INTroduCINg our proJeCT

http://razorltd.github.io/sasscolourfunctioncalculator/
http://razorltd.github.io/sasscolourfunctioncalculator/

181

(In case you’re wondering – you can do something similar with lots of

properties in Sass, such as border, padding, or margin!)

Okay – it’s time, folks: we’re at the point where we can create our

master style sheet! If you’ve already read ahead and gasped at the amount

of code we’re going to cover, then don’t worry – it may look a lot, but

we’ll go through it bit by bit. Much of the code has been nested, with

descendant selectors within their respective parent elements – let’s dive in

and take a look at what we need to set up to make our demo work.

 Setting Up the Main Style Sheet
This is where all of the magic happens – there is a fair amount of code,

although if you scan through the code, you will hopefully see that much of

it has been nested. This makes it easier to read and understand what has

been assigned to each parent or descendant element.

depending on which text editor you use, you may find you can
collapse blocks of code – this will also help make it easier to identify
the main elements used in the demo.

Figure 6-1. A namespaced nested property

ChApTer 6 INTroduCINg our proJeCT

182

PUTTING TOGETHER THE MASTER STYLE SHEET

Let’s make a start:

 1. We’ll start by creating a new file – go ahead and save it as

shoppingcart.scss within the sass subfolder of our

shoppingcart folder.

 2. We have a fair amount of code to cover, but we will go through

it block by block – start by adding these lines at the top of

the file, to call in the import partials we created earlier in this

chapter:

@import "fonts.scss";

@import "variables.scss";

 3. our demo needs some base styles to prepare the ground –

leave a line, then add in the four following rules:

/* base styles */

body {

 font-family: $pt-sans-family;

 margin: 32px;

 background: $color-light-grey;

 margin: 0;

 padding: 0;

 overflow-x: hidden;

 margin: 32px;

}

.container { margin: 0 auto; width: 980px; }

.clearfix { content: ""; display: table; clear: both; }

h2.exercise { margin-left: auto; margin-right: auto;

width: 980px; }

ChApTer 6 INTroduCINg our proJeCT

183

 4. With the base rules in place, we can now cover each of the

principal areas of the cart – we’ll start by adding in the rules for

the cart header:

/* header */

#site-header {

 margin: 0 auto;

 padding-left: 20px;

 background: $color-white;

 h1 {

 @include fontdetail($color-black, 31px, 300);

 padding: 20px 0;

 position: relative;

 margin: 0;

 }

}

 5. Next up come the nested rules for the main cart area, including

product details:

/* shopping cart */

#cart {

 width: 100%;

 h1 { @include fontdetail($color-black, 25px, 300); }

 p { @include fontdetail($color-black, 18px, 300); }

}

.product {

 border: 1px solid $color-light-grey;

 margin: 20px 0;

 width: 100%;

 position: relative;

 transition: margin .2s linear, opacity .2s linear;

 clear: both;

ChApTer 6 INTroduCINg our proJeCT

184

 & img { width: 100%; height: 100%; }

 .content {

 background-color: $color-white;

 border-bottom: 1px solid $color-description-grey;

 float: left;

 box-sizing: border-box;

 height: 171px;

 padding: 0 20px 0 10px;

 width: 83%;

 }

}

.product header {

 background-color: $color-white;

 border-bottom: 1px solid $color-description-grey;

 float: left;

 margin: 0 1% 20px 0;

 overflow: hidden;

 padding: 0;

 position: relative;

 width: 153px;

 height: 218px;

 h3 {

 @include fontdetail($color-white, 22px, 300);

 background: $color-moderate-cyan;

 line-height: 49px;

 margin: 0;

 padding: 0 30px;

 position: absolute;

 bottom: -100px;

 right: 0;

 left: 0;

 }

ChApTer 6 INTroduCINg our proJeCT

185

 &:hover img { opacity: .7; }

 &:hover h3 { bottom: 73px; }

}

 6. Within each product description, we have a details block – this

contains the type of book selected, the unit price, quantity

selected, and total price for that book. go ahead and add the

following block of code:

article footer {

 margin: 0;

 padding: 0;

 background-color: $color-almost-white;

 .price {

 @include fontdetail($color-black, 15px, 300);

 background: #fcfcfc;

 float: right;

 line-height: 49px;

 margin: 0;

 padding: 0 30px;

 &:before { content: "$"; }

 }

 .full-price {

 @include fontdetail($color-black, 22px, 400);

 background: $color-yellow;

 float: right;

 line-height: 39px;

 margin: 5px;

 padding: 0 30px;

 transition: margin .15s linear;

ChApTer 6 INTroduCINg our proJeCT

186

 width: 125px;

 text-align: right;

 &:before { content: "$"; }

 }

}

 7. The next section takes care of styling the two buttons used to

update quantities of items in our basket. go ahead and add the

following lines after the previous section, leaving a blank line first:

.qt {

 @include fontdetail($color-black, 19px, 300);

 line-height: 50px;

 width: 70px;

 text-align: center;

 display: block;

 float: left;

}

.qt-plus, .qt-minus {

 @include fontdetail($color-black, 30px, 300);

 display: block;

 float: left;

 background: $color-almost-white;

 border: none;

 height: 100%;

 padding: 0 20px;

 transition: background .2s linear;

 line-height: 39px;

 margin: 5px;

 &:hover { background: $color-moderate-cyan;

color: $color- white; cursor: pointer; }

}

ChApTer 6 INTroduCINg our proJeCT

187

 8. The next section of our cart is the footer at the bottom of

the cart – for this, go ahead and leave a line, then add in the

following styles, to take care of the subtotal, tax, and shipping

values:

/* shopping cart footer */

#site-footer {

 background: $color-white;

 margin: 30px 0 0 0;

 padding: 40px 0px;

 width: 100%;

 margin-left: auto;

 margin-right: auto;

 clear: both;

 h1 {

 @include fontdetail($color-black, 25px, 300);

 background: $color-almost-white;

 border-bottom: 1px solid $color-description-grey;

 margin: 0 0 7px 0;

 padding: 14px 40px;

 text-align: center;

 span:before { content: "$"; }

 }

 h2 {

 @include fontdetail($color-black, 24px, 300);

 margin: 10px 0 0 0;

 }

 h3 {

 @include fontdetail($color-black, 19px, 300);

ChApTer 6 INTroduCINg our proJeCT

188

 margin: 15px 0;

 }

 .left { float: left; }

 .right { float: right; }

}

 9. We have a few miscellaneous styles, which don’t fit in with

the nested styles already covered; go ahead and add in the

following below the previous style block:

button {

 @include fontdetail($color-black, 24px, 400) ;

 background: $color-yellow;

 border: 1px solid $color-dark-grey;

 border-style: none none solid none;

 cursor: pointer;

 display: block;

 padding: 16px 0;

 width: 290px;

 text-align: center;

 transition: all .2s linear;

 &:hover { color: $color-white; background:

$color-dark-cyan; }

}

.small {

 @include fontdetail($color-black, 13px, 300);

 background: $color-almost-white;

 padding: 10px 16px;

 line-height: 28px;

 border: none;

 display: inline-block;

 line-height: 29px;

}

ChApTer 6 INTroduCINg our proJeCT

189

.contain { width: 80%; margin-left: auto; margin-right:

auto; }

/* plus and minus buttons in details */

.minus { margin: 0 50px 0 0; }

.added { margin: 0 -50px 0 0; }

 10. We’re almost at the end – this next block styles the remove

links and buttons used on the site:

/* Remove link over books & remove button in description

*/

a {

color: $color-black;

text-decoration: none;

transition: color .2s linear;

&:hover { color: $color-moderate-cyan; cursor: pointer; }

}

.removebtn {

@include fontdetail($color-black, 16px, bold);

width: 21px;

 float: right;

 margin-top: -72px;

 background-color: $color-light-grey;

 color: $color-white;

 border-radius: 148px;

 text-align: center;

 height: 20px;

 line-height: 20px;

 &:hover {

 cursor: pointer;

 background-color: $color-pure-red;

 transition: background-color 0.3s linear;

 }

}

ChApTer 6 INTroduCINg our proJeCT

190

 11. The final block takes care of formatting the text displayed in the

totals, shipping, and tax values in our cart:

/* cart totals */

.carttotal {

 margin: 20px;

 display: inline-block;

 float: right;

 width: 110px;

 margin-top: 13px;

 & > img { width: 40px; height: auto; }

 & > span {

 background-color: $color-very-light-grey;

 padding: 5px 10px;

 border-radius: 20px;

 position: absolute;

 margin-top: 25px;

 margin-left: -20px;

 }

}

.tax, .shipping, .subtotal {

 span {

 float: right;

 &:before { content: "$"; }

 }

 div { width: 100px; display: inline-block; }

}

 12. go ahead and save the file – we can close it for the moment,

but we will make use of it shortly during the compilation

process.

ChApTer 6 INTroduCINg our proJeCT

191

Phew – that was a monster lot of code! Well done if you managed to

make it thus far: we’ve done the hardest and most important part of our

demo.

We still have a couple of things to do, though, before we can compile

the code and admire our handiwork. First – let’s take a breather for a

moment, and explore our style sheet code in more detail: it illustrates a

few key points you should be aware of when it comes to creating Sass style

sheets in your future projects.

 Breaking Apart the Code

We could dive straight into our code, but before we do so, I’m going to

recommend you do something first: take a breather! Go make yourself a

drink, get some fresh air – it does not matter what: the aim though is to get

away from the screen for a few minutes.

There is a good reason for doing this: although much of the code

we’ve used in our example is standard CSS, it will at first glance look a

little complicated. The key to making it work though is the use of nesting –

much of the code within this project was nested to help with readability.

With that in mind, let’s take a look at the code in detail.

We start with two @import statements – one to import our font

declarations, and the second to handle the variables used in our style

sheet. We then set up some base styles for our page, including the

background for our cart and the title of our exercise.

Next up comes a set of styles for #site-header – this is where we start

to use nesting, to include descendant rules for a child h1 element. We then

follow this same principle for .product – this includes a host of child rules

to style elements within the product description and price sections of the

site. Notice though that we also make use of variables for colors – these

were defined in the _variables.scss file but are merged in as part of the

compilation process.

ChApTer 6 INTroduCINg our proJeCT

192

We then work through a set of declarations for the footer part of each

product description; the parent element is article footer, under which we

have rules for .price and .full-price classes. This is swiftly followed by

a nested block for the quantity buttons – notice how this also includes a

mixin for applying what will be the Open Sans Light font family (as is the

case at various points throughout the style sheet).

The next block of nesting in our style sheet is for the #site-footer

element; this includes declarations for h1, h2, and h3 elements, along with

.left and .right classes to define where the content will sit in the footer.

The last part of the style sheet covers a group of miscellaneous styles,

before we round out with nested blocks for the cart total values in the

footer and tax, shipping, and subtotal values in the footer of our cart.

 Tying It All Together
We’re almost ready to run the all-important compilation process, but

before we do so, there is one more important area to cover: the script code

used to make our basket work.

The code we’ve used is the same as the original version of this cart,

save for some minor tweaks and additions – it looks complicated but can

be broken down into some clear sections.

The first section (from around lines 5 to 20), is the changeVal()

function that we use to update prices, depending on how many products

have been selected; this is called from various points in our code, as

and when we make a change to the quantity of products that have been

selected in our cart (or removed). The second function we use is the

changeTotal() function – this updates the total values (both sub and

final), along with shipping and tax costs, before rendering the updated

values on screen.

We then have five event handlers set up: the first two take care of

responding to clicks on the Remove banner (that appears on books),

and the red remove cross in the top right of each product description.

ChApTer 6 INTroduCINg our proJeCT

193

The next two take care of clicks on the plus or minus buttons to add or

remove products; these adjust the quantities selected, before calling the

changeVal() function to update the total price for the number of copies of

the selected book. Our last event handler simply calls the remove function,

to either show the placeholder for the checkout process, or indicate if

the cart is empty; and therefore, we would not be able to complete the

checkout process.

Right – enough chitchat: it’s time, folks … time to see if our demo really

works! We’ve got all of our code in place, so without further ado, let’s dive

in and run the compilation process.

 Compiling Our Code
This is probably one of the easiest parts of this chapter, yet the scariest –

does our demo work? Hopefully it will do, but before we find out, it’s worth

checking through the code to make sure we have everything in place.

If you take a look at the sass subfolder, you should see three files
with “finished version” in their names. These are pre-completed
versions – you can compare yours with these to see if everything is
indeed in place and ready for compilation.

DEMO – COMPILING OUR CODE

okay – let’s make a start on compiling our code. For this, we’ll revert back to using

the Node.js set up we created at the start of this chapter; let’s make a start:

 1. Fire up a Node.js terminal session, or revert back to the

previous one if you still have it open – make sure the working

folder is the shoppingcart folder we set up at the start of this

chapter.

ChApTer 6 INTroduCINg our proJeCT

194

 2. At the prompt, go ahead and enter gulp, then press enter; you

should see it show Starting 'default'..., followed by

Finished 'default' and a given time.

 3. If you try saving the main style sheet now, it will automatically

kick in and recompile – an example of this is shown in

Figure 6-2.

Assuming no errors were displayed, then congratulations! You’ve

completed your first project using Sass; sure, there are improvements we

can make, but that’s fine, as each project should evolve and mature over

time. There is just one last thing though…

 The Final Result
Hehe – if you were expecting something major, don’t worry! That “one last

thing” is actually the best part of the whole chapter; this is where we get

to see our final result in all its glory. Assuming you encountered no issues,

then Figure 6-3 shows the final article, as previewed in a browser.

Figure 6-2. Compiling our code

ChApTer 6 INTroduCINg our proJeCT

195

It goes to show that we can always make use of Sass within our code –

the exact amount will, of course, depend on the nature of the project, but

that over time we can begin to build up reusable code that can be added to

any number of future projects that make use of Sass.

Figure 6-3. Our finished shopping cart

ChApTer 6 INTroduCINg our proJeCT

196

 Future Changes
With our project now operational, the next question we should answer is:

Where next …?

There are a host of changes we could consider – we are only limited by

our imagination and the requirements for our project! As Sass is a superset

of CSS, it means that we can absolutely convert as much or as little CSS

to its Sass equivalent as we like. Once the initial hard work of conversion

is done, we can then add in new styles as needed – how about these as a

starter for ten?

• We could look at using more namespaced properties –

take a look at this extract from the fontdetail mixin:

font: {

 size: $size;

 weight: $weight;

}

We already make use of padding and margin

throughout the demo, so perhaps there is scope to use

this feature?

• A more efficient way of writing colors would be to use

a Sass map – we can then group together shades of a

color, which will be a more efficient way to write our

code. We should take it one step further, though – when

we assign color to variable names, use a common

format, such as $border-blue-light (generic to

specific). It makes it easier to group names, easier for

your text editor to suggest color names, and easier to

understand where they are being used in your code.

ChApTer 6 INTroduCINg our proJeCT

197

• We could investigate the addition of images such as

credit card or security logos – there are several of tools

available that we can plug into our Gulpfile.js script, to

generate the relevant Sass code for our images.

• We’ve not really made any use of external libraries in

this demo – it doesn’t mean to say we shouldn’t; how

about using the Scut library https://davidtheclark.

github.io/scut/font-face.html), to handle the

@font-face code used in our variables.scss partial file?

• Anyone remember using rem units, instead of pixels?

We’ve used pixel values for convenience throughout,

but if you have a hankering for rem units, then Sass

can easily add these in using a mixin. Have a look on

Google.com for “sass mixin for rem units” – there are

dozens of examples!

• We could even go as far as adding in media breakpoints

to make our page more responsive – @media queries

are handled natively in Sass (and can even be nested);

Medium.com has a useful article that explains how you

can implement them using Sass, at https://medium.

com/codeartisan/breakpoints-and-media-queries-

in- scss-46e8f551e2f2.

• We’ve defined a base style .qt for our quantity buttons –

this works very well but requires us to assign two styles.

How about using the @extend function to create a base

style, but then extend it into what we would see as the

plus or minus buttons?

ChApTer 6 INTroduCINg our proJeCT

https://davidtheclark.github.io/scut/font-face.html
https://davidtheclark.github.io/scut/font-face.html
http://google.com
http://medium.com
https://medium.com/codeartisan/breakpoints-and-media-queries-in-scss-46e8f551e2f2
https://medium.com/codeartisan/breakpoints-and-media-queries-in-scss-46e8f551e2f2
https://medium.com/codeartisan/breakpoints-and-media-queries-in-scss-46e8f551e2f2

198

These are just some of the ideas that are possible when using Sass –

we are, of course, only limited by our imagination! Hopefully this has

given you a flavor of what to expect when using Sass in a larger, real-world

project; as long as you take care over your planning, use an iterative

approach to converting code and are sensible in your choices, then you

should have no issue adapting existing projects to using Sass.

 Summary
Throughout this book, we’ve covered a wealth of different features in Sass –

from the humble variable right through to building mixins and controlling

the output using conditional logic. Over the course of this chapter we’ve

brought many of these features together in the form of a real-world

project – our shopping cart may not win any awards, but we must start

somewhere! We’ve covered a fair few tips throughout these pages, so let’s

take a moment to review what we’ve learned in this chapter.

We kicked off by outlining details of our project for this chapter, before

moving swiftly on to set up our development environment and installing

our HTML markup.

Next up, we then explored creating the styles for our project – we

worked our way through the two import partials, before assembling

the main style sheet. We then brought it all together with a brief look

at the jQuery code required to make our cart work, before running the

compilation process and viewing the results of our work in a browser.

Phew – what a ride! We’ve covered a lot throughout this book; I hope

you’ve found it useful, and that you enjoy using Sass just as much as I’ve

enjoyed writing this book!

ChApTer 6 INTroduCINg our proJeCT

199© Alex Libby 2019
A. Libby, Introducing Dart Sass, https://doi.org/10.1007/978-1-4842-4372-5

 APPENDIX

Adding Sass to
Your Path
The PATH is an important concept when working on the command line.

It’s a list of directories that tell your operating system where to look for

programs, so that you can just write script instead of /home/me/bin/

script or C:\Users\Me\bin\script. But different operating systems

have different ways to add a new directory to it.

 Windows

 1. The first step depends which version of Windows

that you’re using.

 2. If you’re using Windows 8 or 10, press the Windows

key, then search for and select “System (Control

Panel).”

 3. If you’re using Windows 7, right-click the

“Computer” icon on the desktop and click

“Properties.”

 4. Click “Advanced system settings.”

 5. Click “Environment Variables.”

https://doi.org/10.1007/978-1-4842-4372-5

200

 6. Under “System Variables,” find the PATH variable,

select it, and click “Edit.” If there is no PATH variable,

click “New.”

 7. Add your directory to the beginning of the variable

value followed by a semi-colon. For example, if

the value was C:\dart-sass\, add it to the end, as

highlighted: it to C:\Users\Me\bin;C:\windows\

system32;C:\dart-sass.

 8. Click “OK.”

 9. Restart your terminal.

 Mac OS X

 1. Open the .bash_profile file in your home directory

(for example, /Users/your-user-name/.bash_

profile) in a text editor.

 2. Add export PATH="your-dir:$PATH" to the last line

of the file, where your-dir is the directory you want

to add.

 3. Save the .bash_profile file.

 4. Restart your terminal.

 Linux

 1. Open the .bashrc file in your home directory (for

example, /home/your-user-name/.bashrc) in a text

editor.

APPENDIX ADDINg SASS to Your PAth

201

 2. Add export PATH="your-dir:$PATH" to the last line

of the file, where your-dir is the directory you want

to add.

 3. Save the .bashrc file.

 4. Restart your terminal.

Source: https://katiek2.github.io/path-doc/

APPENDIX ADDINg SASS to Your PAth

https://katiek2.github.io/path-doc/

203© Alex Libby 2019
A. Libby, Introducing Dart Sass, https://doi.org/10.1007/978-1-4842-4372-5

Index

A
Assigning variables, Sass, 36–38

B
Boolean-based operators, 90
Box-shadow effect, 82

C, D
centerdiv mixin, 48
changeTotal() function, 192
changeVal() function, 193
Color Palettes website, 103
Colors, case study

benefits, 108
creation, 104–106
manipulation, 102–103
palettes, 106
Sass functions, 101
SVG image, 101

$color value, 122
Converting Sass

changing code, 164–168
CSS file, 145
css2scss tool, 146–147
importing files, 153–158, 161

changing code, 159–161
demo updation, 157–158

prebuilt library, 147–152
styleflux, 143–144
WordPress, 162–164

css2scss tool, 146–147

E
@each function, 118–121
@extend directive

CSS, 77, 84
example, 77
extend block, 83–84
mixins

differences, 85
media directives, 87
parameters, 87
Sass, 86

polaroid effect, 83
sass classes, 79–83
.seriousError, 78
syntax, 76

F
focus declaration, 74
@for function, 114–117
Functions, Sass

colors (see Colors, case study)
JavaScript, 99
types, 99–100

https://doi.org/10.1007/978-1-4842-4372-5

204

G
Golden ratio, 98

H
Homemade Apple, 92
Hover declaration, 74

I, J, K
@if and @if() function, 109–113
@import function, 28
@include command, 134

L
lighten() function, 101
Linux, 200
List-based operators, 91–92

M
Mac OS X, 200
Main style sheet, set up, 181–191
map-get()function, 130
@media directive

breakpoints creation, 131–133
mixin, 134

Menu bar creation, nested style,
65, 67–68

Mixins, 28
centering div, 47
compiled as CSS, 48
creation, 45–47

importing files, 58–59
library, 51
multiple files, 57–58
passing values, 53
prebuilt, 48–51
reusable code, 45
usage, 61

N, O
Nested styles

benefits, 72
concept, 65–68
<nav> element, 69
navigation bar, 63
pitfalls, 70, 72
property, 181
Sass, 73
three levels code, 69

Nesting, 29
nth-of-type() declaration, 85
Number-based operations, 89

P, Q, R
package.json file, 24, 174
Parametric mixins

creation, 53–55
dissecting code, 56–57

Parent selectors, nesting, 73–76
placeholder, 70, 73, 75
Polaroid

cameras, 79
effect, 80

Index

205

Prebuilt library
exploring, 148–150
mixins, 48–51
pitfall assessment, 150–152
Sass libraries, 147

Property list/map, styles
figcaption rule, 130
key, 127
Sass maps, 127–128

pseudo-selectors, 72, 76

S
Sass

advantages, 2–3
automating process, 20–23
breaking down process, 24–27
buttons, 59
compilation process, 8–9
conversion process (see

Converting Sass)
definition, 1–2
folder structure, 13–14
installation, 6–7, 22
key factors, 137–138
key terms, 27–30
output format, 16–17
parametric mixins, 53–55
properties, 11–12
setting up, 5–6
simplifying process, 138–142
skeleton page, 92–97
source map support, 14–16
styleflux, 143–145

syntaxes, 4
workflow (see Setting up

workflow, Sass)
Sass code libraries, 150–152
Sassmeister, 70, 78, 86, 97
Sassy CSS, 4
Setting up font, 175–177
Setting up workflow, Sass

choosing option, 19–20
code edit, 17–19
compilation process, 16
folder structure, 13
output format, 17
source map, 15–16

Shopping cart
assigning variables, 177
code breaking, 191–192
compiling code, 193–194
completion, 195
future changes, 196–198
imported code, 179–180
initial cart, 172–173
initializing variables, 177–179
Node.js, 172–173
set up, 172–173

Standard mixins
@import statement, 52
@include keyword, 52
prebuilt mixins, 48–51
reusable code, 45–48

Stinson mixin, 52
String-based operators, 90
Stylelint tool, 174
Style sheet preparation, 175

Index

206

Styles looping
color attribute, 117
@each function, 118–121
@for function, 114–117

Sublime Text, 139

T, U
TwentySeventeen theme, 161

V
Variable creation, Sass, 35–38

adding comments, 42

compilation error, 41
compiled CSS, 39
compiling comments, 43–44
mixins (see Mixins)
naming, 40–42

W, X, Y, Z
@while loop, 122

CSS, 125
demo, 125–126

@while true loop, 122–125
Windows, 199–200
WordPress’s style sheet, 162

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing Sass
	What Is Sass?
	Understanding the Advantages of Using Sass
	The Different Syntaxes of Sass
	Some Project Housekeeping
	Setting Up Sass
	Understanding What Happened
	Setting Up a Workflow
	Setting Up a Folder Structure
	Enabling Source Map Support
	Automating the Compilation Process
	Adjusting the Output Format
	Editing Sass Code
	Making a Choice

	Automating the Process
	Breaking Down Our Process

	Getting Acquainted with Key Terms
	Getting Help
	Summary

	Chapter 2: Introducing Variables and Mixins
	Creating Variables in a Practical Context
	Exploring What Happened
	Taking Care Over Variable Names

	Adding Comments
	Making Use of Standard Mixins
	Creating Reusable Code
	Exploring Our Code in Detail

	Using Prebuilt Mixins
	Understanding How the Code Works

	Passing Values to Mixins
	Dissecting Our Code

	Working Across Multiple Files
	Exploring How Our Code Works

	Summary

	Chapter 3: Creating Nested Styles
	Breaking Apart the Concept of Nesting
	Breaking Apart Our Code
	Working a More Complex Example
	Exploring the Pitfalls of Nesting
	Is Nesting a Bad Thing?
	Exploring the Benefits of Nesting

	Referencing Parent Selectors
	Exploring Our Code in Detail

	Applying the @extend Directive
	Working Through an Example
	A Practical Example
	Dissecting Our Code in Detail
	Using Extends or Mixins?

	Summary

	Chapter 4: Calculating Values Using Operations
	Number-Based Operations
	Operators for String-Based Content
	Boolean-Based Operators
	List-Based Operators
	Putting This Into Practice
	Understanding What Happened

	Defining Functions
	Working with Colors – a Mini Case Study
	Breaking Apart the Code in Detail
	Assessing the Benefits from Using this Approach

	Evaluating Conditions
	Applying @if and @if():
	Understanding What Happened

	Looping Through Styles
	Working with @for
	Understanding How Our Code Works
	Looping Using @each
	Dissecting the Demo

	Looping if a Condition Is True
	Exploring the Code in Detail

	Applying Styles to a Property List or Map
	Breaking Down Our Code

	Creating Breakpoints Using @media
	Understanding What Happened

	Summary

	Chapter 5: Making the Conversion to Using Sass
	Simplifying the Process
	Making a Start on Conversion
	Using the css2scss Tool – a Postscript

	Using a Prebuilt Library
	Exploring Prebuilt Options
	Assessing the Pitfalls – a Postscript

	Optimizing the Import Process
	Understanding the Changes

	Working Through an Example
	Exploring the Changes and More in Detail

	Summary

	Chapter 6: Introducing Our Project
	Setting Up Our Initial Cart
	Understanding What Has Happened

	Preparing Our Style Sheet
	Assigning Our Variables
	Understanding the Imported Code in Detail

	Setting Up the Main Style Sheet
	Breaking Apart the Code

	Tying It All Together
	Compiling Our Code
	The Final Result
	Future Changes
	Summary

	Appendix: Adding Sass to Your Path
	Windows
	Mac OS X
	Linux

	Index

